APPENDIX 14

OCCUPATIONAL MONITORING OF HEADSPACE AIR WITHIN HOUSE NO. 25, 26, 52 & 53 AND HEADSPACE MONITORING OF GAS WELL 1, GAS WELL 2, GAS WELL 3, AND GAS WELL 4 LOCATED IN BARNAGEERAGH COVE, SKERRIES, CO. DUBLIN. PERFORMED BY ODOUR MONITORING IRELAND. 12TH JUNE 2018 VER.4. REPORT NUMBER: 2018014(4)

OCCUPATIONAL MONITORING OF HEADSPACE AIR WITHIN HOUSE NO. 47, BARNAGEERAGH COVE, SKERRIES, CO. DUBLIN. PERFORMED BY over ODOUR MONITORING IRELAND. 31ST AUGUST 2018 VER.3. REPORT NUMBER: 2018356(3)

MULROY ENVIRONMENTAL TEST REPORT – TO EXAMINE IF VOLATILE ORGANIC COMPOUNDS (VOCs) ARE BEING EMITTED FROM THE WATER MAINS FROST PROTECTION PLUG USED IN HAMILTON PLACE, BARNAGEERAGH COVE, SKERRIES, COUNTY DUBLIN

GAS ANALYSIS OF HEADSPACE AIR WITHIN GAS SAMPLING BAG CONTAINING FROST PROTECTION CAPS FROM HOUSE 26 & 52, BARNAGEERAGH COVE, SKERRIES, COUNTY DUBLIN

31ST JANUARY 2019, REPORT NUMBER: 2019035 (1)

Consent of copyright owner required for any other use.

OCCUPATIONAL MONITORING OF HEADSPACE AIR WITHIN HOUSE NO. 25, 26, 52 & 53 AND HEADSPACE MONITORING OF GAS WELL 1, GAS WELL 2, GAS WELL 3, AND GAS WELL 4 LOCATED IN BARNAGEERAGH COVE, SKERRIES, CO. DUBLIN. PERFORMED BY ODOUR MONITORING IRELAND. 12TH JUNE 2018 VER.4. REPORT NUMBER: 2018014(4)

Consent of copyright owner required for any other use.

ODOUR MONITORING IRELAND LTD

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Mobile: +353 86 8550401 E-mail: info@odourireland.com www.odourireland.com

OCCUPATIONAL MONITORING OF HEADSPACE AIR WITHIN HOUSE NO. 25, 26, 52 & 53 AND HEADSPACE MONITORING OF GAS WELL 1, GAS WELL 2, GAS WELL 3, AND GAS WELL 4 LOCATED IN BARNAGEERAGH COVE, SKERRIES, CO. DUBLIN.

PERFORMED BY ODOUR MONITORING IRELAND ON THE BENALFOOF MULROY ENVIRONMENTAL LTD.

REPORT PREPARED BY:Dr. Brian SheridanREPORT VERSION:Document Ver.4ATTENTION:Mr. Patrick McCabe & Mr. Padraic MulroyDATE:06th Feb 2018 Ver.1 & 09th March 2018 Ver.2, 19th March 2018 Ver.3, 12th June
2018 Ver.4REPORT NUMBER:2018014(4)Reviewers:Mr. Padraic Mulroy, Mr. Patrick McCabe, Mr. Mortimer Loftus, Mr. Conrad Wilson
& Mr. Paul Chadwick

TABLE OF CONTENTS

<u>Sectio</u>	on Page numl	<u>ber</u>
TABLE DOCUM EXECU	OF CONTENTS IENT AMENDMENT RECORD ITIVE SUMMARY	i ii iv
1. 1.1 1.2	Introduction and scope Introduction Scope of the work	1 1 1
2. 2.1 2.2	Materials and methods General description of sampling and analysis techniques Monitoring for specified compounds in Houses 25, 26, 52 and 53 and gas wells GS1 to GS4 Barnageeragh Cove, Skerries, Co. Dublin on the 15 th Dec 2017 and 14 th Feb 2018.	2 2 6
3. 3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8	Results of monitoring exercise and discussion Temperature, Relative Humidity and Carbon dioxide results Gas analysis results House 25 Monitoring Results House 52 Monitoring Results House 53 Monitoring Results House 26 Monitoring Results Gas well 1 Monitoring Results Gas well 2 Monitoring Results Gas well 3 Monitoring Results House Baselts House Baselts	7 9 11 13 15 17 19 20 21 22
4.	Conclusions	23
5.	References	25
6.	Appendix I – Site boundary and monitoring locations	26
7.	Appendix II – Pictures of sampling system and locations	29
8.	Appendix III – Fractional exposure limits.	
9.	Appendix IV – Laboratory test results	38

DOCUMENT AMENDMENT RECORD

Client: Mulroy Environmental Ltd

Project: OCCUPATIONAL MONITORING OF HEADSPACE AIR WITHIN HOUSE NO. 25, 26, 52 & 53 AND HEADSPACE MONITORING OF GAS WELL 1, GAS WELL 2, GAS WELL 3, AND GAS WELL 4 LOCATED IN BARNAGEERAGH COVE, SKERRIES, CO. DUBLIN.

Consent of copyright owner required for any other use.

Project Num	1ber: 2018014(4)	DOCUMENT REFERENCE: OCCUPATIONAL MONITORING OF HEADSPACE AIR WITHIN HOUSE NO. 25, 26, 52 & 53 AND HEADSPACE MONITORING OF GAS WELL 1, GAS WELL 2, GAS WELL 3, AND GAS WELL 4 LOCATED IN BARNAGEERAGH COVE, SKERRIES, CO. DUBLIN.								
2018014(1)	Document for review	B.A.S.	JMC	BAS	06/02/2018					
2018014(2)	Document for review	PM	BAS	BAS	09/03/2018					
2018014(3)	Document for review	PM/PMC	BAS	BAS	19/03/2018					
2018014(4)	Minor amendments	PM/PMC/ML/CW/PC	BAS	BAS	12/06/2018					
Revision	Purpose/Description	Originated	Checked	Authorised	Date					
O D O U R monitoring										

This document is submitted as part of occupational monitoring works carried out by Odour Monitoring Ireland Ltd on behalf of Mulroy Environmental Ltd on four named houses and four named swallow gas wells GS1 - GS4. The results reported are representative of actual conditions and activities on the days of monitoring.

Consent of copyright owner council for any other tree.

Respectively submitted,

en

Brian Sheridan B.Sc. M.Sc. (Agr) Ph.D (Eng).

For and on behalf of Odour Monitoring Ireland™

Executive Summary

Odour Monitoring Ireland Ltd was commissioned by Mulroy Environmental Ltd to perform occupational monitoring of air located within four houses (namely Hse. No. 25, 52 & 53 Barnageeragh, Skerries, Co. Dublin) on the 15th Dec 2017. Additional monitoring was carried out on one house (namely Hse. 26) and four shallow gas monitoring wells GS1 to 4 on the 14th Feb 2018. The aim of the study was to ascertain the potential level of specified air contaminants within the headspace air of the monitored houses and gas wells. Data collected on each house was compare with published occupational exposure levels, where applicable.

Monitoring was performed for a number of compound groups to include:

- Temperature, Relative humidity and Carbon dioxide levels in houses 25, 26, 52 and 53 only;
- Arsenic (Houses 25, 26, 52, 53 and GS1-4);
- Mercury (Houses 25, 26, 52, 53 and GS1-4);
- Trace Landfill gas screen (Houses 25, 26, 52, 53 and GS1-4);
- Formaldehyde and Acetaldehyde (Houses 25, 26, 52, 53 and GS1-4),
- Methane ground surface screen inside and outside the monitored Houses 25, 26, 52 and 53.

It is understood that an historic landfill is located in Barnageeragh Cove, Skerries (see Figures OMI-1 to OMI-3 - Section 6 - Figures 6.1 to 6.3). An extensive site investigation programme was conducted to delineate the boundary of the waste body. This was achieved through trial pit investigation, borehole installation and geophysical surveying. In total 14 deep boreholes (BH1 – BH14) were installed on the periphery or within the landfill body and 4 shallow gas wells (GS01 - GS04) were installed between the residences No. 25 - 34 (i.e. approx. 5m to the front of the houses) and the waste body to the south and southwest (see Figures OMI-2 & OMI-3 - Section 6 - Figures 6.1 to 6.3) (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 3). A programme of landfill gas (LF) and volatile organic carbon (VOC) analysis as carried out by Mulroy Environmental on each of these wells. This involved taking LF gas and VOC readings on 12 occasions from gas wells GS01 – GS04 during both high and ow pressure weather events. Methane (CH4) was not recorded at a concentration above 188 during the monitoring period in these wells. On one occasion CH4 was recorded at a concentration of 0.8% with concentrations of 0.2% or below recorded on all other monitoring vevents. The results of each of the ground gas monitoring events from gas wells (GS012 GS04) were assessed for risk according to CIRIA Report C665 'Assessing risks posed by hazardous ground gases in buildings' by S. Wilson, S. Oliver, H. Mallett, H. Hutchings & G. Card. (July 2007). The modified Wilson and Card Classification system detailed in CIRIA665 indicates a 'very low risk classification' for gas wells GS01 -GS04 (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 8).

It understood that VOC readings were taken with a MiniRae 2000 Photo-Ionisation Detector (PID) equipped with a 10.6eV bulb and that VOCs were not monitored during times where heavy rainfall persisted. VOC concentrations taken from 27th June 2017 to the 11th of August 2017 ranged from 0ppm to 6.6ppm. No VOCs were detected during any of the subsequent monitoring rounds. It is understood from the Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 8, that the initial VOC readings were down to phthalates/plasticisers in the newly installed HDPE standpipes (i.e. installed on the 15th June 2017) and that the decrease in VOC concentration to undetectable levels was down principally to natural weathering (i.e. ventilation) (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 8).

The following conclusions were developed for the study. These include:

- 1. With regards to comfort conditions with finished Houses 25 and 26, temperatures, relative humidity and Carbon dioxide levels were normal for the environment they were monitored within (ASHRAE Standard 62.1-2004).
- 2. With regards to House 25 Location 1 and 2, trace concentrations of Benzene, Carbon tetrachloride, Dichloromethane, Styrene, Toluene, Formaldehyde and Acetaldehyde were detected in the headspace of the house. All detected compounds

were well within the 8 hr occupational exposure limits for the each of the respective compounds. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Formaldehyde (i.e. fractional exposure limit value 0.0026mg/Nm³) were in excess of the fractional exposure limit value. Concentration values of 0.019 and 0.014 mg/Nm³ were measured. There was a noticeable odour of paints, varnishes and glues in the house. The cumulative factorial value was less than 7.5% of the prescribed limit value. It is recommended that further compound monitoring is performed on this property in order to access whether these concentration levels have dissipated over time given the house has been lived within and background levels of compounds associated with building products should dissipate over time and this information will provide useful indicator of this decay over time.

- 3. With regards to Houses 52 and 53, trace concentrations of Benzene, Toluene, Carbon tetrachloride, Mercury and Hydrogen sulphide were detected in the headspace of the house. These houses were not finishes and had no windows present and therefore more susceptible to outside influences from compounds in the ambient environment. The concentration levels of these compounds were trace and well with any respective 8 hr occupational exposure limits. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Mercury (i.e. fractional limit value 0.0001 mg/Nm³) were in excess of the fractional exposure limit value. A concentration value of 0.00015 mg/Nm³ was measured on Hse 53 Location 1. The cumulative factorial value was less than 0.10 and 2.2% of the prescribed limit value, respectively.
- 4. With regards to House 26 Location 1 and 2, trace concentrations of 1,2 Dichloroethylene, Benzene, Carbon tetrachloride, Dichloromethane, Dimethyl sulphide, Styrene, Toluene, Formaldehyde and Acetaldehyde were detected in the headspace of the house. All detected compounds were well within the 8 hr occupational exposure limit values for the respective compounds. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Formaldehyde (i.e. fractional exposure limit value 0:0026 mg/Nm³) and Benzene (i.e. fractional exposure limit value 0.030 mg/Nm³) were in excess of the fractional exposure limit values. Concentration values for Benzene and Formaldehyde were measured at 0.078 and 0.105 mg/Nm³ for Location 1 and 0.059 and 0.060 mg/Nm³ for Location 2. There was a weak odour of paints varnishes and glues in the house. The cumulative factorial value was less than 44% of the prescribed limit value. It is recommended that further compound monitoring is performed on this property in order to access whether these concentration levels have dissipated over time given the house has been lived within and background levels of compounds associated with building products should dissipate over time and this information will provide useful indicator of this decay over time.
- 5. With regards to Gas well GS1, GS2, GS3 and GS4, trace concentrations of Benzene, Carbon tetrachloride, Toluene and Formaldehyde were detected in the headspace of the well. Benzene and Toluene are ubiquitous in the environment as a result of traffic related sources and therefore these trace amounts can be attributed to this source.
- 6. As part of Mulroy Environmental site investigation, a number of soil samples and groundwater samples were taken with VOC analysis conducted. In total 21 groundwater samples were taken across two monitoring rounds from the 11 groundwater monitoring wells on-site. No VOCs were detected within the groundwater above the method detection limit in any of these samples (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 6). Five soil samples were analysed for VOCs. Only two VOCs namely vinyl chloride and -1,2-dichloroethane were detected in one soil sample (i.e. SO-TP21-01) (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 5). It should be noted that this sample was taken from a trial pit located 51m from the nearest residence (i.e. House No.25). Neither of these compounds were detected in the sorbent tubes/thermal desorption/capillary gas chromatography analysis conducted for GS01 GS04, therefore it is unlikely that they are migrating from the landfill towards the residence (see Mulroy Environmental, Environmental, Environmental, Environmental, Environmental, Environmental, Environmental Risk Assessment Report, 2018, Section 5).

Report, 2018, Section 12). Carbon tetrachloride is a common constituent of paints and varnishes. It is likely that the concentrations of carbon tetrachloride identified within the 4 gas wells to the west of the residences is as a result of a spillage and/or poor management of solvent based paints during the fit-out phase of construction (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 12). Formaldehyde is a basic constituent of rubber cement products which are used on building sites as either sealants and or glues. Empty rubber cement tubes were observed outside some of the residences during the fit-out phase of construction (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 12).

7. In relation to the surface emissions Methane / VOC screen, the levels detected were around background and were no greater than 1.74 mg/Nm³.

Consent of conviction purposes only, any other use.

1. Introduction and scope

1. Introduction

Odour Monitoring Ireland Ltd was commissioned by Mulroy Environmental Ltd to perform occupational monitoring of air located within four houses namely 25, 26, 52 and 53 Barnageeragh Cove on the 15th Dec 2017 and 14th Feb 2018. The aim of the study was to ascertain the potential level of specified air contaminants within the headspace air of the houses and to compare with published occupational exposure levels, where applicable.

Additional monitoring was carried out on the 14th Feb 2018 on the headspace gas in shallow gas monitoring wells GS1 to GS4.

Monitoring was performed for a number of compound groups to include:

- Temperature, Relative humidity and Carbon dioxide levels in houses 25, 26, 52 and 53 only;
- Arsenic (Houses 25, 26, 52, 53 and GS1-4);
- Mercury (Houses 25, 26, 52, 53 and GS1-4);
- Trace Landfill gas screen (Houses 25, 26, 52, 53 and GS1-4);
- Formaldehyde and Acetaldehyde (Houses 25, 26, 52, 53 and GS1-4),
- Methane ground surface screen inside and outside the monitored Houses 25, 26, 52 and 53.

All continuous and active grab sampling techniques were in accordance with international sampling methodologies contained in *Section 2* and all grab samples were tested in a UKAS accredited test house (UKAS1549).

This report presents the materials and methods results and discussion and conclusions from the study carried out on the monitoring date 15th Dec 2017 and 14th Feb 2018.

In addition, the report discusses the significant body of work and conclusions formed by Mulroy Environmental Ltd – see Mulroy Environmental Ltd, Environmental Risk Assessment Report, 2018.

1.2 Scope of the study c°

The main aims of the study included:

- Occupational monitoring at two locations located within each of four houses for a range of compounds that could be present in the air stream and comparison with published occupational exposure levels in order to ascertain the level of occupational impact during a normal operation day,
- Headspace gas monitoring of shallow gas monitoring wells GS1 to GS4 for the same range of compounds.
- Monitoring of each location in houses only for Temperature, Relative humidity and Carbon dioxide levels throughout the survey period to provide a tag on conditions within the houses throughout the monitoring.
- Interpretation of results, where applicable.

2. Materials and methods

This section describes the materials and methods used throughout the survey.

The following standards and documents were used for reference and adhered to where possible:

- Compendium method TO-17-Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes.
- MDHS 70 General method for sampling airborne gases and vapours.
- MDHS 72 Volatile organic compounds in air (1993). Laboratory methods using pumped solid sorbent tubes, thermal desorption and gas chromatography.
- MDHS 96 Volatile organic compounds in air, Laboratory methods using pumped solid sorbent tubes, solvent desorption and gas chromatography. March 2000.
- NIOSH (NMAM) fourth Edition (1996). Volatile organic compounds (Screening) Method 2549).
- NIOSH 1500 and 1501 for Total and aromatic hydrocarbons sampling and measurement,
- NIOSH 6001 Arsine.
- NIOSH 6009 Mercury.
- NIOSH 2539 Aldehydes screening.
- ISO 16017-1:2000, Indoor, ambient and workplace air. Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography. Part 1: Pumped sampling.

All data generated during the assessment survey was compared to occupational exposure levels and risk categories contained within the publications.

• 2016 Code of practice for Chemical Agents Regulations.

2.1 General description of sampling and analysis techniques

A number of sampling techniques were used to characterise the ambient air at the named locations at the four houses 25, 26, 52 and 53 (see Table 2.1). In addition, the same sampling techniques were used to characterise the headspace air in four shallow gas monitoring stations GS1 to GS4. Active grab sampling using sorption tubes was performed. Sorption tube sampling and analysis were performed to allow for the characterisation (i.e. both qualitative and semi quantitative) of sampled air for named compound concentrations throughout the sampling event.

In addition, solid fixed state analysers were utilised to perform Temperature, Relative humidity and Carbon dioxide monitoring and analysis at each house.

Table 2.1 provides information on the following items and includes:

- Sample location identity key,
- Description of monitoring location,
- Type of monitoring performed,
- Monitoring standards applied where applicable,
- Monitoring details,
- Analysis laboratory details,
- Description of sampling media.

Figure 2.1 presents a graphical plan layout of the monitoring locations located on site.

Table 2.1. Monitoring campaign description for monitoring carried out in Hse	25, 26, 52 and 53 and gas monitoring wells G	GS1 to GS4, Barnageeragh Cove, Skerries, Dub	lin on the 15 th De
--	--	--	--------------------------------

Monitoring location key	Description of monitoring location and Date	Monitoring performed	Standards applied	Monitoring details	Analysis laboratory	Sampling media
1	Hse 25 – Utility (15/12/17)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen, Methane screen	ISO16017, USEPA TO17, MDHS 70,72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549, AG6	Monitored in room headspace	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption, FID analyser
2	Hse 25 – Front sitting room (15/12/17)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen, Methane screen	ISO16017, USEPA TO17, MDHS 70,72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549, AG6	Monitored in room headspace	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption, FID analyser
3	Hse. 52 Ground floor (House not built fully) (15/12/17)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen, Methane screen	ISO16017, USEPA TO17, MDHS 70,72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549, AG6	Monitored in building headspace	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption, FID analyser
4	Hse. 52 Ground floor (House not built fully) (15/12/17)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen, Methane screen	ISO16017, USEPA TO17, MDHS 70,72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549, AG6	Monitored in building headspace	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption, FID analyser
5	Hse. 53 Ground floor (House not built fully) (15/12/17)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen, Methane screen	ISO16017, USEPA TO17, MDHS 70,72 and 50 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549, AG6	Monitored in building headspace	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption, FID analyser
6	Hse. 53 Ground floor (House not built fully) (15/12/17)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen, Methane screen	ISO16017, USEPA TO17, MBHS 70,72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549, AG6	Monitored in building headspace	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption, FID analyser
7	Hse 26 – Front room (14/02/18)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen, Methane screen	ISO16017, USEPA (017, MDHS 70,72 and 96, NIOSH 1506, 1501, 6001, 6009, 2539, 2549, AG6	Monitored in room headspace	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption, FID analyser
8	Hse 26 – Utility (14/02/18)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen, Methane screen	ISO16017, USEPA TO17, MDHS 70,72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549, AG6	Monitored in room headspace	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption, FID analyser
9	GS1 (14/02/18)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen,	ISO16017, USEPA TO17, MDHS 70, 72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549.	Monitored in well headspace – min approx. 1 m down	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption
10	GS2 (14/02/18)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen,	ISO16017, USEPA TO17, MDHS 70, 72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549.	Monitored in well headspace – min approx. 1 m down	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption
11	GS3 (14/02/18)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen,	ISO16017, USEPA TO17, MDHS 70, 72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549.	Monitored in well headspace – min approx. 1 m down	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption
12	GS4 (14/02/18)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen,	ISO16017, USEPA TO17, MDHS 70, 72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549.	Monitored in well headspace – min approx. 1 m down	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption

ec 2017 and 14th Feb 2018.

Figure 2.1. Location of House 23, 26, 52, 55 and gas monitoring wells GS1, GS2, GS3 and GS4 in Barnageeragh Cove, Skerries, Co. Dublin

Figure 2.2. Location of monitoring locations within House 25 & 26 in Barnageeragh Cove, Skerries, Co. Dublin.

	LEGEND
A 12.02.20	a Lookin of additional Type 1 and Type 2 (P MAC) PJ Weath Outlines actived
A 12.02.20 muse Date	18 Location of additional Type 1 and Type 2 (P.McC) (P. Water Outcome added Description By Ch
A 12.02.20 mar Date Client:	Is Location of estillation Type 1 and Type 2 (FARC) (FU) Water Onlines autom Devolution (By Cra Winsac Ltd.
A 12.02.22 mar Date Client: Project:	Audion of edificial Type 1 and Type 2 planc private Octaves aster Devote on By Ca Winsac Ltd. Barnageeragh Cove, Skerries, County Dublic
A 12.02.22 max Date Client: Project: Title:	Is Location of estillation Type 1 and Type 2 Plance
A 12 02 20 Date Client: Project: Title:	A Desition of exhibiting Type 1 and Type 2 prace provide the streng and the provident of type 2 prace provident of type 2 prace provident of the provident of t
A 17 02 20 Clent Clent Project: Tite: Inc Scate:	A Contine of editional Type 1 and Type 2 (File of the continue and the of type 2 (File of type
A 12022 Data Cient: Project: Inc Soate: Prepared	A Desition of editional Types 1 and 1 Types 2 Plance P / Water Colorem assess Desortation By colorem Winsac Ltd. Barnageeragh Cove, Skerries, County Dublin Location of loor Air Monitoring Points within tesidence Nos. 25 & 26 (Ground Floor) 1:100@A3 P. M. 163-18
A 13 42 20 Clent: Project: Title: Project:	A Deadline of edificial Type 1 and Type 2 (FAAC) (FU) Wind Colores acted Deadlism By Cove, Skerries, County Dublin Location of Location of Location of Location of Residence Nos. 25 & 26 (Ground Floor) 1:100@A3 Sy: Checked: Date: P.M. 16-3-18 Residence P.MULROY
A 12/02/2 Dec Dec Client: Project: Trile: Inc Project Do Project Do	A Control of additional Types 1 and Types 2 plance provide additional Types 1 and Types 2 plance provide additional types 2 plance provide additional types 2 plance provide additional types 2 plance
A to do 20 and Date Client: Project: Trife: Project Di Project Di Proje	A Contine of additional Type 1 and Type 2 (FAAC) (F2 Wine Colorem action) Dewoldson By Cove, Skerries, County Dublin Location of Location of Location of Location of I.:100@A3 Conclude: P.M. 163-18 Residence Nos. 25 & 26 (Ground Floor) 1:100@A3 Conclude: P.M. 163-18 Residence P.MULROY

2.2 Monitoring for specified compounds in Houses 25, 26, 52 and 53 and gas wells GS1 to GS4 Barnageeragh Cove, Skerries, Co. Dublin on the 15th Dec 2017 and 14th Feb 2018.

The following range of compounds / parameters that were actively monitored using sorbent based media are detailed in *Table 2.1*. An overview of the monitoring standards applied is detailed in *Section 2*. The graphical location of each monitoring location is presented in *Figure 2.1*.

In order to pre-concentrate each compound upon each sorbent, a pre-calibrated controlled volume of sample air was drawn through each tube by a SKC air sampling pump for the monitoring period (Active sampling/pumped sampling). Each SKC pump was pre-calibrated with their specific sorbent using a Bios Primary flow calibrator (UKAS traceable Cert No. N022746).

Each pump was calibrated to an optimal flow rate (of between approx. 200 mls/min depending on sample location and sample type) for sorbent tubes.

When sampling was completed all tubes were sealed and stored in flexible air / light tight containers and transported to the analysing laboratory and analysed by means of thermal desorption / solvent extraction GCMS, GCFID, in a UKAS accredited laboratory (UKAS 1549).

In terms of Temperature, Relative humidity and Carbon dioxide, monitoring was performed utilising a Testo 400 handheld and associated probes.

A number of QA procedures were implemented into the sampling and analysis run to include:

- Front and back sorbent beds were analysed. The back bed was confirmed to be less than 5% of the total sample conc. which is a stated requirement of EN13649:2014.
- All sorbent tubes were sealed and contained in air tight and light proof containers for transport to the laboratory. All samples were stored below 25 deg. C. This is a requirement of EN13649:2014
- Travel/Sample blanks were incorporated into the measurement sequence. In addition, the laboratory included instrument and method blanks into their measurement sequence.
- Sample volume flow rate and pump calibration was performed before sampling and after sampling and these were recorded in the site data sheets. In addition, it was confirmed that the variation between before and after calibration was less than 1% of the flow range on the day of sampling for all samples taken on the 15th Dec 2017 and 14th Feb 2018. The sample flow rate primary flow standard measured flow to an accuracy of 0.001 L/min over the range with a calibration accuracy of less than or equal to 1%.
- Total sample volumes chosen were a combination of analytical techniques lower limit of detection calculations and as specified in standard requirements.

3. Results of the monitoring exercise and discussion

This section provides the results obtained during the survey.

3.1 Temperature, Relative Humidity and Carbon dioxide results

Table 3.1 presents the result for the monitoring of Temperature, Relative humidity and Carbon dioxide monitoring of each location over the sampling event. Average values through the sample events are presented. Temperature, relative humidity and carbon dioxide values were measured at the start and end of monitoring. Monitoring was carried out between the hours of 09.30AM and 15.00PM on the 15th Dec 2017 and between the hours of 16.30PM and 18.30PM on the 14th Feb 2018. The average values are reported for clarity.

As can be observed in *Table 3.1*, the average temperature in House 25 was 22.4 Deg C. The average relative humidity and CO_2 concentration were 62% and 820 ppm, respectively.

The average temperature in House 26 was 22.8 Deg C. The average relative humidity and CO_2 concentration were 59% and 841 ppm, respectively

Houses 52 and 53 were not finished construction and therefore temperatures, relative humidity and Carbon dioxide approached ambient values.

