

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX 6

Causeway Geotechnical Reports 2020 and 2022

Tuam Landfill - Ground Investigation

Client: Galway County Council

Client's Representative: Fehily Timoney and Company

Report No.: 22-0418

Date: August 2022

Status: Final for Issue

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTH	IORITY4
2	SCOP	E4
3	DESC	RIPTION OF SITE4
4	SITE 4.1 4.2 4.3 4.4 4.5	OPERATIONS
5	LAB0 5.1 5.2	PRATORY WORK
6	GROU 6.1 6.2 6.3	JND CONDITIONS
7	REFE	RENCES9

APPENDICES

Appendix A Site and exploratory hole location plans

Appendix B Borehole logs

Appendix C Geotechnical laboratory test results
Appendix D Environmental laboratory test results

Document Control Sheet

Report No.:		22-0418						
Project Title:		Tuam Landfill						
Client:		Galway County Council						
Client's Repres	entative:	Fehily Timoney and Company						
Revision:	A00	Status:	Final for Issue	Issue Date:	23 rd August 2022			
Prepared by:		Reviewed by:		Approved by:				
	White	Sia.	Ross.	Jam O 1	luoj.			
Rachel White BA (Mod.) Geos	cience	Sean Ross BSC MSc MIEI P	Geo	Darren O'Mahor BSc MSc MIEI Et	•			

The works were conducted in accordance with:

British Standards Institute (2015) BS 5930:2015+A1:2020, Code of practice for ground investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015+A1:2020, The Code of Practice for Ground Investigation.

Abbreviations use	ed on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
P	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
(Y for Z/Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa. V: undisturbed vane shear strength VR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
$\overline{}$	Water strike: initial depth of strike.
—	Water strike: depth water rose to.
Abbreviations relatin	g to rock core – reference Clause 36.4.4 of BS 5930: 2015+A1:2020
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

Tuam Landfill

1 AUTHORITY

On the instructions of Fehily Timoney and Company ("the Client's Representative"), acting on the behalf of Galway County Council ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information to determine the existing state of the current landfill.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the ground investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on the site of Tuam Landfill, located in Tuam, County Galway. The site is bordered by Agricultural Land to the west and south, Hynes Plant & Tool Hire to the north, and the Athenry Road to the east.

The site is relatively flat, with a slight loss in elevation sloping downwards to the south.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between the 18th to the 20th of July 2022, comprised:

- four boreholes by light cable percussion
- a standpipe installation in four boreholes; and
- a permeameter test at two boreholes

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

Four boreholes (BH01-BH03 and BHLFG1) were put down to completion in minimum 200mm diameter using a Dando 2000 light cable percussion boring rig. All boreholes were terminated at their scheduled completion depths.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Undisturbed (U100) samples were taken within the clay capping material encountered above the landfill. Environmental samples were taken at standard intervals within the waste body, as directed by the Client's Representative.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Appendix B presents the borehole logs.

4.3 Standpipe installations

A groundwater monitoring standpipe was installed all boreholes. Waterra tubing was installed in each borehole to allow for future groundwater/leachate sampling. Timber fencing was also installed around each headworks to prevent damage from cattle.

Details of the installations, including the depth range of the response zone, are provided in Appendix B on the individual borehole logs.

4.4 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R10 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole location plan presented in Appendix A shows these as-built positions.

4.5 Permeameter testing

Permeameter tests were carried out at two locations BH01 and BH03 at the interface of the topsoil/geocomposite clay liner (GCL) interface. The tests, which were carried out in accordance with BS EN 12697-40: 2012, involved recording the time taken for four litres of water to drain into the test surface.

The results of the testing are presented below where:

- *t* is the average outflow time expressed in seconds, (s);
- *r* is the series resistance outflow time expressed in seconds, (s).
- *HC* is the relative hydraulic conductivity expressed in s⁻¹

Table 1 Permeameter test results

Location	Depth of test	r (s)	t	t(s)	HC (s ⁻¹)
	(mbgl)		(mins:secs)		
BH01	0.37	1.92	12:35	755	0.0013279
BH03	0.40	1.92	14:42	882	0.0011363

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described, and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

• **permeability:** triaxial permeability tests

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).

The test results are presented in Appendix C.

5.2 Environmental laboratory testing of soils

Environmental testing, as specified by the Client's Representative was conducted on selected environmental soil samples by Chemtest at its laboratory in Newmarket, Suffolk.

Testing was carried according to Engineer's Ireland Suite I, testing for a range of determinants, including:

- Metals
- Speciated total petroleum hydrocarbons (TPH)
- Speciated polycyclic aromatic hydrocarbons (PAH)
- BTEX compounds
- Volatile Organic Compounds (VOCs)
- Polychlorinated biphenyls (PCBs)
- Phenols
- Organic matter
- Total Organic Carbon (TOC)
- Cyanides
- Asbestos screen
- Sulphate
- Phosphate
- pH
- Waste acceptance criteria (WAC)

Results of environmental laboratory testing are presented in Appendix D.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise peat. These deposits are underlain by limestones of the Visean Limestones Formation.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Paved surface: BHLFG1 encountered 50mm of bitmac surfacing.
- **Made Ground (sub-base):** approximately 350mm of aggregate fill beneath the paved surface in BHLFG1.
- Made Ground (fill): reworked sandy gravelly clay fill extending to depths between 0.90-2.80m.
- **Made Ground (landfill):** landfill comprising domestic waste was encountered across the site to depths ranging from 2.10m in BHLFG1 to 9.30m in BH02.
- **Recent deposits (peat):** encountered in all boreholes beneath the waste body.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater was encountered during percussion boring through soil as water strikes shown in Table 1 below.

Table 2: Groundwater strikes encountered during ground investigations.

Location	Depth (mbgl)	Comments
BH02	3.40	
BH03	8.00	Rose from 8.00 to 7.80m after 20 minutes

Groundwater was not noted during drilling at two of the borehole locations. However, it should be noted that the casing used in supporting the borehole walls during drilling may have sealed out additional groundwater strikes and the possibility of encountering groundwater during excavation works should not be ruled out.

Subsequent groundwater monitoring of the standpipe installations recorded water levels as shown in Table 2.

Table 3: Groundwater monitoring

Date	Water level (mbgl))/Installation Depth	(mbgl)	
Date	BH01	BH02	ВН03	BHLGF1
28/07/2022	7.72/8.40	8.48/8.80	7.14/8.15	2.28/2.31

7 REFERENCES

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland.

