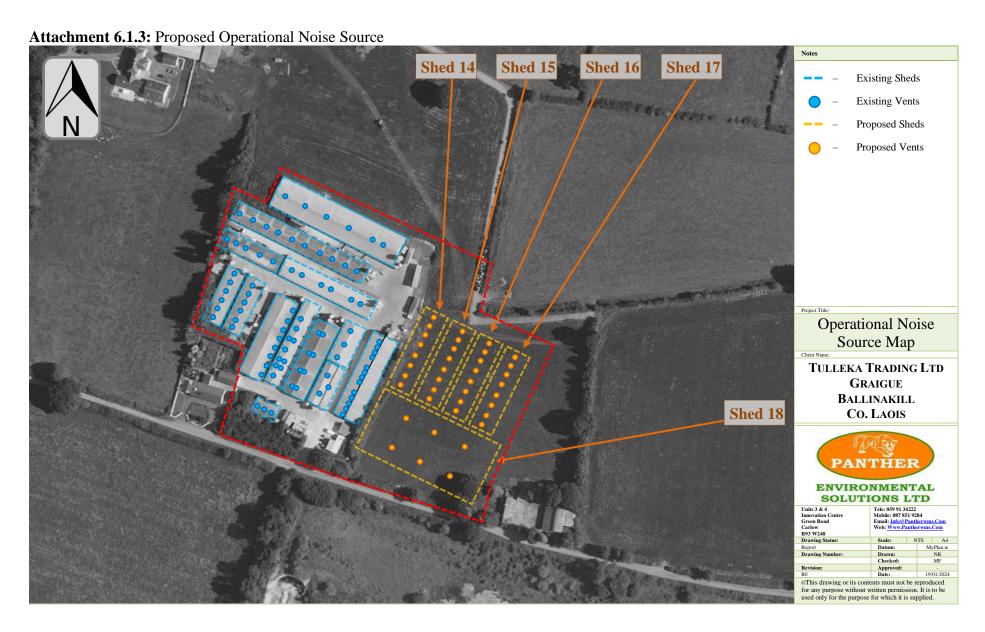
TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

ATTACHMNET 6.0

Noise Environment Chapter


TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

ATTACHMNET 6.1

SITE MAPS FOR NOISE ASSESSMENTS

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

ATTACHMNET 6.2

CALIBRATION CERTIFICATES

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

CERTIFICATE OF CALIBRATION

ISSUED BY

Cirrus Research plc

DATE OF ISSUE 04 October 2022

CERTIFICATE NUMBER 181033

Cirrus Research plc Acoustic House Bridlington Road Hunmanby North Yorkshire YO14 0PH United Kingdom Page 1 of 2

Approved signatory

J.johnston

Electronically signed:

Lan

Sound Level Meter: IEC 61672-3:2013

Instrument information

Manufacturer:

Serial number:

Cirrus Research plc

Notes:

Model:

CR:171B G071199

Class:

1

Firmware version:

3.2.3197

Test summary

Date of calibration:

04 October 2022

The calibration was performed respecting the requirements of ISO/IEC 17025:2017. Periodic tests were performed in accordance with procedures from IEC 61672-3:2013.

The sound level meter submitted for testing successfully completed the class 1 periodic tests of IEC 61672-3:2013, for the environmental conditions under which the tests were performed.

However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 because (a) evidence was not publicly available, from an independent testing organisation responsible for pattern approvals, to determine that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 cover only a limited subset of the specifications in IEC 61672-1:2013.

Notes

This certificate provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory. The results within this certificate relate only to the items calibrated. The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a coverage probability of approximately 95%.

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

CERTIFICATE OF CALIBRATION

ISSUED BY

Cirrus Research GmbH

DATE OF ISSUE 09 August 2023

CERTIFICATE NUMBER 196955

Cirrus Research GmbH Arabella Center Lyoner Strasse 44-48 D-60528 Frankfurt Germany

Page 1 of 2

Approved signatory

M.Laakel

Electronically signed:

Sound Level Meter : IEC 61672-3:2006

Instrument information

Manufacturer:

Cirrus Research plc

Notes:

Model:

CR:831C

Serial number:

D21509FF

Class:

Firmware version:

v04.00

Test summary

Date of calibration:

09 August 2023

The calibration was performed respecting the requirements of ISO/IEC 17025:2017. Periodic tests were performed in accordance with procedures from IEC 61672-3:2006.