The average temperature in House 52 and 53 was 5.0 and 4.9 Deg C, respectively. The average relative humidity and CO₂ concentration were 788 and 79% and 490 and 510 ppm, respectively.

info@odourireland.com

Monitoring location area	Temperature (Deg C)	Relative humidity (%)	CO ₂ conc. (ppm)
Hse 25 - 1 and 2	22.4	62	820
Hse 52 - 3 and 4	5	78	490
Hse 53 - 5 and 6	4.9	79 <u>.</u> e	510
Hse 26 – 1 and 2	22.80	×\$9	841

Table 3.1. Temperature, Relative humidity and Carbon dioxide monitoring results of each house monitoring location over the sampling events.

Consent of copyright owned readined for any of

3.2 Gas analysis results

Tables 3.2 to 3.7 present the result of the monitoring at each sampling location throughout the sampling period carried out on the 15th Dec 2017.

Tables 3.8 to 3.13 present the result of the monitoring at each sampling location throughout the sampling period carried out on the 14th Feb 2018.

As can be observed from the analysis results across the sampling locations in all four properties (Hse 25, 26, 52 and 53), all results were compliant with the published 8 hr OEL value, where applicable. In terms of the measured concentration, in most circumstances all measured values were well within the published 8 hr OEL where applicable. This is also published within each table (*see Tables 3.2 to 3.9*). Cumulative OEL risk was assessed for the speciated VOC's detected. The cumulative assessment value was well within the stated limit value of 1.0 for cumulative VOC's (see 2011 Code of practice for the Safety, Health and Welfare at work (Chemical Agents) Regulations 2001 (SI No. 619 of 2001) & updated COP 2016).

In addition to screening the 8 hr OEL limit value and given the fact that properties could be occupied for periods in excess of 8 hr / day 5 days per week up to period of 24hrs / days and 7 days per week, fractional exposure limit values were compared to the recorded concentrations. In terms of overall results, Formaldehyde was in excess of the fractional exposure limit value at House 25 Location 1 and 2 and House 26 Location 1 and 2. Benzene was in excess of the fractional limit value at House 26 Location 1 and 2. Mercury was in excess of the fractional exposure limit value at House 53 Location 1. Therefore considering the compounds and the fact that the houses were newly built, it is recommended that repeat monitoring be completed to examine whether compound concentrations have dissipated with time of occupancy within the houses.

In relation to results obtained, Benzene and Touene is found in the ambient environment as a result of traffic based emissions and given the concentration levels, this would be in keeping with typical ambient air concentration levels and given the machinery in operation in the area.

With regards to House 25 – Location 1 and 2, trace concentrations of Benzene, Carbon tetrachloride, Dichloromethane, Styrene, Toluene, Formaldehyde and Acetaldehyde were detected in the headspace of the house. All detected compounds were well within the 8 hr occupational exposure limits for the each of the respective compounds. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Formaldehyde (i.e. fractional exposure limit value 0.0026mg/Nm³) were in excess of the fractional exposure limit value. Concentration values of 0.019 and 0.014 mg/Nm³ were measured. There was a noticeable odour of paints, varnishes and glues in the house. The cumulative factorial value was less than 7.5% of the prescribed limit value. It is recommended that further compound monitoring is performed on this property in order to access whether these concentration levels have dissipated over time given the house has been lived within and background levels of compounds associated with building products should dissipate over time and this information will provide useful indicator of this decay over time.

With regards to Houses 52 and 53, trace concentrations of Benzene, Toluene, Carbon tetrachloride, Mercury and Hydrogen sulphide were detected in the headspace of the house. These houses were not finishes and had no windows present and therefore more susceptible to outside influences from compounds in the ambient environment. The concentration levels of these compounds were trace and well with any respective 8 hr occupational exposure limits. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Mercury (i.e. fractional limit value 0.0001 mg/Nm³) were in excess of the fractional exposure limit value. A concentration value of 0.00015 mg/Nm³ was measured on Hse 53 - Location 1. The cumulative factorial value was less than 0.10 and 2.2% of the prescribed limit value, respectively.

With regards to House 26 – Location 1 and 2, trace concentrations of 1,2 Dichloroethylene, Benzene, Carbon tetrachloride, Dichloromethane, Dimethyl sulphide, Styrene, Toluene, Formaldehyde and Acetaldehyde were detected in the headspace of the house. All detected compounds were well within the 8 hr occupational exposure limit values for the each of the respective compounds. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Formaldehyde (i.e. fractional exposure limit value 0.0026 mg/Nm³) and Benzene (i.e. fractional exposure limit value 0.030 mg/Nm³) were in excess of the fractional exposure limit values. Concentration values for Benzene and Formaldehyde were measured at 0.078 and 0.105 mg/Nm³ for Location 1 and 0.059 and 0.060 mg/Nm³ for Location 2. There was a weak odour of paints, varnishes and glues in the house. The cumulative factorial value was less than 44% of the prescribed limit value. It is recommended that further compound monitoring is performed on this property in order to access whether these concentration levels have dissipated over time given the house has been lived within and background levels of compounds associated with building products should dissipate over time and this information will provide useful indicator of this decay over time.

In relation to the Methane TOC screen, the levels detected were around background and were no greater than 1.74 mg/Nm^3 .

It is understood that an historic landfill is located in Barnageeragh Cove, Skerries (see Figures OMI-1 to OMI-3 – Section 6 – Figures 6.1 to 6.3). An extensive site investigation programme was conducted to delineate the boundary of the waste body. This was achieved through trial pit investigation, borehole installation and geophysical surveying. In total 14 deep boreholes (BH1 – BH14) were installed on the periphery or within the landfill body and 4 shallow gas wells (GS01 – GS04) were installed between the residences No. 25 – 34 (i.e. approx. 5m to the front of the houses) and the waste body to the south and southwest (see Figures OMI-2 & OMI-3 - Section 6 - Figures 6 (5 to 6.3) (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 3). A programme of landfill gas (LF) and volatile organic carbon (VOC) analysis was carried out by Mulroy Environmental on each of these wells. This involved taking LF gas and VOC readings on 12 occasions from gas wells GS01 - GS04 during both high and low pressure weather events. Methane (CH4) was not recorded at a concentration above 1% during the monitoring period in these wells. On one occasion CH4 was recorded at a concentration of 0.8% with concentrations of 0.2% or below recorded on all other monitoring events. The results of each of the ground gas monitoring events from gas wells (GS01 - SS04) were assessed for risk according to CIRIA Report C665 'Assessing risks posed by nazardous ground gases in buildings' by S. Wilson, S. Oliver, H. Mallett, H. Hutchings & G. Card. (July 2007). The modified Wilson and Card Classification system detailed in CIRIA665 indicates a 'very low risk classification' for gas wells GS01 -GS04 (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 8).

It understood that VOC readings were taken with a MiniRae 2000 Photo-Ionisation Detector (PID) equipped with a 10.6eV bulb and that VOCs were not monitored during times where heavy rainfall persisted. VOC concentrations taken from 27th June 2017 to the 11th of August 2017 ranged from 0ppm to 6.6ppm. No VOCs were detected during any of the subsequent monitoring rounds. It is understood from the Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 8, that the initial VOC readings were down to phthalates/plasticisers in the newly installed HDPE standpipes (i.e. installed on the 15th June 2017) and that the decrease in VOC concentration to undetectable levels was down principally to natural weathering (i.e. ventilation) (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 8).

3.2.1 House 25 Monitoring results

 Table 3.2. Results from monitoring of House 25 – Location 1

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm³)	Compound conc. (mg/Nm ³)	8 hr OEL value (mg/Nm ³)	15 min OEL value (mg/Nm ³)	Environmental Assessment Levels (EAL's) – Long term (µg/m ³)	Examination of additive / cumulative effects	Limit value for cumulative effect	Other risk factors
			1-Pentene	<10	0.042627	<0.00023	-	-	-			-
			1,1 Di chloroethane	<10	0.042627	<0.00023	268	-	2.68			IOELV
			1,1-Dichloroethylene	<10	0.042627	<0.00023	20	-	0.2			-
			1,2-Dichloroethane	140	0.042627	0.0033	412	-	4.12			Sk, IOELV
			1,2-Dichloroethylene	<30	0.042627	<0.00070	20		0.2			-
			1,3-Butadiene	<10	0.042627	<0.00023	-	-	-			-
			1,4 epoxy 1,3- butadiene	<10	0.042627	<0.00023	-	-	-			-
			1-Propanethiol	<10	0.042627	<0.00023	-	-	-			_
			2-butoxyethanol	<10	0.042627	<0.00023	8	246	0.08			Sk , IOELV
			Benzene	180	0.042627	0.0042	3.0	-	0.03			BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	<10	0.042627	<0.00023	other	-	-			-
	Mi136392 -	09.15 – 12.30 – 195 min	Carbon disulphide	<10	0.042627	<0.00023	only any 15	-	0.15			Sk, IOELV
1	trace landfill		Carbon tetrachloride	120	0.042627	0.0028	20 ¹ 12.6	-	0.126			Sk
	gas screen		Chloroethane	<30	0.042627	<0.00070000	268	-	2.68			IOELV
			Dichloromethane	1200	0.042627	0.028 met	174	-	1.74	0.075	1.0	-
		15/12/17	Dimethyl disulphide	<10	0.042627	0.00 023	1.90	-	0.019			-
			Dimethyl sulphide	<10	0.042627	0 .00023	55.47	-	0.5547			-
			Ethyl butyrate	<25	0.042627	ot <0.00059	-	-	-			-
			Ethyl Mercaptan	<10	0.04262700	<0.00023	1	3	0.01			-
			Hydrogen sulphide	<60	0.042627	<0.0010	7	14	0.07			IOELV
			Methyl Mercaptan	<30	0.042627	<0.00070	1	-	0.01			-
			N-Butyl Mercaptan	<10	0.042627	<0.00023	1.8	-	0.018			-
			Styrene	79	0.042627	0.0019	85	170	0.85			-
			Toluene	1800	0.042627	0.042	192	384	1.92			Sk, IOELV
			Trichloroethylene	<10	0.042627	<0.00023	58.66	146.65	0.5866			Sk, Carc.1B
			Vinyl chloride monomer	<10	0.042627	<0.00023	7.77	-	0.0777			Carc.1A, BOELV
1	7218300767		Formaldehyde	800	0.042276	0.019	0.26	0.53	0.0026			Carc.1B, Sens.
1	7114507934	1	Acetaidenyde	900 ∠1000	0.042276	0.021 <0.040	45 0.01	45	0.45			- Care 1A
1	7532605396	1	Mercury	<5	0.051987	<0.0010	0.01	0.03	0.0001			Sk
	Methane	09.15- 10.15 –	Mathema as TOO	~~	0.001007		0.01	0.00	0.0001			
1	screen - FID	60 min	Methane as TOC	-	-	0./1 to 1.42	-	-	-	-	-	-

 Table 3.3. Results from monitoring of House 25 – Location 2

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	8 hr OEL value (mg/Nm ³)	15 min OEL value (mg/Nm ³)	Environmental Assessment Levels (EAL's) – Long term (µg/m ³)	Examination of additive / cumulative effects	Limit value for cumulative effect	Other risk factors
			1-Pentene	<10	0.080802	<0.00012	-	-	-			-
			1,1 Di chloroethane	<10	0.080802	<0.00012	268	-	2.68			IOELV
			1,1-Dichloroethylene	<10	0.080802	<0.00012	20	-	0.2			-
			1,2-Dichloroethane	95	0.080802	0.0012	412	-	4.12			Sk, IOELV
			1,2-Dichloroethylene	<30	0.080802	<0.00037	20		0.2			-
			1,3-Butadiene	<10	0.080802	<0.00012	-	-	-			-
			1,4 epoxy 1,3- butadiene	<10	0.080802	<0.00012	-	-	-			-
			1-Propanethiol	<10	0.080802	<0.00012	-	-	-			-
			2-butoxyethanol	<10	0.080802	<0.00012	8	246	0.08			Sk , IOELV
			Benzene	420	0.080802	0.0052	3.0	-	0.03			BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	<10	0.080802	<0.00012	-	-	-			-
	M:177040	– 10 09.33 – 12.33 – 180 min 15/12/17	Carbon disulphide	<10	0.080802	<0.00012	15; ^{15e.}	-	0.15		1.0	Sk, IOELV
2	trace landfill		Carbon tetrachloride	41	0.080802	0.00051	12.6	-	0.126			Sk
	gas screen		Chloroethane	<30	0.080802	<0.00037	ontor 268	-	2.68			IOELV
			Dichloromethane	3300	0.080802	0.041	174 I74	-	1.74	0.056		-
			Dimethyl disulphide	<10	0.080802	<0.00052	1.90	-	0.019	1		-
			Dimethyl sulphide	<10	0.080802	<0.00012	55.47	-	0.5547			-
			Ethyl butyrate	<25	0.080802	√√√0.00031	-	-	-			-
			Ethyl Mercaptan	<10	0.080802	<u></u>	1	3	0.01			-
			Hydrogen sulphide	<60	0.080802	<0.00074	7	14	0.07			IOELV
			Methyl Mercaptan	<30	0.080802	<0.00037	1	-	0.01			-
			N-Butyl Mercaptan	<10	0.080802	<0.00012	1.8	-	0.018			-
			Styrene	140	0.080802	0.0017	85	170	0.85			-
			Toluene	2200	0.080802	0.027	192	384	1.92			Sk, IOELV
			Trichloroethylene	<10	0.080802	<0.00012	58.66	146.65	0.5866			Sk, Carc.1B
			Vinyl chloride monomer	<10	0.080802	<0.00012	7.77	-	0.0777			Carc.1A, BOELV
2	72183000769		Formaldehyde	1100	0.07977	0.014	0.26	0.53	0.0026			Carc.1B, Sens.
	711/507029	•	Acetaldehyde	900	0.0/9//	U.U11	45	45	0.45			- Caro 1A
2	7532605207		Maroury	~5	0.00049		0.01	-	0.0001			Carc. TA
2	Methane	10.20- 11.20 -		<0	0.01903		0.01	0.03	0.0001			Sn
2	screen - FID	60 min	Methane as TOC	-	-	0.88 to 1.66	-	-	-	-	-	-

3.2.2 House 52 Monitoring results

 Table 3.4. Results from monitoring of House 52 – Location 1

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	8 hr OEL value (mg/Nm ³)	15 min OEL value (mg/Nm ³)	Environmental Assessment Levels (EAL's) – Long term (μg/m ³)	Examination of additive / cumulative effects	Limit value for cumulative effect	Other risk factors
			1-Pentene	<10	0.05663	<0.00018	-	-	-			-
			1,1 Di chloroethane	<10	0.05663	<0.00018	268	-	2.68			IOELV
			1,1-Dichloroethylene	<10	0.05663	<0.00018	20	-	0.2			-
			1,2-Dichloroethane	<10	0.05663	<0.00018	412	-	4.12			Sk, IOELV
			1,2-Dichloroethylene	<30	0.05663	<0.00053	20		0.2			-
			1,3-Butadiene	<10	0.05663	<0.00018	-	-	-			-
			1,4 epoxy 1,3- butadiene	<10	0.05663	<0.00018	-	-	-			-
			1-Propanethiol	<10	0.05663	<0.00018	-	-	-			-
			2-butoxyethanol	<10	0.05663	<0100018	8	246	0.08			Sk , IOELV
			Benzene	19	0.05663	0.00034	3.0	-	0.03			BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	<10	0.05663	<0.00018	other	-	-			-
	Mi126424 -	4 – dfill een 11.49 – 14.49 – 180 min 15/12/17	Carbon disulphide	<10	0.05663	<0.00018	only and 15	-	0.15		1.0	Sk, IOELV
3	trace landfill gas screen		Carbon tetrachloride	<10	0.05663	<0.00018	red 12.6	-	0.126			Sk
			Chloroethane	<30	0.05663	<0.00053	268	-	2.68			IOELV
			Dichloromethane	<10	0.05663	<0.00018	174	-	1.74	0.00014		-
			Dimethyl disulphide	<10	0.05663	0.00018	1.90	-	0.019			-
			Dimethyl sulphide	<10	0.05663	્રે <mark>૨</mark> ૨0.00018	55.47	-	0.5547			-
			Ethyl butyrate	<25	0.05663	ont <0.000093	-	-	-			-
			Ethyl Mercaptan	<10	0.05663 🕻 🔊	<0.00018	1	3	0.01			-
			Hydrogen sulphide	<60	0.05663	<0.0011	7	14	0.07			IOELV
			Methyl Mercaptan	<30	0.05663	<0.00053	1	-	0.01			-
			N-Butyl Mercaptan	<10	0.05663	<0.00018	1.8	-	0.018			-
			Styrene	<10	0.05663	<0.00018	85	170	0.85			-
			Toluene	12	0.05663	0.00021	192	384	1.92			Sk, IOELV
			Trichloroethylene	<10	0.05663	<0.00018	58.66	146.65	0.5866			Sk, Carc.1B
			Vinyl chloride monomer	<10	0.05663	<0.00018	7.77	-	0.0777			Carc.1A, BOELV
3	72183000768		Formaldehyde	<100	0.04421	<0.0020	0.26	0.53	0.0026			Carc.1B, Sens.
3	711/507021	•	Acetaidenyde	<100	0.04421	<0.0020	45	45	0.45			- Carc 1A
2 2	7532605402	•	Marcury	~5	0.037330		0.01	-	0.0001			QL
	Methane	10.20- 11.20 –		<.5	0.037720		0.01	0.03	0.0001			UN.
3	screen - FID	60 min	Methane as TOC	-	-	0.71 to 1.42	-	-	-	-	-	-

 Table 3.5. Results from monitoring of House 52 – Location 2

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	8 hr OEL value (mg/Nm ³)	15 min OEL value (mg/Nm ³)	Environmental Assessment Levels (EAL's) – Long term (µg/m ³)	Examination of additive / cumulative effects	Limit value for cumulative effect	Other risk factors
			1-Pentene	<10	0.058248	<0.00017	-	-	-			-
			1,1 Di chloroethane	<10	0.058248	<0.00017	268	-	2.68			IOELV
			1,1-Dichloroethylene	<10	0.058248	<0.00017	20	-	0.2			-
			1,2-Dichloroethane	<10	0.058248	<0.00017	412	-	4.12			Sk, IOELV
			1,2-Dichloroethylene	<30	0.058248	<0.00052	20		0.2			-
			1,3-Butadiene	<10	0.058248	<0.00017	-	-	-			-
			1,4 epoxy 1,3- butadiene	<10	0.058248	<0.00017	-	-	-			-
			1-Propanethiol	<10	0.058248	<0.00017	-	-	-			-
			2-butoxyethanol	<10	0.058248	<0.00017	8	246	0.08			Sk , IOELV
			Benzene	<10	0.058248	<0.00017	3.0	-	0.03			BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	<10	0.058248	<0.00017	-	-	-			-
	Mi175249 -		Carbon disulphide	<10	0.058248	<0.00017	15, ¹⁵	-	0.15		1.0	Sk, IOELV
4	trace landfill gas screen		Carbon tetrachloride	<10	0.058248	<0.00017	12.6	-	0.126			Sk
		10.00 - 13.00 -	Chloroethane	<30	0.058248	<0.00052	offor 268	-	2.68			IOELV
		15/12/17	Dichloromethane	<10	0.058248	<0.00017	174 x ¹²⁰	-	1.74	- -		-
			Dimethyl disulphide	<10	0.058248	<0.00017	1.90	-	0.019			-
			Dimethyl sulphide	<10	0.058248	<0.00017	55.47	-	0.5547			-
			Ethyl butyrate	<25	0.058248		-	-	-			-
			Ethyl Mercaptan	<10	0.058248	√<0.00017	1	3	0.01			-
			Hydrogen sulphide	<60	0.058248	<0.00074	7	14	0.07			IOELV
			Methyl Mercaptan	<30	0.058248	<0.00052	1	-	0.01			-
			N-Butyl Mercaptan	<10	0.058248	<0.00017	1.8	-	0.018			-
			Styrene	<10	0.058248	<0.00017	85	170	0.85			-
			Toluene	<10	0.058248	<0.00017	192	384	1.92			Sk, IOELV
			Trichloroethylene	<10	0.058248	<0.00017	58.66	146.65	0.5866			Sk, Carc.1B
			Vinyl chloride monomer	<10	0.058248	<0.00017	7.77	-	0.0777			Carc.1A, BOELV
4	72183000771		Formaldehyde	<100	0.031356	<0.0030	0.26	0.53	0.0026			Carc.1B, Sens.
Λ	7114507035	1	Acetaidenyde	<100	0.031356	<0.0030	45 0.01	45	0.001			- Carc 1A
4 A	7532605309	1	Mercury	~5	0.020300	<0.040	0.01	0.03	0.0001			
4	Methane	11.30- 12.35 –		<0	0.00020		0.01	0.03	0.0001			- Or
4	screen - FID	65 min	Methane as TOC	-	-	0.98 to 1.66	-	-	-	-	-	-

3.2.3 House 53 Monitoring results

 Table 3.6. Results from monitoring of House 53 – Location 1

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm³)	Compound conc. (mg/Nm ³)	8 hr OEL value (mg/Nm ³)	15 min OEL value (mg/Nm ³)	Environmental Assessment Levels (EAL's) – Long term (μg/m ³)	Examination of additive / cumulative effects	Limit value for cumulative effect	Other risk factors
			1-Pentene	<10	0.050328	<0.00020	-	-	-			-
			1,1 Di chloroethane	<10	0.050328	<0.00020	268	-	2.68			IOELV
			1,1-Dichloroethylene	<10	0.050328	<0.00020	20	-	0.2			-
			1,2-Dichloroethane	<10	0.050328	<0.00020	412	-	4.12			Sk, IOELV
			1,2-Dichloroethylene	<30	0.050328	<0.00060	20		0.2			-
			1,3-Butadiene	<10	0.050328	<0.00020	-	-	-			-
			1,4 epoxy 1,3- butadiene	<10	0.050328	<0.00020	-	-	-			-
			1-Propanethiol	<10	0.050328	<0.00020	-	-	-			-
			2-butoxyethanol	<10	0.050328	<0.00020	8	246	0.08			Sk , IOELV
			Benzene	100	0.050328	0.0020	3.0 e.	-	0.03			BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	<10	0.050328	<0.00020	other	-	-			-
	1042204	42204 – ee landfill s screen 10.45 – 13.45 – 180 min 15/12/17	Carbon disulphide	<10	0.050328	<0.00020	only and 15	-	0.15		1.0	Sk, IOELV
5	trace landfill		Carbon tetrachloride	28	0.050328	0.00056	12.6	-	0.126			Sk
	gas screen		Chloroethane	<30	0.050328	<0.000602000	268	-	2.68			IOELV
			Dichloromethane	<10	0.050328	<0.00020	174	-	1.74	0.016		-
			Dimethyl disulphide	<10	0.050328	×0.00020	1.90	-	0.019			-
			Dimethyl sulphide	<10	0.050328	20.00020	55.47	-	0.5547			-
			Ethyl butyrate	<25	0.050328	on <0.00050	-	-	-			-
			Ethyl Mercaptan	<10	0.05032800	<0.00020	1	3	0.01			-
			Hydrogen sulphide	<60	0.050328	<0.00086	7	14	0.07			IOELV
			Methyl Mercaptan	<30	0.050328	<0.00060	1	-	0.01			-
			N-Butyl Mercaptan	<10	0.050328	<0.00020	1.8	-	0.018			-
			Styrene	<10	0.050328	<0.00020	85	170	0.85			-
			Toluene	100	0.050328	0.0020	192	384	1.92			Sk, IOELV
			Trichloroethylene	<10	0.050328	<0.00020	58.66	146.65	0.5866			Sk, Carc.1B
			Vinyl chloride monomer	<10	0.050328	<0.00020	7.77	-	0.0777			Carc.1A, BOELV
5	72183000762		Formaldehyde	<100	0.066744	<0.0010	0.26	0.53	0.0026			Carc.1B, Sens.
5	711/507022		Acetaldehyde	<100	0.066744	<0.0010	45	45	0.45			- Carc 1A
5	7532605402		Marcury	< 1000 6	0.030034	<0.020 0.00015	0.01	-	0.0001			
	Methane	12.40- 13.40 -		0	0.039024	0.00015	0.01	0.03	0.0001			JK
5	screen - FID	60 min	Methane as TOC	-	-	0.68 to 1.56	-	-	-	-	-	-

 Table 3.7. Results from monitoring of House 53 – Location 2

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	8 hr OEL value (mg/Nm ³)	15 min OEL value (mg/Nm ³)	Environmental Assessment Levels (EAL's) – Long term (µg/m ³)	Examination of additive / cumulative effects	Limit value for cumulative effect	Other risk factors
			1-Pentene	<10	0.056268	<0.00018	-	-	-			-
			1,1 Di chloroethane	<10	0.056268	<0.00018	268	-	2.68			IOELV
			1,1-Dichloroethylene	<10	0.056268	<0.00018	20	-	0.2			-
			1,2-Dichloroethane	<10	0.056268	<0.00018	412	-	4.12			Sk, IOELV
			1,2-Dichloroethylene	<30	0.056268	<0.00053	20		0.2			-
			1,3-Butadiene	<10	0.056268	<0.00018	-	-	-			-
			1,4 epoxy 1,3- butadiene	<10	0.056268	<0.00018	-	-	-			-
			1-Propanethiol	<10	0.056268	<0.00018	-	-	-			-
			2-butoxyethanol	<10	0.056268	<0.00018	8	246	0.08			Sk , IOELV
			Benzene	110	0.056268	0.0020	3.0	-	0.03			BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	<10	0.056268	<0.00018	-	-	-			-
	Mi110717	11.30 – 14.30 – 180 min 15/12/17	Carbon disulphide	<10	0.056268	<0.00018	15, ¹⁵⁶	-	0.15		1.0	Sk, IOELV
6	trace landfill		Carbon tetrachloride	<10	0.056268	<0.00018	12.6	-	0.126			Sk
	gas screen		Chloroethane	<30	0.056268	0	offor 268	-	2.68			IOELV
			Dichloromethane	<10	0.056268	<0.00018	174 I74	-	1.74	0.022		-
			Dimethyl disulphide	<10	0.056268	<0.00058	1.90	-	0.019	-		-
			Dimethyl sulphide	<10	0.056268	<0.00018	55.47	-	0.5547			-
			Ethyl butyrate	<10	0.056268	√√2000018	-	-	-			-
			Ethyl Mercaptan	<10	0.056268	√<0.00018	1	3	0.01			-
			Hydrogen sulphide	60	0.056268	o.011	7	14	0.07			IOELV
			Methyl Mercaptan	<30	0.056268	<0.00053	1	-	0.01			-
			N-Butyl Mercaptan	<10	0.056268	<0.00018	1.8	-	0.018			-
			Styrene	<10	0.056268	<0.00018	85	170	0.85			-
			Toluene	12	0.056268	0.00021	192	384	1.92			Sk, IOELV
			Trichloroethylene	<10	0.056268	<0.00018	58.66	146.65	0.5866			Sk, Carc.1B
			Vinyl chloride monomer	<10	0.056268	<0.00018	7.77	-	0.0777			Carc.1A, BOELV
6	72183000765		Formaldehyde	<100	0.039816	< 0.0030	0.26	0.53	0.0026			Carc.1B, Sens.
6	711/507022	•	Acetaldehyde	<100	0.039816	<0.0030	45	45	0.45			- Caro 1A
6	7532605401		Marcury	~5	0.050002		0.01	-	0.0001			Carc. TA
0	Methane	13.50- 14.50 –		<0	0.052410		0.01	0.03	0.0001			Sn
6	screen - FID	60 min	Methane as TOC	-	-	0.55 to 1.74	-	-	-	-	-	-