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

BS 5930: 2015+A1:2020: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

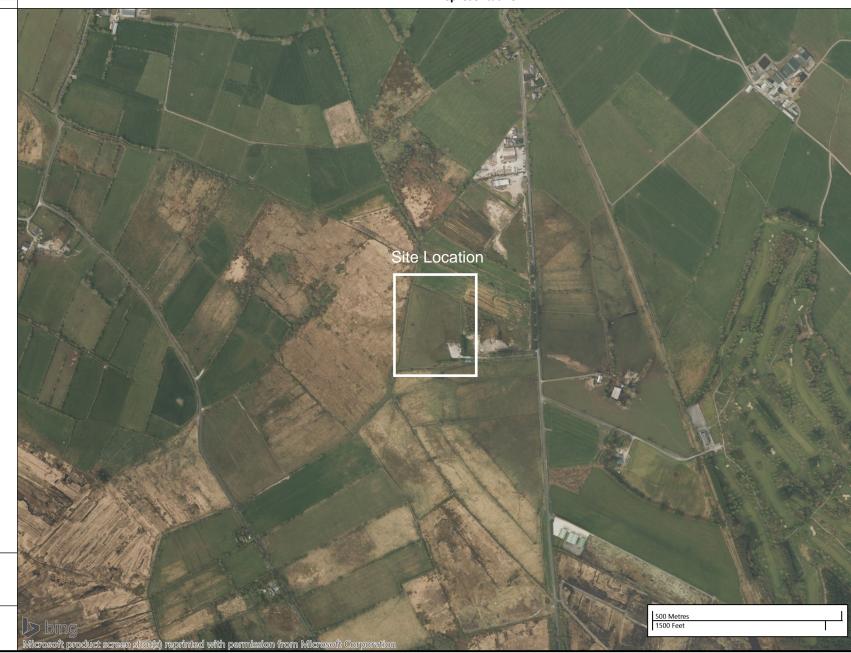
BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLANS

Project No.: 22-0418

Client:

Galway County Council


Project Name:

Tuam Landfill

Client's Representative:

Fehily Timoney and Company

Legend Key

Title:

Site Location Plan

Last Revised: 15/08/2022

Scale:

1:10000

Project No.: 22-0418

Tuam Landfill

Client: Galway County Council

Project Name:

Client's Representative:

Fehily Timoney and Company

Legend Key

← Locations By Type - CP

Title:

Exploratory Hole Location Plan

Last Revised: Scale:

15/08/2022

1:1000

APPENDIX B
BOREHOLE LOGS

		CAUSEW	AY ECH			ect No. -0418	Project Name: Tuam Landfill Client: Galway County Council Client's Rep: Fehily Timoney and Company	Borehole ID BH01
Method Cable Percu		Plant Used Dando 2000	Top (m) 0.00	Base (m 8.20	5437	771.91 E 901.87 N	Final Depth: 8.20 m Start Date: 19/07/2022 Driller: BM Elevation: 43.72 mOD End Date: 19/07/2022 Logger: SR	Sheet 1 of 2 Scale: 1:40 FINAL
	Sample / Tests U5 ES1	Field Records Ublow=30 90%		Casing Wate	Level mOD	Depth (m)	Legend Description MADE GROUND: Soft to firm brownish grey sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	Backfill 0.5
							MADE GROUND: Landfill	1.0 -
2.50	ES2				41.22	-	MADE GROUND: Soft brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. MADE GROUND: Landfill	3.5
6.00	ES3							5.5 - 6.5 - 7.0 -
Casing De	sing to (m	r Strikes i) Time (min) Rose to (n Water Added From (m) To (m)	n) From (Chiselli m) To	ng Detai	ls me (hh:mm)	Remarks	
							Termination Reason Last Up Terminated at scheduled depth. 23/08/	

Depth (m) Sample / (m) Field Records Company Company (m) Field Records Field	Method Plant Used Top (m) Base (m) Coordinates Bable Percussion Dando 2000 0.00 8.20 5.43771.91 E 749901.87 N Elevation: 43.72 mob End Date: 19/07/2022 Logger: SR FINAL						Proje	ct No.	roject Name: Tuam Landfill		Boi	ehole ID
Method Plant Used Top (m) Base (m) Coordinates Sable Percussion Dando 2000 0.00 8.20 S.43771.91 E 749901.87 N Elevation: 43.72 mOD End Date: 19/07/2022 Driller: BM Sheet 2 of 2 Scale: 1:40 Scale: 1:	Method Plant Used Top (m) Base (m) Coord Made Part Used Dando 2000 0.00 8.20 54371.91 E 749901371 N Elevation: 4.177 mol End Date: 19/07/207 Logger: Sin FINAL Society Made Part Used		C	AUSEW	/AY		22-0)418	ient: Galway County (Council		BH 01
Dando 2000 Dan	## April Dando 2000 Dando 2			GEOT	ECH				ient's Rep: Fehily Timoney	and Company		
Page	Part								nal Depth: 8.20 m Start Da	nte: 19/07/2022 Driller	• BM I	
0 ES4 35.72 - 8.00 35.72 - 8.00 8.20 End of Borehole at 8.20m 8.20 1.2 End of Borehole at 8.20m 8.20 1.2 End of Borehole at 8.20m 1.	MADE GROUND: Landfill 35.72 - 8.00 MADE GROUND: Landfill FEAT FEAT Feat of Borehole at 8.20m Feat Feat Feat Water Strikes Chiefling Details Remarks								evation: 43.72 mOD End Date	e: 19/07/2022 Logge	r: SR	INAL
0 ES4 35.72 - 8.00 35.72 - 8.00 8.20 End of Borehole at 8.20m 8.20 1.2 End of Borehole at 8.20m 8.20 1.2 End of Borehole at 8.20m 1.	MADE GROUND: Landfill 35.72 - 8.00 July 1 Sept 1 Sept 1 Sept 1 Sept 2 Sept 1 Sept 2 S	Depth (m)		Field Records	Ca De	sing Water epth Depth m) (m)			egend	Description	Water	Backfill
	Water Strikes Chiselling Details Remarks	00	ES4					-	ANG AN PEAT	Borehole at 8.20m		
	Water Strikes Chiselling Details Remarks											9.0 9.1 10.0 11.0 12.0
Casing Details Water Added o (m) Diameter From (m) To (m)				. , . , , , , , , , , , ,				-	mination Reason		Last Updated	
Casing Details Water Added o (m) Diameter From (m) To (m) Termination Reason Last Updated						1			minated at scheduled depth.		23/08/2022	

		CAUSEW	AY CH			ect No. 0418	Project Name: Tuam Landfill Client: Galway County Council Client's Rep: Fehily Timoney and Company	Borehole ID BH02
Metho		Plant Used	Top (m)		Coor	dinates	Final Depth: 9.40 m Start Date: 19/07/2022 Driller: BM	Sheet 1 of 2
Cable Percu	ussion	Dando 2000	0.00	9.40		31.98 E 87.50 N	Elevation: 45.89 mOD End Date: 19/07/2022 Logger: SR	Scale: 1:40
Depth (m)	Sample / Tests	Field Records		Casing Water Depth Depth (m) (m)	Level mOD	Depth (m)	Legend Description	# Backfill
0.40 - 0.80	U5 ES1	Ublow=30 90%			44.99	0.90	MADE GROUND: Soft to firm brownish grey sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. MADE GROUND: Landfill	
2.00	ES2							2.0
		Slow seepage at 3.40m						3.5
5.50	ES3				40.89	- 5.00	MADE GROUND: Soft greyish sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	5.5
		Strikes		Chisellin	g Details	s		
3.40 Casing De	3.40	Water Added From (m) To (m)				ne (hh:mm)		
					I		Termination Reason Last U	pdated 🔳

	C	AUSEW GEOT	/AY		22-0	0418	Client: Galway County Council	ВН02
		GEOT	ECH				Client's Rep: Fehily Timoney and Company	
Metho		Plant Used Dando 2000	Top (m) I	Base (m) 9.40	Coord	inates	Final Depth: 9.40 m Start Date: 19/07/2022 Driller: BM	Sheet 2 of 2
Lable Perc	ussion	Dando 2000	0.00	9.40	54383 74998	1.98 E 7.50 N	Elevation: 45.89 mOD End Date: 19/07/2022 Logger: SR	Scale: 1:40 FINAL
Depth	Sample /	Field Records		Casing Water Depth Depth	Level	Depth (m)	Legend Description	be Backfill
(m)	ES4 Water S	itrikes		Casing Depth Depth (n)	36.89 36.59 36.49	(m)	MADE GROUND: Soft greyish sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. MADE GROUND: Landfill MADE GROUND: Landfill End of Borehole at 9.40m	9.5 10.6 11.6 12.6 14.6
3.40	asing to (m) 3.40	Time (min) Rose to (m) From (r	n) To (m) Time	(hh:mm)		
Casina D	etails	Water Added	_					
Casing D		Water Added From (m) To (m)						
							Fermination Reason Las	t Updated
							Las	. opuateu

