

APPENDIX E GEOTECHNICAL LABORATORY TEST RESULTS

HEAD OFFICE

Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE

Causeway Geotech (IRL) Ltd Unit 3 Balbriggan Business Park, Balbriggan Co Dublin, Ireland, K32 EH36 ROI: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

13 August 2020

Project Name:	Galway Historic Landfills - Tuam
Project No.:	19-1465A
Client:	Galway County Council
Engineer:	Feehily Timoney

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s).

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

the With

Stephen Watson Laboratory Manager Signed for and on behalf of Causeway Geotech Ltd

1

Project Name: Galway Historic Landfills - Tuam

Report Reference: Schedule 1

The table below details the tests carried out, the specifications used, and the number of tests included in this report.

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/PropertiesStandardmeasured/Range ofspecificationsmeasurement		No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	2
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	2
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	2
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	2
SOIL	Moisture Condition Value / Moisture Content Relationship	BS 1377-4: 1990: Cl 5.5	2
SOIL	Undrained shear strength – triaxial compression without measurement of pore pressure (loads from 0.12 to 24 kN)	BS 1377-7: 1990: Cl 8	2

•	CAU	SEV GEO	TECH	Summary of Classification Test Results											
Project No).			Project	Name										
1	9-146	65A	Car			r	Galwa	/ Hist	oric La	ndfills -	Tuam				
Hole No	o.	Ref	Тор	Base	Туре	Soil Description	Dens bulk Mg/m	ity dry 13	W %	Passing 425µm %	LL %	PL %	РІ %	Particle density Mg/m3	Casagrande Classification
TP01		1	0.10		В	Brown sandy gravelly clayey SILT.			28.0	78	47 -1pt	40	7		Мі
TP02		1	0.00		В	Brown sandy gravelly clayey SILT.			26.0	71	47 -1pt	41	6		МІ
All tests pe	erform	ned ir	n accord	ance wit	h BS1	377:1990 unless specified	otherwis	e	<u>ı </u>					LAE	3 01R Version 4
Key De Lir wd	ensity te near me d - water	est easurer r displa	nent unles: acement	s :	Liquid I 4pt con cas - C	.imit Partic e unless : sp - s asagrande method gj - ga	le density nall pyknom is jar	eter	Date F	Printed 13/08/20	20	Appr	oved	By	
wi	- imme	ersion i	n water	1pt - single point test					Step	hen.	Watson	10122			

	•		
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.06300	28
90	100	0.05114	25
75	100	0.03638	24
63	100	0.02603	21
50	100	0.01872	16
37.5	100	0.00994	9
28	100	0.00505	4
20	96	0.00294	1
14	93	0.00156	0
10	92		
6.3	89		
5	88		
3.35	87		
2	82		
1.18	75		
0.6	64	Particle density	(assumed)
0.425	58	2.65	Mg/m3
0.3	52		
0.212	46		
0.15	40		
0.063	28		

Sample Proportions	% dry mass
Cobbles	0
Gravel	18
Sand	54
Silt	28
Clay	1

Grading Analysis		
D100	mm	
D60	mm	0.47
D30	mm	0.0722
D10	mm	0.0109
Uniformity Coefficient		43
Curvature Coefficient		1

Remarks

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

Approved

Stephen.Watson

90	100	0.04990	32
75	100	0.03551	30
63	100	0.02542	27
50	100	0.01819	24
37.5	100	0.00972	15
28	100	0.00499	8
20	100	0.00293	3
14	100	0.00155	2
10	99		
6.3	98		
5	97		
3.35	94		
2	90		
1.18	84		
0.6	75	Particle density	(assumed)
0.425	69	2.65	Mg/m3
0.3	62		
0.212	55		
0.15	48		
0.063	35		

Grading Analysis		
D100	mm	
D60	mm	0.272
D30	mm	0.0339
D10	mm	0.00616
Uniformity Coefficient		44
Curvature Coefficient		0.68

Remarks

Preparation and testing in accordance with BS1377-2 :1990 unless noted below

LAB 05R Version 4

Approved

Stephen.Watson

CAUSEWAY	Moisture Con	dition Value	Job Ref		19-1465A	
GEOTECH		Relationsh	Borehole/Pi	t No.	TP01	
Site Name	Galway Historic Landfil	ls - Tuam	Sample No.		1	
Soil Description	Brown sandy slightly gr	avelly clayey SIL	Depth		0.1	
Specimen Reference	9	Specimen Depth	0.1 m	Sample Typ	e	В
Specimen Description	Brown sandy slightly gr	avelly clayey SIL	KeyLAB ID		Caus2020071695	
Test Method	BS1377:Part4:1990:cla	iuse 5.5		Date started	l	23/07/2020
Sample preparation	Sample preparation Amount of material larger than 20mm sieve removed			3	%	, 0
	Natural Moisture Content of sample					Ď
	Initial Moist	27.4	%	, D		

Separate specimens tested

General remarks

Table of results

•

MCV Test Number	1	2	3	4	
Moisture Content, %	27.4	30.3	33.4	23.6	
Moisture Condition Value	9.7	6.9	4.2	13.1	
MCV report	9.7	6.9	4.2	13.1	
Effective / Valid data point	YES	YES	YES	YES	
Specimen remarks					
Specimen remarks					

valid points × invalid points - - - - extended regression ----- linear regression

CAUSEWAY	Moisture Con	dition Value	Job Ref	19-1465A	
GEOTECH		Relationsh	Borehole/Pit No.	TP02	
Site Name	Galway Historic Landfil	ls - Tuam	Sample No.	1	
Soil Description	Brown sandy slightly gr	avelly clayey SIL	Depth	0	
Specimen Reference	9	Specimen Depth	m	Sample Type	В
Specimen Description	Brown sandy slightly gr	avelly clayey SIL	KeyLAB ID	Caus2020071696	
Test Method	BS1377:Part4:1990:cla	iuse 5.5		Date started	01/08/2020
Sample preparation	ample preparation Amount of material larger than 20mm sieve removed		5	%	
	Natural Moisture Content of sample				%
	Initial Moist	26.9	%		

Separate specimens tested

General remarks

Table of results

MCV Test Number	1	2	3	4	
Moisture Content, %	26.9	30.5	34.9	21.8	
Moisture Condition Value	8.1	6.0	1.9	12.2	
MCV report	8.1	6	1.9	12.2	
Effective / Valid data point	YES	YES	YES	YES	
Specimen remarks					

• Moisture Content % **Moisture Condition Value**

Approved

Stephen.Watson LAB 11R Version 4

APPENDIX 5

Civic Amenity Waste Collection Permit

WASTE COLLECTION PERMIT

Offaly County Council as the Na authority under Section 34(1)(ational Waste Collection Permit Office being a nominated (aa) of the Waste Management Act 1996, has granted a waste collection permit to:
Applicant Name:	Bruscar Bhearna Teo (herein called the permit holder)
Trading As:	Barna Recycling
Permit Number:	NWCPO-08-03604-08
Trading Address:	Carrowbrowne Headford Rd Co. Galway
Registered Company Address:	Carrowbrowne Headford Rd Co. Galway
Permit Holder Phone Number:	091771619
Valid From:	22/04/2021
Valid to and Expires on	21/04/2026

This permit, issued to the aforementioned permit holder, is subject to the attached schedule of conditions.

Any non-compliance with the conditions of this permit is an offence under the Waste Management (Collection Permit) Regulations, 2007 as amended and Section 34(1) of the Waste Management Act 1996.

Signed:

Programme Manager

Date:

ROM 22/4

Waste Collection Permit Number: NWCPO-08-03604-08 Page 1 of 21 QF19 Version number: 4.5

Please note: Appendices are subject to change

APPENDIX 6

Civic Amenity Waste Acceptance 2021

Date	Collector	Waste Type		Tonnes	Destination	License No	
Jul-21	Enva	Aerosols Aerosols	160504*	0.1	Enva	W0184-01 W0184-01	4
Sep-21	Enva	Aerosols	160504*	0.1	Enva	W0184-01	
Nov-21	Enva	Aerosols	160504*	0.1	Enva	W0184-01	[
Feb-21	Glassco Recycling	Aluminium Cans	150104	0.12	Glassco Recycling	W0279-01	1
Mar-21	Glassco Recycling	Aluminium Cans	150104	0.13	Glassco Recycling	W0279-01	1
May-21	Glassco Recycling	Aluminium Cans	150104	0.265	Glassco Recycling	W0279-01	1
Jun-21	Glassco Recycling	Aluminium Cans	150104	0.172	Glassco Recycling	W0279-01	
Aug-21	Glassco Recycling	Aluminium Cans	150104	0.242	Glassco Recycling	W0279-01	1
0ct-21 Nov-21	Glassco Recycling	Aluminium Cans	150104	0.277	Glassco Recycling	W0279-01 W0279-01	
Dec-21	Glassco Recycling	Aluminium Cans	150104	0.131	Glassco Recycling	W0279-01	1
Jan-21	KMK Metals	Batteries(Fence)	160601	0.1	KMK Metals	W0113-04	4
May-21	KMK Metals	Batteries(Fence)	160601	0.08	KMK Metals	W0113-04	4
Sep-21	KNIK Metals	Batteries(Fence)	160601	0.394	KMK Metals	W0113-04 W0113-04	1
Jan-21	KMK Metals	Batteries(Portable)	160601	0.28	KMK Metals	W0113-04	j
Apr-21	KMK Metals	Batteries(Portable)	160601	0.69	KMK Metals	W0113-04	4
May-21	KMK Metals	Batteries(Portable) Batteries(Portable)	160601	0.46	KMK Metals	W0113-04	1
Jul-21	KMK Metals	Batteries(Portable)	160601	0.312	KMK Metals	W0113-04 W0113-04	1
Sep-21	KMK Metals	Batteries(Portable)	160601	0.183	KMK Metals	W0113-04	1
Jan-21	Glassco Recycling	Bottled Glass	150107	2.72	Glassco Recycling	W0279-01	1
Feb-21 Mar-21	Glassco Recycling	Bottled Glass	150107	5.13	Glassco Recycling	W0279-01 W0279-01	
Apr-21	Glassco Recycling	Bottled Glass	150107	5.39	Glassco Recycling	W0279-01	
May-21	Glassco Recycling	Bottled Glass	150107	5.89	Glassco Recycling	W0279-01	1
Jun-21	Glassco Recycling	Bottled Glass	150107	5.09	Glassco Recycling	W0279-01	4
Aug-21	Glassco Recycling	Bottled Glass	150107	5.48	Glassco Recycling	W0279-01 W0279-01	1
Oct-21	Glassco Recycling	Bottled Glass	150107	9.494	Glassco Recycling	W0279-01]
Nov-21	Glassco Recycling	Bottled Glass	150107	8.1	Glassco Recycling	W0279-01	4
Dec-21	Glassco Recycling	Bottled Glass Bulky Waste	150107	7.011	Glassco Recycling Barna Recycling Carrowbrowne Headford Rd Calway	W0279-01 W0106-02	
Aug-21	Barna Recycling	Bulky Waste	200307	32.3	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	
Dec-21	Barna Recycling	Bulky Waste	200307	1.18	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	1
Jan-21	Barna Recycling	Cardboard	150101	11.74	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	1
Feb-21 Mar-21	Barna Recycling	Cardboard	150101	15.28	Barna Recycling Carrowbrowne Headford Rd Galway Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02 W0106-02	
Apr-21	Barna Recycling	Cardboard	150101	11.76	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	
May-21	Barna Recycling	Cardboard	150101	11.12	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	1
Jun-21	Barna Recycling	Cardboard	150101	19.24	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	1
Jul-21 Aug-21	Barna Recycling	Cardboard	150101	12.22	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02 W0106-02	
Sep-21	Barna Recycling	Cardboard	150101	15.46	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	1
Oct-21	Barna Recycling	Cardboard	150101	10.86	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	1
Nov-21	Barna Recycling	Cardboard	150101	18.08	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	4
Jan-21	Textile Recycling	Cardboard	200110	8.3	Textile Recycling	W0106-02	
Feb-21	Textile Recycling	Clothes	200110	1.05	Textile Recycling		j
Mar-21	Textile Recycling	Clothes	200110	1.28	Textile Recycling		1
Apr-21	Textile Recycling	Clothes	200110	1.93	Textile Recycling		1
Jun-21	Textile Recycling	Clothes	200110	1.15	Textile Recycling		1
Jul-21	Textile Recycling	Clothes	200110	0.73	Textile Recycling		ļ
Aug-21	Textile Recycling	Clothes	200110	0.6	Textile Recycling		-
Sep-21 Oct-21	Textile Recycling	Clothes	200110	1.56	Textile Recycling		1
Nov-21	Textile Recycling	Clothes	200110	1.03	Textile Recycling		1
Dec-21	Textile Recycling	Clothes	200110	0.75	Textile Recycling		1
Mar-21	Frylite	Cooking Oil	200125	100 Litres	Frylite	WFP-G-10-0007	-
Aug-21	Fryite	Cooking Oil	200125	100 litres	Fryite	WFP-G-10-0007	1
Feb-21	Barna Recycling	Flat Glass	200102	1.8	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	j
Apr-21	Barna Recycling	Flat Glass	200102	6.34	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	4
Jun-21	Barna Recycling	Flat Glass	200102	2.84	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	1
Oct-21	Barna Recycling	Flat Glass	200102	2.64	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	1
Apr-21	KMK Metals	Floursecent Tubes	200123	0.153	KMK Metals	W0113-04	1
May-21	KMK Metals	Floursecent Tubes	200123	0.075	KMK Metals	W0113-04	1
Jul-21 Dec-21	KMK Metals	Floursecent Tubes	200123	0.224	KNIK Metals	W0113-04 W0113-04	1
Jan-21	KMK Metals	Fridges	200135	1.77	KMK Metals	W0113-04]
Feb-21	KMK Metals	Fridges	200135	1.75	KMK Metals	W0113-04	4
Mar-21	KMK Metals	Fridges	200135	2.91	KMK Metals	W0113-04 W0112-04	
May-21	KMK Metals	Fridges	200135	1.67	KMK Metals	W0113-04	
Jun-21	KMK Metals	Fridges	200135	2.98	KMK Metals	W0113-04	4
Jul-21	KMK Metals	Fridges	200135	1.502	KMK Metals	W0113-04	
Sep-21	KMK Metals	Fridges	200135	2.358	KMK Metals	W0113-04	
Oct-21	KMK Metals	Fridges	200135	2.358	KMK Metals	W0113-04	1
Nov-21	KMK Metals	Fridges	200135	1.672	KMK Metals	W0113-04	4
Jan-21	KMIK Metals Barna Recycling	Hidges Hard Plastic	200135	0.702	KNIK Metals Barna Recycling Carrowbrowne Headford Rd Galway	W0113-04 W0106-02	
Feb-21	Barna Recycling	Hard Plastic	200139	5.32	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	Bulky Waste Collection
Mar-21	Barna Recycling	Hard Plastic	200139	4.8	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	
Apr-21 May-21	Barna Recycling Barna Recycling	Hard Plastic	200139	5.88	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02 W0106-02	
Jun-21	Barna Recycling	Hard Plastic	200139	5	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	
Jul-21	Barna Recycling	Hard Plastic	200139	4.16	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	
Aug-21	Barna Recycling	Hard Plastic	200139	4.82	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	1
Sep-21 Oct-21	Barna Recycling	Hard Plastic Hard Plastic	200139	5.41 3.16	Barna Recycling Carrowbrowne Headford Rd Galway Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02 W0106-02	
Nov-21	Barna Recycling	Hard Plastic	200139	3.06	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	J
Dec-21	Barna Recycling	Hard Plastic	200139	2.58	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	1
Oct-21	Bounce Back Recycling	Mattresses-Bulky	200307	0.45			1
Jan-21	Clearcircle	Mattresses-Bulky Metal	200307	6.73	Galway Metal	P1006-02	
Feb-21	Clearcircle	Metal	200140	4.8	Galway Metal	P1006-02	Bulky Waste Collection
Mar-21	Clearcircle	Metal	200140	8.22	Galway Metal	P1006-02	
Apr-21	Clearcircle	Metal	200140	9.49	Galway Metal	P1006-02	1
Jun-21	Clearcircle	Metal	200140	7.02	Galway Metal	P1006-02	
Jul-21	Clearcircle	Metal	200140	7.1	Galway Metal	P1006-02]
Aug-21	Clearcircle	Metal	200140	8.64	Galway Metal	P1006-02	ł
Sep-21 Oct-21	Clearcircle	Metal	200140	6.03 4.8	Galway Metal Galway Metal	P1006-02 P1006-02	
Nov-21	Clearcircle	Metal	200140	3	Galway Metal	P1006-02	
Dec-21	Clearcircle	Metal	200140	4.94	Galway Metal	P1006-02	1
Oct-21	Barna Recycling	Mixed Recycling	200301	0.9	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02	1

Dec-21	Barna Recycling	Mixed Recycling	200301	5.92	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
Aug-21	Enva	Oil Filters	16 01 07*	0.12	Enva	W0184-01
Jan-21	Enva	Paints	200127	3.56	Enva	W0184-01
Feb-21	Enva	Paints	200127	4.04	Enva	W0184-01
Apr-21	Enva	Paints	200127	10.24	Enva	W0184-01
May-21	Enva	Paints	200127	3.72	Enva	W0184-01
Jun-21	Enva	Paints	200127	3.58	Enva	W0184-01
Jul-21	Enva	Paints	200127	5.2	Enva	W0184-01
Aug-21	Enva	Paints	200127	2.88	Enva	W0184-01
Sep-21	Enva	Paints	200127	7.32	Enva	W0184-01
Oct-21	Enva	Paints	200127	3.24	Enva	W0184-01
Nov-21	Enva	Paints	200127	2.9	Enva	W0184-01
Jan-21	Barna Recycling	Plastic	200139	5	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
Feb-21	Barna Recycling	Plastic	200139	3.96	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
Mar-21	Barna Recycling	Plastic	200139	10.04	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
Apr-21	Barna Recycling	Plastic	200139	5.94	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
May-21	Barna Recycling	Plastic	200139	5.86	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
Jun-21	Barna Recycling	Plastic	200139	7.22	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
Jul-21	Barna Recycling	Plastic	200139	5.24	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
Aug-21	Barna Recycling	Plastic	200139	7.9	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
Sep-21	Barna Recycling	Plastic	200139	5.92	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
Oct-21	Barna Recycling	Plastic	200139	6.38	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
Nov-21	Barna Recycling	Plastic	200139	5.88	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
Dec-21	Barna Recycling	Plastic	200139	7.1	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02
May-21	Enva	Waste Oil	130208*	1800L	Enva	W0184-01
Jul-21	Enva	Waste Oil	13 02 08*	1164 Litres	Enva	W0184-01
Sep-21	Enva	Waste Oil	13 02 08*	1425 Litres	Enva	W0184-01
Nov-21	Enva	Waste Oil	13 02 08*	1116 Litres	Enva	W0184-01
Jan-21	KMK Metals	WEEE	200136	12.15	KMK Metals	W0113-04
Feb-21	KMK Metals	WEEE	200136	11.63	KMK Metals	W0113-04
Mar-21	KMK Metals	WEEE	200136	16.08	KMK Metals	W0113-04
Apr-21	KMK Metals	WEEE	200136	14.05	KMK Metals	W0113-04
May-21	KMK Metals	WEEE	200136	11.88	KMK Metals	W0113-04
Jun-21	KMK Metals	WEEE	200136	15.41	KMK Metals	W0113-04
Jul-21	KMK Metals	WEEE	200136	12.787	KMK Metals	W0113-04
Aug-21	KMK Metals	WEEE	200136	16.354	KMK Metals	W0113-04
Sep-21	KMK Metals	WEEE	200136	13.197	KMK Metals	W0113-04
Oct-21	KMK Metals	WEEE	200136	13.197	KMK Metals	W0113-04
Nov-21	KMK Metals	WEEE	200136	13.247	KMK Metals	W0113-04
Dec-21	KMK Metals	WEEE	200136	7.408	KMK Metals	W0113-04
Dec-21	Barna Recycling	Wood	200138	1.7	Barna Recycling Carrowbrowne Headford Rd Galway	W0106-02

Civic Amenity within Site Boundary Figure

Geotechnical Report – August 2022

Tuam Landfill – Ground Investigation

Client:

Galway County Council

Client's Representative: Fehily Timoney and Company

Report No.:

22-0418

Date:

Status:

August 2022

Final for Issue

Causeway Geotech Ltd

8 Drumahiskey Road, Ballymoney Co. Antrim, N. Ireland, BT53 7QL +44 (0)28 2766 6640 info@causewaygeotech.com www.causewaygeotech.com

istered in Northern Ireland. Company Number: NI610766 Approved: ISO 9001 • ISO 14001 • OHSAS 18001

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTH	ORITY	4
2	SCOPI	3	4
3	DESCI	RIPTION OF SITE	4
4	SITE 0 4.1 4.2 4.3 4.4 4.5	OPERATIONS Summary of site works Summary of site works Summary of site works Boreholes Sureholes Standpipe installations Surveying Permeameter testing Generations	5 5 5 6 6
5	LABO 5.1 5.2	RATORY WORK	6 6 7
6	GROU 6.1 6.2 6.3	ND CONDITIONS General geology of the area	7 7 7 8
7	REFEI	RENCES	9

APPENDICES

Appendix A	Site and exploratory hole location plans
Appendix B	Borehole logs
Appendix C	Geotechnical laboratory test results
Appendix D	Environmental laboratory test results

Document Control Sheet

Report No.:		22-0418							
Project Title:		Tuam Landfill							
Client:		Galway County	Council						
Client's Repres	entative:	Fehily Timoney and Company							
Revision:	A00	Status:	Final for Issue	Issue Date:	23 rd August 2022				
Prepared by:		Reviewed by:		Approved by:					
Radul	White	hia	Ross.	Jan Ol	lup.				
Rachel White BA (Mod.) Geose	cience	Sean Ross BSC MSc MIEI P	Geo	Darren O'Mahony BSc MSc MIEI EurGeol PGeo					

The works were conducted in accordance with:

British Standards Institute (2015) BS 5930:2015+A1:2020, Code of practice for ground investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015+A1:2020, The Code of Practice for Ground Investigation.

