

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

DUNSINK LANDFILL TREE PLANTING TECHNICAL ASSESSMENT

LANDFILL CAPPING GEOTECHNICAL ASSESSMENT FOR TREE PLANTING AT DUNSINK LANDFILL

Prepared for: Fingal County Council

Date: February 2022

J5 Plaza, North Park Business Park, North Road, Dublin 11, D11 PXTO, Ireland

T: +353 1 658 3500 | E: info@ftco.ie

CORK | DUBLIN | CARLOW

www.fehilytimoney.ie

LANDFILL CAPPING GEOTECHNICAL ASSESSMENT OF FOR TREE PLANTING AT DUNSINK LANDFILL

REVISION CONTROL TABLE, CLIENT, KEYWORDS AND ABSTRACT User is responsible for Checking the Revision Status of This Document

Rev. No.	Description of Changes	Prepared by:	Checked by:	Approved by:	Date:	
0	Issue for Client Review	DH	CJC	CJC	25.02.2022	

Client: Fingal County Council

- Keywords: Landfill capping, tree planting, window sampling, soil assessment, geotechnical
- Abstract: Fehily Timoney & Co. (FT) was commissioned by Fingal County Council to undertake an intrusive site investigation to assess the geotechnical characteristics of the capped landfill along the north-western slope of Dunsink Landfill. The intrusive investigation included 8 No. window samples (WS01 WS08) and the collection of soil samples for geotechnical analysis. The objective of the investigation was to provide a detailed assessment of the soil characteristics on the proposed planting area to allow an assessment of the suitability for tree planting.

TABLE OF CONTENTS

1.	INTR	ODUCTION1
	1.1	Background1
	1.2	Scope and Objectives1
	1.3	Relevant Guidance2
2.	SITE	INVESTIGATION
	2.1	Ground Investigation Works
		2.1.1 Ground Investigation Rationale and Methodology
		2.1.2 Site Topography and Surface Ground Conditions
	2.2	Soil Characteristics Encountered5
		2.2.1 Made Ground5
		2.2.2 Landfill Material5
		2.2.3 Soil Sampling5
3.	GEO	TECHNICAL ASSESSMENT
э.	GLO	
5.	3.1	Determination of Characteristic Geotechnical Parameters
5.		
5.		Determination of Characteristic Geotechnical Parameters6
5.		Determination of Characteristic Geotechnical Parameters
5.		Determination of Characteristic Geotechnical Parameters
5.		Determination of Characteristic Geotechnical Parameters63.1.1 Material Properties for Landfill Capping63.1.2 Depth of Soil273.1.3 Particle Size Distribution27
	3.1	Determination of Characteristic Geotechnical Parameters63.1.1 Material Properties for Landfill Capping63.1.2 Depth of Soil273.1.3 Particle Size Distribution273.1.4 Moisture Content27
	3.1	Determination of Characteristic Geotechnical Parameters
	3.1 TREE	Determination of Characteristic Geotechnical Parameters63.1.1 Material Properties for Landfill Capping63.1.2 Depth of Soil273.1.3 Particle Size Distribution273.1.4 Moisture Content273.1.5 Soil Organic Matter Content28PLANTING SUITABILITY ASSESSMENT29
	3.1 TREE	Determination of Characteristic Geotechnical Parameters
	3.1 TREE	Determination of Characteristic Geotechnical Parameters

Page

LIST OF APPENDICES

- Appendix 1 Causeway Geotech Site Investigation Report
- Appendix 2 Geotechnical Sample Analysis Results

LIST OF FIGURES

Figure 2.1:	Site Investigation Location Plan4
Figure 4.1:	USDA Soil Textural Class Pyramid 30

LIST OF TABLES

Table 2.1:	Summary of Geology Encountered	.5
Table 3.1:	Typical Clay Capping Properties	.6
Table 3.2:	Summary of Geotechnical Laboratory Results	.7

1. INTRODUCTION

Fehily Timoney and Company (FT) was commissioned by Fingal County Council (FCC) to undertake an intrusive investigation along the north-western sloped section of Dunsink Landfill as part of an investigation to assess the suitability of the ground conditions for tree planting.

1.1 Background

Fingal County Council is proposing to plant up to 10,000 trees across a 4-acre plot (approx. 400 m length x 50 m width) in the former landfill at Dunsink as part of the ongoing restoration of the site and its ongoing development into a public park. The proposed planting area is located to the north-west of the site, adjacent to the boundary with the M50 motorway.

Following FCC's tree planting submission to the Environmental Protection Agency (EPA), dated 27th November 2020, it is understood this application was refused as it did not comply with the requirements of Condition 4.5 of Waste Licence No. W0127-01. Condition 4.5 which states:

"Where tree planting is to be carried out above waste-filled areas, a synthetic barrier shall be used to augment the clay cap. Combined topsoil and subsoil depths shall be a minimum of 1m."

Due to the lack of synthetic barrier underlying the proposed north-western sloped area, it is understood that additional technical information is required with respect to: depth of the soil layer to waste and results from window sampling in the area where trees are to be planted. The existing tree species along the north-eastern slope comprise a mixture of Birch (fibrous shallow root depth), Alder (fibrous shallow root depth but if soil free draining roots will go deeper), Ash (shallow typically 1.0 m deep), Hazel (medium depth 2.0 m to 3.0 m) and Pine (Medium 1.5 m to 3.0 m deep) and were planted in 2012.

Based on an EPA audit carried out in May 2021, the EPA stated that a Technical Amendment / Review of Condition 4.5 may be considered as the original submission was rejected.

1.2 Scope and Objectives

The purpose of this report and associated site investigation was to assess the subsoil characteristics on the proposed planting site to facilitate an assessment of the suitability for tree planting.

Tree planting on a restored landfill site is subject to certain conditions being confirmed. For successful tree establishment to occur on the proposed site; stability, cap permeability, drainage and fugitive gas emissions will need to be considered.

FT, with respect to the existing tree species, set out to examine:

- 1. Stability requirements investigation to determine depth of soil below the surface.
- 2. Barrier layer investigation to determine the permeability of material above waste.
- 3. Geotechnical testing of soil samples.

1.3 **Relevant Guidance**

The reference documents and online resources used in the preparation of this chapter include the following:

- EPA Landfill Restoration and Aftercare Manual (1999) •
- UK Environment Agency (EA) guidelines for Earthworks in Landfill Engineering (2014)
- After Soil Survey Manual, USDA Handbook No. 18 (1951) •
- A Guide to Forest Tree Species Selection and Silviculture in Ireland COFORD 2003 ISBN 1 902696 27 1 •
- The Forest of Fingal A Tree Strategy for Fingal (2010) •
- Journal of Forest Science, 48, 2002 (8): 342-350 • https://www.agriculturejournals.cz/publicFiles/286313.pdf

2. SITE INVESTIGATION

2.1 Ground Investigation Works

The ground investigation was undertaken by Causeway Geotech Limited (CGL) using a Dando Terrier dynamic sampling method under the supervision of FT's Project Engineer between the 8th and 9th November 2021. The ground investigation rationale was devised in accordance with the findings of the initial desk study.

2.1.1 Ground Investigation Rationale and Methodology

Preliminary intrusive locations were chosen during the desk study in order to provide a broad spatial coverage of the proposed tree planting area.

The intrusive investigation comprised the following scope of works:

- i. The advancement of 8 No. window samples (WS01 WS08) to a maximum depth of 4.0m BGL.
- ii. Recording of ground conditions encountered and noting the geotechnical characteristics of the deposited soil material.
- iii. Collection of soil samples for geotechnical testing.

The boreholes were taken to depths ranging between 1.1 m and 4.0 m where they were terminated at their scheduled depths, or else they were terminated on encountering virtual refusal on obstructions above this depth.

The window sample locations are presented in Figure 2.1. Borehole logs are presented in Appendix 1.

Representative soil samples were taken from various depths and strata and submitted for geotechnical testing to assess the suitability of the material for tree planting. The results are provided in Appendix 2.

2.1.2 <u>Site Topography and Surface Ground Conditions</u>

As can be seen in Figure 2.1 below, the intrusive site investigation targeted the Made Ground landfill capping soil material along the north-western boundary of the site. The topography of the proposed planting area is a combination of a sloped 1:2 gradient along the west side and flat area of imported soil to the east side. Surface vegetation consisting predominantly of minor scrub and grass is established across the proposed planting area.

 CLIENT:
 Fingal County Council

 PROJECT NAME:
 Dunsink Landfill Tree Planting Technical Assessment

 SECTION:
 2

Figure 2.1:Site Investigation Location Plan

2.2 Soil Characteristics Encountered

A summary of the soil strata encountered during the ground investigations is given in Table 2.1 below.

Table 2.1: Summary of Geology Encountered

Strata	General Description	Depth to Top Range (m bgl)	Depth to Bottom Range (m bgl)
Topsoil / Made Ground	Firm - Stiff grey / brown sandy gravelly CLAY	0 1.0-2.0	
Made Ground (Fill)	Varying amounts of concrete, brick, timber fragments and cinders	2.0 - 3.0	2.0 - 4.0

Water strikes or perched surface water pooling were not reported which may indicate to a lack of low permeability cohesive soils within the proposed tree planting area.

2.2.1 <u>Made Ground</u>

The ground investigation generally encountered Made Ground comprising disturbed glacial till deposits to an average depth of between 1.8 m - 2.0 m BGL. The Made Ground was generally found to be loamy, ie having equal proportions of sand silt and clay, generally being described as *slightly sandy slightly gravelly CLAY* or *sandy gravelly CLAY*.

Due to the disturbed nature of the Made Ground, the cobble content was variable with depth. For the purpose of this report, cobble content is considered to be variable across the study area and consists of sub*angular to sub-rounded cobbles fine to coarse*.

The Made Ground material at the study area can therefore be considered a stony cohesive fill material.

2.2.2 Landfill Material

Landfill material was encountered in all boreholes with the exception of WS03 and WS06 comprising varying amounts of concrete, bricks, timber fragments and cinders. The presence of the landfill material was recorded at an average depth of between 2.0 m - 3.0 m BGL across the study area.

2.2.3 Soil Sampling

A total of 19 No. bulk soil samples were taken during the site investigation for geotechnical analysis. All samples were taken in the field by FT using standard sampling methods and dispatched to Metlab Ltd. under appropriate chain-of-custody procedures.

3.1 **Determination of Characteristic Geotechnical Parameters**

3.1.1 Material Properties for Landfill Capping

According to the UK Environment Agency (EA) guidelines for Earthworks in Landfill Engineering (2014), the use of natural clays for landfill capping must meet the following criteria:

- a) Low hydraulic conductivity.
- b) Adequate shear strength.
- c) Minimal shrinkage upon reduction of moisture content (this is met by application of the plasticity index limits).
- d) Plasticity.
- e) Workability.

