
ATTACHMENT-7-1-3-2 Air Emissions Impact Report

Table of Contents

1.0 Air emissions	1
2.0 Baseline Environment	1
3.0 Dust, Particulate Matter and other gases	4
4.0 Climate change	4
4.1 Future Potential Climate Mitigation	5
5.0 Conclusions	5

1.0 Air emissions

The main emissions are ammonia, methane, nitrous oxide dust and odour emissions. Other fugitive emissions such as hydrogen sulphide, carbon monoxide and sulphur dioxide are also assessed.

2.0 Baseline Environment

The baseline ammonia (NH₃) deposition levels for the study area is approximately 17.5 kgs / ha / year¹ of NH₃-N or approx. 21^2 kgs NH₃ / ha. Agriculture in the study area is the source of 98%+ of these emissions (this assumes that the study area reflects the national situation).

Figure 1 : NH₃-N rates in Ireland

For fugitive emissions of methane (CH₄) and nitrous oxide (N₂O) the average national baseline is assumed to be relevant to the site. In the case of CH₄ this is approx. 560,000³ tons over 8m hectares of land = 65-70 kgs / ha. In the case of N₂O this is approx. 23,300⁴ tons over 8m hectares of land = 3 kgs / ha.

¹ Page 6 EPA Report; Ambient Atmospheric Ammonia in Ireland, 2013-2014 (Figure 2.3)

 $^{^{2}}$ NH₃ = atomic weight 14 for N and 3 for H₃, therefore N makes up 82% of NH₃ => 21 x 0.85 = 17.5kgs N.

³ Table 4 2018 CSO Environmental Accounts

⁴ Table 3 2018 CSO Environmental Accounts

Category of pig	Number	NH₃ (kgs)	CH₄ (kgs)	N ₂ O (kgs)
(i) 600 sows (Licensed number)				
Suckling sows & litter	190	893	4370	6
Dry sows	410	1312	9430	13
Boars	10	34	230	0.3
Maiden gilts	150	390	1725	2
Weaners	3450	3450	30015	16
Fattening pigs	3750	9750	49875	54
Total =>		15,829 (100%)	95,645 (100%)	92 (100%)
(ii) 1000 sows (Revised numbers)				
Suckling sows & litter	167	785	3841	5
Dry sows	833	2666	19159	26
Boars	5	17	115	0.1
Maiden gilts	166	432 _ي و.	1909	2
Weaners	5357	5357	46607	25
Fattening pigs	3957	30289	52630	57
Total =>	on purposes of	19,545 (123%)	124,261 (130%)	116 (127%)

Table 1: Pre-mitigation Gaseous Emissions

The development of the on-site mill with upgraded electricity supply will facilitate the operation of the mill and the formulation of low protein diets for the production pigs and therefore a conservative $2^{5\%}$ reduction in protein in these diets with result in a 20% reduction in NH₃ emissions (Table 4.17 of BAT 2017) from weaner and finisher pies. While reductions in CH₄ and N₂O are also reported due to lower protein diets the information is less conclusive – so the reduction is only assumed for NH₃. The rural air quality for this area 's rated as 'Good' by the EPA Air Quality Index for Health (http://www.epa.ie/air/quality/). The baseline deposition of ammonia which includes the existing pig farm is estimated to be average for the South West of Ireland i.e. 21 kgs / ha / year (see Figure 1). The additional post-mitigation loading due to the revised stock numbers is a fraction of one kilogram per hectare per year which is not significant. Within 1-2 kilometres of the pig unit the post-mitigation NH₃ deposition levels are elevated by less than 1 kgs / ha / year due to the revised stock numbers. The average value of NH₃ in the atmosphere for Ireland is 1.456 µg NH₃/m³ and measurements from the UK at sites near pig and poultry farms were 8.68 μ g NH₃/m³. These levels are far less than exposure limits for NH₃ set by the Occupational Safety and Health Administration (OSHA) in the USA (ATSDR, 2004) – 87 hours exposure : 17000 μ g NH₃/m³. Without mitigation there are no known significant effects on rural dwellings at these acceptably low levels.

