G. BRUSS GmbH | Dichtungstechnik | Sligo | Ireland

Office of Climate, Licensing & Resource Use

G. BRUSS GmbH Dichtungstechnik

Finisklin Road Sligo Ireland

Phone +353 71 915 6300 Fax +353 71 916 9352

Internet: www.Bruss.de

Branch Registered Office Finisklin Road, Sligo Co. Reg. No. 902311 Vat No 4540059 I

05 Jan 2018

IPC Reg. No: PO465-02

Johnstown Castle Estate

Re:Request for Information according to Reg. 10(2)(b)(ii) of EPA(IPC) (Licensing) Regulations 2013 - Emissions Assessment A2-1 – A2-4 Rubber Fume, A2-5 Gleitmo Fume

Dear Mr. Clabby,

PO Box 3000

County Wexford

I am enclosing the requested information on Emissions Assessment for all emissions to atmosphere on site. In addition, enclosed also are the emissions Tables E.1(ii)(iii) for existing emission points A2-1 – A2-4 Rubber Fume and for the proposed emission point A2-5 Gleitmo Coating Fume. The surveys and assessment was carried out by TMS Environment Ltd on our behalf. I have also included updated data on energy usage and site activities since the original appplication was submitted in 2014.

We declare that the content of the electronic files on the accompanying CD-ROM is a true copy of the original form.

Please find enclosed the following documents for review:

- 1 signed original, 1 copy
- Requested Information
- Attachments appendices supporting air emission assessments
- · 2 electronic copies of all files on CD-ROM

Yours sincerely,

Anna Garvey

Environmental Manager

G. Bruss GmbH DICHTUNGSTECHNIK

Finisklin Road,

Sligo

Tel: 003537191564342 Fax: 00353719169352

Email: annagarvey@bruss.ie

Contents

lτ	TEM	PAGE
1	A2-1 - A2-4 EMISSIONS ASSESSMENT RUBBER FUME	1
2	A2-5 EMISSION ASSESSMENT GLEITMO COATING PROCESS	5
3	TABLES E.1(II)(III) A2-1 – A2-4 RUBBER FUME	7
4	TABLES E.1(II)(III) A2-5 GLEITMO COATING STACK	16
5	SITE UPDATES — ENERGY, FUEL OILS, HAZARDOUS SUBSTANCES	18

TMS Environment Ltd 53 Broomhill Drive Tallaght Dublin 24 Phone: +353-1-4626710 Fax: +353-1-4626714 Web: www.tmsenv.ie

ASSESSMENT OF EMISSIONS TO ATMOSPHERE

For

G BRUSS GMBH Finisklin Road, Sligo

Licence Reg. P0465-01

1.0 Introduction and Scope

This report presents an assessment of emissions to atmosphere in response to a request for information from the EPA dated 29th June 2016. The request for information included the following information relevant to this report:

- (i) Carry out monitoring and analysis of emissions to atmosphere for relevant substances as listed in the EPA BAT Guidance Note for the Manufacture of Organic Chemicals;
- (ii) Complete Tables E1(i) to E1(ii) for emission points A2-1 to A2-4;
- (iii) Provide an analysis based on conservative modelling to indicate whether there is a possibility of breach of relevant air quality standards for particulates.

This report collates the relevant information gathered to respond to this element of the request for information.

2.0 MATERIALS IN USE

A range of materials is in use at the facility in the relevant production areas. A full list of the materials together with details of the associated emission points is provided in Appendix I. One of those materials listed in Appendix I (Bruss Number 07781, containing lead monoxide) is no longer in use and is therefore not considered further in this assessment. The MSDS Information for each of the materials is presented in Appendix II.

These materials were reviewed and Table 1 presents a summary of the relevant characteristics specifically expressed in terms of the potential substances that could be present in emissions to atmosphere and grouped according to the list of Emission Limit Values that are stated in the BAT Guidance Note for Manufacture of Organic Chemicals. It is clear from the review that the only substances for which Emission Limit Values are specified in the BAT Guidance Note are particulates (expressed as total particulates) and organic substances not specifically classified (expressed as Total Organic Carbon).

3.0 Emissions Monitoring

Monitoring of emissions to atmosphere from emission points A2-01, A2-02, A2-03 and A2-04 was carried out in January 2017; the monitoring report is presented in Appendix III and has been submitted to the Agency. Monitoring was carried our pre- and post abatement. There is no separate emissions point prior to abatement so the pre-abatement monitoring was carried out by switching of the Electrostatic Precipitator; this meant that simultaneous monitoring could not be carried out and some runs had higher post-abatement than pre-abatement results for some parameters. It is also noted that although the analysis of rubber fume was carried out on the sample collected and gravimetrically analysed for total particulate, for some runs the rubber fume result was higher than that recorded for particulate matter. This is most likely due to measurement uncertainty in the analysis method for rubber fume.

The results showed that no Class I or Class II organic substances were detected and therefore all organic substances are classified under the heading Total Organic Carbon (TOC). The most notable feature of all of the TOC results is that extremely low mass emission rates were measured – the highest value recorded in any of the runs after abatement was 0.04kg/hour. The highest result pre-abatement was just 0.2 kg/hour. The ELV specified in the BAT Guidance Note is 50mg/m³ at a mass flow rate of 500g/hour (0.5kg/hour). None of the measurement results, even prior to abatement, exceeded the mass flow threshold at which an ELV would apply. And none of the measurement results exceeded the ELV that would apply if the mass flow threshold had been exceeded.

The total particulate results are compared with the BAT Guidance Note ELV of 20mg/m^3 at a mass flow rate of 200 g/hour (0.2kg/hour). None of the measurement results exceeded the mass flow threshold and therefore an ELV would not apply. The measured mass emission rates were orders of magnitude lower than the mass flow threshold in the BAT Guidance Note. There is no limit that would be specifically applied to rubber fume so the measurement results are compared with the result for total particulate matter. Again all of the measurement results were below the mass flow threshold at which an ELV would apply. This is entirely consistent with expectations considering the nature of the materials and the process.

The data acquired during the surveys was used to complete the Tables E1(i) to E1(II) for the Licence Review Application. In each case, it has been proposed that the maximum emission rate that would arise is less than the mass flow threshold at which an ELV would apply.

4.0 ASSESSMENT OF PARTICULATE EMISSIONS

The Agency requested that an analysis based on conservative modelling to indicate whether there is a possibility of breach of relevant air quality standards for particulates would be provided. As noted above the results of all measurements for particulates were significantly lower than the mass flow rate at which an ELV would apply. This indicates that the rate of the emissions is insignificant.

There is no ambient air quality standard for total particulate matter but there is a standard for fine particulate matter as PM_{10} and there will be an air quality standard in 2020 for $PM_{2.5}$. Even if all of the particulate matter was fine particulate matter as PM_{10} , the level of emission is so low that it is deemed to be insignificant and that there is no potential for breach of the air quality standard. The Agency Guidance in respect to significance of emissions when determining whether a Technical Amendment or a Licence Review would be required considers that emissions that are less than 30% of a relevant mass flow threshold are considered insignificant. The measured emission rate for this application is significantly lower than this assessment threshold and this supports our assessment that the emissions are insignificant.

Table 1 Assessment of the potential presence of substances in emissions which would have an Emission Limit Value

Parameter	Presence in any materials in use
Carcinogenic Substances Class I	None of the listed substances are present in any of the materials listed in Appendix I
Carcinogenic Substances Class II	None of the listed substances are present in any of the materials listed in Appendix I
Carcinogenic Substances Class III	None of the listed substances are present in any of the materials listed in Appendix I. Although butadiene rubbers (NBR and HNBR) are in use, 1,3-Butadiene is a gas and none of the free monomer is found in the product.
Organic Substances Class I	None of the listed substances are present in any of the materials listed in Appendix I
Organics Substances Class II	None of the listed substances are present in any of the materials listed in Appendix I
Total Organic Carbon (TOC)	There are a number of waxes and oils present which could contribute to a TOC reading in the emissions.
Mercaptans	Not present in any of the materials listed in Appendix I
Amines	Not present in any of the materials listed in Appendix I
Trimethylamine	Not present in any of the materials listed in Appendix I
Phenols, cresols and xylols	Not present in any of the materials listed in Appendix I
Toluene di-isocyanate	Not present in any of the materials listed in Appendix I
Substances with	Not present in any of the materials listed in Appendix I
Photochemical Ozone Potential (R59)	
Vaporous or gaseous Inorganic substances Class I	None of the listed substances are present in any of the materials listed in Appendix I
Vaporous or gaseous Inorganic substances Class II	None of the listed substances are present in any of the materials listed in Appendix I
Vaporous or gaseous Inorganic substances Class III	None of the listed substances are present in any of the materials listed in Appendix I
Vaporous or gaseous Inorganic substances Class IV	None of the listed substances are present in any of the materials listed in Appendix I
Inorganic Dust Particles Class I	None of the listed substances are present in any of the materials listed in Appendix I
Inorganic Dust Particles Class II	None of the listed substances are present in any of the materials listed in Appendix I
Inorganic Dust Particles Class III	None of the listed substances are present in any of the materials listed in Appendix I
Total particulates	There could be some particulate matter in the form of rubber fume present in the emissions

Specialists in laboratory analysis, monitoring and environmental consultancy

21

TMS Environment Ltd 53 Broomhill Drive Tallaght Dublin 24

Phone: +353-1-4626710 Fax: +353-1-4626714 Web: <u>www.tmsenv.ie</u>

Anna Garvey G Bruss GmbH Finisklin Road, Sligo

Re: Licence Reg. P0465-01 Assessment of emissions for Emission Point A2-05

3 January 2018

Dear Anna

Emissions to Atmosphere from emission point A2-05 ae projected to occur for no more than 4 hours per day, 100 days per year ie 400 hours per year. This is a very limited period of operation and means that the overall emission rate of any substances from this emission point is low. The assessment of emission was considered for the main substances of potential interest – organic carbon, expressed as TOC, and organic tin (as di butyl tin). The following rationale is presented for assessment of significance of the emissions.

- 1. There was no organic tin detected in any of the emissions surveys (pre or post-abatement) and the data presented in Tables E therefore represents potential maxima for hourly emission rates. The maximum hourly mass emission rate is less than 20% of the BAT ELV and therefore the emission is insignificant and there is no potential for breach of an air quality standard as a result of the emission especially when the very limited operational hours are considered.
- 2. Organic substances expressed as TOC were detected and an upper estimate of 600mg/m³ is considered for the emission which equates to 0.4kg/hour mass emission maximum. Since the process only operates for 400 hours per year, 4 hours per day, the average hourly emission rate per day is 0.067kg/hour and on an annual basis the average hourly emission rate is 0.0046kg/hour. These potential emission rates are significantly lower than the BAT threshold of 0.5 kg/hour. There is no Air Quality Standard for TOC specifically against which to assess the significance of the emissions so any assessment will be made against the annual air quality standard for some substance. Therefore it is reasonable to consider the annual average emission rate when assessing the significance of the emissions. The annual average mass emission rate is less than 1% of the BAT threshold. It is therefore concluded that the emissions are insignificant and that no breach of air quality standards would occur as a result of the emission.