Abbreviations used	l on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
Р	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
(Y for Z/Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa.V: undisturbed vane shear strengthVR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
\bigtriangledown	Water strike: initial depth of strike.
▼	Water strike: depth water rose to.
Abbreviations relating	to rock core – reference Clause 36.4.4 of BS 5930: 2015+A1:2020
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

Tuam Landfill

1 AUTHORITY

On the instructions of Fehily Timoney and Company ("the Client's Representative"), acting on the behalf of Galway County Council ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information to determine the existing state of the current landfill.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the ground investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on the site of Tuam Landfill, located in Tuam, County Galway. The site is bordered by Agricultural Land to the west and south, Hynes Plant & Tool Hire to the north, and the Athenry Road to the east.

The site is relatively flat, with a slight loss in elevation sloping downwards to the south.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between the 18th to the 20th of July 2022, comprised:

- four boreholes by light cable percussion
- a standpipe installation in four boreholes; and
- a permeameter test at two boreholes

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

Four boreholes (BH01-BH03 and BHLFG1) were put down to completion in minimum 200mm diameter using a Dando 2000 light cable percussion boring rig. All boreholes were terminated at their scheduled completion depths.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Undisturbed (U100) samples were taken within the clay capping material encountered above the landfill. Environmental samples were taken at standard intervals within the waste body, as directed by the Client's Representative.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Appendix B presents the borehole logs.

4.3 Standpipe installations

A groundwater monitoring standpipe was installed all boreholes. Waterra tubing was installed in each borehole to allow for future groundwater/leachate sampling. Timber fencing was also installed around each headworks to prevent damage from cattle.

Details of the installations, including the depth range of the response zone, are provided in Appendix B on the individual borehole logs.

4.4 Surveying

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Geotech. Surveying was carried out using a Trimble R10 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole location plan presented in Appendix A shows these as-built positions.

4.5 Permeameter testing

Permeameter tests were carried out at two locations BH01 and BH03 at the interface of the topsoil/geocomposite clay liner (GCL) interface. The tests, which were carried out in accordance with BS EN 12697-40: 2012, involved recording the time taken for four litres of water to drain into the test surface.

The results of the testing are presented below where:

- *t* is the average outflow time expressed in seconds, (s);
- *r* is the series resistance outflow time expressed in seconds, (s).
- *HC* is the relative hydraulic conductivity expressed in s⁻¹

Table 1 Permeameter test results

Location	Depth of test	r (s)	r (s) t		HC (s ⁻¹)
	(mbgl)		(mins:secs)		
BH01	0.37	1.92	12:35	755	0.0013279
BH03	0.40	1.92	14:42	882	0.0011363

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described, and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

• **permeability:** triaxial permeability tests

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).*

The test results are presented in Appendix C.

5.2 Environmental laboratory testing of soils

Environmental testing, as specified by the Client's Representative was conducted on selected environmental soil samples by Chemtest at its laboratory in Newmarket, Suffolk.

Testing was carried according to Engineer's Ireland Suite I, testing for a range of determinants, including:

- Metals
- Speciated total petroleum hydrocarbons (TPH)
- Speciated polycyclic aromatic hydrocarbons (PAH)
- BTEX compounds
- Volatile Organic Compounds (VOCs)
- Polychlorinated biphenyls (PCBs)
- Phenols
- Organic matter
- Total Organic Carbon (TOC)
- Cyanides
- Asbestos screen
- Sulphate
- Phosphate
- pH
- Waste acceptance criteria (WAC)

Results of environmental laboratory testing are presented in Appendix D.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise peat. These deposits are underlain by limestones of the Visean Limestones Formation.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Paved surface:** BHLFG1 encountered 50mm of bitmac surfacing.
- **Made Ground (sub-base):** approximately 350mm of aggregate fill beneath the paved surface in BHLFG1.
- Made Ground (fill): reworked sandy gravelly clay fill extending to depths between 0.90-2.80m.
- **Made Ground (landfill):** landfill comprising domestic waste was encountered across the site to depths ranging from 2.10m in BHLFG1 to 9.30m in BH02.
- **Recent deposits (peat):** encountered in all boreholes beneath the waste body.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater was encountered during percussion boring through soil as water strikes shown in Table 1 below.

Location	Depth (mbgl)	Comments
BH02	3.40	
BH03	8.00	Rose from 8.00 to 7.80m after 20 minutes

Table 2: Groundwater strikes encountered during ground investigations.

Groundwater was not noted during drilling at two of the borehole locations. However, it should be noted that the casing used in supporting the borehole walls during drilling may have sealed out additional groundwater strikes and the possibility of encountering groundwater during excavation works should not be ruled out.

Subsequent groundwater monitoring of the standpipe installations recorded water levels as shown in Table 2.

Date	Water level (mbgl	Water level (mbgl)/Installation Depth (mbgl)										
Date	BH01	BH02	BH03	BHLGF1								
28/07/2022	7.72/8.40	8.48/8.80	7.14/8.15	2.28/2.31								

Table 3: Groundwater monitoring

7 **REFERENCES**

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland.

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

BS 5930: 2015+A1:2020: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

APPENDIX A SITE AND EXPLORATORY HOLE LOCATION PLANS

APPENDIX B BOREHOLE LOGS

		GEOTECH			Project No. Project Name: Tuam Land CAUSEWAY 22-0418 Client: Galway Cou GEOTECH Client's Rep: Fehily Time					Project Name: Tuam Landfill Client: Galway County Council Client's Rep: Fehily Timoney and Company	Borehole ID BH01
Met	hod	Plant Used	Top (m) Base (m)		Top (m) Base (m)		Coor	dinates		Sheet 1 of 2	
Cable Percussion		Dando 2000	0.00	8.20	5437	71.91 E	Final Depth: 8.20 m Start Date: 19/0//2022 Driller: BM	Scale: 1:40			
					7499	01.87 N	Elevation: 43.72 mOD End Date: 19/07/2022 Logger: SR	FINAL			
Depth (m)	Sample / Tests	Field Records	Ca: De	sing Water pth Depth m) (m)	Level mOD	Depth (m)	Legend Description	ਸ਼ੇ Backfill ≥			
0.30 - 0.70 0.50	U5 ES1	Ublow=30 90%			42.82	0.90	MADE GROUND: Soft to firm brownish grey sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. MADE GROUND: Landfill				
2.50	ES2				41.22	- 2.50	MADE GROUND: Soft brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. MADE GROUND: Landfill				
6.00	ES3										
Struck at (m)	Water Casing to (m	r Strikes) Time (min) Rose to ((m) From (m)	niselling To (r	n) Tin	S ne (hh:mm)	Kemarks				
Casing To (m)	Details Diameter	Water Added From (m) To (m)					Termination Reason Last Up Terminated at scheduled depth. 23/08/.	dated			

CALISEWAY						Proje	Project No. Project Name: Tuam Landfill			.:1	Borehole ID BH01						
	- \	G	EOTE	СН		22-0	0410	Client's	Client's Ren: Eehily Timoney and Company							σηστ	
Meth	hod	Plant Us	ed T	op (m) Bas	e (m)	Coord	dinates	Chente	s nep.			company			Sh	eet 2 of	f 2
Cable Percussion Dando 2000 0.00 8.20		54377	71.91 E	Final De	epth:	8.20 m	Start Date:	19/07/2022	Driller:	BM	Sc	cale: 1:4	40				
						74990	01.87 N	Elevatio	on:	43.72 mOD	End Date:	19/07/2022	Logger:	SR		FINAL	
Depth (m)	Sample / Tests	Field	l Records	Casin Depti (m)	g Water Depth (m)	Level mOD	Depth (m)	Legend			Desc	cription			Water	Backfill	
8.00	ES4	Field	I Records	Casing of the second se		Level mOD	Depth (m) - 8.00 - 8.20 - 8.20 	Legend	PEAT	E GROUND: La	Desc andfill End of Bore	cription			Water	Backfill	
							-										- 14.5 —
						_	<u> </u>										_
Struck at (m) Casing To (m)	Water Casing to (m) Details Diameter	Strikes	ose to (m) dded To (m)	Chi From (m)	selling To (r	; Details	s ie (hh:mm)	Remarks Terminat	tion Re ed at scl	e ason neduled depth	n.			Last Upr 23/08/2	dated		I GS

CAUSEWAY GEOTECH						Project No. Project Name: Tuam Landfill 22-0418 Client: Galway County Council Client's Rep: Fehily Timoney and Company						Borehole ID BH02					
Method		Plant Used	sed Top (m) Base (m)		Coordinates		Final Depth: 9.40 m Start Date: 19/07/2022 Driller: BM						Sheet 1 of 2				
		Dando 2000	0.00	9.40	543831.98 E 749987.50 N		Elevation: 45.89 mOD End Date: 19/07/2022 Logger: SR					SR	FINAL				
Depth (m)	Sample / Tests	Field Records	Ca Di	epth Depth (m) (m)	Level mOD	Depth (m)	Legend		Desc	ription			Water Ba	ckfill			
0.40 - 0.80 0.50	U5 ES1	Ublow=30 90%			44.99	- 0.90		MADE GROUND: So is fine to coarse. Gra MADE GROUND: La	ft to firm brov avel is subang ndfill	vnish grey sandy ular to subround	gravelly C	LAY. Sand coarse.	¢****				
2.00	ES2	Slow seepage at 3.40m															
5.50 Struck at (m) 3.40 Casing To (m)	ES3 Water Casing to (m 3.40 Details Diameter	r Strikes) Time (min) Rose to (n Water Added From (m) To (m)	C 1) From (m	hisellin;) To (40.89 g Details m) Tim	5 .00	Remarks	MADE GROUND: So coarse. Gravel is sub	ft greyish sanı bangular to su	dy gravelly CLAY. brounded fine to	Sand is fin o coarse.	e to					
							Terminat	tion Reason				Last Upr	lated				
							Terminate	erminated at scheduled depth.				23/08/2	/08/2022				

GEOTECH						Proje 22-(ct No. 0418	Project Name: Tuam Landfill Client: Galway County Council Client's Rep: Fehily Timoney and Company						Borehole ID BH02			
Method		Plant Use	Plant Used Top (m) Base (m)		Coordinates								Sheet 2 of 2				
Cable Percussion		Dando 200	Dando 2000 0.00 9.40		543831.98 E		Final Depth: 9.40 m Start Date: 19/07/2022 Driller: BM					BIVI	Scale: 1:40				
						74998	87.50 N	Elevatio	n: 45.89 mOD	End Date: 19/07/2022 Logger: S			SR	FIN			
Depth (m)	Sample / Tests	Field F	Records	Cas De (r	iing Water pth Depth n) (m)	Level mOD	Depth (m)	Legend		Desc	ription			Water	ackfill		
Depth (m) 8.50 8.50 Struck at (m) 3.40	ES4 ES4 Water Casing to (m) 3.40	Field f Strikes Time (min) Ro	Records	Cell performance From (m)	niselling	Level mOD 36.89 36.59 36.49	Depth (m) - - - - - - - - - - - - - - - - - - -	MADE GROUND: Soft greyish sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse. MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill MADE GROUND: Landfill Material State Material State MADE GROUND: Landfill Material State Material State Material State						Mater	ackfill		
Casing	Details	Water Ad	Ided														
10 (11)	Diameter		io (iii)														
							Ī	Terminat	ion Reason				Last Upd	lated			
								Terminate	d at scheduled depth	I.			23/08/2	022	A	ß	
Method Plant Used Dark Or (00) Diago (m)			CAUSEM			Proje 22-	ect No. 0418	Project Name: Tuam Landfill 8 Client: Galway County Council				В	Borehole ID BH03				
---	---	---	--	-----------------	---------------------------	----------------------------	---	--	---	-----------------	-------------------------------------	-------------------	---------------------	----------	------		
ODE INC. OPA CULU			GEOT	ECH				Client's	Rep: Fehily Ti	money and	Company						
Cable Percuss Durindo 200 0.00 8.00 Fair 793.3.17 Interference Description Description Description Span T 9mm Smmet med second View Mile	Met	hod	Plant Used	Top (m) B	ase (m)	Coord	dinates	Final De	nth 8 20 m	Start Date	18/07/2022	Driller: BM	1 5	heet 1 d	of 2		
Image: Status	Cable F	ercussi	Dando 200	0.00	8.20	54379	93.33 E		P 0.20 m		10/07/2022			Scale: 1	:40		
Mode Name/- India facurá Name/- India facuráció India facurá Name/-						75003	38.31 N	Elevatio	n: 44.53 mOD	End Date:	18/07/2022	Logger: SR		FINA	L		
Number Services Number Ser	Depth (m)	Sample / Tests	Field Records	Ci D	asing Water epth Depth	Level mOD	Depth (m)	Legend		Desc	ription	ļ.,	Vater	Backfill			
0.40 0.50 0.51 Using States St					(,		-		MADE GROUND: So	oft brownish gr	ey sandy gravell	y CLAY. Sand is	fine		-		
Water Strikes Chiselling Details Struck at (m) Casing to (m) Time (min) Remarks Remarks Casing Details Water Added To (m) Diameter From (m) To (m) To (m) Diameter From (m) To (m) To (m) Diameter From (m) To (m) To (m) To (m)	0.30 - 0.70	U5 ES1 ES2	Ubiow=30 70%			43.53			MADE GROUND: Sc to coarse. Gravel is	andfill	ey sandy gravel! subrounded fine	y CLAY. Sand is '	fine				
	Struck at (m) 8.00 Casing To (m)	Wate Casing to (r 8.00 Details Diameter	r Strikes n) Time (min) Rose to (r 20 7.80 Water Added From (m) To (m)	C n) From (m	Chiselling)) To (g Details m) Tim	- - - - - - - - - - - - - - - - - - -	Remarks	ion Reason			La	Ist Update	2d			

2					Proje	ect No.	Project Name: Tuam Landfill	Boreh	ole ID
	X} C	AUSEW	USEWAY			0418	Client: Galway County Council	вн	03
	- 1	GEOT	ECH				Client's Rep: Fehily Timoney and Company		
Met	hod	Plant Used	Top (m) Ba	se (m)	Coord	dinates		Sheet	2 of 2
Cable P	ercussi	Dando 200	0.00	8.20	54379	93.33 E		Scale:	1:40
					75003	38.31 N	Elevation: 44.53 mOD End Date: 18/07/2022 Logger: SR	FIN	AL
Depth	Sample /	Field Record	Cas Det	ing Water	Level	Depth	Legend Description	je Back	fill
(m)	Tests		(n	i) (m)	mOD	(m)	MADE GROUND: Landfill	>	····
						-			7.5 —
						-			
8.00	ES4				36.53	- 8.00	A SHA SH DEAT		8.0
		Slow seepage at 8.00r	n		36.33	- 8.20	End of Borehole at 8.20m		
						-			-
									8.5 — —
						-			-
						-			9.0
						-			-
						-			9.5 —
						-			-
						-			-
						-			-
						-			10.5 —
						-			-
						-			
						-			-
						-			-
						-			
						-			-
						-			12.0
						-			-
						-			12.5 -
						-			-
						-			-
						-			13.0 -
						ŀ			
						ŀ			13.5
						-			
						-			14.0
						ŀ			
						-			-
						F			14.5
	Water	r Strikes	Cł	nisellin	g Details	5	Remarks		
Struck at (m) 8.00	Casing to (m 8.00) Time (min) Rose to (20 7.80	m) From (m)	То	m) Tim	ne (hh:mm)			
Casing	Details	Water Added							
To (m)	Diameter	From (m) To (m)							
							Termination Reason Last Up	dated	
							Terminated at scheduled depth. 23/08/	2022	AGS

						Proj	ect No.	No. Project Name: Tuam Landfill				Borehole ID		e ID	
	} } €		EW	AY		22	-0418	8 Client: Galway County Council				1	3HLFC	61	
		G	EOTE	СН				Client's	Rep: Fehily	y Timoney and	Company				
Met Cable Pe	hod ercussio	Plant L Dando 2	Jsed 1 2000	Top (m) B 0.00	ase (m) 3.00	Соо	rdinates	Final De	epth: 3.00	m Start Date:	20/07/2022	Driller: BM	S	heet 1 c Scale: 1	of 1 •40
						5438 7400	384.79 E	Flouetia	 41.21 m		20/07/2022	Lessen CD			1
					scing Water	7493	510.52 N	Elevatio	n: 41.21 m	OD End Date:	20/07/2022	Logger: SR	-	FINA	
(m)	Tests	Fie	ld Records	D	epth Depth (m) (m)	mOD 41 16	(m)	Legend		Des	cription		Wate	Backfill	
						41.10	-		MADE GROUNE coarse GRAVEL): Grey slightly sa with low cobble c	ndy angular to su ontent. Sand is f	ibangular fine to ine to coarse.			-
0.50 - 1.50	B1					40.81	- 0.40		Cobbles are ang MADE GROUNE	gular. D: Soft brownish b	lack sandy gravel	ly CLAY. Sand is fine			0.5 —
						20 11	- - - - - - - - - - - - - - - - - - -		to coarse. Grave	el is subangular to	subrounded fine	e to coarse.			
						39.11	2.10		MADE GROUNE): Dense grey suba	angular fine to co	oarse GRAVEL			1 1
2.50 - 3.00	B2					38.71	- 2.50		PEAT				_		2.5 —
							-	اد مالد ما ماد ماد د ماد ما							-
						38.21	- 3.00	shite shite <u>e ste st</u>		End of Bore	hole at 3.00m		_		3.0
							-								-
							-								3.5 _
							-								-
							-								4.0
							-								-
							-								4.5 —
							-								-
							-								5.0 -
							-								
							-								5.5 -
							-								-
							-								6.0 -
							-								6.5 —
							-								-
							-								7.0
							-								-
	Water	Strikes			hisellin	g Detai	ls	Remarks							
Struck at (m) Casing To (m)	Casing to (m Details Diameter) Time (min) Water From (m)	Rose to (m) Added To (m)	From (m) To	(<u>m)</u> Ti	me (hh:mm)	Termina	tion Reason			Last L	Ipdate	d F	
								Terminate	d at scheduled d	epth.		23/0	8/2022		նՏ

APPENDIX C GEOTECHNICAL LABORATORY TEST RESULTS

LABORATORY REPORT

4043

Contract Number: PSL22/5053

Report Date: 19 August 2022

Client's Reference: 22-0418

Client Name: Causeway Geotech 8 Drumahiskey Road Ballymoney Co.Antrim BT53 7QL

For the attention of: Stephen Watson

Contract Title:Tuam LandfillDate Received:2/8/2022Date Commenced:2/8/2022

Date Completed: 19/8/2022

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins (Director) R Berriman (Quality Manager)

Ste

S Royle (Laboratory Manager)

L Knight (Assistant Laboratory Manager) S Eyre (Senior Technician) T Watkins (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

BS 1377 : Part 6 : 1990: Clause 6

Hole Number:	BH01	Top Depth (m) :	0.30
Sample Number:	5	Base Depth (m) :	0.70
Sample Type:	U	Lift Number:	

Date

Grid Reference:

Description of Specimen					
Brown gravelly sandy CLAY.					
Remarks					
Undisturbed					

Initial Specimen Conditions							
Height	mm	101.06					
Diameter	mm	101.12					
Area	mm^2	8030.90					
Volume	cm ³	811.60					
Mass	g	1650					
Dry Mass	g	1418					
Bulk Density	Mg/m^3	2.03					
Dry Density	Mg/m^3	1.75					
Moisture Content	%	16					
Voids Ratio	-	0.516					
Specific Gravity	Mg/m^3	2.65					
(assumed/measured)	-	assumed					

Final Specimen Conditions							
Moisture Content	%	21					
Bulk Density	Mg/m ³	2.11					
Dry Density	Mg/m ³	1.75					

Test Setup						
Date Started		14/08/2022				
Date Finished		17/08/2022				
Top Drain Used		Y				
Base Drain Used		Y				
Method of Saturation		By back pressure				
Direction Of Flow		Vertically Downwards				
Saturation Time	Days	1				
Consolidation Time	Days	1				
Permeability Time	Days	1				

Image: Window of the second	ndfill Contract No. PSL22/5053 Client Ref 22-0418
---	---

BS 1377 : Part 6 : 1990 Clause 6

PST.	Tuom Londfill	Contract No. PSL22/5053
ofessional Soils Laboratory		Client Ref 22-0418

