

CHURCHTOWN WASTE LICENCE REVIEW

Emission Compliance Report

Document status						
Version	Purpose of document	Authored by	Reviewed by	Approved by	Review date	
Draft	Waste Licence Review	AMG	DD	DD	01/02/2024	
Final	Waste Licence Review	AMG	DD	DD	12/02/2024	

Approval for issue

Donal Doyle 12 February 2024

The report has been prepared for the exclusive use and benefit of our client and solely for the purpose for which it is provided. Unless otherwise agreed in writing by R P S Group Limited, any of its subsidiaries, or a related entity (collectively 'RPS') no part of this report should be reproduced, distributed or communicated to any third party. RPS does not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report. The report does not account for any changes relating to the subject matter of the report, or any legislative or regulatory changes that have occurred since the report was produced and that may affect the report.

The report has been prepared using the information provided to RPS by its client, or others on behalf of its client. To the fullest extent permitted by law, RPS shall not be liable for any loss or damage suffered by the client arising from fraud, misrepresentation, withholding of information material relevant to the report or required by RPS, or other default relating to such information, whether on the client's part or that of the other information sources, unless such fraud, misrepresentation, withholding or such other default is evident to RPS without further enquiry. It is expressly stated that no independent verification of any documents or information supplied by the client or others on behalf of the client has been made. The report shall be used for general information only.

Prepared by:

RPS

Angela McGinley Principal Scientist -Waste

Enterprise Fund Business Centre, Business Park Road, Ballyraine Letterkenny, Co. Donegal F92 AF43

T +353 74 916 1927

E angela.mcginley@rpsgroup.com

Prepared for:

Donegal County Council

Julie McMahon Executive Engineer

Contents

1	INTH	ODUCTION	1
	1.1	Background	
	1.2	Waste Licence Reviews	
	1.3	Restoration Works Undertaken	1
	1.4	Purpose of the Report	1
2	BAS	ELINE SITE DESCRIPTION	2
	2.1	Regional & Site Overburden	2
	2.2	Bedrock Geology	
	2.3	Site Hydrology	
	2.4	Aquifer Classification	
	2.5	Aquifer Vulnerability	
	2.6	Groundwater WFD Status	
3	ENIV	IRONMENTAL RECEPTORS	
3	3.1	Downstream European sites, their qualifying features, and relative distances from the	4
	0.1	proposed development	4
4	CHB	RENT CONDITION OF THE SITE	
4	4.1	Hydrogeological Risk Assessment	
	4.2	Monitoring Locations	
	7.2	4.2.1 Emission to Water	
		4.2.2 Receiving Water Monitoring	
		4.2.3 Pond Sediment monitoring	
		4.2.4 Sediments Results	
		4.2.5 Groundwater	
		4.2.6 Leachate Monitoring	
		4.2.7 Landfill Gas Monitoring	
		4.2.8 Landfill Gas Monitoring Results	
	4.3	Dust	
	4.4	Noise	
Tab	oles		
Table	e 3.1: [Downstream European sites, their qualifying features, and relative distances from the	
		proposed development	4
Table	e 4-1: l	Monitoring Of Emissions To Water Grid Co Ordinates	6
		Treated Effluent October 2022 Metal Analysis by EPA	
		Treated Effluent February and October 2023 Metal Analysis Donegal County Council	
		Receiving Water Monitoring Grid Co Ordinates	
		Pond sediment monitored	
		Receiving Water Monitoring Grid Co Ordinates	
		List I and list II Substances	
		Leachate Monitoring Grid Co Ordinates	
Table	e 4-9: I	Landfill Gas Monitoring Grid Co Ordinates	11
Apı	oend	lices	
Appe	ndix A	\ Drawings	1
		B Hydrogeological Risk Assessment	
- 1212		, g g - 	

REPORT

Appendix C Emission to Water Results	3
Appendix D Surface Water	6
Appendix E Sediment Results	1
Appendix F Groundwater Results	1
Appendix G Leachate Results	1
Appendix H Landfill Gas Results	1

1 INTRODUCTION

1.1 Background

Churchtown landfill site is an unlined site historically operated on a dilute and disperses principal, whereby solid waste was tipped directly onto the underlying excavated surface with leachate allowed to percolate directly through the soils with no engineered liner installed. Landfilling began in 1987 and the site ceased operations on the 31st August 2000. A Waste Licence (registration number W0062-01) was granted on 19th May 2000 by the EPA for the orderly closure, capping and restoration of the landfill facility, in accordance with the Third Schedule of the Waste Management Act, 1996.

1.2 Waste Licence Reviews

An application to review the Licence to regularise discharge arrangements was submitted to the EPA on 24th May 2017. Waste licence(W0062-02) was issued on 26/08/2021. Results were below the ELV as per Schedule B.2 of the licence on those dates monitored by DCC. The Agency carried out a site visit to Churchtown Landfill Site on the 26/10/2022 as part of its emissions monitoring programme. One non-compliance was raised in relation to mercury and zinc concentrations at surface water monitoring points D1 and D3. An investigation is being carried out by DCC. A mass balance assessment shows no impact on the downstream water quality in the River Finn as a result of the exceedances in the ELV noted in the EPA monitoring undertaken during site visit on 26/10/2022 based on 95%ile flow conditions. ELVs for all metals from the discharge points were set at the Environmental Quality Standard (EQS) required in the receiving waters in the waste licence. This waste licence review is to amend the ELV as per Schedule B.2 of the licence as agreed with OEE.

1.3 Restoration Works Undertaken

The existing landfill was capped with a permanent low permeability clay liner in conjunction with a willow and reed plantation and constructed wetland installed in 2014-2015. A 0.15 to 0.45 metre thick topsoil and 0.5 m clay cap with a permeability of 1x10-8 m/s was installed at the facility. The willow plantation in situated in the centre and above the capped waste (Zones 1 to 4) with a series of constructed wetlands along western and eastern side of willow plantation as shown on Drawing IBR1455/106 (Appendix A). This whole area is contained within a bund and all storm water arising from this area is treated in the willow/ constructed wetland before it is discharged. All rainfall that falls on the slopes of the landfill is collected in the existing drains which run along the eastern and western boundaries of the site prior to discharge to the River Finn as shown on Drawing IBR1455/106.

Leachate is treated onsite. A willow bed and an ICW have been installed on top of the waste body since December 2014 for the bioremediation of the site.

Extracted leachate is pumped to the ICW/willow plantation before discharge to surface water. If treated leachate levels are unacceptably elevated, the leachate is pumped into the nearest pumping station chamber to be treated further by circulating via the willow before discharging to surface water. The willow plantation is supplied with leachate on a timed basis. Leachate treatment and application rates within the willow plantation are dictated by precipitation, temperature and visual inspection manual intervention.

1.4 Purpose of the Report

This report form part the licence review to amend the ELV as per Schedule B.2 of the licence as agreed with OEE.

2 BASELINE SITE DESCRIPTION

Churchtown Landfill Site is situated in the lower alluvial flood plain of the River Finn. The River Finn bounds the south-eastern boundary of the site. There are two land drains that run the length of the north-eastern and south-western sides of the landfill directing surface water into the River Finn. The River Finn is prone to seasonal flooding and due to this a clay levee has been constructed on the south-eastern border of the waste body to prevent inundation during periods of high water levels. The following site description has been taken from the Hydrogeological Risk Assessment 2015 (HRA) and is provided in Appendix B.

2.1 Regional & Site Overburden

The regional overburden in the vicinity of the site is described using the Teagasc soil associations for the greater Donegal region. It is a part of the River Alluvium association (Code 05 RIV), which consists of a further 12 sub soil series. The River Alluvium association covers an area of approximately 22.54km2. The Kilgory series (0500KG) is described as a sandy river alluvium for the region. EPA soil mapping describes the overburden as river alluvium (AlluvMin) underlain by undifferentiated gravelly alluvium subsoils.

A summary of the historical site investigations at the site is provided in Table 4.1 of the HRA. Site Investigations undertaken in 1998 by Stratex Ltd recorded shallow river alluvium soils consisting of a soft brownish grey, sandy, clayey, organic Silt directly overlying soft, dark brown, silty Peat. Underlying the alluvium soils comprises fluvio-glacial layers of slightly gravelly sands with interspersed gravel horizons with occasional thin bands of greenish grey sandy silts. A summary of the borehole logs is provided in Table 4.2 and borehole logs provided in Appendix C of the HRA. Boreholes BH1, BH2 and BH3 are located within the waste and describe the thickness of the waste body as ranging between 4.8m and 6.8m thick. On the basis of the ground investigation records, the general stratigraphy of the site is summarised sequentially below:

- Silty Alluvium
- Peat
- Sands with gravel horizons and silt bands
- Gravels / Boulders
- Bedrock (PSSAMITE)

2.2 Bedrock Geology

Churchtown landfill is mapped as being underlain by three bedrock formations

- The Claudy Formation which consists of psammitic schists with intercalated coarse psammite and pebbly grit units, thin marble lenses and quartzite is mapped in the southwestern quadrant of the site;
- A Marble Unit; and,
- The Aghyaran & Killygordon Limestone Formation which comprises Figureitic marble. Quartzite and psammite.

The formation is bounded to the northwest by the Pettigoe-Lough Foyle fault which trends in a northeast – southwest direction. The strata are internally complex and folded along a general southwest to northeast trend compression axis coincident with the strike of the regional (Pettigoe- Lough Foyle) fault plane. The complex structure of the rocks and the development of an interior schistosity results from several phases of folding and refolding is associated with a number of orogenic events, the last of which took place during the Variscan Orogeny. Site investigation boreholes at the site recorded bedrock in the initial BH4 borehole was described as a psammite with Schist recorded in the replacement BH4 in 2015.

2.3 Site Hydrology

The major surface water feature at Churchtown landfill is the River Finn which borders the southeastern boundary of the site. It rises in Lough Finn and flows east through a deep mountain valley to Ballybofey and Stranorlar (on opposite sides of the river) and on to the confluence with the River Mourne at Lifford, 3.18 km to the northeast of the site. All surface water flow in the area is towards the River Finn. There are a number of natural drainage features which drain surface water from the surrounding fields into this river. Two land

rpsgroup.com

drains that run the length of the northeastern and southwestern sides of the landfill direct surface water into the River Finn. The River Finn is prone to seasonal flooding, and because of this, a clay levee has been constructed on the southeastern border of the waste body to prevent inundation during periods of high water levels.

2.4 Aquifer Classification

In accordance with the HRA the site is underlain by Churchtown Groundwater Body (GWB) which is within the larger Raphoe GWB. It is likely the Churchtown GWB was delineated based on the presence of Churchtown landfill. No information is currently available on Churchtown GWB from the GSI; however it is likely to be similar to the Raphoe GWB. The vast majority (~85%) of the Raphoe GWB is underlain by a Locally Important (LI) aquifer which is moderately productive only in local zones. The remaining areas are underlain by a Poorly Productive (PI) aquifer which is generally unproductive except for local zones. The majority of the site is underlain by a locally important aquifer with the southwestern quadrant mapped as Poorly Productive. Groundwater yields in the Raphoe GWB range from 2–330 m3/day (based on 6 wells within the GWB). Groundwater flux is expected to occur in the uppermost part of the aquifer comprising a broken and weathered zone typically less than 3m thick, a zone of interconnected fissuring around 10-15m thick, and a zone of isolated poorly connected fissuring typically less than 150m. The underlying geology of the site, which is identified as relatively impermeable psammites and schists is expected to significantly reduce the downward movement of leachate from the landfill mass. It is therefore expected that leachate moving from the waste body is likely to migrate horizontally along the weathered boundary of the bedrock and in the direction of the nearest major water body, the River Finn.

A groundwater resources map can be viewed online (https://dcenr.maps.arcgis.com). Its shows site as LI - Locally Important Aquifer - Bedrock which is Moderately Productive only in Local Zones.

2.5 Aquifer Vulnerability

Groundwater vulnerability is dictated by the nature and thickness of the material overlying the uppermost groundwater. This means that vulnerability relates to the permeability and thickness of the subsoils, which will dictate the ability of surface waters percolating through to any underlying groundwater bodies. The majority of the Raphoe GWB is classified as Extreme vulnerability, due to the high percentage of thin subsoil and rock outcrops. Where subsoil is thicker, such as in the valleys, the vulnerability is mainly high, with occasional small areas of Moderate that are associated with areas of deeper deposits. Churchtown landfill is predominantly mapped by the GSI as **High** vulnerability with **Extreme** vulnerability mapped in the western region of the site where bedrock was anticipated to be close to surface. However, it is noted that depth to bedrock within BH4 in the western region of the landfill recorded bedrock at a depth of approximately 8.0 metres which represents a **Moderate** vulnerability classification. A groundwater vulnerability map can be viewed online (https://dcenr.maps.arcgis.com).

2.6 Groundwater WFD Status

Work completed for the Water Framework Directive has assigned 'Status' to surface waters and groundwater (www.wfdireland.ie - watermaps). The landfill is located within the Raphoe GWB (IE_NW_G_054) that has been assigned an overall 'Good Status' (www.wfdireland.ie). It been assigned an overall objective status of 'Protect'. Overall the GWB has been given a risk status of 2b, *i.e.* 'Not at Risk'. The landfill site has been assigned the following on www.wfdireland.ie;

European Code IE_NW_G_085

Groundwater Body Name Waste Facility (W0062-01)
Flow Regime Poorly productive bedrock

Groundwater Type PP
Projection At Risk At Risk

rpsgroup.com

Page 3

3 ENVIRONMENTAL RECEPTORS

A Natura Impact Statement (NIS) is included in the waste licence review application and summaries of the findings of this study is outlined in Sections 3.1.

3.1 Downstream European sites, their qualifying features, and relative distances from the proposed development

European sites (Special Areas of Conservation or SACs and Special Protection Areas or SPAs designated under the Habitats Directive 92/43/EEC) identified within screening zone of influence as per NIS are provided in Table 3.1.

Table 3.1: Downstream European sites, their qualifying features, and relative distances from the proposed development

development		
European Site	Downstream distance	Qualifying features
River Foyle & Tributaries SAC UK0030320	Site situated along the banks of the SAC	Qualifying Interests are ranked in the 'Global Status A-C' category, have conservation objectives set for them and are principally considered within the screening and test of likely significance. (DAERA, 2017). Annex I habitats that are a primary reason for selection of this site 3260 Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-Batrachion vegetation Annex I habitats present as a qualifying feature, but not a primary reason for selection of this site n/a Annex II species that are a primary reason for selection of this site 1106 Atlantic Salmon Salmo salar. Annex II species present as a qualifying feature, but not a primary reason for site selection 1355 Otter Lutra Otter Lutra is found throughout the system.
River Finn SAC	Site situated	3110 Oligotrophic waters containing very few minerals of sandy plains (Littorelletalia uniflorae)
IE 0002301	along the banks of the SAC	Lowland oligotrophic lakes are found at Loughs Finn, Belshade and Derg, as well as in many of the smaller lakes within the site. Lough Derg is a large oligotrophic lake situated north of Pettigo. An extensive area of blanket bogs and conifer plantations make up the lake catchment. Typical species seen at the three lakes include a sparse covering of Shoreweed (<i>Littorella uniflora</i>) along the lake shores, Water Lobelia (<i>Lobelia dortmanna</i>), the moss <i>Fontinalis antipyretica</i> , Bog Pondweed (<i>Potamogeton polygonifolius</i>) and Water Horsetail (<i>Equisetum fluviatile</i>), with Bulbous Rush (<i>Juncus bulbosus</i>) and Broad-leaved Pondweed (<i>P. natans</i>) in the margins. On the tidal stretches within the site the main habitats are the river itself, mudflats and the extensive reedbeds that have colonised the former mudflats. The habitats found are typically freshwater in nature. This site comprises almost the entire freshwater element of the River Finn and its tributaries the Corlacky, the Reelan sub-catchment, the Sruhamboy, Elatagh, Cummirk and Glashagh, and also includes Lough Finn, where the river rises. The spawning grounds at the headwaters of the Mourne and Derg Rivers, Loughs Derg and Belshade and the tidal stretch of the Foyle north of Lifford to the border are also part of the site. The Finn and Reelan, rising in the Bluestack Mountains, drain a catchment area of 195 square miles.
		4010 Northern Atlantic wet heaths with Erica tetralix Northern Atlantic wet heaths with Erica tetralix has not been mapped in detail for River Finn SAC but from current available data the total area of the qualifying habitat is estimated to be approximately 187ha, covering 3% of the SAC. Wet heath occurs in association with blanket bog, upland grassland, and exposed rock within the SAC. It occupies shallower peats

rpsgroup.com

European Site Downstream Qualifying features distance

and better drained slopes. It occurs quite widely at Owendoo/Cloghervaddy (Douglas et al., 1990; NPWS internal files).

7130 Blanket bogs

Upland blanket bog occurs throughout much of the upland area of the site along the edges of the river. However, more extensive examples are found at Tullytresna and in the Owendoo/Cloghervaddy bogs. The blanket bog is dominated by Common Cottongrass (*Eriophorum angustifolium*), Deergrass (*Scirpus cespitosus*), Purple Moorgrass (*Molinia caerulea*) and bog mosses (*Sphagnum* spp.). Pool and hummock systems are a feature of the flatter areas, with Heather (*Calluna vulgaris*), mosses (*Racomitrium lanuginosum*, *Sphagnum capillifolium* and *S. papillosum*), lichens (e.g., *Cladonia portentosa*) and the liverwort *Pleurozia purpurea* occurring abundantly on the hummocks. The scarce bog boss *S. imbricatum* is a component of some hummocks. *Sphagnum magellanicum* is found in wet flats by pools, while *S. cuspidatum* occurs abundantly within the pools themselves.

7140 Transition mires and quaking bogs

Transition mires (or quaking bogs or scraws) occur at several locations, usually at the interface between bog and lake or stream. In Owendoo/Cloghervaddy there are many examples of small lakes south of Belshade. Some of the lakes contain floating scraws of the bog moss S. recurvum, Bottle Sedge (Carex rostrata), Bog-sedge (C. limosa) and Bogbean (Menyanthes trifoliata). West of Owendoo River there is an extensive area of scraw with a similar suite of species but in differing abundances. Quaking areas are also associated with blanket bog at Cronamuck and Cronakerny.

At Cronamuck, a small, level flushed area occurs at the base of a slope leading into a flushed stream. Diversity, including diagnostic species, is good.

1106 Salmon Salmo salar

The Finn system is one of Ireland's premier salmon waters. Although the Atlantic Salmon (Salmo salar) is still fished commercially in Ireland, it is considered to be endangered or locally threatened elsewhere in Europe and is listed on Annex II of the E.U. Habitats Directive. Commercial netting on the Foyle does not begin until June and this gives spring fish a good opportunity to get into the Finn. The Finn is important in an international context in that its populations of spring salmon appear to be stable, while they are declining in many areas of Ireland and Europe.

1355 Otter Lutra

Lough Foyle SPA Approximately
(IE 004087) 31.0km from the closest part of the (UK9020031) SPA to the site

Is widespread throughout the system.
Bar-tailed Godwit Limosa Iapponica,
Bewick's Swan Cygnus columbianus bewickii,
Cormorant Phalacrocorax carbo,
Curlew Numenius arquata,
Dunlin Calidris alpina,
Eider Somateria mollissima,
Golden Plover Pluvialis apricaria,
Great Crested Grebe Podiceps cristatus,

Greylag Goose Anser, Knot Calidris canutus, Lapwing Vanellus,

Light-bellied Brent Goose Branta bernicla hrota,

Mallard Anas platyrhynchos,

Oystercatcher *Haematopus ostralegus*, Red-breasted Merganser *Mergus serrator*,

Redshank *Tringa totanus*, Shelduck *Tadorna*. Teal *Anas crecca*, Whooper Swan *Cygnus*, Wigeon *Anas penelope*.

794-NI-RWM-IBR1455 | Waste Licence Review | Final | 12 December 2023 |

rpsgroup.com

Page 5

4 CURRENT CONDITION OF THE SITE

4.1 Hydrogeological Risk Assessment

A hydrogeological risk assessment (HRA) conducted in 2015 (Appendix B). The HRA found that groundwater quality does not indicate any upward trends over time. Both groundwater and surface water contaminant fluxes from the landfill have the potential to impact on the quality of the River Finn. However data suggests that groundwater contaminant fluxes are having a negligible effect on the river downstream of the landfill.

A leachate treatment system has been installed at the site. A willow bed and an ICW have been installed on top of the waste body since December 2014. Ongoing maintenance of the leachate treatment system will be undertaken to ensure the treatment process works efficiently.

The HRA noted that groundwater quality is expected to improve following the commissioning of the ICW and willow treatment. The goal is to continue treatment of leachate onsite and ongoing maintenance to ensure the system works efficiently. Additional wells are to be installed and monitored for the finalisation of the hydrogeological risk assessment.

4.2 Monitoring Locations

4.2.1 Emission to Water

Treated leachate from the SRC Willow and ICW discharges to the River Finn. Emissions to water are monitored at 4 locations as per Schedule C.2.2 Monitoring of emissions to water and provided in Table 4.1 below. The monitoring frequency for emissions to water has been reduced and is now quarterly and annually (metals and organic compounds) as agreed with OEE (LR068825).

Table 4-1: Monitoring Of Emissions To Water Grid Co Ordinates

Station Purpose	Station Name	Description	Northing	Easting
Emission to Water	D1	Discharge to SW Channel from SRC Willow	230908.08	395942.73
Emission to Water	D2	Discharge to SW Channel from SRC Willow	231076.62	395754.97
Emission to Water	D3	Discharge to SW Channel from ICW	231069.70	395759.63
Emission to Water	D4	Discharge to SW Channel from ICW	231172.31	395897.03

4.2.1.1 Emission to Water Results

There are two discharge outlets from the Willow Plantation and two discharge outlets from the ICW to the River Finn as per Table 4.1.

An application to review the Licence to regularise discharge arrangements was submitted to the Agency on 24th May 2017. Waste licence(W0062-02) was issued on 26/08/2021. Results were below the ELV as per Schedule B.2 of the licence on those dates monitored by DCC.

The Agency carried out a site visit to Churchtown Landfill Site on the 26/10/2022 as part of its emissions monitoring programme. Monitoring was carried out at the following discharge points from the ICW/Willow system on site

- D1 Northern Willow Discharge Monitoring Point
- D2 Southern Willow Discharge Monitoring Point
- D3 Pond 5B Discharge Monitoring Point
- D4 Pond 5A Discharge Monitoring Point

One non-compliance was raised in relation to mercury and zinc concentrations at surface water monitoring points ref. no. D1 and D3 (Licensee Report SV23649) as follows;

rpsgroup.com

- Atmonitoring point ref. D1, a mercury concentration of 0.13 μg/l versus the licence emission limit value of 0.07μg/l;
- At monitoring point ref. D1, a zinc concentration of 19 μg/l versus the licence emission limit value of 8.0 μg/l; and
- At monitoring point ref. D3, a zinc concentration of 50 μg/l versus the licence emission limit value of 8.0 μg/l.

This is non-compliant with Condition 5.1 and the following was required:

Action Required: The licensee shall carry out an investigation into the elevated levels of mercury and zinc in accordance with condition 9.3.1 of Waste licence Reg. No. W0062-02, and submit the findings of the investigation to the EPA as a response to the EPA Site Visit Report through EDEN within two months of the issue date of this report.

The licensee shall have regard to condition 11.3 and notify Inland Fisheries Ireland and The Department of A griculture, Food and the Marine of the incident, as required by condition 11.5 of the licence.

An investigation was carried out by DCC and response submitted on EDEN (LR074896). An updated mass balance carried out using exceedances values reported in the Non Compliance assessment shows no impact on the downstream water quality in the River Finn as a result of the exceedances in the ELV noted in the EPA monitoring undertaken during site visit on 26/10/2022 based on 95%ile flow conditions. When the worst case concentration for mercury ($0.13 \, \mu g/l$) and zinc ($50 \mu g/l$) are considered and the updated baseline in the receiving River Finn is used the results of the mass balance are:

- Mercury 0.6% of headroom used,
- Zinc 1.3% of headroom used

A review of previous results for 2021, 2022 and 2023 show no exceedances for mercury and zinc as show in Appendix C.

Revised ELV for 2023 are included in the waste licence review (Section 5.4.3 of NIS).

Table 4-2: Treated Effluent October 2022 Metal Analysis by EPA

Oct-22	ELV	Units	D1	D2	D3	D4
Cadmium	0.08	μg/l	0.023	No Flow	0.021	<0.02
Chromium	50	μg/l	<1	No Flow	<1	<1
Copper	5	μg/l	2.4	No Flow	<1	1.6
Lead	1.2	μg/l	<0.2	No Flow	<0.2	<0.2
Mercury	0.07	μg/l	0.13	No Flow	<0.02	<0.02
Nickel	4	μg/l	1.8	No Flow	1.5	<1
Zinc	8	μg/l	19	No Flow	50	9.1

Repeat samples were taken on 02/02/2023 and 25/10/2023 as shown in Table 4-3. These results shown that Zinc level are below the ELV with Mercury levels slightly exceeding the ELV of 0.1 μ g/l at all four locations in February.

Table 4-3: Treated Effluent February and October 2023 Metal Analysis Donegal County Council

	ELV	Unit	D1	D2	D3	D4	
February 2	2						
Cadmium	0.08	μg/l	<0.6	<0.6	<0.6	<0.6	
Chromium	50	μg/l	<0.6	<0.6	<0.6	<0.6	
Copper	5	μg/l	<1.2	<1.2	<1.2	<1.2	
Lead	1.2	μg/l	<0.6	<0.6	<0.6	<0.6	
Mercury	0.07	μg/l	0.15	0.14	0.15	0.13	
Nickel	4	μg/l	1	1	1	1	

	ELV	Unit	D1	D2	D3	D4	
Zinc	8	μg/l	<6	<6	<6	<6	
October 22							
Cadmium	0.08	μg/l	NM	< 0.03	< 0.03	< 0.03	
Chromium	50	μg/l	NM	< 0.25	0.42	0.64	
Copper	5	μg/l	NM	1.7	< 0.4	1.4	
Lead	1.2	μg/l	NM	0.29	< 0.09	< 0.09	
Mercury	0.07	μg/l	NM	< 0.01	< 0.01	< 0.01	
Nickel	4	μg/l	NM	1.4	1.2	1.1	
Zinc	8	μg/l	NM	3.4	< 1.3	2.1	

4.2.2 **Receiving Water Monitoring**

Surface water is monitored at 7 locations as per Schedule C.6 Receiving Water Monitoring and provided in Table 4.2 below. The monitoring frequency for receiving water has been reduced and is now quarterly and annually (metals and organic compounds) as agreed with OEE (LR068825).

Table 4-4: Receiving Water Monitoring Grid Co Ordinates

Station Purpose	Station Name	Description	Northing	Easting
Surface Water	SW1	Upstream of the waste body in a field drain that subsequently runs adjacent to the landfill along its north eastern boundary.	231177.01	395895.00
Surface Water	SW2	SW2 (stream) is located at the River Finn end of surface water stream that run along the eastern boundary of the site.	231180.26	395840.10
Surface Water	SW3	SW3 is midstream of the facility within the River Finn	231026.01	395734.06
Surface Water	SW4	SW4 (field drain) is located at the River Finn end drain that run along the western boundary of the site.	231038.03	395711.08
Surface Water	SW5	SW5 is also located at the end of field drain and therefore it is not representative of the river quality.	230983.00	395705.11
Surface Water	SW6	Upstream of the facility within the River Finn	231248.04	395948.97
Surface Water	SW7	Downstream of the facility within the River Finn	231177.01	395895.00

4.2.2.1 Surface Water

Surface water monitored at six locations; SW1 upstream and SW2, SW4 and SW5 downstream in the field drains. SW6 upstream, SW3 midstream and SW7 downstream in the River Finn. Surface water parameters are monitored quarterly and compared to EQS, SWQS and DWR. Exceedances were mainly recorded at monitoring locations in the two field drains that run immediately adjacent to the landfill along the eastern and western boundaries and there is no impact shown on the River Finn by the site, Ammonical Nitrogen at SW6 and SW7 was below the EQS MAC of 0.14mg/l for high status. A summary of SW3, SW6 and SW7 (River Finn) results for 2023 is as follows;

- Ammonical Nitrogen/ Ammonia N at SW3, SW6 and SW7 were below the EQS MAC of 0.14mg/l for high status on all dates sampled and analysed,
- BOD exceeded EQS MAC of 2.6 mg/l for good status at times,

794-NI-RWM-IBR1455 | Waste Licence Review | Final | 12 December 2023 | rpsgroup.com Page 8

- COD exceeded the SWQS of 40 mg/l at SW5 (71 mg/l) in March.
- Iron exceeded DWR of 0.2 mg/l in June at SW3 and SW7.
- Nickel exceeded SWQS of 0.001 mg/l in October at SW4.

Results for 2021, 2022 and 2023 are provided in Appendix D.

4.2.3 Pond Sediment monitoring

Pond sediment monitored is undertaken in the ponds as per Schedule C.2.1 Ponds and provided in Table 4.3 below. The monitoring frequency for sediment monitoring has been reduced to annually for 2 years, three yearly thereafter as agreed with OEE (LR068825).

Table 4-5: Pond sediment monitored

Station Purpose	Station Name	Frequency
Groundwater	Ponds 1, 1A, 2A, 3A, 4A, 5A, 1B, 2B, 3B, 4B,5B	Annually for 2 years, three yearly thereafter

4.2.4 Sediments Results

Results for 2022 are provided in Appendix E.

4.2.5 Groundwater

Groundwater is currently monitored at 3 locations as per Schedule C.5 Groundwater Monitoring and provided in Table 4.8 below. The monitoring frequency for groundwater levels is now quarterly from monthly as agreed with OEE(LR068825).

Table 4-6: Receiving Water Monitoring Grid Co Ordinates

Station Purpose	Station Name	Description	Northing	Easting
Groundwater	BH1	Downgradient	231070.44	395751.22
Groundwater	BH2	Upgradient	230844.89	396131.65
Groundwater	BH3	Upgradient	230813.86	396039.56

4.2.5.1 Groundwater Levels and Flow Direction

Based on the topography of the land, with a high point to the northwest and a major surface water feature of the River Finn to the southeast it is likely the groundwater flow is in a southeasterly direction with the river acting as a hydraulic boundary.

4.2.5.2 Groundwater Quality

Groundwater is monitored quarterly upgradient at BH3 and BH4 and downgradient at BH1. Parameters for 2023 to date have been compared to the Groundwater Threshold Values (GTV) as per European Communities Environmental Objectives. (Groundwater) Regulations, 2010 as amended and Interim Guideline Value. (IGV) as per EPA Towards Setting Guideline Values For The Protection Of Groundwater In Ireland where comparable for 2023.

- Chloride exceeded the IGV of 30 mg/l in BH4 but is below the GTV of 187.5 mg/l,
- Orthophosphate exceeded the IGV of 0.03 mg/l in BH1,

All other parameters monitored quarterly were below IGV/GTV were comparable. Results for 2022/2023 are provided in Appendix F.

4.2.5.2.1 List I and II Substances

List I and II substances as per Council Directive 80/68/EEC of 17 December 1979 are listed in Table 5.2. The 2015 HRA identified the following

- Heavy metals were not recorded above their respective IGV or GTV in groundwater samples during the monitoring period to-date.
- Semi Volatile & Volatile Organic Compounds No detection of VOCs or sVOCs above the laboratory limits of detection or any threshold guideline value was recorded in either upgradient or downgradient monitoring wells between 2006 and 2015.
- BTEX Hydrocarbons No recording of BTEX (Benzene, Toluene, Ethyl-Benzene & Xylene) hydrocarbons were recorded above the limit of detection (LOD) for this suite of testing.
- Phenols Phenol analysis was occasionally undertaken in monitoring wells BH1 and BH3. The results recorded were consistently below the laboratory limit of detection.
- Trihalomethanes (THMs) Total-Trihalomethanes (THM) is the sum of Dichloromethane, Chloroform, Bromodichloromethane and Bromoform. Chemical analysis was occasionally undertaken in groundwater for these parameters and the results were consistently below the laboratory limit of detection.

Analyses for the following parameters was undertaken as per licence requirements in BH1, BH2 and BH4 in 2023.

- Heavy metals were not recorded above their respective IGV or GTV.
- Semi Volatile & Volatile Organic Compounds All results were results were below the laboratory limit of detection except for Dibromochloromethane and Bromoform which was detected in all three boreholes.
- Phenols Phenol results were below the laboratory limit of detection.

All other parameters monitored quarterly were below IGV/GTV were comparable.

Table 4-7: List I and list II Substances

List I List I contains the individual substances which belong to the families and groups of substances and to the families and groups of substances are proported.

to the families and groups of substances enumerated below, with the exception of those which are considered inappropriate to list I on the basis of a low risk of toxicity, persistence and bioaccumulation.

Such substances which with regard to toxicity, persistence and bioaccumulation are appropriate to list II are to be classed in list II.

- Organohalogen compounds and substances which may form such compounds in the aquatic environment
- 2. Organophosphorus compounds
- 3. Organotin compounds
- 4. Substances which possess carcinogenic mutagenic or teratogenic properties in or via the aquatic environment (1)
- 5. Mercury and its compounds
- 6. Cadmium and its compound
- 7. Mineral oils and hydrocarbons
- 8. Cyanides

List II contains the individual substances and the categories of substances belonging to the families and groups of substances listed below which could have a harmful effect on groundwater.

- 1. The following metalloids and metals and their compounds:
 - 1. Zinc 2. Copper 3. Nickel 4. Chrome 5. Lead
 - 6. Selenium 7. Arsenic 8. Antimony
 - 9. Molybdenum 10. Titanium 11. Tin 12.Barium 13. Beryllium 14. Boron 15. Uranium 16. Vanadium 17. Cobalt 18. Thallium 19. Tellurium 20. Silver.
- Biocides and their derivatives not appearing in List I.
- Substances which have a deleterious effect on the taste and/or odour of groundwater, and compounds liable to cause the formation of such substances in such water and to render it unfit for human consumption.
- 4. Toxic or persistent organic compounds of silicon and substances which may cause the formation of such compounds in water, excluding those which are biologically harmless or are rapidly converted in water into harmless substances.

List I	List II
	Inorganic compounds of phosphorus and elemental phosphorus.
	6. Fluorides.
	7. Ammonia and nitrites. (1)Where certain substances in list II are carcinogenic, mutagenic or teratogenic, they are included in category 4 of this list.

Mitigation measures have been installed at the site to limit the introduction into groundwater of substances in List I and List II, so as to avoid pollution by these substances. Restoration and capping works have been undertaken. All works were undertaken as per Specified Engineered Works as agreed with EPA. The HRA found that groundwater quality does not indicate any upward trends over time and additional wells are to be installed and monitored for the finalisation of the hydrogeological risk assessment.

4.2.6 Leachate Monitoring

Leachate is monitored at 3 locations as per Schedule C.2.3 Leachate Monitoring. The monitoring frequency for leachate levels is now quarterly from monthly as agreed with OEE(LR068825).

Table 4-8: Leachate Monitoring Grid Co Ordinates

Station_Purpose	Station_Name	Northing	Easting	
Leachates	Leachate Sump 1	230912.086	395938.398	
Leachates	Leachate Sump 2	231079.242	395752.439	
Leachates	Leachate Sump 3	231183.497	395887.244	

4.2.6.1 Leachate Quality

Results for 2023 are provided in Appendix G.

4.2.7 Landfill Gas Monitoring

Landfill gas monitoring is monitored at 2 locations on a monthly basis per Schedule C.1.1 Monitoring of landfill gas emissions.

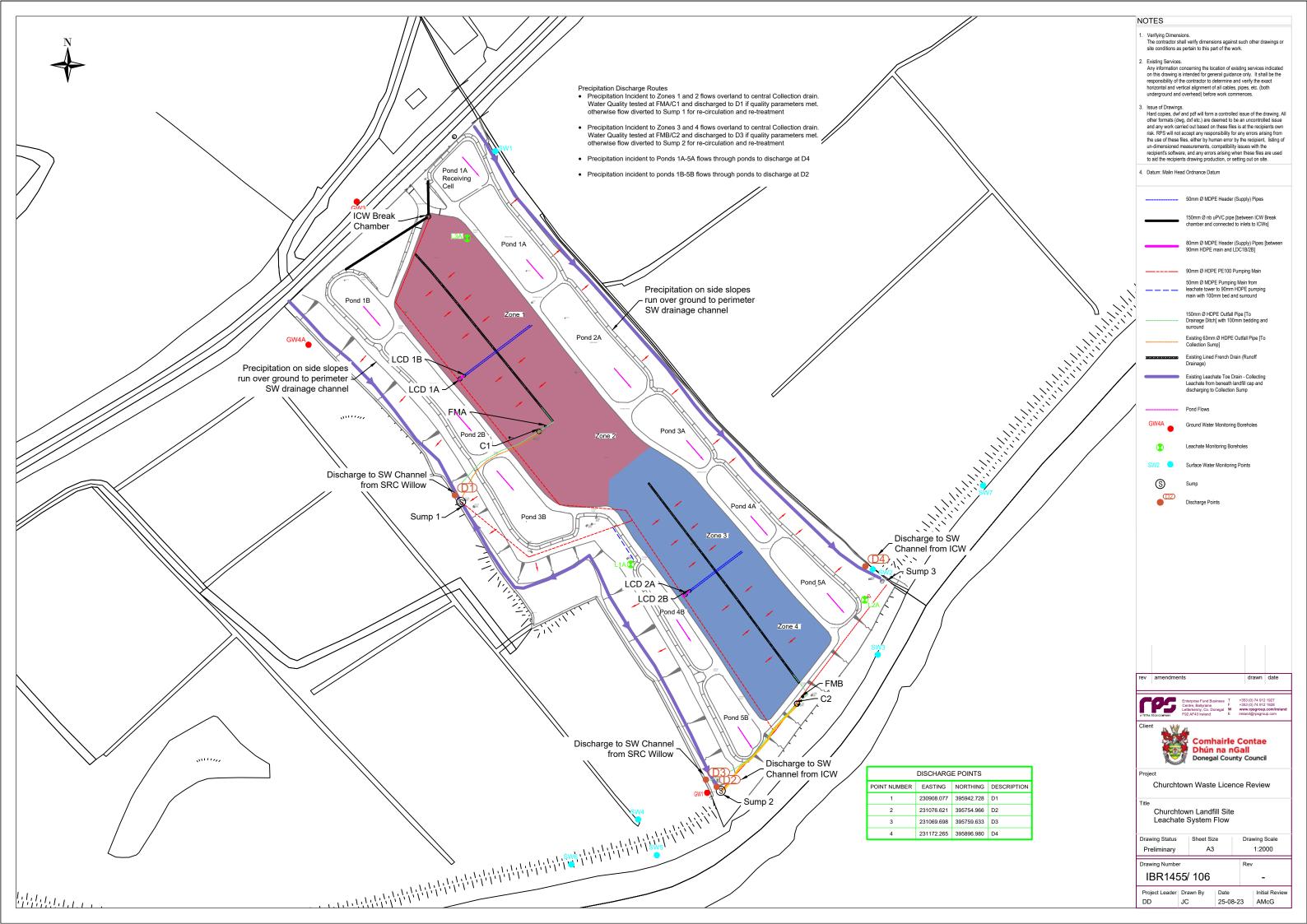
Table 4-9: Landfill Gas Monitoring Grid Co Ordinates

Station_Purpose	Station_Name	Northing	Easting	
Air Quality	LG8	230907.73	396173.45	
Air Quality	LG9	230857.55	396124.17	

4.2.8 Landfill Gas Monitoring Results

Landfill gas monitoring is undertaken at two piezometer wells on a monthly basis using a portable gas analyser. These wells (LG8 and LG9) are located on the northern boundary. Passive gas wells were installed in 2017 to reduce methane levels onsite.

Carbon dioxide levels at the perimeter of the site (January to October 2023) exceed the 1.5%v/v trigger level at LG8 and LG9 at times (0.1 to 7.8% v/v). Methane levels were detected below the 1.0 %v/v trigger level at LG8 (0 %- 0.1 v/v) and LG9 (0 %- 0.6 v/v. The Carbon dioxide were exceedances were reported as incidents on EDEN. Results for 2021-2023 are provided in Appendix F.


4.3 Dust

As the facility is now non-operational the dust monitoring programme is in abeyance until such time as site activity warrants its re-establishment.

4.4 Noise

As the site is now non-operational the noise levels on the site are no longer being monitored. Should any activity be initiated that would have noise associated with it then the programme will be re-instated as appropriate.

Appendix A Drawings

Appendix B Hydrogeological Risk Assessment

Churchtown Landfill WL62-1 Hydrogeological Risk Assessment

Report for: Donegal County Council

Date: 11/12/2015

Report No.: BRE14008Rp001F01

BlueRock Environmental Limited

Suite 332, 3: The Capel Building, G Mary's Abbey,

33 Lower Salthill, *Galway.*

Tel: 086 3856884 / 091 445988

DOCUMENT INFORMATION

Project Title:	Churchtown Landfill Hydrogeological Risk Assessment	
Licence No.: Project No.:	EPA Licence WL62-1 BREL Project No. BRE14008	
Contract No.:	-	
Report Ref.:	BRE14008Rp001	
Status:	Final01	
Client:	Donegal County Council	
Client Details:	Ms Julie McMahon Executive Engineer Donegal County Council Laboratory Magherennan Letterkenny Co Donegal	
Issued by: Donegal County Council		

Document Production / Approval Record

	Name	Signature	Date	Position	% Input
Prepared by (consultant /professional)	Niall Mitchell	Nial O Mitala	11/12/2015	Hydrogeologist /Chartered Engineer	
Approved by (consultant /professional)	Niall Mitchell	Niel O Mitala	11/12/2015	Hydrogeologist /Chartered Engineer	
Site Approval by					N/A

DISCLAIMER:

This report has been prepared by BlueRock Environmental Ltd (BREL) with all reasonable skill, care and diligence within the terms of the contract with the client, incorporating our terms and conditions and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

The conclusions and recommendations contained in this report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by BREL has not been independently verified by BREL, unless otherwise stated in the report. Where assessments of works or costs identified in this report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

BREL disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to BREL attention after the date of the Report. Certain statements made in the report that are not historical facts may constitute estimates, projections or other forward looking statements and even though they are based on reasonable assumptions as of the date of the Report, such forward-looking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. BREL specifically does not guarantee or warrant any estimate or projections contained in this Report.

Where field investigations are carried out, these have been restricted to a level of detail required to meet the stated objectives of the services. The results of any measurements taken may vary spatially or with time and further confirmatory measurements should be made after any significant delay in issuing this Report.

TABLE OF CONTENTS

1	EXE	ECUTIVE SUMMARY		
2	INTR	ODUCTION	4	
	2.1	Introduction	4	
	2.2	Objectives	4	
	2.3	METHODOLOGY	4	
	2.4	Sources of Information	4	
	2.5	REPORT FORMAT	5	
	2.6	REVIEW OF PREVIOUS REPORTS	5	
3	SITE	DESCRIPTION	7	
	3.1	SITE LOCATION	7	
	3.2	Topography	7	
	3.3	SITE LAYOUT	7	
	3.4	SITE HISTORY	7	
	3.5	LEACHATE MANAGEMENT	8	
4	GEO	LOGY	10	
	4.1	REGIONAL & SITE OVERBURDEN	10	
	4.2	REGIONAL BEDROCK GEOLOGY	10	
5	HYD	ROLOGY	12	
	5.1	SITE HYDROLOGY	12	
	5.2	SURFACE WATER WFD STATUS	13	
	5.3	DESIGNATED PROTECTED AREAS	13	
6	HYD	ROGEOLOGY	14	
	6.1	AQUIFER CLASSIFICATION	14	
	6.2	AQUIFER VULNERABILITY	14	
	6.3	GROUNDWATER WFD STATUS	14	
	6.4	BACKGROUND GROUNDWATER QUALITY	15	
	6.5	LOCAL GROUNDWATER USAGE AND SOURCE PROTECTION AREA	15	
	6.6	RECHARGE RAINFALL	15	
	6.7	GROUNDWATER MONITORING WELLS	16	
	6.8	GROUNDWATER LEVELS & FLOW DIRECTION	16	
	6.9	PERMEABILITY	17	
7	PREI	LIMINARY S-P-R	20	
8	HYD	ROCHEMISTRY	21	
	8.1	MONITORING LOCATIONS & FREQUENCY	21	
	8.2	HUMAN HEALTH & ENVIRONMENTAL RISK ASSESSMENT FRAMEWORK	22	
	8.3	LEACHATE QUALITY	22	
	8.4	GROUNDWATER QUALITY	25	
		8.4.1 Ammoniacal Nitrogen	25	

		8.4.2	Electrical Conductivity (EC)	25
		8.4.3	Chloride	26
		8.4.4	Total Organic Carbon (TOC)	26
		8.4.5	Total Oxidised Nitrogen (TON)	26
		8.4.6	Other Parameters	27
	8.5	Surfa	CE WATER QUALITY	29
		8.5.1	Ammoniacal Nitrogen	29
		8.5.2	Electrical Conductivity (EC)	32
		8.5.3	Chloride	33
		8.5.4	Orthophosphate (ORP)	34
		8.5.5	Biochemical Oxygen Demand (BOD)	34
		8.5.6	VOCs/sVOCs/Hydrocarbons/Heavy Metals	34
	8.6	Surfa	CE WATER QUALITY SUMMARY	34
	8.7	GROUN	NDWATER CONTAMINANT FLUXES / ASSIMILATIVE CAPACITY	35
9	UPDA	TED HY	DROGEOLOGICAL CONCEPTUAL SITE MODEL	36
	9.1	Sourc	CE AREAS	36
	9.2	PATHW	/AYS	36
	9.3	RECEP	TORS	36
	9.4	UPDAT	ED S-P-R – RISK SCREENING	37
	9.5	ASSES	SMENT OF CURRENT GROUNDWATER IMPACTS & EXTENT OF PLUMES	37
10	REME	DIAL ST	TRATEGY	38
11	COME	PLIANCE	MONITORING	39
	11.1	COMPL	IANCE MONITORING LOCATIONS	39
	11.2	COMPL	IANCE VALUES	39
12	SUMN	IARY &	CONCLUSIONS & RECOMMENDATIONS	43

LIST OF TABLES

Table 4.1	Summary of Site Investigation Activities	10	
Table 6.2	Long term mean monthly rainfall data (mm) (Met Éireann)	15	
Table 7.1	Preliminary S-P-R		
Table 8.1	Monitoring Locations	21	
Table 8.2	Parameters and Frequency of Groundwater Monitoring	21	
Table 8.4	Surface water sampling locations	29	
Table 9.1	Updated S-P-R	37	
Table 11.1	Proposed Monitoring	41	
Table 11.2	Proposed Monitoring Parameter Thresholds	42	
	LIST OF FIGURES		
Figure 1	Site Location		
Figure 2	Site Layout		
Figure 3	Monitoring Locations		
Figure 4	Groundwater Contours		
Figure 5	Conceptual Site Model		
Figure 8.4	Ammoniacal Nitrogen Levels - Groundwater	25	
Figure 8.5	Electrical Conductivity Levels - Groundwater	26	
Figure 8.6	TON Levels	27	
Figure 8.8	Northeastern Drain - Ammoniacal Nitrogen Levels	30	
Figure 8.10	Southwestern Drain - Ammoniacal Nitrogen Levels	31	
Figure 8.11	River Finn - Ammoniacal Nitrogen Levels	32	
Figure 8.12	Northeastern Drain – Electrical Conductivity	33	

LIST OF TABLES

Table 4.1	Summary of Site Investigation Activities	. 10
Table 6.2	Long term mean monthly rainfall data (mm) (Met Éireann)	. 15
Table 7.1	Preliminary S-P-R	. 20
Table 8.1	Monitoring Locations	. 21
Table 8.2	Parameters and Frequency of Groundwater Monitoring	. 21
Table 8.4	Surface water sampling locations	. 29
Table 9.1	Updated S-P-R	. 37
Table 11.1	Proposed Monitoring	. 41
Table 11.2	Proposed Monitoring Parameter Thresholds	. 42

LIST OF APPENDICES

Appendix A Leachate Management Layout			
Appendix B	GSI Geological	& Hydrogeological Maps	
0 0 0	Figure A Figure B Figure C Figure D Figure E	Soil Classification Bedrock Classification Aquifer Classification GSI Well Locations GSI mapped Groundwater Wells	
Appendix C	Borehole Logs		
Appendix D	Hydrochemistry Data & Figures		
Appendix E	Assimilative Capacity Calculation		

1 EXECUTIVE SUMMARY

- A hydrogeological risk assessment of Churchtown Landfill Site was undertaken by BREL based on previous investigation reports and monitoring data between 2006 and 2015.
- It is noted that Churchtown Landfill is currently in the process of a new pilot remediation solution involving constructed wetlands and willow plantations. This programme of works is expected to significantly improve the current contaminant conditions presence at the site. Therefore the assessment undertaken within this report is based on previous and recent contaminant conditions and a reassessment of site conditions will be required following a period of 12 months post-completion of the works.
- Churchtown Landfill is a former solid waste facility where historically waste was landfilled into bunded cells which were excavated from the in-situ cohesive alluvial subsoils. The excavated soils were then used in bund construction. When landfilling ceased at Churchtown the final area of the waste body was approximately 5 hectares and waste body forms a plateau shape compared to the adjacent lands.
- The site is an unlined site historically operated on a dilute and disperses principal, whereby solid waste was tipped directly onto the underlying excavated surface with leachate allowed to percolate directly through the soils with no engineered liner installed. Landfilling began in 1987 and the site ceased operations on the 31st August 2000
- On the 19th May 2000 the Environmental Protection Agency granted the Council a Waste Licence (registration number WL62-1) for the orderly closure, capping and restoration of the landfill facility, in accordance with the Third Schedule of the Waste Management Act, 1996.
- The hydrogeological regime across the landfill comprises two groundwater bodies (i.e. one within the waste body and a separate groundwater body within the overburden/shallow bedrock) that are likely to be hydraulically connected. A third groundwater body within the bedrock and flowing under pressurised artesian conditions may also be present based on the conditions encountered within monitoring well BH4. Shallow groundwater interacts with the waste mass and facilitates the generation of leachate.
- Groundwater level variability in the area significantly impacts on leachate levels within the
 waste body. The correlating increases and reductions in groundwater and leachate levels
 confirm this scenario with groundwater appearing to intersect the waste body. Groundwater
 level variations and levels upgradient of the site have a differing signature to groundwater
 levels closer to the River Finn. This suggests that the river is partially impacting on
 groundwater downgradient of the landfill.
- Following a review of the preliminary Conceptual Site Model for the site and all available water monitoring data, a revised Conceptual Site Model (CSM) was developed based on available information and monitoring data and identified a number of SPR linkages ranging from Low to Moderate risk to identified sensitive receptors i.e. the River Finn and the Raphoe GWB.
- The SPR linkage of concern relates to:
 - The vertical migration of leachate from the unlined waste cells to the underlying shallow groundwater aquifer which subsequently flows to the River Finn.
- The raw leachate results from the landfill are considered to represent a landfill in the methanogenic stage of decomposition of organic compounds. The leachate is considered to be relatively low strength and the levels, which are reducing over time, are expected to reduce further.
- Groundwater quality data does not indicate any upwards trends over time. This is expected to continue following completion of the current remedial measures. On-going monitoring at BH1

in conjunction with a trend analysis on receipt of sufficient monitoring data over time is recommended.