	CAUSEW			22-(ect No. 0418	Project Name: Tuam Landfill Client: Galway County Council Client's Rep: Fehily Timoney and Company		Borehole ID BH03	
Method Cable Percussi	Plant Used Dando 200	Top (m) 	8.20	54379	93.33 E 88.31 N	Final Depth: 8.20 m Start Date: 18/07/20 Elevation: 44.53 mOD End Date: 18/07/20		Sheet 1 of 2 Scale: 1:40 FINAL	
Depth (m) Sample / Tests 0.30 - 0.70 U5 0.50 ES1 3.00 ES2	Field Records Ublow=30 70%		Casing Water Depth Oppth (m) (m)	Level mOD	Depth (m)	Legend Description MADE GROUND: Soft brownish grey sandy gr to coarse. Gravel is subangular to subrounded MADE GROUND: Landfill	avelly CLAY. Sand is fine	Backfill 0.5 - 1.0 - 1.0 - 2.0 - 3.3 - 3.5 - 3.5 - 4.5 - 4.5 - 5.0 -	
	r Strikes Time (min) Rose to (min) Rose to (min) 20		Chisellini n) To (Remarks Termination Reason	Last U	5.5 - 6.0 - 6.5 - 7.0 -	

				Proje	ct No.	Project Name: Tuam Landfill	Borehole II
	CAUSEW	AY		22-0)418	Client: Galway County Council	ВН03
	——GEOTI	ECH				Client's Rep: Fehily Timoney and Company	
Method Cable Percussi	Plant Used Dando 200	Top (m) Ba	se (m) 8.20	Coord	inates	Final Depth: 8.20 m Start Date: 18/07/2022 Driller: BM	Sheet 2 of 2 Scale: 1:40
				54379 75003		Elevation: 44.53 mOD End Date: 18/07/2022 Logger: SR	FINAL
Depth Sample /	, Field Records	Cas De	ing Water pth Depth n) (m)	Level mOD	Depth (m)	Legend Description	म्हं Backfill
(m) Tests 0 ES4		(1	n) (m)	36.53	(m)	MADE GROUND: Landfill	X
	Slow seepage at 8.00m			36.33	8.20	End of Borehole at 8.20m	9.1 9.1 10.0 11.1 12.1 12.1 13.1 14.1
Mata	r Strikes		nisellina	Details			
	r Strikes n) Time (min) Rose to (r 20 7.80			g Details m) Time	e (hh:mm)	Remarks	
	Water Added From (m) To (m)						
Casing Details (o (m) Diameter						Termination Reason La:	st Updated

	C	AUSEW —GEOT	AY ECH			ct No. 0418					Borehole ID BHLFG1	
Metho		Plant Used	Top (m) Ba		Coord	linates			Driller: BM	Sh	neet 1 of 1	
Cable Perc	cussio	Dando 2000	0.00	3.00		4.79 E .6.52 N		art Date: 20/07/2022 ad Date: 20/07/2022	Logger: SR		rale: 1:40	
Depth (m)	Sample / Tests	Field Records	Ca De	sing Water pth Depth m) (m)	Level mOD	Depth (m)	Legend	Description		Water	Backfill	
.50 - 1.50	B1				41.16	0.05	coarse GRAVEL with low Cobbles are angular. MADE GROUND: Soft b	slightly sandy angular to su w cobble content. Sand is f prownish black sandy gravel prownish to subrounded fine	ine to coarse. ly CLAY. Sand is fine		0.5	
					39.11	2.10	MADE GROUND: Dense	e grey subangular fine to co	arse GRAVEL	•	2.0	
50 - 3.00	B2				38.71	- 2.50 -	Me she PEAT E she she E she she				2.5	
					38.21	- 3.00 - - -	shte shte	ind of Borehole at 3.00m			3.0	
											4.3	
											5.	
						-					7.	
	Water S				g Details		 Remarks			1 1		
Casing De	etails	Water Added From (m) To (m)		То (m) Tim	e (hh:mm)						
							Termination Reason		l act I	Ipdated	ı — -	
		1	1	1	1				Lasit	- waitl		

APPENDIX C GEOTECHNICAL LABORATORY TEST RESULTS

LABORATORY REPORT

4043

Contract Number: PSL22/5053

Report Date: 19 August 2022

Client's Reference: 22-0418

Client Name: Causeway Geotech

8 Drumahiskey Road

Ballymoney Co.Antrim BT53 7QL

For the attention of: Stephen Watson

Contract Title: Tuam Landfill

Date Received: 2/8/2022 Date Commenced: 2/8/2022 Date Completed: 19/8/2022

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins R Berriman S Royle

(Director) (Quality Manager) (Laboratory Manager)

She

L Knight S Eyre T Watkins
(Assistant Laboratory Manager) (Senior Technician) (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

BS 1377: Part 6: 1990: Clause 6

Hole Number: BH01 Top Depth (m): 0.30

Sample Number: 5 Base Depth (m): 0.70

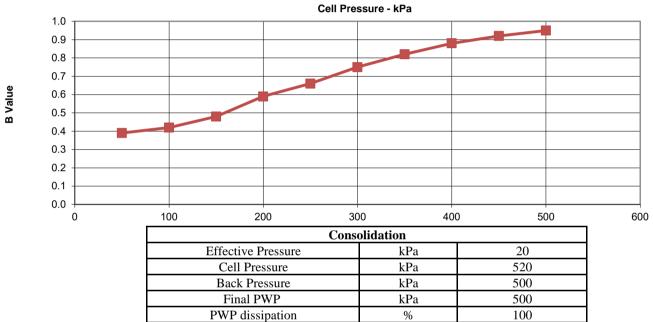
Sample Type: U Lift Number:

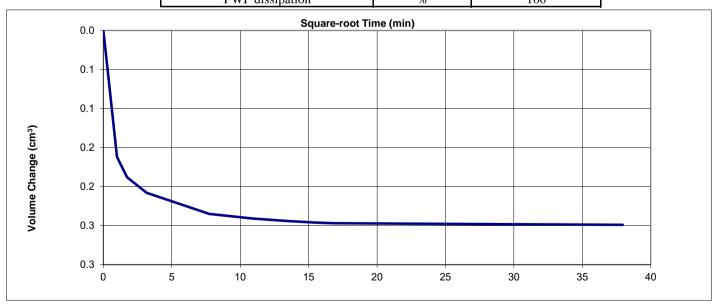
Date Grid Reference:

Description of Specimen			
Brown gravelly sandy CLAY.			
Remarks			
Undisturbed			

Initial Specimen Conditions						
Height	mm	101.06				
Diameter	mm	101.12				
Area	mm^2	8030.90				
Volume	cm ³	811.60				
Mass	g	1650				
Dry Mass	g	1418				
Bulk Density	Mg/m^3	2.03				
Dry Density	Mg/m^3	1.75				
Moisture Content	%	16				
Voids Ratio	-	0.516				
Specific Gravity	Mg/m^3	2.65				
(assumed/measured)	-	assumed				