BS 1377 : Part 6 : 1990 Clause 6

Specimen Details							
Hole Number		BH01					
Sample Depth	m	0.30					
Sample No.		5					
Grid Reference							
Lift Number							

Permeability Stage							
Cell Pressure	kPa	520					
Mean Effective Stress	kPa	20					
Back Pressure Diff.	kPa	10					
Mean Rate of Flow	ml/min	0.0418					
Average Temperature	'C	20					
Vertical Permeability Kv	m/s	8.6E-09					

	PST.	Tuam Landfill	Contract No. PSL22/5053
	Brofassional Sails Laboratory		Client Ref
4043	Professional Solis Laboratory		22-0418

BS 1377 : Part 6 : 1990: Clause 6

Hole Number:	BH03	Top Depth (m) :	0.30
Sample Number:	5	Base Depth (m) :	0.70
Sample Type:	U	Lift Number:	

Date

Grid Reference:

Description of Specimen
Brown gravelly sandy CLAY.
Remarks
Undisturbed

Initial Specimen Conditions			
Height	mm	101.64	
Diameter	mm	102.95	
Area	mm ²	8324.20	
Volume	cm ³	846.07	
Mass	g	1765	
Dry Mass	g	1528	
Bulk Density	Mg/m^3	2.09	
Dry Density	Mg/m^3	1.81	
Moisture Content	%	16	
Voids Ratio	-	0.467	
Specific Gravity	Mg/m^3	2.65	
(assumed/measured)	-	assumed	

Final Specimen Conditions			
Moisture Content	%	17	
Bulk Density	Mg/m ³	2.12	
Dry Density	Mg/m ³	1.81	

Test Setup				
Date Started		14/08/2022		
Date Finished		17/08/2022		
Top Drain Used		Y		
Base Drain Used		Y		
Method of Saturation		By back pressure		
Direction Of Flow		Vertically Downwards		
Saturation Time	Days	1		
Consolidation Time	Days	1		
Permeability Time	Days	2		

Image: Wasses with the second seco	Contract No. PSL22/5053 Client Ref 22-0418
---	---

BS 1377 : Part 6 : 1990 Clause 6

	PST.	Tuam Landfill	Contract No. PSL22/5053
	KAS Professional Soils Laboratory		Client Ref
4043			22-0418

BS 1377 : Part 6 : 1990 Clause 6

Specimen Details				
Hole Number		BH03		
Sample Depth	m	0.30		
Sample No.		5		
Grid Reference				
Lift Number				

Permeability Stage			
Cell Pressure	kPa	470	
Mean Effective Stress	kPa	20	
Back Pressure Diff.	kPa	10	
Mean Rate of Flow	ml/min	0.0098	
Average Temperature	'C	20	
Vertical Permeability Kv	m/s	2.0E-09	

	Det	Tuam Landfill	Contract No.
	Professional Soils Laboratory		Client Ref
4043			22-0418

APPENDIX D ENVIRONMENTAL LABORATORY TEST RESULTS

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.:	22-28066-4		
Initial Date of Issue:	16-Aug-2022	Date of Re-Issue:	16-Aug-2022
Client	Causeway Geotech Ltd		
Client Address:	8 Drumahiskey Road Balnamore Ballymoney County Antrim BT53 7QL		
Contact(s):	Colm Hurley Darren O'Mahony Gabriella Horan John Cameron Matthew Gilbert Neil Haggan Paul Dunlop Sean Ross Stephen Franey Stuart Abraham		
Project	22-0418 Tuam Landfill		
Quotation No.:	Q22-28148	Date Received:	25-Jul-2022
Order No.:		Date Instructed:	28-Jul-2022
No. of Samples:	3		
Turnaround (Wkdays):	7	Results Due:	05-Aug-2022
Date Approved:	15-Aug-2022	Subcon Results Due:	18-Aug-2022

Approved By:

Details:

Stuart Henderson, Technical Manager

Project: 22-0418 Tuam Landfill

Client: Causeway Geotech Ltd	Chemtest Job No.:		22-28066	22-28066	22-28066		
Quotation No.: Q22-28148	(Chemtest Sample ID.:		1474290	1474293	1474298	
Order No.:		Client Sample Ref.:		3	2	3	
		Sa	ample Lo	ocation:	BH01	BH02	BH03
		Sample Type:		SOIL	SOIL	SOIL	
		Top Depth (m):		6.0	2.5	5.0	
			Date Sa	ampled:	22-Jul-2022	22-Jul-2022	22-Jul-2022
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD			
Benzo(j)fluoranthene	SN		mg/kg	1	< 1	< 1	< 1
АСМ Туре	U	2192		N/A	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	37	30	19
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	19	7.2	2.7
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	1.5	0.11	0.40
Cyanide (Free)	М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)	М	2300	mg/kg	0.50	0.80	< 0.50	< 0.50
Arsenic	М	2455	mg/kg	0.5	6.1	4.8	2.7
Barium	М	2455	mg/kg	0	160	53	14
Cadmium	М	2455	mg/kg	0.10	1.5	0.78	0.38
Chromium	М	2455	mg/kg	0.5	22	17	4.8
Molybdenum	М	2455	mg/kg	0.5	2.9	1.1	< 0.5
Antimony	N	2455	mg/kg	2.0	4.7	2.1	< 2.0
Copper	М	2455	mg/kg	0.50	54	70	15
Mercury	М	2455	mg/kg	0.05	0.16	0.12	< 0.05
Nickel	М	2455	mg/kg	0.50	24	19	8.9
Lead	М	2455	mg/kg	0.50	420	83	17
Selenium	M	2455	mg/kg	0.25	1.2	2.4	< 0.25
Zinc	M	2455	mg/kg	0.50	220	170	260
Chromium (Trivalent)	N	2490	mg/kg	1.0	22	17	4.7
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Organic Matter	M	2625	%	0.40	19	10	0.90
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	IN N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	IVI	2080	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	IVI	2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0 < 1.0
Aliphatic TPH >C12-C16	IVI	2000	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C21	IVI	2000	mg/kg	1.0	> 1.0	< 1.0	< 1.0
Aliphatic TPH SC35 C44		2000	mg/kg	1.0	<10 < 10	~ 1.0	< 1.0 < 1.0
Total Alinhatic Hydrocarbons	N	2680	mg/kg	5.0	210	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 10	< 1.0	< 1.0 < 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	M	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	M	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH $>$ C12-C16	M	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0
	111	2000	mg/rg	1.0	- 1.0	- 1.0	÷ 1.0

Project: 22-0418 Tuam Landfill

Client: Causeway Geotech Ltd		Che	mtest Jo	ob No.:	22-28066	22-28066	22-28066
Quotation No.: Q22-28148	(Chemtest Sample ID.:		1474290	1474293	1474298	
Order No.:		Clie	nt Samp	le Ref.:	3	2	3
		Sa	ample Lo	ocation:	BH01	BH02	BH03
			Sampl	e Type:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	6.0	2.5	5.0
			Date Sa	ampled:	22-Jul-2022	22-Jul-2022	22-Jul-2022
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	15	< 1.0	< 1.0
Aromatic TPH >C21-C35	М	2680	mg/kg	1.0	77	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	92	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	300	< 10	< 10
Naphthalene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Acenaphthylene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Acenaphthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Fluorene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Phenanthrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Fluoranthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Pyrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Chrysene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Coronene	N	2800	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Total Of 16 PAH's	N	2800	mg/kg	0.20	< 0.20	< 0.20	< 0.20
Total Of 17 PAH's	N	2800	mg/kg	0.20	< 0.20	< 0.20	< 0.20
PCB 28	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 52	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 90+101	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 118	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 153	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 138	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
PCB 180	U	2815	mg/kg	0.010	< 0.010	< 0.010	< 0.010
Total PCBs (7 Congeners)	U	2815	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Phenols	М	2920	ma/ka	0.10	< 0.10	< 0.10	< 0.10

Project: 22-0418 Tuam Landfill							
Chemtest Job No:	22-28066				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1474290					Limits	
Sample Ref:	3					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH01					hazardous	Hazardous
Top Depth(m):	6.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	22-Jul-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	М	%	11	3	5	6
Loss On Ignition	2610	М	%	29			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 congeners)					1		
TPH Total WAC	2670	М	mg/kg	300	500		
Total (of 17) PAHs					100		
рН	2010	М		8.1		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.013		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.013	0.13	0.5	2	25
Barium	1455	U	0.022	0.22	20	100	300
Cadmium	1455	U	0.00053	0.0053	0.04	1	5
Chromium	1455	U	0.0098	0.098	0.5	10	70
Copper	1455	U	0.039	0.39	2	50	100
Mercury	1455	U	0.00009	0.00094	0.01	0.2	2
Molybdenum	1455	U	0.026	0.26	0.5	10	30
Nickel	1455	U	0.021	0.21	0.4	10	40
Lead	1455	U	0.030	0.30	0.5	10	50
Antimony	1455	U	0.019	0.19	0.06	0.7	5
Selenium	1455	U	0.0025	0.025	0.1	0.5	7
Zinc	1455	U	0.082	0.82	4	50	200
Chloride	1220	U	13	130	800	15000	25000
Fluoride	1220	U	0.94	9.4	10	150	500
Sulphate	1220	U	140	1400	1000	20000	50000
Total Dissolved Solids	1020	N	860	8400	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	37

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: 22-0418 Tuam Landfill							
Chemtest Job No:	22-28066				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1474293					Limits	
Sample Ref:	2					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH02					hazardous	Hazardous
Top Depth(m):	2.5				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	22-Jul-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	М	%	5.8	3	5	6
Loss On Ignition	2610	М	%	11			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 congeners)					1		
TPH Total WAC	2670	М	mg/kg	< 10	500		
Total (of 17) PAHs					100		
рН	2010	М		8.1		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.032		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0036	0.036	0.5	2	25
Barium	1455	U	0.043	0.43	20	100	300
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455	U	0.0010	0.010	2	50	100
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	U	0.018	0.18	0.5	10	30
Nickel	1455	U	0.0084	0.084	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455	U	0.0039	0.039	0.06	0.7	5
Selenium	1455	U	0.0015	0.015	0.1	0.5	7
Zinc	1455	U	0.007	0.067	4	50	200
Chloride	1220	U	67	670	800	15000	25000
Fluoride	1220	U	0.13	1.3	10	150	500
Sulphate	1220	U	480	4800	1000	20000	50000
Total Dissolved Solids	1020	N	870	8600	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	31	310	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	30

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: 22-0418 Tuam Landfill							
Chemtest Job No:	22-28066				Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1474298					Limits	
Sample Ref:	3					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH03					hazardous	Hazardous
Top Depth(m):	5.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	22-Jul-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	М	%	0.52	3	5	6
Loss On Ignition	2610	М	%	10			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 congeners)					1		
TPH Total WAC	2670	М	mg/kg	< 10	500		
Total (of 17) PAHs					100		
рН	2010	М		8.3		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.020		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0028	0.028	0.5	2	25
Barium	1455	U	0.032	0.32	20	100	300
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455	U	0.0010	0.010	0.5	10	70
Copper	1455	U	0.0041	0.041	2	50	100
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	U	0.012	0.12	0.5	10	30
Nickel	1455	U	0.013	0.13	0.4	10	40
Lead	1455	U	0.010	0.10	0.5	10	50
Antimony	1455	U	0.015	0.15	0.06	0.7	5
Selenium	1455	U	0.0013	0.013	0.1	0.5	7
Zinc	1455	U	0.030	0.30	4	50	200
Chloride	1220	U	79	790	800	15000	25000
Fluoride	1220	U	0.21	2.1	10	150	500
Sulphate	1220	U	180	1800	1000	20000	50000
Total Dissolved Solids	1020	N	580	5800	4000	60000	100000
Bhanal Indax							
	1920	U	< 0.030	< 0.30	1	-	-

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	19

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	pН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS

Test Methods

SOP	Title	Parameters included	Method summary
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

кеу	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

Updated Geophysical Survey Report

Tuam Historic Landfill Tuam Co. Galway

Geophysical Survey

Report Status: Final MGX Project Number: 6499 MGX File Ref: 6499f_Tuam-005.doc 4th October 2022

Confidential Report To:

Fehily Timoney & Co. J5 Plaza North Park Business Park North Road Dublin 11

Report submitted by: Minerex Geophysics Limited

Unit F4, Maynooth Business Campus Maynooth, Co. Kildare, W23X7Y5

Ireland

Tel.: 01-6510030 Email: info@mgx.ie Issued by:

5th Comptin

Author: John Connaughton (Geophysicist)

Reviewer: Hartmut Krahn (Senior Geophysicist)

Subsurface Geophysical Investigations

EXECUTIVE SUMMARY

- Minerex Geophysics Ltd. (MGX) carried out a geophysical survey consisting of EM31 ground conductivity, 2D-Resistivity and seismic refraction (p-wave) surveying for the ground investigation of the Tuam Historic landfill, County Galway.
- The main objectives of this survey were to identify the extent and depth of the former landfill site, quantify the volume of the waste, provide information on nature of the waste body, waste type and composition, look for evidence of leachate migration from the site and provide information on the underlying subsoil and bedrock.
- 3. The online geological map of Ireland (GSI, 2019) indicates the bedrock under the site is Visean Limestones, described as undifferentiated limestone. Visean Limestone is karstifiable.
- 4. The EM31 Ground Conductivity survey shows high conductivities throughout the site which indicates mainly domestic or commercial & industrial (C&I) waste material. The conductivities decrease towards the periphery of the site which indicates a reduction in the thickness of waste material. The extent of the waste material on the site covers an area of 23,300m². The extent of the site to the surrounding drain is 27,700 m².
- The depth of the waste layer extends to the level of the surrounding land which is around 35 39 mOD.
 The total average depth of waste material is approx. 8 m.
- 6. Total volume of waste material is calculated as 186,400 m³.
- 7. The layer below the landfill may consist of clay or peat overburden or overburden with leachate.
- 8. Fresh rock below this layer minimises migration of leachate but there may be possible leachate migration into the rock near the west of the site.

CONTENTS

1.	INTRODUCTION1
1.1	Background1
1.2	2 Objectives
1.3	Site Description1
1.4	Geology2
1.5	5 Report
2.	GEOPHYSICAL SURVEY
2.1	Methodology
2.2	2 EM31 Ground Conductivity
2.3	3 2D-Resistivity
2.4	Seismic Refraction4
2.5	5 Site Work
3.	RESULTS AND INTERPRETATION
3.1	EM31 Ground Conductivity5
3.2	2 2D-Resistivity
3.3	Seismic Refraction
3.4	Interpretation of Resistivity and Seismic Refraction
4.	CONCLUSIONS AND RECOMMENDATIONS
5.	REFERENCES9

List of Tables, Maps and Figures:

Title	Pages	Document Reference
Table 1: Geophysical Survey Locations and Acquisition	In text	In text
Parameters		
Table 2: Summary of Interpretation		In text
Map 1: Geophysical Survey Location Map	1 x A3	6499f_Tuam_MapsFigs.dwg
Map 2: EM31 Ground Conductivity Contour Map		6499f_Tuam_MapsFigs.dwg
Map 3: Geophysical Survey Interpretation Map		6499f_Tuam_MapsFigs.dwg
Figure 1: Models of Geophysical Survey		6499f_Tuam_MapsFigs.dwg
Figure 2: Interpretation of Geophysical Survey		6499f_Tuam_MapsFigs.dwg

1. INTRODUCTION

1.1 Background

Minerex Geophysics Ltd. (MGX) carried out a geophysical survey at an historic landfill in Tuam, Co. Galway. The survey consisted of EM31 ground conductivity, 2D-Resistivity and seismic refraction (p-wave) measurements. The survey was commissioned by Fehily Timoney & Co.

The survey employed various geophysical methods that complement each other and improve the interpretation. The role of geophysics as a non-destructive fast method is to allow later targeted direct investigations. Those results can be used to improve the initial results and interpretation.

A geophysical survey is a fast and effective way to investigate the waste size, extent and possible leachate from the landfill in a non-invasive manner. The geological background is also investigated a part of the survey. This survey is part of the Tier 2 site investigation and test report.

1.2 Objectives

The main objectives of the geophysical survey were:

- Identify the extent and depth of the former landfill
- Quantify the volume of the waste
- Provide information on the nature of the waste body, waste type and composition
- Look for evidence of leachate migration from the site
- Provide information on the underlying subsoil and bedrock

1.3 Site Description

The site is located off the R347 south of the town of Tuam. The Barna Waste Recycling Centre is located in the SE corner of the site. The site has a dome shaped topography with the highest elevations in the middle of the site and steep drops in elevations around the edges. The survey area consists of a capped historic landfill, grassed across its extents, surrounded by a wire fence. The site is accessed via the adjoining recycling centre/civic amenity site.

1.4 Geology

The online bedrock geological map of Ireland (GSI, 2019) describes the quaternary sediments as cut over raised peat. The survey area is underlain mostly by Visean Limestone, described as undifferentiated limestone.

Two Rotary Core holes carried out in the adjacent field show peat overlain by silt and clay overburden. GW02 noted limestone at 6.4 m below ground level.

Visean Limestone is karstifiable but the nearest karst features are over 1.7 km NE of the site.

1.5 Report

This report includes the results and interpretation of the geophysical survey. Maps, figures and tables are included to illustrate the results of the survey. More detailed descriptions of geophysical methods and measurements can be found in GSEG (2002), Milsom (1989) and Reynolds (1997).

The client provided maps of the site and the digital version was used as the background map in this report. Elevations were surveyed on site and are used in the vertical sections.

The interpretative nature and the non-invasive survey methods must be taken into account when considering the results of this survey and Minerex Geophysics Limited, while using appropriate practice to execute, interpret and present the data, give no guarantees in relation to the existing subsurface.

2. GEOPHYSICAL SURVEY

2.1 Methodology

The methodology is outlined in the tender documents and consisted of EM31 Ground Conductivity measurements across the site to map and determine targets for additional geophysical methods including 2D-Resistivity and Seismic Refraction Profiling. These profiles were carried out in different directions through the middle of the waste body as identified through the EM31 ground conductivity survey.

The survey locations are indicated on Map 1. The profiles and parameters are tabulated in Table 1 below.

All geophysical surveys are acquired, processed and reported in accordance with British Standards BS 5930:1999 +A2:2010 'Code of Practice for Site Investigations'.

Profile Name	Electrode/Geophone Spacing/m	Number of Electrodes/Geophones	Profile Length/m
R1	3	54	159
R2	3	72	213
SUM			372
S1	3	54	159
S2	3	72	213
SUM			372

Table 1: Geophysical Survey Locations and Acquisition Parameters

2.2 EM31 Ground Conductivity

The EM31 ground conductivity survey was carried out over the area indicated in Map 1 on lines nominally 10 m apart. Along each line a reading of ground conductivity was taken every second while walking along, thereby resulting in a survey grid of nominally 10 x 2 m. The locations were measured with a sub-meter accuracy SERES DGPS system attached to the EM31 and all data was jointly stored in a data logger. The conductivity meter was a GEONICS EM31 with Allegro data logger and NAV31 data acquisition software. The instrument was checked at a base station, the readings were stable and no drift occurred.

EM31 ground conductivity determines the bulk conductivity of the subsurface over a typical depth between 0 and 6 m below ground level (bgl). and over a radius of approx. 5 m around the instrument.

2.3 2D-Resistivity

2D-Resistivity profiles were surveyed with electrode spacing of 3 m, up to 64 electrodes per set-up and a maximum length of 189 m per profile. The readings were taken with a Tigre Resistivity Meter, Imager Cables, stainless steel electrodes, laptop and ImagerPro acquisition software. Profile R2 was acquired in roll-along mode to achieve continuous depth across the profile.

During 2D-Resistivity surveying data is acquired in the form of linear profiles using a suite of metal electrodes. A current is injected into the ground via a pair of electrodes while a potential difference is measured across a second pair of electrodes. This allows for the recording of the apparent resistivity in a two-dimensional arrangement below the profile. The data is inverted after the survey to obtain a model of subsurface resistivities. The generated model resistivity values and their spatial distribution can then be related to typical values for different geological and manmade materials.

The penetration depth of a resistivity profile increases towards the centre where it reaches an approx. value of 1/6th of the layout length.

2.4 Seismic Refraction

Seismic refraction profiles were surveyed with geophone spacing of 3 m and 24 geophones per set-up resulting in a 69 m length per set-up. The recording equipment consisted of a 24 Channel GEOMETRICS ES-3000 engineering seismograph with 4.5 Hz vertical geophones. The seismic energy source consisted of a hammer and plate. A zero-delay trigger was used to start the recording. Normally 7 shot points per p-wave profile were used.

Set-ups were acquired in longer continuous profiles using common shot points between set-ups and concatenating into longer profiles at the processing stage.

In the seismic refraction survey method, a p-wave is generated by a source at the surface resulting in energy travelling through surface layers directly and along boundaries between layers of differing seismic wave velocities. Processing of the seismic data allows geological layer thicknesses and boundaries to be established.

Seismic Refraction generally determines the depth to horizontal or near horizontal layers where the compaction/strength/rock quality changes with an accuracy of 10 - 20% of depth to that layer. Where low velocity layers or shadow zones are present (e.g. below solid ground surface) or where layers dip with more than 20 degrees angle the accuracy becomes much less.