- Both groundwater and surface water contaminant fluxes from the landfill have the potential to impact on the quality of the River Finn. However, available data suggests that groundwater contaminant fluxes to the river are having a negligible effect on the river downstream of the landfill. It is noted that a more representative downgradient monitoring well is required between the landfill and the river to provide a more accurate determination of this flux. However, it also noted that site access to a suitably located downgradient monitoring may be restricted due to the proximity to the river and soft ground conditions. In relation to surface water discharges, available data suggests that surface water discharges to the river representative the predominant contaminant load to the river. The effects of this loading on the river are considered to be low with significant dilution capacity available within the river itself.
- Based on the water quality data, the landfill does not affect the current status of the River Finn and is in accordance with the WFD objectives.
- The rule of thumb of 100xGTV has not been exceeded in any groundwater monitoring well at the site. The highest Ammoniacal Nitrogen level recorded was 2.63 mg/l in BH1 (February 2009) which is approximately 15 times the GTV. In accordance with the Water Framework Directive (WFD), these levels are not likely to affect the status of the Raphoe GWB nor potentially pose a risk to the objectives of the Water Framework Directive. No groundwater contaminant plume has been identified to-date from the existing groundwater monitoring network.

The following points are noted:

- No groundwater users are located downgradient of the landfill site.
- ✓ The area of impact from the landfill leachate is considered to be minor relative to the groundwater body catchment area of the Raphoe GWB i.e. < 0.01%;
 </p>
- Given the proximity to the landfill to the river, no significant plume, if any, is envisaged.
- ✓ The strength of the leachate is considered to be relatively low. Clear evidence exists that demonstrates the strength of leachate within the waste body is reducing over time.
- ✓ No groundwater monitoring well between the waste body and the River Finn exists and therefore the true contaminant groundwater flux to the river is unclear.
- The site in its present condition appears to be having a low impact on the quality of the River Finn with surface water discharges from the landfill site drains the dominant pathways for contaminant flux. No impact to the current WFD status of the river is anticipated. Additional monitoring is recommended to ascertain the impact occurring in particular on completion of the current site restoration/remediation works.
- The site is compliant with the "prevent" or "limit" objective of the WFD and GWD. The prevention of hazardous of substances entering the groundwater system is being met based on available chemical analysis. Limiting the ingress of non-hazardous substances is also being met by the mitigation measures that have been installed to date at the site *i.e.* landfill capping and lining of surface water drains and mitigations currently being installed *i.e.* active leachate treatment by willow plantations and constructed wetlands.
- Corrective actions undertaken to-date at the site includes:
 - ✓ A permanent landfill capping across the entire waste body;
 - The development of a willow bed plantation and constructed wetlands over the waste body to treat all leachate generated on site and disposal to the River Finn. This system is currently being developed at the site, and.
 - On-going groundwater and surface water monitoring as per the licence requirements.

On-going remediation works is still in progress at the site.

A series of additional recommendations to provide a more representative understanding of the
contaminant fluxes to the River Finn have been provided in Section 10.0. It is noted that as the
site is actively undergoing remediation works, it is proposed that these recommendations are
considered at least 12 months post full completion of the works. A revised CSM will be
undertaken at this stage and the proposed recommendations reassessed. In the meantime,
the current monitoring programme is considered sufficient as an interim measure until
completion of the remediation works.

2 INTRODUCTION

2.1 Introduction

The following hydrogeological risk assessment is intended to satisfy the requirements of Environmental Protection Agency (EPA), relating to a waste management facility at Churchtown, Co Donegal. EPA waste license reference no. WL62-1. A site walkover was undertaken by Niall Mitchell (Hydrogeologist) and Sean Heffernan of BlueRock Environmental Ltd (BREL) on the 10th February 2015.

2.2 Objectives

The objectives of this assessment report include the following:

- To consolidate all available historical reports and geological, hydrogeological and hydrological data relating to the site and its immediate environs;
- To assess and interpret all available water quality data recorded to-date;
- To develop an appropriate Conceptual Site Model (CSM) for the site;
- To assess the site's compliance with the Groundwater Regulations (S.I. No. 9 of 2010);
- To assess the level of risk posed to sensitive receptors;
- To develop an appropriate compliance monitoring programme for the site; and,
- Recommend suitable mitigation measures, if deemed necessary.

2.3 Methodology

This report was prepared in accordance with the following documentation:

- Guidance on the Authorisation of Discharges to Groundwater, EPA, 2011;
- Guidance on the Management of Contaminated Land and Groundwater at EPA Licensed Sites (2013),
- Code of Practice Environmental Risk Assessment for Unregulated Waste Disposal Sites, EPA, 2007; and
- Hydrogeological Risk Assessments for Landfills and the Derivation of Groundwater Control and Trigger Levels, Environment Agency, 2003.

2.4 Sources of Information

The following sources of information were reviewed as part of this assessment:

- Donegal County Council Annual Environmental Reports (AERs), 2004 to 2013;
- Replacement Wells, Drumaboden and Churchtown Landfill Sites, RPS, May 2005;
- EPA Waste Disposal License Application, Attachment C6 Hydrogeology, Donegal County Council, 1999;
- Churchtown Landfill Site Lifford Ground Investigation 898/2293, Stratex Ltd, 23rd September 1998:
- Geological Survey of Ireland (GSI) online databases and mapping;
- Geology of South Donegal (3) 1:100,000 Scale Bedrock Map Series, Geological Survey of Ireland;
- EPA Inspectors Report, Waste License Register Number 62-1, EPA, 30th September 1998;
- EPA online databases and mapping;
- Irish Soil Information System Online, Teagasc;
- Ordnance Survey of Ireland (OSI) historical mapping;
- GSI, Groundwater Protection Schemes, 1999;
- Donegal Groundwater Protection Scheme, and,

- Fitzsimons, V., Daly, D. and Deakin, J., 2003. GSI Guidelines for Assessment and Mapping of Groundwater Vulnerability to Contamination. Draft Report, Geological Survey of Ireland.
- Landfill Operational Practice's, EPA, 1997.

2.5 Report Format

This report comprises of an executive summary for chapter 1 and an introductory chapter 2 which discusses sources of information, general objectives of this hydrogeological assessment and a brief overview of historical investigative reports associated with the site.

Chapter 3 discusses the site location, layout and setting.

Chapter 4 includes detailed information on the underlying soils and bedrock.

Chapter 5 is a brief description of the local hydrology, including details of any site specific surface water bodies.

Chapter 6 discusses the hydrogeology of the site and general region, including any boreholes that have been drilled and monitoring wells in place. It discusses historic groundwater levels and flow direction.

Chapter 7 describes briefly the preliminary Source-Path-Receptor model (SPR) for the landfill.

Chapter 8 is comprehensive review of the hydrochemistry monitoring of the site in terms of groundwater, surface water and leachate quality.

Chapters 9 & 10 defines an updated conceptual site model for the landfill using site specific data coupled with the initial SPR model and provides compliance monitoring recommendations.

Chapter 11 provides recommendations for future monitoring, investigation and/or remediation and report conclusions.

2.6 Review of Previous Reports

Report Title 1: Ground Investigation, Churchtown Landfill Site, Stratex Ltd, September 1998

This investigation comprised the drilling of 3 no. boreholes (*i.e.* BH1, BH3 and BH4) using Shell & Auger techniques. The site location for these wells is included in **Appendix B**. Insitu permeability testing was undertaken within each borehole.

Report Title 2: Application for Waste Disposal License (Attachment C6 - Hydrogeology), prepared by Donegal County Council, 1999.

This report provides a general overview of site conditions and background information which is incorporated into this 2015 report in the following sections.

The application identified the main risks posed by the landfill entailed the migration of leachate to both groundwater and surface waters in the vicinity of the landfill. The report confirmed that although the discharge of leachate to groundwater, which provides baseflow to the River Finn, was occurring, the discharge was not impacting on the groundwater resource or on the quality of the river itself.

Proposed mitigation measures for the landfill included:

- Enclosure of the landfill in low permeability graded clay banks constructed around the waste body;
- Increasing the compaction of the waste to reduce the volume of waste and the overall quantity of rainfall infiltrating the site; and,
- Intermediate and temporary capping of inactive waste areas and the phased development and restoration of the site.

Report Title 3: Replacement Wells Drumaboden & Churchtown Landfill Sites (Report No: 05-135), Glover Site Investigations & RPS, May 2005.

This report describes a site investigation detailing 2 no. additional boreholes that were drilled at Churchtown Landfill. These new boreholes were installed as replacement gas wells and labelled LG8 and LG9.

Report Title 4: Site Restoration Contract (Ground Investigation Report) Churchtown Landfill (Job Ref: 14-1170), Ground Check Ltd, February 2015.

This report describes a ground investigation for a site restoration contract at Churchtown Landfill, Lifford, County Donegal. The report details the following; investigation works undertaken

- 11 no. Shell and Auger boreholes drilled by Dando 200 drilling rig (referenced L1A, LG1A, L2, LG2A, LG2AR, LG3A, LG5A, LG6A, LG7A, LG8 and LG9);
- 1 no. Borehole (BH4) drilled using rotary drilling; and,
- Disturbed samples and water samples were taken from all investigation locations, where possible, and sent for lab analysis.

Report Title 5: Annual Environmental Reports, Churchtown Landfill, Donegal County Council, 2004 - 2015

These reports comprise the Annual Environmental Reports (AERs) prepared by Donegal County Council for the Environmental Protection Agency (EPA). These reports describe the following;

- The waste activities that have taken place on the site during the reporting period, including volumes of waste accepted and their type;
- A summary report on emissions, including details of landfill gas levels, groundwater levels and leachate levels:
- Environmental quality monitoring is also undertaken during the reporting period relative to surface waters, leachate and groundwater;
- The volume of leachate transported/discharged off site in addition to a water balance calculation for the site; and,
- Any significant site works than have taken place on the landfill site during the reporting period are also described.

3 SITE DESCRIPTION

3.1 Site Location

The site is located in County Donegal approximately 3km south west of Lifford and bordered to the northwest by the N15, which is the main Lifford to Ballybofey Road (see **Figure 1**). The landfill facility occupies an area footprint of approximately 9.7 hectares and it is located within the townland of Churchtown, near Lifford, Co. Donegal. The ground to the northeast and southwest of the site is the low lying and gently undulating flood plain of the River Finn, with both areas being used for grazing. The southeastern boundary is bordered by the River Finn. The River Finn delineates the boundary between the North of Ireland and the Republic of Ireland. The main access to the site is from the N15 on the northwestern site boundary. There are fourteen private residences within 500m of the landfill facility, four of which are located across the River Finn in Northern Ireland.

3.2 Topography

The landfill facility is located on the broad alluvial flood plain of the River Finn, approximately 3.18 km upstream of its confluence with the River Mourne (see Figure 1). Landfilling activities have raised the elevation of the site by approximately 5 metres above the existing low lying terrain. The landfill currently forms a raised plateau that is bounded by steep clay bunds along the southwest and northwest margins. The surrounding land appears to fall at a gentle gradient from the N15 Lifford Rd towards the River Finn. A clay dyke has been constructed along the bank of the river in order to mitigate seasonal inundation of the surrounding low lying fields. Above the road the topography rises steeply to the top of Croaghan hill at approximately 217mOD.

3.3 Site Layout

Historically waste was landfilled into bunded cells which were excavated from the in-situ cohesive alluvial subsoils. The excavated soils were then used in bund construction. When landfilling ceased at Churchtown the final area of the waste body was approximately 5 hectares and waste body forms a plateau shape compared to the adjacent lands

A number of remediation works recently commenced on the capped waste at Churchtown as detailed below:

- The existing landfill was capped with a permanent low permeability clay liner in conjunction with a willow and reed plantation and constructed wetland;
- The willow plantation in situated in the centre and above the capped waste (Zones 1 to 4) with a series of constructed wetlands along western and eastern side of willow plantation (see **Figure 2**);
- As of the 9th February 2015 site walk-over undertaken by BREL the willows and reeds were planted but not yet fully grown. Pumping and treatment of leachate was expected to commence in 2015 following completion of the tender for M&E works;
- When the willow plantation is fully grown and working at capacity leachate will be pumped to the plantation before discharged to surface water. If treated leachate levels are unacceptably elevated, the leachate is treated further by circulating via the constructed wetlands before discharging to surface water.

3.4 Site History

Churchtown Landfill is an unlined site, historically operated on a dilute and disperse principal, whereby solid waste is tipped directly onto the underlying excavated surface with leachate allowed to percolate directly through the soils with no engineered liner installed.

Landfilling began in 1987 and the site ceased operations on the 31st August 2000.

Groundwater quality monitoring was originally undertaken at four locations *i.e.* BH1, BH2, BH3 and BH4 as listed in Table F.4.2 in the waste licence which were drilling in August 1998. However, wells

BH1 to BH3 ceased to be utilised for groundwater monitoring, as they are now located within waste. They currently serve as leachate wells (*i.e.* L1, L2 & L3).

Two additional boreholes were drilled in July 2001 *i.e.* Borehole BH1 (downstream) and BH3 (upstream). However, difficulty was encountered during the installation of a second down gradient borehole due to the proximity of the waste body to the river. No borehole logs are available at the time of compiling this report.

Groundwater monitoring is currently undertaken within BH1 and BH3 and BH4. BH3 and BH4 are representative of up gradient water quality and borehole BH1 is representative of down gradient water quality. BH4 was subsequently damaged and was replaced in 2014.

3.5 Leachate Management

The Landfill at Churchtown was originally installed on a dilute and disperse principal, whereby solid waste was deposited directly onto the exposed overburden. This originally allowed untreated leachate to migrate laterally towards the River Finn and vertically into the bedrock aquifer. Vertical migration is considered to be unlikely due to the peat overburden acting as an aquitard.

The landfill was recently capped to prevent further influx of surface water and rainwater into the waste body thereby reducing leachate generation. A permanent low permeability clay liner was installed following closure of the site. As part of the 2014-2015 willow and reed bed construction, a 0.15 to 0.45 metre thick topsoil and 0.5 m clay cap was installed at the facility. In addition, a leachate treatment system was developed and is currently being implemented at the site. A brief description of the system is outlined below and a layout of the system is provided in **Appendix A**.

- Leachate shall be extracted from three pumping stations and distributed around the site via a common 90mm HDPE leachate pumping main located adjacent to an existing site access road as shown on Drawing IBR0514 /PI102. This pumping main will primarily direct leachate to the willow plantation for treatment.
- The Willow Plantation is divided into four zones, with two main irrigation feed points each located centrally between Zone 1 and 2 and Zone 3 and 4 as outlined in the drawings. The connection to willow plantations shall be via 50mm leachate pumping main via an isolating valve, a strainer and a flowmeter as shown on the drawings.
- Treated effluent discharging from Zones 1/2 and Zones 3/4 will be monitored with Ammonia Analysers. Discharge not meeting consent parameters shall activate a motorised valve which in turn shall divert flow back to either Pumping Station 1 or 2 under existing gravity pipework for re-distribution in the willow plantation until the treated effluent reaches acceptable limits. Collected runoff effluent meeting the required parameters is discharged to adjacent surface water drains as shown on the drawings.
- Discharge flow from each monitoring chamber will be recorded and monitored on the SCADA system including leachate applied to the treatment zones, treated flows to surface water drains and flows redirected back to the system for re-distribution and additional treatment.
- The primary treatment method is anticipated to be through application to the willow plantation. Where leachate is available over and above the treatment capacity of the willow plantation (either through seasonal increases in leachate generation, wet/frosty weather conditions or manual operator intervention) leachate will be diverted to the onsite Integrated Constructed Wetlands (ICWs) as a secondary alternative. The system shall also allow the site operator to intervene and permit periodic irrigation of the ICWs when sufficient leachate is available during dry weather which would ordinarily be applied to the willow plantation in order to maintain the ICWs.
- Flow of leachate to ICW's will be controlled on the pumping main with an actuated valve within
 a precast concrete chamber along with flow measurements via flow meter. Flow of leachate
 shall be recorded on the PLC /HMI within the primary control panel. Flow of leachate to ICW's
 shall be via weir chamber and flow split on a 60 / 40 percentage basis, with a nominal
 maximum limit of 20m³/day treatment capacity in the ICWs.

- Should the treatment capacity of both the willow plantation and ICWs be reached in any given 24 hour period leachate abstraction and circulation within the site will be stopped until conditions allow treatments to recommence.
- Leachate is monitored at three monitoring wells located within the waste body, designated as L1, L2 and L3. Both leachate levels and leachate quality are monitored in these wells on a regular basis and are discussed in the following sections.

4 GEOLOGY

4.1 Regional & Site Overburden

The regional overburden in the vicinity of the site is described using the Teagasc soil associations for the greater Donegal region. It is a part of the River Alluvium association (Code 05 RIV), which consists of a further 12 sub soil series. The River Alluvium association covers an area of approximately 22.54km². The Kilgory series (0500KG) is described as a sandy river alluvium for the region. EPA soil mapping describes the overburden as river alluvium (AlluvMin) underlain by undifferentiated gravelly alluvium subsoils. The regional teagasc soils map is presented in **Figure A, Appendix B.**

A summary of the historical site investigations at the site is provided in **Table 4.1**. Site Investigations undertaken in 1998 by Stratex Ltd recorded shallow river alluvium soils consisting of a soft brownish grey, sandy, clayey, organic Silt directly overlying soft, dark brown, silty Peat.

Underlying the alluvium soils comprises fluvio-glacial layers of slightly gravelly sands with interspersed gravel horizons with occasional thin bands of greenish grey sandy silts. A summary of the borehole logs is provided in **Table 4.2** and borehole logs provided in **Appendix C**. Boreholes BH1, BH2 and BH3 are located within the waste and describe the thickness of the waste body as ranging between 4.8m and 6.8m thick. On the basis of the ground investigation records, the general stratigraphy of the site is summarised sequentially below:

- Silty Alluvium
- Peat
- Sands with gravel horizons and silt bands
- · Gravels / Boulders
- Bedrock (PSSAMITE)

Company	Date	Boreholes Drilled
Stratex Ltd	23 rd Sept 1998	3 overburden wells (BH1, BH2 & BH3) and 1 bedrock well (BH4)
RPS	May 2005	Gas monitoring wells LG8 & LG9
Ground Check Ltd	December 2014	1 Bedrock monitoring well (BH4 replacement), two leachate points (L1A & L2) and 9 landfill gas wells.

Table 4.1 Summary of Site Investigation Activities

4.2 Regional Bedrock Geology

Churchtown landfill is mapped as being underlain by three bedrock formations. (see **Figure B**, **Appendix B**).

- The Claudy Formation which consists of psammitic schists with intercalated coarse psammite and pebbly grit units, thin marble lenses and quartzite is mapped in the southwestern quadrant of the site;
- A Marble Unit; and,
- The Aghyaran & Killygordon Limestone Formation which comprises Figureitic marble. Quartzite and psammite.

The formation is bounded to the northwest by the Pettigoe-Lough Foyle fault which trends in a northeast – southwest direction. The strata are internally complex and folded along a general southwest to northeast trend compression axis coincident with the strike of the regional (Pettigoe-Lough Foyle) fault plane.

The complex structure of the rocks and the development of an interior schistosity results from several phases of folding and refolding is associated with a number of orogenic events, the last of which took place during the Variscan Orogeny. Site investigation boreholes at the site recorded bedrock in the initial BH4 borehole was described as a psammite with Schist recorded in the replacement BH4 in 2015.

5 HYDROLOGY

5.1 Site Hydrology

The major surface water feature at Churchtown landfill is the River Finn which borders the south-eastern boundary of the site. It rises in Lough Finn and flows east through a deep mountain valley to Ballybofey and Stranorlar (on opposite sides of the river) and on to the confluence with the River Mourne at Lifford, 3.18 km to the northeast of the site. All surface water flow in the area is towards the River Finn. There are a number of natural drainage features which drain surface water from the surrounding fields into this river. No formal drainage system is provided on the site however the two land drains that run the length of the northeastern and southwestern sides of the landfill direct surface water, and any leachate emitting from the waste body, into the River Finn.

The River Finn is prone to seasonal flooding, and because of this, a clay levee has been constructed on the southeastern border of the waste body to prevent inundation during periods of high water levels.

Leachate from the landfill drains through a number of collection toe drains and into a collection chamber on the southeast corner of the waste. Leachate is currently allowed to disperse to ground until completed of the Mechanical & Electrical (M&E) works for the new treatment facility at the site. The plan is for future leachate to be treated on site and discharged directly into the River Finn via the drain at SW3. There are a total of 6 surface water sampling locations at Churchtown landfill (see **Figure 3**). SW1 and SW2 are located within the drain on the northeastern site boundary and SW4 and SW5 within a drain along the southwestern site boundary. Surface water runoff discharges from the site between SW4 and SW5 before discharging into the River Finn. SW6 is an upstream monitoring point within the River Finn. SW3 is located halfway along the landfill boundary within the river and SW7 is a downstream compliance point within the river.

Visual evidence of potential leachate impact on the surface waters in the vicinity of the landfill was observed during the site walkover as is evident in **Photo 5.1**. However, this impact is likely to have been caused prior to current works being undertaken at the site with no observed leachate breakout from the site noted post completed capping works. As mentioned above, leachate will not be contained at the site until completion of the M&E works.

Photo 5.1 Surface water Drain to southwest of waste body

Flows within the River Finn, in proximity to Churchtown landfill, were not available at this time of this report. However, EPA flow readings both upstream and downstream of the site are summarised below:

Station Number	Station Name	Easting	Northing	Distance to Site (km)	Catchment Area (m²)	DWF (m³/sec)	95th % flow (m³/sec)
1042	DREENAN	215257	394583	15.4	353	0.33	0.42
1043	BALLYBOFEY	213511	394674	17	319	0.3	0.4

Table 5.1 River Finn Flows

5.2 Surface Water WFD Status

Work completed for the Water Framework Directive has assigned 'Status' to surface waters and groundwater (www.wfdireland.ie - watermaps). Churchtown landfill is located within the River Finn Surface Water Body (IE_XB_01_1_3) and has been assigned an overall status of 'Poor', specifically with an overall ecological and macroinvertebrate status of 'Poor'. It has been designated an overall physic-chemical status of 'High'. The overall objective status for the River Finn Waterbody is 'Restore_2021', *i.e.* restore the river body to pre-pollution status. The Q-rating of the river is currently rates as Q3 *i.e.* poor quality.

5.3 Designated Protected Areas

The River Finn is a designated Special Area of Conservation (SAC), selected for the following habitats and/or species listed on Annex I / II of the E.U. Habitats Directive (* = priority; numbers in brackets are Natura 2000 codes):

- [3110] Oligotrophic Waters containing very few minerals;
- [4010] Wet Heath;
- [7130] Blanket Bogs (Active)*
- [7140] Transition Mires
- [1106] Atlantic Salmon (Salmo salar)
- [1355] Otter (Lutra lutra)

The Finn system is one of Ireland's premier salmon waters. This SAC comprises almost the entire freshwater element of the River Finn and its tributaries the Corlacky, the Reelan sub-catchment, the Sruhamboy, Elatagh, Cummirk and Glashagh, and also includes Lough Finn, where the river rises.

6 HYDROGEOLOGY

6.1 Aquifer Classification

The site is underlain by Churchtown Groundwater Body (GWB) which is within the larger Raphoe GWB. It is likely the Churchtown GWB was delineated based on the presence of Churchtown landfill. No information is currently available on Churchtown GWB from the GSI; however it is likely to be similar to the Raphoe GWB. The vast majority (~85%) of the Raphoe GWB is underlain by a <u>Locally Important (LI) aquifer</u> which is moderately productive only in local zones. The remaining areas are underlain by a <u>Poorly Productive (PI) aquifer</u> which is generally unproductive except for local zones. The majority of the site is underlain by a locally important aquifer with the southwestern quadrant mapped as Poorly Productive (See **Figure C, Appendix A**).

Groundwater yields in the Raphoe GWB range from 2–330 m³/day (based on 6 wells within the GWB). Groundwater flux is expected to occur in the uppermost part of the aquifer comprising a broken and weathered zone typically less than 3m thick, a zone of interconnected fissuring around 10-15m thick, and a zone of isolated poorly connected fissuring typically less than 150m.

The underlying geology of the site, which is identified as relatively impermeable psammites and schists is expected to significantly reduce the downward movement of leachate from the landfill mass. It is therefore expected that leachate moving from the waste body is likely to migrate horizontally along the weathered boundary of the bedrock and in the direction of the nearest major water body, the River Finn.

6.2 Aquifer Vulnerability

Groundwater vulnerability is dictated by the nature and thickness of the material overlying the uppermost groundwater. This means that vulnerability relates to the permeability and thickness of the subsoils, which will dictate the ability of surface waters percolating through to any underlying groundwater bodies. A detailed description of the groundwater vulnerability categories can be found in the Groundwater Protection Schemes document (DELG/EPA/GSI, 1999) and in the draft GSI Guidelines for Assessment and Mapping of Groundwater Vulnerability to Contamination (Fitzsimons et al, 2003). A groundwater vulnerability map can be viewed online (http://www.gsi.ie/Mapping).

The majority of the Raphoe GWB is classified as Extreme vulnerability, due to the high percentage of thin subsoil and rock outcrops. Where subsoil is thicker, such as in the valleys, the vulnerability is mainly high, with occasional small areas of Moderate that are associated with areas of deeper deposits.

Churchtown landfill is predominantly mapped y the GSI as **High** vulnerability with **Extreme** vulnerability mapped in the western region of the site where bedrock was anticipated to be close to surface. However, it is noted that depth to bedrock within BH4 in the western region of the landfill recorded bedrock at a depth of approximately 8.0 metres which represents a **Moderate** vulnerability classification.

6.3 Groundwater WFD Status

Work completed for the Water Framework Directive has assigned 'Status' to surface waters and groundwater (www.wfdireland.ie - watermaps). The landfill is located within the Raphoe GWB (IE_NW_G_054) that has been assigned an overall 'Good Status' (www.wfdireland.ie). It been assigned an overall objective status of 'Protect'. Overall the GWB has been given a risk status of 2b, *i.e.* 'Not at Risk'.

6.4 Background Groundwater Quality

There is no background groundwater quality available for the Churchtown GWB, however limited hydrochemical information is available for the larger Raphoe GWB which has similar geology to Churchtown GWB. The hydrochemical signature is that of calcareous Precambrian Marbles. Generally a CaHCO3 signature. Alkalinity (mg/l as CaCO3): range of 112-428; mean of 274 (22 data points) Total Hardness (mg/l): range of 180-436; mean of 311 (22 data points) Conductivity (µS/cm): range of 414-814; mean of 667 (22 data points).

6.5 Local Groundwater Usage and Source Protection Area

There are no source protection areas within 5km of the site, however there are three water wells within 2km of the site, as mapped by the GSI (https://www.gsi.ie/Mapping). A table describing these nearby water wells can be seen below in **Table 6.1**. Well locations are outlined on **Figure E, Appendix B.**

Well Code	Easting	Northing	Total Depth (m)	Depth to Rock	Yield (m³/day)	Yield Class
2039SEW016	228790	396260	3.6	1.8	21.8	Poor
2039SEW019	229530	398030	5.2	1.8	16.4	Poor
2339SWW001	231520	397460	3.1	1.2	3.1	Poor

Table 6.1 Groundwater wells within 2km of Churchtown landfill

All local residences (within 500m) do not use private groundwater wells and are fed from the mains water supply at Lifford.

6.6 Recharge Rainfall

Diffuse recharge occurs via rainfall percolating through the subsoil and rock outcrops. Due to the low permeability of some subsoil deposits and the aquifers, a high proportion of the effective rainfall will quickly discharge to the streams in the GWB. The reasonably high stream density is reflects the high proportion of surface runoff as opposed to recharge. The GSI has mapped the average groundwater recharge to be 151-200 mm/yr. Average monthly gridded rainfall data was sourced from Met Éireann and is presented in **Table 6.2**.

J	F	М	Α	M	J	J	A	S	0	N	D	Annual (mm)
162.2	189.9	71.6	33.4	86.8	48.6	86.0	95.3	23.0	131.4	134.4	150.5	1213.1

Table 6.2 Long term mean monthly rainfall data (mm) (*Met Éireann*)

The closest synoptic station to the site is at Malin Head, 105 km to the northeast, where average potential evapotranspiration (PE) is 538.38 mm/yr. This value is used as a best estimate of the site PE. Actual evapotranspiration (AE) is estimated by multiplying PE by 0.95, to allow for the reduction in evapotranspiration during periods when a soil moisture deficit is present (Water Framework Directive, 2004). Actual evapotranspiration is therefore 511.46 mm yr⁻¹ (0.95 PE). The GSI estimated recharge across the site ranging between 51 and 100 mm/year.

The Effective Rainfall (ER) for the site is determined from:

6.7 Groundwater Monitoring Wells

As mentioned previously, groundwater level monitoring is undertaken within monitoring wells BH1 and BH3 and BH4. BH3 and BH4 are considered representative of up gradient water quality and borehole BH1 is partially representative of down gradient water quality. BH4 was damaged and was subsequently replaced, in the same location, in 2014.

Details of each monitoring is summarised below in Table 6.3.

Borehole ID	Well Screen Horizon	Ground Level	Total Depth as per borehole log	Screen Depth	Water Strike	Depth to bedrock	Well Head Level
		mOD ¹	mbgl ²	mbgl	mbgl	mbgl	mOD
BH1	Overburden	2.74	11.0	5.0-11.0	4.0 & 8.0	N/A	3.47
ВН3	Overburden	8.23	31.0	N/A	N/A	26.0	8.72
BH4	-	2.45	9.0	N/A - 9.0	4.3 & 8.2	8.2	2.89
BH4 (replaced)	Bedrock	-	12.0	9.5 – 11.0	7.0 & 9.0	7.9	-

Table 6.3 Monitoring Well Details

6.8 Groundwater Levels & Flow Direction

Groundwater levels in the monitoring boreholes have been recorded on a quarterly basis since 2004. Based on the topography of the land, with a high point to the northwest and a major surface water feature of the River Finn to the southeast it is likely the groundwater flow is in a southeasterly direction with the river acting as a hydraulic boundary.

Interpreted groundwater data from the three groundwater monitoring confirms groundwater flow direction to the southeast. A number of irregularities with the groundwater levels are possibly associated with errors in recording the data. A figure providing groundwater levels is outlined below in **Figure 6.1.**

A review of groundwater levels over time indicates the following:

• Water levels recorded within BH3, located to the northwest and upgradient of the site, are consistently above BH4 and BH1 are represents upgradient groundwater levels. The monitoring well log reports an installation within the overburden; however a log note provided by Kirk McClure Morton records a total depth of 31 mbgl with bedrock encountered at 26 mbgl. No indication of the installation details of these well. The levels vary between 2.7 and 7.3 mOD. The variations over time do not appear to correlate with rainfall data. Noticeable increased in levels were recorded between December 2007 (3.0 mOD) and January 2008 (7.25 mOD) with no corresponding increase noted in the downgradient monitoring wells. The increased level remained relatively sustained until August 2008 when a sharp reduction on levels is noted. The levels appear to be broadly increasing over time since commencement of monitoring in 2006. This well should not be confused with BH3 historically drilled in the centre of the site which was installed within the overburden and was subsequently decommissioned.

² mbgl = metres below ground level

_

¹ mOD – metres Ordnance Datum

- Water levels within monitoring well BH4 remained relatively consistent over time and indicate artesian conditions during particular periods. No levels have been recorded at this location since 2009. Levels recorded range between 1.6 and 2.5 mOD. The installation of the original well is unclear; however the replacement well in 2014 is installed within the bedrock. No data trends have been recorded to-date within the replaced monitoring well. However, artesian conditions were observed during the site visit in February 2015.
- Water levels within monitoring well BH1, located in proximity to the River Finn, and partially down gradient to the landfill, recorded levels ranging between -2.0 to 2.1 mOD. The well is installed within the overburden only. A noticeable decrease in levels was recorded between December 2007 and January 2008 with levels falling from 1.6 to -0.5 mOD. The levels continued to fall to a low of -2.0 in July 2008 before rapidly rising to 1.5 mOD in September 2008. The rational for these reductions is unclear. The sudden drop in levels corresponds with sudden increases in levels in BH3 during the same period between December 2007 and January 2008.
- Hydraulic gradients across the site based on recorded water levels range between 0.002 and 0.019 which are considered to be relatively low.

A review of leachate monitoring at Churchtown Landfill was also undertaken. The graphed data is provided in **Figure 6.2**.

- Leachate levels within well L3, located in the northern corner of the site, range between 3.6 and 6.0 mOD. A notable jump in levels was recorded between November 2007 and January 2008 ranging up to 2.1 metres. This corresponds with the sudden increase in upgradient groundwater levels in BH3. The highest levels recorded in L3 (i.e. 6.0 mOD) were 1.23 metres below the capping layer of the landfill. No notable downward trend is evident in leachate levels in L3.
- Leachate levels within well L1, located in the central region of the landfill, ranged between 2.5 and 5.7 mOD. A notable reduction in levels were recorded between late 2007 and mid 2008 corresponding with a fall in levels in downgradient monitoring well BH1. The highest recent level recorded in L1 (i.e. 5.1 mOD) remains 2.2 m below the capping layer of the landfill in this area.
- Leachate levels within well L2, located in the northeastern corner of the waste body, ranged between 1.2 and 4.5 mOD. A notable fall in levels was recorded between November 2007 and April 2008 corresponding strongly with a fall in levels in downgradient groundwater monitoring well, BH1. The highest recorded level of 4.5 mOD remains 1.65 metres below the top of the landfill cap.

In summary, it would appear that groundwater level variability in the area significantly impacts on leachate levels within the waste body. The correlating increases and reductions in groundwater levels and leachate levels confirm this theory with groundwater appearing to intersect the waste body. Groundwater level variations and levels upgradient of the site have a differing signature to groundwater levels closer to the River Finn which suggests that the river is partially impacting on groundwater levels downgradient of the landfill, as expected.

6.9 Permeability

3 no. in-situ permeability tests were undertaken by Stratex Ltd in 1998 within BH1, BH3 and BH4. The coefficient of permeability recorded were 3.3×10^{-6} m/s (BH1), 4.0×10^{-6} m/s (BH3) and 2.6×10^{-3} m/s (BH4)

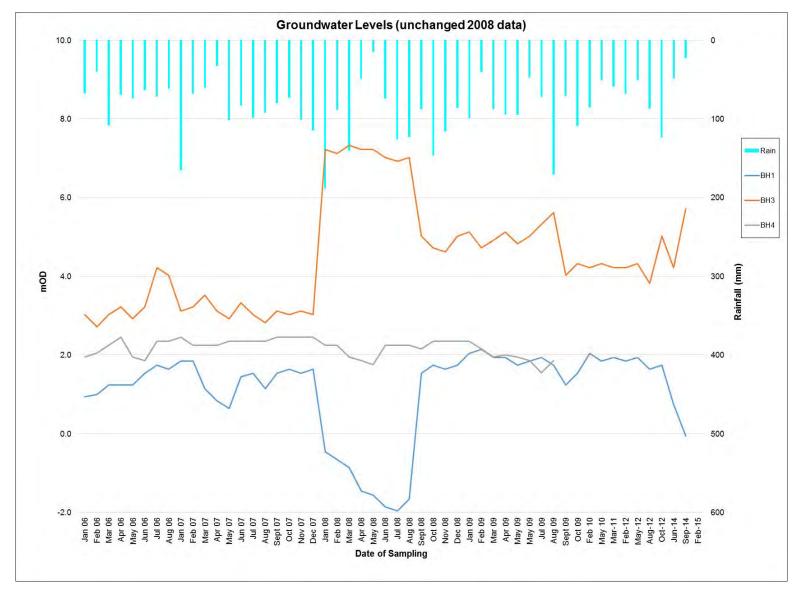


Figure 6.1 Groundwater Levels

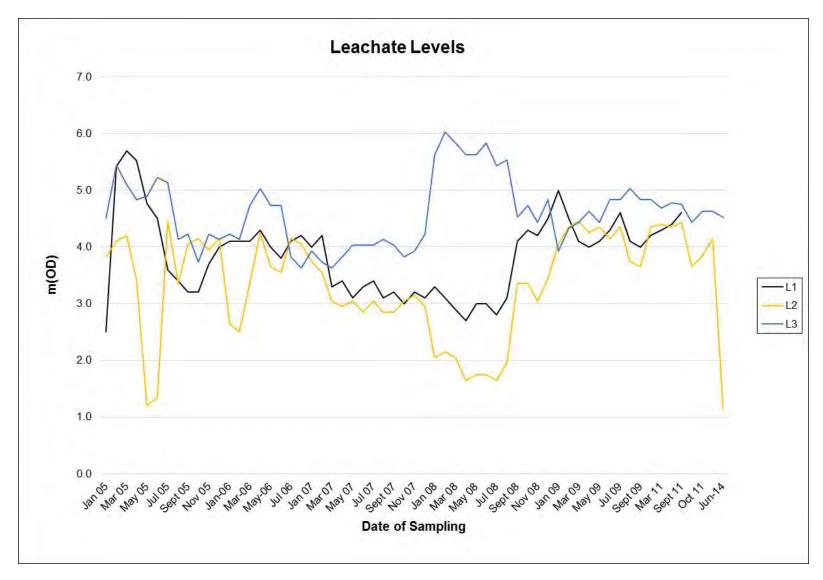


Figure 6.2 Leachate Levels

7 PRELIMINARY S-P-R

The hydrogeological impact assessment is guided by the source-pathway-receptor model. The S-P-R model is used to identify the sources of water and potential contaminants, the environmental assets affected by such, and the pathways by which water and contaminants reach those receptors. **Table 7.1** shows the preliminary S-P-R model for the site which can be refined as the assessment evolves and more information is acquired.

Sources	Pathways	Receptors	Risk
	Groundwater	River Finn	High
Leachate	Leachate vertical		High
Leachate	migration to groundwater	Groundwater	Low to Moderate
	Leachate horizontal migration to surface water	River Finn	High

Table 7.1 Preliminary S-P-R

The landfill at Churchtown was not originally developed on a containment basis *i.e.* there is no engineered liner below the landfill. The waste body has been capped since but there is likely to be strong potential for leachate generation and leakage from within the waste.

Originally there was very little mitigation measures controlling potential leachate discharge to groundwater. However, recent improvement to the landfill infrastructure will mitigate the risk of leachate migration detailed in Section 3.5.

Give the proximity of the landfill to the River Finn, the interpreted groundwater flow direction to the river and the fact that groundwater downgradient of the landfill is not used (nor can be used) as a potable drinking supply, the Raphoe GWB is not considered to be a sensitive receptor at risk

8 HYDROCHEMISTRY

Hydrochemical data was acquired from previous reports supplied by Donegal County Council (DCC) and EPA Annual Environmental Reports (2004-2013) available online. As required under the Waste Licence for Churchtown landfill (*i.e.* WL62-1) groundwater monitoring has been and currently is undertaken at monitoring well locations as set out in the current waste licence. The schedule of the current waste licence requires the monitoring of particular parameters on a quarterly or annual basis.

8.1 Monitoring Locations & Frequency

Monitoring is undertaken within three groundwater boreholes three leachate boreholes (located within the waste) and seven surface water monitoring stations. A table of monitoring locations is presented below in **Table 8.1**. In addition, future monitoring points for the Willow Plantation and Integrated Constructed Wetland system will be included for the site.

Location	Upstream/Downstream	Screened Horizon	Easting	Northing
BH1	Downgradient	Overburden/Groundwater	231,072	395,752
BH3	Upgradient	Overburden/Groundwater	230,840	396,127
BH4	Upgradient	Bedrock/Groundwater	230,818	296,041
L1	Waste	Waste/Leachate	230,999	395,925
L2	Waste	Waste/Leachate	231,169	395,887
L3	Waste	Waste/Leachate	230,931	396,142
SW1	Upstream	Surface Water	230,934	396,164
SW2	Southwest Drain	Surface Water	231,177	395,895
SW3	Adjacent	Surface Water	231,180	395,840
SW4	Southeast Drain	Surface Water	231,026	395,734
SW5	Adjacent	Surface Water	231,038	395,711
SW6	Upstream	Surface Water	230,983	295,705
SW7	Downstream	Surface Water	231,248	395,949

Table 8.1 Monitoring Locations

Leachate monitoring wells, L1, L2 and L3 (formerly BH1, BH2 and BH3), were originally designated as groundwater monitoring wells. These were reassigned as leachate wells due to their installation within the actual waste body. BH1 and BH3 were subsequently re-drilled outside of the waste for groundwater monitoring purposes.

The frequencies of groundwater and leachate monitoring are presented in Table 8.2.

Quarterly	Annually		
Visual Inspection/Odour, Groundwater levels, Ammoniacal Nitrogen, Chloride, Dissolved Oxygen, Electrical Conductivity, pH, Temperature, Potassium, Sodium, TON, TOC, Nitrate, Nitrite, Phenols.	Boron, Cadmium, Calcium, Chromium, Copper, Cyanide, Fluoride, Iron, Lead, List I & II organic substances, Manganese, Magnesium, Mercury, Sulphate, Total Alkalinity, Total Phosphorous, Residue on evaporation, Zinc, Faecal Coliforms, Total Coliforms		

Table 8.2 Parameters and Frequency of Groundwater Monitoring

The list of parameters and monitoring frequency for surface water is seen below in Table 8.3.

Quarterly	Annually
COD, Chloride, Ammoniacal Nitrogen, BOD, Dissolved Oxygen, Electrical Conductivity, pH, Temperature, TSS, Chlorine, Copper, Nitrate, Nitrite, Phenols, Zinc	Cadmium, Calcium, Chromium, Iron, Lead, List I & II organics, Magnesium, Manganese, Mercury, Potassium, Sulphate, Sodium, Total Alkalinity, Total Phosphorous, TON.

Table 8.3 Parameters and Frequency of Surface Water Monitoring

8.2 Human Health & Environmental Risk Assessment Framework

Groundwater concentrations have been compared to the 2010 Groundwater Regulations Target Trigger Value (*i.e.* GTV) in addition to the Environmental Protection Agency Interim Guideline Values (IGV) for Groundwater as presented in EPA interim report "Towards Setting Guideline Values for the Protection of Groundwater in Ireland" 2002. The IGVs have been selected on the basis of the lowest of either the drinking water standards, historical environmental quality standards for surface water or GSI trigger values and are therefore highly conservative and protective of all groundwater receptors.

There are currently no published generic assessment criteria for groundwater derived specifically to be protective of human health via direct contact. However it can be assumed that if water is considered safe for human consumption then there are no risks from direct contact. The 2007 Drinking Water Regulations were utilised for this purpose.

All surface water levels have been compared to the 2009 Surface Water Regulations and the 1998 Salmonid Regulations. The leachate sample results were compared with licence limits as assigned by the EPA.

8.3 Leachate Quality

Leachate quality can vary during the lifetime of landfill sites depending on the phase of decomposition. In terms of the overall suite of parameters analysed, raw leachate results from the Churchtown landfill have been compared to "Typical Leachate Composition of 30 Samples from UK/Irish Landfills accepting mainly Domestic Waste" (Landfill Operational Practices) and are within the maximum concentrations.

As is evident from **Figures 8.1 to 8.3** leachate quality data from all leachate monitoring wells recorded a reducing trend over time. The reduction in levels are most noticeable within L3 with Ammoniacal Nitrogen, Electrical Conductivity and Chloride levels all significantly reduced since pre-capping works. Slightly increasing EC and Ammoniacal Nitrogen levels are noted in L2 since 2012.

In summary, the raw leachate results from the landfill are considered to represent a landfill in the methanogenic stage of decomposition of organic compounds. The leachate is considered to be relatively low strength and the levels, which are reducing over time, are expected to reduce further.

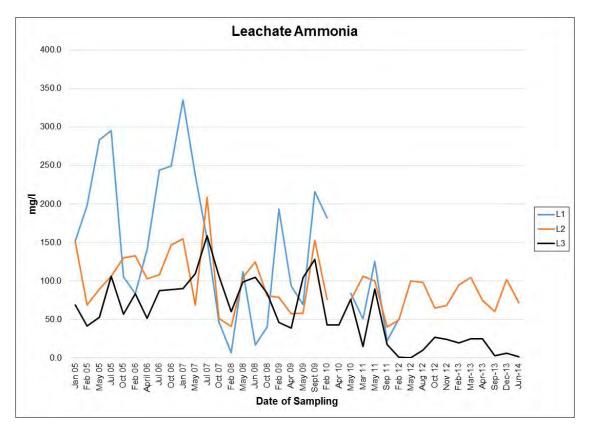


Figure 8.1 Ammoniacal Nitrogen Levels - Leachate

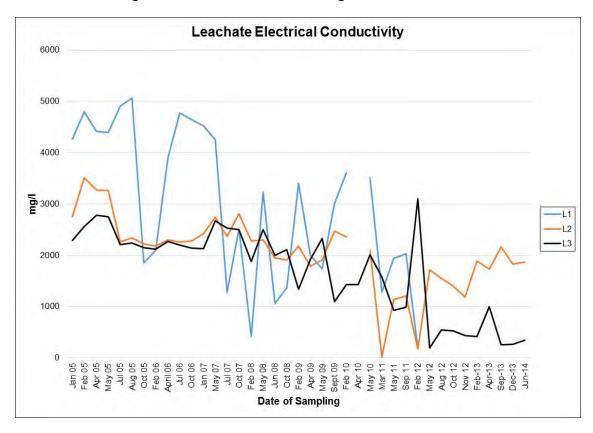


Figure 8.2 Electrical Conductivity Levels - Leachate

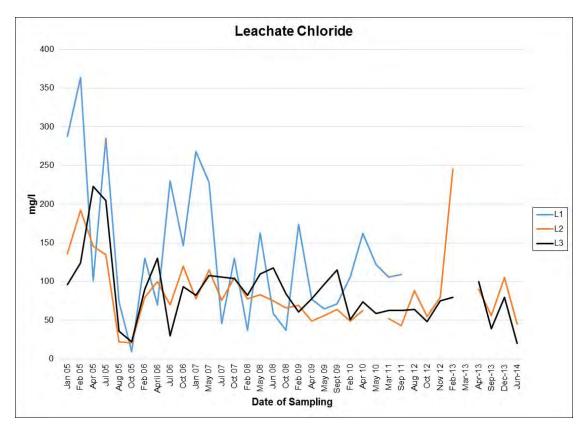


Figure 8.3 Chloride Levels - Leachate

8.4 Groundwater Quality

Groundwater monitoring is undertaken within three monitoring boreholes as detailed in **Section 8.1.** BH4 ceased monitoring in 2007 due to inaccessibility issues and was recently re-drilled in December 2014. The following parameters are discussed in detail in relation to Churchtown landfill:

8.4.1 Ammoniacal Nitrogen

Ammoniacal Nitrogen levels within upgradient monitoring well **BH3** recorded levels ranging between 0.02 and 0.25 mg/l (see **Figure 8.4**). The levels are predominantly below the 2010 GTV with the exception no. 3 no. minor exceedances over time that are attributed to natural variations.

Ammoniacal Nitrogen levels in **BH1**, which is considered to be partially downgradient of the waste body, are also typically recorded below the 2010 GTV since May 2009 with one minor exceedance recorded in September 2013 (*i.e.* 0.3 mg/l). Since 2010 the levels detected in BH1 are consistently lower than those detected in upgradient well BH3 which suggests a low level of impact by the landfill on groundwater. It is however noted that BH1 is not truly downgradient of the waste body and may not accurately reflect the level of contaminant groundwater flux towards the River Finn.

Prior to 2007, similarly low levels of Ammoniacal Nitrogen were recorded within **BH4** with a single minor exceedance in July 2006. No samples were collected from BH4 between May 2007 and March 2015.

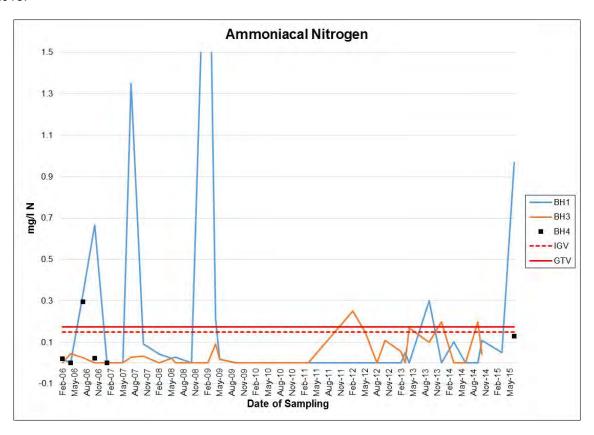


Figure 8.4 Ammoniacal Nitrogen Levels - Groundwater

8.4.2 Electrical Conductivity (EC)

EC levels within upgradient monitoring well **BH3** ranged between 155 and 529 μ S/cm representing background conditions. Generally reduced EC levels were recorded within **BH1** ranging between 86 and 482 μ S/cm. EC levels in **BH4** pre 2007 were recorded consistently between 335 and 385 μ S/cm and between 347 and 403 μ S/cm in 2015.

EC levels in BH1 are consistently lower than those recorded in upgradient well BH3 and do not indicate an impact to groundwater by the waste body. A notable decrease in EC in BH1 was recorded between October 2008 and March 2011 which may be attributed to surface water or river water ingress during flooding events. As highlighted in Section 8.4.1, BH1 is not truly downgradient of the waste body and may not accurately reflect the level of contaminant groundwater flux towards the River Finn.

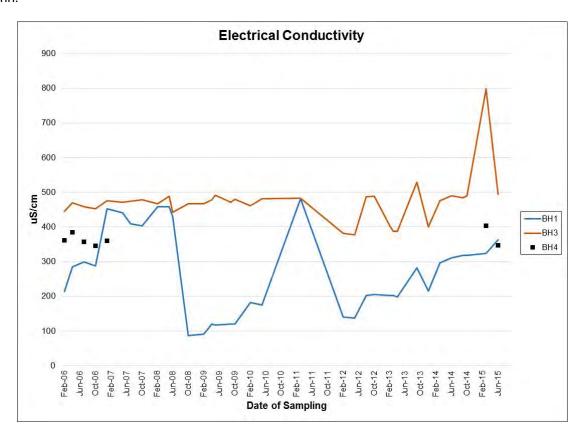


Figure 8.5 Electrical Conductivity Levels - Groundwater

8.4.3 Chloride

Chloride levels are recorded consistently below the 2010 GTV ranging between 16 and 60 mg/l within upgradient well **BH3** and between 13 and 41 mg/l in partially downgradient well **BH1**. Levels within **BH4** pre 2007 were recorded between 25 and 30 mg/l.