In selecting acceptable capping materials, initially they should comply generally with the specifications outlined in BS1377 (1990) which are summarised in Table 3.1.

Table 3.1: Typical Clay Capping Properties

Engineering Property	Minimum Requirement	Test	
Remoulded undrained shear strength	Typically, $\geq 50 \text{ kN/m}^2$	BS1377: 1990, Part 7: Method 8	
Plasticity index (I _P)	10% ≤ I _P ≤ 65%	BS1377: 1990, Part 2: Method 4.3 and 5.3	
Liquid Limit	≤ 90%		
Percentage fines <0.063mm	≥ 20 % but with a minimum clay content (particles < 2 µm) of 8%	BS1377: 1990, Part 2:	
Percentage gravel	≤ 30%	Method 9.2, 9.5	

The laboratory testing as part of this assessment considered the following clay capping properties:

- Percentage fines •
- Percentage gravel •

The overall findings of the geotechnical laboratory assessment are summarised below in Table 3.2. The results of PSD and Hydrometer testing are also presented.

Summary of Geotechnical Laboratory Results Table 3.2:

Location ID	Depth Range (m)	Textural Class (USDA)	Moisture Content (%)	рН	Organic Content
N/C 1	0-1.0	Sandy Loam	35	7.1	23.53
WS-1	1.0 - 2.0	Sandy Loam	11	7.2	
WS-2	0-1.0	Loamy Sand	25	7.2	29.73
VV3-2	1.0 - 2.0	Sandy Loam	23	7.2	
	0-1.0	Sandy Loam	23	7.1	25.80
N/C 2	1.0 - 2.0	Sandy Loam	13	7.3	
WS-3	2.0 - 3.0	Sandy Loam	14	7.1	
	3.0 - 4.0	Sandy Loam	19	7.1	
WS-4	0-1.0	Sandy Loam	17	7.1	16.80
VV5-4	1.0 - 2.0	Sandy Loam	12	7.2	
14/C F	0-1.0	Sandy Silt Loam	28	7.1	28.10
WS-5	1.0 - 2.0	Sandy Loam	14	7.2	
WS-6	0-1.0	Sandy Loam	20	7.0	11.45
	0-1.0	Sandy Loam	17	7.1	18.95
WS-7	1.0 - 2.0	Loamy Sand	15	7.2	
	2.0 - 3.0	Sandy Loam	13	7.3	
	0-1.0	Sandy Loam	24	7.1	31.30
WS-8	1.0 - 2.0	Sandy Loam	12	7.2	
	2.0-3.0	Sandy Loam	16	7.3	

Table 3-2 classifies soils using the USDA soil classification system which is commonly used for agricultural soil assessments. The PSD and hydrometer laboratory results are presented overleaf.

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10281-PSD&HYD.01				
	Mr. Daniel Hayden	Lab No	C10281				
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed				
Contract	Dunsink Tree Planting	Method of Prep	N/A				
		Sampling Certificate	Yes				
		Sampled By	Client				
Site Ref	N/A	Date Sampled	N/A				
Client Ref	PSD&HYD.01	Date Received	25/11/2021				
Specification	BS 3882	Date Started	16/12/2021				
Location	WS.01: 0.0-1.0m						
Sample Description	Topsoil						

Sieve Size (mm) 125	% Passing 100	Limits				PSD	GRAPH			
125	100				-		. ,			
75	100				I	BS Test S	Sieves (mm)		
63	100		0.00	0.00 0.00	1 0.01	0.1	1	10	100	1000
50	100		100 +							
37.5	100		90 —							
28	100		80 -							
20	99									
14	99		ి 70 +							
10	99		Percentage passing (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				////////////////////////////////			
6.3	99		ass - 02 - 03							
5	99		d SU				*			
3.35	93		- 66 60 40							
2	88		1 30 +							
1.18	82		9 20 -							
0.6	74									
0.425	69		10 —							
0.3	57		o ⊥							
0.212	46									
0.15	35			CLAY	Fine Medium				COBBLES BO	ULDERS
0.063	24.8				SILT	ſ	SAND	GRAVEL		
0.040	22.9		L							
0.030	22.2						roportions (
0.020	21.0		Gravel =	12	Sand =	63	Silt =	15.9	Clay =	8.9
0.013	19.3									
0.009	17.9			>2mm	12%		Texture Cl	ass <2mm	SANDY	LOAM
0.005	14.2			>20mm	1%					
0.002	8.9		l L	>50mm	0%					
	Qи		_	17/01/2	2022		Technical I	Approva Manager	al By:	

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT **TESTED IN ACCORDANCE WITH BS 1377:PART 2**

Contract No	J3559	Report No	C10282-PSD&HYD.02				
Client Contact	Mr. Daniel Hayden	Lab No	C10282				
	Fehily Timoney & Company	Sample Type	Bulk Disturbed				
Contract	Dunsink Tree Planting	Method of Prep	N/A				
		Sampling Certificate	Yes				
		Sampled By	Client				
Site Ref	N/A	Date Sampled	N/A				
Client Ref	PSD&HYD.02	Date Received	25/11/2021				
Specification	BS 3882	Date Started	17/12/2021				
Location	WS.02: 0.0-1.0m						
Sample Description	Topsoil						

Sieve Size (mm)	% Passing	Limits				PSD C	GRAPH			
125	100		BS Tast Sigure (mm)							
100	100		BS Test Sieves (mm)							
75 63	100 100		0.00	01 0.00	0.01	0.1	1	10	100	1000
50	100		100 +							
37.5	100		90 -							
28	97		11							
20	96		80 -							
14	90 95		+ 00 + 00 + 00 + 00 + 00 + 00 + 00 + 00							+++++++
14	92		b 60 +							
6.3	87		ssi.							
5	83		bas - 0							
3.35	74		නී 40 +							+ + + + + + + + + + + + + + + + + + + +
2	64		1 a 1							
1.18	55		90 00				≠			
0.6	44									
0.425	38		10 +							+++++++
0.3	32		o ⊥							
0.212	26		11							
0.15	20		11	CLAY	Fine Medium		Medium Coarse	Fine Medium Coa	COBBLES BO	ULDERS
0.063	13.2]		SIL		SAND	GRAVEL		
0.040	12.9									
0.030	12.1						oportions (%			
0.020	11.3		Gravel =	36	Sand =	51	Silt =	9.1	Clay =	4.1
0.013	10.0		-		0.00 í		T ()		10110	0.00
0.009	8.8		1 F	>2mm	36%		Texture Cla	ass <2mm	LOAMY	SAND
0.005	6.7		4 F	>20mm	4% 0%					
0.002	4.1		I L	>50mm	0%					
	Q.M							Approva	l By:	
	BCOIL	-		17/01/	2022		Technical N	/lanager		

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10283-PSD&HYD.03					
Client Contact	Mr. Daniel Hayden	Lab No	C10283					
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.03	Date Received	25/11/2021					
Specification	BS 3882	Date Started	16/12/2021					
Location	WS.03: 0.0-1.0m							
Sample Description		Topsoil						

Sieve Size (mm)	% Passing	Limits				PSD GF	RAPH			
125	100 100									
100 75	100				B	S Test Sie	ves (mm)			
63	100		0.000	0.001	0.01	0.1	1	10	100	1000
50	100		100 +						••••	
37.5	100		90 —							
28	98									
20	95		80 -							
14	90		ి 70 —					≁		
10	86		 60							
6.3	81		→ 07 → 07 → 06 → 06 → 02 → 02 → 02 → 02 → 02 → 02 → 02 → 03 → 03 → 04 → 05 → 05 → 05 → 05 → 05 → 05 → 05 → 05							
5	78		d 50							
3.35	71		ອີ <u>ອ</u> 40 +							
2	66		i i i i i i i i i i i i i i i i i i i					++++++		
1.18	61		e 20 -							
0.6	56		_							
0.425	54		10 —	T						
0.3	52		0 ⊥							
0.212	50			r	<u> </u>					
0.15	48			CLAY	Fine Medium SILT	Coarse Fine M		Fine Medium Coars		ULDERS
0.063	44.4				SILI		SAND	GRAVEL		
0.040	42.1									
0.030	39.9			-		ituent Prop				
0.020	36.1		Gravel =	34 S	Sand =	21	Silt =	32.8	Clay =	11.6
0.013	32.4		_	_						
0.009	29.3			>2mm	34%	T	exture Clas	ss <2mm	SANDY	LOAM
0.005	21.0			>20mm	5%					
0.002	11.6			>50mm	0%					
	Q.M	_		17/01/20	022	Te	echnical M	Approva l anager	By:	•

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10284-PSD&HYD.04					
Client Contact	Mr. Daniel Hayden	Lab No	C10284					
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.04	Date Received	25/11/2021					
Specification	BS 3882	Date Started	16/12/2021					
Location		WS.04: 0.0-1.0m						
Sample Description		Topsoil						

Sieve Size (mm)	% Passing	Limits				PSD	GRAPH			
125	100 100									
100 75	100					BS Test S	Sieves (mm	1)		
63	100		0.00	01 0.00	0.01	0.1	1	10	100	1000
50	100		100 +		-					
37.5	100		90 -							
28	93									
20	89		80 -							
14	85		ි 70 +							
10	81		. 60 –							
6.3	75		ŝ							
5	72		86 20 -							
3.35	66		- 8 5 40							+ + + + + + + + + + + + + + + + + + + +
2	61		u 30 +							
1.18	56									
0.6	51		لو 20 +							
0.425	48		10 +							
0.3	45		o ⊥							
0.212	42		-							
0.15	38			CLAY	Fine Mediur			Fine Medium Coa	COBBLES BO	ULDERS
0.063	35.1				SIL	Т	SAND	GRAVEL		
0.040	33.1									
0.030	32.1						roportions (
0.020	29.0		Gravel =	39	Sand =	26	Silt =	23.9	Clay =	11.2
0.013	25.9			-			_			
0.009	23.3			>2mm	39%		Texture Cl	ass <2mm	SANDY	LOAM
0.005	18.1			>20mm	11%					
0.002	11.2		I L	>50mm	0%					
	Дом			17/01/	/2022		Technical N	Approva Manager	l By:	

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10285-PSD&HYD.05					
Client Contact	Mr. Daniel Hayden	Lab No	C10285					
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.05	Date Received	25/11/2021					
Specification	BS 3882	Date Started	16/12/2021					
Location		WS.05: 0.0-1.0m						
Sample Description		Topsoil						

