

Section D.2: Assessment of Impact on Receiving Waters

Attachment D.2.1: Impact Assessment Report Attachment D.2.2: CLH Water Quality Modelling Report Attachment D.2.4: Priority Substance Assessment Report Attachment D.2.5: Map 25 Designated Areas Attachment D.2.6: Map 26 European Sites Attachment D.2.7: Ambient monitoring data and EPA TSAS report Attachment D.2.8: Qutfall Longitudinal Section

Appendix D.2.1: Impact Assessment Report

1. Introduction

This Report provides a summary of the Impact Assessments prepared to determine the impact of the discharges from the Cork Lower Harbour agglomeration (D0057) on the receiving waterbody, Cork Harbour (as well as tidally connected waterbodies including Outer Cork Harbour, Lough Mahon and North Channel Great Island) and associated designations, and also addresses the criteria as outlined in Section D.2 of the EPA guidance document.

The following agglomerations are to be amalgamated into one, which will be served by the Shanbally WwTP:

- D0054-1 Cobh
- D0057-01 Crosshaven, Carrigaline, Ringaskiddy •
- D0129-01 Passage/Monkstown
- D0436-01 Ringaskiddy Village •

The treated wastewater from the associated Shanbally WwTP is discharged into Cork Harbour, using an existing IDA owned long sea outfall, at Dognose Bank. The IDA outfall termination point at Dognose Bank is located within Cork Harbour, south-east of Ringaskiddy and West of Carlisle Fort.

Several large industrial companies operating under individual licences, discharge treated industrial wastewater directly to this IDA outfall, downstream of the Shanbally WwTP discharge. Their flows are not treated at the Shanbally WwTP and are not considered to be part of the collected load entering the Shanbally WwTP. For this reason, 2 sets of EVS are proposed, one set for the treated wastewater from the WwTP (SW100) and another set for the combined discharge from the IDA outfall at Dognose entorcopyright Bank (SW001).

2. Water Environment

The Primary discharge (SW001) from this IDA outfall is to the coastal waters of Cork Harbour, WFD Code IE_SW_060_0000. The WFD status (2013-2018) of the coastal water body in the vicinity of the discharge is classified as having 'moderate' (Cork Harbour) or 'good' (Outer Cork Harbour) water quality status. Cork Harbour WFD Risk Status is at Risk under Cycle 3 of the WFD.

The WFD status for Cork Harbour changed from Good (2010-2015) to Moderate (2013-2018) due to DO failure in 2018. The Cork Harbour waterbody trends for Ortho-P, DIN & Chlorophyll for 2013-2018 are Downwards (*i.e.*, decreasing concentrations). The table below shows the WFD quality status for the receiving waterbody (Cork Harbour) along with other waterbodies in the Overall Cork Harbour System for 2013-2018.

Waterbody Name	WFD Code	Waterbody Type	WFD Status (2013- 2018)
Cork Harbour	IW_SW_060_0000	Coastal	Moderate
Outer Cork Harbour	IE_SW_050_0000	Coastal	Good

Lough Mahon	IE_SW_060_0750	Transitional	Moderate
North Channel Great Island	IE_SW_060_0300	Transitional	Moderate
Owenboy Estuary	IE_SW_060_1200	Transitional	Unassigned
Owenacurra Estuary	IE_SW_060_0400	Transitional	Moderate

Cobh Agglomeration (D0054-01) was identified as a significant pressure on Cork Harbour under draft WFD Cycle 3 . In Sept 2021 collected loads from Cobh were connected to the Shanbally treatment plant. The Crosshaven-Carrigaline- Ringaskiddy agglomeration, now known as Cork Lower Harbour agglomeration (D0057) is not considered a significant pressure.

The ambient monitoring results are based on 2018-2020 EPA TSAS report. The EPA, as part of the TraC monitoring programme, conduct sampling at various locations in Cork Harbour.

monitoring programme, conduct sampling at various locations in Gork Harbour.								
	es and another and a various locations in cork harbour.							
	CORK HARBOUR			OUTER CORK HARBOUR				
	TSAS Threshold	Result	Pass/Fail	TSAS Threshold	Result	Pass/Fail		
Colinity (0/)	33.1 (Summer)			34 (Summer)				
Salinity (%)	31.0 (Winter)			33.1 (Winter)				
DIN- mg/l N (Summer median)	0.378	0.056	PASS	0.314	0.041	PASS		
DIN- mg/l N (Winter median)	0.506	0.421	PASS	0.378	0.223	PASS		
MRP (ug/I) (Summer median)	42	2.50	PASS	41	2.50	PASS		
MRP (ug/I) (Winter median)	44	26.0	PASS	42	16.0	PASS		
Chloro. Median	10.6	3.65	PASS	10.3	1.40	PASS		
Chloro 90 percentile	21.1	7.70	PASS	20.6	4.31	PASS		
DO%sat 5 percentile	79	94.93	PASS	79	93.35	PASS		

	CORK HARBOUR			OUTER CORK HARBOUR		
	TSAS Threshold Result Pass/Fail		Pass/Fail	TSAS Threshold	Result	Pass/Fail
DO%sat 95 percentile	121	129.5	FAIL	121	120.3	PASS
BOD	4	3.35	PASS	4	2.14	PASS

The 2018-2020 TSAS data indicates that the concentrations of dissolved inorganic nitrogen (DIN) were below the salinity based thresholds for Good status set by the European Communities Objectives (Surface Waters) Regulations, 2009, as amended. The median DIN winter concentration for the whole waterbody was below the threshold for Cork Harbour (0.421mg/l Vs 0.506mg/l) and Outer Cork Harbour (0.223mg/l Vs 0.378mg/l). As the primary discharge point is into a coastal waterbody, the Puppose only any other use EQS thresholds relating to BOD and MRP do not apply as they are only applicable to freshwater and transitional waterbodies.

3. **Appropriate Assessment Screening**

An Appropriate Assessment (AA) screening of the operational discharges from the Shanbally WwTP was prepared to inform this WWDL review process (see Attachment D.2.2). It assessed whether the discharge activity (*i.e.*, Primary Discharge & SWOs), alone or in combination with other plans and projects, are likely to have significant effects on a European Site(s) in view of best scientific knowledge and the conservation objectives of the site(s).

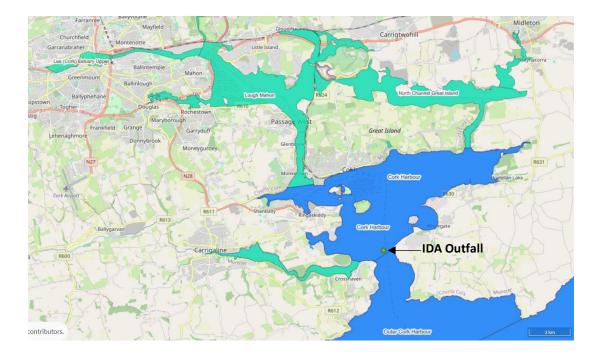
The nearest hydrologically connected designated site is Cork Harbour SPA. The nearest subsite of this SPA (i.e., Lough Beg) is located ca. 1.6 km from the discharge location. The nearest SAC is the Great Channel Island SAC (ca. 8 km from the discharge location) which stretches from Little Island to Midleton, with its southern boundary being formed by Great Island and is located ca. 8 km from the primary discharge location. Both Cork Harbour SPA and Great Channel Island SAC are within the potential zone of influence of Shanbally WwTP and the IDA outfall.

The wastewater primary discharge location or SWO discharge locations are not within the boundaries of any SAC or SPA; therefore, no direct impacts will occur through, for example, loss or modification of habitat areas, or the fragmentation of habitats. Similarly, there will be no significant disturbance to key habitats or species.

The Great Island Channel SAC is the only SAC within the potential zone of influence of the proposed activity. This SAC is located within the north-eastern extent of the Lough Mahon transitional waterbody. Given that the IDA outfall discharge will not impact the nutrient levels, and hence the trophic status, of Lough Mahon or North Channel Great Island, in which the SAC is situated, this will ensure that the integrity of the Great Island Channel SAC is not adversely impacted.

The resultant treated wastewater discharges from Shanbally WwTP and the IDA outfall at the proposed ELVs do not have the potential to impact the relevant qualifying interests identified, and therefore will not affect the conservation objectives of the Great Island Channel SAC, Cork Harbour SPA, Ballycotton Bay SPA, Ballymacoda SPA, Sovereign Islands SPA and Old Head of Kinsale SPA. Thus, likely significant effects on the qualifying interests of European sites are not anticipated.

The immediate WFD receiving waterbody is Cork Harbour, which is a coastal waterbody. The mixing zone for all parameters (Regulatory & Non-Regulatory), other than E.Coli, was not discernible, in other words the combined treated wastewater from the IDA outfall has mixed to a concentration lower than the target/ EQS threshold before reaching the surface, so there is effectively no mixing zone. This is primarily because the location of the IDA outfall benefits from high natural dilution and dispersion due to the relatively strong tidal currents and deep water (25 to 30m).


Aquatic sites beyond the receiving and adjoining waterbodies, due to the magnitude of dilution and dispersion present in outer coastal waters, have no potential to support connectivity. Likewise, terrestrial sites which do not interact with the receiving and adjoining waterbodies have no potential to support connectivity.

Thus, due to the assessment of the mixing zones for relevant parameters, the proposed emission limit values of 245 mg/l BOD and 95 mg/l DIN for the combined treated wastewater from the IDA outfall are compatible with the achievement of WFD objectives for the receiving waters.

On the basis of the information set out, and documentation referenced in the AA Screening Report (Attachment D.2.2), it can be excluded beyond reasonable scientific doubt, in view of best scientific knowledge, on the basis of objective information and in light of the conservation objectives of the relevant European sites, that the proposed activity, individually or in combination with other plans and projects, would be likely to have a significant effect on all other European sites. As a result, it is submitted that a Stage Two Appropriate Assessment is not required.

4. Marine Modelling Assessment Summary

The treated wastewater from the Shanbally WwTP, through the primary discharge outfall at Dognose Point SW001 (the IDA outfall), was modelled using a calibrated numerical model of Cork Harbour, covering the defined WFD waterbodies of Lough Mahon, Cork Harbour and Outer Cork Harbour & North Channel Great Island as shown in Figure 1. The model was used to evaluate the concentration of BOD, DIN, total ammonia, unionised ammonia, phosphate (as Molybdate Reactive Phosphorus (MRP)), *E.Coli* (EC) and Intestinal Enterococci (IE) within the immediate receiving water of Cork Harbour, as well as tidally connected waterbodies including Lough Mahon and North Channel Great Island. As the primary discharge point is into a coastal waterbody, the Ecological Quality Standard (EQS) thresholds relating to BOD, MRP and Total Ammonia do not apply as they are only applicable to freshwater and/or transitional waterbodies. For information purposes the modelling assessment also included an assessment of BOD and MRP impacts. Ammonia and unionised ammonia mixing plumes were also assessed to consider any possible eco-toxicological effects.

Figure 1 - Location of the IDA outfall (Primary Discharge) and WFD waterbodies.

The mixing zone for all parameters (Regulatory & Non-Regulatory), other than *E.Coli*, was not discernible, in other words the combined treated wastewater from the IDA outfall has mixed to a concentration lower than the target/ EQS threshold before reaching the surface, so there is effectively no mixing zone. This is primarily because the location of the IDA outfall benefits from high natural dilution and dispersion due to the relatively strong tidal currents and deep water (25 to 30m).

Thus, due to the assessment of the mixing 20nes for relevant parameters, the proposed emission limit values of 245 mg/l BOD and 95 mg/l DIN for the combined treated wastewater from the IDA outfall are compatible with the achievement of WFD objectives for the receiving waters.

Particle tracking was also undertaken to investigate the tidal excursion of flows discharged from the IDA outfall, as mass balance calculations showed that the Shanbally WwTP contributes a small but identifiable percentage of the total load of DIN to the overall harbour system, however this does not mean that the load is distributed throughout the harbour.

The particle tracks demonstrate that releases on the ebb tide travel outside the estuary, whilst releases on the flood tide travel into the estuary. However, the distance travelled into the estuary is limited to the Cork Harbour waterbody for the vast majority of tidal conditions. There is virtually no hydraulic connectivity between the combined discharge from the IDA outfall and the Lough Mahon waterbody or the North Channel Great Island. The exception to this is when discharges coincide with low water. For some intermediate tides there is limited tidal excursion from the IDA outfall to just inside the Lough Mahon boundary and similarly for some spring tides to Rostellan. For both cases, the connectivity exists only for short periods of time before the tide turns to take the water back out of these waterbodies.

Considering the specific tidal conditions required for discharges from the Shanbally WwTP to reach Lough Mahon and Rostellan, which occur for approximately 5% of the time, and given the strong effects of dilution and dispersion due to the favourable mixing conditions, there is extremely limited

scope for the transfer of nutrient loads from the combined treated wastewater from the IDA outfall to the Lough Mahon waterbody or the North Channel Great Island.

To further quantify any potential impact a detailed source apportionment exercise was undertaken using the numerical model. Three loading scenarios were considered for this exercise. The first scenario was the treated wastewater from Shanbally WwTP based on the existing treatment (DIN = 28.5mg/L) with proposed 80,000PE loading. The second was a hypothetical scenario with additional 3N treatment to reduce the concentration of ammonia, nitrate and nitrite in the effluent to comply with a theoretical Total Nitrogen ELV of 15mg/l at 80,000PE loading. This scenario was undertaken in response to the EPA position that 3N treatment may be required at Shanbally WwTP due to potential impacts on trophic status in Lough Mahon and the Great Island North Channel. The final scenario is treatment to comply with a proposed 45mg/L DIN ELV at 80,000PE loading from the WwTP.

The source apportionment analysis for winter DIN demonstrated that the Shanbally WwTP (at the proposed 45mg/l DIN) would have a negligible effect on overall DIN concentrations in Lough Mahon, owing to the relatively minor contributions made by the Shanbally WwTP in comparison to other sources, the limiting effects of tidal excursion and the favourable dilution and mixing conditions out the IDA outfall. Changes in modelled concentration are below limit of detection levels at the boundary of Lough Mahon. The relative DIN contributions from the Shanbally WwTP are shown to be less than 1% at all monitoring stations in Lough Mahon. Furthermore, the assessment demonstrates that the influence of the treated wastewater from the WwTP reduces with increasing distance from the IDA outfall.

The findings of the modelling assessment demonstrate that more stringent removal of nutrients (nitrogen) at the Shanbally WwTP to comply with a hypothetical UWWTD Article 5 TN standard of 15mg/L at 80,000PE loading would have no perceptible impact on the existing level of eutrophication in Lough Mahon or North Channel Great Island. Thus, the findings of the modelling assessment demonstrate that a 45mg/L DIN ELV from the WwTP at 80,000PE loadings is compatible with the achievement of WFD objectives for the receiving waters and would have no perceptible impact on the levels of eutrophication in Lough Mahon or North Channel Great Island.

The summarised findings and key conclusions of the modelling assessment were as follows:

- The treated wastewater from Shanbally WwTP contributes approximately 1% of the BOD annually to the whole Cork Harbour system. During summer it contributes ca. 15% of the DIN and during winter ca. 5% of the DIN to the whole Cork Harbour system. These findings are in line with previous modelling studies undertaken by Irish Water¹.
- 2. Evaluation of the mixing zones for all parameters determined that for all parameters the regulatory EQS is met at the surface and there is no discernible mixing zone due to the favourable mixing conditions at the IDA outfall.
- For unionised ammonia, the modelled 95%ile concentrations were below 0.021mg/l following vertical mixing. This is due to the fact that the location of the IDA outfall benefits from high natural dilution and dispersion due to the relatively strong tidal currents and deep water (25 to 30m).

¹ McGarrigle (2017). An Assessment of Nitrogen and Phosphorus Discharges from Shanbally Waste Water Treatment Plant to Cork Harbour.

- 4. Particle tracking demonstrated the discharge from the IDA outfall reaches the southern boundary of the Lough Mahon waterbody for very short periods of time, limited to discharges at low water under certain tidal conditions. These conditions occur ca. 5% of the time.
- 5. The findings of the modelling assessment demonstrate that the proposed ELVs at the Shanbally WwTP and the combined concentrations at the end of the IDA outfall pipe at Dognose Bank are compatible with the achievement of WFD objectives for the receiving waters.
- 6. The provision of more stringent removal of nitrogen from the Shanbally WwTP would have no perceptible effect on the level of eutrophication in Lough Mahon or the North Channel Great Island.
- 7. A 45mg/L DIN ELV is compatible with the achievement of WFD objectives of receiving waters and would have no perceptible effect on the level of eutrophication in Lough Mahon or North Channel Great Island.
- 8. The modelling assessment has demonstrated that the combined discharge will meet all interim and regulatory bacterial water quality targets and that the combined discharge is compatible with the achievement of WFD objectives for the Designated Shellfish Waters in both Rostellan and the North Channel and the Designated Bathing Waters at Fountainstown Beach.

5. Priority Substance Assessment

A desk top study Priority Assessment has been prepared to inform this WWDL review. This assessment is based only on loads to the WWTP and was carried by in line with the Guidance on the Screening for Priority Substances for Waste Water Discharge Licences, issued by the EPA.

Estimated data from the PRTR reporting too was used to inform this desktop assessment. The assessment considered the primary discharge relevant to Environmental Quality Standards (EQS) for priority substances in surface waters, as set out in the European Communities Environmental Objectives (Surface Waters) Regulations 2009, as amended (now S.I No. 77 of 2019).

It was concluded that none of the substances listed in the Specific Pollutants, Priority and Priority Hazardous Substances as outlined in the Surface Water Regulations, are likely to be present in the WwTP discharge at concentrations above the specified standards as per European Communities Environmental Objectives (Surface Waters) Regulations 2009, as amended (now S.I No. 77 of 2019).

This Report is contained in Attachment D.2.4: Priority Substance Assessment.

6. Shellfish Waters

There are 4 designated shellfisheries in Cork Harbour; the Cork Great Island North Channel; Rostellan West, Rostellan North, Rostellan South. Rostellan West is the nearest shellfish area to the primary discharge point, ca. 5.5 km north east of the primary discharge point.

There are no bacterial environmental quality standards for water quality set for the protection of Designated Shellfish Waters in Ireland. In the absence of a regulatory standard, Irish Water has applied an interim 95% ile E.Coli target of 500cfu/100ml (equivalent to Good Bathing Water Quality) to determine potential impacts from any primary wastewater discharge on Designated Shellfish Waters.

Following recent engagement with both EPA and Marine Institute, Irish Water is also currently piloting an interim geomean E.Coli target of 110 cfu/100ml for the protection of Designated Shellfish Waters.

For the purposes of this application, Designated Shellfish Waters at Rostellan and in the North Channel have been assessed against both interim targets. The modelling assessment report (Attachment D.2.1) has demonstrated that the combined discharge will meet all interim and regulatory bacterial water quality targets and that the combined discharge is compatible with the achievement of WFD objectives for the Designated Shellfish Waters in both Rostellan and the North Channel.

7. **Bathing Waters**

Fountainstown Beach is the only designated bathing beach within greater Cork Harbour and is located ca. 5.25 km south west of the primary discharge outfall. It has been classified as having "Excellent" water quality for the year 2020.

The Bathing Water Regulation's set out bacterial water quality standards which must be met at the boundary of Designated Bathing Waters. As the Designated Bathing Water at Fountainstown Beach is currently at Excellent Bathing Water Status, the regulations require the achievement of a 95% ile E.Coli standard of 250 cfu/100ml and a 95% ile Intestinal Enterococci standard of 100 cfu/100ml to ensure other Excellent Bathing Water Quality is maintained.

The modelling assessment report (Attachment D.2.1) has demonstrated that the combined discharge will meet all interim and regulatory bacterial water quality targets and that the combined discharge is compatible with the achievement of WFD objectives for the Designated Bathing Waters at Fountainstown Beach. Form

8. **Combined Approach**

onsent of copyright The Waste Water Discharge Authorisation under the European Union (Waste Water Discharge) Regulations 2007 to 2020, specify that a 'combined approach' in relation to licensing of waste water works must be taken, whereby the emission limits for the discharge are established on the basis of the stricter of either or both, the limits and controls required under the Urban Waste Water Treatment Regulations, 2001, as amended, and the limits determined under statute or Directive for the purpose of achieving the environmental objectives established for surface waters, groundwater or protected areas for the water body into which the discharge is made.

Irish Water has proposed two sets of Emission Limit Values, based on evidence and to comply with Urban Wastewater Treatment Regulations, 2001 and Environmental Objectives Surface Water Regulations 2009.

The proposed effluent standards from the new WwTP (SW100) and the ELVs proposed from of IDA outfall (primary discharge SW001), which have consideration for the combined industrial and treated municipal wastewater discharges, give effect to the principle of the Combined Approach as defined in Waste Water Discharge (Authorisation) Regulations, 2007 to 2020 in that the treated urban wastewater discharges ELVs from the WwTP will accommodate the requirements of the Urban Waste Water Regulations and the Water Framework Directive (WFD) e.g. the relevant status/designations of the receiving waterbody, while the ELVs for the combined discharge from the IDA outfall will accommodate the requirements of WFD.

9. **Compliance with Relevant National or EU Legislation**

As per Attachment B.6.1, the Shanbally WwTW has been designed to ensure that the emissions from the agglomeration will comply with, and will not result in the contravention of, EU Legislation and National Regulations.

The current WFD Ecological Status of Cork Harbour is Moderate and Chemical Status of Cork Harbour is Good. Regarding in-combination impacts and associated effects, it is envisaged that the improvement in the effluent discharges from the proposed Cork Lower Harbour Project, will have a positive impact on Cork Harbour in terms of assisting it achieve Good WFD Status for this coastal waterbody. Any improvement in the aquatic environment will have a beneficial impact on the water dependent qualifying features of the Cork Harbour SPA, Great Island Channel SAC and all other European sites within the zone of influence of the proposed activity.

10. **Cumulative and In Combination Effects**

The Appropriate Assessment Screening Report addresses combination effects. Refer to Attachments D.2.2.

11. Mixing zone or transitional areas of exceedance

only any other use. The mixing zone is defined as the area around the primary discharge point within which the concentration is above the regulatory EQS threshold for each parameter.

The mixing zone for all parameters (Regulatory & Non-Regulatory) other than E.Coli is not discernible, in other words the combined treated wastewater from the IDA outfall has mixed to a concentration lower than the target/EQS threshold before reaching the surface, so there is effectively no mixing zone. This is primarily because the location of the IDA Outfall benefits from high natural dilution and dispersion due to the relatively strong tidal currents and deep water (25 to 30m).

The only parameter with a discernible mixing plume on the surface is E.Coli for which the bacteria are dispersed within a few 100m of the discharge. (Note this is not a mixing zone, as no regulatory standard for bacteria is applicable in the immediate vicinity of the discharge)

This further demonstrates that the proposed emission limit values of 245 mg/l BOD and 95 mg/l DIN for the combined treated wastewater from the IDA outfall are compatible with the achievement of WFD objectives for the receiving waters.

