Appendix 3

Soil Sampling Analysis Results

Consent of copyright owner required for any other use.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Daniel Hayden

CERTIFICATE OF ANALYSIS

 Date:
 12 August 2018

 Customer:
 D_FTIM_DUB

 Sample Delivery Group (SDG):
 180804-62

 Your Reference:
 P1444

 Location:
 Cartron Big

 Report No:
 468044

We received 1 sample on Saturday August 04, 2018 and 1 of these samples were scheduled for analysis which was completed on Sunday August 12, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALSCLife Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan
Operations Manager

ALS

 SDG:
 180804-62
 Client Reference:
 P1444
 Report Number:
 468044

 Location:
 Cartron Big
 Order Number:
 Superseded Report:

Received Sample Overview

 Lab Sample No(s)
 Customer Sample Ref.
 AGS Ref.
 Depth (m)
 Sampled Date

 18060638
 TP11
 0.90 - 0.90
 03/08/2018

Maximum Sample/Coolbox Temperature (°C):

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

13.6

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Validated

Only received samples which have had analysis scheduled will be shown on the following pages.

Report Number: Superseded Report: SDG: 180804-62 Client Reference: P1444 468044 Cartron Big Order Number: Location:

(ALS)					
Results Legend X Test N Determination	Lab Sample	No(s)		18060638	
Possible Sample Types -	Custome Sample Refe			TP11	
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	nce			
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m	n)		0.90 - 0.90	
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r		60g VOC (ALE215) 250g Amber Jar	
	Sample Ty	ре	S	w w	
ANC at pH4 and ANC at pH 6	All	NDPs: 0 Tests: 1			, USE.
		1622.1)	K	ol other
Anions by Kone (w)	All	NDPs: 0 Tests: 1	Х		obes ally any
CEN Readings	All	NDPs: 0 Tests: 1	Х	aciti	net reduit
Coronene	All	NDPs: 0 Tests: 1	₹ <mark>o</mark>	the girt	Putposes only any other use.
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 1	ent of) 🔻	
Dissolved Organic/Inorganic Carbon	All	NDPs: 0 Tests: 1	X		-
Fluoride	All	NDPs: 0 Tests: 1	X		
Loss on Ignition in soils	All	NDPs: 0 Tests: 1	,	K	
Mercury Dissolved	All	NDPs: 0 Tests: 1	X		
Mineral Oil	All	NDPs: 0 Tests: 1	,	K	-
PAH 16 & 17 Calc	All	NDPs: 0 Tests: 1	,	K	
PAH by GCMS	All	NDPs: 0 Tests: 1	,	K	
PCBs by GCMS	All	NDPs: 0 Tests: 1	,	K	
pH	All	NDPs: 0 Tests: 1	,	K	
Phenois by HPLC (W)	All	NDPs: 0 Tests: 1	х		
					1

Validated

468044

Report Number: Superseded Report:

CERTIFICATE OF ANALYSIS

(ALS)

SDG: 180804-62 Client Reference: P1444 Location: Cartron Big Order Number: Results Legend 18060638 Lab Sample No(s) X Test No Determination Possible Customer TP11 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water 0.90 - 0.90 SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 60g VOC (ALE215) 250g Amber Jar (ALE210) 1kg TUB DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other action purposes only any other use. Sample Type S S Sample description All NDPs: 0 X Total Dissolved Solids All NDPs: 0 Tests: 1 Х Total Organic Carbon All NDPs: 0 Tests: 1 VOC MS (S) All NDPs: 0

Tests: 1

16:16:21 12/08/2018

SDG:

Location:

180804-62

Cartron Big

CERTIFICATE OF ANALYSIS

Client Reference: Order Number:

P1444

Report Number: Superseded Report: 468044

Validated

Sample Descriptions

Grain Sizes

very fine	<0.063mm	fine	0.063mm - 0.1mm	nedium	0.1mm - 2mm	coarse	2mm - 10	Omm very co	oarse >10mm
Lab Sample	lo(s) Custo	omer Sample Re	f. Depth (m)	Colou	ır Descriț	tion	Inclusions	Inclusions 2	1
18060638		TP11	0.90 - 0.90	Dark Bro	own Silt Lo	am	Stones	Vegetation	1

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Consent of copyright owner reduced for any other use.

 SDG:
 180804-62
 Client Reference:
 P1444
 Report Number:
 468044

 Location:
 Cartron Big
 Order Number:
 Superseded Report:

Results Legend # ISO17025 accredited.	C	Customer Sample Ref.	TP11				
M mCERTS accredited. aq Aqueous / settled sample.							
diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	0.90 - 0.90 Soil/Solid (S)				
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	03/08/2018				
** % recovery of the surrogate standa check the efficiency of the method.		Sample Time Date Received	04/08/2018				
results of individual compounds wi samples aren't corrected for the rec		SDG Ref	180804-62				
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)	,	Lab Sample No.(s)	18060638				
Component	LOD/Units	AGS Reference Method					
Moisture Content Ratio (% of as received sample)	%	PM024	18				
Loss on ignition	<0.7 %	TM018	3.58 M				
Mineral oil >C10-C40	<1 mg/kg	TM061	50.3				
Mineral Oil Surrogate % recovery**	%	TM061	75.1				
Organic Carbon, Total	<0.2 %	TM132	0.948 M				
рН	1 pH Units	TM133	7.86 M				
PCB congener 28	<3 µg/kg	TM168	<3 M				
PCB congener 52	<3 µg/kg	TM168	<3 M				
PCB congener 101	<3 µg/kg	TM168	<3 M				
PCB congener 118	<3 µg/kg	TM168	<3 M		reg.		
PCB congener 138	<3 µg/kg	TM168	<3 M		only any other use.		
PCB congener 153	<3 µg/kg	TM168	_	و م	only air!		
PCB congener 180	<3 µg/kg	TM168	<3 M	out odi	200		
Sum of detected PCB 7 Congeners	<21 µg/kg	TM168	<21	action of the			
ANC @ pH 4	<0.03 mol/kg	TM182	0.555	ingecian purpedi			
ANC @ pH 6	<0.03 mol/kg	TM182	c ¹	ogy			
PAH Total 17 (inc Coronene) Moisture Corrected	<10 mg/kg		<10 cm of				
Coronene	<200 µg/kg	TM410	<200				