Sieve Size (mm)	% Passing	Limits				PSD G	RAPH			
125	100		11							
100	100]]		B	S Test Si	eves (mm)		
75	100		0.000	1 0.001	0.01	0.1	1	10	100	1000
63	100		100 +		0.01					
50	100									
37.5	100		90 —							
28	100		80 —							+++++++
20	99		€ 70 —							
14	99		5							
10	96		. – 00 📜							
6.3	92		8 50 -							+++++++
5	89		ອີ 40							
3.35	82		6 40 –							
2	75		5 30 +-							++++++
1.18	69		ຍ 20 —							
0.6	66									
0.425	63		10 —							
0.3	60		o ⊥							
0.212	57]] ,		· · · ·					
0.15	54			CLAY	Fine Medium SILT	Coarse Fine	Medium Coarse SAND	Fine Medium Coa	COBBLES BO	ULDERS
0.063	50.8		 		SILI		SAIND	GRAVEL		
0.040	49.6									
0.030	48.6						oportions (
0.020	45.3		Gravel =	25 3	Sand =	24	Silt =	37.1	Clay =	13.7
0.013	40.9		I _			-				
0.009	36.8			>2mm	25%		Texture Cla	ass <2mm S	SANDY SI	LT LOAM
0.005	25.4			>20mm	1%					
0.002	13.7			>50mm	0%					
	Q.M		_	17/01/20)22	F	Fechnical N	Approva Manager	l By:	•

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10286-PSD&HYD.06					
Client Contact	Mr. Daniel Hayden	Lab No	C10286					
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.06	Date Received	25/11/2021					
Specification	BS 3882	Date Started	17/12/2021					
Location		WS.06: 0.0-1.0m						
Sample Description		Topsoil						

Sieve Size (mm)	% Passing	Limits				PSD G	RAPH			
125	100									
100 75	100 100				I	BS Test Si	ieves (mm)		
63	100		0.000	0.00	0.01	0.1	1	10	100	1000
50	100		100 +							
37.5	100		90 —							
28	100									
20	99		80 -							
14	97		ී 70 +					<u> </u>		
10	93		Percentage passing (%) 00 0 01 0 02 0 03 0 04 0 05 0							
6.3	86		SSI							
5	82		sed 50 -							
3.35	75		b 40 +							
2	67		30 +							
1.18	60									
0.6	55		_							
0.425	53		10 —							++++++
0.3	51		o ⊥							
0.212	49		-							
0.15	45			CLAY	Fine Medium		Medium Coarse	Fine Medium Coa	COBBLES BO	ULDERS
0.063	41.7				SIL	ſ	SAND	GRAVEL		
0.040	40.6									
0.030	38.4					stituent Pro				
0.020	36.1		Gravel =	33	Sand =	25	Silt =	24.4	Clay =	17.3
0.013	32.5		_	-						
0.009	29.8			>2mm	33%	-	Texture Cla	ass <2mm	SANDY	LOAM
0.005	20.2			>20mm	1%					
0.002	17.3		L	>50mm	0%					
	Q.M			17/01/	2022	F	Technical N	Approva Manager	l By:	

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10287-PSD&HYD.07				
Client Contact	Mr. Daniel Hayden	Lab No	C10287				
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed				
Contract	Dunsink Tree Planting	Method of Prep	N/A				
		Sampling Certificate	Yes				
		Sampled By	Client				
Site Ref	N/A	Date Sampled	N/A				
Client Ref	PSD&HYD.07	Date Received	25/11/2021				
Specification	BS 3882	BS 3882 Date Started 17/12/20					
Location		WS.07: 0.0-1.0m					
Sample Description		Topsoil					

Sieve Size (mm)	% Passing	Limits				PSD G	RAPH			
125	100 100		11							
100 75	100		 		E	BS Test S	ieves (mm	I)		
63	100		0.000	0.00	1 0.01	0.1	1	10	100	1000
50	100		100 +							
37.5	100		90 —							
28	100		11							
20	96		80 -							
14	91		ි 70 +							
14	87		ـــــــــــــــــــــــــــــــــــــ							
6.3	81		S S							
5	79		6 50 –							
3.35	74		ອິ 40 +-							
2	70		u 30 +			•				
1.18	67		e co							
0.6	63		- ¹ ²⁰ ⁻							
0.425	61		10 +							
0.3	59		o ⊥							
0.212	56		 							
0.15	51		11	CLAY	Fine Medium	Coarse Fine	Medium Coarse	Fine Medium Coa		ULDERS
0.063	45.4		11		SILT		SAND	GRAVEL		
0.040	42.1									
0.030	39.5						oportions (
0.020	36.2		Gravel =	30	Sand =	25	Silt =	37.0	Clay =	8.4
0.013	32.2		! _			-	_			
0.009	29.2		1 L	>2mm	30%		Texture Cla	ass <2mm	SANDY	LOAM
0.005	18.9		Ⅰ ┣	>20mm	4%					
0.002	8.4		I L	>50mm	0%					
	Que		_	17/01/2	2022	F	Technical N	Approva Manager	ll By:	

Approved

End of Test

Date Reported

Form No: CMT 002 Rev 4

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10288-PSD&HYD.08					
	Mr. Daniel Hayden	Lab No	C10288					
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.08	Date Received	25/11/2021					
Specification	BS 3882	Date Started	16/12/2021					
Location		WS.08: 0.0-1.0m						
Sample Description		Topsoil						

Sieve Size (mm) 125	% Passing 100	Limits				PSD (GRAPH			
125	100						. ,			
75	100					BS Test S	Sieves (mm	1)		
63	100		0.00	01 0.00	1 0.01	0.1	1	10	100	1000
50	100		100 +							
37.5	96		90 +							
28	96		80 —							
20	93									
14	92		Percentage passing (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					T		
10	87		, <u> </u>							
6.3	82		se 50 -							
5	79		d So							
3.35	76		ອິຣ 40 +							
2	72		t 30 +							
1.18	68		5 20 -							
0.6	63									
0.425	61		10 —							
0.3	57		o ⊥							
0.212	54									
0.15	49			CLAY	Fine Mediur SIL				COBBLES BO	DULDERS
0.063	44.0				SIL		SAND	GRAVEL		
0.040	42.4									
0.030	40.9						roportions (
0.020	37.4		Gravel =	28	Sand =	28	Silt =	28.6	Clay =	15.4
0.013	33.6									
0.009	30.7			>2mm	28%		Texture Cl	ass <2mm	SANDY	LOAM
0.005	21.8			>20mm	7%					
0.002	15.4		I L	>50mm	0%					
	Que		_	17/01/	2022		Technical I	Approva Manager	al By:	-

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10289-PSD&HYD.09					
Client Contact	Mr. Daniel Hayden	Lab No	C10289					
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.09	Date Received	25/11/2021					
Specification	BS 3882	Date Started	16/12/2021					
Location		WS.01: 1.0-2.0m						
Sample Description		Subsoil						

Sieve Size (mm)	% Passing	Limits				PSD (GRAPH			
125	100		 							
100	100		 			BS Test S	lieves (mm	ı)		
75	100		0.00	01 0.00	0.01	0.1	1	10	100	1000
63 50	100 100		100 +							
37.5			90 -							
28	98 96		11							
20	96 93		80 +							+ + + + + + + + + + + + + + + + + + + +
	93 88		ଛି 70 ∔							
14 10	86		+ 02 + 09 + 00 + 00 + 00 + 00 + 00 + 00 + 00					f		
6.3	80									
5	80 77		- 05 - -							
3.35	71		සී 40 +							
2	67		- 06 a nta							
1.18	62		e SU							
0.6	57		ب 20 –							
0.425	55		10 +							
0.3	53		o ⊥							
0.212	50		i i							
0.15	44		11	CLAY	Fine Medium		Medium Coarse	Fine Medium Coa	COBBLES BO	
0.063	38.8		11		SIL	Т	SAND	GRAVEL		OLDENO
0.040	35.7									
0.030	33.9				Con	stituent Pr	oportions (%)		
0.020	30.9		Gravel =	33	Sand =	28	Silt =	25.5	Clay =	13.3
0.013	26.4									
0.009	23.6		I [>2mm	33%		Texture Cl	ass <2mm	SANDY	LOAM
0.005	16.9		1 L	>20mm	7%	-				
0.002	13.3		I L	>50mm	0%					
	Que		_	17/01/	2022		Technical	Approva Manager	l By:	

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10290-PSD&HYD.10					
Client Contact	Mr. Daniel Hayden	Lab No	C10290					
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.10	Date Received	25/11/2021					
Specification	BS 3882	Date Started	16/12/2021					
Location		WS.02: 1.0-2.0m						
Sample Description		Subsoil						

Sieve Size (mm)	% Passing	Limits				PSD G	RAPH			
125	100									
100	100				I	3S Test Si	eves (mm))		
75	100		0.000	0.00	1 0.01	0.1	1	10	100	1000
63 50	100		100 +		• • • • • • •					
	100									
37.5	94		90 +							
28	88		80 —							++++++
20	86		ڪ 70 –							
14	83		5							
10	81		iii 60 —							
6.3	76		8 50 +		_					+ + + + + + +
5	74		8 40							
3.35	71		0∓ ta							
2	66		1 30 +							
1.18	61		5 20 +							
0.6	55		1 0							
0.425	53									
0.3	50		0 –							
0.212	47				Fine Medium	Coarse Fine	Medium Coarse	Fine Medium Coa	rse	<u> </u>
0.15	43			CLAY	SILT		SAND	GRAVEL	COBBLES BO	ULDERS
0.063	36.5							GIANEE		
0.040	34.2				-			~		
0.030	32.0			<u> </u>			oportions (%		0	10.0
0.020	29.5		Gravel =	34	Sand =	30	Silt =	25.9	Clay =	10.6
0.013	26.1		-		0.49/			0		
0.009	23.9		▎ ┣	>2mm	34%	L	i exture Cla	ass <2mm	SANDY	LOAM
0.005	16.3		Ⅰ ┣	>20mm	14%					
0.002	10.6		I L	>50mm	0%					
	Q.н.			17/01/2	2022	F	Fechnical N	Approva Ianager	l By:	•

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT **TESTED IN ACCORDANCE WITH BS 1377:PART 2**

Contract No	J3559	Report No	C10291-PSD&HYD.11					
Client Contact	Mr. Daniel Hayden	Lab No	C10291					
	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.11	Date Received	25/11/2021					
Specification	BS 3882	Date Started	16/12/2021					
Location		WS.03: 1.0-2.0m						
Sample Description		Subsoil						