8.4.4 Total Organic Carbon (TOC)

TOC levels were generally recorded at background levels across the site with the exception of one isolated spike in **BH3** (81.17mg/l). This level subsequently returned to background levels of <4 mg/l during the following sampling event. A notable increase in TOC levels were noted between June 2008 and February 2009 in downgradient well BH1 (*i.e.* 13.1, 16.0 and 11.9 mg/l respectively). This extended increase in TOC is unclear but may be resulting from surface water ingress to the well during this period.

8.4.5 Total Oxidised Nitrogen (TON)

Elevated and variable levels of TON were occasionally recorded in both the upgradient and downgradient monitoring wells (see **Figure 8.6**). High levels of TON in a water body can contribute to excessive algal growth in waterways as TON is a measure of both nitrate and nitrite in soluble compound form, readily usable by plants and algae.

There appears to be a broad <u>decreasing trend</u> in downgradient monitoring well BH1 and no apparent trend in the upgradient BH3. The levels recorded within BH1 are generally higher than those recorded in upgradient well BH3 which suggests an impact of the landfill on groundwater immediately upgradient of BH1.

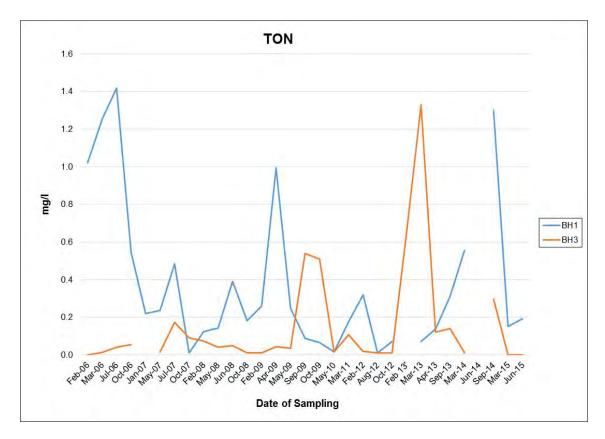


Figure 8.6 TON Levels

8.4.6 Other Parameters

• Sodium

All levels of Sodium were recorded well below the 2010 GTV of 150 mg/l. All levels were generally recorded below 20mg/l with the exception of two isolated occasions where more elevated levels were recorded in both BH1 and BH3 (*i.e.* 86 mg/l, September 2009 and 56.5 mg/l, June 2014 respectively).

Nitrate & Nitrite

No detection of Nitrate or Nitrite above the 2010 GTVs were recorded in groundwater across the site.

Sulphate

No detections of Sulphate above the GTV were recorded in groundwater across the monitoring period to 2015.

Iron

Significant uncertainties persist regarding the true results provided by the Donegal County Council laboratory in relation to units and limits of detection. Therefore no accurate assessment has been undertaken as part of the completion of this report.

ORP

Levels of ORP were recorded in **BH3** ranging between 0.001 and 0.185 mg/l. The IGV for ORP is 0.03 mg/l. Notable more elevated levels were recorded in **BH1** ranging between 0.001 and 0.258 mg/l over the monitoring period to date. The levels recorded within **BH4** are broadly similar to those recorded in BH3 ranging between <0.01 and 0.082 mg/l. The downgradient levels in BH1 suggest the waste body was historically impacting on groundwater quality between upgradient and downgradient monitoring wells. However a downward trend is noted in BH3 since June 2008 and within Bh1 since February 2009. No detections of elevated ORP have been recorded in BH1 since May 2010.

Heavy Metals

Heavy metals were not recorded above their respective IGV or GTV in groundwater samples during the monitoring period to-date.

• Semi Volatile & Volatile Organic Compounds

No detection of VOCs or sVOCs above the laboratory limits of detection or any threshold guideline value was recorded in either upgradient or downgradient monitoring wells between 2006 and 2015.

BTEX Hydrocarbons

No recording of BTEX (Benzene, Toluene, Ethyl-Benzene & Xylene) hydrocarbons were recorded above the limit of detection (LOD) for this suite of testing.

Phenols

Phenol analysis was occasionally undertaken in monitoring wells BH1 and BH3. The results recorded were consistently below the laboratory limit of detection.

Trihalomethanes (THMs)

Total-Trihalomethanes (THM) is the sum of Dichloromethane, Chloroform, Bromodichloromethane and Bromoform. Chemical analysis was occasionally undertaken in groundwater for these parameters and the results were consistently below the laboratory limit of detection.

8.5 Surface Water Quality

The primary receptor for the Churchtown landfill catchment has been identified as the River Finn (River Code; IE_XB_01_1_3). The river is located along the southeastern site boundary, flows in a northeast direction and forms the border between Donegal and Northern Ireland.

The overall status of River Finn has been described as 'Poor' by the EPA; with a General physiochemical status (PC) status of 'High', a Macroinvertebrate status (Q) of 'Poor' and an overall ecological status (ES) of 'Poor'. It has been given an overall risk status of 1a (at risk). The Q-rating for the river is current rated as Q3 - poor quality status. Surface water sampling for monitoring purposes is undertaken at 7 locations on and around Churchtown landfill (See Table 8.4 below and Figure 3).

It should be noted that uncertainties surround the accuracy of the laboratory results in addition to the sampling locations within the river during sampling events.

Monitoring Point	Easting	Northing	Location
SW1	230,934	396,164	Upgradient within drain along northeastern site boundary
SW2	231,177	395,895	Downgradient within drain along northeastern site boundary
SW3	231,180	395,840	River Finn (at landfill site)
SW4	231,026	395,734	Southwestern site drain upgradient of treated leachate discharge location
SW5	231,038	395,711	Southwestern site drain downgradient of treated leachate discharge location ³
SW6	230.983	295,705	Upstream (River Finn)
SW7	231,248	395,949	Downstream (River Finn)

Table 8.4 Surface water sampling locations

8.5.1 **Ammoniacal Nitrogen**

Surface Water Drains

Upgradient surface water quality within the northeastern boundary landfill drain (i.e. SW1) flowing from an upgradient location before discharging into the River Finn is recorded as generally good quality with relatively low levels of Ammoniacal Nitrogen detected. The levels of Ammoniacal Nitrogen at this location range between 0.01 and 0.3 mg/l. The flow within this drain is currently unknown.

The drain discharges to the River Finn in the southeastern corner of the landfill. SW2 is located within the drain immediately prior to its discharge to the River Finn. Water quality monitoring at SW2 over time recorded significantly elevated levels of Ammoniacal Nitrogen ranging between 0.02 and 128.2 mg/l (see Figure 8.8). The levels recorded indicate an impact from landfill leachate during a time when leachate was allowed to be dispersed to this drain from the flanks of uncapped landfill. The drain is currently visually impacted with heavy iron ochre, in particular towards the River Finn end of the drain (see Figure 8.9).

³ It is noted that SW5 is currently sampled from an adjacent site drain at the site. However, it is considered more beneficial if the sample location was collected from the River Finn within the mixing zone of the SW4 drain and the river.

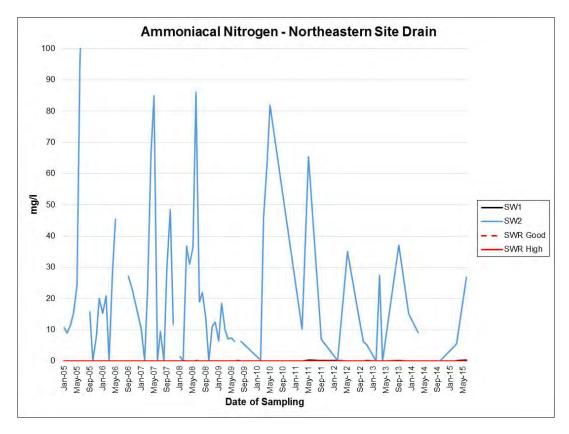


Figure 8.8 Northeastern Drain - Ammoniacal Nitrogen Levels

Figure 8.9 Leachate Impact within Northeastern Boundary Drain pre-restoration

Elevated levels of Ammoniacal Nitrogen have been recorded within the southwestern boundary drain (see **Figure 8.10**) within samples **SW4** and further downgradient at **SW5**. The levels within SW4 range between 0.01 and 65.3 mg/l and within SW5 ranging between 0.01 and 151 mg/l. The levels recorded vary over time with broadly reducing levels noted between 2010 and 2014. However, increased levels have been noted in both locations since mid-2014.

The high levels of Ammoniacal Nitrogen in this drain are, similar to the northeastern drain, resultant from landfill leachate during a time when leachate was allowed to be dispersed to this drain from the flanks of uncapped landfill. These levels are expected to decrease significantly following completion of all remedial works at the site.

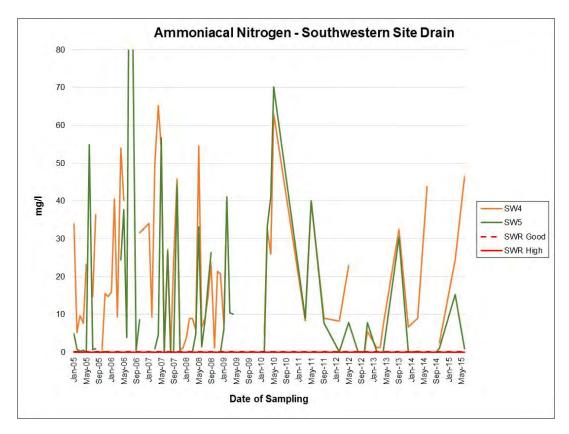


Figure 8.10 Southwestern Drain - Ammoniacal Nitrogen Levels

River Finn

Ammoniacal Nitrogen levels upgradient of the site within the River Finn at **SW6** range between 0.01 and 26.0 mg/l. The levels are generally below the 2009 Surface Water Regulations (SWR) threshold for Good Status River Water of 0.065 mg/l with elevated 'spiked' levels noted on occasion. These spiked readings were recorded on three occasions only -i.e. 2005, 2010 and 2014 ranging between 1.69 and 26.0 mg/l/.

Mid-gradient monitoring at **SW3**, in the immediate vicinity of the landfill, recorded slightly more elevated levels ranging between 0.01 and 1.8 mg/l. Historically the levels were recorded within or slightly above the SWR; however, increasing levels have been noted since November 2012. These increasing levels are attributed to the current uncontrolled discharge of leachate contaminated surface water drains from the landfill. Notable reductions in levels are expected at SW3 following completion of proposed leachate treatment works at the site.

Downgradient monitoring at **SW7** within the River Finn ranged between 0.01 and 1.44 mg/l. The levels are broadly similar to mid-gradient sample SW3 with levels recorded both higher and lower than levels at SW3 on various occasions. On occasions when SW7 levels are recorded above SW3, the source of this increase may be attributed to a potential downgradient agricultural source of contamination or potentially due to sampling locations/techniques within the river (*i.e.* sample collected from the river bank and/or from the centre of the river).

A comparison of levels recorded with rainfall was undertaken. A number of notable increases in downstream Ammoniacal Nitrogen levels were recorded within SW7 following periods of high rainfall.

The data suggests that the landfill is having a limited impact on the quality of the River Finn in the immediate vicinity of the landfill in its current setup. The impact at SW3 is predominantly attributed to the discharges from the site drains at the landfill site. As is evident from the site data, notable reductions are typically recorded in downstream sample SW7. In addition the assimilative capacity calculation in **Section 8.9** confirms the low impact that is occurring.

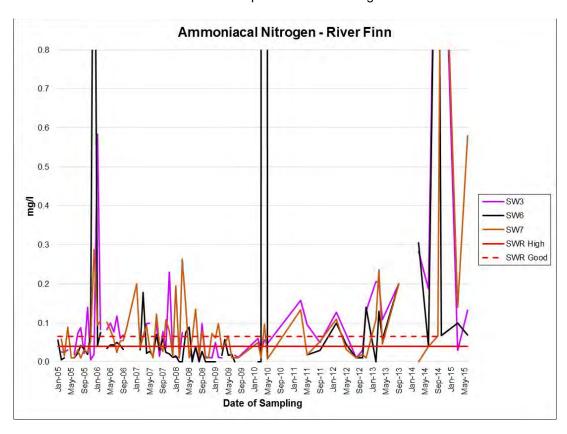


Figure 8.11 River Finn - Ammoniacal Nitrogen Levels

8.5.2 Electrical Conductivity (EC)

Surface Water Drains

Upgradient EC levels within the northeastern boundary drain *i.e.* **SW1**, are consistently recorded between 200 and 300 μ S/cm whereas EC levels in downgradient sample location, **SW2**, typically recorded a notable increase in EC levels (see **Figure 8.11**) ranging between 50 and 5050 μ S/cm.

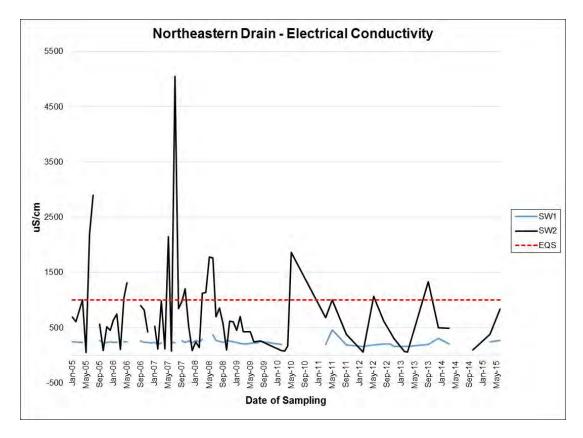


Figure 8.12 Northeastern Drain – Electrical Conductivity

Elevated EC levels were recorded in both SW4 and SW5 in the southwestern site drain ranging between 50 and 3350 μ S/cm. The levels recorded in both drains are broadly similar during each sampling event and confirm an impact from landfill leachate.

River Finn

EC levels within the River Finn are typical of background unpolluted surface waters ranging between 40 and 232 μ S/cm. Isolated 'spiked' reading were recorded at each sample location separately ranging between 561 and 1119 μ S/cm. The levels recorded upgradient and downgradient of the site do not record any noticeable difference as the river flows by the landfill site.

8.5.3 Chloride

Surface Water Drains

Upgradient Chloride levels within the northeastern boundary drain *i.e.* **SW1**, are consistently recorded between 14 and 39 mg/l whereas Chloride levels in downgradient sample location, **SW2**, typically recorded a notable increase in levels ranging between 13 and 155 μS/cm.

Elevated Chloride levels were recorded in both SW4 and SW5 in the southwestern site drain ranging between 13 and 242 μ S/cm. The levels recorded at both locations are broadly similar during each sampling event and confirm an impact from landfill leachate.

River Finn

Chloride levels within the River Finn are broadly similar between upgradient and downgradient sampling locations. Levels range between 8.3 and 36 mg/l. A single isolated high level of 172 mg/l was recorded at SW3 in September 2014.

8.5.4 Orthophosphate (ORP)

River Finn

ORP levels within the River Finn are broadly similar between upgradient and downgradient sampling locations general below the Good Status SWR. Notable isolated 'spiked' levels are recorded at midgradient sample point, SW3 ranging between 0.076 and 1.08 mg/l above the mean SWR of 0.035 mg/l. A single isolated high level of 172 mg/l was recorded at SW3 in September 2014.

Surface Water Drains

Upgradient ORP levels within the northeastern boundary drain *i.e.* **SW1**, are consistently recorded between 0.003 and 0.07 mg/l with an isolated high level of 3.3 mg/l recorded in February 2009. ORP levels in downgradient sample location, **SW2**, typically recorded a notable increase in ORP levels ranging between 0.002 and 0.28 mg/l.

Elevated ORP levels were recorded in both SW4 and SW5 in the southwestern site drain ranging between 0.002 and 0.35 mg/l. The levels recorded at both locations are broadly similar during each sampling event.

8.5.5 Biochemical Oxygen Demand (BOD)

River Finn

BOD levels within the River Finn are broadly similar between upgradient and downgradient sampling locations. Levels range between 0.04 and 7.8 mg/l. A single isolated high level of 20 mg/l was recorded at SW7 in February 2010.

Surface Water Drains

Upgradient BOD within the northeastern boundary drain *i.e.* **SW1**, are relatively variable ranging between 0.03 and 6.12 mg/l. BOD levels in downgradient sample location, **SW2**, typically recorded between 0.04 and 12.2 mg/l. A single high BOD level of 46.2 in May 2011 was recorded in SW2. The BOD level at SW1 are occasional more elevated than levels detected at SW2 and vice versa.

Occasionally elevated BOD levels were recorded in both SW4 and SW5 in the southwestern site drain ranging between 0.04 and 9.0 mg/l with the levels at both locations broadly similar.

8.5.6 VOCs/sVOCs/Hydrocarbons/Heavy Metals

The remaining parameters analysed, as per **Table 8.1** were recorded below laboratory limits of detection or within EQS threshold levels and are not considered further in this report.

8.6 Surface Water Quality Summary

In summary, water quality data within the northeastern and southwestern boundary drains demonstrates an impact from landfill leachate over time with elevated levels of contaminants indicative of an impact from landfill leachate. The source of the impact is from landfill leachate during a time when leachate was allowed to be dispersed to these drains from the flanks of uncapped landfill. As the remediation of the site is not completed to-date, these surface waters will continue to record an impact from leachate in the short term. However, on completion of the works, the water quality in both drains are expected to noticeable increase over time.

The quality of the River Finn, with the current discharges from the landfill drains (and to a significantly lesser extent from groundwater baseflow), does not indicate a significant impact over time as the river flows by the landfill. A slight deterioration in quality is noted within the discharge zones of the surface water drains into the River Finn, however the scale of the impact is considered to be low. On occasion where downstream contaminant levels are recorded above mid-stream levels at the landfill site, the source of this increase may be attributed to a downgradient agricultural source of contamination or

potentially due to sampling locations within the river (i.e. sample collected from the river bank and/or from the centre of the river).

8.7 Groundwater Contaminant Fluxes / Assimilative Capacity

An estimate of the assimilative capacity of the River Finn was made by comparing the Ammoniacal Nitrogen load discharging from the landfill site via **groundwater flux** and the actual concentrations measured in the river.

Leachate discharge from the site can be described by Darcy's Law equation:

$$Q = KiA$$

where: Q_{river} = annual mean flow of the River Finn (m³/sec) – 0.4 m³/s (95th %ile) or 34,560 m³/day (see **Section 5.1**).

- K = the hydraulic conductivity of the conducting units in this case the average of site specific readings from BH1 and BH3 (i.e. 3.7 x 10⁻⁶ m/sec) see **Section 6.9**.
- i = the hydraulic gradient utilising highest recorded gradients as a conservative measure (*i.e.* 0.019).
- A = the area over which contaminant flow is occurring *i.e.* 100 metre length (*i.e.* and 6 metre deep vertical plane across approximately 100% of the section.

Based on the above data a daily groundwater throughput (*i.e.* Q_{gw}) of 3.6 m³/day or **3,644 litres/day** was calculated which equates to 3.5 g/day.

Therefore given the flow within the River Finn, the dilution effect in the river is estimated at approximately **9,483** times the landfill groundwater flux. Using the highest Ammoniacal Nitrogen concentration recently recorded in BH1 (*i.e.* 0.97 mg/l in September 2015), the dilution capacity within the river would reduce this level to 0.1 µg/l approximately which represents an approximate increase of <0.01% of Ammoniacal Nitrogen levels within the river.

An assimilative capacity assessment for two monitoring periods (*i.e.* June 2013 and September 2015) was undertaken to represent most recent conditions and prior to completion of the current remediation works. This assessment is detailed in **Appendix E** and indicates the following:

- The <u>predicted</u> Ammoniacal Nitrogen concentration downstream of the landfill at SW7 in **September 2015** was recorded to be higher than the actually recorded downstream level in the river. This would imply that other factors are reducing the contaminant loading to the river *e.g.* the flow in the river at this time was greater than the 95%thile flow or lower contaminant fluxes to the river are actually occurring rather than what is being recorded in BH1. These results also suggest that the surface water discharges from the landfill are also having a low level impact on the river quality.
- The <u>predicted</u> Ammoniacal Nitrogen concentration downstream of the landfill at SW7 in June 2013 were similar to the chemical data recorded in the river for this monitoring event with no notable increase in downstream levels predicted or recorded.

Based on the above, it is evident that the current conservatively calculated groundwater contaminant flux to the river from the landfill body is having a negligible effect on the quality of the River Finn. It is also noted that the calculations ignore the further reducing effects of the peat/silty overburden and the reducing trends occurring over time which are likely to reduce impacts to the river even further. Finally, although the contributions from the surface water landfill drains are likely to have a significantly greater impact on the river in comparison to the groundwater flux, these impacts are considered to be low to negligible.

9 UPDATED HYDROGEOLOGICAL CONCEPTUAL SITE MODEL

The preliminary source-pathway-receptor approach is now revisited to facilitate a hydrogeological conceptual model of the site. A cross-sectional profile of the site is presented in **Figure 5**.

9.1 Source Areas

- The raw leachate results from the landfill are within the maximum and minimum concentrations of typical landfill leachate in Ireland and are considered to represent a landfill in the methanogenic stage of decomposition of organic compounds. The leachate is considered to be relatively low strength and is broadly reducing in strength over time.
- No Hazardous substances as per the EPA Classification of Hazardous and Non-Hazardous substances in groundwater (2010) were detected in the leachate and groundwater at the site;
 - Non-Hazardous Substances detected include:
 - ✓ Ammoniacal Nitrogen.

The entire landfill waste body has been capped with an engineered cap and wetland system as agreed with the EPA. Toe drains are lined with an engineered liner. Therefore the generation of leachate is primarily from the degradation of the waste body itself and the ingress of groundwater rather than the effect of rainfall ingress.

9.2 Pathways

- The hydrogeological regime across Churchtown Landfill comprises a leachate within the waste body and a groundwater body within the overburden/shallow bedrock. Both appear to be hydraulically connected. A separate groundwater body within the deeper bedrock and flowing under pressurised artesian conditions may also be present based on the conditions encountered within monitoring well BH4. Shallow groundwater interacts with the waste mass and facilitates the generation of leachate. The migration of the leachate is likely to flow within the overburden towards the River Finn. The head of leachate is dependant on the surrounding groundwater levels and the ability of the leachate to continue to migrate from the landfill depends on the permeability and thickness of the overburden and the head of leachate within the waste body. No clear reduction in leachate levels within the waste body is evident since completion of the landfill cap. This would suggest that leachate levels are highly dependent on groundwater level variations over time.
- The relatively low permeability overburden is anticipated to encourage the horizontal migration of shallow groundwater towards the River Finn
- Groundwater levels vary between 7.3 mOD (BH3) and -0.2 mOD (BH1) metres across the site with a groundwater gradient ranging between 0.002 and 0.019 which is considered to be low.
- Historical dispersal of leachate from the waste body to the surface water drains alongside of
 the waste body historically occurred at the site prior to remediation works. As the remediation
 of the site is not completed to-date, these surface waters will continue to record an impact
 from leachate in the short term. This pathway is expected to be removed on completion of the
 site remediation works.

9.3 Receptors

The key potential environmental receptor that could be impacted by the presence of the contaminant source on the site is the River Finn. The River is an SAC and a salmonid river. Given the observed depth and size of the river, it is considered to be a hydraulic boundary for the landfill *i.e.* all groundwater discharges to it rather than under it.

There are no source protection areas mapped in the vicinity of the Landfill and no private groundwater wells are present in the vicinity of the site.

9.4 Updated S-P-R – Risk Screening

The impact assessment is guided by the source-pathway-receptor (S-P-R) model. The S-P-R model is used to identify the sources of water and potential contaminants, the environmental assets affected by such, and the pathways by which water and contaminants reach those receptors. **Table 9.1** summarises an update to the preliminary SPR linkages identified in **Table 7.1** for the landfill.

Sources	Pathways	Receptors	Risk
	Horizontal Migration of Groundwater	River Finn	Low to Moderate
Leachate	Vertical migration to		Low to Moderate
	groundwater	Groundwater	Low
	Horizontal migration to surface water	River Finn	Moderate ¹

Note 1: This linkage is based on leachate migration for an unremediated site.

This linkage is not expected to be present following completion of the current remediation programme and is not considered further in this assessment.

Table 9.1 Updated S-P-R

9.5 Assessment of Current Groundwater Impacts & Extent of Plumes

Based on average values of Ammoniacal Nitrogen levels between 2009 and 2014 the rule of thumb of 100xGTV was not exceeded in any groundwater monitoring well. The highest level recorded was 2.63 mg/l in BH1 which is approximately 15 times the GTV. It is noted that no immediate downgradient monitoring wells currently exists between the landfill body and the River Finn. It is also unclear if BH1 is truly downgradient of the waste body or being impacted due to its proximity to the waste.

In accordance with the Water Framework Directive (WFD), the groundwater contaminant levels are unlikely to affect the status of the Raphoe GWB or likely to pose a risk to the objectives of the Water Framework Directive. The prevention of hazardous of substances entering the groundwater system is being maintained. Limiting the ingress of non-hazardous substances is being met by the mitigation measures that have been installed to date at the site and will be limited even further on completion of the reed bed/constructed wetland treatment system currently being installed at the site which will provide treatment of the leachate for the first time. It is anticipated that the new leachate treatment system will be fully operational in 2016.

The following points are noted:

- No groundwater users are located downgradient of the landfill site.
- The area of impact from the landfill leachate is considered to be minor relative to the groundwater body catchment area of the Raphoe GWB *i.e.* < 0.01%;
- Given the proximity to the landfill to the river, no significant plume, if any, is envisaged.
- The strength of the leachate is considered to be relatively low. Clear evidence exists that demonstrates the strength of leachate within the waste body is reducing over time.
- No groundwater monitoring well between the waste body and the River Finn exists and therefore the true contaminant groundwater flux to the river is unclear.
- The site in its present condition appears to be having a low impact on the quality of the River Finn with surface water discharges from the landfill site drains the dominant pathways for contaminant flux. No impact to the current WFD status of the river is anticipated. Additional monitoring is recommended to ascertain the impact occurring – in particular on completion of the current site restoration/remediation works.

10 REMEDIAL STRATEGY

Based on this hydrogeological assessment and the identified potential risk posed to the River Finn, the following actions are recommended to support the existing data set for the site, to confirm the level of risk posed and to identify possible mitigation solutions, if deemed necessary.

- It is noted that Churchtown Landfill is currently in the process of a new pilot remediation solution involving constructed wetlands and willow plantations. This programme of works is expected to significantly improve the current contaminant conditions presence at the site. Therefore the assessment undertaken within this report is based on previous and recent contaminant conditions and a reassessment of site conditions will be required following a period of 12 months post-completion of the works.
- Given the uncertainty surrounding the installation and location of monitoring well BH1, two wells are recommended along the southern boundary (i.e. between the waste body and the River Finn). In addition, a separate bedrock well is recommended in the vicinity of BH1 to ascertain impacts to deeper groundwater from the waste body. These additional wells will provide a more accurate understanding of true shallow groundwater contaminant fluxes from the waste body. Given the soft ground conditions present between the waste body and the river it is proposed to drill shallow boreholes/piezometers by hand-held window sampling techniques. Very soft ground conditions and access restrictions in this area will not facilitate the drilling of bedrock boreholes between the waste body and the River Finn.
- Hydraulic conductivity testing should be undertaken in all monitoring wells across the site to provide accurate understanding of contaminant fluxes to the river.
- Flow monitoring within both boundary drains should be undertaken to facilitate assimilative capacity assessments of discharges to the River Finn post remediation works.
- All iron ochre staining in all surface water drains should be appropriately remediated by excavation following completion of all current remediation works for the site to minimise the remobilisation of contaminated sediments in the drains post remediation.
- The current water monitoring programme as per the current EPA licence requirements and limited additional monitoring as detailed in **Table 11.1** are recommended.
- Laboratory Limits of Detection for Total Phenols should be reduced to <0.05 μg/l.
- Sampling protocol should be as per present and should include the filtration of samples for metal analysis.
- Due to uncertainty relating to quality of the laboratory results provided, in particular surrounding reported units of Iron, clarification from Donegal County Council laboratory is recommended going forward in relation to required detection and reporting limits and quality control.
- It is noted that SW5 is currently sampled from an adjacent site drain at the site. However, it is considered more beneficial if the sample location was collected from the River Finn within the mixing zone of the SW4 drain and the river.
- Appropriate surface water sampling locations and methodologies within the River Finn should be determined to ensure consistent monitoring results over time and to more accurately assess the impact of the landfill on the river.

11 COMPLIANCE MONITORING

Discharge activities subject to Tier 2 or Tier 3 assessments must undertake compliance monitoring to verify predicted impact and check compliance with terms of the authorisation. Compliance monitoring dictates that receptor-based water quality standards (or threshold values) should not be exceeded at receptor locations. For this reason sampling is conducted to monitor water quality at receptors, as appropriate.

11.1 Compliance Monitoring Locations

A compliance point is the point (location, depth) at which a compliance value should be met. Generally it is represented by a borehole or monitoring well from which representative groundwater samples can be obtained. In this case, the aim is to monitor groundwater before it enters the River Finn, downgradient of the site.

It is proposed that the existing groundwater monitoring programme be continued at the site until completion of the current remediation works at the site and the recording of at least 12 months of monitoring data post works completion. A reassessment of the proposed monitoring wells in **Section 10.0** can be reassessed on completion of an updated CSM at this stage. The existing downgradient monitoring wells are considered to be partially suitably to provide appropriate downgradient compliance monitoring locations.

11.2 Compliance Values

A compliance value is the concentration of a substance and associated compliance regime that, when not exceeded at the compliance point, will prevent pollution and/or achieve water quality objectives at the receptor. In this case, the aim is to protect surface water quality in the area.

The general chemical assessment test identifies groundwater bodies where widespread deterioration in quality has, or will, compromise strategic use of groundwater for existing or planned, human consumption and/or other potential purposes. Schedule 5 of the Groundwater Regulations (SI 9 of 2010) lists Threshold Values for selected parameters that are indicative of potential pollution events when exceeded. Where significant and sustained upward trends are identified, correcting action must be taken.

Based on the recorded groundwater quality data to-date at Churchtown Landfill, there are **no sustained upward trends in groundwater contaminant export from the site**. In addition, all parameters when detected above the GTV are significantly below the 100xGTV rule of thumb and confirm that the landfill is not affecting the WFD status of the groundwater body.

Given the existing relatively good groundwater quality both upgradient and downgradient of the landfill, it is proposed to assign compliance values based on a combination of the existing 2010 GTVs, EPA IGVs and 2 x standard deviation levels of the mean values since 2010. Exceedance of these compliance levels (see **Table 11.1**) warrants further assessment. Any exceedances should also be considered in conjunction with a trend analysis of the data to ascertain increasing levels over time. Levels below these compliance values in addition to downward or stable trends confirm that the impact or risk of the landfill on groundwater and surface waters is acceptable.

It is noted that there are on-going remediation works at the site. These works will further reduce the groundwater and surface water fluxes from the site and will further reduce the risk posed to the River Finn.

Sample ID	Current Monitoring Parameter	Current Monitoring Frequency	Proposed Monitoring Parameter	Proposed Monitoring Frequency
	Groundwater levels, Ammoniacal Nitrogen, Chloride, Dissolved Oxygen, Electrical Conductivity, pH, Temperature, Potassium, Sodium, TON, TOC, Nitrate, Nitrite, Phenols. Visual Inspection/Odour.	Quarterly	EC, pH, DO & Temp (field parameters) Groundwater levels, Ammoniacal Nitrogen, Chloride, Dissolved Oxygen, Electrical Conductivity, pH, Temperature, Potassium, Sodium, TON, TOC, Nitrate, Nitrite, Phenols. Visual Inspection/Odour.	Annually and then review post remediation and CSM review
Groundwater Monitoring BH1, BH3 & BH4 and 3 no. proposed additional monitoring wells	Boron, Cadmium, Calcium, Chromium, Copper, Cyanide, Fluoride, Iron, Lead, List I & II organic substances, Manganese, Magnesium, Mercury, Sulphate, Total Alkalinity, Total Phosphorous, Residue on evaporation, Zinc, Faecal Coliforms, Total Coliforms	Annually	Heavy Metals (<i>i.e.</i> Bo, Cd, Ca, Cr, Cu, Cn, F, Pb, Mg, Mn, Hg, Zn) Residue on Evaporation	
	TPH VOCs/sVOCs	Once-off	No change	Review post remediation and CSM review
	Groundwater levels, Ammoniacal Nitrogen, Chloride, Dissolved Oxygen, Electrical Conductivity, pH, Temperature, Potassium, Sodium, TON, TOC, Nitrate, Nitrite, Phenols. Visual Inspection/Odour.	Quarterly	Groundwater levels, Ammoniacal Nitrogen, Chloride, Dissolved Oxygen, Electrical Conductivity, pH, Temperature, Potassium, Sodium, TON, TOC, Nitrate, Nitrite, Phenols. Visual Inspection/Odour.	Quarterly continued and reducing to biannual post remediation and CSM review
Leachate Wells (L1, L2 & L3)	Boron, Cadmium, Calcium, Chromium, Copper, Cyanide, Fluoride, Iron, Lead, List I & II organic substances, Manganese, Magnesium, Mercury, Sulphate, Total Alkalinity, Total Phosphorous, Residue on evaporation, Zinc, Faecal Coliforms, Total Coliforms	Annually	Boron, Cadmium, Calcium, Chromium, Copper, Cyanide, Fluoride, Iron, Lead, List I & II organic substances, Manganese, Magnesium, Mercury, Sulphate, Total Alkalinity, Total Phosphorous, Residue on evaporation, Zinc, Faecal Coliforms, Total Coliforms	Annually
	TPH VOCs/sVOCs	Once-off	No change	Once-off post CSM review
Surface Water River Finn SW6, SW3 & SW7, Drains SW1, SW2, SW4 & SW5	Ammoniacal Nitrogen, BOD, Dissolved Oxygen, Electrical Conductivity, pH, Temperature, TSS, Chlorine, Copper, Nitrate, Nitrite, Phenols, Zinc	Quarterly	Ammoniacal Nitrogen, BOD, Dissolved Oxygen, Electrical Conductivity, pH, Temperature, TSS, Chlorine, Copper, Nitrate, Nitrite, Phenols, Zinc, Iron, Lead, ORP	Quarterly continued and reducing to biannual post remediation and

Sample ID	Current Monitoring Parameter	Current Monitoring Frequency	Proposed Monitoring Parameter	Proposed Monitoring Frequency
				CSM review
	COD, Chloride	Quarterly	No change	Quarterly continued and reducing to biannual post remediation and CSM review
	Cadmium, Calcium, Chromium, Iron, Lead, List I & II organics, Magnesium, Manganese, Mercury, Potassium, Sulphate, Sodium, Total Alkalinity, Total Phosphorous, TON.	Annually	No change	Annually

Table 11.1 Proposed Monitoring

Monitoring Well	Parameter	Compliance Value	Source
All groundwater monitoring wells	Lead	18.5 μg/l	2010 GTV
	Ammoniacal Nitrogen	BH3 (0.175 mg/l) BH4 (0.175 mg/l) BH1 (2.08 mg/l)	2010 GTV 2010 GTV 2 times Standard Deviation of the mean from 2009
	Electrical Conductivity	1000 μS/cm	EPA IGV
	Sulphate	187.5 mg/l	2010 GTV
	Iron	200 μg/l	2007 Drinking Water Regulations
	Manganese	50 μg/l	EPA IGV
	Chloride	BH3 (46.8 mg/l) BH4 (36.5 mg/l) BH1 (50.35 mg/l)	2 times Standard Deviation of the mean
	Dissolved Oxygen, pH, Temperature, Fluoride, Total Alkalinity, Orthophosphate, Total Oxidised Nitrogen, Total Organic Carbon	-	EPA IGVs, 2010 GTVs & 2007 Drinking Water Regulations
	Metals/Non-Metals (<i>i.e.</i> B, Cd, Ca, Cr, Cu, Hg, Pb, Mg, Ni, K, Na and Zn)	-	EPA IGVs, 2010 GTVs & 2007 Drinking Water Regulations
	Hazardous Substances (i.e. VOCs & SVOCs, Total Hydrocarbons)	-	EPA IGVs, 2010 GTVs & 2007 Drinking Water Regulations
All Surface Water Monitoring Locations	As per existing licence requirements	-	2009 Surface Water Regulations & 2007 Drinking Water Regulations

Table 11.2 Proposed Monitoring Parameter Thresholds

12 SUMMARY & CONCLUSIONS & RECOMMENDATIONS

- A hydrogeological risk assessment of Churchtown Landfill Site was undertaken by BREL based on previous investigation reports and monitoring data between 2006 and 2015.
- Churchtown Landfill is a former solid waste facility where historically waste was landfilled into bunded cells which were excavated from the in-situ cohesive alluvial subsoils. The excavated soils were then used in bund construction. When landfilling ceased at Churchtown the final area of the waste body was approximately 5 hectares and waste body forms a plateau shape compared to the adjacent lands.
- The site is an unlined site historically operated on a dilute and disperses principal, whereby solid waste was tipped directly onto the underlying excavated surface with leachate allowed to percolate directly through the soils with no engineered liner installed. Landfilling began in 1987 and the site ceased operations on the 31st August 2000
- On the 19th May 2000 the Environmental Protection Agency granted the Council a Waste Licence (registration number WL62-1) for the orderly closure, capping and restoration of the landfill facility, in accordance with the Third Schedule of the Waste Management Act, 1996.
- The hydrogeological regime across the landfill comprises two groundwater bodies (i.e. one within the waste body and a separate groundwater body within the overburden/shallow bedrock) that are likely to be hydraulically connected. A third groundwater body within the bedrock and flowing under pressurised artesian conditions may also be present based on the conditions encountered within monitoring well BH4. Shallow groundwater interacts with the waste mass and facilitates the generation of leachate.
- Groundwater level variability in the area significantly impacts on leachate levels within the
 waste body. The correlating increases and reductions in groundwater and leachate levels
 confirm this scenario with groundwater appearing to intersect the waste body. Groundwater
 level variations and levels upgradient of the site have a differing signature to groundwater
 levels closer to the River Finn. This suggests that the river is partially impacting on
 groundwater downgradient of the landfill.
- Following a review of the preliminary Conceptual Site Model for the site and all available water monitoring data, a revised Conceptual Site Model (CSM) was developed based on available information and monitoring data and identified a number of SPR linkages ranging from Low to Moderate risk to identified sensitive receptors i.e. the River Finn and the Raphoe GWB.
- The SPR linkage of concern relates to:
 - The vertical migration of leachate from the unlined waste cells to the underlying shallow groundwater aquifer which subsequently flows to the River Finn.
- The raw leachate results from the landfill are considered to represent a landfill in the methanogenic stage of decomposition of organic compounds. The leachate is considered to be relatively low strength and the levels, which are reducing over time, are expected to reduce further.
- Groundwater quality data does not indicate any upwards trends over time. This is expected to
 continue following completion of the current remedial measures. The only upward trend was
 recorded within BH1 with a single elevated level of Ammoniacal Nitrogen recorded in
 September 2013. On-going monitoring of this detected level in conjunction with a trend
 analysis on receipt of sufficient monitoring data over time is recommended.
- Both groundwater and surface water contaminant fluxes from the landfill have the potential to impact on the quality of the River Finn. However, available data suggests that groundwater contaminant fluxes to the river are having a negligible effect on the river downstream of the landfill. It is noted that a more representative downgradient monitoring well is required between the landfill and the river to provide a more accurate determination of this flux.

However, it also noted that site access to a suitably located downgradient monitoring may be restricted due to the proximity to the river and soft ground conditions. In relation to surface water discharges, available data suggests that surface water discharges to the river representative the predominant contaminant load to the river. The effects of this loading on the river are considered to be low with significant dilution capacity available within the river itself.

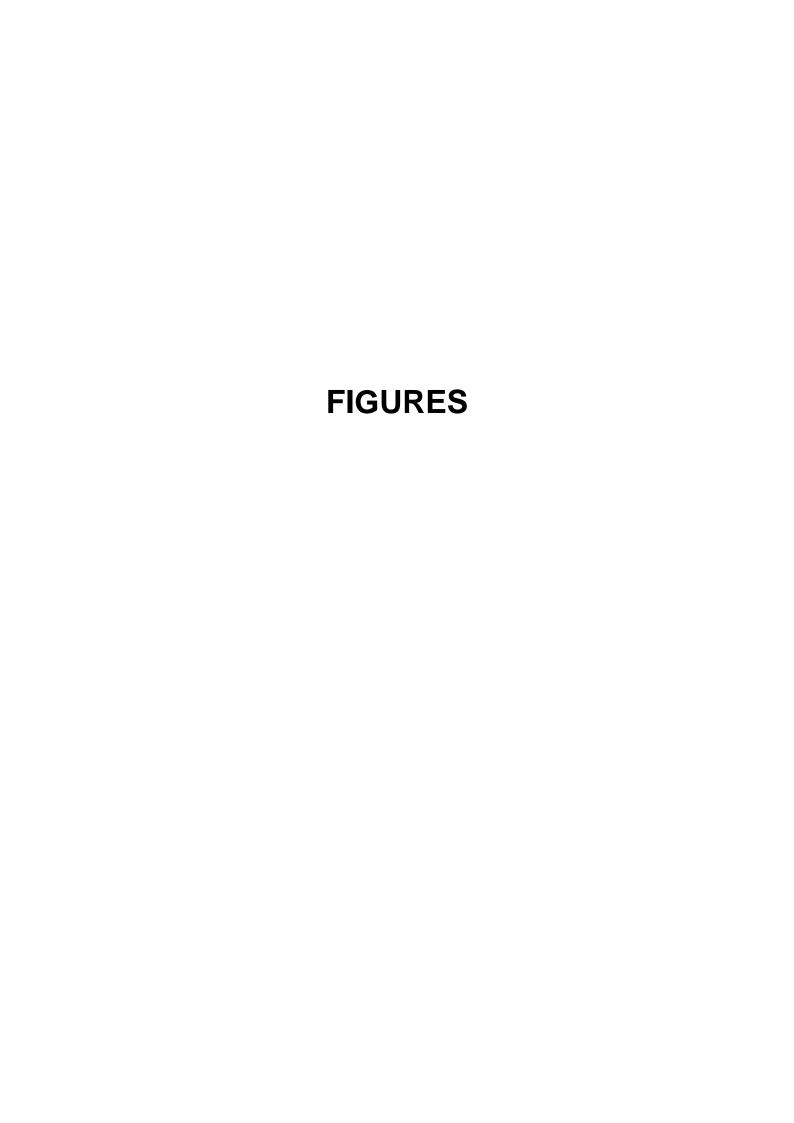
- Based on the water quality data, the landfill does not affect the current status of the River Finn and is in accordance with the WFD objectives.
- The rule of thumb of 100xGTV has not been exceeded in any groundwater monitoring well at the site. The highest Ammoniacal Nitrogen level recorded was 2.63 mg/l in BH1 (February 2009) which is approximately 15 times the GTV. In accordance with the Water Framework Directive (WFD), these levels are not likely to affect the status of the Raphoe GWB nor potentially pose a risk to the objectives of the Water Framework Directive. No groundwater contaminant plume has been identified to-date from the existing groundwater monitoring network.

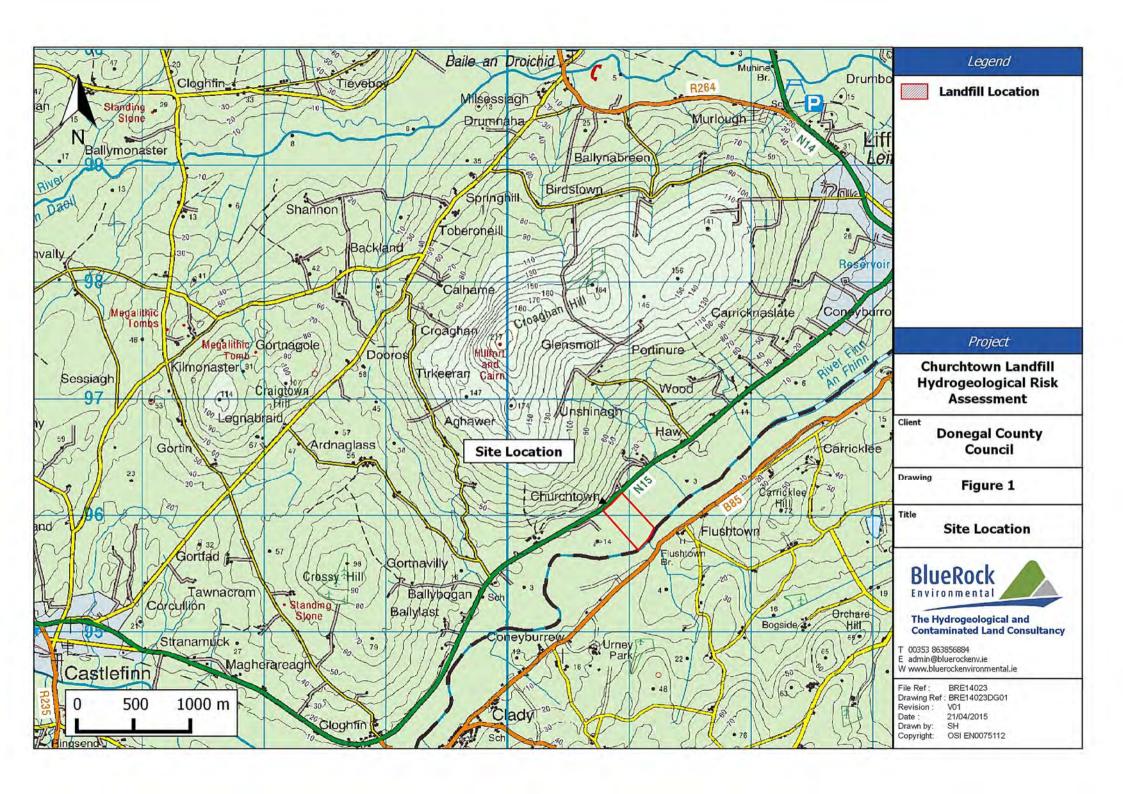
The following points are noted:

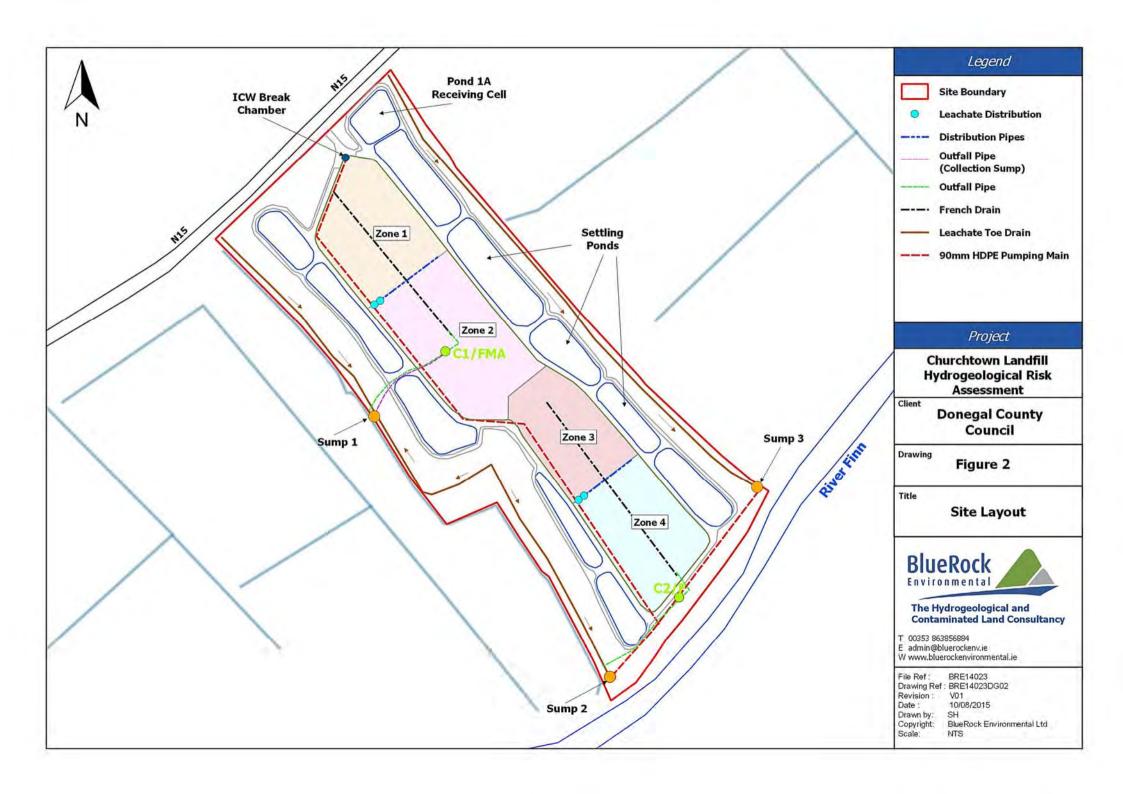
- No groundwater users are located downgradient of the landfill site.
- ✓ The area of impact from the landfill leachate is considered to be minor relative to the groundwater body catchment area of the Raphoe GWB i.e. < 0.01%;
 </p>
- Given the proximity to the landfill to the river, no significant plume, if any, is envisaged.
- ✓ The strength of the leachate is considered to be relatively low. Clear evidence exists that demonstrates the strength of leachate within the waste body is reducing over time.
- ✓ No groundwater monitoring well between the waste body and the River Finn exists and therefore the true contaminant groundwater flux to the river is unclear.
- ✓ The site in its present condition appears to be having a low impact on the quality of the River Finn with surface water discharges from the landfill site drains the dominant pathways for contaminant flux. No impact to the current WFD status of the river is anticipated. Additional monitoring is recommended to ascertain the impact occurring in particular on completion of the current site restoration/remediation works.
- The site is compliant with the "prevent" or "limit" objective of the WFD and GWD. The prevention of hazardous of substances entering the groundwater system is being met based on available chemical analysis. Limiting the ingress of non-hazardous substances is also being met by the mitigation measures that have been installed to date at the site *i.e.* landfill capping and lining of surface water drains and mitigations currently being installed *i.e.* active leachate treatment by willow plantations and constructed wetlands.
- Corrective actions undertaken to-date at the site includes:
 - ✓ A permanent landfill capping across the entire waste body;
 - The development of a willow bed plantation and constructed wetlands over the waste body to treat all leachate generated on site and disposal to the River Finn. This system is currently being developed at the site, and,
 - On-going groundwater and surface water monitoring as per the licence requirements.
- In summary, based on available site data, the risk posed by Churchtown Landfill on the River Finn is considered to be low in the immediate vicinity of the e landfill. The predominant contamination linkage to the river is via surface water drain discharges from the landfill site to the river. Monitoring data indicates that these discharges are having a low impact on the quality of the River Finn. In addition, it is anticipated that on completion of the current remedial measures being implemented at the site, this impact will reduce further over time.
- A series of additional recommendations to provide a more representative understanding of the
 contaminant fluxes to the River Finn have been provided in Section 10.0. It is noted that as the
 site is actively undergoing remediation works, it is proposed that these recommendations are
 considered after at least 12 months of groundwater level and water quality monitoring post full

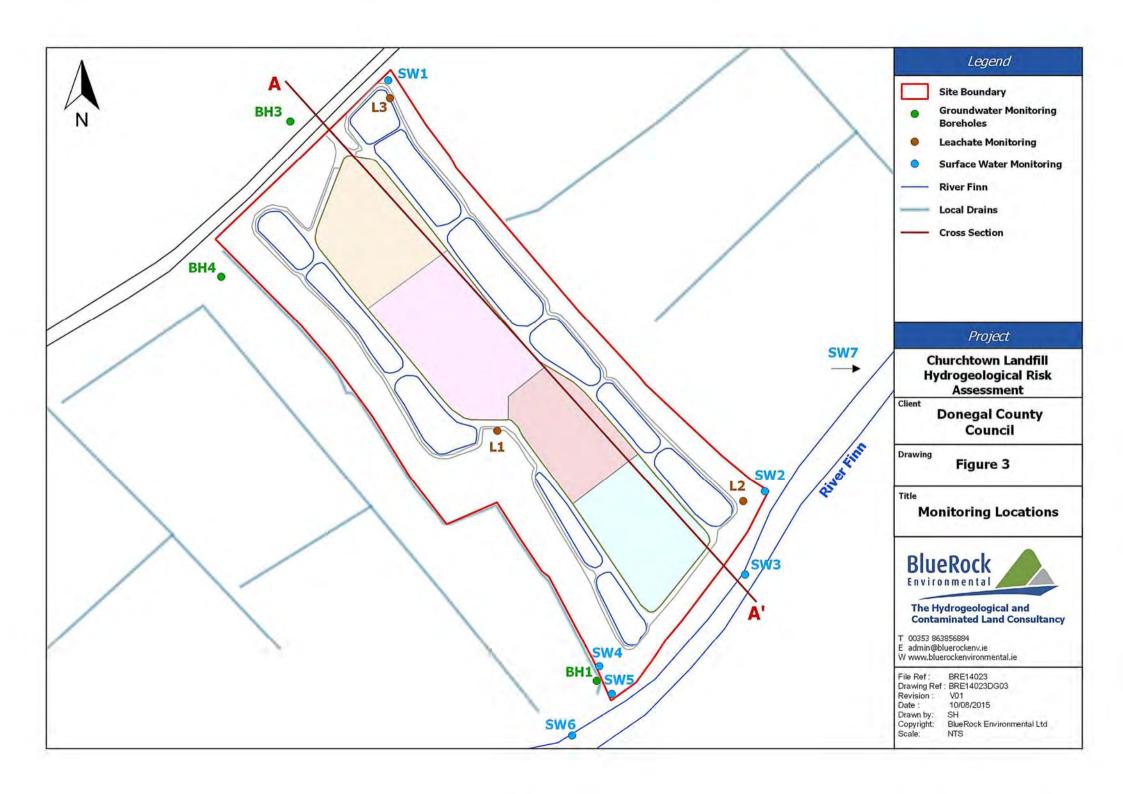
completion of the works. A revised CSM will be undertaken at this stage and the proposed recommendations reassessed. In the meantime, the current monitoring programme is considered sufficient as an interim measure until completion of the remediation works.