Validated

CERTIFICATE OF ANALYSIS

180804-62 Cartron Big SDG: Report Number: Superseded Report: Client Reference: P1444 468044 Order Number: Location:

DALL	CCMC							
PAH	DY GUNS		Customer Sample Ref.					
#	Results Legend ISO17025 accredited.		oustomer sample Ket.	TP11				
M	mCERTS accredited.							
aq diss.filt	Aqueous / settled sample. Dissolved / filtered sample.		Depth (m)	0.90 - 0.90				
tot.unfilt	Total / unfiltered sample.		Sample Type	Soil/Solid (S)				
*	Subcontracted test. % recovery of the surrogate standa	ird to	Date Sampled Sample Time	03/08/2018				
	check the efficiency of the method.	The	Date Received	04/08/2018				
	results of individual compounds wi samples aren't corrected for the red		SDG Ref	180804-62				
(F)	Trigger breach confirmed Sample deviation (see appendix)	·	Lab Sample No.(s)	18060638				
Compo	Sample deviation (see appendix)	LOD/Un	AGS Reference its Method					
WAC	ment	mg/kg		10				
WAC		mg/kg	I IVIZ IO	10				
		<u> </u>						
						offs and other res.		
						ي.		
						112		
						ather		
						34. 24		
						Office all.		
					چې	Z GO'		
					1200	20		
					Offic dir			
					ion exte			
					acct with			
					115 ht			
				Δ.	K Ligh			
				*	OBY			
				\$				
				Consent of				
				, 31150°				
				CO				
<u> </u>								

ALS

SDG: 180804-62 Client Reference: P1444 Report Number: 468044

Location: Cartron Big Order Number: Superseded Report:

VOC MS (S)							
Results Legend	Cu	stomer Sample Ref.	TP11				
# ISO17025 accredited. M mCERTS accredited.							
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.90 - 0.90				
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Soil/Solid (S) 03/08/2018				
** % recovery of the surrogate standa check the efficiency of the method	ard to	Sample Time					
results of individual compounds w samples aren't corrected for the re	ithin	Date Received SDG Ref	04/08/2018 180804-62				
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	18060638				
Component	LOD/Units	Method					
Dibromofluoromethane**	%	TM116	102				
Toluene-d8**	%	TM116	92				
4-Bromofluorobenzene**	%	TM116	79.5				
Methyl Tertiary Butyl Ether	<10 µg/kg	TM116	<10 M				
Benzene	<9 µg/kg	TM116	<9 M				
Toluene	<7 μg/kg	TM116	<7 M				
Ethylbenzene	<4 µg/kg	TM116	<4 M				
p/m-Xylene	<10 µg/kg	TM116	<10 #				
o-Xylene	<10 µg/kg	TM116	<10 M				
				s its getton purpose its diff	use.		
					other		
				چي د	ould air,		
				Quipodii	2		
				Dection next			
			\Q	insight a			
			S	os,			
			Consent of				

Criteria Limits

CERTIFICATE OF ANALYSIS

Case

SDG

 SDG:
 180804-62
 Client Reference:
 P1444
 Report Number:
 468044

 Location:
 Cartron Big
 Order Number:
 Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RES	ULTS		REF : BS EN 12457/2
Client Reference		Site Location	Cartron Big
Mass Sample taken (kg)	0.110	Natural Moisture Content (%)	22
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	82
Particle Size <4mm	>95%		

180804-62

Lab Sample Number(s)	18060638			
Sampled Date	03-Aug-2018			Stable Non-reactive
Customer Sample Ref.	TP11		Inert Waste Landfill	Hazardous Waste
Depth (m)	0.90 - 0.90		Landini	in Non- Hazardous Landfill
Solid Waste Analysis	Result			Lanum
Total Organic Carbon (%)	0.948		3	5
Loss on Ignition (%)	3.58		-	-
Sum of BTEX (mg/kg)	_		-	-
Sum of 7 PCBs (mg/kg)	<0.021		1	-
Mineral Oil (mg/kg)	50.3		500	-
PAH Sum of 17 (mg/kg)	<10		100	-
pH (pH Units)	7.86	Ø1*	-	>6
ANC to pH 6 (mol/kg)	0.0721	attet use.	-	-
ANC to pH 4 (mol/kg)	0.555	ther.	-	-

Eluate Analysis	C ₂ Conc ⁿ in 1	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A2 1011 cent ^o leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Resolt	Limit of Detection				
Arsenic	0.00214	<0.0005	Q ¹ 0.0214	<0.005	0.5	2	25	
Barium	0.0655	<0.0002	10 net 0.655	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.004	<0.01	<0.01	0.5	10	70	
Copper	0.0034	<0.00030	0.034	<0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0,00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	0.0106	€ 0.003	0.106	<0.03	0.5	10	30	
Nickel	0.00177	<0.0004	0.0177	<0.004	0.4	10	40	
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50	
Antimony	0.00258	<0.001	0.0258	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200	
Chloride	<2	<2	<20	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	7.6	<2	76	<20	1000	20000	50000	
Total Dissolved Solids	172	<5	1720	<50	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	5.87	<3	58.7	<30	500	800	1000	

Leach Test Information

Date Prepared	07-Aug-2018
pH (pH Units)	8.05
Conductivity (µS/cm)	220.00
Temperature (°C)	20.20
Volume Leachant (Litres)	0.880

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation
Mcerts Certification does not apply to leachates
12/08/2018 16:16:34

Report Number: Superseded Report: SDG: 180804-62 Client Reference: P1444 468044 Cartron Big Location: Order Number:

