

Air I Noise I Water I Soil I Environmental Consultancy www.axisenv.ie

Unit 5 Caherdavin Business Centre Ennis Road Limerick Ireland V94 NT63 +353 61 324587 info@axisenv.ie

SSE Generation Ireland Limited

Campile, New Ross, Co Wexford

Industrial Emissions Licence Review

Baseline Report

In accordance with Article 22(2) of Directive 2010/75/EU on Industrial Emissions

Reference Number: Baseline Report

Version:

Date of Issue: 22-09-2020

Contents

1.	Summary	3
	Introduction	
	Objectives	
4.	Baseline Report Methodology	6
5.	Site Location	8
6.	Site History	9
7.	Materials in Use at the Installation	10
8.	Site Environmental Setting	11
9.	Historic Pollution and Potential Future Emissions	13
10.	Baseline Report	14
11.	Conclusions	33

	Document Sign Off							
Document Number:	Baseline Report							
Reason for Issue:	Licence Review Application							
Issue Number:	Draft	Date:	22-09-2020					
Originator:	Signature:	Reviewer:	Customer Contact:					
Mark McGarry	10,400mg	Niamh McMahon	Jonathan Storey					
Document History:		यात्र, यात्र						
Report Revision Number	Revision Date	Section Revised	Reason for Revision					
		aut Palite						
	ijos	et tee						
	asper of	Y						
	Ed Tright							
	E COLE							
	ento							
	Cons							

1. Summary

This Baseline Report has been prepared for SSE Generation Ireland Limited (referred to hereinafter as SSE) as part of an application for an Environmental Protection Agency (EPA) Industrial Emissions Licence Review at its facility at the Great Island Generating Station, Campile, New Ross, Co. Wexford. The activity which is listed in the amended First Schedule of the EPA Act 1992, as amended;

2.1 Combustion of fuels in installations with a total rated thermal input of 50 MW or more

SSE is located in the townland of Great Island, 3.5km west of Campile village and approximately 15km south of New Ross, Co. Wexford. It is located on the confluence of the River Suir and the River Barrow estuary. The 464MW natural gas fired Combined Cycle Gas Turbine (CCGT) power plant was constructed within the confines of an ESB power plant which has since been decommissioned.

The installation has historical information gathered on soil and ground water quality as part of the Environmental Impact Statement and ongoing licence requirements. This data has been utilised to develop this baseline report.

Baseline reports are required to meet the requirements of Article 22(2) of the Industrial Emissions Directive (2010/75/EU). The objective of the report is to obtain a current status of the site prior to issue or review of Industrial Emissions Licences. This information will be used to assess the impact of the facility on the local soils and groundwater since the baseline concentrations were established.

SSE has in general uncontaminated soil and ground water within the installation boundary. There is however an area of land which was used by previous owners between the 1960s 3990s for waste disposal activities. These areas do not form part of the CCGT, and the CCGT does not interact with these areas in any way, however they are monitored as part of IE Licence requirements and therefore have been considered as part of this report.

There is contamination in the groundwater wells at the installation. The site is required to continue monitoring its wells for specific parameters in Condition C.5 of Technical Amendment A to the IE licence P0606-03. There is no immediate requirement for remediation unless the site would intend to change its use. The contamination is not or was not associated in any way with operations by SSE or the CCGT.

Most of the materials with hazardous components in use in SSE are purchased and stored in limited quantities. The materials are all stored in bunded areas in line with Licence requirements. The materials of main concern would be distillate oil, which is stored or site for use in the event of a changeover from natural gas fuel in the CCGT.

2. Introduction

This Operational Report has been prepared for SSE Generation Ireland Limited (referred to hereinafter as SSE) as part of an application for an Environmental Protection Agency (EPA) Industrial Emissions Licence Review at its facility at the Great Island Generating Station, Campile, New Ross, Co. Wexford. The activity which is listed in the amended First Schedule of the EPA Act 1992, as amended;

2.1 Combustion of fuels in installations with a total rated thermal input of 50 MW or more

SSE is located in the townland of Great Island, 3.5km west of Campile village and approximately 15km south of New Ross, Co. Wexford. It is located on the confluence of the River Suir and the River Barrow estuary. The 464MW natural gas fired Combined Cycle Gas Turbine (CCGT) power plant was constructed within the confines of an ESB power plant which has since been decommissioned. The ESB plant comprised of two 60 MW units and a 120 MW unit which ceased operation due to been at the end of their useful lifespan. The CCGT has a primary fuel source of natural gas directly supplied by the gas networks, and backup of distillate oil. The oil is stored in bunded holding tanks on site, filled directly from boats that can operate from the SSE owned jetty.

SSE are required under Article 3(19) of the Industrial Emissions Directive to carry out an investigation into the installations requirement to complete a Baseline Report for the site.

A Baseline Report involves collation of detailed information on the current status of soil and groundwater contamination by relevant hazardous substances, if any. The stages of a baseline report include completion of a screening model initially to determine if a full baseline report is required for what extent the ground investigations should consider.

If the screen indicates that there is or may be contamination on site by hazardous substances, then the investigation will be extended into a full intrusive survey or groundwater, and soil.

In order to evaluate the sites specific requirements a tell installation survey and raw material review was completed. The inventory of site materials (including raw materials, products, intermediaries, by-products, emissions and waste) were evaluated for potential classification as a hazardous substance.

The hazardous materials were then redefined as relevant hazardous substances capable of contaminating soil and groundwater. Storage, handling, delivery methods and uses on site were reviewed in line with typical volumes retained and consumed at the installation to assess the potential for accidents, spillages, discharges or losses to the environment.

3. Objectives

The objective of this Baseline Report screen was to determine if the installation would warrant progression from a screen to a full intrusive investigation into potential groundwater and soil contamination on site.

The objectives of this screening report were met by considering the following:

- Identification of the hazardous substances use, produced or released from site;
- Listing, assessing and restricting the hazardous substances to relevant hazardous substances;
- Discarding hazardous substances which are incapable of contaminating soil or groundwater;
- Justifying the decisions to exclude certain hazardous substances;
- Identifying the actual possibility for soil and groundwater contamination of the site;
- Inclusion probability of releases and the consequences of a release;
- Assessment of quantities of hazardous materials stored on site;
- Review the storage arrangements, use and transport procedures around site;
- Procedures, policies and measures adapted to minimise or eliminate possibility of groundwater and soil contamination.

Consent of copyright owner heating and other use.

4. Baseline Report Methodology

The installation was assessed in line with Table 1 to identify if activities and operations attributed significant risk to groundwater and soil contamination on site.

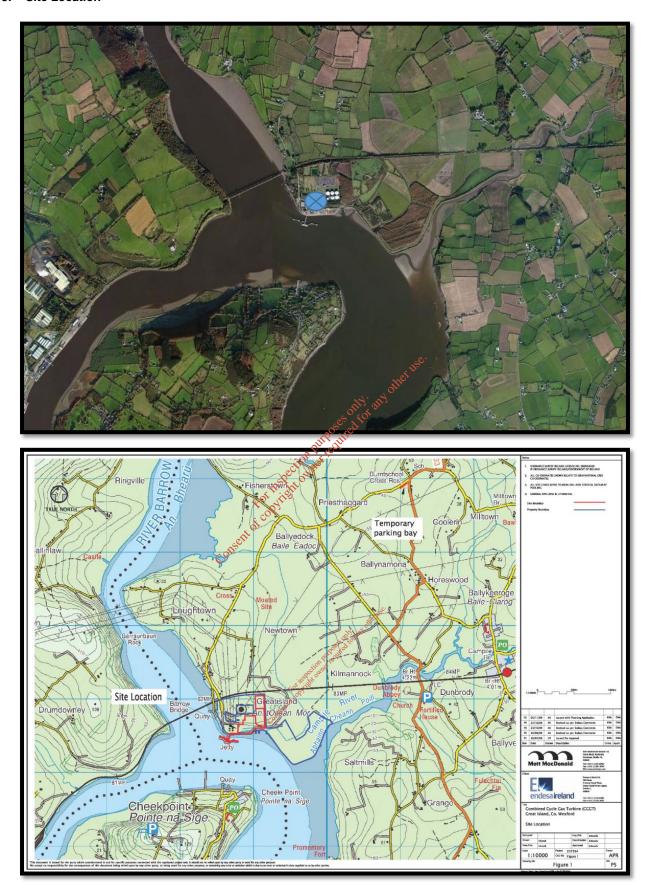
Table 1 Baseline Report Screening Assessment

Stage	Activity	Objective
1	Identify which hazardous substances are used, produced or released at the installation and produce a list of these hazardous substances	Determine whether or not hazardous substances are used, produced or released in view of deciding on the need to prepare and submit a baseline report.
2	Identify which of the hazardous substances from Stage 1 are relevant hazardous substances. Discard substances which are incapable of contaminating soil or groundwater. Justify and record the decisions taken to exclude certain hazardous substances	To restrict further consideration to only the relevant hazardous substances in view of deciding on the need to prepare a baseline report

If the site is considered a threat or potentially impacting on the local soil and groundwater quality with substances considered as Hazardous under Article 3 of Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008, the Screening Assessment is extended to a detailed Baseline Report.

Table 2 Baseline Report

Activity	Objective
From each relevant hazardous substance brought forward from	To identify which of the relevant hazardous
Stage 2, identify the actual possibility for soil or groundwater	substances represent a potential pollution
contamination at the site of the installation including the	risk at the site based on the likelihood of
probability of releases and their consequences, and taking	releases of such substances occurring.
particular account of:	For these substances, information must be
The quantities of each hazardous substance or groups	included in the baseline report.
of similar hazardous substances concerned;	
 How and where hazardous substances are stored, 	
used and to be transported around the installation;	
 Where they pose Fisk to be released; 	
In the case of existing installations also the measures	
that have been adapted to ensure that it is impossible	
in practice that contamination of soil or groundwater	
takes place.	
Provide a site history. Consider available data and information:	Identify potential sources which may have
In relation to the present use of the site, and on emissions of	resulted in the hazardous substances
hazardous substances which have occurred and which may give	identified in Stage 3 being already present
rise to pollution. In particular, consider accidents or incidents,	on the site of the installation.
drips or spills from routine operations, changes in operational	
practice, site surfacing, changes in the hazardous substances	
used.	
— Previous uses of the site that may have resulted in the release	
of hazardous substances, be they the same as those used,	
produced or released by the existing installation, or different	
ones. Review of previous investigation reports may assist in	
compiling this data.	
	From each relevant hazardous substance brought forward from Stage 2, identify the actual possibility for soil or groundwater contamination at the site of the installation including the probability of releases and their consequences, and taking particular account of: • The quantities of each hazardous substance or groups of similar hazardous substances concerned; • How and where hazardous substances are stored, used and to be transported around the installation; • Where they pose a risk to be released; • In the case of existing installations also the measures that have been adapted to ensure that it is impossible in practice that contamination of soil or groundwater takes place. Provide a site history. Consider available data and information: — In relation to the present use of the site, and on emissions of hazardous substances which have occurred and which may give rise to pollution. In particular, consider accidents or incidents, drips or spills from routine operations, changes in operational practice, site surfacing, changes in the hazardous substances used. — Previous uses of the site that may have resulted in the release of hazardous substances, be they the same as those used, produced or released by the existing installation, or different ones. Review of previous investigation reports may assist in



Stage	Activity	Objective
5	Identify the site's environmental setting including:	Determine where hazardous substances
	— Topography;	may go if released and where to look for
	— Geology;	them. Also identify the environmental
	— Direction of groundwater flow;	media and receptors that are potentially at
	— Other potential migration pathways such as drains and service	risk and where there are other activities in
	channels;	the area which release the same
	 Environmental aspects (e.g. particular habitats, species, 	hazardous substances and may cause
	protected areas etc.); and	them to migrate onto the site.
	— Surrounding land use.	
6	Use the results of Stages 3 to 5 to describe the site, in particular	Identify the location, nature and extent of
	demonstrating the location, type, extent and quantity of historic	existing pollution on the site and to
	pollution and potential future emissions sources noting the strata	determine which strata and groundwater
	and groundwater likely to be affected by those emissions -	might be affected by such pollution.
	making links between sources of emissions, the pathways by	Compare with potential future emissions to
	which pollution may move and the receptors likely to be affected.	see if areas are coincident.
7	If there is sufficient information to quantify the state of soil and	Collect additional information as
	groundwater pollution by relevant hazardous substances on the	necessary to allow a quantified
	basis of Stages (1) to (6) then go directly to Stage 8. If insufficient	assessment of soil and groundwater
	information exists then intrusive investigation of the site will be	pollution by relevant hazardous
	required in order to gather such information. The details of such	substances.
	investigation should be clarified with the competent authority.	
8	Produce a baseline report for the installation that quantifies the	Provide a baseline report in line with the
	state of soil and groundwater pollution by relevant hazardous	IED.
	substances.	k**
	state of soil and groundwater pollution by relevant hazardous substances. Consent of contribution by relevant hazardous substances.	

7 | P a g e

5. Site Location

6. Site History

The CCGT operational area occupies approximately 19 acres of the 143 acres of the Great Island Power Plant site. Older buildings from the previous ESB power plant are still in place on site, adjacent to the operational area of the new power plant.

The installation is prepared to generate power on a continuously manned basis, 365 days per year with personnel working in shift arrangement. The number of working hours required from this plant is determined by ESB Networks, who manage the entire electricity supply network.

There is a security building at the entrance to this site which is manned permanently. Car parking facilities are made available outside the boundary of the installation for most traffic with only permitted vehicles allowable on internal roads. The site is enclosed in its entirety by secure perimeter fencing.

The CCGT has a nominal capacity of 464 MW and exports electricity, via an underground cable, to the onsite existing switchyard. The plant normally operates on full load resulting in a plant efficiency of approximately 58%.

The installation provides for a second designated car park area inside the boundary at the main offices. The control room, operations and canteen are located in this building. The site comprises a significant maintenance department of skilled technicians to complete routine maintenance and repairs throughout the facility.

Contractors who would be on site for longer periods of time in significant development or maintenance projects are provided with a separate contractor's compound for storage, offices, and parking within this site boundary.

A gas turbine, burning natural gas, drives a generator for electricity production. Exhaust gases from the gas turbine pass through a Heat Recovery Steam Generator (HRSG) to generate high-pressure steam. The steam generated in the HRSG drives a steam turbine, which also turns the generator providing additional electrical power. The steam is condensed back to water via a Gondenser for re-use in the HRSG. This condenser is cooled by a once through direct cooling system. The system can operate on gas oil if called upon. This distillate is stored on site in designated tanks within a controlled by a drea.

The station historically consisted of three generating units with a total electricity generating capacity of 240 Megawatt of electricity (MWe), two 60 MWe units (U1 and U2) and one 120 MWe unit (U3). These were conventional steam generation units Each of the units consisted of a boiler, steam turbine and auxiliary plant that were independent of each other. Units 1 and 2 were commissioned in 1967 and 1968 respectively, which were re-commissioned in 1992. Unit 3 was commissioned in 1972 and re-commissioned in 1993. The station was fired on Heavy Fuel Oil, shipped directly to site and stored in the station's own oil tank farm area. Distillate Oil was used for start-up.

There were historical waste disposal activities carried out at the site by previous operators. There are two areas on the site which were used between the 1960's and mid 90's for deposition of excess rock fill, building materials and spoil. Certain parts of a northern segment of Cell 1 was used for deposition of general waste during the operation of the generation station. The CCGT does not impact on or operate in these areas in any way, however by IE Licence is required to monitor groundwater quality in the vicinity of these cells. Detailed reports have been commissioned on the quality of groundwater below the surface of this area to monitor and assess the natural remediation of contamination in the area. There are elevated concentrations of polycyclic aromatic hydrocarbons and total hydrocarbons in certain ground water wells.

There have not been any contamination issues on this installation since the construction stage and commencement of the CCGT which might have caused a release of a relevant hazardous substance to soil or groundwater. The company has operated under an IE Licence and ISO 14001 which both require maintenance of detailed information in the event of any incident, accident or emergency. None of the pollutant materials determined in the soil and groundwater were considered to be from any activity at SSE, and are from historical activities and practices carried out prior to the CCGT development.

7. Materials in Use at the Installation

Table 7-1 Summary of Materials on Site

Substance	Hazard Phrases / Statements	Stored in (tank, cylinder etc)	Volume stored (Tonnes)	Relevant Hazardous Material	Sufficiently stored, located, bunded
Distillate Oil	H226, 304, 315, 332, 351, 373, 411	Tank	9,800	Yes - Hazardous to the aquatic environment	Yes – low probability of risk due to containment systems and bunding structures in place
Natural Gas	-	No storage on site	Not stored on site	-	N/a
Ammonia (20%)	H314, H400	IBC	2	Yes - Hazardous to the aquatic environment	Yes – low probability of risk due to containment systems and bunding structures in place
Sulphuric Acid 96%	H314	IBC	2	Yes but not listed as risk to soil or groundwater	Yes – low probability of risk due to containment systems and bunding structures in place
Sodium hydroxide (50%)	H290, H314	IBC	2	Yes but not listed as risk to soil or groundwater	Yes – low probability of risk due to containment systems and bunding structures in place
Sodium Bisulphite (30%)	H031, H302	IBC	2	Yes but not listed as risk to soil or groundwater	Yes – low probability of risk due to containment systems and bunding structures in place
Sodium Hypochlorite (14 - 15%)	H031, 314, 400	Tank	43	Yes Very toxic to aquatic life / corrosive	Yes – low probability of risk due to containment systems and bunding structures in place
Trisodium Phosphate 7%	N/A	IBC	tes and other require	-	Yes – low probability of risk due to containment systems and bunding structures in place
Molybdate Corrosion inhibitor (trac104)	n/a	Drum දුර ූර	pright on 0.4	-	Yes – low probability of risk due to containment systems and bunding structures in place
GENSYS Antiscalant	n/a	IBC / Drum	2	-	Yes – low probability of risk due to containment systems and bunding structures in place
Nitrogen	H281	Cylinders	0.5	-	N/a
Hydrogen	H220, H280	Cylinders	0.1	Yes but not listed as risk to soil or groundwater	N/a
Carbon Dioxide	H281	Cylinders	1	Yes but not listed as risk to soil or groundwater	N/a

Note 1: Materials deemed hazardous to groundwater and soil have been classified against those categorised in Regulation 1272/2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006;

Note 2: 'Relevant hazardous substances' (Article 3(18) and Article 22(2), first subparagraph) are those substances or mixtures defined within Article 3 of Regulation (EC) No 1272/2008 on the classification, labelling and pack aging of substances and mixtures (CLP Regulation) which, as a result of their hazardousness, mobility, persistence and biodegradability (as well as other characteristics), are capable of contaminating soil or groundwater and are used, produced and/or released by the installation; Note 3: The possibility of soil and groundwater contamination at the site of the installation' (Article 22(2), first subparagraph) covers a number of important elements. Firstly, due consideration should be given in a baseline report to the quantities of hazardous substances concerned – where very small quantities are used, produced or released on the site of the installation then the possibility of contamination is likely to be insignificant for the purpose of producing a baseline report. Secondly, baseline reports must consider the soil and groundwater characteristics of the site and the impact of those characteristics on the possibility of soil and groundwater contamination taking place. Thirdly, for existing installations, their characteristics may be considered where they are such that it is impossible in practice that contamination can take place.

8. Site Environmental Setting

Great Island Generating Station is located in South-West Co. Wexford near Campile at the confluence of the River Suir with the River Barrow estuary. The station was constructed on lands that were formerly for agricultural use and some lands were reclaimed from the estuary during development of the site. The total area of the site is approximately 143 acres.

The station is now a modem gas fired, combined cycle gas turbine power plant (CCGT). The plant operates on natural gas, with distillate oil stored as a backup fuel in the event of a gas supply failure or interruption. There are no emissions to ground at the installation and have not been any recorded incidents or process failures that could give rise to groundwater or soil contamination since the new plant was commissioned.

The generation station itself was constructed on man-made ground, surrounded by an area of estuarine sediments of silt and clays, with a gravelly texture. The aquifer below is classified as regionally important fissured bedrock (Aquifer Code Rf) with extreme vulnerability. The installation is surrounded by areas of medium to high vulnerability and areas with rock very close or at the surface of the ground. Groundwater was classified under the water framework Directive with "good" status between 2010 and 2015.

The surrounding land uses include agricultural lands used both for grazing animals and growing crops.

8.1. Geology

According to the Geological Survey of Ireland, the geology underlying the site comprises Ordovician Volcanics consisting of the Campile Formation with undifferentiated felsic volcanics. The Campile Formation is described as pale coloured rhyolites in grey and brown slaty mudstones with occasional andesites.

A Phase 1 and Phase 2 assessment undertaken by URS 1009 (Phase 1 and Phase 2 Environmental Site Assessment, ESB Great Island Power Generating Station, URS, 2009) identified the following geology at the site:

The overburden of the upper tier of the Station Ground's comprised a thin (less than 0.5 m thickness) layer of fine-grained sandy and silty topsoil overlying weather to be bedrock. The geology of the parking bay areas is likely to be similar to that encountered in the upper tier.

Surrounding the CCGT there was up to 6.5 metres of fill material encountered along the southern margin, comprising a lower layer of clays with occasional boulders, underlying an upper layer of boulders. Near the northern margins of this area, up to 3 metres of natural clays overlying bedrock were encountered.

8.2. Designated Ecological Sites

The River Barrow Estuary is a proposed Natural Heritage Area (pNHA). The River Barrow and the River Suir are designated as Special Areas of Conservation (SAC).

Groundwater resources within the study area are considered likely to be in hydraulic continuity with the River Barrow (at west) and Suir (at south). The surrounding area is predominantly agricultural. To the north of the site is a railway track and some agricultural lands beyond it. More agricultural lands are located to the east.

8.3. Groundwater Depth

A survey of the installation by URS 2009 confirmed the presence of groundwater in the fractured bedrock (Campile Formation) in each of the wells drilled in the lower tier of the site, at depths ranging between 7 and 17 m below ground level (bgl). No groundwater was encountered in boreholes advanced on the upper tier, although the maximum depth drilled was 19 m bgl.

8.4. Groundwater Direction of Flow

Based on groundwater elevations monitored by URS, groundwater flow was inferred to flow through the bedrock aquifer in a south-to-south-eastwards direction beneath the southern portion of the site towards the estuary.

8.5. Aquifer Classification

The GSI classify the bedrock aquifer as regionally important, fissured bedrock, with extreme vulnerability and rock at or near the surface. There are no source protection zones in the area with two main vulnerability classifications on the site. The CCGT is largely on made ground which has extreme vulnerability, the eastern and northern parts of this site have rock near the surface.

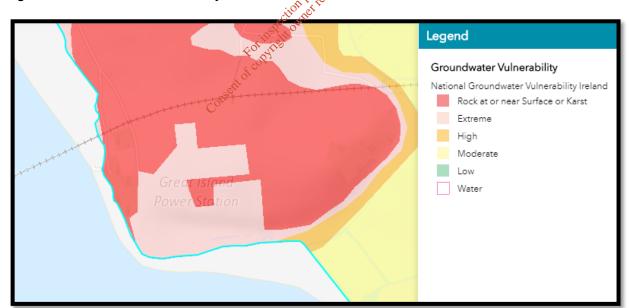


Figure 8-5: Groundwater Vulnerability

(Source: GSI Maps)

9. Historic Pollution and Potential Future Emissions

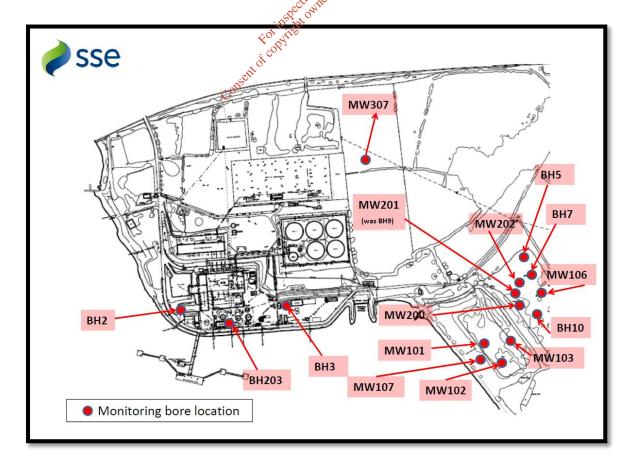
The station historically consisted of three generating units with a total electricity generating capacity of 240 Megawatt of electricity (MWe), two 60MWe units (U1 and U2) and one 120MWe unit (U3). These were conventional steam generation units. Each of the units consisted of a boiler, steam turbine and auxiliary plant that were independent of each other. Units 1 and 2 were commissioned in 1967 and 1968 respectively, which were recommissioned in 1992. Unit 3 was commissioned in 1972 and re-commissioned in 1993. The station was fired on Heavy Fuel Oil shipped directly to site and stored in the station's own oil tank farm area. Distillate oil was used for start-up.

There were historical waste disposal activities carried out at the site by previous operators. There are two areas on the site which were used between the 1960's and mid 90's for deposition of excess rock fill, building materials and spoil. Certain parts of a northern segment of Cell 1 was used for deposition of general waste during the operation of the generation station. The CCGT does not impact on these areas in any way, however by IE Licence is required to monitor groundwater quality in the vicinity of these cells.

The potential for future emissions to ground and soil of polluting substances from this installation are low. All chemicals and fuel at the installation is stored in integrity tested and bunded areas. The facility operates to an exceptionally high standard and is certified by independent certification (ISO 14001), independent and corporate environmental auditors assessing the installation on an annual basis as well as continued compliance with the IE Licence as audited by the EPA.

The entire operational area across the site are hardstanding with controls and procedures in place to ensure materials are properly handled, emergency response and training is in place and alarm systems are employed to notify management in the event of process failure at the installation. The greatest risk to soil and groundwater is from the storage of distillate oil at the installation, however the bund is suitably sized to contain more than 110% of the total volume of the tanks and is integrity tested to ensure containment is in place if required. Work practices that took place on site pre 1990 would absolutely not occur as the law around waste management is must tighter and the site has all controls and practices up to date to ensure all waste is managed in line with legislative requirements.

10. Baseline Report


10.1 Sample Locations

There are fifteen (15) groundwater wells installed on site which can be separate into two separated areas as outlined in Table 10-1 and depict in the groundwater location map Figure 10-1.

Table 10-1 Groundwater Wells

Well Number	Location
BH2	Historical ESB and Current SSE activities
BH203	Historical ESB and Current SSE activities
ВН3	Historical ESB and Current SSE activities
MW307	Historical ESB waste disposal area
MW201	Historical ESB waste disposal area
MW101	Historical ESB waste disposal area
MW107	Historical ESB waste disposal area
MW102	Historical ESB waste disposal area
MW103	Historical ESB waste disposal area
MW106	Historical ESB waste disposal area
MW200	Historical ESB waste disposal area
BH10	Historical ESB waste disposal area
BH7	Historical ESB waste disposal area
BH5	Historical ESB waste disposal area
MW202	Historical ESB waste disposal area

Figure 10-1 Groundwater Well Location Map

There was an extensive site investigation carried out by URS in 2009 entitled "Phase 1 and 2 Environmental Site Assessment" Project umber 49341640, dated 06th November 2009 which was as part of the ESB divestment programme for the installation. The objective of the ESA was to assess the environmental status of the site, with particular reference to soil, sediment, surface water and groundwater quality. A copy of this report is attached to this baseline report. Environmental soil samples were collected through hand auguring, test pitting and bore drilling. A summary of the data for soils will be used in demonstration of the status of this site.

Soil samples were collected by the following means:

- There were seven boreholes (BH210 207) drilled using an air rotary drilling rig;
- Collection of fill and overburden samples during drilling using a split spoon sampler;
- Excavation of seventeen shallow trial pits (TP101 to TP117) and collection of soil samples;
- Excavation of three hand augured samples from the bund walls around the HFO Tank Farm;
- Collection of eight hand augured samples from across the 220 kV compound.

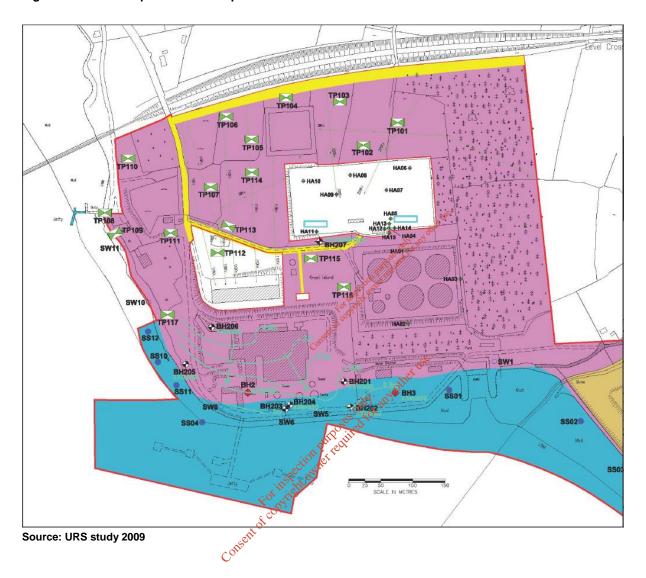

The following table outlines the scope of soil testing carried out at the installation.

Table 10-2 Soil Analysis

Analyte	Number of Soil	Number of
	Samples	Sediment Samples
Total Petroleum Hydrocarbons (TPH) Criteria Working Group (CWG) Analysis	alter use. 51	7
Benzene, Toluene, Ethylbenzene, Xylene (BTEX) Compounds	51 51	7
Total Organic Carbon (TOC)	47	0
Metals (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sb, V, Zn)	47	7
Working Group (CWG) Analysis Benzene, Toluene, Ethylbenzene, Xylene (BTEX) Compounds Total Organic Carbon (TOC) Metals (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sb, V, Zn) Speciated Polycyclic Aromatic Hydrocarbons (PAHs) Total Phenols	26	7
Total Phenols	24	7
Total Cyanide	24	7
Chloride, Fluoride and Sulphate	17	7
Polychlorinated biphenyls (PCBs)	15	4
Volatile organic compounds (VOCs)	2	1
Asbestos in Soil	30	0

Figure 10-2 Soil Sample Location Map

10.2 SSE CCGT Groundwater Boreholes

10.2.1 Borehole 2

Table 10-2 Summary of Analysis

Parameter	Units	BH2								
		366/2016	Apr-09	Jun-09	Sep-10	Apr-11	Apr-12	Sep-12	Sep-18	May-19
Aluminium	ug/l	150	328	142	17	39	351	16	11	<10
Ammonia	mg/l as NH ₄	0.175	-	-	-	<0.1	0.11	<0.1	<0.10	<0.1
Arsenic	ug/l	7.5	2.00		<1	<1	<1	0.66	1.3	0.58
Chromium	ug/l	37.5	-	-	-	-	-	-	0.64	<0.25
Lead	ug/l	7.5	-	-	-	-	-	-	0.81	0.28
Mineral Oil	ug/l	-	70	80	<10	<10	32	22	44	<10
рН	Units	6.5 – 9.5 ²	7.6	-	7.6	7.9	7.8	7.5	6.9	7.6
PAH	ug/l	0.075	0.11	0.05	<0.20	<0.20	<0.20	<0.20	<0.04	<0.2
TPH	ug/l	7.5	50	70	54	her 53	90	58	130	40
Vanadium	ug/l	-	-	-	ारित आप	<10	<10	170	3	1.1
Total Coliforms	cfu/100ml	0/100mls ²	-	7005°	ed to	>100	>100 1	>100	>100	>100
Faecal Coliforms	cfu/100ml	0/100mls ²	- 🔅	on purposes	-	0	23 ¹	0	>100	>100

BH2 was determined to be in compliance with the Groundwater Regulations (366/2016) for the majority of parameters tested. The borehole was noted to have occasional spikes in Aluminium, notably in 2009 and repeated again in 2012. More recent samples tested in 2018 and 2019 have indicated that the concentrations of Aluminium are within both guidance and legislative values.

Con

The limit for Total PAH under SI No. 366/2016 is very low at 0.075 ug/l. The limit of detection for the laboratory was above this value and therefore compliance assessment cannot be accurately accomplished. However, the concentrations of PAH have generally not been detected in this well since 2009, with one sample in 2018 indicating that background concentrations were below the 366/2016 threshold at 0.04 ug/l.

Total Petroleum Hydrocarbons (TPH) were detected in elevated concentrations; well above the limit provided in 366/2016 during each sampling campaign. The source of this would have been related to historical operations at the installation and not activities at SSE CCGT.

The presence of total and faecal coliforms is not concern as this water is not used as drinking water at the installation and there are no groundwater wells listed in the locality with the exception of these test wells on site. The source of contamination could be from either local external sources (agriculture) or more likely from biological degradation of waste that is stored beneath the ground at the installation

10.2.2 Borehole 3

Table 10-3 Summary of Analysis

Parameter	Units	S.I. No.	внз								
		366/2016	Apr- 09	Jun- 09	Sep- 10	Apr- 11	Apr- 12	Sep- 16	Sep- 17	Sep- 18	May- 19
Aluminium	ug/l	150	136	-	<10	<10	<10	-	68	<10	<10
Ammonia	mg/l as NH ₄	0.175	-	-	-	<0.1	<0.1	1.2	<0.1	<0.1	<0.1
Arsenic	ug/l	7.5	41	120	<1	<1	<1.0	-	22	7.9	0.58
Chromium	ug/l	37.5	-	-	-	-	-	4	<1	<0.25	0.39
Lead	ug/l	7.5	-	-	-	-	-	<1	<1	<0.09	0.24
Mineral Oil	ug/l	-	<10	-	<10	<10	14	-	<10	<10	<10
pH	Units	6.5 – 9.5 ²	7.4	-	8	7.9	7.6	7.9	7.6	7.7	7.6
PAH	ug/l	0.075	<0.05	-	<0.20	<0.20	<0.20	<0.04	<0.04	<0.04	<0.20
ТРН	ug/l	7.5	<10	<10	57	46	48	86	<10	<10	<10
Vanadium	ug/l	-	-	-	-	<10	<10	8.5	6.8	2.1	2.5
Total Coliforms	cfu/100ml	0/100mls ²	-	-	-	>100	>100	-	>100	>100	>100
Faecal Coliforms	cfu/100ml	0/100mls ²	-	-	only.	MY O	23	-	20	>100	>100

Note 1: The Borehole changed location in 2016

Note 2: Limits obtained from S.I. No. 122 of 2014 European Union (Drinking Water) Regulations 2014

BH3 was relocated from its original position in 2016, however the name was retained for reporting purposes. This well was determined to be in compliance with the Groundwater Regulations (366/2016) for the majority of parameters tested. The borehole was noted to have occasional spikes in arsenic and ammonia. Arsenic was present in elevated concentrations in 2009, but dissipated during 2010 – 2012. This parameter observed to rebound in samples for 2017 and 2018 which is possibly due to the relocation of the well. The concentrations were below the 366/2016 threshold according to the most recent sample obtained in 2019.

There was elevated ammonia detected in the well in 2016 which was again possibly due to the relocation of this well. The concentrations post 2016 have all been less than the limit of detection for this test and well below 366/2016 threshold values.

TPH's were detected in elevated concentrations in this well from 2010 – 2012 and again in 2016. The concentrations detected were above the legislative threshold outlined in 366/2016 and are as result of historical operations at the installation as opposed to any activities carried out by SSE.

The limit for Total PAH under SI No. 366/2016 is low at 0.075 ug/l. The limits of detection for the laboratory were above this value on certain occasions and therefore compliance assessment cannot be accurately completed. However, the concentrations of PAH have not been positively detected in this well since 2009 and one sample analysed in 2018 did indicate that background concentrations were below the Regulation threshold at <0.04 ug/l.