2.5 Site Work

The data acquisition was carried out on the 21st May and 9th of June 2020. The weather conditions were variable throughout the acquisition period. Health and safety standards were adhered to at all times. The locations and elevations were surveyed with a Carlson NR3 RTK-GPS to accuracy < 0.05 m.

3. **RESULTS AND INTERPRETATION**

The interpretation of geophysical data was carried out utilising the known response of geophysical measurements, typical physical parameters for subsurface features that may underlay the site, and the experience of the authors.

Direct ground investigations were provided after the survey. Five trial pits were carried out over the identified landfill area. Four of these were terminated at the geo-composite clay liner overlying the landfill at a depth of 0.2 - 0.4 m. TP04 was carried out in a corner of the landfill and identified waste to a depth of 2 m below ground level before being terminated.

3.1 EM31 Ground Conductivity

The EM31 ground conductivity values were merged into one data file for the survey area and contoured and gridded with the SURFER contouring package. The contours are created by gridding and interpolation and care must be taken when using the data. The contour map is overlaid over the location and base map (Map 2) and the values in milliSiemens/metre (mS/m) are indicated on the colour scale bar.

Within the top 6 m bgl, the conductivities are characteristic for certain overburden and rock types. If there is a high content of clay minerals (which are electrically conductive) then the overburden conductivity will be higher than as if there is a high content of clastic grains like sand or gravel. The purer the clay and the lower the sand/gravel content the higher the conductivity. The water content in the overburden also influences the conductivity but generally the clay content has a larger effect.

Non-natural material like waste or leachate will generally have a high conductivity or increase the conductivity of the natural geological material. Many waste materials decompose or dissolve in the ground and enrich the ground and water with ions, which increase the conductivity and decrease the resistivity. Waste material from domestic or commercial and industrial (C&I) sources generally contain more decomposable or dissolvable material than waste from construction or demolition (C&D). Therefore domestic or C&I Waste will have lower resistivities and higher conductivities than C&D waste.

The scale used on this site represents the very high conductivity results surveyed throughout the site. The highest conductivities are found in the centre of the site where conductivities are typically above 60 mS/m. Very high conductivities indicate deep domestic or C&I waste material. Around the edge of the site the conductivities begin to decrease. Conductivities between 20 - 30 mS/m would indicate some waste material, while conductivities of less than 20 mS/m which are only found on the periphery of the site would usually indicate soil and rock fill, natural material or C&D waste.

3.2 2D-Resistivity

The 2D-Resistivity data was positioned and inverted with the RES2DINV inversion package. The programme uses a smoothness constrained least-squares inversion method to produce a 2D model of the subsurface model resistivities from the recorded apparent resistivity values. Three variations of the least squares method are available and for this project the Jacobian Matrix was recalculated for the first three iterations, then a Quasi-Newton approximation was used for subsequent iterations. Each dataset was inverted using seven iterations resulting in a typical RMS error of <3.0%. The resulting models were colour contoured with the same resistivity scale for all profiles and they are displayed as cross sections (Figure 1). A vertical exaggeration of 4 is used for the sections.

The resistivities are the inverse value of the conductivities therefore remarks made above for the conductivity are also valid for the resistivity. It has to be considered that the conductivity is determined as a single bulk value for a depth range from 0 - 6 m bgl while the 2D-Resistivity method determines the values based on depth levels.

Both profiles show a rapid change with depth from low resistivities to high resistivities at approx. 30 mOD. Low resistivities (<62.5 Ohm) indicate mainly domestic or C&I waste material or leachate but may also indicate clay-rich or peat overburden. High resistivities (>500 Ohmm) at depth indicate fresh limestone. Both profiles are laterally consistent which indicates domestic or C&I waste throughout the site.

Profile R1 has low – medium conductivities at depth. This may indicate a karst feature or leachate penetrating into the rock layer. It may also be an artificial effect of the very low resistivities above it and sharp topography along the surface.

3.3 Seismic Refraction

The p-wave seismic velocity is closely linked to the density of subsurface materials and to parameters like compaction, stiffness, strength and rock quality. The higher the density of the subsurface materials the higher the seismic velocity. Similarly, for the other parameters it is generally valid that a more compacted, stiffer and stronger material will have a higher seismic velocity. For rock, the seismic velocity is higher when the rock is stronger, less weathered and has a higher quality. If the rock is more weathered, broken, fractured, fissured or karstified then the seismic velocity will be reduced compared to that of intact fresh rock.

The seismic refraction data was positioned and processed with the SEISIMAGER software package. The data shows very low seismic velocities near the surface but did not identify any higher velocity layers within the parameters of the survey. This occurs typically when the waste material is generally greater than 5 m thick. Velocities were determined for the ground below the surface and these are annotated on the sections on Figure 1.

3.4 Interpretation of Resistivity and Seismic Refraction

The seismic refraction and 2D-Resistivity provide information on two physical parameters of the waste material, however as discussed above the waste material may share some of these physical parameters with other material. Therefore, by using both methods together a clearer picture of the waste body is obtained.

Waste material generally consists of low velocity, low resistivity material. The 2D-Resistivity data and the seismic refraction data shows low velocities and resistivities near the surface across the survey area. Historic maps do not show any development on the site previous to it being a landfill and it is assumed the waste was dumped on the surface rather than in an excavation. The surrounding elevations are around 35 – 39 mOD which is the assumed depth of the landfill. This gives a waste layer which is up to 10 m thick near the middle of the site but becomes very thin near the edges where the topography drops off.

Where low resistivities continue below this, it is an indication of leachate in the natural ground below the landfill. The low resistivities below the landfill may also be due to clay-rich or peat overburden.

High resistivities beginning at between 25 and 30 mOD along both profiles give an indication of rock depth as the seismic refraction model do not penetrate to this depth. The high resistivities are interpreted as good limestone with no leachate.

Along Profile R1, low – medium resistivities at depth may indicate leachate in the rock layer, karstified rock or it may be an artificial effect from the strong topographical gradient on the surface and the fact that the profile does not reach the natural ground around the landfill.

Table 2 summarises the interpretation. Interpreted cross sections are shown in Figure 2. The interpretation has been made from all available information. The resistivity models have been used to delineate between waste and natural material and the depth to rock. Resistivity data is better suited to show rock types and features within the rock while seismic refraction velocities are indicating the change of compaction, stiffness or rock quality with depth.

Layer	General Seismic Velocity Range	General Resistivity Range	Interpretation
	(m/sec)	(Onmm)	
1	200	<62.5	Waste (Mainly Domestic or C&I Waste)
2	700	>62.5	Overburden with Leachate
3a	N/A	>500 (At Depth)	Fresh Limestone
Зb	N/A	<500 (At Depth)	Karstified Limestone, Leachate within Limestone
			or Artificial Effect

Table 2: Summary of Interpretation

4. CONCLUSIONS AND RECOMMENDATIONS

Geological Background

The geophysical survey indicates the landfill is underlain by overburden over fresh limestone. The overburden material below the waste material is approx. 9 m thick and could contain any material like peat, clay or sand and gravel. The fresh limestone should restrict the movement of leachate below the waste and overburden however low resistivities along profile R1 may indicate leachate penetration towards the west of the site.

Lateral extent of waste and landfill boundary

The area outlined in orange on Map 3 shows the interpreted extent of the landfill using all the information available. The interpreted landfill extent covers an area of approx. 23,300 m². The extent of the site to the surrounding drain covers an area of 27,700m².

Vertical extent (depth) of waste

The thickness/depth has been estimated from the seismic refraction and 2D-Resistivity data. Considering the thickness of the interpreted Layer 1, an average thickness of 8 m has been calculated for the waste material. This estimate includes any capping or natural fill material on top of the main waste body.

Including the layer of overburden below the landfill containing leachate (Layer 2), the total depth of waste and leachate reaches an average of 17 m bgl.

Volume of waste

Considering the areas and average thickness above, the volume of the waste body is estimated at 186, 400 m³.

Nature of waste

Low resistivities and seismic velocities measured are consistent with domestic or commercial & industrial (C&I) waste throughout of the landfill.

Capping layer

The geophysical survey does not show any significant natural material over the landfill. Trial pits have determined there is a geo-composite clay liner overlying the landfill at a depth of 0.2 - 0.4 m.

Leachate

Low resistivities below the waste body is interpreted as likely leachate. The fresh limestone below this layer should generally restrict the leachate movement but there may be leachate penetration into the rock along profile R1.

5. **REFERENCES**

- 1. **GSEG 2002.** Geophysics in Engineering Investigations. Geological Society Engineering Geology Special Publication 19, London, 2002.
- 2. GSI, 2019. Online Bedrock Geological Map of Ireland. Geological Survey of Ireland 2019.
- 3. Milsom, 1989. Field Geophysics. John Wiley and Sons.
- 4. Reynolds, 1997. An Introduction to Applied and Environmental Geophysics. John Wiley and Son.

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX 10

Updated Figure 4.2 'Surface Water Sampling Locations'

Site Boundary Surface Water Monitoring Locations Surface Water Flow Direction Surface Water Flow Direction TILE: Surface Water Sampling Locations 'ROJECT: Tuam Historic Landfill ERA 'IGURE NO: 4.2 'LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 XATE: 29/09/2022 PAGE SIZE: A3	5	Galway 4	
Surface Water Monitoring Locations Surface Water Flow Direction TITLE: Surface Water Sampling Locations 'ROJECT: Tuam Historic Landfill ERA 'ROJECT: CALE: 1:3,500 REVISION: 0 XATE: 29/09/2022 PAGE SIZE: A3		Site Boundary	
Surface Water Flow Direction ITLE: Surface Water Sampling Locations PROJECT: Tuam Historic Landfill ERA IGURE NO: 4.2 CLIENT: Galway County Council CALE: 1:3,500 REVISION: 0 DATE: 29/09/2022 PAGE SIZE:	0	Surface Water	Monitoring Locations
ITLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA IGURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 VATE: 29/09/2022 PAGE SIZE: A3		Surface Water F	low Direction
ITLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA IGURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 IATE: 29/09/2022 PAGE SIZE: A3			
ITLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA IGURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022 PAGE SIZE: A3			
ITLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA IGURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022 PAGE SIZE: A3			
TLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA GURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022 PAGE SIZE: A3			
TLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA GURE NO: 4.2 JENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022			
TLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA GURE NO: 4.2 JENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022			
TLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA GURE NO: 4.2 JENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022			
TLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA GURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022 PAGE SIZE: A3			
TLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA GURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022 PAGE SIZE: A3			
TLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA GURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022 PAGE SIZE: A3			
TLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA GURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022 PAGE SIZE: A3			
TLE: Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA GURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022 PAGE SIZE: A3			
Surface Water Sampling Locations ROJECT: Tuam Historic Landfill ERA GURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022 PAGE SIZE: A3	ITLE:		
ROJECT: Tuam Historic Landfill ERA IGURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022		Surface Water S	ampling Locations
IGURE NO: 4.2 LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022 PAGE SIZE: A3	ROJECT	: Tuam Histor	ric Landfill ERA
LIENT: Galway County Council CALE: 1:3,500 REVISION: 0 ATE: 29/09/2022 PAGE SIZE: A3	GURE I	NO:	4.2
ATE: 29/09/2022 PAGE SIZE: A3	LIENT:	Galway Co	ounty Council
AIE. 29/09/2022 PAGE SIZE: AS	ATE:	1:3,500	REVISION: 0
	AIE:	29/09/2022	FAGE SIZE: AS

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX 11

Certificate of Analysis – Surface Water Monitoring

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528777 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Daniel Hayden

CERTIFICATE OF ANALYSIS

Date of report Generation: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: Order Number: 17 June 2022 Fehily Timoney 220606-22 Galway Historic Landfills P22-040 Tuam Landfill 651143 Z3385

We received 4 samples on Monday June 06, 2022 and 4 of these samples were scheduled for analysis which was completed on Friday June 17, 2022. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291. Version: 3.3 Version Issued: 17/06/2022

Validated

Superseded Report:

SDG: 220606-22 Report Number: 651143 Client Ref.: Galway Historic Landfills P22-040 Location: Tuam Landfill

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
26388595	SW1		0.00 - 0.00	31/05/2022
26388621	SW2		0.00 - 0.00	31/05/2022
26388645	SW3		0.00 - 0.00	31/05/2022
26388663	SW4		0.00 - 0.00	31/05/2022

Only received samples which have had analysis scheduled will be shown on the following pages.

Valio
Valio

	Clier	SDG: nt Ref.:	SDG: 220606-22 Report Number: 651143 Superseded Report:										ort:										
Results X	Legend Test No Determination	n	Lab Sample I	No(s)							26388595							26388621	26388645				
Sample	Types -		Custome Sample Refer	r ence							SW1							SW2					SW3
S - Soil/S UNS - Ur GW - Gro SW - Sur LE - Land	solid hspecified Solid bund Water face Water d Leachate		AGS Refere	nce																			
PL - Prep PR - Proc SA - Salir TE - Trad TS - Trea US - Untr	ared Leachate cess Water ne Water le Effluent ated Sewage reated Sewage		Depth (m)							0.00 - 0.00							0.00 - 0.00					0.00 - 0.00
RE - Rec DW - Drin UNL - Un SL - Slud G - Gas OTH - Ot	reational Water Iking Water Non-regulate Ispecified Liquid Ige	ory	Containe	r	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)
			Sample Ty	ре	WS	WS	SM	WS	SM	WS	SM	SM	SM	SM	SM	WS	WS	SM	SM	SM	WS	WS	WS
Acid Herbici	ides by GCMS		All	NDPs: 0 Tests: 4	x							x							x				
Alkalinity as	CaCO3		All	NDPs: 0 Tests: 4	x							X							x				
Ammonium	Low		All	NDPs: 0 Tests: 4				x							x							x	
Anions by K	Cone (w)		All	NDPs: 0 Tests: 4			x							x							x		
BOD True T	Fotal		All	NDPs: 0 Tests: 4		x							x							X			
COD Unfilte	ered		All	NDPs: 0 Tests: 4		x							x							X			
Cyanide Co	mp/Free/Total/Thiocyanate	e	All	NDPs: 0 Tests: 4						x							x						
Dissolved N	letals by ICP-MS		All	NDPs: 0 Tests: 4					x							x							x
Dissolved C	Dxygen by Probe		All	NDPs: 0 Tests: 4			x							x							x		
Fluoride			All	NDPs: 0 Tests: 4			X							x							x		
Mercury Dis	ssolved		All	NDPs: 0 Tests: 4					x							x							x
PCB Conge	eners - Aqueous (W)		All	NDPs: 0 Tests: 4			x							x							x		
Pesticides (Suite I) by GCMS		All	NDPs: 0 Tests: 4	x							x							x				
Pesticides (Suite II) by GCMS		All	NDPs: 0 Tests: 4	x							X							x				
Pesticides (Suite III) by GCMS		All	NDPs: 0 Tests: 4	x							X							x				

	26388645							26388663
	SW3							SW4
	0.00 - 0.00							0.00 - 0.00
NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)
WS	SW	SW	WS	WS	WS	WS	SW	SW
		Y						
		^						
		x						
					х			
				x				
			х					
			v					
			•					
x							x	
						X		
				X				
				x				
						X		
				x				
		X						
<u> </u>								
		x						
		X						
L								

		CERTIFICATE OF ANALYSIS													Validated						
Clien	SDG: 220606-22 t Ref.: Galway Historic Landfil	ls P22-040		Rep	ort Nu Loo	umbe catior	r: 65 n: Tu	1143 am Li	andfil				Supe	rsedec	l Repo	rt:					
Results Legend X Test N No Determination	Lab Sample I	No(s)							26388595							26388621					26388645
Comple Types	Custome Sample Refer	r ence							SW1							SW2					SW3
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	nce																			
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m	Depth (m)					0.00 - 0.00							0.00 - 0.00	0.00 				0.00 - 0.00		
RE - Recreational Water DW - Drinking Water Non-regulator UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Container Container Container Container Container Container		0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)
	Sample Ty	ре	SW	WS	WS	WS	SW	SW	WS	SW	WS	SM	WS	WS	SM	WS	WS	WS	SM	WS	WS
pH Value	All	NDPs: 0 Tests: 4			x							x							x		
SVOC MS (W) - Aqueous	All	NDPs: 0 Tests: 4	x							x							X				

Х

Х

Х

Х

Х

Total Organic and Inorganic Carbon

VOC MS (W)

All

All

NDPs: 0 Tests: 4

NDPs: 0 Tests: 4

	26388645							26388663
	SW3							SW4
	0.00 - 0.00							0.00 - 0.00
NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)
WS	SM	WS	WS	WS	SM	WS	WS	WS
				x				
				~				
		x						
					X			
					~			
	x							x

ALS

SDG: 220606-22

Client Ref.: Galway Historic Landfills P22-040

CERTIFICATE OF ANALYSIS

Validated

Report Number: 651143 Location: Tuam Landfill Superseded Report:

Results Legend # ISO17025 accredited. M mCERTS accredited.		Cus	tomer Sample Ref.	SW1	SW2	SW3	SW4	
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot unfilt Total / unfiltered sample			Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	
* Subcontracted - refer to subcontractor report for accreditation status.			Sample Type Date Sampled	Surface Water (SW) 31/05/2022	Surface Water (SW) 31/05/2022	Surface Water (SW) 31/05/2022	Surface Water (SW) 31/05/2022	
** % recovery of the surrogate standard to check the efficiency of the method. The results of individual			Sample Time Date Received	06/06/2022	06/06/2022	06/06/2022	06/06/2022	
recovery			SDG Ref	220606-22	220606-22	220606-22	220606-22	
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		L	ab Sample No.(s) AGS Reference	20300395	20300021	20300045	20300003	
Component	LOD/U	nits	Method					
Alkalinity, Total as HCO3	<2 m	ng/l	TM043	492	422	434	425	
BOD, unfiltered	<1 m	ng/l	TM045	<1 @#	<1 @#	<1 @#	<1 @#	
Oxygen, dissolved	<0.3 ו	mg/l	TM046	10.1	6.07	6.81	11.4	
Organic Carbon, Total	<3 m	ng/l	TM090	9.75 @#	11.2 #	11.3 #	11.7 #	
Ammoniacal Nitrogen as N (low level)	<0.01	mg/l	TM099	0.0537 #	0.139 #	0.0285 #	0.0297 #	
Fluoride	<0.5 ו	mg/l	TM104	<0.5	<0.5	<0.5	<0.5	
COD, unfiltered	<7 m	ng/l	TM107	17.9	35.5	25.1 #	29 #	
Arsenic (diss.filt)	<0.5	µg/l	TM152	0.863 #	1.12 #	1.04 #	1.15 #	
Barium (diss.filt)	<0.2	µg/l	TM152	17.7 #	20.7 #	24.4 #	25.4 #	
Boron (diss.filt)	<10	ug/l	TM152	<10 #	<10 #			
Cadmium (diss.filt)	<0.08	µg/l	TM152	<0.08	<0.08	<0.08	<0.08	
Chromium (diss.filt)	<1 µ	ıg/l	TM152	<1 #	<1 #	<1 #	<1 #	
Copper (diss.filt)	<0.3	µg/l	TM152	6.16 #	0.4	0.442 #	0.731 #	
Lead (diss.filt)	<0.2	µg/l	TM152	<0.2 #	<0.2 #	<0.2 #	<0.2 #	
Manganese (diss.filt)	<3 µ	ıg/l	TM152	49.6 #	50.3 #	35.3 #	12.5 #	
Nickel (diss.filt)	<0.4	µg/l	TM152	3.95 #	2.71 #	2.89 #	2.78 #	
Phosphorus (diss.filt)	<10	ug/l	TM152	66.4 #	14.3 #	13.3 #	13.8 #	
Selenium (diss.filt)	<1 µ	ıg/l	TM152	<1 #	<1 #	<1 #	<1 #	
Thallium (diss.filt)	<2 µ	ıg/l	TM152	<2 #	<2 #	<2 #	<2 #	
Zinc (diss.filt)	<1 µ	ıg/l	TM152	3.55 #	2.1 #	4.06 #	2.72 #	
Sodium (Dis.Filt)	<0.076	mg/l	TM152	9.73 #	11.1 #	13.9 #	13.9 #	
Magnesium (Dis.Filt)	<0.036	mg/l	TM152	7.88 #	7.13 #	8.07 #	7.92 #	
Potassium (Dis.Filt)	<0.2 ו	mg/l	TM152	2.64 #	0.547 #	1.37 #	0.93 #	
Calcium (Dis.Filt)	<0.2 ו	mg/l	TM152	159 #	132 #	132 #	132 #	
Iron (Dis.Filt)	<0.019	mg/l	TM152	0.19	0.198	0.212 #	0.21 #	
Mercury (diss.filt)	<0.01	µg/l	TM183	<0.01	<0.01	<0.01	<0.01	
Sulphate	<2 m	ng/l	TM184	9.9 #	<2 #	<2 #	<2 #	
Chloride	<2 m	ng/l	TM184	20.3 #	20.1 #	24.6 #	23 #	
Total Oxidised Nitrogen as N	<0.1 i	mg/l	TM184	0.265 #	0.126 #	0.22 #	<0.1 #	
PCB congener 28	<0.015	iμg/l	TM197	<0.015	<0.015	<0.015	<0.015	
PCB congener 52	<0.015	iμg/l	TM197	<0.015	<0.015	<0.015	<0.015	
PCB congener 101	<0.015	i µg/l	TM197	<0.015	<0.015	<0.015	<0.015	

