

Air I Noise I Water I Soil I Environmental Consultancy www.axisenv.ie

> Unit 5 Caherdavin Business Centre, Ennis Road, Limerick. <u>info@axisenv.ie</u> 00353 61 324587

	1 ¹⁵⁰ .
SSE Generation	Ireland Limited

Campile, New Ross, Co. Wexford

Environmental Liabilities Risk Assessment 2020

Report Reference Number: Version: Date of Issue: Report Compiled by: 4320-20-02 Version 2 27-03-2020 Niamh McMahon

Table of Contents

1.0	Introduction	3
1.1	Scope of the Environmental Liabilities Risk Assessment Report	3
1.2	Disclaimer	4
1.3	Comparison with Previous Environmental Liabilities Risk Assessments	4
2.0	Site Evaluation	5
2.1	Emissions	6
2.2	Licenced Emission Points	7
2.3	Compliance Record	11
2.4	Inventory of Materials On-site	11
3.0	Risk Identification	12
3.1	Risk Assessment	13
3.2	Risk Evaluation Table	19
3.3	Risk Matrix	21
3.4	Statement of Measures	23
4.0	Identification of Worst Case Scenario	26
4.1	Remediation Measures	26
4.2	Firewater	26
4.3	Monitoring Programme for Clean-up and Remediation	26
4.4	Sample Numbers and Monitoring Requirements	27
4.5	ELRA Costing	28
5.0	Conclusion	30
Apper	ndix A	31

Report Date	27-03-2020	Site Contact:	Jonathan Storey
Report Issued By	Mark Mc Garry	Version No:	2
Report Complete By	Niamh McMahon	Client:	SSE Generation Ltd
Notes:			

1.0 Introduction

AXIS environmental services were commissioned to carry out a review of the Environmental Liabilities Risk Assessment (ELRA) to comply with Conditions 12 of Industrial Emissions (IE) Licence No. P0606-03.

The last ELRA was completed in 2016 by CMSE consultancy. This was agreed and approved with the Agency on the 12th July 2017. This report represents the first full external review of the ELRA by an independent consultant since the initial approved report in 2017.

A review of the ELRA is required every three years in accordance with condition 12.3.2 of Industrial Emissions No. P0606-03 in order to take account of any significant changes on site and also to reflect changes to legislation, guidance and inflation.

The following EPA Guidance were used as the primary guidance documents in conducting this review;

- EPA Approach to Environmental Liabilities and Financial Provision (2019);
- Guidance on the Financial Provisions for Environmental Liabilities (2015);
- Guidance on assessing and costing environmental liabilities Unit cost rates for verification (2014);
- Guidance on assessing and costing environmental liabilities (2014).

The nature of activities, layout of the plant, systems, raw materials and type of risks have not changed with any degree of significance since the previous ELRA was carried out. Therefore, the same risk rating and approach was applied to the development of this report.

1.1 Scope of the Environmental Liabilities Risk essentsment Report

The IE licence P0606-03 outlines in Condition 12,3 that an Environmental Liabilities Risk Assessment Report for the site must be carried out. The text of the licence reads as follows:

- 12.3.1 The licensee shall as part of the AER. provide an annual statement as to the measures taken or adopted at the site in relation to the prevention of environmental damage, and the financial provisions in place in relation to the underwriting of costs for remedial actions following anticipated events or accidents /incidents, as may he associated with the carrying on of the activity.
- 12.3.2 The ELRA shall be reviewed as necessary to reflect any significant change on site. and in any case every three years following initial agreement. The results of the review shall be notified as part of the AER.
- 12.3.3 As part of the measures identified in Condition 12.3.1 the licensee shall, to the satisfaction of the Agency, make financial provision to cover any liabilities identified in Condition 12.3.2. The amount of indemnity held shall be reviewed and revised as necessary but at least annually. Proof of renewal or revision of such financial indemnity shall be included in the annual 'Statement of Measures' report identified in Condition 12.3.1. The licensee shall have regard to the Environmental Protection Agency Guidance on Environmental Liability Risk Assessment, Decommissioning Management Plans and Financial Provision when implementing Conditions 12.3.2 and 12.3.3 above

The requirement for such a report is to ensure the facility has implemented satisfactory measures to protect the environment and is financially aware and prepared to make secure financial provisions to cover the cost of potential environmental impairment associated with activities on site.

A desktop study of available information for the site was reviewed including:

- IE licence application; .
- IE licence: .
- Register of Aspects and Impacts; •
- Communications between the EPA and SSE Great Island; •
- ELRA: •
- Residuals management plan; •
- EMS Procedures: •
- Annual Environmental Reports; .
- Incidents and complaints files; •
- In House Environmental Audit reports on site; •
- ISO 14001 Environmental Audit Reports; •
- Hydrogeological Assessment; •
- Fire water retention plans; •
- GSI online etc. •

A site visit to SSE Generation Ltd. was undertaken by Mark Mc Garry. This involved a comprehensive walkthrough of all process, operations, storage areas and treatment capabilities on site as well as a detailed review of developments and changes to operations on the site with management on-site.

1.2 Disclaimer This report is based on information supplied by SSE Generation Ltd. to AXIS environmental services and the Environmental Protection Agency (EPA) in their Environmental Reports. The report is based on current uses of the site. The assessment does not deal with any future projects that may occur on site after the date of completion of this report. Costings are also based on current market values and are open to variation and drop change.

Comparison with Previous Environmental Liabilities Risk Assessments 1.3

Year	Plausible Worst Case Scenario	Financial Provision	Expiry date of Financial Provision
2020	€12,492,200	Insurance	-
2017	*€12,807,830	Insurance	-
-	€14,626.25	Insurance	-

*Based on revised EPA ELRA guidance titled "EPA Guidance on Assessing and Costing Environmental Liabilities 2014" which moved the costing structure from a median risk based methodology to a plausible worst case scenario model.

2.0 Site Evaluation

The SSE Generation Ltd., Great Island (SSE, Great Island) combined cycle gas turbine (CCGT) plant which was commissioned in 2014 is located on the shores of Waterford Harbour at the meeting point of the Rivers Suir and Barrow at Great Island, Co. Wexford.