Table of Results - Appendix

Modified BS 1377 BS 1377: Part 3 1990 Method for the Determination of EPH,Massachusetts Dept.of EP, 1998 Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060 Method 4500F, AWWA/APHA, 20th Ed., 1999 Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step Determination of Loss on Ignition Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40) Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water Determination of Fluoride using the Kone Analyser
Method for the Determination of EPH,Massachusetts Dept.of EP, 1998 Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060 Method 4500F, AWWA/APHA, 20th Ed., 1999 Modified: US EPA Method 8260, 8120, 8020, 624, 610 &	Determination of Loss on Ignition Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40) Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
Method for the Determination of EPH,Massachusetts Dept.of EP, 1998 Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060 Method 4500F, AWWA/APHA, 20th Ed., 1999 Modified: US EPA Method 8260, 8120, 8020, 624, 610 &	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40) Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
Dept of EP, 1998 Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060 Method 4500F, AWWA/APHA, 20th Ed., 1999 Modified: US EPA Method 8260, 8120, 8020, 624, 610 &	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
EPA Method 415.1 & 9060 Method 4500F, AWWA/APHA, 20th Ed., 1999 Modified: US EPA Method 8260, 8120, 8020, 624, 610 &	·
Modified: US EPA Method 8260, 8120, 8020, 624, 610 &	Determination of Fluoride using the Kone Analyser
	Determination of Fluoride daing the Note Analyses
**=	Determination of Volatile Organic Compounds by Headspace / GC-MS
BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water
In - house Method	ELTRA CS800 Operators Guide
BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils
BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS
by HPLC	Determination of Phenols in Waters and Leachates by HPLC
Shaker extraction-In house coronene method	Determination of Coronene in soils by GCMS
performed at ALS Life Sciences Ltd Hawarden ((Method codes TM) er Al S Pife Sciences Ltd Aberdeen (Method codes S). A title of the properties of the Sciences Ltd Aberdeen (Method codes S).
ıt	Method 3125B, AWWA/APHA, 20th Ed., 1999 EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3 EPA Methods 325.1 & 325.2, Shaker extraction - EPA method 3546. by HPLC Shaker extraction-In house coronene method

ALS

 SDG:
 180804-62
 Client Reference:
 P1444
 Report Number:
 468044

 Location:
 Cartron Big
 Order Number:
 Superseded Report:

Test Completion Dates

Lab Sample No(s) TP11		
AGS Ref. Depth Type Soil/Solid (S) ANC at pH4 and ANC at pH 6 Anions by Kone (w) CEN 10:1 Leachate (1 Stage) CTORONE CORONE CORONE CORONE Dissolved Metals by ICP-MS Dissolved Metals by ICP-MS Dissolved Organic/Inorganic Carbon Fluoride Loss on Ignition in soils Mercury Dissolved Mineral Oil PAH 16 & 17 Calc PAH by GCMS PCBs by GCMS PCBs by GCMS PCBs by GCMS PHC (W) Sample description Total Dissolved Solids O.90 - 0.90 0	Lab Sample No(s)	18060638
AGS Ref. Depth Type ANC at pH4 and ANC at pH 6 Anions by Kone (w) CEN 10:1 Leachate (1 Stage) CORONER CEN Readings CORONER Dissolved Metals by ICP-MS Dissolved Organic/Inorganic Carbon Fluoride Loss on Ignition in soils Mercury Dissolved Mineral Oil PAH 16 & 17 Calc PAH 50 GMS PCBs by GCMS PCBs by GCMS PHDLC (W) PHONOIS DISSOlved PHDLC (W) Sample description OG-Aug-2018 Phenols by HPLC (W) Sample description Og-Aug-2018 Condens Og-Aug-2018 Og-Aug-2018 Dissolved Organic/Inorganic Carbon Og-Aug-2018 Dissolved Og-Aug-2018 Dissolved Dissolve	Customer Sample Ref.	TP11
Depth Type 0.90 - 0.90 Type Soil/Solid (S) ANC at pH4 and ANC at pH 6 08-Aug-2018 Anions by Kone (w) 09-Aug-2018 CEN 10:1 Leachate (1 Stage) 07-Aug-2018 CEN Readings 08-Aug-2018 Coronene 09-Aug-2018 Dissolved Metals by ICP-MS 10-Aug-2018 Dissolved Organic/Inorganic Carbon 10-Aug-2018 Fluoride 10-Aug-2018 Loss on Ignition in soils 10-Aug-2018 Mineral Oil 10-Aug-2018 PAH 16 & 17 Calc 09-Aug-2018 PAH by GCMS 09-Aug-2018 PCBs by GCMS 09-Aug-2018 PCBs by GCMS 08-Aug-2018 PH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018		
Type	AGS Ref.	
Type	Denth	0.90 - 0.90
ANC at pH4 and ANC at pH 6 Anions by Kone (w) O9-Aug-2018 CEN 10:1 Leachate (1 Stage) O7-Aug-2018 CEN Readings O8-Aug-2018 Coronene O9-Aug-2018 Dissolved Metals by ICP-MS Dissolved Organic/Inorganic Carbon Fluoride Loss on Ignition in soils 10-Aug-2018 Mercury Dissolved Mineral Oil PAH 16 & 17 Calc PAH by GCMS PCBs by GCMS D9-Aug-2018 PCBs by GCMS PCBs by GCMS Phenols by HPLC (W) Sample description O6-Aug-2018 Sample description O6-Aug-2018 O9-Aug-2018 O6-Aug-2018 O6-Aug-2018 O6-Aug-2018 O6-Aug-2018 O6-Aug-2018 O6-Aug-2018 O6-Aug-2018	•	0.00 0.00
Anions by Kone (w) O9-Aug-2018 CEN 10:1 Leachate (1 Stage) O7-Aug-2018 CEN Readings O8-Aug-2018 Coronene O9-Aug-2018 Dissolved Metals by ICP-MS Dissolved Organic/Inorganic Carbon Fluoride Loss on Ignition in soils 10-Aug-2018 Mercury Dissolved Mineral Oil PAH 16 & 17 Calc PAH by GCMS PCBs by GCMS D8-Aug-2018 PHOSS OF CAMBRE OF CAMBR OF CAMBRE OF CAMBRE OF CAMBRE OF CAMBRE OF CAMBRE OF CAMBRE OF	туре	Soil/Solid (S)
CEN 10:1 Leachate (1 Stage) 07-Aug-2018 CEN Readings 08-Aug-2018 Coronene 09-Aug-2018 Dissolved Metals by ICP-MS 10-Aug-2018 Dissolved Organic/Inorganic Carbon 10-Aug-2018 Fluoride 10-Aug-2018 Loss on Ignition in soils 10-Aug-2018 Mercury Dissolved 10-Aug-2018 Mineral Oil 10-Aug-2018 PAH 16 & 17 Calc 09-Aug-2018 PAH by GCMS 09-Aug-2018 PCBs by GCMS 08-Aug-2018 pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	ANC at pH4 and ANC at pH 6	08-Aug-2018
CEN Readings 08-Aug-2018 Coronene 09-Aug-2018 Dissolved Metals by ICP-MS 10-Aug-2018 Dissolved Organic/Inorganic Carbon 10-Aug-2018 Fluoride 10-Aug-2018 Loss on Ignition in soils 10-Aug-2018 Mercury Dissolved 10-Aug-2018 Mineral Oil 10-Aug-2018 PAH 16 & 17 Calc 09-Aug-2018 PAH by GCMS 09-Aug-2018 PCBs by GCMS 08-Aug-2018 pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	Anions by Kone (w)	09-Aug-2018
Coronene 09-Aug-2018 Dissolved Metals by ICP-MS 10-Aug-2018 Dissolved Organic/Inorganic Carbon 10-Aug-2018 Fluoride 10-Aug-2018 Loss on Ignition in soils 10-Aug-2018 Mercury Dissolved 10-Aug-2018 Mineral Oil 10-Aug-2018 PAH 16 & 17 Calc 09-Aug-2018 PAH by GCMS 09-Aug-2018 PCBs by GCMS 09-Aug-2018 PH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	CEN 10:1 Leachate (1 Stage)	07-Aug-2018
Dissolved Metals by ICP-MS 10-Aug-2018 Dissolved Organic/Inorganic Carbon 10-Aug-2018 Fluoride 10-Aug-2018 Loss on Ignition in soils 10-Aug-2018 Mercury Dissolved 10-Aug-2018 Mineral Oil 10-Aug-2018 PAH 16 & 17 Calc 09-Aug-2018 PAH by GCMS 09-Aug-2018 PCBs by GCMS 08-Aug-2018 pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	CEN Readings	08-Aug-2018
Dissolved Organic/Inorganic Carbon 10-Aug-2018 Fluoride 10-Aug-2018 Loss on Ignition in soils 10-Aug-2018 Mercury Dissolved 10-Aug-2018 Mineral Oil 10-Aug-2018 PAH 16 & 17 Calc 09-Aug-2018 PAH by GCMS 09-Aug-2018 PCBs by GCMS 08-Aug-2018 pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	Coronene	09-Aug-2018
Fluoride 10-Aug-2018 Loss on Ignition in soils 10-Aug-2018 Mercury Dissolved 10-Aug-2018 Mineral Oil 10-Aug-2018 PAH 16 & 17 Calc 09-Aug-2018 PAH by GCMS 09-Aug-2018 PCBs by GCMS 08-Aug-2018 pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	Dissolved Metals by ICP-MS	10-Aug-2018
Loss on Ignition in soils 10-Aug-2018 Mercury Dissolved 10-Aug-2018 Mineral Oil 10-Aug-2018 PAH 16 & 17 Calc 09-Aug-2018 PAH by GCMS 09-Aug-2018 PCBs by GCMS 08-Aug-2018 pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	Dissolved Organic/Inorganic Carbon	10-Aug-2018
Mercury Dissolved 10-Aug-2018 Mineral Oil 10-Aug-2018 PAH 16 & 17 Calc 09-Aug-2018 PAH by GCMS 09-Aug-2018 PCBs by GCMS 08-Aug-2018 pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	Fluoride	10-Aug-2018
Mineral Oil 10-Aug-2018 PAH 16 & 17 Calc 09-Aug-2018 PAH by GCMS 09-Aug-2018 PCBs by GCMS 08-Aug-2018 pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	Loss on Ignition in soils	10-Aug-2018
PAH 16 & 17 Calc 09-Aug-2018 PAH by GCMS 09-Aug-2018 PCBs by GCMS 08-Aug-2018 pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	Mercury Dissolved	10-Aug-2018
PAH by GCMS 09-Aug-2018 PCBs by GCMS 08-Aug-2018 pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	Mineral Oil	10-Aug-2018
PCBs by GCMS 08-Aug-2018 pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	PAH 16 & 17 Calc	09-Aug-2018
pH 07-Aug-2018 Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	PAH by GCMS	09-Aug-2018
Phenols by HPLC (W) 10-Aug-2018 Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	PCBs by GCMS	08-Aug-2018
Sample description 06-Aug-2018 Total Dissolved Solids 09-Aug-2018	pH	07-Aug-2018
Total Dissolved Solids 09-Aug-2018	Phenols by HPLC (W)	10-Aug-2018
	Sample description	06-Aug-2018
Total Organic Carbon 12-Aug-2018	Total Dissolved Solids	09-Aug-2018
	Total Organic Carbon	12-Aug-2018
VOC MS (S) 09-Aug-2018	VOC MS (S)	09-Aug-2018

