

LAND, SOILS AND GEOLOGY 6.

Introduction 6.1

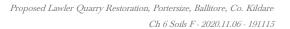
Background and Objectives 6.1.1

Hydro-Environmental Services (HES) was engaged by McCarthy Keville O'Sullivan Ltd. (MKO) to carry out an Environmental Impact Assessment Report (EIAR) of the likely effects of the proposed infilling and restoration of a sand and gravel quarry (i.e. the site) at Portersize, Ballitore, Co. Kildare on the land, soils and geological environment.

The applicant (Lawler Ltd.) plans to operate the site as a soil recovery facility under an Environmental Protection Agency (EPA) waste licence which will grant permission to accept inert soil and stones (EWC 17 05 04) that will be used to infill and restore the site.

This EIAR provides a baseline assessment of the environmental setting of the site in terms of land, soils and geology and discusses the potential likely effects and cumulative effects that the proposed infilling and restoration will have. Where required, appropriate mitigation measures to limit any identified significant effects to land, soils and geology are recommended.

6.1.2


Statement of Authority HES are a specialist geological, hydrological, hydrogeological, and environmental practice which delivers a range of geological, water and environmental management consultancy services to the private and public sectors throughout Ireland and Northern Leiland. HES was established in 2005, and their office is located in Dungarvan, County Waterford

HES core areas of expertise includes soils, subsoils and geology. We routinely complete impact assessments for land, soils and geology, and hydrology and hydrogeology, for a large variety of project types.

This chapter of the EIAR was prepared by Michael Gill and David Broderick.

Michael Gill is an Environmental Engineer with over 18 years' environmental consultancy experience in Ireland. Michael has completed numerous geological, hydrological and hydrogeological impact assessments of sand and gravel pits and quarries across Ireland. He has also managed EIAR assessments for infrastructure projects and private residential and commercial developments, and also renewable energy projects. In addition, he has substantial experience in EIAR for soil recovery facilities, and waste licence facilities. Some recent examples include: Garryhesta, Co. Cork; Clashford Waste Recovery Facility, The Naul, Co. Meath; Clasheen Pit, Killarney, Co. Kerry; Brownwood, Enniscorthy, Co. Wexford; and Kildare Sand and Gravel Ltd, Boherkill, Rathangan, Co. Kildare.

David Broderick is a hydrogeologist with over 13 years' experience in both the public and private sectors. Having spent two years working in the Geological Survey of Ireland (GSI), mainly on groundwater and source protection studies, David moved into the private sector. David has a strong background in groundwater resource assessment and hydrogeological/hydrological investigations in relation to developments such as quarries and landfills. David has completed numerous geology and water sections for input into EIARs for a range of commercial developments.

6.1.3 Relevant Legislation

The following European Union (EU) Directives relate to Land, Soils and Geology at the site in this EIAR:

- > Environmental Impact Assessment Directive (2011/92/EU);
- > Environmental Impact Assessment Directive (2014/52/EU);
- > The management of waste from extractive industries (2006/21/EC); and,
- > Environmental Liability Directive (2004/35/EC).

The EU EIA Directive regulates the information impact assessment process and information in this EIAR. The management of waste Directive and the Environmental Liability Directive regulates the activities at the site.

The requirements of the following legislation are complied with:

- S.I. No. 349 of 1989: European Communities (Environmental Impact Assessment) Regulations, and subsequent Amendments (S.I. No. 84 of 1995, S.I. No. 352 of 1998, S.I. No. 93 of 1999, S.I. No. 450 of 2000 and S.I. No. 538 of 2001), S.I. No. 30 of 2000, the Planning and Development Act, and S.I. 600 of 2001 Planning and Development Regulations and subsequent Amendments. These instruments implement EU Directive 85/373/EEC and subsequent amendments, on the assessment of the effects of certain public and private projects on the environment;
- Directives 2011/92/EU and 2014/52/EU on the assessment of the effects of certain public and private projects on the environment including Circular Letter PL 1/2017: Implementation of Directive 2014/52/EU on the effects of certain public and private projects on the environment (EIA Directive);
- > Planning and Development Act, 2008 as amended; and,
- S.I. No 296 of 2018: S.I. No. 296 of 2018: European Union (Planning and Development) (Environmental Impact Assessment) Regulations 2018 which transposes the provisions of Directive 2014/52/EU into Irish law.

6.1.4 **Relevant Guidance**

This Land, Soils and Geology section of the EIAR has been prepared with regard to the following guidelines:

- Environmental Protection Agency (2017) Guidelines on the Information to be Contained in Environmental Impact Assessment Reports. Draft dated May 2017. Environmental Protection Agency, Johnstown Castle Estate, Co. Wexford;
- Department of the Environment, Climate and Communications (DECC) (2010) Appropriate Assessment of Plans and Projects in Ireland - Guidance for Planning Authorities;
- (GSI), Irish Concrete Federation (2008) Geological Heritage Guidelines for the Extractive Industry;
- Institute of Geologists of Ireland (2002) Geology in Environmental Impact Statements, A Guide;
- Institute of Geologists of Ireland (2007) Recommended collection, presentation and interpretation of geological and hydrogeological information for quarry developments;
- Institute of Geologists of Ireland (2013) Guidelines for the preparation of Soils, Geology and Hydrogeology Chapters of Environmental Impact Statements;
- National Roads Authority (NRA) (2008) Environmental Impact Assessment of National Road Schemes - A Practical Guide;
- NRA (2008) Guidelines on Procedures for Assessment and Treatment of Geology, Hydrology and Hydrogeology for National Road Schemes;

- Guidelines for Planning Authorities and An Bord Pleanála (ABP) on carrying out Environmental Impact Assessment (Department of Housing, Local Government and Heritage (DoHLGH) 2018); and,
- Guidance on the preparation of the EIA Report (Directive 2011/92/EU as amended by 2014/52/EU), (European Union, 2017).

6.2 Schedule of Works

6.2.1 **Desk Study**

A desk study of the site and the surrounding area was completed in advance of undertaking the walkover survey and site investigations. This involved collecting all relevant geological data for the site and surrounding area. This included consultation of the following:

- > Environmental Protection Agency (EPA) database (<u>www.epa.ie</u>);
- Geological Survey of Ireland (GSI) Groundwater Database (<u>www.gsi.ie</u>);
- Bedrock Geology 1:100,000 Scale Map Series, Sheet 16 (Kildare-Wicklow). GSI (GSI, 1995);
- SSI 1:25,000 Field Mapping Sheets;
- General Soil Map of Ireland 2nd edition (<u>www.epa.ie</u>); and,
- > Previous sites investigations undertaken by John Barnett and Associates (JBA) in 2005.

6.2.2 Baseline Monitoring and Site Investigations

A site walkover and geological baseline mapping was undertaken by HES in January 2020. Site investigations, topographic surveys and baseline monitoring was undertaken in June and July 2020.

In summary, surveys to address the Land, Soil and Geology section of the EIAR included the following:

- A detailed walkover survey to assess the ground conditions and layout of the proposed infilling/restoration site including surveys of current extraction areas and adjacent lands;
- > Mapping of sand/graver and overburden exposures on the sides of the quarry void; and,
- > Drilling of 4 no. groundwater monitoring wells to investigate depth to bedrock and overburden type/lithology.

6.2.3 **Scoping and Consultation**

The scope for this chapter of the EIAR has also been informed by consultation with statutory consultees, bodies with environmental responsibility and other interested parties. This consultation process is outlined in Section 2.4 of this EIAR.

With respect to Land, Soils and Geology relevance, there was a response from the GSI which was informative in nature, regarding their available online geological mapping datasets (www.gsi.ie).