The presence of total and faecal coliforms is not concern as this water is not used as drinking water at the installation and there are no groundwater wells listed in the locality with the exception of these test wells on site. There was a trend noted in that from 2011 the levels have been rising of faecal coliforms in this well. Given that the result in 2017 was within range, it could be assumed that the biological quality of this water is deteriorating and therefore attention should be maintained on the water quality within this well.

10.2.3 Borehole 203

Table 10-4 Summary of Analysis

Parameter	Units	S.I. No.	MW203				
		366/2016	Sep-18	May-19			
Aluminium	ug/l	150	<10	<10			
Ammonia	mg/l as NH₄	0.175	<0.10	<0.1			
Arsenic	ug/l	7.5	1.6	0.88			
Chromium	ug/l	37.5	0.52	0.37			
Lead	ug/l	7.5	0.12	0.17			
Mineral Oil	ug/l	-	<10	<10			
рН	Units	6.5 – 9.5 ¹	6.9	6.8			
PAH	ug/l	0.075	<0.04	<0.2			
TPH	ug/l	7.5	<10	<10			
Vanadium	ug/l	-	1.9	1.6			
Total Coliforms	cfu/100ml	0/100mls ¹	>100 Het 1156.	>100			
Faecal Coliforms	cfu/100ml	0/100mls ¹	>100114; 19114	>100			

Note 1: Limits obtained from S.I. No. 122 of 2014 European Union (Drinking Water) Regulations 2014

There were only 2 samples obtained from this well during the period however the quality of water is compliant for the parameters tested with the limits applied in 366/2016 where laboratory LODs allow an assessment be made.

10.2.4 Borehole 307

Table 10-5 Summary of Analysis

Parameter	Units S.I. No. 366/2016		MW307				
			Sep-18	May-19			
Aluminium	ug/l	150	<10	<10			
Ammonia	mg/l as NH ₄	0.175	<0.10	<0.1			
Arsenic	ug/l	7.5	0.20	1.9			
Chromium	ug/l	37.5	0.26	3.1			
Lead	ug/l	7.5	9.9	3.8			
Mineral Oil	ug/l	-	<10	<10			
рН	Units	6.5 – 9.5 ¹	6.7	6.4			
PAH	ug/l	0.075	<0.04	<0.2			
TPH	ug/l	7.5	<10	14			
Vanadium	ug/l	-	<0.6	6.6			
Total Coliforms	cfu/100ml	0/100mls ¹	67 Hile IIse	>100			
Faecal Coliforms	cfu/100ml	0/100mls ¹	12 aty of	>100			

Note 1: Limits obtained from S.I. No. 122 of 2014 European Union (Drinking Water) Regulations 2014

Borehole 307 was a new borehole added to the test schedule in 2018. There was elevated lead in the sample in 2018; and while present again in 2019 it had decreased below the 366/2016 threshold.

The water in this well has been classified as stightly acidic; the 2019 sample determined below the drinking water regulation range of 6.5 pH units. There are elevated coliform counts in this groundwater well, however this parameter is not limited by the Regulations and the well is not used for drinking water.

With exception of the aforementioned, all parameters were deemed compliant with the relevant threshold parameters for groundwater.

10.3 ESB Waste Disposal Area

10.3.1 Borehole MW101

Table 10-6 Summary of Analysis

Units	S.I. No.	MW101									
	366/2016	Apr- 09	Jun- 09	Sep- 10	Apr- 11	Apr- 12	Apr- 13	Apr- 14	Sep- 15	Sep- 16	
ug/l	150	217	-	<10	<10	25	<10	19	93	-	
mg/l as NH ₄	0.175	-	-	-	-	-	-	-	-	15	
ug/l	7.5	33	39	12	5	6.7	9.1	6.3	4.8	12	
ug/l	37.5	<0.01	-	-	-	-	-	-	-	-	
ug/l	7.5	-	-	-	-	-	-	-	-	-	
ug/l	-	<10	-	<10	11	25	79	71	17	<10	
Units	6.5 – 9.5 ¹	8.2	-	8.4	8.4	8.2	8.4	8.7	8.1	7.9	
ug/l	0.075	<0.05	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.04	
ug/l	7.5	10	-	54	51	<u>ç</u> e∙64	180	250	36	29	
ug/l	-	-	-	-	510est	<10	<10	8.9	7.2	19	
cfu/100ml	0/100mls ¹	-	-	द्धारी .	30	30	>100	69	6	17	
cfu/100ml	0/100mls ¹	-	JITP	ited	0	0	11	0	-	-	
Units	S.I. No.	م	MW101								
	366/2016	Sep?	Sep- 18	May- 19							
ug/l	150	COM	<10	<10							
mg/l as NH ₄	0.175 ent	2.4	29	18							
ug/l	KSII	9.9	8.5	10							
ug/l	37.5	1.4	1.9	1.9							
ug/l	7.5	<1	0.62	1.4							
ug/l	-	<10	<10	21			•	-			
Units	6.5 – 9.5 ¹	7.4	7.9	7.3							
ug/l	0.075	<0.04	<0.04	<0.2							
ug/l	7.5	<10	<10	40							
ug/l	-	13	14	14							
cfu/100ml	0/100mls ¹	3	>100	>100							
cfu/100ml	0/100mls ¹	1	22	76							
	mg/l as NH4 ug/l ug/l ug/l Units ug/l ug/l cfu/100ml cfu/100ml dug/l ug/l ug/l	ug/l 150 mg/l as NH4 0.175 ug/l 7.5 ug/l 7.5 ug/l 7.5 ug/l - Units 6.5 - 9.5 ¹ ug/l 0.075 ug/l - cfu/100ml 0/100mls ¹ cfu/100ml 0/100mls ¹ Units S.I. No. 366/2016 ug/l 150 mg/l as NH4 0.175 ug/l 7.5 ug/l 7.5 ug/l - Units 6.5 - 9.5 ¹ ug/l 0.075 ug/l 7.5 ug/l 7.5 ug/l 0.075 ug/l 7.5 ug/l 7.5	ug/l 150 Apro99 ug/l 150 217 mg/l as NH₄ 0.175 - ug/l 7.5 33 ug/l 7.5 - ug/l - <10	ug/l 150 217 - mg/l as NH4 0.175 - - ug/l 7.5 33 39 ug/l 7.5 33 39 ug/l 7.5 - - ug/l - - - ug/l - - - ug/l 0.075 <0.05	ug/l 150 217 - <10 mg/l as NH4 0.175 - - - ug/l 7.5 33 39 12 ug/l 37.5 <0.01	ug/l 150 217 - <10 Apr-10 mg/l as NH₄ 0.175 - - - - - ug/l 7.5 33 39 12 5 ug/l 7.5 - - - - ug/l 7.5 - - - - ug/l 7.5 - - - - ug/l - <10	Units S.I. No. Apr- 09 09 09 10 Apr- 11 12	Units 3.1. No. 366/2016 April 99 Jun 99 April 11 April 12 April 13 ug/l 150 217 - <10	Units 366/2016 Apr- 09	Units 366/2016 Apr	

Note 1: Limits obtained from S.I. No. 122 of 2014 European Union (Drinking Water) Regulations 2014

This well was determined to be contaminated with a range of compounds over the sampling period. The well had initially exhibited elevated Aluminium however this was observed over the years since 2009 below the groundwater directive threshold.

The well has consistently shown elevated concentrations of ammonia, with 4 samples analysed and 4 samples exceeding the limit during the period. The concentration of ammonia has increased from a low of 2.4 mg/l in 2017 to a high of 29 in 2018. These concentrations exceed the threshold given in 366/2016 of 0.175 mg/l.

Arsenic has regularly been elevated during the monitoring period, with 8 of the twelve samples exceeding threshold limits in 366/2016. Levels of arsenic in the water have been relatively variable with concentrations ranging from 5 to 39 ug/l. In the past 3 years the concentrations have been relatively consistent, just above the threshold of the Groundwater Directive.

TPHs have been detected in the well each year with the exception of 2017 – 2018 (9 exceedances in 11 samples). However, TPH concentrations rebounded in 2019 to 40 ug/l, above the threshold limit of 7.5 ug/l.

10.3.2 Borehole MW102

Table 10-7 Summary of Analysis

Parameter	Units	S.I. No.	MW102										
		366/2016	Apr- 11	Apr- 12	Apr- 13	Apr- 14	Sep- 15	Sep- 16	Sep- 17	Sep- 18	May- 19		
Aluminium	ug/l	150	12	25	<10	29	21	-	<10	<10	<10		
Ammonia	mg/l as NH₄	0.175	-	-	-	-	-	52	5.1	48	40		
Arsenic	ug/l	7.5	13	7.2	13	6.1	8.7	6.9	7.2	6.9	16		
Chromium	ug/l	37.5	-	-	-	-		-	1.5	1.7	2.6		
Lead	ug/l	7.5	-	-	-	-		-	<1	0.52	2.9		
Mineral Oil	ug/l	-	18	17	10	91	<10	<10	<10	21	16		
рН	Units	6.5 – 9.5 ¹	8.3	8.1	8.3	8.8	8.0	7.8	7.7	7.8	7.2		
PAH	ug/l	0.075	1.6	<0.20	<0.20	<0.20	<0.20	<0.04	<0.04	<0.04	<0.2		
ТРН	ug/l	7.5	45	38	18	230	39	40	10	21	34		
Vanadium	ug/l	-	<10	<10	<10	9.3	9.0	9.8	15	11	19		
Total Coliforms	cfu/100ml	0/100mls ¹	95	78	>100	76 et	50	41	7	>100	>100		
Faecal Coliforms	cfu/100ml	0/100mls ¹	4	13	314.	My O	-	-	2	33	>100		

Note 1: Limits obtained from S.I. No. 122 of 2014 European Union (Drinking Water) Regulations 2014

TPHs have consistently exceeded the Groundwater Directive limits of 7.5 ug/l over the monitoring period. The levels were determined to range from 10 to 230 ug/l. The trend is that this pollutant is in decline in this well since 2014, nevertheless is still above the threshold associated with this parameter.

PAHs were detected above the limit of detection on one occasion, in 2011. The limit of detection (LOD) for certain PAH samples was above the threshold in the Directive, however samples taken between 2016 and 2018 would indicate that concentrations in this well are below that required.

The well had elevated concentrations of Arsenic in 2011 – 2013 which subsequently dropped below the threshold throughout samples taken between 2014 and 2018. The samples taken in 2019 would indicate a rebound of arsenic in the well.

10.3.3 Borehole MW103

Table 10-8 Summary of Analysis

Parameter	Units	S.I. No.	MW103										
		366/2016	Apr- 11	Apr- 12	Apr- 13	Apr- 14	Sep- 15	Sep- 16	Sep- 17	Sep- 18	May- 19		
Aluminium	ug/l	150	35	53	59	56	68	-	46	30	37		
Ammonia	mg/l as NH₄	0.175	-	-	-	-	-	17	3.8	18	17		
Arsenic	ug/l	7.5	26	20	31	24	35	30	27	27	36		
Chromium	ug/l	37.5	-	-	-	-		-	5.2	5.7	6.4		
Lead	ug/l	7.5	-	-	-	-		-	3	4.1	7.3		
Mineral Oil	ug/l	-	17	33	<10	110	28	<10	50	<10	<10		
pH	Units	6.5 – 9.5 ¹	8.6	8.2	8.3	8.8	7.9	7.8	7.7	7.5	7.8		
PAH	ug/l	0.075	<0.20	<0.20	0.23	0.31	<0.20	<0.04	<0.04	<0.04	<0.2		
ТРН	ug/l	7.5	53	85	11	420	61	53	50	<10	<10		
Vanadium	ug/l	-	26	22	30	25	28	32	31	29	37		
Total Coliforms	cfu/100ml	0/100mls ¹	66	>100	>100	75 et	>100	>100	>100	>100	>100		
Faecal Coliforms	cfu/100ml	0/100mls ¹	10	25	014.	any 1	-	-	>76	>100	>100		

Note 1: Limits obtained from S.I. No. 122 of 2014 European Union (Drinking Water) Regulations 2014

There has been persistent exceedance of the ground water threshold limit for Arsenic since 2011 in this well. The concentrations ranged from 20 ug/l to a high of 36 ug/l, against a threshold limit of 7.5 ug/l.

The TPH concentrations were also determined in Elevated concentrations, from 53 ug/l in 2011 to a high of 420 in 2014. This parameter has been steadily decreasing since 2014 where it was determined below the limit of detection for this test.

PAHs were detected above the threshold of the Groundwater Directive in 2013 and 2014 however have since been determined compliant in samples obtained between 2016 and 2018. There was nothing detected in the 2019 sample however the LOD is in excess of the groundwater threshold. This does not allow for adequate assessment of compliance in 2019.

10.3.4 Borehole MW200

Table 10-9 Summary of Analysis

Parameter	Units	S.I. No.	MW200										
		366/2016	Apr- 09	Sep- 10	Apr- 11	Apr- 12	Apr- 13	Apr- 14	Sep- 15	Sep- 16	Sep- 17		
Aluminium	ug/l	150	90	<10	13	18	<10	25	5	17	<10		
Ammonia	mg/l as NH ₄	0.175			<0.1	<0.1	0.11	<0.10	0.54	0.11	<0.10		
Arsenic	ug/l	7.5	3.7	<1	<1	<1.0	1.2	0.43	0.68	2.7	1.1		
Chromium	ug/l	37.5	-	-	-	-	-	-		-			
Lead	ug/l	7.5	-	-	-	-	-	-		-			
Mineral Oil	ug/l	-	<10	25	38	46	36	160	20	20	73		
рН	Units	6.5 – 9.5 ¹	6.9	7.1	7.3	7.3	7.1	7.1	6.9	6.7	7		
PAH	ug/l	0.075	<0.05	0.23	0.41	<0.20	<0.20	<0.20	<0.20	<0.04	<0.04		
ТРН	ug/l	7.5	<10	65	280	120	84	470	130	100	270		
Vanadium	ug/l	-	-	-	<10	<10	<10	0.8	<0.6	2.1	3.9		
Total Coliforms	cfu/100ml	0/100mls ¹	-	-	>100	>1005	>100	>100	>100	61	>100		
Faecal Coliforms	cfu/100ml	0/100mls ¹	-	-	314.	111 ³ 62	0	10	-	-	64		
Parameter	Units	S.I. No.	MW200										
		366/2016	Sep- 18	May ²	N.								
Aluminium	ug/l	150	174	0×10									
Ammonia	mg/l as NH ₄	0.175	CO 14169	<0.1									
Arsenic	ug/l	7.5	0.54	2									
Chromium	ug/l	37.5 TS	<0.25	0.75									
Lead	ug/l	7.5	0.16	5.2									
Mineral Oil	ug/l	-	87	24				-					
рН	Units	6.5 – 9.5 ¹	7.1	6.5									
PAH	ug/l	0.075	<0.04	<0.2									
TPH	ug/l	7.5	210	74									
Vanadium	ug/l	-	0.7	3.6									
Total Coliforms	cfu/100ml	0/100mls ¹	>100	>100									
Faecal Coliforms	cfu/100ml	0/100mls ¹	>100	>100									

Note 1: Limits obtained from S.I. No. 122 of 2014 European Union (Drinking Water) Regulations 2014

TPHs were consistently detected above the threshold outlined in 366/2016 from 2010 to 2019. The concentrations are variable, however constantly well above the 366/2016 limit of 7.5 ug/l. The concentrations were determined to range from 65 to 470 ug/l.

PAHs were detected in the well in 2010 and 2011 but have been below the laboratories limit of detection since.

There was one incidence of aluminium identified in the well above the threshold however this was observed to revert from 174 ug/l in 2018 to below the limit of detection in 2019.

Ammonia was determined to exceed the limit once during the period, in 2015 at a concentration of 0.54 mg/l, however has decreased to <0.1 mg/l in the 2019 sample.

10.3.5 Borehole MW106

Table 10-10 Summary of Analysis

Parameter	Units	S.I. No.	MW106									
	Omis	366/2016	Apr- 11	Sep- 11	Apr- 12	Sep- 12	Sep- 13	Sep- 14	Sep- 15	Sep- 16	Sep- 17	
Aluminium	ug/l	150	-		-	-	-	-	34	62	41	
Ammonia	mg/l as NH ₄	0.175	<0.1	8.4	0.63	0.68	0.6	<0.10	<0.10	<0.10	<0.10	
Arsenic	ug/l	7.5	-		-	-	-	-	1.9	0.92	0.76	
Chromium	ug/l	37.5	<1	<1	<1	<1	<1	0.42	-	-	<1	
Lead	ug/l	7.5	<2	<2	<2	<2	<2	0.71	-	-	<1	
Mineral Oil	ug/l	-	-		-	-	-	-	26	<10	<10	
рН	Units	6.5 – 9.5 ¹	7.6	7.4	7.8	7.3	7.7	7.1	7.6	7.5	7.4	
PAH	ug/l	0.075	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.04	<0.04	
TPH	ug/l	7.5	53	50	96	60	16	150	59	20	<10	
Vanadium	ug/l	-	<10	<10	<10	0.62	4.4	2.4	<0.6	2.3	3.3	
Total Coliforms	cfu/100ml	0/100mls ¹	-	-	-	theri	-	-	>100	>100	>100	
Faecal Coliforms	cfu/100ml	0/100mls ¹	-	-	only.	My or	-	-	-	-	-	
Parameter	Units	S.I. No.		50	es of for		MW106					
		366/2016	Sep- 18	May ²	Ng.							
Aluminium	ug/l	150	<1000	0×10								
Ammonia	mg/l as NH ₄	0.175	500 10gg	<0.1								
Arsenic	ug/l	7.5	0.56	1.6								
Chromium	ug/l	37 d 150 1	<0.25	1.6								
Lead	ug/l	7.5	<0.09	8.9								
Mineral Oil	ug/l	-	<10	<10				-				
рН	Units	6.5 – 9.5 ¹	6.7	7.1								
РАН	ug/l	0.075	<0.04	<0.2								
TPH	ug/l	7.5	<10	<10								
Vanadium	ug/l	-	1.6	3.6								
Total Coliforms	cfu/100ml	0/100mls ¹	>100	>100								

Note 1: Limits obtained from S.I. No. 122 of 2014 European Union (Drinking Water) Regulations 2014

This well like many others at the installation displays elevated concentrations of TPH consistently in the well from 2010 to 2017. The concentrations were observed to decrease over the years and were determined below the laboratories limit of detection in 2018 - 2019.

The well had a historical issue with elevated ammonia 2011 - 2013, but concentrations in later years also have declined to below the limit of detection.

There was one elevated lead result detected in this well in 2019 which was not generally not observed in previous recordings.

10.3.6 Borehole MW202

Table 10-11 Summary of Analysis

Parameter	Units	S.I. No.	MW202										
		366/2016	Apr- 11	Apr- 12	Sep- 13	Sep- 14	Sep- 15	Sep- 16	Sep- 17	Sep- 18	May- 19		
Aluminium	ug/l	150	22	40	13	<10	78	200	15	11	17		
Ammonia	mg/l as NH ₄	0.175	16	7.2	4.9	<0.10	6.8	1.4	<0.10	1.9	2.3		
Arsenic	ug/l	7.5	8	4.2	7.1	9	6.5	11	8.2	8.6	7.6		
Chromium	ug/l	37.5	-	-	-	-	-	-	1.4	2.1	2.2		
Lead	ug/l	7.5	-	-	-	-	-	-	1.4	2.5	4.8		
Mineral Oil	ug/l	-	22	64	<10	94	43	48	50	<10	38		
рН	Units	6.5 – 9.5 ¹	8.3	8.1	8.1	8	8.1	8.0	7.7	7.7	7.4		
PAH	ug/l	0.075	<0.20	<0.20	<0.20	<0.20	<0.20	<0.04	<0.04	<0.04	<0.2		
TPH	ug/l	7.5	65	150	20	180	340	180	140	<10	84		
Vanadium	ug/l	-	11	<10	10	10	9.8	19	15	15	17		
Total Coliforms	cfu/100ml	0/100mls ¹	52	>100	>100	57 et	10	78	>100	73	>100		
Faecal Coliforms	cfu/100ml	0/100mls ¹	16	31	\sim \sim \sim	dily -	-	-	-	18	44		

Note 1: Limits obtained from S.I. No. 122 of 2014 European Union (Drinking Water) Regulations 2014

This well has a persistent contamination issues with ammoria, being elevated on 7 of the 9 occasions it was tested between 2011 and 2019. There is a varied range of ammonia within this well, detected from <0.1 to 16 mg/l, with occasional drop off in concentrations and bounce back over the years.

TPH was also consistently above the threshold with the exception of 2018 where it was detected below the limit of detection for the test. This result is not consistent as the general range for TPH in this water was from 20 to 340 ug/l.

All other parameters where limits of detection allow, were determined as compliant with threshold levels outlined in 366/2016.

10.4 Soil Assessment

Results from soil analysis was assessed against EPA published data for background concentrations of pollutants in soil (Environmental Protection Agency, *Towards a National Soil Database (2001-CD/S2-M2)*, 2007) as well as Dutch Screening and Intervention values for soil and sediments.

10.4.1 Hydrocarbon Compounds

The following locations were deemed positive identification for the presence of hydrocarbon in soil samples:

220 kV Compound

- A total TPH concentration of 7,861 mg/kg was recorded in sample HA04 collected from within the 220 kV compound. The concentration of aromatic fractions detected was 653 mg/kg, while the aliphatic fractions (C12 to C35) totalled 7,208 mg/kg. This was above the DIV of 5,000mg/kg. No BTEX compounds were detected in this sample.
- No hydrocarbon indicator compounds were detected in additional 'bracketing' samples collected from around HA04 (samples HA12 to HA15).

Station Grounds Trial Pit Samples

- A total TPH concentration of 3,284 mg/kg was recorded in a soil sample collected from a depth of 1.5 m in trial pit TP106, located at the northern site boundary, south of the railway track. TPH was not detected in the sample collected from a shallower depth of 0.5 m in TP106. The TPH fractions represented were aromatic, the highest concentrations (3,037 mg/kg) from the C12-C16 range. The TPH concentrations exceeded the respective GACs for controlled waters.
- A total TPH concentration of 1.14 mg/kg was recorded in trial pit TP108 at a depth of 0.3 m. The location is at the site boundary, near a small boat jetty.
- A total TPH concentration of 0.133 mg/kg was recorded at TP113 at a depth of 0.5m, located immediately north of the 110 kV compound.

Fot

Cons

 A total TPH concentration of 0.613 mg/kg was recorded in TP117 in a sample collected from 0.5 m depth. The trial pit is located on the lower tier, near the western foreshore. TPH was not detected in the sample collected from 1.5 m in the same pit.

Borehole Samples

- TPH concentrations that exceeded the GAC for controlled waters was recorded in soil samples collected
 from the boreholes excavated in the southern portion of the station grounds, near the sea wall. These
 included BH203 and BH204, where concentrations ranging between 15.17 and 987.58 mg/kg were
 recorded.
- In BH205, located to the west of the power generation building, similar concentrations of total TPH aliphatic fractions were detected, but aromatic fractions (C12 to C35) predominated.

10.4.2 Polycyclic Aromatic Hydrocarbons (PAH) Compounds

220 kV Compound

PAH were detected in sample HA04. The total PAH concentration for the sum of 16 PAH compounds (Total 16 EPA PAH) was 2.761 mg/kg. All of the individual PAH compounds exceeded the respective controlled waters GACs. None were detected in the bracketing sampling completed around HA04 (HA12 to HA15).

Station Grounds Trial Pit Samples

- PAHs were detected in trial pit TP106 in a sample collected from a depth of 1.5 m BGL. TP106 is located at the northern site boundary. The concentrations did not exceed GACs.
- PAHs were also detected in the sample collected from 0.3 m depth in TP108. These concentrations exceeded controlled waters GACs.
- PAHs were detected in the 0.5 m sample collected from TP115 and TP117, located in the centre and western portions of the station grounds respectively.

Borehole Samples

An elevated concentration (15.451 mg/kg) of PAHs was detected in soils collected from borehole BH203 at a depth of 3.0 m in a unit of soft gravely clays. The component PAHs exceeded respective GACs for controlled waters. Relatively lower concentrations (50,5 mg/kg) were detected in samples BH201 and IN COMMENTAL REQUISED BH204.

10.4.3 Heavy Metals

With the exception of antimony, cadmium, mercury and selenium all of the other heavy metals concentrations in samples collected from across all areas of the site exceeded the GACs for controlled waters. Also presented on Table 3 are typical regional background concentrations.

10.4.4 Other Compounds

- Phenols were detected at low levels in several samples collected from across the site. Given the apparent random distribution of these detections across the site and the lack of an immediately identifiable source, these results were queried with the laboratory and an internal investigation was completed. It was concluded by the laboratory the low level concentrations were related to a batch of filters used in sampling handling. The data were removed from the summary tables presented herein. The low level occurrences are not related to the site.
- Chloride was detected at several locations, however, no GACs are derived for comparison for this compound. Fluoride concentrations marginally exceeded GACs for controlled waters at eight sampling locations (HA05, HA11, TP101, TP103, TP117, BH201, BH204)
- PCBs and VOCs were not detected in any of the soil samples analysed.
- No suspected asbestos containing material was identified during the program. No asbestos was identified through laboratory analysis of the collected soil samples.

10.4.5 Sediments

- Hydrocarbon indicator compounds were detected in all of the seven sediment samples. Both aliphatic and aromatic fractions were represented, but the majority of the total TPH concentration was represented by aliphatic heavy end (C21 to C35) fractions. Higher concentrations (50 to 200 mg/kg) were recorded in samples SS01, SS02 and SS03, collected from the foreshore to the west of the former landfill cells, near the cooling water outlet. The remaining four samples, which were collected from the foreshore area to the west of the Station Grounds recorded lower (< 5 mg/kg) concentrations. The samples collected near the landfill mostly contained aliphatic fractions, which were absent from the samples collected west of the station grounds.</p>
- PAH were detected in all sediment samples. No exceedances of the controlled waters GACs were recorded.
- Mercury and selenium were not detected (above the MDL) in the sediment samples analysed.
 Molybedenum was detected at concentrations that did not exceed GACs in four of the samples, chiefly those from the western foreshore. Nearly all other heavy metal results exceeded the respective GACs for controlled waters.

11. Conclusions

SSE carried out a baseline report to outline the status of subsurface contaminated soil and groundwater as required by the EPA for an IE Licence. A summary of the conclusions for groundwater and soil are outlined below:

11.1 Groundwater

Concentrations of aluminium were deemed to exceed the Groundwater Regulation's Threshold 9 times from 7 different wells over the 10-year monitoring campaign. The concentrations of aluminium detected were not deemed hazardous and would not impact on the site from continuing to operate for its designated industrial purposes. There are no raw materials in use at the CCGT that could contribute to aluminium in the groundwater or soil.

There was significant number of wells determined to exceed S.I. No. 366 of 2016 for ammonia. There were 9 wells which experienced elevated ammonia concentrations on a regular basis during the monitoring period. The source of this would most likely be the decomposition of organic material from the waste disposal cells.

TPH was observed in elevated concentrations in all wells tested at some stage over the monitoring period with the exception of MW203. The source of this parameter was most likely from historical practices and waste deposition on site. This would be the parameter of most significance in the groundwater wells due to its persistence and existence across the sample area.

PAHs were randomly determined in 6 different wells. The laboratory limit of detection was oftentimes in excess of the limits applied in S.I. No. 366 of 2016, therefore assessment against the standards was not possible. PAH contamination in the groundwater's has dissipated over the years and has not been detected in any well since 2013.

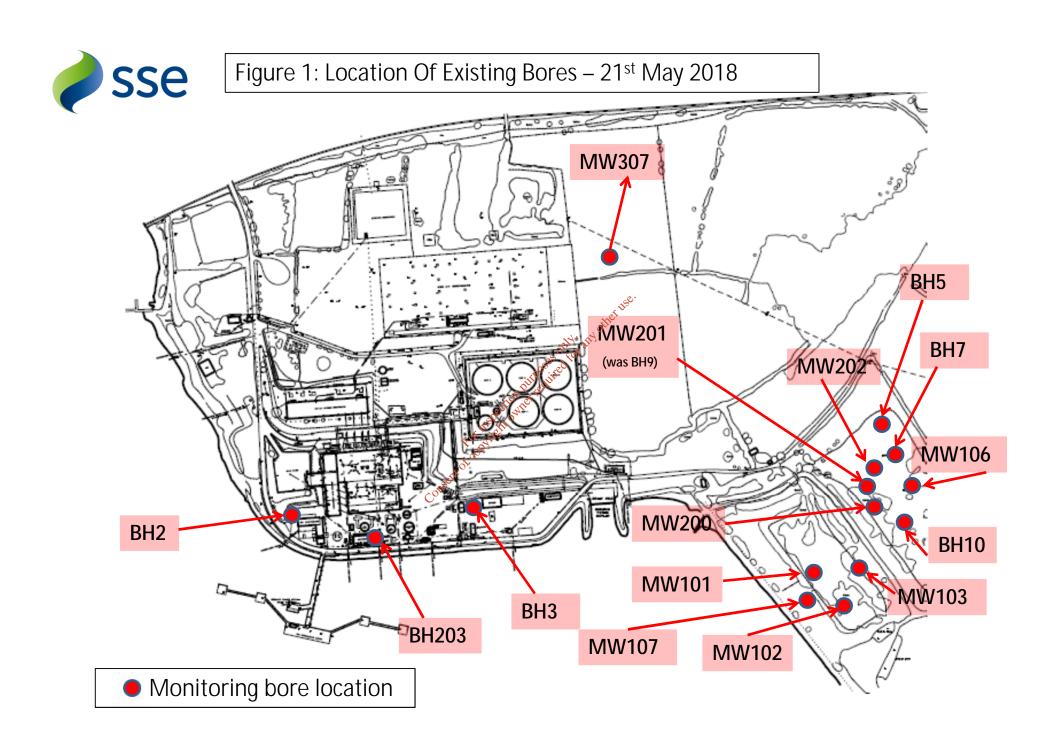
Heavy metals analysed include Arsenic, Vanadium and Lead concentrations were compliant with the Groundwater Regulations in all wells with the exception of BH307 (2018) and MW106 (2019). Arsenic concentrations have been very variable throughout the site groundwater wells. In general, the concentrations have complied with the Regulations, however there were 5 occasions whereby an exceedance was noted over the 10-year period assessed.

The site does have some relevant hazardous materials in storage at the installation, however the majority of these are retained in smaller volumes within integrity tested bunded areas. The risk of loss of control in these areas are minimal and therefore the requirement for an in-depth baseline survey for these materials would not be required.

The distillate oil storage is the greatest risk to soil and ground water at the installation. This material is stored in certified tanks, monitored and alarmed for loss of material and retained within certified bunds that have been tested and their integrity validated. The volume of the bund is well in excess of the volumes of materials stored within, therefore the risk of loss of hydrocarbon to ground and soil is also considered low.

11.2 Soils

From the perspective of human health and potential risks posed by environmental soil and groundwater quality to commercial site users, the site is considered suitable for the continued industrial use.


An assessment of the soil analytical data collected by URS during their site investigation identified potential risks to controlled waters (i.e. groundwater and surface water) from a number of metals as well as polycyclic aromatic hydrocarbons (PAH) and hydrocarbon indicator compounds. However, URS in their report has concluded that across the majority of the site these potential risks are not significant.

Appendix I: Map of Groundwater Sample Points

Consent of copyright owner required for any other use.

Appendix

Appendix II: URS Soil and Groundwater Report

Consent of copyright owner required for any other use.

Appendix

Appendix 13. Soils Geology and Groundwater

Consent of copyright owner required for any other use.

13.1. URS Phase 1 and 2 Environmental Site Assessment

Phase 1 and 2
Environmental Sittement Representation of the control of the contro

06 November 2009 Final

Generating Station

Issue No 5 49341640

Project Title: Phase 1 and 2 Environmental Site Assessment

Report Title: ESB Great Island Power Generating Station

Project No: 49341640

Status: Final

Client Contact Name: Mr Gerry Lawlor

Client Company Name: Electricity Supply Board

Issued By: URS Ireland Ltd

Level 4 Iveagh Court 6-8 Harcourt Road

Dublin 2

Document Production / Approval Record

Issue No: 5	Name	Signature	Date	Position
Prepared by	Rachael Standish	Standish,	06 Nov 2009	Environmental Scientist
Checked by	Gavan Butterfield	Butter Butter	06 Nov 2009	Project Manager
Approved by	Graham Webb	neglid control	06 Nov 2009	Project Director

Document Revision Record

Issue No	Date	Details of Revisions
1	16 December 2008	Draft
2	18 December 2008	Amendment related to corrected sediment data
3	30 December 2008	Final issue incorporating comments from ESB
4	25 January 2009	Final issue incorporating minor edits and photographs
5	06 November 2009	Final issue incorporating minor edits

LIMITATIONS

URS Ireland Limited (URS) has prepared this Report for the sole use of Electricity Supply Board in accordance with the Agreement under which our services were performed. No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by us. This Report may not be relied upon by any other party without the prior and express written agreement of URS. Unless otherwise stated in this Report, the assessments made assume that the sites and facilities will continue to be used for their current purpose without significant change. The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested. Information obtained from third parties has not been independently verified by URS, unless otherwise stated in the Report.

Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the services. The results of any measurements taken may vary spatially or with time and further confirmatory measurements should be made after any significant delay in using this Report.