The level of emission is so low that it is deemed to be insignificant and that there is no potential for breach of the air quality standards. The Agency Guidance in respect to significance of emissions when determining whether a Technical Amendment or a Licence Review would be required considers that emissions that are less than 30% of a relevant mass flow threshold are considered insignificant. As noted above, mass emission rates are significantly lower than this assessment threshold and this supports our assessment that the emissions are insignificant. We conclude that dispersion modelling is not required as there is no likelihood of a breach of an air quality standard given the low mass emission rate and infrequent operation hours for this activity.

Yours sincerely

Dr Imelda Shanahan

Imelda Sharaham

TABLE E.1(ii) MAIN EMISSIONS TO ATMOSPHERE (1 Page for each emission point)

Emission Point Ref. Nº:	A2-1
Source of Emission:	Rubber Tempering Ovens – Rubber Fume Stack
Location:	Business Unit 3
Grid Ref. (12 digit, 6E,6N):	168395E, 336310N
Vent Details Diameter:	350 mm
Height above Ground(m):	9.5
Date of commencement:	2001 (2014 change roof location < 100m)

Characteristics of Emission:

					d:	(i) Volume to be emit
000Nm³/d	360		m/day	Maximum	Average/day 36000Nm ³ /d	
4m.sec ⁻¹			x velocity	Min efflux	Maximum rate/hour 1500Nm ³ /h	
				-		(ii) Other factors
40°C(avg)	•		°C(min)	Temperature 40°C(max) 40		
For Combustion Sources: Volume terms expressed as:						
4n		%O ₂	x velocity	Min efflux	1500Nm ³ /h 40°C(max)	Maximum rate/hour (ii) Other factors Temperature

Periods of Emission	60	min/hr	24	_hr/day	250	day/yr
(avg)						

TABLE E.1(ii) MAIN EMISSIONS TO ATMOSPHERE (1 Page for each emission point)

Emission Point Ref. Nº:	A2-2
Source of Emission:	Rubber Tempering Ovens – Rubber Fume Stack
Location:	Business Unit 2
Grid Ref. (12 digit, 6E,6N):	168437E,
Vent Details Diameter:	350 mm
Height above Ground(m):	9.5
Date of commencement:	2001

Characteristics of Emission:

(i) Volume to be emitted:							
Average/day 36000Nm³/d Maximum/day 36000Nm³/d							
Maximum rate/hour 1500Nm³/h Min efflux velocity 4m.sec ⁻¹							
(ii) Other factors	(ii) Other factors						
Temperature 40°C(max) 20 °C(min) 40°C(avg)							
For Combustion Sources: Volume terms expressed as :							

Periods of Emission	60	min/hr	24	hr/day	250	day/yr
(avg)						

TABLE E.1(ii) MAIN EMISSIONS TO ATMOSPHERE (1 Page for each emission point)

Emission Point Ref. Nº:	A2-3
Source of Emission:	Rubber Tempering Ovens – Rubber Fume Stack
Location:	Business Unit 2
Grid Ref. (12 digit, 6E,6N):	168463E, 336311N
Vent Details Diameter:	500mm
Height above Ground(m):	9.5
Date of commencement:	2001

Characteristics of Emission:

(i) Volume to be emitted:							
Average/day 72000Nm³/d Maximum/day 72000N							
Maximum rate/hour 2700Nm³/h Min efflux velocity 4m.sec ⁻¹							
(ii) Other factors	(ii) Other factors						
Temperature 40°C(max) 20 °C(min) 20°C(avg)							
For Combustion Sources: Volume terms expressed as :							

Periods of Emission	<u>60</u>	min/hr	24	_hr/day	250	day/yr
(avg)						

TABLE E.1(ii) MAIN EMISSIONS TO ATMOSPHERE (1 Page for each emission point)

Emission Point Ref. №:	A2-4
Source of Emission:	Rubber Tempering Ovens – Rubber Fume Stack
Location:	Business Unit 1
Grid Ref. (12 digit, 6E,6N):	168440E, 336341N
Vent Details Diameter:	250mm
Height above Ground(m):	9.5
Date of commencement:	2001

Characteristics of Emission:

(i) Volume to be emitted:									
Average/day	64800Nm ³ /d	Maximum/day		64800Nm ³ /d					
Maximum rate/hour 2500Nm³/h Min efflux velocity 7m.sec ⁻¹									
(ii) Other factors									
Temperature 40°C(max) 20 °C(min) 30°C(avg)									
For Combustion Sources: Volume terms expressed as :									

Periods of Emission	60	min/hr	24	hr/day	250	day/yr
(avg)						

TABLE E.1(ii) MAIN EMISSIONS TO ATMOSPHERE (1 Page for each emission point)

Emission Point Ref. №:	Proposed A2-5
Source of Emission:	`Gleitmo' Coating Proess – Fume Stack
Location:	Business Unit 2
Grid Ref. (12 digit, 6E,6N):	168443E, 336321N
Vent Details Diameter:	500mm
Height above Ground(m):	9.5
Date of commencement:	2014

Characteristics of Emission:

(i) Volume to be emitted:								
Average/day	2000Nm³/d	Maximum/day		5000Nm ³ /d				
Maximum rate/hour	1000Nm³/h	Min efflux velocity		2m.sec ⁻¹				
(ii) Other factors								
Temperature	30°C(max)	30 °C(min)	-	30°C(avg)				
For Combustion Sources: Volume terms expressed as : □ wet. Dry □ dry%O₂								

Periods of Emission	60min/hr2hr/day	<u>50</u> _day/yr
(avg)		

PAGE 12

TABLE E.1(ii):	MAIN EMISSIONS TO ATMOSPHERE -	Chemical characteristics of the emission	(1 table	per emission	point'
------------	------	---------------------------------------	--	----------	--------------	--------

Emission Point	Reference	Number:	A2-1

Parameter		Prior to tr	eatment ⁽¹⁾		Brief			As disch	narged ⁽¹⁾		
	mg/	′Nm³	kg	ı/h	description	mg,	/Nm³	kg	g/h.	kg/	year
	Avg	Max	Avg	Max	of treatment	Avg	Max	Avg	Max	Avg	Max
Particulate Total Organic Carbon	5 20			0.2 0.5	Electrostatic Precipitator	3 20	3 50	0.0075 0.03	0.375 0.5		2250 3000

^{1.} Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0° C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

PAGE 13

TABLE E.1(iii): MAIN EMISSIONS TO ATMOSPHERE - Chemical characteristics of the emission (1 table per emission point)

	Emission Point	Reference	Number:	A2-2
--	----------------	-----------	---------	------

Parameter		Prior to tr	eatment ⁽¹⁾		Brief			As disch	narged ⁽¹⁾		
	mg/	'Nm³	kg	ı/h	description	mg,	/Nm³	kg	g/h.	kg/	year
	Avg	Max	Avg	Max	of treatment	Avg	Max	Avg	Max	Avg	Max
Particulate Total Organic Carbon				0.2	Electrostatic Precipitator			0.0075 0.03		45 180	2250 3000

^{1.} Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0°C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

PAGE 14

TABLE E.1(iii):	MAIN EMISSIONS TO ATMOSPHERE -	· Chemical characteristics of the emission	(1 table	per emission i	point
-----------------	--------------------------------	--	----------	----------------	-------

Emission Point Reference Number: <u>A2-3</u>	Emission Point	Reference	Number:	A2-3
--	----------------	-----------	---------	------

Parameter	Prior to treatment ⁽¹⁾		Brief		As discharged ⁽¹⁾						
	mg/	Nm³	kg	ı/h	description	mg,	/Nm³	k	g/h.	kg/year	
	Avg	Max	Avg	Max	of treatment	Avg	Max	Avg	Max	Avg	Max
Particulate Total Organic Carbon			0.015 0.06	0.2 0.5	Electrostatic Precipitator	5 20	20 50		0.75 0.5	90 360	4500 3000

^{1.} Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0° C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

PAGE 15

TABLE E.1(iii): MAIN EMISSIONS TO ATMOSPHERE - Chemical characteristics of the emission (1 table per emission point)

Emission Point	Reference	Number:	A2-4

Parameter	Prior to treatment ⁽¹⁾		Brief		As discharged ⁽¹⁾						
	mg/	Nm³	kg	ı/h	description	mg,	/Nm³	k	g/h.	kg/year	
	Avg	Max	Avg	Max	of treatment	Avg	Max	Avg	Max	Avg	Max
Particulate Total Organic Carbon				0.2 0.5	Electrostatic Precipitator	5 20	20 50	0.0135 0.054		81 324	4050 3000

^{1.} Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0° C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

TABLE E.1(ii) MAIN EMISSIONS TO ATMOSPHERE (1 Page for each emission point)

Emission Point Ref. Nº:	Proposed A2-5
Source of Emission:	'Gleitmo' Coating Proess – Fume Stack
Location:	BRUSS Business Unit 2 Rear Roof Space
Grid Ref. (12 digit, 6E,6N):	168443E, 336321N
Vent Details Diameter:	500mm
Height above Ground(m):	9.5
Date of commencement:	2014

Characteristics of Emission:

(i) Volume to be e	mitted:			
Average/day	4000Nm ³ /d	Maximum/day		24000Nm ³ /d
Maximum rate/hour	1000Nm ³ /h	Min efflux velocity		2m.sec ⁻¹
(ii) Other factors				
Temperature	30°C(max)	15 °C(min)	•	20 °C(avg)
For Combustion Source Volume terms expresse		□ dry.	%O ₂	

Periods of Emission	60	min/hr	3.8 hr/day	<u>100</u> day/yr
(avg)				

TABLE E.1(iii): MAIN EMISSIONS TO ATMOSPHERE - Chemical characteristics of the emission (1 table per emission point)

Emission Point	Reference	Number:	A2-5

Parameter		Prior to treatment ⁽¹⁾		Brief	As discharged ⁽¹⁾						
	mg	/Nm³	kg	g/h	description	mg	/Nm³	kg/h.		kg/year	
	Avg	Max	Avg	Max	of treatment	Avg	Max	Avg	Max	Avg	Max
тос	1900	2300	1.24	1.5	Activated Carbon	400	600	0.26	0.39	104	156
Di butyl tin	< 1.4	< 1.4	< 0.001	< 0.001		< 1.4	< 1.4	< 0.001	< 0.001	0.4	0.4

^{1.} Concentrations should be based on Normal conditions of temperature and pressure, (i.e. 0° C,101.3kPa). Wet/dry should be the same as given in Table E.1(ii) unless clearly stated otherwise.

Dated: 04.01.2018

Regulation 10(2)(b)(ii) of EPA (Integrated Pollution Control)(Licencing) Regulations 2013 Request for supporting Information under Regulation 9 of the regulations.

Energy Consumption

BRUSS energy consumption 2014 – 2017 is presented in **Table 1** below.

Comparison is made with 2012 consumption to demonstrate how efficiencies have been maintained or improved upon. As noted in the application form Section G, BRUSS undertook an energy efficiency project starting 2012 and achieved an initial reduction of 20.4% (per 1,000pcs produced). Efficiencies were gained through retrofit of inverter drive motors on moulding machines and a change to energy efficient space heating and lighting.