Dilutions and retention times for lakes 12.

Not applicable. No discharges to lakes.

13. The impact of the discharges on any environmental media other than those into which the emissions are to be made

Not applicable. No other relevant media into which the emissions are to be made.

14. Groundwater Details

Not applicable. No discharge to ground waters.

15. High Status Waterbodies

No High Status waterbodies are downstream of the operational discharges.

16. Fresh Water Pearl Mussels

Not applicable. No Fresh Water Pearl Mussels within the region of the primary discharge point

17. For waste water treatment plants with coastal discharges, provide evidence that the end of the discharge pipe is below the mean spring tide low water line

Refer to **Attachment D.2.8** – IDA outfall Longsection which demonstrates that SW001 Outfall is below the mean spring tide low water line.

Consent of copyright owned required for any other use.

Title: Cork Lower Harbour Water Qaulity Modelling Report

Table of Contents

Contents

1.	Introduction	3
2.	Proposed ELVs for Shanbally WwTP and IDA Outfall	
3.	Mass Balance Calculation	4
4.	Numerical Model set-up and calibration	5
5.	Mixing zones	9
	5.1 Approach	9
	5.2 Results	10
	5.3 Conclusion	10
6.	Particle tracking	10
7.	Source Apportionment	
	7.1 Approach	12
	7.2 Scenario 1 – Existing Treatment levels @ 80,000PE	13
	7.2.1 Winter DIN at locations in Lough Mahon	13
	7.2.2 Winter DIN in North Channel Great Island	14
	7.3 Scenario 2 - Hypothetical 3N removal 2 80,000PE	14
	7.4 Scenario 3 – Proposed 45mg/L DIN ELV @ 80,000PE	15
	7.4.1 Winter DIN at locations in Lough Mahon	15
	7.4.2 Winter DIN in North Channel Great Island	16
	7.5 Conclusion	16
8.	 7.4.2 Winter DIN in North Channel Great Island 7.5 Conclusion	17
	Con	

Figures

Figure 1.1.	Location of the IDA outfall (Primary Discharge) and WFD waterbodies
Figure 4.1.	Model bathymetry showing the mesh (top) and bed levels (bottom)
Figure 4.2.	Model sources and receptors7
Figure 4.3.	Example of water level calibration showing good agreement between the model
and observe	d data8
Figure 5.1.	Example mixing plume plots for E. Coli for summer (left) and winter (right)10
Figure 6.1.	Summary of the particle tracks for a spring tide (top left), intermediate tide (top
right) and ne	ap tide (bottom left)11
Figure 7.1.	Locations of receptors points for source apportionment also showing the
locations of o	designated bathing waters (Fountainstown) and Designated Shellfish Waters
(pink outline)	

Tables

Table 2-1.	Summary of the proposed ELVs for Shanbally WwTP and combined discharge
from the ID	A Outfall4
Table 3-1.	Summary of daily mass balance calculation for summer and winter conditions5

Table 4-1 N	/lodelled industrial discharges (via IDA Outfall)	.9
	Nodelled industrial discharges (direct to receiving waters).	
Table 7-1.	Scenario 1 Winter DIN Contributions to Lough Mahon	.14
Table 7-2.	Scenario 1 Winter DIN Contributions to North Channel Great Island	.14
Table 7-3	Comparison of Scenario 1 and Scenario 2 Modelled Winter DIN	
Concentrat	ions	16
Table 7-4	Scenario 3 Winter DIN Contributions to Lough Mahon	17
Table 7-5	Scenario 3 Winter DIN Contributions to North Channel Great Island	17

Consent for inspection purpose only any other use.


1. Introduction

The treated effluent from the Shanbally WwTP through the primary discharge outfall at Dognose Point SW001 (herein referred to as the IDA Outfall) was modelled using a calibrated numerical model of Cork Harbour, covering the defined WFD waterbodies as shown in Figure 1.1.

The model simulated the primary discharges from all Irish Water agglomerations, fluvial discharges from significant rivers and other licensed industrial discharges for summer and winter seasons. The results were used to evaluate the likely impact, if any, of the combined discharge from the IDA Outfall, including both the treated effluent from the Shanbally WwTP and the treated licensed industrial effluent, on the water quality of Cork Harbour and the wider receiving waters.

This assessment included an assessment of any potential effects on Protected Areas, including Designated Shellfish Waters and Nutrient Sensitive Waters. In order to identify the potential impacts, mixing zones were delineated and source apportionment undertaken to quantify the relative contributions of individual sources.

The model was used to evaluate the concentration of BOD, DIN, total ammonia, unionised ammonia, phosphate (as MRP), *E.Coli* (EC) and Intestinal Enterococci (IE) within the immediate receiving water of Cork Harbour as well as tidally connected waterbodies including Lough Mahon and North Channel Great Island.

2. Proposed ELVs for Shanbally WwTP and IDA Outfall

The proposed ELVs for the Shanbally WwTP and the IDA outfall are summarised in Table 2-1. The proposed IDA outfall ELVs are based on the existing industrial discharge licenses

as determined previously by the EPA, combined with the proposed discharge from the Shanbally WwTP.

Further information on other modelled sources, including licensed industrial discharges is provided in Section 4 of this document.

Parameter	SW001 (S1) Shanbally WwTP	SW001 (S2) IDA Outfall
BOD (mg/l)	25	245
DIN (mg/l)	45	95
COD (mg/l)	125	NA
Suspended Solids (mg/l)	35	NA

Table 2-1.Summary of the proposed ELVs for Shanbally WwTP and combined
discharge from the IDA Outfall.

3. Mass Balance Calculation

As part of a Tiered Assessment into the potential trophic status impacts, each of the rivers and identified licensed discharges were reviewed to identify the discharge flow rate and concentration from each source, including the Shanbally WwTP contribution to the combined discharge from the IDA outfall. The resulting data was compiled to form a mass balance calculation for the summer and winter seasons, and to provide a high-level source apportionment to contextualise the relevant inputs which drive eutrophication.

This assessment is based on PE loading of 80,000 and Proposed ELVs at Shanbally WwTP.

This exercise has been carried out on the overall Cork Harbour system including inputs to the various estuaries, Lough Mabon, North Channel Great Island, Cork Harbour and Outer Cork Harbour collectively. For the purposes of this assessment the effects of tidal flushing are not considered.

Industrial discharges have been assessed based on maximum permitted loadings. Riverine inputs are based on values used in the numerical model which were based on seasonal analyses of EPA WFD Monitoring Data.

A summary of the findings from the mass balance calculation is shown in Table 3-1.

4

Table 3-1.	Summary of daily mass balance calculation for summer and winter
	conditions.

Discharge (m ³ /sec)	BOD	DIN
	<u>14,577</u>	<u>6,580</u>
7.44	11%	10%
0.17	15%	5%
1.63	25%	42%
0.34	49%	42%
	2.1%	36.6%
	1.05%	15.4%
	16 529	17.052
67.00		<u>17,952</u>
67.06	21%	67%
0.170	13%	2%
1.63	22%	15%
0.34	.43%	15%
in Noth	2.1%	36.6%
Solfor and	0.9%	5.6%
	(m ³ /sec) 7.44 0.17 1.63 0.34 67.06 0.170 1.63	(m³/sec) 14,577 7.44 11% 0.17 15% 1.63 25% 0.34 49% 2.1% 2.1% 1.05% 1.05% 67.06 21% 0.170 13% 1.63 22% 0.34 43%

*1: Excluding the Shanbally WwTP.

*2: Including the Shanbally WwTP @ 80,000PE at Proposed EWs with Average discharge flow (1.25DWF).

Numerical Model set up and calibration 4. Consent'

Model Development

The numerical model of Cork Harbour was developed in accordance with the Irish Water Technical Standard¹. The model was developed as part of the Whitegate-Aghada project using MIKE21 and used the best available bathymetry data, including survey data from spring 2018. The resulting bathymetry is shown in Figure 4.1.

Water levels and current speed and direction were measured for a neap tide (8th April 2018) and a spring tide (29th April 2018) at the proposed new Whitegate-Aghada discharge location in White Bay. Additionally, drogues were deployed throughout the tidal cycle within the bay.

Tidal levels were obtained from the Port of Cork for two stations: Tivoli and Ringaskiddy.

The model was calibrated against water levels at three locations (Tivoli, Ringaskiddy and White Bay) and current speed and direction at White Bay. An example of the water level calibration for a neap tide is shown in Figure 4.3. Validation of the model was undertaken by comparing the model with drogue tracks and the current speed and direction measurements at the outfall location.

¹ The project started prior to the issue of the technical standard in March 2020. The project has however adhered to the draft standard applicable at the start of the project and model outputs been updated to comply with the requirements of the current standard (Irish Water, 2020, "Technical Standards: Marine Modelling", IW-TEC-100-015).

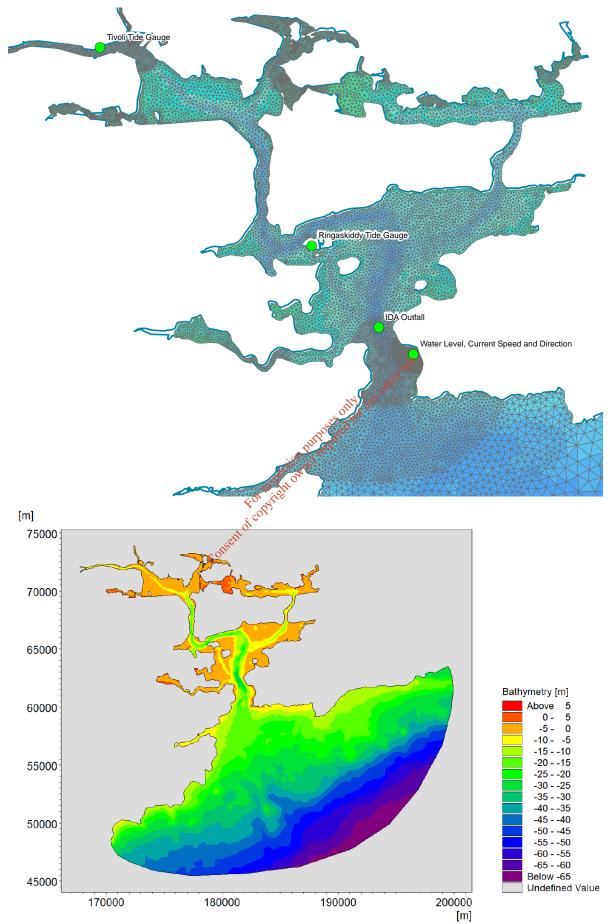


Figure 4.1. Model bathymetry showing the mesh (top) and bed levels (bottom).

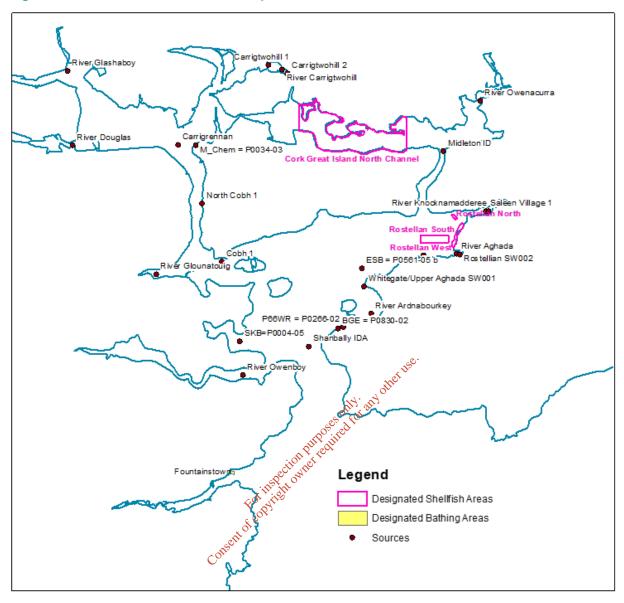
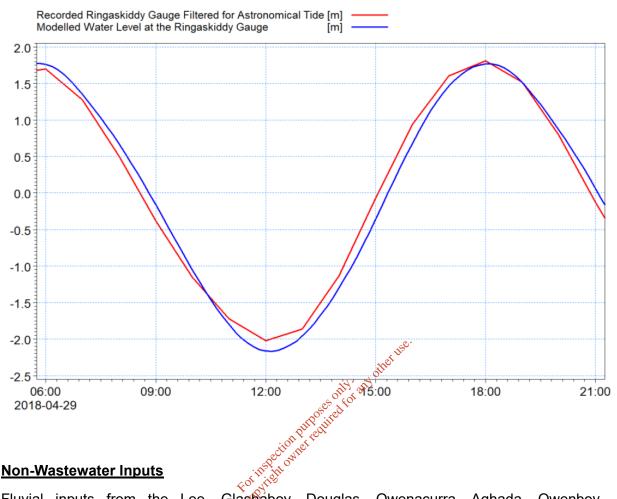



Figure 4.2. Model sources and receptors.

7

Figure 4.3. Example of water level calibration showing good agreement between the model and observed data.

Non-Wastewater Inputs

Fluvial inputs from the Lee, Glashaboy, Douglas, Owenacurra, Aghada, Owenboy, Ardnabourkey, Knocknamadderee, Carrigtwohill and Glounatouig Rivers were included in the model as shown in Figure 4-2.

Seasonal flow inputs to the model were determined using suitable hydrological estimation techniques using gauged data and donor gauge transposition as appropriate. Mean flows were used for winter simulations and 95% ile lows flows were used for summer simulations. Seasonal riverine input concentrations were determined from EPA WFD Monitoring Data from 2016-2020.

Licensed industrial loads were included in the modelling exercise, including discharges both within the IDA Outfall pipe (Table 4-1) and those discharging directly to the harbour system (Table 4-2). These inputs were modelled at maximum permitted loadings.

	Novartis P0006-04	Hov_Pfiz P0010-04	Pfizer P0013-05	Recordati P0476-02	Centocor_ Janss P0778-02	Du Puy WP S 14-04	Du Puy WP S 09-13 bis
Discharge (m ³ /sec)	0.01042	0.02083	0.03356	0.00116	0.00926	0.00116	0.00116
BOD (mg/l)	250	2,000	888	300	40	667	667
DIN (mg/l)	70	100	500	100	50	75	35

Table 4-1. Modelled industrial discharges (via IDA Outfall)

8

	SKB P0004-05	ESB P0561-05 b	P66WR P0266-02	BGE P0830-02	M_Chem P0034-03
BOD (mg/l)	300	0	150	20	20
DIN (mg/l)	25	10	25	5	15

Table 4-2. Modelled industrial discharges (direct to receiving waters).

5. Mixing zones

5.1 Approach

The model was used to investigate the dispersion of the combined treated effluent plume from the IDA Outfall and identify the size of the mixing zones for each relevant parameter and to establish the relative contribution of the treated effluent to the water quality in the Nutrient Sensitive Areas and Designated Shellfish Waters in the vicinity of the discharge.

The mixing zone is defined as the area around the primary discharge point within which the concentration is above the regulatory EQS threshold for each parameter.

The immediate WFD receiving water is Cork Harbour which is a coastal waterbody. The applicable environmental quality standard (EQS) is DIN and is calculated on a seasonal, salinity adjusted basis as prescribed in the Surface Water Regulations (As Amended).

Based on 2018-2020 EPA monitoring data the median DIN EQS thresholds for Cork Harbour have been calculated as:

- Winter DIN 0.506mg/L (based on median winter salinity of 31.0psu)
- Summer DIN 0.378mg/L (based on median summer salinity of 33.1psu)

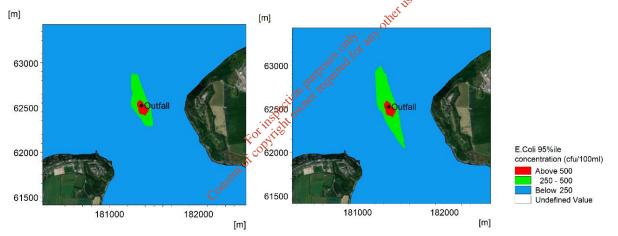
As the primary discharge point is into a coastal waterbody, the EQS thresholds relating to BOD and MRP do not apply as they are only applicable to freshwater and transitional waterbodies. However, for information purposes the modelling assessment included an assessment of BOD and MRP impacts.

Furthermore, Irish Water have also assessed the ammonia and unionised ammonia mixing plumes to consider any possible eco-toxicological effects.

Regarding Protected Areas, the Bathing Water Regulation's set out bacterial water quality standards which must be met at the boundary of Designated Bathing Waters. As the Designated Bathing Water at Fountainstown Beach is currently at Excellent Bathing Water Status, the regulations require the achievement of a 95%ile *E.Coli* standard of 250 cfu/100ml and a 95%ile Intestinal Enterococci standard of 100 cfu/100ml to ensure Excellent Bathing Water Quality is maintained.

There are no bacterial environmental quality standards for water quality set for the protection of Designated Shellfish Waters in Ireland. In the absence of a regulatory standard, Irish Water has applied an interim 95% *E.Coli* target of 500cfu/100ml (equivalent to Good Bathing Water Quality) to determine potential impacts from any primary wastewater discharge on Designated Shellfish Waters. Following recent engagement with both EPA and Marine Institute, Irish Water is also currently piloting an interim geomean *E.Coli* target of 110 cfu/100ml for the protection of Designated Shellfish Waters.

For the purposes of this study, Designated Shellfish Waters at Rostellan and in the North Channel have been assessed against both interim targets.


5.2 Results

The mixing zone for all parameters (Regulatory & Non-Regulatory) other than *E.Coli* is not discernible, in other words the combined treated effluent from the IDA outfall has mixed to a concentration lower than the target/EQS threshold before reaching the surface, so there is effectively no mixing zone. This is primarily because the location of the IDA Outfall benefits from high natural dilution and dispersion due to the relatively strong tidal currents and deep water (25 to 30m).

The mixing plume for *E.Coli*, and the absolute concentration of *E. Coli* are shown in Figure 5.1 (only the red area exceeds the bathing water quality threshold, the green area is below the threshold). There are no Designated Shellfish Waters or Designated Bathing Waters within the area shown on the plots as the nearest receptors (Fountainstown Beach and Rostellan Shellfish Waters) are further away from the IDA Outfall and outside the mixing plume.

The figure shows that the mixing plume width is only 100m, significantly less than 25% of the estuary width (approximately 1.2km) and limited to approximately 200m in length up and downstream of the outfall.

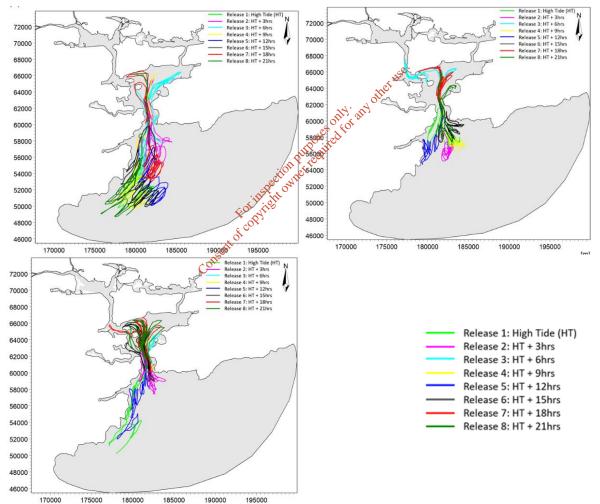
Note this is not a mixing zone, as no regulatory standard for bacteria is applicable in the immediate vicinity of the discharge.

5.3 Conclusion

The mixing zones of all parameters have been assessed and it has been determined that the effect of the combined discharge from the IDA Outfall at the proposed ELVs in Table 2-1 does not present a risk to sensitive receptors within the harbour.

The only parameter with a discernible mixing plume on the surface is *E.Coli* for which the bacteria are dispersed within a few 100m of the discharge.

The proposed emission limit values of 245 mg/l BOD and 95 mg/l DIN for the combined treated effluent from the IDA outfall are compatible with the achievement of WFD objectives for the receiving waters.


6. Particle tracking

The mass balance calculation in Section 3 has shown that the Shanbally WwTP contributes a small but identifiable percentage of the total load of DIN to the overall harbour system, however this does not mean that the load is distributed throughout the harbour. Particle

tracking has been undertaken to investigate the tidal excursion of flows discharged from the IDA outfall.

The particle tracks demonstrate that releases on the ebb tide travel outside the estuary, whilst releases on the flood tide travel into the estuary. However, the distance travelled into the estuary is limited to the Cork Harbour waterbody for the vast majority of tidal conditions. There is virtually no hydraulic connectivity between the combined discharge from the IDA Outfall and Lough Mahon or the North Channel Great Island. The exception to this is when discharges coincide with low water. For some intermediate tides there is limited tidal excursion from the IDA outfall to just inside the Lough Mahon boundary and similarly for some spring tides to the Rostellan shellfisheries. For both cases the connectivity exists only for short periods of time before the tide turns to take the water back out of these waterbodies.

A summary of the tracks for particles released every three hours over a spring and a neap tide are shown in Figure 6.1.

Figure 6.1. Summary of the particle tracks for a spring tide (top left), intermediate tide (top right) and neap tide (bottom left).

Considering the specific tidal conditions required for discharges from the Shanbally WwTP to reach Lough Mahon and Rostellan occur for approximately 5% of the time, and given the strong effects of dilution and dispersion due to the favourable mixing conditions, there is extremely limited scope for the transfer of nutrient loads from the combined treated effluent from the IDA Outfall to Lough Mahon or the North Channel Great Island.

11

7. Source Apportionment

7.1 Approach

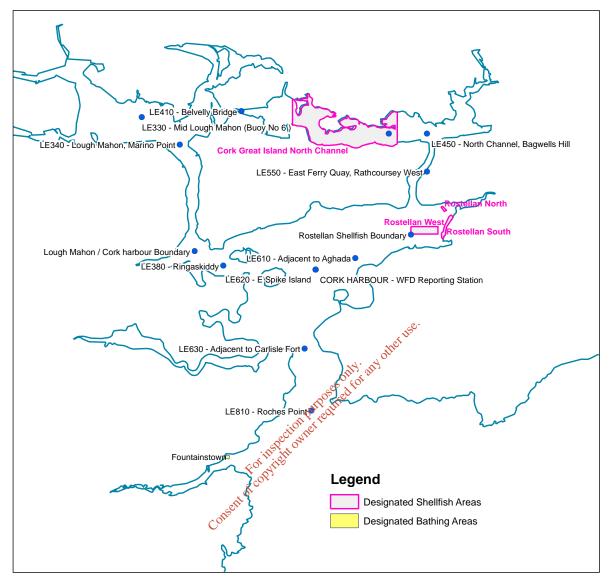
To further quantify any potential impact a detailed source apportionment exercise was undertaken using the numerical model and the results of this are presented below.