3.2.4 House 26 Monitoring results

 Table 3.8. Results from monitoring of House 26 – Location 1

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	8 hr OEL value (mg/Nm ³)	15 min OEL value (mg/Nm ³)	Environmental Assessment Levels (EAL's) – Long term (μg/m ³)	Examination of additive / cumulative effects	Limit value for cumulative effect	Other risk factors
			1-Pentene	<10	0.02554	<0.00039	-	-	-			-
			1,1 Di chloroethane	<10	0.02554	<0.00039	268	-	2.68		1.0	IOELV
			1,1-Dichloroethylene	<10	0.02554	<0.00039	20	-	0.2			-
			1,2-Dichloroethane	190	0.02554	0.0074	412	-	4.12			Sk, IOELV
			1,2-Dichloroethylene	<30	0.02554	<0.0012	20		0.2			-
			1,3-Butadiene	<10	0.02554	<0.00039	-	-	-	0.44		-
			1,4 epoxy 1,3- butadiene	<10	0.02554	<0.00039	-	-	-			-
			1-Propanethiol	<10	0.02554	<0.00039	-	-	-			-
		2 – dfill en 16.25 – 18.36 – 131 min 14/02/18	2-butoxyethanol	<10	0.02554	<0.00039	8	246	0.08			Sk , IOELV
1 7 tra	1053252 – trace landfill gas screen		Benzene	2000	0.02554	0.078	3.0 15°.	-	0.03			BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	<10	0.02554	<0.00039	only any other	-	-			-
			Carbon tetrachloride	18	0 02554	0.00070	× 126		0 126			Sk
			Chloroethane	<30	0.02554	< 0.0018	268	-	2.68			IOELV
			Dichloromethane	24000	0.02554	0.94 whet	174	_	1.74			_
			Dimethyl disulphide	<10	0.02554	×0.00039	1.90	-	0.019			_
			Dimethyl sulphide	33	0.02554	0.0013	55.47	-	0.5547			-
			Ethyl butyrate	<25	0.02554	<0.00098	-	-	-			-
			Ethyl Mercaptan	<10	0.02554	<0.00039	1	3	0.01			-
			Hydrogen sulphide	<60	0.02554	<0.0023	7	14	0.07			IOELV
			Methyl Mercaptan	<30	0.02554	<0.0012	1	-	0.01			-
			N-Butyl Mercaptan	<10	0.02554	<0.00039	1.8	-	0.018			-
			Styrene	510	0.02554	0.020	85	170	0.85			-
			Toluene	1700	0.02554	0.067	192	384	1.92			Sk, IOELV
			Vinyl chloride monomer	<10	0.02554	<0.00039	7.77	-	0.0777			Carc.1A, BOELV
7	6240704999		Formaldehyde	5800	0.05515	0.105	0.26	0.53	0.0026			Carc.1B, Sens.
7	6700215271		Arsenic	<1000	0.00010	<0.070	40 0.01	40 -	0.45			- Carc.1A
7	3277405764		Mercury	<5	0.05998	<0.00010	0.01	0.03	0.0001			Sk
7	Methane screen - FID	17.20- 18.20– 60 min	Methane as TOC	-	-	0.82 to 1.42	-	-	-	-	-	-

 Table 3.9. Results from monitoring of House 26 – Location 2

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	8 hr OEL value (mg/Nm ³)	15 min OEL value (mg/Nm ³)	Environmental Assessment Levels (EAL's) – Long term (µg/m ³)	Examination of additive / cumulative effects	Limit value for cumulative effect	Other risk factors
			1-Pentene	<10	0.02383	<0.00042	-	-	-			-
			1,1 Di chloroethane	<10	0.02383	<0.00042	268	-	2.68		1.0	IOELV
			1,1-Dichloroethylene	<10	0.02383	<0.00042	20	-	0.2			-
			1,2-Dichloroethane	280	0.02383	0.0012	412	-	4.12			Sk, IOELV
			1,2-Dichloroethylene	<30	0.02383	<0.0013	20		0.2			-
			1,3-Butadiene	<10	0.02383	<0.00042	-	-	-			-
			1,4 epoxy 1,3- butadiene	<10	0.02383	<0.00042	-	-	-	0.021		-
			1-Propanethiol	<10	0.02383	<0.00042	-	-	-			-
8	Mi136065 – trace landfill gas screen	16.39 – 18.36 – 117 min 14/02/18	2-butoxyethanol	<10	0.02383	<0.00042	8	246	0.08			Sk , IOELV
			Benzene	1400	0.02383	0.059	3.0	-	0.03			BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	<10	0.02383	<0.00042	-	-	-			-
			Carbon tetrachloride	56	0.02383	0.0023	12615	-	0.126			Sk
			Chloroethane	<30	0.02383	<0.0013	NY: 17268	-	2.68			IOELV
			Dichloromethane	3700	0.02383	0.16	5 174	-	1.74			-
			Dimethyl disulphide	<10	0.02383	<0.00042	1.90 1 .90	-	0.019			-
			Dimethyl sulphide	20	0.02383	0.00084	55.47	-	0.5547			-
			Ethyl butyrate	<25	0.02383	<mark>≼0.001</mark> 0	-	-	-			-
			Ethyl Mercaptan	<10	0.02383	€ ² €00042	1	3	0.01			-
			Hydrogen sulphide	<60	0.02383	رم ^م <0.0025	7	14	0.07			IOELV
			Methyl Mercaptan	<30	0.02383	<0.0013	1	-	0.01			-
			N-Butyl Mercaptan	<10	0.02383	<0.00042	1.8	-	0.018			-
			Styrene	400	0.02383	0.017	85	170	0.85			-
			Toluene	1500	0.02383	0.063	192	384	1.92			Sk, IOELV
			Vinyl chloride monomer	<10	0.02383	<0.00042	7.77	-	0.0777			Carc.1A, BOELV
8	6240705004	1	Formaldehyde	1300	0.02102	0.060	0.26	0.53	0.0026			Carc.1B, Sens.
0	7119615025	4	Acetaldehyde	3100 <1000	0.02102	0.15	45	45	0.45	-		-
°	2050002422	4	Moroury	<1000	0.05000	<0.020	0.01	-	0.0001			
8	Methane	17 20- 18 20 -	wercury	<0	0.03082	<0.00010	0.01	0.03	0.0001			ЭК
8	screen - FID	60 min	Methane as TOC	-	-	See Table 3.8	-	-	-	-	-	-

3.2.5 Gas well 1 Monitoring results

Table 3.10. Results from monitoring headspace of shallow gas monitoring well - GS1

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	Risk factors
			1-Pentene	<10	0.01104	<0.00091	-
			1,1 Di chloroethane	<10	0.01104	<0.00091	IOELV
			1,1-Dichloroethylene	<10	0.01104	<0.00091	-
			1,2-Dichloroethane	<10	0.01104	<0.00091	Sk, IOELV
			1,2-Dichloroethylene	<30	0.01104	<0.0027	-
			1,3-Butadiene	<10	0.01104	<0.00091	-
			1,4 epoxy 1,3- butadiene	<10	0.01104	<0.00091	-
			1-Propanethiol	<10	0.01104	<0.00091	-
			2-butoxyethanol	<10	0.01104	<0.00091	Sk , IOELV
		14.35 – 15.35 – 60 min 14/02/18 €	Benzene	310	0.01104	0.028	BOELV, Sk, Carc.1A, Muta.1B
	1040040		Butyric acid	510	0.01104	<0.00091	-
9	trace landfill		Carbon tetrachloride	170	0.01104	0.0015	Sk
	gas screen		Chloroethane	<30	0.01104	<0.0027	IOELV
			Dichloromethaner	<10	0.01104	<0.00091	-
			Dimethyl disolphide	<10	0.01104	<0.00091	-
			Dimethyl sulphide	<10	0.01104	<0.00091	-
			Ethyl butyrate	<25	0.01104	<0.0023	-
			Ethyl Mercaptan	<10	0.01104	<0.00091	-
			Hydrogen sulphide	<60	0.01104	<0.0054	IOELV
			Methyl Mercaptan	<30	0.01104	<0.0027	-
			N-Butyl Mercaptan	<10	0.01104	<0.00091	-
			Styrene	<10	0.01104	<0.00091	-
			Toluene	72	0.01104	0.0065	Sk, IOELV
			Vinyl chloride monomer	<10	0.01104	<0.00091	Carc.1A, BOEL
9	6240705005		Formaldehyde	300	0.02472	0.013	Carc.1B, Sens.
<u>م</u>	6700215272	-	Acetaldenyde	<100	0.024/2	0.004	- Carc 1A
0	3077/05/09	4	Moreury	~5	0.01042	<0.000	Curo. 17
Э	32//403428		wercury	<0	0.020/0	<0.00019	SK

3.2.6 Gas well 2 Monitoring results

 Table 3.10. Results from monitoring headspace of shallow gas monitoring well – GS2

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	Risk factors
			1-Pentene	<10	0.01012	<0.00099	-
			1,1 Di chloroethane	<10	0.01012	<0.00099	IOELV
			1,1-Dichloroethylene	<10	0.01012	<0.00099	-
			1,2-Dichloroethane	<10	0.01012	0.00099	Sk, IOELV
			1,2-Dichloroethylene	<30	0.01012	<0.0030	-
			1,3-Butadiene	<10	0.01012	<0.00099	-
			1,4 epoxy 1,3- butadiene	<10	0.01012	<0.00099	-
			1-Propanethiol	<10	0.01012	<0.00099	-
		15.46 – 16.46 – 60 min 14/02/18	2-butoxyethanol	<10	0.01012	<0.00099	Sk , IOELV
			Benzene	73	0.01012	0.0072	BOELV, Sk, Carc.1A, Muta.1B
	1005547		Butyric acid	510	0.01012	<0.00099	-
10	trace landfill		Carbon tetrachloride	160 Not 160	0.01012	0.016	Sk
	gas screen		Chloroethane	<30	0.01012	<0.0030	IOELV
			Dichloromethaner	<10	0.01012	<0.00099	-
			Dimethyl displayide	<10	0.01012	<0.00099	-
			Dimethyl sulphide	<10	0.01012	<0.00099	-
			Ethyloutyrate	<25	0.01012	<0.0025	-
			Ethy Mercaptan	<10	0.01012	<0.00099	-
			Nydrogen sulphide	<60	0.01012	<0.0059	IOELV
			Methyl Mercaptan	<30	0.01012	<0.0030	-
			N-Butyl Mercaptan	<10	0.01012	<0.00099	-
			Styrene	<10	0.01012	<0.00099	-
			Toluene	30	0.01012	0.0030	Sk, IOELV
			Vinyl chloride monomer	<10	0.01012	<0.00099	Carc.1A, BOEL
10	6240705008		Formaldehyde	200	0.02292	0.0090	Carc.1B, Sens.
10	7118615893	4	Acetaldenyde	<100	0.02292	<0.0040	- Carc 1A
10	3277405610	4	Mercury	~5	0.02000		Qk
10	3211+03010	1	wordury	~5	0.02000	<0.00013	U.S.

3.2.7 Gas well 3 Monitoring results

 Table 3.10. Results from monitoring headspace of shallow gas monitoring well – GS3

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	Risk factors
			1-Pentene	<10	0.01564	<0.00064	-
			1,1 Di chloroethane	<10	0.01564	<0.00064	IOELV
			1,1-Dichloroethylene	<10	0.01564	<0.00064	-
			1,2-Dichloroethane	<10	0.01564	0.00064	Sk, IOELV
			1,2-Dichloroethylene	<30	0.01564	<0.0019	-
			1,3-Butadiene	<10	0.01564	<0.00064	-
			1,4 epoxy 1,3- butadiene	<10	0.01564	<0.00064	-
			1-Propanethiol	<10	0.01564	<0.00064	-
		15.20 – 16.25 – 65 min 14/02/18	2-butoxyethanol	<10	0.01564	<0.00064	Sk , IOELV
	1050701		Benzene	770	0.01564	0.049	BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	510	0.01564	<0.00064	-
11	trace landfill		Carbon tetrachloride	38	0.01564	0.0024	Sk
	gas screen		Chloroethane	<30	0.01564	<0.0019	IOELV
			Dichloromethaner	<10	0.01564	<0.00064	-
			Dimethyl disolopide	<10	0.01564	<0.00064	-
			Dimethyl sulphide	<10	0.01564	<0.00064	-
			Ethyl butyrate	<25	0.01564	<0.0016	-
			Ethyl Mercaptan	<10	0.01564	<0.00064	-
			Nydrogen sulphide	<60	0.01564	<0.0038	IOELV
			Methyl Mercaptan	<30	0.01564	<0.0019	-
			N-Butyl Mercaptan	<10	0.01564	<0.00064	-
			Styrene	<10	0.01564	<0.00064	-
			Toluene	63	0.01564	0.0040	Sk, IOELV
			Vinyl chloride monomer	<10	0.01564	<0.00064	Carc.1A, BOEL
11	6240705007]	Formaldehyde	500	0.02338	0.019	Carc.1B, Sens.
11	7119615900	4	Acetaldehyde	<100	0.02338	<0.0040	- Care 1A
11	7110010090	4	Manaumi	<1000	0.012/1	<0.000	
11	3950903435		wercury	<5	0.02411	<0.00021	SK

3.2.8 Gas well 4 Monitoring results

 Table 3.10. Results from monitoring headspace of shallow gas monitoring well – GS4

1-Pentene 1,1 Di chloroethane 1,1-Dichloroethylene 1,2-Dichloroethane	<10 <10 <10 <10 <30 <10 <10	0.01219 0.01219 0.01219 0.01219 0.01219 0.01219 0.01219 0.01219	<0.00082 <0.00082 <0.00082 <0.00082 <0.00082 <0.0025 <0.00082	- IOELV - Sk, IOELV - -
1,1 Di chloroethane 1,1-Dichloroethylene	<10 <10 <10 <30 <10 <10	0.01219 0.01219 0.01219 0.01219 0.01219 0.01219 0.01219	<0.00082 <0.00082 <0.00082 <0.0025 <0.00082	IOELV - Sk, IOELV - -
1,1-Dichloroethylene	<10 <10 <30 <10 <10	0.01219 0.01219 0.01219 0.01219 0.01219 0.01219	<0.00082 <0.00082 <0.0025 <0.00082	- Sk, IOELV - -
1.2-Dichloroethane	<10 <30 <10 <10	0.01219 0.01219 0.01219 0.01219 0.01219	<0.00082 <0.0025 <0.00082	Sk, IOELV - -
.,	<30 <10 <10	0.01219 0.01219 0.01219	<0.0025 <0.00082	-
1,2-Dichloroethylene	<10 <10	0.01219 0.01219	<0.00082	-
1,3-Butadiene	<10	0.01219		
1,4 epoxy 1,3- butadiene			<0.00082	-
1-Propanethiol	<10	0.01219	<0.00082	-
2-butoxyethanol	<10	0.01219	<0.00042	Sk , IOELV
Benzene	190	0.01219	0.0049	BOELV, Sk, Carc.1A, Muta.1B
1051117 – Butyric acid	oterio	0.01219	<0.00082	-
gas screen 14.54 – 15.55 – Carbon tetrachloride	11	0.01219	0.00090	Sk
61 min Chloroethane	<30	0.01219	<0.0025	IOELV
14/02/18 Dichloromethane	<10	0.01219	<0.00082	-
Dimethyloisaiphide	<10	0.01219	<0.00082	-
Dimethylsulphide	<10	0.01219	<0.00082	-
Ethyl butyrate	<25	0.01219	<0.0021	-
Ethyl Mercaptan	<10	0.01219	<0.00082	-
C ^r Hydrogen sulphide	<60	0.01219	<0.0049	IOELV
Methyl Mercaptan	<30	0.01219	<0.0025	-
N-Butyl Mercaptan	<10	0.01219	<0.00082	-
Styrene	<10	0.01219	<0.00082	-
Toluene	39	0.01219	0.0032	Sk, IOELV
Vinyl chloride monomer	<10	0.01219	<0.00082	Carc.1A, BOEL
12 6240705002 Formaldehyde	600	0.02515	0.025	Carc.1B, Sens.
12 7118615895 Arconio	<100	0.02515	<0.0040	- Caro 1A
12 / 110013033 AISetilic	<1000	0.03012	<0.030	

4. Conclusions

The following conclusions are drawn for the study:

- 1. With regards to comfort conditions with finished Houses 25 and 26, temperatures, relative humidity and Carbon dioxide levels were normal for the environment they were monitored within (ASHRAE Standard 62.1-2004).
- 2. With regards to House 25 Location 1 and 2, trace concentrations of Benzene, Carbon tetrachloride, Dichloromethane, Styrene, Toluene, Formaldehyde and Acetaldehyde were detected in the headspace of the house. All detected compounds were well within the 8 hr occupational exposure limits for the each of the respective compounds. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Formaldehyde (i.e. fractional exposure limit value 0.0026mg/Nm³) were in excess of the fractional exposure limit value. Concentration values of 0.019 and 0.014 mg/Nm³ were measured. There was a noticeable odour of paints, varnishes and glues in the house. The cumulative factorial value was less than 7.5% of the prescribed limit value. It is recommended that further compound monitoring is performed on this property in order to access whether these concentration levels have dissipated over time given the house has been lived within and background levels of compounds associated with building products should dissipate over time and this information will provide useful indicator of this decay over time.
- 3. With regards to Houses 52 and 53, trace concentrations of Benzene, Toluene, Carbon tetrachloride, Mercury and Hydrogen sulphide were detected in the headspace of the house. These houses were not finishes and had no windows present and therefore more susceptible to outside influences from compounds in the ambient environment. The concentration levels of these compounds were trace and well with any respective 8 hr occupational exposure limits. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Mercury (i.e. fractional limit value 0.0001 mg/Nm³) were in excess of the fractional exposure limit value. A concentration value of 0.00015 mg/Nm³ was measured on Hse 53 Location 1. The cumulative factorial value was less than 0.10 and 2.2% of the prescribed limit value, respectively.
- 4. With regards to House 26 Location 1 and 2, trace concentrations of 1,2 Dichloroethylene, Benzene, Carbon tetrachloride, Dichloromethane, Dimethyl sulphide, Styrene, Toluene, Formaldehyde and Acetaldehyde were detected in the headspace of the house. All detected compounds were well within the 8 hr occupational exposure limit values for the each of the respective compounds. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Formaldehyde (i.e. fractional exposure limit value 0.0026 mg/Nm³) and Benzene (i.e. fractional exposure limit value 0.030 mg/Nm³) were in excess of the fractional exposure limit values. Concentration values for Benzene and Formaldehyde were measured at 0.078 and 0.105 mg/Nm³ for Location 1 and 0.059 and 0.060 mg/Nm³ for Location 2. There was a weak odour of paints, varnishes and glues in the house. The cumulative factorial value was less than 44% of the prescribed limit value. It is recommended that further compound monitoring is performed on this property in order to access whether these concentration levels have dissipated over time given the house has been lived within and background levels of compounds associated with building products should dissipate over time and this information will provide useful indicator of this decay over time.
- 5. With regards to Gas well GS1, GS2, GS3 and GS4, trace concentrations of Benzene, Carbon tetrachloride, Toluene and Formaldehyde were detected in the headspace of the well. Benzene and Toluene are ubiquitous in the environment as a result of traffic related sources and therefore these trace amounts can be attributed to this source.

- 6. As part of Mulroy Environmental site investigation, a number of soil samples and groundwater samples were taken with VOC analysis conducted. In total 21 groundwater samples were taken across two monitoring rounds from the 11 groundwater monitoring wells on-site. No VOCs were detected within the groundwater above the method detection limit in any of these samples (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 6). Five soil samples were analysed for VOCs. Only two VOCs namely vinyl chloride and -1,2dichloroethane were detected in one soil sample (i.e. SO-TP21-01) (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 5). It should be noted that this sample was taken from a trial pit located 51m from the nearest residence (i.e. House No.25). Neither of these compounds were detected in the sorbent tubes/thermal desorption/capillary gas chromatography analysis conducted for GS01 – GS04, therefore it is unlikely that they are migrating from the landfill towards the residence (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 12). Carbon tetrachloride is a common constituent of paints and varnishes. It is likely that the concentrations of carbon tetrachloride identified within the 4 gas wells to the west of the residences is as a result of a spillage and/or poor management of solvent based paints during the fit-out phase of construction (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 12). Formaldehyde is a basic constituent of rubber cement products which are used on building sites as either sealants and or glues. Empty rubber cement tubes were observed outside some of the residences during the fit-out phase of construction (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 12).
- 7. In relation to the surface emissions Methane / VOC Screen, the levels detected were around background and were no greater than 1.74 mg/Nm³.
 For inspective provide the intervention of the inte

25

5. References

- 1. 2011 Code of Practice for the Safety, Health and Welfare at work (Chemical Agents) Regulations 2001 (S.I. No. 619 of 2001)". (www.hse.ie).
- 2. ASHRAE Standard 62.1-2004, www.ashrae.org.
- 3. Chemical Agents COP 2016, HSE, Ireland.
- 4. Compendium method TO-17-Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes.
- 5. ILVs Commission Directive 91/322/EEC of 29 May 1991
- 6. IOELVs 1 Commission Directive 2000/39/EC of 8 June 2000
- 7. IOELVs 2 Commission Directive 2006/15/EC of 7 February 2006.
- 8. ISO 16017-1:2000, Indoor, ambient and workplace air. Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography. Part 1: Pumped sampling.
- 9. MDHS 70 General method for sampling airborne gases and vapours.
- 10. MDHS 72 Volatile organic compounds in air (1993). Laboratory methods using pumped solid sorbent tubes, thermal desorption and gas chromatography.
- 11. MDHS 91 Metals and metalloids in workspace air by X-ray fluorescence spectrometry, July 1998.
- 12. MDHS 96 Volatile organic compounds in air, Laboratory methods using pumped solid sorbent tubes, solvent desorption and gas chromatography. March 2000.
- 13. Mulroy Environmental Ltd., (2018), Environmental Risk Assessment Report.
- 14. NIOSH (NMAM) fourth Edition (1996). Volatile organic compounds (Screening) Method 2549).
- consent of copyright owner required to any oth 15. NIOSH 1500 and 1501 for Total and aromatic hydrocarbons sampling and measurement,
- 16. NIOSH 2539 Aldehydes screening.
- 17. NIOSH 6001 Arsine.
- 18. NIOSH 6009 Mercury.
6. *Appendix I* – Site location map of site boundary and monitoring locations

Reference purposes only.

Figure 6.1. Facility layout map showing the location of the development.

Figure 6.2. Facility layout map showing the location Hse 25, 26, 52 and 53 and GS1-GS4.

Figure 6.3. Figure showing extent of monitoring completed in new development in Barnageeragh Cove, Co. Dublin.

7. Appendix II – Pictures of sampling system and locations

Reference purposes only.

Figure 7.1. Location of monitoring in Hse 25, Front room

Figure 7.2. Location of monitoring in Hse 25, Utility

Notes: Location of monitors place in Hse 26 were in identical locations to Hse 25 within the property. Pictures were not taken as people resident within property at the time of monitoring.

Figure 7.3. Location of monitoring in Hse 52

Figure 7.4. Location of monitoring in Hse 53

Figure 7.5. Location of monitoring on gas wells – GS4

Figure 7.6. Location of monitoring on gas wells – GS1

Figure 7.7. Location of monitoring on gas wells – GS2

8. *Appendix III* – Fractional exposure limits.

For many substances which are released to air, Environmental Quality Standards have not been defined. Where the necessary criteria are absent then Regulators in general have adopted interim values known as Environmental Assessment Levels (EALs). The EAL is the concentration of a substance which in a particular environmental medium the Regulators regard as a comparator value to enable a comparison to be made between the environmental effects of different substances in that medium and between environmental effects in different media and to enable the summation of those effects.

Ideally EALs to fulfil this objective would be defined for each pollutant:

- based on the sensitivity of particular habitats or receptors (in particular three main types of receptor should be considered, protection of human health, protection of natural ecosystems and protection of specific sensitive receptors, e.g. materials, commercial activities requiring a particular environmental quality;
- be produced according to a standardised protocol to ensure that they are consistent, reproducible and readily understood;
- provide similar measure of protection for different receptors both within and between media;
- take account of habitat specific environmental factors such as pH, nutrient status, bioaccumulation, transfer and transformation processes where necessary.

A suite of EALs derived in this consistent manner is not currently available; therefore, interim values based on published information have been adopted.

Ideally EALs for those substances where there are no existing criteria would be derived direct from toxicological data on the effects of the pollutant on a particular receptor. However, an assessment of this type would be a very substantial undertaking which could only be considered over an extended timescale. One approach to overcoming this problem is to make use of occupational exposure limits which provide an assessment for a specific receptor (i.e. adult human workforce) of the toxicological effects of a pollutant. These values might then be progressively revised as further information and resources allow. Indeed a similar approach to this was followed by the then Factory Inspectorate in 1968 when a large number of occupational standards were adopted from the American Conference of Governmental Industrial Hygienists (HMSO 1968) which have since been progressively revised by the Health and Safety Executive on the basis of new information and UK experience.

Occupational exposure limits are intended to set a level of exposure based on 8 hours per day, 5 days per week during a normal employment lifetime below which adverse effects are unlikely to arise for the majority of the working population who may be exposed. Occupational limit values may be derived from either actual data on workers or animal toxicity data; in addition, factors such as the ability to achieve or measure the proposed limit may also be taken into consideration. Consequently, the precise basis on which limit values have been set is difficult to determine and a cautious approach needs to be taken in deriving EALs from occupational exposure limits.

In deriving EALs for long-term exposure from occupational limits two factors need to be taken into consideration, the duration of exposure of the general population compared with the workforce and the sensitivity of the group at risk. The weekly exposure of the local population could be up to 168 hours per week (7*24 hrs) rather than the 40 hours (5*8 hrs) which might be expected for the workforce. Moreover, exposure for the general population may extend to 52 weeks compared with an average working year of 44 weeks. On this basis the minimum safety factor would be 4.96 (i.e. (168/40 * 52/44). In addition, since there may be no recovery period between exposure sessions and exposure could be for a lifetime a further safety factor of 2 could be introduced giving a total safety factor of 10.

It might also be expected that the general population will contain more sensitive individuals, for example, children, the elderly or those with diseases such as asthma, than workers who are typically between the ages of 16 and 65. In the absence of other information a factor of 10 is normally used to allow for differences between the population mean and the response of

sensitive individuals (WHO 1994). This is likely to be conservative since, in setting occupational limit values, some allowance will have been made for variation in the sensitivity of the workforce to the pollutant concerned. Combining the safety factors for exposure and sensitivity of the general population gives a long-term air quality standard of 1/100th of the 8-hour occupational exposure limit.

