

APPENDIX F VARIABLE HEAD PERMEABILITY TEST RESULTS

Project Name: Monaghan Landfills - Knockcronaghan

Project No.: 18-0838B

Date: 11/10/2018

Type of test: Rising

Borehole No.: GW01 Test No.: Test 1

11 October 2018

0.05 (m)

12.00 (m)

17.00 (m)

5.00 (m)

0.20 (m)

2.47 (m) on

Diameter of standpipe (D): Depth to top of filter bgl: Depth to bottom of filter bgl Length of test section of filter (L): Diameter of Filter (D): Standing ground water level (SWL) bgl:

TIME	WATER	HEAD	HEAD
ELAPSED	LEVEL*	Н	RATIO
(mins)	(m)	(m)	H/Ho
0	5.87	3.40	1.00
0.5	5.04	2.57	0.76
1	4.80	2.33	0.69
1.5	4.57	2.10	0.62
2	4.37	1.90	0.56
2.5	4.20	1.73	0.51
3	4.04	1.57	0.46
3.5	3.89	1.42	0.42
4	3.75	1.28	0.38
4.5	3.60	1.13	0.33
5	3.48	1.01	0.30
10	2.64	0.17	0.05
15	2.48	0.01	0.00

CALCULATION OF PERMEABILITY OF SOIL:

Employing Horslev Method (1951)

k

Head

$$=\frac{2.3A}{F(t_2-t_1)}\log\frac{h_1}{h_2}$$

where:

k is the permeability of soil A is the cross-section area of borehole/standpipe F is the shape factor (see below) h_1 and h_2 are the hydraulic heads measured respectively at the times t_1 and t_2

Values of shape factors (F) for various conditions, Cases (a)-(e), are given in Annex B of BS EN ISO 22282-1:2012

	L/D=	25.00	
Assumed cond	ition: Case	E	, hence:
$F=(2^{*}\pi^{*}L)/(LN(2^{*}($	L/D))		
F=	8.03		
and A =	0.0020	(m^2)	
and $h_1 =$	3.40	(m)	
and $h_2 =$	0.01	(m)	
and $t_1 =$	0	(s)	
and $t_2 =$	900	(s)	

Project Name: Monaghan Landfills - Knockcronaghan

Project No.: 18-0838B

Date: 11/10/2018

Borehole No.: GW02 Test No.: Test 1

Type of test: **Falling** Head

Diameter of standpipe (D): Depth to top of filter bgl: Depth to bottom of filter bgl Length of test section of filter (L): Diameter of Filter (D): Standing ground water level (SWL) bgl:

(m)		
(m)		
(m)	on	11 October 2018
	(m) (m) (m) (m)	(m) (m) (m) (m)

TIME	WATER	HEAD	HEAD
ELAPSED	LEVEL*	Н	RATIO
(mins)	(m)	(m)	H/Ho
0	0.35	0.38	1.00
0.5	0.65	0.08	0.21
1	0.73	0.00	0.00

CALCULATION OF PERMEABILITY OF SOIL:

Employing Horslev Method (1951)

k

$$=\frac{2.3A}{F(t_2-t_1)}\log\frac{h_1}{h_2}$$

where:

k is the permeability of soil A is the cross-section area of borehole/standpipe F is the shape factor (see below) h_1 and h_2 are the hydraulic heads measured respectively at the times t_1 and t_2

Values of shape factors (F) for various conditions, Cases (a)-(e), are given in Annex B of BS EN ISO 22282-1:2012

	L/D=	15.00	
Assumed condit	ion: Case	E	, hence:
$F=(2^{*}\pi^{*}L)/(LN(2^{*}(L)))$	/D))		
F=	5.54		
and A =	0.0020	(m^2)	
and $h_1 =$	0.38	(m)	
and $h_2 =$	0.00	(m)	
and $t_1 =$	0	(s)	
and $t_2 =$	60	(s)	

hence, k = 0.0001029 m/s

Note

200L of water was added in 7mins

Project Name: Monaghan Landfills - Knockcronaghan

Project No.: 18-0838B

Date: 11/10/2018

Borehole No.: GW02 Test No.: Test 1

Type of test: *Rising* Head

Diameter of standpipe (D): Depth to top of filter bgl: Depth to bottom of filter bgl Length of test section of filter (L): Diameter of Filter (D): Standing ground water level (SWL) bgl:

0.05	(m)		
11.50	(m)		
14.50	(m)		
3.00	(m)		
0.20	(m)		
0.73	(m)	on	11 October 2018

TIME	WATER	HEAD	HEAD	
ELAPSED	LEVEL*	Н	RATIO	
(mins)	(m)	(m)	H/Ho	
0	0.80	0.07	1.00	
0.5	0.73	0.00	0.00	

CALCULATION OF PERMEABILITY OF SOIL:

Employing Horslev Method (1951)

k

$$=\frac{2.3A}{F(t_2-t_1)}\log\frac{h_1}{h_2}$$

where:

k is the permeability of soil A is the cross-section area of borehole/standpipe F is the shape factor (see below) h_1 and h_2 are the hydraulic heads measured respectively at the times t_1 and t_2

Values of shape factors (F) for various conditions, Cases (a)-(e), are given in Annex B of BS EN ISO 22282-1:2012

		L/D=	1	5.00	
A	ssumed condition	on: Case		E	, hence:
F=(2*	π*L)/(LN(2*(L/	D))			
	F=	5.54			
and A	. =	0.0020	(m^2)	
and h	1 =	0.07	(m)		
and h	2 =	0.00	(m)		
and t ₁	. =	0	(s)		
and t ₂	2 =	30	(s)		

hence, k = 0.0001858 m/s

Note

BH was pumped for 35mins @7.5l/min

Project Name: Monaghan Landfills - Knockcronaghan

Project No.: 18-0838B

Date: 11/10/2018

Borehole No.: GW03

0.05 (m)