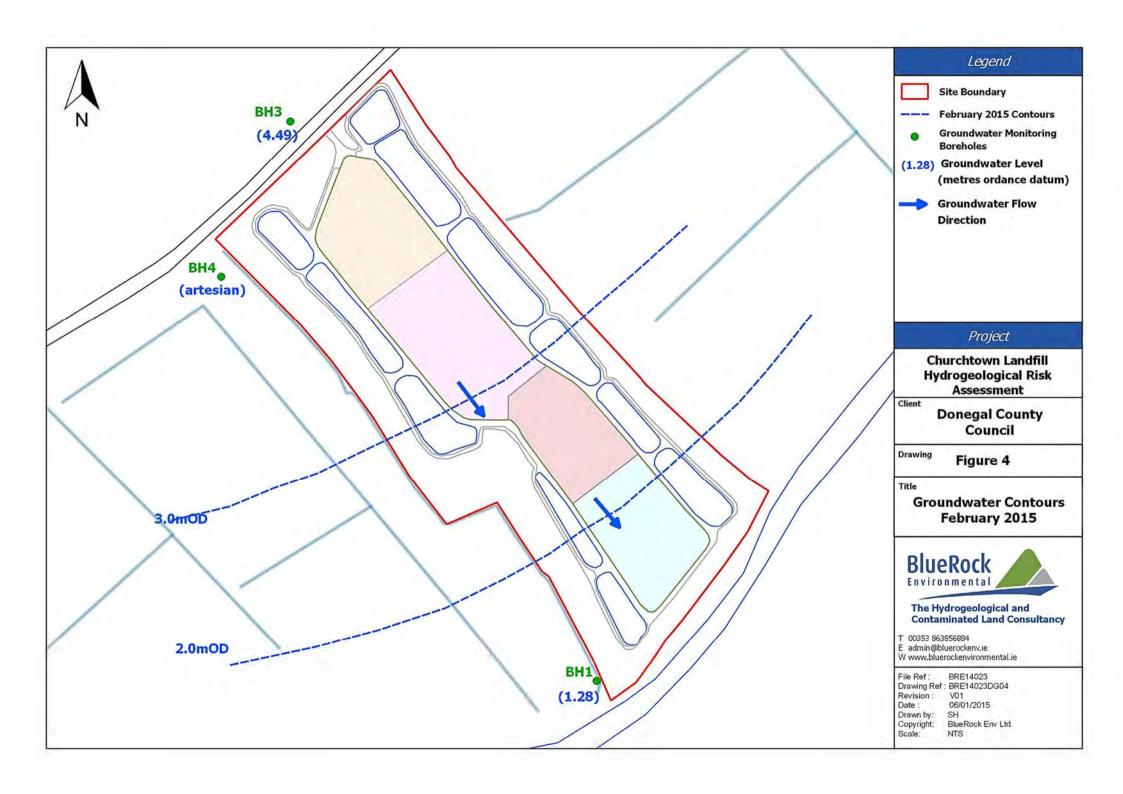
000000

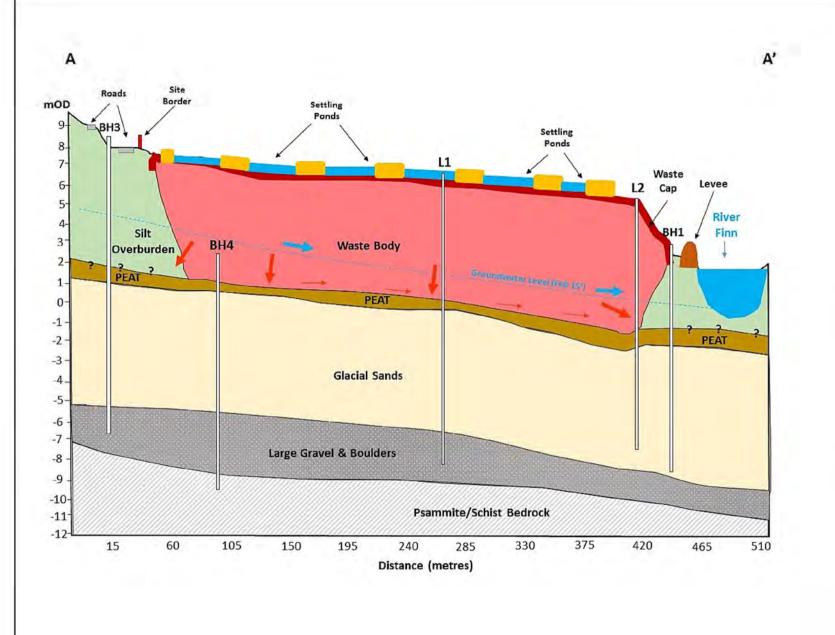

Respectfully submitted by


Niall Mitchell


NielOHitele


Hydrogeologist / Chartered Engineer


On behalf of Donegal County Council (Waste Licence No. WL62-1)



Legend

Leachate Flow Direction

-

Groundwater Flow Direction

Project

Churchtown Landfill Hydrogeological Risk Assessment

Client

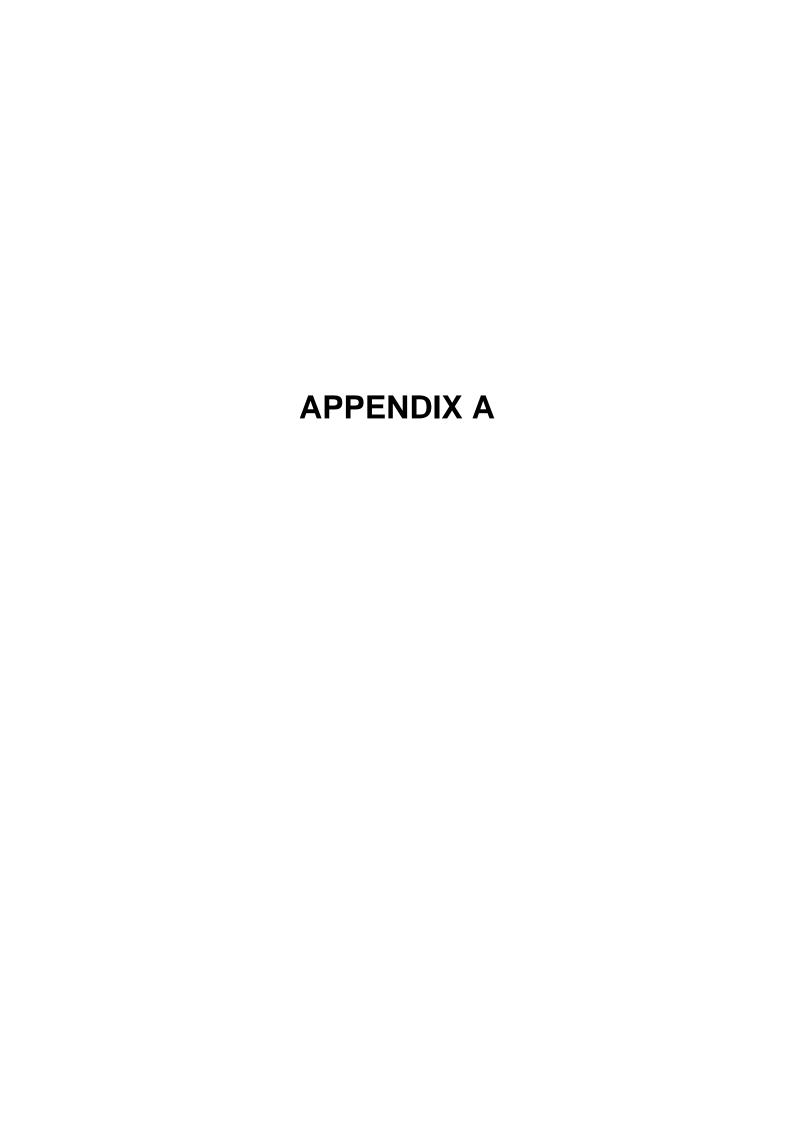
Donegal County Council

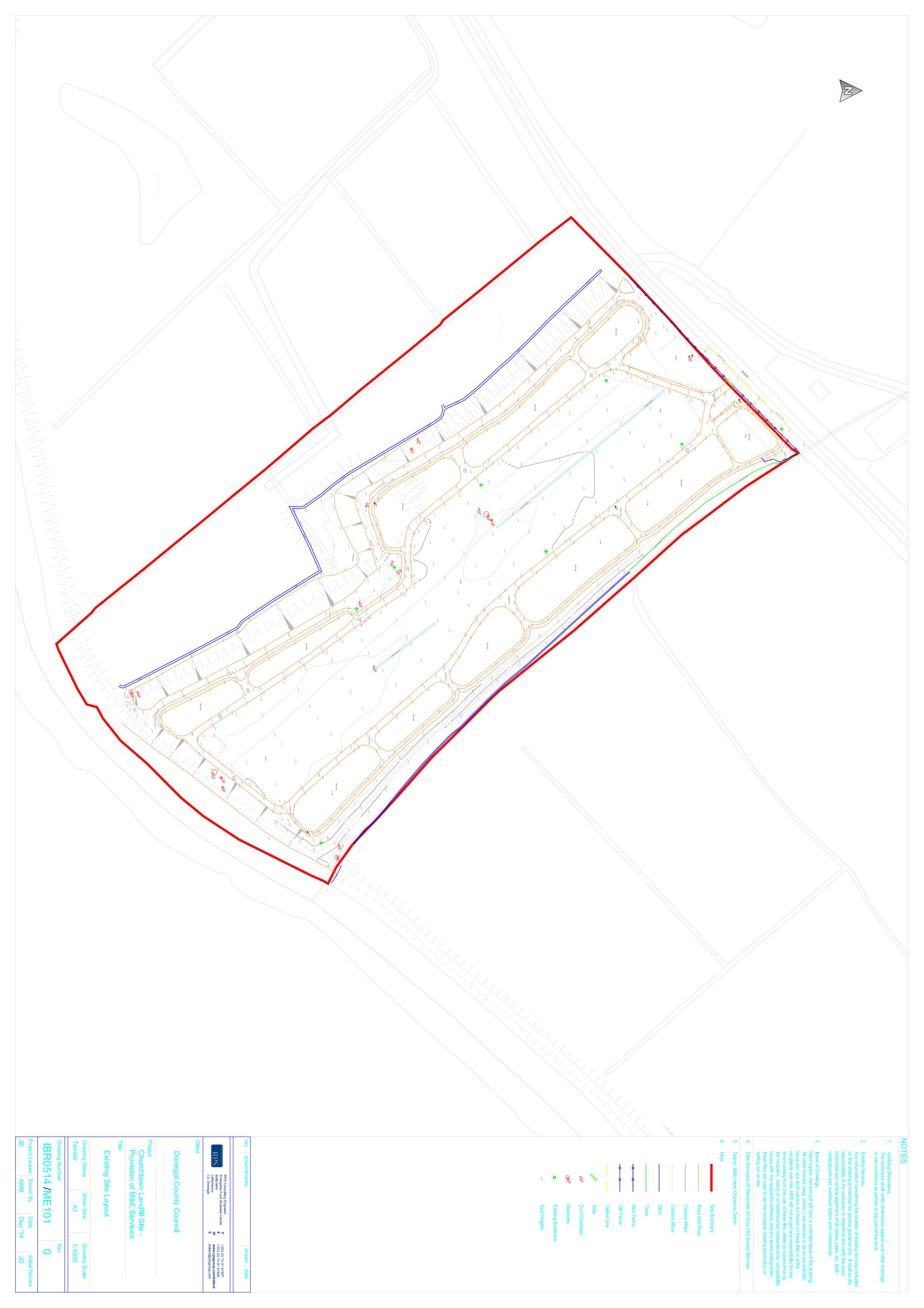
Drawing

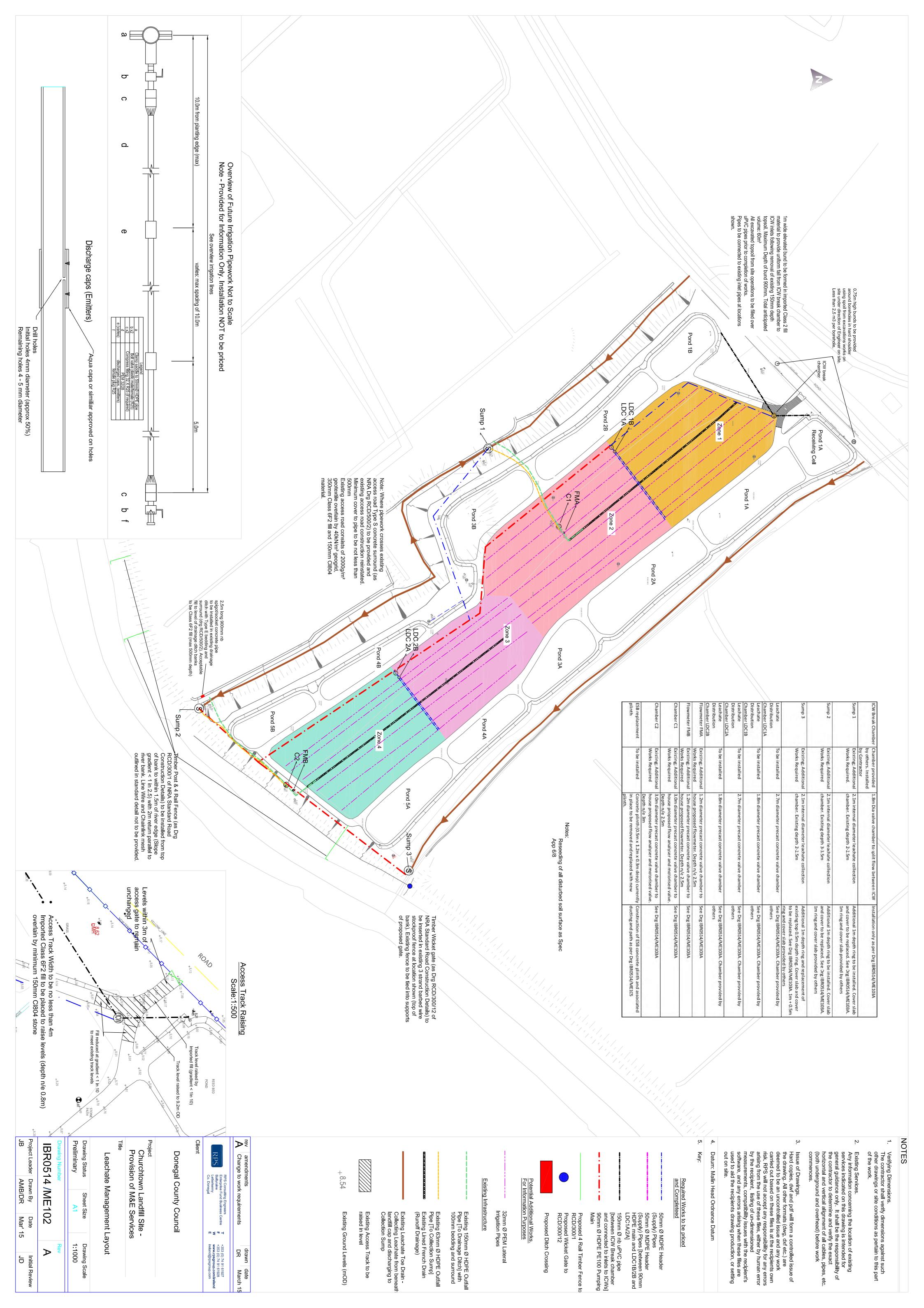
Figure 5

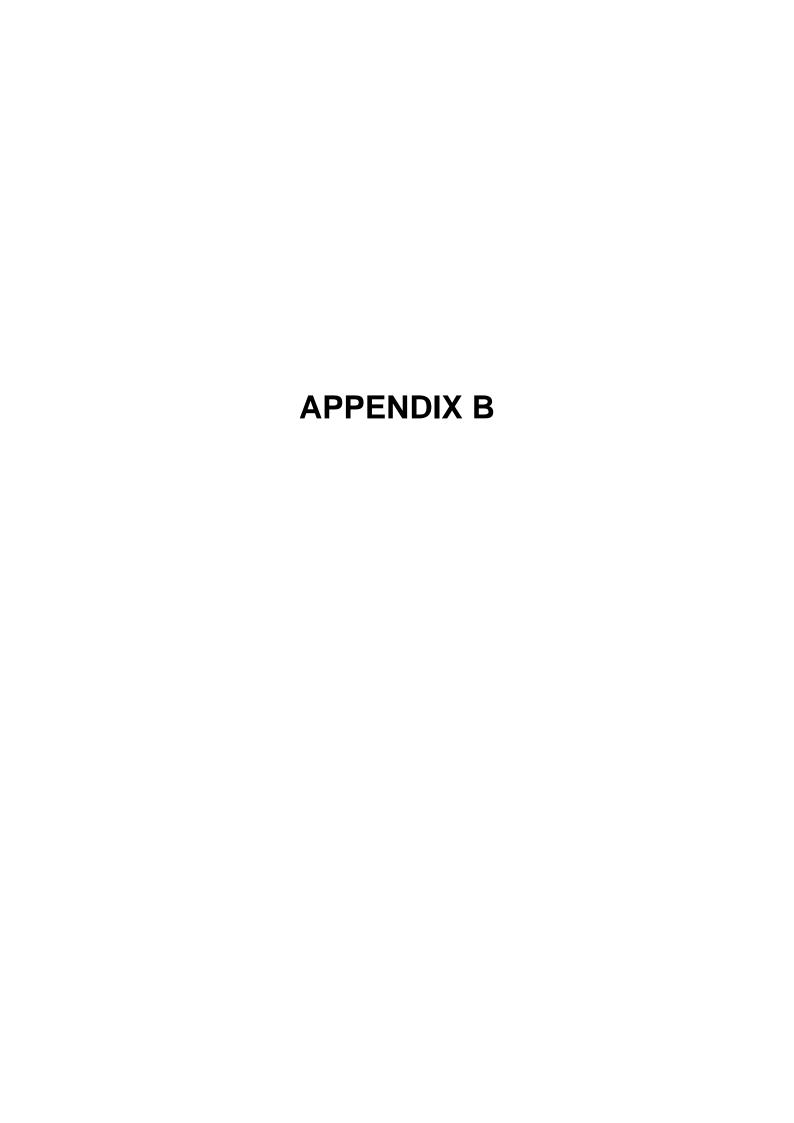
Title

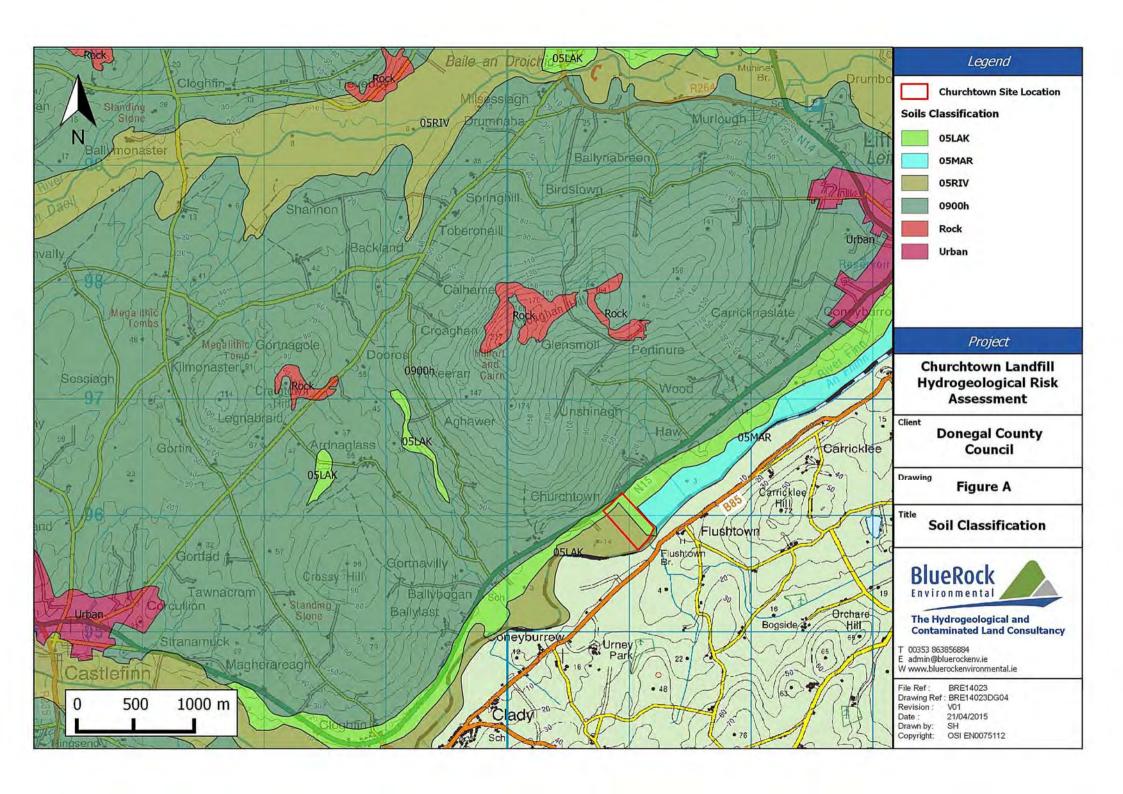
Conceptual Site Model

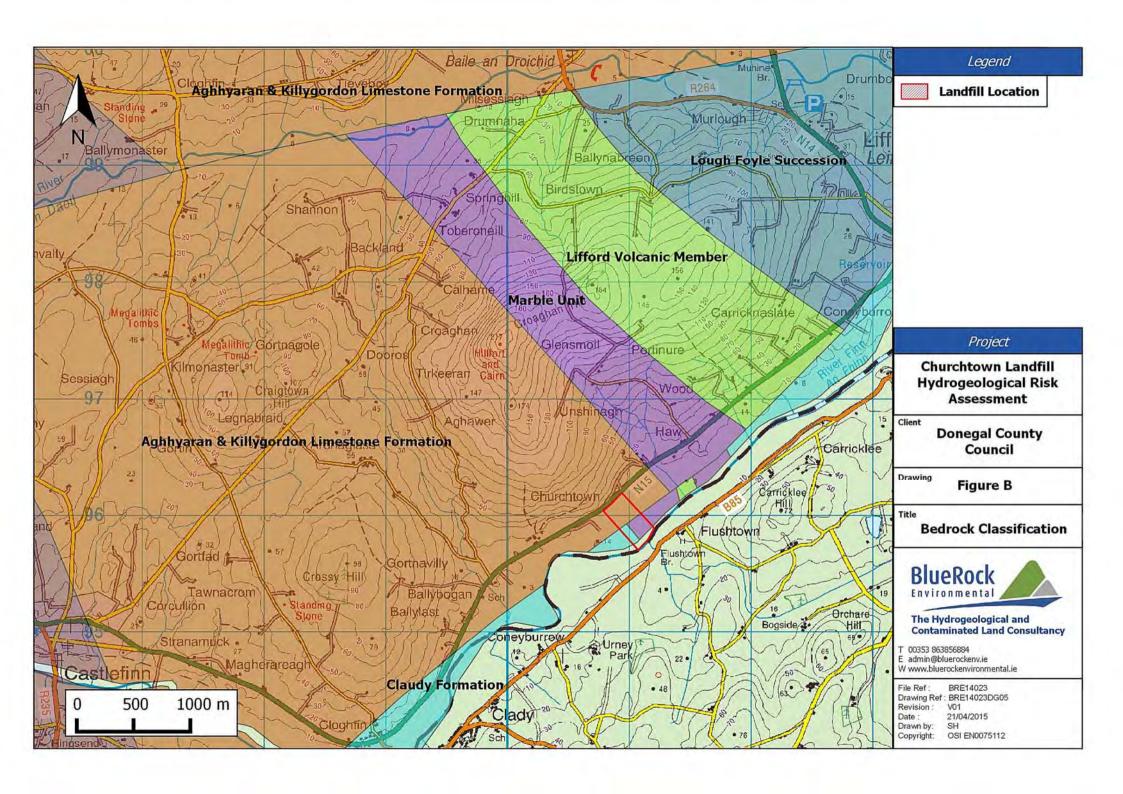


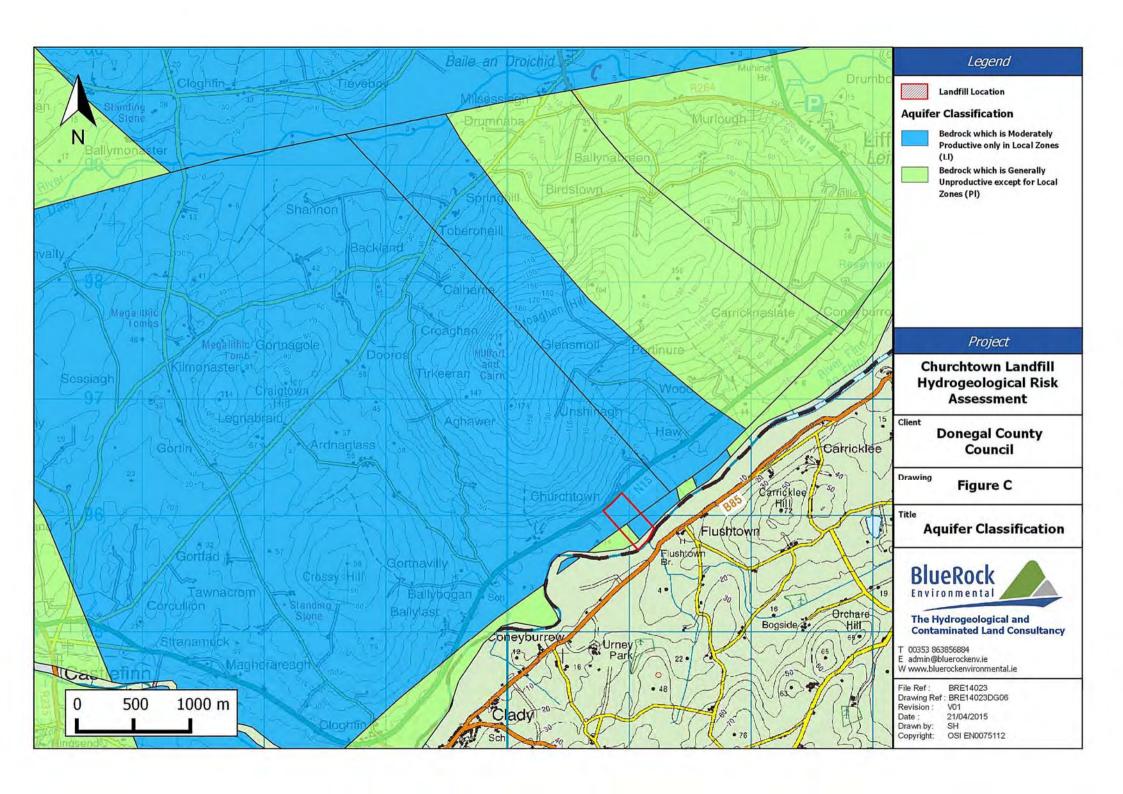

The Hydrogeological and Contaminated Land Consultancy.

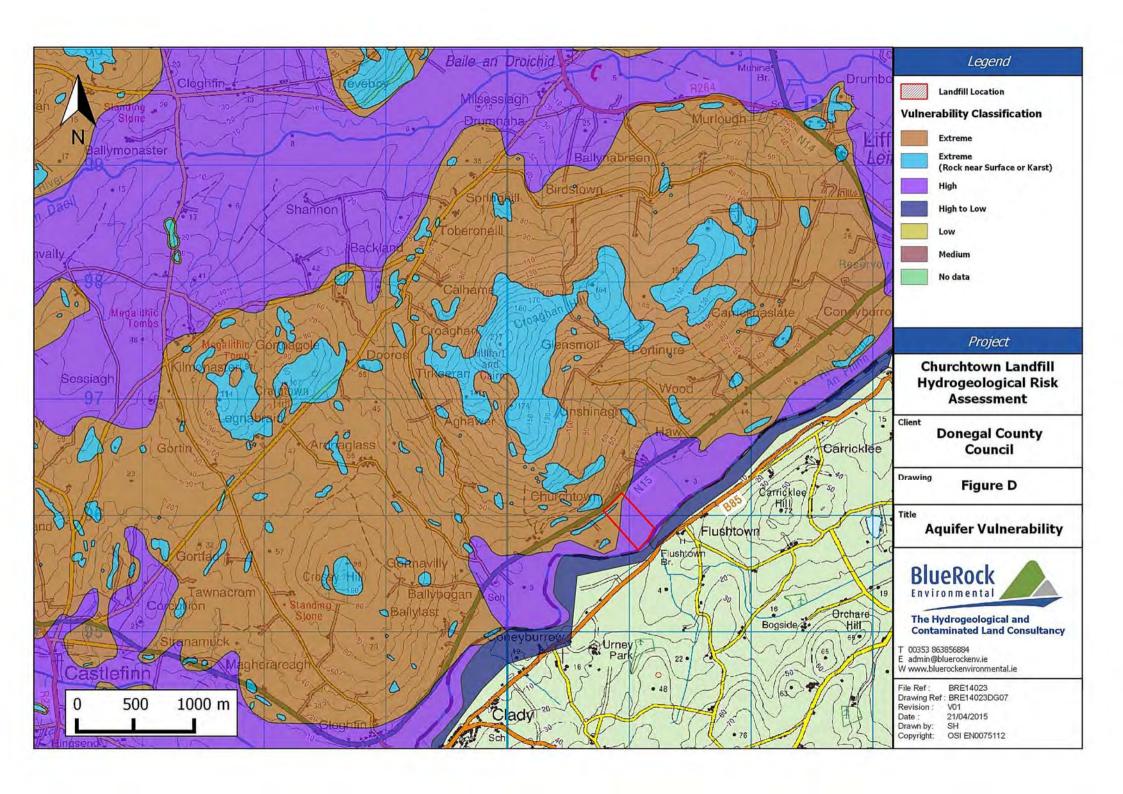

T 00353 863856884 E admin@bluerockenv.ie W www.bluerockenvironmental.ie

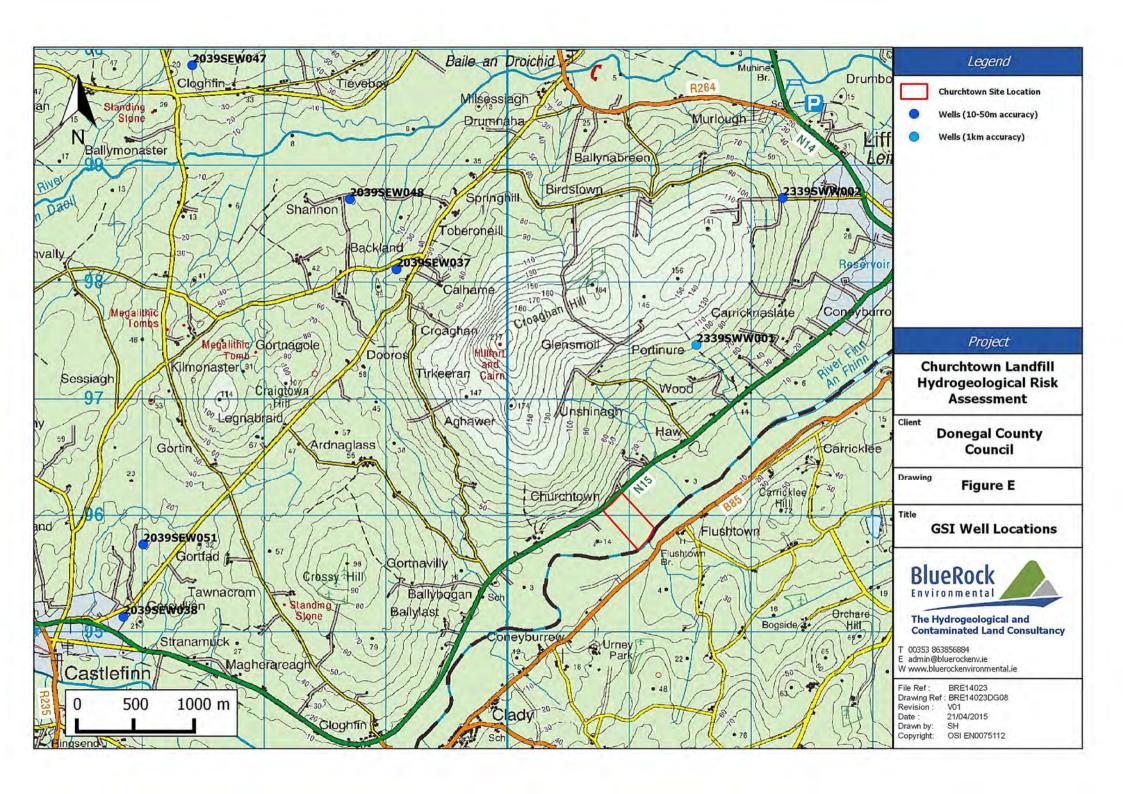

File Ref : BRE14023 Drawing Ref : BRE14023DG01 Revision : V01 Date 21/04/2015 Drawn by: SH

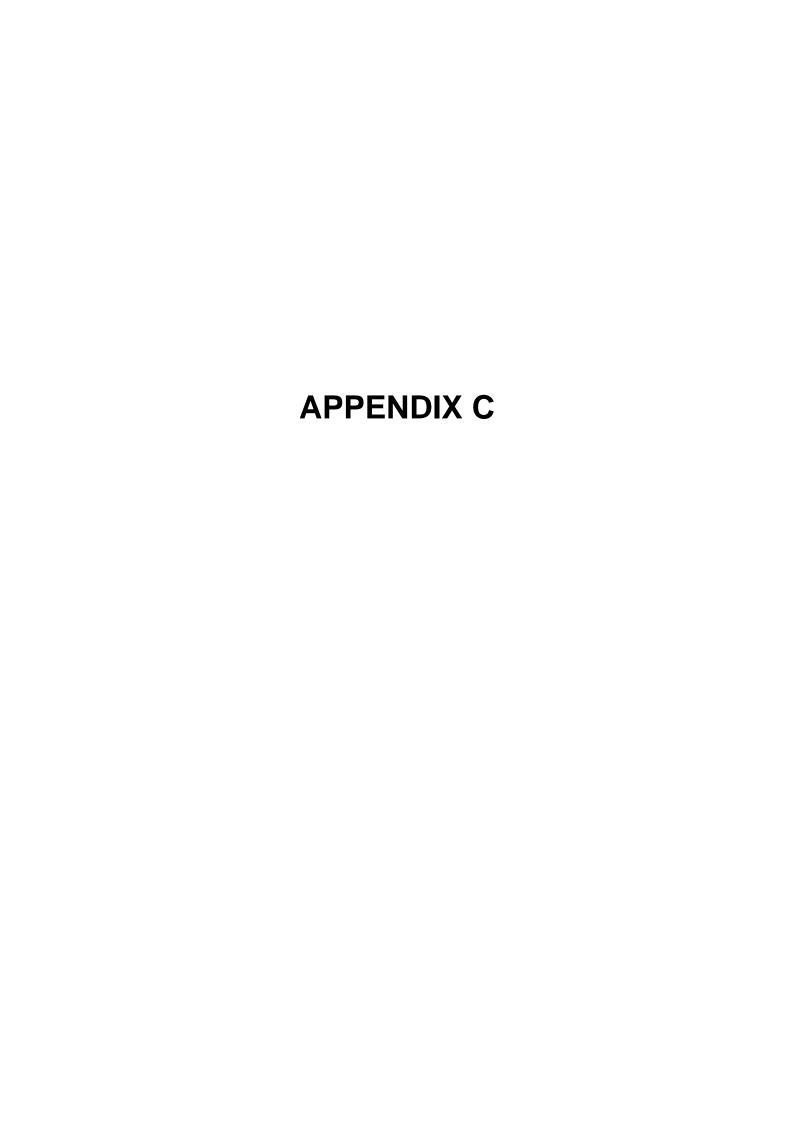

Copyright: OSI EN0075112











REPLACEMENT WELLS

Drumaboden & Churchtown Landfill Sites County Donegal

Report No: 05-135

Client: Donegal County Council

Engineer: RPS Kirk McClure Morton

Drumaboden & Churchtown Landfill Sites County Donegal Replacement Wells

CONTENTS									
Note on: Methods of describing soils and rocks									
1 AUTHOR	1 AUTHORITY								
2 DESCRIP	TION OF FIELDWORK	1							
Appendix 1	Borehole Logs								
Appendix 2	References								
Appendix 3	Geological Map of the Sites								
Appendix 4	Site Location Plans								

Methods of describing soils and rocks

Soil descriptions are based on the guidance in Section 6 of BS 5930: 1999, *The Code of Practice for Site Investigation*, with the following exceptions:

1. Where the strength of clay is based on field assessment without the availability of laboratory or in-situ test results the following terms are used, where applicable:

soft to firm:

clay with undrained shear strength close to the BS5930 boundary (40kPa)

between soft and firm soil.

firm to stiff:

clay with undrained shear strength close to the BS5930 boundary (75kPa)

between firm and stiff soil.

2. The relative density of coarse-grained soils, described in trial pit logs, is based on field observations including stability of pit sides and the ease/difficulty of excavation. The description is for indicative purposes only: as required by BS 5930, the relative density should only be determined by use of insitu tests, including standard penetration tests.

Drumaboden & Churchtown Landfill Sites County Donegal Replacement Wells

1 **AUTHORITY**

On the instructions of the Engineer RPS Kirk McClure Morton, Glover Site Investigations Ltd were instructed to install four replacement gas monitor wells at Drumabodan and Churchtown Landfill Sites in County Donegal on behalf of the Client Donegal County Council.

2 DESCRIPTION OF FIELDWORK

Four boreholes were drilled by means of a Competitor 130 light percussion drilling rig on the 28th and 29th of April 2005. These boreholes were LG6 and LG8 in Drumaboden and LG8 and LG9 in Churchtown. In addition, a new gas valve and flush cover were installed in LG7 at Drumaboden.

Gas monitoring standpipes were installed in each well slotted from the bottom to 1.0 metre below ground level with a gravel pack.

The top metre was backfilled with a bentonite seal and a flush lockable cover was fitted.

A stainless steel plate was installed on the flush cover to aide in identification.

The other headworks were stripped back and the installation pipe-work checked prior to new gas valves and headworks being installed in LG7 at Drumboden.

The original wells which were removed showed no visible signs of damage but were replaced as it was reported that there were no inflows of gas into the well.

The new wells were replaced to best practice standards to maximise inflows of gas into the wells, but if the gas is not present in the strata then there will be no inflows into the replacement wells.

Appendix 1

Borehole Logs

Glo	ver Sit	e Ir	ive	stigatio	ns	Ltd	Site Drumaboden Landfill Site, County Donegal	Bore Num LO	
Boring Method Competitor 130			Diamete 0mm cas	r ed to 6.00m	Ground	Level (mOD)	Client Donegal County Council	Job Number 05-135 Sheet	
		Locatio As	n Plan		Dates 28/04/05		Engineer RPS KMM		
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Leger	A Water
Remarks				Water strike(1) at 3.80m. 28/04/05	1.000	(1.20) 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	TOPSOIL MADE GROUND: Soft to firm light grey brown gravelly sandy CLAY (FILL) Spongy dark brown pseudofibrous PEAT Uncompact grey organic fine sandy SILT Complete at 6.00m	alter	\(\frac{1}{2}\)
nemarks Installed 38t	mm standpipe to 6.00	m. Grave	l pack 6.0	00m - 1.00m, bentonite	1.00m -	0.00m. Flush k			
							1:50 Figure		
							05-	-135.LG6	3

Glo	ver Sit	e In	ve	stigatio	ns	Lt	d	Site Drumaboden Landfill Site, County Donegal		Borehole Number LG8	*
Boring Meti Competitor		Casing 15	Ground Level (mOD)			Client Donegal County Council		Job Number 05-135			
		Location As Plan			Dates 28/04/05		5	Engineer RPS KMM		Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Thic	epth (m) ckness)	Description	- 1	Legend to	Marci
Remarks				Water strike(1) at 3.00m.		<u> </u>	0.10 (0.70) 0.80 (3.40) 4.20 (1.80)	TOPSOIL MADE GROUND: Soft grey brown gravelly sandy C (FILL) Spongy dark brown pseudofibrous PEAT Uncompact grey organic fine sandy SILT Complete at 6.00m		able when a she able able able able able able able abl	Z1
Remarks Installed 38	3mm standpipe to 6.0	0m. Slotte	ed from 6.	.00m - 1.00m with gra	vel pack, l	benton	ite seal	1.00m - 0.00m. Flush lockable cover fitted	Scale (approx)	1	
									1:50 Figure N	DC/CM	1
										135.LG8	

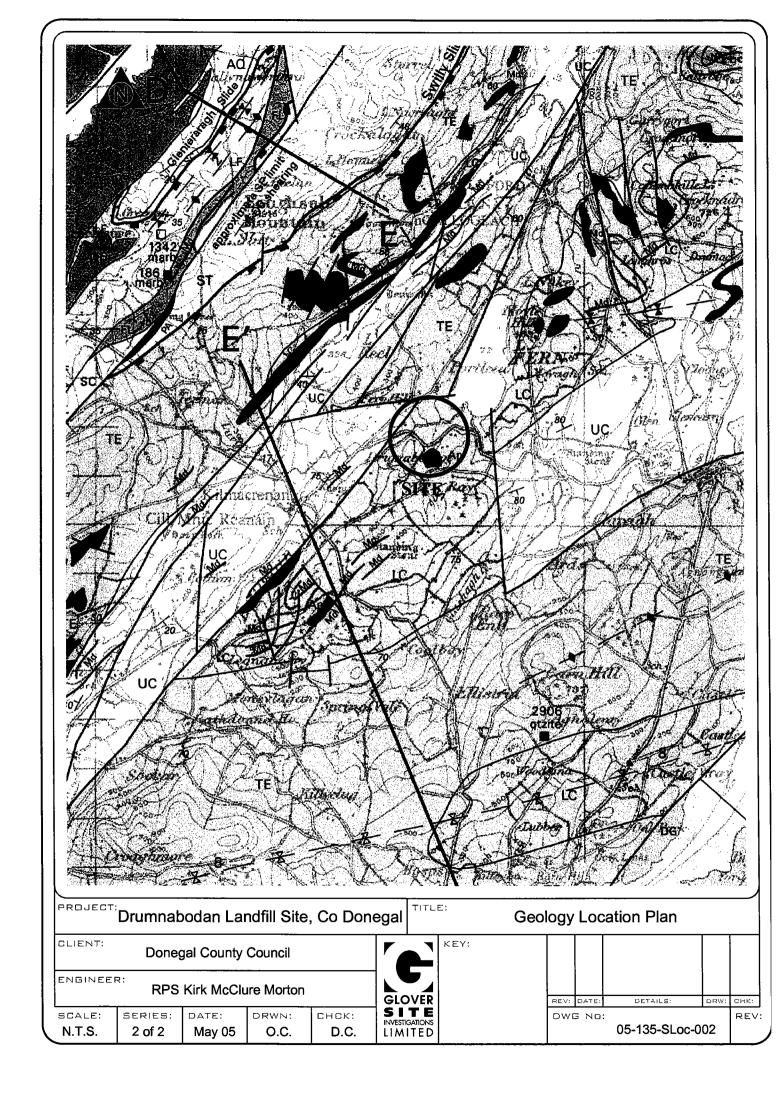
Gio	Glover Site Investigation				ons	Ltd	Site Churchtown Landfill Site, Lifford, County Donegal		orehole umber LG8
Boring Method Competitor 130		Casing Diameter 150mm cased to 6.00m Location As Plan			Ground	Level (mOD)	Client Donegal County Council		ob umber 05-135a
					Dates 29/04/05		Engineer RPS KMM	Sheet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Leç	Mater Dues
Remarks nstalled 38m	nm standpipe to 6.00n	n. Gravel	pack 6.00	Water strike(1) at 2.70m. 29/04/05			TOPSOIL Firm brown slightly gravelly sandy CLAY Medium dense light brown gravelly fine to coarse SAND Soft grey (damp) sandy gravelly CLAY Complete at 6.00m		gged
installed 38M	ин ѕканаріре to 6.00 n	ii. Gravel	pack 6.00	ज्ञा - 1.00m, pentonite	seal 1.00n	n - ∪.∪∪m. Hu:	sh lockable cover fitted (app)		C/CM
							Figi	ure No.	
								05-135a.L0	3 8

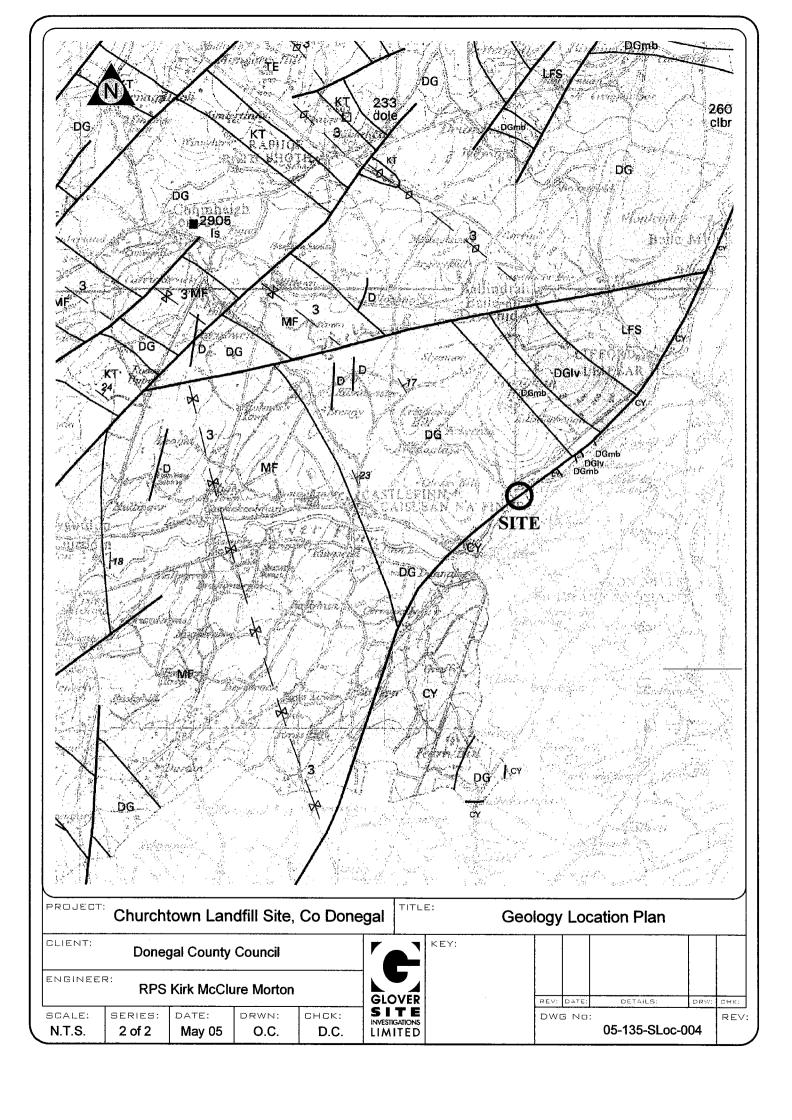
Glover Site Investig			stigatio	ons	Ltd	Site Churchtown Landfill Site, Lifford, County Donegal		Boreho Numbe LG9			
Boring Method Competitor 130		Casing Diameter 150mm cased to 6.00m Location As Plan			Ground	Level (mOD)	Client Donegal County Council		Job Number 05-135a		
					Dates 29/04/05		Engineer RPS KMM		Sheet		
Depth (m)	Depth (m) Sample / Tests		Casing Water Depth (m) Field Records		Level Depth (m) (Thickness)		Description		Legend	Water	
				Water strike(1) at 2.70m.		2.70	TOPSOIL Medium dense light brown gravelly fine to coarse S Soft grey (damp) sandy gravelly CLAY Complete at 6.00m	AND			
Remarks Installed 38m	ım standpipe to 6.00r	n. Gravel	pack 6.0	0m - 1.00m, bentonite	seal 1.00r	m - 0.00m with	flush cover	Scale (approx)	Logged By	 	
								1:50 Figure N	DC/CM	_	
									5a.LG9		

Appendix 2
References

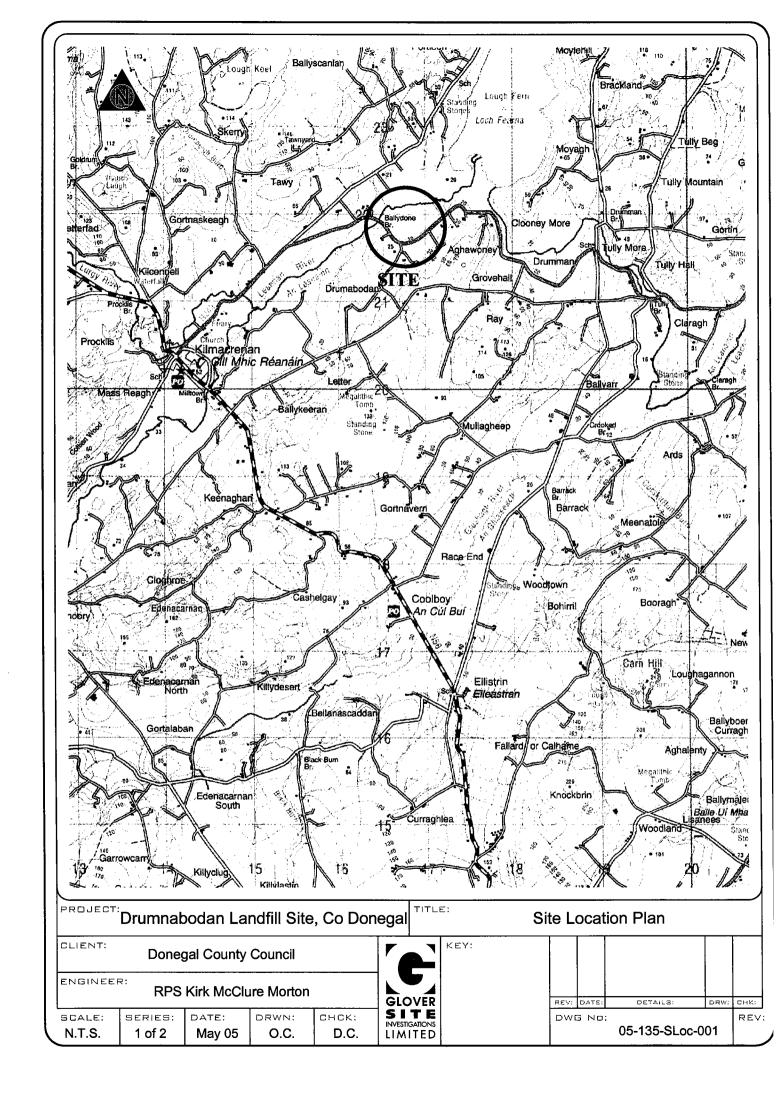
REFERENCES

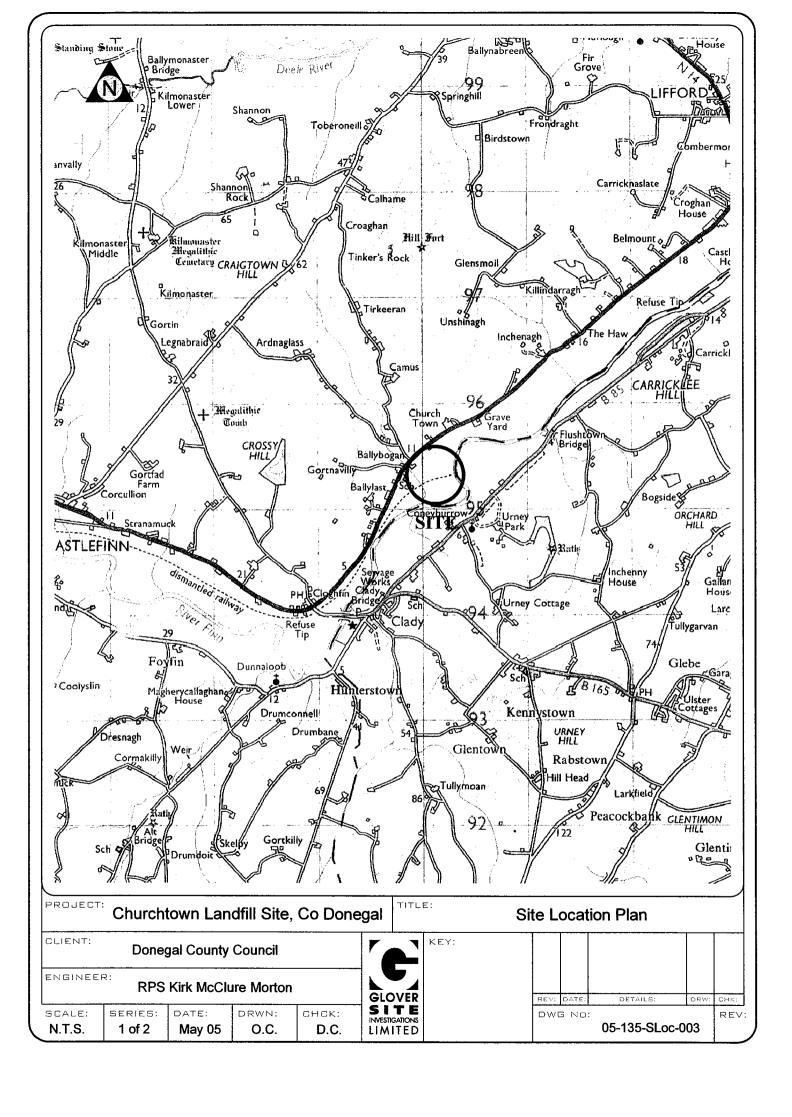
DRUMABODEN


- 1. The Code of Practice for Site Investigation Fieldwork BS: 5930: 1999
- 2. The Code of Practice for Site Investigation Laboratory Testing BS 1377 Parts 1 to 9: 1990
- 3. Ordnance Survey of Ireland Discovery Series Sheet No. 6
- 4. Geological Map of the Site Sheet No. 1 & 2


REFERENCES

CHURCHTOWN


- 1. The Code of Practice for Site Investigation Fieldwork BS: 5930: 1999
- 2. The Code of Practice for Site Investigation Laboratory Testing BS 1377 Parts 1 to 9: 1990
- 3. Ordnance Survey of Ireland Discovery Series Sheet No. 12
- 4. Geological Map of the Site Sheet No. 3&4


Appendix 3
Geological Map of the Sites

Appendix 4
Site Location Plans

SITE RESTORATION CONTRACT
CHURCHTOWN LANDFILL
LIFFORD
COUNTY DONEGAL

GROUND INVESTIGATION REPORT

Client: Donegal County Council

Engineer: TAL Civil Engineering Ltd

Job Ref: 14-1170

Issued: February 2015

CONTENTS

1.0	INTRODUCTION	3
1.1	Terms of Reference	3
1.2	Method	3
2.0	SITE DESCRIPTION	5
	GROUND CONDITIONS	
3.1	Geology	6
3.2	Ground Conditions	6
3.3	Groundwater	6

FIGURES

APPENDIX A: BOREHOLE LOGS AND INSTRUMENTATION DETAILS

APPENDIX B: GAS AND GROUNDWATER LEVEL MONITORING RESULTS

APPENDIX C: GEOTECHNICAL LABORATORY TEST RESULTS

ii

1.0 INTRODUCTION

1.1 Terms of Reference

Ground Check Ltd was commissioned by TAL Civil Engineering Ltd, acting on behalf of Donegal County Council, to undertake a ground investigation for a site restoration contract at Churchtown Landfill, Lifford, County Donegal. The location of the site is shown by Figure 1.

