Arthurstown Landfill, Kill, Co. Kildare W0004-04

Q-1 2022

Quarterly Groundwater Monitoring Report

April 2022

Document Control Sheet

Client		South Dublin County Council			
Project		Environmental Assessment of the Quality of Groundwater at the Arthurstown Landfill Site at Kill, Co. Kildare in accordance with Waste Licence Register No. W0004-04			
Project No:		250405			
Report		Q-1 2022 Quarterly Groundwater Monitoring Report			
Document Refe	rence:	250405/40/DG_34			
Version	Author	Checked	Reviewed	Date	
1	E. Waters & L. Foley	L. Foley	L. Foley	22/04/2022	

Table of Contents

Executive S	ummary	2
Section 1	Introduction	3
1.1	Background	3
1.2	Monitoring and Reporting Requirements	3
1.3	Sampling Point Locations	4
Section 2	Methodology	5
2.1	Sampling Procedures	6
2.2	Sampling of Groundwater Monitoring Wells (MWs)	6
2.3	Sampling of Private Well (PWs)	6
Section 3	Results	7
Section 3 3.1	Results	
		7
3.1	Field Data/ Parameters	7 7
3.1 3.2	Field Data/ Parameters Laboratory Data	7 7 0

Table of Tables

.3
.4
.6
.7
.9
0
•

Executive Summary

In accordance with Waste Licence W0004-04, South Dublin County Council monitors groundwater quality at Arthurstown Landfill, Arthurstown, Kill, Co. Kildare. This report contains the results of the quarterly groundwater monitoring carried out during quarter 1 (Q-1) 2022.

Groundwater quality was monitored at eight monitoring locations; seven groundwater monitoring wells (MW) and one private well (PW), monitoring was carried out on 28 March 2022.

Groundwater monitoring well MW-20 is up-gradient of the facility and had specific electrical conductivity (1,286 μ s/cm) above the Guideline Threshold Value (GTV) 800 μ s/cm. The concentration of ammonia (6.99 mg/L) exceeded the GTV threshold (0.175 mg/L) at up-gradient well (MW-8). The cross-gradient groundwater monitoring well MW-3 had concentrations of electrical conductivity (1,300 μ s/cm) and chloride (40.5 mg/L, relative to the GTV threshold 24 mg/L) above their respective GTV thresholds. The up-gradient monitoring well data indicates that there are offsite inputs. It is considered likely that the exceedances in the cross-and down-gradient monitoring groundwater wells are due to offsite inputs, as detected in the up-gradient monitoring wells, and not contributed by the facility.

All parameters were monitored in the private well (PW-1) were below their respective assessment criteria.

Based on the information gathered in this report and supported by the contour map, the exceedances are most likely related to offsite sources, however the site will be routinely monitored to ensure the landfill is not impacting the groundwater beneath the facility.

Section 1 Introduction

1.1 Background

Arthurstown Landfill is located approximately 1.6 km south east of Kill, Co. Kildare. The landfill was operated by, and remains in the ownership of, South Dublin County Council (SDCC). Prior to SDCC purchase of the land in the early 1990s, the site was used as a sand and gravel quarry. The Environmental Protection Agency (EPA) issued the site with Waste Licence. W0004-04 in 2009 and the landfill operations ceased in 2010.

In August 2019, SDCC appointed CDM Smith Ireland Ltd to carry out the annual groundwater monitoring programme as required by their Waste Licence. This report details the monitoring that was carried out as part of the quarter 1 (Q-1) 2022 annual groundwater monitoring event, including the sampling and analytical methods used.

1.2 Monitoring and Reporting Requirements

Monitoring was carried out in line with Condition 5 of schedule D of the licence. All reporting was carried out in line with Schedule E of the licence. The parameters and monitoring frequency as specified in the Licence are shown in Table 1.