Fig. 2.1 Location map of SSE Generation Ltd., Great Island (Google, 2020)

The Great Island site commenced energy production operations in 1967. The station was originally constructed on lands that were formerly in agricultural use and some lands were reclaimed from the estuary during development of the site. The total area of the site is approximately 143 acres.

In 2009, Endesa Ireland Ltd. acquired the Great Island facility from Electricity Supply Board (ESB). SSE Generation Ltd. subsequently acquired Endesa Ireland Ltd. in 2012 thereby taking ownership of the Great Island site. The construction of the 460 MW CCGT was completed by SSE in 2014 and vastly improved the previous infrastructure of two 6MW and 120MW oil fired turbines on-site while significantly reducing carbon emissions from the site.

The CCGT power plant is based on the premise of optimising energy efficiency. The latter is achieved at the Great Island plant by the burning of natural gas supplied by the Gas Networks Ireland in the Gas Turbine onsite. Electricity is generated primarily from the burning of the gas however the waste heat from the burning process is used to make super-heated steam via a heat recovery steam generator (HRSG) which further creates electricity by driving a steam turbine. The steam is then condensed back to water where it is recirculated back to the HRSG for reuse. This condenser is cooled by the once through cooling water system. Waste gas is emitted through a licenced stack emission point referenced A2-1 where it is monitored primarily for combustion parameters and dust. Emission limit values are subject to change depending on whether the plant is running on natural gas or oil. The Electricity generated from the site is exported to the grid via the switchyard on-site.

There were historical waste disposal activities carried out at the site by previous operators. There are two areas on the site which were used between the 1960's and mid 90's for deposition of excess rock fill, building materials and spoil. Certain parts of a northern segment of Cell 1 was used for deposition of general waste during the operation of the generation station. The CCGT does not impact on these areas in any way, however by IE Licence is required to monitor groundwater quality in the vicinity of these cells.

The site can operate 24 hours a day, 7 days a weeks and employees 48 full time personnel. The plant operated for 6236 hours in 2019.

The main processes undertaken on site remain the same since the last ELRA issued in 2016.

The facility, comprises of the following infrastructure;

- Security Building;
- Office buildings & canteen;
- Control room: •
- Gas storage; .
- Above Ground Gas Installation (including gas compressor, gas metering, pressure reducing, heating • and filtering skids);
- Gas Turbine and Steam Turbine Building; •
- Heat Recovery Steam Generator (HRSG) Building; •
- Incoming Water Storage Tanks; •
- Water & wastewater Treatment systems;
- Cooling water system; •
- Bulk chemical storage (Sulphuric Acid and Sodium Hydroxide); •

Jetty including marine oil offload station;
Oil Storage;
Workshops;
Water treatment systems.

A graphic of the site layout and licenced emission. points can be found in Appendix A. copyright own Formspect

2.1 Emissions

The site has been licenced (P0606) by the EPA under Class 2.1 Energy, since 22/01/2003. The licence has undergone a full review twice, with the current version of the licence being P0606-03. There have been 3 x Technical amendments since the inception of this licence on 16/03/2011, they are summarised below;

Final Licence Determination	Issued 16/03/2011
Technical Amendment A	Issued 04/09/2012 amended section Schedule B.2 of the licence for Emission Point SW13 & associated ELV's and schedule C.5 on Groundwater Monitoring Requirements.
Technical Amendment B	Issued 24/02/2014 amended Schedule B.2 of the original licence to include emission points SW-2 & SW-3a and Schedule C.2.3 for points SW1, SW3b, SW4 & SW12 and associated ELV's
Technical Amendment C	Issued 31/12/2015 amended Schedule B.1 of the licence to add emission point A2-1 and associated ELV's

A graphic of the site layout and licenced emission points can be found in Appendix A.

Licenced Emission Points 2.2

2.2.1 Emissions to Air

There is 1 main stack emission on-site, A2-1 which discharges at a height of 60m above ground level and is monitored using a continuous emissions monitoring system (CEMS). A2-1 is associated with the Heat Recovery Steam Generator (HRSG) and is licenced for under Technical Amendment C, Schedule B.1 for both gas and gas oil use. Emission Limit Values (ELV's) for A2-1, include continuous monitoring of flow, pressure, temperature, oxygen, water vapour, nitrogen oxides and carbon monoxide with biannual monitoring of particulates and sulphur dioxide.

2.2.2 Emissions to Surface Water

Surface water from the facility's roofs and hardstand areas drain directly to underground surface water drains which discharge via an oil interceptor to the estuary.

Surface water is monitored primarily in line with licence Technical Amendments A & B of the Licence, as well as schedule C of the main licence. Daily checks include Visual inspection, Total petroleum hydrocarbon (TPH) SW4 , SW4 , SW4 and pH with monthly checks on suspended solids on SW1, SW3b, SW4 & SW12. Additional monitoring is required for monitoring points namely SW-2, SW3a and SW-13.

2.2.3 **Process Water**

There are no process effluent emissions to sewer.

2.2.4 Groundwater

There are 13 licenced groundwater monitoring points on-site. There are no unlicensed emissions to ground at the installation. There was however, historical waste disposal activities carried out at the site from previous operators. There are two areas at the installation which were used between the 1960's and mid 90's for deposition of excess rock fill, building materials and spoil. Certain parts of a northern segment of Cell 1 was used for deposition of general waste during the operation of the generation station. The CCGT does not impact on these areas in any way, however in line with Industrial Emissions (IE) Licence conditions there is a requirement to monitor groundwater quality in the area.