6.2.4 Impact Assessment Methodology

Using information from the desk study and data from the site investigation, an estimation of the importance of the land, soil and geological environment within the study area is assessed using the criteria set out in Table 6-1 (NRA, 2008).

Table 6-1: Estimation of Im	portance of Soil and	l Geology Criteria	(NRA. 2008	8)
THOIC CIT Bounnation of mis	portanice or con and	Could Children	1 1 2 2, 2000	-1.

Importance	Criteria	Typical Example
Very High	Attribute has a high quality, significance or value on a regional or national scale. Degree or extent of soil contamination is significant on a national or regional scale. Volume of peat and/or soft organic soil underlying route is significant on a national or regional scale.	Geological feature rare on a regional or national scale (NHA). Large existing quarry or pit. Proven economically extractable mineral resource
High	Attribute has a high quality, significance or value on a local scale. Degree or extent of soil contamination is significant on a local scale. Volume of peat and/or soft organic soil underlying site is significant on a local scale.	Contaminated soil on site with previous heavy industrial usage. Large recent landfill site for mixed wastes. Geological feature of high value on a local scale (County Geological Site). Well drained and/or highly fertility soils. Moderately sized existing quarry or pit. Marginally economic extractable mineral resource.
Medium	Attribute has a medium quality of the significance or value on a docal scale. Degree or extent of soil the contamination is moderate on a local scale. Volume of peat and/or soft organic soil underlying site is moderate on a local scale.	Contaminated soil on site with previous light industrial usage. Small recent landfill site for mixed Wastes. Moderately drained and/or moderate fertility soils. Small existing quarry or pit. Sub-economic extractable mineral resource.
Low	Attribute has a low quality, significance or value on a local scale. Degree or extent of soil contamination is minor on a local scale. Volume of peat and/or soft organic soil underlying site is small on a local scale.	Large historical and/or recent site for construction and demolition wastes. Small historical and/or recent landfill site for construction and demolition wastes. Poorly drained and/or low fertility soils. Uneconomically extractable mineral resource.

The guideline criteria (EPA, 2017) for the assessment of impacts require that likely impacts are described with respect to their extent, magnitude, complexity, probability, duration, frequency, reversibility and trans-frontier nature (if applicable). The descriptors used in this environmental impact assessment are those set out in EPA (2002) Glossary of Impacts, as detailed in Chapter 1 of this EIAR. In addition, the two impact characteristics, proximity and probability, are described for each impact and these are defined in

Table 6-2.

In order to provide an understanding of this descriptive system in terms of the geological/hydrological environment, elements of this system of description of impacts are related to examples of potential impacts on the hydrology and morphology of the existing environment, as listed in Table 6-3.

Impact Characteristic	Degree/ Nature	Description
Proximity	Direct	An impact which occurs within the area of the proposed project, as a direct result of the proposed project.
	Indirect	An impact which is caused by the interaction of effects, or by off-site developments.
Probability	Low	A low likelihood of occurrence of the impact.
	Medium	A medium likelihood of occurrence of the impact.
	High	A high likelihood of occurrence of the impact.
Table 6-3: Impact desc	riptors related to the receiving er	wironment offer any offer a
		Se el la

Table 6-2: Additional Impact characteristics

Impact Character	ristics	Potential Hydrological Impacts
Quality	Significance	A Perion Perio
Negative only	Profound	Widespread permanent impact on:
	Consent	 The extent or morphology of a Special Area of Conservation (SAC). Regionally important aquifers. Extents of floodplains.
		Mitigation measures are unlikely to remove such impacts.
Positive or Negative	Significant	 Local or widespread time dependent impacts on: The extent or morphology of a SAC / ecologically important area. A regionally important hydrogeological feature (or widespread effects to minor hydrogeological features). Extent of floodplains.
		Widespread permanent impacts on the extent or morphology of a Natural Heritage Area (NHA) or ecologically important area. Mitigation measures (to design) will reduce but not completely remove the impact – residual impacts will occur.

Impact Character	istics	Potential Hydrological Impacts
Quality	Significance	
Positive or Negative	Moderate	Local time dependent impacts on: The extent or morphology of a SAC / NHA / ecologically important area. A minor hydrogeological feature. Extent of floodplains. Mitigation measures can mitigate the impact or residual
		impacts occur, but these are consistent with existing or emerging trends.
Positive, Negative or Neutral	Slight	Local perceptible time dependent impacts not requiring mitigation.
Neutral	Imperceptible	No impacts, or impacts which are beneath levels of perception, within normal bounds of variation, or within the bounds of measurement or forecasting error.

6.2.5 Limitations/Difficulties Encountered

This EIAR has been prepared based on available desktop information, a recent topographic survey of the site and site visits undertaken between January and July 2020.

Ground investigation works have been carried out at the site to confirm the nature, extent and depth / thickness of the sand and gravel resource at the proposed infill areas. The assessment is also based on existing exposures in the pits.

No specific limitations or difficulties were encountered in the preparation of this EIAR.

6.3 **Existing Environment**

6.3.1 Site Description, Land and Topography

The proposed development site is located in the townland of Portersize, approximately 1.5 kilometres (km) southeast of Ballitore, County Kildare. The R448 Regional Road is located approximately 0.5 km to the west of the site and the R747 is located adjacent to the south of the site, where it forms a junction at the site entrance. The proposed site for infill and restoration is an active sand and gravel quarry which operates above the local groundwater table.

The planning application boundary area measures approximately 34.25 hectares (ha) which is contained within a landholding in the control of Lawler Ltd., which measures approximately 65.2 ha. The existing quarry void measures approximately 10.74 ha. The proposed development being applied for under this current planning application includes for the infilling and restoration of the existing and future quarry void, over an area of approximately 18.95 ha (extent of current permitted extraction boundary). The floor elevation of the quarry void varies between approximately 110mOD (Ordnance Datum – Malin Head) and 129mOD with the lowest area being on the north of the extraction area and the highest at the south.

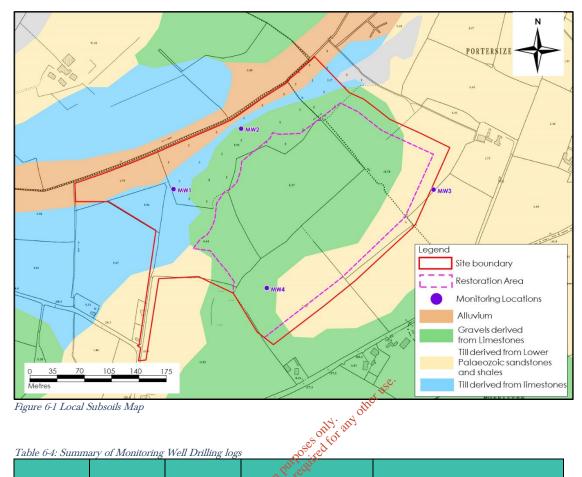
The site is bordered by grassland to the east, west and south where the natural ground elevation varies between 130m and 135mOD. The northern site boundary is defined by the Crookstown Stream. The northern extent of the extraction area is set back at least 100m from the Crookstown Stream and much of the site in between is tree covered natural ground. A manmade earthen berm, which is approximately 6-7m high, runs along the bank of the Crookstown Stream, close to the northern boundary.

A reception cabin, a weigh bridge and maintenance/welfare facilities are located on the west of the site which is the access point to the extraction area. An aggregate processing area (wet and dry sorting) is located in the central area of the extraction pit along with a number of closed system/recycling washing lagoons and aggregate stockpiles.

Access to the site via a site entrance road is from the R747 which is located to the southwest of the site.