Table 1 below shows reasonable performance in maintaining efficiencies when it is taken into account that the period between 2015 and 2017 saw significant remodelling works in the production area and moulding machine investment.

In 2016 – 2017, BRUSS invested in 5 off high output MAPLAN injection moulding machines, 2 of which replaced older high energy consuming machines. The company is now operating with 3 additional moulding machines compared to the 2012 levels.

A further energy project commenced in quarter 4 of 2017. BRUSS is currently installing continuous energy monitoring on all of its production equipment, starting with moulding. The aim of this project is to provide real-time data by machine, thus enabling improved scheduling of production activities from moulding to finishing processes and so reduce inadvertent wastages in energy.

Year	Annual KWh	Efficiencies gained compared to 2012 baseline (%)
2017	7698167	+12.8
2016	7692344	+12.8
2015	7673451	+13.1
2014	7488266	+15.1
2012	8825565	Baseline

Table 1 BRUSS annual energy consumption data in KWh

Site Activity Updates

Fuel Oils

In quarter 1 of 2017, BRUSS decommissioned the remaining fuel Oil standby tank used to supply an emergency generator for the site in the case of power outage. Alternative contracts are now in place with a mobile generator provider to cover emergency situations. The use of fuel oil on site has been eliminated.

Hazardous Substances

In 2018, BRUSS intends to phase out the use of Korro 60-90 (Boric Acid in solution <1%). Annual usage is currently 400litres as stated in Item 9 of Reg 10 Request, dated 17.07.2017. The product is used as a corrosion inhibitor at mould cleaning process. BRUSS intends to replace the current process with an air-dried finish, eliminating the need for the use of anti-corrosive in rinsing water.

In 2017, BRUSS phased out the use of raw material: 07781 FKM (Fluorocarbon Rubber) which contained Lead monoxide at (<3 % ref IMDS data Appendix II). Production with this material ceased in November 2017.

Anna Garvey

Env. Manager

ATTACHMENTS

Contents

ATTACHMENT	CONTENTS
ATTACHMENT 1.A	ITEM 1 A2-1 – A2-4 EMISSION ASSESSMENT REPORT
	APPENDIX 1 LIST OF BRUSS MATERIAL TYPES
ATTACHMENT 1.B	ITEM 1 A2-1 – A2-4 EMISSION ASSESSMENT REPORT
	APPENDIX II MDS DATA BRUSS PRODUCT BY MATERIAL TYPE
ATTACHMENT 1.C	ITEM 1 A2-1 – A2-4 EMISSION ASSESSMENT REPORT
	APPENDIX III AIR EMISSION SURVEY A2-1-A204RUBBER FUME

ATTACHMENT 1.A

• ITEM 1: A2-1 – A2-4 EMISSION ASSESSMENT REPORT

APPENDIX I LIST OF BRUSS MATERIAL TYPES

Elastomer Rubber Compound List

Rev: 00

DATE: 25.07.2016

Elastomer Rubber Compound - Homogenous Type	Chemical Description	Abbreviation (ASTM 1418)	Other Trade Names / Abbreviations	BRUSS Compound No.	Percentage Production (%)	Associated Emission Point ²
Nitrile	Acrylonitrile-butadiene rubber	NBR	Buna-No	01736 01722 01723	4.0	A2-4
Hydrogenated Nitrile	Hydrogenated Acrylonitrile- butadiene rubber	HNBR	HNBR	14750 14615 14617	5.2	A2-1
Ethylene Propylene	Ethylene Propylene Diene Rubber	EPDM	EP, EPT, EPR	09611 09617 09716 09613	17.8	A2-3
Fluorocarbon	Fluorocarbon Rubber	FKM	Viton [®] , Fluorel [®] ¹	07770 07730 07795 07781 07709 07694 07712	15.0	A2-4
Polyacrylate	Polyacrylate Rubber	ACM	ACM	05532 05501 05730 05740 05640	26.3	A2-1,2,3,

Elastomer Rubber Compound List

Rev: 00

DATE: 25.07.2016

Elastomer Rubber Compound - Homogenous Type	Chemical Description	Abbreviation (ASTM 1418)	Other Trade Names / Abbreviations	BRUSS Compound No.	Percentage Production (%)	Associated Emission Point ²
		,		W 1150		
				11888 11721		
				11727 11827		
				11825 11621		
Ethylene Acrylic	Ethylene Acrylic Rubber	AEM	Vamac ^{® 1}	11622	28.0	A2-1,2,3,

Table 1 Rubber and Elastomer Products Overwiew (www.professionalplastics.com)

Note 1 Viton * and Vamac * are registered trademarks of E.I.du Pont de Nemours. Fluorel * is a registered trademark of Dyneon LLC

Note 2 Associated emission points reflect current production schedules. Configuration of rubber types at emission points is subject to change according to needs of the business.

ATTACHMENT 1.B

• ITEM 1: A2-1 – A2-4 EMISSION ASSESSMENT REPORT

APPENDIX II MDS DATA BRUSS PRODUCT BY MATERIAL TYPE

Attachment removed on foot of a request from Licensee in May 2024.

ATTACHMENT 1.C

• ITEM 1: A2-1 – A2-4 EMISSION ASSESSMENT REPORT

APPENDIX III AIR EMISSION SURVEY A2-1-A204RUBBER FUME

TMS Environment Ltd 53 Broomhill Drive Tallaght Dublin 24 Phone: +353-1-4626710 Fax: +353-1-4626714 Web: www.tmsenv.ie

CONFIDENTIAL REPORT

ANNUAL AIR EMISSIONS SURVEY 2017

> AT G BRUSS GMBH Finisklin Road, Sligo

Licence Reg. P0465-01 TMS Environment Ref. 23888 Rev 2.0

Commencement Date: 11 January 2017 Completion Date: 13 April 2017

Revision Date: 20 December 2017

ReportingSite PersonnelAnalystsEnda FloodEnda FloodSarah KearneyTim HurleyIsabel Kerins

Approved by: Date: 20 December 2017

Imelda Shanahan

Dr Imelda Shanahan

Dr Imelda Shanahan Technical Manager

Terms and conditions:

- 1. Reports shall not be reproduced except in full, without prior approval of TMS Environment Ltd
- 2. This report relates only to the items tested
- Complaints should be addressed in writing to the Quality Manager

EXECUTIVE SUMMARY

This Air Emissions report presents results of emissions monitoring from emission point A2-01, A2-02, A2-03 &, A2-04 at G Bruss GmbH, Finisklin Road, Sligo, County Sligo. Monitoring has been conducted to satisfy the customer's requirements in respect of the following parameters, having regard to relevant substances listed in Table 6.1 of the Agency's "BAT Guidance Note for Manufacturing of Organic Chemicals"

Monitoring Scope	Annual Rubber Fume Emissions Monitoring 2017 Parameter				
Emission Point					
A2-1, A2-2, A2-3 & A2-4	 Carcinogenic substances listed as Class I, II or III Organic substances listed as Class I or Class II Total Organic Carbon as Carbon (TOC as C) Mercaptans Amines (Total) Trimethylamine Phenols, Cresols and xylols Toluene di-idocyante Organic Substances with Photochemical Ozone Potential (R59) Vaporous or Gaseous Inorganic Substances listed as Class I, II III or IV Inorganic Dust Particles Class I, II or III Total Particulates Rubber Fume Velocity and Temperature Moisture 				

Measurements were completed during a two day site visit on 11 & 12 January 2017. Details of the monitoring methods employed, Standard Reference Methods used and Guidance Notes consulted are presented in Section 4.0 of this report together with information on the equipment used and the monitoring personnel.

Prior to the site visit a review of all products used in the drying ovens was undertaken to identify which substances would be present in the emission streams, and the monitoring and analysis techniques to be used to report the concentration of these substances.

Monitoring for Total Particulate was carried out at each emission point, with subsequent analysis to determine the Rubber Fume composition of the total particulate. Additionally, at each emission point, monitoring of speciated Volatile Organic Compounds (VOC's) and Total Organic Carbon as Carbon (TOC as C) was also completed.

Monitoring at each location occurred at a location post the Electro Static Precipitators (ESP) abatement unit in each of the vents. To monitor "pre abatement" conditions, monitoring were

carried out at the same locations, however the ESP systems were turned off, details of the ESP units are included in Table 2-1.

The results for all of the measurement parameters reported are compared with the Licence Limit Values specified in the customer's IPPC Licence. With respect to this it can be seen that results for Rubber fume are below the Licence Limit Values specified in the BAT Guidance Note for all Stacks monitored.

All compounds identified, where applicable have been classified in to a category based on the BAT Guidance Note for the Manufacture of Organic Chemical, and have been compared to the emission limits as specified in Table 6.1 BAT Associated Levels of Emissions to Air, in addition to this, all Volatile Organic Compounds, identified have also been compared to TA Luft (Technical Instructions on the Air Quality Control), in accordance with BAT guidelines, as monitoring has been conducted at an existing facility.

1.0	Scope
2.0	Survey protocol
2.1	Protocol5
3.0	Monitoring Results
3.1	Results for A2-01- Pre Abatement, 12 Jan 2017, 13:06-13:36
3.2	Results for A2-01- Post Abatement, 12 Jan 2017, 12:27 – 12:57
3.3	Results for A2-02- Pre Abatement, 12 Jan 2017, 15:34 – 16:04
3.4	Results for A2-02- Post Abatement, 12 Jan 2017, 14:52-15:229
3.5	Results for A2-03- Pre Abatement, 12 Jan 2017, 10:40-11:109
3.6	Results for A2-03- Post Abatement, 12 Jan 2017, 09:59-10:29 10
3.7	Results for A2-04- Pre Abatement, 11 Jan 2017, 15:16 – 15:46 10
3.8	Results for A2-04- Post Abatement, 11 Jan 2017, 16:00 – 16:30 10
3.9	Reference Conditions for emission point A2-01 – A2-04 11
4.0	Supporting Information
4.1	Monitoring team information
4.2	Substance(s) monitored, SOP's and Standard Methods11
4.3	Equipment used and Quality checks
4.4	Reporting results
4.4.1	Expression of test results
4.4.2	Reporting results less than the detection limit
4.4.3	Uncertainty calculation

1.0 Scope

This Air Emissions report presents results of emissions monitoring from emission point A2-01 to A2-04 at G Bruss GmbH, Finisklin Road, Sligo, County Sligo.