11.50 (m)

14.50 (m)

3.00 (m)

0.20 (m)

1.19 (m) on

Test No.: Test 1

11 October 2018

Type of test: Falling Head

Diameter of standpipe (D): Depth to top of filter bgl: Depth to bottom of filter bgl Length of test section of filter (L): Diameter of Filter (D): Standing ground water level (SWL) bgl:

TIME	WATER	HEAD	HEAD
ELAPSED	LEVEL*	Н	RATIO
(mins)	(m)	(m)	H/Ho
0	0.24	0.95	1.00
0.5	0.24	0.95	1.00
1	0.24	0.95	1.00
1.5	0.24	0.95	1.00
2	0.24	0.95	1.00
2.5	0.25	0.94	0.99
3	0.26	0.93	0.98
3.5	0.27	0.92	0.97
4	0.28	0.91	0.96
4.5	0.29	0.90	0.95
5	0.30	0.89	0.94
10	0.40	0.79	0.83
15	0.51	0.68	0.72
20	0.58	0.61	0.64
25	0.64	0.55	0.58
30	0.70	0.49	0.52
60	0.84	0.35	0.37
90	0.96	0.23	0.24
120	0.99	0.20	0.21

CALCULATION OF PERMEABILITY OF SOIL:

Employing Horslev Method (1951)

$$k = \frac{2.3A}{F(t_2 - t_1)} \log \frac{h_1}{h_2}$$

where:

k is the permeability of soil A is the cross-section area of borehole/standpipe F is the shape factor (see below) h_1 and h_2 are the hydraulic heads measured respectively at the times t_1 and t_2

Values of shape factors (F) for various conditions, Cases (a)-(e), are given in Annex B of BS EN ISO 22282-1:2012

	L/D=	15.00	
Assumed cone	dition: Case	Ε	, hence:
$F=(2^{*}\pi^{*}L)/(LN(2^{*}))$	(L/D))		
F=	5.54		
and A =	0.0020	(m^2)	
and $h_1 =$	0.95	(m)	
and $h_2 =$	0.20	(m)	
and $t_1 =$	0	(s)	
and $t_2 =$	7200	(s)	

hence, k = **7.655E-08** m/s

APPENDIX F GEOTECHNICAL LABORATORY TEST RESULTS

+44 (0)28 2766 6640 info@causewaygeotech.com www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Monaghan Landfills - Knockcronaghan
18-0838B
Monaghan County Council
Fehily Timoney & Company
16/10/18
Ĩ

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s).

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Approved Signatory

Stephen Watson Laboratory Manager

Signed for and on behalf of Causeway Geotech Ltd

Causeway Geotech Ltd 8 Drumahiskey Road, Ballymoney Co. Antrim, N. Ireland, BT53 7QL

Registered in Northern Ireland. Company Number: NI610766

+44 (0)28 2766 6640 info@causewaygeotech.com www.causewaygeotech.com

Project Name: Monaghan Landfills - Knockcronaghan

Report Reference: 18-0838B – Soils Schedule 1

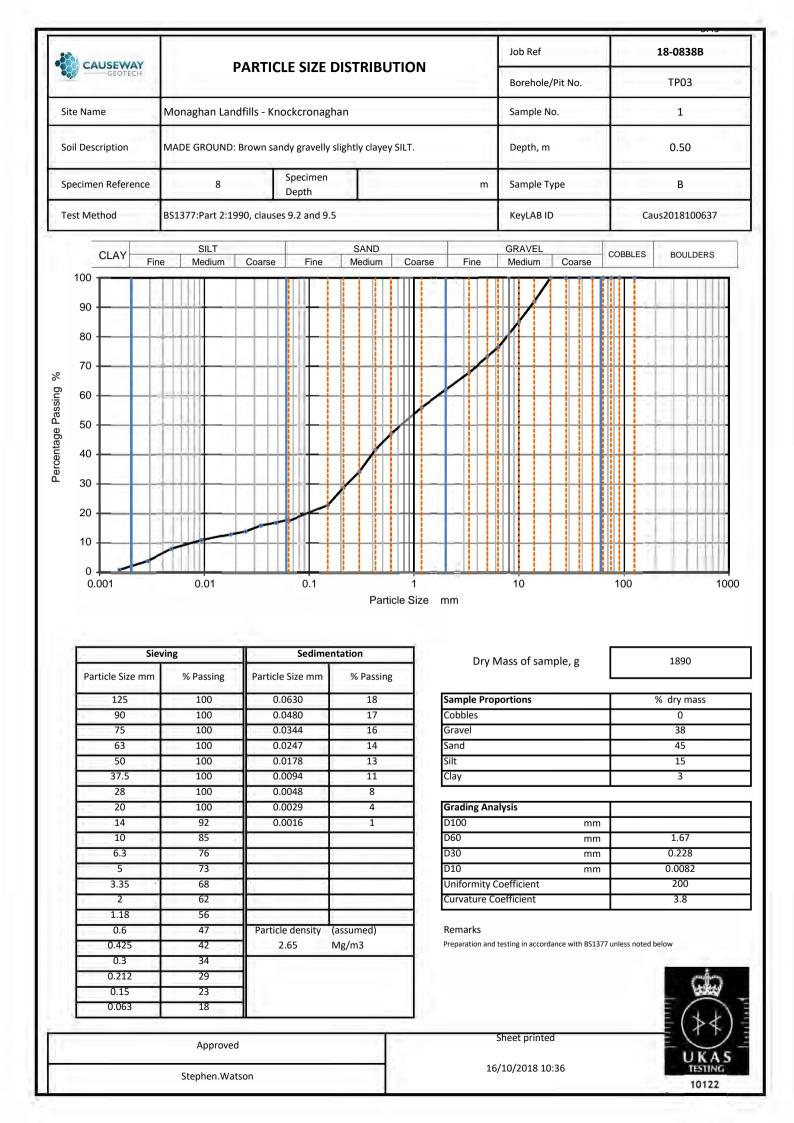
The table below details the tests carried out, the specifications used, and the number of tests included in this report.