Sieve Size (mm)	Passing	Limits				PSD G	RAPH			
125	100		!							
100	100]]		E	BS Test Si	eves (mm)		
75	100		0.00	01 0.00	0.01	0.1	1	10	100	1000
63	100		100 +		• • • • • • • • • • • • • • • • • • • •					
50	96									
37.5	94		90 +							
28	89		80 +							+ + + + + + + + + + + + + + + + + + + +
20	85		ج § 70 –							
14	79		5,70							
10	74		- 06 " ".							
6.3	66		+ 00 + 00 + 00 + 00 + 00 + 00 + 00 + 00							
5	66		8 8 40 -							
3.35	62		tag							
2	57		5 30 +							
1.18	53		9 20 +							
0.6	47		• 10 +							
0.425	44									
0.3	43		0 –							
0.212	42]]		Fine Medium	Coarse Fine	Medium Coarse	Fine Medium Coa	real	<u> </u>
0.15	38		11	CLAY	Fine Medium SILT	Coarse Fine	SAND	GRAVEL	COBBLES BO	ULDERS
0.063	33.5]]	L	0.21		0/11D	GRAVEL		
0.040	31.4		·			_				
0.030	29.8						oportions (%			
0.020	26.9		Gravel =	42	Sand =	24	Silt =	23.2	Clay =	10.3
0.013	23.5		-		100/	F				
0.009	20.9		1 F	>2mm	43%		Texture Cla	ass <2mm	SANDY	LOAM
0.005	14.8		4 F	>20mm	15%					
0.002	10.3		I L	>50mm	4%					
	\circ					Г		Approva	Bv:	
	20M			17/01/	2022	-	Fechnical N			
										_

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10292-PSD&HYD.12					
Client Contact	Mr. Daniel Hayden	Lab No	C10292					
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.12	Date Received	25/11/2021					
Specification	BS 3882	Date Started	17/12/2021					
Location		WS.03: 2.0-3.0m						
Sample Description		Subsoil						

Sieve Size (mm)	% Passing	Limits				PSD (GRAPH			
125	100		 							
100	100		 			BS Test S	ieves (mm)		
75	100		0.00	01 0.00	0.01	0.1	1	10	100	1000
63 50	100 100		100 +							
37.5	94		90 +							
28	94 94									
			80 +				+ + + + + + + + + + + + + + + + + + + +			
20	90		<u>මි</u> 70 –							
<u>14</u> 10	83		5							
	79		- 00 și							
6.3	72		8 50 +				++++++			
5	69		සි 40 –							
3.35	60		, ta							
2	53		. 30 –							
1.18 0.6	48 43		້ອ 20 +							
	43 41		10 +							
0.425	41									
0.3	40 39		0 –							
0.212	39 37		41		Fine Mediur	m Coarse Fine	Medium Coarse	Fine Medium Coa	irse	
			41	CLAY	SIL	T	SAND	GRAVEL	COBBLES BC	OULDERS
0.063	34.9			L		1		1	1	I
0.040	32.5				C	ctituant D-	oportions (0/ \		
0.030	30.9		Crovel	47	Sand =	18		<i>i</i>		11.3
0.020	28.1 23.8		Gravel =	41	Sanu =	10	Silt =	23.6	Clay =	11.3
0.013	23.0		1 r	>2mm	47%		Toyturo Cl	ass <2mm	SANDY	
0.009	20.4 16.4		4 F	>20mm	10%			ass <2111111	SANDT	LUAIVI
0.005	11.3		4 F	>20mm	0%					
	Q.M						Taskaise	Approva	ıl By:	
				17/01/	2022		Technical N	vianager		

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10293-PSD&HYD.13					
Client Contact	Mr. Daniel Hayden	Lab No	C10293					
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.13	Date Received	25/11/2021					
Specification	BS 3882	Date Started	16/12/2021					
Location		WS.03: 3.0-4.0m						
Sample Description		Subsoil						

Sieve Size (mm)	% Passing	Limits				PSD G	RAPH			
125	100									
100	100				E	BS Test Si	eves (mm)		
75 63	100 100		0.000	0.00 [.]	1 0.01	0.1	1	10	100	1000
50	100		100 +							
37.5	100		90 —							
28	98									
20	90		80 —							
14	88		ଛି 70 +							
14	84		bu 60 -							
6.3	79		Ś							
5	77		se 50 —							
3.35	69		ອິ 40 –							
2	63		- 06 anta							
1.18	58									
0.6	54		J 20 –							
0.425	52		10 —		1					
0.3	49		o ⊥							
0.212	47		Ĵ			.				
0.15	44			CLAY	Fine Medium		Medium Coarse	Fine Medium Coa	COBBLES BO	ULDERS
0.063	41.3				SILT		SAND	GRAVEL		
0.040	39.4									
0.030	37.2						portions (%			
0.020	33.9		Gravel =	37	Sand =	22	Silt =	29.8	Clay =	11.5
0.013	28.7		_			-	_	- · ·		
0.009	24.7		l L	>2mm	37%		Texture Cla	ass <2mm	SANDY	LOAM
0.005	19.6		Ⅰ ┣	>20mm	8%					
0.002	11.5		I L	>50mm	0%					
	Dom.			17/01/2	2022	F	Fechnical N	Approva Manager	l By:	

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10294-PSD&HYD.14					
Client Contact	Mr. Daniel Hayden	Lab No	C10294					
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.14	Date Received	25/11/2021					
Specification	BS 3882	Date Started	16/12/2021					
Location	V	WS.04: 1.0-2.0m						
Sample Description		Subsoil						

Sieve Size (mm)	% Passing	Limits				PSD GF	RAPH			
125 100	100 100									
75	100				В	S Test Sie	ves (mm)			
63	100		0.000	0.001	0.01	0.1	1	10	100	1000
50	100		100 +							
37.5	100		90 —							
28	97									
20	93		80 -							
14	88		<u>ల</u> ి 70 —							
10	84		ii 60 —							
6.3	78		— 07 — 06 — 03 — 04 — 05 — 05 — 05 — 05 — 05 — 05 — 05 — 05							
5	75		d e							
3.35	69		- 06 B							
2	64		i i i i i i i i i i i i i i i i i i i					++++++		
1.18	58		e 20 -							
0.6	53		_							
0.425	50		10 —							
0.3	48		0 ⊥_							
0.212	45			r						ı
0.15	41			CLAY	Fine Medium SILT	Coarse Fine M		Fine Medium Coars		ULDERS
0.063	37.6				SILI		SAND	GRAVEL		
0.040	35.8		<u> </u>							
0.030	34.6					tituent Prop				
0.020	31.8		Gravel =	36	Sand =	26	Silt =	24.7	Clay =	12.9
0.013	28.1								<u> </u>	
0.009	25.3			>2mm	36%	Te	exture Clas	ss <2mm	SANDY	LOAM
0.005	18.9			>20mm	7%					
0.002	12.9			>50mm	0%					
	Que	-	_	17/01/20	022	Te	echnical M	Approva l anager	By:	•

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10295-PSD&HYD.15					
	Mr. Daniel Hayden	Lab No	C10295					
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.15	Date Received	25/11/2021					
Specification	BS 3882	Date Started	16/12/2021					
Location		WS.05: 1.0-2.0m						
Sample Description		Subsoil						

Sieve Size (mm) 125	% Passing	Limits				PSD G	RAPH			
125	100 100		11		_		<i>.</i>			
75	100				В	S Test Si	eves (mm)			
63	100		0.000	1 0.001	0.01	0.1	1	10	100	1000
50	100		100 +							
37.5	100		90							
28	93		80							
20	89									
14	80		్రి 70 —							+++++++
10	76		. 60 –							
6.3	71		s 50							
5	69		<u>u</u>							
3.35	66		ອິຣິສ 40 +							
2	63		j i 30			!!!!!</th <th></th> <th></th> <th>+++++++</th> <th></th>			+++++++	
1.18	59		ja 20 —							
0.6	55									
0.425	53		10							
0.3	51		o ⊥							
0.212	48]] ,							ı
0.15	43			CLAY	Fine Medium	Coarse Fine		Fine Medium Coar	COBBLES BOI	JLDERS
0.063	38.7]] L		SILT		SAND	GRAVEL		
0.040	36.1									
0.030	34.7						portions (%			
0.020	31.2		Gravel =	37 5	Sand =	24	Silt =	25.0	Clay =	13.7
0.013	26.2									
0.009	21.2			>2mm	37%		exture Cla	ss <2mm	SANDY	LOAM
0.005	17.9			>20mm	11%					
0.002	13.7			>50mm	0%					
	Q.M		_	17/01/20)22	Ţ	echnical M	Approva anager	l By:	•

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10296-PSD&HYD.16						
Client Contact	Mr. Daniel Hayden	Lab No	C10296						
	Fehily Timoney & Company	Sample Type	Bulk Disturbed						
Contract	Dunsink Tree Planting	Method of Prep	N/A						
		Sampling Certificate	Yes						
		Sampled By	Client						
Site Ref	N/A	Date Sampled	N/A						
Client Ref	PSD&HYD.16	Date Received	25/11/2021						
Specification	BS 3882	Date Started	07/01/2022						
Location		WS.07: 1.0-2.0m							
Sample Description		Subsoil							

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				RAPH	PSD GF					Limits	% Passing	Sieve Size (mm)
75 100 10 <												
63 100 0.0001 0.001 0.01 0.1 1 100 50 93 37.5 88 0.0001 0.001 0.01 0.1 1 100 28 85 0.0001 0.001 0.01 0.1 1 100 20 80 0.001 0.01 0.1 1 100 114 72 0.001 0.01 0.01 0.1 1 0.01 114 72 0.06 63 63 63 660 660 90 <				ves (mm)	Test Sie	BS						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1000	100	10	1	0.1	0.01	001	01 0	0.00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
14 72 10 68 6.3 63 5 61 3.35 56 2 51 1.18 47 0.6 42 0.425 39 0.15 30 0.15 30 0.063 26.5 0.003 23.7 0.003 23.7 0.003 23.7 0.003 23.7 0.003 23.7 0.003 23.7 0.003 23.7 0.003 23.7 0.003 23.7 0.003 23.7 0.002 20.9 0.002 7.2 0.003 12.8 0.002 7.2	+++++++		<u> </u>						80 +			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									8 70 ↓			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									- 00 g i –			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	++++++++		1						8 50 +			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									9 40			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0 ⁺ tag			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	++++++++								5 30 +			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									b 20 +			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									_			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									10 +			
0.15 30									0 –			
0.15 30 clay and and bland and and bland complete and bland	<u> </u>		<u></u>			. I I.						
0.063 26.5 Constituent Proportions (%) 0.040 25.2 Constituent Proportions (%) 0.030 23.7 Gravel = 47 Sand = 25 Silt = 19.3 Clay = 0.013 18.8 2000 $20%$	JLDERS	COBBLES BOU			arse Fine M		e .	CLAY				
0.030 23.7 Constituent Proportions (%) 0.020 20.9 Gravel = 47 Sand = 25 Silt = 19.3 Clay = 0.013 18.8 Zmm 49% Texture Class <2mm LOAMY 0.005 12.8 >20mm 20%			GRAVEL	SAND		SILI						
0.020 20.9 Gravel = 47 Sand = 25 Silt = 19.3 Clay = 0.013 18.8												
0.013 18.8 >2mm 49% 0.009 17.7 >20mm 20% 0.005 12.8 >20mm 20% 0.002 7.2 >50mm 7%												
0.009 17.7 >2mm 49% 0.005 12.8 >20mm 20% 0.002 7.2 >50mm 7%	7.2	Clay =	19.3 C	Silt =	25	d =	Sa	47	Gravel =			
0.005 12.8 >20mm 20% 0.002 7.2 >50mm 7%					_							
0.002 7.2 >50mm 7%	SAND	LOAMY	ss <2mm	exture Clas	Τe							
									L			
						6	וו	>50mm			7.2	0.002
Approval By: 17/01/2022 Technical Manager		l By:		echnical Ma	Te		01/202	17/		-	Q.M	