The Industrial Emissions Licence requires that these ten listed wells are monitored as follows:

Table 2.2-1: EPA Licence Requirements (Condition C.5)

Location: BH2, BH13, MW101, MW102, MW103, MW106, MW107, MW200, MW202

Parameter	Monitoring Frequency	Analysis Method / Techniques
рН	Annually	Standard Method
Coliforms	Annually	Standard Method
Vanadium	Annually	Standard Method
Ammonia Note 1	Annually	Standard Method
Mineral Oil	Annually	Standard Method
Arsenic	Annually	Standard Method
Total Petroleum Hydrocarbons	Annually	Standard Method
Aluminium	Annually	Standard Method
Polyromantic hydrocarbons	Annually	Standard Method

Note 1: Only relates to BH2, BH3, MW106, MW20, MW202

Location: BH5, BH7, BH19, BH10

Parameter	Monitoring Frequency 🔬	Analysis Method / Techniques
рН	Biennially No. 300	Standard Method
Ammonia	Biennially of Train	Standard Method
Vanadium	Annually	Standard Method
Lead	Biennially	Standard Method
Chromium	Biennially	Standard Method
Total Petroleum Hydrocarbons	Biennially	Standard Method
Polyromantic hydrocarbons	For The Biennially	Standard Method
C		

...

A recent groundwater assessment report for the monitoring period 2009-2019, completed in September 2019, concluded that:

- SSE would be required to maintain its testing schedule in line with the specifications of its Industrial Emissions Licence;
- The frequency and extent of sampling is sufficient to meet the requirements of this licence;
- There are areas of contamination determined from the groundwater wells, most likely due to historical practices and waste deposition in close proximity to these sample wells;
- The site does not require remediation currently as the concentrations detected in the wells do not make this site unsuitable for industrial purposes. Should the future requirements for this site change from industrial purposes, then further investigations and potential remediation measures may be required;
- There is Total Petroleum Hydrocarbon contamination in all but one groundwater well tested. The concentrations are very variable. At times, TPH has not been detected in some wells, followed by a rebound in concentration some years later;
- PAHs were largely below the laboratories limit of detection, with no exceedances determined in any well since 2015;
- Concentrations of arsenic were variable and found in 6 different wells at elevated concentrations over the 10-year sampling programme. The levels are relatively stable and decreasing.

The facility implements strict procedures on the storage and bunding of oil and chemicals in order to protect the groundwater in the area.

2.2.5 Receiving Water

Under schedule C.5 of the Licence P0606-03, SSE Great Island must monitor for Trichloro-methane at ASW1 on a quarterly basis. A review of the 2017 2018 results for ASW1 illustrated results are <1µg/l.

2.2.6 Noise Emissions

SSE generation station is located in the townland of Great Island, 3.5km west of Campile village and approximately 15km south of New Ross, Co. Wexford. It is located on the confluence of the River Suir and the River Barrow estuary.

The nearest neighbour is approximately 550m to the northwest of the facility, with the nearest area of settlement is at Cheekpoint, County Waterford, located approximately 700 metres to the south of the site. In Wexford, the nearest significant area of settlement is Campile, and is situated approximately 3.75 kilometres to the east.

Noise monitoring is completed annually by independent consultants in line with AG4 Guidance as issued by the EPA. A review of the noise monitoring results was undertaken for previous years. The site is monitored at 2 noise sensitive locations NSL1 and NSL2. Noise monitoring results for monitoring locations NSL1 and NSL2 are all compliant with emission limits values specified within the licence for both day and night time monitoring.

2.2.7 Geology/ Hydrogeology

The generation station was constructed on man-made ground, surrounded by an area of estuarine sediments of silt and clays, with a gravelly texture. The aguifer below is classified as regionally important fissured bedrock (Aquifer Code Rf) with extreme vulnerability. The installation is surrounded by areas of medium to high vulnerability and areas with rock very close or at the surface of the ground. Groundwater was classified under the water framework Directive with "good" status between 2010 and 2015.

2.2.8 **Environmental and Ecological Designations**

The facility is situated adjacent to the River Barrow and River Nore Special Area of Conservation (SAC), site number 002162. A Natura Impact Statement (NIS) was recently undertaken by an independent consultant, Aquafact International Services Ltd. on foot of an EPA audit query in relation to the impact of emissions from a chlorinated cooling water point which is emitting into the estuary at SW8. The report concluded that 'conservation objectives and integrity of the SAC will not be adversely affected by the discharge'

The Barrow River Estuary is also a proposed Natural Heritage Area (pNHA).

2.2.9 **Human Receptors**

SSE generation station is located in the townland of Great Island, 3.5km west of Campile village and approximately 15km south of New Ross, Co. Wexford. It is located on the confluence of the River Suir and the River Barrow estuary.

150.

The nearest neighbour is approximately 550m to the facility, with the nearest area of settlement is at Cheekpoint, County Waterford, located approximately 700 metres to the south of the site. In Wexford, the nearest significant area of settlement is Campile, and is situated approximately 3.75 kilometres consent of copy to the east.

2.2.10 Waste

Waste materials are generated at different locations within the building. Waste materials generated at the SSE Great Island can be classified as either hazardous or non-hazardous in accordance with the EU European Waste Catalogue (EWC) and Hazardous Waste List.

Non-hazardous waste from the facility is removed by approved waste contractors. Waste typically comprise of the following material types;

General	200301
Wood	170201
Scrap Metal	170407
Dry Mixed	150106
Sewage	200304
Oil Filters	160107
Non-hazardous waste	161002

Hazardous waste materials such as fluorescent lamps, waste oil, oily rags, aerosol cans, waste electrical and electronic equipment and other miscellaneous hazardous waste are managed by appropriately licensed

contractors. Hazardous waste materials are temporarily stored externally within a designated bunded area prior to collection via returns policy with the suppliers or disposal by licenced contractors.

2.3 Compliance Record

Overall the site has an excellent compliance record, with incidents being managed and reported in an effective and timely manner. All incidents have been fully closed out to the satisfaction of the Agency.

There were 5 complaints in 2019, 4 of which related to foaming and overall water quality in the estuary. The 5th complaint related to a noise. All complaints have been managed and closed out to the satisfaction of the Agency.