Based on the review of the MSDS's monitoring has been conducted to satisfy the customer's requirements in respect of the following parameters:

Table 1-1Scope of Monitoring Survey

Reporting period		Annual 2017			
EMISSION PARAMETER POINT		SAMPLING METHOD AND MEDIUM & ANALYSIS METHODOLOGY	STANDARD REFERENCE METHOD		
A2-1 to A2-4	Total Particulate Rubber Fume/ Lead (Inorganic Dust Particle Class II) Speciated VOC's (organic substances Class I & Class II)	Isokinetic, Filter & rinse / Gravimetric analysis with cyclohexane extraction Non-isokinetic / Charcoal tube absorption / Analysis by solvent desorption	EN 13284-1:2002 CEN/TS 13649:2014		
	Organics TOC	followed by GC-MS or GC-FID In situ FID analyser	EN 12619:2013		
	Temperature, Pressure, Velocity, Flow	Pitot tube coupled with pressure measurement device or anemometer, and temperature measurement device	EN/ISO 16911-1:2013		

2.0 Survey protocol

2.1 Protocol

TMS Environment Ltd personnel conducted the monitoring survey on 11 & 12 January 2017. Emissions to atmosphere from the Emission Points A2-01, A2-02, A2-03 and A2-04 were monitored during the visit.

Particulate monitoring was conducted isokinetically with filters gravimetrically analysed to determine the concentration of total particulate matter found at each emission point, with the rubber fume concentration of the total particulate subsequently analysed via extraction with cyclohexane.

Lead particulate monitoring was conducted isokinetically with filters analysed by ICP to determine the concentration of total lead particulate matter found on filters at specific emission points.

Speciated VOC's were monitored by adsorption via charcoal sorbent tubes, flow rates through these tube was approximately 500ml/min. Tubes were subsequently sent for sub-contract analysis.

TOC as C analysis was completed *in-situ* via FID analysis, with results logged on site.

The survey was completed in order to meet the requirements of the company's IPPC Licence (Reg. No. P0465-01) for particulate matter and rubber fume concentrations, while VOC's, TOC as C and Lead particulate matter were monitored to collect information on the process on site with respect to the Client's application under Regulation 9 of the IPC Regulations 2013.

A Site Specific Protocol was prepared in accordance with EPA Air Guidance Note AG1 and CEN/TS 15675:2007 after a site review has been conducted with site personnel. A site risk assessment was completed prior to commencement of any monitoring to confirm that the monitoring could be carried out in a safe manner. All necessary PPE was worn at all times on site.

Relevant Process conditions during the survey are summarized below.

Table 2-1: Operational information during testing

Emission monitoring point	Date and time	Details	Products in Use in Drying Ovens	Abatement system	
A2-01 Pre	12 January 2017 13:06 –	Normal operation	141617 HNBR,	ESP 08	
Abatement	13:36	•	14615 HNBR,		
A2-01 Post	12 January 2017 12:27 –	Normal operation –	05640 ACM	ESP 08	
Abatement	12:57	ESP off	05532 ACM	LSI 00	
A2-02 Pre	12 January 2017 15:34 –	Normal operation	05730 ACM	ESP 02	
Abatement	16:04	Normal operation	11721 AEM	E31 02	
A2-02 Post	12 January 2017 14:52 –	Normal operation –	05532 ACM	ESP 02	
Abatement	15:22	ESP off	11827 AEM	ESF 02	
A2-03 Pre	12 January 2017 10:40 –	Normal operation	W1150 AEM	ESP04	
Abatement	11:10	Normal operation	11888 AEM	ESF04	
A2-03 Post	12 January 2017 09:59 –	Normal operation –	11825 AEM	ESP04	
Abatement	10:29	ESP off	11023 AEWI	ESPU4	
A2-04 Pre	11 January 2017 15:16 –	Normal operation	07781 FKM	ESP 03	
Abatement	15:46	Normai operation	05730 ACM	ESP 03	
A2-04 Post	11 January 2017 16:00 –	Normal operation –	07770 FKM	ESP 03	
Abatement	16:30	ESP off	11827 AEM	ESF US	

G Bruss GmBH P0465-01

3.0 Monitoring Results

The results of the air emission monitoring reported in this document are presented in tables below. Where parameters have been classified according to Table 6.1 of The Agency's 'BAT Guidance Note for the Manufacture of Organic Chemicals', the sum of the total class is provided in Section 3, with individual compounds detailed Appendix I. Methods used are defined by Standard Operating Procedures (SOP), each SOP has a unique number, details regarding each SOP are given in Part 2 of this report.

3.1 Results for A2-01- Pre Abatement, 12 Jan 2017, 13:06-13:36

Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance
Total Particulate	20	< 1.5	±0.19	mg/m ³	2.13 x10 ⁻⁰³	Yes
Rubber Fume	20	0.8	±0.10	mg/m ³	1.10 x10 ⁻⁰³	Yes
TOC as C	N/S	20.3	±3.98	mg/m ³	0.03	N/A
Volume Flow	N/S	1,393	±81	Nm ³ /hr	-	N/A

3.2 Results for A2-01- Post Abatement, 12 Jan 2017, 12:27 – 12:57

Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance
Total Particulate	20	< 1.5	±0.19	mg/m ³	<2.09 x10 ⁻³	Yes
Rubber Fume	20	0.7	±0.09	mg/m ³	1.01 x10 ⁻⁰³	Yes
TOC as C	N/S	11.4	±2.24	mg/m ³	0.02	N/A
Volume Flow	N/S	1,426	±83	Nm ³ /hr	-	N/A

3.3 Results for A2-02- Pre Abatement, 12 Jan 2017, 15:34 – 16:04

Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance
Total Particulate	20	< 0.4	±0.05	mg/m ³	< 4.79 x10 ⁻	Yes
Rubber Fume	20	3.4	±0.44	mg/m ³	4.48 x10 ⁻⁰³	Yes
TOC as C	N/S	34.6	±6.77	mg/m ³	0.05	N/A
Volume Flow	N/S	1,309	±76	Nm ³ /hr	-	N/A

3.4 Results for A2-02- Post Abatement, 12 Jan 2017, 14:52-15:22

Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance
Total Particulate	20	2.1	±0.27	mg/m ³	2.66 x10 ⁻⁰³	Yes
Rubber Fume	20	1.3	±0.16	mg/m ³	1.62 x10 ⁻⁰³	Yes
TOC as C	N/S	28.7	±5.63	mg/m ³	0.04	N/A
Volume Flow	N/S	1,259	±73	Nm ³ /hr	-	N/A

3.5 Results for A2-03- Pre Abatement, 12 Jan 2017, 10:40-11:10

Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance
Total Particulate	20	< 1.3	±0.17	mg/m ³	< 3.56 x10 ⁻⁰³	Yes
Rubber Fume	20	4.4	±0.56	mg/m ³	0.01	Yes
TOC as C	N/S	7.0	±1.36	mg/m ³	0.02	N/A
Volume Flow	N/S	2,656	±154	Nm ³ /hr	-	N/A

3.6 Results for A2-03 - Post Abatement, 12 Jan 2017, 09:59-10:29

Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance
Total Particulate	20	< 1.5	±0.19	mg/m ³	< 3.50 x10 ⁻⁰³	Yes
Rubber Fume	20	0.7	±0.08	mg/m ³	1.58 x10 ⁻⁰³	Yes
TOC as C	N/S	10.2	±1.99	mg/m ³	0.02	N/A
Volume Flow	N/S	2,400	±139	Nm ³ /hr	-	N/A

3.7 Results for A2-04- Pre Abatement, 11 Jan 2017, 15:16 – 15:46

Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance
Total Particulate	N/S	3.1	±0.39	mg/m ³	7.17 x10 ⁻⁰³	Yes
Rubber Fume	20	1.5	±0.20	mg/m ³	3.53 x10 ⁻⁰³	Yes
TOC as C	N/S	3.09	±0.60	mg/m ³	7.14 x 10 ⁻⁰³	N/A
Volume Flow	N/S	2,313	±134	Nm ³ /hr	-	N/A

3.8 Results for A2-04- Post Abatement, 11 Jan 2017, 16:00 – 16:30

Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance
Total Particulate	N/S	< 7.5	±0.95	mg/m ³	< 2.24 x10 ⁻⁰³	Yes
Rubber Fume	20	22.4	±2.85	mg/m ³	6.73 x10 ⁻⁰³	Yes
TOC as C	N/S	2.60	±0.50	mg/m ³	7.59 x 10 ⁻⁰⁴	N/A
Volume Flow	N/S	301	±17	Nm ³ /hr	-	N/A

3.9 Reference Conditions for emission point A2-01 – A2-04

Reference Conditions for concentrations and volume flow as expressed as:

Temperature, K	Pressure, kPa	Oxygen %	Moisture %
273	101.3	N/A	Dry

4.0 Supporting Information

4.1 Monitoring team information

Name	Function	Qualification
Enda Flood	Environmental Scientist	 PgC Green Tech (2010) UCD Dublin BAgSc (2008) UCD Dublin
Tim Hurley	Environmental Scientist	 Bsc (Hons) Chem, (2008) UCC MSc (Merit) GeoChem, (2009) University of Leeds

4.2 Substance(s) monitored, SOP's and Standard Methods

Substance Monitored	SOP	Standard Method	Analysis by	Accreditation Range mg/m ³	ISO 17025 Accreditation Status	Analysis Date
Total Particulate	QP-SITE-2010	EN 13248-1 ISO 9096:2003	TMS	0.1-50 20-1,000	A	16 Jan 2017
Total Particulate (Rinse)	QP-SITE-2010	EN 13248-1 ISO 9096:2003	SAL	0.1-50 20-1,000	A	24 Jan – 02 Feb 2017
Rubber Fume	QP-SITE- 2010	EN 13248-1	TMS	0.1-50 20-1,000	С	02 Feb 2017
Lead	QP-SITE-2017	EN 14358: 2004	SAL	0.005-50	В	24 Jan – 02 Feb 2017
Speciated VOC's	QP-SITE- 2016	EN 13649: 2002	SAL	0.5-2,000	D	24 Jan – 02 Feb 2017
TOC as C	QP-SITE- 2025	EN 12619	TMS	0.6-6,200	A	11 & 12 Jan 2017
Moisture	QP-SITE- 2020	EN 14790:2005	TMS	2-40%	A	11 & 12 Jan 2017
Velocity & Temp	QP-SITE- 2006 QP- SITE2027	EN 13284- 1:2002/ EN/ISO 16911- 1:2013	TMS	2.8-25m/s 0.13-40m/s 0-1,200°C	A TMS	11 & 12 Jan 2017

Note 1: ISO 17025 Accreditation Status: A – TMS accredited for Monitoring and Analysis, , B – TMS accredited for Monitoring, Subcontract Lab accredited for Analysis, C - TMS accredited for Monitoring, non-accredited analysis by TMS, D - TMS not accredited for Monitoring, as non-accredited analysis preformed by subcontract lab.

4.3 Equipment used and Quality checks

Equipment	Equipment ID	Quality Check
Tecora G4 Isokinetic sampler	M-S-E-1-1	Annual Calibration
Ratfisch FID	M-S-E-4-1	On-site per and post calibration check
Balance Scales	M-S-E-13-1	On Site Eccentricity check

4.4 Reporting results

4.4.1 Expression of test results

All test results are expressed to one decimal place lower than the Emission Limit Value (ELV), while uncertainty of measurement results are expressed to two decimal places lower than the ELV, e.g. where an ELV of 50mg/m^3 applies, the reported result shall be reported to the first decimal place e.g. 6.6mg/m^3 with the uncertainty of measurement reported to two decimal places, e.g. $\pm 0.12 \text{mg/m}^3$.