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT **TESTED IN ACCORDANCE WITH BS 1377:PART 2**

Contract No	J3559	Report No	C10297-PSD&HYD.17						
Client Contact	Mr. Daniel Hayden	Lab No	C10297						
	Fehily Timoney & Company	Sample Type	Bulk Disturbed						
Contract	Dunsink Tree Planting	Method of Prep	N/A						
		Sampling Certificate	Yes						
		Sampled By	Client						
Site Ref	N/A	Date Sampled	N/A						
Client Ref	PSD&HYD.17	Date Received	25/11/2021						
Specification	BS 3882	Date Started	17/12/2021						
Location	WS.07: 2.0-3.0m								
Sample Description		Subsoil							

Sieve Size (mm)	% Passing	Limits				PSD (GRAPH			
125	100									
100	100					BS Test S	ieves (mm)		
75	100		0.00	0.00	0.01	0.1	1	10	100	1000
63	100		100 +				•			
50	100									
37.5	94		90 +							
28	91		80 —				+ + + + + + + + + + + + + + + + + + + +			+ + + + + + + + + + + + + + + + + + + +
20	87		ଛି 70 +							
14	76		6							
10	72		06 " "							
6.3	68		Percentage passing (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			┼┼┼┨╢╢		[+ + + + + + + + + + + + + + + + + + +		+++++++++
5	66		ອີ 40 +							
3.35	60		tag							
2	55		1 30 +							
1.18	51		5 20 -							
0.6	47		– 10 –							
0.425	45									
0.3	43		0 –							
0.212	42				Fine Mediur	n Coarse Fine	Medium Coarse	Fine Medium Coa		
0.15	38			CLAY	Fine Mediur SIL		SAND	GRAVEL	COBBLES BO	ULDERS
0.063	35.0						0,110	GIGAVEL		
0.040	33.1									
0.030	28.5			45			oportions (0	10.0
0.020	26.5		Gravel =	45	Sand =	20	Silt =	24.7	Clay =	10.3
0.013	23.0			0	450/	I	Taxture O			
0.009	20.7			>2mm	45%		r exture Cla	ass <2mm	SANDY	LUAM
0.005	17.1 10.3			>20mm	13% 0%					
0.002	Por M	1	I L	>50mm	0 /0	I		Approva	l By:	
	LOM	~		17/01/	/2022		Technical N	Manager		

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10298-PSD&HYD.18					
Client Contact	Mr. Daniel Hayden	Lab No	C10298					
	Fehily Timoney & Company	Sample Type	Bulk Disturbed					
Contract	Dunsink Tree Planting	Method of Prep	N/A					
		Sampling Certificate	Yes					
		Sampled By	Client					
Site Ref	N/A	Date Sampled	N/A					
Client Ref	PSD&HYD.18	Date Received	25/11/2021					
Specification	BS 3882	Date Started	16/12/2021					
Location	WS.08: 1.0-2.0m							
Sample Description	Subsoil							

Sieve Size (mm)	% Passing	Limits				PSD G	RAPH			
125	100									
100	100				E	3S Test Si	eves (mm)		
75	100		0.00	01 0.00	1 0.01	0.1	1	10	100	1000
63 50	100		100 +						****	
	100		90 -							
37.5	100									
28	95 91		80 —							+ + + + + + + + + + + + + + + + + + + +
20			<u>මි</u> 70 –							
<u>14</u> 10	87		5							
	84		- 00 uisi							
6.3 5	80		8 50 –							++++++
3.35	78		b 40 +							
3.35 2	76		uta o							
 1.18	74		1 30 +							
0.6	71 66		້ອັ 20 +							+++++++
0.425	64		1 0 +							
0.425	60									
0.3	55		0 –							
0.212	49				Fine Medium	Coarse Fine	Medium Coarse	Fine Medium Coa	rse	
0.13	44.0			CLAY	SILT		SAND	GRAVEL	COBBLES BO	ULDERS
0.063	44.0			1		•				1
0.040	37.6				Cons	stituent Pro	portions (%	()		
0.030	33.1		Gravel =	26	Sand =	30	Silt =		Clay =	10.6
0.013	28.6			20		00		00.1	City -	10.0
0.009	25.8			>2mm	26%	Г	Texture Cla	ass <2mm	SANDY	LOAM
0.005	21.5			>20mm	9%					
0.002	10.6			>50mm	0%					
	Ωм			18/01/2	2022	F	Fechnical N	Approva ⁄Ianager	l By:	•

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Deputy Technical Manager

Laboratory Supervisor

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

PARTICLE SIZE DISTRIBUTION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2

Contract No	J3559	Report No	C10299-PSD&HYD.19						
Client Contact	Mr. Daniel Hayden	Lab No	C10299						
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed						
Contract	Dunsink Tree Planting	Method of Prep	N/A						
		Sampling Certificate	Yes						
		Sampled By	Client						
Site Ref	N/A	Date Sampled	N/A						
Client Ref	PSD&HYD.19	Date Received	25/11/2021						
Specification	BS 3882	Date Started	16/12/2021						
Location		WS.08: 2.0-3.0m							
Sample Description		Subsoil							

Sieve Size (mm)	% Passing	Limits				PSD C	GRAPH			
125	100									
100	100				I	BS Test S	ieves (mm)		
75 63	100 100		0.000	0.00	1 0.01	0.1	1	10	100	1000
50	100		100 +							
37.5	100		90 —							
28	96									
20	90		80 —							
14	89		ଛି 70 –							
14	85		. <u>60</u> –							
6.3	75		ssi.							
5	75		Percentage passing (%) 00 0 01 0 02 0 03 (%) 04 0 05 0 0 05 0 05 0 0							
3.35	66		- 86 40		_					
2	58		, 10 − 10 −							
1.18	52									
0.6	47		J 20 +							
0.425	45		10 —		T					+++++++
0.3	43		0 └							
0.212	41		Ĵ			<u>.</u>		<u> </u>		
0.15	40			CLAY	Fine Medium		Medium Coarse	Fine Medium Coa	COBBLES BO	ULDERS
0.063	36.7				SILT	Г	SAND	GRAVEL		
0.040	34.7									
0.030	33.9						oportions (%	1		
0.020	30.2		Gravel =	42	Sand =	22	Silt =	22.8	Clay =	13.9
0.013	26.3								-	-
0.009	23.7			>2mm	42%		Texture Cla	ass <2mm	SANDY	LOAM
0.005	18.3			>20mm	7%					
0.002	13.9		I L	>50mm	0%					
	Dom.			18/01/2	2022	F	Technical N	Approva	l By:	

Approved

End of Test

Form No: CMT 002 Rev 4

Date Reported

Page 1 / 1

Deputy Technical Manager

Laboratory Supervisor

3.1.2 Depth of Soil

As can be seen in Table 3.2, the depth of soil material encountered varied across the study area with an overall available subsoil profile of 2.0 m - 4.0 m recorded. Locations where deeper boreholes were advanced reflected the position on the slope (WS-3 and WS-8) and lack of obstructions (WS-7) impeding drilling auger.

The site investigation confirmed there is a suitable depth of soil to facilitate tree planting. The SI also confirmed that the existing capping meets the requirements of the sites Licence (W0127-01), Condition 4.3 which states:

- a) Topsoil (150 -300mm);
- b) Subsoils, such that total thickness of topsoil and subsoils is at least 1.0m;

The borehole logs reference encountering refusal caused by 'concrete, brick, timber fragments and cinders'. The amount of material found is however unlikely to significantly impact subsoil permeability.

3.1.3 Particle Size Distribution

Particle Size Distribution (PSD) classification testing was carried out on 19 no. samples of the Made Ground subsoil from each of the window samples advanced at the site. The PSD curves are presented within the Geotechnical Laboratory Report in Appendix 2.

Soil texture refers to the feel of the soil as defined by the particle size distribution of the solid inorganic constituents of the soil. It is determined by the relative proportion of clay, silt and sand in the mineral fraction which is less than 2mm in diameter. The PSD analysis adopted the USDA method to define textual class and classified the material sampled from the study area as a *Sandy Loam, Loamy Sand or Sandy Silty Loam*.

The analysis of percentage gravel shows the subsoil material does not comply with the specification (BS1377: 1990, Part 2: Method 9.2, 9.5) for clay capping properties. Percentage gravel content exceeded the 30% minimum requirement in 16 / 19 samples analysed. The PSD grading curves for all samples, with the exception of sample WS02 (0 – 1.0m), show percentage fines are generally compliant with the specification (BS1377: 1990, Part 2: Method 9.2, 9.5) for clay capping properties (i.e. \geq 20 % but with a minimum clay content (particles < 2 μ m) of 8%).

The results of the PSD analysis and plotted grading curves generally show the made ground soil material to be suitable for tree establishment.

3.1.4 <u>Moisture Content</u>

Based on the results summarised in Table 3.2 above, the moisture content of the upper 1.0 m soil profile was found to be variable across the site and range between 12% - 35%. The moisture content of the lower 1.0 m - 2.0 m profile was consistent across all subsoil samples analysed and measured between a range of 11% to 23%.

The lower moisture content in the lower subsoil profile may be caused by:

- Deep percolation inputs yet to reach the lower profiles following recent rainfall events.
- Less permeable soils in the upper profile inhibiting percolation.

3.1.5 Soil Organic Matter Content

The laboratory assessment of soil organic matter (SOM) content measured organic matter by evaluating the aboveground and belowground fractions. Above ground organic matter comprises plant residues and animal residues, below ground organic matter consists of living soil fauna and microflora, partially decomposed plant and animal residues, and humic substances.

Based on the results summarised in Table 3.2 above, the SOM content was analysed from soil samples taken from the upper 1.0 m of the landfill cap. Total SOM content was found to be variable across the study area and measured between a range of 11.45% to 31.30%.