2.4 Inventory of Materials On-site

Table 2.4-1 Material Inventory

Substance	Stored in (tank, cylinder)	Maximum Quantity (Tons)
Distillate Oil	Tank	1200
Ammonia (20%)	Tank	<u>ي</u> و. 0.5
Sulphuric Acid 96%	Tank	0.3
Caustic Soda Liquor	Tank Job	0.3
Sodium Bisulphite (30%)	Tank offor are	0.3
Sodium Hypochlorite (12%)	Tanks	44
Trisodium Phosphate	Tankov	0.5
Molydate Corrosion inhibitor	₂₀ tio Tank	0.1
Gensys Antiscalant	. In Tank	n/a
Propane	For the Tank	5
Hydrogen	Tank	1
C	onsente	

3.0 **Risk Identification**

The site was visited to assess all internal and external operations, stores, bunds, procedures and services provided. Through a combination of information gathered on the walkover and that provided by the Client, a comprehensive list of hazards and risks were identified for the company. Risk classification tables were required to evaluate and rank the risks compared with each other. They form the basis of assigning a rate of Likelihood (the probability of an event occurring) and Consequence (the magnitude of the impact).

Table 3-1: Risk Classification Table –Likelihood

Rating	Category	Description	Likelihood of
			Occurrence (%)
1	Very Low	Very low chance of hazard occurring	0-5
2	Low	Low chance of hazard occurring	5-10
3	Medium	Medium chance of hazard occurring	10-20
4	High	High chance of hazard occurring	20-50
5	Very High	Very high chance of hazard occurring	>50

Table 3-2: Risk Classification Table – Consequence

Table 3-2:	Risk Classifi	ication Table – Consequence
Rating	Category	Description
1	Trivial	No damage or negligible change to the environment
2	Minor	Minor impact/ localised or nuisance
3	Moderate	Moderate Impact to the Environment
4	Major	Severe Impact to the local environment
5	Massive	Massive Impact to a large area, irreversible in medium term
		Consent of copyrise

3.1 Risk Assessment

Risk	Process	Potential Risks	Environment	Likelihood	Basis of Likelihood	Consequence	Basis of Consequence	Risk Score
ID			al Effect	Rating		Rating		(Likelihood x
								Consequence)
1	Bulk Delivery/	Spill of materials	Contamination	2	Strict controls are in place in the event of	3	Gas oil is held in a tank farm where	6
	transfer & Storage	on delivery to	of surface		offloading of oil or bulk chemicals including		the maximum tank size holds 1200	
	of Gas oil	site or in transfer	water / SAC		strong procedural controls in relation to		tonnes. Were failure to occur	
		via pipework on			trained personnel being present at all times,		during the offloading procedure, the	
		site			spill kits being available etc. Pipe work and		emergency response would be	
					bunds are checked daily. Historical data		initiated and the spill would be	
					illustrate there has never been an incident		captured in the bund and	
					that has impacted surface water during off-		associated containment units.	
					loading/ transfer or storage.		Smaller spills can be cleaned up	
					-S Offor at		with the spill kits. All bunds are	
					no ^{see} dt		regularly checked and tested.	
2	Bulk Delivery/	Spill of materials	Contamination	2	Strict controls are involtace for the offloading	3	All bunds are regularly checked and	6
	transfer & Storage	on delivery to	of		of chemicals for bulk chemicals including		tested. Any spills during the	
	of Gas Oil	site or in transfer	groundwater		strong procedural controls in relation to		offloading procedure or during	
		via pipework on	and soils		trained personnel being present at all times,		storage would mean the spill	
		site water			spill kits being available etc. Pipe work and		response procedure would be	
		system			bunds are checked daily. Historical data		initiated and the spill cleaned up.	
				محق	villustrate there has never been an incident			
				Cor	that has impacted ground water during off-			
					loading. Area's throughout the site are			
					hardstand. There are strict controls on			
					reporting and personnel are trained in spill			
					clean-up. Spill kits are readily available			
					throughout the site. Daily checks are			
					completed on bunds and drainage network.			

Risk	Process	Potential Risks	Effect	Likelihood	Basis of Likelihood	Consequence	Basis of Consequence	Risk Score
ID				Rating		Rating		(Likelihood x
								Consequence)
3	Bulk Delivery/	Fire in Gas Oil	Contamination	2	The site is a registered second tier Seveso	4	Were a fire to occur in this area, the	8
	transfer & Storage	Storage Area	of Surface/		site due to the quantities of gas oil held on-		impact could potentially be major	
	of Gas Oil		groundwater &		site. Given the controls and management of		with air emissions, firewater	
			air emissions		the site, the likelihood of a fire in this area is		overflow to surface and	
					very low.		groundwater systems	
4	Delivery/ transfer &	Failure of over	Contamination	2	Other chemicals are stored in tanks	3	Chemicals are held in various	6
	Storage of	ground chemical	of		throughout the site, with spill kits and fully		quantities. The highest risk is	
	Dangerous	storage	groundwater		trained spill response team available.		posed by liquid chemicals e.g.	
	Substances	associated with	and soils		~~·		sodium hypochlorite which is held at	
		chemical/ raw			of the		a maximum of 44 tons. Chemicals	
		material/ delivery			othe		are stored in tanks in hardstand	
		& Transfer			ally and		bunded areas with spill kits readily	
					et Ator		available. There is a trained spill	
					1100 ilec		response team in place. The	
					an Pureou		consequence would be contained,	
					ectionnet		localised and rated minor.	
5	Delivery/ transfer &	Failure of over	Contamination	2	In order for this to occur, a tank would have	3	Chemicals are held in various	6
	Storage of	ground chemical	of surface		to tail of be damaged. Areas throughout the		quantities. The highest risk is	
	Dangerous	associated with	water &		site are hardstand, with spill kits and fully		posed by liquid chemicals e.g.	
	Substances	raw material/	receiving		rained spill response team available		sodium hypochlorite which is held at	
		final product/	water	OTSC			44 tons. Chemicals are stored in	
		waste storage					tanks in hardstand areas with spill	
		leading to					kits readily available. There is a	
		surface water					trained spill response team in place.	
		contamination					The consequence would be	
							contained, localised and rated	
							minor.	
6	Gas Turbine	Breach in ELV's	Emissions to	2	Likelihood of occurrence is low given a	2	Automated controls in place, non-	4
	operations		air		review of non-compliances to date for the		compliance would be notify and	
					facility		mitigations measures could be put	
							in place	