In the UK the Health and Safety Executive distinguish two types of long term occupational exposure limits, occupational exposure standards (OESs) and maximum exposure limits (MELs). MELs are set for chemicals where there is particular concern, for example carcinogens, or doubt over the actual no effect level and for occupational health purposes it is an offence to exceed a MEL. Within the workplace this leads to an emphasis on reducing average levels of exposure of the chemical to ensure that the MEL is not exceeded. In practice this leads to an additional safety margin of up to 5 for chemicals which have MELs over those which have OES values. Effectively, therefore, an additional safety factor of up to 5 is achieved in the workplace by setting an MEL and this factor has been incorporated in determining an EAL for those chemicals listed as having an MEL in HSE Guidance Note EH40/2001 (ref 19). For example a safety factor of 500 (10*10*5) is used to set the long term EAL for such substances.

Where no short-term environmental criteria have been identified in the literature a similar approach to their derivation from occupational exposure limits can be adapted to that described above for long-term EALs. However, in this instance it would be more appropriate to calculate values based on the short-term exposure limits (STELs) set by HSE. Where STELs are not listed then a value of 3 times the 8 hour time weighted average occupational exposure limit may be used.

Since STELs are by definition appropriate for consideration of short-term impacts there is no need for additional safety factors relating to the duration of exposure as suggested for the derivation of long term EALs. Moreover, as STELs already incorporate a limited safety margin for variation in the sensitivity of the workforce an additional factor of 10 is likely to be adequate to account for the increased sensitivity of the general population (ref 20). However, since many atmospheric dispersion models are only able to produce estimates for time averaging periods in the order of 1 hour it would be convenient for the short term EALS also to be expressed on this basis. Typically ratios between concentrations measured over a 15 minute averaging period and those taken over an hour may be between 1.3 - 2.3. Given this relatively small range and the likely over estimate of the safety factor representing variation in human sensitivity it is proposed to adopt a value of 1/10th of the STEL as the short-term EAL.

Where the substance attracts a maximum exposure limit value then an additional safety factor of 5 can be included on a similar basis to that described for the derivation of long term EALS.

It is recognised that the derived safety factors have been derived largely on the basis of experience and that for some substances the "true" EAL derived from a more fundamental study of the toxicological data may be very different. EALs derived in this manner need therefore to be treated with caution and where necessary further work undertaken to assess the implication of any actual or potential breaches. However, some comfort in the use of these safety factors may be gained from the fact that they have been applied in many permits in the past and therefore have been subjected to considerable public scrutiny (Environment Agency, H1 – Part 2 080328).

9. *Appendix IV* – Laboratory test results.

Consent of copyright owner required for any other use.

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences

Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE Tel · 0161 874 2400 Fax: 0161 874 2404

Report Number: 704869-1

Date of Report: 10-Jan-2018

Customer: Air Scientific Unit 32 Degranville Court **Dublin Road** Trim Co. Meath Ireland.

Customer Contact: Project Management

Customer Job Reference: BAHOTL2151217 Date Job Received at Concept: 19-Dec-2017 Date Analysis Started: 19-Dec-2017 Date Analysis Completed: 10-Jan-2018 FOT at

The results reported relate to samples received in the aboratory and may not be representative of a whole batch.

al)

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced exception full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual Con

Report checked and authorised by : Mary Hughes **Customer Service Manager** Issued by : Mary Hughes **Customer Service Manager**

Concept Reference: 704869 Customer Reference: BAHOTL2151217

Tube Silica Gel DNPH (226-119) Analysed as Tube Silica Gel DNPH (226-119)

(Acetaldehyde, Formaldehyde)

					-	-	-		-
			Concep	t Reference	704869 002	704869 006	704869 010	704869 014	704869 018
		Custo	mer Sampl	e Reference	7218300767	7218300769	7218300771	7218301977	7218300762
			T	Test Sample	AR	AR	AR	AR	AR
				Volume I	42.276	79.776	31.356		66.744
			Da	ate Sampled	15-DEC-2017	15-DEC-2017	15-DEC-2017	15-DEC-2017	15-DEC-2017
	1								
Determinand	Method	LOD	Units	Symbol		-		-	-
Acetaldehyde	HPLC (DNPH derivative)	0.1	μg	U	⁽¹³⁾ 0.9	⁽¹³⁾ 0.9	<0.1	<0.1	<0.1
	Calc	Calc	mg/m3	N	0.021	0.011	< 0.003		<0.001
	Calc	Calc	ppm	N	0.012	0.0062	<0.0018		<0.00083
Formaldehyde	HPLC (DNPH derivative)	0.1	μg	U	⁽¹³⁾ 0.8	⁽¹³⁾ 1.1	<0.1	<0.1	⁽¹³⁾ <0.1
	Calc	Calc	mg/m3	N	0.019	0.014	<0.003		<0.001
	Calc	Calc	ppm	N	0.016	0.012	<0.0026		<0.0012

Concept Reference: 704869 Customer Reference: BAHOTL2151217

Tube Silica Gel DNPH (226-119) Analysed as Tube Silica Gel DNPH (226-119)

(Acetaldehyde, Forma	aldehyde)					
		1	Concep	t Reference	704869 022	704869 026
		Custo	mer Sampl	e Reference	7218300765	7218300768
			1	Test Sample	AR	AR
			100	Volume I	39.816	44.208
	1. A		Da	ate Sampled	15-DEC-2017	15-DEC-2017
Determinand	Method	LOD	Units	Symbol		
Acetaldehyde	HPLC (DNPH derivative)	0.1	μg	U	<0.1	<0.1 0
	Calc	Calc	mg/m3	N	<0.003	30.002
	Calc	Calc	ppm	N	<0.0014	₹0.0013
Formaldehyde	HPLC (DNPH derivative)	0.1	μg	U	<0.1 05	e ⁰ <0.1
	Calc	Calc	mg/m3	N	<0.003	<0.002
	Calc	Calc	maa	N	<0.0020	< 0.0018

Concept Reference:	704869
Customer Reference:	BAHOTL2151217

	U	aic	Cal	c ppm	N	. <0.0020	<0.0018		
					08	SCL WITH			
Concept Reference	: 704869			100	The	h	1.25		
Customer Reference	: BAHOTL2	151217			Forst	0			
Tube (Charcoal)	Analysed a	as Tube ((Charcoal 22	6-01)	atofcor				
Arsenic				- OR	Ser				
			Concep	t Reference	704869 003	704869 007	704869 011	704869 015	704869 019
		Custo	mer Sampl	e Reference	7114507934	7114507928	7114507935	7114507930	7114507933
			1	Fest Sample	AR	AR	AR	AR	AR
				Volume I	22.698	66.492	23.958		50.868
			Da	te Sampled	15-DEC-2017	15-DEC-2017	15-DEC-2017	15-DEC-2017	15-DEC-2017
Determinand	Method	LOD	Units	Symbol					
Arsenic	ICP/OES	1	μg	U	<1	<1	<1	<1	<1
	Calc	Calc	mg/m3	N	<0.04	<0.02	<0.04		<0.02
	Calc	Calc	ppm	N	<0.014	< 0.0049	<0.014		<0.0064

Concept Reference:	704869					
Customer Reference:	BAHOTL2	151217				
Tube (Charcoal) Arsenic	Analysed a	as Tube (0	Charcoal 22	6-01)		
			Concep	t Reference	704869 023	704869 027
		Custor	mer Sample	e Reference	7114507932	7114507931
			1	Fest Sample	AR	AR
				Volume I	36.882	37.998
			Da	ate Sampled	15-DEC-2017	15-DEC-2017
Determinand	Method	LOD	Units	Symbol		
Arsenic	ICP/OES	1	μg	U	<1	<1
	Calc	Calc	mg/m3	N	<0.03	<0.03
	Calc	Calc	ppm	N	<0.0088	<0.0086

Concept Reference	: 704869								
Customer Reference	BAHOTL2	151217							
Tube Anasorb C300 (226 -17-1A)	Analysed a	as Tube A	nasorb C30)0 (226-17-1A	N)				
Mercury									
			Concep	t Reference	704869 004	704869 008	704869 012	704869 016	704869 020
		Custo	mer Sampl	e Reference	7532605396	7532605397	7532605398	7532605404	7532605403
			٦	Fest Sample	AR	AR	AR	AR	AR
				Volume I	51.987	19.836	38.628		39.024
			Da	ate Sampled	15-DEC-2017	15-DEC-2017	15-DEC-2017	15-DEC-2017	15-DEC-2017
Determinand	Method	LOD	Units	Symbol					
Mercury	CVAFS	5	ng	U	(13) <5	(13) <5	(13) <5	(13) <5	⁽¹³⁾ 6
	Calc	Calc	mg/m3	N	<0.00010	<0.00025	<0.00013		0.00015
	Calc	Calc	ppm	N	< 0.000012	< 0.000031	< 0.000016		0.000018

Consent of copyright

Concept Reference:	704869
Customer Reference:	BAHOTL2151217

Tube Anasorb C300 (226 Analysed as Tube Anasorb C300 (226-17-1A) -17-1A)

Mercury

Image: Concept Reference 704869 024 704869 028 Customer Sample Reference 7532605401 7532605402 Test Sample AR AR AR AR Olume Sample 52.416 37.728 Date Sample 15-DEC-2017 15-DEC-2017 Determinand Method LOD Units Symbol Mercury CVAFS 5 ng U (13) <5 Calc Calc mg/m3 N <0.00010 <0.00013 Calc Calc ppm N <0.00012 <0.00016							
Customer Sample Reference 7532605401 7532605402 Test Sample AR AR Volume I 52.416 37.728 Date Sample 15-DEC-2017 15-DEC-2017 Determinand Method LOD Units Symbol Mercury CVAFS 5 ng U (13) <5 Calc Calc mg/m3 N <0.00010 <0.00013 Calc Calc ppm N <0.000012 <0.00016				Concep	t Reference	704869 024	704869 028
Test Sample AR AR Volume I 52.416 37.728 Date Sample 15-DEC-2017 15-DEC-2017 Determinand Method LOD Units Symbol Mercury CVAFS 5 ng U (13) <5 Calc Calc mg/m3 N <0.00010 <0.00013 Calc Calc ppm N <0.00012 <0.00016			Custo	mer Sampl	e Reference	7532605401	7532605402
Volume I 52.416 37.728 Date Sample 15-DEC-2017 15-DEC-2017 Determinand Method LOD Units Symbol Mercury CVAFS 5 ng U (13) <5 Calc Calc mg/m3 N <0.00010 <0.00013 Calc Calc ppm N <0.000012 <0.000016					Test Sample	AR	AR
Date Sample 15-DEC-2017 15-DEC-2017 Determinand Method LOD Units Symbol					Volume I	52.416	37.728
Determinand Method LOD Units Symbol Mercury CVAFS 5 ng U (13) <5 (13) <5 Calc Calc mg/m3 N <0.00010 <0.00013 Calc Calc ppm N <0.000012 <0.000016			15-DEC-2017	15-DEC-2017			
Mercury CVAFS 5 ng U (13) <5	Determinand	Method	LOD	Units	Symbol		
Calc Calc mg/m3 N <0.00010 <0.00013 Calc Calc ppm N <0.00012	Mercury	CVAFS	5	ng	U	(13) <5	(13) <5
Calc Calc ppm N <0.000012 <0.000016		Calc	Calc	mg/m3	Ν	<0.00010	<0.00013
-upose		Calc	Calc	ppm	N	< 0.000012	< 0.000016
ion of the							ion purpose
A Hisperio and						Thep	pt owne

Customer Reference: BAHOTL2151217

Analysed as Tube (Tenax/Carbon/Molecular Sieve)

Tube (Tenax/Carbon/Molecula r Sieve)

Trace Landfill Gas Suite									
			Concep	t Reference	704869 001	704869 005	704869 009	704869 013	704869 017
		Custor	mer Sampl	e Reference	mi 136392	mi 177242	mi 175249	mi 175246	1042204
			1	Test Sample	AR	AR	AR	AR	AR
				Volume I	42.627	80.802	58.248		50.328
			Da	ate Sampled	15-DEC-2017	15-DEC-2017	15-DEC-2017	15-DEC-2017	15-DEC-2017
Determinand	Method	LOD	Units	Symbol					
1 Pentene	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.00023	<0.00012	<0.00017		<0.00020
	Calc	Calc	ppm	N	<0.000082	<0.000043	<0.000060		<0.000069
1,1-Dichloroethane	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	< 0.00023	< 0.00012	< 0.00017		< 0.00020
4.4 Dishlamathalama		Calc	ppm	N	<0.000058	<0.000031	<0.000042	-10	<0.000049
T, T-Dichloroethylene	GC/MIS (TD SIR)	10 Colo	ng mg/m2	U N	<10	<10	<10	<10	<10
	Calc	Calc	npm	N	<0.00023	<0.00012	<0.00017		
1 2-Dichloroethane	GC/MS (TD SIR)	10	na	N	<0.000039 140	95	<10	<10	<10
I,E Biomorooanano	Calc	Calc	ma/m3	N	0.0033	0.0012	<0.00017	10	<0.00020
	Calc	Calc	ppm	N	0.00081	0.00029	< 0.000042		< 0.000049
1,2-Dichloroethylene	GC/MS (TD SIR)	30	ng	U	<30	<30	<30	<30	<30
	Calc	Calc	mg/m3	N	<0.00070	<0.00037	<0.00052		<0.00060
	Calc	Calc	ppm	N	<0.00018	<0.000094	<0.00013		<0.00015
1,3-Butadiene	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.00023	<0.00012	<0.00017		<0.00020
	Calc	Calc	ppm	N	<0.00011	<0.000056	<0.000078	•	<0.000090
1,4 epoxy 1,3-butadiene	GC/MS (TD SIR)	10	ng	N	<10	<10	<10, V	<10	<10
	Calc	Calc	mg/m3	N	<0.00023	<0.00012	<0.00017		<0.00020
	Calc	Calc	ppm	N	<0.000084	<0.000044	0.000062		< 0.000071
1-Propanethiol	GC/MS (TD SIR)	10	ng	U	<10	<100	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.00023	<0.00012	<0.00017		<0.00020
2 hutoxyethanol		10	ppm	N	<10	210	<0.000055	<10	<0.000064
	Calc	Calc	mg/m3	N	<0.000	<0.00012	<0.00017	\$10	<0.00020
	Calc	Calc	npm	N	<0.000049	<0.00012	<0.00011		<0.00020
Benzene	GC/MS (TD SIR)	10	ng	U	111801	420	<10	93	100
-	Calc	Calc	mg/m3	N 🔦	0,0042	0.0052	<0.00017	1.5.1	0.0020
	Calc	Calc	ppm	N c	0.0013	0.0016	<0.000054	6.62.13	0.00062
Butyric acid	GC/MS (TD SIR)	10	ng	N	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	Ner	<0.00023	<0.00012	<0.00017		<0.00020
	Calc	Calc	ppm	CON	<0.000065	<0.000034	<0.000048		<0.000055
Carbon disulphide	GC/MS (TD SIR)	10	ng	N	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10
	Calc	Calc	mg/m3	N	<0.00023	<0.00012	<0.00017	_	<0.00020
	Calc	Calc	ppm	N	<0.000075	<0.000040	<0.000055	14	<0.000064
Carbon tetrachloride	GC/MS (TD SIR)	10	ng	U	120	41	<10	<10	28
	Calc	Calc	mg/m3	N	0.0028	0.00051	<0.00017		0.00056
Chloroethane	GC/MS (TD SIR)	30	ppin	N	<30	<30	<30	<30	<30
	Calc	Calc	ma/m3	N	<0.00070	<0.00037	<0.00052	-00	<0.00060
	Calc	Calc	ppm	N	< 0.00027	< 0.00014	<0.00020		<0.00023
Dichloromethane	GC/MS (TD SIR)	10	ng	N	^(175,13) 1200	(13) 3300	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10
	Calc	Calc	mg/m3	N	0.028	0.041	<0.00017		<0.00020
	Calc	Calc	ppm	N	0.0081	0.012	<0.000049		<0.000057
Dimethyl disulphide	GC/MS (TD SIR)	10	ng	N	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.00023	<0.00012	<0.00017		<0.00020
	Calc	Calc	ppm	N	<0.000061	<0.000032	<0.000045		<0.000052
Dimethyl sulphide	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	< 0.00023	< 0.00012	< 0.00017		<0.00020
Etherd hash met		Calc	ppm	N N	<0.000092	<0.000049	<0.000068	-05	<0.000078
Etnyl butyrate	GC/MS (TD SIR)	25 Colo	ng mg/m2	N	<25	<25	<25	<25	<25
	Calc	Calc	mg/m3		<0.00059		<0.00043		
Ethyl Mercantan		10	ppin	N N	~0.00012	~10	~0.000090	~10	~0.00010
Luiyi wercaptan	Calc	Calc	ma/m3	N	<0.00023	<0.00012	<0 00017	~10	
	Calc	Calc	ppm	N	<0.000092	<0.000049	<0.000068		<0.000078
Hydrogen sulphide	GC/MS (TD SIR)	60	na	N	<60	<60	<60	<60	<60
,			9						

Customer Reference: BAHOTL2151217

Analysed as Tube (Tenax/Carbon/Molecular Sieve)

Tube (Tenax/Carbon/Molecula r Sieve)

Trace Landfill Gas Suite

			Concep	t Reference	704869 001	704869 005	704869 009	704869 013	704869 017
		Custo	mer Sampl	e Reference	mi 136392	mi 177242	mi 175249	mi 175246	1042204
			1	Fest Sample	AR	AR	AR	AR	AR
				Volume I	42.627	80.802	58.248		50.328
			Da	ate Sampled	15-DEC-2017	15-DEC-2017	15-DEC-2017	15-DEC-2017	15-DEC-2017
Determinand	Method	LOD	Units	Symbol					
	Calc	Calc	mg/m3	N	<0.0014	<0.00074	<0.0010		<0.0012
	Calc	Calc	ppm	N	<0.0010	<0.00053	<0.00074		<0.00086
Methyl Mercaptan	GC/MS (TD SIR)	30	ng	N	<30	<30	<30	<30	<30
	Calc	Calc	mg/m3	N	<0.00070	<0.00037	<0.00052		<0.00060
	Calc	Calc	ppm	N	<0.00036	<0.00019	<0.00026		<0.00030
N-Butyl Mercaptan	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.00023	<0.00012	<0.00017		<0.00020
	Calc	Calc	ppm	N	<0.000064	<0.000034	<0.000047		<0.000054
Styrene	GC/MS (TD SIR)	10	ng	N	79	140	<10	<10	<10
	Calc	Calc	mg/m3	N	0.0019	0.0017	<0.00017		<0.00020
	Calc	Calc	ppm	Ν	0.00044	0.00041	<0.000040		<0.000047
Toluene	GC/MS (TD SIR)	10	ng	Ν	⁽¹⁷⁵⁾ 1800	⁽¹⁷⁵⁾ 2200	<10	76	100
	Calc	Calc	mg/m3	N	0.042	0.027	<0.00017		0.0020
	Calc	Calc	ppm	N	0.011	0.0072	<0.000046		0.00053
Trichloroethylene	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	Ν	<0.00023	<0.00012	<0.00017		<0.00020
	Calc	Calc	ppm	Ν	<0.000044	<0.000023	<0.000032		<0.000037
Vinyl chloride monomer	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	Ν	<0.00023	<0.00012	<0.00017		<0.00020
	Calc	Calc	ppm	N	<0.000092	<0.000048	<0.000067		<0.000078
				Consento	to inspection copyright own	pipose officiency	air		

Concept Reference	: 704869						
Customer Reference	: BAHOTL2151217	7					
Tube (Tenax/Carbon/Molecula r Sieve)	Analysed as Tube	e (Tenax/	Carbon/Mo	lecular Sieve))		
Trace Landfill Gas Suite							
			Concep	ot Reference	704869 021	704869 025	
		Custo	mer Sampl	e Reference	mi 110717	mi 126424	
				Test Sample	AR	AR	
			D	volume i ate Sampled	56.268	56.628	
					13-020-2017	13-020-2017	
1 Pentene		10	Units	Symbol	<10	<10	
1 Feilleile	Calc	Calc	mg/m3	N	<0.00018	<0.00018	
	Calc	Calc	ppm	N	<0.000062	<0.000062	
1,1-Dichloroethane	GC/MS (TD SIR)	10	ng	U	<10	<10	
	Calc	Calc	mg/m3	N	<0.00018	<0.00018	
		Calc	ppm	N	<0.000044	< 0.000044	
1,1-Dichloroethylene	GC/MS (TD SIR)	10 Calc	ng mg/m3	U	<10	<10	
	Calc	Calc	ppm	N	< 0.00018	<0.00018	
1,2-Dichloroethane	GC/MS (TD SIR)	10	ng	N	<10	<10	
	Calc	Calc	mg/m3	N	<0.00018	<0.00018	
	Calc	Calc	ppm	N	<0.000044	<0.000044	
1,2-Dichloroethylene	GC/MS (TD SIR)	30	ng	U	<30	<30	
	Calc	Calc	mg/m3	N	<0.00053	<0.00053	
1,3-Butadiene	GC/MS (TD SIR)	10	ng	U	<10	<10	
<i>y</i> =	Calc	Calc	mg/m3	N	<0.00018	<0.00018	
	Calc	Calc	ppm	N	<0.000080	<0.000080	ې
1,4 epoxy 1,3-butadiene	GC/MS (TD SIR)	10	ng	N	<10	<10	erus
	Calc	Calc	mg/m3	N	< 0.00018	< 0.00018	othe
1-Propagethiol	Calc	Calc 10	ppm	N	<0.000064	<0.000063	203
	Calc	Calc	mg/m3	N	<0.00018	<0.00018	
	Calc	Calc	ppm	N	<0.000057	.000057	
2-butoxyethanol	GC/MS (TD SIR)	10	ng	N	<10	Q _Q 10	124.5
	Calc	Calc	mg/m3	N	<0.00018	⊘<0.00018	
Ponzono		Calc	ppm	N	<0.000037	<0.000037	1000
Denzene	Calc	Calc	mg/m3	N A	0,0020	0.00034	
	Calc	Calc	ppm	N c	0.00061	0.00011	
Butyric acid	GC/MS (TD SIR)	10	ng	N	<10	<10	
	Calc	Calc	mg/m3	Net	<0.00018	<0.00018	
Orah an diasdahida		Calc	ppm	CON N	<0.000049	< 0.000049	
Carbon discipnide	Calc	Calc	ng mg/m3	N	<0.00018	<0.00018	
	Calc	Calc	ppm	N	< 0.000057	< 0.000057	
Carbon tetrachloride	GC/MS (TD SIR)	10	ng	U	<10	<10	
	Calc	Calc	mg/m3	N	<0.00018	<0.00018	
Chlorooth		Calc	ppm	N	<0.000028	<0.000028	
Chioroethane	GU/MS (TD SIR)	30 Calc	ng ma/m3	N N	<30	<0.00053	
	Calc	Calc	ppm	N	<0.00033	<0.00033	
Dichloromethane	GC/MS (TD SIR)	10	ng	N	⁽¹³⁾ <10	⁽¹³⁾ <10	
	Calc	Calc	mg/m3	N	<0.00018	<0.00018	
	Calc	Calc	ppm	N	<0.000051	<0.000051	
Dimethyl disulphide	GC/MS (TD SIR)	10	ng	N	<10	<10	
	Calc	Calc	mg/m3	N N	<0.00018	<0.00018	
Dimethyl sulphide	GC/MS (TD SIR)	10	na	U	<10	<10	
	Calc	Calc	mg/m3	N	<0.00018	<0.00018	
	Calc	Calc	ppm	N	<0.000070	<0.000069	
Ethyl butyrate	GC/MS (TD SIR)	25	ng	N	<25	<25	
	Calc	Calc	mg/m3	N	<0.00044	<0.00044	
Ethyl Mercantan		10	ppm ng	N N	<0.000094	<0.000093	
- any moroaptail	Calc	Calc	mg/m3	N	<0.00018	<0.00018	
	Calc	Calc	ppm	N	<0.000070	<0.000069	
Hydrogen sulphide	GC/MS (TD SIR)	60	ng	N	⁽¹³⁾ 60	<60	
	1		i	i	1		I

201100001 11010100	: 704869								
Customer Reference	: BAHOTL2151217								
	. 2 10 12 10 12 17								
Tube (Tenax/Carbon/Molecula r Sieve)	Analysed as Tube	e (Tenax/	Carbon/Mol	ecular Sieve)					
Trace Landfill Gas Suite									
			Canaan	t Boforonoo	704960 021	704960 025			
		Custo	Concep	a Deference	704809 021 mi 110717	704009 025 mi 126 424			
		Tost Sample AP							
				Volume I	AR 56.269	AR 56.629			
			Dr	volume i	15-DEC-2017	15-DEC-2017			
					10-02017	10-020-2017			
Determinand	Method	LOD	Units	Symbol					
	Calc	Calc	mg/m3	N	0.0011	<0.0011			
	Calc	Calc	ppm	N	0.00077	<0.00076			
Methyl Mercaptan	GC/MS (TD SIR)	30	ng	N	<30	<30			
	Calc	Calc	mg/m3	N	<0.00053	<0.00053			
	Calc	Calc	ppm	N	<0.00027	<0.00027			
N-Butyl Mercaptan	GC/MS (TD SIR)	10	ng	U	<10	<10			
	Calc	Calc	mg/m3	N	<0.00018	<0.00018			
	Calc	Calc	ppm	N	<0.000048	<0.000048			
Styrene	GC/MS (TD SIR)	10	ng	N	<10	<10			
	Calc	Calc	mg/m3	N	<0.00018	<0.00018			
	Calc	Calc	ppm	N	<0.000042	<0.000041			
Toluene	GC/MS (TD SIR)	10	ng	N	12	12			
	Calc	Calc	mg/m3	N	0.00021	0.00021			
	Calc	Calc	ppm	N	0.000057	0.000056			
Trichloroethylene	GC/MS (TD SIR)	10	ng	U	<10	<10			
	Calc	Calc	mg/m3	N	<0.00018	<0.00018			
	Calc	Calc	ppm	Ν	<0.000033	<0.000033			
Vinyl chloride monomer	GC/MS (TD SIR)	10	ng	U	<10	<10			
viriyi chionde monomer	Calc	Calc	mg/m3	Ν	<0.00018	<0.00018			
Vinyi chionde monomer	Calc								

Value	Description
AR	As Received
13	Results have been blank corrected 5
175	Results should be viewed with caution due to being outside of the instrument calibration range
U	Analysis is UKAS accredited
Ν	Analysis is not UKAS accredited
С	Calculation

Cons

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2404

Report Number: Second supplement to 716673-2

Date of Report: 20-Mar-2018

Customer: Air Scientific Unit 32 Degranville Court Dublin Road Trim Co. Meath Ireland.