The model was used to quantify the load at each receptor point within model and attribute the relative contribution to each load source. The locations of the sources and receptors are shown in **Error! Reference source not found.**Figure 4.2 and Figure 7.1**Error! Reference source not found.**

This was carried out by modelling each source individually for the same time period and using the principle of superposition to sum the resultant concentrations.

The exercise is focussed on Winter DIN as the TSAS contaminant of concern for the Shanbally WwTP as previously identified by the EPA².

The source apportionment data has been analysed to provide information on the source of Winter DIN in Lough Mahon and North Channel Great Island areas.


Three loading scenarios were considered for source apportionment exercise. The first is the effluent from Shanbally WwTP based on the existing treatment (DIN = 28.5mg/L) with proposed 80 000PE loading.

The second is a hypothetical scenario with additional 3N treatment to reduce the concentration of ammonia, nitrate and nitrite in the effluent to comply with a theoretical Total Nitrogen ELV of 15mg/l at 80,000PE loading. This scenario has been undertaken in response to the EPA position that 3N treatment may be required at Shanbally WwTP due to potential impacts on Trophic Status in Lough Mahon and Great Island North Channel.

The final scenario modelled was a proposed revision to 45mg/L DIN ELV at 80,000PE loading.

² EPA, 2016, "Review of nutrient sensitive areas (freshwater and marine) as required by the Urban Waste Water Treatment Directive (91/271/EEC)".

Figure 7.1. Locations of receptors points for source apportionment also showing the locations of designated bathing waters (Fountainstown) and Designated Shellfish Waters (pink outline).

7.2 Scenario 1 – Existing Treatment levels @ 80,000PE

7.2.1 Winter DIN at locations in Lough Mahon

The source apportionment analysis for the first DIN scenario in Lough Mahon is shown in Table 7-1.

The source apportionment confirms that at the current treatment level (28.5mg/L) at 80,000PE loading the Shanbally WwTP discharge would be responsible for ca. 0.6% of the modelled concentration at the Lough Mahon/Cork Harbour Boundary. The contributions from the Shanbally WwTP are at, or below, limit of detection levels. At LE330 Mid Lough Mahon no contribution is modelled. This is consistent with the findings of the particle tracking which show that discharges from the IDA outfall rarely reach Lough Mahon.

The relative contribution reduces with increasing distance from the IDA outfall as demonstrated in Table 7-1

13

	Lough Mahon Boundary	LE 340 Lough Mahon, Marino Point	LE330 Mid Lough Mahon (Buoy No.6)
Modelled Median Concentration [mg/l]	0.5742	1.0284	1.289
Modelled contribution from Shanbally WwTP [mg/l]	0.0033	0.0007	0.000
% load contribution at each monitoring point from Shanbally WwTP	0.58%	0.06%	0 %

Table 7-1. Scenario 1 Winter DIN Contributions to Lough Mahon.

7.2.2 Winter DIN in North Channel Great Island

The source apportionment analysis for the first DIN scenario in the North Channel Great Island waterbody is shown in Table 7-2. This exercise demonstrates that Shanbally WwTP would contribute a very small proportion of the DIN in the North Channel Great Island waterbody with less than 0.52% of the total Winter DIN load coming from Shanbally WwTP under 80,000PE loading conditions. The absolute contributions from the Shanbally WwTP are at, or below, limit of detection levels.

	LE 410	LE450 North	LE440 North	LE420 North	LE540 North
	Belvelly	Channel	Channel, Red	Channel West	Channel East
	Bridge (North	Bagwells Hill	Shed		
	Channel Great	N HI TEN			
	Island) 🎽	.0231			
Modelled Median	1.0762 01	0.3151	0.3505	0.4433	0.4014
Concentration [mg/l]	COLSC				
Modelled contribution	0.0003	0.0016	0.0008	0.0004	0.0006
from Shanbally WwTP					
[mg/l]					
% load contribution at	0.03%	0.52%	0.23%	0.1%	0.16%
each monitoring point					
from Shanbally WwTP					

Table 7-2. Scenario 1 Winter DIN Contributions for North Channel Great Island.

7.3 Scenario 2 - Hypothetical 3N removal @ 80,000PE

The source apportionment has been re-run using revised discharge concentrations for the IDA outfall to account for a hypothetical 3N removal scenario.

A comparison of the modelled concentrations is presented in Table 7-3 which shows that the maximum improvement in the modelled concentration of Winter DIN as a result of 3N treatment at Shanbally WWTP is 0.0031mg/l which occurs at the boundary between Lough Mahon and Cork Harbour waterbodies. This modelled improvement is below the laboratory limit of detection for DIN.

	Lough Mahon Boundary	LE 340 Lough Mahon, Marino Point	LE330 Mid Lough Mahon (Buoy No.6)	LE 410 Belvelly Bridge (North Channel Great Island)
Modelled Median Concentration (Existing Treatment)	0.5742	1.0284	1.289	1.0762
Modelled Median Concentration (3N Treatment)	0.5711	1.0278	1.289	1.0759
Absolute Improvement (mg/L)	0.0031	0.006	0	0.0003

Table 7-3.Comparison of Scenario 1 and Scenario 2 Modelled Winter DIN
Concentrations

7.4 Scenario 3 – Proposed 45mg/L DIN ELV @ 80,000PE

7.4.1 Winter DIN at locations in Lough Mahon

The source apportionment has been re-calculated using revised discharge concentrations for the IDA outfall to account for a proposed DIN ELV of 45mg/L at 80,000PE. The impact of this is set out below.

This loading scenario demonstrated that effect of this proposed increase in DIN ELV at Shanbally WwTP to 45mg/L would have a neoligible effect on overall DIN concentrations in Lough Mahon, owing to the relatively minor contributions made by the Shanbally WwTP in comparison to other sources, the limiting effects of tidal excursion and the favourable dilution and mixing conditions out the IDA outfall.

Changes in modelled concentration are below limit of detection levels at the boundary of Lough Mahon.

The relative DIN contributions from Shanbally WwTP are shown below in Table 7-4 and are shown to be less than 1% at all monitoring stations in Lough Mahon. Furthermore, the table demonstrates that the influence of the treatment plant reduces with increasing distance from the IDA outfall.

	Lough Mahon Boundary	LE 340 Lough Mahon, Marino Point	LE330 Mid Lough Mahon (Buoy No.6)
Modelled Median Concentration [mg/l]	0.5741	1.0284	1.289
Modelled contribution from Shanbally WwTP [mg/l]	0.0045	0.0009	0.000
% load contribution at each monitoring point from Shanbally WwTP	0.79%	0.09%	0 %

Table 7-4. Scenario 3 Winter DIN Contributions to Lough Mahon.

7.4.2 Winter DIN in North Channel Great Island

The same analysis has been carried out to determine the impact of a 45mg/L DIN discharge at Shanbally WwTP.

This exercise demonstrates that Shanbally WwTP would contribute a very small proportion of the DIN in the North Channel Great Island waterbody with less than 0.7% of the total Winter DIN load coming from Shanbally WwTP at 80,000PE

The absolute contributions from the Shanbally WwTR are at, or below, limit of detection levels as per Table 7-5.

	LE 410 Belvelly Bridge (North Channel Great Island	LC450 North	LE440 North Channel, Red Shed	LE420 North Channel West	LE540 North Channel East
Modelled Median Concentration [mg/l]	1.0762	0.315	0.3505	0.4433	0.4014
Modelled contribution from Shanbally WwTP [mg/l]	0.0005	0.0022	0.0011	0.0006	0.0009
% load contribution at each monitoring point from Shanbally WwTP	0.044%	0.7%	0.31%	0.13%	0.22%

Table 7-5. Scenario 3 Winter DIN Contributions to North Channel Great Island.

7.5 Conclusion

The source apportionment for winter DIN has demonstrated that the Shanbally WwTP is not capable of having any perceptible impact on the trophic status of Lough Mahon or North Channel Great Island waterbodies, with modelled median contributions from the Shanbally WwTP being at or below limit of detection levels for DIN at WFD monitoring points.

This is a result of the favourable dilution and dispersion characteristics of the IDA outfall location, and the very limited hydraulic connectivity between the IDA Outfall location and Lough Mahon/North Channel Great Island as demonstrated in Section 6 and the relatively

minor contribution of Winter DIN load in the context of the overall harbour as demonstrated in Section 3.

The findings of the modelling assessment demonstrate that more stringent removal of nutrients (nitrogen) at the Shanbally WwTP to comply with a hypothetical UWWTD Article 5 TN standard of 15mg/L at 80,000PE loading would have no perceptible impact on the existing level of eutrophication in Lough Mahon or North Channel Great Island.

The findings of the modelling assessment demonstrate that a 45mg/L DIN discharge at 80,000PE is compatible with the achievement of WFD objectives for the receiving waters and would have no perceptible impact on the levels of eutrophication in Lough Mahon or North Channel Great Island.

8. Conclusion

The potential impact of the effluent from the Shanbally WwTP discharged through the IDA outfall has been evaluated using a simple mass balance approach and a calibrated numerical model of the hydrodynamics and water quality of Cork Harbour.

The proposed ELV values for concentrations of BOD and DIN and the estimated discharge concentrations of total ammonia, unionised ammonia as MRP *E.Coli* and Intestinal Enterococci have been simulated to identify the dispersion of the effluent in the receiving waters.

Particle tracking has been undertaken to demonstrate the limited connectivity between the IDA Outfall and Nutrient Sensitive Waters.

The relative contribution of Winter DIN from the Shanbally WwTP to the nutrient sensitive waterbodies of Lough Mahon and North Changel Great Island has been determined through source apportionment assessments.

Key conclusions of the studies are: 5

- The Shanbally WwTP at the proposed ELVs contributes approximately 1% of the BOD annually to the whole cork harbour system. During summer it contributes ca. 15% of the DIN and during winter ca. 5% of the DIN to the whole cork harbour system. These findings are in line with previous modelling studies undertaken by Irish Water³
- 2. Evaluation of the mixing zones for all parameters determined that for all parameters the regulatory EQS is met at the surface and there is no discernible mixing zone due to the favourable mixing conditions at the outfall.
- 3. For unionised ammonia, the modelled 95%ile concentrations were below 0.021mg/l following vertical mixing. This is due to the fact that the location of the IDA Outfall benefits from high natural dilution and dispersion due to the relatively strong tidal currents and deep water (25 to 30m).
- 4. Particle tracking demonstrated that the discharge from the IDA outfall reaches the southern boundary of Lough Mahon for very short periods of time limited to discharges at low water under certain tidal conditions. These conditions occur ca. 5% of the time.
- 5. The findings of the modelling assessment demonstrate that the proposed ELVs at the WwTP and the combined concentrations at the end of the IDA outfall pipe are compatible with the achievement of WFD objectives for the receiving waters.

³ An Assessment of Nitrogen and Phosphorus Discharges from Shanbally Waste Water Treatment Plant to Cork Harbour, Martin McGarrigle, Limnos Consultancy, March 2017.

- 6. The provision of more stringent removal of nitrogen from the Shanbally WwTP would have no perceptible effect on the level of eutrophication in Lough Mahon or North Channel Great Island.
- 7. A 45mg/L DIN ELV is compatible with the achievement of WFD objectives of receiving waters and would have no perceptible effect on the level of eutrophication in Lough Mahon or North Channel Great Island.
- 8. The modelling assessment has demonstrated that the combined discharge will meet all interim and regulatory bacterial water quality targets and that the combined discharge is compatible with the achievement of WFD objectives for the Designated Shellfish Waters in both Rostellan and the North Channel and the Designated Bathing Waters at Fountainstown Beach.

Consent of copyright owned required for any other use.

Priority Substances Assessment

Agglomeration Name:	Cork Lower Harbour
Licence Register No.	D0057-01

Table of Contents

Introduction	1
Desktop Study	1
Assessment of Analysis Required	1
Review Outcome of Desktop Study	9
Assessment of Significance and Recommendations	9
	Desktop Study Assessment of Analysis Required Review Outcome of Desktop Study

- Appendix 1 Electronic PRTR Toolset Data
- **Appendix 2 Priority Substance Screening Flowchart**
- Appendix 3 Receiving Waters Priority Substance Data

Consent of copyright owner required for any other use.

1 Introduction

The Cork Lower Harbour Main Drainage Project is a Project for the provision of collection systems and wastewater treatment facilities in the Cork Lower Harbour area. This Project includes transferring the collected wastewater from Cobh (D0054-01), Passage West/Monkstown (including Glenbrook) (D0129-01) and Ringaskiddy Village (including Shanbally and Coolmore) (D0436-01) to the Cork Lower Harbour agglomeration (D0057-01). The Project involves upgrading the existing sewerage network infrastructure together with the provision of a secondary Wastewater Treatment Plant (Cork Lower Harbour (LH) WwTP) (operational since December 2016) at a site located to the east of Carrigaline near the townland of Shanbally.

A review of the D0057-01 Crosshaven, Carrigaline, Ringaskiddy (now known as Cork Lower Harbour) licence is required in order to amalgamate the above-mentioned agglomerations into one agglomeration which will be served by the Shanbally WwTP (Shanbally WwTP). Once amalgamated into D0057-01, licences D0054-01, D0129-01 and D0436-01 can be revoked.

This report has been prepared for D0057-01, Cork Lower Harbour to inform the review application of the wastewater discharge licence for the revised agglomeration.

This desk top study has been undertaken to determine the necessity; if any, for further analysis of the discharge based on the Guidance on the Screening for Priority Substances for Waste Water Discharge Licences, issued by the EPA. Relevant inputs to the Shanbally WwTP and estimates of emissions from the discharge point have been taken into account in the preparation of this report.

Details of emissions data available for the discharge from the EPA PRTR electronic tool and the impact on the receiving water are included in Appendix 1. The Shanbally WwTP details were input into the electronic toolset (i.e. >50,000 p.e., no saline intrusion, secondary treatment – other, no nutrient removal) to generate wastewater emission estimates in the absence of measured data. Consent

2 **Desktop Study**

2.1 Assessment of Analysis Required

A. Review of all industrial inputs into WWTP

A review of the GeoDirectory and all EPA licensed facilities was undertaken to determine the nondomestic discharge types which are being discharged to the Shanbally WwTP. The IW Technical Assessment Manual Sectoral Profile Data was reviewed to determine the potential dangerous substances which would be released to sewer from the identified industries. The unlicensed industrial or trade effluent discharges, leachate discharges and other imports are included in Table 2.1 below. "Other Imports" includes for any non-domestic imports to the WwTP. Table 2.2 below, lists the single EPA licenced non-domestic discharge which is treated at the Shanbally WwTP, P0064 – BioMarin International Ltd, contributing a measured PE of approximately 482. There are also 5 Section 16 licenced industries discharging to the Shanbally WwTP, contributing a total measured PE load of approx. 603 PE (max ca. 250PE from one S16 Facility). Due to the built-up nature of the study zone it is considered that the Priority Substances which are possibly being emitted to sewer have been well represented in this partial characterisation of the wastewater (Table 2.1).

Type of Industry within the Agglomeration	Potential Source of Dangerous / Priority Substances (Yes / No)	Dangerous / Priority Substances Monitoring Undertaken (Yes / No)	List of Potential Dangerous Substances Based on Industry Type (Source: <i>Technical</i> Assessment Manual - Sectoral Profile Data)
Manufacture of food products and beverages	Yes	Unknown	Lead and its compounds Nickel and its compounds Cadmium and its compounds Mercury and its compounds Chromium (III) Copper Zinc
Production, processing and preserving of meat and meat products	Yes	Unknowned for an other use.	Naphthalene Trichloroethylene Cadmium and its compounds Hexachlorocylohexane (Lindane) Chromium (VI) Cypermethrin Toluene Xylenes (Total)
Manufacture of wood and wood products	Yes	Unknown	Fluoranthene Lead and its compounds Naphthalene Pentachlorophenol Trichlorobenzene (all isomers) Anthracene Cadmium and its compounds Endosulfan Hexachlorocylohexane (Lindane) Mercury and its compounds Pentachloro-benzene Polyaromatic Hydrocarbon (PAH) Tributyltin Arsenic

Type of Industry within the Agglomeration	Potential Source of Dangerous / Priority Substances (Yes / No)	Dangerous / Priority Substances Monitoring Undertaken (Yes / No)	List of Potential Dangerous Substances Based on Industry Type (Source: <i>Technical</i> <i>Assessment Manual</i> - <i>Sectoral Profile Data</i>)
			Chromium (III)
			Chromium (VI)
			Copper
			Phenol
			Toluene
			Xylenes (Total)
			Zinc
			Pentachlorophenol
		use.	Dieldrin
		atter	Hexachlorocylohexane (Lindane)
Sawmilling and planing of wood;	Yes	Unknown M. M	Polyaromatic Hydrocarbon (PAH)
impregnation of wood	res	Unknown St Ato	Arsenic
		Unknown only any other use.	Chromium (III)
		on purely	Cypermethrin
		Unknown ottora	Copper
		tight C	Alachlor
	ALC AND A A		Atrazine
	Consent of con		Benzene
	TSelle	Chlorpyrifos	Chlorpyrifos
	Cor		1,2-Dichloroethane
			Dichloromethane
Manufacture of chemicals and			Di (2-ethylhexyl) phthalate (DEHP)
chemical products	Yes	Unknown	Diuron
chemical products			Fluoranthene
			Isoproturon
			Lead and its compounds
			Naphthalene
			Nickel and its compounds
			Octylphenols
			Pentachlorophenol

Type of Industry within the Agglomeration	Potential Source of Dangerous / Priority Substances (Yes / No)	Dangerous / Priority Substances Monitoring Undertaken (Yes / No)	List of Potential Dangerous Substances Based on Industry Type (Source: <i>Technical</i> Assessment Manual - Sectoral Profile Data)
	Consent for	Poetion purpose only: and other use.	(benzo-a-pyrene) Simazine Trichlorobenzene (all isomers) Trichloromethane Trifluarin Anthracene Pentabromodiphenlyether Cadmium and its compounds C10-13-Chloralkanes Hexachlorobenzene Hexachlorobenzene Hexachlorocylohexane (Lindane) Mercury and its compounds Nonylphenols Polyaromatic Hydrocarbon (PAH) Arsenic Chromium (III) Copper Cyanide Dimethoate Fluoride Glyphosate Mecoprop Phenol Toluene Xylenes (Total)
Manufacture of machinery and equipment n.e.c.	Yes	Unknown	Dichloromethane Lead and its compounds Nickel and its compounds

Type of Industry within the Agglomeration	Potential Source of Dangerous / Priority Substances (Yes / No)	Dangerous / Priority Substances Monitoring Undertaken (Yes / No)	List of Potential Dangerous Substances Based on Industry Type (Source: <i>Technical</i> Assessment Manual - Sectoral Profile Data)
			Chromium (III)
			Copper
			Toluene
			Xylenes (Total)
			Zinc
			Benzene
Building and repairing of ships			Lead and its compounds
			Nickel and its compounds
		use.	Carbontetrachloride
		atter	Tetrachloroethylene
	Yes	Unknows only any other use. Unknows only any other use.	Cadmium and its compounds
			Mercury and its compounds
			Polyaromatic Hydrocarbon (PAH)
			Arsenic
			Chromium (VI)
			Copper
			Cyanide
			Xylenes (Total)
			Zinc
Construction	Yes	Unknown	Lead and its compounds
			Nickel and its compounds
			Mercury and its compounds
			Arsenic
			Chromium (III)
			Copper
			Zinc
Other supporting transport activities	Yes	Unknown	Benzene
Ship Activities	Yes	Unknown	Benzene
•	<u> </u>		Diuron

Type of Industry within the Agglomeration	Potential Source of Dangerous / Priority Substances (Yes / No)	Dangerous / Priority Substances Monitoring Undertaken (Yes / No)	List of Potential Dangerous Substances Based on Industry Type (Source: <i>Technical</i> <i>Assessment Manual - Sectoral Profile Data</i>)
			Fluoranthene
			Lead and its compounds
			Naphthalene
			Nickel and its compounds
			Anthracene
			Cadmium and its compounds
			Polyaromatic Hydrocarbon (PAH)
			Dichloromethane
			Lead and its compounds
Schools and Universities	Yes	Unknown	Nickel and its compounds
		NY. MYOU	Trichloromethane
		so to si	Dichloromethane
Hospitals	Yes	Unknow	
		Pecton Performer	Lead and its compounds
		rectionnet	Nickel and its compounds
			Dieldrin
	Yes consent of cons		Cadmium and its compounds
	of or a		Mercury and its compounds
Sewage and refuse disposal,	Yes	Unknown	Arsenic
sanitation and similar activities	Cor		Chromium (VI)
			Copper
			Cyanide
			Fluoride
			Zinc
Launderettes and Dry Cleaners	Yes	Unknown	Di (2-ethylhexyl) phthalate (DEHP)
			Nickel and its compounds
Hairdressers	Yes	Unknown	Cadmium and its compounds
			Octylphenols
Dentist	Yes	Unknown	Mercury and its compounds

Type of Industry within the Agglomeration	Potential Source of Dangerous / Priority Substances (Yes / No)	Dangerous / Priority Substances Monitoring Undertaken (Yes / No)	List of Potential Dangerous Substances Based on Industry Type (Source: <i>Technical</i> Assessment Manual - Sectoral Profile Data)
Garages and filling stations	Yes	Unknown	Benzene Di (2-ethylhexyl) phthalate (DEHP) Lead and its compounds Naphthalene Nickel and its compounds Cadmium and its compounds Mercury and its compounds Chromium (III) Copper Toluene Xylenes (Total) Zinc

Table 2.2 – List of Licenced Non-Domestic Discharge Types to WWTP and Details of Dangerous/Priority Substance

Licensee Name /	Type of Industry	Type of Licence, in other	Potential Source of	Dangerous / Priority	List Anticipated
Landfill Name /Other		(IED / IPPC / Section 16	Dangerous / Priority	Substances Monitoring	Dangerous Substances
Imports		/ Unlicensed)	Substances (Yes / No)	Undertaken (Yes / No)	or state if unknown
BioMarin International	Biopharmaceutical	IED (P0864-01)	Yes	Unknown	Unknown
Ltd.		Č			
Cood Fish Proposing	Manufacture of food		Yes	Unknown	Unknown
Good Fish Processing	products and	S16; WP(S)5/02			
(Carrigaline) Ltd	beverages				
Carbon Chemicals	Chemical	S16; WP(S)2/95	Yes	Unknown	Unknown
Kerry Bio-Science	Biopharmaceutical	S16; WP(S)1/94	Yes	Unknown	Unknown
Nohoval Drinks	Manufacture of food		Yes	Unknown	Unknown
	products and	S16; IW-DTS-802704-			
Company	beverages	01			

Licensee Name /	Type of Industry	Type of Licence	Potential Source of	Dangerous / Priority	List Anticipated
Landfill Name /Other		(IED / IPPC / Section 16	Dangerous / Priority	Substances Monitoring	Dangerous Substances
Imports		/ Unlicensed)	Substances (Yes / No)	Undertaken (Yes / No)	or state if unknown
Concentrate Company of Ireland (t/a Pepsico)	Manufacture of food products and beverages	S16; IW-DTS-839577- 02	Yes	Unknown	Unknown

Conserved construction purposes only, any other use.