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed.

However, no general statement or conclusion can be made about conformance of the sound level meter to the full requirements of IEC 61672-1:2002 because evidence was not publicly available, from an independent testing organisation responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002 and because the periodic tests of IEC 61672-3:2006 cover only a limited subset of the specifications in IEC 61672-1:2002.

Notes

This certificate provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory. The results within this certificate relate only to the items calibrated. The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a coverage probability of approximately 95%.

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

CERTIFICATE OF CALIBRATION

ISSUED BY

Cirrus Research plc

DATE OF ISSUE

04 October 2022 CERTIFICATE NUMBER 181032

Cirrus Research plc Acoustic House **Bridlington Road** Hunmanby North Yorkshire YO14 0PH United Kingdom

Page 1 of 2

Test engineer: D.Swalwell

Electronically signed:

Microphone

Microphone capsule

Manufacturer: Cirrus Research plc

Model: MK:224

Serial Number: 216368A

Calibration procedure

Open circuit:

51.1 mV/Pa

Sensitivity at 1 kHz: -25.8 dB rel 1 V/Pa

The microphone capsule detailed above has been calibrated to the published data as described in the operating manual of the associated sound level meter (where applicable).

The frequency response was measured using an electrostatic actuator in accordance with BS EN 61094-6:2005 with the free-field response derived via standard correction data traceable to a National Measurement Institute.

The absolute sensitivity at 1 kHz was measured using an acoustic calibrator conforming to IEC 60942:2003 Class 1.

Environmental conditions

Pressure:

101.20 kPa

Temperature: 21.0 °C

Humidity:

54.0 %

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

CERTIFICATE OF CALIBRATION

ISSUED BY

Cirrus Research GmbH

DATE OF ISSUE

08 August 2023

CERTIFICATE NUMBER 196816

Cirrus Research GmbH Arabella Center Lyoner Strasse 44-48 D-60528 Frankfurt Germany

Page 1 of 2

Test engineer: M.Laakel

Electronically signed:

Microphone

Microphone capsule

Manufacturer: Cirrus Research plc

Model:

MK:224

Serial Number: 203215A

Calibration procedure

Date of calibration: 08 August 2023

Open circuit:

52.3 mV/Pa

Sensitivity at 1 kHz: -25.6 dB rel 1 V/Pa

The microphone capsule detailed above has been calibrated to the published data as described in the operating manual of the associated sound level meter (where applicable).

The frequency response was measured using an electrostatic actuator in accordance with BS EN 61094-6:2005 with the free-field response derived via standard correction data traceable to a National Measurement Institute.

The absolute sensitivity at 1 kHz was measured using an acoustic calibrator conforming to IEC 60942:2003 Class 1.

Environmental conditions

Pressure:

100.40 kPa

Temperature: 24.8 °C

Humidity:

37.8 %

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

CERTIFICATE OF CALIBRATION

ISSUED BY

Cirrus Research GmbH

DATE OF ISSUE 09 August 2023

CERTIFICATE NUMBER 196888

Cirrus Research GmbH Arabella Center Lyoner Strasse 44-48 D-60528 Frankfurt Germany

Page 1 of 2

Approved signatory

M.Laakel

Electronically signed:

Sound Calibrator: IEC 60942:2003

Instrument information

Manufacturer: Cirrus Research plc

Notes:

Model:

CR:515

Class:

Serial number: 54060

Test summary

Date of calibration: 09 August 2023

The sound calibrator detailed above has been calibrated to the published data as described in the operating manual and in the half-inch configuration. The procedures and techniques used are as described in IEC60942_2003 Annex B -Periodic Tests and three determinations of the sound pressure level, frequency and total distortion were made.

The sound pressure level was measured using a WS2F condenser microphone type MK:224 manufactured by Cirrus

The results have been corrected to the reference pressure of 101.33 kPa using the manufacturer's data.

As public evidence was available, from a testing organisation responsible for approving the results of pattern evaluation tests, to demonstrate that the model of sound calibrator fully conformed to the requirements for pattern evaluation described in Annex A of IEC 60942:2003, the sound calibrator tested is considered to conform to all the Class 1 requirements of IEC 60942:2003.

The manufacturer's product information indicates that this model of sound calibrator has been formally pattern approved to IEC60942_2003 Annex A to Class 1. This has been confirmed by Laboratoire National d'Essais (LNE), APPLUS (APPLUS) and PhysikalischTechnische Bundesanstalt (PTB).