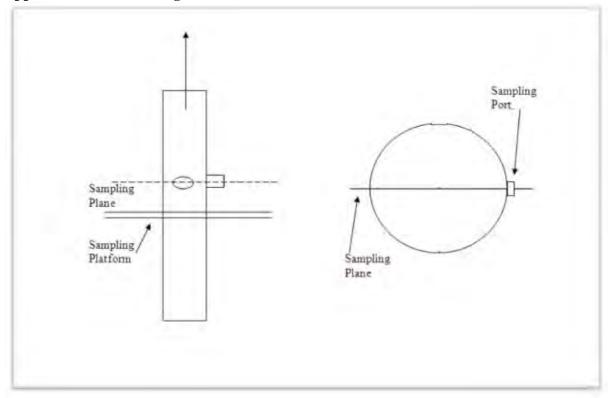
4.4.2 Reporting results less than the detection limit

If a single result is reported as being less than the limit of detection, the measurement result is expressed using a less than "<" sign, e.g. <0.005 mg/Nm³. Where a number of parameter results, found to be less than the limit of detection, are expressed as an overall parameter, these results are calculated as per Section 3.3, Method 3 (Half the Limit of Detection) of the EPA *BREF Guidance on the General Principles of Monitoring*. This percentage method provides an estimation of the value of the measurement. It is reported without the less than "<" sign, e.g. 0.05 mg/Nm³.

4.4.3 Uncertainty calculation

An estimation of the uncertainty of measurement is attached to all measurements. Measurement uncertainties are based on calibration data and laboratory repeatability experiments. All uncertainties are given at a 95% confidence, based on applying a coverage factor of k=2 to the combined uncertainties for each measurement. The uncertainty of measurement associated with emissions monitoring are provided in the Table below.

Table 4-1: Uncertainty of Measurement


PARAMETER	SOURCE OF UNCERTAINTY	ESTIMATE OF UNCERTAINTY %	COMBINED UNCERTAINTY %	EXPANDED UNCERTAINTY % (95% Confidence Limit)
	Flow/ADM Manometer	1.73		
	Lancom Analyser	3.46		
	Temperature/Lancom Analyser	0.29		
Rubber Fume	Leak check**	0.00	6.38	12.75%
	Moisture	0.58		
	Isokinetic uncertainty	0.50		
	Analytical/Lab	5.00		
	Velocity	1.15		
G 1	CSA	1.00		8.48%
Speciated VOC's	Pressure	0.58	4.24	
voc s	Temperature	0.29		
	Analysis	5.00		
	Lancom Analyser	3.46		
TOC as C	Temperature/Lancom Analyser	0.29	4.28	8.56%
	FID	2.50		
	Lancom Analyser	6		
	Temperature/Lancom Analyser	0.5		
Metals	Leak check**	2	7.24	14.48%
(Lead)	Moisture	1	7.24	14.48%
	Isokinetic uncertainty	0.2		
	Analytical/Lab	12		
	Velocity	1.15		
	Stack Temperature	0.29		
Volume Flow	Stack Pressure	0.58	2.90	5.81%
	O_2	0.58		
	CSA	1.00		

ANNUAL AIR EMISSIONS
SURVEY 2017
G BRUSS GmBH
APPENDIX I
EMISSION POINT DETAILS

Licence Reg. P0465-01 TMS Environment Ref. 23888 Rev 2.0

Appendix 1: Emission Point A2-01, A2-02, A2-03, A2-04

Appendix1:1 – Stack Diagram

Stack Reference	A2-01	A2-02	A2-03	A2-04
Stack Diameter [m ²]	0.35	0.35	0.50	0.35
Stack Cross Sectional Area [m ³]	0.10	0.10	0.20	0.10
Number of Ports	2	2	2	1
Number of sampling planes	2	2	2	1
Number of Sampling points per line	1	1	1	1
Power supply available	110 supply	110 supply	110 supply	110 supply
Shelter at platform	Yes	Yes	Yes	Yes

Appendix 1:2 - Stack Measurements: VOC monitoring – A2-1 Pre Abatement

Appendix 1:2 - Stack N	ieasurements: VOC mo	omtoring – A2-1 Fre F	Anatement	
	Reference method	EN 13649		
	Sampling date	12 January 2017		
	Sampling time	13:06-13:36		
Sampling technique				
Fl	ue gas sampling system	SKC pump with Ty	gon tubing and low	
		flow tube holder		
Oxygen	measurement technique	FGA		
Material				
	Sampling material	Charcoal tubes		
Sampling conditions				
Average sar	mpling flow rate [l/min]	0.5 per tube		
To	tal sampling time [min]	30		
Sampled volume of	the dry gas at STP [m ³]	0.013		
Average flue ga	s temp temperature [°C]	39.7		
Reference	conditions	Actual co	onditions	
Moisture [%]	Dry	Moisture [%]	0.9	
Temperature [K]	273	Temperature [K]	313	
Pressure [kPa]	101.3	Pressure [kPa]	100.2	
Oxygen [%]	N/A	Oxygen [%]	N/A	
Deviation from isokinetic conditions [%]		N/A		
Deviation from reference	ce method	There was no deviation from reference		
		method.		

Appendix 1:3 - Stack Measurements: Particulate & Rubber Fume Monitoring - A2-1 Pre Abatement

Reference method EN 13284	Abatement				
Sampling time 13:06-13:36 Sampling technique Flue gas sampling system Isokinetic in stack filtration system Oxygen measurement technique Flue Gas Analyser Material Titanium Titanium Sampling conditions Filter material Titanium Average sampling flow rate [1/min] 7.83 Total sampling time [min] 30 Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity <1:3 Swirl test result Fass Pass Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Actual conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from reference method There was no deviation from reference	Reference method	EN 13284			
Sampling technique Flue gas sampling system Isokinetic in stack filtration system Oxygen measurement technique Flue Gas Analyser	Sampling date	12 January 2017			
Flue gas sampling system Oxygen measurement technique Material Sampling probe material Filter material Filter material Filter material Filter material Filter material Filter material Filter material Filter material Filter material Titanium Sampling conditions Probe temperature [°C] 120 Filtration temperature [°C] 120 Average sampling flow rate [l/min] 7.83 Total sampling time [min] 30 Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity < 1:3 Swirl test result Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Oxygen [%] N/A Deviation from reference method There was no deviation from reference	Sampling time	13:06-13:36			
Material Material Sampling probe material Filter material Titanium Sampling conditions Probe temperature [°C] 120 Filtration temperature [°C] 120 Average sampling flow rate [l/min] 7.83 Total sampling time [min] 30 Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity < 1:3	<td>Sampling technique</td> <td></td> <td></td>		Sampling technique		
Material Sampling probe material Titanium Sampling conditions Probe temperature [°C] 120 Filtration temperature [°C] 120 Average sampling flow rate [l/min] 7.83 Total sampling time [min] 30 Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity < 1:3	Flue gas sampling system	Isokinetic in stack fil	tration system		
Sampling probe material Filter material Filter material Filter material Titanium Sampling conditions Probe temperature [°C] 120 Filtration temperature [°C] 120 Average sampling flow rate [l/min] 7.83 Total sampling time [min] 30 Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity Swirl test result Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from reference method There was no deviation from reference	Oxygen measurement technique	Flue Gas Analyser			
Filter material Sampling conditions Probe temperature [°C] 120 Filtration temperature [°C] 120 Average sampling flow rate [l/min] 7.83 Total sampling time [min] 30 Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity < 1:3 Swirl test result Pass Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from reference method There was no deviation from reference	Material				
Sampling conditions Probe temperature [°C] 120 Filtration temperature [°C] 120 Average sampling flow rate [l/min] 7.83 Total sampling time [min] 30 Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity < 1:3	Sampling probe material	Titanium			
Probe temperature [°C] 120 Filtration temperature [°C] 120 Average sampling flow rate [l/min] 7.83 Total sampling time [min] 30 Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity Pass Swirl test result Pass Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Deviation from reference method There was no deviation from reference	Filter material	Titanium			
Filtration temperature [°C] 120 Average sampling flow rate [1/min] 7.83 Total sampling time [min] 30 Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity < 1:3 Swirl test result Pass Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from reference method There was no deviation from reference	Sampling conditions				
Average sampling flow rate [l/min] 7.83 Total sampling time [min] 30 Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity < 1:3 Swirl test result Pass Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from reference method There was no deviation from reference	Probe temperature [°C]	120			
Total sampling time [min] 30 Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity < 1:3 Swirl test result Pass Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [k] 273 Temperature [k] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference	Filtration temperature [°C]	120			
Sampled volume of the dry gas at STP [m³] 0.20 Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity < 1:3 Swirl test result Pass Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference	Average sampling flow rate [l/min]	7.83			
Average flue gas velocity [m/s] 4.70 Nozzle diameter [mm] 7 Ratio of highest to lowest velocity < 1:3 Swirl test result Pass Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference	Total sampling time [min]	30			
Nozzle diameter [mm] 7 Ratio of highest to lowest velocity < 1:3 Swirl test result Pass Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference	Sampled volume of the dry gas at STP [m ³]	0.20			
Ratio of highest to lowest velocity Swirl test result Pass Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference	Average flue gas velocity [m/s]	4.70			
Swirl test result Pass Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference	Nozzle diameter [mm]	7			
Initial leak test result [% of expected sampling flow rate] Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference		< 1:3			
Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference	Swirl test result	Pass			
Final leak test result [% of average sampling flow rate] Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference	Initial leak test result [% of expected sampling	0			
Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference					
Average flue gas temp temperature [°C] 39.7 Reference conditions Moisture [%] N/A Moisture [%] 0.9 Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference		0			
Moisture [%]N/AMoisture [%]0.9Temperature [K]273Temperature [K]313Pressure [kPa]101.3Pressure [kPa]100.2Oxygen [%]N/AOxygen [%]N/ADeviation from isokinetic conditions [%]0.2Deviation from reference methodThere was no deviation from reference		39.7			
Temperature [K] 273 Temperature [K] 313 Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference					
Pressure [kPa] 101.3 Pressure [kPa] 100.2 Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference					
Oxygen [%] N/A Oxygen [%] N/A Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference					
Deviation from isokinetic conditions [%] 0.2 Deviation from reference method There was no deviation from reference					
Deviation from reference method There was no deviation from reference	70 1 1		N/A		
method.	Deviation from reference method		ntion from reference		
		method.			