180804-62 468044 SDG: P1444 Client Reference: Report Number: Superseded Report: Location: Cartron Big Order Number:

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on received.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.

 11. Results relate only to the items tested.
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect
- 14. Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 22. We are accredited to MCERTS for sand, clav and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised
- 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

	1	Container with Headspace provided for volatiles analysis
	2	incorrect container received
I	~ 3. K	Deviation from method
ş	SOL	Holding time exceeded before sample received
2	5	Samples exceeded holding time before presevation was performed
	§	Sampled on date not provided
I	•	Sample holding time exceeded in laboratory
ĺ	@	Sample holding time exceeded due to sampled on date
I	&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbests
Amosite	Brown Asbestos
Cro d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

16:17:53 12/08/2018 Modification Date: 12/08/2018 EPA Export 05-10-2021:03:04:18 Consent of copyright owner required for any other use.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Daniel Hayden

CERTIFICATE OF ANALYSIS

 Date:
 13 August 2018

 Customer:
 D_FTIM_DUB

 Sample Delivery Group (SDG):
 180803-55

 Your Reference:
 P1444

 Location:
 Cartron Big

 Report No:
 468081

We received 4 samples on Friday August 03, 2018 and 4 of these samples were scheduled for analysis which was completed on Monday August 13, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALSCLife Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan
Operations Manager

Validated

 SDG:
 180803-55
 Client Reference:
 P1444
 Report Number:
 468081

 Location:
 Cartron Big
 Order Number:
 Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
18053550	TP1		1.80 - 1.80	31/07/2018
18053555	TP3		2.50 - 2.50	31/07/2018
18053560	TP4		1.20 - 1.20	31/07/2018
18053565	TP5		1.80 - 1.80	31/07/2018

Maximum Sample/Coolbox Temperature (°C):