Notes:

This certificate provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory. The results within this certificate relate only to the items calibrated. The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a coverage probability of approximately 95%.

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

ATTACHMNET 6.3

BS 5228 SOUND LEVEL DATA TABLE

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

Ref no.	Equipment	Power rating, kW	Equipment size, weight (mass), ca		Octave band sound pressure levels at 10 m, Hz							A-weighted sound pressure level,	
				63	125	250	500	1k	2k	4k	8k	dB at 1	0 m
Table	e C.2 Sound level data on site prepara	ation											
	Clearing site												
7	Tracked excavator	69	14 t	74	70	68	67	64	62	58	50	70	
В	Wheeled backhoe loader	62	8 t	74	66	64	64	63	60	59	50	68	
	Loading lorries												
28	Wheeled loader	170	8 <u>—</u> 8	86	82	77	74	70	66	62	55	76	
	Distribution of material	201-0											
35	Telescopic handler	60	10 t	85	79	69	67	64	62	56	47	71	
	Rolling and compaction												
37	Roller (rolling fill) ж	145	18 t	72	75	81	78	74	70	63	55	79	ж
Table	e C.4 Sound level data on general site	activities											
	Distribution of materials												
4	Dumper ж	75	9 t	82	76	75	74	68	68	64	55	76	ж
14	Wheeled backhoe loader	62	9 t	68	67	63	62	62	61	54	47	67	
	Mixing concrete												
18	Cement mixer truck (discharging)		- ;	80	69	66	70	71	69	64	58	75	
23	Small cement mixer	2	_	61	65	58	58	57	53	51	49	61	
	Lifting												
46	Mobile telescopic crane	240	50 t	78	69	67	64	62	57	49	40	67	
59	Diesel scissor lift	24	6 t	80	77	74	74	74	71	65	63	78	
93	Angle grinder (grinding steel)	2.3	4.7 kg	57	51	52	60	70	77	73	73	80	

BRITISH STANDARD

BS 5228-1:2009+A1:2014

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

ATTACHMNET 6.4

Noise Survey Photo Log

Figure E.1: Baseline Monitoring Location No.1

Figure E.2: Baseline Monitoring Location No.2

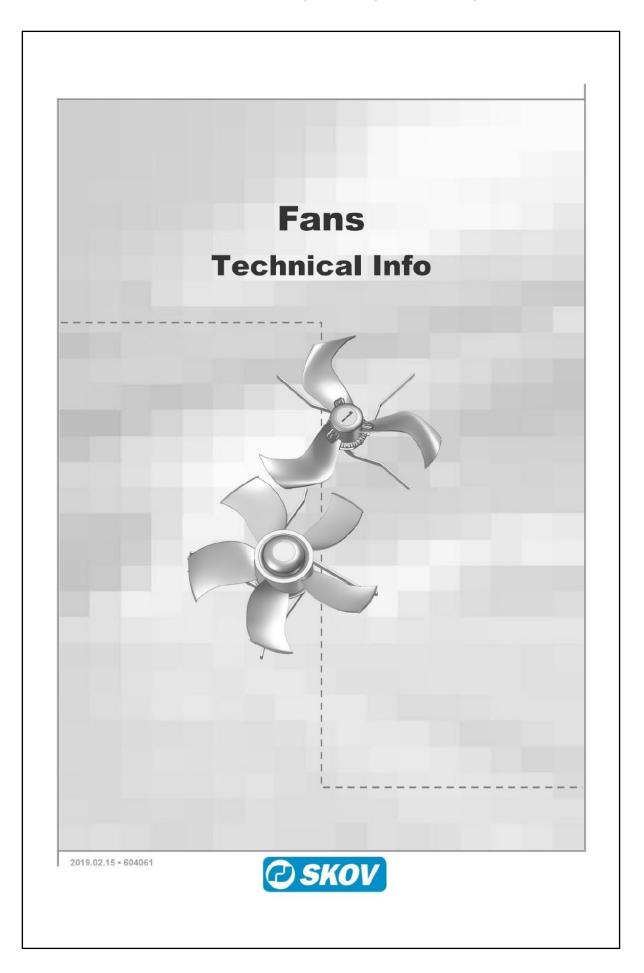
Figure E.3: Baseline Monitoring Location No.3