Appendix 1:4 - Stack Measurements: TOC Monitoring - A2-1 Pre Abatement

Appendix 1:4 - Stack Measuren			1 Pre Abatement
Re	eference method		-1-
Sampling date		12 January 2017	
	Sampling time	13:06-13:36	
Sampling technique			
	TOC	Flame ionisa	tion detection
Material			
Samplin	g probe material	SS, PTFE	
•	Fuel	Hydrogen	
Spar	n calibration gas	Propane 90.0) ppm
-	calibration gas	Ambient air	after passing charcoal filter
	[% of the range]	<2	
	[% of the range]	<2	
Sampling conditions			
Dı	act diameter [m]	0.35	
Number o	f sampling ports	2	
	f sampling lines	Single point sampling	
	emperature [°C]	180	
Number of samplin		1	
1	as velocity [m/s]	4.70	
Average flue gas temp t	•	39.7	
Sampling conditions			
Conditions	Refere	ence	Sampling plane
Moisture	Dry	7	0.9
Temperature [K]	273		313
Pressure [kPa]	101.		100.2
Oxygen [%]	N/A		
Deviation from reference meth			
T1	.1 1		

Appendix 1:5 - Stack Measurements: VOC monitoring - A2-1 Post Abatement

Appendix 1:5 - Stack Measurements: VOC monitoring - A2-1 Post Abatement			Abatement	
	Reference method	d EN 13649		
	Sampling date	12 January 2017		
	Sampling time	12:27-12:57		
Sampling technique	-			
Flue gas sampling system		SKC pump with Tygon tubing and low flow tube holder		
Oxygen	measurement technique	FGA		
Material				
	Sampling material	Charcoal tubes		
Sampling conditions				
Average sar	Average sampling flow rate [l/min] 0.			
Total sampling time [min]		30		
Sampled volume of	the dry gas at STP [m ³]	0.013		
Average flue ga	Average flue gas temp temperature [°C] 3			
Reference	conditions	Actual co	onditions	
Moisture [%]	Dry	Moisture [%]	0.64	
Temperature [K]	273	Temperature [K]	311	
Pressure [kPa]	101.3	Pressure [kPa]	100.8	
Oxygen [%]	N/A	Oxygen [%]	N/A	
	sokinetic conditions [%]	N/A		
Deviation from reference	ce method	There was no devia	ntion from reference	
		method.		

Appendix 1:6 - Stack Measurements: Particulate & Rubber Fume Monitoring - A2-1 Post Abatement

Post Abatement			
Reference method	EN 13284		
Sampling date	12 January 2017		
Sampling time	12:27-12:57		
Sampling technique			
Flue gas sampling system	Isokinetic in stack filtration system		
Oxygen measurement technique	Flue Gas Analyser		
Material			
Sampling probe material	Titanium		
Filter material	Titanium		
Sampling conditions			
Probe temperature [°C]	120		
Filtration temperature [°C]	120		
Average sampling flow rate [l/min]	8.10		
Total sampling time [min]	30		
Sampled volume of the dry gas at STP [m ³]	0.21		
Average flue gas velocity [m/s]	4.74		
Nozzle diameter [mm]	7		
Ratio of highest to lowest velocity	< 1:3		
Swirl test result	Pass		
Initial leak test result [% of expected sampling	0		
flow rate]			
Final leak test result [% of average sampling	0		
flow rate]			
Average flue gas temp temperature [°C]	37.8		
Reference conditions	Actual conditions		
Moisture [%] N/A	Moisture [%] 0.64		
Temperature [K] 273	Temperature [K] 311		
Pressure [kPa] 101.3	Pressure [kPa] 100.8		
Oxygen [%] N/A	Oxygen [%] N/A		
Deviation from isokinetic conditions [%]	0.2		
Deviation from reference method	There was no deviation from reference		
	method.		

Appendix 1:7 - Stack Measurements: TOC Monitoring - A2-1 Post Abatement

Appendix 1:7 - Stack Measuren	nents: TOC Mor	nitoring - A2	-1 Post Abatement	
Re	eference method	EN 12619		
	Sampling date	12 January 2017		
	Sampling time	12:27-12:57		
Sampling technique				
	TOC	Flame ionisa	tion detection	
Material				
Samplin	g probe material	SS, PTFE		
•	Fuel	Hydrogen		
Spar	n calibration gas	Propane 90.0) ppm	
	calibration gas		after passing charcoal filter	
Span gas drift	[% of the range]	<2		
Zero gas drift	[% of the range]	<2		
Sampling conditions				
Duct diameter [m]		0.35		
	Number of sampling ports		2	
	f sampling lines	Single point	sampling	
Heated line t	emperature [°C]	180		
Number of samplin		1		
	as velocity [m/s]	4.74		
Average flue gas temp t	•	37.8		
Sampling conditions	,			
Conditions	Refere	ence	Sampling plane	
Moisture	Dry	7	0.64	
Temperature [K]	273		311	
Pressure [kPa]	101.	3	100.8	
Oxygen [%]			N/A	
Deviation from reference meth	od			

Appendix 1:8 - Stack Measurements: VOC monitoring - A2-2 Pre Abatement

Appendix 1.6 - Stack N	Appendix 1:0 - Stack Measurements: VOC mointoring - A2-2 Fre Abatement			
	Reference method	Reference method EN 13649		
Sampling date		12 January 2017		
	Sampling time	15:34-16:04		
Sampling technique				
Fl	ue gas sampling system	SKC pump with Tygon tubing and low		
		flow tube holder		
Oxygen	measurement technique	FGA		
Material				
	Sampling material	Charcoal tubes		
Sampling conditions				
Average sar	mpling flow rate [l/min]	0.5 per tube		
To	otal sampling time [min]	30		
Sampled volume of	the dry gas at STP [m ³]	0.014		
Average flue ga	s temp temperature [°C]	39.6		
Reference	conditions	Actual co	onditions	
Moisture [%]	Dry	Moisture [%]	0.72	
Temperature [K]	273	Temperature [K]	313	
Pressure [kPa]	101.3	Pressure [kPa]	100.6	
Oxygen [%]	N/A	Oxygen [%]	N/A	
Deviation from is	sokinetic conditions [%]	N/A		
Deviation from reference	ce method	There was no devia	ntion from reference	
		method.		

Appendix 1:9 - Stack Measurements: Particulate & Rubber Fume Monitoring - A2-2 Pre

Abatement				
Reference method	EN 13284			
Sampling date	12 January 2017			
Sampling time	15:34-16:04			
Sampling technique				
Flue gas sampling system	Isokinetic in stack fil	tration system		
Oxygen measurement technique	Flue Gas Analyser	Flue Gas Analyser		
Material				
Sampling probe material	Titanium			
Filter material	Titanium			
Sampling conditions				
Probe temperature [°C]	120			
Filtration temperature [°C]	120			
Average sampling flow rate [l/min]	30.37			
Total sampling time [min]	30			
Sampled volume of the dry gas at STP [m ³]	3] 0.85			
Average flue gas velocity [m/s]	m/s] 4.39			
Nozzle diameter [mm]	7			
Ratio of highest to lowest velocity	< 1:3			
Swirl test result	Pass			
Initial leak test result [% of expected sampling	0			
flow rate]				
Final leak test result [% of average sampling	0			
flow rate]				
Average flue gas temp temperature [°C]	39.6			
Reference conditions	Actual co	onditions		
Moisture [%] N/A	Moisture [%]	0.72		
Temperature [K] 273	Temperature [K]	313		
Pressure [kPa] 101.3	Pressure [kPa]	100.6		
Oxygen [%] N/A	Oxygen [%]	N/A		
Deviation from isokinetic conditions [%]	0.2			
Deviation from reference method	There was no devia	ation from reference		
	method.			

Appendix 1:10 - Stack Measurements: TOC Monitoring - A2-2 Pre Abatement

Appendix 1:10 - Stack Measure	ments: TOC Mo	mtoring - A2	-2 Fre Abatement	
Re	eference method	rence method EN 12619		
	Sampling date	12 January 2017		
	Sampling time	15:34-16:04		
Sampling technique	-			
	TOC	Flame ionisa	tion detection	
Material				
Samplin	g probe material	SS, PTFE		
•	Fuel	Hydrogen		
Spar	n calibration gas	Propane 90.0) ppm	
•	o calibration gas		after passing charcoal filter	
Span gas drift	[% of the range]	<2		
	[% of the range]	<2		
Sampling conditions				
	Duct diameter [m]		0.35	
	Number of sampling ports			
Number o			sampling	
Heated line t	emperature [°C]	180		
Number of samplin		1		
	as velocity [m/s]	4.39		
Average flue gas temp t		39.6		
Sampling conditions	,			
Conditions	Refere	ence	Sampling plane	
Moisture	Dry	7	0.72	
Temperature [K]	273		313	
Pressure [kPa]	101.	3	100.6	
Oxygen [%]			N/A	
Deviation from reference meth	od			

Appendix 1:11 - Stack Measurements: VOC monitoring - A2-2 Post Abatement

Appendix 1.11 - Stack	Appendix 1:11 - Stack Measurements: VOC monitoring - A2-2 Fost Abatement			
	Reference method	i EN 13649		
Sampling date		12 January 2017		
	Sampling time	14:52-15:22		
Sampling technique				
Fl	ue gas sampling system	SKC pump with Tygon tubing and low		
		flow tube holder		
Oxygen	measurement technique	FGA		
Material				
	Sampling material	Charcoal tubes		
Sampling conditions				
Average sar	mpling flow rate [l/min]	0.5 per tube		
Total sampling time [min]		30		
Sampled volume of	the dry gas at STP [m ³]	0.014		
Average flue ga	s temp temperature [°C]	39.8		
Reference	conditions	Actual co	onditions	
Moisture [%]	Dry	Moisture [%]	1.88	
Temperature [K]	273	Temperature [K]	313	
Pressure [kPa]	101.3	Pressure [kPa]	100.0	
Oxygen [%]	N/A	Oxygen [%]	N/A	
Deviation from is	sokinetic conditions [%]	N/A		
Deviation from reference	ce method	There was no devia	ntion from reference	
		method.		

Appendix 1:12 - Stack Measurements: Particulate & Rubber Fume Monitoring - A2-2 Post Abatement

Post Abatement			
Reference method	EN 13284		
Sampling date	12 January 2017		
Sampling time	14:52-15:22		
Sampling technique			
Flue gas sampling system	Isokinetic in stack filtration system		
Oxygen measurement technique	Flue Gas Analyser		
Material			
Sampling probe material	Titanium		
Filter material	Titanium		
Sampling conditions			
Probe temperature [°C]	120		
Filtration temperature [°C]	120		
Average sampling flow rate [l/min]	8.80		
Total sampling time [min]	30		
Sampled volume of the dry gas at STP [m ³]	0.25		
Average flue gas velocity [m/s]	4.30		
Nozzle diameter [mm]	7		
Ratio of highest to lowest velocity	< 1:3		
Swirl test result	Pass		
Initial leak test result [% of expected sampling	0		
flow rate]			
Final leak test result [% of average sampling	0		
flow rate]			
Average flue gas temp temperature [°C]	39.8		
Reference conditions	Actual conditions		
Moisture [%] N/A	Moisture [%] 1.88		
Temperature [K] 273	Temperature [K] 313		
Pressure [kPa] 101.3	Pressure [kPa] 100.0		
Oxygen [%] N/A	Oxygen [%] N/A		
Deviation from isokinetic conditions [%]	0.2		
Deviation from reference method	There was no deviation from reference		
	method.		