The percentage organic matter content across the study area is considered typical of a mineral soil which contains between 5 – 30% organic matter. SOM levels within this range are deemed suitable for tree cultivation purposes.

4. TREE PLANTING SUITABILITY ASSESSMENT

4.1 Establishment Criteria

Roots are required to facilitate capture of nutrients and water and to provide structural stability. Soil depth requirements for respective tree species varies in relation to species and root systems.

In Ireland trees with tap roots may have rooting depths that exceed 6.0 m. Trees with fibrous root systems typically have a shallower root system typically requiring soil depths of 1.0 m to 2.0 m.

Where sites are exposed, tree stability may be compromised if soil depth is less than 2.0 m of if waterlogged conditions inhibit root development.

Respiration also occurs in roots, and it is important that the roots are not exposed to excessive carbon dioxide or methane which are by-products of waste breakdown under anaerobic conditions.

For this reason, it is preferable that depth of soil is at least 3.0 m where there is no synthetic barrier in place. This allows 1.0 m to 2.0 m depth for growth and 1.0 m soil depth as a cap where roots will not be present to provide cover to the waste body.

For successful tree establishment to occur on the proposed study area, stability, cap permeability, drainage and adequate soil depth need to be considered. The key soil properties considered in this report for successful tree planting include:

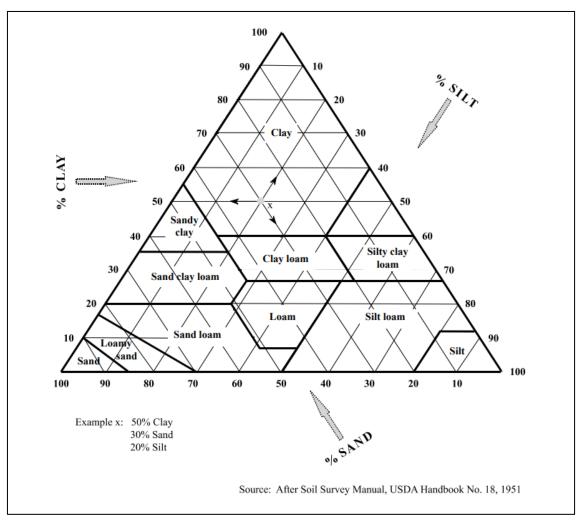
- Soil depth.
- Particle size distribution.
- Soil texture.
- Tree species selection.

An assessment of the above properties is discussed below based on the results of the geotechnical assessment in Section 3.

4.1.1 Soil Depth

Soil depth at site was originally established to provide an "engineered " cap to minimise rainwater infiltration at the site. The depth of soil exceeds the minimum cap requirement of 1.0 m which is typically used for cohesive soils.

Soil depth varies between 2.0 m and 4.0 m. There is minimum requirement for 3.0 m see Section 4.1.4 below. Therefore, planting is deemed to be suitable for indigenous fibrous/shallow tap root tree species where depth of soil is 3.0 m or greater.


4.1.2 Particle Size Distribution and Soil Texture

The ability of a soil to support tree growth and its response to management depends to a large extent on the particle size distribution and soil structure. Particle size and soil structure influences pore space, aeration, drainage conditions, root development and ease of working. Field descriptions of particle size and soil structure can be used to inform permeability.

Compaction of soils is probably the most critical factor affecting tree growth and it should therefore be minimised and alleviated wherever possible. Ideally, soils should be loose tipped but where this cannot occur, some compaction is inevitable. This compaction will need to be alleviated prior to planting with trees.

Soil structure as evidenced by information provided in Table 3.2 relating to texture, water content and organic matter, supported by and PSD analysis indicate the soils are structured and suitable for small native indigenous trees.

Soil texture is defined as the particle size distribution of the solid inorganic constituents of the soil. It refers to the relative proportion of clay, silt and sand in the mineral fraction less than 2 mm in diameter. Soil texture influences factors such as moisture retention, drainage, tilling properties of the soil, its resistance to damage by stock and machinery and earliness of crop growth. Figure 4.1 shows the different textural USDA classes for soils.

Figure 4.1: USDA Soil Textural Class Pyramid

The main characteristics of the three main soil types are as follows:

- Sandy soils tend to dry out quickly so that crops growing on them suffer drought. These soils are often inherently acid and infertile, but this can be corrected by the use of lime and fertiliser. They are generally more prone to water and wind erosion. They are light and easy to cultivate and therefore easily moved by mechanised soil handling.
- Clayey soils are often plastic and heavy and suffer from poor drainage. They are more fertile than sandy soils and are more difficult to cultivate and move by mechanised soil handling; and
- Loamy and silty soils have good moisture holding capacity but usually drain easily. They are usually fertile and moderately easy to cultivate. However, they can be easily damaged by mechanised soil handling, especially silty ones.

The subsoil material sampled from the study area is classified as a *Sandy Loam, Loamy Sand or Sandy Silty Loam.* The soil texture of the site is therefore deemed to be suitable for many small native indigenous Irish tree species.

4.1.3 Licence Compliance

Condition 4.5 of the sites licence states:

"Where tree planting is to be carried out above waste-filled areas, a synthetic barrier shall be used to augment the clay cap. Combined topsoil and subsoil depths shall be a minimum of 1m."

There is no geosynthetic LLDPE liner in place. For health and safety reasons, it is not considered appropriate to excavate 2-3 m of soil to facilitate the installation of an LLDPE barrier and subsurface drainage geo-composite.

A technical assessment of the soils in the study area shows that soils are not low permeability clays. However, by planting the trees in the area, evapotranspiration will remove water reserves in the subsoil / existing cap and therefore reduce the risk of deep percolation rainfall inputs into the waste body. Planting of trees with shallow root systems will therefore reduce further deep percolation inputs as may occur.

4.1.4 <u>Selection of Tree Species</u>

Many factors govern the selection of tree species for planting schemes and the soil types present, in the absence of an underlying waste body, would be deemed suitable for a wide range of indigenous trees¹.

In relation to the landfill at Dunsink there are two additional considerations:

- Maintenance of a minimum cap thickness of 1.0 m where no tree roots are present to reduce percolation inputs into the waste and to reduce the risk of landfill gas coming into contact with roots.
- Having root systems and planting regimes that when fully mature are sufficiently developed to reduce the risk of trees toppling over when subject to high wind loadings.

¹ A Guide to Forest Tree Species Selection and Silviculture in Ireland COFORD 2003 ISBN 1 902696 27 1

It is recommended that planting using small native trees, will further reduce the risk of deep percolation inputs to the cap albeit that there is no barrier layer in place.

Planting will however be subject to prior agency approval because it is not recommended that a barrier and drainage layer be constructed below the proposed planting areas to facilitate compliance with waste licence Condition 4.5 because of safety concerns. Also if a deep excavation was implemented it may encourage localised deep percolation inputs and development of roots to seek water.

Suitable species are considered to be:

- Whitebeam *Sorbus aria* (roots up to 2.0 m).
- Birch Betula pendula (shallow roots systems need to be planted with protection provided by deeper tree root systems roots also have aggressive shallow root systems not to be placed adjacent to services).
- Wild Prunus avium and Bird Cherry Prunus padus (shallow roots systems need to be planted with protection provided by deeper tree root systems).
- Crab apple *Malas silvestris* (shallow roots less than 1.0 m). •

The following larger trees may be considered but they may need to be planted within copses, to reduce the risk of failure in exposed locations, and where soil depth exceeds 3.0 m.

- Sessile Oak Quercus petraea. •
- Oak Pedunculate Quercus robur (tap roots 2.0 m deep). •
- Alder Alnus glutinosa (tap roots 2.0 m deep).

Larger trees such as Scots Pine should be avoided as this species typically has tap roots > 3.0 m.

Planting density should be selected to support energy dissipation as opposed to plantation style planting which may create a wind break. Layout should also be cognisant of prevailing winds and soil depth.

Planting should where possible be mixed so that the trees on mass develop a mix of shallow fibrous roots and deep (i.e. up to 2.0 m max) root systems.

It is recommended that prior to planting soil testing be carried out to determine the need or other for fertiliser applications. Plants should be planted as whip size to maximise chance of survival an establishment. Applications may be subject to both soil conditions and species requirements.

Sites must be reprofiled after planting to ensure that surfaces are free draining and there are no localised surface depressions present.


Trees must be planted with a maintenance contract to manage weeds and replace losses. Plantation may also need to protect (fencing and or sleeves as required to prevent, damage by rabbits, deer or other.

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX 1

Causeway Geotech Site Investigation Report

Dunsink Tree Planting – Ground Investigation

Client:DCCClient's Representative:Fehily TimoneyReport No.:21-1429Date:February 2022Status:Final for Issue

Causeway Geotech Ltd 8 Drumahiskey Road, Ballymoney Co. Antrim, N. Ireland, BT53 7QL +44 (0)28 2766 6640 info@causewaygeotech.com www.causewaygeotech.com

stered in Northern Ireland. Company Number: NI610766 Approved: ISO 9001 • ISO 14001 • OHSAS 18001

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTH	ORITY
2	SCOPI	Е4
3		RIPTION OF SITE4
4	42	DPERATIONS
5	5.2	ND CONDITIONS
6	REFE	RENCES

APPENDICES

Appendix A	Site and exploratory hole location plans
Appendix B	Borehole logs

Document Control Sheet

Report No.:		21-1429							
Project Title:		Dunsink Tree Pl	anting						
Client:		DCC							
Client's Repres	entative:	Fehily Timoney							
Revision:	A01	Status:	Final for Issue	Issue Date:	21st February 2022				
Prepared by:		Reviewed by:		Approved by:					
Sia	Ross.	Colm H	ur (cy	Jam O l	luon.				
Sean Ross BSc MSc MIEI		Colm HurleyDarren O'MahonyBSc PGeo FGSBSc MSc MIEI EurGeol PGe							

The works were conducted in accordance with:

British Standards Institute (2015) BS 5930:2015+A1:2020, Code of practice for site investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015+A1:2020, The Code of Practice for Site Investigation.

U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
Р	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm and the remaining four to the 75mm increments of the test length.
(Y for Z/ Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa.V: undisturbed vane shear strengthVR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
\bigtriangledown	Water strike: initial depth of strike.
•	Water strike: depth water rose to.
Abbreviations relating	g to rock core – reference Clause 36.4.4 of BS 5930: 2015
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

Dunsink Tree Planting

1 AUTHORITY

On the instructions of Fehily Timoney, ("the Client's Representative"), acting on the behalf of DCC ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical information for input to the design of a proposed tree planting scheme.