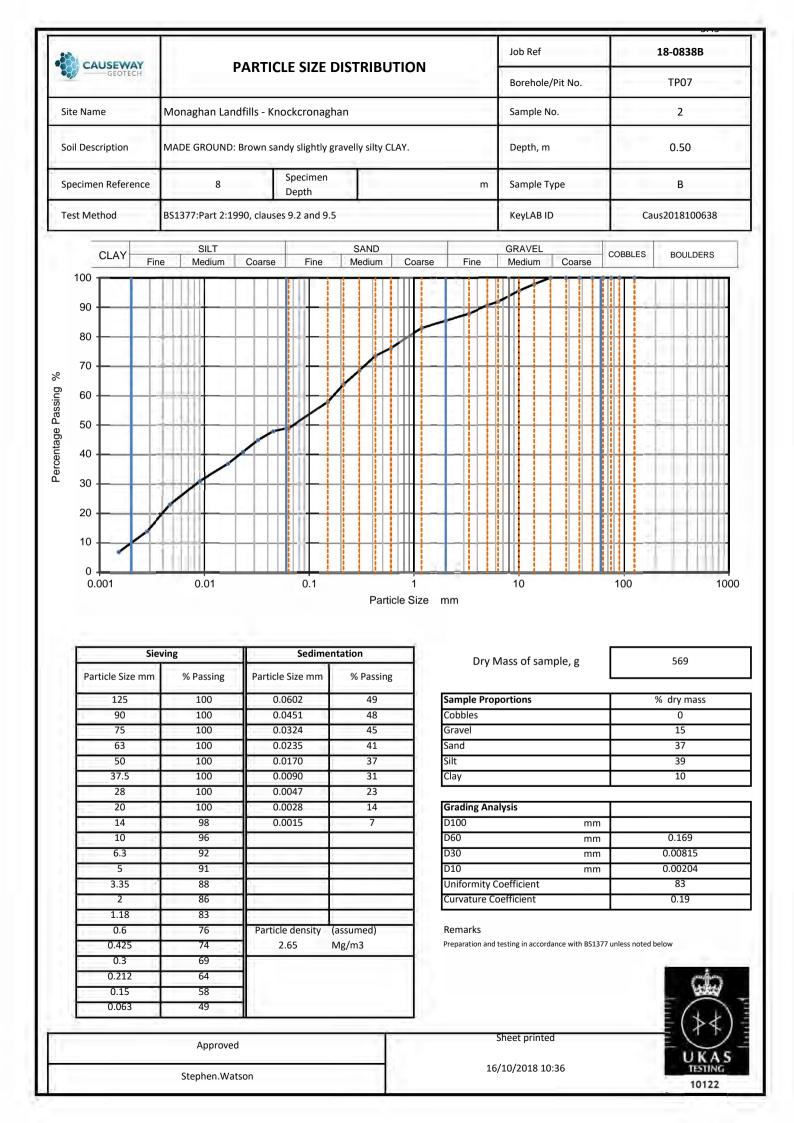
Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

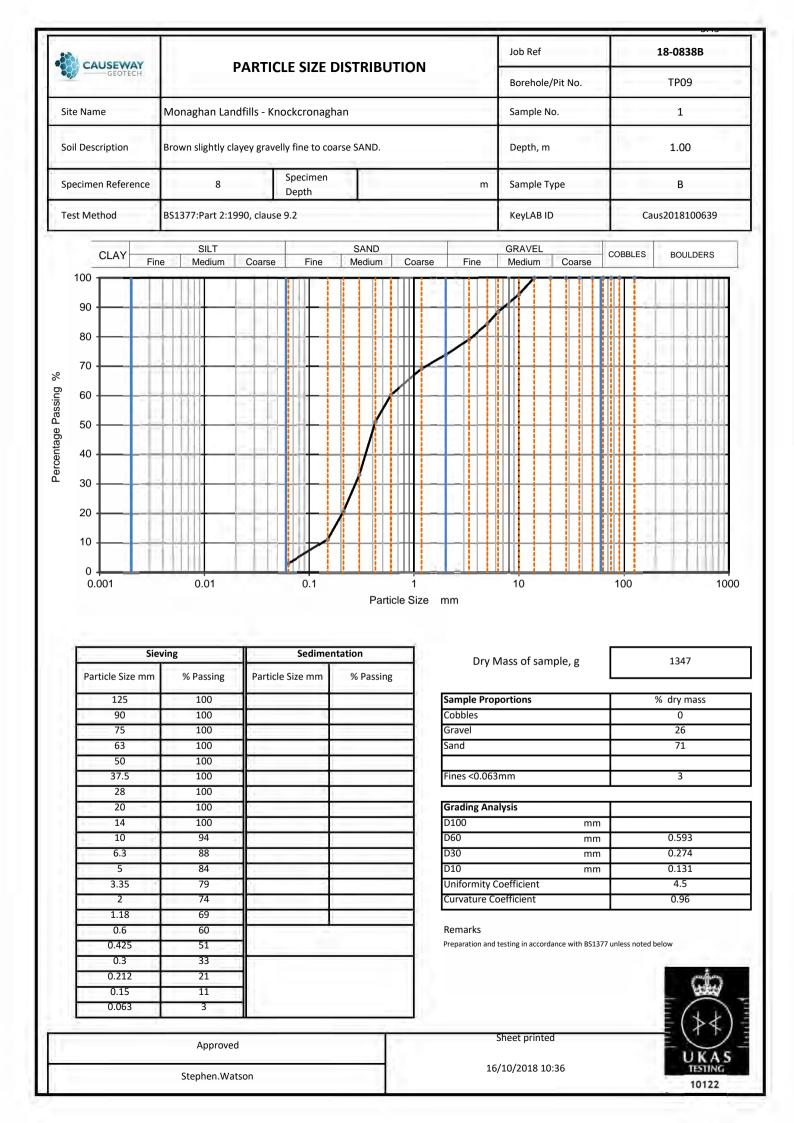
Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	3
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	3
SOIL	Bulk and dry density by Linear Measurement Method	BS 1377-2: 1990: Cl 7.2	3
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	3
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	2