Appendix 1:13 - Stack Measurements: TOC Monitoring - A2-2 Post Abatement

Appendix 1:13 - Stack Weasure	eference method	EN 12619	-2 I ost Abatement	
K	Sampling date			
	Sampling time	14:52-15:22		
Sampling technique	Sampling time	14.32-13.22		
Sampling technique	TOC	Elema ionica	tion detection	
Material	100	Traine foinsa	thon detection	
	a mucha matanial	CC DTEE		
Sampini	g probe material	SS, PTFE		
	Fuel	Hydrogen		
	n calibration gas	Propane 90.0		
	o calibration gas		after passing charcoal filter	
	[% of the range]	<2		
Zero gas drift	[% of the range]	<2		
Sampling conditions				
Di	Duct diameter [m]		0.35	
Number o	Number of sampling ports			
Number o			sampling	
Heated line t	emperature [°C]	180		
Number of samplin		1		
	as velocity [m/s]	4.30		
Average flue gas temp t	• • • • • • • • • • • • • • • • • • •	39.8		
Sampling conditions				
Conditions	Refere	ence	Sampling plane	
Moisture	Dry		1.88	
Temperature [K]	273		313	
Pressure [kPa]	101.		100.0	
Oxygen [%]	N/A		N/A	
Deviation from reference meth				
There was no deviation from ref				

Appendix 1:14 - Stack Measurements: VOC monitoring - A2-3 Pre Abatement

Appendix 1:14 - Stack Measurements: VOC monitoring - A2-3 Fre Abatement				
	Reference method	EN 13649		
	Sampling date	2 12 January 2017		
	Sampling time	14:52-15:22		
Sampling technique				
Fl	ue gas sampling system	SKC pump with Tygon tubing and low		
		flow tube holder		
Oxygen	measurement technique	FGA		
Material				
	Sampling material	Charcoal tubes		
Sampling conditions				
Average sar	Average sampling flow rate [l/min]			
Total sampling time [min]		30		
Sampled volume of the dry gas at STP [m ³]		0.014		
Average flue ga	s temp temperature [°C]	34.6		
Reference	conditions	Actual co	onditions	
Moisture [%]	Dry	Moisture [%]	1.10	
Temperature [K]	273	Temperature [K]	308	
Pressure [kPa]	101.3	Pressure [kPa]	100.4	
Oxygen [%]	N/A	Oxygen [%]	N/A	
Deviation from isokinetic conditions [%]		N/A		
Deviation from reference method		There was no deviation from reference		
		method.		

Appendix 1:15 - Stack Measurements: Particulate & Rubber Fume Monitoring - A2-3 Pre Abatement

rre Adatement			
Reference method	EN 13284		
Sampling date	12 January 2017		
Sampling time	14:52-15:22		
Sampling technique			
Flue gas sampling system	Isokinetic in stack fil	tration system	
Oxygen measurement technique	Flue Gas Analyser		
Material			
Sampling probe material	Titanium		
Filter material	Titanium		
Sampling conditions			
Probe temperature [°C]	120		
Filtration temperature [°C]	120		
Average sampling flow rate [l/min]	8.37		
Total sampling time [min]	30		
Sampled volume of the dry gas at STP [m ³]	0.23		
Average flue gas velocity [m/s]	4.32		
Nozzle diameter [mm]	7		
Ratio of highest to lowest velocity	< 1:3		
Swirl test result	Pass		
Initial leak test result [% of expected sampling	0		
flow rate]			
Final leak test result [% of average sampling	0		
flow rate]			
Average flue gas temp temperature [°C]	34.6		
Reference conditions	Actual co	onditions	
Moisture [%] N/A	Moisture [%]	1.10	
Temperature [K] 273	Temperature [K]	308	
Pressure [kPa] 101.3	Pressure [kPa]	100.4	
Oxygen [%] N/A	Oxygen [%]	N/A	
Deviation from isokinetic conditions [%]	0.2		
Deviation from reference method	There was no devia	ation from reference	
	method.		

Appendix 1:16 - Stack Measurements: TOC Monitoring - A2-3 Pre Abatement

Appendix 1:16 - Stack Measure			2-3 Pre Abatement	
Re	eference method			
	Sampling date			
	Sampling time	14:52-15:22		
Sampling technique				
	TOC	Flame ionisa	tion detection	
Material				
Sampling	g probe material	SS, PTFE		
•	Fuel	Hydrogen		
Spar	calibration gas	Propane 90.0) ppm	
Zero	calibration gas	Ambient air	after passing charcoal filter	
Span gas drift	% of the range]	<2		
Zero gas drift [% of the range]	<2		
Sampling conditions				
Du	Duct diameter [m] 0.5			
Number of sampling ports		2		
Number of sampling lines		Single point sampling		
Heated line to	Heated line temperature [°C]		180	
Number of sampling	g points per line	1		
Average flue ga		4.32		
Average flue gas temp to		34.6		
Sampling conditions	1	1		
Conditions	Refere	nce	Sampling plane	
Moisture	Dry	7	1.10	
Temperature [K]	273		308	
Pressure [kPa]	101.	3	100.4	
Oxygen [%]			N/A	
Deviation from reference meth	od			
There was no deviation from refe				

Appendix 1:17 - Stack Measurements: VOC monitoring - A2-3 Post Abatement

Appendix 1:17 - Stack	vieasurements. VOC in	omtoring - A2-3 rost	Abatement	
	Reference method	EN 13649		
	Sampling date	12 January 2017		
	Sampling time	09:59-10:29		
Sampling technique				
Fl	ue gas sampling system	SKC pump with Ty	gon tubing and low	
		flow tube holder		
Oxygen	measurement technique	FGA		
Material				
	Sampling material	Charcoal tubes		
	1 2			
Sampling conditions				
Average sampling flow rate [l/min]		0.5 per tube		
To	Total sampling time [min]			
Sampled volume of	the dry gas at STP [m ³]	0.014		
Average flue ga	s temp temperature [°C]	16.7		
Reference	conditions	Actual co	onditions	
Moisture [%]	Dry	Moisture [%]	0.80	
Temperature [K]	273	Temperature [K]	290	
Pressure [kPa]	101.3	Pressure [kPa]	101.4	
Oxygen [%]	N/A	Oxygen [%] N/A		
Deviation from isokinetic conditions [%]		N/A		
Deviation from reference	ce method	There was no deviation from reference		
		method.		

Appendix 1:18 - Stack Measurements: Particulate & Rubber Fume Monitoring - A2-3 Post Abatement

Post Abatement			
Reference method	EN 13284		
Sampling date	12 January 2017		
Sampling time	09:59-10:29		
Sampling technique			
Flue gas sampling system	Isokinetic in stack filtration system		
Oxygen measurement technique	Flue Gas Analyser		
Material			
Sampling probe material	Titanium		
Filter material	Titanium		
Sampling conditions			
Probe temperature [°C]	120		
Filtration temperature [°C]	120		
Average sampling flow rate [l/min]	7.57		
Total sampling time [min]	30		
Sampled volume of the dry gas at STP [m ³]	0.21		
Average flue gas velocity [m/s]	3.63		
Nozzle diameter [mm]	7		
Ratio of highest to lowest velocity	< 1:3		
Swirl test result	Pass		
Initial leak test result [% of expected sampling	0		
flow rate]			
Final leak test result [% of average sampling	0		
flow rate]			
Average flue gas temp temperature [°C]	16.7		
Reference conditions	Actual conditions		
Moisture [%] N/A	Moisture [%] 0.80		
Temperature [K] 273	Temperature [K] 290		
Pressure [kPa] 101.3	Pressure [kPa] 101.4		
Oxygen [%] N/A	Oxygen [%] N/A		
Deviation from isokinetic conditions [%]	0.2		
Deviation from reference method	There was no deviation from reference		
	method.		

Appendix 1:19 - Stack Measurements: TOC Monitoring - A2-3 Post Abatement

Appendix 1:19 - Stack Measure			7-3 I OST ADATEMENT	
Ke	eference method			
	Sampling date			
	Sampling time	09:59-10:29		
Sampling technique				
	TOC	Flame ionisa	tion detection	
Material				
Samplin	g probe material	SS, PTFE		
•	Fuel	Hydrogen		
Spai	n calibration gas	Propane 90.0) ppm	
Zero	o calibration gas	Ambient air	after passing charcoal filter	
	[% of the range]	<2	•	
	[% of the range]	<2		
Sampling conditions				
	ict diameter [m]	0.5		
Number o	f sampling ports	2		
	f sampling lines	Single point	sampling	
	emperature [°C]	180		
Number of samplin		1		
	as velocity [m/s]	3.63		
Average flue gas temp t		16.7		
Sampling conditions		l		
Conditions	Refere	ence	Sampling plane	
Moisture	Dry		0.80	
Temperature [K]	273		290	
Pressure [kPa]	101.		101.4	
Oxygen [%]	N/A			
Deviation from reference meth				

Deviation from reference method

Appendix 1:20 - Stack Measurements: VOC monitoring - A2-4 Pre Abatement

Appendix 1.20 - Stack i	vicasui cinciiis. VOC in	omtoring - M2-4 i ic	Matchicht		
	Reference method	EN 13649			
	Sampling date	12 January 2017			
	Sampling time	15:16-15:46			
Sampling technique					
Fl	ue gas sampling system	SKC pump with Ty flow tube holder	gon tubing and low		
Oxygen	measurement technique	FGA			
Material					
	Sampling material	Charcoal tubes			
Sampling conditions					
Average sar	Average sampling flow rate [l/min]		0.5 per tube		
To	tal sampling time [min]	30			
Sampled volume of	the dry gas at STP [m ³]	0.014			
Average flue gas	s temp temperature [°C]	33.1			
Reference	conditions	Actual co	onditions		
Moisture [%]	Dry	Moisture [%]	1.09		
Temperature [K]	273	Temperature [K]	306		
Pressure [kPa]	101.3	Pressure [kPa]	101.2		
Oxygen [%]	N/A	Oxygen [%]	N/A		
	okinetic conditions [%]	N/A			
Deviation from reference	ce method	There was no devia method.	ation from reference		

Appendix 1:21 - Stack Measurements: Particulate & Rubber Fume Monitoring - A2-4 Pre Abatement

EN 13284		
12 January 2017		
15:16-15:46		
Isokinetic in stack filtration system		
Flue Gas Analyser		
Titanium		
Titanium		
120		
120		
13.9		
30		
0.39		
-		
Pass		
0		
0		
Pressure [kPa] 101.2		
Oxygen [%] N/A		
9.—		
There was no deviation from referen	ice	
method.		
	12 January 2017 15:16-15:46	

Appendix 1:22 - Stack Measurements: TOC Monitoring - A2-4 Pre Abatement

Appendix 1:22 - Stack Measure	ments: TOC Mo	nitoring - A2	-4 Pre Abatement
Re	eference method	EN 12619	
	Sampling date	12 January 2017	
	Sampling time	15:16-15:46	
Sampling technique			
	TOC	Flame ionisa	tion detection
Material			
Samplin	g probe material	SS, PTFE	
	Fuel	Hydrogen	
Spar	n calibration gas	Propane 90.0) ppm
Zero	o calibration gas	Ambient air	after passing charcoal filter
Span gas drift	[% of the range]	<2	
Zero gas drift	[% of the range]	<2	
Sampling conditions			
Du	ict diameter [m]	0.35	
Number o	f sampling ports	2	
Number o	f sampling lines	Single point sampling	
Heated line t	emperature [°C]	180	
Number of samplin	g points per line	1	
Average flue ga	as velocity [m/s]	7.58	
Average flue gas temp t	emperature [°C]	33.1	
Sampling conditions			
Conditions	Refere	ence	Sampling plane
Moisture	Dry	7	1.09
Temperature [K]	273	}	306
Pressure [kPa]	101.	3	101.2
Oxygen [%]	N/A	1	N/A
Deviation from reference meth	od		
There was no deviation from ref	erence method		