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

19.8

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

468081

CERTIFICATE OF ANALYSIS

SDG: P1444 180803-55 Client Reference: Report Number: Location: Cartron Big Order Number: Superseded Report: Results Legend 18053550 18053560 18053565 Lab Sample No(s) X Test No Determination Possible Customer TP5 뒺 TP3 Ŧ Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water 2.50-1.80 1.20-.80 SA - Saline Water Depth (m) - 2.50 TE - Trade Effluent 1.80 1.20 1.80 TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 60g VOC (ALE215) 60g VOC (ALE215) 60g VOC (ALE215) 60g VOC (ALE215) 250g Amber Jar (ALE210) 1kg TUB 250g Amber Jar (ALE210) 1kg TUB 250g Amber Jar (ALE210) 250g Amber Jar DW - Drinking Water Non-regulatory (ALE210) 1kg TUB UNL - Unspecified Liquid 1kg TUB SL - Sludge Container G - Gas OTH - Other Sample Type S S S S S S S S S S S ANC at pH4 and ANC at pH 6 All NDPs: 0 Tests: 4 X X Χ Anions by Kone (w) All NDPs: 0 Tests: 4 X X Χ X CEN Readings All NDPs: 0 Tests: 4 Х Х All Coronene NDPs: 0 Tests: 4 X X Χ Dissolved Metals by ICP-MS All NDPs: 0 Tests: 4 X X Χ Х Dissolved Organic/Inorganic Carbon All NDPs: 0 Tests: 4 Χ Х Х Х Fluoride All NDPs: 0 Tests: 4 Χ Χ Х Х Loss on Ignition in soils All NDPs: 0 Tests: 4 Х Х Х Х Mercury Dissolved All NDPs: 0 Tests: 4 Χ X Х Χ Mineral Oil All NDPs: 0 Tests: 4 X X X Χ PAH 16 & 17 Calc All NDPs: 0 Tests: 4 X Х X Х PAH by GCMS All NDPs: 0 Tests: 4 Χ Х Х X PCBs by GCMS All NDPs: 0 Tests: 4 Χ Х Х Х All рΗ NDPs: 0 Tests: 4 Х Х Х Х Phenols by HPLC (W) All NDPs: 0

X

X

X

Tests: 4

X

Validated

468081

CERTIFICATE OF ANALYSIS

(ALS)	

SDG: Client Reference: P1444 180803-55 Report Number: Location: Cartron Big Order Number: Superseded Report: Results Legend 18053550 18053565 Lab Sample No(s) X Test No Determination Possible Customer Ħ TP3 TP4 TP5 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water 1.80-1.80-2.50 - 2.50 1.20-SA - Saline Water Depth (m) TE - Trade Effluent 1.80 1.20 1.80 TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 60g VOC (ALE215) 60g VOC (ALE215) 60g VOC (ALE215) 60g VOC (ALE215) 250g Amber Jar (ALE210) 1kg TUB 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) 1kg TUB 250g Amber Jar (ALE210) 1kg TUB DW - Drinking Water Non-regulatory UNL - Unspecified Liquid 1kg TUB SL - Sludge Container G - Gas OTH - Other Sample Type S S S S S S S S S S S S Sample description All NDPs: 0 X Х X Χ Solited for any Total Dissolved Solids All NDPs: 0 Tests: 4 Х Χ Total Organic Carbon All NDPs: 0 Tests: 4 Х X X VOC MS (S) All NDPs: 0 Tests: 4 Χ Χ X

ALS

 SDG:
 180803-55
 Client Reference:
 P1444
 Report Number:
 468081

 Location:
 Cartron Big
 Order Number:
 Superseded Report:

Sample Descriptions

Grain Sizes

very fine <0.	0.0 fine 0.0	63mm - 0.1mm m e	edium 0.1mm	ı - 2mm coaı	rse 2mm - 10	0mm very coa	rse >10mm
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2	
18053550	TP1	1.80 - 1.80	Black	Sludge	Stones	None	
18053555	TP3	2.50 - 2.50	Black	Loamy Sand	Vegetation	Oil/Petroleum	
18053560	TP4	1.20 - 1.20	Dark Brown	Loamy Sand	Stones	Vegetation	
18053565	TP5	1.80 - 1.80	Dark Brown	Loamy Sand	Stones	Vegetation	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Consent of copyright owner reduced for any other use.

Validated

 SDG:
 180803-55
 Client Reference:
 P1444
 Report Number:
 468081

 Location:
 Cartron Big
 Order Number:
 Superseded Report:

Results Legend # ISO17025 accredited.		ustomer Sample Ref.	TP1	TP3	TP4	TP5	
M mCERTS accredited. aq Aqueous / settled sample.		Depth (m)	100 100	250 250	120 120	4.00, 4.00	
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	1.80 - 1.80 Soil/Solid (S)	2.50 - 2.50 Soil/Solid (S)	1.20 - 1.20 Soil/Solid (S)	1.80 - 1.80 Soil/Solid (S)	
* Subcontracted test. ** % recovery of the surrogate stands	ard to	Date Sampled Sample Time	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
check the efficiency of the method	I. The	Date Received	03/08/2018	03/08/2018	03/08/2018	03/08/2018	
results of individual compounds w samples aren't corrected for the re		SDG Ref	180803-55 18053550	180803-55 18053555	180803-55 18053560	180803-55 18053565	
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	10000000	10000000	10055500	10000000	
Component	LOD/Units	Method					
Moisture Content Ratio (% of as received sample)	%	PM024	35	44	56	50	
Loss on ignition	<0.7 %	TM018	15.7	18.9 M	36.7 M	22.4 M	
Mineral oil >C10-C40	<1 mg/kg	TM061	898	1080	1160	2390	
Mineral Oil Surrogate % recovery**	%	TM061	76.4	80.7	77.8	71.4	
Organic Carbon, Total	<0.2 %	TM132	4.13 #	7.08 M	10.7 M	7.17 M	
рН	1 pH Units	TM133	8.68	7.02 M	7.77 M	7.67 M	
PCB congener 28	<3 µg/kg	TM168	<15 #	<3 M	<3 M	<15 M	
PCB congener 52	<3 µg/kg	TM168	<15 #	<3 M	<3 M	<15 M	
PCB congener 101	<3 µg/kg	TM168	<15 #	<3 M	<3 M	<15 M	
PCB congener 118	<3 µg/kg	TM168	<15 #	<3 M	<3	<15 M	
PCB congener 138	<3 µg/kg	TM168	<15 #	<3 M	<3thet M	<15 M	
PCB congener 153	<3 µg/kg	TM168	<15 #	<3 M	only and a	<15 M	
PCB congener 180	<3 µg/kg	TM168	<15 #	<3 Outpos	<3 M	<15 M	
Sum of detected PCB 7 Congeners	<21 µg/kg	TM168	<105	Dectient let 1	<21	<105	
ANC @ pH 4	<0.03 mol/kg	TM182	2.01	STATES O.0936	1.3	0.837	
ANC @ pH 6	<0.03 mol/kg	TM182	۷ و			0.192	
PAH Total 17 (inc Coronene) Moisture Corrected	<10 mg/kg	TM410	<10 consent of	<10	<10	<10	
Coronene	<200 µg/kg	TM410	<200	<200	<200	<200	