1.2 Method

The ground investigation was undertaken in accordance with the guidelines set-out in BS5930:1999 + A2 2010, Code of practice for site investigations and UK Specification for Ground Investigation, 2nd edition (2011), BS EN 1997-2 (2007) and BS EN ISO 22475-1 (2006) and related standards and the scope of works comprised of the following elements.

Exploratory Holes

The locations of exploratory holes are shown by Figure 2 and logs are included in Appendix A.

- Shell and Auger Boreholes: Eleven boreholes were sunk using a Dando 2000 shell and auger drilling rig and were advanced using 200mm diameter casing and tools.
- Rotary Percussive Drilling: One borehole (BH4) was sunk using a Commachio MC305 rig equipped with
 Symmetrix casing and tools and air flush.
- Rotary Core Drilling: Intact core specimens of rock were recovered in one borehole (BH4) using a T2 86 core barrel with double liner.

Sampling & In-situ Testing

- Disturbed samples: comprising sealed plastic bags of soil were recovered at intervals shown on the borehole logs, generally being taken at one metre depth increments and from each stratum.
- Bulk samples: comprising soil sealed in heavy gauge plastic sacks were recovered at intervals shown on the logs.
- Groundwater Samples: were recovered where possible during drilling or from borehole standpipes after purging and were contained in one litre plastic bottles.
- Standard Penetration Tests (SPT): were undertaken at intervals shown on the borehole logs and were conducted in accordance with BS1377:1990 Code of Practice: Methods of Test for Soils for Engineering Purposes Part 9 In-Situ Tests.
- Variable Head Permeability Test: was scheduled to be undertaken in the completed standpipe installation of BH04. Due to the strong artesian flow recorded in BH04 a rising head test could not be performed.

3 14-1170

Instrumentation & Monitoring

- Standpipe Installations: selected boreholes were installed with a 50mm HDPE slotted standpipe and gravel pack on completion of drilling and the depth and length of the response zone were scheduled by the Engineer. Construction details of the standpipe installations and headworks are given on the relevant borehole logs which are presented in Appendix A.
- Gas and Groundwater Monitoring: One monitoring visits were undertaken by a geotechnician and were performed in accordance with CIRIA C665 guidance using a GFM-430 gas meter fitted with an internal flow pod. Water levels were measured using an electronic dip-meter. Monitoring results are presented in Appendix C.

Geotechnical Laboratory Testing

Selected soil, groundwater and rock core samples were scheduled for the following laboratory tests which were conducted in accordance with procedures outlined in BS1377. Results are included in Appendix D.

Particle Size Distribution

2.0 SITE DESCRIPTION

The site is situated on the southern side of the N15 road about 4kms south west of Lifford, County Donegal. The ground surface is generally flat but is elevated above the adjacent ground near its western and southern boundaries. The River Finn is located directly to the south of the landfill site. The existing layout of the site is shown by Figure 2 and Plate 1 provides an aerial overview.

Plate 1: Overview of Site

5 14-1170

3.0 GROUND CONDITIONS

3.1 Geology

The geological maps of the area indicate that the site is underlain by the following strata.

- Recent Deposits
- Glacial Deposits
- Bedrock [DALRADIAN]

3.2 Ground Conditions

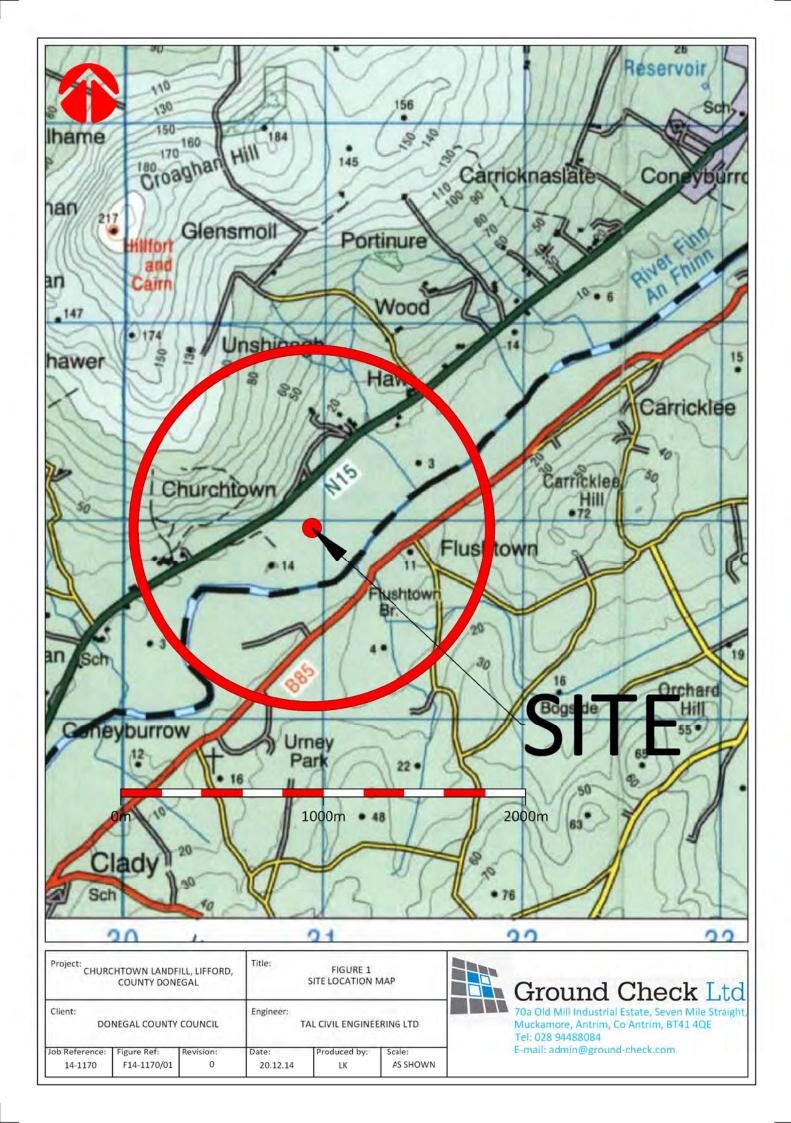
The findings of the ground investigation are listed in Table 1 and are summarised below.

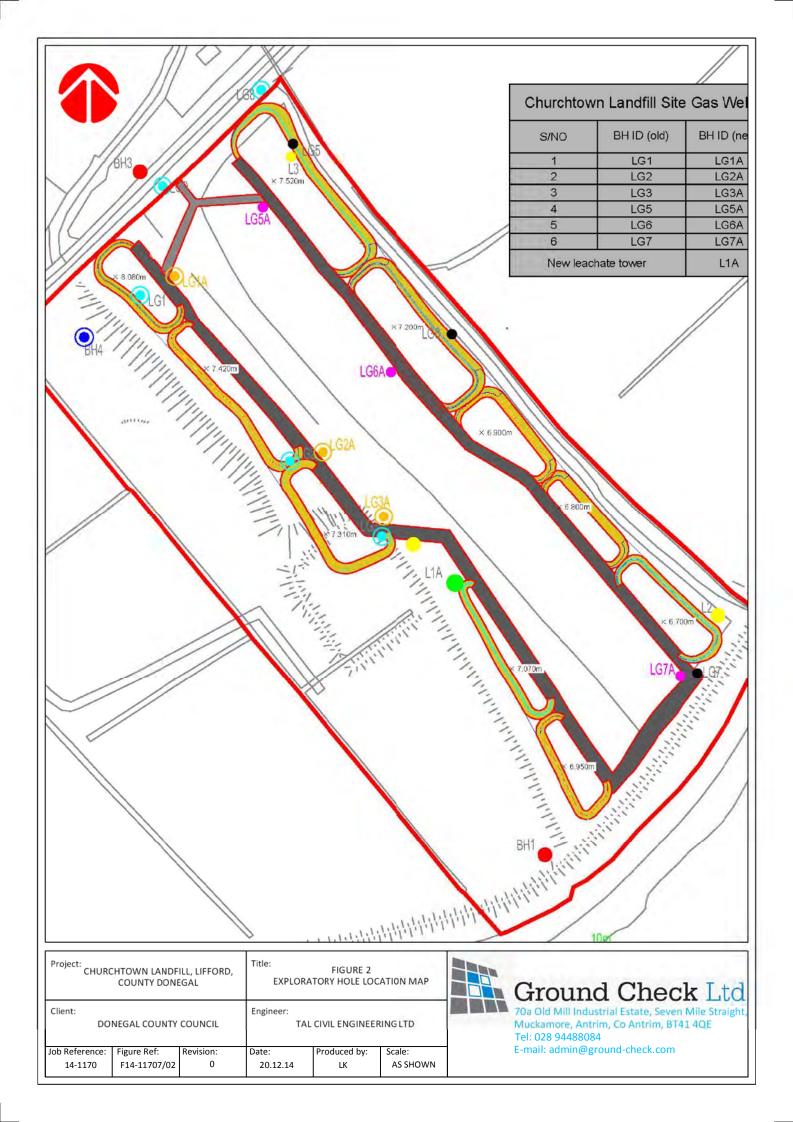
- Made Ground: The site is mantled by made ground at all locations investigated except for Borehole 4.
 The made ground is composed generally of soft and soft to firm, brown and grey, gravelly, sandy, silty clay with low cobble and boulder content, containing domestic refuse, glass, textile, rubber and wire.
- Recent: Occurs immediately beneath the made ground at Boreholes LG8 and LG9 from respective depths of 2.30 and 2.40m and from ground level at Borehole 4. It is described generally as Loose, brown, very silty, fine to coarse sand, very soft, dark brown, slightly sandy, clayey peat, and soft, becoming soft to firm, grey, sandy, silty clay.
- Glacial Deposits: Were encountered only in Borehole 4 beneath the geologically recent deposits at 6.20m depth and are composed generally of loose, brownish grey, silty, sandy, fine to coarse gravel with low cobble content.
- Bedrock: Grey, highly fractured, weathered SCHIST was encountered at 7.90m depth in Borehole 4 and continued to its terminal depth..

3.3 Groundwater

Slight flows of groundwater entered Boreholes LA1, LG2AR, LG3A, LG7A and 4 at depths ranging between 3.80 and 7.00m below ground level. A strong sub-artesian flow entered Borehole 4 at 9.00m depth, rising to 0.50m after twenty minutes. Groundwater was not observed in the other boreholes. It should be noted, however, that such short term observations may not represent the presence or absence of a water table and that groundwater conditions can vary.

6 14-1170


Table 1: Ground Conditions Summary


Fundamenton III-la	Completion	S	tratum Base Depth (r	m)	Bedrock
Exploratory Hole Reference	Depth (m)	Made Ground	Recent	Glacial	Top (m)
L1A	6.50	>6.50	-	-	-
LG1A	5.30	>5.30	-	-	-
L2	6.50	>6.50	-	-	-
LG2A	2.80	>2.80	-	-	-
LG2AR	5.00	.5.00	-	-	-
LG3A	4.50	>4.50	-	-	-
LG5A	4.30	>4.30	-	-	-
LG6A	4.20	>4.20	-	-	-
LG7A	4.50	>4.50	-	-	-
LG8	7.20	2.30	>7.20	-	-
LG9	7.00	4.00	>7.00	-	-
4	12.00	-	6.20	7.90	7.90

7 14-1170

FIGURES

APPENDIX A: BOREHOLE LOGS AND INSTRUMENTATION DETAILS

	Ground Ch	eck I	Ltd				Site Site Restoration Contract, Churchtown Landfill, Liffo County Donegal	ırd,	Bo Ni	oreh umb	ole er
Boring Meth Rotary Percu		_	Diamete Omm cas	ed to 12.00m	Ground	Level (mOD)	Client Donegal County Council			ob umb 4-11	
		Location	n		Dates 09 10	0/12/2014- 0/12/2014	Engineer TAL Civil Engineering Ltd		SI	heet 1/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
1.00-1.45 1.00	SPT N=2 D1			1,0/1,0,0,1			Soft, brownish grey, sandy, silty CLAY. Sand is fine to medium. [RECENT]	X	▼ 2	b	
2.00-2.45 2.00	SPT N=3 D2			1,0/1,0,1,1		2.40	Soft, becoming soft to firm, grey, sandy, silty CLAY. Sand is fine to coarse. [RECENT]	× × × × × × × × × × × × × × × × × × ×			
3.00-3.45 3.00	SPT N=3 D3			1,1/1,0,1,1			Salid is line to coalse. [NECENT]	× × × × × × × × × × × × × × × × × × ×			
4.00-4.45 4.00	SPT N=4 D4			1,1/1,1,1,1		(3.80)		× × × × × × × × × × × × × × × × × × ×			
5.00-5.45 5.00	SPT N=5 D5			1,1/2,1,1,1				× · · · · · · · · · · · · · · · · · · ·			
6.00	D6					6.20		× × × × × × × × × × × × × × × × × × ×			
6.50-6.95	SPT N=7			1,1/2,2,1,2		<u>E</u>	Loose, brownish grey, silty, sandy, fine to coarse, subrounded GRAVEL with low cobble content. [GLACIAL]	0.0×.0 0.0×.			
7.00	D7			Slight flow(1) at 7.00m, no rise after 20 mins.		(1.70)			▼ 1		
8.00	D8					7.90	Grey, highly fractured, weathered SCHIST. [DALRADIAN]				
9.00	D9			Strong Flow(2) at 9.00m, rose to 0.50m in 20 mins.					∇2	000 000 000 000 000 000 000 000 000 00	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Remarks						(4.10)		Scale (approx)	Ŀ	्रिःश्ली ogge y	ાર્ટ ફર્જુ ∌d
								1:50 Figure N 14-11	lo.	LK	

	Ground Ch	ieck l	Ltd			Site Site Restoration Contract, Churchtown Landfill, Lifford, County Donegal		B N	orehole umber 4	
Boring Met			Diameter 0mm case	ed to 12.00m	Ground	Level (mOD)	Client Donegal County Council		N	ob umber 4-1170
		Locatio	n		Dates 09	9/12/2014- 9/12/2014	Engineer TAL Civil Engineering Ltd		S	heet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
10.00	D10									100 000 000 000 000 000 000 000 000 000
11.00	D11					(4.10)				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
12.00	D12					12.00	Complete at 12.00m			
Remarks Terminated a	at required depth. Sta	andpipe in	stalled to	11.50m.				Scale (approx)	L. B	ogged y
								1:50 Figure N		LK
								14-11		BH4

	Ground Ch	ock l	[td			Site Site Restoration Contract, Churchtown Landfill, Lifford, County Donegal			Borehole Number		
		ICCK I	ыш				County Donegal			L1/	A
Boring Metal Cable percu	nod ssive to 6.5m.	_	Diamete 0mm cas	r ed to 6.50m	Ground	Level (mOD)	Client Donegal County Council		N	ob lumk 14-11	
		Locatio 23		395902.6 N		7/11/2014- 0/11/2014	Engineer TAL Civil Engineering Ltd		S	Sheet	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	In	str
1.00 1.00 1.20-1.65 2.00-2.45 3.00-3.45 4.00-4.45 5.00-5.45	B1 D1 SPT N=8 SPT N=16 SPT N=16 SPT N=13 SPT N=15 SPT N=50			2,2/1,2,2,3 1,6/3,4,2,7 07/11/2014:DRY 10/11/2014: 2,1/10,12,2,4 2,3/7,2,3,1 slight (1) at 4.80m. 3,6/8,3,2,2 10/11/2014:4.80m		(1.20) 1.20 (0.20) 1.40 1.50 1.40 1.50 1.50 1.50 1.50 1.50 1.50	Soft to firm, light brownish grey, slightly gravelly, slightly sandy, clayey SILT. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse [MADE GROUND] Soft, dark brown, gravelly, slightly sandy, slitty CLAY. Sand is fine to coarse. [MADE GROUND] Soft to firm, dark brown, slightly sandy, clayey SIL with plastic bags, plastic and glass bottles. Sand if fine to coarse. [MADE GROUND] Complete at 6.50m	ē.	∀ 1		
Remarks Terminated a Chiselling fro	at required depth. Stopm 3.10m to 3.20m f	andpipe in or 1.5 hou	stalled to	6.5m. Iling from 3.20m to 3.4	40m for 1.	0 hour.		Scale (approx) 1:50 Figure N		ogge Sy LK	
								14-1	170.	L1A	

	Fround Ch	eck l	Ltd				Site Site Restoration Contract, Churchtown Landfill, Lifford, County Donegal			oreh lumb L2	oer
Boring Meth	nod ssive to 6.5m.	1 -	Diamete 0mm cas	r ed to 6.50m	Ground	Level (mOD)	Client Donegal County Council		N	ob lumb	
		Locatio	n		Dates 10)/11/2014	Engineer TAL Civil Engineering Ltd		s	heet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
1.00 1.00 1.20-1.65 2.00-2.45 3.00-3.45 4.00-4.45	B1 D1 SPT N=10 SPT N=7 SPT N=20 SPT N=23			2,3/2,2,3,3 3,3/2,3,1,1 3,4/6,7,4,3 4,5/7,3,4,7 5,6/6,7,5,5		(0.50)	TOPSOIL. [MADE GROUND] Soft to firm, light brown, slightly gravelly, slightly sandy, silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse. [MADE GROUND] Soft to firm, dark brown, slightly sandy SILT with plastic and food packaging. Sand is fine to coarse [MADE GROUND] Complete at 6.50m	_			
Remarks Terminated a	at required depth. Sta	andpipe in	stalled to	6.5m.				Scale (approx) 1:50 Figure N	lo.	LK .R1	

	Ground Ch	ieck l	Ltd				Site Site Restoration Contract, Churchtown Landfill, Lit County Donegal	ford,	N	oreh lumb _G1	er
Boring Metal	hod ssive to 5.3m.	-	Diamete 0mm cas	r ed to 5.30m	Ground	Level (mOD)	Client Donegal County Council		N	ob lumb	
		Locatio 23		396073.7 N	Dates 05	5/11/2014	Engineer TAL Civil Engineering Ltd		s	heet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.50 1.00 1.00 1.20-1.65 2.00-2.45 2.00 2.10 2.60 3.00-3.45 4.00-4.45	D1 B1 D2 SPT N=10 SPT N=7 D4 D5 D3 SPT N=20 SPT N=21			2,3/2,2,3,3 3,3/2,3,1,1 3,4/6,7,4,3 4,5/7,3,4,7 5,6/6,7,5,5 05/11/2014:DRY		(0.50)	Soft to firm, brown, slightly gravelly, slightly sandy, silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse. [MADE GROUND] Soft, greyish brown, slightly gravelly, slightly sandy silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse. [MADE GROUND] Soft, brown, slightly gravelly, slightly sandy, silty CLAY with plastic. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse. [MADE GROUND] Soft, dark brown, peaty silty CLAY with glass and plastic. Sand is fine to coarse. [MADE GROUND] Soft to firm, dark brown, slightly sandy, clayey SIL with plastic and wire. Sand is fine to coarse. [MADE GROUND] Complete at 5.30m	y, S			
Remarks Terminated a Chiselling fro	at required depth. State of the	andpipe in or 1.5 hou	stalled to	5.3m. lling from 4.00m to 5.	30m for 1.	5 hours.		Scale (approx)		ogge By	
								Figure N		G1A	

	Ground Ch	eck I	Ltd				Site Site Restoration Contract, Churchtown Landfill, Liffd County Donegal	ord,	Borehole Number LG2A
Boring Met	hod ssive to 2.8m.	_	Diamete 0mm cas	r ed to 2.80m	Ground	Level (mOD)	Client Donegal County Council		Job Number 14-1170
		Locatio 23		395975.7 N	Dates 06	6/11/2014	Engineer TAL Civil Engineering Ltd		Sheet 1/1
Depth (m)	1.45 SPT N=8 B1 D1 2,2/1,2,2,3					Depth (m) (Thickness)	Description		Legend segment
1.00-1.45 1.00 1.00	B1			2,2/1,2,2,3		(1.40)	Soft to firm, light brown, slightly gravelly, slightly sand CLAY with low cobble and boulder content. Sand is coarse. Gravel is subangular to subrounded, fine to [MADE GROUND] Soft, dark brown, slightly sandy, SILT with plastic arbags, food packaging and other domestic waste. [N	o coarse.	
2.00-2.45	SPT N=5			1,2/1,1,2,1		(1.40)	GROUND]		
Remarks				06/11/2014:DRY		(1.40) 1.40	Terminated at 2.80m		
Remarks Terminated Chiselling from	upon virtual refusal. I om 2.75m to 2.80m f	Backfilled or 2.0 hou	with bentors.	onite. Re-setup and r	e-bored as	s LG2AR		Scale (approx) 1:50	Logged By
								Figure N 14-117	lo. 70.LG2A

G	round Ch	eck I	Ltd				Site Site Restoration Contract, Churchtown Landfill, Lift County Donegal	ord,	N	oreh lumb G2	oer
Boring Metho Cable percusi		_	Diamete 0mm cas	r ed to 5.00m	Ground	Level (mOD)	Client Donegal County Council		N	ob lumb	
		Locatio 23		395975.7 N	Dates 06	6/11/2014	Engineer TAL Civil Engineering Ltd		S	heet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
1.00-1.45 1.00 1.00 2.00-2.45 3.00-3.45 4.00-4.45	SPT N=10 B1 D1 SPT N=7 SPT N=4 SPT N=18	(m)	(m)	2,3/3,2,2,3 2,1/2,2,1,2 1,0/0,1,2,1 1,2/7,3,6,2 slight(1) at 4.50m. 06/11/2014:4.50m 1,0/2,8,1,3		(Thickness)	Soft to firm, light brown, slightly gravelly, slightly sandy, silty CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. [MADE GROUND] Soft, dark brown, slightly sandy SILT with plastic, cloth, textiles, and rubber. Sand is fine to coarse. [MADE GROUND] Complete at 5.00m		∑1		
Remarks Terminated at Chiselling fror	required depth. Standard 3.50m to 4.00m for	andpipe in or 1.0 hou	stalled to	5.0m.				Scale (approx) 1:50 Figure N	No.	ogge By LK	

	Ground Ch	ieck]	Ltd				Site Site Restoration Contract, Churchtown Landfill, Lif County Donegal	ford,	N	oreh lumb _G3	oer
Boring Metal	hod ssive to 4.5m.	1	Diamete 0mm cas	r ed to 4.50m	Ground	Level (mOD)			N	ob lumb	
		Locatio 23		395939.7 N	Dates 07	7/11/2014	Engineer TAL Civil Engineering Ltd		S	heet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
1.00-1.45 1.00 1.00 2.00-2.45 2.00 2.00 3.00-3.45	SPT N=10 B1 D1 SPT N=8 B2 D2 SPT N=13 SPT N=15			2,2/3,2,3,2 2,3/1,3,2,2 1,0/3,7,2,1 slight(1) at 4.00m. 6,1/4,5,2,4 06/11/2014:4.00m		(0.50) (1.80) (1.80) (2.20)	Dark brown TOPSOIL. [MADE GROUND] Soft to firm, light brown, slightly gravelly, slightly sandy, silty CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounder fine to coarse. [MADE GROUND] Soft, dark brown, slightly sandy, SILT with plastic, cloth, concrete blocks and wire. Sand is fine to coarse. [MADE GROUND] Complete at 4.50m		∇1		
Remarks Terminated a Chiselling fro	at required depth. Sta om 2.90m to 4.00m f	andpipe in or 1.5 hou	stalled to rs.	4.5m.				Scale (approx) 1:50 Figure N	В 10.	ogge y LK	
								14-11	70.L	.G3A	١.

	Ground Ch	eck l	Ltd			Site Site Restoration Contract, Churchtown Landfill, Lifford, County Donegal		N	oreh lumb	oer	
Boring Meth	nod ssive to 4.3m.	_	Diamete 0mm cas		Ground	Level (mOD)			N	ob lumb 4-11	
		Locatio 23		396112 N	Dates 11	/11/2014	Engineer TAL Civil Engineering Ltd		S	heet	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
1.00-1.45 1.00 1.00 2.00-2.45 3.00-3.45	SPT N=13 B1 D1 SPT N=3 SPT N=8 SPT N=6			2,2/3,3,4,3 2,2/1,1,1,0 0,0/1,2,3,2 1,1/1,2,1,2 11/11/2014:DRY		(0.40) 0.40 1.50) 1.90 4.30	Soft to firm, light brown, slightly gravelly, slightly sandy, silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse. [MADE GROUND] Soft, dark brown, slightly sandy, clayey SILT with plastic bags, food packaging and other domestic waste. [MADE GROUND]				
Remarks Terminated a Chiselling fro	at required depth. Sta om 3.00m to 4.20m f	anpipe ins or 1.0 hou	talled to 4 r.	1.0m.				Scale (approx)	L	ogge y LK	
								Figure N 14-11			
								14-11	, U.L	-UUA	•

Ground Ch	neck l	Ltd		Ground Level (mOD)		Site Site Restoration Contract, Churchtown Landfill, Lifford, County Donegal				ole er
Boring Method Cable percussive to 4.3m.	_	Diamete 0mm cas	r ed to 4.30m	Ground	Level (mOD)	Client Donegal County Council		N	ob umb 4-117	
	Locatio 23		396020.2 N	Dates 11	/11/2014	Engineer TAL Civil Engineering Ltd		s	heet 1/1	
Depth (m) Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
1.00-1.45 SPT N=11 B1 D1 2.00-2.45 SPT N=9 3.00-3.45 SPT N=7 4.00-4.45 SPT N=7			2,2/3,3,2,3 2,3/3,2,3,1 1,2/2,2,1,2 1,1/2,2,2,1 06/11/2014:		(0.40) 1.80 1.80 4.20	Dark brown TOPSOIL. [MADE GROUND] Soft to firm, light brown, slightly gravelly, slightly sandy, silty CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounde fine to coarse. [MADE GROUND] Soft, dark brown, slightly sandy, SILT with plastic and waste packaging. Sand is fine to coarse. [MADE GROUND] Complete at 4.30m	id,			
Remarks Terminated at required depth. St Chiselling from 3.00m to 3.80m	andpipe in for 1.0 hou	stalled to	4.2m.		<u>E</u>		Scale (approx) 1:50 Figure N	No.	ogge y LK	

	Ground Ch	ieck l	Ltd				Site Site Restoration Contract, Churchtown Landfill, Liff County Donegal	ord,	N	oreh lumb _G7	oer
Boring Meth	nod ssive to 4.5m.	1	Diamete 0mm cas	r ed to 4.50m	Ground	Level (mOD)	Client Donegal County Council		N	ob lumb 4-11	
		Locatio 23		95850.8 N	Dates 10)/11/2014	Engineer TAL Civil Engineering Ltd		s	heet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
1.00 1.00 1.20-1.65 2.00-2.45 3.00-3.45	B1 D1 SPT N=10 SPT N=15 SPT N=6 SPT N=28			2,2/3,2,2,3 6,3/4,1,7,3 2,3/1,1,3,1 slight(1) at 3.80m. 3,7/8,6,5,9 11/11/2014:3.80m		(0.50) (1.30) (1.30) (1.30) (2.70)	Soft to firm, light brown, slightly gravelly, slightly sandy, silty CLAY with low cobble content. Sand is fine to coarse. Gravel is angular to subrounded, fine to coarse. [MADE GROUND] Soft, dark brown, slightly sandy, SILT with plastic and food packaging. Sand is fine to coarse. [MADE GROUND] Complete at 4.50m		∀ 1		
Remarks Terminated a Chiselling fro	at required depth. Sta om 3.00m to 4.20m f	andpipe in or 1.5 hou	stalled to	4.5m.				Scale (approx) 1:50		ogge y LK	
								Figure N 14-11		.G7A	4

	Ground Ch	ieck l	Ltd				Site Site Restoration Contract, Churchtown Landfill, Liffd County Donegal	ord,	N	oreh lumb	er
Boring Met	hod ssive to 7.2m.	_	Diamete 0mm cas	r ed to 7.20m	Ground	Level (mOD)	Client Donegal County Council		N	ob lumb	
		Locatio 23		396177.3 N	Dates 12	2/11/2014	Engineer TAL Civil Engineering Ltd		S	heet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
1.00-1.45 1.00 1.00 2.00-2.45 2.00 2.00 3.00-3.45 4.00-4.45 6.50-6.95	SPT N=11 B1 D1 SPT N=11 B2 D2 SPT N=7 SPT N=5 SPT N=4			2,2/3,3,3,2 2,3/3,2,3,3 1,2/2,2,1,2 1,2/2,1,1,1 1,1/0,1,1,1 1,1/0,1,1,1 12/11/2014:DRY		(1.70)	Soft to firm, light brownish grey, slightly gravelly, slightly sandy, silty CLAY. Sand is fine to coarse. Gravel is subangular to subrounded, fine to coarse. [MADE GROUND] Soft to firm, light brown, slightly sandy, silty CLAY. Sand is fine to coarse. [MADE GROUND] Loose, orange brown, very silty, fine to coarse SAND. [RECENT] Soft, light greyish brown, sandy, clayey SILT. Sand is fine to coarse. [RECENT]				
Remarks Terminated : Chiselling from	at required depth. Stoom 1.20m to 2.30m f	andpipe in or 1.0 hou	stalled to	7.0m.		<u> </u>		Scale (approx)	L	ogge	ed
								1:50 Figure N		LK	
								14-11	170.	LG8	

	Ground Ch	eck I	Ltd				Site Site Restoration Contract, Churchtown Landfill, Li County Donegal	fford,	N	oreh lumb LG	er
Boring Metal	hod ssive to 7.0m.	_	Diamete 0mm cas	r ed to 7.00m	Ground	Level (mOD)	Client Donegal County Council		N	ob lumb	
		Locatio 23		396123.7 N	Dates 12	2/11/2014	Engineer TAL Civil Engineering Ltd		S	heet 1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Ins	str
0.50 1.00 1.20-1.65 1.50 2.00-2.45 2.00 3.00-3.45 3.00 3.00 4.00-4.45 4.00 4.50 5.00	D1 D2 SPT N=10 B1 SPT N=15 D3 SPT N=6 B2 D4 SPT N=28 D5 B3 D6			2,2/3,2,2,3 6,3/4,1,7,3 2,3/1,1,3,1 3,7/8,6,5,9		(4.00) (4.00)	Loose, brownish grey, silty, very gravelly, fine to coarse SAND. Gravel is subangular to subrounder fine to coarse. [MADE GROUND] Very soft, dark brown, slightly sandy, clayey PEAT [RECENT] Loose, light brown, very silty, fine to coarse SAND [RECENT]	- SM2 SM2 SM2 SM2 SM2 SM2			
6.00	B4 D7			12/11/2014:0.00m		(2.40)					ල දිරිල්
7.00						7.00	Complete at 7.00m	Scale	L	00014	ed
Terminated a	at required depth. Sta	andpipe in	stalled to	4.5m.				(approx)	B	ogge y LK	
								Figure N		LG9	

Installar Standp	tior	n Ty _l		nd Cl	heck I		0 mm			Site Site Resto County Do Client Donegal C	onegal		hurchtow	n Landfill	, Lifford,	J	Job Number 14-1170
					Location		Ground	Level (m	OD)	Engineer TAL Civil E	Engineeri	ng Ltd					Sheet 1/1
Legend	Water	Ins	str A)	Level (mOD)	Depth (m)	Description				Gı	roundwa	ıter Strik	es Durin	g Drilling	 }		
· · · · · ·					0.25	Concrete		T	Depth Struc	i Casing				Read	lings		Depth.
× × × ×	▼ 2						Date	Time	7.00	Casing Depth (m)	Slight fl Strong	w Rate	5 min	10 min	15 min	20 min 7.00	Depth Sealed (m)
· · · · · · · · · · · · · · · · · · ·									9.00		Strong	Flow				0.50	
×										Gre	oundwat	er Obse	rvations	During D	rilling		
×						l				Start of SI	hift			E	End of Sh	ıift	
× × × × × × × × × × × × × × × × × × ×							Date	Time	Dept Hole (m)	th Casing e Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
× × × × × × × × × × × × × × × × × × ×						Bentonite Seal											
× × × ×										Instru	ıment Gı	roundwa	ter Obse	ervations			
×.° · ° °						l	Inst.	[A] Type	: Stan	dpipe							
	_							Ins	strumen	nt [A]							
	▼ 1						Date	Time	Dept (m)	th Level (mOD)				Rema	arks		
2:09:0 2:09:3 2:00:3 2:00:3 2:00:3 2:00:3 2:00:3 2:00:3 2:00:3 2:00:3 2:00:3 2:00:3 2:00:3 2:00:3 2:00:3 2:	V 2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000 000 000 000 000 000 000 000 000 0		9.50												
	DO O THE WAY DO OF THE WAY TO A VIEW	100 - 100 -	ం (' ర్వర్ ం న్లోట్లెక్కి ం న్లో ద్వర్ ం న్లోట్లెక్కి ం న్లో ద్వర్ ం న్లో ర్వామ్ స్ట్రాన్స్లోన్ స్ట్రాన్స్లోన్న స్ట్రాన్స్లోన్న స్ట్రాన్స్లోన్ని స్ట్రాన్స్ట్రాన్స్లోన్ని స్ట్రాన్స్లోన్ని స్ట్రాన్స్లోన్ని స్ట్రాన్స్లోన్ని స్ట్రాన్స్లోన్ని స్ట్రాన్స్లోన్ని స్ట్రాన్స్లోన్ని స్ట్రాన్స్ట్ స్ట్రాన్స్ట్స్ట్ స్ట్రాన్స్ట్ స్ట్స్ట్ స్ట్రాన్స్ట్ స్ట్స్ట్స్ట్స్ట్స్ట్స్ట్స్ట్స్ట్స్		11.50	Slotted Standpipe											
Remark	(S																

	C	зrо	ur	nd C	heck	Ltd				Site Resto	oration Co	ontract, C	hurchtow	/n Landfill	l, Lifford,	E	Borehole Number L1A
Installat Standpi	tion	ı Type	ə		Dimension	ons al Diameter of Tube [A] = 50 ter of Filter Zone = 200 mm) mm 1			Client Donegal (County Co	ouncil				1	Job Number 14-1170
					Location 231020	0.6 E 395902.6 N	Ground I	Level (m	OD)	Engineer TAL Civil I	Engineeri	ng Ltd				S	Sheet 1/1
_egend	Water	Inst (A)	r	Level (mOD)	Depth (m)	Description				G	roundwa	ıter Strik	es Durin	g Drillinç]		
	٥				-0.50	Concrete	Date	Time	Depth Struct	Casing k Depth (m)	Inflo	w Rate		Read			Depth Sealed (m)
			<u></u>		0.25	Bentonite Seal			(m) 4.80	(m)	slight		5 min	10 min	15 min	20 min	(m)
										G	roundwat	er Ohse	rvations	During Γ)rilling		
										Start of S			Vations		End of SI		
							Date	Time	Depti Hole (m)			Water Level (mOD)	Time	Depth Hole			Water Level (mOD)
	២ ១២ គឺគី១ ១០០% ០ ១២ គីគី១ ១០០% ០ ១២ គីគី១ ១១០% ០	9,09 6			2.00		07/11/14 10/11/14		(m)	(m)	(m)	(mob)	pm	3.00 6.50	(m)	dry 4.80	(mOD)
	0'00'00 0'00'01		\$2000 \$2000							Instr	ument Gr	roundwa	ter Obse	rvations			
	0.000000						Inst.	[A] Type	: Stand	pipe							
	Zno o'mono mo		2000 2000 2000 2000 2000 2000 2000 200					Ins	trumen	it [A]							
	0,000,000,000		2000 2000 2000 2000 2000 2000 2000 200				Date	Time	Depti (m)	h Level (mOD)				Rema	arks		
	Slotted Standpipe Slotted Standpipe 6.50																

	G	rou	nd C	heck	Ltd				Site Site Resto County Do	oration Co	ontract, C	hurchtow	n Landfill	, Lifford,	E	Borehole lumber L2
Installa Standp	tion	Type		Dimensi	ons al Diameter of Tube [A] = 50 eter of Filter Zone = 200 mm	0 mm n			Client Donegal C	County Co	ouncil				N	lob lumber 14-1170
				Location 23102	n 20.6 E 395902.6 N	Ground I	_evel (m	OD)	Engineer TAL Civil E	Engineeri	ng Ltd				s	Sheet 1/1
_egend	Water	Instr (A)	Level (mOD)	Depth (m)	Description				G	roundwa	ter Strik	es Durin	g Drilling	,		
	Ď			-0.50	Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflo	w Rate		Read	ings		Depth Sealed (m)
	:			0.25		Date	111116	(m)	(m)		w itale	5 min	10 min	15 min	20 min	(m)
					Bentonite Seal											
	5.	50 Page		1.00												
	0.000 000															
	500 B080								Gr	oundwat	er Obse	rvations	During D	rilling		
	000000								Start of S	hift			Е	End of Sh	nift	
	000 000					Date	Time	Depti Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
						05/11/14		(,	(,	(···)	(,	pm	6.50	(***)	dry	()
	000000															
	00000	~~9 P~~~														
	000000000000000000000000000000000000000															
	000000000000000000000000000000000000000															
	8000								Instru	ument Gı	roundwa	ter Obse	rvations			
	000 000					Inst.	[A] Type	: Stand	Ipipe							
	0.0000000				Slotted Standpipe		Ins	trumen	t [A]							
	000000000000000000000000000000000000000				Siotted Standpipe	Date		Ι	Ι				Rema	arks		
	000						Time	Depti (m)	h Level (mOD)							
	00000000															
	0000000															
	000000000000000000000000000000000000000															
	000000000000000000000000000000000000000															
	000000000000000000000000000000000000000															
	000000000000000000000000000000000000000															
	000000															
	00000000															
	0 0 0 0 0 0 0															
	3000															
	000 000 000			6.50												
Remark	(S					ı		1	1							

	C	Эr	oui	nd C	heck	Ltd				Site Site Resto County Do	oration Co	ontract, C	hurchtow	n Landfill	, Lifford,	N	Borehole Number LG1A
Installa Standp	ition	тур	ре		Dimensi	ons al Diameter of Tube [A] = 50 tter of Filter Zone = 200 mm	mm			Client Donegal (County Co	ouncil					lob Number 14-1170
					Location 23086	1 4.3 E 396073.7 N	Ground	Level (m	OD)	Engineer TAL Civil I	Engineeri	ng Ltd				S	Sheet 1/1
Legend	Water	Ins	ştr	Level (mOD)	Depth (m)	Description							es Durin	g Drilling	<u> </u>		
Legenu	ě			(IIIOD)	-0.50	Concrete Concrete			Depth					Read			Depth
		° .*			0.25		Date	Time	Depth Struck (m)	Casing Depth (m)	Inflo	w Rate	5 min	10 min	15 min	20 min	Depth Sealed (m)
						Bentonite Seal											
	00'00	\$ 000 25000 25000	28000 80000 800000		1.00					6-		er Ohaa		During D	-:111:		
	0.00.00.00.00.00									Start of S		er Obsei	rvations		End of SI		
	000 00000						Date	Time	Depti Hole (m)	_	Water Depth (m)	Water Level (mOD)	Time	Depth Hole		Water Depth (m)	Water Level (mOD)
							05/11/14		(m)	(m)	(m)	(mOD)	pm	(m) 5.30	(m)	dry	(mOD)
	2020 8.00,00.00.000		% <u>47.5%</u> 02.0% 40.0% 42.5% 50.0% 42.5% 50.0%							Instr	ument G	roundwa	ter Obse	rvations			
	8.00.00.00.00		800000 200000 200000				Inst.	[A] Type	: Stand	lpipe	I						
	no a oo no o a					Slotted Standpipe		Ins	trumen	t [A]				_			
	000 000 00000		0 4 2 1 0 2 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0				Date	Time	Depti (m)	Level (mOD)				Rema	arks		
	0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		90% (40% (40%)) 10% (40% (40%)) 10% (40%)														
	00'0 0 0'0'0 0 0'00		2000 M 20														
	0.000000000000000000000000000000000000																
	0'n 0 0'0'n0 0																
	00'p 0 0'B0'p 0 B'00		2000 M 20														
	0.00.00.00.00.00.00.00.00.00.00.00.00.0		6 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
	b.0 0 0.00 B				5.30												
Remar	ks																

		Grou	and C	Check	Ltd				Site Resto	oration Co	ontract, C	hurchtow	n Landfill	, Lifford,		Borehole Number -G2AR
Installa Standp	ıtior	า Type		Dimensi	ons al Diameter of Tube [A] = 50 tter of Filter Zone = 200 mm	mm			Client Donegal (County Co	ouncil					Job Number 14-1170
				Location 23094	n 6.7 E 395975.7 N	Ground	Level (m	OD)	Engineer TAL Civil I	Engineeri	ng Ltd				;	Sheet 1/1
_egend	Water	Instr (A)	Level (mOD	Depth (m)	Description				G	iroundwa	iter Strik	es Durin	g Drilling]		
				-0.50	Concrete	Date	Time	Depth Struc	Casing Depth (m)	Inflov	w Rate		Read			Depth Sealed (m)
	-		·	0.25				(m) 4.50	(m)	slight		5 min	10 min	15 min	20 min	(m)
					Bentonite Seal			4.00		Siigitt						
				1.00												
			2000						Gr	oundwat	er Obsei	rvations	During D	rilling		
	500		9000 10000 10000			D. (Start of S				E	End of SI		
			90,500,000,000,000,000,000,000,000,000,0			Date 06/11/14	Time	Dept Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time pm	Depth Hole (m) 5.00	Casing Depth (m)	Water Depth (m) 4.50	Water Level (mOD)
	100000000000000000000000000000000000000		50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
	0000		00000000000000000000000000000000000000						Instr	ument Gı	roundwa	ter Obse	rvations			
	000000					Inst.	[A] Type	: Stand	dpipe							
	2 - 1100 4 00 00		.00 00 00 00 00 00 00 00 00 00 00 00 00		Slotted Standpipe		Ins	trumer	it [A]							
	0-1110-00-00		2000 00 00 00 00 00 00 00 00 00 00 00 00		Clotted Startapipe	Date	Time	Dept (m)	h Level (mOD)				Rema	arks		
	abla 1 5.00															