Final Specimen Conditions					
Moisture Content	%	21			
Bulk Density	Mg/m ³	2.11			
Dry Density	Mg/m ³	1.75			


Test Setup						
Date Started		14/08/2022				
Date Finished		17/08/2022				
Top Drain Used		Y				
Base Drain Used		Y				
Method of Saturation		By back pressure				
Direction Of Flow		Vertically Downwards				
Saturation Time	Days	1				
Consolidation Time	Days	1				
Permeability Time	Days	1				



	Contract No.
Tuam Landfill	PSL22/5053
Tuam Lanum	Client Ref
	22-0418

BS 1377: Part 6: 1990 Clause 6

Specimen Details							
Hole Number		BH01					
Sample Depth	m	0.30					
Sample No,		5					
Grid Reference							
Lift Number							
Saturation							
Cell Pressure Incr.	kPa	50					
Back Pressure Incr.	kPa	50					
Differential Pressure	kPa	10					
Final Cell Pressure	kPa	500					
Final B Value	-	0.95					


Tuam Landfill

Contract No.
PSL22/5053
Client Ref
22-0418

BS 1377 : Part 6 : 1990 Clause 6

Specimen Details						
Hole Number		BH01				
Sample Depth	m	0.30				
Sample No.		5				
Grid Reference						
Lift Number						

Permeability Stage

Permeability Stage						
Cell Pressure	kPa	520				
Mean Effective Stress	kPa	20				
Back Pressure Diff.	kPa	10				
Mean Rate of Flow	ml/min	0.0418				
Average Temperature	'C	20				
Vertical Permeability Kv	m/s	8.6E-09				

Tuam	T	οn	A.	fill	
1 1121111	•	иn	"		

BS 1377: Part 6: 1990: Clause 6

Hole Number: BH03 Top Depth (m): 0.30

Sample Number: 5 Base Depth (m): 0.70

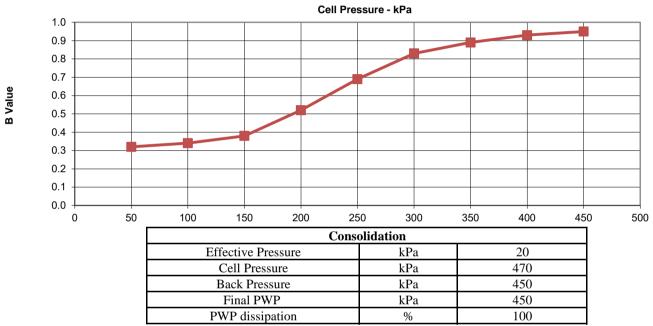
Sample Type: U Lift Number:

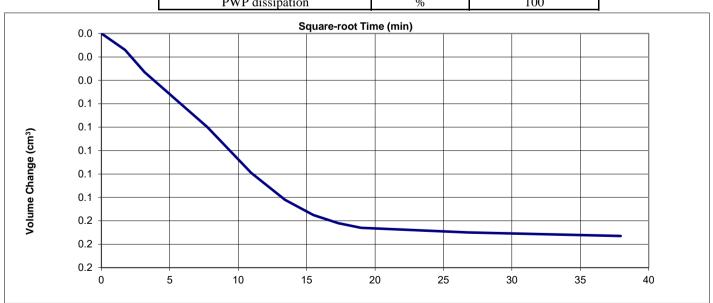
Date Grid Reference:

Description of Specimen			
Brown gravelly sandy CLAY.			
Remarks			
Undisturbed			

Initial Specimen Conditions				
Height	mm	101.64		
Diameter	mm	102.95		
Area	mm^2	8324.20		
Volume	cm ³	846.07		
Mass	g	1765		
Dry Mass	g	1528		
Bulk Density	Mg/m^3	2.09		
Dry Density	Mg/m^3	1.81		
Moisture Content	%	16		
Voids Ratio	-	0.467		
Specific Gravity	Mg/m^3	2.65		
(assumed/measured)	-	assumed		

Final Specimen Conditions							
Moisture Content % 17							
Bulk Density	Mg/m ³	2.12					
Dry Density	Mg/m ³	1.81					

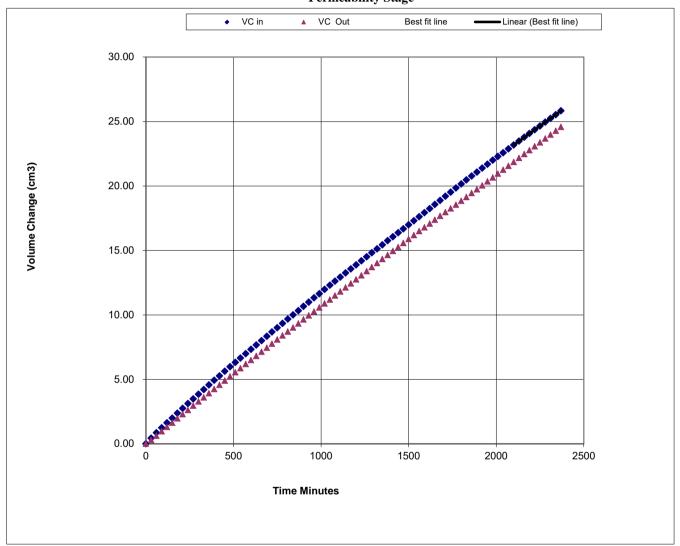

Test Setup				
Date Started		14/08/2022		
Date Finished		17/08/2022		
Top Drain Used		Y		
Base Drain Used		Y		
Method of Saturation		By back pressure		
Direction Of Flow		Vertically Downwards		
Saturation Time	Days	1		
Consolidation Time	Days	1		
Permeability Time	Days	2		



Tuom Londfill	Contract No.
Tuam Landfill	PSL22/5053
Tuam Langim	Client Ref
	22-0418

BS 1377: Part 6: 1990 Clause 6

Specimen Details					
Hole Number		BH03			
Sample Depth	m	0.30			
Sample No,		5			
Grid Reference					
Lift Number					
Saturation					
Cell Pressure Incr.	kPa	50			
Back Pressure Incr.	kPa	50			
Differential Pressure	kPa	10			
Final Cell Pressure	kPa	450			
Final B Value	-	0.95			


Tuam Landfill

Contract No.
PSL22/5053
Client Ref
22-0418

BS 1377: Part 6: 1990 Clause 6

Specimen Details				
Hole Number		BH03		
Sample Depth	m	0.30		
Sample No.		5		
Grid Reference				
Lift Number				

Permeability Stage

Permeability Stage					
Cell Pressure	kPa	470			
Mean Effective Stress	kPa	20			
Back Pressure Diff.	kPa	10			
Mean Rate of Flow	ml/min	0.0098			
Average Temperature	'C	20			
Vertical Permeability Kv	m/s	2.0E-09			

Tuam	Landfil	1
ı uanı	Lanum	

APPENDIX D ENVIRONMENTAL LABORATORY TEST RESULTS

eurofins Chemtest

Date of Re-Issue:

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

16-Aug-2022

Amended Report

Report No.: 22-28066-4

Initial Date of Issue: 16-Aug-2022

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Colm Hurley

Darren O'Mahony Gabriella Horan John Cameron Matthew Gilbert Neil Haggan Paul Dunlop Sean Ross Stephen Franey Stuart Abraham