Validated

CERTIFICATE OF ANALYSIS

180803-55 Cartron Big Report Number: Superseded Report: SDG: Client Reference: P1444 468081 Order Number: Location:

PAH by GCMS Results Legend							
Results Legend # ISO17025 accredited.		Customer Sample Ref.	TP1	TP3	TP4	TP5	
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. subcontracted test.		Depth (m) Sample Type Date Sampled	1.80 - 1.80 Soil/Solid (S) 31/07/2018	2.50 - 2.50 Soil/Solid (S) 31/07/2018	1.20 - 1.20 Soil/Solid (S) 31/07/2018	1.80 - 1.80 Soil/Solid (S) 31/07/2018	
check the efficiency of the me	thod. The	Sample Time Date Received	03/08/2018	03/08/2018	03/08/2018	03/08/2018	
results of individual compound samples aren't corrected for the	ne recovery	SDG Ref	180803-55	180803-55	180803-55	180803-55	
(F) Trigger breach confirmed 1-5&+\$@ Sample deviation (see append	ix)	Lab Sample No.(s) AGS Reference	18053550	18053555	18053560	18053565	
Component	LOD/OI	nits Method					
WAC	mg/k	g TM218	10	10	10	10	
					use.		
					athei		
					alt alt		
				, où	offord		
				170°50	E _C		
				Dui Edu			
				actionizati			
				inspire			
			₹	K 1, 1987			
			\$	os.	only and other use.		
			Consent of				
			COURSE				
	_						
				<u> </u>			

Validated

CERTIFICATE OF ANALYSIS

ALS

 SDG:
 180803-55
 Client Reference:
 P1444
 Report Number:
 468081

 Location:
 Cartron Big
 Order Number:
 Superseded Report:

VOC MS (S)							
Results Legend # ISO17025 accredited.		Customer Sample Ref.	TP1	TP3	TP4	TP5	
M mCERTS accredited. aq Aqueous / settled sample.							
diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	1.80 - 1.80 Soil/Solid (S)	2.50 - 2.50 Soil/Solid (S)	1.20 - 1.20 Soil/Solid (S)	1.80 - 1.80 Soil/Solid (S)	
tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate standa		Date Sampled	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
check the efficiency of the method.	The	Sample Time Date Received	03/08/2018	03/08/2018	03/08/2018	03/08/2018	
results of individual compounds wi samples aren't corrected for the rec		SDG Ref	180803-55	180803-55	180803-55	180803-55	
(F) Trigger breach confirmed 1-5&•§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	18053550	18053555	18053560	18053565	
Component	LOD/Units	Method					
Dibromofluoromethane**	%	TM116	102	105	102	99.7	
Toluene-d8**	%	TM116	98.2	96.1	95.6	96.1	
4-Bromofluorobenzene**	%	TM116	95.4	95.1	86.4	91.7	
Methyl Tertiary Butyl Ether	<10 µg/kg	TM116	<100 #	<100 M	<100 M	<100 M	
Benzene	<9 µg/kg	TM116	<90 #	<90 M	<90 M	<90 M	
Toluene	<7 µg/kg	TM116	<70 #	<70 M	<70 M	<70 M	
Ethylbenzene	<4 µg/kg	TM116	117 #	<40 M	<40 M	<40 M	
p/m-Xylene	<10 µg/kg		<100 #	<100 #	<100 #	<100 #	
o-Xylene	<10 µg/kg	TM116	<100 #	<100 M	<100 M	<100 M	
				M M M	Auge.		
					14 15 other		
				36.	off of all		
				2 de de de la constante de la	, o		
				spection let			
			Ç (Kift ght			
			200	0.			
			Consent of C				

SDG: 180803-55 Client Reference: P1444 Report Number: 468081 Location: Cartron Big Order Number: Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/2 Client Reference Site Location Cartron Big Mass Sample taken (kg) 0.138 **Natural Moisture Content (%)** 53.8 0.090 65 Mass of dry sample (kg) **Dry Matter Content (%)** Particle Size <4mm >95% Case **Landfill Waste Acceptance**

G	180803-55			Criteria Limit
Lab Sample Number(s)	18053550			
Sampled Date	31-Jul-2018			Stable Non-reactive
Customer Sample Ref.	TP1		Inert Waste Landfill	Hazardous Waste
Depth (m)	1.80 - 1.80			in Non- Hazardous Landfill
Solid Waste Analysis	Result			Landini
Total Organic Carbon (%)	4.13		3	5
Loss on Ignition (%)	15.7		-	-
Sum of BTEX (mg/kg)	-		-	-
Sum of 7 PCBs (mg/kg)	<0.105		1	-
Mineral Oil (mg/kg)	898		500	-
PAH Sum of 17 (mg/kg)	<10		100	-
pH (pH Units)	8.68	atter use.	-	>6
ANC to pH 6 (mol/kg)	0.235	115	_	-
37	0.233	₹ °		

Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	es XV	leached (mg/kg)		es for compliance lea S EN 12457-3 at L/S	
	Result	Limit of Detection	Resolt	Limit of Detection			
Arsenic	0.0371	<0.0005	Q ¹¹ , Q, 971	<0.005	0.5	2	25
Barium	0.0244	<0.0002	10 net 0.244	<0.002	20	100	300
Cadmium	0.000431	<0.00008	0.00431	<0.0008	0.04	1	5
Chromium	0.541	<0.004	5.41	<0.01	0.5	10	70
Copper	0.0213	<0.00030	0.213	<0.003	2	50	100
Mercury Dissolved (CVAF)	0.0000295	<0,00001	0.000295	<0.0001	0.01	0.2	2
Molybdenum	0.0284	€ 0.003	0.284	<0.03	0.5	10	30
Nickel	0.0617	<0.0004	0.617	<0.004	0.4	10	40
Lead	0.016	<0.0002	0.16	<0.002	0.5	10	50
Antimony	0.00387	<0.001	0.0387	<0.01	0.06	0.7	5
Selenium	0.00184	<0.001	0.0184	<0.01	0.1	0.5	7
Zinc	0.048	<0.001	0.48	<0.01	4	50	200
Chloride	812	<10	8120	<100	800	15000	25000
Fluoride	0.604	<0.5	6.04	<5	10	150	500
Sulphate (soluble)	<10	<10	<100	<100	1000	20000	50000
Total Dissolved Solids	3100	<10	31000	<100	4000	60000	100000
Total Monohydric Phenols (W)	7.58	<0.016	75.8	<0.16	1	-	-
Dissolved Organic Carbon	188	<12	1880	<120	500	800	1000

Leach Test Information

Date Prepared	06-Aug-2018
pH (pH Units)	8.41
Conductivity (µS/cm)	3,980.00
Temperature (°C)	20.40
Volume Leachant (Litres)	0.852

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

CERTIFICATE OF ANALYSIS

Case

SDG: 180803-55 Client Reference: P1444 Report Number: 468081 Location: Cartron Big Order Number: Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS Client Reference Site Location Cartron Big Natural Moisture Content (%) Mass of dry sample (kg) 0.090 Dry Matter Content (%) Particle Size <4mm >95%

OG	180803-55			Criteria Lin
Lab Sample Number(s)	18053555			
Sampled Date	31-Jul-2018			Stable Non-reactive
Customer Sample Ref.	TP3		Inert Waste Landfill	Hazardous Waste
Depth (m)	2.50 - 2.50			in Non- Hazardous Landfill
Solid Waste Analysis	Result			
Total Organic Carbon (%)	7.08		3	5
Loss on Ignition (%)	18.9		-	-
Sum of BTEX (mg/kg)	-		-	-
Sum of 7 PCBs (mg/kg)	<0.021		1	-
Mineral Oil (mg/kg)	1080		500	-
PAH Sum of 17 (mg/kg)	<10		100	-
pH (pH Units)	7.02		-	>6
,	1.02	٠,٠		
ANC to pH 6 (mol/kg)	0.0936	atter use.	-	-

Eluate Analysis	C ₂ Conc ⁿ in 1	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A2 1011 centre leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg	
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	0.00665	<0.0005	QV 0.0665	<0.005	0.5	2	25
Barium	0.0657	<0.0002	10 net 0.657	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.003	<0.01	<0.01	0.5	10	70
Copper	<0.0003	<0.00030	<0.003	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0,00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.0546	€ 0.003	0.546	<0.03	0.5	10	30
Nickel	0.00134	<0.0004	0.0134	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	0.00192	<0.001	0.0192	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200
Chloride	4.7	<2	47	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	44.1	<2	441	<20	1000	20000	50000
Total Dissolved Solids	298	<5	2980	<50	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	20.6	<3	206	<30	500	800	1000

Leach Test Information

Date Prepared	06-Aug-2018
pH (pH Units)	8.11
Conductivity (µS/cm)	394.00
Temperature (°C)	20.50
Volume Leachant (Litres)	0.829

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation
Mcerts Certification does not apply to leachates

CERTIFICATE OF ANALYSIS

Case

ANC to pH 4 (mol/kg)

SDG: 180803-55 P1444 468081 Client Reference: Report Number: Superseded Report: Location: Cartron Big Order Number:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/2 Client Reference Site Location Cartron Big Mass Sample taken (kg) 0.205 **Natural Moisture Content (%)** 127 44 0.090 Mass of dry sample (kg) **Dry Matter Content (%)** Particle Size <4mm >95%

1.3

SDG	180803-55	Crite			
Lab Sample Number(s)	18053560				
Sampled Date	31-Jul-2018			Stable Non-reactive	
Customer Sample Ref.	TP4		Inert Waste Landfill	Hazardous Waste	
Depth (m)	1.20 - 1.20		Landini	in Non- Hazardous Landfill	
Solid Waste Analysis	Result			Lanum	
Total Organic Carbon (%)	10.7		3	5	
Loss on Ignition (%)	36.7		-	-	
Sum of BTEX (mg/kg)	_		-	-	
Sum of 7 PCBs (mg/kg)	<0.021		1	-	
Mineral Oil (mg/kg)	1160		500	-	
PAH Sum of 17 (mg/kg)	<10		100	-	
			_	>6	
pH (pH Units)	7.77	Tige.	-	-0	
Mineral Oil (mg/kg)	1160 <10		10	00	

Eluate Analysis	C ₂ Conc ⁿ in 1	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A2 1011 cent ^o leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection				
Arsenic	0.00705	<0.0005	Q ¹ 0 ₂ 0705	<0.005	0.5	2	25	
Barium	0.0935	<0.0002	10 net 0.935	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.004	<0.01	<0.01	0.5	10	70	
Copper	<0.0003	<0.00030	<0.003	<0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0,00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	0.0117	0.003	0.117	<0.03	0.5	10	30	
Nickel	0.00207	<0.0004	0.0207	<0.004	0.4	10	40	
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	0.00205	<0.001	0.0205	<0.01	4	50	200	
Chloride	21.3	<2	213	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	15.3	<2	153	<20	1000	20000	50000	
Total Dissolved Solids	319	<5	3190	<50	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	14.7	<3	147	<30	500	800	1000	

Leach Test Information

06-Aug-2018
8.11
408.00
19.90
0.786

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

EPA Export 05-10-2021:03:04:18

CERTIFICATE OF ANALYSIS

Case

SDG: 180803-55 Client Reference: P1444 Report Number: 468081 Location: Cartron Big Order Number: Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESI	REF : BS EN 124		
Client Reference		Site Location	Cartron Big
Mass Sample taken (kg)	0.180	Natural Moisture Content (%)	100
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	50
Particle Size <4mm	>95%		