		Grou	nd C	heck	Ltd				Site Resto	oration Co	ontract, C	hurchtow	n Landfill	, Lifford,	1	Borehole Number LG3A
Installa Stand	atio	птуре		Dimensio	ons al Diameter of Tube [A] = 50 ter of Filter Zone = 200 mm	mm			Client Donegal (County Co	ouncil				1	lob Number 14-1170
				Location 23098	0.4 E 395939.7 N	Ground	Level (m	OD)	Engineer TAL Civil	Engineeri	ng Ltd					Sheet 1/1
_egend	Water	Instr (A)	Level (mOD)	Depth (m)	Description				G	iroundwa	iter Strik	es Durin	g Drilling	J		
	_	5.0.		-0.50	Concrete	D. (Depth	Casing		D		Read	ings		Depth
				0.25		Date	Time	Depth Struc (m)	Casing k Depth (m)	slight	w Rate	5 min	10 min	15 min	20 min	Depth Sealed (m)
					Bentonite Seal											
				1.00					Gı	roundwat	er Obse	rvations	During D	rilling		
									Start of S	Shift			E	End of SI	nift	
						Date	Time	Dept Hole (m)	h Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
						06/11/14		(111)	()	(,	(IIIOD)	pm	4.50	(,	4.00	(IIIOD)
									Instr	ument Gı	roundwa	ter Obse	rvations			
						Inst.	[A] Type	: Stan	dpipe	1						
							Ins	trumer	nt [A]				_			
					Slotted Standpipe	Date	Time	Dept (m)	h Level (mOD)				Rema	arks		
	₩.															
	∇1															
	4.50															
Remar	ks															

lin.									Site							Borehole
	G	rou	nd C	heck	Ltd				Site Resto County Do		ontract, C	hurchtow	n Landfill	l, Lifford,	1	Number LG5A
Installati Standpip	ion	Туре		Dimensi	ons al Diameter of Tube [A] = 5 eter of Filter Zone = 200 mr	0 mm n			Client Donegal (County Co	ouncil				1	Job Number 14-1170
				Location	1	Ground	Level (m	OD)	Engineer							Sheet
					3.4 E 396112 N		,	,	TAL Civil E	Engineerii	ng Ltd					1/1
_egend	Water	Instr (A)	Level (mOD)	Depth (m)	Description				G	roundwa	ter Strik	es Durin		-		
				-0.70	Concrete	Date	Time	Depth Struc	Casing Depth (m)	Inflov	v Rate		Read			Depth Sealed (m)
	* s			0.25				(m)	(m)			5 min	10 min	15 min	20 min	(m)
					Bentonite Seal											
	000000000000000000000000000000000000000			0.80					Gr	oundwat	er Obser	vations	During D	rilling		
	000								Start of S	hift				End of SI	nift	
	000000					Date	Time	Dept			Water	Time	Depth Hole			Water
	00000					11/11/14	Time	Dept Hole (m)	(m)	Water Depth (m)	Water Level (mOD)	Time pm	4.30	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
	000					1.7.17.1						,			u.,	
	000000000000000000000000000000000000000															
	000000000000000000000000000000000000000															
	000000000000000000000000000000000000000															
	0 E 00 h 0 0 E 0 H								Instru	ument Gr	oundwa	ter Obse	rvations		L	
	00000					Inst.	[A] Type	: Stand	dpipe							
	1000 000 00 00 00 00 00 00 00 00 00 00 0				Slotted Standpipe			trumen								
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					Date	Time	Dept (m)	h Level (mOD)				Rem	arks		
	000000000000000000000000000000000000000							(111)	(IIIOD)							
	000000000000000000000000000000000000000															
	000000															
	000000000000000000000000000000000000000															
	000000000000000000000000000000000000000															
	0000															
	000 000															
	0 0 0 0 0 0 0															
	0000000															
	1000 0000 1000 0000			4.00												
Remarks	 S															
	-															

	G	irou	ınd Cl	heck	Ltd				Site Site Resto County Do	ration Co	ontract, C	hurchtow	n Landfill	l, Lifford,	N	Borehole Number LG6A
Installa Standp	ation	Туре		Dimension	ons al Diameter of Tube [A] = 50 eter of Filter Zone = 200 mm	mm			Client Donegal C	County Co	ouncil				N	lob Number 14-1170
				Location 23098	4.3 E 396020.2 N	Ground I	Level (m		Engineer TAL Civil E	Engineerii	ng Ltd				S	Sheet 1/1
Legend	Water	Instr (A)	Level (mOD)	Depth (m)	Description			1	Gı	roundwa	iter Strik	es Durin	g Drilling)		
	Ď.		,	-0.50	Concrete Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflov	w Rate		Read			Depth Sealed (m)
	· .			0.25				(m)	(m)			5 min	10 min	15 min	20 min	(m)
					Bentonite Seal											
									Gre	oundwat	er Obse	rvations	During D	Prilling		
	0000		B 0000	1.00					Start of SI	hift			F	End of Sh		
	0 8 00 00 0 0		3 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Date	Time	Depti Hole (m)		Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
	"		등 이것 같은 안 있었다. 그래 그 가지 하고 전을 하고 있다. 이것을 받는 아니다. 기계			06/11/14		(111)	(III)	(111)	(mob)	pm	4.30	(III)	(111)	(IIIOD)
	0 = 00 n 0 0 = n n 0 s		200000						Instru	ıment Gr	roundwa	ter Obse	rvations			
	1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		200,000,000			Inst.	[A] Type	: Stanc	pipe							
	10 B 00 0 0 0 B		20 0 d d d d d d d d d d d d d d d d d d				Ins	trumen	t [A]							
	000 000 000 000000000000000000000000000		000000000000000000000000000000000000000		Slotted Standpipe	Date	Time	Depti (m)	h Level (mOD)				Rema	arks	_	
				4.20												
Remari	ks															

		зrou	and C	heck	Ltd				Site Site Resto County Do	oration Co	ontract, C	hurchtow	/n Landfill	I, Lifford,	1	Borehole Number LG7A
Installa Stand	ation	า Type		Dimensi	ons al Diameter of Tube [A] = 50 eter of Filter Zone = 200 mm	mm			Client Donegal C	County Co	ouncil		_	_	1	Job Number 14-1170
				Location 23114	n 6 E 395850.8 N	Ground I	Level (m	-	Engineer TAL Civil E		na I td				s	Sheet 1/1
1	Water	Instr	Level		Description							Durin	g Drilling			
Legend	٥	Instr (A)	Level (mOD)	Depth (m) -0.50	Concrete			Denth		rounuwa	ller Surk	es Duini	Read			Denth
			.	0.05	Concrete	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflov	w Rate	5 min	10 min		20 min	Depth Sealed (m)
		: . ? . ~	-	0.25				3.80		slight						
					Bentonite Seal											
				1.00					Gr	oundwat	tor Ohsei	ryations	During D) rilling		
	0 4000		00000000000000000000000000000000000000	1.00			Γ		Start of S		.ei Obse.	Valions		End of Sh	nift	
	00,000,000		280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Date	Time	Depti Hole (m)		Water Depth (m)	Water Level (mOD)	Time	Depth Hole			Water Level (mOD)
	in0 8'00' n0 0 40m		0 000 000 000 000 000 000 000 000 000			11/11/14	1 miles	(m)	(m)	(m)	(mod)	pm	4.50	(m)	3.80	(m̃ÓĎ)
	0 0 0 0 0 0 0		0000 000000000000000000000000000000000													
	10 B 00 p 0 0 Hons		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
	B 00 0 0 0 0 00 0		150 o 50 o						Instru	ument Gr	roundwa	ter Obse	ervations			
	00'00 0 400		20 00 00 00 00 00 00 00 00 00 00 00 00 0			Inst.	[A] Type	: Stand	dpipe							
) 00 n 0 0 unu		0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					trumen								
	000000000000000000000000000000000000000		1200 0 500 0		Slotted Standpipe	Date	Time	Depti (m)	h Level (mOD)				Rema	arks		
	00,000,000,000,000		<u> </u>													
	En O O Bono B vv		<u> </u>													
	0 0 0 0 0 0 0 v		80000000000000000000000000000000000000													
	70'n 0 0 40 mu		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
	V 1		0000 0000 0000 0000 0000 0000 0000 0000 0000													
	20 B 00 D 0 U		3000 0000 00000													
	Jone B vv n v		20 08 08 08 08 08 08 08 08 08 08 08 08 08													
	4.50															
Remar	ks	<u> </u>	9													

Installa	etion	JI(ou:	nd C	heck	Ltd				Site Resto	oration Co	ontract, C	hurchtow	vn Landfill	, Lifford,	N	Borehole Number LG8
Stand			pe			al Diameter of Tube [A] = 5 eter of Filter Zone = 200 mn	0 mm n			Client Donegal C	County Co	ouncil				N	lob Number 14-1170
					Location	n	Ground I	Level (m	OD)	Engineer							Sheet
					23091	12.4 E 396177.3 N				TAL Civil E	Engineeri	ng Ltd					1/1
Legend	Water	Ins (A	str 4)	Level (mOD)	Depth (m)	Description				G	roundwa	iter Strik	es Durin	g Drilling	I		
					-0.50 0.25	Concrete	Date	Time	Depth Struc	Casing Depth (m)	Inflo	w Rate		Read	_		Depth Sealed (m)
	Ì	П	***						(m)	(m)			5 min	10 min	15 min	20 min	(m)
						Bentonite Seal											
	·				1.00												
	,																
	0.00		2000 September 1							Gr	oundwa	er Obse	rvations	During D	rilling		
							Date		Dept	Start of S		Water			End of Sh		Water
	0						12/11/14	Time	Dept Hole (m)	h Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time pm	Depth Hole (m) 7.20	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
*****	8		2000 2000 2000 2000 2000 2000 2000 200				12/11/11						pii.	1.20			
×	8																
× .×	1		2000 2000 2000 2000 2000 2000 2000 200														
	0.		8 64 65 65 65 65 65 65 65 65 65 65 65 65 65														
			50 00 00 00 00 00 00 00 00 00 00 00 00 0					_	_	Instru	ument G	roundwa	ter Obse	ervations	_	_	
× × × × × × × × × × × × × × × × × × ×	# 00 00						Inst.	[A] Type	: Stand	dpipe							
× × × × × × × × × × × × × × × × × × ×	no e c					Slotted Standpipe		Ins	trumen	it [A]							
× × × × × × × × × × × × × × × × × × ×	100000		\$0.00 00 00 00 00 00 00 00 00 00 00 00 00				Date	Time	Dept (m)	h Level (mOD)				Rema	arks		
× × × × × × × × ×	0000																
× × × × × × × × × × × × × × ×	2																
× × × × × × × × ×																	
× • • × × × × × ×			00000 000000 0000000000000000000000000														
× × × × × × × × × × × × × × × × × × ×	0.00																
× × × × × × × × × × × × × × × × × × ×																	
× × × × ×																	
× × × × ×																	
× × × × × × × × × × × × × × × × × × ×																	
× × × × × × × × × × × × × × × × × × ×) - III C - 1				7.00												
×.*.*.*																	
Remar	ks																

Installation Type Standpipe Dimensions Internal Diameter of Tube [A] = 50 Diameter of Filter Zone = 200 mm					Site Site Restoration Contract, Churchtown Landfill, Lifford, County Donegal Client Donegal County Council						J	Sorehole lumber LG9					
1				Location		Ground Level (mOD)			Engineer TAL Civil Engineering Ltd							14-1170 Sheet 1/1	
Legend	Water	Ins	str	Level (mOD)	Depth (m)	Description				Gı	roundwa	ter Strik	es Durin	g Drilling	 I		
		٠٠		()	-0.50	Concrete			Depth Struck	Casing				Read	ings		Depth.
		• .•			0.25		Date	Time	(m)	Casing Depth (m)	Inflov	v Rate	5 min	10 min	15 min	20 min	Depth Sealed (m)
						Bentonite Seal											
		888	1830 8430 8430 8430 8430 8430 8430 8430 8		1.00												
										Gre	oundwat	er Obse	rvations	During D	rilling		
							Date		Dont	Start of S		Water		1	Casing		Wator
							12/11/14	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time pm	Depth Hole (m) 7.00	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
							12/11/14						Pili	7.00			
										Instru	ıment Gı	oundwa	ter Obse	ervations			
			2000 2000 2000 2000 2000 2000 2000 200				Inst.	[A] Type	: Stand	Ipipe							
W.						Slotted Standpipe		Ins	trumen	t [A]				Dom	arko		
Alea <u>a</u> Alea Alea Alea <u>a</u> Alea Alea			800 00 00 00 00 00 00 00 00 00 00 00 00				Date	Time	Depth (m)	Level (mOD)				Rema	arks		
× .×.																	
× ×																	
×																	
×																	
×																	
×*																	
× · · · · · · · · · · · · · · · · · · ·																	
× .×					7.00												
Remark	ks								•								

APPENDIX B: GAS AND GROUNDWATER MONITORING RESULTS

Monitoring Point Reference	Atmospheric Pressure (Pa)	Flow Range (I/hr)	Time passed (s)	Methane % v/v	Methane % LEL	Carbon Dioxide %v/v	Oxygen % v/v	Water Level (mBGL
			15	4.3	95.0	5.8	20.6	
			30	3.8	87.0	5.0	20.7	
			60	2.9	66.0	3.9	20.7	
LG1A	998	2.0-0.1*	90	2.2	50.1	2.6	20.7	3.64
			120	1.5	34.9	2.1	20.8	
			150 180	1.4	32.1 30.4	1.7 1.5	20.8	=
			15	59.5	>>>	22.3	16.2	
			30	59.9	>>>	22.9	17.0	
			60	59.9	>>>	16.8	23.0	3.80
LG2A	998	3.0-0.1*	90	60.2	>>>	23.0	16.7	
			120	60.2	>>>	22.9	16.7	
			150	60.3	>>>	22.9	16.7	
			180	60.3	>>>	22.8	16.7	1
			15 30	59.2 59.3	>>>	23.0	17.5 17.5	=
			60	59.3	>>>	23.2	17.4	1
LG3A	998	4.0-1.6	90	59.2	>>>	23.2	17.3	4.09
			120	59.2	>>>	23.2	17.3	
			150	59.2	>>>	23.2	17.3	
			180	59.4	>>>	23.2	17.3	1
			15	56.9	>>>	26.3	16.6	
			30	57.2	>>>	26.1	16.5	_
	4000	0.0.4*	60	57.3	>>>	26.1	16.4	2.50
LG5A	1000	0.3-0.1*	90	57.3	>>>	25.9	16.4	3.60
			120 150	57.5 57.5	>>>	25.9 25.9	16.4 16.4	=
			180	57.6	>>>	25.8	16.4	
			15	57.7	>>>	26.3	16.6	
	1000	31.6-0.1*	30	57.5	>>>	26.1	16.5	2.40
			60	57.5	>>>	26.1	16.4	
LG6A			90	57.5	>>>	25.9	16.4	
			120	57.5	>>>	25.9	16.4	
			150	57.5	>>>	25.9	16.4	
			180	57.3	>>>	25.8	16.4	
			15	63.8	>>>	18.4	17.6	
			30 60	64.0 64.1	>>>	18.4 18.4	17.4 17.4	3.14
LG7A	999	0.1	90	64.1	>>>	18.4	17.3	
			120	64.2	>>>	18.4	17.3	
			150	64.2	>>>	18.4	17.3	1
			180	64.2	>>>	18.4	17.3	
		31.6-0.1*	15	58.3	>>>	16.7	18.4	3.82
			30	58.5	>>>	17.0	18.5	
			60	58.6	>>>	17.0	18.5	
L1A	1000		90	58.6	>>>	17.1	18.6	
			120	58.6	>>>	17.1	18.6	-
			150 180	58.7 58.6	>>>	17.1 17.1	18.6 18.6	1
			15	4.2	84.1	4.2	20.0	
			30	3.4	62.0	3.6	20.4	1
			60	2.3	44.3	2.8	20.5	
LG8	999	0.5-0.1*	90	1.8	35.2	2.1	20.6	3.85
			120	1.5	30.7	1.6	20.7	4
			150	1.2	22.7	1.0	20.7	4
			180	1.1	22.0	1.0	20.8	
		0.1	15	2.7	54.0	3.0	20.4	1
	999		30 60	2.0 1.5	39.0 28.5	2.2 1.7	20.6	1
LG9			90	1.2	23.4	1.7	20.7	3.70
			120	1.2	22.2	1.2	20.8	1
			150	1.1	21.0	1.2	20.8	
			180	1.1	20.8	1.2	20.8	
			15	62.5	>>>	16.2	17.9	
			30	63.8	>>>	16.3	17.8	4
			60	63.9	>>>	16.3	17.8	
R1	999	0.1	90	64.0	>>>	16.4	17.7	4.02
			120	64.0	>>>	16.4	17.7	-
			150 180	64.1 64.1	>>>	16.5 16.5	17.7 17.6	1
			100	07.1		10.5	17.0	

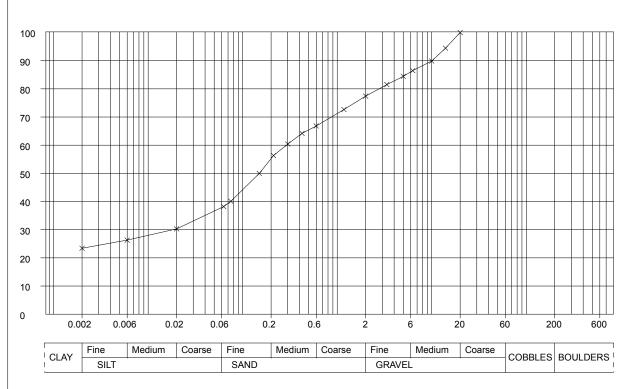
APPENDIX C: GEOTECHNICAL LABORATORY TEST RESULTS

Laboratory Test Results

Site : Site Restoration Contract, Churchtown Landfill, Lifford, County Donegal

Job Number 14-1170

Client : Donegal County Council


Sheet

Engineer: TAL Civil Engineering Ltd

1/5

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Laboratory Description
L1A	1.00	B1	

Sieve Partic Size	
20 mm	100.0
14 mm	94.5
10 mm	89.9
6.3 mm	86.5
5 mm	84.4
3.35 mr	m 81.5
2 mm	77.4
1.18 mr	m 72.7
600 μm	66.8
425 µm	64.2
300 μm	60.4
212 µm	56.3
150 µm	50.0
75 µm	40.1
63 µm	38.2
20 µm	30.3
6 µm	26.3
2 µm	23.4

Grading Analysis					
D85	5.4 mm				
D60	291.2 μm				
D10	<2.0 µm				
Uniformity Coefficient	-				

Particle Proportions					
Cobbles + Boulders	-				
Gravel	22.6%				
Sand	39.6%				
Silt	14.5%				
Clay	23.4%				

Method of Preparation: BS 1377:PART 1:1990:7.3 Initial preparation 1990:7.4.5 Particle size tests

Method of Test : BS 1377:PART 2:1990:9 Determination of particle size distribution

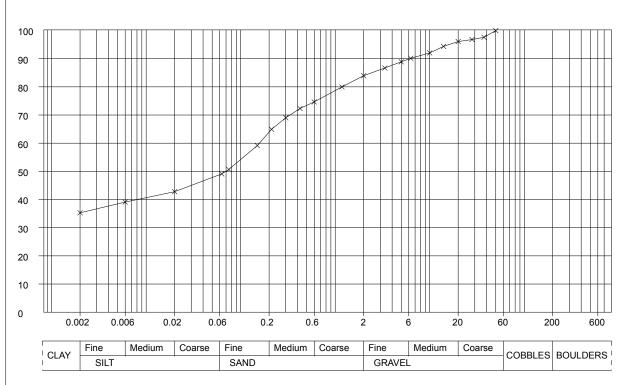
Remarks :

: Site Restoration Contract, Churchtown Landfill, Lifford, County Donegal Site

Job Number

2/5

14-1170


: Donegal County Council Client

Sheet

Engineer: TAL Civil Engineering Ltd

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Laboratory Description
LG1A	1.00	B1	

Sieve / Particle Size	% Passing
50 mm	100.0
37.5 mm	97.6
28 mm	96.8
20 mm	96.1
14 mm	94.4
10 mm	92.1
6.3 mm	90.1
5 mm	88.9
3.35 mm	86.7
2 mm	84.0
1.18 mm	80.0
600 µm	74.7
425 µm	72.3
300 µm	69.0
212 µm	64.9
150 µm	59.2
75 µm	50.7
63 µm	49.1
20 µm	42.8
6 µm	39.1
2 μm	35.3

Grading Analysis		
D85	2.5 mm	
D60	158.8 µm	
D10	<2.0 µm	
Uniformity Coefficient	-	

Particle Proportions		
Cobbles + Boulders	-	
Gravel	16.0%	
Sand	35.1%	
Silt	13.5%	
Clay	35.3%	

Method of Preparation: BS 1377:PART 1:1990:7.3 Initial preparation 1990:7.4.5 Particle size tests

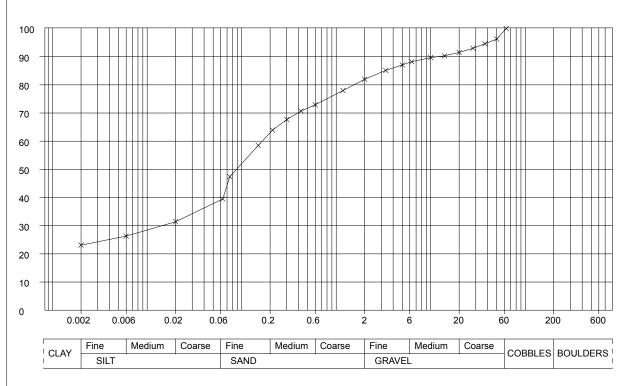
Method of Test : BS 1377:PART 2:1990:9 Determination of particle size distribution

Remarks

Site : Site Restoration Contract, Churchtown Landfill, Lifford, County Donegal

Job Number 14-1170

Client : Donegal County Council


14-117

Engineer: TAL Civil Engineering Ltd

Sheet 3/5

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Laboratory Description
LG2A	1.00	B1	

Grading Analysis		
D85	3.3 mm	
D60	167.0 µm	
D10	<2.0 µm	
Uniformity Coefficient	-	

Particle Proportions		
Cobbles + Boulders	0.8%	
Gravel	17.2%	
Sand	42.9%	
Silt	16.1%	
Clay	23.1%	

Method of Preparation: BS 1377:PART 1:1990:7.3 Initial preparation 1990:7.4.5 Particle size tests

Method of Test : BS 1377:PART 2:1990:9 Determination of particle size distribution

Remarks :

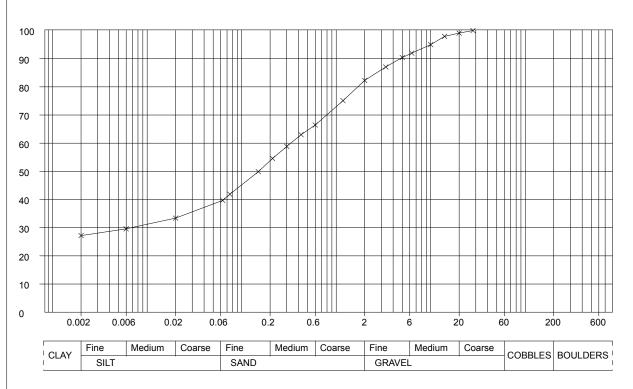
Site : Site Restoration Contract, Churchtown Landfill, Lifford, County Donegal

Job Number

4/5

14-1170

Sheet


sneet

Client : Donegal County Council

Engineer: TAL Civil Engineering Ltd

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Laboratory Description
LG3A	2.00	B2	

Sieve / Particle Size	% Passing
28 mm	100.0
20 mm	99.1
14 mm	97.9
10 mm	95.0
6.3 mm	92.0
5 mm	90.4
3.35 mm	87.1
2 mm	82.3
1.18 mm	75.1
600 µm	66.5
425 µm	63.0
300 µm	58.9
212 µm	54.6
150 µm	49.9
75 µm	41.9
63 µm	39.7
20 µm	33.4
6 µm	29.6
2 µm	27.2

Grading Analysis		
D85	2.8 mm	
D60	334.5 µm	
D10	<2.0 µm	
Uniformity Coefficient	-	

Particle Proportions		
Cobbles + Boulders	-	
Gravel	17.7%	
Sand	42.9%	
Silt	12.2%	
Clay	27.2%	

Method of Preparation: BS 1377:PART 1:1990:7.3 Initial preparation 1990:7.4.5 Particle size tests

Method of Test : BS 1377:PART 2:1990:9 Determination of particle size distribution

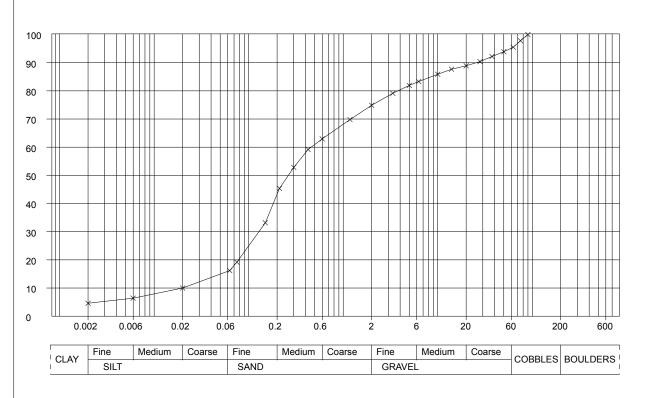
Remarks

: Site Restoration Contract, Churchtown Landfill, Lifford, County Donegal Site

Job Number

14-1170

5/5


: Donegal County Council Client

Sheet

Engineer: TAL Civil Engineering Ltd

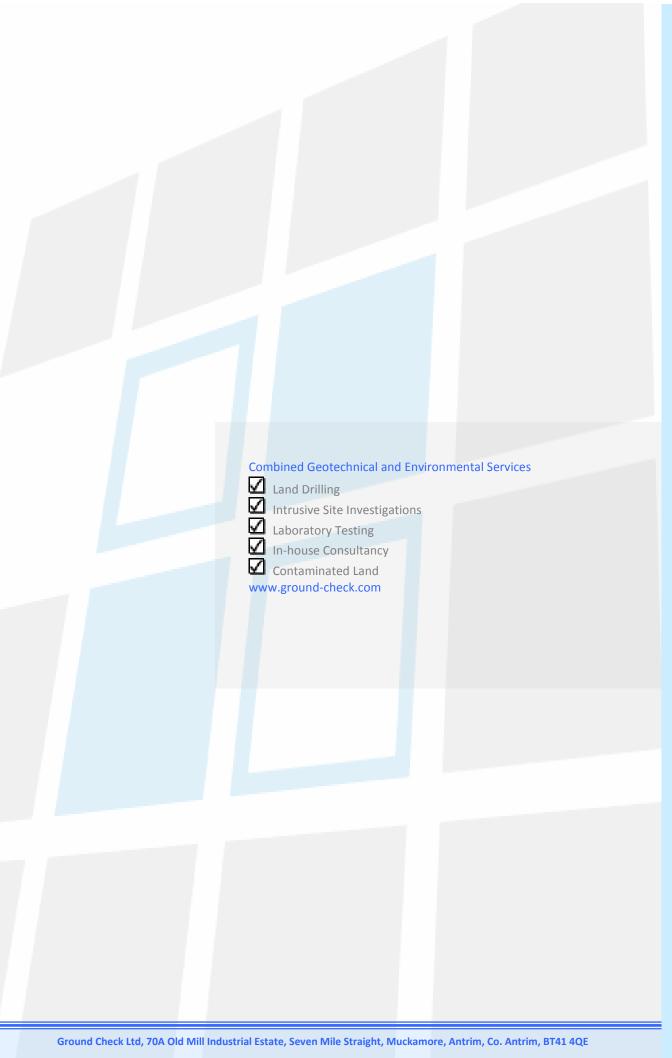
DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Borehole / Trial Pit	Depth (m)	Sample	Laboratory Description
LG9	2.00	D3	

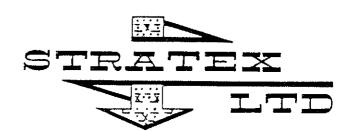
Grading Analys	sis	Particle Proport	ions
D85	8.7 mm	Cobbles + Boulders	4.8
D60	462.6 µm	Gravel	20
D10	20.0 μm	Sand	58
		Silt	11.
Uniformity Coefficient	23.1	Clay	4.6

Sieve / Particle Size	% Passing
90 mm	100.0
75 mm	97.8
63 mm	95.5
50 mm	93.9
37.5 mm	92.2
28 mm	90.4
20 mm	88.9
14 mm	87.7
10 mm	85.9
6.3 mm	83.3
5 mm	81.9
3.35 mm	79.2
2 mm	74.9
1.18 mm	69.8
600 µm	63.0
425 µm	59.2
300 µm	52.8
212 µm	45.4
150 µm	33.2
75 µm	19.2
63 µm	16.2
20 µm	10.0
6 µm	6.4
2 µm	4.6

Method of Preparation: BS 1377:PART 1:1990:7.3 Initial preparation 1990:7.4.5 Particle size tests


Method of Test : BS 1377:PART 2:1990:9 Determination of particle size distribution

Remarks


20.3%

58.9%

11.3% 4.6%

41a Tullyard Road, Drumbo, LISBURN Co. Antrim, N Ireland BT27 5JN Telephone: Belfast (01232) 826734

Fax:

Belfast (01232) 826096

Geolechnical Report

SUBJECT:

GROUND INVESTIGATION

CLIENT:

DONEGAL COUNTY COUNCIL

CONSULTING

ENGINEERS:

KIRK McClure Morton

TITLE:

CHURCHTOWN LANDFILL SITE

LIFFORD

REF:

898/2293

DATE:

Š

23 SEPTEMBER 1998

<u>CONTENTS</u>

PAGE	<u>NC</u>
INTRODUCTION	1
SITE AND GEOLOGY	1
FIELDWORK	. 1
LABORATORY TESTING	2
FIGURES	<u>NC</u>
SITE PLAN	1
BOREHOLE LOGS	2-5
<u>APPENDICES</u>	<u>NC</u>
PERMEABILITY TEST RESULTS	1
CONTAMINATION TEST RESULTS	2

CLIENT:

DONEGAL COUNTY COUNCIL

CONSULTING

ENGINEERS:

KIRK McCLURE MORTON

CHURCHTOWN LANDFILL SITE LIFFORD GROUND INVESTIGATION

The following factual report describes an investigation carried out at the above site in late August and early September 1998 on instructions from Kirk McClure Morton.

The investigation was carried out to facilitate monitoring installations and to characterise the geology and hydrogeology of the site. The contract provides for the formation of four cable tool percussion boreholes with associated sampling, testing and laboratory testing.

SITE AND GEOLOGY

The existing landfill site is located at Churchtown, Lifford, Co Donegal.

Geologically the site is underlain by rocks of Dalradian origin which are probably overlain by Glacial deposits and, possibly, Recent peaty materials.

FIELDWORK

ž

Four bareholes were put down at the locations instructed as indicated approximately in figure 1. One of our Dando 150 Investigator shell and auger rigs was used, boring to produce a nominally 200 mm diameter hole. Borehole completion depths ranged from 9.00 to 14.60 metres below ground level and considerable obstruction time was incurred in Boreholes 1, 3 and 4, four attempts being made to drill Borehole 1 and three attempts to drill Borehole 3.

2

Three unsuccessful attempts were made at undisturbed 105 mm sampling within cohesive soil. The remaining soils were predominantly granular and Standard Penetration Tests (SPT) were performed generally at abut 1.50 metre intervals as well as within rock. Where full 0.3 metre penetration was not achieved, the number of blows for the quoted penetration is given. Disturbed samples were taken at intervals or at change of stratum for classification purposes and sealed in polythene containers. Water samples were taken in amber glass

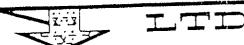
containers and sent to our testing laboratary.

Standpipes were installed in all boreholes to the depths shown on the logs for future groundwater sampling and monitoring. These were constructed in accardance with your

standard detail and were capped at surface with raised steel covers with padlocks.

In-situ variable head permeability tests were performed in the standpipe installations in each borehole and test results are given in tabular form in Appendix 1.

LABORATORY TESTING


The water samples were despatched to our testing laboratory for analysis in accordance with the Engineer's specified suite of tests and results are included in Appendix 2.

STRATEX LIMITED

G Ferguson

į

M F Robb BSc CEng MICE FGS MIEI

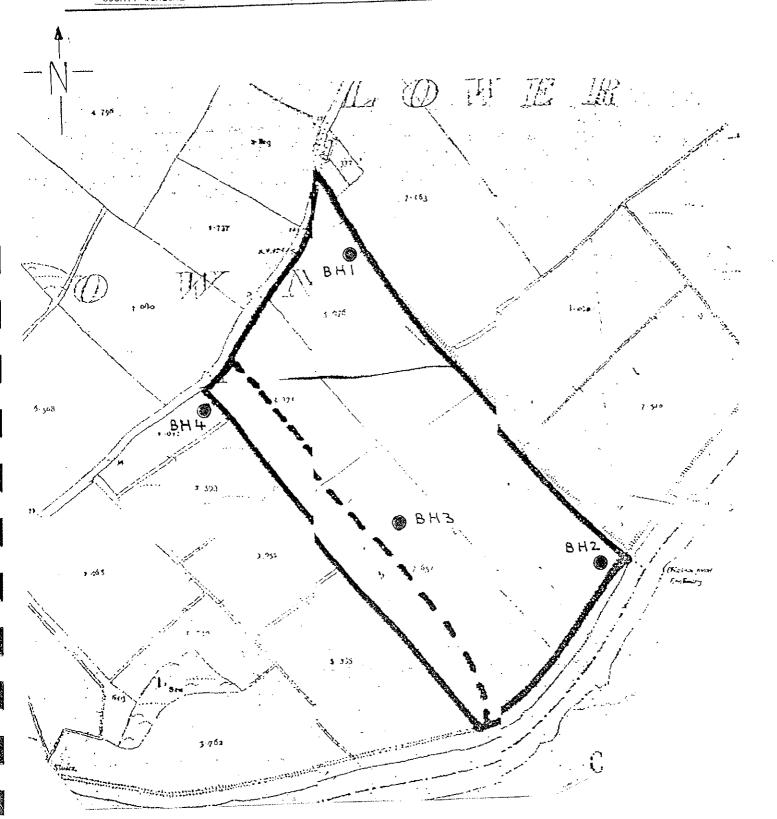
41a Tullyard Road, Drumbo, LISBURN Co. Antrim, N Ireland BT27 5JN Telephone: Belfast (01232) 826734

Fax:

Belfast (01232) 826096

FIG 1 - SITE PLAN

SCALE 1: 2500


Borehole

☐ Trial Pit

CLIENT DONEGAL COUNTY COUNCIL

CONS. ENGR. KIRK MCCLURE MORTON

SITE CHURCHTOWN LANDFILL SITE, LIFFORD,
COUNTY DONEGAL

- x -RATEX <u>X</u> . . Z Site

Drilling Method: Shell & Auger: 200mm Diameter, Cased to: 11.00m

Borehole Log

Borehole No. Sheet 1

Client DONEGAL COUNTY COUNCIL

Scale 1:50

3

2

SPT: Where full 0.3m ponetration has not been achieved, the number of blows for the quoted penetration is given (not N-value).

Engineer

KIRK MCCLURE MORTON

Ground Level

	Telephone: Belfast (01232) 826734	COU	RCHTOW NTY DO	N LANDFI NEGAL	LL SIT	E, LIFFORD,		Ground Level
Date and		1	Depth		Reduced	s	ampies/Tes	ts
Water Level	Description	47000	(m)	Legend	Level	Depth (m)	Sample Type	Tes
25/08/98	TOPSOIL (0.20)	_	0.20			0.20	D	
	Domestic refuse, metal, timber, plastic, in a matrix of brown clayey, gravelly, sandy silt [FILL] [MADE GROUND] (4.80)	-	0.20]	0.20		
	[MADE GROUND] (4.80)	7						
		1				1.00	D	
		-						
26/08/98		1						
		-						
		-				2.00	D	
		1						
		7						-
		7						
		_				3.00	D	-
	•	-						
		7				3.60	W	!
**		1				1 00		
TRUCK water t 4.00m LIGHT FLOW		-				4.00	D	
LIGHT FLOW		1						
			Ì					1
PM 4.00m			5.00			5,00	D	
27/08/98	Loose, greenish grey, slightly gravelly, silty, fine, medium and coarse grained SAND containing bands of grey, very sandy silt (4.00)		3.00	x x x			j	S N4
AM 4.00m	bands of grey, very sandy silt (4.00) [FLUVIO GLACIAL]	-				5.15-5.450 5.30 5.50	W D	
				× ×				
		-		× .×	į	6.00	D	
		-		×				
		-		x		6.60	W W	
		-						
				x		7.00	D	
		-	ľ	×××			_	
				×		7.50	D	0.115
TOUCK+.			ļ	xx		7.65-7.950 8.00	0	S N5
TRUCK water t 8,00m LIGHT FLOW		-				8.00		
CIGHT I COM		-		×				
		-	!	*	,			
		-	9,00	×	ĺ	9.00	D	
	Loose, greenish grey, very silty, fine and medium grained SAND (2,00) [FLUVIO GLACIAL]	-	Ī			9.15-9.450		S N4
	[FLUVIO GLACIAC]	1	Ì.	*	1			
		-	ĺ	x;				
						10.00	D	
Remarks					le/Test K		Job No	
	attempts were made to drill borehole attempt met refusal at 1.00m depth	- 1	Stand Test Vane	lard Penetra	ation D	Disturbed Sample		
Second Third	attempt met refusal at 1.20m depth attempt met refusal at 1.50m depth	(Core	Recevery (*	%) B W P	Sample Bulk Sample Water Sample Piston	229	3
,,,,,,,	accompanies in a range of the response of			Quality nation (RQ		Tube tion has not	Figure	1444

	i x i	Bore	h	ole	Lo	q	Borehole		1
ST	RATEX				OUNTY CC		Tourset ,	- UI	Scale
		Engineer K	IR	K MCCL	URE MORT	ON			1:50
	Telephone: Beifast (01232) 826734	Site C	HUI OUI	RCHTOW NTY DO	N LANDFI NEGAL	LL SIT	E, LIFFORD		Ground Level
Date and	Description		onto tacent an	Depth	Legend	Reduced	S	amples/Tes	ts
Water Level				(m)		Level	Depth (m)	Sample Type	Test
	PARTITION		1		×		***		
			7		×		10.50	D	0.110
			-	11.00	× × ×	ł	10.65-10.9 11.00	D D	S N2
	END OF BOREHOLE		1.1.4				7 m		
			-						
			1						
			1						
			1						
			7						
	•	-	1						
	The second secon		4		1				
		^	-						
			1						
			7			j			
		-	-						
			1,1						
		-							
			7						
					1	:			
			1	 		:			
			+						
		**			-				
			7		ļ				
			7						
		_	-						
			2	,					
			A. Commenter of			:			
Remarks			5	Stand		c/Test K	-	Job No	·•
Four a First Second	attempts were made to drill torehole attempt met refusal at 1.00m depth I attempt met refusal at 1.20m depth attempt met refusal at 1.50m depth		V	Test Vane	ard Penetra Test Recovery (? Quality nation (RQI	(1001 D B (1)	Disturbed Sample Bulk Sample Vater Sample	2293	ł.
Third	attempt met refusal at 1,50m depth		r					Figure	!
			\$	for t	ne quoted p	penetrat the numb enetratio	er of blows	2	
Drilling Meth	Od: Shell & Auger: 200mm Diameter, Cased	to: 11.00m		(not	N-value).		- '	۲.	

	Dor	a h	ماه	١٥	A	Borehole	No.	1	
**	₹, ४ ,₹	Bor	e II	Ole	LO	9	Sheet	3 of	3
ST	RATEX	Client	DON	EGAL C	OUNTY CO	DUNCIL			Scale 1:50
	7.5	Engineer	KIR	K MCCL	URE MORT	TON			<u> </u>
	Telephone: Belfast (01232) 828734	Site	CHU	RCHTCW NTY DO	N LANDFI NEGAL	ILL SITE	E, LIFFORD,		Ground Level
Date and		·		Depth		Reduced	s	amples/Tes	ts
Water Level	Description			(m)	Legend	Level	Depth (m)	Sample Type	Test
Remarks		190m for			Samo	oleiTest X			
Remarks	attempts were made to drill borehole			S Stand	Samp ard Penetra	ole/Test Ka ation D	Disturbed .	Job No	١-
First Second Third	attempt met refusal at 1.00m depth attempt met refusal at 1.20m depth attempt met refusal at 1.50m depth attempt met refusal at 1.50m depth		,	V Test V Vane		B 8	Sample Sulk Sample	2293	3
,, 4			1	SPT: Whe	re full 0,3n	n penetrati	on has not	Figure	
Drilling Meth	and Shell & Auger: 200mm Diameter, Cased	to: 11.00m		for t	n achieved he quoted N-value).	, tho numb	er of blows	2	

Drilling Method: Shell & Auger: 200mm Diameter, Cased to: 11.00m

Drilling Method: Shell & Auger: 200mm Diameter, Cased to: 12.50m

Borehole Log

2 Borehole No. Sheet 1 3

Client DONEGAL COUNTY COUNCIL

Scale

1:50 Engineer KIRK MCCLURE MORTON CHURCHTOWN LANDFILL SITE, LIFFORD, COUNTY DONEGAL Site

Date and	D	Depth	10000	Reduce	d S	amples/Tes	ts
Water Level	Description	(m)	Legend	Level	Depth (m)	Sample Type	Test
28/08/98	TOPSOIL (0.50)	-	80.6S	1	· Company	TE TOTAL PROPERTY.	
		0.50			0.50	D	
	Domestic refuse, cloth, metal, timberplastic,	- 0.50		\$	0.50		1
	Domestic refuse, cloth, metal, timberplastic, glass, in a matrix of brown, clayey, gravelly, sandy silt [FILL] [MADE GROUND] (6.00)]			1 00		
				}	1.00	D	
		4		}			
		-]					
		-		}			
					2.00	D	i
]					
		-		}			
					3.00	D	
	•						
		7			2 50	D	
:					3.50 3.50	W W	
FRUCK water		7			3.80	W	
3.80m IGHT TO DERATE FLOW							
DÔĚRATÉ FLOW		-		}		i	
		-					
•		7					
		1			ļ		
]					
:		4					
		-					
:	Soft, dark brown, clayey, peaty SILT (1.50) [RECENT]	6.50	X		5.50 6.50-6.95	D	(NO REC
	[RECENT]	-	× \\\				
			* * * * *				
		-	x x x				
		-	× × × × × × × × × × × × × × × × × × ×		7.50	D	
		3	x . x . x		7.65-7.950	1	S N4
		8.00	x x x x		8.00	D	
	Loose, dark brown, slightly gravelly, silty, fine, medium and coarse grained SAND (0.50) [FLUVIO GLACIAL]	7	x x		8.20	D	
		8,50	×		8,50	D	
	Loose, dark brown, slightly silty, very sandy, fine	4	, x				
	grained GRAVEL (1.00) [FLUVIO GLACIAL]	+			9.00	D	
			×			_	C VIE
DI		1 2 52	`. ·×		9.15-9.450		S N5
PM 6.20m	Loose, dark brown, slightly gravelly, fine, medium	9.50			9.50	D	
31/08/98 AM 4.90m	and coarse grained SAND (3.00) [FLUVIO GLACIAL]	-1	, , . × .			-	
					10.00	D	
		S 0		ple/Tost	-	Job N	٥.
Remarks			dara Penetr	acon D	Sample Bulk Sample		•
		V Vane	: Test	Д	Bulk Samole		
Remarks		V Vane	: Test : Recovery ((%) W	' Water Sample	229	3
		V Vane C Core T Rock Desi	e Test : Recovery (: Quality gnation (RC	10 %) U	' Water Sample	229 Figure	

j,

Drilling Method: Shell & Auger: 200mm Diameter, Cased to: 12.50m

Borehole Log

2 Borehole No. Sheet 2 of 3

Client DONEGAL COUNTY COUNCIL

Scale 1:50

Engineer

KIRK MCCLURE MORTON

S Standard Penetration D Disturbed Test Sample V Vane Test B Bulk Sample C Core Recovery (%) Water Sample P Rock Quality P Piston U Tube

SPT: Where full 0.3m penetration has not been achieved, the number of blows for the quoted penetration is given (not N-value).

2293

Figure

i	Telephone: 8 elfast (01232) 826734		•••••			C.	:s	
Date and Vater Level	Description		Depth (m)	Legend	Reduced Level	Depth (m)	nples/Test Sample Type	Tes
				×:			1	
		3		×	1	10.50	D	
		-		x	1	10.65-10.95	!	S N4
				×	1 !	11.00	٥	
		- - -		. x				
		_		×				
				x'.				
				x	l 1	12.00	D	
		-		× .*		12.15-12.45	D	S N5
	END OF BOREHOLE		12.50	سنة سنب شين	1			
at constants		•						
								
	•	•						
		-						
		-						
			Ì					
		-						
		•						
		-]					
		- 	1000					
		-				į		
						j		
			İ			T COOPERA LE MANO		
3							1	
		4						
1		_	Victoria E					
,		10 mm						
							İ	
}		Em Lecuntry						
į		E Transfer and						
j			!		i	į.	1	

Drilling Method: Shell & Auger: 200mm Diameter, Cased to: 12.50m

Borehole Log

2 Borehole No. Sheet 3 of 3

3

SPT: Where full 0.3m penetration has not been achieved, the number of blows for the quoted penetration is given (not N-value).

Client

DONEGAL COUNTY COUNCIL

Scale 1:50

Engineer KIRK MCCLURE MORTON

					1	1	IFFORD,		
Date and Vater Level	Description		Depth	Legend	Reduce	d	Samples/Te Sample		
			(m)		Level	Depth (m)	Туре	Tes	
		-					ļ		
ĺ	i. Install standpipe to 6.50m. Install standpipe to 12.50m.	1							
	GROUNDWATER OBSERVATIONS Borehole Casing Water Date Time Depth Depth Level								
]							
	28/08/98 PM 9.50 9.50 6.20 31/08/98 AM 9.50 9.50 4.90	1							
	All depths are given in metres								
		1							
		4	-						
	•	1	İ						
A STATE OF THE STA		7							
Ì		Ţ	-						
			1100						
È		1	-		ĺ				
		7							
7									
		7							
			İ						
		-1					[
		-			1				
ĺ		-							
į		-							
Ì		-							
		=		1			ļ		
		-							
		-							
		-				77 88-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	<u>;</u>		
				<u>L</u>					
arks		s	Standar	4 0	/TestKe		Job No).	
;		V	Test Vane Te	est	Si B Bi	isturoed ample ulk Sample ater Sample ston ube			
		r	Core Re	covery (%)) WW	ater Samole	2293	3 4	

Drilling Method: Shell & Auger: 14.60mm Diameter, Cased to: 14.60m

Borehole Log

3 Borehole No. Sheet 1 3

4

Client DONEGAL COUNTY COUNCIL

KIRK MCCLURE MORTON Engineer

Scale 1:50 Ground Level

CHURCHTOWN LANDFILL SITE, LIFFORD, COUNTY DONEGAL Samples/Tests Depth Reduced Date and Description Legend Sample Water Level Depth (m) Test Туре Brown, clayey, gravelly, sandy silt [FILL] [MADE GROUND] (0.20)31/08/98 0.20 0.20 D Domestic refuse, metal, plastic, timber, glass, cloth, in a matrix of brown, clayey, sandy silt [FILL] [MADE GROUND] (6.80) 1.00 D 2.00 D 3.00 D 3.50 Đ STRUCK water at 4.00m SLIGHT FLOW 4.50 D 01/09/98 7.00 D Dark brown, silty PEAT (0.50) [RECENT] (NO REC) 7.50 7.40 7.50 D Loose, grey, silty SAND containing bands of grey, sandy silt (5.10) [FLUVIO GLACIAL] 8.00 D 9.00 D 9.15-9.450 S N4 PM 6.10m 02/09/98 AM 3.50m 10.00 D Remarks Sample/Test Key Job No. Standard Penetration D Disturbed
Test Sample Sample
Vane Test B Bulk Sample
Core Recovery (%) W Water Sample
Rock Quality P Piston
U Tube Three attempts were made to drill borehole First attempt met refusal at 4.00m depth Second attempt met refusal at 4.50m depth 2293 Figure SPT: Where full 0.3m penetration has not been achieved, the number of blows for the quoted penetration is given (not N-value).

Borehole Log

3 Borehole No. Sheet 2 of

Client DONEGAL COUNTY COUNCIL

KIRK MCCLURE MORTON Engineer

Scale 1:50

Site

CHURCHTOWN LANDFILL SITE, LIFFORD, COUNTY DONEGAL

Ground Level

Date and			pth		Reduced			
Vater Level	Description		m)	Legend	Level	Depth (m)	Sample Type	Test
		-		×:::X				
		- -	-	x 3,		10.50	D	
		<u></u>		×	1	10.65-10.95		S NE
						11.00	0	
		4. 4		×				
				×				
		1 1		*	1			
				* *		12.00	D	
		12		**************************************	-	12.15-12.45	0	S N4
		12	2.60	× :		12.60-12.60 12.60	0	S 50
	Dense, grey, sandy GRAVEL containing cobbles and large boulders (2.00) [FLUVIO GLACIAL]	1		$Q \subset$			ì	
	[FLUVIO GLACIAL]	_		$\dot{\circ}$		13.00	D	
						13,50-13,68	D.	S 50
			1	(\cdot,\cdot)		13.50-13.68 13.50	D	
				٠٠.٠٠. ٠٠:		14.00	D	
		7		$\mathcal{V}(0)$				
		1.4	1.60	<u> </u>	<u> </u>			
	END OF BOREHOLE	14	+.00					
		-						
		_						
		-						
		1						
		1						
		A TO A BOOM OF THE PERSON OF T						
						Parent		
	The second secon							
		1						
		The state of the s						
		7						
		**		i	\$] 1	

Three attempts were made to drill borehole First attempt met refusal at 4.00m depth Second attempt met refusal at 4.50m depth

S Standard Penetration D Disturbed
Test Sample
V Vane Test B Sulk Sample
C Core Recovery (%) Water Sample
P Rock Quality P Piston
Designation (RQD %) U Tube

Figure

2293

SPT: Where full 0.3m penetration has not been achieved, the number of blows for the quoted penetration is given (not N-value).

Remarks

Three attempts were made to drill borehole First attempt met refusal at 4.00m depth Second attempt met refusal at 4.50m depth

Drilling Mothod: Shell & Auger: 14.60mm Diameter, Cased to: 14.60m

Borehole Log

3 Borehole No. Sheet 3 of 3

Client

DONEGAL COUNTY COUNCIL

Scale 1:50

KIRK MCCLURE MORTON Engineer

Site

CHURCHTOWN LANDFILL SITE, LIFFORD, COUNTY DONEGAL

Sample/Test Key

S Standard Penetration D Disturbed
Test Sample
V Vane Test B Bulk Sample
C Core Recovery (%) W Water Sample
P Rock Quality P Piston
Designation (RQD %) U Tube

SPT: Where full 0.3m penetration has not been achieved, the number of blows for the quoted penetration is given (not N-value).

Job No.