Customer Contact: Project Management

Customer Job Reference: BAHOTL2140218 Date Job Received at Concept: 19-Feb-2018 Date Analysis Started: 19-Feb-2018 Date Analysis Completed: 12-Mar-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by : Mr Saber Chaudhry Laboratory Manager (Air) Issued by : Mary Hughes Customer Service Manager

Concept Reference	: 716673								
Customer Reference	: BAHOTL2	140218							
Tube Anasorb C300 (226 -17-1A)	analysed a	as Tube A	nasorb C30	00 (226-17-1A	A)				
Mercury									
			Concep	t Reference	716673 004	716673 008	716673 012	716673 016	716673 020
		Custor	mer Sampl	e Reference	3277405428	3277405474	3950903435	3277405610	3299405411
			٦	Fest Sample	AR	AR	AR	AR	AR
				Volume I	26.784	29.6643	24.115	26.388	
			Da	ate Sampled	14-FEB-2018	14-FEB-2018	14-FEB-2018	14-FEB-2018	14-FEB-2018
Determinand	Method	LOD	Units	Symbol					
Mercury	CVAFS	5	ng	U	<5	<5	<5	<5	<5
	Calc	Calc	mg/m3	N	<0.00019	<0.00017	<0.00021	<0.00019	
	Calc	Calc	npm	N	<0.000023	<0.000021	<0.000025	<0.000023	

Concept Reference:	716673
Customer Reference:	BAHOTL2140218

Tube Anasorb C300 (226 Analysed as Tube Anasorb C300 (226-17-1A) -17-1A)

Mercury

			Concep	t Reference	716673 024	716673 028			
		Custo	mer Sample	e Reference	3277405764	3950903432			
			I	est Sample	AR	AR			
				Volume I	59.9849	50.8248			
		Date Sampled 14-FEB-2018 14-FEB-2							
Determinand	Method	LOD	Units	Symbol					
Mercury	CVAFS	5	ng	U	<5	<5			
	Calc	Calc	mg/m3	Ν	<0.00008	<0.00010			
	Calc	Calc	ppm	Ν	<0.000010	< 0.000012			

	-						No No	J.	
Concept Reference	: 716673			1			OTH AT		
Customer Reference	BAHOTL2	140218				se	3 9 90		
Tube (Charcoal 226-09) Arsenic	Analysed a	as Tube (C	Charcoal 22	26-09)		oction purper requi	,no		
			Concep	t Reference	716673.007	716673 005	716673 009	716673 013	716673 018
		Custor	ner Sampl	e Reference	6900215272	7118615895	7118615890	7118615893	7118615839
				Test Sample	ARO	AR	AR	AR	AR
				Volume I	18.426	30.1279	12.714	20.052	1.00
			Da	ate Sampled	19-FEB-2018	14-FEB-2018	14-FEB-2018	14-FEB-2018	14-FEB-2018
Determinand	Method	LOD	Units	Symbol	2				

Botonniana	meanea		•	e y e y					
Arsenic	ICP/OES	1	μg	U	<1	<1	<1	<1	<1
	Calc	Calc	mg/m3	Ν	<0.05	<0.03	<0.08	<0.05	
	Calc	Calc	ppm	Ν	<0.018	<0.011	<0.026	<0.016	

Concept Reference: 716673

Customer Reference: BAHOTL2140218

Tube (Charcoal 226-09) Analysed as Tube (Charcoal 226-09) Arsenic

						-
			Concep	t Reference	716673 021	716673 025
		Custor	ner Sample	e Reference	6900215271	7118615835
			I	Fest Sample	AR	AR
				Volume I	65.1463	56.8854
			Da	ate Sampled	14-FEB-2018	14-FEB-2018
		i				
Determinand	Method	LOD	Units	Symbol		-
Arsenic	ICP/OES	1	μg	U	<1	<1
	Calc	Calc	mg/m3	N	<0.02	<0.02
	Calc	Calc	nnm	N	<0.0050	<0.0057

Customer Reference: BAHOTL2140218

Tube Analysed as Tube (Tenax/Carbon/Molecular Sieve) Analysed as Tube (Tenax/Carbon/Molecular Sieve) Analysed as Tube (Tenax/Carbon/Molecular Sieve)

			Concep	t Reference	716673 002	716673 006	716673 010	716673 014	716673 017
		Custo	mer Sampl	e Reference	1042340	1051117	1052721	1025547	MI 126669
				Fest Sample	AR	AR	AR	AR	AR
				Volume I	11.046	12.1939	15.6455	10.128	
			Da	ate Sampled	14-FEB-2018	14-FEB-2018	14-FEB-2018	14-FEB-2018	14-FEB-2018
					1		I		
Determinand	Method	LOD	Units	Symbol					
1 Pentene	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	< 0.00091	<0.00082	< 0.00064	<0.00099	
	Calc	Calc	ppm	N	< 0.00032	<0.00029	<0.00022	< 0.00034	
1,1-Dichloroethane	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.00091	<0.00082	<0.00064	<0.00099	
	Calc	Calc	ppm	N	<0.00022	<0.00020	<0.00016	< 0.00024	
1,1-Dichloroethylene	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.00091	<0.00082	<0.00064	<0.00099	
	Calc	Calc	ppm	N	<0.00023	<0.00021	<0.00016	<0.00025	
1,2-Dichloroethane	GC/MS (TD SIR)	10	ng	N	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.00091	<0.00082	<0.00064	<0.00099	
	Calc	Calc	ppm	N	<0.00022	<0.00020	<0.00016	<0.00024	
1,2-Dichloroethylene	GC/MS (TD SIR)	30	ng	U	<30	<30	<30	<30	<30
	Calc	Calc	mg/m3	N	<0.0027	<0.0025	<0.0019	<0.0030	
	Calc	Calc	ppm	N	<0.00068	<0.00062	<0.00048	<0.00075	
1,3-Butadiene	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.00091	<0.00082	<0.00064	<0.00099	
	Calc	Calc	ppm	N	<0.00041	<0.00037	<0.00029	• <0.00045	
1,4 epoxy 1,3-butadiene	GC/MS (TD SIR)	10	ng	Ν	<10	<10	<10 5	<10	<10
	Calc	Calc	mg/m3	Ν	<0.00091	<0.00082	<0.00064	<0.00099	
	Calc	Calc	ppm	N	<0.00033	<0.00029	.00023	<0.00035	
1-Propanethiol	GC/MS (TD SIR)	10	ng	U	⁽⁶⁸⁾ <10	(68) < 1011	⁽⁶⁸⁾ <10	⁽⁶⁸⁾ <10	(68) <10
	Calc	Calc	mg/m3	N	<0.00091	<0.00082	<0.00064	<0.00099	
	Calc	Calc	ppm	N	<0.00029	.00026	<0.00021	< 0.00032	
2-butoxyethanol	GC/MS (TD SIR)	10	ng	N	<10	2 e 10	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.0000	<0.00082	<0.00064	<0.00099	
	Calc	Calc	maa	N	<0.00019	<0.00017	< 0.00013	<0.00020	
Benzene	GC/MS (TD SIR)	10	ng	U	(13) 310	⁽¹³⁾ 190	⁽¹³⁾ 770	⁽¹³⁾ 73	⁽¹³⁾ <10
	Calc	Calc	ma/m3	N 🔨	0.028	0.016	0.049	0.0072	
	Calc	Calc	ppm	N	0.0088	0.0049	0.015	0.0023	
Butvric acid	GC/MS (TD SIR)	10	na	N	<10	<10	<10	<10	<10
,	Calc	Calc	ma/m3	Nett	< 0.00091	<0.00082	<0.00064	<0.00099	
	Calc	Calc	nnm	CON	<0.00025	<0.00023	<0.00018	<0.00027	
Carbon tetrachloride	GC/MS (TD SIR)	10	na	U U	170	11	38	160	<10
	Calc	Calc	ma/m3	N	0.015	0,00090	0.0024	0.016	
	Calc	Calc	nnm	N	0.0024	0.00014	0.00039	0.0025	
Chloroethane	GC/MS (TD SIR)	30	na	N	<30	<30	<30	<30	<30
omoroculuno		Calc	mg/m3	N	<0.0027	<0.0025	<0.0019	<0.0030	-00
	Calc	Calc	npm	N	<0.0027	<0.0023	<0.0013	<0.0030	
Dichloromethane		10	ppin	N	<0.0010	<0.00033	<0.00073	<0.0011	<10
		Cala	ma/m2	N	<0.00001	<0.00092			~10
	Calo	Colo	niy/ilio		<0.00091	<0.00082	<0.0004	<0.00039	
		0aiC	ppin	N N	~10	~0.00024	~0.00018	~0.00028	~10
umetriyi disulphide		10	ng	N	<10	<10	<10	<10	<10
	Caic	Calc	mg/m3	N N	<0.00091	<0.00082		<0.00099	
Disco Alex di scola le i di s		Calc	ppm	N	<0.00024	<0.00021	<0.00017	<0.00026	(68) -40
uinetnyi sulphide		10	ng		100/<10	100/<10	10 00001	10 00000	(30) <10
	Calc	Calc	mg/m3	N	<0.00091	<0.00082	<0.00064	<0.00099	
	Calc	Calc	ppm	N	<0.00036	<0.00032	<0.00025	<0.00039	
	L GC/MS (TD SIR)	25	ng	N	<25	<25	<25	<25	<25
Ethyl butyrate		-				-0.0001	-0.0040		
Ethyl butyrate	Calc	Calc	mg/m3	N	<0.0023	<0.0021	<0.0016	<0.0025	
Ethyl butyrate	Calc Calc	Calc Calc	mg/m3 ppm	N N	<0.0023 <0.00048	<0.0021	<0.0016	<0.0025 <0.00052	
Ethyl butyrate Ethyl Mercaptan	Calc Calc GC/MS (TD SIR)	Calc Calc 10	mg/m3 ppm ng	N N N	<0.0023 <0.00048 <10	<0.0021 <0.00043 <10	<0.0016 <0.00034 <10	<0.0025 <0.00052 <10	<10
Ethyl butyrate	Calc Calc GC/MS (TD SIR) Calc	Calc Calc 10 Calc	mg/m3 ppm ng mg/m3	N N N	<0.0023 <0.00048 <10 <0.00091	<0.0021 <0.00043 <10 <0.00082	<0.0016 <0.00034 <10 <0.00064	<0.0025 <0.00052 <10 <0.00099	<10
Ethyl butyrate	Calc Calc GC/MS (TD SIR) Calc Calc	Calc Calc 10 Calc Calc	mg/m3 ppm ng mg/m3 ppm	N N N N	<0.0023 <0.00048 <10 <0.00091 <0.00036	<0.0021 <0.00043 <10 <0.00082 <0.00032	<0.0016 <0.00034 <10 <0.00064 <0.00025	<0.0025 <0.00052 <10 <0.00099 <0.00039	<10
Ethyl butyrate Ethyl Mercaptan Hydrogen sulphide	Calc Calc GC/MS (TD SIR) Calc Calc GC/MS (TD SIR)	Calc Calc 10 Calc Calc 60	mg/m3 ppm ng mg/m3 ppm ng	N N N N N	<0.0023 <0.00048 <10 <0.00091 <0.00036 <60	<0.0021 <0.00043 <10 <0.00082 <0.00032 <60	<0.0016 <0.00034 <10 <0.00064 <0.00025 <60	<0.0025 <0.00052 <10 <0.00099 <0.00039 <60	<10
Ethyl butyrate Ethyl Mercaptan Hydrogen sulphide	Calc Calc GC/MS (TD SIR) Calc Calc GC/MS (TD SIR) Calc	Calc Calc 10 Calc Calc 60 Calc	mg/m3 ppm ng mg/m3 ppm ng mg/m3	N N N N N N	<0.0023 <0.00048 <10 <0.00091 <0.00036 <60 <0.0054	<0.0021 <0.00043 <10 <0.00082 <0.00032 <60 <0.0049	<0.0016 <0.00034 <10 <0.00064 <0.00025 <60 <0.0038	<0.0025 <0.00052 <10 <0.00099 <0.00039 <60 <0.0059	<10
Ethyl butyrate Ethyl Mercaptan Hydrogen sulphide	Calc Calc GC/MS (TD SIR) Calc Calc GC/MS (TD SIR) Calc Calc	Calc Calc 10 Calc Calc 60 Calc Calc	mg/m3 ppm ng mg/m3 ppm ng mg/m3 ppm	N N N N N N N	<0.0023 <0.00048 <10 <0.00091 <0.00036 <60 <0.0054 <0.0039	<0.0021 <0.00043 <10 <0.00082 <0.00032 <60 <0.0049 <0.0035	<0.0016 <0.00034 <10 <0.00064 <0.00025 <60 <0.0038 <0.0028	<0.0025 <0.00052 <10 <0.00039 <0.00039 <60 <0.0059 <0.0043	<10

Customer Reference: BAHOTL2140218

Analysed as Tube (Tenax/Carbon/Molecular Sieve)

Tube (Tenax/Carbon/Molecula r Sieve)

Trace Landfill Gas Suite

			Concep	t Reference	716673 002	716673 006	716673 010	716673 014	716673 017
		Custo	mer Sampl	e Reference	1042340	1051117	1052721	1025547	MI 126669
			٦	Fest Sample	AR	AR	AR	AR	AR
				Volume I	11.046	12.1939	15.6455	10.128	
			Da	ate Sampled	14-FEB-2018	14-FEB-2018	14-FEB-2018	14-FEB-2018	14-FEB-2018
Determinand	Method	LOD	Units	Symbol					
	Calc	Calc	mg/m3	N	<0.0027	<0.0025	<0.0019	<0.0030	
	Calc	Calc	ppm	N	<0.0014	<0.0013	<0.00097	<0.0015	
N-Butyl Mercaptan	GC/MS (TD SIR)	10	ng	U	⁽⁶⁸⁾ <10				
	Calc	Calc	mg/m3	N	<0.00091	<0.00082	<0.00064	<0.00099	
	Calc	Calc	ppm	N	<0.00025	<0.00022	<0.00017	<0.00027	
Styrene	GC/MS (TD SIR)	10	ng	N	<10	<10	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.00091	<0.00082	<0.00064	<0.00099	
	Calc	Calc	ppm	N	<0.00021	<0.00019	<0.00015	<0.00023	
Toluene	GC/MS (TD SIR)	10	ng	N	⁽¹³⁾ 72	⁽¹³⁾ 39	⁽¹³⁾ 63	⁽¹³⁾ 30	⁽¹³⁾ 130
	Calc	Calc	mg/m3	N	0.0065	0.0032	0.0040	0.0030	
	Calc	Calc	ppm	N	0.0017	0.00085	0.0011	0.00079	
Vinyl chloride monomer	GC/MS (TD SIR)	10	ng	U	⁽⁶⁸⁾ <10	⁽⁶⁸⁾ <10	⁽⁶⁸⁾ <10	⁽⁶⁸⁾ <10	(68) <10
	Calc	Calc	mg/m3	N	<0.00091	<0.00082	<0.00064	<0.00099	
	Calc	Calc	maa	N	< 0.00035	< 0.00032	<0.00025	< 0.00039	

Consent for inspection purposes only any other use.

Customer Reference: BAHOTL2140218

Analysed as Tube (Tenax/Carbon/Molecular Sieve)

Tube (Tenax/Carbon/Molecula r Sieve)

Trace Landfill Gas Suite

		Custo	Concep mer Sampl	e Reference	716673 022 1053252	716673 026 MI 136065	
			٦	Fest Sample	AR	AR	
				Volume I	25.545	23.8329	
			Da	ate Sampled	14-FEB-2018	14-FEB-2018	
Determinand	Method	LOD	Units	Symbol			
1 Pentene	GC/MS (TD SIR)	10	ng	U	<10	<10	
	Calc	Calc	mg/m3	N	<0.00039	<0.00042	
	Calc	Calc	ppm	N	<0.00014	<0.00015	
1,1-Dichloroethane	GC/MS (TD SIR)	10	ng	U	<10	<10	
	Calc	Calc	mg/m3	N	<0.00039	<0.00042	
	Calc	Calc	ppm	N	<0.000097	<0.00010	
1,1-Dichloroethylene	GC/MS (TD SIR)	10	ng	U	<10	<10	
	Calc	Calc	mg/m3	N	<0.00039	<0.00042	and the second
	Calc	Calc	ppm	N	<0.000099	<0.00011	
1,2-Dichloroethane	GC/MS (TD SIR)	10	ng	N	190	280	
	Calc	Calc	mg/m3	N	0.0074	0.012	1.11
	Calc	Calc	ppm	Ν	0.0018	0.0029	
1,2-Dichloroethylene	GC/MS (TD SIR)	30	ng	U	<30	<30	
	Calc	Calc	mg/m3	N	<0.0012	< 0.0013	
	Calc	Calc	ppm	N	<0.00030	<0.00032	
1,3-Butadiene	GC/MS (TD SIR)	10	ng	U	<10	<10	
	Calc	Calc	mg/m3	N	< 0.00039	<0.00042	
	Calc	Calc	ppm	N	<0.00018	< 0.00019	S
1,4 epoxy 1,3-butadiene	GC/MS (TD SIR)	10	ng	N	<10	<10	et
	Calc	Calc	mg/m3	N	<0.00039	< 0.00042	oth
4.5		Calc	ppm	N	<0.00014	<0.00015	202
1-Propanethiol	GC/MS (TD SIR)	10	ng	U	(08) <10	(00) < 101	
	Calc	Calc	mg/m3	N	<0.00039	<0.00042	
0 hutovo ethenel		Calc	ppm	N	<0.00013	C 0.00013	
2-butoxyethanoi	GC/MS (TD SIR)	Cala	ng	N	<10	C 00042	
	Calc	Calc	nig/ms	N	<0.00009	<0.00042	
Banzana		10	ppin	11	(17513) 2000	(13.175) 1400	1 Shares
Delizerie	Calc	Calc	mg/m3	N 🗸	0078	0.059	
	Calc	Calc	npm	N	0.075	0.039	
Butvric acid	GC/MS (TD SIR)	10	na	N O	<10	<10	
Butyno dola	Calc	Calc	mg/m3	NET	<0.00039	<0.00042	
	Calc	Calc	npm	CON	<0.00011	<0.00042	
Carbon tetrachloride	GC/MS (TD SIR)	10	na	U	18	56	
		Calc	ma/m3	N	0.00070	0.0023	
	Calc	Calc	maa	N	0.00011	0.00037	
Chloroethane	GC/MS (TD SIR)	30	ng	N	<30	<30	
	Calc	Calc	mg/m3	N	<0.0012	< 0.0013	
	Calc	Calc	ppm	N	<0.00045	<0.00048	
Dichloromethane	GC/MS (TD SIR)	10	ng	N	⁽¹⁷⁵⁾ 24000	⁽¹⁷⁵⁾ 3700	
	Calc	Calc	mg/m3	N	0.94	0.16	
	Calc	Calc	ppm	N	0.27	0.045	
Dimethyl disulphide	GC/MS (TD SIR)	10	ng	N	<10	<10	
	Calc	Calc	mg/m3	N	<0.00039	<0.00042	
	Calc	Calc	ppm	N	<0.00010	<0.00011	
Dimethyl sulphide	GC/MS (TD SIR)	10	ng	U	⁽⁶⁸⁾ 33	⁽⁶⁸⁾ 20	
	Calc	Calc	mg/m3	N	0.0013	0.00084	
	Calc	Calc	ppm	N	0.00051	0.00033	
Ethyl butyrate	GC/MS (TD SIR)	25	ng	N	<25	<25	
	Calc	Calc	mg/m3	N	<0.00098	<0.0010	
	Calc	Calc	ppm	N	<0.00021	<0.00022	
Ethyl Mercaptan	GC/MS (TD SIR)	10	ng	N	<10	<10	
	Calc	Calc	mg/m3	N	<0.00039	<0.00042	
	Calc	Calc	ppm	N	<0.00015	<0.00017	
Hydrogen sulphide	GC/MS (TD SIR)	60	ng	N	<60	<60	
	Calc	Calc	mg/m3	N	<0.0023	<0.0025	
	Calc	Calc	ppm	N	<0.0017	<0.0018	
					-00		

Concept Reference: 716673 Customer Reference: BAHOTL2140218

Tube (Tenax/Carbon/Molecula r Sieve) Analysed as Tube (Tenax/Carbon/Molecular Sieve)

Trace Landfill Gas Suite

			Concep	t Reference	716673 022	716673 026
		Custo	mer Sample	e Reference	1053252	MI 136065
			1	Fest Sample	AR	AR
				Volume I	25.545	23.8329
			Da	ate Sampled	14-FEB-2018	14-FEB-2018
Determinand	Method	LOD	Units	Symbol		
	Calc	Calc	mg/m3	N	<0.0012	<0.0013
	Calc	Calc	ppm	N	<0.00060	<0.00064
N-Butyl Mercaptan	GC/MS (TD SIR)	10	ng	U	⁽⁶⁸⁾ <10	⁽⁶⁸⁾ <10
	Calc	Calc	mg/m3	N	<0.00039	<0.00042
	Calc	Calc	ppm	N	<0.00011	<0.00011
Styrene	GC/MS (TD SIR)	10	ng	N	510	400
	Calc	Calc	mg/m3	N	0.020	0.017
	Calc	Calc	ppm	N	0.0047	0.0039
Toluene	GC/MS (TD SIR)	10	ng	N	^(13,175) 1700	^(13,175) 1500
	Calc	Calc	mg/m3	N	0.067	0.063
	Calc	Calc	ppm	N	0.018	0.017
Vinyl chloride monomer	GC/MS (TD SIR)	10	ng	U	⁽⁶⁸⁾ <10	⁽⁶⁸⁾ <10
	Calc	Calc	mg/m3	N	<0.00039	<0.00042
	Calc	Calc	ppm	N	<0.00015	<0.00016

Concept Reference	ce: 716673								
Customer Reference	ce: BAHOTL2140218								
Tube Silica Gel DNPH (226-119)	Analysed as Tube Silica (Gel DNPH	H (226-119)			3	net use.		
(Acetaldehyde, Formal	dehyde)					mly any			
			Concep	t Reference	716673 003	716673 007	716673 011	716673 015	716673 019
	- 10	Custo	mer Sampl	e Reference	6240705005	6240705002	6240705007	6240705008	6240705003
			1	Test Sample	ABILO	AR	AR	AR	AR
				Volume I	24.726	25.1503	23.3805	22.92	
			Da	ate Sampled	4-FEB-2018	14-FEB-2018	14-FEB-2018	14-FEB-2018	14-FEB-2018
Determinand	Method	LOD	Units	Symbol	h		5.00 M	10.11	
Acetaldehyde	HPLC (DNPH derivative)	0.1	μg	48 30	<0.1	<0.1	<0.1	<0.1	<0.1
	Calc	Calc	mg/m3	S NOT	<0.004	<0.004	<0.004	<0.004	
	Calc	Calc	ppm	× ^O N	<0.0022	<0.0022	<0.0024	<0.0024	
Formaldehyde	HPLC (DNPH derivative)	0.1	hd ma	U	⁽¹³⁾ 0.3	⁽¹³⁾ 0.6	⁽¹³⁾ 0.5	⁽¹³⁾ 0.2	⁽¹³⁾ 0.2
	Calc	Calc	mg/m3	N	0.013	0.025	0.019	0.009	
	Calc	Calc	ppm	N	0.011	0.020	0.016	0.0071	

Concept Reference: 716673 Customer Reference: BAHOTL2140218

 Tube Silica Gel DNPH
 Analysed as Tube Silica Gel DNPH (226-119)

 (226-119)

(Acetaldehyde, Formaldehyde)

Concept Reference					716673 023	716673 027
Customer Sample Reference						6240705004
Test Sample						AR
Volume I						21.0249
Date Sampled						14-FEB-2018
Determinand	Method	LOD	Units	Symbol		
Acetaldehyde	HPLC (DNPH derivative)	0.1	hд	U	⁽¹³⁾ 4.3	⁽¹³⁾ 3.1
	Calc	Calc	mg/m3	N	0.078	0.15
	Calc	Calc	ppm	N	0.043	0.082
Formaldehyde	HPLC (DNPH derivative)	0.1	μg	U	⁽¹³⁾ 5.8	⁽¹³⁾ 1.3
	Calc	Calc	mg/m3	N	0.10	0.060
	Calc	Calc	ppm	N	0.085	0.049

Index to symbols used in Second supplement to 716673-2

Value	Description
AR	As Received
13	Results have been blank corrected.
68	Outside scope of UKAS accreditation
175	Results should be viewed with caution due to being outside of the instrument calibration range
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited
С	Calculation

Notes

Supplemental report issued to include Formaldehyde on Sample 027 as requested by the client.
150°
the second se
611
A. 8
OS A ST
٢٠ - ٢٠ - ٢٠ - ٢٠ - ٢٠ - ٢٠ - ٢٠ - ٢٠ -
or set
Shi dh
10 T X TO
a chi ante a chi
20° 0°
5 5 5 C
Forstie
og,
Sec.
- The second
A CONTRACT OF
C^{o}

Consent of copyright owner required for any other use.

OCCUPATIONAL MONITORING OF HEADSPACE AIR WITHIN HOUSE NO. 47, BARNAGEERAGH COVE, SKERRIES, CO. DUBLIN. PERFORMED BY ODOUR MONITORING IRELAND. 31ST AUGUST 2018 VER.3. REPORT NUMBER: 2018356(3)

Consent of copyright owner required for any other use.

ODOUR MONITORING IRELAND LTD

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Mobile: +353 86 8550401 E-mail: info@odourireland.com www.odourireland.com

OCCUPATIONAL MONITORING OF HEADSPACE AIR WITHIN HOUSE NO. 47 LOCATED IN BARNAGEERAGH COVE, SKERRIES, CO, DUBLIN.

PERFORMED BY ODOUR MONITORING IRELAND ON THE BEHALF OP MULROY ENVIRONMENTAL LTD.

REPORT PREPARED BY: REPORT VERSION: ATTENTION: DATE: REPORT NUMBER: REVIEWERS: Dr. Brian Sheridan Document Ver.3 Mr. Patrick McCabe & Mr. Padraic Mulroy 24th July 2018 Ver.1, 20th Aug 2018 Ver.2 & 31st Aug 2018 2018356(3) Mr. Padraic Mulroy

TABLE OF CONTENTS

<u>Sectio</u>	on Page numb	<u>per</u>
TABLE DOCUN EXECU	OF CONTENTS MENT AMENDMENT RECORD JTIVE SUMMARY	i ii iv
1. 1.1 1.2 1.3 1.4	Introduction and scope Project Background Context to Subsequent Monitoring Scope of the works Project Aims/Objectives	1 1 3 3 4
2. 2.1 2.2	Materials and methods General description of sampling and analysis techniques Monitoring for specified compounds in House 47 Barnageeragh Cove, Skerries, Co. Dublin on the 27 th June 2018	5 5 8
3. 3.1 3.2 3.2.1	Results of monitoring exercise and discussion Temperature, Relative Humidity and Carbon dioxide results Gas analysis results House 47 Monitoring Results	9 9 11 12
4.	Conclusions	15
5.	References outpose of tot	16
6.	Appendix I – Site location may of site boundary and monitoring locations	17
7.	Appendix II – Pictures of sampling system and locations	19
8.	Appendix III – Fractional exposure limits	21
9.	Appendix IV – Laboratory test results	23

DOCUMENT AMENDMENT RECORD

Client: Mulroy Environmental Ltd

Project: OCCUPATIONAL MONITORING OF HEADSPACE AIR WITHIN HOUSE NO. 47 LOCATED IN BARNAGEERAGH COVE, SKERRIES, CO. DUBLIN.

Consent of copyright owner required for any other use.