Project 22-0418 Tuam Landfill

Quotation No.: Q22-28148 Date Received: 25-Jul-2022

Order No.: Date Instructed: 28-Jul-2022

No. of Samples: 3

Turnaround (Wkdays): 7 Results Due: 05-Aug-2022

Date Approved: 15-Aug-2022 **Subcon Results Due:** 18-Aug-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Results - Soil

Project: 22-0418 Tuam Landfill

Client: Causeway Geotech Ltd	Chemtest Job No.:			22-28066	22-28066	22-28066	
Quotation No.: Q22-28148		Chemtest Sample ID.:			1474290	1474293	1474298
Order No.:	Client Sample Ref.:			3	2	3	
	Sample Location:		BH01	BH02	BH03		
	Sample Type:		SOIL	SOIL	SOIL		
			Top De	, ,	6.0	2.5	5.0
		Date Sampled:		22-Jul-2022	22-Jul-2022	22-Jul-2022	
		_	Asbest	os Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD			
Benzo(j)fluoranthene	SN		mg/kg	1	< 1	< 1	< 1
АСМ Туре	U	2192		N/A	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	37	30	19
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	19	7.2	2.7
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	1.5	0.11	0.40
Cyanide (Free)	M	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)	М	2300	mg/kg	0.50	0.80	< 0.50	< 0.50
Arsenic	M	2455	mg/kg	0.5	6.1	4.8	2.7
Barium	М	2455	mg/kg	0	160	53	14
Cadmium	М	2455	mg/kg	0.10	1.5	0.78	0.38
Chromium	М	2455	mg/kg	0.5	22	17	4.8
Molybdenum	М	2455	mg/kg	0.5	2.9	1.1	< 0.5
Antimony	N	2455	mg/kg	2.0	4.7	2.1	< 2.0
Copper	М	2455	mg/kg	0.50	54	70	15
Mercury	М	2455	mg/kg	0.05	0.16	0.12	< 0.05
Nickel	М	2455	mg/kg	0.50	24	19	8.9
Lead	М	2455	mg/kg	0.50	420	83	17
Selenium	М	2455	mg/kg	0.25	1.2	2.4	< 0.25
Zinc	М	2455	mg/kg	0.50	220	170	260
Chromium (Trivalent)	N	2490	mg/kg	1.0	22	17	4.7
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Organic Matter	М	2625	%	0.40	19	10	0.90
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	210	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	210	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0

Results - Soil

Project: 22-0418 Tuam Landfill

Client: Causeway Geotech Ltd		Chemtest Job No.:		22-28066	22-28066	22-28066	
Quotation No.: Q22-28148			st Sam		1474290	1474293	1474298
Order No.:		Client Sample Ref.: Sample Location: Sample Type:		3	2	3	
				BH01	BH02	BH03	
				SOIL	SOIL	SOIL	
			Top Dep	oth (m):	6.0	2.5	5.0
			Date Sa	mpled:	22-Jul-2022	22-Jul-2022	22-Jul-2022
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	15	< 1.0	< 1.0
Aromatic TPH >C21-C35	M	2680	mg/kg	1.0	77	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	92	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	300	< 10	< 10
Naphthalene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Acenaphthylene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Acenaphthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Fluorene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Phenanthrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Fluoranthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Pyrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Chrysene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Coronene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Total Of 16 PAH's	N	2800	mg/kg	0.20	< 0.20	< 0.20	< 0.20
Total Of 17 PAH's	N	2800	mg/kg	0.20	< 0.20	< 0.20	< 0.20
PCB 28	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 52	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 90+101	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 118	U	2815	mg/kg		< 0.010	< 0.010	< 0.010
PCB 153	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 138	U	2815	mg/kg		< 0.010	< 0.010	< 0.010
PCB 180	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Total PCBs (7 Congeners)	U	2815	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Phenols	М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10

Results - Single Stage WAC

Project: 22-0418 Tuam Landfill

Project: 22-0418 Tuam Landfill							
Chemtest Job No:	22-28066				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1474290	1474290					
Sample Ref:	3					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH01					hazardous	Hazardous
Top Depth(m):	6.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	22-Jul-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	11	3	5	6
Loss On Ignition	2610	М	%	29			10
Total BTEX	2760	M	mg/kg	< 0.010	6		
Total PCBs (7 congeners)					1		
TPH Total WAC	2670	M	mg/kg	300	500		
Total (of 17) PAHs					100		
рН	2010	M		8.1		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.013		To evaluate	To evaluate
Eluate Analysis		10:1 Eluate		10:1 Eluate	Limit values for compliance leaching test		
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		S 10 I/kg
Arsenic	1455	U	0.013	0.13	0.5	2	25
Barium	1455	U	0.022	0.22	20	100	300
Cadmium	1455	U	0.00053	0.0053	0.04	1	5
Chromium	1455	U	0.0098	0.098	0.5	10	70
Copper	1455	U	0.039	0.39	2	50	100
Mercury	1455	U	0.00009	0.00094	0.01	0.2	2
Molybdenum	1455	U	0.026	0.26	0.5	10	30
Nickel	1455	U	0.021	0.21	0.4	10	40
Lead	1455	U	0.030	0.30	0.5	10	50
Antimony	1455	U	0.019	0.19	0.06	0.7	5
Selenium	1455	U	0.0025	0.025	0.1	0.5	7
Zinc	1455	U	0.082	0.82	4	50	200
Chloride	1220	U	13	130	800	15000	25000
Fluoride	1220	U	0.94	9.4	10	150	500
Sulphate	1220	U	140	1400	1000	20000	50000
Total Dissolved Solids	1020	N	860	8400	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	52	520	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	37				

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - Single Stage WAC

Project: 22-0418 Tuam Landfill

Project: 22-0418 Tuam Landfill							
Chemtest Job No:	22-28066	22-28066			LandfIII Waste Acceptance Criteria		
Chemtest Sample ID:	1474293					Limits	
Sample Ref:	2					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH02					hazardous	Hazardous
Top Depth(m):	2.5				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	22-Jul-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	M	%	5.8	3	5	6
Loss On Ignition	2610	M	%	11			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 congeners)					1		
TPH Total WAC	2670	М	mg/kg	< 10	500		
Total (of 17) PAHs					100		
pH	2010	M		8.1		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.032		To evaluate	To evaluate
Eluate Analysis		10:1 Eluate		10:1 Eluate	Limit values for compliance leaching tes		
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		S 10 I/kg
Arsenic	1455	U	0.0036	0.036	0.5	2	25
Barium	1455	U	0.043	0.43	20	100	300
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455	U	0.0010	0.010	2	50	100
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	U	0.018	0.18	0.5	10	30
Nickel	1455	U	0.0084	0.084	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455	U	0.0039	0.039	0.06	0.7	5
Selenium	1455	U	0.0015	0.015	0.1	0.5	7
Zinc	1455	U	0.007	0.067	4	50	200
Chloride	1220	U	67	670	800	15000	25000
Fluoride	1220	U	0.13	1.3	10	150	500
Sulphate	1220	U	480	4800	1000	20000	50000
Total Dissolved Solids	1020	N	870	8600	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	31	310	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	30				