This report details the work carried out on site; it contains a description of the site, the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on the site of Dunsink Landfill located west of Finglas in Dublin. The site is bounded by the National Orthopaedic Hospital to the north, by Dunsink Lane to the south, by the M50 to the west and by residential properties to the east. The site is comprised entirely of grassland and is undulating in topography.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between 8th and 9th November 2021, comprised:

• eight boreholes by dynamic (windowless) sampling methods

The exploratory holes were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

Eight boreholes (WS01-WS08) were put down to completion by light percussion boring techniques using a Dando Terrier dynamic sampling rig. The boreholes were put down initially in 150mm diameter, reducing in diameter with depth as required, down to 50mm by use of the smallest sampler.

The boreholes were taken to depths ranging between 1.10m and 4.0m where they were terminated at their scheduled depths, or else they were terminated on encountering virtual refusal on obstructions above this depth.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded. Details of the water strikes are presented on the individual borehole logs.

Appendix B presents the borehole logs.

4.3 Surveying

Co-ordinates on the borehole logs and as shown in Appendix A drawings are as provided by the Client's Representative prior to works commencing.

The plan coordinates (Irish Transverse Mercator) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

5 GROUND CONDITIONS

5.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise made ground. These deposits are underlain by limestones and shales of the Tober Colleen Formation.

5.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Topsoil/Made ground (clay cap):** encountered across the site with a thickness of 1.00-2.00m.
- **Made Ground (fill):** landfill material was encountered in all boreholes with the exception of WS03 and WS06 comprising varying amounts of concrete, brock, timber fragments and cinders.

5.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater was encountered during light percussion boring through soil as a seepage at a depth of 3.00m in WS07.

Groundwater was not noted during drilling at any of the other borehole locations.

Seasonal variation in groundwater levels should also be factored into design considerations.

6 **REFERENCES**

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland.

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

BS 5930: 2015+A1:2020: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLAN

APPENDIX B BOREHOLE LOGS

						ct No.			Tree Planting			rehole
		GEOT	AT CH		21-:	1429	Client:	DCC				WS01
							Client's Rep:	ehily Ti	money			
Metho ynamic Sar		Plant Used Dando Terrier	Top (m) 0.00	Base (m) 3.00	Coord	linates	Final Depth:	3.00 m	Start Date: 08/11/2021	Driller: JA		neet 1 of
ynanne Sai	inbung		0.00	5.00	71015	5.12 E						cale: 1:5
					73916	5.37 N	Elevation:	mOD	End Date: 08/11/2021	Logger: SR		FINAL
Depth (m)	Sample / Tests	Field Records		Casing Water Depth Depth (m) (m)	Level mOD	Depth (m)	Legend		Description		Water	Backfill
						-	MADE GR	UND: Soπ	brown CLAY.			
						- 0.60						
						-			m brownish grey slightly san le content. Sand is fine to co			
						F	subangula	ar fine to n	nedium. Cobbles are subang	ular.		
						-						
						-						
						1.80	MADE GR	OND: Red	brick fill.		-	
						- 2.00 2.10			NDFILL material with bits of ft brownish grey slightly sand		\neg	
						-	CLAY with	fragment	s of plastic. Sand is fine to co			
						-	subangula	ar fine to n	nedium,			
						- - 3.00						
						-			End of Borehole at 3.00m			
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						-						
						ŀ						
						-						
						-						
						-						
	Water S	trikes	Cas	ing Detai	ls Re	marks						
k at (m) Ca		Fime (min) Rose to (r					ater encountered.					
					Te	minatio	n Reason		1	Last Updated	T	
					lei	matio	i neason			Last Opualed		AG

Method Dynamic Sampling	AUSEW GEOTE Plant Used Dando Terrier	CH 0.00	Base (m) 2.60	21-1429 Coordinates 710243.05 E	Client: DCC Client's Rep: Fehily Timoney Final Depth: 2.60 m Start Date: 08/11/2021 Driller: JA	WS02 Sheet 1 of 1 Scale: 1:50
				739230.25 N	Elevation: mOD End Date: 08/11/2021 Logger: SR	FINAL
Depth Sample / Tests /	Field Records	Casi	Caling Depth Depth (m) (m) (m)		Legend Description MADE GROUND: Soft brown slightly sandy CLAY. Sand is fine to coarse. MADE GROUND: Firm brown slightly gravelly sandy CLAY. Sand is it to coarse. Gravel is subangular fine to coarse. MADE GROUND: LANDFILL with fragments of glass, plastic, red br and timber. End of Borehole at 2.60m Image: State	1.
				Terminatio	Reason Last Updated scheduled depth. 21/02/2022	N AG:

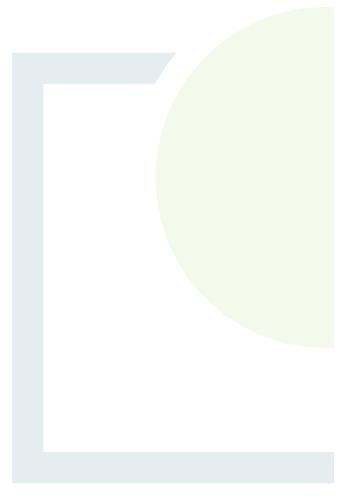
	C	GEC		AY CH			ect No. 1429	Project Client: Client's	Name: Dunsink DCC ; Rep: Fehily Ti		ng			orehole WS03	
Met Dynamic S		Plant Used Dando Terrie		op (m) B 0.00	Base (m) 4.00	71035	dinates 51.36 E 46.22 N	Final De	pth: 4.00 m	Start Date:	08/11/2021	Driller: JA Logger: SR		heet 1 of Scale: 1:5 FINAL	50
Depth	Sample /	Field Red	ecords	C	Casing Water Depth Depth	Level	Depth	Legend		Desc	ription		ater	Backfill	
(m)	Tests	Strikes			mg Detail	IS Re	(m) 1.50 2.00 4.00	Legend	MADE GROUND: Sc Sand is fine to coars No Recovery - push MADE GROUND: Fin coarse. Gravel is su	oft brown slight se. Gravel is su ing a cobble. rm grey sandy bangular fine t	bangular fine to	o medium.	Mater	Backfill	
								n Reason				Last Updated 21/02/2022		AG	ŝS

	C	AUSEW	AY		_	ct No. 1429	Project Client:	Name: Dunsink DCC	Tree Planting		B	orehole WS04	
	$\gamma -$	GEOT	ECH				Client's	Rep: Fehily Tir	money				
Meth		Plant Used	Top (m)		Coord	linates	Final De	onth : 3.00 m	Start Date: 08/11/2021	Driller: JA	S	heet 1 o	of 1
/namic Sa	ampling	Dando Terrier	0.00	3.00	71039	2.36 E		pm 5.00 m	Start Date: 08/11/2021			Scale: 1:	50
					73932	20.67 N	Elevatio	m: mOD	End Date: 08/11/2021	Logger: SR		FINAL	-
Depth (m)	Sample / Tests	Field Records		Casing Water Depth Depth (m) (m)	Level mOD	Depth (m)	Legend		Description		Water	Backfill	
						-			ft brown slightly sandy sligh se. Gravel is subangular fine				
						-							0.5
						0.70		MADE GROUND' Br	own sandy subangular fine	o coarse GRAVEL	_		
						0.90		Sand is fine to coars					1.0
						-			subangular fine to medium.				
						-							1
						-							
						2.00		MADE GROUND: So	ft greyish black gravelly CLA	Y with fragments of	_		2
						-			d cinders. (Landfill material				
						-							2
						-							
						- 3.00 -			End of Borehole at 3.00m	1			
						-							
						-							
						-							
						-							
						-							
						-							
						-							1
						-							
						-							-
						-							
						-							e
						-							
						-							e
						-							
						-							
						-							
						-							
						-							
						-							
						-							
						-							
						-							1
						-					_		
kat (m) C	Water S	Strikes Time (min) Rose to (r		Dian		marks	ater encou	atorod					
	using to (m)			., 5.0	NO NO	groundwa		illereu.					
													_
					Тег	rminatio	n Reason			Last Updated		AC	
					Ter	minated a	t schedule	d depth.		21/02/2022		AC	7

Project Non- Duranit Tran Planting Project Non- Linet's Ber-Polating Project Non- Stratus Project Non- Linet's Ber- Clernt's DCC Project Non- Linet's Ber- Clernt's Ber- Tol AST 74 E Borehold U WSOS <u>Prostant No- Dynamic Sampling Dendo Torrier Dynamic Sampling Dendo Torrier Dendo Torrier</u>
CENTECH client's Reg: Exhibit Timoney Method Plant Used Top (m) Base (m) Coordinates Final Depth: 2.40 m Start Date: (2)(11/2021) Oritle: A Start Date: (2)(11/2021) Oritle: (A) Start Date: (B)(11/2021) Oritle: (A) (A) (A) (A) (B)
Method Plant Used Top (m) Base (m) Coordinates Final Depth: 2.40 m Start Date: 0/11/2021 oritler: JA Sheet 1 of 1 Scale 1:50 typ:smitt Sampling Dando Terrier 0.00 2.40 71/047.74 E Televation: mOD End Date: 0/11/2021 togger: 5R FINAL typ:smitt Sampling mod Record: time time <t< th=""></t<>
Dynamic Sampling Dando Terrier 0.00 2.40 Trutk7/4 E Final Depth: 2.40 m Start Date: 06/11/2021 Depth: 1.40 Scale: 1.50 Prim method:
with initial initial
m max m m m m m m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<
Sand is fine to coarse. Gravel is subangular fine to medium. 0.80 MADE GROUND: Soft preyish black gravelly CLAX sand is subrounded fine to medium. 13 1.00 MADE GROUND: Soft preyish black gravelly CLAX sand is subrounded fine to medium. 13 2.40 End of Borehole at 2.40m 13 2.40 End of Borehole at 2.40m 14 1.90 Image: Soft preyish black gravelly CLAX sand is subrounded fine to medium. 15 2.40 End of Borehole at 2.40m 15 1.90 Image: Soft preyish black gravelly CLAX sand is subrounded fine to medium. 15 2.40 End of Borehole at 2.40m 16 1.90 Image: Soft preyish black gravelly CLAX sand is subrounded fine to medium. 16 1.90 Image: Soft preyish black gravelly CLAX sand is subrounded fine to medium. 16 2.40 End of Borehole at 2.40m 16 1.90 Image: Soft preyish black gravelly CLAX sand is subrounded fine to medium. 16 1.90 Image: Soft preyish black gravelly CLAX sand is subrounded fine to medium. 16 1.90 Image: Soft preyish black gravelly CLAX sand is subrounded fine to medium. 16 1.90 Image: Soft preyish black gravelly C
Water Strikes Casing Details Remarks truck at (m) Casing to (m) Time (min) Rose to (m) To (m) Diameter