•

B. Discharge monitoring

There is no recent priority substances analysis of the primary discharge.

C. Downstream monitoring location's participation in relevant monitoring programme

There is no priority substances monitoring data for the downstream ambient monitoring location.

D. Participation in PRTR reporting

The emissions of specific organic compounds and metals (priority substances) have been estimated for the discharge utilising the EPA's urban WWTP calculation tool for PRTR reporting. It is noted from the EPA's report, An Inventory of Emissions to Waters in Ireland, that extensive assessment of emission factors was undertaken during 2011 / 2012 that focussed on the evaluation of inputs / output concentrations and removal efficiency using a variety of different sized plants and wastewater treatment options. This has led to the significant refinement of the electronic template toolkit used for WWTP assessment using the PRTR tool.

The estimated emission data relevant to the Cork Lower Harbour Agglomeration pertains to a WWTP of >50,000 p.e., with no saline intrusion, with primary and secondary treatment (other) and no nutrient removal. All parameters listed in Appendix 1 have emission data available for the discharge estimated from the PRTR reporting tool. The Total Halogenated Organic Compound Value from the PRTR reporting tool has been used to give a conservative estimate for Trichloromethane.

2.2 Review Outcome of Desktop Study Following the desktop study, all parameters in Appendix 1 have been assessed to establish any potential impact on the receiving waters. A review of all non-domestic loads to the wastewater treatment plant is underway by Irish Water. A consultation process with the EPA is being undertaken by Irish Water to establish appropriate levels of monitoring for priority and dangerous substances nationally, taking into account the particular requirements of the Water Framework Directive. It is proposed that this review, in consultation with the EPA, will determine the scope of future Priority Substances monitoring at Irish Water WWTPs.

Priority substance concentrations in the primary discharge were available for all parameters based on the EPA PRTR toolkit. This desktop study is considered to provide partial characterisation of the wastewater.

3 Assessment of Significance and Recommendations

An assessment of the potential for impacts on receiving waters from priority substances in the primary discharge has been carried out. The assessment considers the primary discharge relevant to Environmental Quality Standards (EQS) for priority substances in surface waters, as set out in the European Union Environmental Objectives (Surface Waters) (Amendment) Regulations 2019.

Based on the data from the PRTR reporting tool the following parameters were identified as potentially being higher than the required EQS in the final treated effluent from Shanbally WwTP:

- Toluene
- Fluoranthene

- Di(2-ethylhexyl)phthalate (DEHP)
- Phenols (as Total C)
- Lead
- Copper
- Zinc
- Cadmium

However, taking the dilution factor of the receiving Cork Lower Harbour into consideration (approx. 1,300 dilutions estimated to be available at the immediate discharge point (Source: EPA WWDL Application, 2007) impacts on the receiving waters are not anticipated (see Appendix 1).

The EPA has prepared a report on priority substances, *An Inventory of Emissions to Waters in Ireland*. This document states that Ireland appears to have relatively few problems associated with the presence of Priority / Priority Hazardous substances in its surface waters. It identifies that wastewater discharges are a potential source of metals in receiving waters with lead being the main metal identified as associated with wastewater discharges. However, metals exceedances, in particular those for cadmium, lead, and nickel are primarily associated with areas of historic mining activity. Similarly, PAHs have been identified in stormwater overflows, but the most significant source is considered to be rainfall.

Irish Water have agreed the scope of a sampling programme for priority and dangerous substances, taking into account the particular requirements of the Water Framework Directive. This allows a targeted monitoring programme based on the output of the desktop assessment.

all all

Does the assessment use the Desk Top Study Method or Screening Analysis to determine if the discharge contains the parameters in Appendix 1 of the EPA guidance	Desk Top Study
Does the assessment include a review of licensed / authorised inputs to the works?	Yes
Does the assessment include a review of other (unauthorised) inputs to the works?	Yes
Does the report include an assessment of the significance of the results where a listed material is present in the discharge? (e.g. impact on the relevant EQS standard for the receiving water)	Yes
Does the assessment identify that priority substances may be impacting the receiving water?	Yes, however taking the dilution factor of the receiving Cork Lower Harbour into consideration impacts on the receiving waters are not anticipated.
Does the Improvement Programme for the agglomeration include the elimination / reduction of all priority substances identified as having an impact on receiving water quality?	N/A

Appendix 1 – Screening of Parameters for Priority Substances

- AA: Annual Average
- MAC: Maximum Allowable Concentration
- EQS: Environmental Quality Standards

Dilution factor in receiving water: Approx. 1,300 dilutions estimated immediately in the proximity of the discharge point. (Source: EPA WWDLA, 2007)

No.	Compound	Group of compounds	AA-EQS Inland SW (μg/l)	AA-EQS Other SW (μg/l)	Measured /Estimated Conc. (µg/I) ¹	Data Source	Sample Date (if applicable)	Effluent Concentration above AA concentration (Yes/No)	Effluent Concentration above AA concentration after dilution (Yes/No)
1	Benzene	VOCs	10	8	0.1660	Soffee PRTR Estimation Toolset	n/a	No	No
2	Carbon tetrachloride	VOCs	12	12;	on pure count	PRTR Estimation Toolset	n/a	No	No
3	1,2-Dichloroethane	VOCs	10	For triger	0.000	PRTR Estimation Toolset	n/a	No	No
4	Dichloromethane	VOCs	20	20	0.12	PRTR Estimation Toolset	n/a	No	No
5	Tetrachloroethylene	VOCs	10	10	0.000	PRTR Estimation Toolset	n/a	No	No
6	Trichloroethylene	VOCs	10	10	0.000	PRTR Estimation Toolset	n/a	No	No

No.	Compound	Group of compounds	AA-EQS Inland SW (µg/I)	AA-EQS Other SW (µg/I)	Measured /Estimated Conc. (µg/l) ¹	Data Source	Sample Date (if applicable)	Effluent Concentration above AA concentration (Yes/No)	Effluent Concentration above AA concentration after dilution (Yes/No)
-	Trichlorohonzonoc	NOCC	0.4	0.4	0.000	PRTR	n/a	No	No
7	Trichlorobenzenes	VOCs	0.4	0.4	0.000	Estimation Toolset			
8	Trichloromethane	VOCs	2.5	2.5	0.000	PRTR Estimation	n/a	No	No
9	Xylenes (all isomers)	VOCs	10	10	1.588		n/a	No	No
10	Ethyl Benzene	VOCs	n/a	n/a	on Purpequine	PRTR Estimation Toolset	n/a	No	No
11	Toluene	VOCs	10	For instant	13.923	PRTR Estimation Toolset	n/a	Yes	No
12	Naphthlene ¹	PAHs	2	Consent 2	0.1445	PRTR Estimation Toolset	n/a	No	No
13	Fluoranthene ¹	PAHs	0.0063	0.0063	0.0125	PRTR Estimation Toolset	n/a	Yes	No
14	Benzo[k]fluoranthene ²	PAHs	MAC of 0.017	MAC of 0.017	0.002	PRTR Estimation Toolset	n/a	No	No

¹ The EQS for these substances shall take effect from 22 December 2015

² No indicative parameter is provided for this group of substances

No.	Compound	Group of compounds	AA-EQS Inland SW (μg/l)	AA-EQS Other SW (µg/I)	Measured /Estimated Conc. (µg/I) ¹	Data Source	Sample Date (if applicable)	Effluent Concentration above AA concentration (Yes/No)	Effluent Concentration above AA concentration after dilution (Yes/No)
15	Benzo[ghi]perylene ²	PAHs	MAC of 8.2 x 10 ⁻³	MAC of 8.2 x 10 ⁻⁴	0.002	PRTR Estimation Toolset	n/a	No	No
16	Indeno[1,2,3- c,d]pyrene ²	PAHs			0.002	PRTR Estimation	n/a	No	No
17	Benzo[b]fluoranthene ²	PAHs	MAC of 0.017	MAC of 0.017	0.0020 5 ⁰¹⁶⁰¹	LOOISET	n/a	No	No
18	Benzo[a]pyrene	PAHs	1.7 x 10 ⁻⁴	1.7 x 10 ⁻⁴	on purper require	PRTR Estimation Toolset	n/a	No	No
19	Di(2-ethylhexyl)phthalate (DEHP)	Plasticiser	1.3	For institution	2.96	PRTR Estimation Toolset	n/a	Yes	No
20	lsodrin ³	Pesticides		Conser	0.000	PRTR Estimation Toolset	n/a	No	No
21	Dieldrin ³	Pesticides	∑=0.01	∑=0.005	0.000	PRTR Estimation Toolset	n/a	No	No
22	Diuron	Pesticides	0.2	0.2	0.000	PRTR Estimation Toolset	n/a	No	No

 $^{^{3}\}Sigma$ of Aldrin, Dieldrin, Endrin and Isodrin.

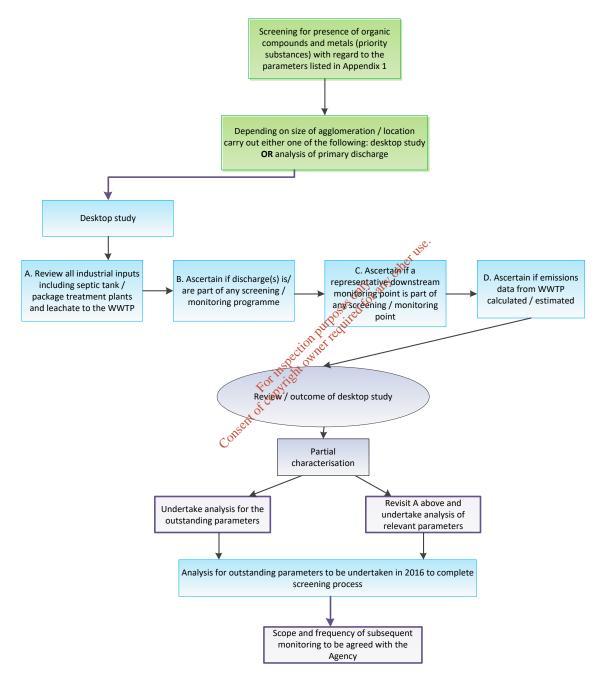
No.	Compound	Group of compounds	AA-EQS Inland SW (μg/l)	AA-EQS Other SW (μg/l)	Measured /Estimated Conc. (µg/l) ¹	Data Source	Sample Date (if applicable)	Effluent Concentration above AA concentration (Yes/No)	Effluent Concentration above AA concentration after dilution (Yes/No)
23	Isoproturon	Pesticides	0.3	0.3	0.015	PRTR Estimation Toolset	n/a	No	No
24	Atrazine	Pesticides	0.6	0.6	0.0115	PRTR Estimation S ^{ev.} Toolset	n/a	No	No
25	Simazine	Pesticides	1	1	0.0139 0	other PRTR Estimation Toolset	n/a	No	No
26	Glyphosate	Pesticides	60	-	0.0139.0 on purper equired for the second s	PRTR Estimation Toolset	n/a	No	No
27	Mecoprop	Pesticides	n/a	Forphie	0.119	PRTR Estimation Toolset	n/a	n/a	n/a
28	2,4-D	Pesticides	n/a	Consent n/a	0.0355	PRTR Estimation Toolset	n/a	n/a	n/a
29	МСРА	Pesticides	n/a	n/a	0.01	PRTR Estimation Toolset	n/a	n/a	n/a
30	Linuron	Pesticides	0.7	0.7	0.000	PRTR Estimation Toolset	n/a	No	No
31	Dichlobenil	Pesticides	n/a	n/a	0.0024	PRTR Estimation Toolset	n/a	n/a	n/a

No.	Compound	Group of compounds	AA-EQS Inland SW (μg/l)	AA-EQS Other SW (μg/l)	Measured /Estimated Conc. (µg/I) ¹	Data Source	Sample Date (if applicable)	Effluent Concentration above AA concentration (Yes/No)	Effluent Concentration above AA concentration after dilution (Yes/No)
32	2,6-Dichlorobenzamide	Pesticides	n/a	n/a	0.06	PRTR Estimation Toolset	n/a	n/a	n/a
33	PCBs	PCBs	n/a	n/a	0.000	PRTR Estimation	n/a	n/a	n/a
34	Phenols (as Total C)	Phenols	8	8	80.895	ottet PRTR Estimation Toolset	n/a	Yes	No
35	Lead	Metals	1.2	1.3	on Purposition 10.8	PRTR Estimation Toolset	n/a	Yes	No
36	Arsenic	Metals	25	For the	1.179	PRTR Estimation Toolset	n/a	No	No
37	Copper	Metals	5 or 30 ²	Consent 5	5.56	PRTR Estimation Toolset	n/a	Yes	No
38	Zinc	Metals	8 or 50 or 100 ³	40	121.9	PRTR Estimation Toolset	n/a	Yes	No
39	Cadmium	Metals	0.08 or 0.09 or 0.15 or 0.25 ⁴	0.2	0.275	PRTR Estimation Toolset	n/a	Yes	No

No.	Compound	Group of compounds	AA-EQS Inland SW (µg/I)	AA-EQS Other SW (µg/I)	Measured /Estimated Conc. (µg/I) ¹	Data Source	Sample Date (if applicable)	Effluent Concentration above AA concentration (Yes/No)	Effluent Concentration above AA concentration after dilution (Yes/No)
40	Mercury	Metals	MAC of 0.07	MAC of 0.07	0.01	PRTR Estimation Toolset	n/a	No	No
41	Chromium VI	Metals	3.4	0.6	0.1	PRTR Estimation Se ^{r.} Toolset	n/a	No	No
42	Selenium	Metals	n/a	n/a	0.000	Hother PRTR Estimation Toolset	n/a	n/a	n/a
43	Antimony	Metals	n/a	n/a	on Purper require 0.48	PRTR Estimation Toolset	n/a	n/a	n/a
44	Molybdenum	Metals	n/a	Forinsian	1.4	PRTR Estimation Toolset	n/a	n/a	n/a
45	Tin	Metals	n/a	consent n/a	0.000	PRTR Estimation Toolset	n/a	n/a	n/a
46	Barium	Metals	n/a	n/a	36.05	PRTR Estimation Toolset	n/a	n/a	n/a
47	Boron	Metals	n/a	n/a	89	PRTR Estimation Toolset	n/a	n/a	n/a
48	Cobalt	Metals	n/a	n/a	0.32	PRTR Estimation Toolset	n/a	n/a	n/a

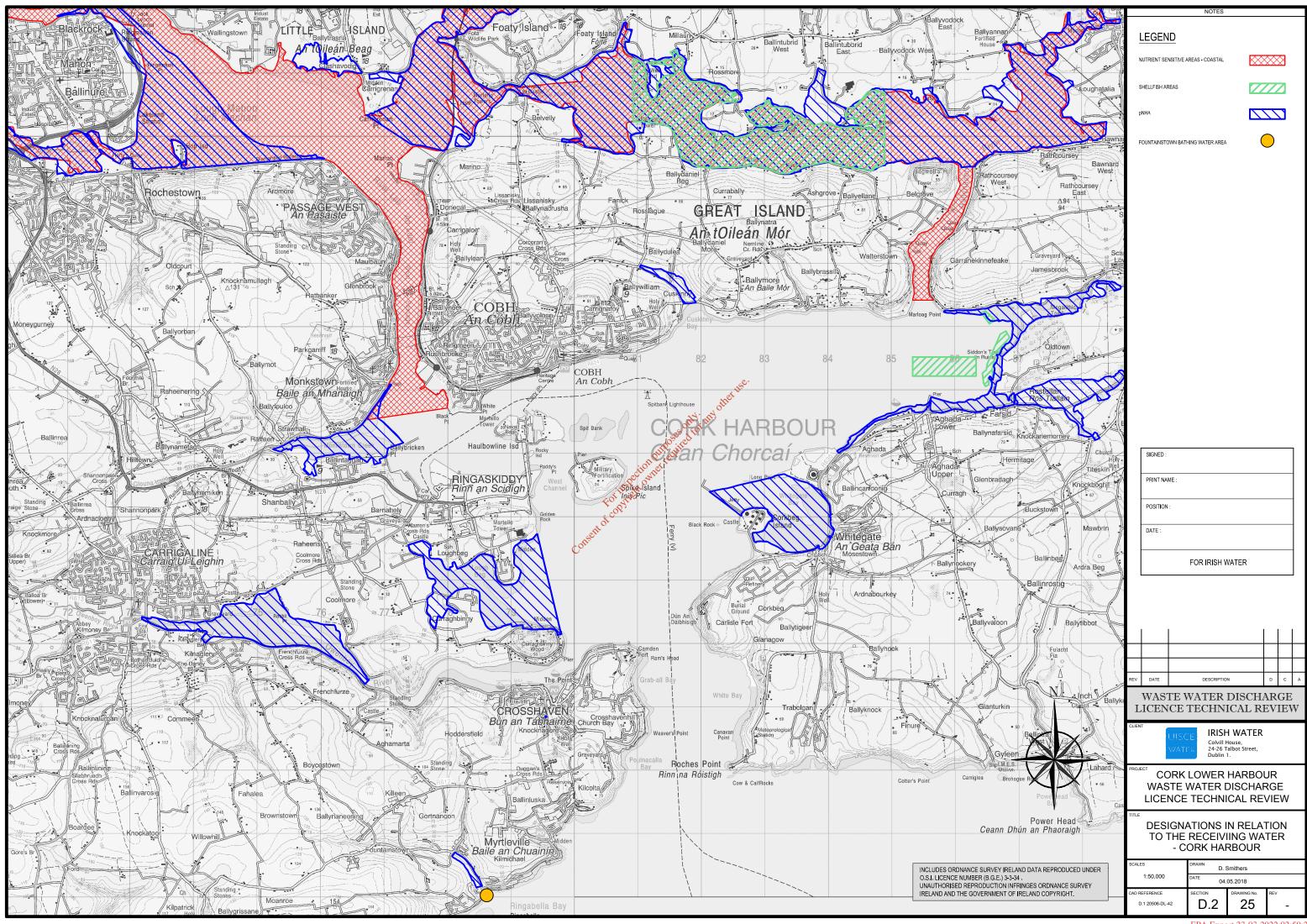
No.	Compound	Group of compounds	AA-EQS Inland SW (μg/l)	AA-EQS Other SW (μg/l)	Measured /Estimated Conc. (μg/l) ¹	Data Source	Sample Date (if applicable)	Effluent Concentration above AA concentration (Yes/No)	Effluent Concentration above AA concentration after dilution (Yes/No)
49	Vanadium	Metals	n/a	n/a	5.2	PRTR Estimation	n/a	n/a	n/a
						Toolset			
						PRTR			
50	Nickel	Metals	4	8.6	3.6	Estimation	n/a	No	No
						J ^{ee.} Toolset			
						other PRTR			
51	Fluoride	General	500	1,500	1 1 S	s Estimation	n/a	No	No
						Toolset			
50	Chileride	Comonal			PHPPUIL	PRTR			
52	Chloride	General	n/a	n/a	on 10 64800	Estimation Toolset	n/a	n/a	n/a
				inspect	13102	PRTR			
53	тос	General	n/a	FOLLING	13102	Estimation	n/a	n/a	n/a
55	100	General	nya	St COKIY U	13102	Toolset	ny a	ny a	iiy a
				Selft		PRTR			
54	Cyanide	General	10	Consent 10	2.8	Estimation	n/a	No	No
	-1					Toolset			
						PRTR			
	Conductivity	General	n/a	n/a		Estimation	n/a	n/a	n/a
	-					Toolset			
						PRTR			
	Hardness (mg/l CaCO₃)	General	n/a	n/a	291000	Estimation	n/a	n/a	n/a
						Toolset			
	рН	General	n/a	n/a	7.4	IW	2020 average	n/a	n/a

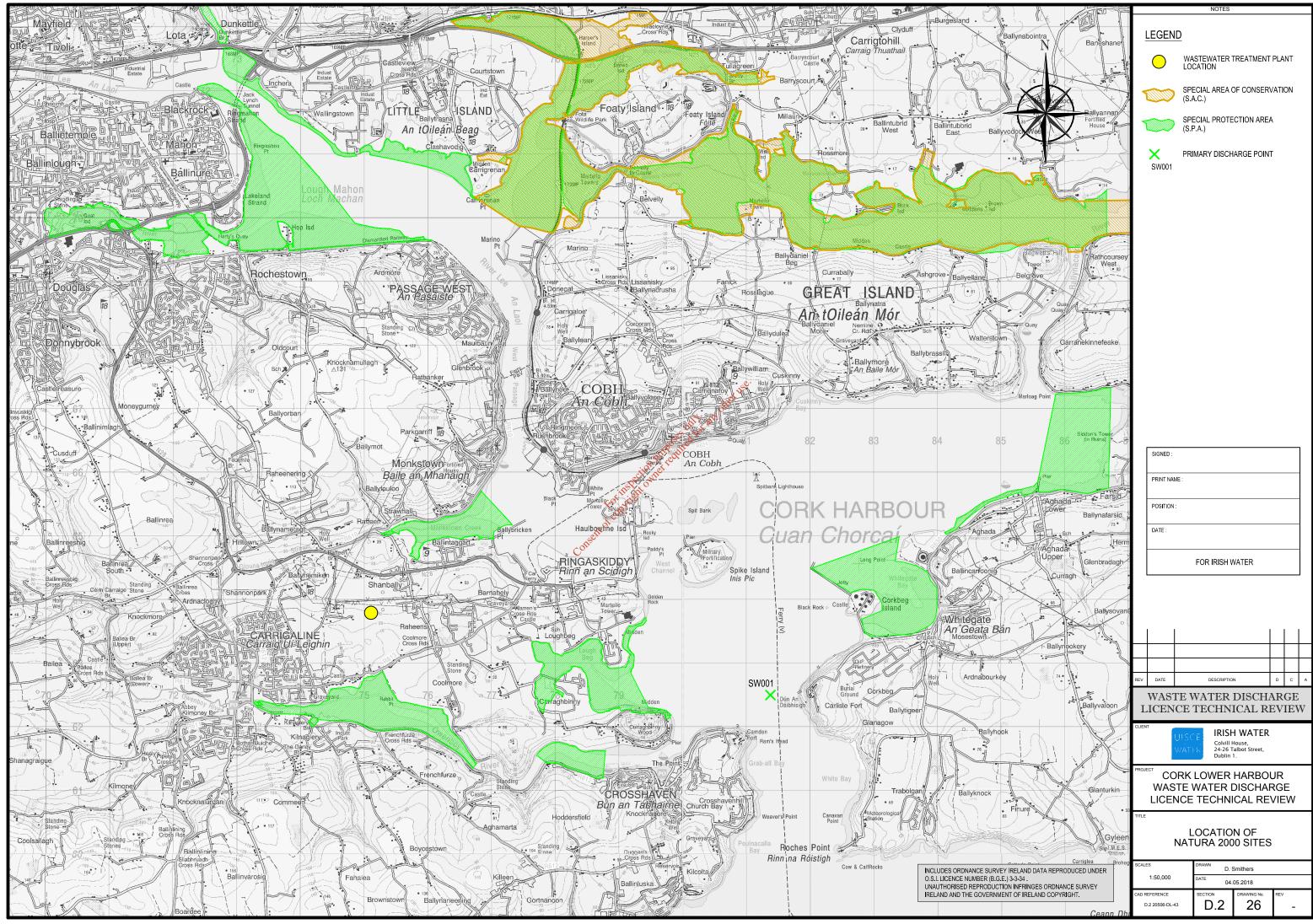
Notes:


- 1. Where measured values are available these should be used instead of estimated values from PRTR tool.
- In the case of Copper, the value 5 applies where the water hardness measured in mg/l CaCO₃ is less than or equal to 100; the value 30 applies where the water hardness exceeds 100 mg/l CaCO₃. Estimated CaCO₃ value > 100 where no sampling data available (based on PRTR tool)
- 3. In the case of Zinc, the standard shall be 8 μ g/l for water hardness with annual average values less than or equal to 10 mg/l CaCO₃, 50 μ g/l for water hardness greater than 10 mg/l CaCO₃ and less than or equal to 100 mg/l CaCO₃ and 100 μ g/l elsewhere. Estimated CaCO₃ value > 100 where no sampling data available
- 4. For Cadmium and its compounds the EQS values vary dependent upon the hardness of the water as specified in five class categories (Class 1: <40 mg CaCO₃/l, Class 2: 40 to <50 mg CaCO₃/l, Class 3: 50 to <100 mg CaCO₃/l, Class 4: 100 to <200 mg CaCO₃/l and Class 5: >200 mg CaCO₃/l)

Appendix 2 – Priority Substance Screening Flowchart

A flow chart for the screening of the presence of organic compounds and metals (Priority Substances) from WWTP is included below. This flowchart shows that appropriate screening has been demonstrated in line with the assessment undertaken in this report.