Causeway Geotech Ltd 8 Drumahiskey Road, Ballymoney Co. Antrim, N. Ireland, BT53 7QL

Registered in Northern Ireland. Company Number: NI610766







•	CAUS	EWAY EOTECH			Summar	r y of (Clas	sific	ation	ı Test	Re	sult	ts	
Project N 1	No. 18-0838E	3	Project	Name		Monagha	an Lar	ndfills -	Knockci	ronaghar	n			
Hole N	lo. Ref		mple Base	Туре	Soil Description	Dens bulk Mg/m	dry	W %	Passing 425µm %	LL %	PL %	PI %	Particle density Mg/m3	Casagrande Classification
TP03	6 1	0.50		в	MADE GROUND: Brown sandy gravelly slightly clayey SILT.	2.04	1.69	19.0	48	49 -1pt	40	9		МІ
TP07	2	0.50		в	MADE GROUND: Brown sandy slightly gravelly silty CLAY.	1.92	1.50	28.0	71	41 -1pt	23	18		СІ
TP09) 1	1.00		в	Brown slightly clayey gravelly fine to coarse SAND.	2.07	1.92	8.8	52	28 -1pt	17	11		CL
	\top													
All tests performed in accordance with BS1377:1990 unless specified otherwise Key D Density test Liquid Limit Particle density Linear measurement unless : 4pt cone unless : sp - small pyknometer wd - water displacement cas - Casagrande method gj - gas jar					Date F	Printed 16/10/20)18	Appr	oved	Ву				
wi -	- immersio	n in water		1pt - si	ingle point test						Step	hen.	Watson	101122

CA	USE	WAY OTECH				Dens	sity Te	ests -	Sum	mary	of R	esult	S		
Project No.			Project	t Nam	ne										
18-08	838B					Μ	onagha	an Lan	dfills - I	Knocko	ronagł	nan			
		Sar	nple	_		Linea	r Measur	ement	Imm	ersion in	water	Wate	r displace	ement	
Hole No.	Ref	Тор	Base	Туре	Soil Description	Bulk density		w		Dry density	w	Bulk density		w	Remarks
TP03	1	0.50		в	MADE GROUND: Brown sandy gravelly slightly clayey SILT.	Mg/m3	Mg/m3	% 20.6	Mg/m3	Mg/m3	%	Mg/m3	Mg/m3	%	
TP07	2	0.50		в	MADE GROUND: Brown sandy slightly gravelly silty CLAY.	1.92	1.50	28.4							
TP09	1	1.00		в	Brown slightly clayey gravelly fine to coarse SAND.	2.07	1.92	8.0							
Legend	w	moisture	content	of the	e density test specimen										
g															
Tests carried out in accordance with BS1377:Part2:1990 and the			Linear measurement Immersion in water	clause clause				Printed 6/10/20	18	Appro	ved By	,			
otherwise					Water displacement	clause	7.4					Step	hen.Wa	atson	UKAS TESTING 10122

APPENDIX G ENVIRONMENTAL LABORATORY TEST RESULTS

Chemtest The right chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	18-29456-1		
Initial Date of Issue:	15-Oct-2018		
Client	Causeway Geotech Ltd		
Client Address:	8 Drumahiskey Road Balnamore Ballymoney County Antrim BT53 7QL		
Contact(s):	Colm Hurley Carin Cornwall Darren O'Mahony Gabriella Horan John Cameron Lucy Newland Matthew Gilbert Neil Haggan Paul Dunlop Paul McNamara Sean Ross Stephen Franey Stephen Watson Stuart Abraham		
Project	18-0838B - Knockcronaghan		
Quotation No.:		Date Received:	26-Sep-2018
Order No.:		Date Instructed:	04-Oct-2018
No. of Samples:	2		
Turnaround (Wkdays):	7	Results Due:	12-Oct-2018
Date Approved:	15-Oct-2018		
Approved By:			
Mana			
Details:	Glynn Harvey, Laboratory Manager		