6.3.2 Soils and Subsoils

The published soils map (www.epa.ie) for the area shows that deep well drained mineral soils (AminDW) are mapped in the area site (much of the soils inside the site boundary have been removed as a result of ongoing aggregate extraction) with Alluvium mapped along the Crookstown Stream which flows along the northern boundary.


Based on the GSI subsoils map (www.gsi.ie), limestone sand and gravels are mapped in the central area of the site with sandstone and shale tills on the east and west of the site with limestone tills on the north-western section of the site. A GSI subsoil geology map is shown below as Figure 6-1.

The sand and gravels exposed on the sides of the current extraction area, which are glaciofluvial in nature, are typically poorly sorted with occasional bands of fine sorted SAND and SILT. Cobbles and boulders are numerous within the poorly sorted borizons.

Four groundwater monitoring wells were installed at the site between 15th and 17th June 2020 by Petersen Drilling Services Ltd., with oversight provided by HES. Boreholes were constructed using a truck mounted air rotary drilling rig with a 50mm internal diameter (id) standpipe used at each location.

The locations of the wells are shown on Figure 6-1 below and summary details are shown in Table 6-4 below. Detailed drilling logs are attached as Appendix 6-1.

Table 6-4: Summ	ary of Monitoring	Well Drilling logs	o ^{sect}	
Monitoring Well	Ground Elevation (mOD)	Total Hole Depth (m)	Depth to Bedrock in M & Bedrock Fevation (mOD)	Summary of Main Subsoil Lithology
MW1	106.031	24.5 5 00	9.1 (96.931)	Silty, SAND & GRAVEL
MW2	105.816	Consett 0. 21.5	10.1 (95.716)	Silty, SAND & GRAVEL over gravelly SAND
MW3	132.560	30.0	4.1 (128.46)	Silty, gravelly SAND
MW4	134.662	39.5	13.2 (121.46)	Silty, gravelly SAND over silty SAND & GRAVEL and gravelly SILT

The subsoils encountered during the drilling investigation are similar to the overburden exposed on the quarry sides, i.e. poorly sorted SAND and GRAVEL with occasional horizons of SAND or SILT dominated layers.

The drilling investigation shows that the overburden depth decreases to the east/southeast which is consistent with topography (i.e. decreasing overburden depth with elevation).

The depth to bedrock surrounding the quarry void varied between 4.1 and 13.2m below ground level (mbgl), or between 96.931mOD and 128.46mOD.

Based on the trial pits undertaken by JBA in the 2005 site investigation, bedrock is close (0 -1m) to the lower quarry floor on the north of the extraction area, and within 3-4m on the upper floor level on the south of the extraction area.

6.3.3 Bedrock Geology

Based on the GSI bedrock map (<u>www.gsi.ie</u>), the majority of the site (which includes all of the proposed infill area) is underlain by Kipperkevin Formation which comprises greywacke and shale, while the northwestern corner of the site is mapped to be underlain by the Carrighill Formation which consists of calcareous greywacke, siltstone and shale. A bedrock geology map is shown below as Figure 6-2.

The drilling investigation undertaken at the site (i.e. 4 no. monitoring wells) encountered SHALE at all locations which was reported as very weak and weathered on the top 1-2m and increased in strength to medium strong with depth. The depth to bedrock surrounding the quarry void varied between 4.1 and 13.2mbgl, or between 96.931mOD and 128.46mOD.

Based on the drilling investigation the top of rock elevation increases to the east/southeast which is consistent with the local valley topography.

There are a series of northeast/southwest trending faults mapped in the area of the site and one of these mapped faults runs through the centre of the site. The presence of underlying faulting will not have any bearing on the proposed infilling operations.

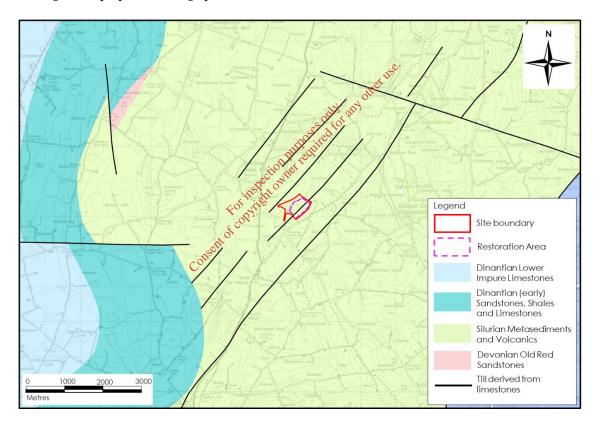


Figure 6-2 Local Bedrock Geology Map

6.3.4 **Geological Resource Importance**

Based on the GSI Aggregate Potential Mapping, the granular aggregate potential is mapped as Low (sands and gravels of glaciofluvial origin) with the crushed rock potential being classified as Very High.

However, the granular aggregate at the site has proven to be an economically extractable mineral resource and therefore is classified by HES as having "High" importance. Refer to Table 6-1 for criteria.

6.3.5 **Geological Heritage and Designated Sites**

The proposed development site is not located within or adjacent to any designated site (i.e. SAC, NHA etc). The closest designated site to the proposed development site is Ballycore Rath proposed Natural Heritage Area (pNHA) which is located approximately 1km to the south of the site.

Designated sites downstream of the site include the River Barrow and River Nore SAC. Downstream designated sites are dealt with in Chapter 5 Biodiversity, and Chapter 7 Hydrology and Hydrogeology of this EIAR.

The GSI Irish Geological Heritage (IGH) programme of audited sites was reviewed (<u>www.gsi.ie</u>) to establish if any geological heritage issues were present in the area of the proposed site. There are no mapped Geological Heritage sites within 7km of the proposed development.

6.3.6 Soil Contamination

Historic land uses in the vicinity of the current quarry site include agriculture (pasture and dairy farms), sand and gravel quarrying and residential.

There are no known areas of soil contamination on the site of the proposed development. During the site walkovers and intrusive investigation, no areas of contamination concern or contaminated soils were identified.

According to the EPA's online mapping tool (https://gis.epa.ie/EPAMaps/), there are no licensed or historic waste treatment facilities located within 5km of the site.

There is one EPA Industrial Emissions Licensing (LEL) facility located within 5km of the proposed development; Glanbia Foods Ltd, approximately 1,3km to the northwest in Ballitore. Glanbia Foods is an agricultural supplies business. This facility is also listed on the EPA Integrated Pollution Prevention Control (IPPC) registry. Due to the nature of the business and its distance from the proposed development it is not a potential source of contamination.

No further EPA registered facilities were identified within 5km of the development site.

There are no historic mines at, or in the immediate vicinity, of the site of the proposed development that could potentially have contaminated tailings.

6.4 **Potential Significant Effects of the Proposed Development**

6.4.1 **Characteristics of the Proposed Development**

It is proposed to import approximately 1,299,791m³ (or 2,339,624 tonnes) of inert soil and stone material for the infilling of the quarry void in order to return the land to a beneficial use.

There will be a phased restoration of the pit quarry void working from the base of the void vertically building up soil and stone. The material will be spread in layers, each of approximately 1 to 2 m depth, up to the required ground contour level. If required, the layers will be compacted using the dozer which is spreading the material.

Following completion of the infilling works, topsoil will be placed (approximately 300 mm depth) and the soils will be rolled and reseeded with grasses to bring the site into agricultural use.