<0.015 µg/l

TM197

<0.015

PCB congener 118

<0.015

<0.015

<0.015

Client Ref.: Galway Historic Landfills P22-040

CERTIFICATE OF ANALYSIS

Validated

Report Number: 651143 Location: Tuam Landfill

Results Legend # ISO17025 accredited. M mCERTS accredited.		Cus	stomer Sample Ref.	SW1	SW2	SW3	SW4	
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.			Depth (m) Sample Type	0.00 - 0.00 Surface Water (SW)				
* Subcontracted - refer to subcontractor report for accreditation status. ** % recovery of the surrogate standard to check the			Date Sampled Sample Time	31/05/2022	31/05/2022	31/05/2022	31/05/2022	
efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery			Date Received SDG Ref	06/06/2022 220606-22	06/06/2022 220606-22	06/06/2022 220606-22	06/06/2022 220606-22	
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)			Lab Sample No.(s) AGS Reference	26388595	26388621	26388645	26388663	
Component PCB congener 138	<0.015	l nits iµg/l	Method TM197	<0.015	<0.015	<0.015	<0.015	
PCB congener 153	<0.015	i µg/l	TM197	<0.015	<0.015	<0.015	<0.015	
PCB congener 180	<0.015	i µg/l	TM197	<0.015	<0.015	<0.015	<0.015	
Sum of detected EC7 PCB's	<0.105	i µg/l	TM197	<0.105	<0.105	<0.105	<0.105	
Cyanide, Total	<0.05	mg/l	TM227	<0.05	<0.05	<0.05	<0.05	
н	<1 pH	Units	TM256	7.79 #	7.84	7.88 #	8.07	
Conductivity @ 20 deg.C	<0.0 mS/c)2 :m	TM256	0.693 #	0.608	0.627 #	0.615 #	
Frifluralin	<0.01	µg/l	TM343	<0.01	<0.01	<0.01	<0.015	
lpha-HCH	<0.01	µg/l	TM343	<0.01	<0.01	<0.01	<0.015	
jamma-HCH (Lindane)	<0.01	µg/l	TM343	<0.01	<0.02	<0.03	<0.015	
leptachlor	<0.01	µg/l	TM343	<0.01	<0.01	<0.01	<0.015	
Ndrin	<0.01	µg/l	TM343	<0.01	<0.01	<0.01	<0.015	
peta-HCH	<0.01	µg/l	TM343	<0.01	<0.01	<0.01	<0.015	
sodrin	<0.01	µg/l	TM343	<0.01	<0.01	<0.01	<0.015	
ielta-HCH	<0.01	µg/l	TM343	<0.01	<0.01	<0.01	<0.015	
leptachlor epoxide	<0.01	µg/l	TM343	<0.01	<0.02	<0.02	<0.015	
ρ,p'-DDE	<0.01	µg/l	TM343	<0.01	<0.02	<0.02	<0.015	
Endosulphan I	<0.01	µg/l	TM343	<0.01	<0.02	<0.02	<0.015	
rans-Chlordane	<0.01	µg/l	TM343	<0.02	<0.01	<0.01	<0.03	
vis-Chlordane	<0.01	µg/l	TM343	<0.01	<0.01	<0.01	<0.015	
p,p'-DDE	<0.01	µg/l	TM343	<0.01	<0.02	<0.02	<0.015	
Dieldrin	<0.01	µg/l	TM343	<0.01	<0.01	0.0386	<0.015	
p,p'-DDD (TDE)	<0.01	µg/l	TM343	<0.01	<0.01	<0.01	<0.015	
Endrin	<0.01	µg/l	TM343	<0.02	<0.02	<0.02	<0.03	
p,p'-DDT	<0.01	µg/l	TM343	<0.02	<0.02	<0.02	<0.03	
p,p'-DDD (TDE)	<0.01	µg/l	TM343	<0.02	<0.02	<0.02	<0.03	
Endosulphan II	<0.02	µg/l	TM343	<0.02	<0.02	<0.02	<0.03	
p,p'-DDT	<0.01	µg/l	TM343	<0.02	<0.02	<0.02	<0.03	
p,p'-Methoxychlor	<0.01	µg/l	TM343	<0.02	<0.02	<0.02	<0.03	
p,p'-Methoxychlor	<0.01	µg/l	TM343	<0.02	<0.02	<0.02	<0.03	
Indosulphan Sulphate	<0.02	µg/l	TM343	<0.12	<0.02	<0.02	<0.18	
Permethrin I	<0.01	µg/l	TM343	<0.01	<0.01	<0.01	<0.015	
Permethrin II	<0.01	µg/l	TM343	<0.01	<0.01	<0.01	<0.015	

Client Ref.: Galway Historic Landfills P22-040

CERTIFICATE OF ANALYSIS

Validated

Report Number: 651143 Location: Tuam Landfill

Results Legend # ISO17025 accredited. M mCERTS accredited.		Cus	tomer Sample Ref.	SW1	SW2	SW3	SW4	
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.			Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report for accreditation status.			Sample Type Date Sampled	Surface Water (SW) 31/05/2022	Surface Water (SW) 31/05/2022	Surface Water (SW) 31/05/2022	Surface Water (SW) 31/05/2022	
** % recovery of the surrogate standard to check the efficiency of the method. The results of individual			Sample Time Date Received	06/06/2022	06/06/2022	06/06/2022	06/06/2022	
compounds within samples aren't corrected for the recovery (F) Trigger breach confirmed			SDG Ref Lab Sample No.(s)	220606-22 26388595	220606-22 26388621	220606-22 26388645	220606-22 26388663	
1-4+§@ Sample deviation (see appendix)		Inits	AGS Reference					
1,3,5-Trichlorobenzene	< 0.01	µg/l	TM344	<0.02	<0.02	<0.02	<0.02	
Hexachlorobutadiene	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
1,2,4-Trichlorobenzene	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
1,2,3-Trichlorobenzene	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Dichlorvos	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Dichlobenil	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Vevinphos	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Fecnazene	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Hexachlorobenzene	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Demeton-S-methyl	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Phorate	<0.01	µg/l	TM344	<0.01	<0.02	<0.02	<0.01	
Diazinon	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Triallate	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Atrazine	<0.01	µg/l	TM344	<0.01	0.0133	0.013	<0.01	
Simazine	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Disulfoton	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Propetamphos	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Chlorpyriphos-methyl	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Dimethoate	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Pirimiphos-methyl	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Chlorpyriphos	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Nethyl Parathion	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Valathion	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Fenthion	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Fenitrothion	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Friadimefon	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Pendimethalin	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Parathion	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Chlorfenvinphos	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
rans-Chlordane	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
cis-Chlordane	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Ethion	<0.01	µg/l	TM344	<0.01	<0.01	<0.01	<0.01	
Carbophenothion	<0.01	µg/l	TM344	<0.01	<0.02	<0.02	<0.01	

Client Ref.: Galway Historic Landfills P22-040

CERTIFICATE OF ANALYSIS

Validated

Report Number: 651143 Location: Tuam Landfill

Results Legend		Cur	stomer Sample Ref	SIM1	SM5	S/W3	SM/A	
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.		Ŭŭ.		3001	3002	3003	3₩4	
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report for accreditation status.			Depth (m) Sample Type Date Sampled	0.00 - 0.00 Surface Water (SW) 31/05/2022				
** % recovery of the surrogate standard to check the			Sample Time		·			
compounds within samples aren't corrected for the			Date Received	06/06/2022 220606-22	06/06/2022 220606-22	06/06/2022 220606-22	06/06/2022 220606-22	
recovery (F) Trigger breach confirmed			Lab Sample No.(s)	26388595	26388621	26388645	26388663	
1-4+§@ Sample deviation (see appendix)			AGS Reference					
Component	LOD/U	Jnits	Method					
Triazophos	<0.01	µg/l	TM344	<0.01	<0.02	<1.53	<0.01	
Phosalone	<0.01	µg/l	TM344	<0.01	<0.02	<0.02	<0.01	
Azinphos methyl	<0.02	µg/l	TM344	<0.04	<0.02	<0.02	<0.04	
Azinphos ethyl	<0.02	µg/l	TM344	<0.02	<0.02	<0.02	<0.02	
Etridiazole	<0.01	µg/l	TM345	<0.02	<0.02	<0.02	<0.02	
Pentachlorobenzene	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Propachlor	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Quintozene (PCNB)	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Omethoate	<0.01	µg/l	TM345	<0.02	<0.02	<0.02	<0.02	
Propazine	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Propyzamide	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Alachlor	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Prometryn	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Telodrin	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Terbutryn	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Chlorothalonil	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Etrimphos	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Metazachlor	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Cyanazine	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Trietazine	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Coumaphos	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Phosphamidon I	<0.01	µg/l	TM345	<0.02	<0.02	<0.02	<0.02	
Phosphamidon II	<0.01	µg/l	TM345	<0.01	<0.01	<0.01	<0.01	
Dinitro-o-cresol	<0.1	µg/l	TM411	<0.1	<0.1	<0.1	<0.1	
Clopyralid	<0.04	µg/l	TM411	<0.04	<0.04	<0.04	<0.04	
МСРА	<0.05	µg/l	TM411	<0.05	<0.05	<0.05	<0.05	
Mecoprop	<0.04	µg/l	TM411	<0.04	<0.04	<0.04	<0.04	
Dicamba	<0.04	µg/l	TM411	<0.04	<0.04	<0.04	<0.04	
МСРВ	<0.05	µg/l	TM411	<0.05	<0.05	<0.05	<0.05	
2,4-DB	<0.1	µg/l	TM411	<0.1	<0.1	<0.1	<0.1	
2,3,6-Trichlorobenzoic acid	<0.05	µg/l	TM411	<0.05	<0.05	<0.05	<0.05	
Dichlorprop	<0.1	µg/l	TM411	<0.1	<0.1	<0.1	<0.1	
Triclopyr	<0.05	µg/l	TM411	<0.05	<0.05	<0.05	<0.05	

Client Ref.: Galway Historic Landfills P22-040

CERTIFICATE OF ANALYSIS

Validated

Report Number: 651143 Location: Tuam Landfill

Results Legend # ISO17025 accredited.		Cu	stomer Sample Ref.	SW1	SW2	SW3	SW4	
M mCERTs accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report for accreditation status.			Depth (m) Sample Type Date Sampled	0.00 - 0.00 Surface Water (SW) 31/05/2022				
% recovery of the surrogate standard to check the efficiency of the method. The results of individual			Date Received	06/06/2022	06/06/2022	06/06/2022	06/06/2022	
compounds within samples aren't corrected for the recovery			SDG Ref	220606-22	220606-22	220606-22	220606-22	
(F) Trigger breach confirmed			Lab Sample No.(s)	26388595	26388621	26388645	26388663	
		nite	AGS Reference					
Fenoprop (Silvex)	< 0.1	µg/l	TM411	<0.1	<0.1	<0.1	<0.1	
2,4-Dichlorophenoxyacetic acid	<0.05	µg/l	TM411	<0.05	<0.05	<0.05	<0.05	
2,4,5-Trichlorophenoxyacetic acid	<0.05	µg/l	TM411	<0.05	<0.05	<0.05	<0.05	
Bromoxynil	<0.04	µg/l	TM411	<0.04	<0.04	<0.04	<0.04	
Benazolin	<0.04	µg/l	TM411	<0.04	<0.04	<0.04	<0.04	
oxynil	<0.05	µg/l	TM411	<0.05	<0.05	<0.05	<0.05	
Pentachlorophenol	<0.04	µg/l	TM411	<0.04	<0.04	<0.04	<0.04	
luoroxypyr	<0.1	µg/l	TM411	<0.1	<0.1	<0.1	<0.1	

SDG: 220606-22 t Ref : Galway Historic Landfills P22-040

CERTIFICATE OF ANALYSIS

Validated

ALS SE	G : 220606	-22		Report Number: 6	51143	Supersedeo	l Report:
<u>Client Re</u>	ef.: Galway	Historic Landf	IIIs P22-040	Location:	uam Landfill		
SVOC MS (W) - Aqueous Results Legend	;	Customer Sample Ref.	SW1	SM3	SIM3	SWA	
# ISO17025 accredited. M mCERTS accredited.		oustonier oumpie rei.	SWI	5₩2	5₩3	5114	
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report for		Sample Type	Surface Water (SW)	Surface Water (SW)	Surface Water (SW)	Surface Water (SW)	
accreditation status. ** % recovery of the surrogate standard to check the		Sample Time					
efficiency of the method. The results of individual compounds within samples aren't corrected for the	e	Date Received	06/06/2022	06/06/2022	06/06/2022	06/06/2022	
recovery (E) Tringer breach confirmed		SDG Ret Lab Sample No.(s)	26388595	26388621	26388645	26388663	
1-4+§@ Sample deviation (see appendix)		AGS Reference					
Component	LOD/Units	Method					
1,2,4-1richlorobenzene (aq)	<1 µg/l	TM176	<1 #	<1 #	<1 #	<1 #	
1,2-Dichlorobenzene (aq)	<1 µg/l	TM176	<1	π <1	" <1	" <1	
	1.5		#	#	#	#	
1,3-Dichlorobenzene (aq)	<1 µg/l	TM176	<1 "	<1 "	<1 "	<1 "	
1.4-Dichlorobenzene (ag)	<1 un/l	TM176	# <1	# <1	# <1	# <1	
·,· (,/	· [#9/1		#	#	#	#	
2,4,5-Trichlorophenol (aq)	<1 µg/l	TM176	<1	<1	<1	<1	
0.4.0 Triablese hand (a.e.)	.4 //	Th (4.70	#	#	#	#	
2,4,6- I richlorophenol (aq)	<1 µg/l	IM176	<1 #	<1 #	<1 #	<1 #	
2,4-Dichlorophenol (aq)	<1 µg/l	TM176	<1	<1	" <1	<1 "	
	1.5		#	#	#	#	
2,4-Dimethylphenol (aq)	<1 µg/l	TM176	<1	<1	<1	<1	
2.4 Dinitratelyone (ag)	<1.00/	TM176	#	#	#	#	
2,4-Diniciolouene (aq)	<1 µg/i	1111170	<i #<="" td=""><td><r style="text-decoration-color: blue;"></r></td><td><ı #</td><td><1 #</td><td></td></i>	<r style="text-decoration-color: blue;"></r>	<ı #	<1 #	
2,6-Dinitrotoluene (aq)	<1 µg/l	TM176	<1	<1	<1	<1	
			#	#	#	#	
2-Chloronaphthalene (aq)	<1 µg/l	TM176	<1	<1 "	<1	<1	
2-Chlorophenol (ag)	<1.00/	TM176	#	#	#	#	
	<1 µg/i	1111170	~1 #	<r></r>	<r></r>	<r></r>	
2-Methylnaphthalene (aq)	<1 µg/l	TM176	<1	<1	<1	<1	
			#	#	#	#	
2-Methylphenol (aq)	<1 µg/l	TM176	<1	<1 "	<1	<1 "	
2-Nitroaniline (an)	<1 ug/l	TM176	#	#	#	# <1	
	<1 µg/i	TWITTO	*	* ' #		*	
2-Nitrophenol (aq)	<1 µg/l	TM176	<1	<1	<1	<1	
			#	#	#	#	
3-Nitroaniline (aq)	<1 µg/l	TM176	<1	<1	<1	<1	
4-Bromophenylphenylether (ag)	<1 ua/l	TM176	<1	<1	<1	<1	
	. 62.		#	#	#	#	
4-Chloro-3-methylphenol (aq)	<1 µg/l	TM176	<1	<1	<1	<1	
(Oblasses line (e.e.)	.4 //	Th (4.70	#	#	#	#	
4-Chioroannine (aq)	<1 µg/i	1111170	~1	~1	<1 </td <td>\$1</td> <td></td>	\$1	
4-Chlorophenylphenylether (aq)	<1 µg/l	TM176	<1	<1	<1	<1	
			#	#	#	#	
4-Methylphenol (aq)	<1 µg/l	TM176	<1	<1 "	<1 "	<1 "	
4-Nitroaniline (ag)	<1 ua/l	TM176	# <1	# <1	<1 **	# <1	
	. 1997		. #	. #	. #	. #	
4-Nitrophenol (aq)	<1 µg/l	TM176	<1	<1	<1	<1	
Azabanzana (ag)	<1.00/	TM176	- 1			~1	
/ 2000/2010 (uq)	<1 µg/i	TWITTO	*	* 1 #			
Acenaphthylene (aq)	<1 µg/l	TM176	<1	<1	<1	<1	
			#	#	#	#	
Acenaphthene (aq)	<1 µg/l	IM176	<1 #	<1 #	<1 #	<1 #	
Anthracene (aq)	<1 µg/l	TM176	<1	<1	<1 "	<1 "	
	· ř		#	#	#	#	
bis(2-Chloroethyl)ether (aq)	<1 µg/l	TM176	<1	<1	<1 	<1	
his(2-Chloroethoxy)methane (ad)	<1.00/	TM176	# ح1	# ~1	# د1	# د1	
siste onioroonioxymoniane (ay)	∼ iµy/i	111170	~' #	` ' #	~' #	#	
bis(2-Ethylhexyl) phthalate (aq)	<2 µg/l	TM176	<2	<2	<2	<2	
			#	#	#	#	
Butylbenzyl phthalate (aq)	<1 µg/l	TM176	<1 	<1 	<1 <u> </u>	<1 <u>"</u>	
Benzo(a)anthracene (ao)	<1 un/l	TM176	# <1	# <1	# <1	# <1	
			#	#	#	#	

ALS

SVOC MS (W) - Aqueous

CERTIFICATE OF ANALYSIS Report Number: 651143

Location: Tuam Landfill

Superseded Report:

Validated

SDG: 220606-22 Client Ref.: Galway Historic Landfills P22-040

Results Legend		Cus	tomer Sample Ref.	SW1	SW2	SW3	SW4		
# ISO1/025 accredited. M mCERTS accredited.									
aq Aqueous / settled sample.									
diss.filt Dissolved / filtered sample.		Depth (m)		0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00		
tot.unfilt Total / unfiltered sample.			Sample Type	Surface Water (SW)	Surface Water (SW)	Surface Water (SW)	Surface Water (SW)		
* Subcontracted - refer to subcontractor report for			Date Sampled	31/05/2022	31/05/2022	31/05/2022	31/05/2022		
accreditation status.			Sample Time	01/00/2022	01/00/2022	01/00/2022	0110012022		
efficiency of the method. The results of individual			Data Received	06/06/2022	06/06/2022	06/06/2022	06/06/2022		
compounds within samples aren't corrected for the				220606 22	00/00/2022	220606 22	00/00/2022		
recovery			SDG Ref	220000-22	220606-22	220606-22	220606-22		
(F) Trigger breach confirmed		L	.ab Sample No.(s)	26366595	26388621	20388045	26388663		
1-4+§@ Sample deviation (see appendix)			AGS Reference						
Component	LOD/U	Inits	Method						
Benzo(b)fluoranthene (ag)	~1	ua/I	TM176	-1	-1	-1	-1		
Donzo(D)ndoranarono (aq)	×ιμ	iy/i	110170	~ 1	S1	S1	~1		
				#	#	#	#		
Benzo(k)fluoranthene (ag)	<1 u	ia/l	TM176	د1	<1	<1	د1		
Sonzo(ii)naoranaiono (aq)	1 N M	'9/'	1101170	- 1					
				#	#	#	#		
Benzo(a)pyrene (ag)	<1.	ia/l	TM176	<1	<1	<1	<1		
Bonzo(a)pyrono (aq)	1	'9/'	1101170	- 1					
				#	#	#	#		
Benzo(g.h.i)pervlene (ag)	<1.0	ıa/l	TM176	<1	<1	<1	<1		
(3, 7)(- 3 (- 4)		·9/·		. "	. "	. "	. "		
				#	#	#	#		
Carbazole (aq)	<1 µ	ıq/l	TM176	<1	<1	<1	<1		
		Ŭ		#	#	#	#		
				#	#	#	#		
Chrysene (aq)	<1 u	ıa/l	TM176	<1	<1	<1	<1		
		Ŭ		#	#	#	#		
				#	#	#	#		
Dibenzofuran (aq)	<1 µ	ıg/l	TM176	<1	<1	<1	<1		
	I '	1 I		#	#	#	#		
				#	#	#	#		
n-Dibutyl phthalate (aq)	<1 µ	ıg/l	TM176	<1	<1	<1	<1		
	I .			#	#	#	#		
				. #	. #	. #	. #		
Diethyl phthalate (aq)	<1μ	ıg/l	TM176	<1	<1	<1	<1		
	I .	1 I		#	#	#	#		
				. #	. #	. #	. #		
Dibenzo(a,h)anthracene (aq)	<1µ	ıg/l	TM176	<1	<1	<1	<1		
	I .	1 I		#	#	#	#		
				π	π	π	π		
Dimethyl phthalate (aq)	<1 µ	ıg/l	TM176	<1	<1	<1	<1		
		-		#	#	#	#		
				#	#	#	#		
n-Dioctyl phthalate (aq)	<5 µ	ıg/l	TM176	<5	<5	<5	<5		
		Ŭ.		#	#	#	#		
				#	#	#	#		
Fluoranthene (aq)	<1 µ	ıg/l	TM176	<1	<1	<1	<1		
		Ŭ.		#	#	#	#		
				#	#	#	#		
Fluorene (aq)	<1 µ	ıg/l	TM176	<1	<1	<1	<1		
		Ŭ.		#	#	#	#		
				#	#	#	#		
Hexachlorobenzene (aq)	<1 µ	ıq/l	TM176	<1	<1	<1	<1		
		·9/·		. 4	. "	. "	·		
				#	#	#	#		
Hexachlorobutadiene (aq)	<1 u	ıa/l	TM176	<1	<1	<1	<1		
				ш		"	. "		
				#	#	#	#		
Pentachlorophenol (ag)	<1 u	ıa/l	TM176	<1	<1	<1	<1		
		·9/·		·		·	·		
Phenol (ag)	<1 u	ıa/l	TM176	<1	<1	<1	<1		
(- 1)		·9/·			· ·	·	·		
n-Nitroso-n-dipropylamine (ag)	<1.0	ıa/l	TM176	<1	<1	<1	<1		
	1 1 1	·9/1	111110	.,	., "	.,	.,		
				#	#	#	#		
Hexachloroethane (ag)	<1.0	ia/l	TM176	<1	<1	<1	<1		
(U		·9/·		ш	· "	· "	. "		
				#	#	#	#		
Nitrobenzene (aq)	<1	ıq/l	TM176	<1	<1	<1	<1		
	۰ <u>۳</u>	~							
				#	#	#	#		
Naphthalene (aq)	<1 u	ıg/l	TM176	<1	<1	<1	<1		
	۳. I	~	-	ш	ш	ш	ш		
				#	#	#	#		
Isophorone (aq)	<1 µ	ıg/l	TM176	<1	<1	<1	<1		
	l '	·		#	#	#	#		
		_		#	#	#	#		
Hexachlorocyclopentadiene (aq)	<1µ	ıg/l	TM176	<1	<1	<1	<1		
	I .								
Phenanthrene (aq)	<1 µ	ıg/l	TM176	<1	<1	<1	<1		
	l '	-		#	#	#	#		
				#	#	#	#		
Indeno(1,2,3-cd)pyrene (aq)	<1 µ	ıg/l	TM176	<1	<1	<1	<1		
		Ŭ.		#	#	#	#		
				. #	. #	. #	. #		
Pyrene (aq)	<1 µ	ıg/l	TM176	<1	<1	<1	<1		
	I '	1 I		#	#	#	#		
				#	#	#	#		
		L I	Т						
					1	1	1	1	