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

ATTACHMNET 6.5

METEOROLOGICAL CONDITIONS

Date	Rainfall (mm)	Max Temp (°C)	Min Temp (°C)	Grass Min Temp (°C)	Mean Wind Speed (knots)						
18/01/2024	0.0	3.9	-6.5	-13.3	1.9						
	HOU	rly value	S (UTC) 18	an2024 OAK PA	ARK						
4:0	1 1 1 1			mperatures (de							
4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				***	+						
	3 4 5 6	7 8 9 1	011121314	115161718192	2021222324						
0.5				D-1-6-11/-							
0.4				Rainfall(r	nm)						
0.2											
0	3 4 5 6	7 8 9 1	01112131	115161718192	2021222324						
1020.0 -	1020.0										
1018.0 1016.0 1014.0				MSL Pressure(I	1pa)						
1012.0 1010.0 1008.0 1006.0											
1004.0 1002.0	2 3 4 5	6 7 8 0	10111213	141516171819	2021222324						
4.5											
4.5 4 3.5			10-m	in Wind Speeds	(kt) —— -						
3 2.5 2			\wedge	V\							
1.5	++++	7 9 0 1	01112121	11516171010	2021222224						
1 2	3 4 5 6	7 8 9 1		415161718192							
350 300 250			····· / y\	find Directions(d	deg) ——						
200 150 100	<u></u>		$\nearrow \checkmark$	¥	\						
50	3 4 5 6	7 8 9 1		415161718192							


Date	Rainfall (mm)	Max Temp (°C)	Min Temp (°C)	Grass Min Temp (°C)	Mean Wind Speed (knots)
19/01/2024	0.0	5.7	-3.8	-10.6	6.8
	HOU	rly value	S (UTC) 19J	an2024 OAK P	ARK
6.8 4.8 3.8			Te	m per atures (de	g C)
1 2	3 4 5 6	7 8 9 1	011121314	11516171819	2021222324
0.5		<u> </u>		Rainfall(mm)
0.3 0.2 0.1					
0 1 2	3 4 5 6	7 8 9 1	011121314	11516171819	2021222324
1020.5 1020.0 1019.5 1019.0 1018.5 1018.0 1017.5 1016.5 1016.5 1015.5	2 3 4 5	6 7 8 9	10111213	MSL Pressure(
12 11 10 9			10-m	in Wind Speeds	s (kt)
9	3 4 5 6	7 8 9 10	11121314	15 16 17 18 19	20 21 22 23 24
190			W	ind Directions(deg)
170 160		<i></i>		* \	·····
140 1 2	3 4 5 6	7 8 9 1	01112131	11516171819	2021222224

Date	Rainfall (mm)	Max Temp (°C)	Min Temp (°C)	Grass Min Temp (°C)	Mean Wind Speed (knots)
20/01/2024	10.3	9.3	5.7	3.4	15.5
	HOUF	RLY VALUES	S (UTC) 20Ja	an2024 OAK PA	.RK
9.5 9.0 8.5	1 1 1	1 1 1 1	Te	mperatures (de	g (c) -
9.5 9.0 8.5 8.0 7.5 7.5 6.5				+	*
	3 4 5 6	7 8 9 10	11 12 13 14	15 16 17 18 19	20 21 22 23 24
2.5			- 	Rainfall(mm)
1.5					
0.5					
1 2	3 4 5 6	7 8 9 10	011121314	11516171819	2021222324
1016.0 1014.0 1012.0		<u> </u>		MSL Pressure(hpa) — -
1010.0 - 1008.0 - 1006.0 -					
1004.0 1002.0 1000.0				1 1 1 1 1	
	2 3 4 5	6 7 8 9	101112131	141516171819	2021222324
20 18 16			10-m	in Wind Speeds	(kt)
14 12 10	<i></i>				
8					
200	3 4 5 6	7 8 9 10	11 12 13 14	15161718192	20 21 22 23 24
195 190 185			w w	ind Directions(deg) — -
180 175			V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<i>/</i> \
170 165					/