The proposed development also includes the following restoration measures:

- > Infill, grading and restoration of two settlement ponds, totalling 1.065 ha (two settlement pond areas in NW of site approx. 0.788 and 0.277 ha).
- Restoration of three smaller ponds, totalling 0.44 ha, in order to provide an area of aquatic habitat (three ponds are approx. 0.321, 0.0835 and 0.0358 ha).
- > Planting of a raised soil bund with native tree species, along northern site boundary (planting area approx. 0.48 ha).
- > Grading of a pre-existing soil mound at the site entrance (approx. 1.11 ha).
- > Development and management of an artificial sand martin nesting site, to replace the existing nesting location identified in the soil mound at site entrance.
- > Construction of a soil quarantine shed (approx. 180m² in area, 15m height), inspection area and re-fuelling area (hardstanding) located north of the existing site office (approx. $400m^2$ hardstanding area).
- > Associated minor works to include site access road improvements (resurfacing), upgrade of drainage infrastructure including new fuel/oil interceptor and surface drains on hardstanding, refurbishment/repair of existing site office and weighbridge.

The proposed development will utilise the existing quarry infrastructure including internal roads, site office (portacabin), weighbridge, wheel-wash, welfare facilities and other ancillaries to complete the works. These facilities are currently located on the west of the site, adjacent to the main site entrance. The construction of a soil quarantine area comprising an inspection shed and concrete hardstand is proposed for the west of the site, to be situated northeast of the existing facilities.

A refuelling area will also be provided as part of the development. Drainage from the refuelling areas will be routed through a full hydrocarbon interceptor, a wetland, and then a soakaway for final discharge to ground. in owner requi

Do Nothing Scenario 6.4.2

Under the Do-Nothing Scenario, the land areas will remain as excavated open quarry/pit voids. The land, soils and geology would remain largely unaltered from the current baseline as a result of the Do-Nothing Scenario.

Construction/Operational Stage - Likely Significant 6.4.3 **Effects and Mitigation Measures**

Reinstatement of the Quarry Ground Profile and Landuse 6.4.3.1 Change

Due to past extraction activities a significant manmade excavated void remains at the site. As stated above the existing quarry/pit void has an area of approximately 18.95 hectares (extent of current permitted extraction boundary). The importation of 1,299,791m³ or 2,339,624 tonnes of soil and stone material will allow the restoration of the quarry/pit void profile back to a level close to the surrounding natural ground level.

Once restoration works are completed, the site will be reinstated to deliver high quality restoration and long-term agricultural benefits.

Mechanism: Importation/infilling

Receptor: Land, soils and geology, topography and landuse

Pre-Mitigation Potential Impact: Positive, irreversible, moderate, direct, likely, permanent effect on land, soils and geology, topography and landuse

Mitigation Measures:

The restoration of the quarry/pit void is seen as a positive effect with respect land, soils and geology. The mitigation will include the adoption of a suitable restoration plan which considers the natural local topography and landuse.

Residual Effect:

Restoration of pre-quarrying topography and land-use will occur, and this will result in a positive, moderate, direct, permanent effect on the land, soils and geology environment.

Significance of Effects: For the reasons outlined above, no significant effects on land, soils and geology will occur.

Contamination of Soils and Bedrock due to Oil and Fuel 6.4.3.2 **Spillages**

Restoration works at the site will be completed using machinery. Such machinery/plant are powered by diesel engines and operated using hydraulics. Unless managed carefully, such plant and machinery have the potential to leak hydraulic oils or cause fuel leaks during refuelling operations.

Accidental spillage during refuelling of construction plant with petroleum hydrocarbons has the potential to be a pollution risk. The accumulation of small spills of fuels and lubricants during routine plant use can also be a potential pollution risk. Hydrocarbon has a high toxicity to humans, and all flora and fauna, including fish, and is persistent in the environment. Large spills or leaks have the potential to result in significant effects (i.e. contamination of soil, subsoils and pollution of the underlying aquifer) on the geological and water environment. of copyri

Receptor: Soil and bedrock

Pathway: Soil and bedrock pore space

Pre-Mitigation Potential Impact: Negative, reversible, slight, direct / indirect, unlikely, long term effect on soil and bedrock.

Mitigation Measures:

The following mitigation is proposed:

- Refuelling will be completed at a dedicated refuelling area;
- > Drainage from the refuelling area will be routed through a full retention hydrocarbon interceptor, a wetland, and then a soakaway for final discharge to ground;
- > All plant and machinery will be serviced at a dedicated area which will drain to an oil interceptor;
- > Fuel containers will be stored within a secondary containment system, e.g. bunds for static tanks or a drip tray for mobile stores;
- > Containers and bunding for storage of hydrocarbons and chemicals will have a holding capacity of 110% of the volume to be stored;
- > Fuel and oil stores including tanks and drums will be regularly inspected for leaks and signs of damage;
- > Drip-trays will be used for fixed or mobile plant such as pumps and generators in order to retain oil leaks and spills;
- > Only designated trained operators will be authorised to refuel plant on site;

- > Procedures and contingency plans will be set up to deal with emergency accidents or spills; and,
- > An emergency spill kit with oil boom, absorbers etc. will be kept on-site for use in the event of an accidental spill.

Residual Effect:

The use and storage of hydrocarbons and small volumes of chemicals is a standard risk associated with all construction sites. Proven and effective measures to mitigate the risk of spills and leaks have been proposed above and will break the pathway between the potential source and the receptor. The residual effect is - Negative, imperceptible, direct, long term, unlikely effect on the land soils and geology environment.

Significance of Effects:

For the reasons outlined above, no significant effects on land, soils and geology will occur.

Contamination of Soils and Bedrock due to Unsuitable 6.4.3.3 Imported Soil and Stone by-product Material

The proposed development comprises importing inert soil and stone material in order to restore the site. Infilling of the site with inert soil will pose a very low contamination risk as no harmful contaminants will not be present. In addition, inert soil and stone will not contain either organic matter N HULLINSCOULD FOR ANY or liquids that will form a source of organic contamination.

Receptor: Soil and bedrock

Pathway: Soil and bedrock pore space

tion purposes Pre-Mitigation Potential Impact: Negative, imperceptible, direct / indirect, unlikely, long term effect on of copyin soil and bedrock.

Mitigation Measures:

The following mitigation is proposed:

- Sourcing material that is proven to be inert prior to transport to the site;
- > Pre-agreed source sites for inert material ensuring; no pollutants, unauthorised material, invasive species;
- Regular checks of incoming loads to ensure suitability of imported material;
- The site will be operated under an Environmental Management System;
- > All required pollution prevention measures will be implemented at the site;
- > The operator will prepare and implement an Emergency response procedure;
- > The operator will complete environmental monitoring, including local groundwater and surface water monitoring;
- A phased restoration of the site will be implemented, and end with the closure of site;
- > The operator will have a documented waste recording procedure for all material entering the site; and,
- > No unauthorised dumping of waste will be allowed at the site.

Residual Effect:

The importation of soil and subsoil is an integral part of the proposed development. Proven and effective control measures to mitigate the risk of contaminated soils being imported to the site are outlined above. Application of these controls will break the pathway between the potential source and

the receptor. The residual effect is - Neutral, imperceptible, direct / indirect, unlikely, long term effect on the land, soil and geology environment.

Significance of Effects:

For the reasons outlined above, no significant effects on land, soils, subsoils or bedrock will occur.

6.4.4 **Final Restoration/Decommissioning and Aftercare -**Likely Significant Effects and Mitigation Measures

The principal activity undertaken at the application site is for the restoration of lands within the existing sand and gravel quarry void. The void will be backfilled to original land contours and restored for agricultural use.