Parameter	Monitoring Frequency
Ammonia (as N)	Quarterly
Chloride	Quarterly
Dissolved Oxygen	Quarterly
Electrical Conductivity	Quarterly
рН	Quarterly
Temperature	Quarterly
Total Organic Carbon	Quarterly
Total Oxidised Nitrogen	Annually
Total Ortho Phosphate	Annually
Total Alkalinity	Annually
Sulphate	Annually
Mercury	Annually
Fluoride	Annually
Total Cyanide	Annually
Faecal Coliforms	Annually
Total Coliforms	Annually
Boron	Annually
Cadmium	Annually
Calcium	Annually
Total Chromium	Annually
Copper	Annually
Iron	Annually

Table 1 Monitoring Parameters and Frequency

Parameter	Monitoring Frequency
Lead	Annually
Magnesium	Annually
Manganese	Annually
Nickel	Annually
Potassium	Annually
Sodium	Annually
Zinc	Annually
List 1/11 organic substances	Annually

1.3 Sampling Point Locations

Seven monitoring wells (MW-2, MW-3, MW-6, MW-8, MW-9, MW-16 and MW-20) and one private wells (PW-1) were monitored to comply with the routine quarterly monitoring as set out in Schedule D.1 of the Licence. Note, two locations are listed as both groundwater monitoring wells and private wells in the Licence; MW-2 and PW2 are the same monitoring point, as are MW- 15 and PW-1. These monitoring locations are included in this report as MW-2 and PW-1, respectively, except in Appendix 2 where PW-2 is indicated (rather than MW-2), for illustrative purposes.

Samples were not required from the remaining groundwater wells. Table 2 indicates the location of other groundwater monitoring wells relative to the facility. The locations of all groundwater and private water monitoring points are included in Appendix 1.

Sample Point	Location
MW-1	Approx. 140 metres N.E of landfill cells
MW-2	Approx. 260 metres N.E of landfill cells
MW-3	Approx. 260 metres N.E of landfill cells
MW-4	Approx. 400 meters East of landfill cells
MW-5	Approx. 400 metres East of landfill cells
MW-6	Approx. 100 metres E.S.E of landfill cells
MW-7	Approx. 80 metres S.E of landfill cells
MW-8	Approx. 240 metres E of landfill cells
MW-9	Approx. 50 metres W of landfill cells
MW-10	Approx. 50 metres W of landfill cells
MW-11	Approx. 50 metres W of landfill cells
MW-12	Approx. 50 metres N.W of landfill cells
MW-13	Approx. 100 metres No of landfill cells
MW-14	Approx. 200 metres N.N.E of landfill cells (across public road)
MW-15	Approx. 200 metres N.N.E of landfill cells (across public road)
MW-16	Approx. 90 metres N.N.W of landfill cells

Table 2 Groundwater Monitoring Locations

Sample Point	Location
MW-17	Approx. 100 metres W.S.W of landfill cells
MW-18	Approx. 170 metres N of landfill cells
MW-19	Approx. 20 metres W.S.W of landfill cells
MW-20	Approx. 150 metres S of landfill cells
MW-21	Approx. 140 metres S.S.E of landfill cells
MW-22	Approx. 400 metres East of landfill cells

Section 2 Methodology

2.1 Sampling Procedures

All sampling was carried out in accordance with Standard Operating Procedures (SOP) and best practice, as shown in Table 3. The groundwater monitoring wells (MW) and private well (PW) were sampled on 28 March 2022.

Table 3 Sampling Procedures Standards

ISO Standard	Description
ISO 5667-2-2020	Guidance on the design of sampling programmes and sampling techniques
ISO 5667-3-2018	Guidance on sample preservation and handling
ISO 5667-14-2014	Guidance on quality assurance of environmental sampling and handling
ISO 5667-11-2009	Water quality-sampling-part 11: Guidance on sampling of groundwaters

2.2 Sampling of Groundwater Monitoring Wells (MWs)

Before sampling, the initial static water level was measured for all wells except MW-2, which was a tap sample. The total measured depth of the well was available from previous monitoring events and the initial static water level was taken away from the total depth. Waterra foot valve and tubing were used at all wells except for well (MW-8) were a bailer and twine were used. For both techniques the well was purged three times the volume of the well before collecting the water samples at monitoring wells MW- 3, MW-6, MW-8, MW-9, MW-16 and MW-20.

The samples were collected in laboratory-supplied sampling containers and stored in a cooler box at constant temperature (5 +/-3 °C). The samples were stored overnight in coolers and collected by DHL courier who delivered the samples to Element Materials Technology Laboratories. Element Materials Technology Laboratories are UKAS ISO 17025 accredited. Chain of custody (COC) documentation was included with all samples delivered to the laboratory. The methodologies were all ISO/CEN approved or equivalent.

2.3 Sampling of Private Well (PWs)

A sample was collected from one private well (PW-1). The sampling tap was run for five to ten minutes to purge water in the pipe work before the field parameters were recorded and samples collected.