COPYRIGHT

© This Report is the copyright of URS Ireland Limited (Arry unauthorised reproduction or usage by ohibit

Jhibit

Gorgen of copyright owner tea any person other than the addressee is strictly prohibited

ESB\49341640 ESB Phase 1 DD 4 Sites\DURP0012 **06** November 2009

CONTENTS

Sectio	n e e e e e e e e e e e e e e e e e e e	Page No
1.	INTRODUCTION & OBJECTIVES	1
2.	PHASE 1 ASSESSMENT – SCOPE AND METHODOLOGY	2
3.	PHASE 1 FINDINGS	3
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6.2 3.6.3 3.7 3.8	Site Description Station Grounds - Lower Tier Station Grounds - Middle & Upper Tiers Former Waste Disposal Area and Wetlands Foreshore Lease Areas Surrounding Land Use Regional Setting Solid Geology and Hydrogeology Subsoil Geology and Hydrogeology Surface Water Hydrology Protected Areas Site Development History Aerial Photograph Review Environmental Site Assessments - Previous Reports ESBI 1996 ESBI, 2000 - Phase 1 Investigations ESBI, 2002 - Phase 2 Investigations ESBI, 2003 - Risk Assessment - Former Waste Disposal Area URS, 2003 - Risk Assessment - Former Waste Disposal Area Site Operations Power Generation - General Process Fuel Storage Water Treatment Materials Storage Reported Incidents & IPPC Compliance	3 4 4 5 5 6 7 8 8 8 9 9 10 11 12 12 12
4.		
4.1 4.2	Soil and Groundwater Sampling Laboratory Analysis	
5.	PHASE 2 METHODOLOGY	16
5.1 5.1.1 5.1.2 5.1.3 5.2 5.3 5.4	Soil Sampling Trial Pitting Hand Augering Borehole Drilling Groundwater Monitoring Well Installation Groundwater Sampling Elevated Photograph Survey and Monitoring Well Survey	16 16 16 16 17
6.	PHASE 2 FINDINGS	19
6.1 6.2	Site GeologySite Hydrogeology	

ESB\49341640 ESB Phase 1 DD 4 Sites\DURP0012 **06** November 2009

Page i Final DURP00012 ESA Great Island Final

Issue 5.doc

CONTENTS

Sectio	n	Page No
6.2.1	Groundwater Occurrence	
6.2.2	Inferred Groundwater Flow Direction	
6.3	Field Evidence of Contamination	
6.4	Field Parameters	
6.4.1	Surface Waters	
6.4.2	Groundwater Samples	
6.5	Site Inspections	21
7.	ANALYTICAL RESULTS	22
7.1	Data Assessment Criteria	22
7.1.1	Chemical Parameters	22
7.1.2	Asbestos in Soil	23
7.2	Soil Analytical Results	
7.2.1	Hydrocarbon Compounds	
7.2.2	DALLO	- 4
7.2.3	PAH Compounds. Heavy Metals	25
7.2.4	Other Analytes	25
7.3	Sediment Analytical Results	25
7.3.1	Hydrocarbon Compounds	25
7.3.2	PAH Compounds.	26
7.3.3	Heavy Metals	26
7.3.4	Other Parameters.	26
7.4	Groundwater	26
7.4.1	Hydrocarbons	26
7.4.2	PAH Compounds	26
7.4.3	Heavy Metals	26
7.4.4	Volatile Organic Compounds	26
7.4.5	Semi-Volatile Organic Compounds	27
7.4.6	Other Analytes	
7.5	Surface Waters	
7.6	Data Validation	
8.	DISCUSSION	
8.1	Soil Quality	29
8.1.1	TPH and PAH in Soil	29
8.1.2	Metals in Soil	30
8.1.3	Other Compounds in Soil	30
8.2	Sediment Quality	
8.3	Groundwater	
8.4	Surface Waters	
8.5	Inaccessible Areas	
-		
9.	CONCLUSIONS	34

FIGURES

Figure 1	Site Location Plan
Figure 2	Site Layout Plan
Figure 3	Investigation Location Plan
Figure 4	Groundwater Contour Plan – Main Site
Figure 5	Reduced Groundwater Levels – Ash Disposal Areas
Figure 6	Photographic Survey Levels

TABLES

Table 1	Hydrocarbon Laboratory Results - Soils
Table 2	PAH Laboratory Results – Soils
Table 3	PCB Laboratory Results – Soils
Table 4	Heavy Metal Laboratory Results – Soils
Table 5	Various Laboratory Results – Soil
Table 6	Relative Percentage Differences (1977)
Table 7	Heavy Metal Laboratory Results – Soils Various Laboratory Results – Soil Relative Percentage Differences The Asbestos Identification Results – Soil Hydrocarbon Laboratory Results – Sediment
Table 8	Hydrocarbon Laboratory Results – Sediment
Table 9	PAH Laboratory Results – Sediments
Table 10	Heavy Metal Laboratory Results – Sediments
Table 11	Various Laboratory Results – Sediments
Table 12	Hydrocarbons and PAH Laboratory Results – Groundwater
Table 13	Heavy Metal Laboratory Results – Groundwater
Table 14	Various Laboratory Results – Groundwater
Table 15	VOC Laboratory Results – Groundwater
Table 16	SVOC Laboratory Results – Groundwater
Table 17	Biological Laboratory Results – Groundwater
Table 18	Hydrocarbons and PAH Laboratory Results – Surface Water
Table 19	Heavy Metal Laboratory Results – Surface Water
Table 20	Various Laboratory Results – Surface Water
Table 21	Biological Laboratory Results – Surface Waters
Table 22	Field Parameters – Groundwater
Table 23	Field Parameters – Surface Water

APPENDICES

Appendix A – Elevated Panoramic and Site Photographs

Appendix B – Borehole and Trial Pit Logs

EXECUTIVE SUMMARY

URS Ireland Limited (URS) is pleased to present this report to the Electricity Supply Board (ESB), detailing the findings of a Phase 1 and 2 Environmental Site Assessment (ESA) undertaken at the ESB Great Island Power Generating Station, Campile, Co. Wexford.

ESB is in the process of divesting this asset and has engaged URS to undertake the ESA to support the divestment process. The objective of the ESA was to assess the current environmental status of the site, with particular reference to soil, sediment, surface water and groundwater quality.

The Phase 1 assessment comprised a review of information pertaining to environmental soil and groundwater quality on the site, with particular focus on site history, site environmental sensitivity, site operations, and materials storage.

The Phase 2 environmental sampling locations were selected on the basis of the Phase 1 ESA results, observations made during site walkover inspections and information gathered from key site personnel. The sampling approach was influenced by the absence of overburden across many areas of the site, access issues associated with site infrastructure and/or health and safety protocols, the steep gradients between site tiers and the density of vegetation across large areas of the site.

Environmental soil samples were collected through hand augering, test pitting and bore drilling. Monitoring wells were installed at strategic locations and groundwater samples collected and analysed. Samples of surface waters and sediments were also collected and analysed for key contaminants of concern.

Based on the results and observations of the Phase 1 and 2 ESA, the following conclusions were drawn:

- From the perspective of human health and potential risks posed by environmental soil and groundwater quality to commercial site users, the site is considered suitable for the continued industrial use.
- A conservative assessment of the soil analytical data collected during the ESA identified
 potential risks to controlled waters (i.e. groundwater and surface water) from a number of
 metals as well as polycyclic aromatic hydrocarbons (PAH) and hydrocarbon indicator
 compounds. However, URS has concluded that across the majority of the site these potential
 risks are not significant.
- It is considered that concentrations of PAH in the shallow soil near the southern site boundary
 and (to a lesser extent) in sediment and surface water samples, warrant some further
 assessment focusing on identification of likely source(s) and depending on the outcome a
 (probably limited) Quantitative Risk Assessment (QRA) to assess in more detail potential risks
 to the local ecosystems (estuary).
- Elevated concentrations of coliforms were detected in groundwater and surface waters in both
 the former landfill area and the station grounds. The primary source is considered likely to be
 agricultural practices in areas upgradient of the site, rather than historic or current site
 practices, however, there are likely to be some site-derived contributions in particular from the
 septic tank located on the lower tier.

ESB\49341640 ESB Phase 1 DD 4 Sites\DURP0012 **06** November 2009

- Elevated concentrations of ammonia in the former disposal area wells, in particular on the
 western cell, have not been delineated however, access to drill in downgradient locations
 would be difficult to achieve. Some further assessment of estuarine waters and sediment
 quality downgradient of the waste disposal areas would be warranted.
- The presence of asbestos containing materials (ACM) in the subsurface is considered unlikely, except in the capped landfill, where ACM is known to exist.

In summary, no remedial action is currently considered necessary at the site under a continued industrial land use scenario, from the perspective of environmental soil and groundwater quality; however, some requirement for further assessment has been identified.

1. INTRODUCTION & OBJECTIVES

URS Ireland Limited (URS) is pleased to present this report to the Electricity Supply Board (ESB), detailing the findings of a Phase 1 and 2 Environmental Site Assessment (ESA) undertaken at the ESB Great Island Power Generating Station, Campile, Co. Wexford.

The works were carried out in accordance with URS Proposal No. 3052214 dated 6 June 2008, which was submitted as part of ESB Tender No. PG108T613 and the subsequent scope of work e-mailed to ESB on 24 September 2008.

ESB is in the process of divesting this asset and has engaged URS to undertake the ESA to support the divestment process. The station location is presented on Figure 1 and the area to be divested is shown outlined in red in Figure 2 (hereafter referred to as "the site").

The site, which includes a former waste disposal area and a large area of undeveloped 'wetland' occupies an approximate area of 74.5 ha, while the station grounds proper occupy an approximate area of 30 ha.

The site currently operates as a heavy fuel oil (HEO) burning power-generating station and is located near Campile, on the eastern bank of the River Suir, to the north of its confluence with the Campile River.

An Integrated Pollution Prevention Control (IPPC) licence (Reg. No. P0606-02) was issued to the site by the Environmental Protection Agency (EPA) on 18 January 2005.

The objective of the ESA was to assess the current environmental status of the site, with particular reference to soil sediment, surface water and groundwater quality. The buildings and structures located on site (and the materials contained in them) were not included in this ESA.

2. PHASE 1 ASSESSMENT – SCOPE AND METHODOLOGY

A Phase 1 Assessment of the site was undertaken by URS in late September 2008.

The Phase 1 assessment comprised a review of information pertaining to environmental soil and groundwater quality on the site, with particular focus on the following:

- Site history;
- Site environmental sensitivity;
- Site operations; and
- Materials storage.

Components of the study included:

- A preliminary walkover inspection of the subject areas on 17 September 2008;
- A desktop review of information from the following sources:
 - Geological Survey of Ireland (GSI) for site geology and hydrogeology;
 - Environmental Protection Agency (EPA);
 - National Parks and Wildlife Service (NPWS) for information pertaining to surrounding Special Areas of Souservation (SACs), Special Protection Areas (SPAs) or Natural Heritage (NHAs);
 - Ordnance Survey of Ireland (OSI) for aerial photographs; and
 - IPPC licence application documents and Annual Environmental Reports (AERs) provided by ESB.
- A review of previous environmental site investigation reports undertaken at the site including:
 - An Environmental Impact Assessment of Great Island Generating Station upon the Local Soil and Groundwater Quality, ESBI, July 1996 (ESBI, 1996);
 - ESB Power Generation Great Island Generating Station Investigation of Possible Land Contamination, Phase 1, ESBI, October 2000, Ref. P004E001-R3 –Final (ESBI 2000);
 - ESB Power Generation Great Island Generating Station Investigation of Possible Land Contamination, Phase 2, ESBI, February 2002, Ref. P004E013
 R3 - Final (ESBI, 2002);
 - Environmental Risk Assessment and Remediation Plan (Final Rev 4) Former Waste Disposal Areas at Great Island Generating Station, Co. Wexford – 44871-010-447, June 2003 (URS, 2003).
 - Environmental Liabilities Risk Assessment Report ESB Great Island Generating Station, Co. Wexford – TMS Consulting (Ref. TMS #06036 Rev. 1)
 – May 2006 (TMS 2006).

3. PHASE 1 FINDINGS

3.1 Site Description

The site layout is presented in Figure 2. The area containing the power generation buildings and infrastructure ("the Station Grounds") comprises a series of tiered benches cut into the bedrock, which step down toward the River Suir estuary. A former waste disposal area, comprising two rectangular shaped cells, lies to the east of the Station Grounds. Beyond that lies a heavily vegetated undeveloped area known as the Wetlands.

3.1.1 Station Grounds - Lower Tier

A sea wall bounds the lowest tier of the Station Grounds, which is partially underlain by made ground. The main building, associated chimney stacks, cooling water pump house and process water treatment (steam purification) facility are located on the lowest tier.

A jetty connects the HFO unloading facilities with the site. A major pipeline delivers HFO from the jetty to the main oil tank farm, (located on the upper tier). An oil 'stripping' tank, located on the lower tier, collects excess HFO from the pipeline after each unloading event. Located to the north of the stripping tank are two storage tanks containing light and heavy fuel wastes. These tanks are contained within below-ground vaults.

A concrete lined water channel runs across the eastern portion of the lower tier and conducts cooling water to the cooling water outlet.

The lower tier is generally flat and lies between approximately 3 m and 4 m above Ordnance Datum (m OD).

3.1.2 Station Grounds – Middle & Upper Tiers

In the far western portion of the site, the station car park and entrance to the main station building occupy a 'middle' tier, which in turn steps down to the foreshore area. Across the remainder of the Station Grounds, a heavily vegetated steep slope separates the lower and upper tiers.

The HFO Tank Farm is located on the upper tier and contains seven above ground storage tanks. Each of five primary storage tanks has a 17,000 tonne capacity; the other two tanks are test and transfer tanks and have smaller capacities. A separate 50 tonne bunded storage tank stores diesel used as fuel for boiler start up. A pumping station in this area is used to transfer the HFO between tanks and into the transfer tank, where it is heated to enable it to be gravity fed to the boiler units. The HFO Tank Farm is bunded and concrete lined. Drainage is routed through oil interceptors and discharged to the estuary.

The larger of two switching yards is located to the north of the HFO Tank Farm. The 220 kV compound is a fenced compound containing two main bunded transformers, both of which have associated transformer oil tanks. The remainder of the compound contains

switching gear, electricity pylons and overhead wires. There is an amenities building and toilet block in the southern portion of the compound.

The 110 kV switching yard is located to the west of the 200 kV yard. Part of the plant associated with the 110kV switching yard is housed internally. A separate 38 kV transformer compound is located within the 110 kV compound. The switching yards have unsealed hardcore surfaces. A subsurface oil filled cable runs between the two switching yards. This cable is fitted with alarms that detect pressure loss.

A water reservoir, which feeds the steam generation processes, is located to the north of the 220 kV switching yard. A heavily forested area is located to the east of the 220 kV switching yard. The remainder of the upper tier generally comprises open green space, traversed by power cables supported by pylons leading from the switching compounds.

With the exception of the two switching compounds, which have flat surfaces, the upper tier has a gently undulating surface, with surface elevations ranging between approximately 25 m OD and 35 m OD.

3.1.3 Former Waste Disposal Area and Wetlands

The two cells that make up the former waste disposal area are known as Cell 1 (eastern) and Cell 2 (western). They occupy approximate areas of 2.25 ha and 1.35 ha respectively. The cells are connected to the Station Grounds by an unformed roadway and are separated by a gully, which periodically conducts surface waters to an unnamed stream that forms the southern boundary of the cells and discharges to a pond located to the south west. This pond appears to discharge to the estuary.

Most of the waste material contained within the two cells was deposited during construction of the power station and comprises surplus soil and rock. Prior to 1994, the northern half of Cell 1 also received various waste streams arising from operation of the station; this area was capped as a remediation measure in 2005.

The Wetlands to the east of the former waste disposal area are undeveloped and heavily vegetated. There is no access road into the area and no formal access point on the boundary. The Wetlands occupy an approximate area of 25 ha.

3.1.4 Foreshore Lease Areas

The site includes an area of foreshore leased by ESB. This area includes the mud flats to the west of the former waste disposal areas, the sea wall structure and the reclaimed land behind (to the north of) the wall and the portion of the Estuary occupied by the HFO unloading jetty structure.

3.1.5 Surrounding Land Use

Land-use in the vicinity of the site at the time of the site inspection was predominantly agricultural and can be summarised as follows:

Site Boundary	Land Use
North	Railway track and agricultural lands beyond.
South	River Suir Estuary.
East	Agricultural Lands
West	River Barrow

3.2 Regional Setting

3.2.1 Solid Geology and Hydrogeology

According to the GSI¹, the geology underlying the site comprises Ordovician Volcanics consisting of the Campile Formation with undifferentiated felsic volcanics. The Campile Formation is described as pale coloured rhypites in grey and brown slaty mudstones with occasional andesites.

The Campile Formation is considered a Regionally Important Fissured bedrock aquifer, with known well yields¹ ranging from 400-2,000m³/d. Groundwater in the west of the site (Station Grounds and beyond) is described by the GSI as extremely vulnerable, due to the importance of the groundwater resource and the presence of rock at/near the ground surface. Only an interim assessment of groundwater vulnerability has been carried out by the GSI in the east of the site (former waste disposal area and beyond), and this has indicated high to low vulnerability. Groundwater at the site is expected to achieve good status in accordance with the Water Framework Directive².

The GSI wells database³ indicates that there are eleven wells within a three-kilometre radius of the site.

• Ten of the identified wells are located at the site and were installed during an ESBI investigation (ESBI, 1996). The wells range in depth from 3.2m bgl (metres below ground level) to 18m bgl. Bedrock was not met in nine of the wells; bedrock was presumed at a depth of 9m in one of the wells located in the east of the site.

¹ Sleeman, A.S. ed. (1994) Geology of South Wexford. A Geological Description to Accompany the Bedrock Geology 1:100,000 Map Series, Sheet 23, South Wexford. Geological Survey of Ireland, Dublin.

² http://maps.epa.ie/InternetMapViewer/mapviewer.aspx

³ http://www.gsi.ie/Mapping.htm

 A well used for domestic supply is located approximately 2.7km to the southwest of the site, across the estuary.

3.2.2 Subsoil Geology and Hydrogeology

Previous investigation reports (see Section 3.5) have identified a distinction between the subsurface conditions encountered beneath the western (Station Grounds) and eastern (former waste disposal area and their environs) portions of the site.

According to the GSI, subsoil geology beneath the Station Grounds consists of made ground and bedrock outcrop. In addition, up to 5m thickness of fill material consisting of sand and gravel was encountered beneath the more southern portions of lower tier of the Station Grounds in the ESBI investigation (ESBI, 1996). Natural soils to the east of the Station Grounds (i.e. beneath the former landfills) consist of marine/estuarine silts and clays. The following subsoil profile was inferred from historical reports in the vicinity of the former waste disposal area.

Approx. depth (m)	Soil Description
0 – 5m	Made ground: Gravel fill material.
5 – 18m	Natural ground: Clayey sandy silt.
18 – 24.5m	Natural ground: Sand and gravel.
24.5 – 27m	Natural ground: Yellow brown glacial till.
>27m	Weathered volcanic bedrock.

Based on the results of intrusive investigations (ESBI, 1996) it was considered that the dominant shallow groundwater flow direction was towards the estuary. Permeability testing and groundwater modelling were also undertaken by ESBI to characterise the shallow groundwater pathways to the estuary.

It was concluded that the main groundwater flow pathway in the west of the site (Station Grounds) was through the made ground to the estuary. Although wells in the east of the site screened in the silt yielded little water, it was conservatively predicted through numerical modelling that the main groundwater pathway in the east of the site was percolation through the made ground and silt to the sand and gravel layer, with subsequent horizontal migration to the estuary.

Due to the site location on the estuary it is likely that groundwater flow (at least close to the estuary) is tidally influenced. Groundwater quality data compiled by ESBI indicates that groundwater at the site is brackish.

3.2.3 Surface Water Hydrology

The following water bodies are located near the site.

- The site is located on eastern bank of the Suir and Barrow River system the confluence of these rivers is located to the south west of the site and the Barrow-Nore-Suir Estuary is located to the south.
- The Campile River, located to the south of the site, also drains into the same system.
- An unnamed stream flows through the southern portion of the site, between the former waste disposal area and the Wetlands, and appears to discharge into the Suir, via a natural pond.
- Water in the Barrow-Nore-Suir estuary is described by the EPA⁴ as being of 'moderate' quality.
- Water quality in the River Suir is described by the EPA as being 'at risk of not achieving good status' under the Water Framework Directive, while waters in the Campile River and the Barrow-Nore-Suir Estuary are described as being 'possibly at risk of not achieving good status' under the directive.

There is a network of surface water drains across the site, with up to eleven (11) emission points, where surface water is discharged to the estuary. Surface water from the vicinity of the transformer units in the 220kV switching yard discharges into the main tank farm surface water system, which in turn discharges via a settlement tank and interceptor system at SW1, to the south

A network of surface water drains that service the 110 kV switching yard connect to a surface water discharge point at \$W10. There is no dedicated oil interceptor for surface water draining from the 110 kV switching yard, however, it is noted there are no transformers in the 110 kV yard.

3.2.4 Protected Areas

According to the NPWS⁵, the River Barrow estuary is a proposed Natural Heritage Area. The River Barrow and River Suir are designated as Special Areas of Conservation.

Groundwater beneath the site is protected as Drinking Water under the Water Framework Directive.

3.3 Site Development History

The station was constructed on agricultural land and in the southern portions on lands partly reclaimed from the estuary through construction of a sea wall and filling using quarried materials (thought likely to have been taken from other areas of the site).

_

⁴ http://maps.epa.ie/InternetMapViewer/mapviewer.aspx

⁵ http://www.npws.ie/

The power station was constructed in two stages. Stage 1 involved the commissioning of two 60 MW Units in 1967 and 1968 and Stage 2 involved the commissioning of a 120 MW Unit in 1972.

On site disposal of surplus excavated material, construction wastes and station waste was practised until 1994 in the former waste disposal area located in the eastern portion of the site. As mentioned earlier, the northern portion of Cell 1 was capped in 2005 as a remediation measure.

3.4 Aerial Photograph Review

A review of historical aerial photographs obtained from OSI is presented below:

IGNS 0695 (Flown 14/05/1977): The station was established and broadly similar to the current site layout. Agricultural fields bound the site to the north and east. The area east of the 220 kV switchyard and tank farm consist of grassed fields.

No evidence of land surface disturbance is evident in the lands to the east of the 220 kV compound. Some vegetation (trees/shrubs) is evident immediately adjacent to the north-eastern corner of the 220 kV switch yard.

There is no evidence of surface disturbance there however, a drainage ditch has been constructed around the southern and western permeters.

OSI 9846 (Flown 02/08/1981): No major changes are evident since 1977. Vegetation across the site is more established than in the previous photograph, particularly in the area directly east of the 220 kV switching yard, which appears to be newly forested.

No evidence of land surface disturbance is evident in the lands to the east of the compound in this photograph.

OSI website (2000): Vegetation across the site is generally more established. The former grassed fields east of the 220 kV switchyard and tank farm are heavily forested.

Further drainage features appear to have been added some time after 1977 (this area was not covered by the 1981 photograph).

3.5 Environmental Site Assessments – Previous Reports

3.5.1 ESBI 1996

This ESBI investigation (ESBI, 1996) was undertaken to assess the level and distribution of subsurface contamination at the site. A number of sources were identified which posed a potential risk of contamination:

- A transformer oil spill, disused underground petrol tank and stained tarmac area in the main station area; and
- The disposal of heavy metal-contaminated sludge, waste fuel oil and domestic waste in the former waste disposal area.

The investigation concluded that no contamination had resulted from the transformer oil spill or underground petrol tank. There was evidence that minor heavy metal and hydrocarbon soil contamination had occurred in the stained tarmac areas and in the former waste disposal area where sludge and waste oil disposal is know to have occurred.

3.5.2 ESBI, 2000 – Phase 1 Investigations

ESBI undertook Phase 1 investigations at several ESB generating stations ca. 2000. The process categorised the facilities according to the potential for the presence of contamination. The Phase 1 investigation for Great Island (ESBI, 2000) categorised the former waste disposal area as Class B – being areas where asbestos is known to be present over a large area.

3.5.3 ESBI, 2002 – Phase 2 Investigations – Former Waste Disposal Area

The Phase 2 investigation reported in 2002 comprised a grid based sampling programme (10 m 'herring-bone' grid) across the former waste disposal area. Samples were collected at 43 locations from depth intervals of up to 5.3 m bgl.

The waste materials encountered included brick, plastic, glass, wood, metal, ceramics, cloth, rubber, clinker, paper and concrete. Possible asbestos was visually identified in the soil at four sampling locations. Asbestos was confirmed to be present in these samples through laboratory testing.

From a total of 110 soil samples of

From a total of 110 soil samples 27 samples were found to have detectable levels of asbestos fibres. These were further divided into 15 samples where 'trace' levels were detected and 12 where more major' levels were detected. None of the 12 major detections had visual evidence recorded in the field and it was concluded that 'disseminated' asbestos fibres were potentially present across the investigation area – in particular around the perimeter and in the western most part of the investigation area.

Chemical testing was carried out on 106 samples. 'Significant' contamination (copper, nickel and zinc) was reported in 6% of those samples. Vanadium was elevated in several of the samples. 'Slight' hydrocarbon concentrations were also reported in approximately 40% of the samples. There was a marked correlation between the samples where chemical and asbestos contamination was recorded.

3.5.4 URS, 2003 – Risk Assessment – Former Waste Disposal Area

URS completed an environmental risk assessment of the former waste disposal area in 2003. The objectives of the study were to assess potential impacts on relevant environmental receptors from contamination (including asbestos) identified in the former waste disposal area and assess remedial options for the area. The findings are summarised below:

 The two cells in the waste disposal area were developed during two main phases of construction at the station in the mid-1960 and early 1970s, through the placement of excess rock spoils and buildings materials. The northern portion of Cell 1

(eastern cell), known as the 'Station Dump', was used thereafter for ad hoc disposal of wastes generated through site operations. Such wastes were thought to have comprised asbestos, fuel oil, boiler washings, laboratory waste, building rubble and canteen waste.

- The materials deposited in the cells are typically 5 m thick and were placed directly on natural alluvial/estuarine silts. The silt unit is approximately 10 m thick and is underlain by natural sandy gravels.
- Three distinct, water-bearing zones have been identified:
 - Localised, non-continuous water in the base of the fill units,
 - An aquifer with an hydraulic gradient encountered within the silt; and
 - A deeper aquifer within the natural sandy gravels.
- The investigations reported slightly elevated concentrations of metals in the fill materials and no impacts in the underlying natural materials;
- 180 samples were tested for asbestos, with two positive identifications;
- Minor environmental impacts to groundwater were described and included hydrocarbon sheen in water in the fill whits near the former station dump and a limited zone of suspected HFO within soils and perched water bodies in the fill also in the former station dump area.
- The risk assessment concluded that the areas outside of the former station dump (northern portion of Cell to did not pose a risk to human health of workers or to the Suir estuary. It was noted that the elevated arsenic levels and the presence of the hydrocarbons in the fill in these areas would require further assessment should a change in land use be considered in the future.
- A preliminary evaluation of remedial design identified capping of the northern portion as the preferred remedial option. This remediation approach was implemented in 2005 with EPA agreement.

ESBI were appointed to undertake the detailed design, procurement of contractors and construction supervision of the capping works.

URS were commissioned by ESB to undertake a review of the ESBI tender documents and to provide a construction quality assurance role during construction of the landfill cap. Site visits were carried out by URS over the course of the construction works, which were undertaken between June and August 2008. It was concluded that the landfill caps were constructed in accordance with the contract documents.

3.6 Site Operations

The following summary of site operations is based on information gathered during the site walkovers completed on 17 and 29 September 2008, information provided during

discussions with site personnel, and information provided in the identified previous reports (see Section 3.5), in particular the ELRA prepared by TMS (TMS, 2006).

3.6.1 Power Generation – General Process

Steam is generated in oil-fired boilers at Great Island. The steam is used to drive steam turbines, which power the electricity generators. Exhaust steam is condensed using cooling water, which is taken from the estuary treated with chlorine and returned to the estuary at a slightly elevated temperature.

Transformers are used to raise the voltage of the generated electricity making it suitable for long distance transmission.

There are three electricity-generating units at Great Island. Electricity from Units 1 and 2 is transferred to the indoor 110 kV transformers via underground oil filled cables. Electricity from Unit 3 is transferred to the 220 kV transformers via over ground cables.

3.6.2 Fuel Storage

HFO Tank Farm

HFO is pumped from the oil delivery jetty to the Tank Farm, located on the upper tier, via an above ground pipeline. From the jetty, the pipeline is routed in an eastward direction along the top of the seawall as far as the HFO draining by gravity from the pipeline after fuel unloading events. The oil is stored in the tank until the next unloading event when it is pumped up to the tank farm.

At the stripping tank, the pipeline turns northwards, running 'uphill' to the tank farm located on the upper tier. Betore the stripping tank, a short (6m) section of the pipeline runs underground where it crosses under a service roadway.

The tank farm contains a total of seven HFO tanks. Each of five primary storage tanks has a 17,000 tonne capacity; the other two tanks are test and transfer tanks and have smaller capacities. A pumping station is used to transfer the HFO between tanks and into the transfer tank, where it is heated to enable it to be gravity fed to the boiler units.

A separate 50 tonne bunded storage tank stores diesel used in as fuel during boiler start up. The Tank Farm is bunded and concrete lined. Drainage is routed through oil interceptors and discharged to the estuary.

Transformer Yards

The high voltage transformers are all oil filled. Their capacities vary between 13.82m³ and 59.8m³ (TMS, 2006). Oil filled cables run between the 220 kV and 110 kV switching yards. These are equipped with alarms that detect pressure loss.

Propane

Propane is stored on-site and is used in the boiler ignition process.

Waste Fuel Storage

Waste HFO is stored in a 50,000 litre (L) tank located north of the HFO stripping tank. Waste Light Fuel Oil (LFO) is stored in a 18,000 L tank located in the same area. These two tanks are located within below-ground concrete vaults which provide secondary containment.

3.6.3 Water Treatment

Water is used in two separate processes on-site.

- Town supply water (stored in a the reservoir in the north of the site) is treated on-site to make it suitable for boiler use. A condensate polisher (containing beds of resins) captures the soluble solids in the condensate. Dissolved oxygen is removed from the condensate through the addition of hydrazine. A deaeration tank removes oxygen, nitrogen and carbon dioxide. Ammonia is also added to lower the pH.
- Water for the cooling system is taken from the estuary at the pump house and is
 used to condense steam from the turbines. Chlorine may be added as a biocide.
 The condensate is then returned to the estuary via the culverted discharge channel
 located on the lower tier of the Station Grounds.

3.7 Materials Storage

Chemicals used for water conditioning include ammonia, hydrazine, sodium hydroxide, sulphuric acid and phosphate. Most of these are stored in (or near) the water treatment plant, located on the lower tier of the Station Grounds.

Chemicals used on site in the water treatment process include sodium hydroxide and sulphuric acid. These chemicals are stored in bunded areas in the vicinity of the water treatment plant on the central portion of the site.

3.8 Reported Incidents & IPPC Compliance

According to the ELRA prepared by TMS consultants (TMS, 2006) an overflow from the oil-stripping tank occurred in the 1970s during a delivery, with resulting discharge of oil into the estuary. An extensive clean up was carried out and unloading procedures were reviewed and improved.

In 1992, one of the five oil tanks in the HFO Tank Farm leaked into the concrete bund. The spill was contained.

4. PHASE 2 ASSESSMENT

The environmental sampling locations were selected on the basis of the Phase 1 ESA results, observations made during site walkover inspections and information gathered from key site personnel. The locations of the sampling points are presented in Figure 3 and are described below.

The sampling approach was influenced by the absence of overburden across some many areas of the site, access issues associated with site infrastructure and/or health and safety protocols, the steep gradients between site tiers and the density of vegetation across large areas of the site. For these reasons, the approach was largely based on characterisation of groundwater quality in the downgradient portion of the site and shallow soil characterisation in areas where access allowed. These assessments were supported by detailed inspections of inaccessible areas as well as review of historical aerial photographs.

The locations of the monitoring wells installed on the lower tier were selected so as to provide reasonable coverage of the foreshore but were also biased towards key infrastructure including the waste oil tanks, the Oil Stripping tank and the process water treatment plant.

4.1 Soil and Groundwater Sampling

The scope of work carried out during the Phase 2 investigation comprised the following:

- Drilling of seven boreholes (BH201 to BH207) using an air rotary drilling rig;
- Collection of fill and overburden samples during drilling using a split spoon sampler;
- Collection of groundwater samples from:
 - The newly installed monitoring wells (BH201 to BH206). Monitoring well BH207 was a dry well;
 - Two existing groundwater monitoring wells (BH2 and BH3) on the Station Grounds;
 - Three existing wells on the more western of the two landfill cells (MW101, MW102 and MW107);
 - Five existing wells on the eastern landfill cell (MW104, MW106, MW200, MW201 and MW202).
- Surveying the elevations of newly installed groundwater monitoring wells (as well as existing wells where required);
- Excavation of seventeen shallow trial pits (TP101 to TP117) and collection of soil samples:
- Excavation of three hand augered samples from the bund walls around the HFO Tank Farm;

ESB\49341640 ESB Phase 1 DD 4 Sites\DURP0012 **06** November 2009

Issue 5.doc

- Walkover inspections of the accessible heavily forested areas;
- Inspection of licensed surface waters discharge points and collection of samples (where water was present) from five points (SW1, SW5, SW6, SW8 and SW10);
- Collection of seven sediment samples (SS01 to SS04 and SS10 to SS12) from the foreshore areas to the west of the former landfill cells and to the west of the Station Grounds (as access would allow);
- Detailed walkover inspection and collection of eight hand augered samples from across the 220 kV compound;
- Detailed walkover inspection and excavation of one⁶ trial pit from the 110 kV compound;
- Elevated photographic survey of the site; and
- 'Bracketing' sampling around hand augered sample HA04.

The drilling, trial pitting and hand augering works took place during week ending 3 October 2008. Groundwater, surface water and sediment sampling took place during the following week.

A second site visit was undertaken on 31 October 2008 when a groundwater sample from existing monitoring well BH2, which was previously covered by a site vehicle, was collected. Bracketing soil samples were collected from around hand auger sample point HA04, where elevated concentrations had been recorded. The elevated survey and survey of the well heads also took place at this time.

4.2 Laboratory Analysis &

Soil and water samples selected for chemical analysis were sent under chain of custody procedures to Alcontrol Laboratories in Dublin. Analysis for asbestos in soils was undertaken by Envirochem at their laboratory in Southampton, England. Both laboratories were UKAS accredited for the respective analysis completed by them.

The soil samples were analysed for the following parameters:

Analyte	No. of Samples – Soils	No. of Samples – Sediments
Total Petroleum Hydrocarbons (TPH) Criteria Working Group (CWG) Analysis	51	7
Benzene, Toluene, Ethylbenzene, Xylene (BTEX) Compounds	51	7

⁶ Access to the internal switching yard was not possible – this trial pit was excavated in the grassed area to the north of the internal switching yard building.

-

Analyte	No. of Samples – Soils	No. of Samples – Sediments
Total Organic Carbon (TOC)	47	0
Metals (As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sb, V, Zn)	47	7
Speciated Polycyclic Aromatic Hydrocarbons (PAHs)	26	7
Total Phenols	24	7
Total Cyanide	24	7
Chloride, Fluoride and Sulphate	17	7
Polychlorinated biphenyls (PCBs)	15	4
Volatile organic compounds (VOCs)	2	1
Asbestos in Soil	30	0

The groundwater samples were analysed for the following parameters:

Analyte	Groundwater	No. of Samples - Surface Water
TPH CWG Analysis	15	5
BTEX Compounds getical test	15	5
Metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Se, V, Zn)	15	5
PAHs	12	5
Total Phenols	15	5
Total Cyanide	15	5
PCBs	15	5
VOCs	6	5
SVOCs	4	5
Anions/cations: aluminium, boron, barium, calcium, chloride, iron, potassium, manganese, sodium, sulphate, alkalinity, total hardness, total dissolved solids	15	5
Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD),	15	5
Nutrients: ammoniacal nitrogen, nitrate, nitrite, phosphate	14	5
Total and faecal coliforms	10	5

Issue 5.doc

5. PHASE 2 METHODOLOGY

The intrusive investigation methodologies were based on the British Standard for the Investigation of Potentially Contaminated Sites (BS 10175:2001).

5.1 Soil Sampling

5.1.1 **Trial Pitting**

A four tonne 'mini'-excavator was used to advance the trial pits. Excavation progressed at each location until natural soils under the fill units were confirmed although refusal or unstable ground conditions limited the location and depth of excavation in some places.

A URS field engineer supervised all excavation works. Each trial pit was one excavator bucket in width (nominal 750mm) and approximately 3m in length and the location was scanned using a cable avoidance tool prior to excavation.

The field engineer then logged, sampled and photographed the excavation as it progressed. The excavations were backfilled with the excavated material before moving to the next location.

5.1.2

to the next location.

Hand Augering

A hand auger was used to collect near surface soil samples where access was restricted such as in the transformer compound the hand auger was cleaned prior to sampling. Samples were collected directly from the hand auger for logging and analysis.

5.1.3 **Borehole Drilling**

Where overburden or made ground was encountered during borehole drilling, a representative sample was obtained from the drill arisings and placed into laboratory supplied sample jars Samples were collected at nominal 1.0m intervals until bedrock was reached using a split barrel sampler. Samples collected for asbestos analysis were placed in a ziploc bag.

The sample containers were labelled with a unique sample number and placed in a suitable container for transportation. The field engineer wore single-use disposable nitrile gloves during sample collection and sample handling.

Soil from each investigation location was visually examined for evidence of contamination and screened using a photoionisation detector (PID) for the presence of volatile compounds. Drill arisings were also inspected for the presence of suspected asbestos containing materials (SACM). Samples were selected for analysis based on evidence of contamination. The URS engineer noted the location on a plan, noted the sample depth and the sample number(s) and recorded the position using a portable GPS.