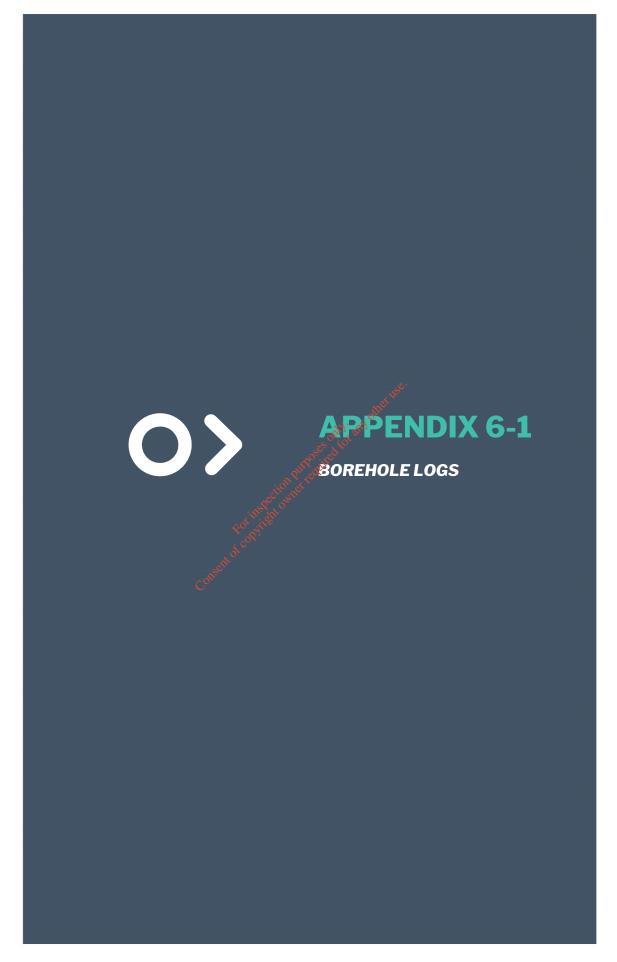
No significant effects on the soils and geology environment are envisaged during the decommissioning stage of the proposed development.

6.4.5 Human Health Effects

Potential health effects in relation to land, soils and geology mainly occur due to direct and indirect (dust) contact with contaminated soil. However, as stated above all imported material will be inert soil and stone by-product material and no contamination risk to human health is anticipated. There will be best practice controls in place to ensure all imported material is source checked and is suitable for the restoration works. Spot checks of incoming loads will be carried out on a daily basis.

Hydrocarbons, in the form of fuels and oils, will be used on-site during the restoration works. However, the volumes will be small in the context of the scale of the project and will be handled in accordance with best practice mitigation measures. The potential residual effects associated with soil and geology contamination and subsequent health effects will be imperceptible.

6.4.6 **Cumulative Land, Soil and Geological Effects**


The other land use activities in the area are mainly agricultural related. Due to the restorative nature of the development and the lack of significant residual effects from the development that would affect the wider land, soil or geological environment, there will be no significant cumulative effects to land, soil and geology resulting from this project, and other local existing developments, projects and plans. All potential effects on land, soils and geology relating to the proposed project will be localised and within the development footprint.

6.5 **Conclusion**

The proposed development, which involves the restoration of a sand and gravel quarry site using imported soil and stone material, will have an overall positive effect on the local land, soils and geological environment. The inert nature of the proposed material for importation means no negative effects on land, soils, geology or human health will occur.

Once restoration works are completed, the site will be reinstated to deliver high quality restoration and long-term agricultural benefits.

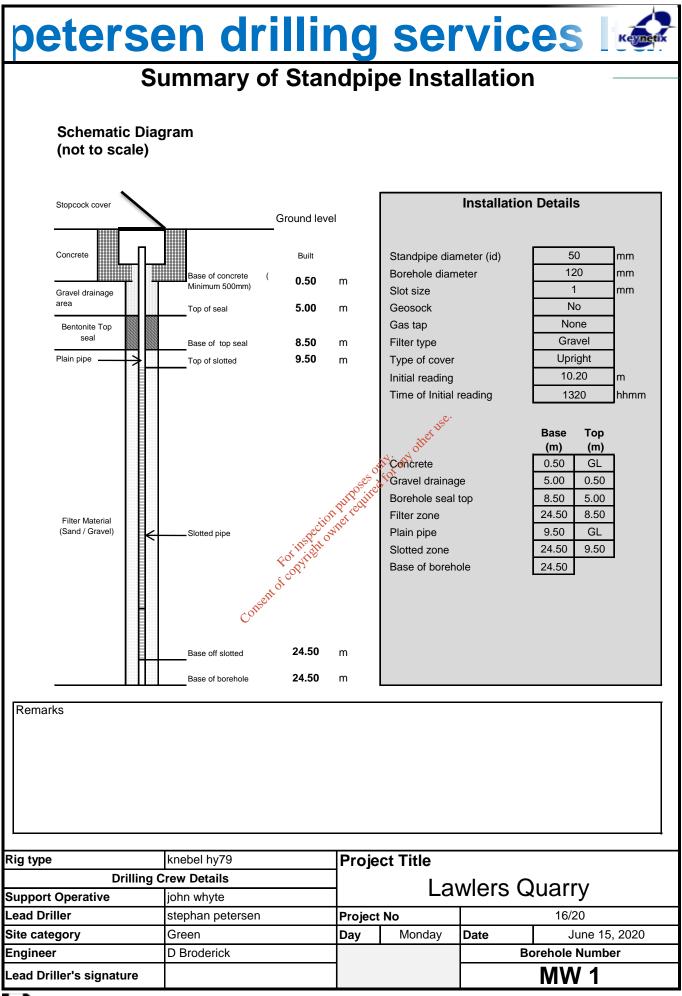
p	eters	en dri	illina s	service	es Ito	ł.	on bel	nalf of					La	wler						Rotary	[,] Drillin	ng Log						
Depth of		<u></u>							Sample /	Hole / Te	est Details	5) Details					Standard							Ke	metix
Stratum Top (m)				er's Stra escriptic				No	Туре	Insitu test	From (m)	To (m)	Core run time (hhmm)	Total core Recovery (m)	Flush Return %	Flush Colour	Self Weight Pen (mm)	75 mm	150 mm	Seating Pen (mm)	75 mm	150 mm	225 mm	300 mm	Main Pen (mm)	N value	Casing Depth (m)	Water/ flush level (m)
0.00		sar	ndy gravel	lly fill MAD	E GROL	JND			RO		0.00	24.50	0000		100	brown												Dry
0.70	Dense	brown silt		GRAVEL silty sand	with oc	casional	bands of																					
9.10		Very w	veak brow	n SHALE V	very wea	athered																						
9.80		Weał	k to Mediu	um strong I	orown S	HALE										r USO												
23.00		Vedium st	trong to S	trong brow	n green	iish SHA	LE							Siret 10	anyoth	¢*												
												ecto	ON POLY	oquito														
	Shift	details						Drilling	g Equ	ipmen	t Detai	Isn oht							G	round	Water	Reco	rd			Ba	ckfill (n	ı)
Start time (hhmm)	Hole (m)	Water (m)	Casing (m)	Casing (C) Open Hole (RO) Coring (RC) C	Dia. (mm) 140.00	From (m) 0.00	то (m) 11.00	Barrel	Liner Type	Core Dia (mm)	v v	Bit Type		Bit serial No	Flush	Polymer	Time of strike	Depth Struck (m)	Casing (m)	Inflow	5 min	10 min	15 min	20 min	Depth Sealed (m)	Туре	From (m)	To (m)
0940 Finish time (hhmm)	Hole (m)	Water (m)	Casing (m)	RO RO	154.00 120.00	0.00	11.00 24.50			co	Belth	DTH DTH		115	Air Air	No No	1120	21.00	11.00	Medium	10.20	0.00	0.00	0.00	N/S			
1420	0.00																-											
Time from	Duration (hhmm)			ls of any ad	Iditional	testing i	information	, Daywo	rks			SPT I.I Numbe SPT Ro	r	po		Calibra Date SPT En		18/09		Proj	ect T	itle						
		General; m	nobilisation	to site								Type Drilling		2 3/8 F Details	Regular	Ratio			00 S No			l	_awl	lers	Qua	ırry		
												Suppor		ative		ohn whyt				Weathe	r			iable		Project No	16/	
												Lead D Site cat			step	ohan pete	Green			Date Rig typ	e			6/2020 el hy79		Day Borel	Mon Nole Num	
	l											Project	Engine	er		D	Broderic	sk		Inclinat	ion		Orienta	ation			MW 1	
	<u> </u>											Lead D	riller's :	signature)					Sheet			1	of	1	Comp	leted	Y