The samples were collected in laboratory-supplied sampling container and stored in a cooler box at constant temperature (5 +/-3 °C). The samples were stored overnight in coolers and collected by DHL courier who delivered the samples to Element Materials Technology Laboratories. Element Materials Technology Laboratories are UKAS ISO 17025 accredited. Chain of custody (COC) documentation was included with all samples delivered to the laboratory. The methodologies were all ISO/CEN approved or equivalent.

Section 3 Results

3.1 Field Data/ Parameters

The field data (well depth (m), depth to water (m), purged volume (L), groundwater temperature (°C), and visual and odour observations) are contained in Table 4.

Table 4 Field Data

Location ID	Depth (m)	Static Water Level (m)	Purged Volume (L)	Temperature (°C)	Visual	Odour
MW-1		Represe	nted by MW-2		-	-
MW-2		Тар		9.2	clear	none
MW-3	10.16	3.89	21	10.9	very silty	none
MW-4	2.31		Well dry		-	-
MW-5	2.1		Well dry		-	-
MW-6	6.09	1.27	15	8.7	brownish	none
MW-7	6.09		Well dry		-	-
MW-8	30.78	6.68	100	10.8	small sediments	pungent smell
MW-9	28.40	6.47	64	12.4	clear	hydrogen sulphide
MW-10	2.56		Well dry		-	-
MW-11	3.38		Well dry		-	-
MW-12	4.26		Well dry		-	-
MW-13	8.32		Well dry		-	-
MW-14	16.64	-	-	-	-	-
MW-15	2.82	Tap sa	mple	9.3	clear	none
MW-16	22.43	5.93	60	11.7	clear	hydrogen sulphide
MW-17	10.51	-	-	-	-	-
MW-18	27	-	-	-	-	-
MW-19	26.20	-	-	-	-	-
MW-20	8.96	5.53	12	10.3	turbid	none
MW-21	7.01		Well Dry		-	-
MW-22		Wel	l removed		-	-

3.2 Laboratory Data

The complete laboratory reports are presented in Appendix 3. The groundwater results were screened against the EPA Guideline Threshold Values (GTVs) or Interim Guideline Values (IGVs). The GTVs take precedence over the IGVs; IGVs are used only in the absence of a GTV for that particular parameter. The sources of the GTV and IGV thresholds are as follows:

Guideline Threshold Values (GTVs);

- European Union Environmental Objectives (Groundwater) Regulations, 2016 (S.I. No. 366 of 2016) and
- European Communities Environmental Objectives (Groundwater) Regulations, 2010 (S.I. No. 9 of 2010).
- Interim Guideline Values (IGVs):
 - Environmental Protection Agency (2003), Towards Setting Guideline Values for the Protection of Groundwater in Ireland Interim Report. Environmental Protection Agency, Wexford.

A comparison of the laboratory results relative to the GTV/IGV thresholds is presented in Table 5 and exceedances are listed below:

- 1. The concentration of chloride in the cross-gradient well MW-3 (40.5 mg/L) exceeded the GTV threshold (24 mg/L);
- 2. The electrical conductivity (EC) in up-gradient well MW-20 (1,286 μ S/cm) and crossgradient well MW-3 (1,300 μ S/cm) exceeded the GTV threshold (800 μ S/cm);
- 3. The concentration of ammonia in the up-gradient well MW-8 (6.99 mg/L) exceeded the GTV threshold (0.175 mg/L); and
- 4. All other parameters were below their respective IGVs and GTVs.

		•		MW-6	MW-20	MW-8	MW-3	MW-9	MW-2	MW-16
Parameter	Units	Assessment Criteria	Source of Criteria	Up-Gradient	Up-Gradient	Up-Gradient	Cross- Gradient	Cross- Gradient	Down- Gradient	Down- Gradient
рН	pH Units	6.5-9.5	IGV 2003	7.48	7.13	7.66	7.23	7.76	7.76	7.76
Electrical Conductivity	μS/cm	800	GTV 2016	672	1286	442	1300	597	578	623
тос	mg/L	-	-	<2	<2	<2	<2	<2	<2	<2
Ammoniacal Nitrogen	mg/L	0.175	GTV 2016	<0.03	0.03	6.99	<0.03	0.08	<0.03	<0.03
Chloride	mg/L	24	GTV 2016	14.8	13	9.6	40.5	11.8	11	13.1

Table 5 Q-1 2022 Groundwater Analytical Results

Note: determinants which exceed the assessment criteria are highlighted in blue above

3.3 Private Well

The laboratory data of analysis for PW-1 is shown in Table 6. For comparative purposes, the European Union Drinking Water Regulations 2014 (S.I. No. 122 of 2014) thresholds, where available, are included as assessment criteria in the tables. The full laboratory reports are included in Appendix 3.