5.2 **Groundwater Monitoring Well Installation**

Air rotary drilling techniques were used to advance boreholes into bedrock. Air rotary drilling utilises compressed air and a 'down-hole' percussive hammer to pulverise the

rock and blow the cutting back to the top of the hole. Glover Site Investigation Ltd were contracted to undertake the drilling works.

The boreholes were advanced until groundwater was encountered and a monitoring well was then installed within the completed borehole, with the well screen extended across the observed water table.

The monitoring wells were constructed using 50mm diameter HDPE standpipe with a nominal 3m - 4m screened interval. The screened section was surrounded by a washed gravel filter pack. A bentonite seal was placed at the surface to minimise the potential for surface and shallow groundwater entry. The monitoring well head-works were completed using flush mounted trafficable covers

Following completion, the monitoring wells were developed to enhance the wells' ability to exclude fine-grained material.

5.3 Groundwater Sampling

Prior to sample collection, an interface probe was used to measure depth to groundwater and to assess the presence of free phase oil product in the wells. The monitoring wells were purged of at least three annular volumes of water using manual inertial lift pumps dedicated to each well to ensure representative groundwater samples were collected.

The collected water was placed directly into laboratory supplied sample containers appropriate to the proposed analytes (with appropriate preservatives if required).

In addition to the collected samples in-situ water quality parameters (temperature, pH, electrical conductivity, redox-potential and dissolved oxygen) were recorded. Standard environmental sampling techniques were adopted to minimise the risk of cross contamination between sampling locations and to ensure quality of samples upon receipt at the laboratory.

Field duplicate samples were collected during the groundwater and surface water sampling at a rate of one duplicate for every 10 primary samples.

All sample bottles were labelled with a unique sample number for each monitoring well and placed in a cool box dedicated for water samples.

5.4 Elevated Photograph Survey and Monitoring Well Survey

In order to record the condition of the site prior to divestment, an elevated photograph survey was undertaken by Murphy Surveys Ltd. The elevated panoramic photographs were taken using a high spec digital camera namely a Canon G7. The camera was mounted on a telescopic mast that is capable of reaching 15m in height, thus allowing an overview of the portion of the site at the survey location. Panoramic photographs were taken at several locations around the site.

Murphy Surveys also carried out an elevation survey of each of the newly installed monitoring wells to National Grid (IG75) using a Trimble real-time RTK GPS solution.

The elevated panoramic photographs are presented in Appendix A together with other photographs taken at site surface level. A map showing the locations from where the images were captured is presented in Figure 6.

Consent of copyright owner required for any other use.

6. **PHASE 2 FINDINGS**

Site Geology 6.1

Boreholes and trial pit logs are presented in Appendix B.

Overburden encountered in the trial pits excavated on the upper tier of the Station Grounds generally comprised a thin layer of fine-grained sandy and silty topsoil overlying weathered bedrock. The thickness of the overburden was typically less than 0.5 m.

Borehole BH207, excavated near the 220 kV switching yard, encountered 1.75 m of loose brown clay overlying bedrock.

On the lower tier, up to 6.5 m of fill material was encountered along the southern margin, within the reclaimed foreshore area. The localised fill material comprised a lower layer of clays with occasional boulders, underlying an upper layer of boulders. Similar conditions were encountered at boreholes BH202, BH203 and BH204.

At the other boreholes located on the lower tier (BH201, BH05 and BH206) up to 3 m of natural clays overlying bedrock were encountered. These locations are to the north, or near the northern margins of, the reclaimed area.

6.2

6.2.1

Site Hydrogeology

Groundwater Occurrence

On the lower tier, a water strike was recorded in BH202, in the fill material at a depth of 4.7 m bgl. Similar 'perched's water was not encountered in the fill material in the other boreholes and its occurrence BH202 is considered likely to be isolated.

Groundwater strikes in the fractured bedrock were recorded in each of the wells drilled in the lower tier at depths ranging between 7 m and 17 m bgl.

No groundwater was encountered in monitoring well BH207, located on the upper tier, south of the 220 kV switching yard. This bore was advanced to 19 m BGL through fractured bedrock and a monitoring well was installed to 12 m BGL. Subsequent gauging indicated the well had remained dry following installation. Groundwater was not encountered in any of the trial pits excavated on the upper tier.

6.2.2 Inferred Groundwater Flow Direction

Groundwater table elevations are presented on Figures 4 and 5 for the lower tier and former waste disposal area of the site respectively. As stated above, groundwater was not encountered in the well within the upper tier.

Groundwater was inferred to flow through the bedrock aquifer in a south-to-southeastward direction beneath the southern portion of the site. It is noted this area is almost entirely sealed with concrete or buildings.

Groundwater (likely 'perched' water) was encountered in the fill materials at only one location. A flow direction for this upper water bearing unit was not therefore inferred.

With regard to the former waste disposal area there is insufficient data to infer groundwater flow direction; however, previous studies (Section 3.5) inferred three distinct, water-bearing zones including:

- Localised, non-continuous water at the base of the fill units,
- An aquifer with an hydraulic gradient encountered beneath the silt/fill interface; and
- A deeper aquifer in the underlying natural sandy gravels.

Groundwater modelling (URS, 2003) suggested groundwater flow in this area of the site was towards the estuary.

6.3 Field Evidence of Contamination

During the intrusive site investigation no evidence of contamination in the form of staining or odours was observed, with the exception of a localised area of surface staining on the southern boundary of the 220 kV switching compound (HA04).

6.4 Field Parameters

Measurements of pH, electrical conductivity (EC) and temperature were made on groundwater and surface water samples collected in the field. The data are presented in Tables 22 and 23 respectively. Also presented in this table, for comparison with EC results, are total dissolved solids (FDS) laboratory results.

6.4.1 Surface Waters

For surface waters sampled in the field the EC results are typical of fresh waters, with the exception of SW8, located on the south-western corner, where the EC reading exceeded the IGV for this parameter. It is possible there is some seawater influence in this sample. It is noted the sodium and chloride concentrations were also markedly elevated in this sample, which is consistent with the presence of estuarine waters.

PH in these surface water samples was generally typically neutral. Elevated temperature ranges (14 to 35°C) are likely related to the site processes.

6.4.2 Groundwater Samples

EC (and TDS) results from the western cell (MW101, MW102 and MW107), which ranged from 10,600 to 37,100 μ S/cm, appear to be influenced by brackish waters from the estuary. This is consistent with elevated concentrations of some of the anion and cation concentrations recorded in groundwater.

EC results from the eastern cell are within normal ranges for fresh water, with the exception of MW202 and MW201, where results of 2,930 and 5,350 μ S/cm were recorded. Sodium, chloride and other anions and cations were more elevated in these

than in the other wells on the eastern cell, indicating the probably presence of estuarine waters, however, there is also potential the elevated EC to be related to leachate in the former waste cell.

PH in the groundwater samples (measured in the field) in the western former cell (MW101, MW102 and MW107) was generally typical of neutral to slightly alkaline conditions. A pH reading of 9.3 was recorded in MW101, which is slightly outside of normal ranges for groundwater.

6.5 Site Inspections

As described in Section 5, site walk over inspections were undertaken in areas that were inaccessible for investigation by intrusive means. These included the forested areas to the east of the station grounds and in the north-western corner of the site. No evidence of contamination was encountered during these inspections.

In two locations within the forested area east of the station grounds, discarded blue polythene wrapping was noted (see Photograph X). These were to the north of the area, near the access roadway and immediately the east of the HFO tank farm boundary.

A more detailed inspection of these two areas suggested some minor clearing works had been performed there, as there were several saved logs in the vicinity. There was no evidence that the former contents of the wrapping was present at these locations.

No suspected asbestos containing material (SACM) was encountered at these locations.

aining mati

Issue 5.doc

7. ANALYTICAL RESULTS

7.1 Data Assessment Criteria

In order to assess the environmental quality of data gathered through intrusive investigations, criteria were chosen as guidelines against which the analytical results could be compared. These assessment guidelines and the rationale for their use are described below.

7.1.1 Chemical Parameters

Soil Quality

The soil analytical samples were compared with Stage 2 Generic Assessment Criteria (GAC). The GAC are conservative screening criteria protective of human health (assuming on-going industrial use of the site) and controlled waters (groundwater and surface waters).

If the concentrations are below the GAC, then the risks to human health and controlled waters are considered negligible. If the concentrations are above the GAC, there is a potential risk to human health and / or controlled waters.

URS considers that the GACs are consistent with the principles of human health and controlled waters protection in Irish Environmental Protection Agency, UK DEFRA and UK Environment Agency guidance.

Metal concentrations in soil have been compared against background data for Irish soil published by the EPA⁷. The published data was based on test samples collected from across the Republic of Ireland and to remove the effect of statistical outliers, the 95 percentile values were used as screening criteria. It should be noted that these 95-percentile values represent Irish background levels and are not indicators of environmental risk.

The Dutch Screening (S) and Intervention (I) Values are also presented in the data tables for soil and sediment results. These criteria have been presented to provide continuity with preceding environmental assessment reports for the site and are referenced in the discussion sections where pertinent to the current works. The DIVs represent levels above which there may be a risk to human receptors and above which more detailed site-specific risk assessment may be required. With regard to PAH compounds, the Dutch criteria provide a DIV for the sum of ten PAH compounds.

Groundwater Quality

Groundwater analytical results were assessed by comparing them to the EPA Interim Guideline Values (IGVs). These guidelines were developed using a number of existing water quality guidelines in use in Ireland including existing national Environmental Quality

_

⁷ Environmental Protection Agency, *Towards a National Soil Database (2001-CD/S2-M2)*, 2007

Standards (EQSs), proposed common indicators for the EU Groundwater Directive, Drinking Water Standards and GSI trigger values.

Surface Water Quality The Environmental Protection Agency Environmental Quality Standards (EQS) for Waters (Draft), which provide guidance on the ecological quality of surface water, have been used to assess surface water results. Where available the EQS for estuarine waters has been applied.

7.1.2 Asbestos in Soil

The assessment of asbestos in soil was based on the presence or absence of asbestos as confirmed by a UKAS accredited laboratory. ESB has adopted a generic "asbestossafe" level for residual asbestos fibres in soil of 0.1%. URS has verified that the adopted "asbestos-safe" level is protective of human health, based on the CLEA CLR10 human health exposure assumptions used in the UK, combined with toxicological data taken from the USEPA IRIS database.

The laboratory used to perform the analysis of soil samples indicated that a 'No Asbestos Detected' result was consistent with a detection limit of less that 0.01%, which is consistent with the method used by the laboratory (MDHS 77).

7.2 Soil Analytical Results

The soil data collected from trial pits and during drilling of boreholes are presented in Tables 1 to 7. There were no exceedances of the human health GACs. Exceedances of the other selected guidelines are discussed in the following.

7.2.1 Hydrocarbon Compounds

Hydrocarbon indicator compounds (Table 1) were generally not detected in soils (above the laboratory method detection limit (MDL)), with the following exceptions:

220 kV Compound

- A total TPH concentration of 7,861 mg/kg was recorded in sample HA04 collected from within the 220 kV compound. The concentration of aromatic fractions detected was 653 mg/kg, while the aliphatic fractions (C₁₂ to C₃₅) totalled 7,208 mg/kg. This was above the DIV of 5,000mg/kg. No BTEX compounds were detected in this sample.
- All speciated aromatic and aliphatic hydrocarbon concentrations in sample HA04 were below human health GACs for soil, however, the detected concentrations exceeded some of the controlled waters GACs for soils.
- No hydrocarbon indicator compounds were detected in additional 'bracketing' samples collected from around HA04 (samples HA12 to HA15).

Station Grounds - Upper Tier - Trial Pit Samples

- A total TPH concentration of 3,284 mg/kg was recorded in a soil sample collected from a depth of 1.5 m in trial pit TP106, located at the northern site boundary, south of the railway track. TPH was not detected in the sample collected from a shallower depth of 0.5 m in TP106. The TPH fractions represented were aromatic, the highest concentrations (3,037 mg/kg) from the C₁₂-C₁₆ range. The TPH concentrations exceeded the respective GACs for controlled waters.
- A total TPH concentration of 1.14 mg/kg was recorded in trial pit TP108 at a depth of 0.3 m. The location is at the site boundary, near a small boat jetty.
- A total TPH concentration of 0.133 mg/kg was recorded at TP113 at a depth of 0.5 m, located immediately north of the 110 kV compound.
- A total TPH concentration of 0.613 mg/kg was recorded in TP117 in a sample collected from 0.5 m depth. The trial pit is located on the lower tier, near the western foreshore. TPH was not detected in the sample collected from 1.5 m in the same pit.

Borehole Samples - Lower Tier

- TPH concentrations that exceeded the GAC for controlled waters was recorded in soil samples collected from the boreholes excavated in the southern portion of the station grounds, near the sea wall. These included BH203 and BH204, where concentrations ranging between 15 72 and 987.58 mg/kg were recorded.
- In BH205, located to the west of the power generation building, similar concentrations of total TPH alphatic fractions were detected, but aromatic fractions (C₁₂ to C₃₅) predominated

7.2.2 220 kV Compound Consent **PAH Compounds**

PAH were detected in sample HA04. The total PAH concentration for the sum of 16 PAH compounds (Total 16 EPA PAH) was 2.761 mg/kg. All of the individual PAH compounds exceeded the respective controlled waters GACs. None were detected in the bracketing sampling completed around HA04 (HA12 to HA15).

Station Grounds – Upper Tier – Trial Pit Samples

- PAHs were detected in trial pit TP106 in a sample collected from a depth of 1.5 m BGL. TP106 is located at the northern site boundary. The concentrations did not exceed GACs.
- PAHs were also detected in the sample collected from 0.3 m depth in TP108. These concentrations exceeded controlled waters GACs.
- PAHs were detected in the 0.5 m sample collected from TP115 and TP117, located in the centre and western portions of the station grounds respectively.

Borehole Samples - Lower Tier

 An elevated concentration (15.451 mg/kg) of PAHs was detected in soils collected from borehole BH203 at a depth of 3.0 m in a unit of soft gravely clays. The component PAHs exceeded respective GACs for controlled waters. Relatively lower concentrations (< 0.5 mg/kg) were detected in samples BH201 and BH204.

7.2.3 Heavy Metals

With the exception of antimony, cadmium, mercury and selenium all of the other heavy metals concentrations in samples collected from across all areas of the site exceeded the GACs for controlled waters. Also presented on Table 3 are typical regional background concentrations. The concentrations are discussed further in Section 8.

7.2.4 Other Analytes

- Phenols were detected at low levels in several samples collected from across the site. Given the apparent random distribution of these detections across the site and the lack of an immediately identifiable source, these results were queried with the laboratory and an internal investigation was completed. It was concluded by the laboratory the low level concentrations were related to a batch of filters used in sampling handling. The data were removed from the summary tables presented herein. The low level occurrences are not related to the site.
- Chloride was detected at several socations, however, no GACs are derived for comparison for this compound. Fluoride concentrations marginally exceeded GACs for controlled waters at eight sampling locations (HA05, HA11, TP101, TP103, TP117, BH201, BH204).
- PCBs and VOCs were not detected in any of the soil samples analysed.
- No suspected asbestos containing material was identified during the program. No asbestos was identified through laboratory analysis of the collected soil samples.

7.3 Sediment Analytical Results

7.3.1 Hydrocarbon Compounds

Hydrocarbon indicator compounds were detected in all of the seven sediment samples. Both aliphatic and aromatic fractions were represented, but the majority of the total TPH concentration was represented by aliphatic heavy end (C_{21} to C_{35}) fractions. Higher concentrations (50 to 200 mg/kg) were recorded in samples SS01, SS02 and SS03, collected from the foreshore to the west of the former landfill cells, near the cooling water outlet. The remaining four samples, which were collected from the foreshore area to the west of the Station Grounds recorded lower (< 5 mg/kg) concentrations. The samples collected near the landfill mostly contained aliphatic fractions, which were absent from the samples collected west of the station grounds.

7.3.2 PAH Compounds

PAH were detected in all sediment samples. No exceedances of the controlled waters GACs were recorded.

7.3.3 Heavy Metals

Mercury and selenium were not detected (above the MDL) in the sediment samples analysed. Molybedenum was detected at concentrations that did not exceed GACs in four of the samples, chiefly those from the western foreshore. Nearly all other heavy metal results exceeded the respective GACs for controlled waters.

Also presented on Table 3 are typical regional background concentrations. The concentrations are discussed further in Section 8.

7.3.4 Other Parameters

Chloride concentrations were elevated in the collected samples. No GACs exist for comparison.

7.4 Groundwater

The groundwater results are divided between the wells located on the former waste disposal areas and those recently installed on the Station Grounds.

7.4.1 Hydrocarbons

Hydrocarbon indicator compounds were not detected in the groundwater samples.

7.4.2 PAH Compounds

PAHs were not detected in the wells located in the former waste disposal area.

PAHs were detected in one of the wells located on the Station Grounds (existing well BH2). Some of the PAHs (benzo(a)pyrene and benzo(b) and benzo(k)fluoranthene) exceeded IGVs.

7.4.3 Heavy Metals

Metal concentrations in excess of the IGVs were detected for arsenic. All other metal concentrations were below their respective IGVs (where present).

The arsenic concentrations observed are discussed further in Section 8.

7.4.4 Volatile Organic Compounds

VOCs were not detected in any of the targeted wells, which included two wells in the former waste disposal area (MW104 and MW107) and four wells in the Station Grounds (BH201, BH206, BH2 and BH3).

7.4.5 **Semi-Volatile Organic Compounds**

SVOC were not detected (above the MDL) in the four wells for which this analysis was scheduled (BH2, BH202, BH203 and BH205).

Trace concentrations of tentatively identified compounds (TIC) were reported for one well (BH2).

7.4.6 Other Analytes

- Many of the anions and cations were elevated above respective IGVs, in particular in the wells located in the western cell of the former waste disposal area (Cell 2).
- Ammonia concentrations were elevated in the groundwater samples collected from monitoring wells located in the former waste disposal area, in particular those on the western side (Cell No. 2) where concentrations ranged from 0.77 to 76 mg/L (against an IGV of 0.15 mg/L). Ammonia concentrations in the Station Grounds wells were markedly lower.
- Nitrite and phosphate concentrations marginally exceeded respective IGVs across the site in both Station Grounds and former waste disposal area wells.
- Phenols were detected in two wells 101 and BH2) where concentrations exceeded the IGV. As detailed above for soil data, it was concluded by the laboratory the low level concentrations were related to a batch of filters used in sampling handling. The data were removed from the summary tables presented herein. The low level occurrences are not related to the site. of copyright of

7.5 **Surface Waters**

- PAHs were detected in each of the five surface water samples collected, with the exception of SW10. Guidelines are not available for the individual PAHs. The sum of 6 PAHs exceeded the respective EQS at sample location SW6, located on the southern site boundary.
- Metals were detected in all surface water samples, generally at concentrations that were less than respective EQSs. One exceedance of the EQS for selenium was recorded for surface water sample SW8, collected from an outfall located on the south-western corner of the site.
- Anions and cations were generally below respective EQSs, with the exception of SW8, where elevated concentrations were recorded. It is likely that seawater formed a large portion of the sample collected here.
- Nitrite and phosphate also exceeded EQSs in several of the samples.
- Coliforms were detected in all samples. The concentration recorded in SW6 was greater than the respective EQS.

7.6 Data Validation

A limited number of duplicate samples were collected during the course of the site works. The results are presented in Table 6.

Upon request by URS, the laboratory (Alcontrol, Dublin) undertook ionic balance calculations for two of the data batches relating to the Great Island site. These included B05857 and B05930, which related to surface and groundwaters respectively.

In batch B05857, the laboratory identified anomalies in the surface water results for cations calcium and magnesium, which were considered abnormally low and indicated this could be due to a number of reasons including matrix interferences. The low cations results resulted in a percentage difference result, which was considerably outside of acceptable ranges. The laboratory has in indicated the other ionic data is within acceptable ranges and suitable for interpretative use.

In batch B05930 the anion sulphate was identified as being abnormally high in the context of the other anions and cations. An investigation showed that errors were made during analyses and the sulphate results were subsequently withdrawn from the groundwater data set. The laboratory has in indicated the other ionic data is within acceptable ranges and suitable for interpretative use.

and suitable for interpretative use and suitable for interpretative use the suitable for interpretative dept. The suitable for interpretative use the suitable for int

Issue 5.doc

8. DISCUSSION

There were no exceedances of the GACs protective of human health in any of the targeted media; consequently the concentrations of analysed parameters are not considered to pose a risk to current or future users of the site in a continued industrial land use scenario.

There were some exceedances of the GACs protective of controlled waters, the DSVs and DIVs for soils and the GACs for sediments. There were also some exceedances of the IGVs protective of groundwater and the EQSs protective of surface water. These exceedances are discussed below.

8.1 Soil Quality

8.1.1 TPH and PAH in Soil

Upper Tier - Trial Pit Samples

Samples in which TPH aromatic fractions (C_{12} to C_{35}) were detected in shallow soils from trial pits located on the upper tier of the station grounds also contained slightly elevated concentrations of PAHs. These investigation locations included TP106, TP108, TP113 and TP117.

No field evidence of fuel related contamination such as staining or odours were noted at these locations. BTEX compounds or aliphatic TPH fractions, which would generally indicate a fuel based contaminant cource, were not detected in these samples either. It is considered the TPH detections generally reflect the PAHs in the sampled materials.

Possible sources of PAH contamination would include boiler ash or other remnants of partially combusted materials. It is considered likely there could be minor isolated occurrences of such materials at these locations.

While some of the individual PAH concentrations exceeded GACs for controlled waters, the sum of 10 PAHs were less than the DIV in all cases.

BH207 (located immediately south of the 220 kV switching yard) was excavated to a depth of 19 m and no groundwater was encountered. The monitoring well, installed to a depth of 12 m, remained dry after installation. Given the relatively deep groundwater table beneath the upper tier, there is no pathway between the observed impact in shallow soil and the receptor (i.e. groundwater and surface water). It is unlikely, therefore, that there is a risk to the underlying aquifer beneath the subject area and these exceedances are not considered significant.

Switching Yards

Based on the results of the bracketing sampling (HA12 to HA15) undertaken near the south-eastern boundary of the 220 kV switching yard, it is considered the contamination encountered in sample HA04 is localised. Given the distance from the two oil tanks located in the switching compound, it is considered unlikely to be related to a spill or leak

from those potential sources. It appears the area concerned is used for storage of replacement (or spent) parts for the switching yard and it is considered likely the isolated contamination relates to these practices.

Lower Tier - Borehole Samples

PAHs were detected in soil samples collected from boreholes (BH203 and BH204) located along the foreshore area.

The likely closest source of PAH in this instance is considered to be the boiler wash effluent tank, located approximately 50 m to the north east, however, it is unclear whether spillage from this process has occurred historically.

The PAH concentrations detected in these soil samples exceeded the GACs for controlled waters and given the proximity to the estuary the concentrations are considered to warrant further assessment. It is noted the DSV for total PAHs was exceeded in only one of the soil samples (BH203) in this area. It is also noted PAHs were detected in surface water sample SW6, located downgradient.

In contrast to the TPH concentrations detected in samples collected from the trial pits on the Upper Tier, those detected in soil sample BH204 had both aliphatic and aromatic fractions present.

While the aromatic TPH compounds are likely to be related to the PAHs, the heavy end aliphatic fractions are more likely related to a heavy fuel oil source. However, these TPH concentrations did not exceed the individual GACs or DIV. They may be remnants of the spill that occurred at the stripping tank in the 1970s. The recorded concentrations are not considered to be a significant risk to the environment.

8.1.2 Metals in Soil

Almost all of the metar concentrations in soil exceeded the respective controlled waters GACs and a small number of metal concentrations were above the published EPA background values. The DIV for arsenic of 55mg/kg was exceeded in samples collected from locations HA01, TP08 and TP116, all at depths of less than 0.5m bgl. The DIV for copper was exceeded in sample HA02_2.5m and the DIV for zinc was exceeded in sample HA05_0.2m.

The EPA report identifies arsenic, lead and vanadium as occurring at naturally elevated concentrations in the southeastern region of the country. In addition, vanadium and nickel are known to be present in the HFO stored on-site and detections of these metals at low levels are not uncommon on fuel-fired power stations.

Based on the comparison with the published background concentrations, the recorded concentrations in soils are not considered to be a risk to the environment.

8.1.3 Other Compounds in Soil

Fluoride concentrations that exceeded the screening level GACs for controlled waters in soils are not considered to be a significant issue. They are widely distributed across the

site through developed and undeveloped areas, which is not consistent with potential point source (or sources) on site. Furthermore, the GACs are conservative screening criteria and the exceedances recorded for fluoride were marginal.

8.2 Sediment Quality

PAHs in Sediment

PAH concentrations detected in sediment are likely related to site activities, most likely being derivatives of combustion in the site boilers and/or the boiler clean out activities.

The concentrations did not exceed GACs for soils designed to be protective of controlled waters. PAHs were not detected in groundwater samples collected from monitoring wells located in the former waste disposal area, indicating there are unlikely to derive from materials contained therein. Equally, with the exception of BH2, PAHs were not detected in monitoring wells located in the Station Grounds.

PAHs were detected in at low concentrations in surface water samples collected from several of the process drain outlets across the foreshore and it is likely the PAH detected in the sediment are a result of low PAH concentrations in the surface water discharges and/or runoff.

TPH in Sediment

Aromatic TPH fractions detected in sections may be due to the presence of PAHs (as outlined in the preceding section). The aliphatic fractions are more likely fuel related. The aliphatic fractions did not expect the respective controlled waters GACs.

It is noted surface waters from the Tank Farm discharge (via an interceptor) to the estuary near these sediment-sampling locations. While TPH was not detected in the surface waters at this outfall on this occasion, it is possible that historical discharges have contained low levels of hydrocarbons and this is considered to be the most likely source in the sediments.

Heavy Metals in Sediment

The occurrence and concentrations of heavy metals in the sediment samples were similar to those for soils and were generally lower than respective EPA background values.

Other Parameters in Sediment

Elevated concentrations of anions and cations, in particular chloride, are likely related to presence of brackish water in the samples.

8.3 Groundwater

The following sections discuss groundwater quality at the monitoring wells installed across the lower tier and in the former landfill cells. Groundwater was not encountered beneath the upper tier.

Heavy Metals

Arsenic was detected at concentrations marginally above the IGV of 0.01mg/l in groundwater samples collected from monitoring wells MW101, MW102, MW104 and MW202 located within the former landfill areas. The concentrations detected in these samples ranged from 0.022mg/l to 0.037mg/l. Groundwater in the area is not suitable for potable abstraction given its brackish nature. It is therefore considered that there is no risk to human health from the observed arsenic concentrations. In addition, the concentrations observed were below the EQS for surface waters of 0.05mg/l, inferring that the observed concentrations in groundwater do not pose a risk to the adjacent estuary.

Anions and Cations

The detection of elevated concentrations of anions and cations in groundwater in several of the wells is likely related to brackish nature of the groundwater, caused by proximity to the estuary.

The concentrations of some are higher in the wells located in the reclaimed area along the southern boundary of the site, than in those located further upgradient on site (BH205 and BH206). This distribution is consistent with the influence of the estuarine waters.

However, as discussed above (see Section 7.6), discrepancies were reported in the laboratory data, in particular for sulphate results, which make further detailed assessment of these results difficult.

It is noted, however, that the distribution of conductivity field measurements is consistent with that for the anions and cations, with elevated readings near the estuary and lower reading further in land.

Ammonia

Ammonia was detected in several wells across the site, in particular those in the former waste disposal area. The highest concentrations were detected in the western cell. It is understood that the station dump received wastes that included canteen wastes and other putrescible wastes (TMS, 2006); it is likely the elevated ammonia concentrations indicate the natural biodegradation of these wastes.

There are no suitable wells present to assess whether ground waters discharging from the former dumps to the estuary contain elevated levels of ammonia. Access would not be possible to install a down gradient well.

Ammonia is also stored on-site as part of the boiler water conditioning process. Ammonia was detected at concentrations that exceeded IGVs at BH3 and BH202, both located on the lower tier. The actual volume of ammonia stored on-site is quite small (2 x 1 $\,\mathrm{m}^3$) and it is stored in bunded IBCs. The concentrations detected in these wells may relate to minor historical losses to ground, however, it is considered there is no significant ongoing source on the site.

Phosphate and Nitrate

Phosphate and nitrite concentrations detected in several of the monitoring locations may be associated with local agricultural practices and the application of fertilizer to surrounding lands.

Coliforms

Coliforms were detected in several wells across the site. While the distribution would suggest the primary source is generally more likely to be agricultural practices in areas upgradient of the site, rather than historic or current site practices, it is noted BH3 (where one of the more elevated concentrations was recorded) is located reasonably close to, but upgradient of, the septic tank on the lower tier, which is connected to the sewage treatment plant. Groundwater in the area is not suitable for potable abstraction given its brackish nature. In addition, groundwater is not abstracted on site for any use. It is therefore considered that there is no risk to human health from the observed coliform concentrations in groundwater.

8.4 Surface Waters

PAHs were detected in each of five surface water samples. As discussed above, these concentrations likely relate to site 'runoff; containing PAHs derived from a variety of site sources, potentially including boiler washings, occasional deposits from chimneystacks or from the steam 'blow-down' process.

With the exception of a marginal exceedance of the EQS for Sum of 6 PAHs, the recorded concentrations did not exceed the respective EQS and as such are not considered to pose a risk to the surrounding environment.

8.5 Inaccessible Areas

Access to the area known as the Wetlands was not possible during the course of the investigation. The area is separated from the southern boundary of the former waste disposal area by a stream, which was not passable at the time of the site inspection. There is no other known access point to the area and it appeared the density of vegetation would preclude inspection if access had been possible.

The vegetation, which is well established, comprised bushes and thick gorse and is considered likely to have spread naturally, rather than having been planted. Based on the difficulty of access and the availability of a site dump (during the 70s and 80s) it is considered unlikely that wastes generated on-site would have been placed there. It is also likely that large portions of the land would be seasonally water logged or marshy, making access more difficult during these periods. It is therefore considered unlikely the area contains any site-derived contamination.

9. CONCLUSIONS

Based on the results and observations of the Phase 1 and 2 ESA, URS has drawn the following conclusions:

- From the perspective of human health and potential risks posed by environmental soil and groundwater quality to commercial site users, the site is considered suitable for the continued industrial use.
- A conservative assessment of the soil analytical data collected during the ESA identified potential risks to controlled waters (i.e. groundwater and surface water) from a number of metals as well as polycyclic aromatic hydrocarbons (PAH) and hydrocarbon indicator compounds. However, URS has concluded that across the majority of the site these potential risks are not significant.
- In general, the analytical results for most analytes were comparable to Dutch screening values (DSVs). Isolated (4 instances) of Dutch intervention value exceedances were not considered to warrant further assessment.
- It is considered that concentrations of PAH in the shallow soil near the southern site boundary and (to a lesser extent) in sediment and surface water samples, warrant some further assessment focussing considertification of likely source(s) and depending on the outcome a (probably limited) Quantitative Risk Assessment (QRA) to assess in more detail potential research to the local ecosystems (estuary).
- Elevated concentrations of conforms were detected in groundwater and surface
 waters in both the former tagefill area and the station grounds. The primary source
 is considered likely to be agricultural practices in areas upgradient of the site, rather
 than historic or current site practices, however, there are likely to be some sitederived contributions in particular from the septic tank located on the lower tier.
- Elevated concentrations of ammonia in the former disposal area wells, in particular
 on the western cell, have not been delineated however, access to drill in
 downgradient locations would be difficult to achieve. Some further assessment of
 estuarine waters and sediment quality downgradient of the waste disposal areas
 would be warranted.
- The presence of asbestos containing materials (ACM) in the subsurface is considered unlikely, except in the capped landfill, where ACM is known to exist.

In summary, no remedial action is currently considered necessary at the site under a continued industrial land use scenario, from the perspective of environmental soil and groundwater quality; however, some requirement for further assessment has been identified.