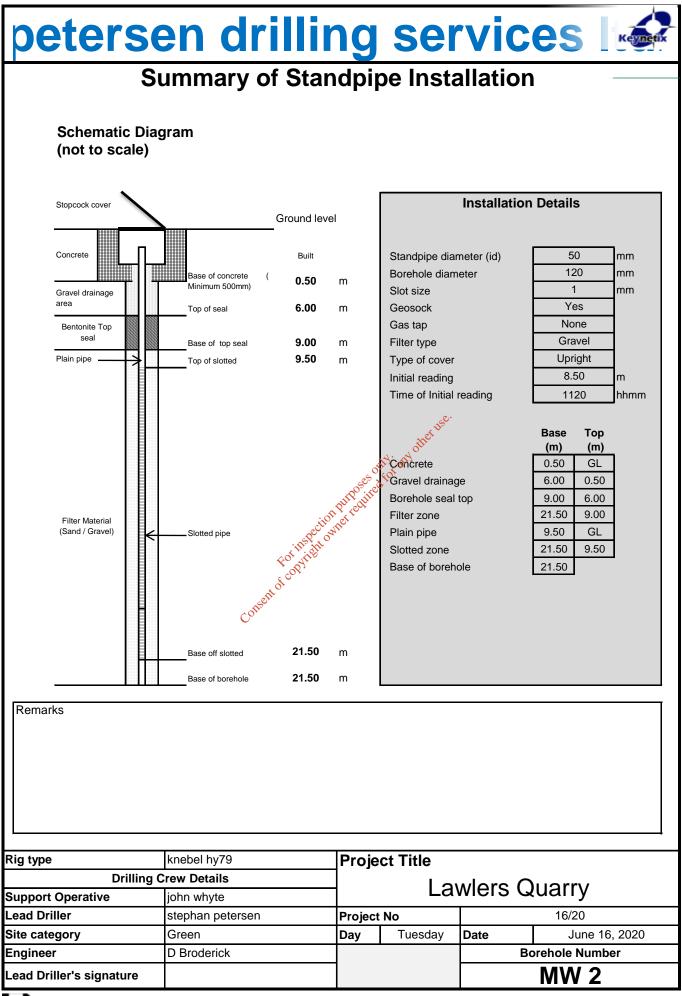
AGS

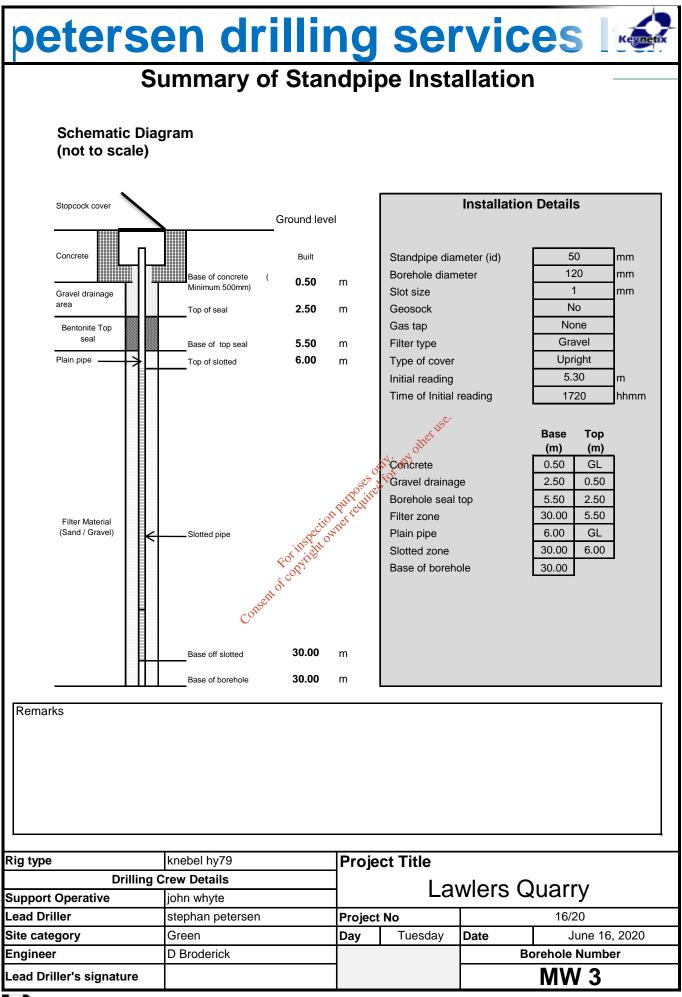
p	eters	en dri	llina s	service	es Itd		on bel	nalf of					La	wler						Rotar	/ Drillir	ng Log						
Depth of									Sample /	Hole / Te	est Details	s			Details						d Penetra						Kę	metix
Stratum Top (m)				er's Strat escriptio				No	Туре	Insitu test	From (m)	To (m)	Core run time (hhmm)	Total core Recovery (m)	Flush Return %	Flush Colour	Self Weight Pen (mm)	75 mm	150 mm	Seating Pen (mm)	75 mm	150 mm	225 mm	300 mm	Main Pen (mm)	N value	Casing Depth (m)	Water/ flush level (m)
0.00	Soft to	firm brow	vn sandy g	gravelly cla	iyey fill I	MADE GR	ROUND																					
6.10	Mediu	n dense b		/ SAND & (es and bou		L with occ	asional																					
8.20	V	ery loose	brown ve	ery silty slig	htly gra	velly SAN	D																					
10.10		٦	Medium s	trong brow	n SHALI	E										, USE												
														alt	anyoth													
														es of fo														
												ون	on Pur															
	Shift o	details						Drilling	g Equi	ipmen	t Detai	ilsn oh	, ,						G	round	Water	Reco	rd			Ba	ckfill (n	ו)
Start time (hhmm)	Hole (m)	Water (m)	Casing (m)	Casing (C) Open Hole (RO) Coring (RC)	Dia. (mm)	From (m)	To (m)	Barrel	Liner Type	Core Dia (mm)		Bt Type		Bit serial No	Flush	Polymer	Time of strike	Depth Struck (m)	Casing (m)	Inflow Very	5 min	10 min	15 min	20 min	Depth Sealed (m)	Туре	From (m)	To (m)
1520 Finish time	Hole	Water	Casing							Co	Sent						1655	9.00	9.00	Slow	0.00	0.00	0.00	0.00	10.50			
(hhmm) 1640	(m) 11.00	(m) Dry	(m) 11.00																									
Time from	Duration (hhmm)	Remark	s or detai	ls of any ad	ditional	testing in	formation	, Daywo	rks			SPT I.I Numbe	er	рс	11	Calibra Date		18/09	9/2017	Pro	ject 7	Title					•	
												SPT Ro Type Drilling		2 3/8 F Details	Regular	SPT En Ratio	ergy		00 S No			L	_awl	lers	Qua	nry		
												Suppo	rt Opera		j	ohn whyt	te			Weathe	er			iable		Project No	16/	
												Lead D Site ca			step	bhan pete	ersen Green			Date Rig typ	e			6/2020 el hy79		Day Borel	Mor hole Num	,
												Project	Engin	eer		D	Broderic	k		Inclina	tion		Orienta	ation		1	MW 2	
												Lead D	riller's	signature)					Sheet			1	of	2	Comp		Y