Project: 18-0838B - Knockcronaghan

Chemtest Job No:	18-29456						Landfill W	aste Acceptano	ce Criteria
Chemtest Sample ID:	695584							Limits	
Sample Ref:								Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP04							hazardous	Hazardous
Top Depth(m):	0.2						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	24-Sep-2018							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			< 0.20	3	5	6
Loss On Ignition	2610	U	%			1.8			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	U	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
рН	2010	U				8.5		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.067		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative		for compliance	-
			mg/l	mg/l	mg/kg	mg/kg 10:1	using BS	6 EN 12457 at L	/S 10 I/kg
Arsenic	1450	U	0.0011	0.0011	< 0.050	< 0.050	0.5	2	25
Barium	1450	U	0.021	0.012	< 0.50	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.00010	< 0.010	< 0.010	0.04	1	5
Chromium	1450	U	< 0.0010	< 0.0010	< 0.050	< 0.050	0.5	10	70
Copper	1450	U	0.0056	0.0049	< 0.050	< 0.050	2	50	100
Mercury	1450	U	< 0.00050	< 0.00050	< 0.0010	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.0019	< 0.0010	< 0.050	< 0.050	0.5	10	30
Nickel	1450	U	0.0015	0.0022	< 0.050	< 0.050	0.4	10	40
Lead	1450	U	0.0010	0.0018	< 0.010	0.017	0.5	10	50
Antimony	1450	U	< 0.0010	< 0.0010	< 0.010	< 0.010	0.06	0.7	5
Selenium	1450	U	< 0.0010	< 0.0010	< 0.010	< 0.010	0.1	0.5	7
Zinc	1450	U	0.0024	0.0045	< 0.50	< 0.50	4	50	200
Chloride	1220	U	1.6	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.25	0.17	< 1.0	1.8	10	150	500
Sulphate	1220	U	23	7.1	46	89	1000	20000	50000
Total Dissolved Solids	1020	N	91	35	180	410	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	10	9.9	< 50	99	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.175
Moisture (%)	12

Leachate Test Information	
Leachant volume 1st extract/l	0.325
Leachant volume 2nd extract/l	1.400
Eluant recovered from 1st extract/l	0.200

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: 18-0838B - Knockcronaghan

Chemtest Job No:	18-29456						Landfill V	Vaste Acceptane	e Criteria
Chemtest Sample ID:	695586							Limits	
Sample Ref:								Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP07							hazardous	Hazardous
Top Depth(m):	0.5						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	24-Sep-2018							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			0.87	3	5	6
Loss On Ignition	2610	U	%			4.1			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	U	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
рН	2010	U				8.3		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.052		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative		for compliance	•
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L	S 10 I/kg
Arsenic	1450	U	< 0.0010	< 0.0010	< 0.050	< 0.050	0.5	2	25
Barium	1450	U	0.043	0.014	< 0.50	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.00010	< 0.010	< 0.010	0.04	1	5
Chromium	1450	U	< 0.0010	< 0.0010	< 0.050	< 0.050	0.5	10	70
Copper	1450	U	0.0029	0.0018	< 0.050	< 0.050	2	50	100
Mercury	1450	U	< 0.00050	< 0.00050	< 0.0010	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.0055	0.0041	< 0.050	< 0.050	0.5	10	30
Nickel	1450	U	0.0013	< 0.0010	< 0.050	< 0.050	0.4	10	40
Lead	1450	U	< 0.0010	< 0.0010	< 0.010	< 0.010	0.5	10	50
Antimony	1450	U	0.0012	< 0.0010	< 0.010	< 0.010	0.06	0.7	5
Selenium	1450	U	< 0.0010	< 0.0010	< 0.010	< 0.010	0.1	0.5	7
Zinc	1450	U	0.0060	< 0.0010	< 0.50	< 0.50	4	50	200
Chloride	1220	U	1.6	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.34	0.31	< 1.0	3.1	10	150	500
Sulphate	1220	U	58	12	110	170	1000	20000	50000
Total Dissolved Solids	1020	N	230	85	460	1000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	12	12	< 50	120	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.175
Moisture (%)	19

Leachate Test Information	
Leachant volume 1st extract/l	0.309
Leachant volume 2nd extract/l	1.400
Eluant recovered from 1st extract/l	0.189

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com

Appendix 3

Groundwater & Surface Water Sampling Analysis Results

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Daniel Hayden

CERTIFICATE OF ANALYSIS

Date:
Customer:
Sample Delivery Group (SDG):
Your Reference:
Location:
Report No:

10 October 2018 D_FTIM_DUB 181002-49 P1724 Knockcronaghan 476120

This report has been revised and directly supersedes 475442 in its entirety.

We received 7 samples on Tuesday October 02, 2018 and 7 of these samples were scheduled for analysis which was completed on Wednesday October 10, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

SDG: 181002-49 P1724 Report Number: Superseded Report: 476120 **Client Reference:** Location: 475442 Knockcronaghan Order Number:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
18442432	GW01		0.00 - 0.00	01/10/2018
18442441	GW02		0.00 - 0.00	01/10/2018
18442448	GW03		0.00 - 0.00	01/10/2018
18442457	SW1		0.00 - 0.00	01/10/2018
18442464	SW2		0.00 - 0.00	01/10/2018
18442473	SW3		0.00 - 0.00	01/10/2018
18442485	SW4		0.00 - 0.00	01/10/2018

Maximum Sample/Coolbox Temperature (°C) : ISO5667-3 Water quality - Sampling - Part3 -

13.5

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Validated

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

SDG: Location:	181002-4 Knockcro				ferenc mber:	e:	P172	24						Numb led Re			4761 475				
Results Legend Test No Determination Possible	Lab Sample No(s)					18442432				18442441	18442448							18442457			18442464
rossible	Cust Sample I				GW01				GW02				GW03	SW1				SWZ			
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS R	eference													_		_	-			
2 - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage JS - Untreated Sewage	Dept	th (m)				0.00 - 0.00	0.00 - 0.00			0.00 - 0.00				0.00 - 0.00					0.00 - 0.00		
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Container		500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)
	Samp	Іе Туре	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	SM	WS	WS		WS		-
Alkalinity as CaCO3	All	NDPs: 0 Tests: 3	x				x				x	-									
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 7		X	_		-	X		-		x	-				X			_	x
Anions by Kone (w)	All	NDPs: 0 Tests: 7	x				X			_	x				-	X				x	
BOD True Total	All	NDPs: 0 Tests: 4													Y				Y		
Coliforms (W)	All	NDPs: 0 Tests: 3	x				X				X				X			_	x		
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 7	x				X				x					X	Ī			X	
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 3				X				X				X							-
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 7			X	~			X	~			X	~				X			_
Dissolved Oxygen by Probe	All	NDPs: 0 Tests: 7	x		^		X		^		x		^			X		~		X	
Fluoride	All	NDPs: 0 Tests: 3	×				×				×					~				^	
Mercury Dissolved	All	NDPs: 0 Tests: 3	^	H	x		^		x		^		X								
pH Value	All	NDPs: 0 Tests: 7	x		^		X		^		X		^			X				X	
Total Organic and Inorganic Carbon	All	NDPs: 0 Tests: 3	^	X			^	X			^	X				^				^	