Risk	Process	Potential Risks	Effect	Likelihood	Basis of Likelihood	Consequence	Basis of Consequence	Risk Score
ID				Rating		Rating		(Likelihood x
								Consequence)
7	Gas Turbine	Fire risk at	Emissions to	2	Low likelihood due to work procedural	3	Potential for fire & fire water	6
	operations	connections of	local area with		controls including preventative maintenance		generation	
		oil system	potential for		systems, automated controls, permitted work			
			fire		systems			
8	Steam Turbine	Leaks and	Contamination	2	Low likelihood due to work procedural	2	A trained spill team is in place and	4
	Operations	improper	of surface		controls including automated controls,		spill kits are available in the area.	
		disposal of wash	water &		permitted work systems		The impact would be localised.	
		waters	receiving					
			water		ي.			
9	Steam Turbine	Critical Failure of	Air Emissions	2	Low likelihood due to work procedural	2	The failure of the steam turbine	4
	Operations	the steam	release		controls including preventative maintenance		would result in an emergency	
		turbine			systems, automated controls, permitted work		shutdown. During the shutdown	
					systems		process some localised emissions	
					autro uire		to air may occur	
					of Prices			
10	Heat Recovery	Loss of	Air Emissions	2	Low likelihood due to work procedural	2	The impact would be localised.	4
	Steam Generator	generator	release		controls including preventative maintenance			
	Operations	capacity			systems; automated controls, permitted work			
					systems			
11	Equipment	Loss of oil,	Release to	2	Cow likelihood due to work procedural	2	A trained spill team is in place and	4
	Maintenance	coolant, water	surface and	COL	controls including preventative maintenance		spill kits are available in the area.	
		treatment	ground waters	l l	systems, automated controls, permitted work		The impact would be localised.	
		chemicals due to			systems			
		maintenance						
		work						

Risk ID	Process	Potential Risks	Effect	Likelihood Rating	Basis of Likelihood	Consequence Rating	Basis of Consequence	Risk Score (Likelihood x
								Consequence)
12	Failure of bunds/	Uncontrolled	Contamination	2	All bunds are on a register which is controlled	4	The highest risk is posed by oil /	8
	tanks	release to	of surface		by the Environmental Manager. The bunds		liquid chemicals stored in outdoor	
		surface water,	water &		act as a secondary containment structure.		bulk storage. The tanks and bunds	
		following bund	receiving		All bunds are integrity tested every 3 years in		are regularly checked for faults. The	
		failure	waters		line with licence requirements.		extent of the incident will depend on	
							a number of factors including the	
							substance, quantity lost, the speed	
							of loss, the volume in the tanks and	
					~~·		the extent of the incident.	
13	Failure of bunds/	Uncontrolled	Contamination	2	All bunds are on a register which is controlled	4	Bunds are checked weekly as are	8
	Tanks	release to	of		by the Environmental Manager. The bunds		drainage systems. This means	
		groundwater and	groundwater		act as a secondary containment structure.		leaks can be detected early and will	
		soils due to	and soils		All bunds are integrity tested every 3 years in		mean large volumes of chemicals/	
		leaking bund			line with licence requirements		oil cannot be lost to ground. Failure	
					on prised		of tanks will be picked up by visual	
					ectioniner		inspection.	
14	Drainage network	Failure of	Soil/	2	Drains are checked daily by visual inspection	3	There is a possibility of a leak going	6
		drainage	Groundwater		and integrity tested every 3 years. Highest		undetected. Materials will be	
		network	contamination		riskes associated with a wastewater line,		diluted however remediation could	
				.0	Volumes are low		be extensive dependant on the	
				CONSC			volumes lost prior to discovery	
15	Water	Failure of water	Environmental	2	Low likelihood due to work procedural	2	Shut-off system in place at the	4
	Treatment	treatment	damage to		controls including preventative maintenance		chemical store to cease chlorine	
		system & release	SAC due to		systems, automated controls, permitted work		treatment at any stage. All other	
		to SAC	contaminated		systems		chemicals used in water treatment	
			release				are stored and managed in line with	
							procedure and containment policies	
							for environmental security.	

Risk	Process	Potential Risks	Effect	Likelihood	Basis of Likelihood	Consequence	Basis of Consequence	Risk Score
ID				Rating		Rating		(Likelihood x
								Consequence)
16	Water	Exceedance of	Environmental	2	Low likelihood due to work procedural	2	Localised impact, some historical	4
	Treatment	ELV's due to	damage to		controls including preventative maintenance		breaches. Parameters withing	
		failure of	SAC due to		systems, automated controls, permitted work		SW13 systems are not heavy	
		monitoring	contaminated		systems		pollutants.	
		equipment	release					
17	Surface water and	Failure of oil/ silt	Environmental	2	Low likelihood due to work procedural	2	Localised impact, some historical	4
	storm water	interceptor	damage to		controls including preventative maintenance		breaches.	
			SAC due to		systems, automated controls, permitted work			
			contaminated		systems			
			release		othe			
					anty any			
18	Boiler Operations	Leak from boiler	Air pollution	2	The potential for a complete loss from the	2	The impact could be localised as	4
		leading to			boiler is low		these are small boilers that can be	
		emergency			an Purely		readily isolated and turned off.	
		steam release/			-oction let			
		hot water			institut or			
		leakage			FOLVING			
19	Transformer & oil	Leaks at	Emissions to	2	Low likelihood due to work procedural	2	Given the controls in place, the	4
	system	connections of	local area with		Controls including preventative maintenance		impact is assumed to be minor and	
		oil system	potential for	OTSC	systems, automated controls, permitted work		relatively localised.	
			fire / soil and		systems			
			GW pollution					
20	Waste	Improper	Environmental	2	Low chance of this occurring, strong controls	2	Given the controls in place, the	4
	Management	recovery /	damage due to		in place around waste management &		impact is assumed to be minor and	
		disposal due to	contaminated		contractors		relatively localised	
		improper	run-off/					
		segregation/ use	Regulatory					
		of un-regulated	prosecution/					
		contractor	Damage to					
		etc.	reputation					