CERTIFICATE OF ANALYSIS Report Number: 651143

SDG: 220606-22 Client Ref.: Galway Historic Landfills P22-040 Superseded Report:

Validated

Client Re	ef.: Galway ⊦	listoric Landfi	lls P22-040	Location: 7	uam Landfill	-	
Results Legend	Cu	ustomer Sample Ref.	SW1	SW2	SW3	SW4	
# ISO17025 accredited. M mCERTs accredited. aq Aqueous / settled sample. diss.till Discover / filtered sample. tot.unfilt Total / unfiltered sample. Subcontracted - refer to subcontractor report for accreditation status. % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery		Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref	0.00 - 0.00 Surface Water (SW) 31/05/2022 	0.00 - 0.00 Surface Water (SW) 31/05/2022 06/06/2022 22006-22 2838621	0.00 - 0.00 Surface Water (SW) 31/05/2022 06/06/2022 220606-22 28386/5	0.00 - 0.00 Surface Water (SW) 31/05/2022 06/06/2022 220606-22 2288663	
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		AGS Reference	2000000	2000021	2000010	20000000	
Component	LOD/Units	Method					
Dibromofluoromethane**	%	TM208	111	107	113	99.4	
Toluene-d8**	%	TM208	99.2	102	97.5	103	
4-Bromofluorobenzene**	%	TM208	99.8	104	102	104	
Dichlorodifluoromethane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
Chloromethane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
Vinyl chloride	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
Bromomethane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
Chloroethane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
Trichlorofluoromethane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
1,1-Dichloroethene	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
Carbon disulphide	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
Dichloromethane	<3 µg/l	TM208	<5.5 #	<4 #	<5.5 #	<3 #	
Methyl tertiary butyl ether (MTBE)	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
trans-1,2-Dichloroethene	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
1,1-Dichloroethane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
cis-1,2-Dichloroethene	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
2,2-Dichloropropane	<1 µg/l	TM208	<1	<1	<1	<1	
Bromochloromethane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
Chloroform	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
1,1,1-Trichloroethane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
1,1-Dichloropropene	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
1,2-Dichloroethane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
Benzene	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	
Inchloroethene	<1 µg/l	1 M208	<1 #	<1 #	<1 #	<1 #	
i,z-uicnioropropane	<1 µg/l	I M208	<1 #	<1 #	<1 #	<1 #	
	<1 µg/l	1 M208	<1 #	<1 #	<1 #	<1 #	
	<1 µg/l	1 M208	<1 #	<1 #	<1 #	<1 #	
cis- i ,3-Dicnioropropene	<1 µg/l	1 M208	<1 #	<1 #	<1 #	<1 #	
	<1 µg/l	1 M208	<1 #	<1 #	<1 #	<1 #	
trans-1,3-Uichloropropene	<1 µg/l	1 M208	<1 #	<1 #	<1 #	<1 #	
1,1,2-I richloroethane	<1 µg/l	1 M208	<1 #	<1 #	<1 #	<1 #	
1,3-Dichloropropane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #	

CERTIFICATE OF ANALYSIS

Report Number: 651143

Validated

Client R	ef.: Galway	Historic Landfill	s P22-040	Location:	Tuam Landfill			
Results Legend		Customer Sample Ref.	SW1	SW2	SW3	SW4		
ISO17025 accrelied. M mCERTS accrelied. Aqueous / settled sample. diss.filt Dissolved / filtered sample. Lountilt todi / unifitered sample. Subcontracted - refer to subcontractor report for accrediation status. * % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for th recovery (F) Trigger breach confirmed L+4§@ Sample deviation (see appendix)	•	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.00 - 0.00 Surface Water (SW) 31/05/2022 06/06/2022 220606-22 26388595	0.00 - 0.00 Surface Water (SW) 31/05/2022 06/06/2022 220606-22 26386621	0.00 - 0.00 Surface Water (SW) 31/05/2022 	0.00 - 0.00 Surface Water (SW) 31/05/2022 06/06/2022 220606-22 26388663		
Component	LOD/Units	Method					L	
Tetrachloroethene	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #		
Dibromochloromethane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #		
1,2-Dibromoethane	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #		
Chlorobenzene	<1 µg/l	TM208	<1 #	<1 #	<1 #	<1 #		
1,1,1,2-Tetrachloroethane	<1 µg/l	TM208	<1 #	<1 #		<1 #		
Ethylbenzene	<1 µg/l	TM208	<1 #	۳ <1	" <1	<1 #		
m,p-Xylene	<1 µg/l	TM208	<1 #	<1 #	# <1	<1 #		
o-Xylene	<1 µg/l	TM208	# <1	# <1	# <1	# <1	<u> </u>	
Styrene	<1 µg/l	TM208	<1 #	<1 #	# <1	<1 #		
Bromoform	<1 µg/l	TM208	<1 "	<1 "	# <1	<1 "		
Isopropylbenzene	<1 µg/l	TM208	======================================	# <1	# <1	# <1		
1,1,2,2-Tetrachloroethane	<1 µg/l	TM208	#	# <1	# <1	# <1		
1,2,3-Trichloropropane	<1 µg/l	TM208	# <1	# <1	# <1	# <1		
Bromobenzene	<1 µg/l	TM208	# <1	# <1	# <1	# <1		
Propylbenzene	<1 µg/l	TM208	# <1	# <1	# <1	# <1		
2-Chlorotoluene	<1 µg/l	TM208	# <1	# <1	# <1	# <1		
1,3,5-Trimethylbenzene	<1 µg/l	TM208	#	# <1	# <1	# <1		
4-Chlorotoluene	<1 µg/l	TM208	#	# <1	# <1	# <1		
tert-Butylbenzene	<1 µg/l	TM208	#	# <1	# <1	# <1		
1,2,4-Trimethylbenzene	<1 µg/l	TM208	# <1	# <1	# <1	# <1		
sec-Butylbenzene	<1 µg/l	TM208	# <1	# <1	# <1	# <1		
4-iso-Propyltoluene	<1 µg/l	TM208	#	# <1	# <1	# <1		
1,3-Dichlorobenzene	<1 µg/l	TM208	#	# <1	# <1	# <1		
1,4-Dichlorobenzene	<1 µg/l	TM208	# <1	# <1	# <1	# <1		
n-Butylbenzene	<1 µg/l	TM208	# <1	# <1	# <1	# <1		
1,2-Dichlorobenzene	<1 µg/l	TM208	======================================	# <1	# <1	# <1		
1,2-Dibromo-3-chloropropane	<1 µg/l	TM208	# <1	# <1	# <1	# <1		
1,2,4-Trichlorobenzene	<1 µg/l	TM208	<1	<1	<1	<1	+	
Hexachlorobutadiene	<1 µg/l	TM208	# <1	# <1	# <1	// # <1	+	
tert-Amyl methyl ether (TAME)	<1 µg/l	TM208	# <1	# <1	# <1	// # <1	+	
Naphthalene	<1 µg/l	TM208	# <1	# <1	# <1	// # <1	+	
1,2,3-Trichlorobenzene	<1 µg/l	TM208	<1	# <1	# <1	# <1	+	
1,3,5-Trichlorobenzene	<1 µg/l	TM208	<1 #	# <1	# <1	# <1	<u> </u>	

 CERTIFICATE OF ANALYSIS

 Report Number:
 651143

 40
 Location:
 Tuam Landfill

Superseded Report:

Validated

Table of Results - Appendix

Method No	Reference	Description
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM046	Method 4500G, AWWA/APHA, 20th Ed., 1999	Measurement of Dissolved Oxygen by Oxygen Meter
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit
TM152	ISO 17294-2:2016 Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS)	Analysis of Aqueous Samples by ICP-MS
TM176	EPA 8270D Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of SVOCs in Water by GCMS
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM197	Modified: US EPA Method 8082.EA Method 174 and 5109631	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Waters
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4, Standard Methods for the examination of waters and wastewaters 20th Edition, PHA, Washington DC, USA. ISBN 0-87553-235-7 and The Determination of Alkalinity and Acidity in water HMSO, 1981, ISBN 0 11 751601 5.	Determination of pH, EC, TDS and Alkalinity in Aqueous samples
TM343	EPA 8270D - Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of Selected Pesticides (Suite I) in Liquids by GCMS
TM344	EPA 8270D – Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of selected pesticides (Suite II) by GCMS
TM345	EPA 8270D – Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of selected pesticides (Suite III) by GCMS
TM411	Acid_Herbs_GCMS	Acid Herbs in Water by GCMS

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

Superseded Report:

Report Number: 651143 Location: Tuam Landfill

Test Completion Dates

				-
Lab Sample No(s)	26388595	26388621	26388645	26388663
Customer Sample Ref.	SW1	SW2	SW3	SW4
AGS Ref.				
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	Surface Water	Surface Water	Surface Water	Surface Water
Acid Herbicides by GCMS	15-Jun-2022	13-Jun-2022	13-Jun-2022	17-Jun-2022
Alkalinity as CaCO3	09-Jun-2022	09-Jun-2022	09-Jun-2022	09-Jun-2022
Ammonium Low	09-Jun-2022	10-Jun-2022	09-Jun-2022	09-Jun-2022
Anions by Kone (w)	10-Jun-2022	09-Jun-2022	09-Jun-2022	10-Jun-2022
BOD True Total	11-Jun-2022	11-Jun-2022	11-Jun-2022	11-Jun-2022
COD Unfiltered	10-Jun-2022	10-Jun-2022	10-Jun-2022	10-Jun-2022
Cyanide Comp/Free/Total/Thiocyanate	09-Jun-2022	09-Jun-2022	09-Jun-2022	09-Jun-2022
Dissolved Metals by ICP-MS	10-Jun-2022	10-Jun-2022	10-Jun-2022	10-Jun-2022
Dissolved Oxygen by Probe	07-Jun-2022	07-Jun-2022	07-Jun-2022	07-Jun-2022
Fluoride	10-Jun-2022	10-Jun-2022	09-Jun-2022	10-Jun-2022
Mercury Dissolved	10-Jun-2022	10-Jun-2022	10-Jun-2022	10-Jun-2022
PCB Congeners - Aqueous (W)	13-Jun-2022	13-Jun-2022	13-Jun-2022	13-Jun-2022
Pesticides (Suite I) by GCMS	09-Jun-2022	10-Jun-2022	10-Jun-2022	09-Jun-2022
Pesticides (Suite II) by GCMS	08-Jun-2022	09-Jun-2022	09-Jun-2022	08-Jun-2022
Pesticides (Suite III) by GCMS	10-Jun-2022	10-Jun-2022	10-Jun-2022	10-Jun-2022
pH Value	07-Jun-2022	08-Jun-2022	08-Jun-2022	07-Jun-2022
SVOC MS (W) - Aqueous	08-Jun-2022	09-Jun-2022	09-Jun-2022	08-Jun-2022
Total Organic and Inorganic Carbon	08-Jun-2022	07-Jun-2022	07-Jun-2022	07-Jun-2022
VOC MS (W)	13-Jun-2022	14-Jun-2022	13-Jun-2022	14-Jun-2022

220606-22 Galway Historic Landfills P22-(Report Number: 651143 Location: Tuam Landfill Superseded Report:

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.</p>

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to late arrival of instructions or
w w	samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow n Asbestos
Cio d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremol ite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX 12

Certificate of Analysis – Leachate Monitoring

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528777 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Daniel Hayden

CERTIFICATE OF ANALYSIS

Date of report Generation: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: Order Number: 26 August 2022 Fehily Timoney 220811-71 Galway Historic Landfills P22-040 Tuam Landfill 659148

We received 3 samples on Thursday August 11, 2022 and 3 of these samples were scheduled for analysis which was completed on Friday August 26, 2022. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291. Version: 3.3 Version Issued: 26/08/2022

Report Number: 659148 Location: Tuam Landfill Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
26714539	BH1		0.00 - 0.00	10/08/2022
26714550	BH2		0.00 - 0.00	10/08/2022
26714561	BH3		0.00 - 0.00	10/08/2022

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG: 220811-71

Client Ref.: Galway Historic Landfills P22-040

SDG:	220811-71 Galway Historic Landfil		Report Number: 659148 Location: Tuam Landfill									Superseded Report:									
Results Legend	Lab Sample No(s)						<u>1. 10</u>	26714539						202							
Possible	Custome Sample Refer	Customer Sample Reference AGS Reference						BH1	BH2												BH3
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere																				
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)						0.00 - 0.00							0.00 - 0.00						0.00 - 0.00
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Container			250ml BOD (ALE212)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)
	Sample Ty	ре	Ē	Ē	Ē	Ē	Ē	Ē	ΓE	Ē	Ē	Ε	Ē	Ē	Ē	Ē	ΓE	Ē	ΓE	Ē	Ē
Acid Herbicides by GCMS	All	NDPs: 0 Tests: 3	x						x							X					
Alkalinity as CaCO3	All	NDPs: 0 Tests: 3	x						х							x					
Ammonium Low	All	NDPs: 0 Tests: 3			X							x							x		
Anions by Kone (w)	All	NDPs: 0 Tests: 3	x								X							x			
BOD True Total	All	NDPs: 0 Tests: 3		x						x							x				
COD Unfiltered	All	NDPs: 0 Tests: 3		x						x							X				
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 3					x							x							x
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 3				x							x							x	
Dissolved Oxygen by Probe	All	NDPs: 0 Tests: 3	x								X							x			
Fluoride	All	NDPs: 0 Tests: 3	x								X							x			
Mercury Dissolved	All	NDPs: 0 Tests: 3				x							x							x	
PCB Congeners - Aqueous (W)	All	NDPs: 0 Tests: 3	x								x							x			
Pesticides (Suite I) by GCMS	All	NDPs: 0 Tests: 3						x	x							X					
Pesticides (Suite II) by GCMS	All	NDPs: 0 Tests: 3	x						x							X					
Pesticides (Suite III) by GCMS	All	NDPs: 0 Tests: 3	x						x							X					

CERTIFICATE OF ANALYSIS																						
ALS	SDG: 0	220811-71 Galway Historic Landfills P22-040			Report Number: 659148 Location: Tuam Land					andfil	Superseded Repo ndfill					ort:						
Results Legend X Test N No Determina	ition	Lab Sample No(s)							26714539						26714550	26714550					26714561	
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other		Custome Sample Refer						BH1							BH2						BH3	
		AGS Refere																				
		Depth (m)					;		0.00 - 0.00							0.00 - 0.00						0.00 - 0.00
		Container			250ml BOD (ALE212)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)
		Sample Type			Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē
pH Value		All	NDPs: 0 Tests: 3	x								x							x			
SVOC MS (W) - Aqueous		All	NDPs: 0 Tests: 3	x						x							x					
Total Organic and Inorganic Carb	pon	All	NDPs: 0 Tests: 3			x							x							x		
VOC MS (W)		All	NDPs: 0 Tests: 3						x							x						

-

26714561	
BH3	
0.00 - 0.00	
Vial (ALE297)	
Ē	
	Í
x	

Location: Tuam Landfill

Validated

SDG: 220811-71 Report Number: 659148 Client Ref.: Galway Historic Landfills P22-040

Results Legend		Customer Sample Ref.	BH1	BH2	BH3		
# ISO17025 accredited. M mCERTS accredited.							
aq Aqueous / settled sample.		Denth (m)	0.00.0.00	0.00 . 0.00	0.00.0.00		
tot.unfilt Total / unfiltered sample.		Sample Type	Land Leachate (LE)	Land Leachate (LE)	Land Leachate (LE)		
* Subcontracted - refer to subcontractor report for accreditation status		Date Sampled	10/08/2022	10/08/2022	10/08/2022		
** % recovery of the surrogate standard to check the		Sample Time					
compounds within samples aren't corrected for the	,	Date Received	11/08/2022 220811-71	11/08/2022 220811-71	11/08/2022 220811-71		
recovery (F) Trigger breach confirmed		Lab Sample No.(s)	26714539	26714550	26714561		
1-4+§@ Sample deviation (see appendix)		AGS Reference					
Component	LOD/Uni	ts Method				 	
Alkalinity, Total as HCO3	<2 mg/	I TM043	7130	2340	3310		
BOD, unfiltered	<1 mg/	I TM045	60.5	42.8	166		
Oxygen, dissolved	<0.3 mg	/I TM046	1.87	7.99	<0.3		
Organic Carbon, Total	<3 mg/	I TM090	91.8	47.2	233		
					•		
Ammoniacal Nitrogen as N (low level)	<0.01 mg	g/I TM099	68	96.2	255		
Fluoride	<0.5 mg	/I TM104	<0.5	<0.5	<0.5		
	-						
COD, unfiltered	<7 mg/	I TM107	2380	1420	1860		
	Ŭ		#	#	#		
Arsenic (diss.filt)	<0.5 µa	/I TM152	3.01	2.54	6.35		
			#	#	#		
Barium (diss.filt)	<0.2 µa	/I TM152	261	215	233		
	v µg		 #	2.0 #			
Boron (diss.filt)	<10 µg/	/I TM152	904	456	1470		
	10 µg/	TITIOE	#	#	#		
Cadmium (diss filt)	<0.08.00	r/l TM152	<0.08	0 163	<0.08	 	
	~0.00 µį	g/1 11011.52	~0.00 #	0.105 #	~0.00 #		
Chromium (diss filt)	<1.00/	TM152	2 22	2 02			
onionium (uiss.int)	<1 µg/i	TIVIT52	3.22 #	3.03 #	27.1		
Conner (dies 614)	10.0	// TN450	#	#	#	 	
	<0.5 µg	/1 11/152	×0.5 #	0.49	<0.3 #		
Land (des 60)	.0.0		#	#	#	 	
Lead (diss.nit)	<0.2 µg	/I IM152	0.644	14.6	0.224		
		T14/50	#	#	#		
Manganese (diss.filt)	<3 µg/l	TM152	141	1790	3390		
			#	#	#		
Nickel (diss.filt)	<0.4 µg	/I TM152	13.2	10.7	57.5		
		_	#	#	#	 	
Phosphorus (diss.filt)	<10 µg/	/I TM152	290	118	320		
		_	#	#	#		
Selenium (diss.filt)	<1 µg/l	TM152	8.45	1.88	3.99		
			#	#	#		
Thallium (diss.filt)	<2 µg/l	TM152	<2	<2	<2		
			#	#	#		
Zinc (diss.filt)	<1 µg/l	TM152	4.25	149	4.47		
			#	#	#		
Sodium (Dis.Filt)	<0.076 m	ig/l TM152	1090	87.5	740		
			#	#	#	 	
Magnesium (Dis.Filt)	<0.036 m	g/l TM152	64.9	55.6	184		
			#	#	#	 	
Potassium (Dis.Filt)	<0.2 mg	/I TM152	120	59.4	227		
			#	#	#	 	
Calcium (Dis.Filt)	<0.2 mg	/I TM152	56.7	210	165		
			#	#	#		
Iron (Dis.Filt)	<0.019 m	g/l TM152	3.3	2.01	6.48		
			#	#	#		
Mercury (diss.filt)	<0.01 µg	g/I TM183	<0.01	0.0531	<0.01		
			#	#	#		
Sulphate	<2 mg/	I TM184	176	133	513		
Chloride	<2 mg/	I TM184	440	70.2	739		
	Ĵ						
Total Oxidised Nitrogen as N	<0.1 mg	/I TM184	<0.1	<0.1	<0.1		
-							
PCB congener 28	<0.015 ++	g/l TM197	<0.075	<0.03	<0.075		
PCB congener 52	<0.015	a/I TM197	<0.075	<0.03	<0.075		
-	0.010 µ		0.07.0	0.00	0.07.0		
PCB congener 101	<0.015	a/I TM197	<0.075	<0.03	<0.075		
-							
PCB congener 118	<0.015 u	g/l TM197	<0.075	<0.03	<0.075		