18442464				18442473				18442485
SW2				SW3				SW4
0.				0.				0.1
0.00 - 0.00				0.00 - 0.00				0.00 - 0.00
HNO3 Filtered	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)
SW	SW	WS	WS	SW	SM	SW	WS	SW
	x	×	X		×	×	x	
		x				x		
X		x		X		x		X
		x				x		

CERTIFICATE OF ANALYSIS

Validated

SDG: Location		81002-49 Knockcronagha		t Reference: P13 r Number:	724	Report Numb Superseded Re		
(123)	_		<i>_</i>					
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.	Cu	istomer Sample Ref. Depth (m)	GW01 0.00 - 0.00	GW02 0.00 - 0.00	GW03 0.00 - 0.00	SW1 0.00 - 0.00	SW2 0.00 - 0.00	SW3 0.00 - 0.00
diss.fil Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate stat check the efficiency of the meth		Sample Type Date Sampled Sample Time Date Received	Ground Water (GW) 01/10/2018 02/10/2018	Ground Water (GW) 01/10/2018 02/10/2018	Ground Water (GW) 01/10/2018 02/10/2018	Surface Water (SW) 01/10/2018 02/10/2018	Surface Water (SW) 01/10/2018 02/10/2018	Surface Water (SW) 01/10/2018 02/10/2018
results of individual compounds samples aren't corrected for the (F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix	s within recovery)	SDG Ref Lab Sample No.(s) AGS Reference	181002-49 18442432	181002-49 18442441	181002-49 18442448	181002-49 18442457	181002-49 18442464	181002-49 18442473
Component Coliforms, Total*	LOD/Units CFU/100ml	Method SUB	>2420	387	416			
Alkalinity, Total as CaCO3	<2 mg/l	TM043	289 #	342 #	200 #			
BOD, unfiltered	<1 mg/l	TM045	#	#	#	2.12	2.03	<1 #
Oxygen, dissolved	<0.3 mg/l	TM046	8.34	8.82	9.06	9.9	# 10.5	# 9.92
Organic Carbon, Total	<3 mg/l	TM090	<3 #	3.15	9.35			
Ammoniacal Nitrogen as N	<0.2 mg/l	TM099	# 0.324 #	# 0.575 #	# 13.9 #	<0.2	<0.2	<0.2
Fluoride	<0.5 mg/l	TM104	* <0.5 #			π	π	π
Conductivity @ 20 deg.C	<0.005 mS/cm	TM120	0.549 #	0.666 #	0.433	0.289	0.456	0.283
Arsenic (diss.filt)	<0.5 µg/l	TM152	0.683 #	" 1.95 #	0.805 #		"	
Boron (diss.filt)	<10 µg/l	TM152	53.7 #	" 17.9 #				
Cadmium (diss.filt)	<0.08 µg/l	TM152	<0.08 #		0.0811			
Chromium (diss.filt)	<1 µg/l	TM152	<1 #	<1 #	<1 #			
Copper (diss.filt)	<0.3 µg/l	TM152	0.528 #	1.69 #	3.86 #			
Lead (diss.filt)	<0.2 µg/l	TM152	63.3 #					
Manganese (diss.filt)	<3 µg/l	TM152	37.4 #		77.1 #			
Nickel (diss.filt)	<0.4 µg/l	TM152	1.75 #	6.88 #	3.36 #			
Phosphorus (diss.filt)	<10 µg/l	TM152	<10 #	<10 #	<10 #			
Zinc (diss.filt)	<1 µg/l	TM152	16.1 #	15.3 #	22.9			
Sodium (Dis.Filt)	<0.076 mg/l	TM152	20.3 #	33.7 #	14.6 #	11.6	12.6	14.3
Magnesium (Dis.Filt)	<0.036 mg/l	TM152	27.9 #		6.81 #			
Potassium (Dis.Filt)	<0.2 mg/l	TM152	2.38 #	2.4 #	10.9	5.53 #	5.02 #	5.45
Calcium (Dis.Filt)	<0.2 mg/l	TM152	70.7 #	104 #	63.6			
Iron (Dis.Filt)	<0.019 mg/l	TM152	<0.019 #	0.0216	0.0232			
Mercury (diss.filt)	<0.01 µg/l	TM183	<0.01 #	<0.01 #	<0.01 #			
Chloride	<2 mg/l	TM184	15.9 #	30.6 #	21.1 #	19.5 #	19.9 #	19.5 #
Total Oxidised Nitrogen as N	<0.1 mg/l	TM184	0.204 #	0.188	0.902			
Sulphate (soluble) as S	<1 mg/l	TM184	7.17 #	8.13 #	6.47 #	2.8	6.4 #	3.07 #
Cyanide, Total	<0.05 mg/l	TM227	<0.05	<0.05	<0.05			
рН	<1 pH Units	TM256	8.34 #	7.55	7.88	7.79 #	8.05 #	7.75