Project Number: 2018356(3)		DOCUMENT REFERENCE: OCCUPATIONAL MONITORING OF HEADSPACE AIR WITHIN HOUSE NO. 47 LOCATED IN					
		BARNAGEERAGH COVE, SKERRIES, CO. DUBLIN.					
2018356(1)	Document for review	B.A.S.	JMC	BAS	24/07/2018		
2018356(2)	Minor edits	PM	BAS	BAS	20/08/2018		
2018356(3)	Minor edits	PM	BAS	BAS	31/08/2018		
Revision	Purpose/Description	Originated	Checked	Authorised	Date		
O D O U R monitoring							

This document is submitted as part of occupational monitoring works carried out by Odour Monitoring Ireland Ltd on behalf of Mulroy Environmental Ltd on one named house. The results reported are representative of actual conditions and activities on the days of monitoring.

Consent of copyright owner council for any other tree.

Respectively submitted,

en

Brian Sheridan B.Sc. M.Sc. (Agr) Ph.D (Eng).

For and on behalf of Odour Monitoring Ireland™

Executive Summary

Odour Monitoring Ireland Ltd was commissioned by Mulroy Environmental Ltd to perform occupational monitoring of air located within one house (namely Hse. No. 47, Barnageeragh, Skerries, Co. Dublin) on the 27th June 2018. The aim of the study was to ascertain the potential level of specified air contaminants within the headspace air of the monitored house. Data collected on the house was compared with published occupational exposure levels, where applicable.

Monitoring was performed for a number of compound groups to include:

- Temperature, Relative humidity and Carbon dioxide levels in house 47 only;
- Arsenic (House 47);
- Mercury (House 47);
- Trace Landfill gas screen (House 47);
- Formaldehyde and Acetaldehyde (House 47);

The following conclusions were developed for the study. These include:

- 1. With regards to comfort conditions with finished House 47, temperatures, relative humidity and Carbon dioxide levels were normal for the environment it was monitored within (ASHRAE Standard 62.1-2004).
- 2. As can be observed from the analysis results across the sampling locations in the property (Hse 47), all results were compliant with the published 8 hr OEL value, where applicable. In terms of the measured concentration, all measured values were well within the published 8 hr OEL where applicable. This is also published within each table (*see Tables 3.2 and 3.3*). Cumulative OEL risk was assessed for the speciated VOC's detected. The cumulative assessment value was within the stated limit value of 1.0 for cumulative VOC's (see 2011 Code of practice for the Safety, Health and Welfare at work (Chemical Agents) Regulations 2001 (SI No. 619 of 2001) & updated COP 2016).
- 3. In addition to screening the 8 hr OEL limit value and given the fact that properties could be occupied for periods in excess of 8 hr / day 5 days per week up to period of 24hrs / days and 7 days per week, fractional exposure limit values were compared to the recorded concentrations. In terms of overall results, Formaldehyde was in excess of the fractional exposure limit value at House 47 Location 1 and 2. Mercury was in excess of the fractional exposure limit value at House 47 Location 1 and 2. Therefore considering the compounds and the fact that the houses were newly built, it is recommended that repeat monitoring be completed to examine whether compound concentrations have dissipated with time of occupancy within the houses.
- 4. With regards to House 47 Location 1 and 2, trace concentrations of Benzene, Chloroethane, Styrene, Toluene, Mercury, Formaldehyde and Acetaldehyde were detected in the headspace of the house. All detected compounds were well within the 8 hr occupational exposure limits for the each of the respective compounds. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Formaldehyde (i.e. fractional exposure limit value 0.0026 mg/Nm³) were in excess of the fractional exposure limit value. Concentration values of 0.023 and 0.017 mg/Nm³ were measured.
- 5. With regards to Total Organic Carbon (TOC) as Methane monitoring utilising FID technique,
 - a. House No. 47: the detected levels of TOC as Methane at the Radon barrier sump was 0.053 mg/Nm³. The external areas outside the house was 0.053 mg/Nm³. No other areas of the House were checked as there was no access to the internal of the house.
 - b. House No. 53: the detected levels of TOC as Methane at the Utility was 2.385 mg/Nm³, Toilet TOC as Methane level was 3.604 mg/Nm³, Kitchen

TOC as Methane level was 1.484 mg/Nm^3 and Living room TOC as Methane value was 2.756 mg/Nm^3 . The Radon barrier sump detected levels was 0.106 mg/Nm^3 . Areas screened outside the house were 0.106 mg/Nm^3 . House 53 was been painted at the time of the survey.

c. House No. 52, the detected levels of TOC as Methane in the Utility was 0.106 mg/Nm³, Toilet TOC as Methane level was 0.106 mg/Nm³, Kitchen TOC as Methane level was 0.212 mg/Nm³. The Radon barrier sump was 0 mg/Nm³. Areas outside the house were 0.053 mg/Nm³.

Consent of convient owner convict for any other use.
1. Introduction and scope

1.1 Project Background

It should be noted that in 2017, Odour Monitoring Ireland Ltd were commissioned by Mulroy Environmental Ltd. to perform occupational monitoring of air located within four houses namely Nos. 25, 26, 52 and 53 Barnageeragh Cove on the 15th December 2017 and 14th February 2018. The aim of the study was to ascertain the potential level of specified air contaminants within the headspace air of the houses and to compare with published occupational exposure levels, where applicable.

Additional monitoring was carried out on the 14th February 2018 on the headspace gas in shallow gas monitoring wells GS1 to GS4. In this study Monitoring was performed for a number of compound groups to include:

- Temperature, Relative humidity and Carbon dioxide levels in houses 25, 26, 52 and 53 only;
- Arsenic (Houses 25, 26, 52, 53 and GS1-4);
- Mercury (Houses 25, 26, 52, 53 and GS1-4);
- Trace Landfill gas screen (Houses 25, 26, 52, 53 and GS1-4);
- Formaldehyde and Acetaldehyde (Houses 25, 26, 52, 53 and GS1-4); and
- Methane ground surface screen inside and outside the monitored Houses 25, 26, 52 and 53.

All continuous and active grab sampling techniques. Were in accordance with international sampling methodologies contained in Section 2 and all grab samples were tested in a UKAS accredited test house (UKAS1549)

It is understood that an historic landfill is docated in Barnageeragh Cove, Skerries (see Figures OMI-1 to OMI-3 - Section & Figures 6.1 to 6.3). An extensive site investigation programme was conducted to delineate the boundary of the waste body. This was achieved through trial pit investigation, borehole installation and geophysical surveying. In total 14 deep boreholes (BH1 - BH(4)) were installed on the periphery or within the landfill body and 4 shallow gas wells (GS01 - GS04) were installed between the residences No. 25 - 34 (i.e. approx. 5m to the front of the houses) and the waste body to the south and southwest (see Figures OMI-2 & OMI-3 - Section 6 - Figures 6.1 to 6.3) (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 3). A programme of landfill gas (LF) and volatile organic carbon (VOC) analysis was carried out by Mulroy Environmental on each of these wells. This involved taking LF gas and VOC readings on 12 occasions from gas wells GS01 - GS04 during both high and low-pressure weather events. Methane (CH4) was not recorded at a concentration above 1% during the monitoring period in these wells. On one occasion CH4 was recorded at a concentration of 0.8% with concentrations of 0.2% or below recorded on all other monitoring events. The results of each of the ground gas monitoring events from gas wells (GS01 - GS04) were assessed for risk according to CIRIA Report C665 'Assessing risks posed by hazardous ground gases in buildings' by S. Wilson, S. Oliver, H. Mallett, H. Hutchings & G. Card. (July 2007). The modified Wilson and Card Classification system detailed in CIRIA665 indicates a 'very low risk classification' for gas wells GS01 - GS04 (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 8).

It understood that VOC readings were taken with a MiniRae 2000 Photo-Ionisation Detector (PID) equipped with a 10.6eV bulb and that VOCs were not monitored during times where heavy rainfall persisted. VOC concentrations taken from 27th June 2017 to the 11th of August 2017 ranged from 0ppm to 6.6ppm. No VOCs were detected during any of the subsequent monitoring rounds. It is understood from the Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 8, that the initial VOC readings were down to phthalates/plasticisers in the newly installed HDPE standpipes (i.e. installed on the 15th June 2017) and that the decrease in VOC concentration to undetectable levels was down principally to natural weathering (i.e. ventilation) (see Mulroy Environmental, Environmental, Environmental Risk Assessment Report, 2018, Section 8).

The following conclusions were developed for the study. These include:

- 1. With regards to comfort conditions with finished Houses 25 and 26, temperatures, relative humidity and Carbon dioxide levels were normal for the environment they were monitored within (ASHRAE Standard 62.1-2004).
- 2. With regards to House 25 Location 1 and 2, trace concentrations of Benzene, Carbon tetrachloride, Dichloromethane, Styrene, Toluene, Formaldehyde and Acetaldehyde were detected in the headspace of the house. All detected compounds were well within the 8 hr occupational exposure limits for the each of the respective compounds. When compound concentrations were compared to fractional to represent 24 hr exposure), exposure limit values the (i.e. detected of Formaldehyde (i.e. fractional exposure limit value concentration levels 0.0026mg/Nm3) were in excess of the fractional exposure limit value. Concentration values of 0.019 and 0.014 mg/Nm3 were measured. There was a noticeable odour of paints, varnishes and glues in the house. The cumulative factorial value was less than 7.5% of the prescribed limit value. It is recommended that further compound monitoring is performed on this property in order to access whether these concentration levels have dissipated over time given the house has been lived within and background levels of compounds associated with building products should dissipate over time and this information will provide useful indicator of this decay over time.
- 3. With regards to Houses 52 and 53, trace concentrations of Benzene, Toluene, Carbon tetrachloride, Mercury and Hydrogen sulphide were detected in the headspace of the house. These houses were not finishes and had no windows present and therefore more susceptible to outside influences from compounds in the ambient environment. The concentration levels of these compounds were trace and well with any respective 8 hr occupational exposure limits. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Mercury (i.e. fractional limit value 0.0001 mg/Nm3) were in excess of the fractional exposure limit value. A concentration value of 0.00015 mg/Nm3 was measured on Hse 53 Location 1. The cumulative factorial value was less than 0.10 and 2.2% of the prescribed limit value, respectively.
- 4. With regards to House 26 Location 1 and 2, trace concentrations of 1,2 Dichloroethylene, Benzene, Carbon tetrachloride, Dichloromethane, Dimethyl sulphide, Styrene, Toluene, Formaldehyde and Acetaldehyde were detected in the headspace of the house. All detected compounds were well within the 8 hr occupational exposure limit values for the each of the respective compounds. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Formaldehyde (i.e. fractional exposure limit value 0.0026 mg/Nm3) and Benzene (i.e. fractional exposure limit value 0.030 mg/Nm3) were in excess of the fractional exposure limit values. Concentration values for Benzene and Formaldehyde were measured at 0.078 and 0.105 mg/Nm3 for Location 1 and 0.059 and 0.060 mg/Nm3 for Location 2. There was a weak odour of paints, varnishes and glues in the house. The cumulative factorial value was less than 44% of the prescribed limit value. It is recommended that further compound monitoring is performed on this property in order to access whether these concentration levels have dissipated over time given the house has been lived within and background levels of compounds associated with building products should dissipate over time and this information will provide useful indicator of this decay over time.
- 5. With regards to Gas well GS1, GS2, GS3 and GS4, trace concentrations of Benzene, Carbon tetrachloride, Toluene and Formaldehyde were detected in the headspace of the well. Benzene and Toluene are ubiquitous in the environment as a result of traffic related sources and therefore these trace amounts can be attributed to this source.

- 6. As part of Mulroy Environmental's site investigation, a number of soil samples and groundwater samples were taken with VOC analysis conducted. In total 21 groundwater samples were taken across two monitoring rounds from the 11 groundwater monitoring wells on-site. No VOCs were detected within the groundwater above the method detection limit in any of these samples (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 6). Five soil samples were analysed for VOCs. Only two VOCs namely vinyl chloride and -1,2- dichloroethane were detected in one soil sample (i.e. SO-TP21-01) (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 5). It should be noted that this sample was taken from a trial pit located 51m from the nearest residence (i.e. House No.25). Neither of these compounds were detected in the sorbent tubes/thermal desorption/capillary gas chromatography analysis conducted for GS01 - GS04, therefore it is unlikely that they are migrating from the landfill towards the residence (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 12). Carbon tetrachloride is a common constituent of paint and varnishes. It is likely that the concentrations of carbon tetrachloride identified within the 4 gas wells to the west of the residences is as a result of a spillage and/or poor management of solvent based paints during the fit-out phase of construction (see Mulroy Environmental, Environmental Risk Assessment Report, 2018, Section 12). Formaldehyde is a basic constituent of rubber cement products which are used on building sites as either sealants and or glues. Empty rubber cement tubes were observed outside some of the residences during the fit-out phase of construction (see Mulroy Environmental, Environmental Risk Assessment 150 Report, 2018, Section 12).
- 7. With regards to Total Organic Carbon (TOC) as Methane monitoring utilising FID technique,
 - a. House No. 47: the detected levels of TOC as Methane at the Radon barrier sump was 0.053 mg/Nm³. The external areas outside the house was 0.053 mg/Nm³. No other areas of the House were checked as there was no access to the internal of the house.
 - b. House No. 53: the detected levels of TOC as Methane at the Utility was 2.385 mg/Nm³, Toilet TOC as Methane level was 3.604 mg/Nm³, Kitchen TOC as Methane level was 1.484 mg/Nm³ and Living room TOC as Methane value was 2.756 mg/Nm³. The Radon barrier sump detected levels was 0.106 mg/Nm³. Areas screened outside the house were 0.106 mg/Nm³. House 53 was been painted at the time of the survey.
 - c. House No. 52, the detected levels of TOC as Methane in the Utility was 0.106 mg/Nm³, Toilet TOC as Methane level was 0.106 mg/Nm³, Kitchen TOC as Methane level was 0.212 mg/Nm³. The Radon barrier sump was 0 mg/Nm³. Areas outside the house were 0.053 mg/Nm³.

1.2 Context to Subsequent Monitoring

Following the submission of the 1st report to Fingal County Council on the 12th June, 2018, it was agreed that it would be beneficial to ascertain the indoor air quality on another house(s) which were recently decorated (i.e. with fresh solvent and acrylic based paints) but which were a significant distance from the landfill. The results obtained from the additional study would be regarded as a 'Control' to compare against those results obtained for the other residences, namely No. 25 and 26 which are the closest residences to the landfill body.

In this respect, Residence No. 47 was chosen to carry out another Indoor Air Monitoring survey on the 27th June, 2018. In order to gather further air quality data, methane readings were also taken of the radon sump for Residence No. 47 on the 14th August, 2018.

Given that previous indoor air quality assessments had been carried out on Residences No. 52 and 53, it was decided to taken internal methane readings and radon gas sump readings for both of these properties. It should be noted that in Residence No. 53 painting was

underway (i.e. open cans of paint in the house during the survey). No paint were observed in Residence No. 52 as the internal decorating for this house had been completed in June, 2018.

1.3 Scope of the works

Odour Monitoring Ireland Ltd was commissioned by Mulroy Environmental Ltd to perform occupational monitoring of air located within one house namely 47, Barnageeragh Cove on the 27th June 2018. The aim of the study was to ascertain the potential level of specified air contaminants within the headspace air of the house and to compare with published occupational exposure levels, where applicable.

Consent of convigencempter required for any other use.

Monitoring was performed for a number of compound groups to include:

- Temperature, Relative humidity and Carbon dioxide levels in house 47only;
- Arsenic (House 47);
- Mercury (House 47);
- Trace Landfill gas screen (House 47);
- Formaldehyde and Acetaldehyde (House 47);
- Total organic carbon as Methane monitoring by FID on Hse 47, 52 and 53 Radon sump and external area of house.
- Total organic carbon as Methane monitoring by FID on internal of Hse 52 and 53.

All continuous and active grab sampling techniques were in accordance with international sampling methodologies contained in Section 2 and all grab samples were tested in a UKAS accredited test house (UKAS1549).

This report presents the materials and methods, results and discussion and conclusions from the study carried out on the monitoring date 27th June 2018.

In addition, the report discusses the significant body of work and conclusions formed by Mulroy Environmental Ltd - see Mulroy Environmental Ltd, Environmental Risk Assessment Report, 2018.

1.4 **Project Aims/Objectives**

The main aims of the study included:

- ould any other use Occupational monitoring at two locations for a range of compounds that could be present in the air stream and comparison with published occupational exposure levels in order to ascertain the level of occupational impact during a normal operation day, ٥
- Monitoring of each location in the house only for Temperature, Relative humidity and Carbon dioxide levels throughout the survey period to provide a tag on conditions within the houses throughout the monitoring.
- Monitoring of TOC as Methane by FID on Radon sump and external on Houses 47, có 52 and 53.
- Monitoring of TOC as Methane by FID on Internal of Houses 52 and 53.
- Interpretation of results, where applicable.

2. Materials and methods

This section describes the materials and methods used throughout the survey.

The following standards and documents were used for reference and adhered to where possible:

- Compendium method TO-17-Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes.
- MDHS 70 General method for sampling airborne gases and vapours.
- MDHS 72 Volatile organic compounds in air (1993). Laboratory methods using pumped solid sorbent tubes, thermal desorption and gas chromatography.
- MDHS 96 Volatile organic compounds in air, Laboratory methods using pumped solid sorbent tubes, solvent desorption and gas chromatography. March 2000.
- NIOSH (NMAM) fourth Edition (1996). Volatile organic compounds (Screening) Method 2549).
- NIOSH 1500 and 1501 for Total and aromatic hydrocarbons sampling and measurement,
- NIOSH 6001 Arsine.
- NIOSH 6009 Mercury.
- NIOSH 2539 Aldehydes screening.
- ISO 16017-1:2000, Indoor, ambient and workplace air. Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography. Part 1: Pumped sampling.

All data generated during the assessment survey was compared to occupational exposure levels and risk categories contained within the publications.

• 2016 Code of practice for Chemical Agents Regulations.

2.1 General description of sampling and analysis techniques

A number of sampling techniques were used to characterise the ambient air at the named locations at house 47. (*see Table 2.1*). Active grab sampling using sorption tubes was performed. Sorption tube sampling and analysis were performed to allow for the characterisation (i.e. both qualitative and semi quantitative) of sampled air for named compound concentrations throughout the sampling event.

In addition, solid fixed state analysers were utilised to perform Temperature, Relative humidity and Carbon dioxide monitoring and analysis at the house.

Table 2.1 provides information on the following items and includes:

- Sample location identity key,
- Description of monitoring location,
- Type of monitoring performed,
- Monitoring standards applied where applicable,
- Monitoring details,
- Analysis laboratory details,
- Description of sampling media.

Figure 2.1 presents a graphical plan layout of the monitoring locations located on site.

Table 2.1. Monitoring campaign description for monitoring carried out in Hse. 47, Barnageeragh Cove, Skerries, Dublin on the 29th June 2018.

Monitoring location key	Description of monitoring location and Date	Monitoring performed	Standards applied	Monitoring details	Analysis laboratory	Sampling media
1	Hse 47 – Kitchen (27/06/18)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen.	ISO16017, USEPA TO17, MDHS 70,72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549, AG6	Monitored in room headspace	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption
2	Hse 47 – Bedroom (27/06/18)	Arsenic, Mercury, Formaldehyde, Acetaldehyde, Trace landfill gas screen.	ISO16017, USEPA TO17, MDHS 70,72 and 96, NIOSH 1500, 1501, 6001, 6009, 2539, 2549, AG6	Monitored in room headspace	UKAS 1549	Sorbent tube SKC226-119, 226-09, 226-17-1A, Multibed silcosteel dual layer thermal desorption
3	Hse 47, 52 and 53	TOC as Methane monitoring by FID	Adapted EN12619:2013	Monitoring on Radon sump and house external on Hse 47, 52 and 53 and Internal of Hse 52 and 53	ОМІ	FID

Consend copyright owner required for any other use.

Figure 2.1. Location of House 47 in Barnageeragh Cove, Skerries, Co. Dublin.

2.2 Monitoring for specified compounds in House 47, Barnageeragh Cove, Skerries, Co. Dublin on the 27th June 2018.

The following range of compounds / parameters that were actively monitored using sorbent based media are detailed in *Table 2.1*. An overview of the monitoring standards applied is detailed in *Section 2*. The graphical location of each monitoring location is presented in *Figure 2.1*.

In order to pre-concentrate each compound upon each sorbent, a pre-calibrated controlled volume of sample air was drawn through each tube by a SKC air sampling pump for the monitoring period (Active sampling/pumped sampling). Each SKC pump was pre-calibrated with their specific sorbent using a Bios Primary flow calibrator (UKAS traceable Cert No. N022746).

Each pump was calibrated to an optimal flow rate (of between approx. 200 mls/min depending on sample location and sample type) for sorbent tubes.

When sampling was completed all tubes were sealed and stored in flexible air / light tight containers and transported to the analysing laboratory and analysed by means of thermal desorption / solvent extraction GCMS, GCFID, in a UKAS accredited laboratory (UKAS 1549).

In terms of Temperature, Relative humidity and Carbon dioxide, monitoring was performed utilising a Testo 400 handheld and associated probes.

A number of QA procedures were implemented into the sampling and analysis run to include:

- Front and back sorbent beds were analysed. The back bed was confirmed to be less than 5% of the total sample conc. which is a stated requirement of EN13649:2014.
- All sorbent tubes were sealed and contained in air tight and light proof containers for transport to the laboratory. All camples were stored below 25 deg. C. This is a requirement of EN13649:2014.
- Travel/Sample blanks were incorporated into the measurement sequence. In addition, the laboratory included instrument and method blanks into their measurement sequence.
- Sample volume flow rate and pump calibration was performed before sampling and after sampling and these were recorded in the site data sheets. In addition, it was confirmed that the variation between before and after calibration was less than 1% of the flow range on the day of sampling for all samples taken on the 27th June 2018. The sample flow rate primary flow standard measured flow to an accuracy of 0.001 L/min over the range with a calibration accuracy of less than or equal to 1%.
- Total sample volumes chosen were a combination of analytical techniques lower limit of detection calculations and as specified in standard requirements.

3. Results of the monitoring exercise and discussion

This section provides the results obtained during the survey.

3.1 Temperature, Relative Humidity and Carbon dioxide results

Table 3.1 presents the result for the monitoring of Temperature, Relative humidity and Carbon dioxide monitoring of each location over the sampling event. Average values through the sample events are presented. Temperature, relative humidity and carbon dioxide values were measured at the start and end of monitoring. Monitoring was carried out between the hours of 09.30AM and 15.00PM on the 27th June 2018. The average values are reported for clarity.

As can be observed in *Table 3.1*, the average temperature in House 47 was 26 Deg C. The average relative humidity and CO_2 concentration were 59% and 840 ppm, respectively.

Consett of copyright owner required for any other use.

Table 3.1. Temperature, Relative humidity and Carbon dioxide monitoring results of the house monitoring location over the sampling events.

Monitoring location area	Temperature (Deg C)	Relative humidity (%)	CO ₂ conc. (ppm)
Hse 47 - 1 and 2	26	59	840

3.2 Gas analysis results

Tables 3.2 and 3.3 present the result of the monitoring at each sampling location throughout the sampling period carried out on the 27th June 2018.

As can be observed from the analysis results across the sampling locations in the property (Hse 47), all results were compliant with the published 8 hr OEL value, where applicable. In terms of the measured concentration, all measured values were well within the published 8 hr OEL where applicable. This is also published within each table (see Tables 3.2 and 3.3). Cumulative OEL risk was assessed for the speciated VOC's detected. The cumulative assessment value was within the stated limit value of 1.0 for cumulative VOC's (see 2011 Code of practice for the Safety, Health and Welfare at work (Chemical Agents) Regulations 2001 (SI No. 619 of 2001) & updated COP 2016) see tables 3.2 and 3.3.

In addition to screening the 8 hr OEL limit value and given the fact that properties could be occupied for periods in excess of 8 hr / day 5 days per week up to period of 24hrs / days and 7 days per week, fractional exposure limit values were compared to the recorded concentrations. In terms of overall results, Formaldehyde was in excess of the fractional exposure limit value at House 47 Location 1 and 2. Mercury was in excess of the fractional exposure limit value at House 47 Location 1 and 2. Therefore considering the compounds and the fact that the houses were newly built, it is recommended that repeat monitoring be completed to examine whether compound concentrations have dissipated with time of occupancy within the houses.

With regards to House 47 – Location 1 and 2, trace Concentrations of Benzene, Chloroethane, Styrene, Toluene, Mercury, Formaldehyde and Acetaldehyde were detected in the headspace of the house. All detected compounds were well within the 8 hr occupational exposure limits for the each of the respective compounds. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Formaldehyde & fractional exposure limit value 0.0026 rinspecta mg/Nm³) were in excess of the fractional exposure limit value. Concentration values of 0.023 and 0.017 mg/Nm³ were measured.

With regards to Total Organic Carbon (TOC) as Methane monitoring utilising FID technique, the following was determined:

For

House No. 47: the detected levels of TOC as Methane at the Radon barrier sump was 0.053 mg/Nm³. The external areas outside the house was 0.053 mg/Nm³. No other areas of the House were checked as there was no access to the internal of the house.

House No. 53: the detected levels of TOC as Methane at the Utility was 2.385 mg/Nm³, Toilet TOC as Methane level was 3.604 mg/Nm³, Kitchen TOC as Methane level was 1.484 mg/Nm³ and Living room TOC as Methane value was 2.756 mg/Nm³. The Radon barrier sump detected levels was 0.106 mg/Nm³. Areas screened outside the house were 0.106 mg/Nm³. House 53 was been painted at the time of the survey.

House No. 52, the detected levels of TOC as Methane in the Utility was 0.106 mg/Nm³. Toilet TOC as Methane level was 0.106 mg/Nm³, Kitchen TOC as Methane level was 0.212 mg/Nm³. The Radon barrier sump was 0 mg/Nm³. Areas outside the house were 0.053 mg/Nm³.

All results are tabulated in Table 3.3.