Appendix 1:23 - Stack Measurements: VOC monitoring - A2-4 Post Abatement

Appendix 1:25 - Stack	vieasurements. VOC in	omtoring - A2-4 rost	Abatement		
	Reference method	EN 13649			
Sampling date		11 January 2017			
	Sampling time	16:00-16:30			
Sampling technique					
Fl	ue gas sampling system	SKC pump with Ty	gon tubing and low		
		flow tube holder			
Oxygen	measurement technique	FGA			
Material	•				
	Sampling material	Charcoal tubes			
	1 0				
Sampling conditions					
Average sai	Average sampling flow rate [l/min]		0.5 per tube		
To	Total sampling time [min]				
Sampled volume of	the dry gas at STP [m ³]	0.014			
Average flue ga	s temp temperature [°C]	35.3			
Reference	conditions	Actual co	onditions		
Moisture [%]	Dry	Moisture [%]	0.0		
Temperature [K]	273	Temperature [K]	308		
Pressure [kPa]	101.3	Pressure [kPa]	101.4		
Oxygen [%]	N/A	Oxygen [%]	N/A		
Deviation from isokinetic conditions [%]		N/A			
Deviation from reference	ce method	There was no deviation from reference			
		method.			

Appendix 1:24 - Stack Measurements: Particulate & Rubber Fume Monitoring - A2-4 Post Abatement

Post Adatement			
Reference method	EN 13284		
Sampling date	11 January 2017		
Sampling time	16:00-16:30		
Sampling technique			
Flue gas sampling system	Isokinetic in stack filtration system		
Oxygen measurement technique	Flue Gas Analyser		
Material			
Sampling probe material	Titanium		
Filter material	Titanium		
Sampling conditions			
Probe temperature [°C]	120		
Filtration temperature [°C]	120		
Average sampling flow rate [l/min]	1.47		
Total sampling time [min]	30		
Sampled volume of the dry gas at STP [m ³]	0.04		
Average flue gas velocity [m/s]	0.98		
Nozzle diameter [mm]	7		
Ratio of highest to lowest velocity	< 1:3		
Swirl test result	Pass		
Initial leak test result [% of expected sampling	0		
flow rate]			
Final leak test result [% of average sampling	0		
flow rate]			
Average flue gas temp temperature [°C]	35.3		
Reference conditions	Actual conditions		
Moisture [%] N/A	Moisture [%] 0.0		
Temperature [K] 273	Temperature [K] 308		
Pressure [kPa] 101.3	Pressure [kPa] 101.4		
Oxygen [%] N/A	Oxygen [%] N/A		
Deviation from isokinetic conditions [%]	0.2		
Deviation from reference method	There was no deviation from reference		
	method.		

Appendix 1:25 - Stack Measurements: TOC Monitoring - A2-4 Post Abatement

		2-4 Fost Abatement	
Sampling time	16:00-16:30		
TOC	Flame ionisa	tion detection	
g probe material	SS, PTFE		
Fuel	Hydrogen		
calibration gas	Propane 90.0) ppm	
		after passing charcoal filter	
[% of the range]	<2		
% of the range]	<2		
Sampling conditions			
		0.35	
	2		
	Single point	sampling	
	180		
	1		
* * *	0.98		
· · · · · · · · · · · · · · · · · · ·			
, ,	L		
Refere	nce	Sampling plane	
Dry	7	0.0	
•		308	
*		101.4	
		N/A	
od			
	reference method Sampling date Sampling time TOC g probe material Fuel n calibration gas calibration gas calibration gas (% of the range) (%	TOC Flame ionisa TOC Flame ionisa g probe material SS, PTFE Fuel Hydrogen n calibration gas Propane 90.0 calibration gas Ambient air [% of the range] <2 [% of the range] <2 [ct diameter [m] 0.35 f sampling ports 2 f sampling lines Single point emperature [°C] 180 g points per line 1 as velocity [m/s] 0.98 emperature [°C] 35.3 Reference Dry 273 101.3 N/A	

ANNUAL AIR EMISSIONS SURVEY 2017 G BRUSS GmBH APPENDIX II MONITORING EQUIPMENT CALIBRATION CERTIFICATES

Licence Reg. P0465-01 TMS Environment Ref. 23888 Rev 2.0

Temperature - Temperature (°C)

Campo di misura ingresso Termocoppie - Thermocouple input Range : 0 + 1200 °C Campo di misura sonda Pt100 - Pt100 sensor Range : -20 +80 °C

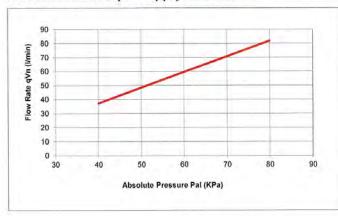
	Riferimento Reference	DUT	Dmax (°C)	Accett. Accept.	Emax (%)
TC Fumes	100	99.3	0.7	1%fs ±0.2 °C	0.06
TC Funics	600	600.4	-0.4	1%fs ±0.2 °C	0.03
TC Aux1	100	99	1	1%fs ±0.2 °C	0.08
TC Aux1	600	599.9	0.1	1%fs ±0.2 °C	0.01
TC Aux2	100	99.1	0.9	1%fs ±0.2 °C	0.08
	600	600.1	-0.1	1%fs ±0.2 °C	0.01
TC Probe	100	99.3	0.7	1%fs ±0.2 °C	0.06
1 C Probe	600	600.4	-0.4	1%fs ±0.2 °C	0.03
TC Box	100	99.4	0.6	1%fs ±0.2 °C	0.05
TC DOX	600	600.4	-0.4	1%fs ±0.2 °C	0.03
DGM Pt100	23.71	23.62	0.09	1%fs ±0.2 °C	0.09

Verifica misura del Volume - Volume Measure Verifying

Flusso di Taratura - Reference Flow rate: 15 l/min [4 mc/h pump] - 30 l/min [8mc/h pump]

Ref DGM Volume riferimento alle condizioni attuali - Reference volume @ actual condition

G4 Volume Volume attuale indicato dallo strumento - Instrument volume reading @ actual condition


Ref DGM ini	Ref DGM fin	Ref DGM corr.	Ref Volume (@actual)	DUT (@actual)	Dmax (l)	Emax (%)	Accept.
172309.8	172789.4	1.005	482.00	484.241	2.2	0.47	±2%

Misura Portata - Flow rate measure

Flusso di Taratura - Reference Flow rate : 15 - 30 I/min [4 mc/h pump] ; 30 - 40 I/min [8 mc/h pump]

Point	Riferimento Reference	DUT	Dmax (l/min)	Accett. Accept.	Emax (%)
1	21.06	21.89	-0.83	±2 %	1.38
2	41.27	41.77	-0,5	±2 %	0.83

Curva caratteristica Pompa - Pump performance curve

Pal	(KPa)	qVn (l/min)	
79.9		81.82	
40.05		37.35	

TCR Tecora

Pag.2 di 3

mod. R14/028 ed. 0

Rapporto di taratura Calibration report N°

R-11420244P

Strumento - Instrument:

Isostack G4

Costruttore - Constructor: TCR Tecora

Firmware version:

1.9.2000

S.N.: 11420244P

Destinatario - Customer:

Il presente verbale di taratura non è utilizzabile per misure fiscali. Rappresenta la registrazione delle prove eseguite durante il collaudo dello strumento, in accordo ai requisiti qualitativi previsti dal nostro sistema di qualità.

Condizioni ambientali della prova - Ambient condition

Temp. - Temperature (°C): 21.6

Pressione - Pressure (KPa): 99.8

Riferimenti utilizzati - Reference used

Pressione - Pressure: Pressione - Pressure : Flusso - Flowrate :

Rischi elettrici - Electr. Risk:

Volume - Volume :

Temperatura - Temperature : Eurotron Mod. Microcal 10 Eurotron Mod. Microcal P2 Tecora Flowcal Air **BGI Deltacal** Itron G4 Gallus

Fulltest HT 4050

S.N. 59S TCR std 59S S.N. 1043008FC S.N. 237 S.N. 0314A111213738 S.N. 01021626

S.N. 29454

TCR std 56S TCR std 43S TCR std 67S TCR std 39S

TCR std 28S

Pressione assoluta Pitot - Pitot Absolute pressure

Campo di misura - Range : 0 - 105 KPa

Deviazione massima della misura - Max reading deviation Dmax =

E max = Max errore di indicazione percentuale sul campo di misura - Max full range percent indication error (%)

Strumento in prova = Device under test DUT=

Point	Riferimento Reference	DUT	Dmax (kPa)	Accett. Accept.	Emax (%)
1	89.95	90	-0.05	1% ±0.1kPa	0.05
2	50.03	50	0,03	1% ±0.1kPa	0.03

Pressione assoluta CV - DGM Absolute pressure

Campo di misura - Range : 0 - 105 KPa

Point	Riferimento Reference	DUT	Dmax (kPa)	Accett. Accept.	Emax (%)
1	89.97	90	-0.03	1% ±0.1kPa	0.03
2	49.98	50	-0.02	1% ±0.1kPa	0.02

Pressione differenziale Pitot - Pitot Differential pressure

Campo di misura - Range : 0 - 2500 Pa

Point	Riferimento Reference	DUT	Dmax (Pa)	Accett, Accept.	Emax (%)
1	50.8	51	-0.2	1%fs ±2Pa	0.01
2	500.3	500	0.3	1%fs ±2Pa	0.01

Pressione differenziale OM - OM Differential pressure

Campo di misura - Range : 0 - 10000 Pa

Point	Riferimento Reference	DUT	Dmax (Pa)	Accett. Accept.	Emax (%)
1.	1000.6	1000	0.6	1%fs ±10Pa	0.01

mod. R14/028 ed. 0 TCR Tecora Pag.1 di 3

M-S-E-1-1 29 MAR 2016

Rischi. Elett. - Electr. Risk:

Fulltest HT 4050

S.N. 01021626

TCR std 39S

Verifica rischi elettrici - Electrical risk verifying

In accordo alle norme CEI EN 61010-1 e CEI EN 60601-1 - In accordance to norms CEI EN 61010-1 and CEI EN 60601-1

Test	Valore-Value	Accett Accept.
Corrente di dispersione - leakage current	4.3	< 15 mA
Resistenza di isolamento - Insulation resistance	O.R.	> 0.2 MΩ
Resistenza equipotenziale - Continuity resistance	0.101	< 0.2 Ω

Data - Date : 25/03

25/03/2016

Eseguito da - Tested by:

Pasquini C.

TCR Tecora Pag.3 di 3 mod. R14/028 ed. 0