Risk	Process	Potential Risks	Effect	Likelihood	Basis of Likelihood	Consequence	Basis of Consequence	Risk Score
ID				Rating		Rating		(Likelihood x
								Consequence)
21	Weather impacts	Flooding/	Loss of	3	Weather episodes are increasing	2	The site has no history of flooding	6
		Electricity cut off	process				and has adequate controls in place	
			controls				in the event of power failure	
			leading to					
			spills etc.					
22	Fire/ explosion	Uncontrolled air	Air pollution	2	A large scale fire has never occurred on-site.	3	Plumes would be visible to the local	6
		emissions			The site has a detailed emergency response		environment for a short period of	
					plan in conjunction with the following fire		time until the fire is brought under	
					prevention and control systems; Alarms,		control.	
					Firewalls & fire doors, Fire hydrants, Hose			
					reels, Fire extinguishers. The locative officer			
					has reviewed the facility and			
23	Fire/ explosion	Uncontrolled	Groundwater/	2	A large scale fire has never occurred on-site.	4	In the event of a fire, fire water will	8
		emissions to	Surface water		The site has a detailed emergency response		be diverted to the fire water	
		surface water/	and receiving		plan in conjunction with the following fire		retention tank.	
		ground water for	water		prevention and control systems; Alarms,			
		fire water run-off	contamination		Firewalts & fire doors, Fire hydrants, Hose			
					reels, Fire extinguishers. The local fire officer			
					has reviewed the facility.			
24	Terrorist/	Potential for fire/	Groundwater/	1	Worst case scenario would be an explosion/	4	The consequence would be major	4
	vandalism activities	explosion or	Surface water	OTSC	fire. Likelihood is low			
		other damage	and receiving					
			water					
			contamination					
25	Landfill	Uncontrolled	Groundwater/	-	-	-	-	Known risk-
		emissions to	Surface water					Accounted for in
		surface water/	and receiving					the CRAMP
		ground water	water					
			contamination					

3.2 Risk Evaluation Table

Risk Id	Process	Potential Risks	Likelihood Rating	Consequence Rating	Risk Score
R1	Bulk Delivery/ transfer &	Spill of materials on delivery to site or in	2	3	6
	Storage of Gas oil	transfer via pipework on site which could			
	-	make way to the surface water system			
R2	Bulk Delivery/ transfer &	Spill of materials on delivery to site or in	2	3	6
	Storage of Gas oil	transfer via pipework on site which could			
		make way to the soil/ ground water			
		system			
R3	Bulk Delivery/ transfer &	Fire in Gas Oil Storage Area	2	4	8
	Storage of Gas oil				
R4	Delivery/ transfer &	Failure of over ground chemical storage	2	3	6
	Storage of Dangerous	associated with chemical/ raw material/			
	Substances	delivery & Transfer			
R5	Delivery/ transfer &	Failure of over ground chemical	2	3	6
	Storage of Dangerous	associated with raw material/ final			
	Substances	product/ waste storage leading to surface	se.		
		water contamination	~		
R6	Gas Turbine operations	Breach in ELV's	2	2	4
R7	Gas Turbine operations	Fire risk at connections of oil system	2	3	6
R8	Steam Turbine	Leaks and improper dispesal of wash	2	2	4
	Operations	waters iton to the			
R9	Steam Turbine	Critical Failure of the steam turbine	2	2	4
	Operations	FOLINIE			
R10	Heat Recovery Steam	Loss of stean/water to ground and drains	2	2	4
	Generator Operations	ent of			
		Loss of generator capacity			
544	F :				
R11	Equipment Maintenance	Loss of oil, coolant, water treatment	2	2	4
D40	Foilure of hundo/tonko		0	4	0
RIZ	Failure of bunds/ tanks	following bund failure	2	4	o
P13	Failure of hunde/ Tanks	Lincontrolled release to groundwater and	2	1	8
N15		soils due to leaking bund	2	-	0
R14	Drainage network	Failure of drainage network	2	3	6
R15	Water	Failure of wastewater treatment system &	2	2	4
	Treatment	release to SAC	-	_	
R16	Water	Exceedance of ELV's due to failure of	2	2	4
	Treatment	monitoring equipment			
R17	Water	Failure of oil/ silt interceptor	2	2	4
	Treatment				

Risk Id	Process	Potential Risks	Likelihood Rating	Consequence Rating	Risk Score
R18	Boiler Operations	Leak from boiler leading to emergency steam release/ hot water leakage	2	2	4
R19	Transformer & oil system	Leaks at connections of oil system	2	2	4
R20	Waste Management	Improper recovery / disposal due to improper segregation/ use of un- regulated contractor etc.	2	2	4
R21	Weather impacts	Flooding/ Electricity cut off	3	2	6
R22	Fire/ explosion	Uncontrolled air emissions	2	3	6
R23	Fire/ explosion	Uncontrolled emissions to surface water/ ground water for fire water run-off	2	4	8
R24	Terrorist/ vandalism activities	Potential for fire/ explosion or other damage	1	4	4
R25	Landfill	Uncontrolled emissions to surface water/ ground water	-	-	-

R25 is a known risk and accounted for in the CRAMP

3.3 Risk Matrix

A Risk Matrix has been developed to display the risks visually with colour coding to give an indication of the critical nature of each risk. The risk scores of each of the identified risks from Table 3.1 and Table 3.2 above are presented on the risk matrix below.

	Very High	5					
	High	4					
QOC	Medium	3		R21			
ГІКЕГІНО	Low	2		R6,R8,R9,R10, R11, R15, R16, R17, R18, R19, R20	R1, R2, R4, R5, R7, R14,R22	R3, R12, R13, R23	
	Very Low	1		- ALY: BIT	otherne	R24	
			Trivial	Minorfor	Moderate	Major	Massive
			1.	on Perfect 2	3	4	5
			For instant	CONSE	EQUENCE		

Risk matrix for SSE Great Island facility (numbers in shaded cells are Risk IDs). The risks have been colour coded to provide an indication of the critical nature of each risk. The colour code is as follows:

- Red is a high level risk and requires immediate action;
- Amber is a medium level risk;
- Green is a low level risk.

The risk matrix indicates that there are 4 potential risks in the amber zone. Two of the risks relate to fire/ explosion incidents in various areas of the site with ground and surface water contamination, while the remaining two risks are associated with bund failure leading also to ground and surface water contamination.