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

ATTACHMNET 6.6

EXTRACTION FAN DATA SHEET

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

Technical Info 19

3.3 DA 600

Fan type	445085 DA 600-7F	445090 DA 600-7
Electric		
Rated voltage [V AC]	1x230 ± 10 %	3x400 ± 10 %
Operational voltage [V AC]	207 - 253	380 - 415
Frequency [Hz]	50	50
Max. power consumption [A]	4.5	2.01
Power consumption at [A] - 40Pa	4.1	1.9
Power [W]	730	720
Earth leak circuit breaker	To be installed in accordance with applicable laws and standards. RCCB 300 mA (type B) is applicable in front of the power supply to DOL 38-2 regulated fans.	F
Leak current to earth	Max. 2.5 mA. Pay attention to other leak current sources in the house.	-
Adjustment ability	Frequency	ON/OFF
Motor protection	DOL 38-2	TP 211
Motor relay	DOL 38-2	1.6-2.5 A
Mechanic		
Cable length [m]	1.5	1.5
Min. duct diameter [mm]	636	636
Blade diameter [mm]	625	625
Number of blades [pcs.]	3	3
Vingehældning [°]	Periferi 25 Nav 45	Periferi 25 Nav 45
Fan output		
Revolutions [per minute] (mark)	1,390-1,410	1,390-1,410
Air output [m ³ /h] (at –10 Pa]	15,900	17,000
Air output [m³/h] (at -20 Pa]	15,600	16,700
Air output [m ³ /h] (at –30 Pa]	15,200	16,400
Air output [m ³ /h] (at –40 Pa]	15,000	16,100
Air output [m³/h] (at –50 Pa]	14,700	15,900
Power consumption [W] (at -10 Pa)	874	827
Specific output [m³/kWh] (at -10 Pa)	18,200	19.800
Specific energy [Watt/1000 m³/h] (at -10 Pa)	55	51
Test authorities	SKOV A/S	Bygholm, AAU
Environment		
Fan noise, outside [dB (A)] (2m, 45 degrees)	71	71

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

20 Technical Info

3.3.1 ErP/Ecodesign

Fan type	445085 DA 600-7F	445090 DA 600-7
Ecodesign	ErP 2015(N58)	ErP 2015(N58)
Efficiency classification [N]	59.5	62.8
Efficiency (η) [%]	48.8	59.5
Measurement category	D	D
Efficiency category	Total	Total
Optimum efficiency [%]	51.6	51.7
VSD required	Yes	No
Year of manufacture	2012	2012
Manufacturer's name	SKOV A/S	SKOV A/S
Product's model number	445085	445090
Motor power input [kW]	0.978	1,014
Flow rate [m ³ /s]	3.35	4.19
Optimum pressure [Pa]	100	70
Total pressure [Pa]	142	137
Rotations per minute [RPM]	1,325	1,396
Specific ratio	1.0	1.0
Recycling/disposal	The product is designed for recycling and it will product to SKOV A/S or to local collection sites instructions	l be possible for customers to deliver worn-out s/recycling stations according to local
Impact on environment		-
Additional items used when determining the fan energy efficiency	Bell mouth, shutter, air direction plate	e, 0.5m DA 600 duct and outlet cone.

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

ATTACHMNET 6.7

NOISE ASSESSMENT TABLES

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

Baseline Noise Monitoring Summary Table – Daytime

Ref.	Time	LAeq	LA ₁₀	LA90	LAFmax	Background Noise Sources
	19/01/2024 10:24	49	53	41	72	 Intermittent local traffic (x6) Intermittent distant traffic noise
NM1	19/01/2024 12:00	59	62	44	86	 Continuous /Low bird song Continuous / Low fan type noise from the existing farm Intermittent/Low speaking from staff
	19/01/2024 12:35	51	54	44		 Intermittent/Moderate traffic entering / exiting the site (x5)
	19/01/2024 09:47	46	49	37	63	 Continuous /Moderate bird song
NM2	19/01/2024 11:18	47	43	38	77	 Intermittent local traffic (x3) Intermittent/Low engine and reverse signal noise from farm, Continuous/Low motor noise from quarry/ cement site
	19/01/2024 11:54	44	46	40	58	Intermittent distant dog barking
	19/01/2024 10:05	<mark>52</mark>	53	<mark>50</mark>	66	 Continuous /Moderate bird song
NM3	19/01/2024 10:36	60	48	40	87	 Intermittent local traffic (x6) Intermittent/Low reverse signal noise from farm,
	19/01/2024 12:36	56	45	38	87	Intermittent distant dog barking