SDG	DG 180803-55				
Lab Sample Number(s)	18053565				
Sampled Date	31-Jul-2018				
Customer Sample Ref.	TP5				
Depth (m)	1.80 - 1.80				
Solid Waste Analysis	Result				
Total Organic Carbon (%)	7.17				
Loss on Ignition (%)	22.4				
Sum of BTEX (mg/kg)	-				
Sum of 7 PCBs (mg/kg)	<0.105				
Mineral Oil (mg/kg)	2390				
PAH Sum of 17 (mg/kg)	<10				
pH (pH Units)	7.67				
ANC to pH 6 (mol/kg)	0.192				
ANC to pH 4 (mol/kg)	0.837				

Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	es x 10	leached (mg/kg)	Limit values for compliance leachi using BS EN 12457-3 at L/S 10		•
	Result	Limit of Detection	Resolt	Limit of Detection			
Arsenic	0.00382	<0.0005	Q ^{VV} Q ₂ 0382	<0.005	0.5	2	25
Barium	0.0249	<0.0002	10 net 0.249	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.004	<0.01	<0.01	0.5	10	70
Copper	<0.0003	<0.00030	<0.003	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0,00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.0627	0.003	0.627	<0.03	0.5	10	30
Nickel	0.00287	<0.0004	0.0287	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	0.00244	<0.001	0.0244	<0.01	0.06	0.7	5
Selenium	0.00192	<0.001	0.0192	<0.01	0.1	0.5	7
Zinc	0.00264	<0.001	0.0264	<0.01	4	50	200
Chloride	5.1	<2	51	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	314	<2	3140	<20	1000	20000	50000
Total Dissolved Solids	670	<5	6700	<50	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	14.2	<3	142	<30	500	800	1000

Leach Test Information

Date Prepared	06-Aug-2018
pH (pH Units)	7.96
Conductivity (µS/cm)	869.00
Temperature (°C)	21.30
Volume Leachant (Litres)	0.810

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Report Number: Superseded Report: SDG: 180803-55 Client Reference: P1444 468081 Cartron Big Location: Order Number:

Table of Results - Appendix

Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition
TM061	Method for the Determination of EPH, Massachusetts Dept. of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water
TM132	In - house Method	ELTRA CS800 Operators Guide
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM218	Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC
TM410	Shaker extraction-In house coronene method	Determination of Coronene in soil Oy GCMS
al testing (unless	subcontracted) performed at ALS Life Sciences Ltd Hawarden	(Method codes TM) er ALS Life Sciences Ltd Aberdeen (Method codes S). A tiespection purpose in the sciences Ltd Aberdeen (Method codes S). A tiespection purpose in the sciences Ltd Aberdeen (Method codes S).
	Cor	

 SDG:
 180803-55
 Client Reference:
 P1444
 Report Number:
 468081

 Location:
 Cartron Big
 Order Number:
 Superseded Report:

Test Completion Dates

				piotioi
Lab Sample No(s)	18053550	18053555	18053560	18053565
Customer Sample Ref.	TP1	TP3	TP4	TP5
·				
AGS Ref.				
Depth	1.80 - 1.80	2.50 - 2.50	1.20 - 1.20	1.80 - 1.80
Туре	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
ANC at pH4 and ANC at pH 6	06-Aug-2018	06-Aug-2018	06-Aug-2018	06-Aug-2018
Anions by Kone (w)	09-Aug-2018	09-Aug-2018	10-Aug-2018	09-Aug-2018
CEN 10:1 Leachate (1 Stage)	06-Aug-2018	06-Aug-2018	06-Aug-2018	06-Aug-2018
CEN Readings	07-Aug-2018	07-Aug-2018	07-Aug-2018	07-Aug-2018
Coronene	08-Aug-2018	08-Aug-2018	08-Aug-2018	08-Aug-2018
Dissolved Metals by ICP-MS	09-Aug-2018	09-Aug-2018	09-Aug-2018	10-Aug-2018
Dissolved Organic/Inorganic Carbon	10-Aug-2018	09-Aug-2018	10-Aug-2018	09-Aug-2018
Fluoride	08-Aug-2018	08-Aug-2018	08-Aug-2018	08-Aug-2018
Loss on Ignition in soils	09-Aug-2018	09-Aug-2018	09-Aug-2018	09-Aug-2018
Mercury Dissolved	09-Aug-2018	09-Aug-2018	09-Aug-2018	09-Aug-2018
Mineral Oil	09-Aug-2018	10-Aug-2018	09-Aug-2018	10-Aug-2018
PAH 16 & 17 Calc	08-Aug-2018	13-Aug-2018	08-Aug-2018	13-Aug-2018
PAH by GCMS	08-Aug-2018	08-Aug-2018	08-Aug-2018	10-Aug-2018
PCBs by GCMS	09-Aug-2018	08-Aug-2018	08-Aug-2018	09-Aug-2018
pH	07-Aug-2018	07-Aug-2018	07-Aug-2018	07-Aug-2018
Phenois by HPLC (W)	10-Aug-2018	09-Aug-2018	09-Aug-2018	09-Aug-2018
Sample description	03-Aug-2018	03-Aug-2018	03-Aug-2018	03-Aug-2018
Total Dissolved Solids	08-Aug-2018	08-Aug-2018	08-Aug-2018	08-Aug-2018
Total Organic Carbon	12-Aug-2018	12-Aug-2018	12-Aug-2018	12-Aug-2018
VOC MS (S)	10-Aug-2018	10-Aug-2018	10-Aug-2018	10-Aug-2018

Consent of copyright owner reduced for any other use.

180803-55 468081 SDG: P1444 Client Reference: Report Number: Superseded Report: Location: Cartron Big Order Number:

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on received.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.

 11. Results relate only to the items tested.
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect
- 14. Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 22. We are accredited to MCERTS for sand, clav and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised
- 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

	1	Container with Headspace provided for volatiles analysis
	2	incorrect container received
I	~ 3. K	Deviation from method
ş	N. CO.	Holding time exceeded before sample received
2	5	Samples exceeded holding time before presevation was performed
	§	Sampled on date not provided
I	•	Sample holding time exceeded in laboratory
ĺ	@	Sample holding time exceeded due to sampled on date
	&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbests
Amosite	Brown Asbestos
Cro d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

08:51:57 13/08/2018 Modification Date: 13/08/2018 Page 15 of 15