Figures

0 km 1 km 2 km 3 km

Ordnance Survey Ireland Licence No EN 0001908 ©Ordnance Survey Ireland and Government of Ireland

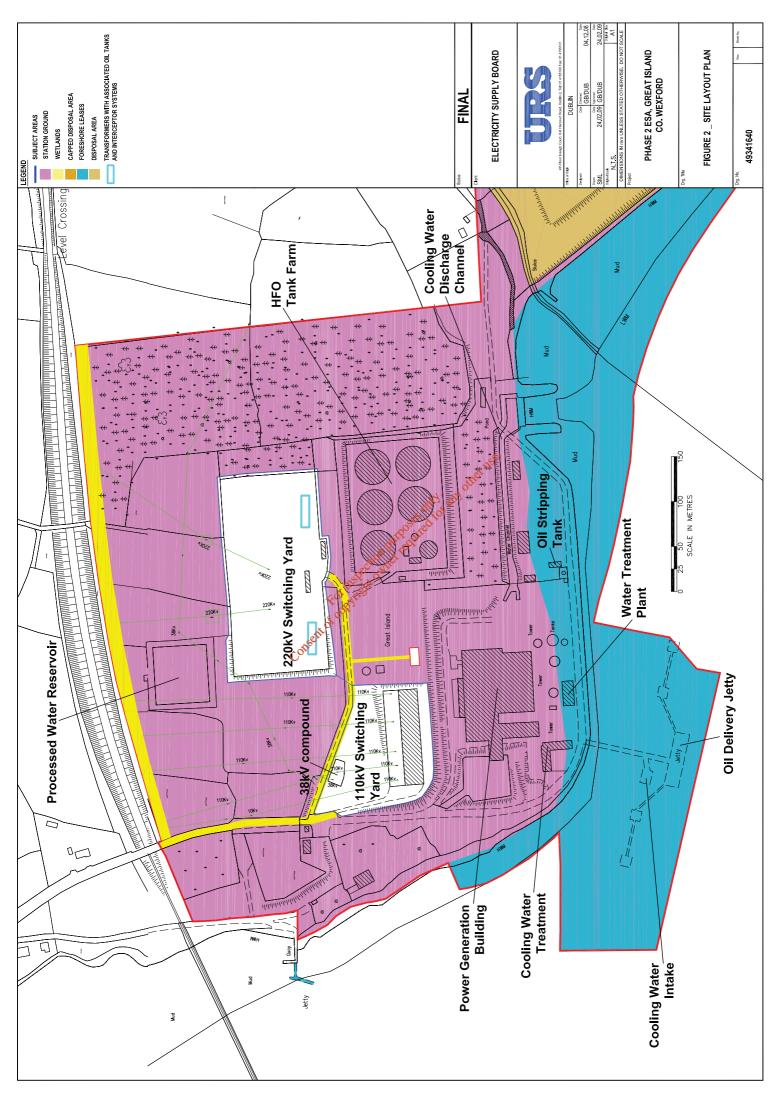
CLIENT

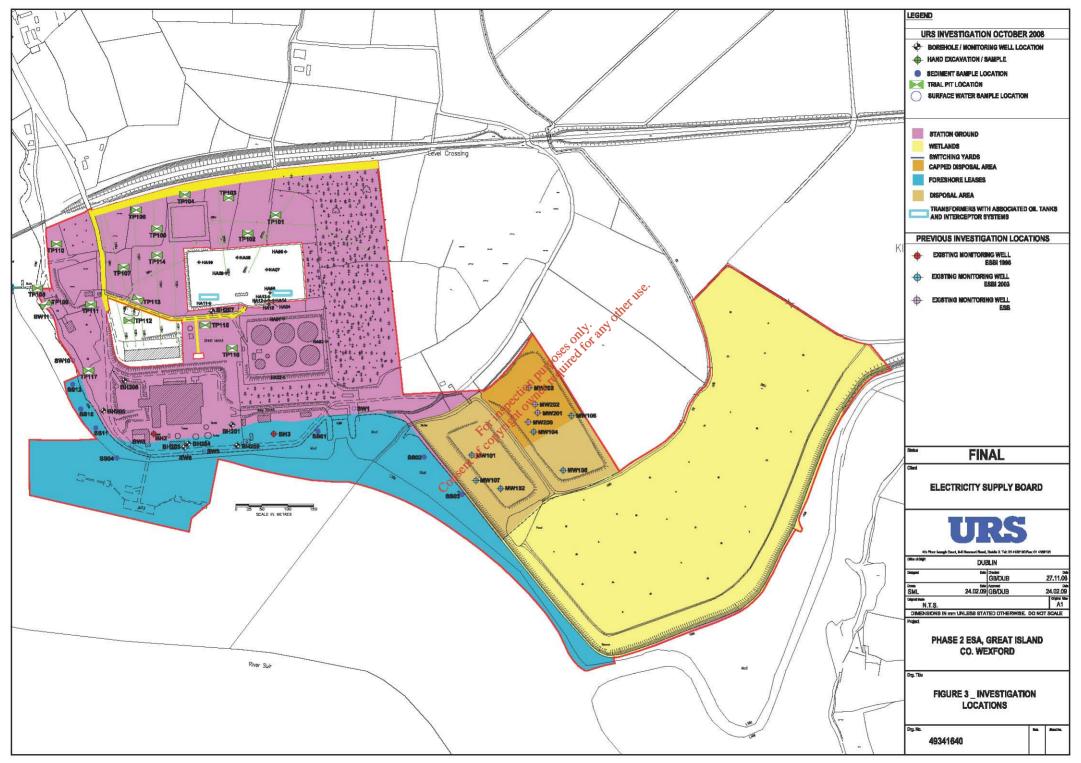
ELECTRICITY SUPPLY BOARD

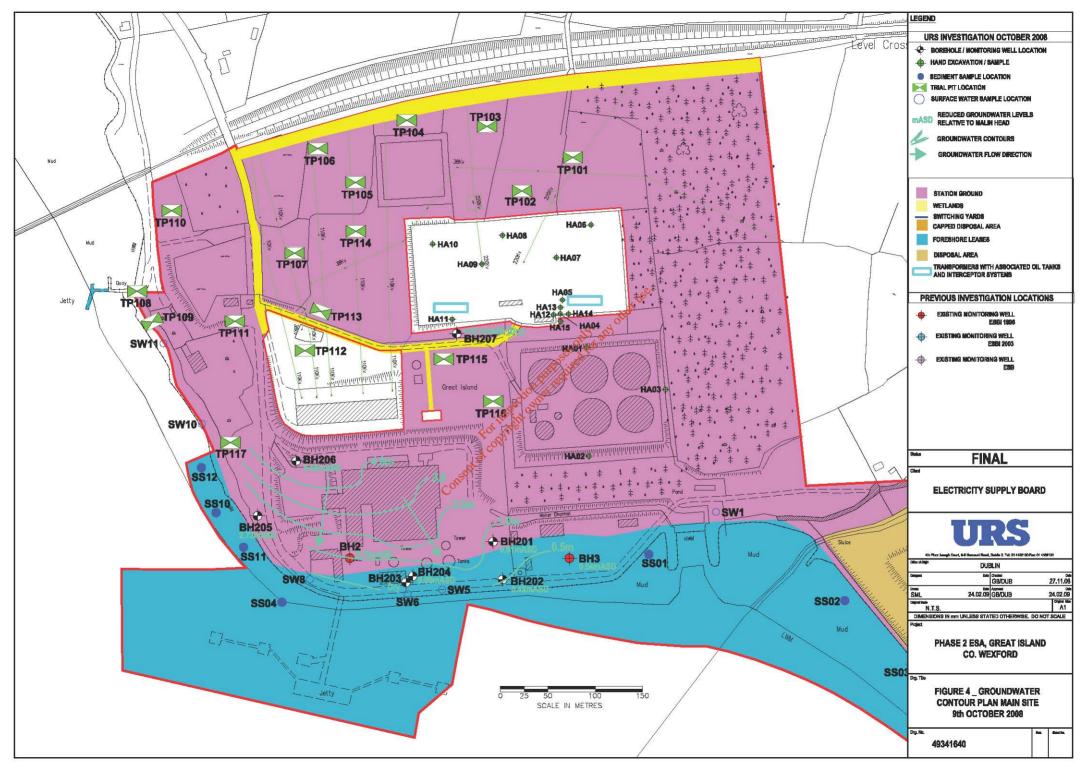
PROJECT LOCATION

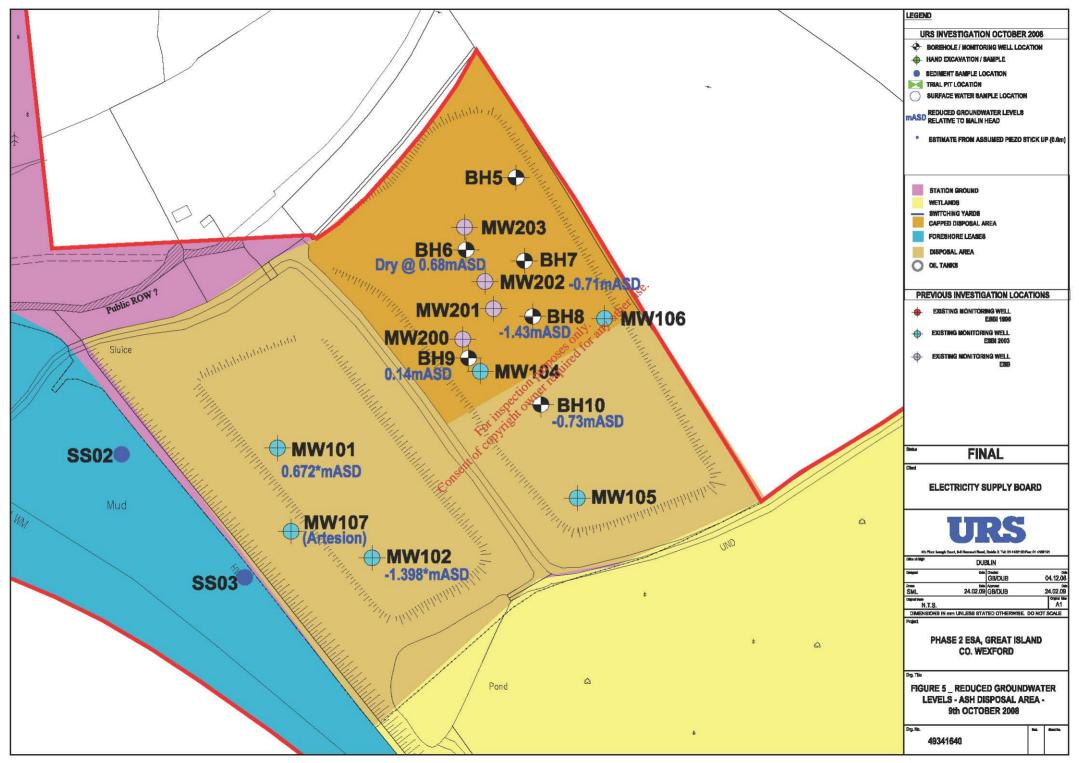
PHASE 2 ESA, GREAT ISLAND CO. WEXFORD

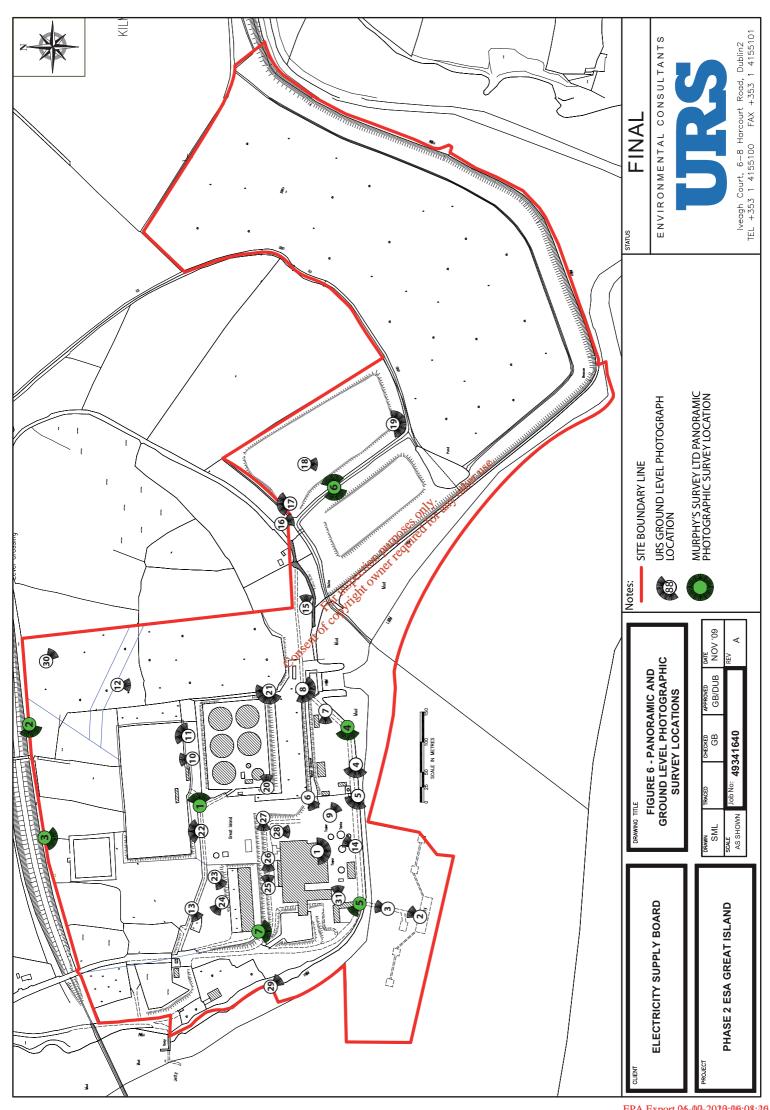
DRAWING TITLE


FIGURE 1 - SITE LOCATION PLAN


ENVIRONMENTAL CONSULTANTS




Iveagh Court, 6-8 Harcourt Road, Dublin2 TEL +353 1 4155100 FAX +353 1 4155101


DRAWN	TRACED	CHECKED	APPROVED	DATE
SML		GB	GB/DUB	FEB '09
1:50,000	Job No. 493	41640		REV. A

Tables

Client Project Location	ESB ESB Great Island ESB Great Island	Island													
Job Number	49341640									220	220 kV Compound	punc			
Table 1:	Hydrocarbo	on Laborato	Hydrocarbon Laboratory Results - Soil												
Sample Type							Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Sample ID							HA01	HA02	HA02	HA02	HA03	HA03	HA04	HA05	HA06
Depth							0.5m	0.5m	1.5m	2.5m	0.5m	2.0m	0.2m	0.2m	0.2m
Collection Date							02-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08	01-Oct-08	0	0
Parameters	Units	MDL	Human Health GAC Soil	Controlled Water GAC - Soil	Controlled Water Butch Screening GAC - Soil (S) Value	Dutch Intervention (I) Value									
Aromatics															
TPH (>EC6-7) aromatic	mg/kg	0.01	029	0.09	VU	ΛU									
TPH (>EC7-8) aromatic	mg/kg	0.01	029	0.11	vu	۸u	-		-	-	-	-		-	-
TPH (>EC8-10) aromatic	mg/kg	0.01	230	0.14	NV	ΛU	-	-	-	-	-	-	-	-	-
TPH (>EC10-12) aromatic	mg/kg	0.01	45,000	0.22	vu	vn	-	-	-	-	-	-			-
TPH (>EC12-16) aromatic	mg/kg	0.1	73,000	0.44	vu	ΛU	-	-	-	-	-	-	546.2	-	-
TPH (>EC16-21) aromatic	mg/kg	0.1	57,000	1.4	ΛU	۸u	-	-	-		-		8.09		-
TPH (>EC21-35) aromatic	mg/kg	0.1	57,000	11.1	۸u	ΛU							45.8		
Total Aromatic TPH	mg/kg	0.1	NV	ΛU	ΛU	νu	-						652.7		
Aliphatics															
TPH (>EC5-6) aliphatic	mg/kg	0.01	370	0.09	N	vu			-	-	-				
TPH (>EC6-8) aliphatic	mg/kg	0.01	740	0.39	È	N		-	-	-	-				-
TPH (>EC8-10) aliphatic	mg/kg	0.01	230,000	2.84		VU			-	-	-				-
TPH (>EC10-12) aliphatic	mg/kg	0.01	150,000	22.2	8	VU		-	-	-	-		1		-
TPH (>EC12-16) aliphatic	mg/kg	0.1	180,000	441		N			-	-	-		270.3		-
TPH (>EC16-21) aliphatic	mg/kg	0.1	IR	55,500	٥٢	∧u 💸	-	-	-	-	-		4,810.4	-	-
TPH (EC21-35) aliphatic	mg/kg	0.1	λu	000'899		A. 10.00					-		2,127.5		
Total Aliphatics (MO)	mg/kg	0.1	ΛU	۸u	20	00005 70					-		7,208.3		
Total TPH	mg/kg	0.1	NV	NN		00.00	-	-	-	-	-	-	7,861.0	-	-
BTEX						ON CO.									
Benzene	mg/kg	0.01	1.5	0.001		or vo	-	-	-	-	-	1	1	•	-
Toluene	mg/kg	0.01	150	0.01		130 13 1	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/kg	0.01	48,000	0.04		20	3	-	-	-	-	-	1	•	-
Total Xylene	mg/kg	0.01	320	0.04	0.1	25 📞	200	_	-	-	-	1			
BTEX	mg/kg		ΛU	νu	ΛU		800	-					٠	-	-
MTBE	mg/kg	0.01	1,780	0.01	ΛU		0000					-			
	:	:					117 150	4							
××	Exceeds Hu	man Health S	Exceeds Human Health Soil Generic Assessment Criteria	Criteria			5.9	•							
××	Exceeds Co	ntrolled Water	Exceeds Controlled Water Generic Assessment Criteria	riteria			di	ممر							
××	Exceeds D	Exceeds Dutch Intervention Value	ntion Value				, a	ام							
GAC	Generic Ass	Generic Assessment Criteria	əria					in							
MDL	Method Detection Limit	ection Limit						zi.							
	Less than MDL	占						æ							
na	Not Analysed	P						٥.							
ΛU	No Value														
표 :	Insignificar	nt risk to ider	Insignificant risk to identified potential receptors	ors											
OW	Mineral Oil														

Approximation Approximatio	Hydrocarbon Laboratory Results - Soil	Soil Soil
Mathematical Columnist Mathematical Column	Hydrocarbon Laboratory Results - Soil	Soil Adda 0.2m 0.2m 0.2m 0.2m 0.2m 0.2m 0.2m 0.2m 01-0ct-08 01-0ct-08 01-0ct-08 01-0ct-08 03-Nov-08 03-Nov-08 03-Nov-08
Substitute Sub	Table Tabl	Soil Ha14 Ha15 Ha14 Ha14 <th< th=""></th<>
Page	Taromatic	HA07 HA08 HA09 HA10 HA11 HA12 HA13 HA14 0.2m 0.2m 0.2m 0.2m 0.2m 0.2m 0.2m 01-Oct-08 01-Oct-08 01-Oct-08 01-Oct-08 03-Nov-08 03-Nov-08 03-Nov-08
Displace Control C	National Controlled Water National Controlled Water Soil Controlled Water Soil Controlled Water Controlled Water	0.2m 0.2m 0.2m 0.2m 0.2m 0.2m 01-0ct-08 01-0ct-08 01-0ct-08 03-Nov-08 03-Nov-08 03-Nov-08
CEC	eters Units MDL Foliate Soil Controlled Water GAC - Soil eters units MDL 650 0.09 ECE-7) aromatic mg/kg 0.01 670 0.14 ECG-102) aromatic mg/kg 0.01 670 0.14 ECG-103 aromatic mg/kg 0.01 670 0.14 ECG-103 aromatic mg/kg 0.01 670 0.14 ECG-103 aromatic mg/kg 0.01 75,000 0.14 ECG-103 aromatic mg/kg 0.1 75,000 1.1.1 ECG-103 aromatic mg/kg 0.1 75,000 1.1.1 ECG-103 aromatic mg/kg 0.1 75,000 1.1.1 ECG-104 aromatic mg/kg 0.1 77,000 1.1.1 ECG-105 aliphatic mg/kg 0.01 77,000 1.1.1 ECG-103 aliphatic mg/kg 0.01 180,000 22.2 ECG-103 aliphatic mg/kg 0.01 180,000 22.2 ECG-104 ali	01-Oct-08 01-Oct-08 01-Oct-08 01-Oct-08 03-Nov-08 03-Nov-08 03-Nov-08
CEG-51 attenuation Control of the control of th	Human Health GAC Controlled Water Soil Human Health GAC Controlled Water Soil CGC - CGC CGC - CGC CGC - CGC CGC - CGC CGC -	
CECPS secretarie mg/kg Oct CECPS COUNTY No.	Control	
ECES-5- Junctication Taylor Casto Cas	ECG-7] aromatic mg/kg	
ECC1-13 incomatic migrage Oct ECC2-13 incomatic migrage Oct ECC2	ECG-10 aromatic mg/kg 0.01 670 0.11 nv ECG1-10 aromatic mg/kg 0.01 45,000 0.24 nv ECI0-12 aromatic mg/kg 0.01 45,000 0.42 nv ECI2-13 aromatic mg/kg 0.1 73,000 1.4 nv ECI2-13 aromatic mg/kg 0.1 57,000 1.1 nv ECI2-13 aromatic mg/kg 0.1 57,000 1.1 nv ECI2-13 aromatic mg/kg 0.01 57,000 1.1 nv ECI2-13 alliphatic mg/kg 0.01 740 0.09 nv ECG-8) alliphatic mg/kg 0.01 150,000 2.24 nv ECG-13 alliphatic mg/kg 0.01 150,000 2.24 nv ECG-14(2) alliphatic mg/kg 0.01 180,000 2.24 nv ECG-13(alliphatic mg/kg 0.01 180,000 2.24 nv ECG-12(2) alliphatic mg/kg	
ECENCING accoration mg/gg 0.01 45,000 0.24 mv mv mv mv mv mv mv m	ECG-10] aromatic mg/kg	
ECIS-12) allomentic mg/kg	ECC16-13 aromatic mg/kg 0.01 45,000 0.22 nv	
CECRO-13 parameter mg/kg	ECG2-10 aromatic mg/kg	
ECESTS STATE Transfer Tra	FECST-35 aromatic mg/kg 0.1 57,000 11.1 nv	
The contact of the	FeeCit-36 aromatic mg/kg 0.1	
The control of the	ECS-6) alightatic mg/kg 0.1 nv nv nv ECS-6) alightatic mg/kg 0.01 370 0.09 nv ECS-10) alightatic mg/kg 0.01 230,000 2.84 nv ECG1-12) alightatic mg/kg 0.01 180,000 2.22 nv ECG1-12) alightatic mg/kg 0.01 180,000 22.2 nv ECG2-13) alightatic mg/kg 0.1 180,000 22.2 nv ECG2-13) alightatic mg/kg 0.1 180,000 22.2 nv Ilphatics (MO) mg/kg 0.1 nv nv nv PH mg/kg 0.1 nv nv nv e mg/kg 0.01 41,00 nv nv e mg/kg 0.01 48,000 0.04 0.01 e mg/kg 0.01 48,000 0.04 0.01 mg/kg 0.01 1,70 nv nv	
ECCES allahatic Fig. Fig	ECS-6 alignatic mg/kg 0.01 370 0.09 nv ECS-6 alignatic mg/kg 0.01 740 0.39 nv ECS-10 alignatic mg/kg 0.01 730,000 2.84 nv ECS-10 alignatic mg/kg 0.01 150,000 2.22 nv ECI-12-18 alignatic mg/kg 0.01 180,000 441 nv ECI-2-15 alignatic mg/kg 0.1 nv 668,000 nv nv Liphatics (MO) mg/kg 0.1 nv nv nv nv PH mg/kg 0.01 1.5 0.001 0.01 e mg/kg 0.01 1.5 0.04 0.01 he mg/kg 0.01 48,000 0.04 0.01 n mg/kg 0.01 48,000 0.04 0.01 n mg/kg 0.01 1,780 0.01 nv n mg/kg 0.01 1,780 0.01	
ECEAD alightatic mg/gg 0.01 370 0.09 nv n	ECG-6 alightatic mg/kg 0.01 370 0.09 nv ECG-6 alightatic mg/kg 0.01 230,000 2.84 f/N ECG-10 alightatic mg/kg 0.01 150,000 2.2.2 nv ECG-12 alightatic mg/kg 0.1 180,000 2.2.2 nv ECG-2.15 alightatic mg/kg 0.1 180,000 2.2.2 nv ECG-2.13 alightatic mg/kg 0.1 nv nv nv Iphalics (MO) mg/kg 0.1 nv nv nv PH mg/kg 0.01 nv nv nv ne mg/kg 0.01 1.5 0.001 nv ne mg/kg 0.01 48,000 0.04 0.03 sveeds mg/kg 0.01 1,700 nv nv mg/kg 0.01 1,780 0.04 0.03 mg/kg 0.01 1,780 0.04 0.03 mg/kg 0	
EC05410 alliphatic mg/kg 0.01 230.00 2.84 feb. mov	ECG-8) alightatic mg/kg	
Control collection	ECG-10] alignatic mg/kg 0.01 230,000 2.84	
EC12-(12) alignatic mg/kg 0.01 180,000 421 nv	EC(10-12) alignhatic mg/kg 0.01 150,000 22.2 m/ ³ / ₂ EC(10-12) alignhatic mg/kg 0.1 180,000 441 mv mg/kg 0.1 180,000 mv 441 mv mg/kg 0.1 mv mg/kg 0.1 mv mg/kg 0.1 mv mv mv mv mg/kg 0.01 1.5 0.001 0.01 mg/kg 0.01 1.5 0.001 0.01 mg/kg 0.01 48,000 0.04 0.03 mg/kg 0.01 48,000 0.04 0.03 mg/kg 0.01 1.5 0.04 0.01 mv mg/kg 0.01 1.5 0.04 0.01 mv mg/kg 0.01 1.7 mv mv mg/kg 0.01 mv mv mv mv mg/kg 0.01 mv mv mv mg/kg 0.01 mv mv mv mv mv mg/kg 0.01 mv mv mv mv mv mv mv m	
ECIC-3-13 alignatic mg/kg 0.1 180,000 441 180,000 180 180	EC12-16 alighatic mg/kg 0.1 180,000 441	
Excelled the control of the contro	ECCIG-21) alighatic mg/kg 0.1 iR 55.500 nv Color mg/kg 0.1 nv nv nv nv nv nv nv n	
Control Migrage Out	CC21-35) alighatic mg/kg 0.1 nv 668,000 nv 10	
Implicit (MO) Img/kg 0.1 Implicit (MO) Img/kg 0.1 Implicit (MO) Img/kg 0.1 Implicit (MO) Img/kg 0.1 Img/kg 0.1 Img/kg 0.01 Img/kg	PH	· · · · · · · · · · · · · · · · · · ·
PH	PH mg/kg 0.1 nv nv nv e mg/kg 0.01 1.5 0.001 0.01 e mg/kg 0.01 150 0.01 0.01 nng/kg 0.01 48.000 0.04 0.03 ylene mg/kg 0.01 320 0.04 0.03 nng/kg 0.01 1,780 0.04 0.01 nv mg/kg 0.01 1,780 0.01 nv nv xx Exceeds Controlled Valer Generic Assessment Criteria xx Exceeds Dutch Intervention Value	
Per	Pee	
Parison Pari	15 0.001 15 0.001	(A)
Parage	mg/kg	
Not Ausla	Marcele mg/kg 0.01 48.000 0.04	
Not Aralysed 1986 1987	yjene mg/kg 0.01 320 0.04 mg/kg	
mg/kg	mg/kg - nv	
mg/kg 0.01 1,780 0.01 nv 100 1,780 	mg/kg 0.01 1,780 0.01	
Exceeds Human Health Soil Generic Assessment Oriteria Exceeds Controlled Water Generic Assessment Oriteria Exceeds Dutch Intervention Value Generic Assessment Oriteria Method Detection Limit Less than MDL Not Analysed No Analysed No Analysed Insignificant risk to identified potential receptors	Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutch Intervention Value	
Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Analysed No Analysed Insignificant risk to identified potential receptors		AY.
Exceeds Dutch intervention Value Exceeds Dutch intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Yalus Insignificant risk to identified potential receptors		ক
Exceeds Dutan intervention value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value Instinificant risk to identified potential receptors		
Outside Detection Limit Less than MDL Not Analysed No Value No Value Insignificant risk to identified potential receptors		0
Institute of security and the second of the		Rete
Loss training. Not Analysed No Value Insignificant risk to identified potential receptors		
No Value Insignificant risk to identified potential receptors		0

November 2008

n Date n Date n Date n Date n Date s. Se-7) aromatic Se-7) aromatic 17-18) aromatic 17-18, aromatic 17-18, aromatic 17-18, aromatic 17-18, aromatic 17-18, aromatic 17-18, aromatic 17-19, aromatic 18-10, aromatic	Control Cont	Client Project	ESB ESB Great Island	Sland													
Pytication Librariony Results - Suit Pytication Librariony Results - Suit Pytication Librariony Results - Suit Pytication Pytication Librariony Results - Suit Pytication Librarion	Particulary	Job Number	49341640								å	per Tier - S	Station Gro	ound - Tria	l Pits		
Figure Sept	Part	Table 1:	Hydrocarb	on Laborato	ry Results - Soil												
Third color Part	Part	Sample Type							Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
This continue conti	Name Part	Sample ID							TP101	TP102	TP103	TP104	TP104	TP104	TP105	TP105	TP105
anomatic may fundamental feature funda	The control of the	Depth							0.5m	0.5m	0.5m	0.5m	1.0m	1.5m	0.5m	1.0m	1.5m
The control of the	Until No. No. No.	Collection Date							01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08
Parchaelic Paging Color Ego Color	Secondarie Paging Corp. Corp.	Parameters	Units	MDL	Human Health GAC Soil		Dutch Screening (S) Value	Dutch Intervention (I) Value									
The control color The colo	The control control control color The color	Aromatics															
The control of the	The control of the	TPH (>EC6-7) aromatic	mg/kg	0.01	029	0.09	vu	nv	-	-	-	-	-	-	-	-	-
Secondaric mights Cold 2500 Cold C	Automatic migrage	TPH (>EC7-8) aromatic	mg/kg	0.01	029	0.11	vu	N				-		-			
2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2	TPH (>EC8-10) aromatic	mg/kg	0.01	230	0.14	Vu	N				-	-	-	-	-	
District	Submission Sub	TPH (>EC10-12) aromatic	mg/kg	0.01	45,000	0.22	ΛU	ΛU									-
The control	1 2 1 2 1 2 1 2 2 2	TPH (>EC12-16) aromatic	mg/kg	0.1	73,000	0.44	vu	N									
Tell alignation mg/lgg 0.1 57,000 11.1 nv nv nv nv nv nv nv n	The properties The	TPH (>EC16-21) aromatic	mg/kg	0.1	22,000	1.4	ΛU	ΛU									
The migrid	The migrid of 0.1 m/v	TPH (>EC21-35) aromatic	mg/kg	0.1	22,000	11.1	VU	ΛU									
The color The	Particular Par	Total Aromatic TPH	mg/kg	0.1	ΛU	ΛU	ΛU	ΛU									
Part	Particular Par	Aliphatics															
Paging Control Contr	Part	TPH (>EC5-6) aliphatic	mg/kg	0.01	370	60.0	ΛU	N									
Secretary Transported Tr	Particular Par	TPH (>EC6-8) aliphatic	mg/kg	0.01	740	0.39	N.	NN	-	-	-	-	-	-	-	-	-
Simple color 180,000 242	Signification Taging Tag	TPH (>EC8-10) aliphatic	mg/kg	0.01	230,000	2.84	No.	nv	-	-	-	-	-	-	-	-	-
March Marc	Simple Color Col	TPH (>EC10-12) aliphatic	mg/kg	0.01	150,000	22.2	UN ON	nv	-	1	-	-	-	-	1	-	-
1, alighatic mg/kg 0.1 R 56.500 R R R R R R R R R	1, alightaid: mg/kg 0.1 R 65,500 R N N N N N N N N N	TPH (>EC12-16) aliphatic	mg/kg	0.1	180,000	441	N.	NN	-	-	-	-	-	-	-	-	-
March Marc	Secretary Table	TPH (>EC16-21) aliphatic	mg/kg	0.1	IR	55,500		vu 💸	-	1	-	-	-	-	1	-	-
Mode	Moly mg/kg 0.1 nv nv 50 0.1 mg/kg 0.1 nv nv nv nv nv nv nv n	TPH (EC21-35) aliphatic	mg/kg	0.1	ΛU	000'899	VU	^ S									
mg/kg 0.01 1.5 0.001 0.01 <t< td=""><td>mg/kg 0.01 1.5 0.001 0.01 1.0 0.01 <th< td=""><td>Total Aliphatics (MO)</td><td>mg/kg</td><td>0.1</td><td>ΛU</td><td>۸u</td><td>20</td><td>00005 702</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></td></t<>	mg/kg 0.01 1.5 0.001 0.01 1.0 0.01 <th< td=""><td>Total Aliphatics (MO)</td><td>mg/kg</td><td>0.1</td><td>ΛU</td><td>۸u</td><td>20</td><td>00005 702</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Total Aliphatics (MO)	mg/kg	0.1	ΛU	۸u	20	00005 702									
mg/kg 0.01 1.5 0.001 0.01 1.30 0.01 0.01 0.01 1.30 0.01	xx Exceeds Dutch Intervention Value MDL. Annolation of Author Short Intervention Not Author	Total TPH	mg/kg	0.1	۸u	nv	vu	00.00	-	-	-	-	-	-	-	-	-
mg/kg 0.01 150 0.001 0.03 0.01 0.04 0.01 0.03 0.01 0.04 0.01 0.03 0.01 0.04 0.01 0.04 0.01 0.04 0.01	mg/kg 0.01 1.5 0.001 0.03 0.01 0.04 0.01 0.03 0.01 0.04 0.01 0.04 0.01 0.04 0.01	втех						o'X' O'X									
mg/kg 0.01 48,000 0.03 50 47 -	mg/kg 0.01 45,000 0.04 0.03 50 mg/kg 0.01 45,000 0.04 0.03 50 mg/kg 0.01 45,000 0.04 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.05 0.05 0.04 0.05	Benzene	mg/kg	0.01	1.5	0.001	0.01	o o									-
mg/kg 0.01 48,000 0.04 0.03 50 th 11 1 1 1 1 1 1 1 1 1	mg/kg 0.01 48,000 0.04 0.03 50 th Ma. 1 1 1 1 1 1 1 1 1	Toluene	mg/kg	0.01	150	0.01	0.01	130%	-	-	-	-	-	-	-	-	-
mg/kg 0.01 320 0.04 0.1 25 0.05 0.04 0.1 0.05	mg/kg 0.01 320 0.04 0.1 25 0.04 0.1 25 0.04 0.1 0.01 </td <td>Ethylbenzene</td> <td>mg/kg</td> <td>0.01</td> <td>48,000</td> <td>0.04</td> <td>0.03</td> <td>20 09</td> <td>ď</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	Ethylbenzene	mg/kg	0.01	48,000	0.04	0.03	20 09	ď								-
mg/kg	mg/kg	Total Xylene	mg/kg	0.01	320	0.04	0.1		400-	-	-	-	-	-	-	-	-
mg/kg 0.01 1,780 0.01 nv 100	mg/kg 0.01 1,780 0.01 nv 100	втех	mg/kg	-	VU	nv	vu		9 8 8	1		-	-	-		-	-
Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors	Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL. Not Analysed No Value Insignificant risk to identified potential receptors Mineral Oil	MTBE	mg/kg	0.01	1,780	0.01	vu		0								
Exceeds Furnam health Soil General Assessment Criteria Exceeds Dutch Intervention Value General Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors	Exceeds Furnan health Soil Gener Assessment Criteria Exceeds Dutch Intervention Value Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL. Not Analysed No Value Insignificant risk to identified potential receptors Mineral Oil		:	:					160	A							
Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL. Not Analysed No Value Insignificant risk to identified potential receptors	Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL. Not Analysed Not Analysed Not Analysed Not Analysed Mineral Oil	××	Exceeds Hr	Iman Health S	soll Generic Assessment	Criteria			S. S.								
Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL. Not Analysed No Value Insignificant risk to identified potential receptors	Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors Mineral Oil	XX	Exceeds Cc	ontrolled Water	r Generic Assessment Cr	iteria			M)	ند د							
Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors	Generic Assessment Offeria Method Defection Limit Less than MDL. Not Analysed No Value Insignificant risk to identified potential receptors Mineral Oil	XX	Exceeds D	utch Interve	ntion Value					o d							
Method Detection Limit Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors	Method Detection Limit Less than MDL Not Analysed Not Analysed No Value Insignificant risk to identified potential receptors Mineral Oil	GAC	Generic Ass	sessment Crite	əria					in							
Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors	Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors Mineral Oil	MDL	Method Det	ection Limit						55							
Not Analysed No Value Insignificant risk to identified potential receptors	Not Analysed No Value Insignificant risk to identified potential receptors Mineral Oil		Less than M	<u>أ</u>						JS							
No Value Insignificant risk to identified potential receptors	No Value to No identified potential receptors Mineral Oil Mineral Oil	na	Not Analyse	þ						٥٠							
		A.	No Value														
		낊	Insignificar	nt risk to ider	ntified potential receptor	ors											