All other risks identified at SSE Great Island are in the green zone of the risk matrix. This is largely due to the fact that there are good controls and management systems in place to minimise risk from each of the target areas assessed.

The output of the risk treatment process is the development of a statement of measures to be taken to minimise the environmental risk of the activity. The statement of measures is presented in the table below.

Consent of copyright owned required for any other use.

3.4 Statement of Measures

Risk ID	Potential Risk	Risk	Mitigation Measures to be taken	Outcome	Action	Date for	Owner/ Contact
		Score				completion	Person
R3, R7, R22, R23 & R24	Fire/ Explosion	6-8	Fire water retention plan for the site is in place and includes isolating the site during an emergency. The retention facility has been added to the bund register but requires testing for integrity. The emergency response procedure should be regularly tested and fire water retention physically checked for valve alignment to ensure the site is fully isolated and can be relied upon in an emergency. Underground sumps should be checked for integrity	Improved protection of surface and groundwater systems	Update the Emergency procedure with requirement for physical check of the valves to ensure the site is being isolated in the event of an emergency. Ensure the fire water retention facility/ elements thereof are integrity tested.	Q2 2020	Environmental Manager
R1, R2, R4, R5	Bulk Chemical/ Oil gas Spill of materials on delivery to site or in transfer via pipework on site which could make way to the surface water & ground water system	6	Procedural controls and lack of historical incidents illustrate the off-loading procedure is tightly controlled and managed. It is recommended that the procedure for off-loading is reviewed and updated where necessary with the following; - Personnel present during offloading as per risk assessment-person must be trained in the use and operation of the firewater/ emergency response protection system -Ensure spill kit is in the vicinity -Ensure all connections and hosing are inside of the bund before off-loading commences	Improved protection of surface and groundwater systems	Review procedure for off- loading of tankers. Ensure the following is stipulated; -Personnel present during offloading as per risk assessment -Person must be trained in the use and operation of the firewater/ emergency response protection system -Ensure spill kit is in the vicinity -Ensure all connections and hosing are inside of the bund before off-loading commences -Ensure regular checks are completed on the hardstand areas throughout the site.	Q2 2020	Environmental Manager

SSE Generation Ltd.

Risk ID	Potential Risk	Risk	Mitigation Measures to be taken	Outcome	Action	Date for	Owner/ Contact
		Score				completion	Person
R12 & R13	Failure of Bunds	8	Bunds are checked hydrostatically, where possible, every 3 years in accordance with the licence. Where the above is impractical a structural survey is completed. A review of the age of the bulk containment should be undertaken and a schedule of protection should be implemented for bulk containers reaching their life span.	Improved protection of soil and groundwater from leaks	Ensure bund checks are scheduled. Take photographs for file where damage is noted, the latter will allow assessment of change over time. Review records of bund checks with a view to increasing frequency of checks based on age and where damage has been noted previously.	Q2 2020	Environmental Manager
				N. my other L	Ensure a visual check is implemented on all bulk chemical storage tanks		
R14	Failure of Drainage Network	6	Underground drains are to be checked every 3 years- including surface water/ foul sewer etc.	Improved protection of soil and groundwater from leaks	Ensure underground drains are included on inspection schedule. Include all sumps, interceptors, sumps and effluent lines.	Q2 2020	Environmental Manager
R6, R8, R9, R10,R11 R18, R19	Equipment Maintenance & associated procedures	4	Ensure all equipment is on va preventative maintenance schedule. Review training and work permits to ensure spills and waste management following work is considered.	Improved plant operations with less downtime. Improved protection of surface and groundwaters	Review PM schedule and ensure all critical equipment is included. Review training and work permits to ensure spills and waste management following work is considered. Ensure a check is completed on all hardstand areas for signs of cracks and damage.	Q2 2020	Environmental Manager
R15, R16 & R17	Water Treatment	4	Ensure any oil & silt interceptors are on a maintenance schedule. Ensure all treatment system monitoring instrumentation is on a calibration and service schedule.	Improved protection of surface waters and SAC	Ensure oil & silt interceptor are on a maintenance schedule. Ensure all monitoring instrumentation is on a calibration and service schedule.	Q2 2020	Environmental Manager

Risk ID	Potential Risk	Risk	Mitigation Measures to be taken	Outcome	Action	Date for	Owner/ Contact
		Score				completion	Person
R20	Waste Management	4	Review all waste management contractors and ensure permits, licences are up to date. Ensure waste companies provide an update on the materials collected at the end of each month, with details of end point.	Improved waste management & control.	Review all waste management contractors and ensure permits, licences are up to date. Ensure waste companies provide an update on the materials collected at the end of each month, with details of end point	Q2 2020	Environmental Manager
R21	Weather Impacts	6	Electricity cut-off. Back-up generator in place in any areas that would require energy for environmental security. Flood risk assessment to be generated.	Improved sites	Ensure weather and flooding is included in business continuity risk assessment.	Q2 2020	Environmental Manager
			Consent of copyright owner	posetified			

4.0 Identification of Worst Case Scenario

The ELRA for this activity identified a number of risks with a major consequence, therefore, further analysis was conducted to determine the plausible worst case scenario. It was determined that a fire/ explosion on site in combination with bund failure/ over topping causing ground and surface water contamination, would be the worst-case plausible scenario.

A fire in the turbine/oil storage area and subsequent firefighting procedures could lead to loss of firewater which could breach controls in place and enter the surface waters, soil or groundwater. In the event of failure of these systems a worst case scenario would be the loss of large volumes of fire water, which has been contaminated with both hazardous and non-hazardous compounds, infiltrating the surface and groundwaters, with the SAC potentially being impacted. The costing do not account for any remediation of the SAC although ecological monitoring programmes have been accounted for.

The above scenario is dependent on a number of breaches of procedures and controls and the likelihood of occurrence is exceptionally low however plausible. The plausible worst case scenario has been quantified and costed below.