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

Baseline Noise Monitoring Summary Table – Evening

Ref.	Time	LAeq	LA ₁₀	LA90	LAF _{max}	Background Noise Sources
NM1	18/01/2024 22:22	41	32	27	71	 Intermittent/Moderate local traffic (x1) Icy roads and v. low temperatures reducing traffic and speeds Intermittent/Faint distant traffic in surround roads Continuous/Very Low fan type noise from the existing farm
NM2	18/01/2024 21:48	34	36	27	55	 Intermittent local traffic (x1) Icy roads and v. low temperatures reducing traffic and speeds Intermittent/Faint distant traffic in surround roads Intermittent dog barking
NM3	18/01/2024 22:19	48	45	37	78	 Intermittent local traffic (x1) Icy roads and v. low temperatures reducing traffic and speeds Intermittent/Faint distant traffic in surround roads Intermittent dog barking

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

Baseline Noise Monitoring Summary Table – Night-Time

Ref.	Time	LAeq	LA ₁₀	LA ₉₀	LAFmax	Background Noise Sources
NM1	18/01/2024 23:38	39	34	28	64	 Intermittent/Moderate local traffic (x1) Icy roads and v. low temperatures reducing traffic and speeds Intermittent/Faint distant traffic in surround roads
INIVII	20/01/2024 00:07	53	<mark>56</mark>	<mark>45</mark>	61	 Continuous/Very Low fan type noise from the existing farm Second recording was on the following night in mild conditions, intermittent breezes and passing traffic.
NM2	18/01/2024 23:04	40	33	26	66	 Intermittent local traffic (x1) Icy roads and v. low temperatures reducing traffic and speeds Intermittent/Faint distant traffic in surround roads
101012	19/01/2024 23:34	49	52	42	62	 Intermittent dog barking Second recording was on the following night in mild conditions, intermittent breezes and passing traffic.
NM3	19/01/2024 00:19	30	28	22	65	 Intermittent local traffic (x1) Icy roads and v. low temperatures reducing traffic and speeds Intermittent/Faint distant traffic in surround roads
111113	19/01/2024 23:00	48	46	37	76	 Intermittent dog barking Second recording was on the following night in mild conditions, intermittent breezes and passing traffic.

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

Predictive Noise – Construction Phase

In order to determine the potential impact of noise from the proposed development during the construction phase, the resultant noise levels at the three defined noise sensitive receptors have been calculated, based on distance from the NSR to the closest area with the potential to contain construction plant operations.

A source noise level of 102 dB has been utilized to represent *Phases 2* of construction, as outlined in Section 6.3.1 above.

	Receptor			Construct	ion Source		Diver	gence	I Aog (dR)	
Ref _R	Ref_R X_R Y_R		Refs	$\mathbf{X}_{\mathbf{S}}$	$\mathbf{Y}_{\mathbf{S}}$	Ls (dB)	Dist (m)	A _{div} (dB)	LAeq (dB)	
NSR1	615509	5862230	C1	615611	5862209	102	104	40	62	
NSR2	615473	5862410	C2	615644	5862278	102	216	47	55	
NSR3	615942	5862371	C3	615733	5862277	102	229	47	55	

Dist =
$$\sqrt[n]{(X_R - X_S)^2 + (Y_R - Y_S)^2}$$

when
$$S = source & R = receptor$$

$$A_{div} = 20. Log \left(\frac{dist}{do}\right)$$

when
$$Adiv = noise reduction with distance$$

$$d_o = 1m$$

$$LAeq = L_S - A_{div}$$

when L_S = source noise level

TULLEKA TRADING UNLIMITED, GRAIGUE, BALLINAKILL, CO. LAOIS

Predictive Noise – Operational Phase

In order to determine the potential impact of noise from the proposed development during the operational phase, the resultant noise levels at the three defined noise sensitive receptors have been calculated, based on distance from the NSR's to each of the 125 individual noise sources in the form of rooftop vents and an individual level of 77 dB as per Section 6.3.2. Table 7.7 outlines this calculation for NSR1 only.