All parameters were below their respective European Union Drinking Water Regulations 2014 (S.I. No. 122 of 2014) thresholds.

Parameter	Units	Drinking Water Regulations	PW-1	
рН	pH Units	>6.5 - <9.5	7.72	
Odour	-	-	None	
Visual	-	-	Clear	
Conductivity	(μS/cm)	2500	626	
Ammonia as N	(mg/L)	0.30	<0.03	
тос	(mg/L)	-	<2	
Chloride	(mg/L)	250	12.9	

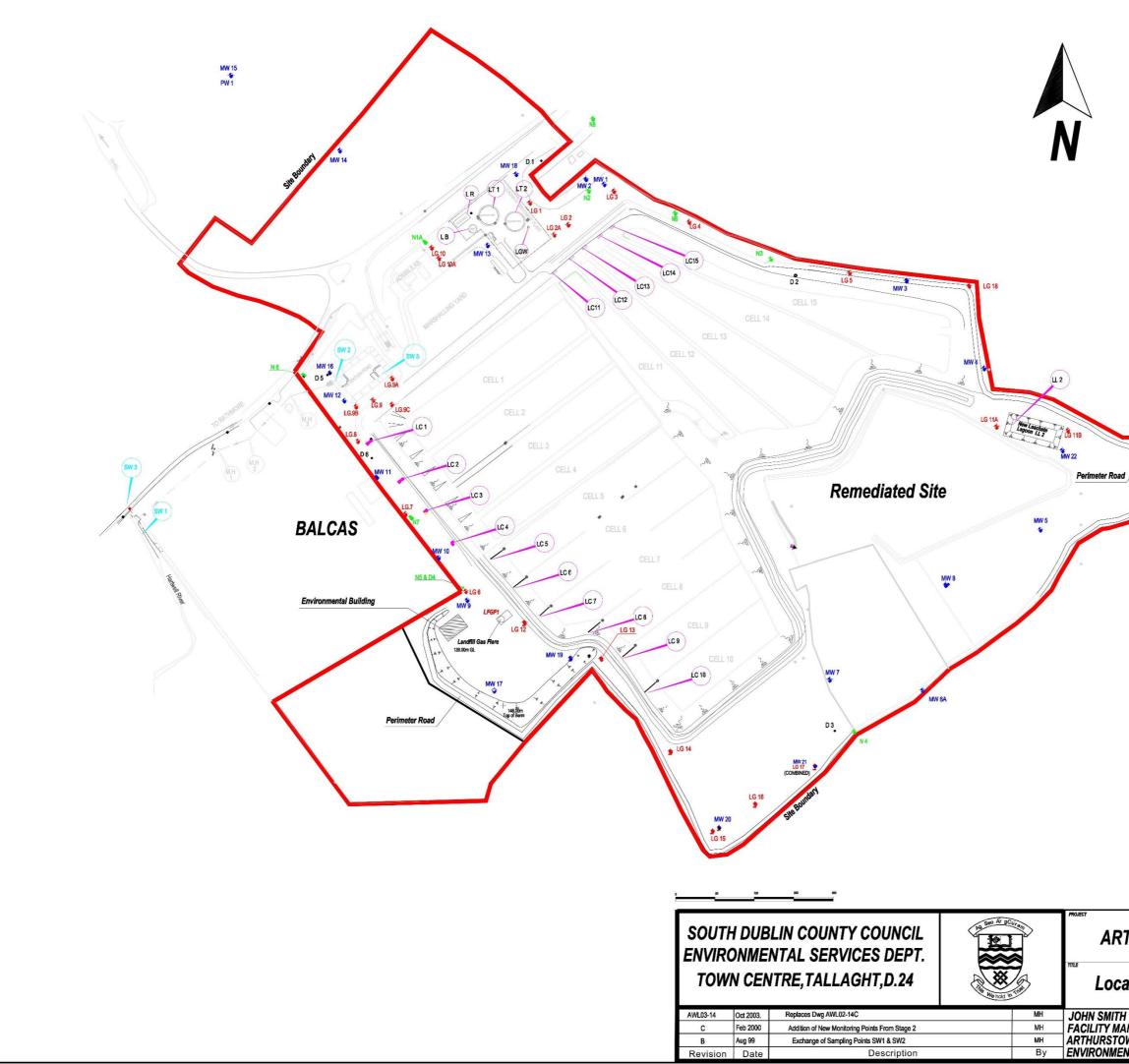
Table 6 Private Well (PW-1) Analytical Results