ALS

CERTIFICATE OF ANALYSIS

Validated

181002-49 Knockcronaghan Client Reference: P1724 Order Number: Report Number: Superseded Report: 476120 475442 Validated

Table of Results - Appendix

Method No	Reference	Description
SUB		Subcontracted Test
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM046	Method 4500G, AWWA/APHA, 20th Ed., 1999	Measurement of Dissolved Oxygen by Oxygen Meter
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

181002-49 Client Reference: P1724 Knockcronaghan Order Number:

Report Number: Superseded Report:

476120 475442

	Test Completion Dates								
Lab Sample No(s)	18442432	18442441	18442448	18442457	18442464	18442473	18442485		
Customer Sample Ref.	GW01	GW02	GW03	SW1	SW2	SW3	SW4		
AGS Ref.									
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00		
Туре	Ground Water	Ground Water	Ground Water	Surface Water	Surface Water	Surface Water	Surface Water		
Alkalinity as CaCO3	10-Oct-2018	10-Oct-2018	10-Oct-2018						
Ammoniacal Nitrogen	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018		
Anions by Kone (w)	10-Oct-2018	10-Oct-2018	10-Oct-2018	09-Oct-2018	09-Oct-2018	09-Oct-2018	09-Oct-2018		
BOD True Total				07-Oct-2018	07-Oct-2018	07-Oct-2018	07-Oct-2018		
Coliforms (W)	05-Oct-2018	05-Oct-2018	05-Oct-2018						
Conductivity (at 20 deg.C)	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018		
Cyanide Comp/Free/Total/Thiocyanate	08-Oct-2018	08-Oct-2018	08-Oct-2018						
Dissolved Metals by ICP-MS	10-Oct-2018	09-Oct-2018	09-Oct-2018	10-Oct-2018	10-Oct-2018	09-Oct-2018	10-Oct-2018		
Dissolved Oxygen by Probe	05-Oct-2018	05-Oct-2018	05-Oct-2018	05-Oct-2018	05-Oct-2018	05-Oct-2018	05-Oct-2018		
Fluoride	09-Oct-2018	09-Oct-2018	09-Oct-2018						
Mercury Dissolved	05-Oct-2018	08-Oct-2018	05-Oct-2018			1			
pH Value	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018		
Total Organic and Inorganic Carbon	08-Oct-2018	03-Oct-2018	03-Oct-2018						

DETAILED IN SCOPE REG NO. 138

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Customer

Customer Services ALS Environmental Ltd Hawarden Business Park Manor Land Hawarden, Deeside UK CH5 3US

Certificate Of Analysis

18-47640 Job Number: 1 **Issue Number:** 5 October 2018 **Report Date:**

Site: Not Applicable 181002-49 **PO Number:** Date Samples Received: 02/10/2018

Please find attached the results for the samples received at our laboratory on 02/10/2018.

Should you have any queries regarding the report or require any further services, we would be happy to discuss your requirements. For additional information about the company please log-on to our website at the above address.

Thank you for choosing City Analysts Limited. We look forward to assisting you again.

Authorised By:

Shane Reynolds Laboratory Manager

5 October 2018 Authorised Date:

Notes:

Results relate only to the items tested. Information on methods of analysis and performance characteristics is available on request. Any opinions or interpretations indicated are outside the scope of our INAB accreditation. This test report shall not be reproduced except in full or with written approval of City Analysts Limited.

Template: 1146 Revision: 018

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

DETAILED IN SCOPE REG NO. 138

Report Reference: 18-47640

Report Version: 1

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer

Customer Services

ALS Environmental Ltd Hawarden Business Park Manor Land Hawarden, Deeside UK CH5 3US

Site:	Not Applicable		
Sample Description:	GW01 Knockcronaghan	Date of Sampling:	01/10/2018
Sample Type:	Ground	Date Sample Received:	02/10/2018
Lab Reference Number	er: 413283		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	03/10/2018	Coliforms	> 2419.6	MPN/100ml	+

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely. NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 2 of 4

Report Version: 1

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

DETAILED IN SCOPE REG NO. 1387 Email:

reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis Report Reference: 18-47640

Customer **Customer Services**

ALS Environmental Ltd Hawarden Business Park Manor Land Hawarden, Deeside UK CH5 3US

Site:	Not Applicable		
Sample Description:	GW02 Knockcronaghan	Date of Sampling:	01/10/2018
Sample Type:	Ground	Date Sample Received:	02/10/2018
Lab Reference Number	er: 413284		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	03/10/2018	Coliforms	387.3	MPN/100ml	+

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely. NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 3 of 4

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

DETAILED IN SCOPE REG NO. 138

Report Reference: 18-47640

Report Version: 1

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer **Customer Services**

ALS Environmental Ltd Hawarden Business Park Manor Land Hawarden, Deeside UK

CH5 3US

Site:	Not Applicable		
Sample Description:	GW03 Knockcronaghan	Date of Sampling:	01/10/2018
Sample Type:	Ground	Date Sample Received:	02/10/2018
Lab Reference Numbe	er: 413285		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	03/10/2018	Coliforms	416.0	MPN/100ml	+

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely. NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 4 of 4

				OF ANALIS			_
	SDG:	181002-49	Client Reference:	P1724	Report Number:	476120	7
(ALS)	Location:	Knockcronaghan	Order Number:		Superseded Report:	475442	-

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

14. **Product analyses** - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
+	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.
A 1	5a

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow n Asbestos
Cro d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	· ·

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Daniel Hayden

CERTIFICATE OF ANALYSIS

Date:
Customer:
Sample Delivery Group (SDG):
Your Reference:
Location:
Report No:

17 October 2018 D_FTIM_DUB 181010-48 P1724 Knockcronaghan 477247

This report has been revised and directly supersedes 476957 in its entirety.