Operational N	Noise Attenuatio	on Calculation –	NSR1														
	Sou	ırce		Recept	or NSR1	Diver	I (JD)										
Ref.	$\mathbf{X}_{\mathbf{S}}$	$\mathbf{Y}_{\mathbf{S}}$	Ls (dB)	XR	$\mathbf{Y}_{\mathbf{R}}$	Dist (m)	Adiv (dB)	L _R (dB)									
B1.1	615555	5862347				126	42	35									
B1.2	615567	5862342				126	42	35									
B1.3	615580	5862337				128	42	35									
B1.4	615593	5862332				132	42	35									
B1.5	615607	5862324				136	43	34									
B1.6	615614	5862321	77 615				139	43	34								
B2.1	615526	5862337					108	41	36								
B2.2	615535	5862334				107	41	36									
B2.3	615544	5862330		77 61550	77	77	77	77	77	77					106	41	36
B2.4	615551	5862327									615509	5862230	106	40	37		
B2.5	615559	5862324				106	41	36									
B2.6	615566	5862321				107	41	36									
B2.7	615575	5862316				108	41	36									
B2.8	615583	5862313				111	41	36									
B2.9	615591	5862309				114	41	36									
B2.10	615598	5862306				117	41	36									
B3.1	615520	5862322				93	39	38									
B3.2	615524	5862320					91	39	38								
B3.3	615529	5862318				90	39	38									

	Sou	ırce		Recept	or NSR1	Diver	I = (dD)	
Ref.	$\mathbf{X}_{\mathbf{S}}$	$\mathbf{Y}_{\mathbf{S}}$	Ls (dB)	$\mathbf{X}_{\mathbf{R}}$	$\mathbf{Y}_{\mathbf{R}}$	Dist (m)	A _{div} (dB)	L _R (dB)
B3.4	615538	5862314				89	39	38
B3.5	615546	5862310				88	39	38
B4.1	615561	5862305				91	39	38
B4.2	615567	5862302				92	39	38
B4.3	615579	5862297				97	40	37
B4.4	615585	5862294				99	40	37
B4.5	615598	5862289				107	41	36
B4.6	615603	5862287				110	41	36
B5.1	615512	5862277				47	33	44
B5.2	615514	5862281				51	34	43
B5.3	615516	5862286			56	35	42	
B5.4	615518	5862291				62	36	41
B5.5	615520	5862296				67	37	40
B5.6	615523	5862301	77	77 615509 58	5862230	72	37	40
B6.1	615522	5862270				42	32	45
B6.2	615524	5862275				47	34	43
B6.3	615526	5862280				53	34	43
B6.4	615529	5862285				59	35	42
B6.5	615531	5862290				64	36	41
B6.6	615533	5862295				69	37	40
B7.1	615541	5862241				34	31	46
B7.2	615543	5862247				38	32	45
B7.3	615546	5862253				44	33	44
B7.4	615549	5862259				49	34	43

Operational N	Noise Attenuatio	on Calculation –	NSR1					
Source			Receptor NSR1		Divergence		T (ID)	
Ref.	$\mathbf{X}_{\mathbf{S}}$	$\mathbf{Y}_{\mathbf{S}}$	Ls (dB)	XR	$\mathbf{Y}_{\mathbf{R}}$	Dist (m)	A _{div} (dB)	$L_{R}(dB)$
B7.5	615551	5862264			54	35	42	
B7.6	615554	5862269				60	35	42
B7.7	615556	5862274				64	36	41
B7.8	615559	5862280				71	37	40
B8.1	615548	5862242				41	32	45
B8.2	615550	5862247				44	33	44
B8.3	615552	5862247				46	33	44
B8.4	615551	5862252				47	34	43
B8.5	615553	5862251		615509 5862230	49	34	43	
B8.6	615556	5862257				54	35	42
B8.7	615558	5862263				59	35	42
B8.8	615559	5862262			5862230	59	35	42
B8.9	615562	5862270				66	36	41
B8.10	615565	5862275				72	37	40
B9.1	615560	5862236				51	34	43
B9.2	615562	5862235	77			53	35	42
B9.3	615564	5862245	//			57	35	42
B9.4	615566	5862244				59	35	42
B9.5	615570	5862255				66	36	41
B9.6	615572	5862254				67	37	40
B9.7	615575	5862267				76	38	39
B9.8	615577	5862266				77	38	39
B10.1	615581	5862243				73	37	40
B10.2	615575	5862231				66	36	41