Section 4 Discussion & Conclusions

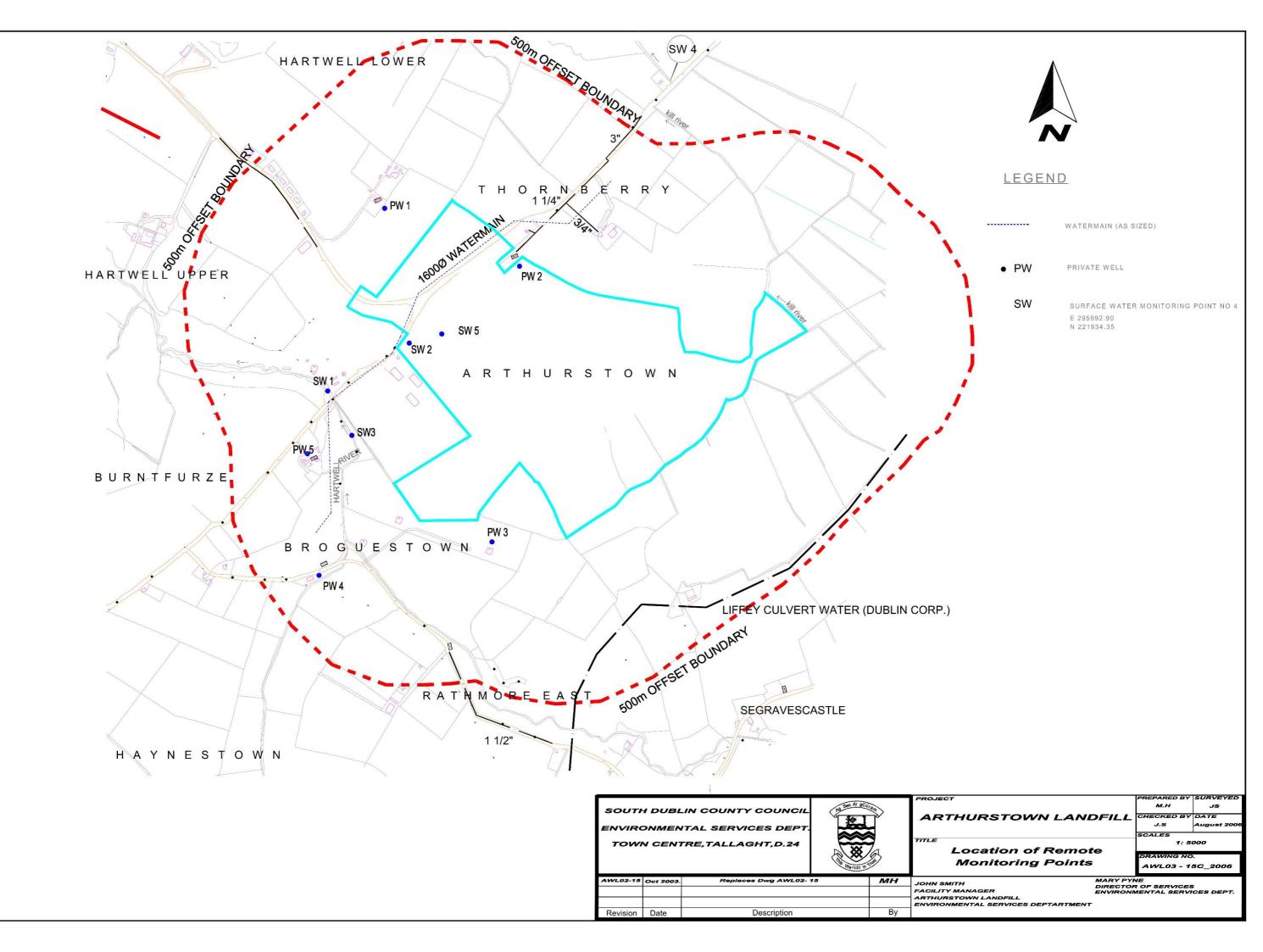
There were exceedances of the assessment criteria for ammonia and electrical conductivity in the up-gradient wells of MW-8 and MW-20, respectively. Electrical conductivity exceeded the assessment criteria in the cross-gradient well MW-3.