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - Single Stage WAC

Project: 22-0418 Tuam Landfill

Project: 22-0418 Tuam Landfill								
Chemtest Job No:	22-28066				Landfill \	Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1474298					Limits		
Sample Ref:	3					Stable, Non-		
Sample ID:						reactive		
Sample Location:	BH03					hazardous	Hazardous	
Top Depth(m):	5.0				Inert Waste	waste in non-	Waste	
Bottom Depth(m):					Landfill	hazardous	Landfill	
Sampling Date:	22-Jul-2022					Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	M	%	0.52	3	5	6	
Loss On Ignition	2610	М	%	10			10	
Total BTEX	2760	М	mg/kg	< 0.010	6			
Total PCBs (7 congeners)					1			
TPH Total WAC	2670	М	mg/kg	< 10	500			
Total (of 17) PAHs					100			
рН	2010	М		8.3		>6		
Acid Neutralisation Capacity	2015	N	mol/kg	0.020		To evaluate	To evaluate	
Eluate Analysis						:1 Eluate Limit values for compliance lea		
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg			
Arsenic	1455	U	0.0028	0.028	0.5	2	25	
Barium	1455	U	0.032	0.32	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455	U	0.0010	0.010	0.5	10	70	
Copper	1455	U	0.0041	0.041	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455	U	0.012	0.12	0.5	10	30	
Nickel	1455	U	0.013	0.13	0.4	10	40	
Lead	1455	U	0.010	0.10	0.5	10	50	
Antimony	1455	U	0.015	0.15	0.06	0.7	5	
Selenium	1455	U	0.0013	0.013	0.1	0.5	7	
Zinc	1455	U	0.030	0.30	4	50	200	
Chloride	1220	U	79	790	800	15000	25000	
Fluoride	1220	U	0.21	2.1	10	150	500	
Sulphate	1220	U	180	1800	1000	20000	50000	
Total Dissolved Solids	1020	N	580	5800	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1	<u>-</u>	-	
Dissolved Organic Carbon	1610	U	73	730	500	800	1000	

Solid Information									
Dry mass of test portion/kg	0.090								
Moisture (%)	19								

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS

Test Methods

SOP	Title	Parameters included	Method summary
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	IDhanole in Soile by HDI (*	IPhenol Methylphenols Dimethylphenols 1-	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Galway Historic Landfills – Tuam Ground Investigation

Client: Galway County Council

Client's Representative: Feehily Timoney

Report No.: 19-1465A

Date: September 2020

Status: Final for Issue

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUT	HORITY4
2	SCOF	PE4
3	DESC	CRIPTION OF SITE4
4	SITE 4.1 4.2 4.3 4.4 4.5	OPERATIONS
5	LAB(5.1	DRATORY WORK
6	GRO1 6.1 6.2 6.3	UND CONDITIONS
7	REFE	ERENCES8

APPENDICES

Appendix A Site and exploratory hole location plans

Appendix B Borehole logs
Appendix C Trial pit logs

Appendix D Trial pit photographs

Appendix E Geotechnical laboratory test results

Document Control Sheet

Report No.:		19-1465A						
Project Title:		Galway Historic Landfills –Tuam						
Client:		Galway County Council						
Client's Repres	entative:	Feehily Timoney						
Revision:	A00	Status:Final for IssueIssue Date:21 September 2020						
Prepared by:		Reviewed by: Approved by:						
Lia	Ross	Colm L	live Con	Jam O 1	/~ /.			
Sean Ross BSc MSc MIEI		Colm Hurley BSc FGS PGeo		Darren O'Mahor BSc MSc MIEI Et)'Mahony MIEI EurGeol PGeo			

The works were conducted in accordance with:

British Standards Institute (2015) BS 5930:2015, Code of practice for site investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015, The Code of Practice for Site Investigation.

Abbreviations use	ed on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
P	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
(Y for Z/Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa. V: undisturbed vane shear strength VR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
∇	Water strike: initial depth of strike.
•	Water strike: depth water rose to.
Abbreviations relating	g to rock core – reference Clause 36.4.4 of BS 5930: 2015
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

Galway Historic Landfills - Tuam

1 **AUTHORITY**

On the instructions of Feehily Timoney Consulting Engineers, ("the Client's Representative"), acting on the behalf of Galway County Council ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information for input to the remediation of an historic landfill site in Galway.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results. A discussion on the recommendations for construction is also provided.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, trial pits, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on a site located 1km south east of Tuam town centre. The site is accessed off he R347 and is bounded by the R347 and the Tuam Civic Amenity Site to the east, and by agricultural lands to the north, south and west. Works were undertaken in an old landfill site immediately adjacent to the Civic Amenity Site and in the field to the south.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between 26th June and 18th September 2020, comprised:

- two boreholes by rotary drilling methods
- a standpipe installation in each borehole; and
- five machine dug trial pits

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

Two boreholes (GW01 and GW02) were put to their completion by rotary drilling techniques only. The boreholes were completed using a Hanjin 8D tracked drilling rig.

Symmetrix-cased full hole rotary percussive drilling techniques were employed to advance the boreholes to scheduled depth.

Appendix B presents the borehole logs.

4.3 Standpipe installations

A groundwater monitoring standpipe was installed in each borehole. Each borehole was also installed with waterra tubing and foot valve to allow future groundwater sampling.

Details of the installations, including the depth range of the response zone, are provided in Appendix B on the individual borehole logs.

4.4 Trial Pits

Five trial pits (TP01–TP05) were excavated using a 13t tracked excavator fitted with a 600mm wide bucket, to a maximum depth of 2.00m. TP01-TP03 and TP05 were undertaken to prove the depth to the existing clay liner.

Bulk samples were taken at depths specified by the Client's Representative.

Any water strikes encountered during excavation were recorded along with any changes in their levels as the excavation proceeded. The stability of the trial pit walls was noted on completion.

Appendix C presents the trial pit logs with photographs of the pits and arising provided in Appendix D.

4.5 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **shear strength** (total stress): unconsolidated undrained triaxial tests
- **compaction related:** Moisture Condition Value/moisture content relationship

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).*

The test results are presented in Appendix F.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise peat and glacial till. These deposits are underlain by undifferentiated Visean Limestones.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Topsoil:** encountered across the site with a thickness range of 50-400mm.
- **Paved surface:** 50mm of bitmac was encountered at a depth of 0.25mbgl in TP04.
- **Clay liner**: a geo-composite clay liner was encountered in all trial pits at depths of 0.20-0.40m.
- **Made Ground (fill):** sandy gravel or gravelly silty sand fill encountered beneath topsoil in TP04 and TP05.
- **Made Ground (landfill)**: reworked sandy gravel or gravelly silty sand or sandy gravelly silty clay encountered in TP04 to a depth of 2.00m. It should be noted that the trial pit was terminated at 2.00m and this stratum may extend beyond this. Fragments of timber, plastic, glass, steel, wire, clothing, brick and timber were encountered throughout the trial pit.
- Recent deposits (peat): peat was encountered in GW01 and GW02 to depths of 1.00m.
- **Glacial till:** sandy gravelly clay/silt with granular pockets were encountered in both boreholes to a depth of 6.40m in GW02. Extent was not proven in GW01 as the borehole terminated at 5.00m.
- **Bedrock (Limestone):** Limestone bedrock was encountered at a depth of 6.40m in GW02.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater was encountered during rotary drilling in GW02 at a depth of 5.00m. Groundwater was noted during drilling of GW01; however, groundwater was present at the bottom of the hole upon termination of the borehole.

It should be noted that the casing used in supporting the borehole walls during drilling may have sealed out any/additional groundwater strikes and the possibility of encountering groundwater at other depths should not be ruled out.