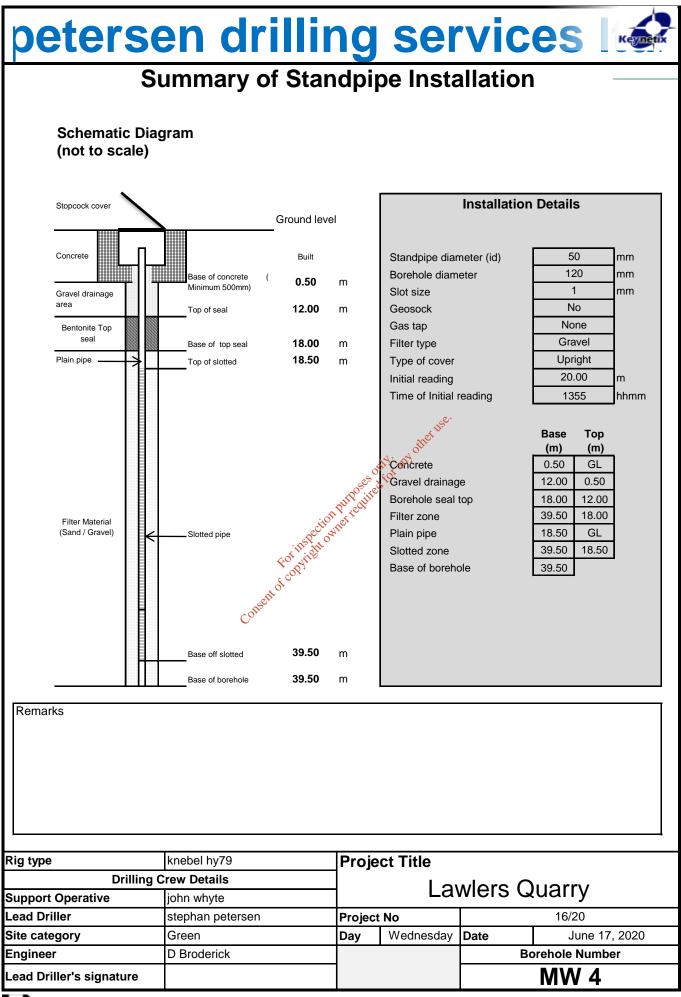
AGS

n	otore	on dri	lling	service	a Itd		on bel	half of					12	wler						Rotary	Drillin							
	61613	enun							Sample /	Hole / T	est Details	3	La		Details		1			Standard								
Depth of Stratum			Drill	er's Stra	tum				Sample /			1	Core	Total	Flush		Self			Seating		l –						Water/
Top (m)			D	escriptio	n			No	Туре	Insitu test	From (m)	To (m)	run time	core Recovery	Return	Flush Colour	Weight Pen	75 mm	150 mm	Pen (mm)	75 mm	150 mm	225 mm	300 mm	Main Pen (mm)	N value	Casing Depth (m)	flush level
													(hhmm)	(m)	%	harrier	(mm)			(mm)								(m)
									RO		0.00	21.50	0000		100	brown												8.50
																, 1 ⁵⁰												
															ji)	0*												
														er.	and													
														es ato	1													
													0	ileo /														
													n Port	de la														
												Š.	Wher'															
	01.14			1				D. 1111		••••••			0 [°]				1									D.		
		details	1	Casing (C)			1	Drilling		-		× ~~ ~		1				Depth	1	round	water	' Reco	ra	-	Depth	ва	ckfill (m	-
Start time (hhmm)	Hole (m)	Water (m)	Casing (m)	Open Hole (RO) Coring (RC)	Dia. (mm)	From (m)	To (m)	Barrel	Liner Type	Core Dia (mm)		Bit Type		Bit serial No	Flush	Polymer	Time of strike	Struck (m)	Casing (m)	Inflow	5 min	10 min	15 min	20 min	Sealed (m)	Туре	From (m)	To (m)
0810	11.00	8.50	11.00	RO	154.00	0.00	11.00				1 OF	DTH		115	Air	No	0810	9.50	9.50	Very	0.00	0.00	0.00	0.00	11.00			
0010	11.00	0.00	11.00	С	140.00	0.00	11.00				Selt						0010	3.50	3.50	Slow	0.00	0.00	0.00	0.00	11.00			
Finish time (hhmm)	Hole (m)	Water (m)	Casing (m)	RO	120.00	11.00	21.50			Co		DTH			Air	No	1025	15.00	11.00	Medium	8.50	0.00	0.00	0.00	N/S			
(,		(,	()																									
1125	0.00																											
				8								SPT I.I	n			Calibra	tion											
Time from	Duration (hhmm)	Remark	s or detail	ls of any ad	ditional	testing in	formation	, Daywo	rks			Numbe		ро	11	Date		18/09	9/2017	Proj	ect 7	Fitle						
												SPT Ro	bd	2 3/8 F	Regular	SPT En	ergy	0.	.00						~			
												Type				Ratio		000	C No			l	_aw	lers	Qua	arry		
												Drilling	Crew I	Jetalis	r —			LSU	S No							Drainat		
												Suppo	rt Opera	ative	j	ohn whyt	e			Weathe	r		Var	iable		Project No	16/	20
												Lead D	riller		step	han pete	ersen			Date			16/06	6/2020		Day	Tues	day
												Site ca	tegory				Green			Rig typ	e		knebe	el hy79		Borel	nole Num	ber
												Project		or			Broderic			Inclinat			Orient				/W 2	
																U	DIOUGIIC	-										
												Lead D	riller's	signature)					Sheet			2	of	2	Comp		Y
AGS																									F	Produced	by KeyLo	ogbook


р	eters	en dri	illina s	service	es Ito	.	on beł	nalf of					La	wler						Rotary	y Drillir	ng Log						
		<u></u>							Sample /	Hole / T	est Details	5) Details		1				, d Penetra						Ke	metix
Depth of Stratum Top (m)				er's Stra escriptic				No	Туре	Insitu test	From (m)	To (m)	Core run time (hhmm)	Total core Recovery (m)	Flush Return %	Flush Colour	Self Weight Pen (mm)	75 mm	150 mm	Seating Pen (mm)	75 mm	150 mm	225 mm	300 mm	Main Pen (mm)	N value	Casing Depth (m)	Water/ flush level (m)
0.00			Firm sar	ndy silty TC	PSOIL				RO		0.00	30.00	0000		100	brown												8.00
0.20		Dens	se brown v	very silty g	ravelly S	SAND																						
4.10	v	ery weak	brown ora	angish SH/	ALE verv	v weathe	red																					
		,		0	-																							
6.50	Mediu	m strong	brown gre	enish SHA	ALE part	tly very fi	ractured									. USO.												
														· ~	anyoth	ő ^v												
														es offo	an.													
												~	on Perty	Cliff.														
	Shift	details						Drillin	g Equ	ipmen	t Detai	Isn off	OWNER						G	round	Water	Reco	ord			Ва	ckfill (n	1)
Start time (hhmm)	Hole (m)	Water (m)	Casing (m)	Casing (C) Open Hole (RO) Coring (RC) C	Dia. (mm) 140.00	From (m) 0.00	To (m) 5.00	Barrel	Liner Type	Core Dia (mm)	5 C	Bit Type		Bit serial No	Flush	Polymer	Time of strike	Depth Struck (m)	Casing (m)	Inflow Very	5 min	10 min	15 min	20 min	Depth Sealed (m)	Туре	From (m)	To (m)
1125 Finish time	Hole	Water	Casing	RO RO	154.00 120.00	0.00	5.00 30.00			có	Selft	DTH DTH		115	Air Air	No No	1205	5.00 12.00	5.00 5.00	Slow	0.00	0.00	0.00	0.00	5.50			
(hhmm) 1620	(m) 0.00	(m)	(m)														1205	17.00	5.00	Slow	0.00	0.00	0.00	0.00	N/S			
Time from	Duration (hhmm)	Remark	s or detail	ls of any ad	Iditional	testing i	nformation	, Daywo	rks			SPT I.I Numbe		рс	11	Calibrat Date	tion	18/09	9/2017	Pro	ject 1	Fitle						
												SPT Ro Type	od	2 3/8 F	Regular	SPT En Ratio	ergy		.00				Law	lers	Qua	arry		
												Drilling Suppor			j	ohn whyt	e	CSC	S No	Weathe	er			iable		Project No	16/	20
												Lead D			step	han pete				Date				6/2020		Day	Tues	
												Site car Project		eer			Green Broderic	ck		Rig typ Inclina			knebe Orient	el hy79 ation			Nole Num	iber
												Lead D	riller's :	signature	•					Sheet		1	1	of	2	Comp		Y