Partial Characterisation



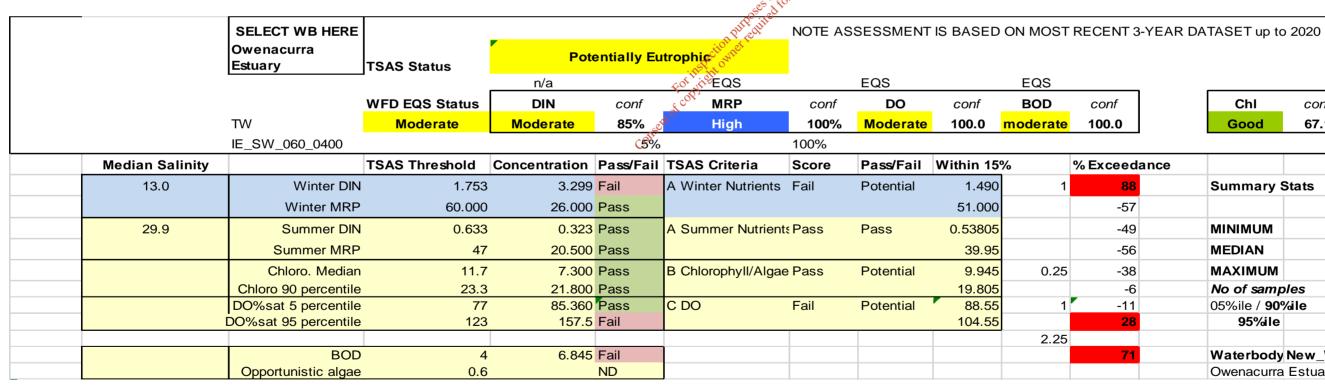
Appendix 3 – Receiving Waters Priority Substance Data

No current data is available.

Consent of copyright on the required for any other type.

EPA Export 23-03-2022:02:59:23

EPA TSAS 2018-2020

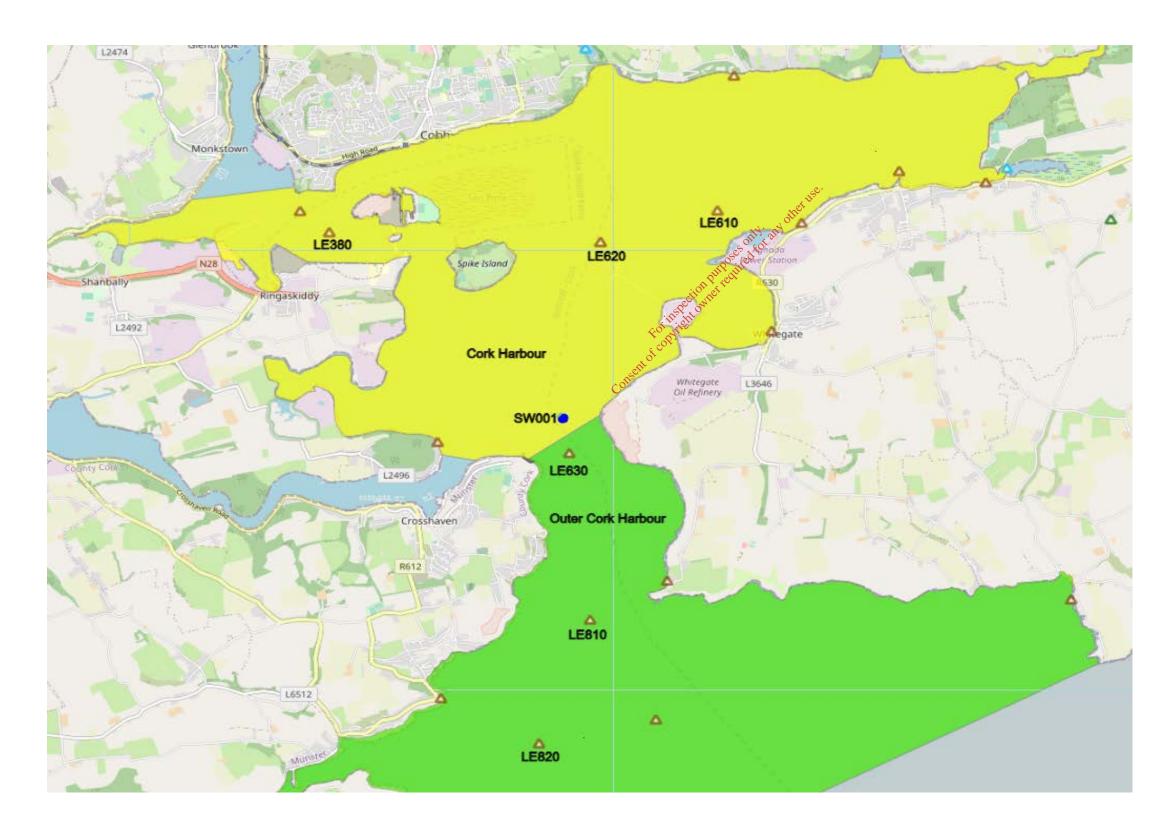

	SELECT WB HERE					NOTE AS	SESSMEN	IS BASED	ON MOST	RECENT 3-Y	EAR DATASET up to	o 2020	
	Glashaboy Estuary	TSAS Status	r	Intermedi	ate								
		•	n/a		EQS		EQS		EQS				-
		WFD EQS Status	DIN	conf	MRP	conf	DO	conf	BOD	conf	Chl	conf	
	TW	Moderate	Moderate	1%	Good	99%	High	100.0	moderate	51.3	High	100.0	
	IE_SW_060_0800		-	0%		100%				-			
Median Salinity		TSAS Threshold	Concentration	Pass/Fail	TSAS Criteria	Score	Pass/Fail	Within 15%	%	% Exceedan	ice		
0.1	Winter DIN	2.600	6.030	Fail	A Winter Nutrients	Fail	Potential	2.210	1	132	Summary	Stats	Salinity
	Winter MRP	60.000	36.000	Pass				51.000		-40			‰
0.2	Summer DIN	2.6	4.606	Fail	A Summer Nutrient	s Fail	Potential	2.21		77	MINIMUM		0.00
	Summer MRP	60	42.000	Pass				51		-30	MEDIAN		0.2
	Chloro. Median	15	2.450	Pass	B Chlorophyll/Alga	e Pass	Pass	12.75	0	-84	MAXIMUM		24.8
	Chloro 90 percentile	30	10.670	Pass				25.5		-64	No of sam	oles	24
	DO%sat 5 percentile	70	82.630	Pass	C DO	Pass	Pass	80.5	0	-18	05%ile / 90	%ile	19.0
	DO%sat 95 percentile	130	106.3	Pass			<u>e</u> .	110.5		-18	95%ile		21.6
						other	<u>Де</u> -		1				
	BOD		4.284			oth				7	Waterbody		
	Opportunistic algae	0.6		ND		only and					Glashaboy	Estuary	6.0
					ion purpose	redto							

	SELECT WB HERE				inspirov	NOTE AS	SESSMENT	IS BASED	ON MOST	RECENT 3-YEAR	DATASET up to	2020
	Lough Mahon	TSAS Status		Eutrophi	ic control							
			n/a		ent EQS	-	EQS		EQS			
		WFD EQS Status	DIN	conf 🔇	MRP	conf	DO	conf	BOD	conf	Chl	conf
	TW	Moderate	Moderate	100%	Good	100%	Moderate	100.0	moderate	100.0	Moderate	97.1
	IE_SW_060_0750		-	15%		100%				-		
Median Salinity		TSAS Threshold	Concentration	Pass/Fail	TSAS Criteria	Score	Pass/Fail	Within 15	%	% Exceedance		
25.9	Winter DIN	0.889	1.015	Fail	A Winter Nutrients	Fail	Potential	0.756	1	14	Summary S	tats
	Winter MRP	51.000	37.000	Pass				43.350		-27		
30.7	Summer DIN	0.569	0.239	Pass	A Summer Nutrient	Pass	Pass	0.48365		-58	MINIMUM	
	Summer MRP	46	15.000	Pass				39.1		-67	MEDIAN	
	Chloro. Median	11.4	6.950	Pass	B Chlorophyll/Algae	e Fail	Potential	9.69	1	-39	MAXIMUM	
	Chloro 90 percentile	22.8	28.500	Fail				19.38		25	No of samp	les
	DO%sat 5 percentile	77	92.120	Pass	C DO	Fail	Potential	88.55	1	-20	05%ile / 90%	lie
	DO%sat 95 percentile	123	161.2	Fail				104.55		31	95%ile	
									3			
	BOD	4	6.682	Fail						67	Waterbody	New_WE
	Opportunistic algae	0.6		ND							Lough Maho	n

	SELECT WB HERE		_			NOTE AS	SESSMENT	IS BASED	ON MOST	RECENT 3-YEAR	DATASET up to	o 2020
	North Channel Great Island	TSAS Status		Intermedi	ate							
		-	n/a		EQS		EQS		EQS			
		WFD EQS Status	DIN	conf	MRP	conf	DO	conf	BOD	conf	Chl	conf
	TW	Moderate	Moderate	100%	High	100%	Moderate	100.0	moderate	93.1	Good	100.0
	IE_SW_060_0300		-	15%		100%				-		
Median Salinity		TSAS Threshold	Concentration	Pass/Fail	TSAS Criteria	Score	Pass/Fail	Within 159	%	% Exceedance		
28.9	Winter DIN	0.697	0.759	Fail	A Winter Nutrients	Fail	Potential	0.592	1	9	Summary S	Stats
	Winter MRP	48.000	26.000	Pass				40.800		-46		
32.5	Summer DIN	0.442	0.075	Pass	A Summer Nutrient	Pass	Pass	0.3757		-83	MINIMUM	
	Summer MRP	43	10.000	Pass				36.55		-77	MEDIAN	
	Chloro. Median	10.8	4.800	Pass	B Chlorophyll/Algae	e Pass	Pass	9.18	0	-56	MAXIMUM	
	Chloro 90 percentile	21.7	15.000	Pass				18.445		-31	No of samp	oles
	DO%sat 5 percentile	78	97.665	Pass	C DO	Fail	Potential	89.7	1	-25	05%ile / 90%	%ile
	DO%sat 95 percentile	122	148.8	Fail				103.7		22	95%ile	
									2			
	BOD	4	5.900	Fail						48	Waterbody	New_WB
	Opportunistic algae	0.6		ND			<u>و</u> .				North Chanr	nel Great Is

	Opportunistic algae	0.6		ND			ू थ .				North Chanr	nel Great
					c	hty any other						
	SELECT WB HERE				್ಷರ್	X ^{YO}	SESSMENT	IS BASED (ON MOST	RECENT 3-YEAR	DATASET up to	2020
	Cork Harbour	TSAS Status		Intermedi	ate ection Ptress							
		-	EQS		in n/a		EQS		n/a			
		WFD EQS Status	DIN	conf	FOLDING MRP	conf	DO	conf	BOD	conf	Chl	con
	CW	Moderate	Good	100%	ره ^{°°} High	100%	Moderate	100.0	Good	100.0	High	88.
	IE_SW_060_0000			81%	H ^{SOR}	100%						
Median Salinity		TSAS Threshold	Concentration	Pass/Fail	TSAS Criteria	Score	Pass/Fail	Within 15%		% Exceedance		
31.0	Winter DIN	0.506	0.421	Pass	A Winter Nutrients	Pass	Pass	0.430	0	-17	Summary S	Stats
	Winter MRP	44.000	26.000	Pass				37.400		-41		
33.1	Summer DIN	0.378	0.056	Pass	A Summer Nutrient	Pass	Pass	0.3213		-85	MINIMUM	
	Summer MRP	42	2.500	Pass				35.7		-94	MEDIAN	
	Chloro. Median	10.6	3.650	Pass	B Chlorophyll/Algae	Pass	Pass	9.01	0	-66	MAXIMUM	
	Chloro 90 percentile	21.1	7.700	Pass				17.935		-64	No of samp	les
	DO%sat 5 percentile	9 79	94.925	Pass	C DO	Fail	Potential	90.85	1	-20	05%ile / 90%	⁄₀ile
	DO%sat 95 percentile	121	129.5	Fail				102.85		7	95%ile	
	BOD		2.245	Deee					1	-16	Watarbady	Now
	Opportunistic algae			Pass ND						-10	Waterbody Cork Harbou	

	SELECT WB HERE					NOTE AS	SESSMENT	IS BASED	ON MOST	RECENT 3-	-YEAR DATASET up t	o 2020	
	Outer Cork Harbour	TSAS Status		Unpollute	ed								
		-	EQS		n/a		EQS		n/a				
		WFD EQS Status	DIN	conf	MRP	conf	DO	conf	BOD	conf	Chl	conf	1
	CW	Good	Good	100%	High	100%	Good	72.1	High	100.0	High	100.0	1
	IE_SW_050_0000			100%		100%							
Median Salinity		TSAS Threshold	Concentration	Pass/Fail	TSAS Criteria	Score	Pass/Fail	Within 15%	þ	% Exceeda	ance		
33.1	Winter DIN	0.378	0.223	Pass	A Winter Nutrients	Pass	Pass	0.321	0	-41	Summary	Stats	Salinity
	Winter MRP	42.000	16.000	Pass				35.700		-62			‰
34.0	Summer DIN	0.314	0.041	Pass	A Summer Nutrient	Pass	Pass	0.2669		-87	MINIMUM		32.45
	Summer MRP	41	2.500	Pass				34.85		-94	MEDIAN		34.0
	Chloro. Median	10.3	1.400	Pass	B Chlorophyll/Algae	Pass	Pass	8.755	0	-86	MAXIMUM		34.7
	Chloro 90 percentile	20.6	4.310	Pass				17.51		-79	No of sam	ples	50
	DO%sat 5 percentile	79	93.345	Pass	C DO	Pass	Potential	90.85	0.25	-18	05%ile / 90	%ile	34.6
	DO%sat 95 percentile	121	120.3	Pass				102.85		-1	95%ile		34.6
									0.25				
	BOD	4	2.135	Pass						-47	Waterbod	New_WB	WDIN
	Opportunistic algae	0.6		ND			e.				Outer Cork	Harbour	0.2



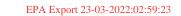
conf	Chl	conf
100.0	Good	67.1

Exceed	ance		
88		Summary S	Stats
-57			
-49		MINIMUM	
-56		MEDIAN	
-38		MAXIMUM	
-6		No of samp	oles
-11		05%ile / 90%	%ile
28		95%ile	
71		Waterbody	New_WB
		Owenacurra	Estuary

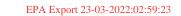
Monitoring Stations & Locations on EPA TraC programme

					2018-2020 Data available				
WB_Name	WB_Code	Station_No	Location	Monitoring		RBD	Dec_Lat	Dec_Long	CRM_Code
Cork Harbour	SW_060_0000	LE380	Ringaskiddy	SM	Yes	SWRBD	51.8378	-8.3126	IEMCCW05003150LE8001
Cork Harbour	SW_060_0000	LE610	Adjacent to Aghada	SM	No	SWRBD	51.8405	-8.2421	IEMCCW05003150LE8002
Cork Harbour	SW_060_0000	LE620	E Spike Island	SM	Yes	SWRBD	51.8366	-8.2633	IEMCCW05003150LE8003
Outer Cork Harbour	SW_050_0000	LE630	Adjacent to Carlisle Fort	OP	Yes	SWRBD	51.8105	-8.269	IEMCCW05003149LE9001
Outer Cork Harbour	SW_050_0000	LE810	Roches Point	OP	Yes	SWRBD	51.7899	-8.2652	IEMCCW05003149LE9002
Outer Cork Harbour	SW_050_0000	LE820	Myrtleville	OP	Yes	SWRBD	51.7746	-8.2745	IEMCCW05003149LE9003

Cork Harbour 2018-2020 TraC monitroing results


Station	Sample	Survey Date	Salinity S	рН	DO S %	B.O.D.	TON mg/l	NH3 mg/l	PO4 µg/l	-	DIN	DO mg/l Season	Waterbody
No	Label		‰		Sat	mg/l O2	Ν	Ν	Р	yll a			Name
LE620	LE620B	12/08/2020	33.53	8.1	104.2	0.5		0.03	14	1.6	0.035	8.6 Summer	Cork Harbour
LE620	LE620S	12/08/2020	31.45	8.2	124.8	1.2		0.019	14	3.8	0.024	9.6 Summer	Cork Harbour
LE380	LE380B	12/08/2020	33.01	8.1	106.9	1.1		0.04	19	4	0.045	8.8 Summer	Cork Harbour
LE380	LE380S	12/08/2020	30.9	8.2	129.9	1.3		0.028	16	6.7	0.061	10.4 Summer	Cork Harbour
LE380	LE380S	22/07/2020	32.38	8.3	129.4	3.2		0.026	11	7.3	0.031	10.5 Summer	Cork Harbour
LE620	LE620C	22/07/2020	33.72	8.2	112.7		0.005	0.015	2.5	4.8	0.02	9.4 Summer	Cork Harbour
LE620	LE620C	22/07/2020	33.1	8.2	127.7		0.005	0.015	2.5	4.8	0.02	10.3 Summer	Cork Harbour
LE380	LE380B	22/07/2020	32.51	8.3	127.9	3.4		0.023	10	6.1	0.028	10.4 Summer	Cork Harbour
LE620	LE620B	23/06/2020	33.59	8.1	105.5	0.5		0.058	11	2.8	0.109	8.9 Summer	Cork Harbour
LE620	LE620S	23/06/2020	33.01	8.1	98.5	0.5		0.065	13	3	0.126	8.1 Summer	Cork Harbour
LE380	LE380B	23/06/2020	32.19	8.1	97.1	0.5		0.11	19	3.5	0.208	8 Summer	Cork Harbour
LE380	LE380S	23/06/2020	32.29	8.1	101.4	0.5		0.098	14	2.3	0.228	8.4 Summer	Cork Harbour
LE620	LE620B	27/08/2019	33.87	8.1	99.8	0.5		0.036	5	1.4	0.041	8.1 Summer	Cork Harbour
LE620	LE620S	27/08/2019	33.12	8.2	108.8	1.7		0.035	9.1	5.5	0.052	8.8 Summer	Cork Harbour
LE380	LE380B	27/08/2019	33.14	8.1	105.1	0.5		0.04	2.5	2.9	0.07	8.6 Summer	Cork Harbour
LE380	LE380S	27/08/2019	30.5	8.2	118.9	1.9		0.046	8.2	5.6	0.156	9.7 Summer	Cork Harbour
LE380	LE380S	10/07/2019	32.2	8.4	140.8	3.6		0.074	2.5	31	0.079	11.1.Summer	Cork Harbour
LE380	LE380B	10/07/2019	33.2	8.4	128.3	3.3		0.072	2.5	15	0.099	10.1 Summer	Cork Harbour
LE620	LE620S	10/07/2019	33.64	8.3	121.6	1.9		0.06	2.5	8.1	0.065	al ^{to} 9.7 Summer a ^{to} 9.6 Summer	Cork Harbour
LE620	LE620B	10/07/2019	33.78	8.3	118.6	2		0.036	2.5	6.7		•	Cork Harbour
LE380	LE380B	12/06/2019	33.78	8.1	109.6	0.5		0.035	2.5	4.5	0.049	9.5 Summer	Cork Harbour
LE380	LE380S	12/06/2019	31.73	8.1	114	1.4		0.069	2.5	3.6 0.5	ction 0:209	9.4 Summer	Cork Harbour
LE620	LE620S	12/06/2019	34.22	8.1	108.2	1.1		0.022	2.5	0.55	0.027	9.4 Summer	Cork Harbour
LE620	LE620B	12/06/2019	34.48	8.1	104.5	0.5		0.023	2.5	F3.610	0.028	9.1 Summer	Cork Harbour
LE620	LE620B	20/08/2018	34.57	7.9	92.7	0.5		0.035	9	6.5	0.071	7.4 Summer	Cork Harbour
LE620	LE620S	20/08/2018	34.39	8	95.1	0.5		0.036	9.4	Consent ⁰ 0.5	0.06	7.8 Summer	Cork Harbour
LE380	LE380B	20/08/2018	32.98	8	94.4	0.5		0.065	14	1.5	0.1	7.5 Summer	Cork Harbour
LE380	LE380S	20/08/2018	32.98	8	97.2	0.5		0.13	20	3.8	0.196	7.7 Summer	Cork Harbour
LE380	LE380S	02/07/2018	32.84	8.2	125.3	1.1		0.03	2.5	3.7	0.05		Cork Harbour
LE380	LE380B	02/07/2018	33.18	8.2	109.3	1.5			2.5	6	0.08	8.3 Summer	Cork Harbour
LE620	LE620S	02/07/2018	33.44	8.2	121.7		0.03	0.01	2.5	28	0.04	9.2 Summer	Cork Harbour
LE620	LE620B	02/07/2018	34.5	8.2	107.1		0.02		2.5	2.4	0.04	8.2 Summer	Cork Harbour
LE380	LE380S	22/05/2018	29.64	8.2	114.5	0.5		0.05	2.5	1.1	0.24	10 Summer	Cork Harbour
LE380	LE380B	22/05/2018	32.88	8.2	111.7	0.5			2.5	1.5	0.09	9.8 Summer	Cork Harbour
LE620	LE620S	22/05/2018	33.61	8.2	106.4	0.5		0.02	2.5	0.5	0.04	9.3 Summer	Cork Harbour
LE620	LE620B	22/05/2018	33.82	8.1	106.3	0.5		0.01	2.5	0.5	0.02	9.3 Summer	Cork Harbour
LE380	LE380S	06/02/2020	23.32	7.9	93.5	1.5		0.18	41	1.3	1.11	9.5 Winter	Cork Harbour
LE620	LE620B	06/02/2020	33.09	8	94.5	0.5		0.062	28	1.1	0.282	8.7 Winter	Cork Harbour
LE620	LE620S	06/02/2020	31.2	8	95.2	0.5		0.072	27	1.6	0.462	9 Winter	Cork Harbour
LE380	LE380B	06/02/2020	32.7	8	93.7	0.5		0.065	27	1.1	0.315	8.7 Winter	Cork Harbour
LE620	LE620B	16/01/2019	33.94	8	96.4	0.5			17	0.5	0.34	8.6 Winter	Cork Harbour
LE380	LE380S	16/01/2019	29.05	7.9	95.9	0.5		0.65	33	0.5	1.56	9 Winter	Cork Harbour
LE620	LE620S	16/01/2019	33.48	7.9	96.8	0.5			14	0.5	0.38	8.7 Winter	Cork Harbour
LE380	LE380B	16/01/2019	32.9	7.9	95.7	0.5		0.44	25	0.5	0.79	8.7 Winter	Cork Harbour
LE620	LE620B	19/02/2018	30.81	8	97	0.5			25	1.3	0.193	9.3 Winter	Cork Harbour
LE620	LE620S	19/02/2018	28.81	8	96.3	0.5		0.055	18	1.2	0.355	9.4 Winter	Cork Harbour
LE380	LE380B	19/02/2018	26.74	8	94.9	0.5			31	2.1	0.68	9.4 Winter	Cork Harbour
LE380	LE380S	19/02/2018	24.18	7.9	94.4	0.5	0.61	0.085	25	1.4	0.695	9.6 Winter	Cork Harbour