SDG: 220811-71

Client Ref.: Galway Historic Landfills P22-040

CERTIFICATE OF ANALYSIS

Validated

Report Number: 659148 Location: Tuam Landfill

# ISO17025 accredited.		Cu	stomer Sample Rei.	BHJ	внг	BH3		
aq Aqueous / settled sample.			Depth (m)	0.00	0.00 0.00	0.00 0.00		
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.			Sample Type	0.00 - 0.00 Land Leachate (LE)	0.00 - 0.00 Land Leachate (LE)	0.00 - 0.00 Land Leachate (LE)		
 Subcontracted - refer to subcontractor report for accreditation status. 			Date Sampled	10/08/2022	10/08/2022	10/08/2022		
** % recovery of the surrogate standard to check the			Sample Time					
compounds within samples aren't corrected for the			Date Received	11/08/2022 220811-71	11/08/2022 220811-71	11/08/2022 220811-71		
recovery (F) Trigger breach confirmed			Lab Sample No.(s)	26714539	26714550	26714561		
1-4+§@ Sample deviation (see appendix)			AGS Reference					
Component	LOD/U	Inits	Method					
PCB congener 138	<0.015	5 µg/l	TM197	<0.075	<0.03	<0.075		
PCB congener 153	<0.015	5 µg/l	TM197	<0.075	<0.03	<0.075		
PCB congener 180	<0.015	5 µg/l	TM197	<0.075	<0.03	<0.075		
Sum of detected EC7 PCB's	<0.105	5 µg/l	TM197	<0.525	<0.21	<0.525		
Cyanide, Total	<0.05	mg/l	TM227	<0.05	<0.05	<0.05		
				#	#	#	 	
pH	<1 pH	Units	TM256	8.06	7.79	7.56		
				#	#	#		
Conductivity @ 20 deg.C	<0.0)2	TM256	3.12	1.98	6.33		
	mS/c	m		#	#	#	 	
Trifluralin	<0.01	µg/l	TM343	<0.01	<0.01	<0.01		
alpha-HCH	<0.01	µg/l	TM343	<0.01	<0.01	0.121		
gamma-HCH (Lindane)	<0.01	µg/l	TM343	<0.01	<0.01	<0.01		
Heptachlor	<0.01	ua/l	TM343	<0.01	<0.01	<0.01		
		1.2						
Aldrin	<0.01	ua/l	TM343	<0.01	<0.01	<0.01		
	0.01	P-9'		0.01	0.01	0.01		
beta-HCH	<0.01	ua/l	TM343	<0.01	<0.01	<0.01		
	.0.01	M3/1	11110 10	.0.01	-0.01	-0.01		
Isodrin	<0.01	ua/l	TM3/3	<0.01	<0.01	<0.01		
	-0.01	P9/1	1100-00	40.01	40.01	10.01		
delta-HCH	<0.01		TM2/2	<0.01	<0.01	<0.01		
	<0.01	µg/i	11/1343	<0.01	<0.01	<0.01		
Hantashlar anavida	-0.04		TM242	-0.04	-0.01	-0.04		
	<0.01	µg/i	11/1343	<0.01	<0.01	<0.01		
	-0.04		TM242	-0.04	-0.01	-0.04		
0,p -DDE	<0.01	µg/i	TM343	<0.01	<0.01	<0.01		
	0.04		714040	0.04	0.04	0.04		
Endosulphan I	<0.01	µg/i	TM343	<0.01	<0.01	<0.01		
	0.04		7140.40	0.04	0.04	0.04		
trans-Chlordane	<0.01	µg/I	TM343	<0.01	<0.01	<0.01		
cis-Chlordane	<0.01	µg/I	TM343	<0.01	<0.01	<0.01		
p,p'-DDE	<0.01	µg/l	TM343	<0.4	<0.02	<0.4		
Dieldrin	<0.01	µg/l	TM343	<0.01	<0.01	<0.01		
o,p'-DDD (TDE)	<0.01	µg/l	TM343	<0.01	<0.01	<0.01		
Endrin	<0.01	µg/l	TM343	<0.4	<0.02	<0.4		
o,p'-DDT	<0.01	µg/l	TM343	<1	<0.05	<1		
p,p'-DDD (TDE)	<0.01	µg/l	TM343	<0.01	<0.01	<0.01		
Endosulphan II	<0.02	µg/l	TM343	<0.02	<0.02	<0.02		
p,p'-DDT	<0.01	µg/l	TM343	<2	<0.1	<2		
		-						
o,p'-Methoxychlor	<0.01	µg/l	TM343	<1	<0.05	<1		
		. •						
p,p'-Methoxychlor	<0.01	µa/l	TM343	<2	<0.1	<2		
	- 10 1	r 3r .		-		-		
Endosulphan Sulphate	<0.02	µa/l	TM343	<0.8	<0.04	<0.8		
		r 3r .						
Permethrin I	<0.01	µa/l	TM343	<0.01	<0.01	<0.01		
Permethrin II	<0.01	µg/l	TM343	<0.01	<0.01	<0.01		

SDG: 220811-71

Client Ref.: Galway Historic Landfills P22-040

Customer Sample Ref.

CERTIFICATE OF ANALYSIS

Validated

Report Number: 659148 Location: Tuam Landfill Superseded Report:

Image: Section of the sectio	Results Legend		Cus	stomer Sample Ref.	BH1	BH2	BH3		
Barbon Barbon<	# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.		- U		biii	UIIZ	DIG		
Note of the second se	diss.filt Dissolved / filtered sample.			Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00		
Notes Notes <th< td=""><td>* Subcontracted - refer to subcontractor report for</td><td></td><td></td><td>Sample Type Date Sampled</td><td>Land Leachate (LE) 10/08/2022</td><td>Land Leachate (LE) 10/08/2022</td><td>Land Leachate (LE) 10/08/2022</td><td></td><td></td></th<>	* Subcontracted - refer to subcontractor report for			Sample Type Date Sampled	Land Leachate (LE) 10/08/2022	Land Leachate (LE) 10/08/2022	Land Leachate (LE) 10/08/2022		
Second	accreditation status. ** % recovery of the surrogate standard to check the			Sample Time	10/06/2022	10/00/2022	10/00/2022		
Normal with the second seco	efficiency of the method. The results of individual			Date Received	11/08/2022	11/08/2022	11/08/2022		
Interventional and second se	compounds within samples aren't corrected for the recovery			SDG Ref	220811-71	220811-71	220811-71		
Concernance Concernance SolutioneUnclude HandeUnclude Concernance SolutioneUnclude Concernance SolutioneUnclude Concernance SolutioneUnclude Concernance SolutioneUnclude Concernance Solutione SolutioneUnclude Concernance Solutione Solutione SolutioneUnclude Concernance Solutione Solutione Solutione Solutione Solutione 	(F) Trigger breach confirmed			Lab Sample No.(s)	26714539	26714550	26714561		
333-5-00-0000000 40.10 40.01			Inite	Method					
mm methadColingNoteColingColi	1 3 5-Trichlorobenzene	<0.01		TM344	<0.01	<0.01	<0.01	 	
taxburburburburburburburburburburburburburb		\0.01	μy/i	1101344	\U.U1	NO.01	NO.01		
matrix teacher basic teacher 									
124 Indexektorem4001 µp10444401040114001400110001000100010001000123 Takina decara4001 µp1044440014001400140011000 <td< td=""><td>Hexachlorobutadiene</td><td><0.01</td><td>µg/l</td><td>TM344</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td><td></td></td<>	Hexachlorobutadiene	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
24.1130 withowards (13.1140 withowards)40.01 with withowards)10.114140.01 with withowards)40.01 withowards)40.01 withowards)40.01 withowards)40.01 withowards) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Activation ControlNAMAnd <td>1,2,4-Trichlorobenzene</td> <td><0.01</td> <td>µg/l</td> <td>TM344</td> <td><0.01</td> <td><0.01</td> <td><0.01</td> <td></td> <td></td>	1,2,4-Trichlorobenzene	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
12.37 indexenseme4.001 4.001 10044.001 4.0014.0									
Control <	1,2,3-Trichlorobenzene	< 0.01	ua/l	TM344	<0.01	<0.01	<0.01		
Debess 4.01 µ0 1.064 4.01 4.01 4.01 4.01 Dorthom 4.01 µ0 1.064 4.01 4.01 4.01 4.01 Metyos 4.01 µ0 1.064 4.01 4.01 4.01 4.01 Metyos 4.01 µ0 1.064 4.01 4.01 4.01 4.01 Metyos 4.01 µ0 1.064 4.01 4.									
non-net $10 + 10 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 10$ $100 + 100 + 100$ $100 + 100 + 100$ $100 + 100 + 100 + 100$ $100 + 100 + 100 + 100$ $100 + 100 + 100 + 100 + 100$ $100 + 1$	Dichloryos	<0.01	ua/l	TM344	<0.01	<0.01	<0.01		
Bankbard4001 40014001 40	Diomorvou	~0.01	μg/i	1101344	SO.01	~0.01	NU.01		
controlQuilingHighQuilingQ	B: 11 1 1								
ArriganOLD1 piTM34OLD1	Dichiobenii	<0.01	µg/I	TM344	<0.01	<0.01	<0.01		
derriptics4.51 µplTM344.01<								 	
AnomeAnomA	Mevinphos	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Intervent4.01 µgl10.84<0.014.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01<0.01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Interview Control Contro Control Control	Tecnazene	<0.01	µq/l	TM344	<0.01	<0.01	<0.01		
seactionsharume -001 µp1 TM344 -001<			15						
mathematical constrained constrained <thconstrained< th=""> <thconstrained< th=""></thconstrained<></thconstrained<>	Hexachlorobenzene	<u><0 01</u>	110/	TM3//	<0.01	<0.01	<0.01		
Seminary 401 µµ 70344 40.01		~U.UT	µy/i	11/1044	NU.U I	NU.U I	NU.U I		
quereenson-weekpy quit pgt NMM4 q001				T1 1 1 1					
Heade $< 0.01 \ \mu pl$ M344 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	Demeton-S-methyl	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Interview 0.01 µpl M384 0.01									
No. No. <td>Phorate</td> <td><0.01</td> <td>µg/l</td> <td>TM344</td> <td><0.01</td> <td><0.01</td> <td><0.01</td> <td></td> <td></td>	Phorate	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Decention 4001 µg1 TM344 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001 <001									
Note Note <t< td=""><td>Diazinon</td><td><0.01</td><td>ua/l</td><td>TM344</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td><td></td></t<>	Diazinon	<0.01	ua/l	TM344	<0.01	<0.01	<0.01		
Tinkleb 40.01 µgl TM344 40.01 -40.0	Didzinon	\0.01	μy/i	1101344	\U.U1	NO.01	NO.01		
Initiatis -0.01 [g] IM044 -0.01									
Straine Q011 µJ TM54 Q011	Inallate	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Maxime -0.01 µgl TM344 -0.01								 	
Image Image <t< td=""><td>Atrazine</td><td><0.01</td><td>µg/l</td><td>TM344</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td><td></td></t<>	Atrazine	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Sintacine <0.01 µgl TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01									
Let M Let M <th< td=""><td>Simazine</td><td><0.01</td><td>ua/l</td><td>TM344</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td><td></td></th<>	Simazine	<0.01	ua/l	TM344	<0.01	<0.01	<0.01		
Dauldotn <0.01 µg1 TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		.0.01	P9/1	111011	.0.01	-0.01	-0.01		
Descention County gen Invoket County County <t< td=""><td>Disulfaton</td><td>-0.04</td><td></td><td>TMOAA</td><td>-0.04</td><td>-0.04</td><td>-0.01</td><td></td><td></td></t<>	Disulfaton	-0.04		TMOAA	-0.04	-0.04	-0.01		
Propetenghos -0.01 µg1 TM344 -0.01	Districtori	<0.01	µg/i	11/1344	<0.01	<0.01	<0.01		
Propetemption -0.01 µg1 TM344 -0.01									
Charge phosemethy $< 0.01 \ \mu gl$ TM344 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	Propetamphos	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Choryprjobs-methyl 40.01 µgl TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01									
Image: Normal Stress of the stress	Chlorpyriphos-methyl	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Dimethode <0.01 µg/l TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01									
Interface Control Contro Control <thcontrol< th=""> <t< td=""><td>Dimethoate</td><td><0.01</td><td>un/l</td><td>TM344</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td><td></td></t<></thcontrol<>	Dimethoate	<0.01	un/l	TM344	<0.01	<0.01	<0.01		
Primiphos-methyl <0.01 µg1 TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 </td <td></td> <td>-0.01</td> <td>μg/i</td> <td>1101044</td> <td>-0.01</td> <td>-0.01</td> <td>-0.01</td> <td></td> <td></td>		-0.01	μg/i	1101044	-0.01	-0.01	-0.01		
Immoneshemini <0.01 µgi IMS44 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01									
Charpyriphos <	Pirimiphos-methyl	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Chlorpyriphos <0.01 µg/l TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td>								 	
Image: Normal Sector (Normal Sector (Norma	Chlorpyriphos	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Wethyl Parathion <0.01 µg/l TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01<									
And Materian And Materian <th< td=""><td>Methyl Parathion</td><td><0 01</td><td>µa/l</td><td>TM344</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td><td></td></th<>	Methyl Parathion	<0 01	µa/l	TM344	<0.01	<0.01	<0.01		
Walathion <0.01 µg/l TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		0.01	r- 9' ·		0.0.	0.0.	0.0.		
Number NO.1 <	Malathion	-0.01	110/	TM344	~0.01	~0.01	~0.01		
Ferthion < TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	ivialat(IIU)	≺ 0.01	µy/i	11/1044	SU.U I	SU.U I	SU.U I		
renthion <0.01 µg/l TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		-							
Fenitrothion Cont	Fenthion	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Fenitrothion <0.01 µg/l									
Image: Normal Sector Image: No	Fenitrothion	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Triadimeton <0.01 µg/l TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Pendimethalin CO.1 µg/l TM344 CO.1 Co.1 <thco.1< th=""> Co.1 Co.1<td>Triadimefon</td><td><0.01</td><td>ua/l</td><td>ТМ344</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td><td></td></thco.1<>	Triadimefon	<0.01	ua/l	ТМ344	<0.01	<0.01	<0.01		
Pendimethalin <0.01 µg/l TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <td>indumetori</td> <td>~0.01</td> <td>μg/i</td> <td>1101344</td> <td>SO.01</td> <td>~0.01</td> <td>NU.01</td> <td></td> <td></td>	indumetori	~0.01	μg/i	1101344	SO.01	~0.01	NU.01		
renomination < 0.01 µg/l I M344 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <	Dandinathalin	.0.01		THOAT	.0.04	.0.04	.0.04		
Parathion < C	Penumethalin	<0.01	µg/I	IM344	<0.01	<0.01	<0.01		
Parathion <0.01 µg/l TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01									
Image: Chlordane Image: Chlordane<	Parathion	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Chlorfenvinphos <0.01 µg/l TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Image: Child and Ch	Chlorfenvinphos	<0.01	µa/l	TM344	<0.01	<0.01	<0.01		
rans-Chlordane <0.01 µg/l TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <td></td> <td>0.01</td> <td>r- 9' ·</td> <td></td> <td>0.0.</td> <td>0.0.</td> <td>0.0.</td> <td></td> <td></td>		0.01	r- 9' ·		0.0.	0.0.	0.0.		
Solution	trans-Chlordane	-0.04	11c/l	TM244	-0.01	~0.01	~0.01		
Carbophenothion Coll µg/l TM344 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <td></td> <td>≺0.01</td> <td>µy/i</td> <td>11/1044</td> <td>SU.U I</td> <td>SU.U I</td> <td>SU.U I</td> <td></td> <td></td>		≺ 0.01	µy/i	11/1044	SU.U I	SU.U I	SU.U I		
csc-Chiordane < 0.01 μg/l TM344 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01		-							
Image: Constraint of the state of	cis-Chlordane	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Ethion <0.01 μg/l TM344 <0.01 <0.01 <0.01 Carbophenothion <0.01 μg/l								 	
Carbophenothion <0.01 μg/l TM344 <0.01 <0.01 <0.01	Ethion	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		
Carbophenothion <0.01 µg/I TM344 <0.01 <0.01 <0.01									
	Carbophenothion	<0.01	µg/l	TM344	<0.01	<0.01	<0.01		

SDG: 220811-71

CERTIFICATE OF ANALYSIS

Validated

Report Number: 659148 Client Ref.: Galway Historic Landfills P22-040 Location: Tuam Landfill Superseded Report:

Results Legend		Customer	Sample Ref.	BH1	BH2	BH3		
sour russ accreates. M mCRTS accredited. aq Aqueous / settind sample. dis.fitt Dissolved fittered sample. tot.unfittered sample. tot.unfittered sample. subcontracted - refer to subcontractor report for accreditation status.		Sa Dai s	Depth (m) ample Type ite Sampled	0.00 - 0.00 Land Leachate (LE) 10/08/2022	0.00 - 0.00 Land Leachate (LE) 10/08/2022	0.00 - 0.00 Land Leachate (LE) 10/08/2022		
efficiency of the method. The results of individual		Dat	te Received	11/08/2022	11/08/2022	11/08/2022		
compounds within samples aren't corrected for the recovery			SDG Ref	220811-71	220811-71	220811-71		
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		Lab Sar AGS	mple No.(s) S Reference	207 14009	20/14330	20714301		
Component	LOD/U	nits M	ethod					
Triazophos	<0.01	µg/I TI	M344	<0.01	<0.01	<0.01		
Phosalone	<0.01	µg/I TI	M344	<0.01	<0.01	<0.01		
Azinphos methyl	<0.02	µg/I TI	M344	<0.02	<0.02	<0.02		
Azinphos ethyl	<0.02	µg/I TI	M344	<0.02	<0.02	<0.02		
Etridiazole	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Pentachlorobenzene	<0.01	µg/I Ti	M345	<0.01	<0.01	<0.01		
Propachlor	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Quintozene (PCNB)	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Omethoate	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Propazine	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Propyzamide	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Alachlor	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Prometryn	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Telodrin	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Terbutryn	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Chlorothalonil	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Etrimphos	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Metazachlor	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Cyanazine	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Trietazine	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Coumaphos	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Phosphamidon I	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Phosphamidon II	<0.01	µg/I TI	M345	<0.01	<0.01	<0.01		
Dinitro-o-cresol	<0.1 µ	ıg/I TI	M411	<10	<10	<10		
Clopyralid	<0.04	µg/I TI	M411	<4	<4	<4		
МСРА	<0.05	µg/l Ti	M411	<5	<5	<5		
Месоргор	<0.04	µg/I TI	M411	<4	<4	<4		
Dicamba	<0.04	µg/I TI	M411	<4	<4	<4		
МСРВ	<0.05	µg/I TI	M411	<5	<5	<5		
2,4-DB	<0.1	I) TI	M411	<10	<10	<10		
2,3,6-Trichlorobenzoic acid	<0.05	µg/l Ti	M411	<5	<5	<5		
Dichlorprop	<0.1 µ	ıg/I Ti	M411	<10	<10	<10		
Triclopyr	<0.05	µg/l Ti	M411	<5	<5	<5		

16:21:07 26/08/2022

SDG: 220811-71

CERTIFICATE OF ANALYSIS

Validated

Report Number: 659148 Client Ref.: Galway Historic Landfills P22-040 Location: Tuam Landfill Superseded Report:

Posults Legend		0	stamos Camala Daf	D14	5110	D 110		
ISO17025 accredited. M mCERTS accredited. M mCERTS accredited. diss.filt Dissolved / filtered sample. diss.filt Dissolved / filtered sample. toumlit Total / unfiltered sample. Subcontracted - refer to subcontractor report for		Cu	Depth (m) Sample Type	BH1 0.00 - 0.00 Land Leachate (LE)	BH2 0.00 - 0.00 Land Leachate (LE)	BH3 0.00 - 0.00 Land Leachate (LE)		
accreditation status. * % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery			Date Sampled Sample Time Date Received SDG Ref	11/08/2022 11/08/2022 220811-71	11/08/2022 11/08/2022 2208/11-71	11/08/2022 11/08/2022 220811-71		
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)			Lab Sample No.(s) AGS Reference	26714539	26714550	26714561		
Component Fenoprop (Silvex)	LOD/U <0.1	Jnits µg∕l	Method TM411	<10	<10	<10		
2,4-Dichlorophenoxyacetic acid	<0.05	µg/l	TM411	<5	<5	<5		
2,4,5-Trichlorophenoxyacetic acid	<0.05	µg/l	TM411	<5	<5	<5		
Bromoxynil	<0.04	µg/l	TM411	<4	<4	<4		
Benazolin	<0.04	µg/l	TM411	<4	<4	<4		
loxynil	<0.05	µg/l	TM411	<5	<5	<5		
Pentachlorophenol	<0.04	µg/l	TM411	<4	<4	<4		
Fluoroxypyr	<0.1	µg/l	TM411	<10	<10	<10		