Client Project Location	ESB ESB Great Island ESB Great Island	Island													
Job Number	49341640	roter ode I e	49341640 Hydrocarbon Laboratory Besults - Soil							Jpper Tier - 3	Station Grot	Upper Tier - Station Ground - Trial Pits	S		
lable I:	пучгосагро	n Laborator	ry Results - Soil												
Sample Type							Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Sample ID							TP105	TP106	TP106	TP108	TP109	Dup for TP109	TP110	TP110	TP111
Depth							2.0m	0.5m	1.5m	0.3m	0.4m	0.4m	0.5m	1.5m	0.2m
Collection Date							01-Oct-08	01-Oct-08	01-Oct-08	03-Oct-08	03-Oct-08	03-Oct-08	03-Oct-08	03-Oct-08	03-Oct-08
Parameters	Units	MDL	Human Health GAC Soil	Controlled Water GAC - Soil	Dutch Screening (S) Value	Dutch Intervention (I) Value									
Aromatics															
TPH (>EC6-7) aromatic	mg/kg	0.01	650	60'0	NV	nv	-	-	-	-	-	-	-	-	
TPH (>EC7-8) aromatic	mg/kg	0.01	029	0.11	vn	nv	-				-				
TPH (>EC8-10) aromatic	mg/kg	0.01	230	0.14	NV	nv	-	-	-	-	-	-	-	-	
TPH (>EC10-12) aromatic	mg/kg	0.01	45,000	0.22	NV	nv	-	-	-	-	-	-		-	
TPH (>EC12-16) aromatic	mg/kg	0.1	73,000	0.44	ΛU	NV			3,037	0.67					
TPH (>EC16-21) aromatic	mg/kg	0.1	27,000	1.4	ΛU	NV			178.02	0.47					
TPH (>EC21-35) aromatic	mg/kg	0.1	22,000	11.1	NV	nv	-	-	69.44	-	-	-	-	-	
Total Aromatic TPH	mg/kg	0.1	ΛU	ΛU	ΛU	νu			3,284.47	1.14					
Aliphatics															
TPH (>EC5-6) aliphatic	mg/kg	0.01	370	60.0	vu	nv					-				
TPH (>EC6-8) aliphatic	mg/kg	0.01	740	0.39	2	NV					-				
TPH (>EC8-10) aliphatic	mg/kg	0.01	230,000	2.84	Se Se	NV									
TPH (>EC10-12) aliphatic	mg/kg	0.01	150,000	22.2	NU NU	NV					-				
TPH (>EC12-16) aliphatic	mg/kg	0.1	180,000	441	.N	NV				-					
TPH (>EC16-21) aliphatic	mg/kg	0.1	IR	25,500	N NI	∧u 💸	-	-	-	-	-	-	-	-	-
TPH (EC21-35) aliphatic	mg/kg	0.1	ΛU	000'899	NV	N. So		-	-	-	-	-	-	-	
Total Aliphatics (MO)	mg/kg	0.1	۸u	۸u	20	00000	-	-	-	-	-	-	-	-	
Total TPH	mg/kg	0.1	nv	۸u	NV	00000			3,284	1.14					
ВТЕХ						V. V.									
Benzene	mg/kg	0.01	1.5	0.001	0.01	Da 10,	-	-	-	-	-	-	-		-
Toluene	mg/kg	0.01	150	0.01	0.01	130%					-				
Ethylbenzene	mg/kg	0.01	48,000	0.04	0.03	50	·	-	-	-	-		-		
Total Xylene	mg/kg	0.01	320	0.04	0.1		20	-	-	-	-	-	-		
BTEX	mg/kg		VU	nv	NV		80.3	-	-	-	-	-	-		-
MTBE	mg/kg	0.01	1,780	0.01	nv		00,00	-		-	-	-	-	-	
							diy Fo								
XX	Exceeds Hur	nan Health S.	Exceeds Human Health Soil Generic Assessment Criteria	Criteria			, s								
××	Exceeds Con	trolled Water	Exceeds Controlled Water Generic Assessment Criteria	iteria			ani								
XX	Exceeds Dr	Exceeds Dutch Intervention Value	ntion Value				4								
GAC	Generic Asse	Generic Assessment Criteria	ıria				,	in the							
MDL	Method Detection Limit	ction Limit						gs.							
	Less than MDL	7						æ							
na	Not Analysed	_						٥٠							
N	No Value														
프 :	Insignifican	risk to iden	nsignificant risk to identified potential receptors	ırs											
OW	Mineral Oil														

Client Project Location	ESB ESB Great Island ESB Great Island	Island				•									
Job Number	49341640 Hydrocarbo	roter of	49341640 Hydrocarbon Laboratory Results - Soil						n	Upper Tier - Station Ground - Trial Pits	ation Groun	d - Trial Pit	s		
	- iyalocaib	or Laborato	ly ivesure - con					•		•					
Sample Type	-						Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Sample ID							1P112	1P112	1P113	1P114	1P115	1P116	Dup for IP116	1P11/	1211/
Depth Collection Date							0.5m	1.5m	0.5m	0.5m	0.5m	0.5m	0.5m	0.5m	1.5m
Parameters	Units	MDL	Human Health GAC Soil	Controlled Water GAC - Soil	Dutch Screening (S) Value	Screening Dutch Intervention (1) Value									
Aromatics															
TPH (>EC6-7) aromatic	mg/kg	0.01	650	0.09	ΛU	ΛU									
TPH (>EC7-8) aromatic	mg/kg	0.01	670	0.11	ΛU	ΛU							1		1
TPH (>EC8-10) aromatic	mg/kg	0.01	230	0.14	VU	ΛU									
TPH (>EC10-12) aromatic	mg/kg	0.01	45,000	0.22	NV	λU	-	-	-	-	-	-	-	-	1
TPH (>EC12-16) aromatic	mg/kg	0.1	73,000	0.44	NV	vu			0.133					0.613	
TPH (>EC16-21) aromatic	mg/kg	0.1	57,000	1.4	NV	NV	-	-	-	-	-	-	-	-	
TPH (>EC21-35) aromatic	mg/kg	0.1	57,000	11.1	vu	vu									
Total Aromatic TPH	mg/kg	0.1	NV	ΛU	vu	NV	-	-	0.133	-	-	-	-	0.613	
Aliphatics															
TPH (>EC5-6) aliphatic	mg/kg	0.01	370	0.09	vu	NV	-	-	-	-	-	-	-	-	
TPH (>EC6-8) aliphatic	mg/kg	0.01	740	0.39	ڪ	N	-	-	-	-	-	-	-	-	
TPH (>EC8-10) aliphatic	mg/kg	0.01	230,000	2.84	8	NV	-	-	-	-	-	-	-	-	
TPH (>EC10-12) aliphatic	mg/kg	0.01	150,000	22.2	nv do	λU	-	-	-	-	-	-	-	-	1
TPH (>EC12-16) aliphatic	mg/kg	0.1	180,000	441	NV	λU	-	-	-	-	-	-	-	-	
TPH (>EC16-21) aliphatic	mg/kg	0.1	出	55,500	N NI	∧u 💸	-	-	-	-	-	-	-	-	-
TPH (EC21-35) aliphatic	mg/kg	0.1	vu	000'899		ر المراجعة المراجعة									
Total Aliphatics (MO)	mg/kg	0.1	ΛU	۸u		000%									
Total TPH	mg/kg	0.1	N	۸u		000	-	-	0.133		-		-	0.613	
втех															
Benzene	mg/kg	0.01	1.5	0.001		0, 00									
Toluene	mg/kg	0.01	150	0.01		130.00									
Ethylbenzene	mg/kg	0.01	48,000	0.04	0.03	20	5								
Total Xylene	mg/kg	0.01	320	0.04		25 0	00								
BTEX	mg/kg	-	NV	٧u	nv	NV	1. O	-	-	-	-	-	-	-	
MTBE	mg/kg	0.01	1,780	0.01	nv		18. O	-	-	-	-	-	-	-	-
***		1					119								
XX	Exceeds Hu	man nealth s	oli Generic Assessment	Criteria			8								
××	Exceeds Co	ntrolled Water	Exceeds Controlled Water Generic Assessment Criteria	riteria			M.								
×	Exceeds D	Exceeds Dutch Intervention Value	ntion Value				3	, x							
GAC.	Generic Ass	Generic Assessment Criteria	əria					JI.							
MDL	Method Detection Limit	ection Limit						5. ²							
	Less than MDL	占,						se							
118	No Value	D						ı*							
≙ <u>0</u>	Insignifican	trick to iden	stified potential recent	910											
ú Š	Mineral Oil	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mingrimean risk to identified potential receptors. Mineral Oil	60											
•															

Part		ESB Great Island	t Island				'								
Public of the	Job Number	49341640									Borehole	Samples			
Part	Table 1:	Hydrocarbo	on Laborato	ory Results - Soil											
Part	Sample Type							Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
This boundary This boundar	Sample ID							BH201	BH201	BH203	BH204	BH204	BH205	BH205	BH207
Part	Depth							1-2.0m	4.0m	3.0m	1.0m	2.0m	1.0m	2.0m	1.0m
The control of the	Collection Date							01-Oct-08	01-Oct-08	03-Oct-08	03-Oct-08	03-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08
State Continue C	Parameters	Units	MDL	Human Health GAC Soil		Dutch Screening (S) Value	Dutch Intervention (I) Value								
Secretaria March	Aromatics														
Secretaria Continue Continu	TPH (>EC6-7) aromatic	mg/kg	0.01	029	0.09	۸u	ΛU	-	-	-	-	-	-	-	
2 2	TPH (>EC7-8) aromatic	mg/kg	0.01	029	0.11	۸u	ΛU			-			-		
1	TPH (>EC8-10) aromatic	mg/kg	0.01	230	0.14	ΛU	ΛU	•					-	-	
Standardic Sta	TPH (>EC10-12) aromatic	mg/kg	0.01	45,000	0.22	vu	ΛU						-	-	
Januaric Magka Ol	TPH (>EC12-16) aromatic	mg/kg	0.1	73,000	0.44	NV	۸u	•		13.09	0.17			-	
Telephonic mg/kg O11 S7,000 111 NV NV NV NV NV NV N	TPH (>EC16-21) aromatic	mg/kg	0.1	27,000	1.4	νu	۸u			2.08	0.12			-	
The marker of the property o	TPH (>EC21-35) aromatic	mg/kg	0.1	57,000	11.1	ΛU	۸u	-		-	,			-	
The particular control of the cont	Total Aromatic TPH	mg/kg	0.1	N	NV	ΛU	۸u	'		15.17	0.29			-	
Implication migriga O.01 33.0 O.03 N.N N	Aliphatics														
Particular Targkg	TPH (>EC5-6) aliphatic	mg/kg	0.01	370	0.09	ΛU	ΛU	-		-	,			-	
2) alighatic mg/kg 0.011 150,0000 2.22 m ² Qs m ² Qs m ² Qs m m mg/kg 0.011 150,0000 4.412 m ² Qs m ² Qs m m mg/kg 0.011 150,0000 4.412 m ² Qs m ² Qs m m mg/kg 0.011 m mg/kg 0.011 m mg/kg 0.01 m mg/kg 0.011 mg/kg 0.011 m mg/kg 0.011 mg/kg 0.011 m mg/kg 0.011 m	TPH (>EC6-8) aliphatic	mg/kg	0.01	740	0.39	€(۸u	-		-	,			-	
1	TPH (>EC8-10) aliphatic	mg/kg	0.01	230,000	2.84	Ş	ΛU	-		-	·			-	
Second Part	TPH (>EC10-12) aliphatic	mg/kg	0.01	150,000	22.2	N.	ΛU	1		-	,				
Manual Caracter Assessment Criteria Natural Caracter	1PH (>EC12-16) aliphatic	mg/kg	0.1	180,000	441		۸.				64.81	36.80	38.55		
May	TPH (7EC10-21) all priatic	mg/kg	0.0	Ľ	000,000		≥ \$				91.43	' ' '	04.30		
The color of the	Tetal Alishatic	mg/kg	0.7	2 3	668,000	VI G	AL S				831.05	255.67	604.24		
mg/kg 0.01 1.5 0.001 0.01 1.0	Total TDH	mg/kg	- 6	AL À	A	000		'	'	16.17	92.700	292.47	707.13		
mg/kg 0.01 1.5 0.001 0.01 1.50 0.01 1.50 0.01 1.50 0.01 1.50 0.01 1.50 0.01 1.50 0.01 1.50 0.01 1.50 0.01 1.50 0.01 1.50 0.01 1.50 0.03	BTEX	BY/BIII	5	<u>A</u>	<u> </u>	A			'	2.0	907.706	792.30	01.00		
mg/kg 0.01 48.000 0.04 0.03 50 mm/s mg/kg 0.01 48.000 0.04 0.03 50 mm/s mg/kg 0.01 48.000 0.04 0.01 25 mm/s mg/kg 0.01 1.780 0.01 mw/s xx Exceeds Futuran Health Soil Generic Assessment Criteria xx Exceeds Dutch Intervention Value CAC Generic Assessment Criteria mg/kg 0.01 mw/s xx Exceeds Dutch Intervention Value 0.01 mw/s	Benzene	ma/ka	0.01	15	0 001	0.01	Ó								
mg/kg	Toluene	mg/kg	0.01	150	0.01	0.01	130%		,						
mg/kg 0.01 320 0.04 0.1 26 0.04 0.1 26 0.04 0.1 26 0.04 0.1 0.04 0.01 0.04 0.01 0.04 0.01 0.0	Ethylbenzene	mg/kg	0.01	48,000	0.04	0.03	S.	٠ ح	,		<u> </u>				
mg/kg nv	Total Xylene	mg/kg	0.01	320	0.04	0.1	ĺ	00	,				1		
mg/kg 0.01 1,780 0.01 nv 100 1,92,00 - -	BTEX	mg/kg		ΛU	۸u	ΛU		્ર જ				,			
Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors	MTBE	mg/kg	0.01	1,780	0.01	vn		d			ŀ				
Exceeds Controlled Water Generic Assessment Criteria Exceeds Uculto Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors	×	Exceeds Hui	man Health S	Soil Generic Assessment C	riteria			tor Ay							
Exceeds Dutch Intervention Value Generic Assessment Orleria Method Detection Limit Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors	XX	Exceeds Col	introlled Water	3r Generic Assessment Crit	eria			જ							
Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors	XX	Exceeds D.	utch Interve	ention Value				73	ا ۵						
Method Detection Limit Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors	GAC	Generic Ass	essment Crit	eria					Sil.						
Less than MDL Not Analysed No Value Insignificant risk to identified potential receptors	MDL	Method Dete	ection Limit						es						
Not Analysed No Value Insignificant risk to identified potential receptors		Less than M	IDL						JE						
No Value Insignificant risk to identified potential receptors	na	Not Analyse	Ď						<u>ې</u> .						
	λu	No Value													
	ĸ	Insignifican	nt risk to ide.	intified potential receptor	rs.										

Client Project Location Job Number	ESB ESB Great Island ESB Great Island 49341640	ם ס												
Table 2:	PAH Laboratory Results - Soil	y Results -	Soil							220 kV Compound	punodu			
Sample Type							Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Sample ID							m5 0	2 5m	1 DAUS	1404 0.2m	O Sm	nAuo 0 2m	1400 0.2m	- A-C
Date							02-Oct-08	02-Oct-08	02-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08
Parameters	Units	MDL	Human Health GAC - Soil	Controlled Water GAC - Soil	Dutch Screening (S) Value	Dutch Intervention (I) Value								
Naphthalene *	mg/kg	1	270	0.011	N	λLI				0.042				
Acenaphthylene	mg/kg	1	2,100	0.497	VU	ΛU		-		0.111				
Acenaphthene	mg/kg	1	3,400	23	NN	VLI	-	-	-	0.297	-	-	-	
Fluorene	mg/kg	1	69,000	30	NV	VU		-		0.227				
Phenanthrene *	mg/kg	1	34,000	2.02	NV	VU				0.152				
Anthracene*	mg/kg	-	520,000	0.026	nv	VU	-	-	-	0.376	-		-	
Fluoranthene *	mg/kg	_	3,400	0.094	NV	VU		-	-	0.776				
Pyrene	mg/kg	_	35,000	168	N	N.				0.544				
Benzo(a)anthracene *	mg/kg	_	340	0.030		N.				0.105				
Chrysene *	mg/kg	1	3,500	0.372		<u>ک</u>	-	-	-	0.07	-	-	-	
Benzo(b)+Benzo(k) fluoranthene *	mg/kg	1	350	νu		insent	-	-		0.035				
Benzo(a)pyrene *	mg/kg	1	35	0.090		V Vou	-	-	-	0.008	-	-	-	
Indeno(123cd)pyrene *	mg/kg	1	350	nv		NV C		-	-	0.007	-	-	-	
Dibenzo(ah)anthracene	mg/kg	1	35	0.308	NN		- %	-	-	0.005	-	-	-	
Benzo(ghi)perylene *	mg/kg	1	52,000	NV	NN		- 88	-	-	0.011	-	-	-	
Sum of 10 PAH	mg/kg		nv	NV	1		8			1.21				
Total 16 EPA PAHs (16)	mg/kg		nv	NV	N	VU	24			2.765				
××	Exceeds Human	Health Soil	Exceeds Human Health Soil Generic Assessment Criteria	Sriteria			her	-UT						
XX	Exceeds Contro	lled Water Ge	Exceeds Controlled Water Generic Assessment Criteria	iteria			e e	So.						
xx	Exceeds Dutch Intervention Value	Interventio	n Value				•	es iii						
GAC	Generic Assessment Criteria	nent Criteria						ર્જ હુટે ફુટે						
MDL	Method Detection Limit	n Limit						36	. 4					
•	Less than MDL							35						
na	Not Analysed							g).	<i>~</i>					
AL.	No Value							, -	y of					
* Included in sum of ten PAHs							neth		neri					
									se,					
									•					

Maria Material M	PAY Indicatory (Realth - Stall Pay Indicatory (Realth - Pay	Client Project Location Job Number	ESB ESB Great Island ESB Great Island 49341640	pu														
Tright T	Third Line		PAH Laborator	y Results -	Soil							Upper	Tier - Station	Grounds - Tria	Pits			
This control of the part This control of the	Column C								:	:	:		:		:	:	:	:
Duty	Units WOL Color Color	Type							Soil TP101	Soil TP103	Soil TP106	Soil TP106	Soil TP108	Soil TP110	Soil TP111	Soil TP113	Soil TP115	Soil TP117
Units	Units								0.5m	0.5m	0.5m	1.5m	0.3m	0.5m	0.2m	0.5m	0.5m	0.5m
Units With With With With Controlled With Schooling Controlled With	Units With Mail Controlled With Contro								01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	03-Oct-08	03-Oct-08	03-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08
THE STORE 1 25.00 COUNTY COUN	mg/gg 1 270 G071 n/v n/v <th>ers</th> <th>Units</th> <th>MDL</th> <th>Human Health GAC - Soil</th> <th>Controlled Water GAC - Soil</th> <th>Dutch Screening (S) Value</th> <th>Dutch Intervention (I) Value</th> <th></th>	ers	Units	MDL	Human Health GAC - Soil	Controlled Water GAC - Soil	Dutch Screening (S) Value	Dutch Intervention (I) Value										
mg/kg 1 24.00 0.487 mv mv mv mv mv mv mv m	Things 1 2.100 0.487	Naphthalene *	mg/kg	1	270	0.011	N	VLI				0.002	0.017			0.002	9000	0.002
Fig. 65 Control of Market Chairs Fig. 65	mg/kg 1 53.00 23 mv mv mv mv mv mv mv m	Acenaphthylene	mg/kg	1	2,100	0.497	VU	VLI				0.002	0.004			0.005	900.0	0.037
mg/kg 1 69,000 20,00 nv r 0,001 0,015 r 0,001 0,015 r 0,001 0,015 r 0,001 0,015 r 0,001 0,001 0,011 0	mg/kg 1 54000 200 1 0.022 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.0	Acenaphthene	mg/kg	1	3,400	23	'n	ΛU				0.018	0.028			0.021	0.018	0.021
Trapleg 1 34,000 0.026	mg/kg 1 350,000 0.026 n/v n	Fluorene	mg/kg	1	000'69	30	VU	ΛU				0.001	0.015			0.002	0.008	0.008
The color 1	mg/kg 1 52,000 0.028 nv r 0.001 0.007 r 0.001 0.007 r 0.001 0.002 r 0.001 0.002 r 0.001 0.002 0.001 0.001 0.002 r 0.001 0.002 0.003<	Phenanthrene *	mg/kg	1	34,000	2.02	NV	VLI				0.003	0.164			0.022	0.011	0.05
mg/kg 1 35,000 0.084 mv mv mv mv mv mv mv m	The color The	Anthracene*	mg/kg	1	520,000	0.026	NN	VLI			-	0.001	0.037			0.004	0.004	0.067
mg/kg 1 3500 168	mg/kg 1 35,000 168	Fluoranthene *	mg/kg	1	3,400	0.094	N	VU				0.001	0.242			0.042	0.021	0.244
mg/kg 1 350 0.030 n/v n/	mg/kg 1 350	Pyrene	mg/kg	1	35,000	168	nv	VLI				0.001	0.183	-		0.037	0.018	0.186
mg/kg 1 3500 0.372 mv mv mv mv mv mv mv m	mg/kg 1 350	nzo(a)anthracene *	mg/kg	1	340	0:030	NV	ΛU				0.007	0.061	-		0.023	0.035	900.0
mg/kg 1 350	mg/kg 1 350	Chrysene *	mg/kg	1	3,500	0.372	N	2	-		-	0.004	0.113			0.028	0.016	0.023
mg/kg 1 35 0.090	mg/kg 1 350	+Benzo(k) fluoranthene *	mg/kg	-	350	À.	2	nsen	,	,	,	0.002	0.226	,	,	0.035	0.026	0.02
mg/kg 1 350 nv nv nv nv nv nv nv n	mg/kg 1 350	enzo(a)pyrene *	mg/kg	1	35	060:0	۸u	√ √@⊔				0.001	0.115			0.023	0.011	0.004
mg/kg 1 35 0.308 nv nv nv nv nv nv nv n	mg/kg 1 52,000	no(123cd)pyrene *	mg/kg	1	320	ΛU	۸u	ALI VI	-			0.001	990.0			800.0	800'0	0.004
mg/kg 1 52,000 nv	mg/kg 1 52,000	nzo(ah)anthracene	mg/kg	1	35	0.308	۸u	S	3			0.001	0.016			0.003	0.003	0.001
mg/kg nv nv 1 40 mg/kg - 0.023 1.114 - 0.045 1.360 - 0.197 0.145 mg/kg nv nv nv mg/kg - 0.046 1.360 - 0.263 0.198 Exceeds Furmar Health Soil Generic Assessment Criteria Exceeds Dutch Intervention Value Controlled Water Ceneric Assessment Criteria Method Detection Limit Less than MD. No Value	mg/kg nv nv nv 1 40 114 0.023 1.114 0.197 0.145	nzo(ghi)perylene *	mg/kg	- 1	52,000	۸u	NN		. K.	-	-	0.001	0.073	-	-	0.01	200.0	0.008
Exceeds Human Health Soil Generic Assessment Criteria Exceeds Dutch Intervention Value Ceneric Assessment Criteria Exceeds Dutch Intervention Value Ceneric Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value No Value	Exceeds Human Health Soil Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value	Sum of 10 PAH	mg/kg		۸u	vn	1		S		-	0.023	1.114	-		0.197	0.145	0.428
Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutch Intervention Value Carentic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value	Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Desessent Criteria Method Desessent Criteria Nethod Desessent Criteria Nethod Passessment Criteria Not Analysed No Value	116 EPA PAHs (16)	mg/kg	-	ΛU	ΛU	λu		100			0.046	1.360			0.263	0.198	0.68
Exceeds Controlled Water Generic Assessment Orleria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value	Exceeds Controlled Water on Controlled Water of Seasonment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Descention Limit Less than MDL Not Analysed No Value	××	Expeeds Hilman	Health Soil	Generic Assessment	Criteria		i	net	QUÍ								
Exceeds controller water certain charter accepting the control of	Exceeds Dutch Intervention Value Canaric Assessment Criteria Generic Assessment Criteria Method Detection Limit Less than MDL. Not Analysed No Value	***	Traced of parket	lo d Motor	Concin A coccount	il control				g Q								
Carboelso Undern metavementon Value Generic Assessament Criteria Method Defection Limit Less than MDL. Not Analysed No Value	Carboelso Uniter intervention Value Carboelso Unit Method Detection Limit Less than MDL Not Analysed No Value	XX	Exceeds Colling	led water C	selleric Assessment C	Heria				se Se Se								
Overher Assessment Crieria Method Detection Limit Less than MDL Not Analysed No Value	Agenter Assessment Criteria Method Description Limit Less than MDL Not Analysed No Value	XX.	Exceeds Dutch	Intervention	on value					Sister Single								
Wethod Detection Limit Less than MDL Not Analysed No Value	Method Detection Limit Less than MDL Not Analysed No Value	GAC	Generic Assessr	nent Criteria	_					35								
Less than MDL Not Anaysed No Value	Less than MDL Not Analysed No Value	MDL	Method Detectio	n Limit						50	4							
Not Analysed No Value	Not Analysed No Value		Less than MDL							Š.								
No Value	No Value	na	Not Analysed							Ø.	<u> </u>							
		2	No Value								, os							
dee.	nse.	ded in sum of ten PAHs									ner							
D	5.										1156							
											5*							

Client Project Location Job Number	ESB ESB Great Island ESB Great Island 49341640	ם ס											
	PAH Laboratory Results	y Results -	- Soil						В	Borehole Samples	Se		
Sample Type							Soil	Soil	Soil	Soil	Soil	Soil	Soil
Sample ID							BH201	BH201	BH203	BH204	BH204	BH205	BH207
Depth Date							1-2.0m 01-Oct-08	4.0m 01-Oct-08	3.0m 03-Oct-08	1.0m 03-Oct-08	2.0m 03-Oct-08	2.0m 02-Oct-08	1.0m 02-Oct-08
Parameters	Units	MDL	Human Health GAC - Soil	Controlled Water GAC - Soil	Dutch Screening (S) Value	Dutch Intervention (I) Value							
Naphthalene *	mg/kg		270	0.011	۸u	ΛLI	0.002		0.003	0.017	0.001		
Acenaphthylene	mg/kg	-	2,100	0.497	ΛU	ΛU	0.003		0.13	600.0	0.002		
Acenaphthene	mg/kg	-	3,400	23	NV	VU	0.022	-	0.291	0.02	0.009	-	
Fluorene	mg/kg	-	000'69	30	NV	ΛU	0.003		0.636	0.02	0.005		
Phenanthrene *	mg/kg	τ.	34,000	2.02	ΛU	λL	0.009		3.727	0.008	0.01		
Anthracene*	mg/kg		520,000	0.026	ΛU	2	0.003		1.342	0.045	0.004		
Fluoranthene *	mg/kg		3,400	0.094	20 2	2 3	0.003		3.826	0.027	0.009		
Renzo(a)anthracene *	mg/kg		34,000	0 030	A	2 2	0.003		0.137	0.045	0.013		
Chrysene *	mg/kg		3.500	0.372	à Au	2	0.014		0.605	0.035	0.013		
Benzo(b)+Benzo(k) fluoranthene *	mg/kg	-	350	۸u	λu	onsen	0.003	,	0.471	0.015	0.007		
Benzo(a)pyrene *	mg/kg	1	35	060'0	NV	√ ×∞ 0u	0.001	-	0.255	0.05	0.014	-	
Indeno(123cd)pyrene *	mg/kg	1	350	۸u	νu	UN C	0.001	-	0.051	0.021	0.003	-	
Dibenzo(ah)anthracene	mg/kg	1	35	0.308	NV	S AL	0.001	-	0.01	0.009	0.005	-	
Benzo(ghi)perylene *	mg/kg	1	52,000	۸u	NV	S ALI	100,001	-	0.018	0.036	0.012	-	
Sum of 10 PAH	mg/kg		۸u	۸u	1	40	0.2058	-	11.247	0.299	0.081		
Total 16 EPA PAHs (16)	mg/kg		ΛU	VU	ΛU	VI	6000A		15.451	0.402	0.115		
×	Exceeds Humar	Health Soil	Exceeds Human Health Soil Generic Assessment Criteria	Criteria			nei	OUT					
××	Exceeds Contro	led Water G	Exceeds Controlled Water Generic Assessment Criteria	iteria			ÿ	50,					
XX	Exceeds Dutch Intervention Value	Interventic	on Value					ges Jil					
GAC	Generic Assessment Criteria	nent Criteria						or es	2				
MDL	Method Detection Limit	n Limit						60	8				
	Less than MDL							ş.	•				
na	Not Analysed							0	, Ol				
È	No value								of				
* Included in sum of ten PAHs							ger use		ner us				
)°				

ESB Great Island ESB Great Island 49341640 PCB Laboratory Results - Soil Client Project Location Job Number Table 3: PCBs

Sample Type							Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Sample ID							HA01	HA02	HA03	HA04	HA05	HA06	HA07	HA08
Depth							0.5m	2.5m	2.0m	2.5m 2.0m 0.2m	0.2m	0.2m	0.2m 0.2m	0.2m
Date							02-Oct-08	02-Oct-08	02-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08 01-Oct-08	01-Oct-08	01-Oct-08
Parameters	Units	MDL	Human Health Controlled GAC - Soil Soil	Controlled Water GAC - Soil	Dutch MAC - Screening (S) Value	Screening (S) Intervention (I) Value								
PCB Total of 7 Congeners mg/kg 0.001	mg/kg	0.001	16.8	0.004	0.02	1	-	-	-	-	-	-	-	

Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value × × × WDL GAC . a⊓ >⊓

Consent of confridit owner required for any other use.

ESB Great Island ESB Great Island 49341640 PCB Laboratory Results - Soil Client Project Location Job Number Table 3: PCBs

Sample Type							Soil	Soil	Soil	Soil	Soil	Soil	Soil
Sample ID							HA09	HA10	HA11	TP103	TP113	BH201	BH201
Depth							0.2m	0.2m	0.2m	0.2m 0.2m 0.2m 0.5m 0.5m 1.0-2.0m	0.5m	1.0-2.0m	4.0m
Date							01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	02-Oct-08	01-Oct-08	01-Oct-08
Parameters	Units	MDL	Human Health GAC - Soil	Controlled Water GAC - Soil	Controlled Dutch MAC - Dutch MAC - Screening (S) Intervention (I Value	Controlled Dutch MAC - Dutch MAC - Mater GAC - Screening (S) Intervention (I) Value							
PCB Total of 7 Congeners mg/kg 0.001	mg/kg	0.001	16.8	0.004	0.02	1	-	-		-	-		

Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value × × × WDL GAC . a⊓ >⊓

Consent of copyright owner required for any other use.

Sample Type								Soil	Soil	Soil							
Sample ID								HA01	HA02	HA02	HA02	HA03	HA03	HA04	HA05	HA06	HA07
Depth								0.5m	0.5m	1.5m	2.5m	0.5m	2.0m	0.2m	0.2m	0.2m	0.2m
Date								02-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08	01-Oct-08	01-Oct-08 (01-Oct-08 C	01-Oct-08
Parameter	Units	MDL Hu	Human Health GAC - Soil	Controlled Water GAC - Soil	EPA Background	Dutch MAC - Screening (S) Value	Dutch MAC - Intervention (I) Value										
Antimony	mg/kg	1.5	15	0.23	1.54	3	15										
Arsenic	mg/kg	3	200	0.29	21.9	29	55	173	17	8	15	16	13	31	6	12	
Barium	mg/kg	9	28,000	4.11	454.5	160	625	72	92	74	74	06	85	20	78	89	63
Cadmium	mg/kg	0.2	1,400	0.55	1.652	8.0	12			ı			,				,
Chromium	mg/kg	4.5	2,000	6.50	8.98	100	380	30	24	26	27	27	20	1	24	3	11
Copper	mg/kg	9	<u>~</u>	0.04	45.9	36	190	20	41	21	231	25	30	16	89	17	15
Lead	mg/kg	2	750	0.40	61.9	85	530	32	2.2	52	52	92	105	69	107	27	29
Mercury	mg/kg	0.4	480	0.002	0.237	0.3	10		-		-						
Molybdenum	mg/kg	9.0	1,310	1.41	3.29	3	200	2	2	2	2	3	4		2		,
Nickel	mg/kg	6.0	2,000	92'0	20	35	210	24	21	22	22	24	20	18	36	33	42
Selenium	mg/kg	3	8,000	0.05	2.67	7.0	100										,
Vanadium	mg/kg	1.5	23,400	20	104.8	Z.	250	54	26	26	61	58	20	20	78	72	113
Zinc	mg/kg	2.5	<u>~</u>	0.29	144.7	1400	720	82	287	147	127	221	299	115	968	84	100

Client Project Location Job Number Table 4: Ent of contribution butter teaching of the tree south of contribution of the tree south of the tree so

Exceeds Human Health Soil Generic Assessment Orlieria
Exceeds Controlled Water Generic Assessment Orlieria
Exceeds Controlled Water Generic Assessment Orlieria
Exceeds Dutch Intervention Value
Exceeds Dutch Intervention Value
Generic Assessment Orlieria
Method Detection Linit
Method Detection Linit
Method Detection Linit
Mot Value
Insignificant riets to identified potential receptors
Insignificant riets to identified potential receptors
Insignificant riets to identified potential receptors.

Note: There may be some mi

Sample Type								Soil									
Sample ID								HA08	HA09	HA10	HA11	TP101	TP102	TP103	TP104	TP104	TP104
Depth								0.2m	0.2m	0.2m	0.2m	0.5m	0.5m	0.5m	0.5m	1.0m	1.5m
Date								01-Oct-08									
Parameter	Units	MDL	Human Health GAC - Soil	Controlled Water GAC - Soil	EPA Background	Dutch MAC - Screening (S) Value	Dutch MAC - Intervention (I) Value										
Antimony	mg/kg	1.5	15	0.23	1.54	က	15						1.2		2.6	3.7	3.8
Arsenic	mg/kg	3	200	0.29	21.9	29	55	6	19	11	6	16	2.1	13	19	25	29
Barium	mg/kg	9	28,000	4.11	454.5	160	625	126	80	28	46	92	09	88	6/	63	29
Cadmium	mg/kg	0.2	1,400	0.55	1.652	8.0	12		ı					ı	0.2	,	0.2
Chromium	mg/kg	4.5	2,000	6.50	8.98	100	380	2	12			29	21	24	26	34	34
Copper	mg/kg	9	R	0.04	45.9	36	190	12	23	14	8	14	16	11	27	36	38
Lead	mg/kg	2	750	0.40	61.9	85	530	23	23	23	29	30	23	20	34	21	24
Mercury	mg/kg	0.4	480	0.002	0.237	0.3	10			-	-	-	-				
Molybdenum	mg/kg	9.0	1,310	1.41	3.29	3	200					1	6.0	1	1.2	8.0	-
Nickel	mg/kg	6.0	2,000	92'0	20	32	210	35	28	39	8	18	17	10	24	36	38
Selenium	mg/kg	3	8,000	0.05	2.67	2.0	100							1			
Vanadium	mg/kg	1.5	23,400	20	104.8	St)	250	89	61	7.1	45	52	27	46	30	37	37
Zinc	mg/kg	2.5	R	0.29	144.7	0 <u>0</u> ₹1	720	102	102	85	101	09	25	49	78	92	92
						No.											

Client Project Location Job Number Table 4: Sent of copyright owner required for any other use. Exceeds Human Health Soil Generic Assessment Criteria
Exceeds Controlled Wlater Generic Assessment Criteria
Exceeding EPA Background 59 Percentile
Generic Assessment Criteria
Method Detection Linit
Method Detection Linit
Not Analysed
Not Value
Integnificant risk to identified potential receptors
Not Value
Trisspirificant risk to identified potential receptors
Trisspirificant risk to identified potential receptors
Trisspirificant risk to identified potential receptors

Note: There may be some mi

Sample Type								Soil	Soil								
Sample ID								TP105	TP105	TP105	TP105	TP106	TP106	TP108	TP109	Dup for TP109	TP110
Depth								0.5m	1.0m	1.5m	2.0m	0.5m	1.5m	0.3m	0.4m	0.4m	0.5m
Date								01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	03-Oct-08	03-Oct-08	03-Oct-08	03-Oct-08
Parameter	Units	MDL	Human Health GAC - Soil	Controlled Water GAC - Soil	EPA Background	Dutch MAC - Screening (S) Value	Dutch MAC - Intervention (I) Value										
Antimony	mg/kg	1.5	15	0.23	1.54		15	ဇ	2.2	3.7	4.3			na	na	na	na
Arsenic	mg/kg	3	200	0.29	21.9	29	55	20	19	25	28	17	33	82	31	24	15
Barium	mg/kg	9	28,000	4.11	454.5	160	625	73	99	7.1	72	64	81	215	126	114	92
Cadmium	mg/kg	0.2	1,400	0.55	1.652	8.0	12				ı						
Chromium	mg/kg	4.5	2,000	6.50	8.98	100	380	27	21	31	31	24	34	35	38	36	13
Copper	mg/kg	9	<u>~</u>	0.04	45.9	36	190	25	16	36	36	14	34	40	56	23	24
Lead	mg/kg	2	750	0.40	61.9	85	530	25	19	35	25	23	32	251	69	49	33
Mercury	mg/kg	0.4	480	0.002	0.237	0.3	10										
Molybdenum	mg/kg	9.0	1,310	1.41	3.29	3	200	1.2	6.0	1	1	2	2	2	2	2	2
Nickel	mg/kg	6.0	2,000	92.0	20	35	210	28	21	38	40	16	35	31	22	21	6
Selenium	mg/kg	3	8,000	0.05	2.67	7.0	100		-	-		1	-	-	-	-	
Vanadium	mg/kg	1.5	23,400	20	104.8	<i>₩</i>	250	30	25	35	31	44	63	54	22	53	30
Zinc	mg/kg	2.5	2	0.29	144.7	1400	720	92	64	8	92	25	82	137	88	9/	57

Client Project Location Job Number Table 4:

Exceeds Human Health Soil Generic Assessment Criteria
Exceeds Controlled Wlater Generic Assessment Criteria
Exceeding EPA Background 59 Percentile
Generic Assessment Criteria
Method Detection Linit
Method Detection Linit
Not Analysed
Not Value
Integnificant risk to identified potential receptors
Not Value
Trisspirificant risk to identified potential receptors
Trisspirificant risk to identified potential receptors
Trisspirificant risk to identified potential receptors

Note: There may be some mino

Sent of copyright owner required for any other use.