There have been exceedances of ammonia and electrical conductivity in the up-gradient and cross-gradient wells during previous monitoring rounds.

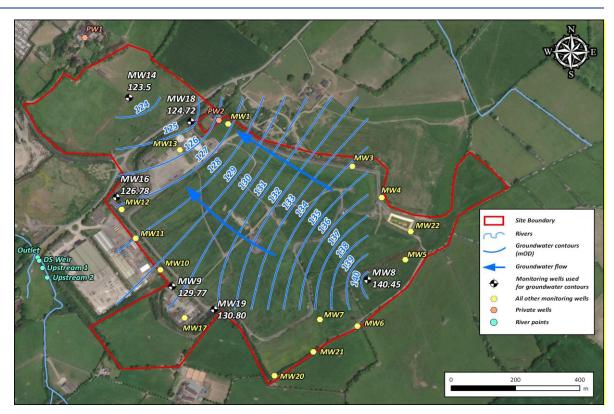
All parameters tested in the private well (PW-1) were below their respective assessment criteria.


The up-gradient monitoring well data indicates that there are offsite inputs. It is considered likely that the exceedances in the cross-and down-gradient monitoring groundwater wells are due to offsite inputs, as detected in the up-gradient monitoring wells, and not contributed by the facility.

Based on the information gathered in this report and supported by the contour map, the exceedances are most likely related to offsite sources, however the site will be routinely monitored to ensure the landfill is not impacting the groundwater beneath the facility.



Appendix 1 Sampling Point Locations



~	LG 11A	E 295496.60	N 221279.84
	LG 18	E 296020.57	N 221214.50
\wedge			
	MW 1 MW 2 MW 3	E 295559.79 E 296720.16 E 295965.26 E 296038.27	N 221344.42 N 221370.59 N 221234.57 N 221101.92
	MW 4	E 296038.27	N 221101.92
	MW 5	E 296110.31	N 220903.486
	MW 6	E 295878.02	N 220768.81
	MW 6A	E 295961.97 E 295844.53	N 220698.19 N 220711.64
	MW 8	E 295991.10	N 220832.78
	MW 9	E 295386.73	N 220813.52
	MW 10	E 295350.35	N 220867.70
	MW 11	E 295273.39	N220970.03
	MW 12	E 295229.74	N221064.09
	MW 13	E 295410.523	N 221257.164
	MW 14	E 295326.74	N 221324.20
	MW 15	E 295356.72	N 221336.43
< 	MW16	E 295213.03	N 221104.03
	MW 17	E 295419.95	N 220700.36
	MW 18	E 295229.74	N 221064.09
	MW 19	E 295517.39	N 220739.43
	MW 20	E 295705.04	N 220523.05
	MW 21	E 295825.96	N 220601.93
	LC 1	E 295265.28	N 221015.80
	LC 2	E 295305.42	N 220967.24
	LC 3	E 295335.25	N 220927.54
	LC 4	E 295384.66	N 220984.64
	Ш.2	E 296086.63	N 221047.88
	LT 1	E 296418.7	N 221296.3
	LT2	E 295437.6	N 221298.3
	LB	E 295398.21	N 221287.58
	L R	E 295392.12	N 221305.93
	LGW	E 295464.47	N 221289.16
	LC11	E 295495.14	N 221230.96
	LC12	E 295515.65	N 221248.90
	LC13	E 295532.33	N 221262.99
	LC14	E 295553.80	N 221278.69
	LC15	E 295571.44	N 221292.14
	LC 5	E 295414.46	N 220864.34
	LC 6	E 295445.43	N 220828.09
	LC 7	E 295477.38	N 220791.85
	LC 8	E 295540.25	N 220771.56
	LC 9	E 295581.50	N 220739.92
	LC 10 D 1	E 295612.95	N 220694.97 N 221374.1
	• D2	E 295802.1	N 221226.5
	D3	E 295851.64	N 220645.35
	D4	E 295382.02	N 220826.35
	D5	E 295210.65	N 221100.53
	D6	E 295266.45	N 220994.24
	N1A	E 295233.76	N 221389.39
	N2	E 295540.25	N 221335.84
	N3	E 295770.27	N 221249.01
	N4	E 295875.73	N 220645.70
	N5	E 295381.669	N 220828.90
	N6	E 295180.73	N 221100.36
	N7	E 295318.42	N 220918.37
	N8	E 295545.70	N 221427.91
	N9	E 295649.63	N 221307.51
	SW 1	E 294976.58	N 220897.13
	SW 2	E 295211.85	N 221088.47
	SW 3	E 294953.86	N 220941.98
	SW 4	E 296013.74	N 221904.46
	SW 5	E 295277.71	N 221100.36
	PREPARED BY J Smith	SURVE	•
HURSTOWN LANDFILL	CHECKED BY J Smith	DATE	sının just 2006.
	SCALES	1: 250	
tion of Monitoring Points	DRAWING NO.	VL03 -	14C