Groundwater was not noted during excavation of any of the trial pits.

Subsequent groundwater monitoring of the standpipe installations recorded water levels as shown in Table 1.

Table 1: Groundwater monitoring

Date	Water level (mbgl))
	GW01	GW02
21/09/20	0.30	0.22

Seasonal variation in groundwater levels should also be factored into design considerations and continued monitoring of the installed standpipes will give an indication of the seasonal variation.

7 REFERENCES

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. British Standards Institution.

BS 5930: 2015: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS EN ISO 14689-1:2018: Geotechnical investigation and testing. Identification and classification of rock. Identification and description.

APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLAN

Project No.: 19-1465A

Client:

Galway County Council

Project Name:

Galway Historic Landfills - Tuam

Client's Representative:

Feehily Timoney

Legend Key

Title:

Site Location Plan

Last Revised: 21/09/2020

Scale:

1:10000

Project No.: 19-1465A

Client: Galway County Council

Client's

Project Name:

Galway Historic Landfills - Tuam Representative:

Feehily Timoney

Legend Key

O Locations By Type - RO

Locations By Type - TP

Title:

Exploratory Hole Location Plan

Last Revised: Scale: 21/09/2020 1:2000

APPENDIX B
BOREHOLE LOGS

		ant Used anjin 8D Field Records	Top (m) 0.00	Base (m) 5.00 Casing Water Depth Depth (m) (m)	54372	7.49 E 3.09 N Depth (m)	Elevation: 34.24 mOD End Date: 18/09/2020 Log Legend Description TOPSOIL A Mile all Brown PEAT (Driller's description)	ller: KW		heet 1 of 1 Scale: 1:40 FINAL
Depth Samp	nple /			Casing Water Depth Depth	74978 Level mOD	3.09 N Depth (m)	Elevation: 34.24 mOD End Date: 18/09/2020 Log Legend Description TOPSOIL A Mile all Brown PEAT (Driller's description)			FINAL
		Field Records		Depth Depth	mOD	(m)	TOPSOIL All All Brown PEAT (Driller's description)		Water	Rackfill
					34.14	0.10	Brown PEAT (Driller's description)		1	Dackilli
					33.24	- 1.00	Brown PEAL. (Driller's description) Alic Salic A	ller's		1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
k at (m) Casing to		min) Rose to (n	Remark n) No notic		29.24	5.00	End of Borehole at 5.00m t water present at the bottom of hole upon completion.			5.1 5.1 6.1
Casing Details (m) Diam (r .00 200	(mm) From	(m) To (m)								

	C	CAUSEV	VAY			ect No. 465A	Project Name: Galway Historic Landfills - Tuam Client: Galway County Council Client's Rep: Feehily Timoney	Borehole IC GW02	
Metho		Plant Used	Top (m) 0.00	Base (m)	Coord	dinates	Final Depth: 12.00 m Start Date: 18/09/2020 Driller: KW	Sheet 1 of 2	
otary Dri	iling	Hanjin 8D	0.00	12.00		27.03 E 35.25 N	Elevation: 34.35 mOD End Date: 18/09/2020 Logger: SR	Scale: 1:40 FINAL	
Depth (m)	Sample / Tests	Field Record	s	Casing Water Depth Depth (m) (m)	Level mOD	Depth (m)	Legend Description	# Backfill	
(m)	Tests				34.25 33.35 31.35	- 1.00	TOPSOIL Brown PEAT. (Driller's description) Brown Sandy gravelly SILT. (Driller's description) Brown sandy gravelly SILT. (Driller's description) Grey sandy gravelly CLAY with low cobble content. (Driller's description)	0.3 1.0 1.0 2.0 3.0 3.0	
		Strong water strike at	5.00m		29.85	4.50	Grey sandy fine to coarse GRAVEL. (Driller's description)	4.6 4.5 5.6	
					27.95	6.40	Grey LIMESTONE. (Driller's description)	6.0	
	Water	· Strikes	Remar	ks					
.00 Casing De	sing to (m 5.00	Time (min) Rose to	(m)						
			Core	Barrel	Flush		Termination Reason Last Updated Terminated at scheduled depth. 21/09/2020	\ \\AGS	

C/	AUSEW — GEOT	AY			ct No. 465A	Project Name: Galway R Client: Galway C Client's Rep: Feehily T	Borehole II		
Method otary Drilling	Plant Used Hanjin 8D	Top (m) Bas	se (m) 2.00	Coord	inates	Final Depth: 12.00 m	Start Date: 18/09/2020	Driller: KW	Sheet 2 of 2
istary Stiming	j GD			54372 74978	7.03 E 5.25 N	Elevation: 34.35 mOD	End Date: 18/09/2020	Logger: SR	Scale: 1:40 FINAL
Depth Sample / (m) Tests	Field Records	Casin Dept (m)	g Water h Depth (m)	Level mOD	Depth (m)	Legend	Description	<u>, </u>	Backfill
Water St				22.35	- 12.00	Grey LIMESTONE. (I	End of Borehole at 12.00m		9.4 10.4 11.4 12.9 13.1 14.4
2.00 200	, , == ()	Core Ba	rrel	Flush	Tyne	Termination Reason		Last Updated	T

APPENDIX C
TRIAL PIT LOGS

200			Proj	ect No.	Project	Name:			Т	rial Pit ID	
S A	CALIS	EWAY	19-	1465A	1	Historic Landfills -	Tuam				
	CAUS	EWAY EOTECH	Coor	dinates	Client:					TP01	
		COTECTI	5/38	37.44 E	1	County Council					
Method:				99.13 N	1	Representative:			Sh	neet 1 of 1	
Trial Pitting					Feehily Timoney					cale: 1:25	
Plant:			1	vation	Date:					FINAL	
13t Tracked Exc				5 mOD	07/07/	2020		JG	,		
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend		Description		Water		
			(- (,		TOPSOIL					
0.10 - 0.40	B1			[
										_	
			44.65	0.40			End of trial pit at 0.40m			_	
				-			End of that pit at 0.70m			0.5 —	
										-	
				-						- 1	
				E]	
				-						1.0	
										_	
				E						-	
				ļ.							
				E						1.5 —	
				ļ.							
										_	
				E						-	
				-						2.0	
				-						_	
				ŀ							
				[
				<u>-</u>						2.5	
				ŀ						-	
				<u> </u>						-	
				ļ.						-	
				Ŀ						3.0	
				-						3.0	
				<u> </u>						_	
				ŀ						-	
										-	
				F						3.5	
				[
				ļ						4	
				-						-	
				-						4.0	
				-						_	
				ŀ							
				[
				<u>-</u>						4.5	
				E						_	
				<u> </u>						-	
				<u> </u>						_	
				<u> </u>							
Mate	Strikes		Rema	arks:							
Struck at (m)	Remarks	Depth: 0.40	Geod	composite o		below topsoil at 0.40	m.				
, , ,		Width: 0.40		roundwate							
		Length: 1.10									
		Stability:	Term	ination Re	ason:			Last Updated	-	4.0.0	
		Geocomposite clay liner proven. 21/09/2020					21/09/2020		AGS		