Weiter Strikes Case of the state of the first base of the state of th					Proie	ct No.	Project	: Name: Dunsink	Tree Plantin	۱ø		Во	rehole ID
Method Plant Used Top (m) Name() Coordinates Transmiss Top (m) Top (m) Same () Same () <th>CAU</th> <th>SEW</th> <th>AY</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>.0</th> <th></th> <th></th> <th></th>	CAU	SEW	AY							.0			
Weeked Plant Used Top (m) Hote (m) Goodinates (m) Coodinates (m) Same Date: 10/11/2021 Duller: IA <		GEOTE	СН						monev				
Original control wind Cond Details Table 7	Method Plan	t Used T	op (m) E	Base (m)	Coord	inates						Sh	eet 1 of 1
Weter Starting Starting Private Starting Cancel Starting Private St	Dynamic Sampling Dando				71057	2 63 F	Final De	epth: 1.10 m	Start Date:	09/11/2021	Driller: JA	So	cale: 1:50
Water Strikes Casing Details Remarks Linds at tim Compariso (n) Time cintul To (n) Duringer							Elevatio	m: mOD	End Date:	09/11/2021	Logger: SR		FINAL
Water Strikes Casing Details Remarks Under Strikes Casing Details Remarks		Field Records	1	Casing Water Depth Depth (m) (m)		Depth (m)	Legend			-		Water	Backfill
Termination Reason	Water Strikes	n) Rose to (m)	Casii	ng Detail	s Ref	- 1.00 - 1.10 - 1.10 		Sand is fine to coars	se. Gravel is sul m brown sligh se. Gravel is sul	bangular fine to tly sandy slightl brounded fine t	y gravelly CLAY.		
Termination Reason Last Updated													
Terminated on boulders - attempted 3 times. 21/02/2022													٨٦٢

	GEOTE	AY CH		Projec 21-1		Project Name: Dur Client: DCC Client's Rep: Feh	2			В	orehole I WS07	D
Method Dynamic Sampling	Plant Used Dando Terrier	Top (m) 0.00	Base (m) 3.00	Coordi 710592 739404	.06 E	Final Depth: 3.0)0 m	Start Date: 09/11/2021 End Date: 09/11/2021	Driller: JA		heet 1 of 2 Scale: 1:50 FINAL	
Depth Sample	/ Field Decords		Casing Water Depth Depth	Level	Depth		mod		Logger. Sh	ter		
(m) Tests	Slight seepage at 3.00m	Cas	(m) (m)	Is Rem	(m) 0.20 1.30 - 3.00 - 3.00	Sand is fine to MADE GROUD Sand is fine to MADE GROUD	o coars ND: Fir o coars ND: Fir	to stiff grey slightly sandy slightly e. Gravel is subangular fine to m brown slightly sandy slight e. Gravel is subrounded fine m to stiff grey slightly sandy s lastic, red brick and concrete End of Borehole at 3.00m	o medium. Iy gravelly CLAY. to medium. slightly gravelly CLAY			
						n Reason It scheduled depth.			Last Updated 21/02/2022	V	AG	S


• C	GEOT				ct No. L 429	Client:	Name: Dunsink	Tree Planting				orehole I WS08
	GLOTI					Client's	Rep: Fehily Tir	money				
Method Dynamic Sampling	Plant Used Dando Terrier	Top (m) 0.00	Base (m) 2.90	Coord	inates	Final De	pth: 2.90 m	Start Date: 0	9/11/2021	Driller: JA		heet 1 of
ynamic sampning	Dando lemer	0.00	2.50	71047 73934	9.57 E 0.89 N	Elevatio		End Date: 0	9/11/2021	Logger: SR		Scale: 1:50
Depth Sample /	Field Records		Casing Water Depth Depth (m) (m)	Level	Depth	Legend		Descrip			ater	Backfill
(m) Tests Tests Water ruck at (m) Casing to (m)	Strikes	Cas	ing Detail	IS Ref	(m) - 1.00 - 2.70 - 2.90 - 2.90 		MADE GROUND: Fir Sand is fine to coars	m brown slightly e. Gravel is suba ff grey sandy gra and timber. Sand medium. (Landfi NDFILL material	velly CLAY wit is fine to coan Il material)	medium. h fragments of rse. Gravel is		
				Ter	mination	n Reason				Last Updated		AG

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

Geotechnical Laboratory Analysis Results

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

pH VALUE DETERMINATION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 3:1990:Method 9

Contract No	J3559	Report No	J3559-pH.01-08
Client Contact	Mr. Daniel Hayden	Lab No	See Below
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed
Contract	Dunsink Tree Planting	Method of Prep	N/A
		Sampling Certificate	Yes
		Sampled By	Client
Site Ref	N/A	Date Sampled	N/A
Client Ref	pH.01-08	Date Received	25/11/2021
Specification	N/A	Date Started	17/01/2022
Location		See Below	
Sample Description		Topsoil	

Lab No	Location	Mean pH Value
C10281	WS.01: 0.0-1.0m	7.1
C10282	WS.02: 0.0-1.0m	7.2
C10283	WS.03: 0.0-1.0m	7.1
C10284	WS.04: 0.0-1.0m	7.1
C10285	WS.05: 0.0-1.0m	7.1
C10286	WS.06: 0.0-1.0m	7.0
C10287	WS.07: 0.0-1.0m	7.1
C10288	WS.08: 0.0-1.0m	7.1

Remarks:			
0		Approval By:	
Lon		Technical Manager	
	Data Dapartad	Laboratory Manager	
Approved	Date Reported		
Approved	Date Reported	Contracts Manager	

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

pH VALUE DETERMINATION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 3:1990:Method 9

Contract No	J3559	Report No	J3559-pH.09-19
Client Contact	Mr. Daniel Hayden	Lab No	See Below
Client	Fehily Timoney & Company	Sample Type	Bulk Disturbed
Contract	Dunsink Tree Planting	Method of Prep	N/A
		Sampling Certificate	Yes
		Sampled By	Client
Site Ref	N/A	Date Sampled	N/A
Client Ref	pH.09-19	Date Received	25/11/2021
Specification	N/A	Date Started	14/01/2022
Location		See Below	
Sample Description		Subsoil	

Lab No	Location	Mean pH Value
C10289	WS.01: 1.0-2.0m	7.2
C10290	WS.02: 1.0-2.0m	7.2
C10291	WS.03: 1.0-2.0m	7.3
C10292	WS.03: 2.0-3.0m	7.1
C10293	WS.03: 3.0-4.0m	7.1
C10294	WS.04: 1.0-2.0m	7.2
C10295	WS.05: 1.0-2.0m	7.2
C10296	WS.07: 1.0-2.0m	7.2
C10297	WS.07: 2.0-3.0m	7.3
C10298	WS.08: 1.0-2.0m	7.2
C10299	WS.08: 2.0-3.0m	7.3

Remarks:			
0		Approval By	:
Approved	18/01/2022 Date Reported	Technical Manager Laboratory Manager Contracts Manager	

Form No: CMT 021 Rev 0

This report may not be reproduced in any shape or form without written approval from the Laboratory. This result relates ONLY to the sample tested.

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

ORGANIC CONTENT TEST REPORT

Contract No J	3559	Report No	J3559-ORG.01-08
Client Contact M	Ir. Daniel Hayden	Lab No	See Below
Client F	ehily Timoney & Company	Sample Type	Bulk Disturbed
Contract D	unsink Tree Planting	Method of Prep	N/A
		Sampling Certificate	Yes
		Sampled By	Client
Site Ref	N/A	Date Sampled	N/A
Client Ref	ORG.01-08	Date Received	25/11/2021
Specification	N/A	Date Started	04/01/2022
Location		See Below	
Sample Description		Topsoil	

Lab No	Location	Total Organic Content (%)
C10281	WS.01: 0.0-1.0m	23.53
C10282	WS.02: 0.0-1.0m	29.73
C10283	WS.03: 0.0-1.0m	25.80
C10284	WS.04: 0.0-1.0m	16.80
C10285	WS.05: 0.0-1.0m	28.10
C10286	WS.06: 0.0-1.0m	11.45
C10287	WS.07: 0.0-1.0m	18.95
C10288	WS.08: 0.0-1.0m	31.30

Remarks: Test subcontracted to an approved laboratory

Don

Approved

18/01/2022 Date Reported

Approval By:	
Fechnical Manager	
_aboratory Manager	
Contracts Manager	

This report may not be reproduced in any shape or form without written approval from the Laboratory. This result relates ONLY to the sample tested.

Unit 6 Airways Technology Park, Ballygarvan, Cork. T: (021) 4311614 F: (021) 4311714 email: www.metlab.ie Metlab Ltd - registered in Ireland (No. 84894)

MOISTURE CONTENT DETERMINATION TEST REPORT TESTED IN ACCORDANCE WITH BS 1377:PART 2:1990:3.2

Contract No J	3559	Report No	J3559-MC.01-11
Client Contact N	Ir. Daniel Hayden	Lab No	See Below
Client F	ehily Timoney & Company	Sample Type	Bulk Disturbed
Contract D	unsink Tree Planting	Method of Prep	N/A
		Sampling Certificate	Yes
		Sampled By	Client
Site Ref	N/A	Date Sampled	N/A
Client Ref	MC.01-11	Date Received	25/11/2021
Specification	N/A	Date Started	16/12/2021
Location		See Below	
Sample Description		Subsoil	

Lab No	Location	Moisture Content (%)
C10289	WS.01: 1.0-2.0m	11.0
C10290	WS.02: 1.0-2.0m	23.0
C10291	WS.03: 1.0-2.0m	13.0
C10292	WS.03: 2.0-3.0m	14.0
C10293	WS.03: 3.0-4.0m	19.0
C10294	WS.04: 1.0-2.0m	12.0
C10295	WS.05: 1.0-2.0m	14.0
C10296	WS.07: 1.0-2.0m	15.0
C10297	WS.07: 2.0-3.0m	13.0
C10298	WS.08: 1.0-2.0m	12.0
C10299	WS.08: 2.0-3.0m	16.0

Remarks:			
0		Approval By:	
Approved	18/01/2022 Date Reported	Technical Manager Deputy Technical Manager Laboratory Supervisor	

Form No: CMT 001 Rev 1

This report may not be reproduced in any shape or form without written approval from the Laboratory. This result relates ONLY to the sample tested.

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

www.fehilytimoney.ie

CORK OFFICE

Core House Pouladuff Road, Cork, T12 D773, Ireland +353 21 496 4133 **Oublin Office**

J5 Plaza, North Park Business Park, North Road, Dublin 11, D11 PXT0, Ireland +353 1 658 3500

O Carlow Office

Unit 6, Bagenalstown Industrial Park, Royal Oak Road, Muine Bheag, Co. Carlow, R21 XW81, Ireland +353 59 972 3800

 κ

NSAI Certified

ENVIRONMENT NSAI Certified