Client Project Location Job Number Table 4:

Exceeds Human Health Soil Generic Assessment Criteria
Exceeds Controlled Wlater Generic Assessment Criteria
Exceeding EPA Background 59 Percentile
Generic Assessment Criteria
Method Detection Linit
Method Detection Linit
Not Analysed
Not Value
Integnificant risk to identified potential receptors
Not Value
Trisspirificant risk to identified potential receptors
Trisspirificant risk to identified potential receptors
Trisspirificant risk to identified potential receptors

Note: There may be some mind

For its pection purposes only any other use.

S	亩	2.	05-(·)		•)		
Soil	BH205	1.0m	02-Oct-08			12	54		25	23	24		3	20		43	132		
Soil	BH204	2.0m	03-Oct-08		na	13	64	,	26	37	26		3	23		54	92		
Soil	BH204	1.0m	03-Oct-08		na	11	20		25	17	17		3	19		40	67		
Soil	BH203	3.0m	03-Oct-08		na	8	30		18	7			2	5		29	31		
Soil	BH201	4.0m	01-Oct-08				21		20	3	6		-	11		45	49		
Soil	BH201	1-2.0m	01-Oct-08			25	42		33	2	6		-	11		42	39	ottet use.	
Soil	TP117	1.5m	02-Oct-08			13	82		30	32	36		-	22		38	20	ose officeral	
				Dutch MAC - Intervention (I) Value	15	55	625	12	380	190	530	10	200	210	100	250	720	For its ection purper technic	
				Dutch MAC - Screening (S) Value	3	58	160	8.0	100	36	85	0.3	8	35	2.0	2	°20≱1	ent of constraint owner required for any other use.	
				EPA Background	1.54	21.9	454.5	1.652	8.98	45.9	61.9	0.237	3.29	20	2.67	104.8	144.7	Exceeds Human Health Soil Generic Assessment Criteria Exceeding EPA Background 85 Percentile Exceeding EPA Background 85 Percentile Exceeding EPA Background 86 Percentile Exceeding Detail Higher retire of the service	
				Controlled Water GAC - Soil	0.23	0.29	4.11	0.55	6.50	0.04	0.40	0.002	1.41	9.76	0.05	20	0.29	nt Criteria Criteria Cors Icates, as some samples were	
				Human Health GAC - Soil	15	200	28,000	1,400	2,000	2	220	480	1,310	5,000	8,000	23,400	IR	Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeding FPA Background 59 Percentile Exceeding FPA Background 59 Percentile Exceeding Dutch Intervention Value Generic Assessment Criteria Metrod Detection Limit Less than MDL. Not Analysed No Value Cass than MDL. Not Analysed No Value Cass than MDL. This ginificant risk to identified potential receptors are variations in MDL between the tables and the lab certificates, as a variations in MDL between the tables.	
				MDL	1.5	3	9	0.2	4.5	9	2	0.4	9.0	6.0	3	1.5	2.5	man Health rirolled Wa PA Backgn Jach Interv cation Limit DL f risk to idt MDL between	
				Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Exceeds Human Health Soil i Exceeds Controlled Water Gl Exceeding FPA Background Exceeds Dutch Intervention Generic Assessment Criteria Method Deecton Limit Less than MDL Not Analysed No Value Insignificant risk to identific	
Π	T	T	٦						Γ	Γ			Γ					Ë	

ESB Great Island ESB Great Island 4994 1640 Heavy Metal Laboratory Results - Soil

Client Project Location Job Number Table 4:

Parameter

Sample Type							Soil									
Sample ID							HA01	HA02	HA02	HA02	HA03	HA03	HA04	HA05	HA06	HA07
Depth							0.5m	0.5m	1.5m	2.5m	0.5m	2.0m	0.2m	0.2m	0.2m	0.2m
Date							02-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08
Parameters	Units	MDL	Human Health GAC - Soil	Controlled Water GAC - Soil	Dutch MAC - Screening (S) Value	Dutch MAC - Intervention (I)										
100						value										
Total Organic Carbon	%	0.2	ΛU	vu	۲L	2	1.2	2.3	2.2	2.2	2.1	4.1	1.1	0.2	6.0	0.8
Miscellaneous																
Total Phenols	mg/kg	0.01	nc	nc	0.05	40		na	na	0.10	na		0.07	0.04	0.05	na
Total Cyanide	mg/kg	2.50	20	νu	1	20		na	na		na					na
Chloride	mg/kg	2.00	۸u	۸u	ΛU	۸u	na	na	na	na	na	na	8		na	na
Fluoride	mg/kg	0.50	36,900	80'0	ΛU	ΛU	na	na	na	na	na	na		0.7	na	na
Sulphate	1/6	0.003	۸u	32.9	ΛU	۸u	na	na	na	na	na	na	0.003		na	na
VOCs	ua/ka	,	\u0	۸u	, vu	۸u	na	ua	na	na	ua	eu	ua	Pa	na	na

ESB ESB Great Island ESB Great Island 49341640 Various Laboratory Results - Soil

Client Project Location Job Number Table 5: For its pection purposes only any other use. Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutruh Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value

_	_	_	_		_	_	_	_	_	_	_	_	_
Soil	TP104	1.5m	01-Oct-08					na	na	na	na	na	na
Soil	TP104	1.0m	01-Oct-08			0.3		na	na	na	na	na	na
Soil	TP104	0.5m	01-Oct-08			8.0		na	na	na	na	na	na
Soil	TP103	0.5m	01-Oct-08			0.7		0.03	-	72	4.2	-	
Soil	TP102	0.5m	01-Oct-08			1.3		na	na	na	na	na	na
Soil	TP101	0.5m	01-Oct-08			1.1		0.03	-	-	9.0	-	na
Soil	HA11	0.2m	01-Oct-08			1.1		90'0	-	9	0.5	-	na
Soil	HA10	0.2m	01-Oct-08 01-Oct-08 01-Oct-08 01-Oct-08			8.0		na	na	na	na	na	na
Soil	HA09	0.2m	01-Oct-08			0.5		na	na	na	na	na	na
Soil	HA08	0.2m	01-Oct-08			6.0		0.04		na	na	na	na
				Dutch MAC - Intervention (I) Value		ΛU		40	20	ΛU	ΛU	NN	۸u
				Dutch MAC - Screening (S) Value		νu		0.05	1	ΛU	ΛU	VU	۸u
				Controlled Water GAC - Soil		NV		nc	νu	νu	0.08	32.9	νu
				Human Health GAC - Soil		NV		uc	20	۸u	36,900	۸u	۸u
				MDL		0.2		0.01	2.50	2.00	0.50	0.003	-
_				Units		%		mg/kg	mg/kg	mg/kg	mg/kg	l/6	ug/kg
Sample Type	Sample ID	Depth	Date	Parameters	T0C	Total Organic Carbon	Miscellaneous	Total Phenols	Total Cyanide	Chloride	Fluoride	Sulphate	NOCs

ESB ESB Great Island ESB Great Island 49341640 Various Laboratory Results - Soil

Client Project Location Job Number Table 5: En For its pection purposes only any other use

Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Dutruh Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value

Sample Type	_						Soil	Soil								
Sample ID	_						TP105	TP105	TP105	TP105	TP106	TP106	TP108	TP109	Jup for TP109	TP110
Depth	_						0.5m	1.0m	1.5m	2.0m	0.5m	1.5m	0.3m	0.4m	0.4m	0.5m
Date							01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08	03-Oct-08	03-Oct-08	03-Oct-08	03-Oct-08
Parameters	Units	MDL	Human Health GAC - Soil	Controlled Water GAC - Soil	Dutch MAC - Screening (S) Value	Dutch MAC - Intervention (I) Value										
T0C																
Total Organic Carbon	%	0.2	ΛU	νu	ΛU	NV	6.0	0.2			6.0	-	2.3	1.1	0.8	1.1
Miscellaneous																
Total Phenols	mg/kg	0.01	uc	nc	0.05	40	na	na	na	na	0.02	0.12	60'0	na	0.04	0.03
Total Cyanide	mg/kg	2.50	90	nv	1	20	na	na	na	na	-	-	-	na	-	
Chloride	mg/kg	9.00	۸u	νu	ΛU	νu	na	na	na	na		na	10	na	15	8
Fluoride	mg/kg	0.50	36,900	0.08	۸u	NV	na	na	na	na	-	na	-	na	-	
Sulphate	l/6	0.003	۸u	32.9	VU	NV	na	na	na	na	-	na	-	na	-	
VOCs	ug/kg	1	۸u	NN	ΛU	\n	na	na								

ESB ESB Great Island ESB Great Island 49341640 Various Laboratory Results - Soil

Client Project Location Job Number Table 5:

Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Duttin Intervention Value Generic Assessment Criteria Method Detection Limit Less Than MDL.
Not Analysed
No Value

For its pection purposes only any other use.

Sample Type	_						Soil	Soil	Soil								
Sample ID							TP110	TP111	TP112	TP112	TP113	TP114	TP115	TP116	up for TP116	TP117	TP117
Depth							1.5m	0.2m	0.5m	1.5m	0.5m	0.5m	0.5m	0.5m	0.5m	0.5m	1.5m
Date							03-Oct-08	03-Oct-08	02-Oct-08	02-Oct-08	02-Oct-08						
Parameters	Units	MDL	Human Health GAC - Soil	Controlled Water GAC - Soil	Dutch MAC - Screening (S) Value	Dutch MAC - Intervention (I) Value											
T0C																	
Total Organic Carbon	%	0.2	ΛU	nv	ΛU	ΛU	0.8	8.0	0.7	0.3	1	1.1	1.3	1.2	1.3	6.0	0.5
Miscellaneous																	
Total Phenols	mg/kg	0.01	วน	nc	0.05	40	na	20'0	na	na		na	0.03	na	na	20.0	na
Total Cyanide	mg/kg	2.50	920	nv	1	20	na	-	na	na	-	na	-	na	na	-	na
Chloride	mg/kg	2.00	۸u	nv	ΛU	ΛU	na	-	na	na	9	na	na	na	na	45	na
Fluoride	mg/kg	0.50	36,900	0.08	vn	NV	na	-	na	na	-	na	na	na	na	0.8	na
Sulphate	9/1	0.003	۸u	32.9	νu	۸u	na	-	na	na	-	na	na	na	na	0.005	na
VOCs	ug/kg	1	۸u	nv	, vn	\ NN	na	na	na								
					7												

ESB ESB Great Island ESB Great Island 49341640 Various Laboratory Results - Soil

Client Project Location Job Number Table 5:

onend contight on the required for any other use. Exceeds Human Health Soil Generic Assessment Criteria Exceeds Controlled Water Generic Assessment Criteria Exceeds Duttin Intervention Value Generic Assessment Criteria Method Detection Limit Less Than MDL.
Not Analysed
No Value

ſ												
							Soil	Soil	Soil	Soil	Soil	Soil
							BH201	BH201	BH203	BH204	BH204	BH205
							1-2.0m	4.0m	3.0m	1.0m	2.0m	1.0m
							01-Oct-08	01-Oct-08	03-Oct-08	03-Oct-08	03-Oct-08	02-Oct-08
	24:-11	i Ch	Human Health GAC -	Controlled Water	Dutch MAC -	Dutch MAC -						
	Onits	MDL	100	GAC - Soil	Screening (S) Value	Intervention (I) Value						
pon	%	0.2	ΛU	nv	ΛU	ΛU	0.3			1	9.0	1.3
"												
	mg/kg	0.01	ou	nc	90'0	40	0.11	0.03	na	90.0	0.02	na
	mg/kg	2.50	20	νu	1	20			na			na
	mg/kg	2.00	۸u	NV	ΛU	ΛU	98	5	na	118	62	na
	mg/kg	0.50	36,900	0.08	ΛU	۸u	3.7	-	na	1.3	1.5	na
	l/6	0.003	NN	32.9	NN	VU	0.058	0.040	na	0.046	0.017	na
	ug/kg	1	۸u	nv	ΛU	۸u	na	-	na	na	na	na

ESB ESB Great Island ESB Great Island 49341640 Various Laboratory Results - Soil

Client Project Location Job Number Table 5: na

Exceeds Human Health Soil Generic Assessment Criteria
 X Exceeds Controlled Water Generic Assessment Criteria
 X Exceeds Ucuth Intervention Value
 GAC Generic Assessment Criteria
 MDL Method Detection Limit
 Less than MDL
 na Not Analysed
 No Value

TOC
Otal Organic Carbon
Miscellaneous
Total Phenois
Total Phenois
Chloride
Fluoride
Sulphate
VOCs

Parameters

onsen of convident owner required for any other use.

Client Project Location Job Number Table 6: ESB ESB Great Island Great Island 49341640 Relative Percentage Difference

Sample Type	1		Soil	Soil		Soil	Soil	
Sample ID			TP109	Dup for TP109	0/ 000	TP116	Dup for TP116	0/ 000
Depth (m)	1		0.4m	0.4m	%RPDs	0.5m	0.5m	%RPDs
Date	1		03-Oct-08	03-Oct-08		02-Oct-08	02-Oct-08	
Parameters	Units	MDL						
Hydrocarbons								
Aromatics								
C6-C7	mg/kg	0.01	-	-	NC	-	-	NC
C7-C8	mg/kg	0.01	-	-	NC	-	-	NC
C8-C10	mg/kg	0.01	-	-	NC	-	-	NC
C10-C12	mg/kg	0.01	-	-	NC	-	-	NC
C12-C16	mg/kg	0.1	-	-	NC	-	-	NC
C16-C21	mg/kg	0.1	-	-	NC	-	-	NC
C21-C35	mg/kg	0.1	-	-	NC	-	-	NC
Total Aromatics	mg/kg	0.1	-	-	NC	-	-	NC
Aliphatics								
C5-C6	mg/kg	0.01	-	-	NC	-	-	NC
C6-C8	mg/kg	0.01	-	-	NC	-	-	NC
C8-C10	mg/kg	0.01	-	-	NC	-	-	NC
C10-C12	mg/kg	0.01	-	-	NC	-	-	NC
C12-C16	mg/kg	0.1	-	-	NC	-	-	NC
C16-C21	mg/kg	0.1	-	-	NC	-	-	NC
C21-C35	mg/kg	0.1	-	-	NC		-	NC
Total Aliphatics (MO)	mg/kg	0.1	-	-	NC		-	NC
Total TPH	mg/kg	0.1	-	-	NC	-	-	NC
BTEX								
Benzene	mg/kg	0.01	-	-	NC		-	NC
Toluene	mg/kg	0.01	-	-	NC	-	-	NC
Ethylbenzene	mg/kg	0.01		-	NC	-	-	NC
Total Xylene	mg/kg	0.01	-	-	NC	-	-	NC
BTEX	mg/kg	0.01		-	NC	-	-	NC
MTBE	mg/kg	0.01	-	-	NC	-	-	NC
TOC								
Total Organic Carbon	%	0.2	1	1	32	1	1	⊘• 8
Heavy Metals							.3	, D
Antimony	mg/kg	1.5	na	na	NC	-	- 13ther	NC
Arsenic Low Level	mg/kg	3	31	24	25	156	13	169
Barium	mg/kg	6	126	114	10.0	79	1. 476	3.9
Cadmium Low Level	mg/kg	0.2	-	-	NC	- 0	312.	NC
Chromium	mg/kg	4.5	38	36	5.4	28	♦ 28	0.0
Copper	mg/kg	6	26	23	12	CO7 >	20	16
Lead	mg/kg	2	59	49	18.5	0°27.0°	27	0.0
Mercury Low Level	mg/kg	0.4	-	-	NC 💉	11/1/2	-	NC
Molybdenum	mg/kg	0.6	2	2	0.0	₹ <u>0</u> 2	2	0.0
Nickel	mg/kg	0.9	22	21	;407 e	18	20	10.5
Selenium Low Level	mg/kg	3	-	-	CNCV	-	-	NC
Vanadium	mg/kg	1.5	57	53 🗳	103	48	46	4.3
Zinc	mg/kg	2.5	88	76	14.6	62	61	1.6

"-" - Less than MDL
na - Not Analysed
NC - Not Calculable
Bold - % RPD greater than 40% and results reported greater than ten times the MDL.

Compiled by:JJ Checked by:

November 2008 URS Ireland Ltd.

Client Electricity Supply Board
Project ESB Great Island
Location ESB Great Island
Job Number 49341640

 Table 7:
 Asbestos Identification Results - Soil

	7 lobeoteo lacitan		
Sample Location	Depth Sampled (m)	Material Sampled	Asbestos Detected / Type
TP101		Soil	No asbestos detected
TP102		Soil	No asbestos detected
TP103		Soil	No asbestos detected
TP104		Soil	No asbestos detected
TP105		Soil	No asbestos detected
TP106		Soil	No asbestos detected
TP108		Soil	No asbestos detected
TP109		Soil	No asbestos detected
TP110		Soil	No asbestos detected
TP111		Soil	No asbestos detected
TP112		Soil	No asbestos detected
TP113		Soil	No asbestos detected
TP114		Soil	No asbestos detected
TP115		Soil	No asbestos detected
TP116		Soil	No asbestos detected
TP117		Soil	No asbestos detected
BH201		Soil	No asbestos detected
BH204		Soil	No asbestos detected
BH205		Soil	No asbestos defected
BH207		Soil	No asbestos detected
HA01		Soil	No asbestos detected
HA02		Soil	No aspestos detected
HA03		Soil	No asbestos detected
HA04		Soil	o asbestos detected
HA05		Soil '115	No asbestos detected
HA06		Soil in	No asbestos detected
HA08		Soil For A	No asbestos detected
HA09		Soil	No asbestos detected
HA10			No asbestos detected
HA11		Soil	No asbestos detected
QA01		Soil	No asbestos detected
QA02		Soil	No asbestos detected

Note: Detection limit <0.01 %

 Client
 ESB

 Project
 ESB Great Island

 Location
 ESB Great Island

 Job Number
 49341640

 Table 8:
 Hydrocarbon Laboratory Results - Sediment

Sample Type							Sed						
Sample ID							SS01	SS02	SS03	SS04	SS10	SS11	SS12
Depth							Surface						
Date							06-Oct-08	06-Oct-08	06-Oct-08	06-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08
			Human Health GAC	Controlled Mater	Dutch -	Dutch -							
Parameters	Units	MDL	Soil	GAC - Soil	Screening (S) Value	Intervention (I) Value							
Aromatics													
TPH (>EC6-7) aromatic	mg/kg	0.01	3100	0.341	۸u	ΛU					-	-	
TPH (>EC7-8) aromatic	mg/kg	0.01	3,200	0.429	۸u	NN	-	-	1	-	-	-	-
TPH (>EC8-10) aromatic	mg/kg	0.01	1,100	0.541	۸u	ΛU							
TPH (>EC10-12) aromatic	mg/kg	0.01	45,000	0.855	۸u	N							
TPH (>EC12-16) aromatic	mg/kg	0.1	73,000	1.71	۸u	λu	1.94	2.10	2.15	1.45	0.19	0.14	0.16
TPH (>EC16-21) aromatic	mg/kg	0.1	22,000	5.39	ΛU	ΛU	1.03	0.77	0.82	0.71	0.18	0.11	0.16
TPH (>EC21-35) aromatic	mg/kg	0.1	57,000	42.8	Vu S	N	-	0.11	0.11	-	-	-	
Total Aromatics	mg/kg	0.1	ΛU	ΛU	AL N	۸u	2.97	2.98	3.08	2.16	0.37	0.25	0.31
Aliphatics					Ş, G								
TPH (>EC5-6) aliphatic	mg/kg	0.01	1,000	0.320	C GOU	NN	-	-	1	-	-	-	-
TPH (>EC6-8) aliphatic	mg/kg	0.01	2,800	1.43	NV NU	ار الا					-	-	
TPH (>EC8-10) aliphatic	mg/kg	0.01	230,000	10.9	۸u	VI Co.	-	-	-	-	-	-	
TPH (>EC10-12) aliphatic	mg/kg	0.01	150,000	85.6	۸u	ON YOUN	-	-	-	-	-	-	
TPH (>EC12-16) aliphatic	mg/kg	0.1	180,000	1,705	nv	ALC: DE	-	-	-	-	-	-	•
TPH (>EC16-21) aliphatic	mg/kg	0.1	IR	214,533	۸u	AL VAL	-	-	-	-	-	-	
TPH (EC21-35) aliphatic	mg/kg	0.1	ΛU	2,580,630	۸u	SE OS	205.47	61.19	62.44				
Total Aliphatics (MO)	mg/kg	0.1	VU	ΛU	20	5,0000,5	205.47	61.19	62.44	-	-	-	
Total TPH	mg/kg	0.1	VI	ΛU	vn	NN NI	10208.43	64.17	65.52	2.16	0.37	0.25	0.31
втех						P *	4.						
Benzene	mg/kg	0.01	7	0.0047	0.01	1	M	-	-	-	-	-	
Toluene	mg/kg	0.01	089	0.05	0.01		200	-	-	-	-	-	
Ethylbenzene	mg/kg	0.01	48,000	0.15	0.03	20	ne	-	-	-	-	-	•
Total Xylene	mg/kg	0.01	1,500	0.15	0.1	25	J	1	-	,	-	1	1
ВТЕХ	mg/kg	-	N	N	N	N.	,	-	-	-	-	1	1
MTBE	mg/kg	0.01	3,800	0.01	<u>ک</u>	100	,				,		

××	Exceeds Human Health Soil Generic Assessment Criteria
×	Exceeds Controlled Water Generic Assessment Criteria
xx	Exceeds Dutch Intervention Value
GAC	Generic Assessment Criteria
MDL	Method Detection L
•	Less than MDL
na	Not Analysed
۸u	No Value
*	Minimum of DWS and EQS (mg/kg)
껕	Insignificant risk to identified potential receptors

November 2008

ESB Great Island ESB Great Island 49341640 PAH Laboratory Results - Sediment Client Project Location Job Number Table 9:

Sample Type							Sed						
Sample ID							SS01	SS02	EOSS	SS04	SS10	SS11	SS12
Depth							Surface						
Date							06-Oct-08	06-Oct-08	06-Oct-08	06-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08
			Human Health	Controlled	Dutch -	Dutch -							
Parameters	Units	MDL	GAC - Soil	AC -	Screening (S)	Intervention							
Naphthalene *	ma/ka		1.300	0.04	value	(I) Value	900.0	0.016	0.015	0.010	0.008	0.005	0.012
Acenaphthylene	mg/kg	_	3,100	1.91	, AL	۸u	0.008	0.011	0.016	0.012	0.007	0.005	0.006
Acenaphthene	mg/kg	1	34,000	87.9	ΛU	nv	0.019	0.059	0.062	0.033	0.025	0.021	0.027
Fluorene	mg/kg	-	000'69	114	ΛU	nv	0.010	0.007	0.013	0.008	900.0	900.0	900.0
Phenanthrene *	mg/kg	1	34,000	7.79	È	۸u	0.020	0.036	0.055	0.052	0.025	0.017	0.019
Anthracene*	mg/kg	1	520,000	0.10	SE SE	۸u	900.0	0.011	0.017	0.013	0.013	0.008	0.007
Fluoranthene *	mg/kg	-	3,400	0.36	ili 2	۸u	0.059	0.087	0.121	0.115	0.062	0.043	0.050
Pyrene	mg/kg	1	35,000	650	ð. ≥	∧u �	0.052	0.075	0.103	0.100	0.053	0.035	0.040
Benzo(a)anthracene *	mg/kg	1	340	0.12	ΛU	ر المراجعة المراجعة	0.053	0.080	0.115	0.111	0.044	0.021	0.036
Chrysene *	mg/kg	1	3,500	1.43	ΛU	Ser Mil	0.035	0.051	0.075	990'0	0.047	0.026	0.038
Benzo(b)+Benzo(k) fluoranthene *	mg/kg	-	350	ΛU	ΛU	ection interview	0.055	0.104	0.122	0.126	0.067	0.055	0.061
Benzo(a)pyrene *	mg/kg	7	35	0.35	ΛU	ne Ne	0.022	0.015	0.016	0.022	0.016	0.017	0.027
Indeno(123cd)pyrene *	mg/kg	1	320	νu	۸u	۸u		26.000	0.038	0.033	0.023	0.011	0.023
Dibenzo(ah)anthracene	mg/kg	1	35	1.19	ΛU	۸u	70.0.004	0.004	900'0	900.0	600.0	0.005	0.005
Benzo(ghi)perylene *	mg/kg	1	52,000	nv	ΛU	nv	Section 1	0.033	0.046	0.041	0.027	0.025	0.026
							150						
Sum of 10 PAH	mg/kg	-	ΛU	νu	1	40	0.274	26.433	0.620	689.0	0.332	0.228	0.299
Total 16 EPA PAHs (16)	mg/kg		ΛU	ΛU	ΛU	ΛU	0.367	0.615	0.820	0.747	0.432	0.300	0.383

Exceeds Human Health Generic Assessment Criteria
Exceeds Controlled Water Generic Assessment Criteria
Exceeds Dutch Intervention Value
Generic Assessment Criteria
Method Detection Limit
Less than MDL
Not Analysed
No Value

F	F						7	Č	Č	Č	7	Č	7
sample Type	,						Sed						
Sample ID							SS01	SS02	SS03	SS04	SS10	SS11	SS12
Depth	1					•	Surface						
Date							06-Oct-08	06-Oct-08	06-Oct-08	06-Oct-08	01-Oct-08	01-Oct-08	01-Oct-08
			Human Health	0 1 1 147 - 4		Dutch MAC -							
Parameter	Units	MDL	GAC - Soil	Controlled water GAC - Soil	EPA Background	_							
Antimony	mg/kg	1.5	15	0.23	1.54	15	2.8	2.9	2.4	2.7	1		
Arsenic	mg/kg	0.5	200	0.29	21.9	55	9	8	6	8			
Barinm	mg/kg	-	28,000	4.10	454.5	625	45	20	51	40	44	47	40
Cadmium	mg/kg	0.5	1,400	0.55	1.652	12	0.5	9.0	0.7	9.0		٠	
Chromium	mg/kg	-	5,000	6.50	8.98	380	42	20	51	41	47	51	44
Copper	mg/kg	1	出	0.04	6084	190	18	22	24	18	15	16	13
Lead	mg/kg	-	750	0.40	61.9%	230	30	34	35	27	31	31	27
Mercury	mg/kg	0.3	480	0.0018	0.237	01 Q							
Molybdenum	mg/kg	-	1,310	1.41	3.29	200		0.7			-	_	_
Nickel	mg/kg	1	2,000	92.0	92	17. 18.210	22	25	27	20	19	16	12
Selenium	mg/kg	0.5	8,000	0.05	2.67	.00 111		-					
Vanadium	mg/kg	1	23,400	20	104.8	03500°	26	58	29	24	49	54	44
Zinc	mg/kg	1	R	0.29	144.7	720, 20.	110	130	140	110	96	100	87
						to So							
×	Exceeds Hur	nan Health (Exceeds Human Health Generic Assessment Criteria	Criteria		Jul	من						
×	Exceeds Cor	ntrolled Wate	Exceeds Controlled Water Generic Assessment Criteria	ant Criteria		jeu	onlied						
×	Exceeding E.	PA Backgrou	Exceeding EPA Background 95 Percentile				ioi						
××	Exceeds Dutch Intervention Value	utch Interver	ntion Value				di						
GAC	Generic Asse	Generic Assessment Criteria	eria				N.						
MDL	Method Detection Limit	ction Limit					ine						
1	Less than MDL	75					لأكار	.0					
na	Not Analysed	_					~	్తు.					
2	No Value												

ESB Great Island ESB Great Island 49341640 Heavy Metal Laboratory Results - Sediment

Location Job Number Table 10:

Project Client

Exceeds Controlled Water Generic Assessment Criteria Exceeding EPA Background 95 Percentile Exceeds Dutch Intervention Value Exceeds Human Health Generic Assessment Criteria Insignificant risk to identified potential receptors Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value × × × × × WDL MDL a 5 ⊼

Note: There may be some minor variations in MDL between the tables and the lab certificates, as some samples were analysed by Alcontrols facility at Chester.

Sample Type						Sed	Sed	Sed	Sed	Sed
Sample ID						SS01	SS02	SS03	SS04	SS10
Depth						Surface	Surface	Surface	Surface	Surface
Date						06-Oct-08	06-Oct-08	06-Oct-08	06-Oct-08	01-Oct-08
			Human Health	Controlled	Dutch MAC -					
Parameters	Units	MDL	GAC - Soil	Water GAC -	Intervention (I)					
				Soil	Value					
T0C										
Total Organic Carbon	%	0.2	NV	nv	νu	na	na	na	na	3.5
Miscellaneous					Ç					
Total Phenols	mg/kg	0.01	ΛU	NN	040	0.27	90.0	90.0	0.05	0.03
Total Cyanide	mg/kg	2.50	20	NN	"OZ.	-	-	-	-	-
Chloride	mg/kg	5.00	ΛU	νu	NO NU	24,202	29,330	37,326	15,663	15,753
Fluoride	mg/kg	0.50	369,000	0.05	o o vu	كى. 2.7	2.6	1.8	2.6	3.5
Sulphate	l/g	0.003	ΛU	νu	, vu	3. 191.045	1.222	1.11	0.919	0.568
PCB Total of 7	mg/kg	0.001	16.8	0.014	ΛU	ecit ght		na	1	
Colligeners		,				St. Carl				
VOCs	ug/kg	-	NV	nv	NV	70, CC	na	na		na

Surface 01-Oct-08

Surface 01-Oct-08

Sed SS12

Sed SS11

ESB ESB Great Island ESB Great Island 49341640 Various Laboratory Results - Sediment

Job Number

Location

Project

Table 11:

16,611

22,810

0.238

0.763

na na

пa na

0.15

3.7

3.1

Exceeds Controlled Water Generic Assessment Criteria Exceeds Human Health Generic Assessment Criteria Exceeds Dutch Intervention Value Generic Assessment Criteria Method Detection Limit Less than MDL Not Analysed No Value X X X X X WDF WDF

Parameters Line L	F							Disposal Area	Area			
UNITS MDL ICAV ICAC-DE-DE ICAC-DE-DE-DE-DE-DE-DE-DE-DE-DE-DE-DE-DE-DE-	mple Type				Ground water	Ground water	Ground Water	Ground Water	Ground Water	Ground Water	AMM/202 MMM/104 MM/102 MMM/107	Ground water
UNITS MDL ICV IC	al aidiii					08-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08	09-Oct-08
UNITS MDL IGV	1											
UNIS WILL ION IO		O.L.	:	Š								
Ug/L 10 10 10 10 10 10 10 1	rameters	SIINO	MDL	lGV								
ug/L 10	drocarbons											
ug/L 10	omatics											
Ug/L 10	-C7	ng/L	10	VU							-	
Ug/L 10	-08	ug/L	10	'n	•	•				•	-	•
ug/L 10	-C10	ug/L	10	VI			-				-	
ug/L 10	0-C12	ug/L	10	VI							-	
Ug/L 10	2-C16	ug/L	10	N			-				-	
ug/L 10	6-C21	7/6n	10	NV	-		-		-	-	-	-
ug/L 10	1-C35	7/6n	10	ΛU							-	
ug/L 10	al Aromatics	7/6n	10	ΛU							-	
Uught 10	phatics							C'				
ug/L 10 nv	92	T/6n	10	۸u				Q.	,			
Uught 10	-08	ng/L	10	N.				9				
Uught 10	-C10	J/Bn	10	N.					Š			
Ug/L 10	0-C12	J/bn	10	۸u					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-	
(MO) ug/L 10 nv	2-C16	J/bn	10	ΛI					ď		-	
(MO)	6-C21	na/L	10	'n					of of			
MOD UG/L 10	1-C35	ng/L	10	N.					N. S.	N.		
National Content	al Aliphatics (MO)	na/L	10	N.						8		
riganics (DRO) ug/L 10 11	alTPH	na/L	10	10						į Š		
ug/L 10 1	sel Range Organics (DRO)	0								0, 0		
ug/L 10 1	EX									4		
ug/L 10 10	nzene	T/6n	10	1					,	i es	٠ ح	
ug/L 10 10	nene	7/6n	10	10						· .	· '02	
ug/L 10 10	ylbenzene	J/Bn	10	10							. Ja	
ug/L 10 30	al Xylene	ng/L	10	10							à S	
ug/L 10 nv	.BE	ng/L	10	30							(% O)	
ug/L 0.01 1	EX	J/Bn	10	N.							たシ	
ug/L 0.01											Š.	
ug/L 0.01	Hs										M	
10 mg/L 0.01 mv 0.01	phthalene	J/bn	0.01	-							2	
Ug/L 0.01 rnv	enaphthylene	ng/L	0.01	N.							•	33
ug/L 0.01 nv	enaphthene	J/bn	0.01	N.							-	ę
ug/L 0.01 nv -	orene	ng/L	0.01	'n								1
Ug/L O.01 10000	enanthrene	na/L	0.01	N.								٥
Ug/L 0.01 1	thracene	ng/L	0.01	10000							-	
ug/L 0.01	oranthene**	J/bn	0.01	1								
Ught 0.01	rene	na/L	0.01	N.								
ug/L 0.01 nv . ug/L 0.01 0.05* . . ug/L 0.01 0.01 . . ug/L 0.01 nv . . white of Defection Limit Less than the MDL Not Asluce Minetal Oriental use than the MDL not Asluce . .	nzo(a)anthracene	ng/L	0.01	VI.							-	
ugL 0.01 0.05* ugL 0.01 0.05 ugL 0.01 r/v ugL 0.01 r/v -	rysene	J/gn	0.01	۸u							-	
ugh uon	nzo(b)+Benzo(k)		0.04	*900								
1 ug/L 0.01 0.01	oranthene**	ug/L	0.01	0.03	•		_		-	•	_	_
1	nzo(a)pyrene**	J/Bn	0.01	0.01			-		-		-	
1	eno(123cd)pyrene**	ug/L	0.01	0.05							-	
ug/L	enzo(ah)anthracene	ug/L	0.01	VI							-	
ugh. 0.01 nv - 0	nzo(ghi)perylene**	ng/L	0.01	0.05		,		,		,	-	
	m 6 PAHs	ng/L	-	0.1							-	
	al 16 EPA PAHs	ng/L	0.01	N.								
	IGV	Interim Guid	deline Value	for Groundwat	in in							
	xx	Exceeds IG	V for Groun	d Water								
	MDL	Method Det	ection Limit									
		Less than the	e MDL									
_	<u> </u>	No Value	2									
	S	Mineral Oil										
		Laboratory	esults are r	resented as a	um of the 2 com	ponuds.						
	ŧ											

ESB Great Island ESB Great Island ESB Great Island 49941640 Hydrocarbons and PAH Laboratory Results - Groundwater

Client: Project: Location: Job No: Table 12:

URS Ireland Ltd November 2008

Sample Type				Ground Water	Ground Water	Ground Water	Ground Water Ground Water	ชั	Ground Water	Ground Water	
Sample ID	1			BH2	BH3	BH201	BH202	BH203	BH205	BH206	
Date				31-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08	
Parameters	SHIND	MDL	IGV								
Hydrocarbons											
Aromatics											
C6-C7	ng/L	10	N			-	-				
C7-C8	ng/L	10	N		-	-	-	-	-	-	
C8-C10	ng/L	10	ΛU	·							
C10-C12	ng/L	10	۸u								
C12-C16	ng/L	10	λL								
C16-C21	na/L	10	20								
C21-C35	na/L	10	2		,			,	,	,	
Total Aromatics	1/01	10	2								
Alinhatics	i b	2					C				
	/ul	40	Λū				ø				
90.00	1/01	10	2				100				
C8-C10	1/01	10	\ <u>`</u>					, Š			
010-019	10/L	2 6	2					4 50			
512-C16	na/L	10	2								
C16-C21	l/on	10	2					s S			
C21-C35	1 //	10	2					Į,	il.		
Total Aliphatics (MO)	1/01	10	2					•	S. S. S.		
Total TPH	J/Bn	10	10								
Diesel Range Organics (DRO)	<u> </u>								0		
BTEX									4 17		
Benzene	T/6n	10	1						es es	ď	
Toluene	ng/L	10	10			-	-	-	, S	6	
Ethylbenzene	J/Bn	10	10							8°.	
otal Xylene	T/6n	10	10							D.	
ATBE	ng/L	10	30							or O	
зтех	ng/L	10	VU	-	-	-		-	-	S. C.	
										X 9	
PAHs											,
Naphthalene	ng/L	0.01	1	0.032			na	na	na	,	ď
Acenaphthylene	ng/L	0.01	۸u	0.051			na	na	na		jo,
Acenaphthene	ng/L	0.01	ΛL	0.013			na	na	na		es
-luorene	ng/L	0.01	۸u	0.029			na	na	na		0
Phenanthrene	ng/L	0.01	N	0.055		-	na	na	na		9 -
Anthracene	ng/L	0.01	10000	0.016			na	na	na	1	
-Iuoranthene**	ng/L	0.01	1	0.09		-	na	na	na		
Pyrene	T/6n	0.01	ΛU	0.077			na	na	na		
Senzo(a)anthracene	ng/L	0.01	Λι	0.1			na	na	na		
Chrysene	T/6n	0.01	ΛU	0.079			na	na	na		
Benzo(b)+Benzo(k) fluoranthene**	na/L	0.01	0.05*	0.092	-		na	eu	na		
3enzo(a)pyrene**	ng/L	0.01	0.01	0.038			na	na	na	1	
ndeno(123cd)pyrene**	ng/L	0.01	0.05	0.026			na	na	na		
Dibenzo(ah)anthracene	ng/L	0.01	N			-	na	na	na	-	
Benzo(ghi)perylene**	ng/L	0.01	0.05	0.027	-	-	na	na	na	-	
Sum 6 PAHs	ng/L		0.1	0.273	1	-	na	na	na		
Fatal 40 FDA DALLa	/טו	0.01	ΛU	0.724			na	na	na		

ESB ESB Great Island ESB Great Island 49341640 Hydrocarbons and PAH Laboratory Res

Client: Project: Location: Job No: Table 12: | Idea | December | De

November 2008

Whet required for any other use.