Figure

2293

Ground Level

	Telephone: Belfast (01232) 826734		.	D - J	Samples/Tests		
Date and Vater Level	Description	Depth (m)	Legend	Reduced Level	Depth (m)	Sample Type	Test
alei Cevei						1,700	
		1 3					
	i. Obstruction time from 3.50m to 4.00m for 1.25 hours.	3					
	Obstruction time from 4.30m to 4.30m for	=					
	1.50 hours. Obstruction time from 5.10m to 6.30m for	1					
	4.00 hours. Obstruction time from 12.70m to 13.40m for			1			
	3.00 hours. ii. Install standpipe to 7.00m. Install standpipe to 14.60m.	omendamental energe et errelamentane denom					
	GROUNDWATER OBSERVATIONS Borehole Casing Water Date Time Depth Depth Level						
						And the same of	
	01/09/98 PM 9.50 9.50 6.10 02/09/98 AM 9.50 9.50 3.60	7				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
ļ	All depths are given in metres						
,	• • • • • • • • • • • • • • • • • • •	3	***************************************				
	•						
ì		-1					
		-					
		;					
		-					
		_					
						-	
		+				ALL STATE OF THE S	
		7				***************************************	
		-				-	
		1					
		1					
				1			
		-					
	Patron men						
		=					
		~					
		-					
		-					
						4	

Drilling Method: Shell & Auger: 200mm Diameter, Cased to: 9.40m

Borehole Log

4 Borehole No. Sheet 1 of 2

Client DONEGAL COUNTY COUNCIL

Scale 1:50

Engineer

KIRK MCCLURE MORTON

Ground Level

CHURCHTOWN LANDFILL SITE, LIFFORD, COUNTY DONEGAL Site

Date and Water Level	0		Legend	Reduced			\$	
	Description	(m)	Legend	Levei	Depth (m)	Sample Type	Test	
03/09/98	TOPSOIL (0.10)	0.10	7X \(\forall 7\) \(\forall 2\) \(\forall 3\) \(\forall 4\)		0.10	ō		
	Soft, brownish grey, sandy, clayey, organic SILT (0.60)		x x x x					
	[RECENT]	0.70	×		0.70	M G		
	Soft, dark brown, silty PEAT (1.30) [RECENT]		× براند مالد براند		0.80 1.00	א D		
	•	1	alka alka					
		1	× 3.002 X		1.50 1.50-1.95	D U	(NO REC	
		1	× 2/1/2 × 2/1/2 × 2/1/2				Ì	
	Soft, dark brown, silty, sandy PEAT (0.30)	2.00	× بنانی ×		2.00	D		
	[RECENT]	2.30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>.</u>	2.30	Ð		
	Loose, grey, silty SAND containing bands of greenish grey, sandy silt (4.70) [FLUVIO GRACIAL]							
	(1 COVID disposac)	1	×		3.00	Ð		
	,		x		3.15-3.450		S N8	
		1	×					
		-	×		3.80	D		
			×	ļ	3.80 4.00	D		
TRUCKtox		+	×					
STRUCK water at 4.30m SLIGHT FLOW			x . x		4.50	D	0.14	
ZIGHT TEOM		Jumpan	××		4,65-4.950	D	S N4	
		-	x		5.00	Ü		
		1						
		-	* * .					
			* ·		6.00	D		
			× ×		6.15-6.450		S N4	
		_	* *					
		-	×	 				
	Medium dense, brown, silty, sandy GRAVEL containing	7.00	×	<u> </u>	5.90 7.00	D D		
	Medium dense, brown, silty, sandy GRAVEL containing cobbles and boulders (1.20) [FLUVIO GLACIAL]		0		7 50	D.		
		-	9		7.50 7.65-7.950	_	S N13	
		-	S.A.		8.00	D	00	
STRUCY water		8.20						
STRUCK water at 8.20m STRONG FLOW	Light brown, highly to moderately weathered PSAMMITE (0.80)							
O'Rosta / Con	[MOINĪAN]		~~~~	4				
A		9.00			9.00-9.280 9.00	D	S 50	
	END OF BOREHOLS	3			3,00	-		
			e	ple/Test	X au	Job N	·	
Remarks		S Star	ndard Penet	ration D	Disturbed Sample	20D 14	J.	
<i>}</i>			t e Test e Recovery k Quality	(%) W	Bulk Sample Water Samole	229	2293	
			k Quality ignation (Re			Figure		
			ir the quoted	i penetrat	ation has not nber of blows ion is given	5		
Drilling Mot	hod: Shell & Auger: 200mm Diameter, Cased to: 9.40m	(r	iot N-value)	•				

Borehole Log

Borehole No.

4 Sheet 2 2

Client DONEGAL COUNTY COUNCIL

Scale 1:50

Engineer

KIRK MCCLURE MORTON

	Site CHURCHTOWN LANDFILL SITE, LIFFORD, COUNTY DONEGAL					Ground Level			
Date and Water Level	Description		Depth	Legend	Reduced	Samples/Test		(S	
	Description		(m)	Logoni	Level	Depth (m)	Sample Type	Tes	
		1.1.1					:		
	i. Obstruction time from 7.10m to 7.40m for 1.00 hour. Obstruction time from 8.40m to 8.90m for	4					:		
	Obstruction time from 8.40m to 8.90m for	-							
	1.50 hours. ii. Install standpipe to 9.00m.	7							
		and the state of the first of the state of t					:		
		7					į		
		-	-						
		-					•		
		-					:		
							:		
		-					:		
		losos esta liste de secto de la compania de secto de secto de secto de secto de secto de secto de secto de secto de					!		
	•]					;		
		===	1				i		
		3					:		
			1		To add the same of		•		
			İ				Ì		
							:		
		-	***************************************						
		_i _i	NV should also				:		
		-	į						
		=======================================		:					
			-						
			opy Avenue						
	•								
		-							
					-				
					. [
		1			-		a. verales		
		7							
		*			****				
1		4 							
		-: ;				:	1		
			İ	ļ					
		, d , d , d		1	PERMITA				
					-		7		
-		-	-						
					ļ				
ą.		**	i		1				

Remarks

;

Sample/Test Key

S Standard Penetration D Disturbed
Test Sample
V Vane Test B Bulk Sample
C Core Recovery (%) Water Sample
P Rock Quality P Piston
Designation (RQD %) U Tube

2293

SPT: Where full 0.3m penetration has not been achieved, the number of blows for the quoted penetration is given (not N-value).

Figure

5

Job No.

Drilling Method: Shell & Auger: 200mm Diameter, Cased to: 9.40m

APPENDIX 1

PERMEABILITY TEST RESULTS

CHURCHTOWN LANDFILL SITE, LIFFORD

GROUND INVESTIGATION

APPENDIX 1

RESULTS OF RISING HEAD PERMEABILITY TEST

BOREHOLE NO 1

DATE: 27.8.98

TIME (mins)	DEPTH TO WATER SURFACE FROM GROUND LEVEL (m)
0	6.20
1	5.72
2	5.47
3	5.27
4	5.14
5	5.03
6	4.93
7	• 4.86
8	4.79
9	4.72
10	4.67
11	4.62
12	5.57
13	5.51
14	4.48
15	4.45
16	4.43
17	4.39
18	4.36
19	4.33
20	4.31
21	4.28
22	4.26
23	4.24
24	4.22
25	4.20
26	4.19
27	4.18
28	4.17
29	4.16
30	4.15
31	4.14
32	4.13
33	4.12
34	4.11

TIME (mina)	DEDTH TO WATER SURFACE FROM CROWN A FIVE A
TIME (mins)	DEPTH TO WATER SURFACE FROM GROUND LEVEL (m)
35	4.10
36	4.09
37	4.08
38	4.07
39	4.06
40	4.05
41	4.04
42	4.03
43	4.02
44	4.01
45	4.00
46	3.99
47	3,99
48	3.98
49	3.98
50	• 3.97
51	3.97
52	3.96
53	3.96
54	3.96
55	3.95
56	3.94
57	3.94
58	3.93
59	3.93
60	3.93

COEFF. OF PERMEABILITY (k) = 3.3 X 10 -6 m/s

BOREHOLE NO 3

DATE: 2.09.98

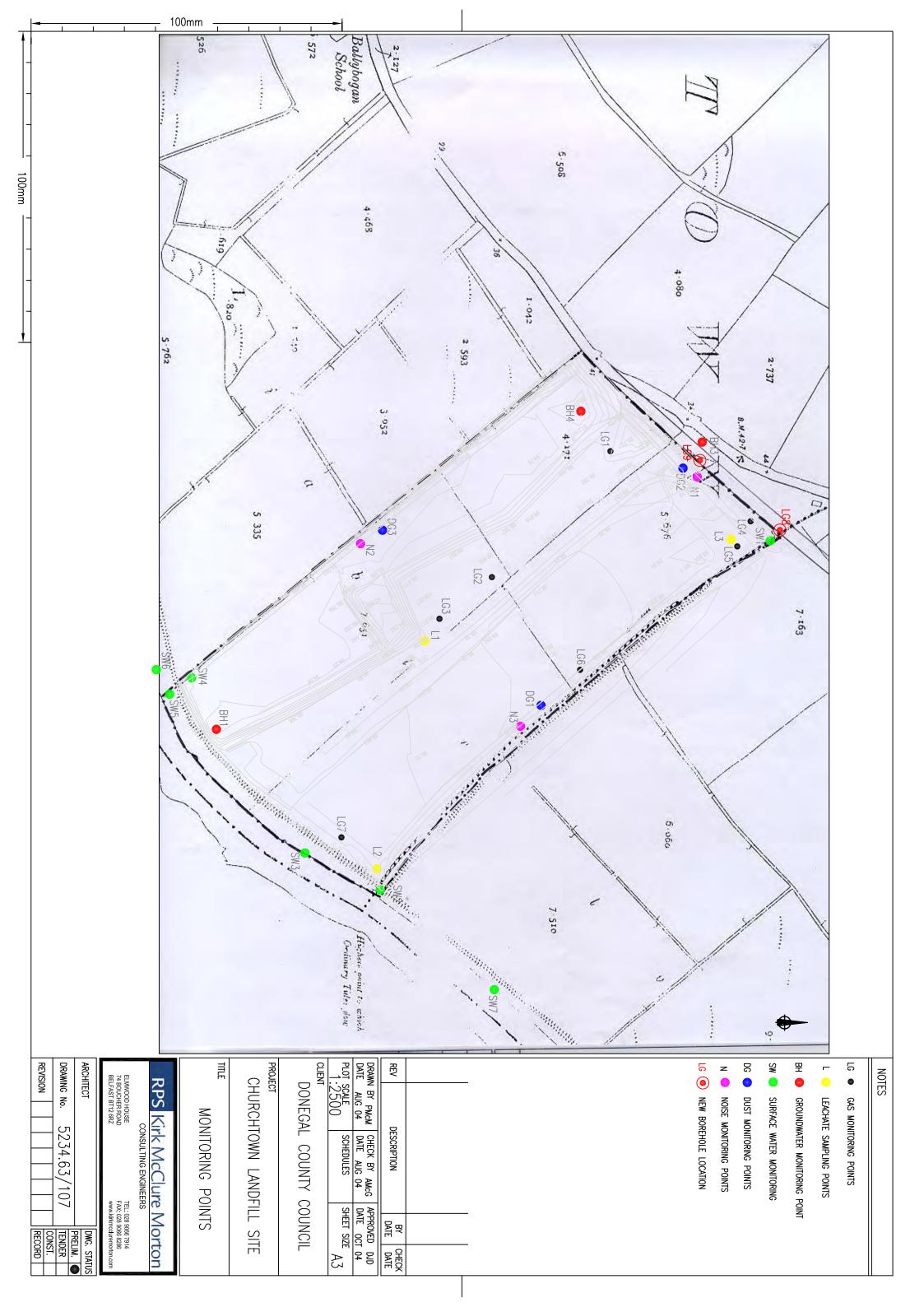
TIME (mins)	DEPTH TO WATER SURFACE FROM GROUND LEVEL (m)
0	6.00
]	5.80
2	5.80
3	5.80
4	5.77
5-60	5.77

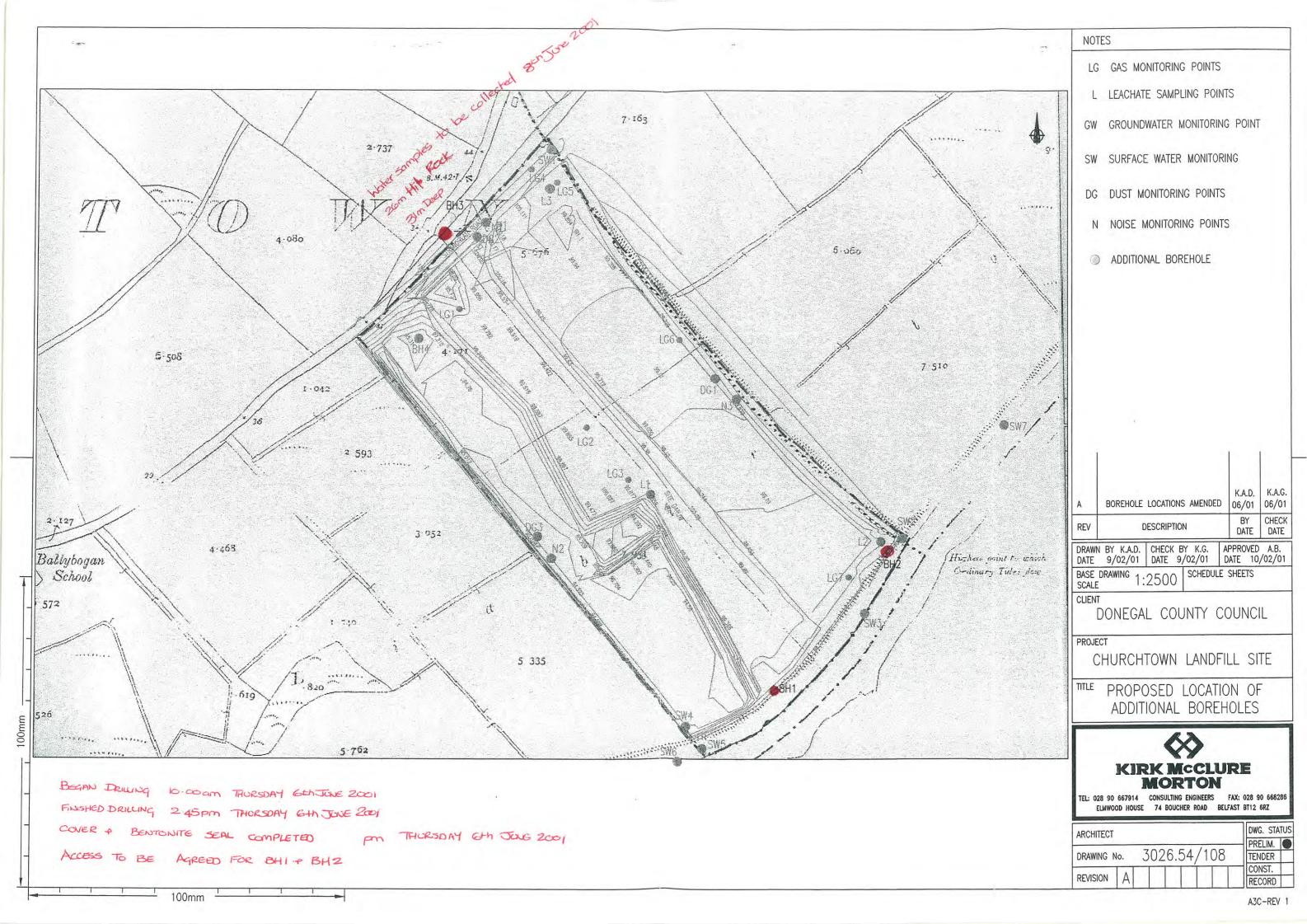
WATER FLOW TOO STRONG TO BALE OUT ANY DEEPER

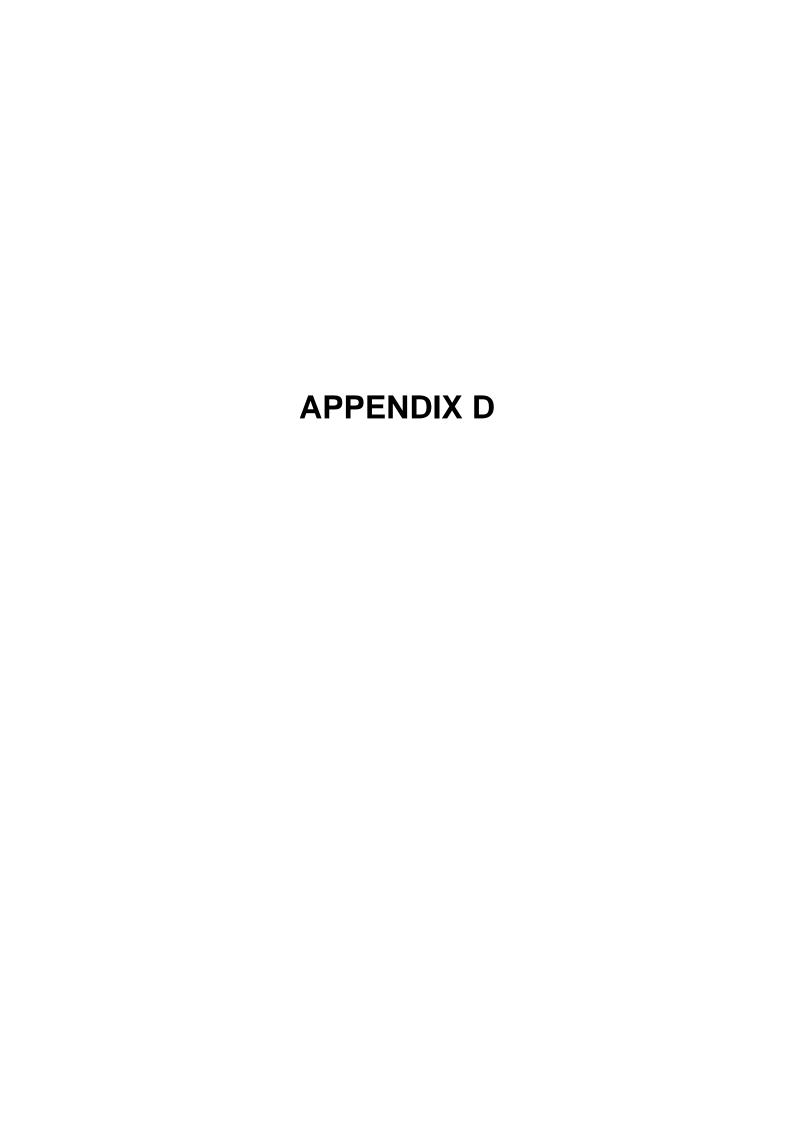
COEFF. OF PERMEABILITY (k) = $4.0 \times 10^{-6} \text{ m/s}$

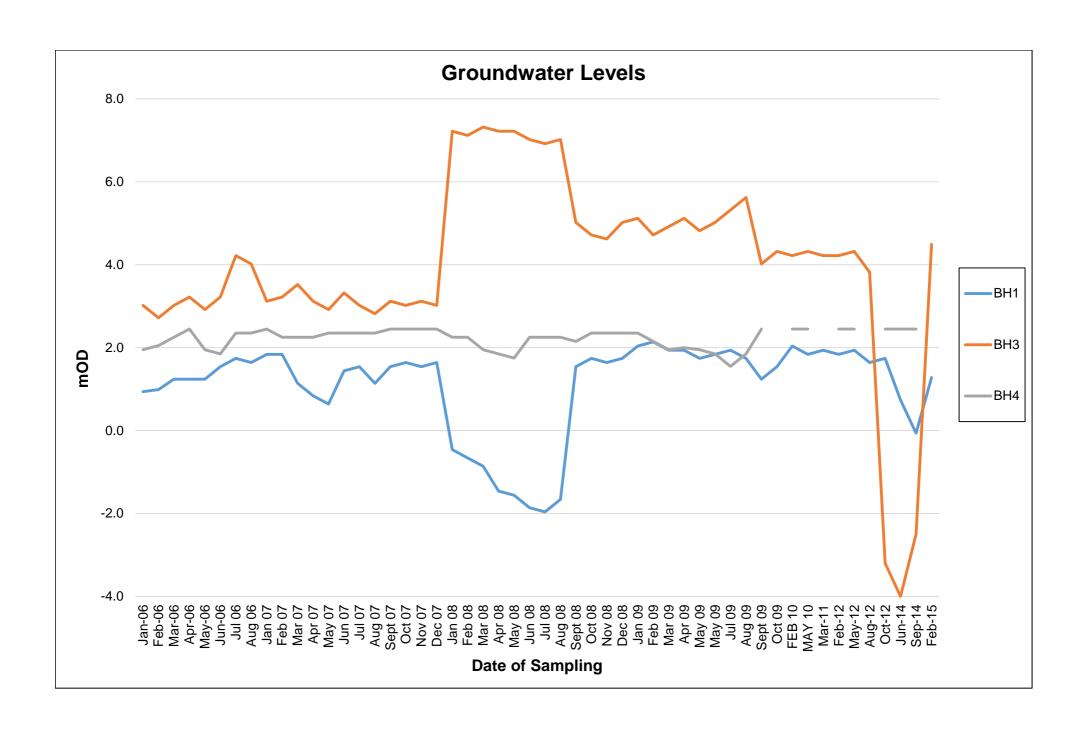
TIME (mins)	DEPTH TO WATER SURFACE FROM GROUND LEVEL (n
0	1.52
1	1.20
2	1.11
3	1.02
4	0.98
5	0.94
6	0.89
7	0.84
8	0.73
9	0.70
10	0.67
11	0.64
12	0.61
13	0.59
14	0.58
15	• 0.50
16	0.56
17	0.55
18	0.54
19	0.51
20	0.50
21	0.49
22	0.48
23	0.47
24	0.46
25	0.45
26	0.44
27	0.43
28	0.42
29	0.42
30	0.41
31	0.41
32	0.41
33	0.40
34	0.40
35	0.40
36	0.40
37	0.39
38	0.39
39	0.37
40	0.39
41	0.39
42	0.37

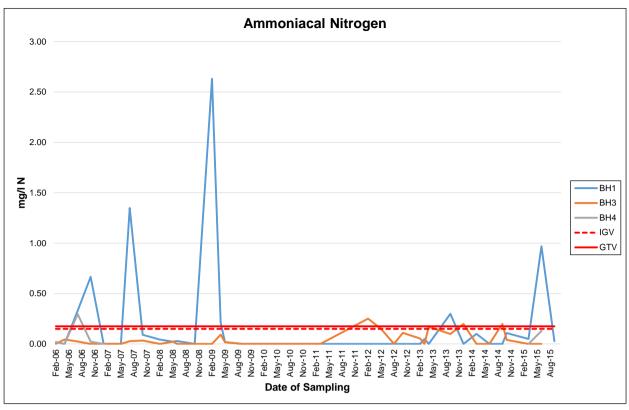
BOREHOLE NO 4 (continued)

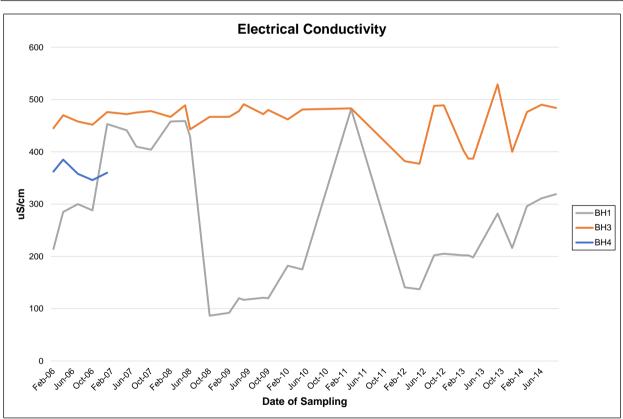

DATE: 4.09.98

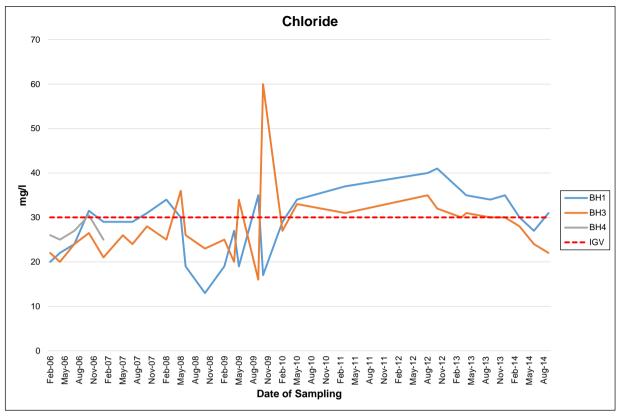

TIME (mins)	DEPTH TO WATER SURFACE FROM GROUND LEVEL (m)
43	0.38
44	0.38
45	0.58
46	0.38
47	0.38
48	0.37
49	0.37
50	0.37
51	0.37
52	0.37
53	0.37
54	0.36
55	0.36
56	0.36
57	0.36
58	0.36
59	0.36
60	0.36

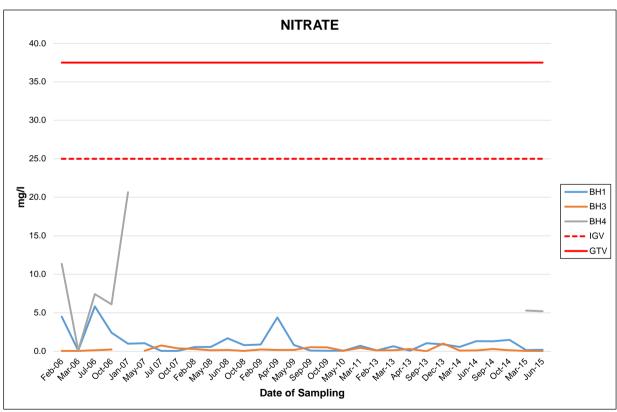

COEFF. OF PERMEABILITY (k) = $2.6 \times 10^{-3} \text{ m/s}$

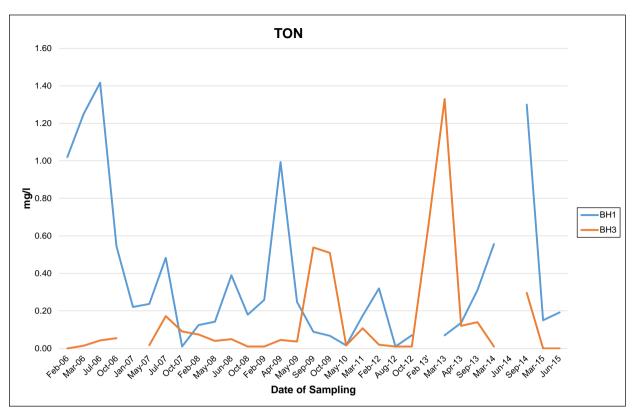

APPENDIX 2

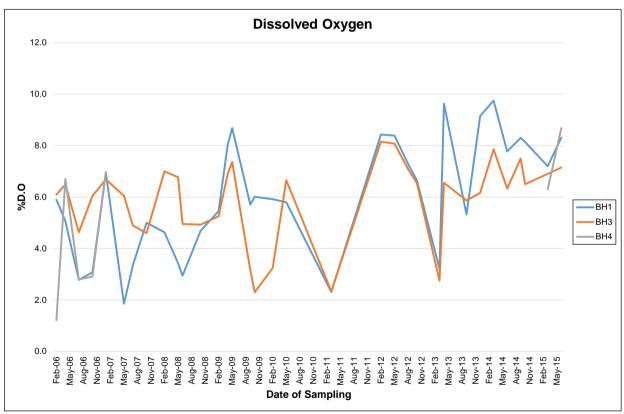

CONTAMINATION TEST RESULTS

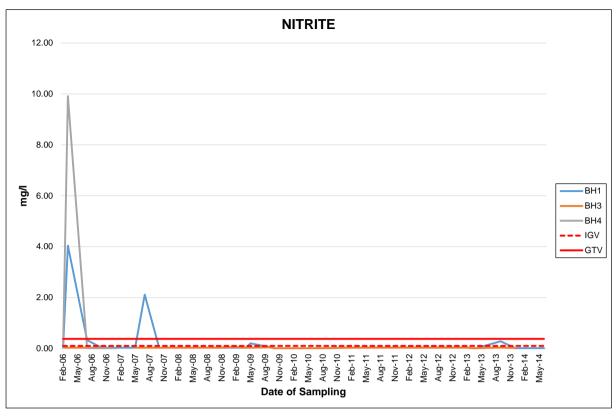


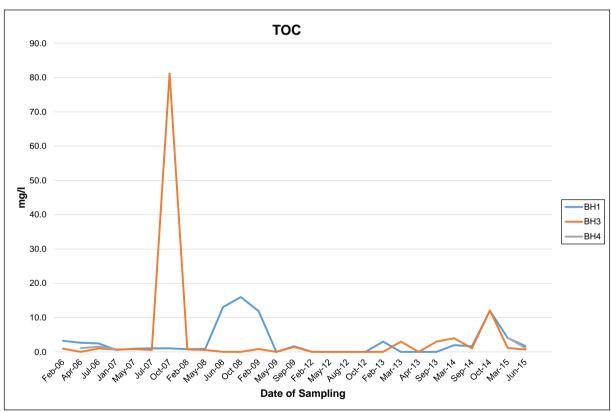


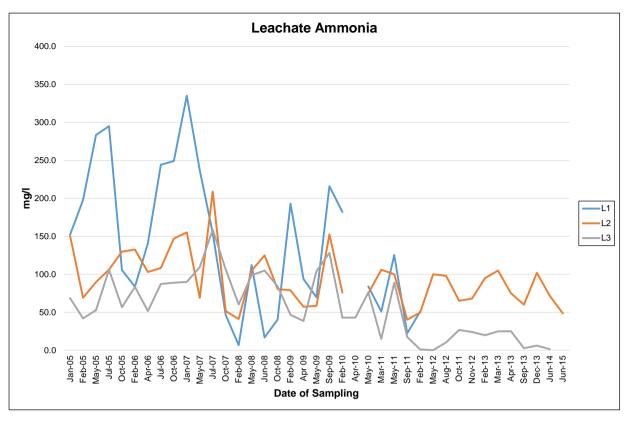


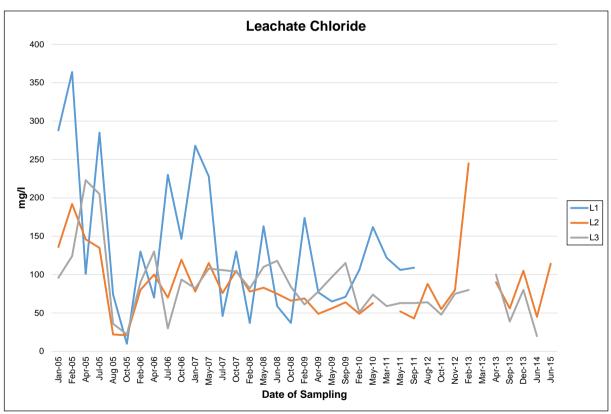


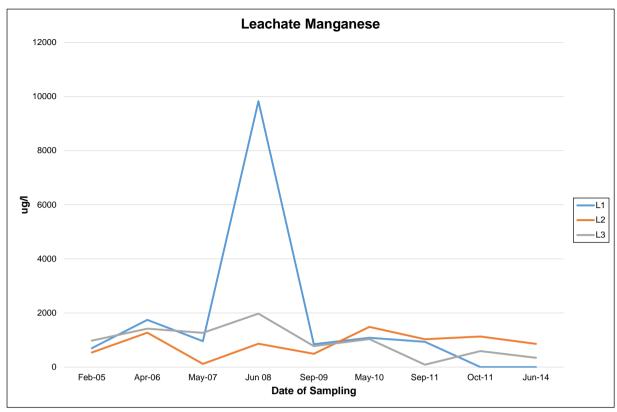


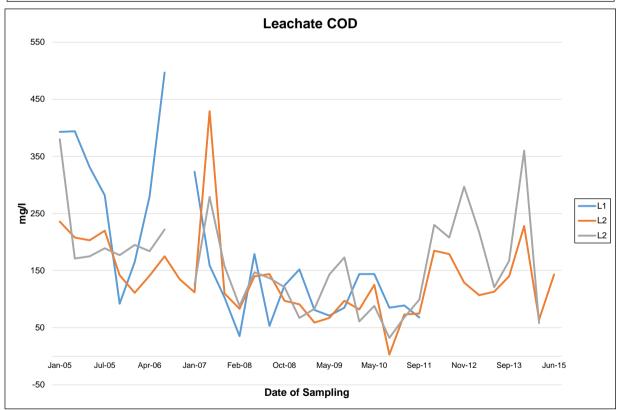


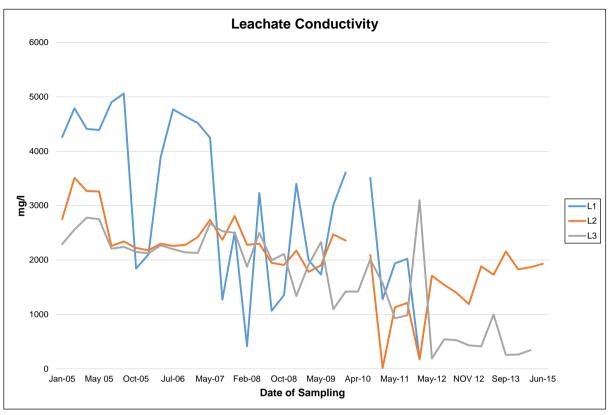


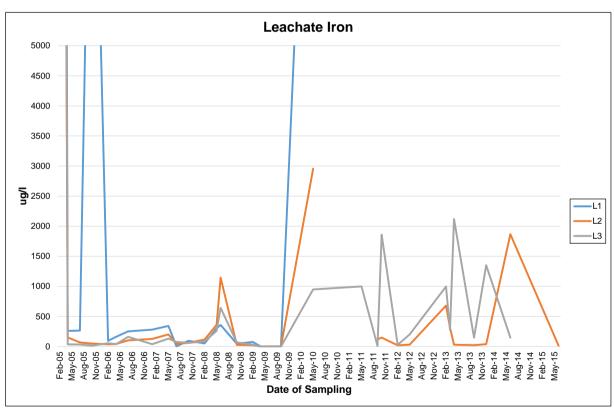


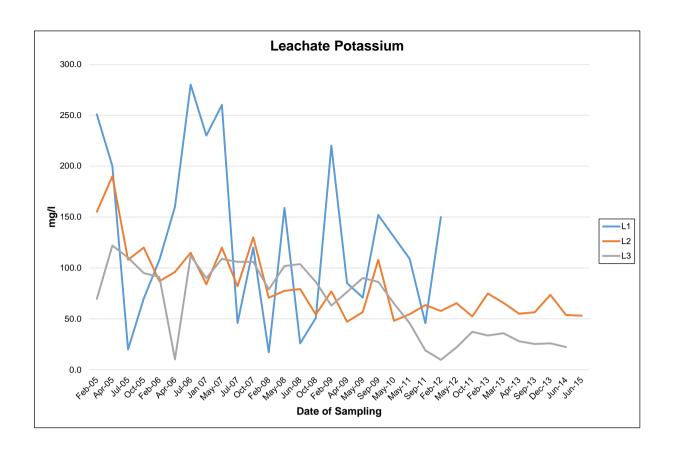


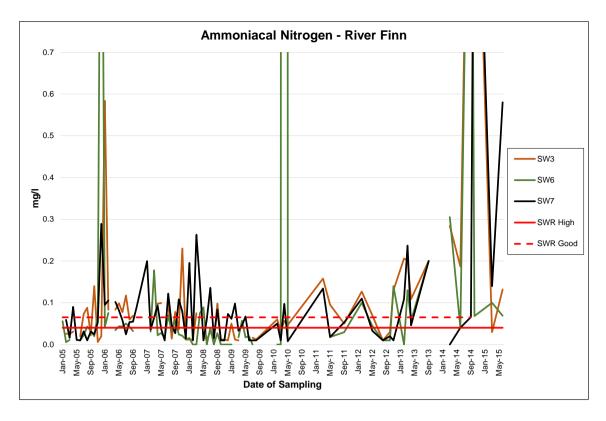


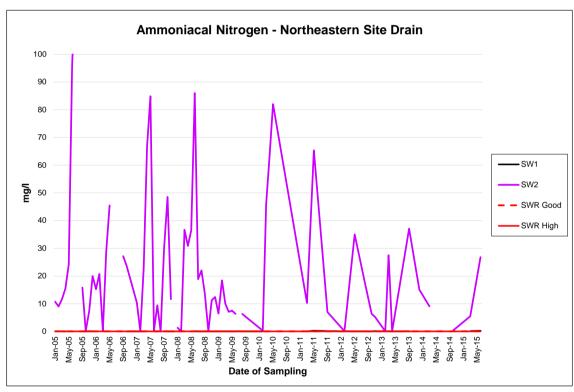


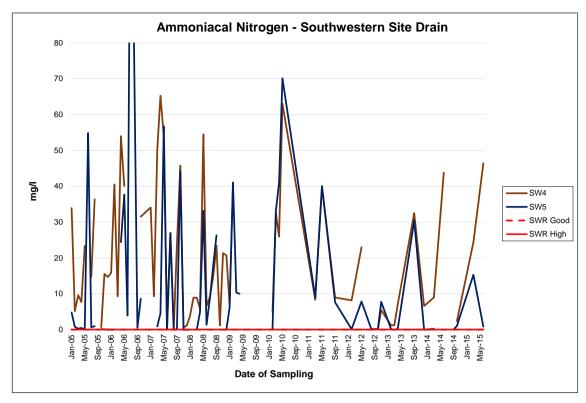


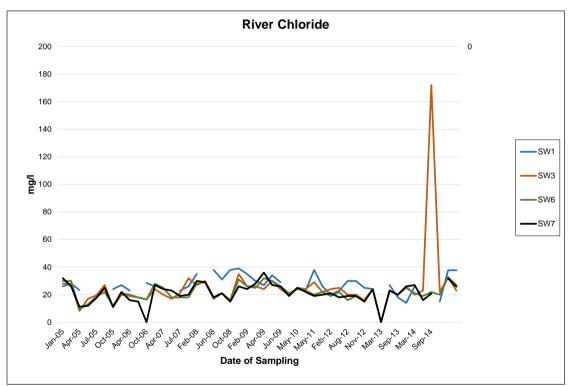


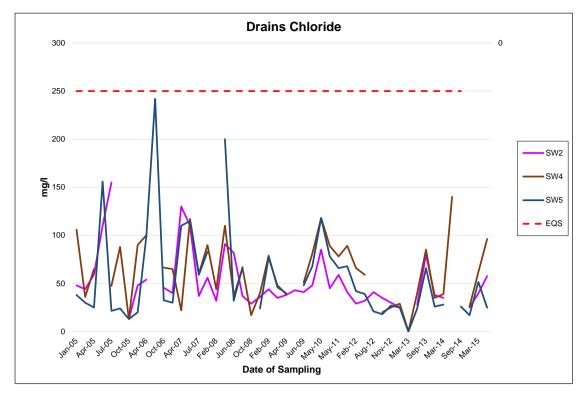


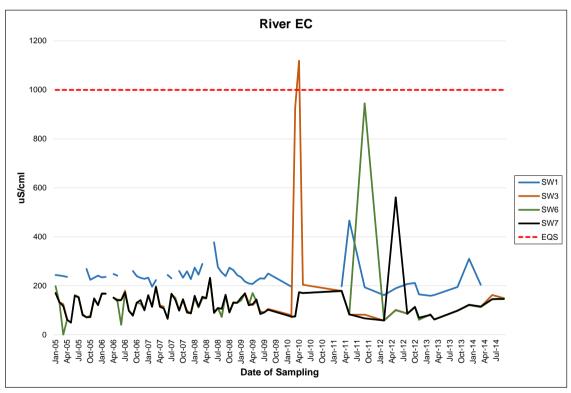


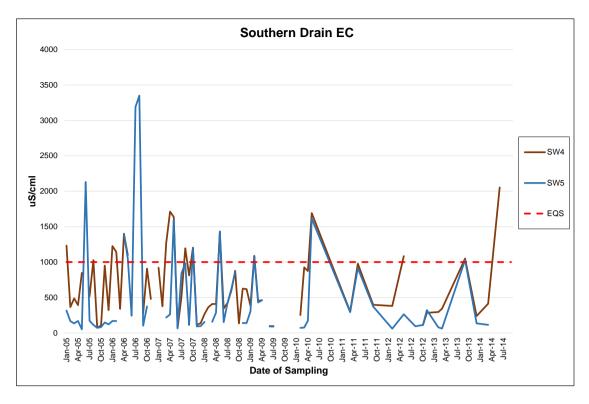


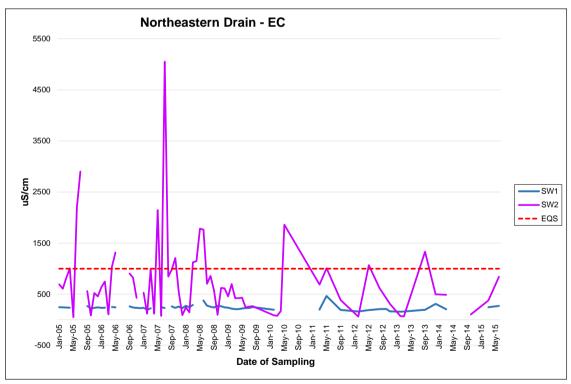


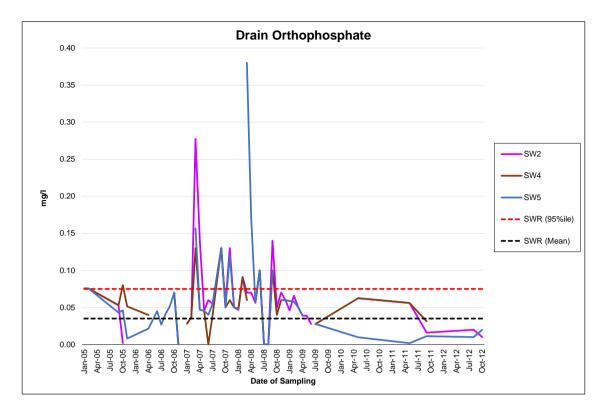


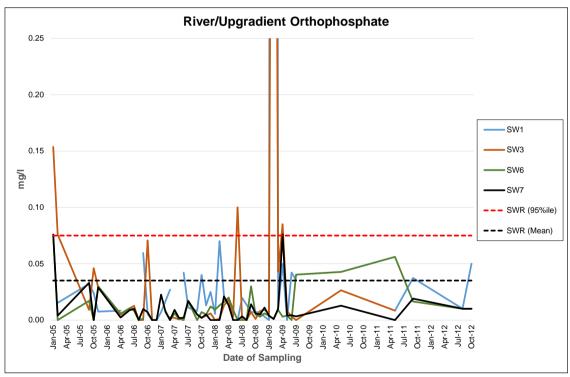


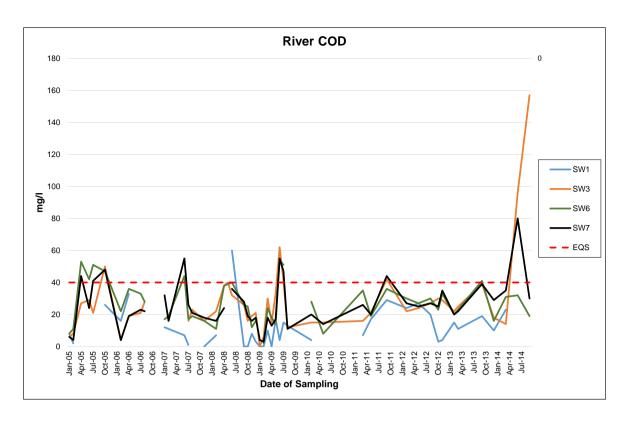


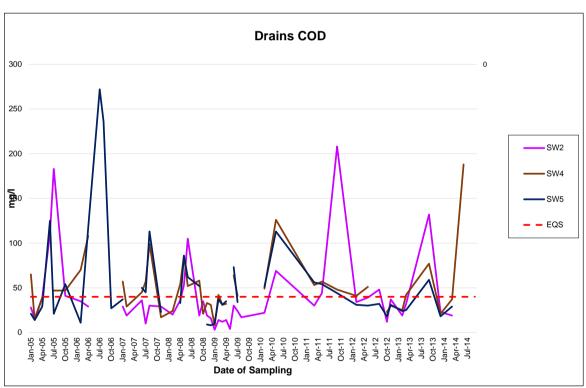


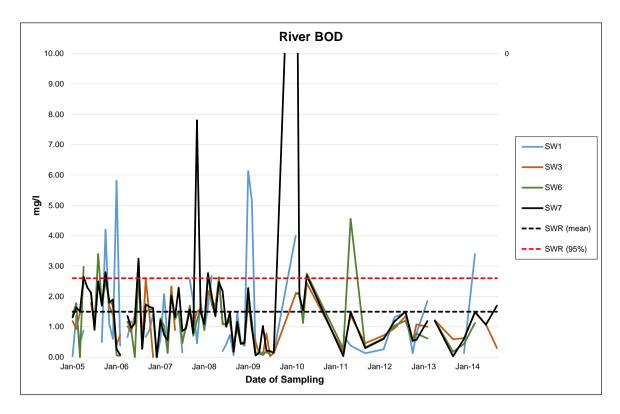


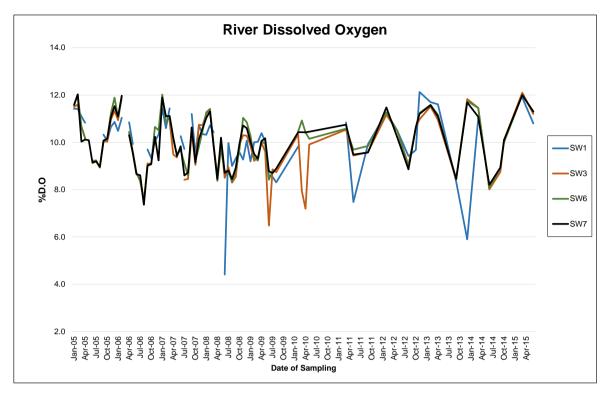


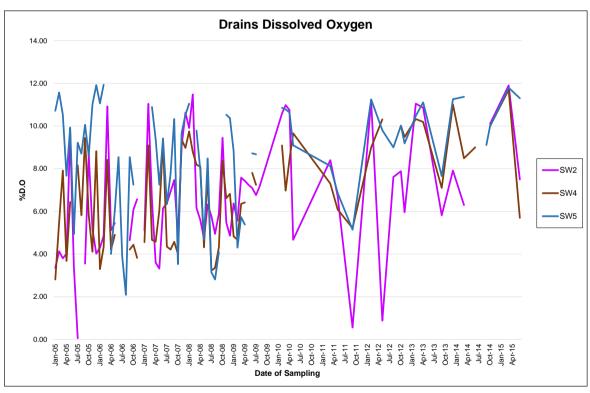


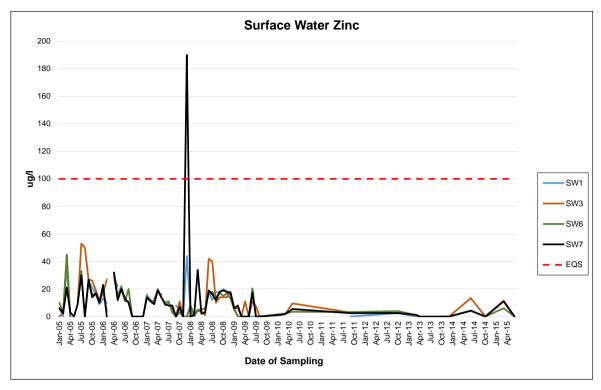


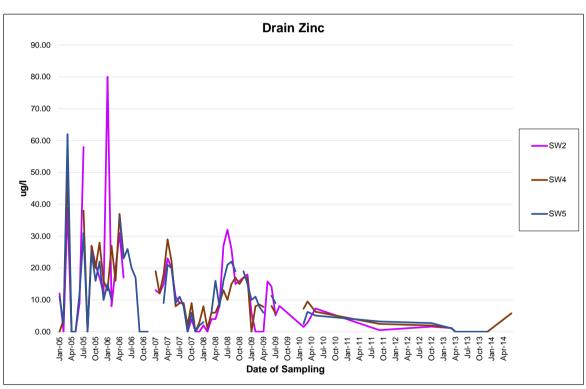


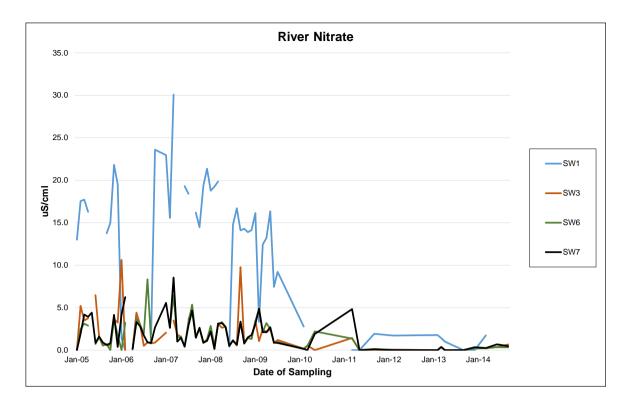


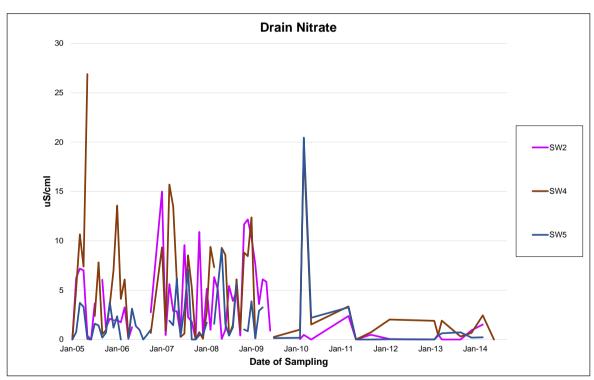


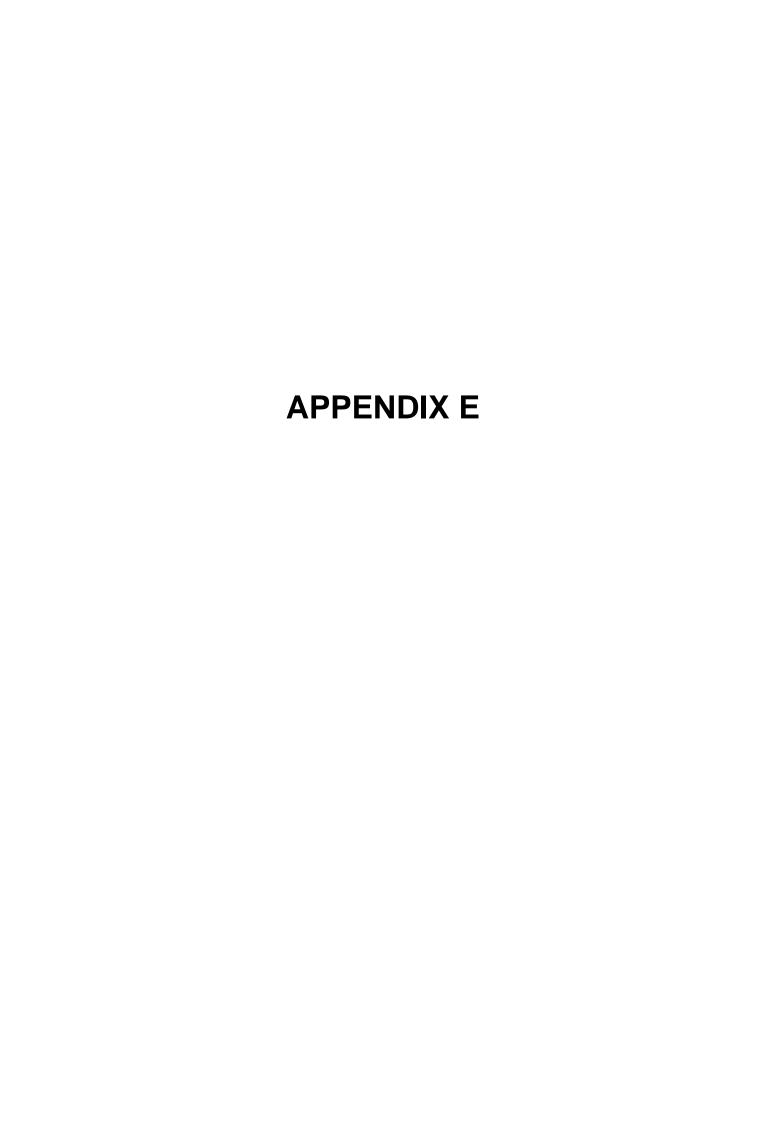












Assimilative Capacity Assessment

Q (flow)=KiA	Darcy's Law		
I (hydraulic gradient)	0.019		conservative gradient between BH1 and BH3
k (hydraulic permeability)	3.70E-06	m/s	average between BH1 and BH3
A (cross section area of flux)	600	m^2	100m x 6m
•			
Qflux (groundwater flux under landfill towards river)	4.22E-05	m^3/s	
Qflux	3.64E+00	m^3/day	
Qflux	3.64E+03	litres/day	
Qriver (River flow)	4.00E-01	m^3/sec	
Qriver	3.46E+04	m^3/day	
Qriver	3.46E+07	litres/day	
Groundwater Contaminatn Flux to River (Ammonical			
Nitrogen)	QxCd		
Cup(Sept 13) - Conc Ammoniacal nitrogen upstream in			
River	0.2	mg/l	
Custream (June 15) - Conc Ammoniacal nitrogen upstream		<u>.</u>	
in River	0.069	mg/l	
		.	
Cd (sept 13) - Ammoniacal Nitrogen @ BH1	0.3	mg/l	
Cd (June 15) - Ammoniacal Nitrogen @ BH1	0.97	mg/l	
Predicted Ammoniacal Nitrogen Conc in river downstream			
(Sept 13)	Cdown	0.2	
Predicted Ammoniacal Nitrogen Conc in river downstream			
(june 15)	Cdown	1.04	
Actual Ammoniacal Nitrogen Conc in river downstream			
(Sept 13)	Cdown (Sept 13)	0.2	
Actual Ammoniacal Nitrogen Conc in river downstream	01 (1 45)	0.50	
(June 15)	Cdown (June 15)	0.58	
River/Gwflux	9483.17	dilution ra	to
Predicted Reduction in Gflux (sept 15)	0.0001	mg/l	ite
% of reduced level relative to actual flux (sept 15)	0.01%	IIIg/I	
of reduced level relative to actual max (sept 15)	0.01/0		
Reduction in Gflux (June 13)	0.0000	mg/l	
% of reduced level relative to actual flux (June 13)	0.02%	ייטיי'	
	3.02/0		