4.1 Remediation Measures

150. In the event of loss of material to adjacent soil there would be an investigation required into the status of soil and groundwater which would be initiated by trial pits in the location and installation of groundwater well standpipes. Any soil which was deemed contaminated would be removed to a lined storage area and transported offsite for appropriate treatment. Replacement soil would be imported to fill the voids created. Any groundwater contamination would need to be investigated and the plume considered for remediation. Pringht owner

4.2 **Firewater**

Forinsp The average fire response to site is less than 30 mins with the average fire being brought under control in a 60 minute period. A large scale fire at this site considering the volumes of fuel retained could last longer. Ó

4.3 Monitoring Programme for Clean-up and Remediation

The following would be an indicative schedule of some of the proposed works to be completed. This is not definitive as the event is unknown and the impacts are estimated. More intensive works and investigations would be carried out immediately in the aftermath of the event. As the works are completed and the impacts are understood and being dealt with, there will be less intensive works involved on site. The greatest impact for this site is the potential to contaminate soil and groundwater below site which is difficult to manage, monitor and remediate.

	Week 1	Week 2	Week 3	Week 4	Month 2	Month 3	Month 4	Month 5
Building Clean up								
Removal of Firewater								
Disposal and Treatment of Firewater								
Soil and Groundwater Investigation								
Removal of Contaminated Soil								
Remediation of Contaminated Groundwater								
Environmental Consultants								
Surface Water Monitoring								
Groundwater Monitoring								
Air Monitoring								
Ecological Monitoring								
Soil Monitoring, Trail Holes								
More Intensive Work								
Less Intensive Work								

4.4 Sample Numbers and Monitoring Requirements

Soil – the number of soil samples will depend on the volumes of waster of the glume. If the contaminated area is confined to one location groundwater wells, trial pits and soil samples will be largely concentrated in this area at different depths. It is estimated that the number of soil samples would be dependent on the location and extent of the fire, it has been estimated that 100 samples will be taken. The 100 will consist of soil samples at different depths and soil sampling of excavated soil to determine its status prior to treatment off site. The monitoring requirement would consist of samples taken to ensure all contaminated soil has been removed.

Groundwater sampling and monitoring would again be variable depending on if the groundwater is contaminated or not. Monitoring and treatment would be dependent on the degree of groundwater contamination. This could range from 20 samples initially to up to an estimated 5 months monitoring on a monthly basis to assess the natural remediation or results of treatment methodologies applied.

4.4.1 Air Emissions

The emissions from site would largely be during the fire only. Therefore there would be a requirement for a survey of the air quality both during and after the fire has been extinguished. This ELRA allows for 4 days of monitoring in the area.

4.4.2 Ecological Assessment

A cost has also been included to assess the impact of the incident on wildlife and habitats close by.

4.5 ELRA Costing

Task	Description	Quantity	Unit	Est. Unit Rate	Cost (€)	Source of Unit Cost
	Fire Fighting	3	Units	20,000	60,000	Combination of EPA costs & Previous Quotes
	Transport of fire water	1200	m³	25	30,000	
	Disposal fee for fire water	1200	m ³	400	480,000	Waste Management Quotes
	Excavation of contaminated soil	1000	Tonne	10	10,000	
	Transport of contaminated soil	1000	Tonne	30	30,000	
	Export fee for contaminated soil	1000	Tonne	150	150,000	
	Import new top soil	1000	Tonne	15	15,000	EPA Costs
	Decontamination of the building – contract team to dismantle/ clear/ clean damaged areas / Utilities / equipment	30	Day	5000	150,000	Previous ELRA
	Disposal fee for Hazardous waste	10,000	Tonne	395	3,950,000	Waste Management
Risk ID 3, 7 & 23 Fire/ explosion with release to surface waters/ groundwaters	Transport of decontamination waste	10,000 2013	Tonne	30	300,000	Quotes
	Groundwater Monitoring	A DUTO COLUTE	Sample	400	80,000	Laboratory Quotes for range of parameters including hydrocarbons, VOC's etc.
	Trial Pits / Boreholes	10	Well	2,000	20,000	EPA Costs
	Cotte Soil Monitoring	100	Sample	400	40,000	Laboratory Quotes for range of parameters including hydrocarbons, VOC's etc.
	Air Monitoring	4	Days	2500	10,000	Accredited Air monitoring company quotation
	Surface water monitoring	40	Sample	200	8,000	In-house Quotes for range of parameters including hydrocarbons, VOC's etc
	Ecological Monitoring	4	Sample	2,000	10,000	Ecology Consultant Quote
	Monitoring ecology and habitats	4	Survey s	12,500	50,000	Ecology Consultant Quote

	Consultancy fees	30	Day	1000	30,000	Environmental Consultants Quote
	Structural engineer review & report of bunds, hardstand areas etc.	1	Report	30,000	30,000	Quotes on file
	Structural repairs & infrastructure	1	Site		2,500,000	Estimated figures for the replacement of bunds, hardstands
	Staffing and management costs	90	Days	10,000	900,000	Staffing costs
	Security – additional security while works ongoing - including installation of additional security fence and remote security monitoring for 3 months	3	Unit	20,000	60,000	EPA Guidance
	EPA Costs	1	Unit	10,000	10,000	EPA Costs
Sub Total		-	€	-	8,923,000	
Contingency @ 40%		-	€	-	3,569,200	
ELRA Total Including Contingency		-	€	-	12,492,200	

Consent for inspection purpose only: any other use

5.0 Conclusion

An environmental liabilities risk assessment has been carried out for the activity in accordance with EPA guidance.

The financial provision has been based on the combined risks that pose the plausible worst case scenario. This is an indication of the liability that may be incurred and as such, financial provision is calculated as \in 12,492,200 based on this event. An insurance policy, with a maximum liability of \in 12,807,830 is in place for the SSE Generation Ltd., Great Island site. The latter will be furnished to the EPA upon agreement of the ELRA.

Some of the other options available to the company include:

- On Demand Performance Bond;
- Secured fund;
- Charge on Property;
- Insurance;
- Other as agreed by the Agency.

The risk management at the activity is a dynamic process and will be updated through the addition of new risks or the omission of redundant risks. The financial provision will be reviewed in accordance with the requirements of Condition 12 to ensure that it continues to cover the environmental liabilities.

A statement of measures will be reported annually to the Agency in the Annual Environmental Report. The ELRA will be reviewed regularly and updated every three years in accordance with licence requirements.

505

Appendix A