3.2.1 House 47 Monitoring results

 Table 3.2. Results from monitoring of House 47 – Location 1

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	8 hr OEL value (mg/Nm ³)	15 min OEL value (mg/Nm ³)	Environmental Assessment Levels (EAL's) – Long term (mg/m ³)	Examination of additive / cumulative effects	Limit value for cumulative effect	Other risk factors
			1-Pentene	<10	0.04925	<0.00019	-	-	-			-
			1,1 Di chloroethane	<10	0.04925	<0.00019	268	-	2.68			IOELV
			1,1-Dichloroethylene	<10	0.04925	<0.00019	20	-	0.2			-
			1,2-Dichloroethane	<10	0.04925	<0.00019	412	-	4.12			Sk, IOELV
			1,2-Dichloroethylene	<30	0.04925	<0.00056	20		0.2			-
			1,3-Butadiene	<10	0.04925	<0.00019	-	-	-			-
			1,4 epoxy 1,3- butadiene	<10	0.04925	<0.00019	-	-	-			-
			1-Propanethiol	<10	0.04925	<0.00019	-	-	-			-
			2-butoxyethanol	<10	0.04925	<0.00019	8	246	0.08			Sk , IOELV
			Benzene	21	0.04925	0.00039	3.0 	-	0.03			BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	<10	0.04925	<0.00019	other	-	-			-
	1106260 – trace landfill gas screen		Carbon disulphide	<10	0.04925	<0.00019	only any 15	-	0.15			Sk, IOELV
1			Carbon tetrachloride	<10	0.04925	<0.00019	2 ⁰ 12.6	-	0.126			Sk
		09.42 – 14:20 – 278 min 27/06/18	Chloroethane	44	0.04925	0.00082	268	-	2.68			IOELV
			Dichloromethane	<10	0.04925	<0.00019	174	-	1.74	0.1	1.0	-
			Dimethyl disulphide	<10	0.04925	€0.00019	1.90	-	0.019			-
			Dimethyl sulphide	<10	0.04925	્રે છે.00019	55.47	-	0.5547			-
			Ethyl butyrate	<25	0.04925	ent 0 < 0.00047	-	-	-			-
			Ethyl Mercaptan	<10	0.0492500	<0.00019	1	3	0.01			-
			Hydrogen sulphide	<60	0.04925	<0.0011	7	14	0.07			IOELV
			Methyl Mercaptan	<30	0.04925	<0.00056	1	-	0.01			-
			N-Butyl Mercaptan	<10	0.04925	<0.00019	1.8	-	0.018			-
			Styrene	160	0.04925	0.0030	85	170	0.85			-
			Toluene	720	0.04925	0.013	192	384	1.92			Sk, IOELV
			Trichloroethylene	<10	0.04925	<0.00019	58.66	146.65	0.5866			Sk, Carc.1B
			Vinyl chloride monomer	<10	0.04925	<0.00019	7.77	-	0.0777			Carc.1A, BOELV
1	7422700099		Formaldehyde	2800	0.11305	0.023	0.26	0.53	0.0026	-		Carc.1B, Sens.
1	7221505172		Arsenic	<1000	0.11755	<0.008	0.01	- 40	0.45	-		- Carc.1A
1	7611800867	•	Mercury	15	0.09445	0.00014	0.01	0.03	0.0001	1		Sk

 Table 3.3. Results from monitoring of House 47 – Location 2

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	8 hr OEL value (mg/Nm ³)	15 min OEL value (mg/Nm ³)	Environmental Assessment Levels (EAL's) – Long term (mg/m ³)	Examination of additive / cumulative effects	Limit value for cumulative effect	Other risk factors
			1-Pentene	<10	0.06057	<0.00015	-	-	-			-
			1,1 Di chloroethane	<10	0.06057	<0.00015	268	-	2.68			IOELV
			1,1-Dichloroethylene	<10	0.06057	<0.00015	20	-	0.2			-
			1,2-Dichloroethane	<10	0.06057	<0.00015	412	-	4.12			Sk, IOELV
			1,2-Dichloroethylene	<30	0.06057	<0.00046	20		0.2			-
			1,3-Butadiene	<10	0.06057	<0.00015	-	-	-			-
			1,4 epoxy 1,3- butadiene	<10	0.06057	<0.00015	-	-	-			-
			1-Propanethiol	<10	0.06057	<0.00015	-	-	-			-
			2-butoxyethanol	<10	0.06057	<0.00015	8	246	0.08			Sk , IOELV
	1025594 – trace landfill gas screen (Benzene	14	0.06057	0.00021	3.0	-	0.03			BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	<10	0.06057	<0.00015	- 0.*	-	-			-
			Carbon disulphide	<10	0.06057	<0.00015	15	-	0.15			Sk, IOELV
2			Carbon tetrachloride	<10	0.06057	0.00015	12.6	-	0.126			Sk
		09.48 – 13:49 – 241 min	Chloroethane	38	0.06057	0.00058	268	-	2.68			IOELV
		27/06/18	Dichloromethane	<10	0.06057	<0.00015,170	174 I74	-	1.74	0.08	1.0	-
			Dimethyl disulphide	<10	0.06057	<0.000155	1.90	-	0.019	-		-
			Dimethyl sulphide	<10	0.06057	<0.00015	55.47	-	0.554			-
			Ethyl butyrate	<25	0.06057	< <u><</u> <0,00038	-	-	-			-
			Ethyl Mercaptan	<10	0.06057	ر چ <0.00015	1	3	0.01			-
			Hydrogen sulphide	<60	0.06057	<0.00091	7	14	0.07			IOELV
			Methyl Mercaptan	<30	0.06057	<0.00046	1	-	0.01			-
			N-Butyl Mercaptan	<10	0.06057	<0.00015	1.8	-	0.018			-
			Styrene	170	0.06057	0.0026	85	170	0.85			-
			Toluene	370	0.06057	0.0056	192	384	1.92			Sk, IOELV
			Trichloroethylene	<10	0.06057	<0.00015	58.66	146.65	0.586			Sk, Carc.1B
			Vinyl chloride monomer	<10	0.06057	<0.00015	7.77	-	0.077			Carc.1A, BOELV
2	7422700092		Formaldehyde	1800	0.09470	0.017	0.26	0.53	0.002			Carc.1B, Sens.
2	7221505506	4	Arsenic	<1000	0.09470		40 0.01	40	0.40			- Carc 1A
2	7611800094	4	Mercury	23	0.11793	0.00018	0.01	0.03	0.0001			Sk
Ľ.	7011000004		worodry	20	0.11730	0.00010	0.01	0.00	0.0001			UN UN

Monitoring location identity	Sample ID	Sample duration and times	Specific location	Compound identity	Compound conc. (mg/Nm ³)
		14/08/2018 15 10DM to 15 14DM	Radon sump	Total Organic Carbon (TOC) as Methane	0.053
	IISE 47	14/06/2018 13.10FW to 13.14FW	House external	Total Organic Carbon (TOC) as Methane	0.053
	Hse 53	14/10/2018 15.38PM to 15.48PM -	Utility	Total Organic Carbon (TOC) as Methane	2.385
			Toilet	Total Organic Carbon (TOC) as Methane	3.604
			Kitchen	Total Organic Carbon (TOC) as Methane	1.484
			Living room	Total Organic Carbon (TOC) as Methane	2.756
3			Radon sump	Total Organic Carbon (TOC) as Methane	0.106
			House external	Total Organic Carbon (TOC) as Methane	0.106
			Utility	Total Organic Carbon (TOC) as Methane	0.106
			Toilet	Total Organic Carbon (TOC) as Methane	0.106
	Hse 52	14/10/2018 16.00PM to 16.12PM	Kitchen	Total Organic Carbon (TOC) as Methane	0.212
			Radon sump	Total Organic Carbon (TOC) as Methane	0
			House External	Total Organic Carbon (TOC) as Methane	0.053

Table 3.4. Results from TOC as Methane monitoring of House 47, 52 and 53

Jrganic C. Al Organic Carbon (1) Al Organic

4. Conclusions

The following conclusions are drawn for the study:

- 1. With regards to comfort conditions with finished House 47, temperature, relative humidity and Carbon dioxide levels were normal for the environment they were monitored within (ASHRAE Standard 62.1-2004).
- 2. With regards to House 47 Location 1 and 2, trace concentrations of Benzene, Chloroethane, Styrene, Toluene, Mercury, Formaldehyde and Acetaldehyde were detected in the headspace of the house. All detected compounds were well within the 8 hr occupational exposure limits for the each of the respective compounds. When compound concentrations were compared to fractional exposure limit values (i.e. to represent 24 hr exposure), the detected concentration levels of Formaldehyde (i.e. fractional exposure limit value 0.0026 mg/Nm³) were in excess of the fractional exposure limit value. Concentration values of 0.023 and 0.017 mg/Nm³ were measured. Therefore, considering the compounds and the fact that the houses were newly built, it is possible that compounds maybe present as a result of the building materials used within the house. Adequate venting of the house over a period of time should alleviate such compounds if present from building materials and the reduction of the levels of such compounds can be verified following a period of time.
- 3. With regards to Total Organic Carbon (TOC) as Methane monitoring utilising FID technique,
 - a. House No. 47: the detected levels of TOC as Methane at the Radon barrier sump was 0.053 mg/Nm³. The external areas outside the house was 0.053 mg/Nm³. No other areas of the House were checked as there was no access to the internal of the house.
 - b. House No. 53: the detected levels of TOC as Methane at the Utility was 2.385 mg/Nm³, Toilet TOC as Methane level was 3.604 mg/Nm³, Kitchen TOC as Methane level was 3.484 mg/Nm³ and Living room TOC as Methane value was 2.756 mg/Nm³. The Radon barrier sump detected levels was 0.106 mg/Nm³. Areas screened outside the house were 0.106 mg/Nm³. House 53 was been painted at the time of the survey.
 - c. House No. 52, the detected levels of TOC as Methane in the Utility was 0.106 mg/Nm³, Toilet TOC as Methane level was 0.106 mg/Nm³, Kitchen TOC as Methane level was 0.212 mg/Nm³. The Radon barrier sump was 0 mg/Nm³. Areas outside the house were 0.053 mg/Nm³.

5. References

- 1. ASHRAE Standard 62.1-2004, www.ashrae.org.
- 2. Chemical Agents COP 2016, HSE, Ireland.
- 3. Compendium method TO-17-Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes.
- 4. ILVs Commission Directive 91/322/EEC of 29 May 1991
- 5. IOELVs 1 Commission Directive 2000/39/EC of 8 June 2000
- 6. IOELVs 2 Commission Directive 2006/15/EC of 7 February 2006.
- 7. ISO 16017-1:2000, Indoor, ambient and workplace air. Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography. Part 1: Pumped sampling.
- 8. MDHS 70 General method for sampling airborne gases and vapours.
- 9. MDHS 72 Volatile organic compounds in air (1993). Laboratory methods using pumped solid sorbent tubes, thermal desorption and gas chromatography.
- 10. MDHS 91 Metals and metalloids in workspace air by X-ray fluorescence spectrometry, July 1998.
- 11. MDHS 96 Volatile organic compounds in air, Laboratory methods using pumped solid sorbent tubes, solvent desorption and gas chromatography. March 2000.
- 12. Mulroy Environmental Ltd., (2018), Environmental Risk Assessment Report.
- 13. NIOSH (NMAM) fourth Edition (1996). Volatile organic compounds (Screening) Method 2549).
- atic h 14. NIOSH 1500 and 1501 for Total and aromatic hydrocarbons sampling and measurement,
- 15. NIOSH 2539 Aldehydes screening.
- 16. NIOSH 6001 Arsine.
- 17. NIOSH 6009 Mercury.

6. *Appendix I* – Site location map of site boundary and monitoring locations

Reference purposes only.

Figure 6.1. Facility layout map showing the location of the development.

Figure 6.2. Facility layout map showing the location Hse 47.

7. Appendix II – Pictures of sampling system and locations

Reference purposes only.

Figure 7.1. Location of monitoring in Hse 47, Bedroom

8. *Appendix III* – Fractional exposure limits.

For many substances which are released to air, Environmental Quality Standards have not been defined. Where the necessary criteria are absent then Regulators in general have adopted interim values known as Environmental Assessment Levels (EALs). The EAL is the concentration of a substance which in a particular environmental medium the Regulators regard as a comparator value to enable a comparison to be made between the environmental effects of different substances in that medium and between environmental effects in different media and to enable the summation of those effects.

Ideally EALs to fulfil this objective would be defined for each pollutant:

- based on the sensitivity of particular habitats or receptors (in particular three main types of receptor should be considered, protection of human health, protection of natural ecosystems and protection of specific sensitive receptors, e.g. materials, commercial activities requiring a particular environmental quality;
- be produced according to a standardised protocol to ensure that they are consistent, reproducible and readily understood;
- provide similar measure of protection for different receptors both within and between media;
- take account of habitat specific environmental factors such as pH, nutrient status, bioaccumulation, transfer and transformation processes where necessary.

A suite of EALs derived in this consistent manner is not currently available; therefore, interim values based on published information have been adopted.

Ideally EALs for those substances where there are no existing criteria would be derived direct from toxicological data on the effects of the pollutant on a particular receptor. However, an assessment of this type would be a very substantial undertaking which could only be considered over an extended timescale. One approach to overcoming this problem is to make use of occupational exposure limits which provide an assessment for a specific receptor (i.e. adult human workforce) of the toxicological effects of a pollutant. These values might then be progressively revised as further information and resources allow. Indeed a similar approach to this was followed by the then Factory Inspectorate in 1968 when a large number of occupational standards were adopted from the American Conference of Governmental Industrial Hygienists (HMSO 1968) which have since been progressively revised by the Health and Safety Executive on the basis of new information and UK experience.

Occupational exposure limits are intended to set a level of exposure based on 8 hours per day, 5 days per week during a normal employment lifetime below which adverse effects are unlikely to arise for the majority of the working population who may be exposed. Occupational limit values may be derived from either actual data on workers or animal toxicity data; in addition, factors such as the ability to achieve or measure the proposed limit may also be taken into consideration. Consequently, the precise basis on which limit values have been set is difficult to determine and a cautious approach needs to be taken in deriving EALs from occupational exposure limits.

In deriving EALs for long-term exposure from occupational limits two factors need to be taken into consideration, the duration of exposure of the general population compared with the workforce and the sensitivity of the group at risk. The weekly exposure of the local population could be up to 168 hours per week (7*24 hrs) rather than the 40 hours (5*8 hrs) which might be expected for the workforce. Moreover, exposure for the general population may extend to 52 weeks compared with an average working year of 44 weeks. On this basis the minimum safety factor would be 4.96 (i.e. (168/40 * 52/44). In addition, since there may be no recovery period between exposure sessions and exposure could be for a lifetime a further safety factor of 2 could be introduced giving a total safety factor of 10.

It might also be expected that the general population will contain more sensitive individuals, for example, children, the elderly or those with diseases such as asthma, than workers who are typically between the ages of 16 and 65. In the absence of other information a factor of 10 is normally used to allow for differences between the population mean and the response of

sensitive individuals (WHO 1994). This is likely to be conservative since, in setting occupational limit values, some allowance will have been made for variation in the sensitivity of the workforce to the pollutant concerned. Combining the safety factors for exposure and sensitivity of the general population gives a long-term air quality standard of 1/100th of the 8-hour occupational exposure limit.

In the UK the Health and Safety Executive distinguish two types of long term occupational exposure limits, occupational exposure standards (OESs) and maximum exposure limits (MELs). MELs are set for chemicals where there is particular concern, for example carcinogens, or doubt over the actual no effect level and for occupational health purposes it is an offence to exceed a MEL. Within the workplace this leads to an emphasis on reducing average levels of exposure of the chemical to ensure that the MEL is not exceeded. In practice this leads to an additional safety margin of up to 5 for chemicals which have MELs over those which have OES values. Effectively, therefore, an additional safety factor of up to 5 is achieved in the workplace by setting an MEL and this factor has been incorporated in determining an EAL for those chemicals listed as having an MEL in HSE Guidance Note EH40/2001 (ref 19). For example a safety factor of 500 (10*10*5) is used to set the long term EAL for such substances.

Where no short-term environmental criteria have been identified in the literature a similar approach to their derivation from occupational exposure limits can be adapted to that described above for long-term EALs. However, in this instance it would be more appropriate to calculate values based on the short-term exposure limits (STELs) set by HSE. Where STELs are not listed then a value of 3 times the 8 hour time weighted average occupational exposure limit may be used.

Since STELs are by definition appropriate for consideration of short-term impacts there is no need for additional safety factors relating to the duration of exposure as suggested for the derivation of long term EALs. Moreover, as STELs already incorporate a limited safety margin for variation in the sensitivity of the workforce an additional factor of 10 is likely to be adequate to account for the increased sensitivity of the general population (ref 20). However, since many atmospheric dispersion models are only able to produce estimates for time averaging periods in the order of 1 hour it would be convenient for the short term EALS also to be expressed on this basis. Typically ratios between concentrations measured over a 15 minute averaging period and those taken over an hour may be between 1.3 - 2.3. Given this relatively small range and the likely over estimate of the safety factor representing variation in human sensitivity it is proposed to adopt a value of 1/10th of the STEL as the short-term EAL.

Where the substance attracts a maximum exposure limit value then an additional safety factor of 5 can be included on a similar basis to that described for the derivation of long term EALS.

It is recognised that the derived safety factors have been derived largely on the basis of experience and that for some substances the "true" EAL derived from a more fundamental study of the toxicological data may be very different. EALs derived in this manner need therefore to be treated with caution and where necessary further work undertaken to assess the implication of any actual or potential breaches. However, some comfort in the use of these safety factors may be gained from the fact that they have been applied in many permits in the past and therefore have been subjected to considerable public scrutiny (Environment Agency, H1 – Part 2 080328).

9. *Appendix IV* – Laboratory test results.

Consent of copyright owner required for any other use.

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2404

Report Number: 750595-1

Date of Report: 24-Jul-2018

Customer: Air Scientific Unit 32 Degranville Court Dublin Road Trim Co. Meath Ireland.

Customer Contact: Project Management

Customer Job Reference: BAN47270618 Customer Site Reference: Barnageerogh Cove Date Job Received at Concept: 09-Jul-2018 Date Analysis Started: 13-Jul-2018 Date Analysis Completed: 24-Jul-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed berein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by : Lauren Clarke Customer Service Advisor Issued by : Lauren Clarke Customer Service Advisor

Concept Reference: 750595 Project Site: Barnageerogh Cove Customer Reference: BAN47270618

 Tube XAD Piperidine (226-118)
 Analysed as Tube XAD Piperidine (226-118)

Subcontracted anlaysis

		t Reference	750595 002	750595 006	750595 011		
		7422700099	7422700092	7422700097			
			1	Fest Sample	AR	AR	AR
				Volume I	122.848	102.907	
			Da	ate Sampled	27-JUN-2018	27-JUN-2018	27-JUN-2018
Determinand	Method	LOD	Units	Symbol			
Acetaldehyde	GC/FID (Sub)	0.1	μg	SN	0.9	0.7	<0.1
	Calc	Calc	mg/m3	N	0.0073	0.0068	
	Calc	Calc	ppm	N	0.0041	0.0038	
Formaldehyde	GC/FID (Sub)	0.1	μg	SU	2.8	1.8	0.1
	Calc	Calc	mg/m3	N	0.023	0.017	
	Calc	Calc	ppm	N	0.019	0.014	

Concept Reference: 750595

Project Site: Barnageerogh Cove

Customer Reference: BAN47270618

Tube Anasorb C300 (226 Analysed as Tube Anasorb C300 (226-17-1A) -17-1A)

Mercury

			t Reference	750595 004	750595 008	750595 012	
		7611800867	7611800094	7611801065			
		AR	AR	AR			
		102.6376	128.1498				
			Da	ate Sampled	27-JUN-2018	27-JUN-2018	27-JUN-201
Determinand	Method	LOD	Units	Symbol			19. 209
Mercury	CVAFS	5	ng	U	⁽¹³⁾ 15	(13) 23	<5
	Calc	Calc	mg/m3	N	0.00014	0.00018	eo.
	Calc	Calc	nom	N	0.000019	0.000022	P

: OT of

Se

						N N	
Concept Reference	750595				\$	So Cart	
Project Site	Barnageer	ogh Cove	9		in the	24	
Customer Reference	BAN47270	0618			Forsh	0	
Tube (Charcoal 226-09)	Analysed a	as Tube (Charcoal 22	26-09)	tofcor		
Arsenic				-	Sette		
			Concep	t Reference	750595 003	750595 007	750595 010
		Custo	mer Sampl	e Reference	7221505172	7221505506	7221411361
				Test Sample	AR	AR	AR
				Volume I	127.741	128.1224	
			Da	ate Sampled	27-JUN-2018	27-JUN-2018	27-JUN-2018
Determinand	Method	LOD	Units	Symbol			
Arsenic	ICP/OES	1	μg	U	<1	<1	<1
	Calc	Calc	mg/m3	N	<0.008	<0.008	
	Cala	Cala		N	.0.0000	.0.0005	1. C

Concept Reference:	750595	0595						
Project Site:	Barnageerogh Co	arnageerogh Cove						
Customer Reference:	BAN47270618							
Tube (Tenax/Carbon/Molecula r Sieve)	Analysed as Tube	e (Tenax/0	Carbon/Mol	ecular Sieve)				
Trace Landfill Gas Suite								
			0		750505 004	750505 005	750505 000	
		Custor	Concep	a Reference	1106260	1025504	750595 009 MI 110728	
		Custo	ner Sampr	Fest Sample	AR	1025594 AR	AR	
				Volume I	53.515	65.8171		
			Da	ate Sampled	27-JUN-2018	27-JUN-2018	27-JUN-2018	
Determinand	Mathod		Unito	Symbol				
1 Determinand		10	Units	Symbol	-10	-10	-10	
rrentene	Calc	Calc	ma/m3	N	<0.00019	<0.00015	<10	
	Calc	Calc	ppm	N	<0.000065	<0.000053		
1.1-Dichloroethane	GC/MS (TD SIR)	10	na	U	<10	<10	<10	
.,	Calc	Calc	mg/m3	N	<0.00019	<0.00015		
	Calc	Calc	ppm	N	<0.000046	<0.000038		
1,1-Dichloroethylene	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	
	Calc	Calc	mg/m3	N	<0.00019	<0.00015		
	Calc	Calc	ppm	N	<0.000047	<0.000038		
1,2-Dichloroethane	GC/MS (TD SIR)	10	ng	N	<10	<10	<10	
	Calc	Calc	mg/m3	N	<0.00019	<0.00015		
	Calc	Calc	ppm	N	<0.000046	<0.000038		
1,2-Dichloroethylene	GC/MS (TD SIR)	30	ng	U	<30	<30	<30	
	Calc	Calc	mg/m3	N	<0.00056	<0.00046		
4.2 Dutadiana		Calc	ppm	N	<0.00014	<0.00011	.10	
1,3-Buladiene	GC/MS (TD SIR)	Calc	ng mg/m3	N	<10	<10	<10	
	Calc	Calc	nnm	N	<0.00019		15	
1.4 epoxy 1.3-butadiene	GC/MS (TD SIR)	10	na	N	<10	<10	00	
i, i opony i, o batadiono	Calc	Calc	ma/m3	N	<0.00019	<0.00015	- NOC	
	Calc	Calc	ppm	N	<0.000067	<0.000055	3th	
1-Propanethiol	GC/MS (TD SIR)	10	ng	U	⁽⁶⁸⁾ <10	(68) 210	⁽⁶⁸⁾ <10	
	Calc	Calc	mg/m3	N	<0.00019	.00015	-	
	Calc	Calc	ppm	N	<0.000060	<0000049		
2-butoxyethanol	GC/MS (TD SIR)	10	ng	Ν	<10,00	<mark>وک</mark> <10	<10	
	Calc	Calc	mg/m3	N	<0.000195	<0.00015		
	Calc	Calc	ppm	N	<0.000039	<0.000031		
Benzene	GC/MS (TD SIR)	10	ng	U 🔨	21	14	<10	
	Calc	Calc	mg/m3	N	0.00039	0.00021		
D () () (Calc	Calc	ppm	N	0.00012	0.000067	10	
Butyric acid	GC/MS (TD SIR)	10 Cala	ng mar/m2		<10	<10	<10	
	Calc	Calc	nig/nia	N	<0.00019	<0.00015		
Carbon disulphide	GC/MS (TD SIR)	10	na	N	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10	
	Calc	Calc	ma/m3	N	<0.00019	<0.00015		
	Calc	Calc	ppm	N	<0.000060	<0.000049		
Carbon tetrachloride	GC/MS (TD SIR)	10	ng	U	<10	<10	<10	
	Calc	Calc	mg/m3	N	<0.00019	<0.00015		
	Calc	Calc	ppm	N	<0.000030	<0.000024		
Chloroethane	GC/MS (TD SIR)	30	ng	N	44	38	<30	
	Calc	Calc	mg/m3	N	0.00082	0.00058		
	Calc	Calc	ppm	N	0.00031	0.00022		
Dichloromethane	GC/MS (TD SIR)	10	ng	N	<10	<10	<10	
	Calc	Calc	mg/m3	N	<0.00019	<0.00015		
Dimethyl disulphide		10	ppin	N	<0.000054	<0.000044	<10	
	Calc	Calc	ma/m3	N	<0.00019	<0.00015	~10	
	Calc	Calc	ppm	N	<0.000049	<0.000039		
Dimethyl sulphide	GC/MS (TD SIR)	10	ng	U	(68) <10	(68) <10	⁽⁶⁸⁾ <10	
	Calc	Calc	mg/m3	N	<0.00019	<0.00015		
	Calc	Calc	ppm	N	<0.000074	<0.000060		
Ethyl butyrate	GC/MS (TD SIR)	25	ng	N	<25	<25	<25	
	Calc	Calc	mg/m3	N	<0.00047	<0.00038		
	Calc	Calc	ppm	N	<0.000098	<0.000080		
Ethyl Mercaptan	GC/MS (TD SIR)	10	ng	N	<10	<10	<10	
	Calc	Calc	mg/m3	N	<0.00019	<0.00015		
	Calc	Calc	ppm	N	<0.000074	<0.000060		

Concept Reference:	750595						
Project Site:	Barnageerogh Co	ve					
Customer Reference:	BAN47270618						
Tube (Tenax/Carbon/Molecula r Sieve)	Analysed as Tube	e (Tenax/	Carbon/Mol	ecular Sieve)			
Trace Landfill Gas Suite							
			Concep	t Reference	750595 001	750595 005	750595 009
		Custo	mer Sampl	e Reference	1106260	1025594	MI 110728
			1	Fest Sample	AR	AR	AR
				Volume I	53.515	65.8171	
			Da	ate Sampled	27-JUN-2018	27-JUN-2018	27-JUN-2018
Determinand	Method	LOD	Units	Symbol			
Hydrogen sulphide	GC/MS (TD SIR)	60	ng	N	<60	<60	<60
	Calc	Calc	mg/m3	N	<0.0011	<0.00091	
	Calc	Calc	ppm	N	<0.00080	<0.00065	
Methyl Mercaptan	GC/MS (TD SIR)	30	ng	N	<30	<30	<30
	Calc	Calc	mg/m3	N	<0.00056	<0.00046	
	Calc	Calc	ppm	N	<0.00028	<0.00023	
N-Butyl Mercaptan	GC/MS (TD SIR)	10	ng	U	⁽⁶⁸⁾ <10	⁽⁶⁸⁾ <10	⁽⁶⁸⁾ <10
	Calc	Calc	mg/m3	N	<0.00019	<0.00015	0.01
	Calc	Calc	ppm	N	<0.000051	<0.000041	
Styrene	GC/MS (TD SIR)	10	ng	Ν	160	170	<10
	Calc	Calc	mg/m3	Ν	0.0030	0.0026	100000
	Calc	Calc	ppm	N	0.00070	0.00061	
Toluene	GC/MS (TD SIR)	10	ng	N	720	370	⁽¹³⁾ <10
	Calc	Calc	mg/m3	Ν	0.013	0.0056	
	Calc	Calc	ppm	N	0.0036	0.0015	
Trichloroethylene	GC/MS (TD SIR)	10	ng	U	<10	<10	<10
	Calc	Calc	mg/m3	N	<0.00019	<0.00015	.e
	Calc	Calc	ppm	N	<0.000035	<0.000028	112
Vinyl chloride monomer	GC/MS (TD SIR)	10	ng	U	⁽⁶⁸⁾ <10	⁽⁶⁸⁾ <10	(68) (10
	Calc	Calc	mg/m3	N	<0.00019	<0.00015	A
	Calc	Calc	mag	N	< 0.000073	<0.000059	20

Index to symbols used in 750595-1

	Value	Description						
	AR	As Received						
	13	Results have been blank corrected.						
	68 🔇	Outside scope of UKAS accreditation						
	S	Analysis was subcontracted						
	E.	Analysis is UKAS accredited						
4	N	Analysis is not UKAS accredited						
	С	Calculation						

MULROY ENVIRONMENTAL TEST REPORT TO EXAMINE IF VOLATILE ORGANIC COMPOUNDS (VOCs) ARE BEING EMITTED FROM THE WATER MAINS FROST PROTECTION PLUG USED IN HAMILTON PLACE, BARNAGEERAGH COVE, SKERRIES, COUNTY DUBLIN

Consent of copyright owner required for any other use.