200			Proj	ect No.	Project	Name:		T	rial Pit ID		
CAUSEWAY ——GEOTECH		19-	19-1465A		Galway Historic Landfills - Tuam						
+		FOTECH	Coor	dinates	Client:				TP02		
			E42012 74 E		Galway County Council						
Method:			740072 C2 N		Client's Representative:				eet 1 of 1		
Trial Pitting						Timoney		Scale: 1:25			
Plant:					Date:		Logger:	FINAL			
13t Tracked Excavator					07/07/2020 JG				FINAL		
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water			
0.00 - 0.20	B1		(52)	- (,		TOPSOIL					
			46.54	0.20							
			40.54	0.20		End of trial pit at 0.20m			_		
				-					-		
				[0.5 —		
				-					-		
				ŀ							
]		
				<u>-</u>					1.0		
				Ė					-		
				[-		
				-					-		
				[1.5 —		
				-							
				-					4		
				-					-		
				-					2.0		
				[]		
				-					4		
				Ė					4		
				-					2.5		
				-							
				[
				-					4		
				F					3.0		
				-					-		
				Ė]		
				-					_		
				-					3.5 —		
				[-		
				-					=		
				Ė							
				-					4.0		
				-					4		
				[-		
				-					-		
				Ė					4.5 —		
				-					4.5		
				-					4		
				[
				<u> </u>							
			ls:	- whee							
Water Struck at (m)	Strikes Remarks	Depth: 0.20	Rema Geoo		clav liner	below topsoil at 0.20m.					
Struck at (III)	nemarks	Width: 0.30		roundwate							
	Length: 1.20										
		Stability:	Term	ination Re	ason:		Last Updated	-			
	Stable		Geoc	Geocomposite clay liner proven. 21/09/2020					\ \\AGS		

200			Proj	ect No.	Project	Name:		T	rial Pit ID		
CAUSEWAY ——GEOTECH		19-	19-1465A		Galway Historic Landfills - Tuam						
		EOTECH	Coor	dinates	Client:				TP03		
			F 42774 FO F		Galway County Council						
Method:			740010 C7 N		Client's Representative:				eet 1 of 1		
Trial Pitting					Feehily Timoney				cale: 1:25		
Plant:					Date:		Logger:	FINAL			
13t Tracked Excavator					07/07/2020 JG				TINAL		
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water			
0.00 - 0.20	B1		, - ,	. ,		TOPSOIL					
			44.06	0.20]		
						End of trial pit at 0.20m			_		
				Ė					_		
				-					0.5		
				-					1		
				-					4		
				<u>-</u>					1.0		
				[-		
				-					1		
				Ė							
				-					1.5		
				-					4		
				[-		
				-					-		
				-					2.0		
				-					2.0		
				-					4		
				-					-		
				E					2.5		
				-					_		
				t t					-		
				-					- 1		
				-					3.0		
				[]		
				-					4		
				[-		
				-					3.5 —		
				Ė]		
				-					_		
				-					4		
				F					4.0		
				-					- 1		
]		
				-					4		
				Ė					4.5		
				-					-		
				-					-		
				-							
				-							
Water	Strikes	Double 0.30	Rema		1			1			
Struck at (m)	Remarks	Depth: 0.20	Geocomposite clay liner below topsoil at 0.20m.								
	Width: 0.60			groundwater encountered.							
		Length: 1.80	T	Termination Reason: Last Updated							
	Stability: Stable				Reason: Last Updated				MAGE		
				composite o	21/09/2020	\ \\AGS					

			Proi	ect No.	Project	t Name:			rial Pit ID		
CAUSEWAY —GEOTECH Method: Trial Pitting Plant:			Project No. 19-1465A Coordinates 543848.05 E 749935.17 N Elevation 42.38 mOD		Project Name: Galway Historic Landfills - Tuam Client: Galway County Council Client's Representative: Feehily Timoney				IIIai FICID		
									TP04		
									heet 1 of 1		
									Scale: 1:25		
					Date:		Logger:		FINAL		
13t Tracked Excavator		07/07/2020			JG		FINAL				
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water			
Depth (m)	Sample / Tests	Field Records	Level (mOD) 42.33 42.13 42.08 41.18	Depth (m) - 0.05 - 0.25 - 0.30 0.25 - 0.30 0.25 - 0.30 0.25 - 0.30 - 0.25 - 0.25 - 0.30 - 0.25 - 0.25 - 0.30 - 0.25 - 0.25 - 0.30 - 0.25	Legend	TOPSOIL MADE GROUND: Light greyish brown sandy subang fine to coarse GRAVEL of mixed lithologies. Sand is BITMAC MADE GROUND: Very soft to soft light greyish brow CLAY with medium cobble content and fragments of steel, wire, brick and concrete. Sand is fine to coars subangular to subrounded fine to coarse of mixed lare subangular of mixed lithologies. MADE GROUND: Soft dark grey and black sandy gramedium cobble content and fragments of plastic, g brick and concrete. Sand is fine to coarse. Gravel is subrounded fine to coarse of mixed lithologies. Cot of mixed lithologies. End of trial pit at 2.00m	rn sandy gravelly silty f timber, plastic, glass e. Gravel is ithologies. Cobbles evelly silty CLAY with lass, clothing, timber, subangular to		1.5 — 2.0 — 3.0 — 3.5 —		
				-					4.0 —		
				- - -					45		
				-					4.5 —		
				- -					-		
				-					-		
				- -							
	Ct. 11	<u> </u>	Dem	rke.							
	Strikes	Depth: 2.00	Rema Geoco		ay liner be	elow topsoil at 0.25m.					
Struck at (m)	Remarks	Width: 0.60	No gro	oundwater	encounte	red.					
		Length: 4.20				sent from 0.30-2.00m. Juest of GCC engineer (Colin Ryder).					
		Stability:		ination Re		<u> </u>	Last Updated				
						donth			AGS		
		Slightly unstable	Terminated at scheduled depth. 21/09/2020								

0.0			Proj	ect No.	Project	Name:		1	rial Pit ID		
CAUSEWAY GEOTECH Method:			19-1465A Coordinates - 543859.01 E		Galway Historic Landfills - Tuam Client: Galway County Council Client's Representative:						
									neet 1 of 1		
Trial Pitting			7498	749890.35 N Elevation		Timoney		Scale: 1:25			
Plant:			Ele				Logger:				
13t Tracked Excavator			41.73 mOD		07/07/	2020	JG	FINAL			
Depth	Sample /	Field Records	Level	Depth	Legend	Description		Water			
(m)	Tests		(mOD) 41.68	(m) - 0.05		TOPSOIL		3			
						MADE GROUND: Light grey slightly gravelly silty fine Gravel is subangular fine to coarse of mixed litholog	e to coarse SAND.		-		
			41.53	0.20		End of trial pit at 0.20m	gies.	1			
				-					_		
				-					0.5 —		
									_		
				-					-		
				-					-		
				_					1.0		
				-							
				Ė					_		
				[-		
				-					-		
				-					1.5		
				-							
				-					_		
									_		
									2.0		
				-					_		
				-					_		
				-					2.5 —		
									_		
				-					_		
				-					3.0		
				-					_		
									_		
				-					=		
				-					3.5 —		
									3.5		
				-					_		
									_		
				-					_		
				-					4.0		
				-							
				Ė					_		
				-					4.5		
				-					-		
				Ė					_		
				-							
				-							
Water	Strikes		Rem	arks:		<u> </u>					
Struck at (m)	Remarks	Depth: 0.20				below topsoil at 0.20m.					
		Width: 0.30		ed to field : roundwate		vic Area as per GCC engineer request. stered.					
	Length: 3.20										
		Stability:		nination Re			Last Updated	\ \\AGS			
		Stable	Geod	Geocomposite clay liner proven. 21/09/2020							