				Former L	Former Landfill Cell No. 2 (West)	(West)		Former Landfill Cell No.1 (East)	Cell No.1 (East	
Sample ID				MW101	MW102	MW107	MW200	MW104	MW106	MW202
Date				80-1 ² O-80	80-1 ² O-80	08-Oct-08	07-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08
Parameter	Units	MDL	IGV							
Metals										
Antimony	mg/L	0.001	ΛU	na	eu	na	na	na	na	na
Arsenic	mg/L	0.001	0.01	0.025	280'0	0.004		0.027	0.003	0.022
Barium	mg/L	0.001	0.1	0.031	90'0	0.094	0.025	0.012	0.013	0.022
Cadmium	mg/L	0.0004	0.005	-	-	0.0006	-	-	-	-
Chromium	mg/L	0.001	0.03	900'0	0.018	0.013	0.002	0.004	0.003	900'0
Copper	mg/L	0.001	0.03	0.002	200'0	0.005	0.003	0.002	0.005	0.01
Cobalt	mg/L	0.001	ΛU	0.002	0.004	500.0 0.003				
Lead	mg/L	0.001	0.01	0.003	0.002	7.00 ,003	-	-	-	0.001
Mercury Low	mg/L	0.00005	0.001		-	, tri				
Molybdenum	mg/L	0.001	NV	•	-	8	-	0.005	-	•
Nickel	mg/L	0.001	0.02	0.003	900'0	0.005	60.003	0.002	0.002	0.002
Selenium	mg/L	0.001	NV	0.02	980'0	· ·	TI TO	-	-	0.003
Vanadium	mg/L	0.001	NV	0.028	0.048	0.005	7,00:002	600.0	0.003	0.021
Zinc	mg/L	0.001	0.1	0.031	200'0	0.014	0.0410	0.004	0.005	0.006

ESB Great Island ESB Great Island 49341640 Heavy Metal Laboratory Results - Groundwater

Client: Project: Location: Job No: Table 13:

Interim Guideline Value for Groundwater
Exceeds IGV for Ground Water
Method Detection Limit
Less than the MDL
Not Analysed
no value MDL - - na

URS Ireland Ltd

r 2008	
Novembe	

							Station Grounds	rounds			
Sample ID				MW201	BH2	BH3	BH201	BH202	BH203	BH205	BH206
Date				09-Oct-08	31-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08
Parameter	Units	MDL	IGV								
Metals											
Antimony	mg/L	0.001	ΛU	na	0.003	na	na	na	na	na	na
Arsenic	mg/L	0.001	0.01	0.008		0.009	0.001	0.011	0.004		
Barium	mg/L	0.001	0.1	0.05	0.016	0.022	0.055	0.029	0.009	0.01	0.005
Cadmium	mg/L	0.0004	0.005								
Chromium	mg/L	0.001	0.03	0.004	-	0.003	0.004	900.0	0.004	0.002	0.002
Copper	mg/L	0.001	0.03	0.002	0.005	0.003	0.003	0.001	0.002	-	-
Cobalt	mg/L	0.001	۸u	-	· -	, o	-	-	-	-	
Lead	mg/L	0.001	0.01	0.005	•	% 0.002	0.002	-	-	-	-
Mercury Low	mg/L	0.00005	0.001	-	•		-	-	-	-	0.00005
Molybdenum	mg/L	0.001	۸u	-	0.008	0004	0.008	0.005	0.007	-	•
Nickel	mg/L	0.001	0.02	0.002	0.001	₹ 0000	0.002	0.003	0.001		
Selenium	mg/L	0.001	۸u	0.014		0.026	0.005	0.035	0.012	0.003	0.003
Vanadium	mg/L	0.001	۸u	900.0	900'0	0.013	0,000	0.018	0.007	0.002	0.002
Zinc	mg/L	0.001	0.1	0.016	0.001	0.009	V C0.01	0.005	0.008	0.012	0.008
\SI	Interim Guic	Jeline Value	or Groundwat				on Di				
XX	Exceeds IG	V for Ground	Water				ST.				
MDL	Method Det	ection Limit	Method Detection Limit				201	્ક			
•	Less than th	ne MDL					Me	6			
na	Not Analysed	þ					,	di			
٤	no value							of any other use	رهي		

ESB ESB Great Island ESB Great Island 49341640 Heavy Metal Laboratory Results - Gro.

Client: Project: Location: Job No: Table 13:

URS Ireland Ltd

				Former L	Former Landfill Cell No. 2 (West)	2 (West)		Former L	Former Landfill Cell No. 1 (East)	o. 1 (East)	
Sample ID				MW101	MW102	MW107	MW200	MW104	MW106	MW202	MW201
Date				08-Oct-08	08-Oct-08	08-Oct-08	07-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08	09-Oct-08
Parameter	Units	MDL	IGV								
Anions and Cations											
Aluminium	mg/L	0.002	0.2	90'0	0.171	0.131	0.013	0.154	0.019	690'0	0.002
Boron	T/6m	0.003	1	0.943	2.149	0.317		0.229		0.628	0.306
Calcium	mg/L	0.12	200	73.21	185.8	90.31	46.43	46.76	96.69	26.69	61.86
Chloride	mg/L	1	30	75	51	344	30	37	69	523	1,561
Iron	T/6m	0.002	0.2	0.264	0.314	2.921	0.013	0.168	0.101	0.483	0.299
Potassium (Total as K)	mg/L	0.2	2	104.5	569	73.5	1.8	14.5	4.4	33.6	44
Managanese	mg/L	0.001	0.05	0.14	60'0	3.196	1.053	0.43	0.07	0.764	0.202
Sodium (Total as Na)	T/6m	0.2	150	2,529	7,597	1,814	20.4	142.4	30.4	496.1	720
Sulphate	mg/L	3	200	2,562	2,688	3,328	2,112	1,986	2,845	3,979	143
Alkalinity as CaCO ₃	mg/L	5	NV	480	1140	100	C 6210	410	260	400	100
Total Hardness as CaCO ₃	mg/L	-	200	844	3,203	1,040	455	262	215	189	615
Total Dissolved Solids (TDS)	mg/L	5	1000	6,110	17,800	4,570	1670	488	243	1,300	na
							0	< 9			
Nutrients							•	0,0			
Ammonia*	mg/L	0.257	0.15	28.421	76.388	0.772	0.386	7.262	-	5.273	
Nitrate (as NO ₃)	mg/L	0.3	25	-	-		2.6	di Y		-	2.9
Nitrite (as NO ₂)	mg/L	0.05	0.1	90'0	0.14		0.55	1080 00	وي 0.07	0.05	
Phosphate	mg/L	0.03	0.03		0.04	0.03	-	. ·	ji	0.05	0.04
									4 50		
Miscellaneous									0		
Total Phenols	mg/L	0.01	0.0005	0.02			-	-	77	-	
Total Cyanide	mg/L	0.05	0.01					-	S	D	
PCB Total of 7 Congeners	ng/L	0.01	0.01			-		-	70	ر م	
VOCs	ng/L	-	nv	na	na		na		na	a Oa	na
SVOCs	ug/L	100	nv	na	na	na	na	na	na	100 V	na
XO	Sir C	and the state of t	dente							d.	
25		Jeline value for	Groundwater							ď	
XX	Exceeds IG	exceeds IGV for Ground Water	/ater							H	
MDL	Method Det	Method Detection Limit								0,	24
	Less than the MDL	ne MDL								,	e
na	Not Analysed	D.									, 2
۸u	no value										sse
*	Conversion	factor of 1.286	Conversion factor of 1.286 used to convert ammoniacial nitrogen (as N)	ammoniacial nitro	gen (as N)) •
	to ammonia	to ammonia (as ammonium as NH4)	n as NH4)								

ESB ESB Great Island ESB Great Island 4994 1640 Various Laboratory Results - Groundwater

Client: Project: Location: Job No: Table 14:

Þ	
릇	
ä	
<u>@</u>	
SS	
\supset	

							Station Grounds	s		
Sample ID				BH2	BH3	BH201	BH202	BH203	BH205	BH206
Date				31-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08	90-DCt-08
Parameter	Units	MDL	IGV							
Anions and Cations										
Aluminium	mg/L	0.002	0.2	0.076	0.101	0.14	0.037	0.049	0.028	0.011
Boron	7/6w	0.003	1	290'0	1.042	0.188	1.182	0.578		
Calcium	7/6w	0.12	200	26.43	95.95	34.89	142.3	45.91	13.57	16.37
Chloride	7/6w	1	30	21	4,676	473	6,108	1,931	23	21
Iron	7/6w	0.002	0.2	-	0.137	0.166	0.137	0.118	690.0	0.049
Potassium (Total as K)	mg/L	0.2	2	3.7	93	14	140	48	1.5	2.4
Managanese	mg/L	0.001	0.05	0.027	0.012	0.168	0.014	0.025	0.032	0.094
Sodium (Total as Na)	7/6w	0.2	150	79.7	1,900	310	2,600	870	20	21
Sulphate	7/6w	3	200	30	929	88	824	368	12	12
Alkalinity as CaCO ₃	7/6w	2	NV	08	170	110	راي 210	110	80	06
Total Hardness as CaCO ₃	mg/L	-	200	98	1,064	206	1,522	469	62	42
Total Dissolved Solids (TDS)	mg/L	2	1000	174	na	na	na	na	na	na
							∞0,	<		
Nutrients) A	, Co		
Ammonia*	7/6w	0.257	0.15	ua	0.257		0.643	, N		
Nitrate (as NO ₃)	T/6m	0.3	25	ua	9.0	12.7	-	15.5° K	6.9	17.6
Nitrite (as NO ₂)	T/6m	0.05	0.1	ua				93 Sec. 200		
Phosphate	mg/L	0.03	0.03	na	0.16			0.05	0.05	0.04
								740	0	
Miscellaneous								de	10	
Total Phenols	7/6w	0.01	0.0005	90'0	-	-	-		ar C	
Total Cyanide	mg/L	0.05	0.01	0.05	-	-	-	-	, C. C.	
PCB Total of 7 Congeners	ng/L	0.01	0.01	-	-	-	-	-	%	-
VOCs	ng/L	1	nv		-	-	ua	na	TAN CO	-
SVOCs	T/on	100	۸u		eu	eu			250	na 🔏

ESB ESB Great Island ESB Great Island 4994 1640 Various Laboratory Results - Groundwater

Client: Project: Location: Job No: Table 14: IGV Interim Guideline Value for Groundwater

xx Exceeds IGV for Ground Water
MDL Method Detection Limit
Lass than the MDL

na Not Analysed
nv no value

Conversion factor of 1,286 used to convert is
to ammonia (as ammonium as NH4)

Client: Project: Location: Job No: Table 15: ESB
ESB Great Island
ESB Great Island
49341640
VOC Laboratory Results - Groundwater

				Dispos	al Area		Main Power	Station Site	
Sample Type	1			Ground Water	Ground Water	Ground Water	Ground Water		Ground Water
Sample ID				MW104	MW107	BH201	BH206	BH3	BH2
Date				06-Oct-08	06-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08	31-Oct-08
Parameters	Units	MDL	IGV						
1,1,1,2-Tetrachloroethane	ug/l	1.00	nv	-	-	-	-	-	-
1,1,1-Trichloroethane	ug/l	1.00	500	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	ug/l	1.00	nv	-	-	-	-	-	-
1,1,2-Trichloroethane	ug/l	1.00	nv	-	-	-	-	-	-
1,1-Dichloroethane	ug/l	1.00	nv	-	-	-	-	-	-
1,1-Dichloroethene	ug/l	1.00	nv	-	-	-	-	-	-
1,1-Dichloropropene	ug/l	1.00	nv	-	-	-	-	-	-
1,2,3-Trichlorobenzene	ug/l	1.00	nv	-	-	-	-	-	-
1,2,3-Trichloropropane	ug/l	1.00	nv	-	-	-	-	-	-
1,2,4-Trichlorobenzene	ug/l	1.00	40	-	-	-	-	-	-
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	ug/l ug/l	1.00	nv nv	-	-	-	-	-	-
1,2-Dibromoethane	ug/l ug/l	1.00	nv	-	-		-	-	-
1,2-Distribution 1,2-Dichlorobenzene	ug/l	1.00	10		-	-		-	
1,2-Dichloroethane	ug/l	1.00	3		-	-		-	
1,2-Dichloropropane	ug/l	1.00	nv		-		-	-	-
1,3,5-Trimethylbenzene	ug/l	1.00	nv	-	-	-	-	-	-
1,3-Dichlorobenzene	ug/l	1.00	nv	_	_	_	_	-	_
1,3-Dichloropropane	ug/l	1.00	nv	-	-	-	-	-	-
1,4-Dichlorobenzene	ug/l	1.00	nv	-	-	-	-	-	-
2,2-Dichloropropane	ug/l	1.00	nv	-	-	-	-	-	-
2-Chlorotoluene	ug/l	1.00	nv	-	-	-	-	-	-
4-Chlorotoluene	ug/l	1.00	nv	-	-	-	-	-	-
4-Isopropyltoluene	ug/l	1.00	nv	-	-	S. S.	-	-	-
Benzene	ug/l	1.00	1	-	-	N. C.	-	-	-
Bromobenzene	ug/l	1.00	nv	-	-	ille -	-	-	-
Bromochloromethane	ug/l	1.00	nv	-		٥ -	-	-	-
Bromodichloromethane	ug/l	1.00	nv	-	of of all	-	-	-	-
Bromoform	ug/l	1.00	nv	-		-	-	-	-
Bromomethane	ug/l	1.00	nv	-	20 :10 1	-	-	-	-
Carbon disulphide Carbontetrachloride	ug/l ug/l	1.00 1.00	nv nv		did dill	-	-	-	-
Chlorobenzene	ug/l	1.00	1	- 5	<u> Zect</u>		_	-	-
Chloroethane	ug/l	1.00	nv	dial	ర్*	-	-	-	
Chloroform	ug/l	1.00	12	-200 345	-	-	_	-	_
Chloromethane	ug/l	1.00	nv	:15/11/0	-	_	-	-	-
cis-1,2-Dichloroethene	ug/l	1.00	nv	201 H	-	_	_	-	_
cis-1,3-Dichloropropene	ug/l	1.00	nv	\$0.00 A	-	-	-	-	-
Dibromochloromethane	ug/l	1.00	nv	COA.	-	-	-	-	-
Dibromomethane	ug/l	1.00	nv	or -	-	-	-	-	-
Dichlorodifluoromethane	ug/l	1.00	nv		-	-	-	-	-
Dichloromethane	ug/l	1.00	10,5	-	-	-	-	-	-
Ethylbenzene	ug/l	1.00	₫ ୭°	-		-	-	-	-
Hexachlorobutadiene	ug/l	1.00	0.1	-	-	-	-	-	-
Isopropylbenzene	ug/l	1.00	nv	-	-	-	-	-	-
Naphthalene	ug/l	1.00	1	-	-	-	-	-	-
n-Butylbenzene	ug/l	1.00	nv	-	-	-	-	-	-
o-Xylene	ug/l	1.00	10	-	-	-	-	-	-
p/m-Xylene	ug/l	1.00	10	-	-	-	-	-	-
Propylbenzene sec-Butylbenzene	ug/l	1.00 1.00	nv	-	-		-	-	-
Styrene	ug/l ug/l	1.00	nv	-	-	-	-	-	-
tert-butyl methyl ether (MTBE)	ug/l	1.00	nv 30		-	-	-	-	-
tert-Butylbenzene	ug/l	1.00	nv		-	-	-	-	-
Tetrachloroethene	ug/l	1.00	40	-	-	-	-	-	-
Toluene	ug/l	1.00	10	-	-	-	-	-	-
trans-1,2-Dichloroethene	ug/l	1.00	nv	-	-	-	-	-	-
trans-1,3-Dichloropropene	ug/l	1.00	nv	-	-	-	-	-	-
Trichloroethene	ug/l	1.00	70	-	-	-	-	-	-
Trichlorofluoromethane	ug/l	1.00	nv	-	-	-	-	-	-
Vinyl Chloride	ug/l	1.00	nv	-	-	-	-	-	-

IGV	Interim Guideline Value for Groundwater
XX	Exceeds IGV for Ground Water
MDL	Method Detection Limit
-	Less than the MDL
na	Not Analysed
nv	no value

Client: Project: Location: Job No: Table 16: ESB
ESB Great Island
ESB Great Island
49341640
SVOC Laboratory Results - Groundwater

					Main Power	Station Site	
Sample Type	1			Groundwater			Groundwater
Sample ID	1			BH2	BH202	BH203	BH205
Date	1			31-Oct-08	09-Oct-08	09-Oct-08	09-Oct-08
Parameters	Units	MDL	IGV				
Phenol	ug/l	1	0.5	-	-	-	-
2-Chlorophenol	ug/l	1	200	-	-	-	-
2-Methylphenol	ug/l	1	nv	-	-	-	-
4-Methylphenol 2-Nitrophenol	ug/l	1	nv nv	-	-	-	-
4-Nitrophenol	ug/l ug/l	1	nv	-	-		-
2,4-Dichlorophenol	ug/l	1	nv	_	-	-	-
2,4-Dimethylphenol	ug/l	1	nv	-	-	-	-
4-Chloro-3-methylphenol	ug/l	1	nv	-	-	-	-
2,4,6-Trichlorophenol	ug/l	1	200	-	-	-	-
2,4,5-Trichlorophenol	ug/l	1	nv	-	-	-	-
Pentachlorophenol	ug/l	1	2	-	-	-	-
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/l ug/l	1	nv 10	-	-	-	-
1,2-Dichlorobenzene	ug/l	1	10		-		-
1,2,4-Trichlorobenzene	ug/l	1	0.4	-	-	-	-
Nitrobenzene	ug/l	1	10	-	_	-	-
Azobenzene	ug/l	1	nv	-	-	-	-
Hexachlorobenzene	ug/l	1	0.03	-	-	-	-
Naphthalene	ug/l	1	1	-	-	-	-
Acenaphthylene	ug/l	1	nv	-	- <u>2</u> 0°	-	-
Acenaphthene Fluorene	ug/l ug/l	1	nv nv	-	, 180	-	-
Phenanthrene	ug/l	1	nv		iller.		-
Anthracene	ug/l	1	10000	- 1-	40-	-	-
Fluoranthrene	ug/l	1	1	orly o	12.	-	-
Pyrene	ug/l	1	nv	50,001	-	-	-
Benzo(a)anthracene	ug/l	1	nv	Sec. 91	-	-	-
Chrysene	ug/l	1	nv	Do ille	-	-	-
Benzo(b)fluoranthrene Benzo(k)fluoranthrene	ug/l ug/l	1	0.5	Legy .	-	-	-
Benzo(a)pyrene	ug/l	1	0.01	-	_		-
Indeno(1,2,3-cd)pyrene	ug/l	1	0.05	-	-	-	-
Dibenzo(a,h)anthracene	ug/l	1 :0	NNV	-	-	-	-
Benzo(ghi)perylene	ug/l	_666	0.05	-	-	-	-
2-Chloronaphthalene	ug/l	MOS	nv	-	-	-	-
2-Methylnaphthalene Carbazole	ug/l	21004	nv	-	-	-	-
Isophorone	ug/l ug/l	01 01 1	nv nv		-		-
Dibenzofuran	ug/l	1	nv	_	_		-
Dimethyl phthalate	ug/	1	nv	-	-	-	-
Diethyl phthalate	ug/l	1	10	-	-	-	-
Di-n-butylphthalate	ug/l	1	2	-	-	-	-
Di-n-octylphthalate	ug/l	1	0.1	-	-	-	-
Bis(2-ethylhexyl)phthalate Butylbenzylphthalate	ug/l	1	nv	-	-	-	-
4-Chloroaniline	ug/l ug/l	1	1 nv	-	-	-	-
2-Nitroanaline	ug/l	1	10	-	-	-	-
3-Nitroaniline	ug/l	1	10	-	-	-	-
4-Nitroaniline	ug/l	1	nv	-	-	-	-
2,4-Dinitrotoluene	ug/l	1	nv	-	-	-	-
2,6-Dinitrotoluene	ug/l	1	nv	-	-	-	-
Bis(2-chloroethyl)ether	ug/l	1	30	-	-	-	-
4-Bromophenylphenylether 4-Chlorophenylphenylether	ug/l ug/l	1	nv 40	-	-	-	-
Hexachloroethane	ug/l ug/l	1	10		-	-	-
Hexachlorobutadiene	ug/l	1	0.1	-	-	-	-
Hexchlorocyclopentadiene	ug/l	1	nv	-	-	-	-
Bis(2-chloroethoxy)methane	ug/l	1	10	-	-	-	-
N-nitrosodi-n-propylamine	ug/l	1	nv	-	-	-	-
SVOC-TIC (2.12)							
Heneicosane (CAS), n-Heneicosane	ug/l	1	nv	1.11	nd	nd	nd
14BETAH-PREGNA,14BETAPREGNA	ug/l	1	nv	2.1 3.4	nd nd	nd	nd nd
1-Octadecanethiol (CAS), Octadecanethiol 9-Octadecenamide, (Z)- (CAS), OLEOAMIDE	ug/l ug/l	1	nv nv	1.2	nd nd	nd nd	nd nd
o octadocenamiae, (2)- (000), OLLOAWIDL	ug/i		ΙΙV	1.2	ııu	HU	HU

IGV	Interim Guideline Value for Groundwater
xx	Exceeds IGV for Ground Water
MDL	Method Detection Limit
-	Less than the MDL
na	Not Analysed
nv	no value
nd	not detected

URS Ireland Ltd

November 2008

 Client:
 ESB

 Project:
 ESB Great Island

 Location:
 ESB Great Island

 Job No:
 4934 1640

 Biological Laboratory Results - Groundwater

				Former	Former Landfill Cell No. 2 (West)	2 (West)		Former	Former Landfill Cell No. 1 (East)	1 (East)	
Sample ID				MW101	MW102	MW107	MW200	MW104	MW106	MW202	MW201
Date				10/08/2008	10/08/2008	10/08/2008	10/07/2008	10/08/2008	10/08/2008	10/08/2008	10/09/2008
Parameter	Units	MDL	ΛĐI								
Biological											
Biological Oxygen Demand (BOD)	mg/L	2	ΛU	8	na	3	na	na	na	2	
Total coliforms	cfu/100ml	1	0	2	-	80,000	na	na	na	1,200	1,400
Faecal coliforms	cfu/100ml	1	0	•	-	100	na	na	na	2	4

IGV MDL Na · v

Consent of copyright owner required for any other tise.	
Interim Guideline Value for Groundwater Exceeds IGV for Ground Water Method Detection Limit Less than the MDL Not Analysed no value	

URS Ireland Ltd

Client: Project: Location: Job No: Table 17:

ESB ESB Great Island ESB Great Island 49341640 Biological Laboratory Results - Gro

						Š	Station Grounds			
	ı									
				BH2	BH3	BH201	BH202	BH203	BH205	BH206
				10/31/2008	10/09/2008	10/09/2008	10/09/2008	10/09/2008	10/09/2008	10/09/2008
Parameter	Units	MDL	IGV							
Oxygen Demand (BOD)	mg/L	2	NV	ua	2	-	4	-	2	-
rms	cfu/100ml	1	0	na	20,000	1,700	1,700	006	10	200
forms	cfu/100ml	1	0	na	1,700	-	200	200	2	-

Interim Guideline Value for Ground Exceeds IGV for Ground Water Method Detection Limit Less than the MDL Not Analysed no value

MDL - - na

Consent of copyright owner required for any other use.

Client: Project: Location: Job No: Table 18: ESB ESB Great Island ESB Great Island 49341640

Hydrocarbons and PAH Laboratory Results - Surface Water

Sample Type				Surface Water				
Sample ID				SW5	SW6	SW10	SW8	SW1
Date				07-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08
Date				07-001-00	00-001-00	00-001-00	00-001-00	00-001-00
Parameters	UNITS	MDL	EQS					
Hydrocarbons								
Aromatics								
C6-C7	ug/L	10	nv	_	-	-	-	-
C7-C8	ug/L	10	nv	_	_	-	_	-
C8-C10	ug/L	10	nv	_	_	-	_	-
C10-C12	ug/L	10	nv	_	_	_	_	_
C12-C16	ug/L	10	nv	_	_	-	-	-
C16-C21	ug/L	10	nv	_	_	-	_	-
C21-C35	ug/L	10	nv	_	_	-	_	-
Total Aromatics	ug/L	10	nv	_	_	-	_	-
Aliphatics	9							
C5-C6	ug/L	10	nv	_	_	-	_	-
C6-C8	ug/L	10	nv	-	-	-	-	-
C8-C10	ug/L	10	nv	_	_	-	_	-
C10-C12	ug/L	10	nv	-	_	-	-	-
C12-C16	ug/L	10	nv	-	-	-	-	-
C16-C21	ug/L	10	nv	-	-	-	-	-
C21-C35	ug/L	10	nv	_	_	-	_	-
Total Aliphatics (MO)	ua/L	10	300	_	_	-	_	-
Total TPH	ug/L	10	nv	-	-	-	-	-
Diesel Range Organics (DRO)	ug/L	nv	nv	-	-	-	-	-
BTEX	J					٠6٠		
Benzene	ug/L	10	10	-	-	. 180	-	-
Toluene	ug/L	10	10	-	-	~°-	-	-
Ethylbenzene	ug/L	10	10	-	-	,00 -	-	-
Total Xylene	ug/L	10	10	-	- 23. 4	<i>5</i> 7 -	-	-
MTBE	ug/L	10	nv	-	c ob cot	-	-	-
BTEX	ug/L	10	nv	-	65 X 10	-	-	-
					100 He			
PAHs					Old all			
Naphthalene	ug/L	0.01	nv	5	4. Co.	-	-	-
Acenaphthylene	ug/L	0.01	nv	0.053	0.047	-	0.033	0.051
Acenaphthene	ug/L	0.01	nv	0.00	0.031	-	0.022	0.038
Fluorene	ug/L	0.01	nv	0.0850	0.055	-	0.047	0.071
Phenanthrene	ug/L	0.01	nv	Q 0,304	0.218	-	0.177	0.26
Anthracene	ug/L	0.01	nv	® 108	0.072	-	0.072	0.1
Fluoranthene*	ug/L	0.01	nv	0.145	0.205	-	0.1	0.151
Pyrene	ug/L	0.01	nv 💍	0.093	0.17	-	0.071	0.098
Benzo(a)anthracene	ug/L	0.01	nv	0.066	0.162	-	-	0.079
Chrysene	ug/L	0.01	COL	0.015	0.04	-	0.01	0.017
Benzo(b)+Benzo(k)		0.01		0.01	0.026	_	_	0.013
fluoranthene*	ug/L	0.01	nv	0.01	0.026			0.013
Benzo(a)pyrene*	ug/L	0.01	nv	-	-	-	-	-
Indeno(123cd)pyrene*	ug/L	0.01	nv	-	-	-	-	-
Dibenzo(ah)anthracene	ug/L	0.01	nv	-	-	-	-	-
Benzo(ghi)perylene*	ug/L	0.01	nv	-	-	-	-	-
Sum 6 PAHs	ug/L	nv	0.2	0.155	0.231	-	0.1	0.164
Total 16 EPA PAHs	ug/L	0.01	nv	0.93	1.038	-	0.552	0.888

EQS EPA Proposed Environmental Quality Standards for Surface Water XX

Exceeds EQS for Surface Waters Method Detection Limit Less than the MDL Not Analysed MDL na no value nv

Client: Project: Location: Job No: Table 19:

ESB ESB Great Island Great Island 49341640 Metals Laboratory Results - Surface Water

Sample Type				Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Sample ID				SW5	9MS	SW10	SW8	SW1
Date				07-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08
Parameters	UNITS	MDL	EQS					
Metals								
Arsenic	mg/L	0.001	0.05				0.012	
Cadmium	mg/L	0.0004	0.005					٠
Chromium	mg/L	0.001	0.1	600.0	0.015	0.011	600'0	900'0
Copper	mg/L	0.001	0.05	0.027	200'0	0.002	0.005	
Cobalt	mg/L	0.001	NV		-		-	-
Lead	mg/L	0.001	0.005	0.001	6 000	-	-	-
Mercury	mg/L	0.00005	0.0001		as -		ua	na
Molybdenum	mg/L	0.001	0.1	-	0.004	- N	900'0	-
Nickel	mg/L	0.001	0.1	0.012	600'0	\$1°	0.003	0.001
Selenium	mg/L	0.001	0.02	0.002	-	6 0001	0.066	-
Vanadium	mg/L	0.001	nv	0.01	0.017	0:001	0.034	600.0
Zinc	mg/L	0.001	0.1	0.078	90'0	0.023%	600'0 😘	0.007
						7 0	on	
EQS	EPA Propo	sed Environ	nental Qua	EPA Proposed Environmental Quality Standards for Surface Water	Surface Water	.*	der	
XX	Exceeds E	Exceeds EQS for Surface Waters	ce Waters				100 100	
MDL	Method Dei	Method Detection Limit					ger Jui	
	Less than the MDL	he MDL					jed	
na	Not Analysed	þe					to	۸.
Λu	no value						विष्य	A
								oin
								er 18
								è.

URS Ireland Ltd.

November 2008

Client: Project: Location: Job No: Table 20:

ESB ESB Great Island ESB Great Island 49341640 Various Laboratory Results - Surface Water

Sample Type				Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Sample ID				SW5	9MS	SW10	SW8	SW1
Date				07-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08
Parameter	Units	MDL	EQS					
Anions and Cations								
Aluminium	mg/L	0.002	0.2	0.082	0.110	0.062	090'0	0.061
Boron	mg/L	0.003	2	,	•	-	2.121	
Barium	mg/L	0.001	0.1	0.011	0.002	0.005	0.033	0.042
Calcium	mg/L	0.12	۸u	0.883	1.719	42.07	245.6	23.17
Chloride	mg/L	2	250		Z 2	21	10,239	11
Iron	mg/L	0.002	-	0.121	860.0	0.057	0.091	1.147
Potassium (Total as K)	mg/L	0.2	ΛU	0.4	9.0	\$ 18. \$ 18.	253.1	na
Manganese	mg/L	0.001	0.3	0.019	200'0	0.903	0.001	0.014
Sodium (Total as Na)	mg/L	0.2	ΛU	1.6	9.6	6 72.484	6,161	na
Sulphate	mg/L	2	200	7	10	na off	² 2 ₂ , 1,404	9
Alkalinity as CaCO ₃	mg/L	_	ΛU	30	30	130	00246	80
Total Hardness as CaCO ₃	mg/L	-	ΛU	3	2	118	891 E. O.	99
Total Dissolved Solids (TDS)	mg/L	2	ΛU	11	20	154	% & &	106
							die	
Nutrients								di
Ammonia*	mg/L	0.257	0.8	0.514	0.386	0.2572	5	0.643
Nitrate (as NO ₃)	mg/L	0.3	20	-	1	na	-	Killy na
Nitrite (as NO ₂)	mg/L	0.05	0.2	-	-	-	0.35	96%
Phosphate	mg/L	0.03	0.05	-	1.39	0.1	0.13	0.32
								ઇ _િ
Miscellaneous								
Total Phenols	mg/L	0.01	0.0005	0.04	0.04	0.05	0.04	0.04
Total Cyanide	mg/L	0.05	0.01	1	-	-	-	-
PCB Total of 7 Congeners	ug/L	0.001	1.0		-	-	-	-
VOCs	ng/L	1.000	'n	•				

EPA Proposed Environmental Quality Standards for Surface Water	Exceeds EQS for Surface Waters	Method Detection Limit	Less than the MDL	Not Analysed	no value	Conversion factor of 1.286 used to convert ammoniacial nitrogen (as N)
EQS	XX	MDL		na	۸u	*

no value Conversion factor of 1.286 used to convert ammoniacial nitrogen (as N) to ammonia (as ammonium as NH4)

URS Ireland Ltd.

ESB ESB Great Island ESB Great Island Client: Project: Location: Job No: Table 21:

49341640

Biological Laboratory Results - Surface Water

Sample Type				Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Sample ID				SW5	SW6	SW10	SW8	SW1
Date				07-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08	08-Oct-08
Parameter	Units	MDL	EQS					
Biological				•				
Biological Oxygen Demand (BOD)	mg/L	2	7	උල්			,	
Total coliforms	cfu/100ml	1	0009	Control of the contro	20,000	006	2,300	6
Faecal coliforms	cfu/100ml	1	1000	\$ 65.	9	10	-	-
				COT	,			
				3,	C			

EPA Proposed Environmental Quality Standards for Surface Waters

Exceeds EQS for Surface Waters

Activity Annual Quality Standards for Surface Water

Activity Annual Control of C EQS XX MDL a S