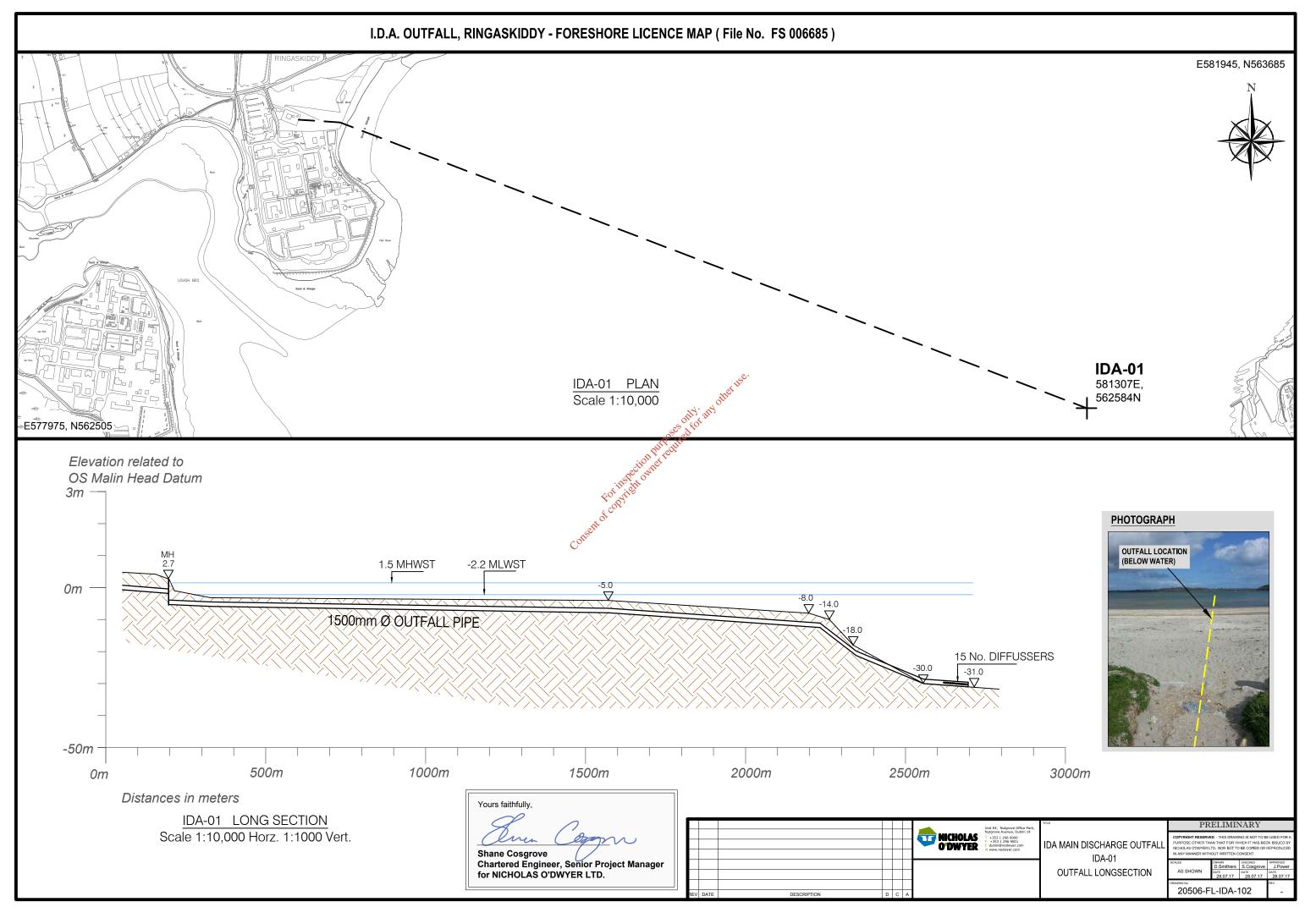
Outer Cork Harbour 2018-2020 TraC monitroing results


Station No	Sample Label	Survey Date	Salinity S ‰	рН	DO S % Sat	B.O.D. mg/l O2	TON mg/l N	NH3 mg/l N	PO4 μg/l P	Chloroph yll a	DIN Season
LE820	LE820C	12/08/2020	33.2	8.1	112.1	0.5	0.016	0.016	15	1.5	0.032 Summer
LE630	LE630B	12/08/2020	32.72	8	103.4		0.005	0.02	13	1.3	0.025 Summer
LE810	LE810C	12/08/2020	33.39	8.1	113.3	0.5	0.015	0.026	15	1.1	0.041 Summer
LE810	LE810C	12/08/2020	33.8	8.1	107.3	0.5	0.015	0.026	15	1.1	0.041 Summer
LE630	LE630S	12/08/2020	32.45	8.1	121.8		0.015	0.019	14	5.6	0.034 Summer
LE820	LE820C	12/08/2020	33.78	8.1	93.3	0.5	0.016	0.016	15	1.5	0.032 Summer
LE820	LE820C	22/07/2020	34.01	8.1	107.4	1.3	0.005	0.014	2.5	0.5	0.019 Summer
LE810	LE810C	22/07/2020	34.1	8.1	107.1	0.5	0.005	0.021	2.5	1	0.026 Summer
LE810 LE630	LE810C LE630C	22/07/2020 22/07/2020	34.18 33.99	8.1 8.2	107.5 107	0.5 1.4	0.005 0.005	0.021 0.018	2.5 2.5	1 3.4	0.026 Summer 0.023 Summer
LE630	LE630C	22/07/2020	33.62	8.2	115.4	1.4	0.005	0.018	2.5	3.4 3.4	0.023 Summer
LE820	LE820C	22/07/2020	33.99	8.1	113.4	1.4	0.005	0.018	2.5	0.5	0.019 Summer
LE630	LE630C	23/06/2020	33.57	8.1	99.9	0.5	0.038	0.052	10	1.9	0.09 Summer
LE630	LE630C	23/06/2020	33.42	8.1	98.1	0.5	0.038	0.052	10	1.9	0.09 Summer
LE820	LE820C	27/08/2019	34.11	8.1	102.1	1.1	0.005	0.035	2.5	0.5	0.04 Summer
LE820	LE820C	27/08/2019	33.71	8.1	107.1	1.1	0.005	0.035	2.5	0.5	0.04 Summer
LE810	LE810C	27/08/2019	34.5	8.1	100.9		0.026	0.026	2.5	2	0.052 Summer
LE810	LE810C	27/08/2019	33.93	8.1	104.5		0.026	0.026	2.5	2	0.052 Summer
LE630	LE630S	27/08/2019	33.55	8.2	106.4		0.005	0.041	14	4.2	0.046 Summer
LE630	LE630B	27/08/2019	34.34	8.1	99.9		0.005	0.031	2.5	0.5	0.036 Summer
LE820	LE820C	10/07/2019	33.75	8.3	119.6		0.005	0.053	2.5	1.9	0.058 Summer
LE630	LE630S	10/07/2019	33.82	8.2	109.2	1.9	0.005	0.036	2.5	5.3	0.041 Summer
LE630	LE630B	10/07/2019	33.88	8.2	102.8	2.1	0.005	0.052	2.5	7.3	0.057 Summer
LE810	LE810C	10/07/2019	33.87	8.3	109	2.2	0.013	0.032	2.5	5.5	0.045 Summer
LE820	LE820C	10/07/2019	33.96	8.3	94.4		0.005	0.053	2.5	1.9	0.058 Summer
LE810	LE810C	10/07/2019	33.65	8.3	123.5	2.2	0.013	0.032	2.5	5.5	0.045 Summer
LE820	LE820C	12/06/2019	34.23	8	108.2		0.005	v ^e 0.027	2.5	3.5	0.032 Summer
LE630	LE630S	12/06/2019	34.53	8.1	105.6		0.028	0.027	17	2.2	0.055 Summer
LE630	LE630B	12/06/2019	34.63	8.1	107.5		01190,005	0.03	2.5	1.9	0.035 Summer
LE810	LE810C	12/06/2019	34.67	8.1	106.7	1.1	× × 0.038	0.034	18	2	0.072 Summer
LE820	LE820C	12/06/2019	34.35	8	103.7	DUR	0.005	0.027	2.5	3.5	0.032 Summer
LE810 LE630	LE810C LE630B	12/06/2019 20/08/2018	34.62 34.58	8.1	112.9	CCHONNE. 1	0.038	0.034 0.024	18 7.7	2 1.1	0.072 Summer 0.044 Summer
LE820	LE820C	20/08/2018	34.58 34.65	8 8	95.5	Insperior 0.5	0.003 0.028 0.005 0.038 0.005 0.038 0.028 0.028 0.028 0.021	0.024	9.8	0.5	0.059 Summer
LE820	LE820C	20/08/2018	34.03	Q	91.0	2 0.5 0 5	0.028	0.031	9.8 9.8	0.5	0.059 Summer
LE810	LE810C	20/08/2018	34.48	8	01.20 01.5 01.5 93.4	0.5	0.020	0.024	7.6	0.5	0.055 Summer
LE630	LE630S	20/08/2018	34.54	7.9	1 ⁵⁰ 93.4	0.5	0.022	0.027	8.7	1.1	0.049 Summer
LE810	LE810C	20/08/2018	34.69	8	94.3	0.5	0.031	0.024	7.6	0.5	0.055 Summer
LE630	LE630S	02/07/2018	33.75	8.2	120.8	1.1	0.005	0.02	2.5	1.5	0.025 Summer
LE630	LE630B	02/07/2018	34.08	8.2	111.1	0.5	0.005	0.03	2.5	1	0.035 Summer
LE810	LE810C	02/07/2018	34.1	8.2	117.4	0.5	0.005	0.02	2.5	1.2	0.025 Summer
LE810	LE810C	02/07/2018	34.28	8.2	107	0.5	0.005	0.02	2.5	1.2	0.025 Summer
LE820	LE820C	02/07/2018	34.18	8.2	115.8	0.5	0.01	0.01	2.5	0.5	0.02 Summer
LE820	LE820C	02/07/2018	34.14	8.2	116.4	0.5	0.01	0.01	2.5	0.5	0.02 Summer
LE630	LE630S	22/05/2018	33.58	8.2	108.9		0.02	0.01	2.5	0.5	0.03 Summer
LE820	LE820C	22/05/2018	33.9	8.1	101.8		0.02	0.02	2.5	1.9	0.04 Summer
LE630	LE630B	22/05/2018	34.02	8.1	105		0.01	0.04	2.5	0.5	0.05 Summer
LE810	LE810C	22/05/2018	33.95	8.2	101.8	0.5	0.02	0.03	2.5	0.5	0.05 Summer
LE810	LE810C	22/05/2018	34.13	8.2	104.7	0.5	0.02	0.03	2.5	0.5	0.05 Summer
LE820	LE820C	22/05/2018	33.95	8.1	101.2		0.02	0.02	2.5	1.9	0.04 Summer
LE820	LE820C	06/02/2020	33.34	8	96.1	0.5	0.24	0.053	24	1.5	0.293 Winter
LE820	LE820C	06/02/2020	32.38	8	96.1	0.5	0.24	0.053	24	1.5	0.293 Winter
LE810	LE810C	06/02/2020	32.85	8	96.1	1.1	0.22	0.049	23	1.3	0.269 Winter
LE630	LE630B	06/02/2020	33.36	8	95.8		0.19	0.057	24	0.5	0.247 Winter
LE630	LE630S	06/02/2020 06/02/2020	32.26	8	96.1	1 1	0.28	0.058 0.049	24	0.5	0.338 Winter
LE810 LE630	LE810C LE630S	16/01/2019	33.77 33.64	8 7.9	95.8 97.2	1.1 0.5	0.22 0.18	0.049	23 15	1.3 0.5	0.269 Winter 0.232 Winter
LE630 LE630	LE630S	16/01/2019	33.64 33.98	7.9	97.2 96.7	0.5	0.18	0.052	15	0.5	0.232 Winter 0.106 Winter
LE820	LE820C	16/01/2019	33.98 34.17	7.9	90.7 97.1	0.5	0.09	0.018	12	0.5	0.167 Winter
LE820	LE820C	16/01/2019	33.52	7.9	96.8	0.5	0.15	0.017	16	0.5	0.167 Winter
LE810	LE810C	16/01/2019	33.52	7.9	96.8	0.5	0.13	0.017	16	0.5	0.204 Winter
LE810	LE810C	16/01/2019	33.39	7.9	97.5	0.5	0.18	0.024	16	0.5	0.204 Winter
LE820	LE820C	19/02/2018	31.4	8	96.2	0.0	0.17	0.024	16	1.1	0.199 Winter
LE820	LE820C	19/02/2018	30.26	8	96.7		0.17	0.029	16	1.1	0.199 Winter
LE810	LE810C	19/02/2018	30.85	8	97.1	0.5	0.18	0.033	16	0.5	0.213 Winter
LE810	LE810C	19/02/2018	29.23	8	96.4	0.5	0.18	0.033	16	0.5	0.213 Winter
LE630	LE630B	19/02/2018	30.96	8	97.2		0.23	0.03	18	1.7	0.26 Winter
LE630	LE630S	19/02/2018	28.62	8	96.7		0.26	0.033	25	0.5	0.293 Winter

Cork Harbour 2021 Ambient Monitoring Results

		MonitoringStationCode	MonitoringStationName	MonitoringSta	SampleDate	SampleMethod	Paramete	Paramete	Result	Limit Of	ReportResult	ReportLim
WaterbodyName	WaterbodyCode			tionType			rName	rUnitShor tCode		Detection		it
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance		TRaC Bottom TRaC Surface	Ammonia- Ammonia-	<u> </u>	0.017 0.038	0.01	0.017 0.038	_
Cork Harbour	IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island	Surveillance	18/05/2021	TRaC Surface	Ammonia-	mg/l	0.017	0.01	0.017	7 0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	, ,	TRaC Bottom TRaC Surface	Ammonia- Ammonia-		0.031	0.01	0.031	-
Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy	Surveillance	30/06/2021	TRaC Bottom	Ammonia-	mg/l	0.05	0.01	0.05	5 0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance		TRaC Surface TRaC Bottom	Ammonia- Ammonia-		0.048 0.028		0.048	-
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Bottom TRaC Surface	Ammonia- Ammonia-		0.081 0.17	0.01	0.081	_
Cork Harbour	IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island	Surveillance	02/11/2021	TRaC Surface	Ammonia-	mg/l	0.087	0.01	0.087	7 0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance		TRaC Bottom TRaC Surface	Ammonia- Ammonia-		0.031 0.031	0.01	0.031	_
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	, ,	TRaC Surface TRaC Bottom	BOD - 5 da BOD - 5 da	-	0.5 0.5		0.5	
Cork Harbour	IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island	Surveillance	23/08/2021	TRaC Surface	BOD - 5 da	mg/l	0.5	1	0.5	5 1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Bottom TRaC Bottom	BOD - 5 da BOD - 5 da		0.5 0.5		0.5 0.5	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Surface TRaC Surface	BOD - 5 da BOD - 5 da		0.5		0.5	
Cork Harbour	IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island	Surveillance	30/06/2021	TRaC Bottom	BOD - 5 da	mg/l	0.5	1	0.5	5 1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance		TRaC Surface TRaC Bottom	BOD - 5 da BOD - 5 da	mg/l	0.5 0.5		0.5 0.5	5 1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Surface TRaC Surface	Chlorophyl Chlorophyl		4.5 0.35		4.5 0.35	
Cork Harbour	IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island	Surveillance	18/05/2021	TRaC Surface	Chlorophyl	µg/l	6.4	0.01	6.4	0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance		TRaC Surface TRaC Surface	Chlorophyl Chlorophyl		3	0.01 0.01	3	30.0130.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance		TRaC Bottom TRaC Surface	Depth Depth	m m	19.8 0.3		19.8 0.3	-
Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy	Surveillance	30/06/2021	TRaC Bottom	Depth	m	5.6		5.6	5
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance		TRaC Surface TRaC Bottom	Depth Depth	m	0.3 20.9		0.3 20.9)
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance		TRaC Surface TRaC Bottom	Depth Depth	m m	0.4		0.4	
Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy	Surveillance	18/05/2021	TRaC Bottom	Depth	m	5.2		5.2	-
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance	02/11/2021		Depth Depth	m m	0 17		0 17	-
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Bottom TRaC Surface		% Saturatio % Saturatio	102 88		102 88	
Cork Harbour	IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island	Surveillance	02/11/2021	TRaC Surface	Dissolved C	% Saturatio	85	1	85	5 1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Bottom TRaC Bottom		% Saturatio % Saturatio	82 110		82 110	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Surface TRaC Surface		% Saturatio % Saturatio	114 106		114 106	
Cork Harbour	IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island	Surveillance	30/06/2021	TRaC Surface	Dissolved C	% Saturatio	103	1	103	3 1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance		TRaC Surface TRaC Surface		% Saturatio % Saturatio	108 104		108 104	_
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Bottom TRaC Bottom		% Saturatio % Saturatio			100 90	
Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy	Surveillance	30/06/2021	TRaC Surface	Chlorophyl	µg/l	1.4	0.01	1.4	0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance		TRaC Surface TRaC Surface	Chlorophyl Chlorophyl		0.52 0.31	0.01	0.52 0.31	-
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance	x ² 18/05/2021	TRaC Surface TRaC Surface	Depth Depth	m m	0.3		0.3	3
Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy	Surveillance	02/11/2021	TRaC Surface	Depth	m "	0	0.005	0)
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Bottom TRaC Bottom	ortho-Phos ortho-Phos		0.0025 0.0056		0.0025	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	, ,	TRaC Bottom TRaC Bottom	ortho-Phos ortho-Phos		0.0025		0.0025	
Cork Harbour	IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island 🤇	Surveillance	30/06/2021	TRaC Surface	ortho-Phos	mg/l	0.0051	0.005	0.0051	L 0.005
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance		TRaC Surface TRaC Bottom	ortho-Phos ortho-Phos		0.0025 0.019		0.0025	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Bottom TRaC Bottom		% Saturatio % Saturatio	101 106		101 106	-
Cork Harbour	IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island	Surveillance	18/05/2021	TRaC Bottom	рН	pH units	8.1	2	8.1	L 2
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Bottom TRaC Bottom	рН pH	pH units pH units	8.2 8.2		8.2 8.2	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance		TRaC Surface TRaC Bottom	pH pH	pH units pH units	8.1	2	8.1	L 2 3 2
Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy	Surveillance	02/11/2021	TRaC Surface	pH	pH units	7.8		7.8	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance		TRaC Bottom TRaC Surface	рН pH	pH units pH units	7.9 7.9		7.9 7.9	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Surface TRaC Surface	рН рН	pH units pH units	8.2 8.1		8.2 8.1	
Cork Harbour	IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island	Surveillance	23/08/2021	TRaC Surface	Pheophytir	µg/l	0.25	0.01	0.25	5 0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance		TRaC Surface TRaC Bottom	Pheophytir Salinity	PSU	0.8 35.4		0.8 35.4	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	, ,	TRaC Bottom TRaC Surface	Salinity Salinity	PSU PSU	34 30.6		34 30.6	
Cork Harbour	IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance	23/08/2021	TRaC Bottom TRaC Surface	Salinity	PSU PSU	30.5 32.7		30.5 32.7	-
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island	Surveillance Surveillance	23/08/2021	TRaC Bottom	Salinity Salinity	PSU	33.2	0.1	33.2	2 0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Surface TRaC Bottom	Salinity Salinity	PSU PSU	16.8 30.9		16.8 30.9	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance		TRaC Surface TRaC Surface	Salinity ortho-Phos	PSU mg/l	29.5 0.005		29.5 0.0025	
Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE620 - E Spike Island	Surveillance	23/08/2021	TRaC Bottom	ortho-Phos	mg/l	0.0025	0.005	0.0025	0.005
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance		TRaC Bottom TRaC Surface	ortho-Phos ortho-Phos	-	0.03 0.025		0.03 0.025	-
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	23/08/2021	TRaC Surface TRaC Surface	Pheophytir Salinity	-	0.39	0.01	0.39	0.01
Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy	Surveillance	30/06/2021	TRaC Bottom	Salinity	PSU	34.4	0.1	34.4	l 0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance		TRaC Bottom TRaC Surface	,	PSU PSU	35 34.4		35 34.4	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance		TRaC Bottom TRaC Surface	Salinity(Lab Salinity(Lab		34.6 32.3		34.6 32.3	-
Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy	Surveillance	18/05/2021	TRaC Bottom	Salinity(Lab	0/00	32	0.1	32	2 0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance			Salinity(Lab Silica (as Si	1	33.7 0.12		33.7 0.12	
Cork Harbour Cork Harbour	IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance		TRaC Surface TRaC Bottom	Silica (as Si Silica (as Si	mg/l	0.11	0.1	0.11 0.12	-
Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy	Surveillance	30/06/2021	TRaC Surface	рН	pH units	8.2	2	8.2	2 2
Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance		TRaC Bottom TRaC Bottom	pH StationDep	pH units m	8.2 20		8.2 20	
Cork Harbour			LE620 - E Spike Island	Surveillance	23/08/2021	TRaC Bottom	StationDep	m	17.5		17.5	_
Cork Harbour	IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001		Surveillance	02/11/2021	TRaC Surface	StationDon	m	20	0.1	1 20	
Cork Harbour Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance		TRaC Bottom	StationDep Temperatu	°C	3.9 15.2		3.9 15.2	2
Cork Harbour Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy		23/08/2021 02/11/2021			°C °C				2

Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy	Surveillance	30/06/2021 TRaC Surface	Pheophytin		0.36	0.01	0.36	0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance	30/06/2021 TRaC Surface 02/11/2021 TRaC Surface	Pheophytin Pheophytin	µg/l	0.16	0.01	0.16	0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance	30/06/2021 TRaC Bottom 23/08/2021 TRaC Surface	Salinity(Lat Salinity(Lat	0/00	34.4 33.1	0.1	34.4 33.1	0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance	02/11/2021 TRaC Surface 18/05/2021 TRaC Surface	Salinity(Lat Silica (as Si	mg/l	30.1 0.14	0.1 0.1	30.1 0.14	0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	23/08/2021 TRaC Surface 23/08/2021 TRaC Surface	Silica (as Si Silica (as Si	mg/l	0.22 0.16	0.1 0.1	0.22 0.16	0.1 0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	30/06/2021 TRaC Surface 23/08/2021 TRaC Surface	Salinity	PSU PSU	33.4 30.5	0.1 0.1	33.4 30.5	0.1 0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	02/11/2021 TRaC Bottom 02/11/2021 TRaC Surface	Silica (as Si	-	33.4 2.2	0.1 0.1	33.4 2.2	0.1 0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance	02/11/2021 TRaC Surface 02/11/2021 TRaC Bottom	Silica (as Si Silica (as Si		0.83 0.43	0.1 0.1	0.83 0.43	0.1 0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	18/05/2021 TRaC Bottom 02/11/2021 TRaC Surface	StationDep TOC (as NP	mg/l	5.2 4.6	0.1 2	5.2 4.6	0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	02/11/2021 TRaC Bottom 18/05/2021 TRaC Surface	TOC (as NP Temperatu	°C	4 13	2	4 13	2
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	30/06/2021 TRaC Bottom 30/06/2021 TRaC Bottom	Temperatu Temperatu	°C	15.7 15.1		15.7 15.1	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	23/08/2021 TRaC Bottom 18/05/2021 TRaC Surface	Temperatu Salinity(Lat		16.4 29.8	0.1	16.4 29.8	0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	30/06/2021 TRaC Bottom 30/06/2021 TRaC Surface	Salinity(Lat Salinity(Lat		33.3 32.6	0.1 0.1	33.3 32.6	0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	23/08/2021 TRaC Surface 23/08/2021 TRaC Bottom	Salinity(Lat Salinity(Lat		30.8 30.8	0.1 0.1	30.8 30.8	0.1 0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	23/08/2021 TRaC Bottom 02/11/2021 TRaC Bottom	Salinity(Lat Salinity(Lat	-	33.6 21.7	0.1 0.1	33.6 21.7	0.1 0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	02/11/2021 TRaC Bottom 18/05/2021 TRaC Surface	Salinity(Lak Silica (as Si		33.8 0.23	0.1 0.1	33.8 0.23	0.1
Cork Harbour Cork Harbour	IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	30/06/2021 TRaC Bottom 30/06/2021 TRaC Bottom	Silica (as Si Silica (as Si		0.12 0.05	0.1 0.1	0.12	0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	30/06/2021 TRaC Surface 23/08/2021 TRaC Bottom	Silica (as Si Silica (as Si	mg/l	0.05	0.1	0.05	0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE380 - E Spike Island	Surveillance Surveillance	30/06/2021 TRaC Surface 02/11/2021 TRaC Bottom	Total Oxidi	mg/l	0.074	0.01	0.074	0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	18/05/2021 TRaC Surface 18/05/2021 TRaC Surface	StationDep StationDep	m	20	0.01	20	0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	30/06/2021 TRaC Bottom 30/06/2021 TRaC Surface	StationDep StationDep	m	5.8	0.1	5.8	0.1
Cork Harbour Cork Harbour	IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance	23/08/2021 TRaC Bottom 23/08/2021 TRaC Surface	StationDep	m	3	0.1	3	0.1
Cork Harbour Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001 CW05003150LE8003	LE620 - E Spike Island LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance Surveillance	02/11/2021 TRaC Surface 02/11/2021 TRaC Bottom 02/11/2021 TRaC Bottom	StationDep StationDep StationDep	m	17.5 3.9 17.5	0.1	3.9 17.5	0.1 0.1 0.1
Cork Harbour	IE_SW_060_0000	CW05003150LE8001	LE380 - Ringaskiddy	Surveillance	30/06/2021 TRaC Surface	Temperatu	°C	16.3	0.1	16.3	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance	30/06/2021 TRaC Surface 23/08/2021 TRaC Surface	Temperatu Temperatu	°C	16.1 15.2		16.1 15.2	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	02/11/2021 TRaC Surface 02/11/2021 TRaC Bottom	Temperatu Temperatu	°C	11.6 12.4		11.6 12.4	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	18/05/2021 TRaC Surface 30/06/2021 TRaC Bottom	TOC (as NP TOC (as NP	mg/l	2.3	2	2.3	2
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	18/05/2021 TRaC Surface 18/05/2021 TRaC Bottom	Transparen Transparen	m	3.5 2.5		3.5 2.5	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	30/06/2021 TRaC Bottom 30/06/2021 TRaC Bottom	Transparen Transparen	m	2.5 3.5		2.5 3.5	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	02/11/2021 TRaC Surface 23/08/2021 TRaC Surface	Transparen TOC (as NP	mg/l	1.8 2.4	2	1.8 2.4	2
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	23/08/2021 TRaC Surface 23/08/2021 TRaC Bottom	Total Oxidi Total Oxidi	mg/l	0.12 0.028	0.01 0.01	0.12	0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance	2018/05/2021 TRaC Bottom 18/05/2021 TRaC Surface	Total Oxidi Total Oxidi	mg/l	0.088 0.2	0.01 0.01	0.088 0.2	0.01 0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance	30/06/2021 TRaC Bottom 23/08/2021 TRaC Bottom	Total Oxidi Total Oxidi	mg/l	0.063 0.13	0.01 0.01	0.063 0.13	0.01 0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	23/08/2021 TRaC Surface 02/11/2021 TRaC Surface	Total Oxidi Total Oxidi		0.04 1.3	0.01 0.01	0.04	0.01 0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island C LE620 - E Spike Island	Surveillance Surveillance	02/11/2021 TRaC Surface 18/05/2021 TRaC Bottom	Total Oxidi Transparen		0.38 3.5	0.01	0.38 3.5	0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	30/06/2021 TRaC Surface 30/06/2021 TRaC Surface	Transparen Transparen		2.5 3.5		2.5 3.5	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	02/11/2021 TRaC Bottom 23/08/2021 TRaC Surface	Transparen Transparen		1.8 1.5		1.8 1.5	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	23/08/2021 TRaC Bottom 23/08/2021 TRaC Surface	Transparen Transparen		1.5 2.5		1.5 2.5	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	02/11/2021 TRaC Surface 02/11/2021 TRaC Bottom	Transparen Transparen		1.5 1.5		1.5 1.5	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	23/08/2021 TRaC Surface 23/08/2021 TRaC Bottom	Ammonia- Ammonia-		0.076 0.044	0.01 0.01	0.076 0.044	0.01 0.01
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	02/11/2021 TRaC Bottom 18/05/2021 TRaC Bottom	Ammonia- BOD - 5 day	-	0.13 1.2	0.01 1	0.13	0.01 1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	30/06/2021 TRaC Bottom 23/08/2021 TRaC Surface	BOD - 5 day BOD - 5 day	-	0.5 1	1	0.5 1	<u> </u>
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	23/08/2021 TRaC Bottom 23/08/2021 TRaC Bottom	BOD - 5 day Depth	mg/l m	1.2 2.5	1	1.2 2.5	1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	02/11/2021 TRaC Bottom 02/11/2021 TRaC Surface	Depth Depth	m m	3.5 0		3.5 0	
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance	18/05/2021 TRaC Surface 30/06/2021 TRaC Bottom	Dissolved C Dissolved C		116 98	1	116 98	1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	18/05/2021 TRaC Surface 18/05/2021 TRaC Surface	ortho-Phos ortho-Phos		0.0025	0.005 0.005	0.0025	0.005 0.005
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	30/06/2021 TRaC Surface 30/06/2021 TRaC Bottom	ortho-Phos ortho-Phos	-	0.0025	0.005 0.005	0.0025	0.005 0.005
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	02/11/2021 TRaC Surface 18/05/2021 TRaC Surface	ortho-Phos	-	0.04 8.2	0.005	0.04	0.005
Cork Harbour Cork Harbour	IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	18/05/2021 TRaC Surface 23/08/2021 TRaC Bottom	•	pH units pH units	8.2 8.1	2	8.2 8.1	2
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	02/11/2021 TRaC Bottom 02/11/2021 TRaC Surface		pH units	7.9	2	7.9	2
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	18/05/2021 TRaC Bottom 02/11/2021 TRaC Bottom	Silica (as Si Silica (as Si	mg/l	0.16	0.1	0.16	0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003 CW05003150LE8003	LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance	30/06/2021 TRaC Bottom 30/06/2021 TRaC Surface	StationDep StationDep	m	21.1	0.1	21.1	0.1
Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8001 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island	Surveillance Surveillance	23/08/2021 TRaC Surface 02/11/2021 TRaC Surface	StationDep StationDep	m	3	0.1	3	0.1
Cork Harbour Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8003 CW05003150LE8003 CW05003150LE8001	LE620 - E Spike Island LE620 - E Spike Island LE380 - Ringaskiddy	Surveillance Surveillance	18/05/2021 TRaC Bottom 18/05/2021 TRaC Bottom	Temperatu Temperatu	°C	17.5 10.9 11.6	0.1	17.3 10.9 11.6	
Cork Harbour Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	18/05/2021 TRaC Sourface 23/08/2021 TRaC Surface	Temperatu Temperatu	°C	11.6 12.8 16.5		11.6 12.8 16.5	
Cork Harbour Cork Harbour Cork Harbour	IE_SW_060_0000 IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8001 CW05003150LE8001	LE380 - Ringaskiddy LE380 - Ringaskiddy LE380 - Ringaskiddy	Surveillance Surveillance	23/08/2021 TRaC Surface 18/05/2021 TRaC Bottom 23/08/2021 TRaC Bottom	TOC (as NP	mg/l	2.4	2	2	2
Cork Harbour	IE_SW_060_0000 IE_SW_060_0000 IE_SW_060_0000	CW05003150LE8001 CW05003150LE8003 CW05003150LE8003	LE380 - Ringaskiddy LE620 - E Spike Island LE620 - E Spike Island	Surveillance Surveillance	18/05/2021 TRaC Bottom 18/05/2021 TRaC Bottom 18/05/2021 TRaC Surface	Total Oxidi	mg/l	0.017	0.01	0.017	0.01
			LEDZO E SPIKE ISIAIIU		TO OULSOCT I LAC SULICE		-			0.07	
Cork Harbour Cork Harbour	IE_SW_060_0000	CW05003150LE8003	LE620 - E Spike Island	Surveillance	30/06/2021 TRaC Bottom	Total Oxidi	0.	0.005	0.01	0.005	0.01
Cork Harbour				Surveillance Surveillance Surveillance Surveillance	30/06/2021 TRaC Bottom 30/06/2021 TRaC Surface 02/11/2021 TRaC Bottom 18/05/2021 TRaC Surface	Total Oxidi Total Oxidi Total Oxidi Transparen	mg/l mg/l	0.005 0.03 0.83 2.5	0.01 0.01 0.01	0.005 0.03 0.83 2.5	0.01 0.01 0.01



Outer Cork Harbour 2021 Ambient Monitoring results

CW05003149LE9003 LE8200 CW05003149LE9002 LE8100 CW05003149LE9002	MonitoringStationName 320 - Myrtleville 320 - Noches Point 310 - Roches	MonitoringStati onType Operational	18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	SampleMethod TRaC Depth Compo TRaC Depth Compo	ame Ammonia-Tot Depth Chlorophyll a pH Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	m μg/l pH units μg/l PSU m 0/oo mg/l °C % Saturatio mg/l mg/l m mg/l m % Saturatio	0.01 17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 	LimitOfDetec tion 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.1	0.01 17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point <t< th=""><th>Operational</th><th>18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15</th><th>TRaC Depth Compo TRaC Depth Compo</th><th>Ammonia-Tot Depth Chlorophyll a pH Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a</th><th>tCode mg/l m μg/l pH units μg/l PSU m 0/oo mg/l °C % Saturatic mg/l m mg/l m mg/l m % Saturatic</th><th>17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 </th><th>0.01 0.01 2 0.01 0.1 0.1 0.1 0.1 1 0.005</th><th>17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5</th></t<>	Operational	18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Ammonia-Tot Depth Chlorophyll a pH Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	tCode mg/l m μg/l pH units μg/l PSU m 0/oo mg/l °C % Saturatic mg/l m mg/l m mg/l m % Saturatic	17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 	0.01 0.01 2 0.01 0.1 0.1 0.1 0.1 1 0.005	17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point <t< th=""><th>Operational</th><th>18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15</th><th>TRaC Depth Compo TRaC Depth Compo</th><th>Ammonia-Tot Depth Chlorophyll a pH Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a</th><th>mg/I m μg/I pH units μg/I PSU m 0/oo mg/I °C % Saturatio mg/I mg/I m mg/I m % Saturatio</th><th>17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 </th><th>0.01 0.01 2 0.01 0.1 0.1 0.1 0.1 1 0.005</th><th>17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5</th></t<>	Operational	18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Ammonia-Tot Depth Chlorophyll a pH Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	mg/I m μg/I pH units μg/I PSU m 0/oo mg/I °C % Saturatio mg/I mg/I m mg/I m % Saturatio	17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 	0.01 0.01 2 0.01 0.1 0.1 0.1 0.1 1 0.005	17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point <t< th=""><th>Operational Operational</th><th>18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15</th><th>TRaC Depth Compo TRaC Depth Compo</th><th>Depth Chlorophyll a pH Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a</th><th>m μg/l pH units μg/l PSU m 0/oo mg/l °C % Saturatio mg/l mg/l m mg/l m % Saturatio</th><th>17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 </th><th>0.01 2 0.01 0.1 0.1 0.1 0.1 1 0.005</th><th>17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5</th></t<>	Operational Operational	18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Depth Chlorophyll a pH Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	m μg/l pH units μg/l PSU m 0/oo mg/l °C % Saturatio mg/l mg/l m mg/l m % Saturatio	17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 	0.01 2 0.01 0.1 0.1 0.1 0.1 1 0.005	17.3 6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point <t< td=""><td>Operational</td><td>18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15</td><td>TRaC Depth Compo TRaC Depth Compo</td><td>Chlorophyll a pH Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a</td><td>μg/l pH units μg/l PSU m 0/oo mg/l °C % Saturatic mg/l mg/l m mg/l m % Saturatic</td><td>6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 </td><td>2 0.01 0.1 0.1 0.1 0.1 1 0.005</td><td>6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5</td></t<>	Operational	18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Chlorophyll a pH Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	μg/l pH units μg/l PSU m 0/oo mg/l °C % Saturatic mg/l mg/l m mg/l m % Saturatic	6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 	2 0.01 0.1 0.1 0.1 0.1 1 0.005	6.6 8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point <trr< td=""><td>Operational</td><td>18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15</td><td>TRaC Depth Compo TRaC Depth Compo</td><td>pH Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a</td><td>pH units μg/l PSU m 0/oo mg/l °C % Saturatio mg/l mg/l m mg/l m % Saturatio</td><td>8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 </td><td>2 0.01 0.1 0.1 0.1 0.1 1 0.005</td><td>8.1 0.76 35.5 17.3 34.3 0.17 10.4 92 0.0025 0.005 3.5 0.5</td></trr<>	Operational	18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	pH Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	pH units μg/l PSU m 0/oo mg/l °C % Saturatio mg/l mg/l m mg/l m % Saturatio	8.1 0.76 35.5 17.3 34.3 0.17 10.4 94 	2 0.01 0.1 0.1 0.1 0.1 1 0.005	8.1 0.76 35.5 17.3 34.3 0.17 10.4 92 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point <t< td=""><td>Operational</td><td>18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15</td><td>TRaC Depth Compo TRaC Depth Compo</td><td>Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a</td><td>μg/I PSU m 0/oo mg/I °C % Saturatic mg/I mg/I m mg/I m % Saturatic</td><td>0.76 35.5 17.3 34.3 0.17 10.4 94 </td><td>0.1 0.1 0.1 0.1 1 0.005</td><td>0.76 35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5</td></t<>	Operational	18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Pheophytin a Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	μg/I PSU m 0/oo mg/I °C % Saturatic mg/I mg/I m mg/I m % Saturatic	0.76 35.5 17.3 34.3 0.17 10.4 94 	0.1 0.1 0.1 0.1 1 0.005	0.76 35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point	Operational	18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Salinity StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	PSU m 0/oo mg/l °C % Saturatio mg/l m mg/l m mg/l % Saturatio	35.5 17.3 34.3 0.17 10.4 94 	0.1 0.1 0.1 0.1 1 0.005	35.5 17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point <td>Operational</td> <td>18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15</td> <td>TRaC Depth Compo TRaC Depth Compo</td> <td>StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a</td> <td>m 0/oo mg/l °C % Saturatio mg/l mg/l m mg/l m % Saturatio</td> <td>17.3 34.3 0.17 10.4 94 </td> <td>0.1 0.1 0.1 1 0.005</td> <td>17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5</td>	Operational	18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	StationDepth Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	m 0/oo mg/l °C % Saturatio mg/l mg/l m mg/l m % Saturatio	17.3 34.3 0.17 10.4 94 	0.1 0.1 0.1 1 0.005	17.3 34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point<	Operational	18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Salinity(Lab) Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	0/oo mg/l °C % Saturatic mg/l mg/l mg/l m % Saturatic	34.3 0.17 10.4 94 	0.1 0.1 1 0.005	34.3 0.17 10.4 94 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point <td>Operational Operational</td> <td>18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15</td> <td>TRaC Depth Compo TRaC Depth Compo</td> <td>Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a</td> <td>mg/l °C % Saturatio mg/l mg/l mg/l m % Saturatio</td> <td>0.17 10.4 94 </td> <td>0.1 1 0.005</td> <td>0.17 10.4 94 0.0025 0.005 3.5 0.5</td>	Operational Operational	18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Silica (as SiO2 Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	mg/l °C % Saturatio mg/l mg/l mg/l m % Saturatio	0.17 10.4 94 	0.1 1 0.005	0.17 10.4 94 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville320 - Myrtleville320 - Myrtleville320 - Myrtleville320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point	Operational	18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Temperature Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	°C % Saturatio mg/l m mg/l m % Saturatio	10.4 94 3.5 0.5 19	1 0.005	10.4 94 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville320 - Myrtleville320 - Myrtleville320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:10 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Dissolved Oxy ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	% Saturatio mg/l mg/l m mg/l m % Saturatio	94 3.5 0.5 19		92 0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville320 - Myrtleville320 - Myrtleville310 - Roches Point310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	ortho-Phosph Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	mg/l mg/l mg/l m % Saturatio	3.5 0.5 19		0.0025 0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630	320 - Myrtleville320 - Myrtleville320 - Roches Point310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:00 18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Total Oxidised Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	mg/I m mg/I m % Saturatio	0.5 19		0.005 3.5 0.5
CW05003149LE9003 LE820 CW05003149LE9002 LE810 CW05003149LE9001 LE630	320 - Myrtleville310 - Roches Point310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:00 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	Transparency BOD - 5 days Depth Dissolved Oxy Pheophytin a	m mg/l m % Saturatio	0.5 19	1	3.5 0.5
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo	BOD - 5 days Depth Dissolved Oxy Pheophytin a	mg/l m % Saturatic	0.5 19	1	0.5
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo	Depth Dissolved Oxy Pheophytin a	m % Saturatio	19	 	
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo	Dissolved Oxy Pheophytin a				19
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo	Pheophytin a		, 90I	1	96
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo TRaC Depth Compo			0.31	0.01	0.31
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo TRaC Depth Compo	,	PSU PSU	35.6	0.1	35.6
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point 310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo	ortho-Phosph	mg/l	0.0025	0.005	0.0025
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point 310 - Roches Point	Operational Operational Operational Operational Operational Operational Operational	18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15					4	2
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point 310 - Roches Point	Operational Operational Operational Operational Operational Operational	18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15			pH units	8.1	2	8.1
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point 310 - Roches Point 310 - Roches Point 310 - Roches Point 310 - Roches Point	Operational Operational Operational Operational Operational	18/05/2021 09:15 18/05/2021 09:15 18/05/2021 09:15	TRaC Depth Compo		•	10.5		10.5
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point 310 - Roches Point 310 - Roches Point 310 - Roches Point	Operational Operational Operational	18/05/2021 09:15	TRaC Depth Compo	•			0.1	0.05
CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point 310 - Roches Point 310 - Roches Point	Operational Operational		TRaC Depth Compo	StationDepth	m	19	0.1	19
CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9001 LE630	810 - Roches Point 810 - Roches Point	Operational		TRaC Depth Compo	TOC (as NPOC	mg/l		2	1
CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point			TRaC Depth Compo			0.005	0.01	0.005
CW05003149LE9002 LE810 CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point		18/05/2021 09:15	TRaC Depth Compo	True Colour	mg/litre Pt	Со	5	2.5
CW05003149LE9002 LE810 CW05003149LE9001 LE630	310 - Roches Point	Operational	18/05/2021 09:15	TRaC Depth Compo	Ammonia-Tot	mg/l	0.014	0.01	0.014
CW05003149LE9002 LE810 CW05003149LE9001 LE630		Operational	18/05/2021 09:15	TRaC Depth Compo	Chlorophyll a	µg/l	2.8	0.01	2.8
CW05003149LE9001 LE630	310 - Roches Point	Operational		TRaC Depth Compo		-	35	0.1	35
CW05003149LE9001 LE630	310 - Roches Point	Operational		TRaC Depth Compo			5		5
CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo	Operational	18/05/2021 09:32		Ammonia-Tot		0.018	0.01	0.018
CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo		18/05/2021 09:32	1 4	BOD - 5 days	.	0.5	1	0.5
CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo	·	18/05/2021 09:32	S. C.	Dissolved Oxy			1	97
CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo	· ·	18/05/2021 09:32		Chlorophyll a	µg/l	4.6	0.01	4.6
CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo	•	18/05/2021 09:32		Depth	m	0.3		0.3
CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		рH	pH units	8.1	2	8.1
CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		Pheophytin a		0.49	0.01	0.49
CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		Depth	m	28		28
CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		Salinity	PSU //	35.5	0.1	35.5
CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		ortho-Phosph		0.0025	0.005	0.0025
CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		ortho-Phosph	.	0.0025	0.005	0.0025
CW05003149LE9001LE630	630 - Adjacent to Carlisle Fo		18/05/2021 09:32		StationDepth		28	0.1	28
CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		StationDepth		28	0.1	28
CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo	·	18/05/2021 09:32		Temperature		10.6	_	10.6
CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo		18/05/2021 09:32 18/05/2021 09:32		Temperature pH	pH units	12 8.2	2	12 8.2
CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo	· · · · · · · · · · · · · · · · · · ·	18/05/2021 09:32		TOC (as NPOC		0.2	2	
CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		TOC (as NPOC			2	1
CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo	· ·	18/05/2021 09:32		Salinity	PSU	34.3	0.1	34.3
CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630	630 - Adjacent to Carlisle Fo		18/05/2021 09:32		Transparency		34.3	0.1	
CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		Silica (as SiO2			0.1	0.05
CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		Transparency	<u>.</u>	3	0.1	0.03
CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630CW05003149LE9001LE630	530 - Adjacent to Carlisle Fo	· · · · · · · · · · · · · · · · · · ·	18/05/2021 09:32		Ammonia-Tot		0.012	0.01	0.012
CW05003149LE9001 LE630 CW05003149LE9001 LE630 CW05003149LE9001 LE630	630 - Adjacent to Carlisle Fo		18/05/2021 09:32		BOD - 5 days	0	0.012	1	0.012
CW05003149LE9001 LE630 CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo	·	18/05/2021 09:32		Dissolved Oxy			1	111
CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo	· ·	18/05/2021 09:32		Salinity(Lab)		34.8	0.1	34.8
	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		Salinity(Lab)		34.3	0.1	34.3
	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		Silica (as SiO2		0.12	0.1	0.12
	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		Total Oxidised	-	0.013	0.01	0.013
	530 - Adjacent to Carlisle Fo		18/05/2021 09:32		Total Oxidised		0.005	0.01	0.005
	530 - Adjacent to Carlisle Fo	•	30/06/2021 11:17		BOD - 5 days		0.5	1	0.5
	530 - Adjacent to Carlisle Fo	· ·	30/06/2021 11:17		, Depth	m	26.4		26.4
	530 - Adjacent to Carlisle Fo		30/06/2021 11:17		ortho-Phosph	mg/l	0.0025	0.005	0.0025
			30/06/2021 11:17		рН	pH units	8.2	2	8.2
CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo	Operational	30/06/2021 11:17	TRaC Bottom	Dissolved Oxy	% Saturatio	99	1	99
CW05003149LE9001 LE630		Operational	30/06/2021 11:17		Temperature	°C	15.2		15.2
CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo	Operational	30/06/2021 11:17		Total Oxidised	mg/l	0.005	0.01	0.005
	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo	•	30/06/2021 11:17	TRaC Bottom	Transparency		4		
	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo	· · · · · · · · · · · · · · · · · · ·	30/06/2021 11:17		Silica (as SiO2	.		0.1	0.05
	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo		30/06/2021 11:17		StationDepth		26.7	0.1	26.7
	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo	·	30/06/2021 11:17		Ammonia-Tot		0.043	0.01	0.043
	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo		30/06/2021 11:17		,	PSU	35	0.1	3
	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo	· ·	30/06/2021 11:17		Salinity(Lab)		34.4	0.1	34.4
	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo	Operational	30/06/2021 11:17		TOC (as NPOC			2	
	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo	Operational Operational	30/06/2021 11:22		Chlorophyll a		1.4		1.4
	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo	Operational Operational Operational		TRaC Surface	ortho-Phosph		0.0059	0.005	0.0059
	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo	Operational Operational Operational Operational	30/06/2021 11:22		Depth	m	0.3		0.3
	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo	Operational Operational Operational Operational Operational	30/06/2021 11:22 30/06/2021 11:22	TRaC Surface			I		
CW05003149LE9001 LE630 CW05003149LE9001 LE630	530 - Adjacent to Carlisle Fo 530 - Adjacent to Carlisle Fo	Operational Operational Operational Operational Operational Operational	30/06/2021 11:22	TRaC Surface TRaC Surface	Silica (as SiO2 Pheophytin a	mg/l	0.26	0.1	0.05