Appendix 2 Groundwater Contour Map

Appendix 3 Laboratory Reports

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Fourteen samples were received for analysis on 31st March, 2022 of which fourteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Ly Kn

Liza Klebe Project Co-ordinator

Please include all sections of this report if it is reproduced

Element Materials Technology

Client Name: Reference:	CDM Smith 22538 RGV2							Report : Liquid							
Location: Contact:	Arthurstov Laura Fol						Liquids/pr	oducts: V=	:40ml vial. G	alass bottl	le, P=plastic	bottle			
EMT Job No:	22/5208	- ,						Z=ZnAc, N=		-	o, i plaouo	Dottio			
EMT Sample No.	1-6	7-9	10-11	12-14	15-17	18-20	21-23	24-26	27-29	30-32					
Sample ID	LBAL	SW1	SW2	SW3	SW4	SW5	PW1	MW2	MW3	MW6					
Depth COC No / misc		N/A	Please see attached notes for all abbreviations and acronyms												
	V H N P BOD G	H P BOD	P BOD	H P BOD	H P BOD	H P BOD	VHP	VHP	VHP	VHP					
Sample Date	28/03/2022 10:00	28/03/2022 14:15	28/03/2022 14:00	28/03/2022 14:15	28/03/2022 15:30	28/03/2022 14:00	28/03/2022 15:00	28/03/2022 15:15	28/03/2022 12:00	28/03/2022 10:45					
Sample Type	Leachate	Surface Water	Ground Water	Ground Water	Ground Water	Ground Water		-							
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method		
Date of Receipt	31/03/2022	31/03/2022	31/03/2022	31/03/2022	31/03/2022	31/03/2022	31/03/2022	31/03/2022	31/03/2022	31/03/2022	LOD/LOIX	Onits	No.		
Total Phenols HPLC	<1.50 _{AA}	-	-	-	-	-	-	-	-	-	<0.15	mg/l	TM26/PM0		
E transfer													Th (170/Dh (0		
Fluoride	<0.3	-	-	-	-	-	-	-	-	-	<0.3	mg/l	TM173/PM0		
Sulphate as SO4	137.9	-	-	-	-	-	-	-	-	-	<0.5	mg/l	TM38/PM0		
Chloride	1071.2	-	-	-	-	-	-	-	-	-	<0.3	mg/l	TM38/PM0		
Chloride [#]	-	16.0	22.8	13.2	15.1	21.9	12.9	11.0	40.5	14.8	<0.3	mg/l	TM38/PM0		
Nitrate as N	1089.72	-	-	-	-	-	-	-	-	-	<0.05	mg/l	TM38/PM0		
Ortho Phosphate as P	11.77	-	-	-	-	-	-	-	-	-	<0.03	mg/l	TM38/PM0		
Total Cyanide	0.05	-	-	-	-	-	-	-	-	-	<0.01	mg/l	TM89/PM0		
Ammoniacal Nitrogen as N	0.24	-	-	-	-	-	-	-	-	-	<0.03	mg/l	TM38/PM0		
Ammoniacal Nitrogen as N [#]	-	<0.03	0.06	<0.03	0.05	0.04	<0.03	<0.03	<0.03	<0.03	<0.03	mg/l	TM38/PM0		
Total Alkalinity as CaCO3	172	-	-	-	-	-	-	-	-	-	<1	mg/l	TM75/PM0		
BOD (Settled)	33	-	-	-	-	-	-	-	-	-	<1	mg/l	TM58/PM0		
BOD (Settled) [#]	-	<1	2	<1	<1	<1	-	-	-	-	<1	mg/l	TM58/PM0		
COD (Settled)	844 AA	-	-	-	-	-	-	-	-	-	<7	mg/l	TM57/PM0		
COD (Settled) [#]	-	10	11	<7	<7	<7	-	-	-	-	<7	mg/l	TM57/PM0		
Electrical Conductivity @25C#	-	522	929	528	536	905	626	578	1300	672	<2	uS/cm	TM76/PM0		
Kjeldahl Nitrogen pH [#]	21.0	-	-	-	-	-	- 7.70	-	-	-	<0.5	mg/l	TM125/PM0 TM73/PM0		
рн Total Organic Carbon	- 311	8.15	7.75	8.22	8.29	7.73	7.72	7.76	7.23	7.48	<0.01 <2	pH units mg/l	TM73/PM0 TM60/PM0		
Total Organic Carbon [#]	-	-	-	-	-	-	<2	<2	<2	<2	<2	mg/l	TM60/PM0		
Total Suspended Solids	40	-	-	-	-	-	-	-	-	-	<10	mg/l	TM37/PM0		
Total Suspended Solids [#]	-	<10	21	<10	<10	<10	-	-	-	-	<10	mg/l	TM37/PM0		