Table 2: Post-mitigation NH ₃ Emission	ons
---	-----

Category of pig	NH₃ (kgs)
(i) 600 sows (Licensed number)	15,829 (100%)

 5 A 3% reduction would lead to a 6% reduction in NH_3 emissions

⁶ Section 2.1 EPA Report No 193 Ambient Atmospheric Ammonia in Ireland, 2013-2014

⁷ Table 2.1 EPA Report No 193 Ambient Atmospheric Ammonia in Ireland, 2013-2014

Category of pig	NH₃ (kgs)
(ii) 1000 sows (with mitigation)	16,415 ⁸ (104%)

A 3% reduction in protein in the growing pig diet is achievable with proper supplementation of amino acids – this would reduce NH_3 emissions further. The post mitigation impact means that proposed ammonia emissions can be maintained at similar levels to the existing licensed emissions. The lower nitrogen content in the slurry will also reduce N_2O emissions.

From 2020 Ireland will have an ammonia ceiling of 112.2 kilotons representing a 1% ammonia reduction relative to the 2005 level. A further reduction target of 5% relative to the 2005⁹ level is to be achieved by 2030 – i.e. a ceiling of 107.6 kilotons - this is a 7.24% reduction on the 116 kt ceiling and a 9.2% reduction on the latest 2018 levels. Under the NEC Directive Ireland has to adopt and implement a '*Code of Good Agricultural Practise for reducing Ammonia Emissions from Agriculture'* – DAFM November 2019. This pig farm will commit to adopt and abide with measures specified in this COP. Measures within the code of practice (COP) which will be adopted a move towards low emission spreading (e.g. trailing shoe), applying early in the year in cool conditions and storage in covered manure stores.

Category of pig	Number	Odour emissions / use animal (o.u.) other 18 prosecting for any 1901 per required	Total Odour emissions (o.u.)
<u>600 sows</u>		South art.	
Suckling sow & litter	190	18 rpostied	3420
Dry sow	410	1951 Pt 1804	7790
Boars	10	20	200
Maiden gilts	150 FOLD	20	3000
Weaners	3450 500	6	20700
Fattening pigs	3750	22.5	84375
Total =>	Cox		119,485 (100%)
<u>1000 sows</u>			
Suckling sow & litter	167	18	3006
Dry sow	833	19	15827
Boars	5	20	100
Maiden gilts	166	20	3320
Weaners	5357	4.8	25714
Fattening pigs	3957	18	71226
Total =>			119,193 (100%)

Table 3: Post-mitigation Odour Emissions

Odour emissions will not increase post mitigation.

⁸ Assumes weaner and finisher NH3 emissions reduced to 4286kgs and 8230kgs respectively

⁹ 116 kt NH₃

3.0 Dust, Particulate Matter and other gases

Dust particles emitted from pig houses are made airborne by mechanical disintegration of solid particles, ranging in size from less than 1 µm to greater than 100 µm. The dust generated within indoor pig buildings may contain many types of particles including: animal dander, faecal material and urine of both pigs and rodents, feed components, bedding materials, absorbed gases, chemicals, viruses, bacteria, yeasts, moulds and their by-products. Dust can contribute to malodour emissions.

Along with dust particulate matter (PM10 and PM2.5) is also found in emissions from pig buildings – but at very low levels which are readily dissipated in the atmosphere to harmless levels. At a national level NH₃/NH₄ emissions (particularly from land-spreading) are linked with national particulate matter emissions. Agriculture accounts for 36% and 14% of national PM10 and PM2.5 emissions (Tables 10 and 11 of CSO, 2016, Environmental Accounts for Air Emissions).

Sulphur dioxide (SO₂) is a harmful gas produced mainly by the combustion of fuel and particularly associated with the power generating industry. Very small quantities will be produced from the combustion of fuels at the proposed development (e.g. heating, diesel engines). Hydrogen sulphide (H_2S) is a gas associated with slurry storage and may be vented from the site during slurry agitation and pumping. Agriculture accounts for less than 2% of the national carbon monoxide production, which again is produced from the decomposition of slurry. Non-methane volatile organic compounds area produced from slurry storage. The concentration of these latter compounds may be negligible in a measurable sense but combined they create odour (and contribute to particulate matter) and are only any emitted via the ventilation in very small quantities.