TEST – TO EXAMINE IF VOLATILE ORGANIC COMPOUNDS (VOCs) ARE BEING EMITTED FROM THE WATER MAINS FROST PROTECTION PLUG USED IN HAMILTON PLACE, BARNAGEERAGH COVE, SKERRIES, COUNTY DUBLIN

Consent of convisition of the required for any other use.

Page 1 of 5

Plate 1: Water main meter box viewed from above

Plate 2: Water main meter box with black HDPE circular cap removed

Plate 3: Water main meter box with black HDPE circular cap removed and frost protection plug removed (see to left)

and

Plate 4: Closer view of water main meter without frost protection plug

Page 3 of 5

TEST – TO EXAMINE IF VOLATILE ORGANIC COMPOUNDS ARE BEING EMITTED FROM WATER MAINS FROST PROTECTION PLUG

Procedure:

- 1) On the 26th November, the frost protection plug was removed from the water meter box at the front of Residence No. 26 and tested for VOCs within 24 hours.
- 2) MiniRae2000 Photoionization Detector (PID) was turned on and zeroed out.
- 3) An empty plastic 'food grade' zip lock bag was opened up with some fresh air introduced and re-zipped and allowed to equilibrate for 15 minutes. Following this it was tested for background VOCs using the MiniRae2000 Photoionization Detector (PID). No VOCs were detected (please see Plate 5 below).

Plate 5: Headspace reading of empty zip lock bag (i.e. Control)

4) The frost protection plug was placed into the same ziploc bag, the ziploc bag was sealed and alowed to equilibrate for 15 minutes. Following this, the headspace within the ziploc bag was tested for VOCs. The instrument showed a steady reading of 20.4ppm VOC reading (please see plate 6 following).

It should be noted that prior to examination, the frost protection plug was examined for odours. It was observed that it was wet from exposure to moisture within the manhole chamber and gave off a plastic/solvent type odour.

Page 4 of 5

Plate 6: Headspace reading of zip lock bag with frost protection plug tested after the frost protection plug

This procedure was repeated on a further 3 occasions and on each occasion, a headspace VOC reading of in excess of 20ppm was obtained. Prior to each reading, the PID was removed from the zip lock back and allowed to 'zero' for up to 5 minutes.

Consent of copyright owner required for any other use.
GAS ANALYSIS OF HEADSPACE AIR WITHIN GAS SAMPLING BAG CONTAINING FROST PROTECTION CAPS FROM HOUSE 26 & 52, BARNAGEERAGH COVE, SKERRIES, COUNTY DUBLIN31ST

JANUARY 2019, REPORT NUMBER: 2019035 (1)

Consent of copyright owner required for any other use.

ODOUR MONITORING IRELAND LTD

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Mobile: +353 86 8550401 E-mail: info@odourireland.com www.odourireland.com

GAS ANALYSIS OF HEADSPACE AIR WITHIN GAS SAMPLING BAG CONTAINING FROST PROTECTION CAP FROM HOUSE 26 AND 52 BARNAGEERAGH COVE, SKERRIES, CO. other DUBLIN. PERFORMED BY ODOUR MONITORING IRELAND ON THE BENAL POF MULROY ENVIRONMENTAL LTD.

REPORT PREPARED BY: REPORT VERSION: ATTENTION: DATE: **REPORT NUMBER: REVIEWERS:**

Dr. Brian Sheridan Document Ver.1 Mr. Padraic Mulroy 31st Jan 2019 Rev 1 2019035(1)

TABLE OF CONTENTS

Sectior	l	Page number	
TABLE C DOCUME EXECUT	DF CONTENTS INT AMENDMENT RECORD IVE SUMMARY		i ii iv
1. 1.1 1.2	Introduction and scope Introduction Scope of the work		1 1 1
2. 2.1 2.2	Materials and methods General description of sampling and analysis techniques Monitoring for specified compounds in headspace of gas sampling bag containing frost protection caps from House 26 and 52 Barnageeragh Cove, Skerries, Co. Dublin on t	e he	2 2
3. 3.1 3.1.1 3.1.2	Results of monitoring exercise and discussion Gas analysis results Gas analysis results for Frost cap from outside House 26 Gas analysis results for Frost cap from outside House 52		5 5 6 7
4.	Conclusions		8
5.	References		9
6.	Appendix I – Laboratory test results		10
	Consent of copyright		

DOCUMENT AMENDMENT RECORD

Client: Mulroy Environmental Ltd

<u>Project:</u> GAS ANALYSIS OF HEADSPACE AIR WITHIN GAS SAMPLING BAG CONTAINING FROST PROTECTION CAP FROM HOUSE **26** AND **52** BARNAGEERAGH COVE, SKERRIES, CO. DUBLIN.

Consent of copyright owner required for any other use.

Project Num	ıber: 2019035(1)	DOCUMENT REFERENCE: (WITHIN GAS SAM PROTECTION CAP BARNAGEERAGH CO	GAS ANALY PLING BA FROM I VE, SKERR	YSIS OF HEAE G CONTAINI HOUSE 26 IES, CO. DUBL	OSPACE AIR NG FROST AND 52 .IN.
2019035(1)	Document for review	B.A.S.	JMC	BAS	31/01/2019
					_
Revision	Purpose/Description	Originated	Checked	Authorised	Date
		O D O U R monitoring			

This document is submitted as part of an investigative study of the emissions from two frost protection caps. The frost protection caps were delivered to OMI Ltd in zip lok bags.

Consent of copyright owner required for any other use.

Respectively submitted,

enu

Brian Sheridan B.Sc. M.Sc. (Agr) Ph.D (Eng).

For and on behalf of Odour Monitoring Ireland™

Executive Summary

Odour Monitoring Ireland Ltd was commissioned by Mulroy Environmental Ltd to perform headspace gas analysis of two frost protection caps taken from outside House 26 and 52, Barnageeragh Cove, Skerries, Co. Dublin). The frost caps were delivered to OMI Ltd premises on the 09th Jan 2019. The frost caps were remove from their zip lok transport sample bags and placed inside Nalophan gas sampling bags. These were then filled with 6.0 Grade Nitrogen and allowed to sit within this sealed environment for a period of three days. Following this period of time, the gas sample bag was subsampled using appropriate sample media to allow for characterisation of compounds that could potentially diffuse from the frost protection cap into the nitrogen atmosphere.

Subsampling was performed in accordance with appropriate sampling techniques. Once sampling was complete, the sample media was transported to the laboratory for analysis HPLC and Thermal desorption GCMS.

The following conclusions were developed for the study. These include:

- 1. With regards to the monitoring of Frost protection cap located outside House 26, a number of compounds were detected. These include Hydrogen sulphide, Styrene, Toluene, Formaldehyde and Acetaldehyde. The concentrations range from 0.002723 to 0.149393 mg/Nm³. No other compound above the LLOD was detected within the analysis screen.
- 2. With regards to the monitoring of frost protection cap from outside House 52, a number of compounds were detected. These include Hydrogen sulphide, Toluene, Formaldehyde and Acetaldehyde. The conceptrations range from 0.03725 to 0.10663 mg/Nm³. No other compound above the the LOD was detected within the analysis screen.

1. Introduction and scope

1. Introduction

Odour Monitoring Ireland Ltd was commissioned by Mulroy Environmental Ltd to perform headspace gas analysis of two frost protection caps taken from outside House 26 and 52, Barnageeragh Cove, Skerries, Co. Dublin). The aim of the study was to ascertain the potential for the frost protection caps to degas compounds to atmosphere.

Monitoring was performed for a number of compound groups to include:

- Trace Landfill gas screen;
- Formaldehyde and Acetaldehyde. .

All continuous and active grab sampling techniques were in accordance with international sampling methodologies contained in Section 2 and all grab samples were tested in a UKAS accredited test house (UKAS1549).

This report presents the materials and methods, results and discussion and conclusions from the sampling and analysis study on the 14th Jan 2019.

1.2 Scope of the study

The main aims of the study included:

- hy any other use Headspace gas analysis monitoring of two frost protection caps located within gas tight sampling bags containing an inert Nitrogen atmosphere.
- rt plicato For inspectionnet Consent of convitent ownet Interpretation of results, where applicable .

2. Materials and methods

This section describes the materials and methods used throughout the survey.

The following standards and documents were used for reference and adhered to where possible:

- Compendium method TO-17-Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes.
- MDHS 70 General method for sampling airborne gases and vapours.
- MDHS 72 Volatile organic compounds in air (1993). Laboratory methods using pumped solid sorbent tubes, thermal desorption and gas chromatography.
- MDHS 96 Volatile organic compounds in air, Laboratory methods using pumped solid sorbent tubes, solvent desorption and gas chromatography. March 2000.
- NIOSH (NMAM) fourth Edition (1996). Volatile organic compounds (Screening) Method 2549).
- NIOSH 1500 and 1501 for Total and aromatic hydrocarbons sampling and measurement,
- NIOSH 2539 Aldehydes screening.
- ISO 16017-1:2000, Indoor, ambient and workplace air. Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography. Part 1: Pumped sampling.

2.1 General description of sampling and analysis techniques

A number of sampling techniques were used to characterise the headspace air in the gas tight sampling bags for the frost protection caps from outside House 26 and 52, Barnageeragh Cove, Skerries, Co. Dublin (*see Table 2.1*). Active grab sampling using sorption tubes was performed. Sorption tube sampling and analysis were performed to allow for the characterisation (i.e. both qualitative and semi quantitative) of sampled air for named compound concentrations throughout the sampling event.

Table 2.1 provides information on the following items and includes:

- Sample identity key,
- Description of monitoring location,
- Type of monitoring performed,
- Monitoring standards applied where applicable,
- Monitoring details,
- Analysis laboratory details,
- Description of sampling media.

Table 2.1. Description for headspace air analysis carried out on frost protection caps from outside House 26 and 52 Barnageeragh Cove, Skerries, Dublin on the 14th Jan 2019.

Monitoring location key	Description of monitoring location and Date	Monitoring performed	Standards applied	Monitoring details	Analysis laboratory	Sampling media
1	Frost protection cap – House 26	Formaldehyde, Acetaldehyde, Trace landfill gas screen	ISO16017, USEPA TO17, MDHS 70,72 and 96, NIOSH 1500, 1501, 2539, 2549	Frost protection cap was placed inside Nalophan sample bag and sealed. The sample bag was filled (70 litres) with 6.0 Nitrogen. The bag was left to stand for a period of 3 days to allow for any compounds to diffuse into the nitrogen atmosphere where by this could then be sampled onto specific sorption tubes for the target analytes.	UKAS 1549	Sorbent tube SKC226-119, Multibed silcosteel dual layer thermal desorption
2	Frost protection cap – House 52	Formaldehyde, Acetaldehyde, Trace landfill gas screen	ISO16017, USEPA CO17, MDHS 70,72 and 96, NIOSH 1500, 1501, 2539, 2549	Frost protection cap was placed inside Nalophan sample bag and sealed. The sample bag was filled (70 litres) with 6.0 Nitrogen. The bag was left to stand for a period of 3 days to allow for any compounds to diffuse into the nitrogen atmosphere where by this could then be sampled onto specific sorption tubes for the target analytes.	UKAS 1549	Sorbent tube SKC226-119, Multibed silcosteel dual layer thermal desorption

2.2 Monitoring for specified compounds in headspace of gas sampling bag containing frost protection caps from House 26 and 52 Barnageeragh Cove, Skerries, Co. Dublin on the 14th Jan 2019.

The following range of compounds / parameters that were actively monitored using sorbent based media are detailed in *Table 2.1*. An overview of the monitoring standards applied is detailed in *Section 2*.

In order to pre-concentrate each compound upon each sorbent, a pre-calibrated controlled volume of sample air was drawn through each tube by a SKC air sampling pump for the monitoring period (Active sampling/pumped sampling). Each SKC pump was pre-calibrated with their specific sorbent using a Bios Primary flow calibrator (UKAS traceable Cert No. N022746).

Each pump was calibrated to an optimal flow rate (of between approx. 200 and 400 mls/min depending on sample location and sample type) for sorbent tubes.

When sampling was completed all tubes were sealed and stored in flexible air / light tight containers and transported to the analysing laboratory and analysed by means of HPLC and thermal desorption / solvent extraction GCMS, GCFID, in a UKAS accredited laboratory (UKAS 1549).

A number of QA procedures were implemented into the sampling and analysis run to include:

- Front and back sorbent beds were analysed. The back bed was confirmed to be less than 5% of the total sample conc. which is a stated requirement of EN13649:2014.
- All sorbent tubes were sealed and contained in air tight and light proof containers for transport to the laboratory. All samples were stored below 25 deg. C. This is a requirement of EN13649:2014.
- Travel/Sample blanks were incorporated into the measurement sequence. In addition, the laboratory included instrument and method blanks into their measurement sequence.
- Sample volume flow rate and pump calibration was performed before sampling and after sampling and these were recorded in the site data sheets. In addition, it was confirmed that the variation between before and after calibration was less than 1% of the flow range on the day of sampling for all samples taken on the 14th Jan 2019. The sample flow rate primary flow standard measured flow to an accuracy of 0.001 L/min over the range with a calibration accuracy of less than or equal to 1%.
- Total sample volumes chosen were a combination of analytical techniques lower limit of detection calculations and as specified in standard requirements.

3. Results of the monitoring exercise and discussion

This section provides the results obtained during the survey.

3.1 Gas analysis results

Tables 3.1 to 3.2 present the result of the monitoring on each frost protection cap from outside House 26 and 52.

As can be observed from the analysis results from the sampling of headspace air from Frost protection cap located outside House 26, a number of compounds were detected. These include Hydrogen sulphide, Styrene, Toluene, Formaldehyde and Acetaldehyde. The concentrations range from 0.002723 to 0.149393 mg/Nm³. No other compound above the LLOD was detected within the analysis screen.

Table 3.2 presents the results of the monitoring of frost protection cap from outside House 52. As can be observed from the analysis results from the sampling of headspace air from Frost protection cap located outside House 52, a number of compounds were detected. These include Hydrogen sulphide, Toluene, Formaldehyde and Acetaldehyde. The concentrations range from 0.03725 to 0.10663 mg/Nm³. No other compound above the LLOD was detected within the analysis screen.

Conserved copyright owner required for any other use.

3.1.1 Gas analysis results for Frost cap from outside House 26

Table 3.1. Results from monitoring of headspace air for Frost protection cap from outside House 26.

Monitoring location identity	Sample ID	Sample duration and times	Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	Risk factors
			1-Pentene	<10	0.00661	<0.001513	-
			1,1 Di chloroethane	<10	0.00661	<0.001513	IOELV
			1,1-Dichloroethylene	<10	0.00661	<0.001513	-
			1,2-Dichloroethane	<10	0.00661	<0.001513	Sk, IOELV
			1,2-Dichloroethylene	<30	0.00661	<0.004539	-
			1,3-Butadiene	<10	0.00661	<0.001513	-
			1,4 epoxy 1,3- butadiene	<10	0.00661	<0.001513	-
			1-Propanethiol	<10	0.00661	<0.001513	-
			2-butoxyethanol	<10	0.00661	<0.001513	Sk , IOELV
	1042204 – trace landfill gas screen	12:06 – 12:41 – 35 min 14/01/18	Benzene	<10 _e .	0.00661	<0.001513	BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	, 1 0	0.00661	<0.001513	-
			Carbon tetrachloride	of ^{alt} <10	0.00661	<0.001513	Sk
1			Chloroethane Rostied	<30	0.00661	<0.004539	IOELV
			Dichloromethane	<10	0.00661	<0.001513	-
			Dimethyldisolphide	<10	0.00661	<0.001513	-
			Dimethylsulphide	<10	0.00661	<0.001513	-
			Ethyloutyrate	<25	0.00661	<0.003782	-
			Ethyl Mercaptan	<10	0.00661	<0.001513	-
			Hydrogen sulphide	820	0.00661	0.124054	IOELV
			Methyl Mercaptan	<30	0.00661	<0.004539	-
			N-Butyl Mercaptan	<10	0.00661	<0.001513	-
			Styrene	18	0.00661	0.002723	-
			Toluene	220	0.00661	0.033283	Sk, IOELV
			Trichloroethylene	<10	0.00661	<0.001513	Sk, Carc 1B
			Vinyl chloride monomer	<10	0.00661	<0.001513	Carc.1A, BOELV
1	5263207077	– 56 min	Formaldehyde	900	0.02142	0.042017	Carc.1B, Sens.
'		14/01/18	Acetaldehyde	3200	0.02142	0.149393	-

3.1.2 Gas analysis results for Frost cap from outside House 52

Table 3.2. Results from monitoring of headspace air for Frost protection cap from outside House 52.

Monitoring location identity		Compound identity	Compound mass (ng)	Sample volume (Nm ³)	Compound conc. (mg/Nm ³)	Risk factors	
			1-Pentene	<10	0.00671	< 0.00149	-
			1,1 Di chloroethane	<10	0.00671	<0.00149	IOELV
			1,1-Dichloroethylene	<10	0.00671	<0.00149	-
			1,2-Dichloroethane	<10	0.00671	<0.00149	Sk, IOELV
			1,2-Dichloroethylene	<30	0.00671	<0.004471	-
			1,3-Butadiene	<10	0.00671	<0.00149	-
			1,4 epoxy 1,3- butadiene	<10	0.00671	<0.00149	-
			1-Propanethiol	<10	0.00671	<0.00149	-
			2-butoxyethanol	<10	0.00671	<0.00149	Sk , IOELV
			Benzene	other Use.	0.00671	<0.00149	BOELV, Sk, Carc.1A, Muta.1B
			Butyric acid	st ^{alt,} <10	0.00671	<0.00149	-
	1051251 – trace landfill gas screen	12:06 - 12:41 - 35 min 14/01/18	Carbon tetrachloride	<10	0.00671	<0.00149	Sk
2			Chloroethan	<30	0.00671	<0.004471	IOELV
			Dichloromethane	<10	0.00671	<0.00149	-
			Dimethyl disulphide	<10	0.00671	<0.00149	-
			Dimethyl sulphide	<10	0.00671	<0.00149	-
			Ethyl butyrate	<25	0.00671	<0.003726	-
			Ethyl Mercaptan	<10	0.00671	<0.00149	-
			Hydrogen sulphide	670	0.00671	0.099851	IOELV
			Methyl Mercaptan	<30	0.00671	<0.004471	-
			N-Butyl Mercaptan	<10	0.00671	<0.00149	-
			Styrene	<10	0.00671	<0.00149	-
			Toluene	250	0.00671	0.037258	Sk, IOELV
			Trichloroethylene	<10	0.00671	<0.00149	Sk, Carc 1B
			Vinyl chloride monomer	<10	0.00671	<0.00149	Carc.1A, BOELV
2	5263207070	– 56 min	Formaldehyde	700	0.02157	0.032452	Carc.1B, Sens.
		14/01/18	Acetaldehyde	2300	0.02157	0.10663	-

4. Conclusions

The following conclusions are drawn for the study:

- 1. With regards to the monitoring of Frost protection cap located outside House 26, a number of compounds were detected. These include Hydrogen sulphide, Styrene, Toluene, Formaldehyde and Acetaldehyde. The concentrations range from 0.002723 to 0.149393 mg/Nm³. No other compound above the LLOD was detected within the analysis screen.
- 2. With regards to the monitoring of frost protection cap from outside House 52, a number of compounds were detected. These include Hydrogen sulphide, Toluene, Formaldehyde and Acetaldehyde. The concentrations range from 0.03725 to 0.10663 mg/Nm³. No other compound above the LLOD was detected within the analysis screen.

Consent of conviet owner required for any other use.

5. References

- 1. 2011 Code of Practice for the Safety, Health and Welfare at work (Chemical Agents) Regulations 2001 (S.I. No. 619 of 2001)". (www.hse.ie).
- 2. ASHRAE Standard 62.1-2004, www.ashrae.org.
- 3. Chemical Agents COP 2016, HSE, Ireland.
- 4. Compendium method TO-17-Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes.
- 5. ILVs Commission Directive 91/322/EEC of 29 May 1991
- 6. IOELVs 1 Commission Directive 2000/39/EC of 8 June 2000
- 7. IOELVs 2 Commission Directive 2006/15/EC of 7 February 2006.
- 8. ISO 16017-1:2000, Indoor, ambient and workplace air. Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography. Part 1: Pumped sampling.
- 9. MDHS 70 General method for sampling airborne gases and vapours.
- 10. MDHS 72 Volatile organic compounds in air (1993). Laboratory methods using pumped solid sorbent tubes, thermal desorption and gas chromatography.
- 11. MDHS 91 Metals and metalloids in workspace air by X-ray fluorescence spectrometry, July 1998.
- 12. MDHS 96 Volatile organic compounds in air, Laboratory methods using pumped solid sorbent tubes, solvent desorption and gas chromatography. March 2000.
- 13. Mulroy Environmental Ltd., (2018), Environmental Risk Assessment Report.
- 14. NIOSH (NMAM) fourth Edition (1996). Volatile organic compounds (Screening) Method 2549).
- consent of copyright owner required for any other 15. NIOSH 1500 and 1501 for Total and aromatic hydrocarbons sampling and measurement,
- 16. NIOSH 2539 Aldehydes screening.
- 17. NIOSH 6001 Arsine.
- 18. NIOSH 6009 Mercury.

6. *Appendix IV* – Laboratory test results.

Consent of copyright owner required for any other use.

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences

Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE Tel · 0161 874 2400 Fax: 0161 874 2404

Report Number: 795744-1

Date of Report: 30-Jan-2019

Customer: Air Scientific Unit 32 Degranville Court **Dublin Road** Trim Co. Meath Ireland.

Customer Contact: Project Management

Customer Job Reference: BACOTL2140119 Date Job Received at Concept: 16-Jan-2019 Date Analysis Started: 17-Jan-2019 Date Analysis Completed: 30-Jan-2019 FOT at

The results reported relate to samples received in the aboratory and may not be representative of a whole batch.

-m

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced exception full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual c°

Report checked and authorised by : Kathryn Gleaves **Customer Service Advisor**

Issued by : Kathryn Gleaves Customer Service Advisor

Concept Reference: 795744 Customer Reference: BACOTL2140119 Analysed as Tube (Tenax/Carbon/Molecular Sieve) Tube (Tenax/Carbon/Molecula r Sieve) Trace Landfill Gas Suite 795744 002 795744 003 Concept Reference 795744 001 Customer Sample Reference 1042204 1051251 1106260 Test Sample AR AR AR Date Sampled 14-JAN-2019 14-JAN-2019 14-JAN-2019 Units Method LOD Symbol Determinand 1 Pentene GC/MS (TD SIR) 10 ng υ <10⁽⁶⁸⁾ <10(68) <10⁽⁶⁸⁾ 1,1-Dichloroethane GC/MS (TD SIR) υ 10 ng <10 <10 <10 GC/MS (TD SIR) U 1,1-Dichloroethylene 10 <10 <10 <10 ng 1,2-Dichloroethane GC/MS (TD SIR) 10 ng Ν <10 <10 <10 1,2-Dichloroethylene GC/MS (TD SIR) 30 υ <30 <30 <30 ng <10(68) 1,3-Butadiene GC/MS (TD SIR) 10 U <10(68 <10(68) ng 1,4 epoxy 1,3-butadiene GC/MS (TD SIR) Ν 10 ng <10 <10 <10 1-Propanethiol GC/MS (TD SIR) 10 U <10⁽⁶ <10(68 <10⁽⁶⁸⁾ ng GC/MS (TD SIR) 2-butoxyethanol 10 ng Ν <10 <10 <10 Benzene GC/MS (TD SIR) 10 U <10 <10 <10 ng GC/MS (TD SIR) Butyric acid 10 Ν <10 <10 ng <10 <10⁽¹³⁾ Carbon disulphide GC/MS (TD SIR) 10 Ν <10 <10 ng Carbon tetrachloride GC/MS (TD SIR) 10 U <10 <10 <10 ng GC/MS (TD SIR) Ν <30 <30 <30 Chloroethane 30 ng Dichloromethane GC/MS (TD SIR) 10 N <10 <10 <10 ng Dimethyl disulphide GC/MS (TD SIR) 10 ng N <10 <10 <10 Dimethyl sulphide GC/MS (TD SIR) 10 U <10(68) <10(68) <10(68) ng Ethyl butyrate GC/MS (TD SIR) 25 ng Ν <25 <25 <25 Ethyl Mercaptan GC/MS (TD SIR) 10 Ν <10 <10 <10 ng 820(13,27) 670(27,13) 78(13) GC/MS (TD SIR) 60 N Hydrogen sulphide ng Methyl Mercaptan GC/MS (TD SIR) Ν <30 <30 30 <30 ng N-Butyl Mercaptan GC/MS (TD SIR) 10 ng U <10(68 <10(68) ×10⁽⁶⁸⁾ GC/MS (TD SIR) 10 Ν 18 Styrene <10 <10 ng Toluene GC/MS (TD SIR) 10 Ν 220 250(13) <10 ng Trichloroethylene GC/MS (TD SIR) 10 U 2 < 10 <10 ng <10 Vinyl chloride monomer GC/MS (TD SIR) 10 U <10⁽⁶⁸⁾ CTO(68) <10⁽⁶⁸⁾ ng R

					er ar			
Concept Reference	: 795744			:15	No.			
Customer Reference	: BACOTL2140119			FOLDY	<u> </u>			
Tube Silica Gel DNPH (226-119)	ube Silica Gel DNPH Analysed as Tube Silica Gel DNPH (226-119)							
Acetaldehyde & Formald	lehyde		-05	Stre				
			Concer	t Reference	795744 004	795744 005	795744 006	
		.	0011000	R Reference	733744 004	733744 003	733744 000	
	Customer Sample Reference 5263207077 5263207070 5263207074							
			1	Fest Sample	AR	AR	AR	
			Da	ate Sampled	14-JAN-2019	14-JAN-2019	14-JAN-2019	
Determinand	Method	LOD	Units	Symbol		and the second second		
Acetaldehyde	HPLC (DNPH derivative)	0.1	μg	U	3.2(13)	2.3(13)	<0.1	
Formaldehyde	HPLC (DNPH derivative)	0.1	μg	U	0.9(13)	0.7(13)	0.5(13)	

Index to symbols used in 795744-1

de la

Val	ue	Description
AF	२	As Received
13	3	Results have been blank corrected.
68	3	Outside scope of UKAS accreditation
27	7	Result should be considered as a minimum due to detector saturation.
U		Analysis is UKAS accredited
N	l	Analysis is not UKAS accredited

Consent of copyright owner required for any other use.