Element Materials Technology

Client Name: Reference: Location:	CDM Smith 22538 RGV2 Arthurstown							Report : Liquid							
	Laura Fol						Liquids/pr	oducts: V=	40ml vial, G	=glass bottl	e, P=plastic	bottle			
EMT Job No:	22/5208	,						Z=ZnAc, N=		-	-,				
	00.05														
EMT Sample No.	33-35	36-38	39-41	42-44											
Sample ID	MW8	MW9	MW16	MW20											
Depth	N/A	N/A	N/A	N/A							Diagon on	e attached no	atao far all		
COC No / misc												ations and ac			
Containers	VHP	VHP	VHP	VHP											
Sample Date	28/03/2022 11:00	28/03/2022 12:30	28/03/2022 13:30	28/03/2022 10:15											
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water											
Batch Number	1	1	1	1											
											LOD/LOR	Units	Method No.		
Date of Receipt	31/03/2022	31/03/2022	31/03/2022	31/03/2022											
Total Phenols HPLC	-	-	-	-							<0.15	mg/l	TM26/PM0		
Fluoride	-	-	-	-							<0.3	mg/l	TM173/PM0		
Sulphate as SO4	-	-	-	-							<0.5	mg/l	TM38/PM0		
Chloride	-	-	-	-							<0.3	mg/l	TM38/PM0		
Chloride [#]	9.6	11.8	13.1	13.0							< 0.3	mg/l	TM38/PM0		
Nitrate as N	-	-	-	-							<0.05	mg/l	TM38/PM0		
Ortho Phosphate as P	-	-	-	-							<0.03	mg/l	TM38/PM0		
Table											.0.04		T1400/D140		
Total Cyanide	-	-	-	-							<0.01	mg/l	TM89/PM0		
Ammonianal Nites and as NI											-0.02		TM20/DM0		
Ammoniacal Nitrogen as N	-	-	-	-							< 0.03	mg/l	TM38/PM0		
Ammoniacal Nitrogen as N [#]	6.99	0.08	<0.03	0.03							<0.03	mg/l	TM38/PM0		
Total Alkalinity as CaCO3	-		_	-							<1	mg/l	TM75/PM0		
												iiig/i			
BOD (Settled)	-	-	-	-							<1	mg/l	TM58/PM0		
BOD (Settled) [#]	-	-	-	-							<1	mg/l	TM58/PM0		
COD (Settled)	-		-	-							<7	mg/l	TM57/PM0		
COD (Settled) [#]	-		-	-							<7	mg/l	TM57/PM0		
Electrical Conductivity @25C#	442	597	623	1286							<2	uS/cm	TM76/PM0		
Kjeldahl Nitrogen	-	-	-	-							<0.5	mg/l	TM125/PM0		
pH [#]	7.66	7.76	7.76	7.13							<0.01	pH units	TM73/PM0		
Total Organic Carbon	-	-	-	-							<2	mg/l	TM60/PM0		
Total Organic Carbon [#]	<2	<2	<2	<2							<2	mg/l	TM60/PM0		
Total Suspended Solids	-	-	-	-							<10	mg/l	TM37/PM0		
Total Suspended Solids [#]	-	-	-	-							<10	mg/l	TM37/PM0		