perational i	tional Noise Attenuation Calculation – NSR1 Source			Receptor NSR1		Divergence		
Ref.	Xs	Ys	Ls (dB)	XR	YR	Dist (m)	Adiv (dB)	L _R (dB)
B10.3	615581	5862236	• • •			72	37	40
B11.1	615595	5862270				95	40	37
B11.2	615591	5862262				88	39	38
B11.3	615587	5862254				82	38	39
B12.1	615592	5862219				84	38	39
B12.2	615594	5862223				85	39	38
B12.3	615595	5862226				86	39	38
B12.4	615597	5862229				88	39	38
B12.5	615599	5862232				90	39	38
B12.6	615602	5862239				93	39	38
B12.7	615603	5862242				95	40	37
B12.8	615605	5862245				97	40	37
B12.9	615606	5862248				99	40	37
B12.10	615609	5862255		615509 5862		103	40	37
B12.11	615610	5862258			5862230	105	40	37
B12.12	615612	5862261				108	41	36
B12.13	615613	5862263				109	41	36
B13.1	615538	5862223				30	29	48
B13.2	615543	5862221	77			35	31	46
B13.3	615547	5862220				39	32	45
B14.1	615623.2	5862230				114	41	36
B14.2	615625	5862235				116	41	36
B14.3	615627.5	5862239				119	41	36
B14.4	615629.5	5862245				121	42	35

Operational 1	Noise Attenuatio	on Calculation –	- NSR1					
Source			Receptor NSR1		Divergence		T (ID)	
Ref.	$\mathbf{X}_{\mathbf{S}}$	$\mathbf{Y}_{\mathbf{S}}$	Ls (dB)	X_R	$\mathbf{Y}_{\mathbf{R}}$	Dist (m)	A _{div} (dB)	L _R (dB)
B14.5	615631.7	5862249				124	42	35
B14.6	615634	5862255				127	42	35
B14.7	615636.6	5862260				131	42	35
B14.8	615639	5862266				135	43	34
B15.1	615639	5862222				130	42	35
B15.2	615641	5862227				132	42	35
B15.3	615643.5	5862232				135	43	34
B15.4	615646.1	5862239				137	43	34
B15.5	615648.2	5862243				140	43	34
B15.6	615650.7	5862249				143	43	34
B15.7	615652.8	5862254				146	43	34
B15.8	615655.3	5862259				149	43	34
B16.1	615655.9	5862217				147	43	34
B16.2	615656.7	5862221				148	43	34
B16.3	615659.8	5862227				151	44	33
B16.4	615662.3	5862233				153	44	33
B16.5	615664.6	5862238				156	44	33
B16.6	615667.5	5862244				159	44	33
B16.7	615669.8	5862249	77	615509		162	44	33
B16.8	615671.8	5862254			5862230	165	44	33
B17.1	615670.7	5862209				163	44	33
B17.2	615672.9	5862214				165	44	33
B17.3	615674.8	5862218				166	44	33
B17.4	615677.3	5862224				168	45	32

Operational Noise Attenuation Calculation – NSR1									
Source				Receptor NSR1		Divergence		I (JD)	
Ref.	$\mathbf{X}_{\mathbf{S}}$	$\mathbf{Y}_{\mathbf{S}}$	Ls (dB)	$\mathbf{X}_{\mathbf{R}}$	$\mathbf{Y}_{\mathbf{R}}$	Dist (m)	Adiv (dB)	$L_{R}(dB)$	
B17.5	615679.6	5862229				171	45	32	
B17.6	615681.3	5862234				172	45	32	
B17.7	615683.5	5862240				175	45	32	
B17.8	615686.4	5862246				178	45	32	
B18.1	615617	5862211			110	41	36		
B18.2	615639.2	5862205				133	42	35	
B18.3	615661.5	5862197				156	44	33	
B18.4	615610.3	5862194				108	41	36	
B18.5	615631.9	5862187				130	42	35	
B18.6	615655.6	5862181				155	44	33	
Total LAeq at NSR1								61	

$$\begin{array}{lll} \text{Dist} = \sqrt[m]{(X_R - X_S)^2 + (Y_R - Y_S)^2} & \text{when} & S = \text{source \& R} = \text{receptor} \\ \\ A_{\text{div}} = 20. \, \text{Log} \, (\frac{\text{dist}}{\text{do}}) & \text{when} & A_{\text{div}} = \text{noise reduction with distance} \\ & d_o = 1 \text{m} \\ \\ L_R = L_S - A_{\text{div}} & \text{when} & L_S = \text{source noise level at 1m \& } \\ & L_R = \text{individual noise level at receptor} \\ \\ \text{Total LAeq} = 10. \, \text{Log} \, \sum_{i=1}^n 10^{LR/10} & \text{when } L_R = \text{individual noise level at receptor} \\ \end{array}$$