Appendix C Emission to Water Results

Table : Treated Effluent 2021 Metal Analysis Donegal County Council

Oct-2021	ELV	Units	D1	D2	D3	D4
Cadmium	0.08	μg/l	< 1	< 1	< 1	< 1
Chromium	50	μg/l	< 5	< 5	< 5	< 5
Copper	5	μg/l	< 5	< 5	< 5	< 5
Lead	1.2	μg/l	< 1	< 1	< 1	< 1
Mercury	0.07	μg/l	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	4	μg/l	< 5	< 5	5	< 5
Zinc	8	μg/l	< 5	< 5	< 5	< 5

Table : Treated Effluent 2022 Metal Analysis Donegal County Council

June-2022	ELV	Units	D1	D2	D3	D4
Cadmium	0.08	μg/l	No discharge	0.2	No discharge	No discharge
Chromium	50	μg/l	No discharge	< 1	No discharge	No discharge
Copper	5	μg/l	No discharge	< 3	No discharge	No discharge
Lead	1.2	μg/l	No discharge	< 1	No discharge	No discharge
Mercury	0.07	μg/l	No discharge	< 0.06	No discharge	No discharge
Nickel	4	μg/l	No discharge	< 2	No discharge	No discharge
Zinc	8	μg/l	No discharge	0.7	No discharge	No discharge

Table : Treated Effluent October 2022 Metal Analysis by EPA

Oct-22	ELV	Units	D1	D2	D3	D4
Cadmium	0.08	μg/l	0.023	No Flow	0.021	<0.02
Chromium	50	μg/l	<1	No Flow	<1	<1
Copper	5	μg/l	2.4	No Flow	<1	1.6
Lead	1.2	μg/l	<0.2	No Flow	<0.2	<0.2
Mercury	0.07	μg/l	0.13	No Flow	<0.02	<0.02
Nickel	4	μg/l	1.8	No Flow	1.5	<1
Zinc	8	μg/l	19	No Flow	50	9.1

Table : Treated Effluent February 2023 Metal Analysis Donegal County Council

Feb-22	ELV	Units	D1	D2	D3	D4
Cadmium	0.08	μg/l	<0.6	<0.6	<0.6	<0.6
Chromium	50	μg/l	<0.6	<0.6	<0.6	<0.6
Copper	5	μg/l	<1.2	<1.2	<1.2	<1.2
Lead	1.2	μg/l	<0.6	<0.6	<0.6	<0.6
Mercury	0.07	μg/l	0.15	0.14	0.15	0.13
Nickel	4	μg/l	1	1	1	1
Zinc	8	μg/l	<6	<6	<6	<6

Table : Treated Effluent October 2023 Metal Analysis Donegal County Council

Oct-23	ELV	Units	D1	D2	D3	D4
Cadmium	0.08	μg/l	No discharge	< 0.03	< 0.03	< 0.03
Chromium	50	μg/l	No discharge	< 0.25	0.42	0.64
Copper	5	μg/l	No discharge	1.7	< 0.4	1.4
Lead	1.2	μg/l	No discharge	0.29	< 0.09	< 0.09
Mercury	0.07	μg/l	No discharge	< 0.01	< 0.01	< 0.01
Nickel	4	μg/l	No discharge	1.4	1.2	1.1
Zinc	8	μg/l	No discharge	3.4	< 1.3	2.1

Appendix D Surface Water

Station		SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW1	SW2	SW3	SW4	SW5	SW6	SW7
Sample Date		15-	15-	15	15-	15-	15-	15-	26-	26-	26-	26-	26-	26-	26-	25-	25-	25-	25-	25-	25-	25-	25-	25-	25-	25-	25-	25-	25-
		Mar- 23	Mar- 23	-Mar- 23	Mar- 23	Mar- 23	Mar- 23	Mar- 23	June- 2023	June- 2023	June- 2023	June- 2023	June- 2023	June- 2023	June- 2023	July- 2023	,	July- 2023	July- 2023	July- 2023	July- 2023	July- 2023	Oct- 2023	Oct- 2023	Oct- 2023	Oct- 2023	Oct- 2023	Oct- 2023	Oct- 2023
Parameter																													
Ammonia N	mg/l	NS	NS	0.04	NS	0.21	< 0.02	0.04	NSS	NSS	0.07	NSS	NSI	NSI	0.08	< 0.02	4.42 **	NSI	NSI	NSI	NSI	NSI	0.16	0.26	0.06	0.13	0.14	0.03	0.06
Biological Oxygen Demand*	mg/l	NS	NS	3.4	NS	3.0	2.8	2.5	NSS	NSS	3	NSS	NSI	NSI	3.2	1.9	2.2	NSI	NSI	NSI	NSI	NSI	2.2	2.4	1.9	8.5	2.1	2.4	2.5
Chloride	mg/l	NS	NS	15.2	NS	15.7	16.4	15.1	NSS	NSS	19	NSS	NSI	NSI	16	27.2	34	NSI	NSI	NSI	NSI	NSI	25	34	26	43	21	22	22
COD Chemical Oxygen Demand*	mg/l	NS	NS	23	NS	71	26	33	NSS	NSS	23	NSS	NSI	NSI	31	13	23	NSI	NSI	NSI	NSI	NSI	27	10	23	27	32	34	23
Conductivity @ 20°C	μS/cm	NS	NS	105.4	NS	116.4	104.4	105.6	NSS	NSS	99.1	NSS	NSI	NSI	96.2	245	141	NSI	NSI	NSI	NSI	NSI	234	375	145	435	156	141	148
Dissolved Oxygen	mg/l	NS	NS	11.89	NS	11.65	11.88	12.13	NSS	NSS	8.04	NSS	NSI	NSI	8.18	10.15	7.74	NSI	NSI	NSI	NSI	NSI	9.08	7.39	9.1	3.48	8.6	9.25	9.32
рН	pН	NS	NS	7.09	NS	6.85	6.81	6.81	NSS	NSS	7.49	NSS	NSI	NSI	7.41	7.31	7.11	NSI	NSI	NSI	NSI	NSI	7.27	7.17	7.05	6.58	7.16	6.94	7.32
Temperature	units Degree	NS	NS	6.2	NS	5.7	5.5	5.7	NSS	NSS	20.1	NSS	NSI	NSI	19.4	15	14.9	NSI	NSI	NSI	NSI	NSI	12.6	11.7	10.4	11.3	10.7	10.6	10.
Total Suspended Solids*	<u>s C</u> mg/l	NS	NS	<3	NS	<3	<3	<3	NSS	NSS	9	NSS	NSI	NSI	< 3	< 3	4.7	NSI	NSI	NSI	NSI	NSI	7.6	14	< 3	9.1	< 3	3.5	< 3
Visual Inspection	Descrip	NS	NS	NO	NS	NO	NO	NO	NSS	NSS	NO	NSS	NSI	NSI	NO	NO	NO	NSI	NSI	NSI	NSI	NSI	NO	NO	NO	NO	NO	NO	NO
Nitrate N	tive mg/l	NS	NS	0.34	NS	0.37	0.34	0.31	NSS	NSS	< 1	NSS	NSI	NSI	< 1	8	7.37	NSI	NSI	NSI	NSI	NSI	7.3	4.8	1.3	3.6	1.4	1.2	1.3
Nitrite N	mg/l	NS	NS	< 0.002	2 NS	< 0.002	! < 0.002	< 0.002	2NSS	NSS	0.01	NSS	NSI	NSI	0.01	< 0.002	2 0.12	NSI	NSI	NSI	NSI	NSI	< 0.00	2 0.084	< 0.00	2 0.044	0.002	< 0.00	2 < 0.0
Ammonical Nitrogen	mg/l								NSS	NSS	< 0.02	2 NSS	NSI	NSI	< 0.02	2 < 0.02	0.02	NSI	NSI	NSI	NSI	NSI							
Total Phosphorus P	mg/l	NS	NS	0.11	NS	< 0.05	< 0.05	< 0.05	NSS	NSS	< 0.05	NSS	NSI	NSI	0.06	< 0.05	< 0.05	NSI	NSI	NSI	NSI	NSI	< 0.05	< 0.05	< 0.0	5 < 0.05	5 < 0.05	o < 0.05	5 < 0.0
Sulphate	mg/l	NS	NS	< 5	NS	< 5	< 5	< 5	NSS	NSS	3.5	NSS	NSI	NSI	3	10	10	NSI	NSI	NSI	NSI	NSI	15	12	3	25	3	4	3
Total Dissolved Solids TDS	mg/l	NS	NS	5	NS	6	20	13	NSS	NSS	80.5	NSS	NSI	NSI	90	186	246	NSI	NSI	NSI	NSI	NSI	155	278	24	287	118	113	104
Ortho-Phosphate P	mg/l	NS	NS	0.1	NS	<0.02	<0.02	0.04	NSS	NSS	0.02	NSS	NSI	NSI	0.02	< 0.02	0.02	NSI	NSI	NSI	NSI	NSI	0.02	0.04	0.07	0.06	0.05	0.07	0.0
Total Organic Carbon	mg/l	NS	NS	9	NS	14.5	9.1	11.7	NSS	NSS	11	NSS	NSI	NSI	8	90.5	41	NSI	NSI	NSI	NSI	NSI	Note 2 6.8	6.4	7.5	6.9	6.4	7.5	6.0
Aluminium Dissolved	μg/l								NSS	NSS	51	NSS	NSI	NSI	52								0.0						
Arsenic Dissolved	μg/l								NSS	NSS	0.48	NSS	NSI	NSI	0.47														
Boron - Filtered	μg/l								NSS	NSS	18	NSS	NSI	NSI	< 12														
Cadmium Dissolved	μg/l								NSS	NSS	< 0.03	NSS	NSI	NSI	< 0.03	3							< 0.03	3 < 0.03	< 0.03	3 < 0.03	3 < 0.03	3 < 0.03	3 < 0.0
Calcium - Filtered	mg/l								NSS	NSS	7.3	NSS	NSI	NSI	7														
Chromium	μg/l								NSS	NSS	0.78	NSS	NSI	NSI	0.69								7.5	6.6	7.2	5.8	7.3	7.6	8.7
Copper Dissolved	μg/l								NSS	NSS	1.6	NSS	NSI	NSI	1.6								2.4	2.5	3.3	2.3	3.1	3	2.6
Iron Dissolved	μg/l								NSS	NSS	640	NSS	NSI	NSI	660														
Lead Dissolved	μg/l								NSS	NSS	0.26			NSI	0.21								0.1	0.15	0.25	< 0.09	0.24	0.24	0.2
Magnesium - Filtered	mg/l								NSS	NSS	1.5	NSS		NSI	1.5														
Manganese Dissolved	μg/l								NSS	NSS	6.5	NSS		NSI	6														
Mercury Dissolved	μg/l								NSS	NSS	< 0.01			NSI	< 0.01								0.17	0.12					
Nickel Dissolved	μg/l								NSS	NSS	0.9	NSS		NSI	0.7								1.0	8.0	0.9	2.9	0.9	0.7	1.0
Potassium - Filtered	mg/l								NSS	NSS	0.79			NSI	0.75														
Silver Dissolved	μg/l								NSS	NSS		NSS		NSI	< 0.13	3													
Sodium - Filtered	mg/l								NSS	NSS	20	NSS		NSI	6.8														
Zinc Dissolved	μg/l								NSS	NSS	5	NSS		NSI	2.3								1.7	2.4	1.6	< 1.3		< 1.3	
Total Alkalinity CaCO3	mg/l								NSS	NSS	22	NSS		NSI	18	50	130	NSI	NSI	NSI	NSI	NSI	68	140	48	174	52	52	48
Phenol - Monohydric	μg/l								NSS	NSS	< 100	NSS	NSI	NSI	< 100	< 100	< 100	NSI	NSI	NSI	NSI	NSI	9.1	3.7	2.0	3.2	6.0	5.3	5.

Station		SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW1	SW2	SW3	SW4	SW5	SW6	SW7
Sample Date		15-	15-	15	15-	15-	15-	15-	26-	26-	26-	26-	26-	26-	26-	25-	25-	25-	25-	25-	25-	25-	25-	25-	25-	25-	25-	25-	25-
		Mar- 23	Mar- 23	-Mar- 23	Mar- 23	Mar- 23	Mar- 23	Mar- 23	June- 2023			June- 2023		June- 2023	June- 2023	July- 2023	Oct- 2023	Oct- 2023	Oct- 2023	Oct- 2023	Oct- 2023	Oct- 2023	Oct-						
Phenols:	μg/l	NS	NS	23	NS	23	23	23	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023	2023
Phenol**Note 1,2	μg/l	NS	NS	< 5.00		< 5.00	< 5.00	< 5.00																					
2-Chlorophenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
2-Methylphenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
3&4-Methylphenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
2-Nitrophenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
2,4-Dimethylphenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
3,5-Dimethylphenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
2,4-Dichlorophenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
4-Chlorophenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					_
2,6-Dichlorophenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
4-Chloro-3- methylphenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
2,4,6-Trichlorophenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
2,4,5-Trichlorophenol**Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
2,4-Dinitrophenol Note 1,2	μg/l	NS	NS	< 50.0	NS	< 50.0	< 50.0	< 50.0																					
4-Nitrophenol**Note 1,2	μg/l	NS	NS	< 50.0	NS	< 50.0	< 50.0	< 50.0																					
2,3,5,6-Tetrachlorophenol Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
2,3,4,6-Tetrachlorophenol Note 1,2	μg/l	NS	NS	< 1.00	NS	< 1.00	< 1.00	< 1.00																					
4,6-Dinitro-2-Methylphenol Note 1,2	μg/l	NS	NS	< 20.0	NS	< 20.0	< 20.0	< 20.0																					
Pentachlorophenol** Note 1,2	μg/l	NS	NS	< 10.0	NS	< 10.0	< 10.0	< 10.0																					

NS - Not sampled

NSS - No sample stagnant

NO - Nothing Observed

NSI - No sample, inaccessible

Table : Surface \	Water	2022
-------------------	-------	------

rable : Sui	rtace Wate	r 2022																										
Parameter	Unit	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW
		1	2	3	4	5	6	7	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7
		23-	23-	23-	23-	23-	23-	23-	8-	8-	8-	8-	8-	8-	17-	17-	17-	17-	17-	17-	17-	9-	9-	9-	9-	9-	9-	9-
		Mar-	Mar-	Mar-	Mar-	Mar-	Mar-	Mar-	June-	June-	June-	June-	June-	June-	Aug-	Aug-	Aug-	Aug-	Aug-	Aug-	Aug-	Nov-	Nov-	Nov-	Nov-	Nov-	Nov-	Nov-
		2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022
Ammonia N	mg/l	3.04 ***	10.4 ***	0.111 **	* 15 ***	0.145 ***	* 0.08 ***	0.073 ***	NSS	0.18 ***	NSS	0.15 ***	0.28 ***	* 0.14 ***	NSS	NSS	0.066 ***	NSS	NSI	NSI	0.054 ***	* 0.02 ***	0.75 ***	0.02 ***	NS	NS	NS	NS
Biological Oxygen Demand	mg/l	2 ***	5 ***	< 1 ***	2 ***	< 1 ***	< 1 ***	< 1 ***	NSS	< 4 ***	NSS	< 4 ***	< 4 ***	< 4 ***	NSS	NSS	< 1 ***	NSS	NSI	NSI	1 ***	0.8 ***	0.6 ***	0.9 ***	NS	NS	NS	NS
Chloride	mg/l	50.8 ***	48.8 ***	23.8 ***	45.9 ***	23.8 ***	23.7 ***	23.7 ***	NSS	20.5 ***	NSS	20.6 ***	20.5 ***	* 20.5 ***	NSS	NSS	17.1 ***	NSS	NSI	NSI	17 ***	28.7 ***	31.7 ***	13.7 ***	NS	NS	NS	NS
COD Chemical Oxygen Demand	mg/l	< 10 ***	15 ***	< 10 ***	24 ***	< 10 ***	< 10 ***	15 ***	NSS	30 ***	NSS	78 ***	32 ***	23 ***	NSS	NSS	31 ***	NSS	NSI	NSI	31 ***	24 ***	20 ***	43 ***	NS	NS	NS	NS
Conductivity @ 20°C	μS/cm	479	741	210.5	743	211	210	213	NSS	162.4	NSS	163.7	162.3	165	NSS	NSS	157.6	NSS	NSI	NSI	159.7	312	348	98.4	NS	NS	NS	NS
Dissolved Oxygen	mg/l	9.07	7.53	10.15	6.92	10.22	10.5	10.53	NSS	8.19	NSS	7.85	8.02	8.06	NSS	NSS	8.13	NSS	NSI	NSI	8.33	10.4	5.79	10.2	NS	NS	NS	NS
Nitrate N	mg/l	12.2 ***	7.57 ***	1.31 ***	6.19 ***	1.34 ***	1.33 ***	1.32 ***	NSS	0.88 ***	NSS	0.99 ***	0.9 ***	0.91 ***	NSS	NSS	0.464 ***	NSS	NSI	NSI	0.49 ***	10.31 **	* 7.79 ***	< 0.51 ***	NS	NS	NS	NS
Nitrite N	mg/l	< 0.005	0.082 ***	*0.005 **	*0.067 **	* 0.005 ***	*0.006 ***	* < 0.005 ***	NSS	0.008 ***	NSS	0.007 **	* 0.01 ***	* 0.008 ***	NSS	NSS	< 0.005	NSS	NSI	NSI	< 0.005	< 0.006	0.124 ***	< 0.006	NS	NS	NS	NS
Ortho-Phosphate P	mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	NSS	0.02 ***	NSS	0.02 ***	0.03 ***	* 0.02 ***	NSS	NSS	0.02 ***	NSS	NSI	NSI	0.015 ***	* 0.02 ***	0.02 ***	0.02 ***	NS	NS	NS	NS
рН	pH units	7.04	7.13	7.69	7.08	7.45	7.39	7.35	NSS	7.48	NSS	7.3	7.23	7.12	NSS	NSS	7.71	NSS	NSI	NSI	7.65	6.55	6.42	6.75	NS	NS	NS	NS
Phenols	μg/l	<5.00 **	* 0.53 ***	< 0.5 ***	* < 0.5 ** [*]	* < 0.5 ***	< 0.5 ***	< 0.5 ***	NSS		NSS				NSS	NSS	< 0.5 ***	NSS	NSI	NSI	< 0.5 ***	* < 0.1 **	< 0.1 **	< 0.1 **	NS	NS	NS	NS
Sulphate	mg/l	12.6 ***	11.1 ***	8.15 ***	23 ***	8.03 ***	7.72 ***	8.13 ***	NSS	2 ***	NSS	3 ***	2 ***	3 ***	NSS	NSS	6.94 ***	NSS	NSI	NSI	6.76 ***	12 ***	10 ***	< 1 ***	NS	NS	NS	NS
Suspended Solids	mg/l	24 ***	7 ***	< 2 ***	7 ***	16 ***	< 2 ***	< 2 ***	NSS	4 **	NSS	199 **	8 **	3 **	NSS	NSS	< 2 ***	NSS	NSI	NSI	< 2 ***	< 2 **	< 2 **	< 2 **	NS	NS	NS	NS
Temperature	Degrees C	14.2	13.9	13.2	14	13.1	12.9	13	NSS	19.4	NSS	17.1	16.8	19	NSS	NSS	19.8	NSS	NSI	NSI	19	11.9	10.7	11.5	NS	NS	NS	NS
Total Alkalinity CaCO3	mg/l	154 ***	350 ***	68.6 ***	312 ***	58.4 ***	60.4 ***	62.4 ***	NSS	36 ***	NSS	36 ***	38 ***	36 ***	NSS	NSS	44 ***	NSS	NSI	NSI	40.2 ***	62 ***	114 ***	22 ***	NS	NS	NS	NS
Total Dissolved Solids TDS	mg/l	396 **	410 **	200 **	403 **	146 **	133 **	183 **	NSS	126 **	NSS	126 **	131 **	116 **	NSS	NSS	97 **	NSS	NSI	NSI	151 **	279 **	664 **	130 **	NS	NS	NS	NS
Total Organic Carbon	mg/l	3.61 ***	6.62 ***	3.57 ***	8.71 ***	3.43 ***	4.21 ***	3.24 ***	NSS	7.9 ***	NSS	7.7 ***	8 ***	7.9 ***	NSS	NSS	9.55 ***	NSS	NSI	NSI	9.36 ***	2.2 ***	5.7 ***	11.9 ***	NS	NS	NS	NS
Total Phosphorus P	mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NSS	0.04 ***	NSS	0.25 ***	0.07 ***	* 0.04 ***	NSS	NSS	< 0.05	NSS	NSI	NSI	< 0.05	0.06 ***	0.05 ***	0.06 ***	NS	NS	NS	NS
Visual Inspection	Descriptive	e Low flow	Low flow	Low	NO	Low Flow	NO	NO	NSS		NSS				NSS	NSS	NO	NSS	NSI	NSI	NO	NO	NO	NO	NS	NS	NS	NS

NS - Not sampled

NSS - No sample stagnant

NO – Nothing Observed

NSI - No sample, inaccessible

Appendix E Sediment Results

Table : Sediment Results 2022

		Pond 1 outfall	Pond 1A outfall	Pond 1B Outfall	Pond 2A Outfall	Pond 2B Outfall	Pond 3A Outfall	Pond 3B Outfall	Pond 4A Outfall	Pond 4B Outfall	Pond 5A Outfall	Pond 5B Discharge Monitoring Point
Parameter		8-June -2022	8-June -2022	8-June -2022	8-June -2022	8-June -2022	8-June -2022	8-June -2022	8-June -2022	8-June -2022	8-June -2022	8-June- 2022
Aluminium (Solids)	mg/Kg	3949.42 **	4040.36 **	4213.5 **	4369.74 **	3526.61 **	3377.57 **	5344.55 **	3981.13 **	3719.31 **	3392.25 **	4198.53 **
Arsenic (Solids)	mg/Kg	3.65 **	4.47 **	4.27 **	4.5 **	4.11 **	3.54 **	8.13 **	3.7 **	5.09 **	2.7 **	11.07 **
Cadmium (Solids)	mg/Kg	0.06 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **
Calcium (Solids)	mg/Kg	1372 **	1047 **	1410 **	1400 **	2072 **	1458 **	1552 **	1012 **	1978 **	1405 **	1041 **
Chromium (Solids)	mg/Kg	4.69 **	5.93 **	6.65 **	6.66 **	5.62 **	4.44 **	7.4 **	4.81 **	6.97 **	4.53 **	4.82 **
Copper (Solids)	mg/Kg	11.7 **	11.45 **	13.01 **	12.09 **	13.05 **	13.18 **	13.93 **	15.09 **	10.71 **	12.68 **	12.86 **
Iron (Solids)	mg/Kg	8231.55 **	7667.87 **	6932.3 **	7219.07 **	5551.4 **	6166.66 **	11068.76 **	6709.88 **	5916.36 **	5554.25 **	8370.09 **
Lead (Solids)	mg/Kg	6.45 **	7.62 **	9.09 **	7.97 **	5.56 **	7.77 **	10.86 **	8.72 **	5.71 **	7.74 **	6.15 **
Magnesium (Solids)	mg/Kg	1229 **	1362 **	1319 **	1388 **	1337 **	1238 **	1624 **	1195 **	1586 **	1111 **	2155 **
Manganese (Solids)	mg/Kg	264.77 **	190.76 **	238.59 **	172.85 **	117.49 **	163.42 **	179.27 **	157.03 **	210.55 **	135.41 **	442.64 **
Mercury (Solids)	mg/Kg	< 0.002 **	< 0.002 **	< 0.002 **	< 0.002 **	< 0.002 **	< 0.002 **	< 0.002 **	< 0.002 **	< 0.002 **	< 0.002 **	< 0.002 **
Nickel (Solids)	mg/Kg	5.17 **	6.02 **	5.92 **	6.24 **	7.61 **	5.33 **	10.43 **	5.06 **	8.03 **	5.27 **	6.85 **
Potassium (Solids)	mg/Kg	453 **	579 **	531 **	579 **	496 **	551 **	652 **	553 **	552 **	461 **	765 **
Sodium (Solids)	mg/Kg	221 **	175 **	186 **	160 **	145 **	146 **	154 **	152 **	179 **	134 **	128 **
Zinc (Solids)	mg/Kg	19.98 **	24.07 **	24.1 **	25.09 **	20.69 **	26.86 **	31.79 **	29.23 **	21.06 **	24.88 **	25.19 **
Boron (Solids)	mg/Kg	12.58 **	13.48 **	14.74 **	14.96 **	12.34 **	15.04 **	18.25 **	11.85 **	15 **	14.58 **	14.42 **
Silver (Solids)	mg/Kg	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **	< 0.01 **

In RESULT column, unaccredited in-house test result - no asterisk, *inhouse accred., **unaccred. & subcontracted, *** accred. & sub-cont

Appendix F Groundwater Results

Table : Groundwater 2022

Sample Date		GW1 (BH1) 23-Mar-	GW2 (BH3) 23-Mar- 2022	GW3 (BH4) 23-Mar- 2022	GW1 (BH1) 8-June- 2022	GW2 (BH3) 8-June- 2022	GW3 (BH4) 8-June- 2022		GW2 (BH3) 17-Aug-	GW3 (BH4) 17-Aug-	GW1 (BH1) 9-Nov-202	GW2 (BH3) 2 9-Nov-202	GW3 (BH4) 2 9-Nov-2022
Parameter	Units	2022	2022	2022	2022	2022	2022	2022	2022	2022			
Ammonia N	mg/l	0.024 ***	0.012 ***	0.013 ***	0.05 ***	0.04 ***	0.04 ***	0.045 ***	0.007 ***	0.014 ***	0.07 ***	0.07 ***	0.03 ***
Chloride	mg/l	14.9 ***	19.8 ***	33.2 ***	18 ***	24 ***	40 ***	34.8 ***	20.4 ***	15.6 ***	17 ***	22 ***	46 ***
COD Chemical Oxygen Demand	mg/l	23 ***	< 10 ***	< 10 ***	9 ***	7 ***	7 ***	10 ***	< 10 ***	12 ***	22 ***	< 3 ***	< 3 ***
Conductivity @ 20°C	μS/cm	96	Not Tested	Not Tested	105	535	527	531	543	115.8	118	548	572
Dissolved Oxygen	mg/l	7.97	6.52	7.64	5	5.6	6.3	4.47	4.71	3.17	5.68	5.92	6.54
рН	pH units	7.54	7.25	6.73	7.24	6.84	6.79	6.76	7	7.35	7.18	6.75	6.7
Temperature	Degrees C	3 13.8	13.6	13.8	15	13.8	15.1	13.9	13.6	15.6	11.7	11.9	11.4
Visual Inspection	Descript ve	i Nothing observed	Nothing observed	Nothing observed				Nothing observed	Nothing observed	Nothing observed	Nothing observed	Nothing observed	Nothing observed
Phenols	μg/l	< 2.5 ***	< 0.5 ***	< 0.5 ***	< 0 **	< 0 **	< 0 **	< 0.5 ***	< 0.5 ***	< 0.5 ***	< 0.1 **	< 0.1 **	< 0.1 **
Nitrate N	mg/l	0.489 ***	0.1 ***	20.9 ***	1 ***	< 1 ***	21 ***	19.5 ***	0.108 ***	1.47 ***	1 ***	< 1 ***	16 ***
Depth	m	2	4	0.2	2.2	4.1	0.6	1.4	6	2.3	1.5	4.5	0
Ortho-Phosphate P	mg/l	< 0.01 ***	< 0.01 ***	< 0.01 ***	0.01 ***	0.01 ***	0.01 ***	< 0.01 ***	< 0.01 ***	0.013 ***	0.02 ***	0.02 ***	0.01 ***
Ammonical Nitrogen	mg/l	0.024 ***	0.012 ***	0.013 ***				0.045 ***	0.007 ***	0.014 ***			
Total Phosphorus P	mg/l	0.19 ***	< 0.05 ***	< 0.05 ***	0.04 ***	< 0.03 ***	< 0.03 ***	< 0.05 ***	< 0.05 ***	0.09 ***	0.04 ***	0.05 ***	0.03 ***
Total Nitrogen N	mg/l	0.623 ***	< 0.5 ***	20.8 ***	1 ***	< 0.2 ***	19.9 ***	18.7 ***	< 0.5 ***	1.45 ***	1.2 ***	0.2 ***	15.2 ***
Fluoride	mg/l	< 0.1 ***	< 0.1 ***	< 0.1 ***	0.07 ***	0.05 ***	0.05 ***	0.01 ***	< 0.1 ***	< 0.1 ***	0.05 ***	0.06 ***	0.05 ***
Faecal Coliforms	MPN/10 0mls				4	2	1	12	921	34	1	2	< 1
Coliform Bacteria	MPN/10 0mls				1408	24196	1597	12033	> 24196	496	2909	934	10
Total Oxidised Nitrogen N	mg/l				1.17 ***	< 0.29 ***	20.66 ***	f					
Aluminium	μg/l				49 ***	11 ***	23 ***						
Arsenic	μg/l				< 1 ***	< 1 ***	< 1 ***						
Boron	μg/l				< 16 ***	< 16 ***	< 16 ***						
Cadmium	μg/l				< 1 ***	< 1 ***	< 1 ***						
Calcium	mg/l				6.6 ***	86.2 ***	67.9 ***						

		GW1 (BH1)	GW2 (BH3)	GW3 (BH4)	GW1 (BH1)	GW2 (BH3)	GW3 (BH4)	GW1 (BH1)	GW2 (BH3)	GW3 (BH4)	GW1 (BH1)	GW2 (BH3)	GW3 (BH4)
Sample Date		23-Mar- 2022	23-Mar- 2022	23-Mar- 2022	8-June- 2022	8-June- 2022	8-June- 2022	17-Aug- 2022	17-Aug- 2022	17-Aug- 2022	9-Nov-2022	9-Nov-2022	9-Nov-2022
Chromium	μg/l				< 2 ***	< 2 ***	< 2 ***						
Copper	μg/l				4 ***	< 1 ***	2 ***						
Lead	μg/l				1 ***	1 ***	< 1 ***						
Magnesium	mg/l				1.6 ***	11.4 ***	7.2 ***						
Manganese	μg/l				27 ***	60 ***	6 ***						
Mercury	μg/l				***	< 0.08	< 0.08						
Nickel	μg/l				< 1 ***	< 1 ***	1 ***						
Potassium	mg/l				1.5 ***	1.5 ***	3.5 ***						
Silver	μg/l				< 0.6 ***	< 0.6 ***	< 0.6 ***						
Sodium	mg/l				8.2 ***	14.1 ***	15.5 ***						
Total Organic Carbon	mg/l				2.9 ***	0.4 ***	0.9 ***						
Zinc	μg/l				4 ***	3 ***	7 ***						

Table: Groundwater 2023

Sample Date		GW1 (BH1) 15-Mar- 23	GW2 (BH3) 15-Mar- 23	GW3 (BH4) 15-Mar- 23	GW1 (BH1) 26-June- 23	GW2 (BH3) 26-June- 23	GW3 (BH4) 26-June- 23	GW1 (BH1) 25-July- 23	GW2 (BH3) 25-July- 23	GW3 (BH4) 25-July- 23	GW1 (BH1) 25-Oct- 23	GW2 (BH3) 25-Oct- 23	GW3 (BH4) 25-Oct- 23
Parameter	Units												
Ammonia N	mg/l	< 0.02	< 0.02	< 0.02	< 0.02 ***	< 0.02 ***	< 0.02 ***	< 0.02 **	< 0.02 **	< 0.02 **	0.21	< 0.02	< 0.02
Chloride	mg/l	20.5	16.4	34.2	27 ***	27 ***	45 ***	25 ***	27 ***	41 ***	31	45	48
COD Chemical Oxygen Demand*	mg/l	<5	13	13	11 ***	< 5 ***	5 ***	18 ***	11 ***	10 ***	5	19	16
Conductivity @ 20°C	μS/cm	135.6	531	593	164.5	524	497	162	543	516	382	462	493
Dissolved Oxygen	mg/l	8.51	6.98	7.92	6.31	6.41	5.88	5.21	6.1	5.79	2.49	4.36	5.56
рН	pH units	6.64	6.52	6.53	8.47	7.9	7.66	7.47	7.24	7.12	6.67	7.12	6.94
Temperature	Degrees C	7.5	8.1	7.9	15.2	15.4	15.5	15	12.2	13.9	12.6	12.3	12.2
Visual Inspection	Descript ve	iNO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Total Nitrogen N	mg/l	< 0.50	1.11	12.6	1.76 **	0.24 **	12.6 **	1.8 **	< 0.5 **	11.2 **	<0.50	10.9	<0.50
Nitrate N	mg/l	0.15	1.11	16.0	2.04 **	< 1 **	18.3 **	1.6 **	0.47 **	19.23 **	2.7	5.2	< 1
Total Phosphorus P	mg/l	< 0.05	< 0.05	< 0.05	0.08 **	0.08 **	< 0.05 **	< 0.05 **	0.07 **	< 0.05 **	<0.05	<0.05	<0.05
Fluoride	mg/l	<0.10	<0.10	<0.10	0.05 ***	0.06 ***	0.06 ***	0.07 ***	0.05 ***	0.05 ***	< 0.2	< 0.2	< 0.2
Ortho- Phosphate P	mg/l	<0.02	<0.02	<0.02	0.04 ***	0.03 ***	< 0.02 ***	0.1 ***	0.03 ***	0.03 ***	0.03	0.28	0.23
Depth	m	3.8	0.4	5.9	3.9	3.6	0.6	1.7	5.6	0.4	1.54	4.53	0.55 (above GL)
Aluminium Dissolved	μg/l				< 10 ***	< 10 ***	33 ***						,
Arsenic Dissolved	μg/l				< 0.16 ***	< 0.16 ***	< 0.16 ***						
Boron - Filtered	l μg/l				17 **	< 12 **	13 **						
Cadmium Dissolved	μg/l				< 0.03 ***	< 0.03 ***	< 0.03 ***						
Calcium - Filtered	mg/l				14 ***	73 ***	64 ***						

Sample Date		GW1 (BH1) 15-Mar- 23	GW2 (BH3) 15-Mar- 23	GW3 (BH4) 15-Mar- 23	GW1 (BH1) 26-June- 23	GW2 (BH3) 26-June- 23	GW3 (BH4) 26-June- 23	GW1 (BH1) 25-July- 23	GW2 (BH3) 25-July- 23	GW3 (BH4) 25-July- 23	GW1 (BH1) 25-Oct- 23	GW2 (BH3) 25-Oct- 23	GW3 (BH4) 25-Oct- 23
Total	μg/l	23	23	23	0.45 **	0.27 **	< 0.25 **	23	23	23	23	23	23
Chromium Copper Dissolved	μg/l				1.3 ***	0.5 ***	1 ***						
Iron Dissolved	μg/l				< 5.5 ***	< 5.5 ***	25 ***						
Lead Dissolved	d μg/l				< 0.09 ***	< 0.09 ***	0.34 ***						
Magnesium - Filtered	mg/l				2.6 ***	9.5 ***	6.3 ***						
Manganese Dissolved	μg/l				8.1 ***	0.46 ***	1.3 ***						
Mercury Dissolved	μg/l				< 0.01 ***	< 0.01 ***	< 0.01 ***						
Nickel Dissolved	μg/l				0.7 ***	< 0.5 ***	1.1 ***						
Potassium - Filtered	mg/l				3 ***	1.2 ***	3.4 ***						
Silver Dissolved	μg/l				< 0.13 **	< 0.13 **	< 0.13 **						
Sodium - Filtered	mg/l				8.6 ***	11 ***	15 ***						
Zinc Dissolved	μg/l				13 **	2.5 **	22 **						
Phenol - Monohydric	μg/l				< 100 ***	< 100 ***	< 100 ***						
Faecal Coliforms	MPN/10 0mls) <10	<10	<10	28	77	1						
Coliform Bacteria	MPN/10 0mls	10	41	<10	9208	6867	41						
Phenols	μg/l												
Phenol** Note	μg/l	< 5.00	< 5.00	< 5.00									
2- Chlorophenol** Note 1,2	μg/l	< 1.00	< 1.00	< 1.00									
Nethylphenol** Note 1,2	μg/l	< 1.00	< 1.00	< 1.00									

	GW1 (BH1)	GW2 (BH3)	GW3 (BH4)	GW1 (BH1)	GW2 (BH3)	GW3 (BH4)	GW1 (BH1)	GW2 (BH3)	GW3 (BH4)	GW1 (BH1)	GW2 (BH3)	GW3 (BH4)
Sample Date	15-Mar- 23	15-Mar- 23	15-Mar- 23	26-June- 23	26-June- 23	26-June- 23	25-July- 23	25-July- 23	25-July- 23	25-Oct- 23	25-Oct- 23	25-Oct- 23
3&4- μg/l Methylphenol** Note 1,2	< 1.00	< 1.00	< 1.00									
2- μg/l Nitrophenol**N ote 1,2	< 1.00	< 1.00	< 1.00									
2,4- μg/l Dimethylphenol *Note 1,2	< 1.00	< 1.00	< 1.00									
3,5- μg/l Dimethylphenol *Note 1,2	< 1.00	< 1.00	< 1.00									
2,4- μg/l Dichlorophenol* Note 1,2	< 1.00	< 1.00	< 1.00									
ı- μg/l Chlorophenol** Note 1,2	< 1.00	< 1.00	< 1.00									
2,6- μg/l Dichlorophenol* Note 1,2	< 1.00	< 1.00	< 1.00									
I-Chloro-3- μg/l methylphenol** Note 1,2	< 1.00	< 1.00	< 1.00									
2,4,6- μg/l richlorophenol *Note 1,2	< 1.00	< 1.00	< 1.00									
2,4,5- μg/l richlorophenol *Note 1,2	< 1.00	< 1.00	< 1.00									
2,4- μg/l Dinitrophenol Note 1,2	< 50.0	< 50.0	< 50.0									
μg/l Jitrophenol**N ste 1,2	< 50.0	< 50.0	< 50.0									
2,3,5,6- µg/l Fetrachlorophe nol Note 1,2	< 1.00	< 1.00	< 1.00									

	GW1 (BH1)	GW2 (BH3)	GW3 (BH4)	GW1 (BH1)	GW2 (BH3)	GW3 (BH4)	GW1 (BH1)	GW2 (BH3)	GW3 (BH4)	GW1 (BH1)	GW2 (BH3)	GW3 (BH4)
Sample Date	15-Mar- 23	15-Mar- 23	15-Mar- 23	26-June- 23	26-June- 23	26-June- 23	25-July- 23	25-July- 23	25-July- 23	25-Oct- 23	25-Oct- 23	25-Oct- 23
2,3,4,6- μg/l Tetrachlorophe nol Note 1,2	< 1.00	< 1.00	< 1.00									
4,6-Dinitro-2- μg/l Methylphenol Note 1,2	< 20.0	< 20.0	< 20.0									
Pentachloropheµg/l nol**Note 1,2	< 10.0	< 10.0	< 10.0									

unaccredited in-house test result - no asterisk, *inhouse accred., **unaccred. & subcontracted, *** accred. & sub-cont.

Note 1: This sample was analysed outside the recommended stability times. It is therefore possible that the results may be compromised

Note 2: Reporting limits raised for phenols due to the nature of the sample matrix

NO - Nothing Observed

Appendix G Leachate Results

Table : Leachate 2023

	Station	Collection Sump No 2	Collection Sump No 1	Collection Sump No 3	Collection Sump No 1	Collection Sump No 2	Collection Sump No 3	Collection Sump No 1	Collection Sump No 2	Collection Sump No 3	Collection Sump No 1	Collection Sump No 2	Collection Sump No 3
	Sample Date	15-Mar-2023	15-Mar-2023	15-Mar-2023	26-June-2023	26-June-2023	26-June-2023	25-July-2023	25-July-2023	25-July-2023	25-Oct-2023	25-Oct-2024	25-Oct-2025
Parameter	Units												
Ammonia N	mg/l	30 **	15.4 **	26.3 **	3.3 ***	101 ***	42.5 ***	< 0.02 **	0.026 **	< 0.02 **	0.85	< 0.02	< 0.02
Biological Oxygen Demand	mg/l				2.6 ***	7.7 ***	7.1 ***	6.3 ***	13 ***	14 ***	3	7.4	4.7
Chloride	mg/l	46.6 **	38.6 **	41.1 **	23 ***	94 ***	67 ***	13 ***	25 ***	13 ***	25	25	49
COD Chemical Oxygen Demand	mg/l	49 ***	39 ***	34 ***	17 ***	72 ***	44 ***	52 ***	38 ***	58 ***	29	34	39
Conductivity @ 20°C	μS/cm	944	903	1050	556	2079	1482	339	655	218.9	278	310	864
рН	pH units	6.52	6.57	6.37	7.3	6.79	6.77	7.03	6.78	7.11	7.2	6.77	6.79
Temperature	Degrees (C 7.6	7.2	6.7	17.5	17.5	17.5	16.4	15.8	15.9	11.3	11.7	12.3
Visual Inspection	Descriptiv	eNO	NO										
Total Alkalinity CaCO3	mg/l	360 ***	374 ***	446 ***	225 ***	998 ***	722 ***	128 ***	254 ***	88 ***	126	160	560
Fluoride	mg/l	0.63 **	0.12 **	0.43 **	0.12 ***	0.07 ***	0.09 ***	0.14 ***	0.1 ***	0.12 ***	< 0.2	< 0.2	< 0.2
Nitrate N	mg/l	0.21 **	0.1 **	0.37 **	2.2 **	< 1 **	< 1 **	0.31 **	0.63 **	0.26 **	< 1	2.7	3.6
Total Oxidised Nitrogen N	mg/l	< 0.5 **	< 0.5 **	< 0.5 **	2.17 **	0.06 **	0.19 **	< 0.5 **	< 0.5 **	< 0.5 **	< 0.5	< 0.5	2.29
Nitrite N	mg/l	< 0.002 **	0.12 **	< 0.002 **	0.07 **	0.13 **	0.11 **	< 0.002 **	0.04 **	0.07 **	< 0.002	0.006	0.034
Ortho-Phosphate P	mg/l	0.19 **	< 0.02 **	< 0.02 **	< 0.02 ***	0.03 ***	0.03 ***	0.03 ***	0.07 ***	0.03 ***	0.04	0.05	0.05
Total Phosphorus P	mg/l	< 0.05 **	0.11 **	< 0.05 **	< 0.05 **	< 0.05 **	< 0.05 **	0.1 **	0.09 **	0.08 **	<0.05	<0.05	<0.05
Sulphate	mg/l	8.71 **	28.8 **	< 5 **				50 ***	47 ***	22 ***	7	6	11
Total Cyanide	μg/l	< 0.009 **	< 0.009 **	< 0.009 **				< 40 ***	< 40 ***	< 40 ***	< 40	< 40	< 40
Depth	m	2	1.2	1.5	0.9	1.5	1.1	1.3	2.1	1.3			
Coliform Bacteria	MPN/100	m1120	> 2420	326	NT	NT	NT						
Faecal Coliforms	ls MPN/100	m< 10	10	< 10	NT	NT	NT						
BOD, 5 days with Inhibition	ls mg/l	18 ***	22 ***	22 ***									
(Carbonaceous) Aluminium Dissolved	μg/l				< 10 ***	< 10 ***	< 10 ***						
Arsenic Dissolved	μg/l				0.36 ***	0.58 ***	0.88 ***						
Boron - Filtered	μg/l				52 **	650 **	380 **						
Cadmium Dissolved	μg/l				< 0.03 ***	< 0.03 ***	< 0.03 ***						
Calcium - Filtered	mg/l				76 ***	140 ***	170 ***						
Total Chromium	μg/l				0.55 **	4.1 **	2.6 **						

	Station	Collection Sump No 2	Collection Sump No 1	Collection Sump No 3	Collection Sump No 1	Collection Sump No 2	Collection Sump No 3	Collection Sump No 1	Collection Sump No 2	Collection Sump No 3	Collection Sump No 1	Collection Sump No 2	Collection Sump No 3
Copper Dissolved	μg/l	-			1.3 ***	0.8 ***	0.7 ***					-	
Iron Dissolved	μg/l				34 ***	40 ***	16 ***						
Lead Dissolved	μg/l				0.09 ***	0.17 ***	< 0.09 ***						
Magnesium - Filtered	mg/l				4.8 ***	38 ***	26 ***						
Manganese Dissolved	μg/l				420 ***	1400 ***	2300 ***						
Mercury Dissolved	μg/l				< 0.01 ***	< 0.01 ***	< 0.01 ***						
Nickel Dissolved	μg/l				3.2 ***	5.8 ***	1.7 ***						
Potassium - Filtered	mg/l				6.9 ***	53 ***	25 ***						
Silver Dissolved	μg/l				< 0.13 **	< 0.13 **	< 0.13 **						
Sodium - Filtered	mg/l				11 ***	79 ***	45 ***						
Zinc Dissolved	μg/l				67 ***	3.9 ***	4.6 ***						
Sulphate	mg/l				30 ***	< 2 ***	< 2 ***						
Cyanide	μg/l				< 40 ***	< 40 ***	< 40 ***						
Ammonical Nitrogen	mg/l				< 0.02 **	0.36 **	0.12 **						

NS - Not sampled

NSS - No sample stagnant

NO – Nothing Observed

NSI - No sample, inaccessible

NT - Not tested

Appendix H Landfill Gas Results

Table : Landfill Gas Results 2022

			Methane	Carbon Dioxide	Oxygen	Pressure
			%	%	%	mBar
LG8	13-Jan-2022	Grab	0	5	17.6	1002
LG9	13-Jan-2022	Grab	0	8	4.5	1001
LG8	2-Feb-2022	Grab	0	3.7	18	1020
LG9	2-Feb-2022	Grab	11.5	7.7	2.4	1020
LG8	2-Mar-2022	Grab	0	3.7	17.1	1012
LG9	2-Mar-2022	Grab	0	3.7	17.1	1012
LG8	8-Apr-2022	Grab	0	3.7	17.4	1005
LG9	8-Apr-2022	Grab	0	2.1	16	1006
LG8	4-May-2022	Grab	0	3.9	17	1018
LG9	4-May-2022	Grab	1.9	2.5	17.5	1020
LG8	10-June-2022	Grab	0	5.4	14.2	1007
LG9	10-June-2022	Grab	0	0.6	20.5	1006
LG8	18-July-2022	Grab	0	1.5	19.2	1016
LG9	18-July-2022	Grab	10.2	6.7	11	1015
LG8	23-Aug-2022	Grab	0	5	16.4	1010
LG9	23-Aug-2022	Grab	0	0.6	20.4	1010
LG8	8-Sep-2022	Grab	0	3.7	15.8	1005
LG9	8-Sep-2022	Grab	0	0.1	21	1005
LG8	12-Oct-2022	Grab	0	6.6	14.5	1015
LG9	12-Oct-2022	Grab	0	0.6	21.2	1016
LG8	7-Nov-2022	Grab	0	6.4	13.5	986
LG9	7-Nov-2022	Grab	0	1.9	19.4	987
LG8	13-Dec-2022	Grab	0	6.5	15.5	1009
LG9	13-Dec-2022	Grab	0	2	20.3	1008

Table: Landfill Gas Results 2023

Station	Sample Date	Sample Method	Methane	Carbon Dioxide	Oxygen	Pressure
			%	%	%	mBar
LG8	13-Jan-2023	Grab	0	1.7	18.1	1005
LG9	13-Jan-2023	Grab	0	1.3	20.4	1006
LG8	25-Jan-2023	Grab	0	1.4	18.4	1010
LG9	25-Jan-2023	Grab	0	1.2	20.3	1010
LG8	13-Feb-2023	Grab	0	1.9	18.7	1024
LG9	13-Feb-2023	Grab	0	0.8	21	1024
LG8	15-Mar-2023	Grab	0	4.7	18	1002
LG9	15-Mar-2023	Grab	0.6	1.6	20.4	1002
LG8	30-Mar-2023	Grab	0	4.8	16.4	994
LG9	30-Mar-2023	Grab	0	1.2	20.5	994
LG8	19-Apr-2023	Grab	0	3.5	18.3	1029
LG9	19-Apr-2023	Grab	0	1.1	20.7	1030
LG9	24-May-2023	Grab	0.2	7.8	19.9	1030
LG8	24-May-2023	Grab	0	4	17.2	1031
LG9	26-June-2023	Grab	0.1	0.1	20.3	1015
LG8	26-June-2023	Grab	0.1	3.3	15.9	1017
LG9	3-Aug-2023	Grab	0	0.1	20.9	1010
LG8	3-Aug-2023	Grab	0	2.6	15.4	1011
LG8	10-Aug-2023	Grab	0	2.7	15.3	1013
LG9	10-Aug-2023	Grab	0.1	0.3	20.3	1012
LG8	23-Oct-2023	Grab	0.1	4.1	14.1	1004
LG9	23-Oct-2024	Grab	0	0.1	20.9	1004