The impacts of dust, particulate matter and the other gases discussed above are not significant from the pig farm. Normal mitigation measures such as cheanliness, good housekeeping and adequate ventilation can control the gases within the pig houses and they are rapidly dispersed outside the pig buildings to harmless levels. Consent of copyright Forme

4.0 Climate change

The 2019 National Climate Action Plan to Tackle Climate Breakdown sets out specific targets and dates by which these actions should be implemented. While recognising there are no zero emission options for agriculture and that agriculture presents challenges that are not fully amenable to technological solutions for emission abatement, as may exist or evolve in other sectors, the plan expects agriculture to contribute to the 2030 goals by effectively reducing CO_2 emissions by 10 - 15% from current levels (page 101 of the plan).

The most recent EPA Report (July 2020): Ireland's Greenhouse Gas Emissions Projections; 2019 – 2040 predicts that Ireland can and will meet its 2030 commitments by early adoption of a 'with additional measures scenario' and a reduction of 12% in agricultural GHGs. The targets mentioned in relation to agriculture in Section 3.3 of that report focus mainly on the primary GHG emitting sectors (dairy, beef and sheep) but specifically mentions; some of the key measures include nitrogen use efficiency, use of protected urea products, improved animal health, extended grazing, reducing crude protein in pigs, low emission slurry spreading, inclusion of clover in pasture swards. The proposed reconfiguration of the P0915-01 herd will include reducing crude protein in pigs and low emission slurry spreading and will also help reduce nitrogen usage on farms leading to improved nitrogen use efficiency. Improved genetics will improve overall efficiency and reduce the carbon footprint.

When compared with beef or sheep meat products pork has a lower CO_2 footprint than. Page 30, Figure ES10 of the EC JRC 2010 report on the Evaluation of the livestock sector's contribution to EU GHG emissions illustrates that Irish beef and sheep meat have a footprint of approx. 20kgs CO_2 eq. / kg product. Pork has a footprint of approx. 5 kgs CO_2 eq. / kg product and thus is four times more efficient from a carbon emissions / climate point of view in satisfying increasing demand for meat protein at home and abroad. This fact has to be considered as an underlying cumulative effect and advantage that pork has from a climate change perspective where displacing 1kg of beef or pork can reduce the CO₂ emissions associated with that kg of product by 75%.

4.1 Future Potential Climate Mitigation

Technologies such as Anaerobic Digestion (AD) and renewable solar energy needs to be incentivised with government financial supports to make it commercially viable. This technology has the potential to further off-set CO₂ and NH₃.

- AD has reported benefits of up to 40%¹⁰ reduction in NH₃ emissions, 80% CH₄ reductions and odour reductions, improved availability of Nitrogen in the residue manure and a potential 3.2kg CO₂ equivalent reduction in Greenhouse gases for every m³ of biogas produced (page 604 of BAT). Typical yields of biogas from pig manure are approx. 2211 m³ per ton of manure. Thus the AD of $15,000 \text{m}^3$ could mitigate approx. 1,000 tons of CO₂ each year – in addition to the other benefits. This is equivalent to approx. 32% of the methane produced¹².
- Installation of solar panels on roofs. According to SEAI¹³ each m² of roof panel can generate 130 kWh. The roof area is approximately 14,000 m². If solar panelswere installed on 70% of this area the mitigation would be equivalent to approx. 596¹⁴ tons per annum. This is equivalent to approx. ally any 19% of the post mitigation methane production.
- Use of Slurry Amendments. These are is currently being researched by Teagasc (for residues and effectiveness) and offer opportunities to reduce the emissions from manure management. . to inspection vere

5.0 Conclusions

- Dust, particulate matter and emissions such as hydrogen sulphide, carbon monoxide and sulphur dioxide will not have a significant impact;
- The revised livestock numbers will not result in a significant increase in NH₃ emissions compared with the licensed numbers – with mitigation;
- Post mitigation odour emissions will not change significantly; and
- Future mitigation will be dependent on government supports for renewable energy option which can mitigate methane emissions.

¹⁰ Page 600 – 604 of BAT for Intensive Rearing of Pigs and Poultry, 2017

¹¹ BAT P.603 say 22t / m3 @6%.

¹² 124t CH₄ produced. 1,000t CO₂ is equivalent 40t of methane

¹³ https://www.seai.ie/publications/FAQs on Solar PV.pdf

¹⁴ 9,800m² of roof area @ 130 kWh / m² = 1,274,000 kWh @ 468 gCO₂/kWh = 596 tons CO₂. 468 gCO₂/kWh is the average CO2 intensity per kWh in Ireland: https://www.seai.ie/publications/Energy-Related-Emissions-in-Ireland-2016-report.pdf