ALS

CERTIFICATE OF ANALYSIS

Validated

ALS	SDG: 220811-7	71 Vietorie Londfi	II- D22 040	Report Number:	659148 Event Lendfill	Superseded	Report:	
	Ref.: Galway F	listoric Landi	IIIS P22-040	Location:	i uam Landfill			
SVOC MS (W) - Aqueou Results Legend	US Ci	istomer Sample Ref.	BH1	BH2	BH3			
ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.RIL Dissolved / filtered sample. to.unfilt tod sample. Subcontracted refer to subcontractor report !	for	Depth (m) Sample Type Date Sampled	0.00 - 0.00 Land Leachate (LE) 10/08/2022	0.00 - 0.00 Land Leachate (LE) 10/08/2022	0.00 - 0.00 Land Leachate (LE) 10/08/2022			
 * % recovery of the surrogate standard to check efficiency of the method. The results of indivic compounds within samples aren't corrected for recovery (F) Trigger breach confirmed 	s the dual or the	Sample Time Date Received SDG Ref Lab Sample No.(s)	11/08/2022 220811-71 26714539	11/08/2022 220811-71 26714550	11/08/2022 220811-71 26714561			
1-4+§@ Sample deviation (see appendix)		AGS Reference						
1,2,4-Trichlorobenzene (aq)	<1 µg/l	TM176	<20	<10	<10			
1,2-Dichlorobenzene (aq)	<1 µg/l	TM176	<20	<10	<10			
1,3-Dichlorobenzene (aq)	<1 µg/l	TM176	<20	<10	<10			
1,4-Dichlorobenzene (aq)	<1 µg/l	TM176	<20	<10	<10			
2,4,5-Trichlorophenol (aq)	<1 µg/l	TM176	<20	<10	<10			
2,4,6-Trichlorophenol (aq)	<1 µg/l	TM176	<20	<10	<10			
2,4-Dichlorophenol (aq)	<1 µg/l	TM176	<20	<10	<10			
2,4-Dimethylphenol (aq)	<1 µg/l	TM176	<20	<10	<10			
2,4-Dinitrotoluene (aq)	<1 µg/l	TM176	<20	<10	<10			
2,6-Dinitrotoluene (aq)	<1 µg/l	TM176	<20	<10	<10			
2-Chloronaphthalene (aq)	<1 µg/l	TM176	<20	<10	<10			
2-Chlorophenol (aq)	<1 µg/l	TM176	<20	<10	<10			
2-Methylnaphthalene (aq)	<1 µg/l	TM176	<20	<10	<10			
2-Methylphenol (aq)	<1 µg/l	TM176	<20	<10	<10			
2-Nitroaniline (aq)	<1 µg/l	TM176	<20	<10	<10			
2-Nitrophenol (aq)	<1 µg/l	TM176	<20	<10	<10			
3-Nitroaniline (aq)	<1 µg/l	TM176	<20	<10	<10			
4-Bromophenylphenylether (aq)	<1 µg/l	TM176	<20	<10	<10			
4-Chloro-3-methylphenol (aq)	<1 µg/l	TM176	<20	<10	<10			
4-Chloroaniline (aq)	<1 µg/l	TM176	<20	<10	<10			
4-Chlorophenylphenylether (aq)	<1 µg/l	TM176	<20	<10	<10			
4-Methylphenol (aq)	<1 µg/l	TM176	<20	<10	<10			
4-Nitroaniline (aq)	<1 µg/l	TM176	<20	<10	<10			
4-Nitrophenol (aq)	<1 µg/l	TM176	<20	<10	<10			
Azobenzene (aq)	<1 µg/l	TM176	<20	<10	<10			
Acenaphthylene (aq)	<1 µg/l	TM176	<20	<10	<10			
Acenaphthene (aq)	<1 µg/l	TM176	<20	<10	<10			
Anthracene (aq)	<1 µg/l	TM176	<20	<10	<10			
bis(2-Chloroethyl)ether (aq)	<1 µg/l	TM176	<20	<10	<10			
bis(2-Chloroethoxy)methane (aq)	<1 µg/l	TM176	<20	<10	<10			
bis(2-Ethylhexyl) phthalate (aq)	<2 µg/l	TM176	541	86.2	31			
Butylbenzyl phthalate (aq)	<1 µg/l	TM176	59.7	<10	<10			
Benzo(a)anthracene (ag)	<1 un/l	TM176	<20	<10	<10			

CERTIFICATE OF ANALYSIS

Validated

Report Number: 659148 Client Ref.: Galway Historic Landfills P22-040 Location: Tuam Landfill Superseded Report:

SVOC MS (W) - Aqueous

SDG: 220811-71

Results Legend		Customer Sample Ref	BH1	BH2	BH3		
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.fitt Dissolved / fittered sample. tournit1 total / unifitered sample. Subcontracted - refer to subcontractor report for accreditation status. % recovery of the surrogate standard to check the efficiency of the method. The results of individual comprounds within samples aren't corrected for th	,	Depth (m) Sample Type Date Sampled Sample Time Date Received	0.00 - 0.00 Land Leachate (LE) 10/08/2022 11/08/2022 200811-71	0.00 - 0.00 Land Leachate (LE) 10/08/2022 11/08/2022 201011_71	0.00 - 0.00 Land Leachate (LE) 10/08/2022 11/08/2022 200811-71		
recovery (F) Trigger breach confirmed		Lab Sample No.(s)	26714539	26714550	26714561		
Component	LOD/Ur	nits Method					
Benzo(b)fluoranthene (aq)	<1 µg	J/I TM176	21.6	<10	<10		
Benzo(k)fluoranthene (aq)	<1 µg	y/I TM176	<20	<10	<10		
Benzo(a)pyrene (aq)	<1 µg	y/I TM176	<20	<10	<10		
Benzo(g,h,i)perylene (aq)	<1 µg	y/I TM176	<20	<10	<10		
Carbazole (aq)	<1 µg	j/l TM176	<20	<10	<10		
Chrysene (aq)	<1 µg	ı/I TM176	23.1	<10	<10		
Dibenzofuran (aq)	<1 µg	ı/I TM176	<20	<10	<10		
n-Dibutyl phthalate (aq)	<1 µg	y/I TM176	<20	<10	<10		
Diethyl phthalate (aq)	<1 µg	ı/I TM176	<20	<10	<10		
Dibenzo(a,h)anthracene (aq)	<1 µg	ı/I TM176	<20	<10	<10		
Dimethyl phthalate (aq)	<1 µg	ı/I TM176	<20	<10	<10		
n-Dioctyl phthalate (aq)	<5 µg	g/l TM176	<100	<50	<50		
Fluoranthene (aq)	<1 µg	ı/I TM176	<20	<10	<10		
Fluorene (aq)	<1 µg	ı/I TM176	<20	<10	<10		
Hexachlorobenzene (aq)	<1 µg	ı/I TM176	<20	<10	<10		
Hexachlorobutadiene (aq)	<1 µg	ı/I TM176	<20	<10	<10		
Pentachlorophenol (aq)	<1 µg	y/I TM176	<20	<10	<10		
Phenol (aq)	<1 µg	ı∕I TM176	<20	<10	<10		
n-Nitroso-n-dipropylamine (aq)	<1 µg	j/l TM176	<20	<10	<10		
Hexachloroethane (aq)	<1 µg	ı∕I TM176	<20	<10	<10		
Nitrobenzene (aq)	<1 µg	ı∕I TM176	<20	<10	<10		
Naphthalene (aq)	<1 µg	j/l TM176	<20	<10	<10		
Isophorone (aq)	<1 µg	ı∕l TM176	<20	<10	<10		
Hexachlorocyclopentadiene (aq)	<1 µg	ı∕l TM176	<20	<10	<10		
Phenanthrene (aq)	<1 µg	ı/I TM176	<20	<10	<10		
Indeno(1,2,3-cd)pyrene (aq)	<1 µg	ı∕I TM176	<20	<10	<10		
Pyrene (aq)	<1 µg	J∕I TM176	<20	<10	<10	 	

CERTIFICATE OF ANALYSIS

Validated

SD SD	G : 220811-7	71		Report Number:	59148	Superseded Report:	
<u>Client Re</u>	ef.: Galway H	Historic Landf	IIIs P22-040	Location:	luam Landfill		
VOC MS (W) Results Legend	Ci	ustomer Sample Ref.	BH1	BH2	BH3		
# ISO17025 accredited. M mCERTS accredited. ag Agueous (settled sample							
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.00 - 0.00 Land Leachate (LE)	0.00 - 0.00 Land Leachate (LE)	0.00 - 0.00 Land Leachate (LE)		
 Subcontracted - refer to subcontractor report for accreditation status. 		Date Sampled	10/08/2022	10/08/2022	10/08/2022		
** % recovery of the surrogate standard to check the efficiency of the method. The results of individual		Date Received	11/08/2022	11/08/2022	11/08/2022		
compounds within samples aren't corrected for the recovery		SDG Ref	220811-71 26714539	220811-71 26714550	220811-71 26714561		
(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		AGS Reference	20114000	20114000	20114001		
Component	LOD/Units	Method	407	100	400		
Dibromonuorometnane	%	TIM208	107	108	103		
Toluene-d8**	%	TM208	95.8	95.2	97.4		
4-Bromofluorobenzene**	%	TM208	85.3	89.5	95.6		
Dichlorodifluoromethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Chloromethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Vinyl chloride	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Bromomethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Chloroethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Trichlorofluoromethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
1,1-Dichloroethene	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Carbon disulphide	<1 µg/l	TM208	1.48 #	<1 #	1.67 #		
Dichloromethane	<3 µg/l	TM208	<7 #	<7.5 #	<7 #		
Methyl tertiary butyl ether (MTBE)	<1 µg/l	TM208	<1 #	<1 #	<1 #		
trans-1,2-Dichloroethene	<1 µg/l	TM208	<1 #	<1 #	<1 #		
1,1-Dichloroethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
cis-1,2-Dichloroethene	<1 µg/l	TM208	<1 #	<1 #	<1 #		
2,2-Dichloropropane	<1 µg/l	TM208	<1	<1	<1		
Bromochloromethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Chloroform	<1 µg/l	TM208	<1 #	<1 #	<1 #		
1,1,1-Trichloroethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
1,1-Dichloropropene	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Carbontetrachloride	<1 µg/l	TM208	<1 #	<1 #	<1 #		
1,2-Dichloroethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Benzene	<1 µg/l	TM208	1.84	<1 #	3.39 #		
Trichloroethene	<1 µg/l	TM208	<1 #	<1 #	<1 #		
1,2-Dichloropropane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Dibromomethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Bromodichloromethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
cis-1,3-Dichloropropene	<1 µg/l	TM208	<1 #	<1 #	<1 #		
Toluene	<1 µg/l	TM208	1.11	<1 #	1.8 #		
trans-1,3-Dichloropropene	<1 µg/l	TM208	<1 #	<1 #	<1 #		
1,1,2-Trichloroethane	<1 µg/l	TM208	<1 #	<1 #	<1 #		
1,3-Dichloropropane	<1 µg/l	TM208	<1	<1 "	<1 "		

16:21:07 26/08/2022

SDG: 220811-71

Client Ref.: Galway Historic Landfills P22-040

CERTIFICATE OF ANALYSIS Report Number: 659148

Location: Tuam Landfill

Validated

Superseded Report:

....

						-	
Results Legend Son 2028 accredited M mCERTS accredited. aq Aqueous fettidad sample. diss fitti bissoved / fittered sample. toumilit Total / unifitered sample. subcontractor report for		Customer Sample Ref. Depth (m) Sample Type	BH1 0.00 - 0.00 Land Leachate (LE)	BH2 0.00 - 0.00 Land Leachate (LE)	BH3 0.00 - 0.00 Land Leachate (LE)		
accreditation status. ** % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the	,	Date Sampled Sample Time Date Received SDG Ref	10/08/2022 11/08/2022 220811-71	10/08/2022 11/08/2022 220811-71	10/08/2022 11/08/2022 220811-71		
(F) Trigger breach confirmed		Lab Sample No.(s)	26714539	26714550	26714561		
1-4+s@ Sample deviation (see appendix)	LOD/Ur	AGS Reference					
Tetrachloroethene	<1 µç	g/I TM208	<1 #	<1 #	<1 #		
Dibromochloromethane	<1 µç	g/I TM208	<1	<1 #	<1 #		
1,2-Dibromoethane	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
Chlorobenzene	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
1,1,1,2-Tetrachloroethane	<1 µថ្	g/I TM208	<1 #	5.23 #	<1 #		
Ethylbenzene	<1 µថ្	g/I TM208	<1 #	5 #	2.51 #		
m,p-Xylene	<1 µថ្	g/I TM208	<1 #	51 #	1.77 #		
o-Xylene	<1 µថ្	g/I TM208	<1 #	1.42 #	1.09 #		
Styrene	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
Bromoform	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
Isopropylbenzene	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
1,1,2,2-Tetrachloroethane	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
1,2,3-Trichloropropane	<1 µį	g/I TM208	<1 #	<1 #	<1 #		
Bromobenzene	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
Propylbenzene	<1 µç	g/I TM208	<1 #	<1 #	<1 #		
2-Chlorotoluene	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
1,3,5-Trimethylbenzene	<1 µថ្	g/I TM208	<1 #	1.52 #	<1 #		
4-Chlorotoluene	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
tert-Butylbenzene	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
1,2,4-Trimethylbenzene	<1 µថ្	g/I TM208	<1 #	1.89 #	<1 #		
sec-Butylbenzene	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
4-iso-Propyltoluene	<1 µថ្	g/I TM208	<1 #	<1 #	1.21 #		
1,3-Dichlorobenzene	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
1,4-Dichlorobenzene	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
n-Butylbenzene	<1 µį	g/I TM208	<1 #	<1 #	<1 #		
1,2-Dichlorobenzene	<1 µç	g/I TM208	<1 #	<1 #	<1 #		
1,2-Dibromo-3-chloropropane	<1 µថ	g/I TM208	<1	<1	<1		
1,2,4-Trichlorobenzene	<1 µç	g/I TM208	<1 #	<1 #	<1 #		
Hexachlorobutadiene	<1 µç	g/I TM208	<1 #	<1 #	<1 #		
tert-Amyl methyl ether (TAME)	<1 µថ្	g/I TM208	<1 #	<1 #	<1 #		
Naphthalene	<1 µថ្	g/l TM208	<1 #	<1 #	<1 #		
1,2,3-Trichlorobenzene	<1 µថ្	g/I TM208	<1#	<1 #	<1 #		
1,3,5-Trichlorobenzene	<1 µថ	g/I TM208	<1	<1	<1		

Client Ref.: Galway Historic Landfills P22-040

Report Number: 659148 Location: Tuam Landfill

Superseded Report:

Validated

Table of Results - Appendix	Table	of	Resu	lts -	A	oper	ıdix
-----------------------------	-------	----	------	-------	---	------	------

Method No	Reference	Description
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM046	Method 4500G, AWWA/APHA, 20th Ed., 1999	Measurement of Dissolved Oxygen by Oxygen Meter
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit
TM152	ISO 17294-2:2016 Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS)	Analysis of Aqueous Samples by ICP-MS
TM176	EPA 8270D Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of SVOCs in Water by GCMS
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM197	Modified: US EPA Method 8082.EA Method 174 and 5109631	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Waters
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4, Standard Methods for the examination of waters and wastewaters 20th Edition, PHA, Washington DC, USA. ISBN 0-87553-235-7 and The Determination of Alkalinity and Acidity in water HMSO, 1981, ISBN 0 11 751601 5.	Determination of pH, EC, TDS and Alkalinity in Aqueous samples
TM343	EPA 8270D - Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of Selected Pesticides (Suite I) in Liquids by GCMS
TM344	EPA 8270D – Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of selected pesticides (Suite II) by GCMS
TM345	EPA 8270D – Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of selected pesticides (Suite III) by GCMS
TM411	Acid_Herbs_GCMS	Acid Herbs in Water by GCMS

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM).

CERTIFICATE OF ANALYSIS

Report Number: 659148 Location: Tuam Landfill Superseded Report:

Validated

Test Completion Dates

Lab Sample No(s)	26714539	26714550	26714561
Customer Sample Ref.	BH1	BH2	BH3
-			
AGS Ref.			
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	Land Leachate	Land Leachate	Land Leachate
Acid Herbicides by GCMS	26-Aug-2022	26-Aug-2022	26-Aug-2022
Alkalinity as CaCO3	16-Aug-2022	16-Aug-2022	16-Aug-2022
Ammonium Low	12-Aug-2022	16-Aug-2022	12-Aug-2022
Anions by Kone (w)	12-Aug-2022	12-Aug-2022	12-Aug-2022
BOD True Total	19-Aug-2022	19-Aug-2022	19-Aug-2022
COD Unfiltered	18-Aug-2022	18-Aug-2022	18-Aug-2022
Cyanide Comp/Free/Total/Thiocyanate	15-Aug-2022	15-Aug-2022	15-Aug-2022
Dissolved Metals by ICP-MS	15-Aug-2022	15-Aug-2022	15-Aug-2022
Dissolved Oxygen by Probe	16-Aug-2022	16-Aug-2022	16-Aug-2022
Fluoride	13-Aug-2022	13-Aug-2022	13-Aug-2022
Mercury Dissolved	16-Aug-2022	16-Aug-2022	16-Aug-2022
PCB Congeners - Aqueous (W)	16-Aug-2022	16-Aug-2022	16-Aug-2022
Pesticides (Suite I) by GCMS	19-Aug-2022	20-Aug-2022	19-Aug-2022
Pesticides (Suite II) by GCMS	22-Aug-2022	22-Aug-2022	22-Aug-2022
Pesticides (Suite III) by GCMS	22-Aug-2022	22-Aug-2022	22-Aug-2022
pH Value	15-Aug-2022	15-Aug-2022	15-Aug-2022
SVOC MS (W) - Aqueous	17-Aug-2022	17-Aug-2022	17-Aug-2022
Total Organic and Inorganic Carbon	13-Aug-2022	13-Aug-2022	17-Aug-2022
VOC MS (W)	12-Aug-2022	12-Aug-2022	12-Aug-2022

CERTIFICATE OF ANALYSIS

220811-71 Galway Historic Landfills P22-(Report Number: 659148 Location: Tuam Landfill Superseded Report:

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

6. NDP - No determination possible due to insufficient/unsuitable sample.

7. Results relate only to the items tested.

8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

9. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.

13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.</p>

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

Container with Headspace provided for volatiles analysis
Incorrect container received
Deviation from method
Matrix interference
Sample holding time exceeded in laboratory
Sample holding time exceeded due to late arrival of instructions or
samples
Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name
Chrysofile	White Asbestos
Amosite	Brow n Asbestos
Cio d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremol ite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of $<3 \ \mu m$ diameter, longer than 5 μm and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

Drawing Requested under Point 18

World-Imagery: Maxar, Microsoft World Topographic Map: Es/LUK: Euri, HERL, Garmin, USGS, NGA # Survey Inform Licence, No. 54 (2001) 2011.

-11-		1					
	Tiárm	A A A					
0	_	A TASSA					
1	Galway	the the					
//	_	THAS					
≤ 1		at Really					
14	Grange River	Franklin					
	Site Boundary						
	Extent of Waste E	Body					
>	Surface Water Flo	ow Direction					
•	Surface Water Monitoring Locations						
0	Groundwater Monitoring Well (Installed 2020)						
0	Groundwater Monitoring Well (Installed 1997)						
\bigcirc	Groundwater Monitoring Well (Installed 1999)						
Borehole	s						
Туре							
	Landfill Gas						
0	Dual Leachate/Landfill Gas Monitoring						
CI L and	vven						
SILocati	ons						
Туре							
\bigcirc	Trial Pit						
TITLE:		5 m 2					
	Tuam Histo	oric Landfill					
PROJEC	D.	and the second sec					
	Tuam Histori	c Landfill ERA					
FIGURE	NO:						
CLIENT:	Galway Cou	inty Council					
SCALE:	1:3,500	REVISION: 0					
DATE:	26/10/2022	PAGE SIZE: A3					
	FEHILY	Cork Dublin Carlow					
	TIMONE	Y www.fehilytimoney.ie					

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

www.fehilytimoney.ie

Core House

Ireland

Pouladuff Road,

Cork, T12 D773,

+353 21 496 4133

Oublin Office

J5 Plaza, North Park Business Park, North Road, Dublin 11, D11 PXT0, Ireland +353 1 658 3500

Unit 6, Bagenalstown Industrial Park, Royal Oak Road, Muine Bheag, Co. Carlow, R21 XW81, Ireland +353 59 972 3800

ENVIRONMENT ISO 14001:2015 NSAI Certified