CW05003149LE9001	LE630 - Adjacent to Carlisle For	Operational	30/06/2021 11:22	TDaC Surface	StationDepth	m	26.7	0.1	26.7
CW05003149LE9001	LE630 - Adjacent to Carlisle For		30/06/2021 11:22		Temperature		15.9		<u>26.7</u> 15.9
CW05003149LE9001	LE630 - Adjacent to Carlisle For		30/06/2021 11:22		Total Oxidised		0.013	0.01	0.013
CW05003149LE9001	LE630 - Adjacent to Carlisle For		30/06/2021 11:22		Transparency	<u> </u>	4		4
CW05003149LE9001	LE630 - Adjacent to Carlisle For		30/06/2021 11:22		Ammonia-Tot		0.045	0.01	0.045
CW05003149LE9001	LE630 - Adjacent to Carlisle For	Operational	30/06/2021 11:22	TRaC Surface	Dissolved Oxy	% Saturatio	105	1	105
CW05003149LE9001	LE630 - Adjacent to Carlisle For	Operational	30/06/2021 11:22	TRaC Surface	рН	pH units	8.2	2	8.2
CW05003149LE9001	LE630 - Adjacent to Carlisle For	Operational	30/06/2021 11:22		Salinity	PSU	34.5	0.1	34.5
CW05003149LE9002		Operational		TRaC Depth Compo		-	0.043	0.01	0.043
CW05003149LE9002		Operational		TRaC Depth Compo			0.5		0.5
CW05003149LE9002		Operational		TRaC Depth Compo	,	PSU	35		35
CW05003149LE9002		Operational		TRaC Depth Compo					98
CW05003149LE9002		Operational		TRaC Depth Compo	-		0.0025		0.0025
CW05003149LE9002 CW05003149LE9002		Operational Operational		TRaC Depth Compo TRaC Depth Compo			19.2	0.1	19.2
CW05003149LE9002		Operational		TRaC Depth Compo		pH units	8.2	4	8.2
CW05003149LE9002		Operational		TRaC Depth Compo	1	mg/litre Pt		5	2.5
CW05003149LE9002		Operational		TRaC Depth Compo			15.2		15.2
CW05003149LE9002		Operational		TRaC Depth Compo			13.2	2	1
CW05003149LE9002		Operational		TRaC Depth Compo			0.005	0.01	0.005
CW05003149LE9002		Operational	1	TRaC Depth Compo		-	0.93		0.93
CW05003149LE9002		Operational	1	TRaC Depth Compo		m	19.1		19.1
CW05003149LE9002		Operational		TRaC Depth Compo		µg/l	0.26	0.01	0.26
CW05003149LE9002		Operational		TRaC Depth Compo		0/00	34.3	0.1	34.3
CW05003149LE9002		Operational		TRaC Depth Compo		-	0.1	0.1	0.1
CW05003149LE9002		Operational		TRaC Depth Compo	· ·		4		4
CW05003149LE9003		Operational		TRaC Depth Compo	· · · · · · · · · · · · · · · · · · ·		0.045	0.01	0.045
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo		.	1.7	0.01	1.7
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo			0.29	0.01	0.29
CW05003149LE9003	LE820 - Myrtleville	Operational	30/06/2021 11:44	TRaC Depth Compo	Depth	m	17.1		17.1
CW05003149LE9003	LE820 - Myrtleville	Operational	30/06/2021 11:44	TRaC Depth Compo	Salinity	PSU	35	0.1	35
CW05003149LE9003		Operational		TRaC Depth Compo				0.005	0.0025
CW05003149LE9003	'	Operational		TRaC Depth Compo			14.8		14.8
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo		pH units	8.2	2	8.2
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo	-	-		0.1	0.05
CW05003149LE9003	LE820 - Myrtleville	Operational	30/06/2021 11:44	TRaC Depth Compo	StationDepth	m	17.3	0.1	17.3
CW05003149LE9003		Operational		TRaC Depth Compo		.		0.01	0.005
CW05003149LE9003	LE820 - Myrtleville	Operational	30/06/2021 11:44	TRaC Depth Compo	Dissolved Oxy	% Saturatio	92	1	92
CW05003149LE9003	'	Operational		TRaC Depth Compo			34.3	0.1	34.3
CW05003149LE9003		Operational		TRaC Depth Compo			4		4
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:48		Ammonia-Tot	mg/l	0.029	0.01	0.029
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:48		Depth	m			
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:48		Dissolved Oxy			1	97
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:48		рН	pH units	8		8
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:48		Salinity	PSU	33.8		33.8
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11 48		Temperature		14.8		14.8
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:48		TOC (as NPOC		22.0	2	1
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:48		Salinity(Lab)		33.6		33.6
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:48		Silica (as SiO2		0.1	0.1	0.1
CW05003149LE9001 CW05003149LE9001	LE630 - Adjacent to Carlisle For LE630 - Adjacent to Carlisle For		23/08/2021 11:48 23/08/2021 11:48		StationDepth BOD - 5 days		22.3 0.5	0.1	22.3 0.5
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:48		ortho-Phosph		0.0025	0.005	0.0025
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:48		Total Oxidised	-	0.0023		0.0023
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:48		Transparency		2.8		2.8
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:40		Ammonia-Tot		0.068		0.068
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:52		BOD - 5 days		0.5		0.000
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:52		Depth	m	0.5		0
CW05003149LE9001	LE630 - Adjacent to Carlisle For	•	23/08/2021 11:52		ortho-Phosph		0.0025	0.005	0.0025
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:52		Dissolved Oxy	-			105
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:52		pH	pH units	8	2	8
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:52		Salinity	PSU	32.8	0.1	32.8
CW05003149LE9001	LE630 - Adjacent to Carlisle For	•	23/08/2021 11:52			0/00	33.4		33.4
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:52		Silica (as SiO2	-	0.11		0.11
CW05003149LE9001	LE630 - Adjacent to Carlisle For	Operational	23/08/2021 11:52		Transparency		2.8		2.8
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:52		Chlorophyll a		4.7	0.01	4.7
CW05003149LE9001	LE630 - Adjacent to Carlisle For	Operational	23/08/2021 11:52		Pheophytin a		0.18	0.01	0.18
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:52		StationDepth		22.3	0.1	22.3
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:52		Temperature		15.6		15.6
CW05003149LE9001	LE630 - Adjacent to Carlisle For		23/08/2021 11:52		TOC (as NPOC			2	1
CW05003149LE9001	LE630 - Adjacent to Carlisle For	•	23/08/2021 11:52		Total Oxidised	.	0.029		0.029
CW05003149LE9002		Operational		TRaC Depth Compo			7.9		7.9
CW05003149LE9002		Operational		TRaC Depth Compo		m	16		16
CW05003149LE9002		Operational		TRaC Depth Compo			0.0025	0.005	0.0025
CW05003149LE9002		Operational		TRaC Depth Compo			16.5	0.1	16.5
CW05003149LE9002		Operational		TRaC Depth Compo		pH units	8	2	-
CW05003149LE9002		Operational		TRaC Depth Compo			0.1	0.01	0.1
CW05003149LE9002	LE810 - Roches Point	Operational		TRaC Depth Compo	•	Ŭ.	0.024	2	0.000
CW05003149LE9002		Operational		TRaC Depth Compo			0.021	0.01	0.021
CW05003149LE9002	LE810 - Roches Point LE810 - Roches Point	Operational		TRaC Depth Compo		PSU	33.1	0.1	33.1
CW05003149LE9002 CW05003149LE9002		Operational Operational		TRaC Depth Compo TRaC Depth Compo	1 1		3		
CW05003149LE9002 CW05003149LE9002		Operational Operational		TRaC Depth Compo			15.6	4	15.6
CW05003149LE9002 CW05003149LE9002	LE810 - Roches Point LE810 - Roches Point	Operational		TRaC Depth Compo		ng/litre Pt		5	15.0
CW05003149LE9002 CW05003149LE9002		Operational		TRaC Depth Compo			0.028		0.028
CW05003149LE9002		Operational		TRaC Depth Compo			0.028		0.022
	LE810 - Roches Point	Operational		TRaC Depth Compo		.		1	101
			UU/ _ULI IL.UU	Linge Depui Compt	UNY CU UX		1 101		101
CW05003149LE9002				TRaC Depth Compo	Salinitv(Lah)	0/00	33.8	0.1	22.8
	LE810 - Roches Point	Operational Operational	23/08/2021 12:06	TRaC Depth Compo TRaC Depth Compo			33.8 0.1		33.8 0.2

	LEROO Murtlovillo	Operational	22/09/2021 12:20	TRac Donth Comp	Chlorophylla	ug/I	2.6	0.01	2.6
CW05003149LE9003 CW05003149LE9003	LE820 - Myrtleville LE820 - Myrtleville	Operational Operational		TRaC Depth Compo TRaC Depth Compo		μg/i m	3.6 13.5		3.6 13.5
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo	1	pH units	13.3	2	15.5
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo		0/00	34.1	0.1	34.1
CW05003149LE9003	LE820 - Myrtleville	Operational	1 1	TRaC Depth Compo			0.014	0.005	0.014
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo			15.4		15.4
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo		PSU	33.4	0.1	33.4
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo		mg/l	0.016	0.01	0.016
CW05003149LE9003	LE820 - Myrtleville	Operational	23/08/2021 12:20	TRaC Depth Compo	Transparency	m	3.5		3.5
CW05003149LE9003	LE820 - Myrtleville	Operational	23/08/2021 12:20	TRaC Depth Compo	Dissolved Oxy	% Saturatio	100	1	100
CW05003149LE9003	LE820 - Myrtleville	Operational	23/08/2021 12:20	TRaC Depth Compo	Pheophytin a	μg/l	0.093	0.01	0.093
CW05003149LE9003	LE820 - Myrtleville	Operational	23/08/2021 12:20	TRaC Depth Compo	Silica (as SiO2	mg/l		0.1	0.05
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo			14.2	0.1	14.2
CW05003149LE9001	LE630 - Adjacent to Carlisle For		02/11/2021 12:13		Ammonia-Tot		0.025	0.01	0.025
CW05003149LE9001	LE630 - Adjacent to Carlisle For	·	02/11/2021 12:13		Ammonia-Tot	-	0.017	0.01	0.017
CW05003149LE9001	LE630 - Adjacent to Carlisle For	·	02/11/2021 12:13		BOD - 5 days		0.5	1	0.5
CW05003149LE9001	LE630 - Adjacent to Carlisle For	·	02/11/2021 12:13		Dissolved Oxy			1	77
CW05003149LE9001	LE630 - Adjacent to Carlisle For		02/11/2021 12:13		Chlorophyll a		0.28		0.28
CW05003149LE9001 CW05003149LE9001	LE630 - Adjacent to Carlisle For LE630 - Adjacent to Carlisle For		02/11/2021 12:13 02/11/2021 12:13		ortho-Phosph Pheophytin a		0.019 0.56	0.005 0.01	0.019
CW05003149LE9001	LE630 - Adjacent to Carlisle Fo		02/11/2021 12:13			PSU	33.9	0.01	33.9
CW05003149LE9001	LE630 - Adjacent to Carlisle For	·	02/11/2021 12:13		Dissolved Oxy			0.1	
CW05003149LE9001	LE630 - Adjacent to Carlisle Fo		02/11/2021 12:13		StationDepth		27.5	0.1	27.5
CW05003149LE9001	LE630 - Adjacent to Carlisle For		02/11/2021 12:13		TOC (as NPOC		27.5	2	1
CW05003149LE9001	LE630 - Adjacent to Carlisle For		02/11/2021 12:13			PSU	32.8		32.8
CW05003149LE9001	LE630 - Adjacent to Carlisle For	·	02/11/2021 12:13		Transparency		1.8		1.8
CW05003149LE9001	LE630 - Adjacent to Carlisle For		02/11/2021 12:13		Transparency		1.8		1.8
CW05003149LE9001	LE630 - Adjacent to Carlisle For		02/11/2021 12:13		Silica (as SiO2		0.45		0.45
CW05003149LE9001	LE630 - Adjacent to Carlisle For	Operational	02/11/2021 12:13	TRaC Surface	StationDepth	m	27.5	0.1	27.5
CW05003149LE9001	LE630 - Adjacent to Carlisle For	Operational	02/11/2021 12:13	TRaC Bottom	Temperature	°C	12.2		12.2
CW05003149LE9001	LE630 - Adjacent to Carlisle For	Operational	02/11/2021 12:13	TRaC Surface	Temperature	°C	12.2		12.2
CW05003149LE9001	LE630 - Adjacent to Carlisle For		02/11/2021 12:13		Total Oxidised	-	0.16		0.16
CW05003149LE9001	LE630 - Adjacent to Carlisle For	·	02/11/2021 12:13		BOD - 5 days	mg/l	0.5		0.5
CW05003149LE9001	LE630 - Adjacent to Carlisle For	· ·	02/11/2021 12:13		-1	m	0		0
CW05003149LE9001	LE630 - Adjacent to Carlisle For		02/11/2021 12:13			m "			
CW05003149LE9001	LE630 - Adjacent to Carlisle For		02/11/2021 12:13		ortho-Phosph	<u> </u>	0.017	0.005	0.017
CW05003149LE9001	LE630 - Adjacent to Carlisle For	·	02/11/2021 12:13		рН	pH units	7.9	2	7.9
CW05003149LE9001	LE630 - Adjacent to Carlisle For	·	02/11/2021 12:13		pH Salinity(Lab)	pH units	7.9 33.8		7.9
CW05003149LE9001 CW05003149LE9001	LE630 - Adjacent to Carlisle For LE630 - Adjacent to Carlisle For		02/11/2021 12:13 02/11/2021 12:13			0/oo 0/oo	33.8	0.1	<u> </u>
CW05003149LE9001	LE630 - Adjacent to Carlisle For	·	02/11/2021 12:13		Silica (as SiO2		0.37	0.1	0.37
CW05003149LE9001	LE630 - Adjacent to Carlisle For	·	02/11/2021 12:13		TOC (as NPOC		0.57	2	0.57
CW05003149LE9001	LE630 - Adjacent to Carlisle For		02/11/2021 12:13		Total Oxidised	.	0.12	0.01	0.12
CW05003149LE9002	LE810 - Roches Point	Operational		TRaC Depth Compo			0.5	1	0.5
CW05003149LE9002	LE810 - Roches Point	Operational		RaC Depth Compo		m	0		0
CW05003149LE9002	LE810 - Roches Point	Operational		TRaC Depth Compo		% Saturatio	87	1	87
CW05003149LE9002	LE810 - Roches Point	Operational	A 4	TRaC Depth Compo			0.016	0.005	0.016
CW05003149LE9002	LE810 - Roches Point	Operational	02/11/2021 12:26	TRaC Depth Compo	рН	pH units	7.9	2	7.9
CW05003149LE9002	LE810 - Roches Point	Operational	02/11/2021 12:26	TRaC Depth Compo	Salinity	PSU	31.4	0.1	31.4
CW05003149LE9002	LE810 - Roches Point	Operational	02/11/2021 12:26	TRaC Depth Compo	Transparency	m	3		3
CW05003149LE9002	LE810 - Roches Point	Operational	02/11/2021 12:26	TRaC Depth Compo	Salinity(Lab)	0/00	33		33
CW05003149LE9002	LE810 - Roches Point	Operational		TRaC Depth Compo		-	0.5		0.5
CW05003149LE9002	LE810 - Roches Point	Operational		TRaC Depth Compo	-			2	1
CW05003149LE9002	LE810 - Roches Point	Operational		TRaC Depth Compo				5	2.5
CW05003149LE9002	LE810 - Roches Point	Operational		TRaC Depth Compo			0.038		0.038
CW05003149LE9002	LE810 - Roches Point	Operational		TRaC Depth Compo			0.16		0.16
CW05003149LE9002	LE810 - Roches Point	Operational		TRaC Depth Compo	. ,	1.01	0.26		0.26
CW05003149LE9002 CW05003149LE9002	LE810 - Roches Point LE810 - Roches Point	Operational		TRaC Depth Compo TRaC Depth Compo			17.1	0.1	<u>17.1</u> 3.5
CW05003149LE9002	LE810 - Roches Point LE810 - Roches Point	Operational Operational		TRaC Depth Compo		<u>.</u>	12.2	4	3.5
CW05003149LE9002	LE810 - Roches Point LE810 - Roches Point	Operational		TRaC Depth Compo			0.18	0.01	0.18
CW05003149LE9002	LE820 - Myrtleville	Operational		TRaC Depth Compo		<u>.</u>	0.18		0.18
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo					87
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo			0.24		0.24
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo		0/00	31.9		31.9
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo	/、 /		0.025		0.025
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo		pH units	7.9		7.9
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo		1	0.48		0.48
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo		PSU PSU	30.9	0.1	30.9
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo	,		2.5		2.5
CW05003149LE9003	LE820 - Myrtleville	Operational	02/11/2021 12:37	TRaC Depth Compo	Silica (as SiO2	mg/l	0.69	0.1	0.69
CW05003149LE9003	LE820 - Myrtleville	Operational	02/11/2021 12:37	TRaC Depth Compo	StationDepth	m	17.2	0.1	17.2
CW05003149LE9003	LE820 - Myrtleville	Operational		TRaC Depth Compo			12.2		12.2
	LE820 - Myrtleville	Operational	02/11/2021 12:37	TRaC Depth Compo	Total Oxidised	mg/l	0.25	0.01	0.25
CW05003149LE9003		operational	•=,==,=•==						