AGS


Top (m) Ubbsch (f)(U) (m)	300 mm		Alain Pen (mm)	N value	Casing Depth (m)	Water/ flush level (m)
Description Description No Type Insitu Form To Self Sel					Casing	Water/ flush level
No Type No Type No Type No						level
Normalize Norma						
Image: Shift details Image: Shift details <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
Image: Shift details Image: Shift details <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
Image: Shift details Image: Shift details <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
Image: Shift details Image: Shift details <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
Shift details Same Casing (C) Origin (CRO) Coring						
Shift details Same Casing (C) Origin (CRO) Coring						
Shift details Same Casing (C) Origin (CRO) Coring						
Image: Shift details Same (C) (Cring (RC)) (Cring						
Image: Shift details Same (C) (Cring (RC)) (Cring						
Image: Shift details Same (C) (Cring (RC)) (Cring						
Image: Shift details Same (C) (Cring (RC)) (Cring						
Shift details Same Casing (C) Origin (CRO) Coring						
Image: Shift details Saing (C) Open Hole (RO) Open						
Image: Note of the state o						
Image: Shift details Same Single Constraint of the const						
Shift details Casing (C) Open Hole (RO) Open Hole						
Shift details Saing (C) Open Hole (RO) Open Hole (
Shift details Drilling Equipment Details Ground Water Ground Water Record Start time (hhmm) (m) (m) (m) (m) To (m) (m) Barrel Liner Type (m) Flush Polymer Time of Strike Start kine Start kine (m) (m) To Barrel Liner Type (m) Flush Polymer Time of Strike Casing (m) Smin 10 min 15 min 20					۱ ۱	
Start time (hhmm) Hole (m) Water (m) Casing (m) Casing (m) Casing (m) Casing (m) Casing (m) Dia. (mm) From (m) To (m) Barrel Liner Type Core Dia (mm) Fruit Polyme Time of Strike Depth Struck Casing (m) Inflow 5 min 10 min 15 min 20						<u> </u>
				Bac	ckfill (m	1)
	20 min	n Se	Depth Sealed	Туре	From (m)	To (m)
1125 1125 1345 26.00 5.00 Medium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00		(m) N/S			
	0.00	, ,	IN/3			ļ'
Finish time Hole Water Casing (hhmm) (m) (m)						
					ļ	<u>├</u> ───┤
1620 0.00						
Time Duration Remarks or datails of any additional testing information Dayworks SPT I.D. add Calibration 19/00/2017 Project Title						
from (hhmm) (hhm						ľ
SPT Rod Type 2 3/8 Regular Ratio 0.00	امىرە	. ^				ľ
Type 2 0/0 Regular Ratio 0.00 Drilling Crew Details CSCS No Lawlet	lers	s Q	Juan	пy		ł
Support Operative john whyte Weather Variabl	iable		Pro	Project	16/	/20
Lead Driller Stephan By S)	No Da		Tues	
Site category Green Rig type knebel hy					nole Num	
Project Engineer D Broderick Inclination Orientation					AM 3	
Lead Driller's signature Sheet 2	of		2	Compl		Y
AGS			Pro	roduced b	by KeyL	ogbook


p	eters	en dri	llina s	service	es Ito	.	on beł	nalf of					La	wler						Rotary	/ Drillir	ng Log						
Depth of		•••••							Sample /	Hole / Te	est Details	5			Details						d Penetra						Ke	netix
Stratum Top (m)				er's Strat escriptio				No	Туре	Insitu test	From (m)	To (m)	Core run time (hhmm)	Total core Recovery (m)	Flush Return %	Flush Colour	Self Weight Pen (mm)	75 mm	150 mm	Seating Pen (mm)	75 mm	150 mm	225 mm	300 mm	Main Pen (mm)	N value	Casing Depth (m)	Water/ flush level (m)
0.00		Fi	rm to stiff	silty sandy	TOPS	JIL			RO		0.00	39.50	0000		100	brown												20.00
0.20	Dense	e to very d	lense brov	wn very silt	y slightl	y gravelly	/ SAND																					
	Dense t	o verv der	nse brown	silty SAN) & GR/	AVEL with	n frequent																					
2.00				es and bou																								
11.90		Stiff to	very stiff I	orown sand	dy grave	elly SILT																						
															ath.	5 150												
13.20		V	/eak brow	n SHALE v	weather	ed								es fo	2013													
28.00		Med	ium stron	g green gre	evish SI	HALE							n Port	Chilled /														
				9 9 9 -	- ,							- Section	OWNEY	·														
		details	r	0	-		1	Drilling	1					1			4	Depth	1	round	Water	Reco	ord	r –	Depth	Ba	ckfill (n	
Start time (hhmm) 0810	Hole (m)	Water (m)	Casing (m)	Casing (C) Open Hole (RO) Coring (RC) C	Dia. (mm) 140.00	From (m) 0.00	To (m) 14.00	Barrel	Liner Type	Core Dia (mm)	x of C	Bit Type		Bit serial No	Flush	Polymer	Time of strike 1145	Struck (m) 24.00	Casing (m) 14.00	Inflow Very	5 min 0.00	10 min 0.00	15 min 0.00	20 min 0.00	Sealed (m)	Туре	From (m)	To (m)
Finish time (hhmm)	Hole (m)	Water (m)	Casing (m)	RO RO	154.00 120.00	0.00	14.00 39.50			Co	Polit	DTH DTH		115	Air Air	No No	1445	36.00	14.00	Slow	0.00	0.00	0.00	0.00	N/S			
1745	0.00	(,																										
Time from	Duration (hhmm)	Remark	s or detail	s of any ad	Iditional	testing in	nformation	, Daywo	rks		•	SPT I.I Numbe		pc	11	Calibra Date	tion	18/09	9/2017	Pro	ject 1	Title		•				
1545	0200	Dayworks:	Airlift develo	oping of all 4	wells							SPT Ro Type		2 3/8 F	Regular	SPT En Ratio	ergy		00			I	Law	lers	Qua	arry		
												Drilling Suppor			j	ohn whyt	te	CSC	S No	Weathe	er		Fi	ine		Project No	16/	20
												Lead D			step	han pete				Date				6/2020		Day	Wedn	
												Site car Project		or			Green			Rig typ Inclina			knebe Orient	el hy79			Nole Num	ber
													-	er signature	•	U	Broderio	л Л		Sheet	uon		1	of	1	Comp		Y
	1	1										1		-		I				1			1			Produced	h K a I	

AGS

AGS