We received 7 samples on Wednesday October 10, 2018 and 7 of these samples were scheduled for analysis which was completed on Wednesday October 17, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

ALS	SDG:	181010-48	Client Reference:	P1724	Report Number:	477247
	Location:	Knockcronaghan	Order Number:	Z1260	Superseded Report:	476957
(ALS)	Location.	Riberererughan	Order Number.	21200	Capeleeueu Hopelti	410001

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
18494217	GW01		0.00 - 0.00	09/10/2018
18494226	GW02		0.00 - 0.00	09/10/2018
18494235	GW03		0.00 - 0.00	09/10/2018
18494244	SW1		0.00 - 0.00	09/10/2018
18494255	SW2		0.00 - 0.00	09/10/2018
18494263	SW3		0.00 - 0.00	09/10/2018
18494271	SW4		0.00 - 0.00	09/10/2018

Maximum Sample/Coolbox Temperature (°C) : ISO5667-3 Water quality - Sampling - Part3 -

13.0

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Validated

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG: Location:	181010-4 Knockcro				ferenc mber:		P172 Z126							Numb ded Re			4772 476	247 6957					
Results Legend Test No Determination Possible	Lab Sam		18494217											18494226	184.94.20 784.94.20 784.94.20								
	Cusi Sample I							GW01							GW02					GW03			
Sample Types - S - Soil/Solid JNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS R							-															
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other Alkalinity as CaCO3	Dept	th (m)	0.00 - 0.00								0.00 0.00							0.00 - 0.00					
	Con	0.5I glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.51 glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)			
	Samp	Іе Туре	GW	GW	GW	GW		GW	GW	GW	GW	GW	GW		GW	GW	GW	GW	GW	GW	-		
Alkalinity as CaCO3	All	NDPs: 0 Tests: 3		-	x							x		-			-		x	_			
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 7	-			x				_			x	_			-	-	_	x			
Anions by Kone (w)	All	NDPs: 0 Tests: 7	-		x							x					-		x				
BOD True Total	All	NDPs: 0 Tests: 7	-	X						_	X			_			1	x					
COD Unfiltered	All	NDPs: 0 Tests: 7		x							x							x					
Coliforms (W)	All	NDPs: 0 Tests: 3		^	v						^	Y						^	Y				
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 7			X							X							X				
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 3			x			x				x			X				x				
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 7					x	^						X	^						X		
Dissolved Oxygen by Probe	All	NDPs: 0 Tests: 7			x		^					x		^					x		^		
Fluoride	All	NDPs: 0 Tests: 3										1											
Mercury Dissolved	All	NDPs: 0 Tests: 3	-		x							x							x				
Mineral Oil C10-40 Aqueous (W)	All	NDPs: 0 Tests: 3					x							x							x		
Nitrite by Kone (w)	All	NDPs: 0 Tests: 3	X							x							X						
Organotins in Aqueous Samples	All	NDPs: 0 Tests: 3		1				x							x								

18494235				0101211	18404244	18494255									18494263					18494271	
GW03					SW1	SW2									SW3	SW4					
0.00 - 0.00				0.00	0.00-0.00				0.00 - 0.00						0.00 - 0.00					0.00 - 0.00	
Vial (ALE297) NaOH (ALE245)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	(ALE204)	(ALE212)	250ml BOD	500ml Plastic (ALE208)	H2SO4 (ALE244)	(ALE204)	(ALE212)	250ml BOD	500ml Plastic	H2SO4 (ALE244)	(ALE204)	HNO3 Filtered	(ALE212)	(ALE208)	500ml Plastic	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	
GW	SW	SW	SW	(SM	SW	SM	SW	OW		SW	WS	SW		WS	Ű	SW	SW	SW	SW	
×	x	x		×			x		x	x		x			< (x		×		x	
		X					X					X									
k																					

		U	ERT						13	13											
SDG: Location:	181010-48 Knockcronagh	nan			ferend mber:		P172 Z126			_				Numb ded Re			4772 476				
Results Legend X Test No Determination	Lab Sample	No(s)							18494217							18494226					18494235
Possible	Custom Sample Refe								GW01							GW02					GW03
Sample Types - S - Soil/Solid JNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refer	ence																	_		
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (r	n)							0.00 - 0.00							0.00 - 0.00					0.00 - 0.00
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Contain	er	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5I glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)
	Sample T	уре	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW
Pesticides (Suite I) by GCMS	All	NDPs: 0 Tests: 3	-		x						_	x	-	-					x		
Pesticides (Suite II) by GCMS	All	NDPs: 0 Tests: 3			X							x	-				_	-	x	-	
Pesticides (Suite III) by GCMS	All	NDPs: 0 Tests: 3			x							x							x		
pH Value	All	NDPs: 0 Tests: 7			X							x	-						X		
Phosphate by Kone (w)	All	NDPs: 0 Tests: 3	-		x							x							x		
Silicon Dissolved by ICP-OES	All	NDPs: 0 Tests: 3	-				X							X							X
SVOC MS (W) - Aqueous	All	NDPs: 0 Tests: 3			x							X							x		
Total Organic and Inorganic Carbon	All	NDPs: 0 Tests: 3				X							X							X	
VOC MS (W)	All	NDPs: 0 Tests: 3	-				-														_

18494271						18494263						18494255					18494244						18494235	
SW4						SW3						SW2					SW1						GW03	
0.00 - 0.00						0.00 - 0.00						0.00 - 0.00					0.00 - 0.00						0.00 - 0.00	
HNO3 Filtered (ALE204)	H2SO4 (ALE244)	500ml Plastic	(ALE208)	250ml BOD	(ALE212)	HNO3 Filtered	(ALE204)	H2SO4 (ALE244)	500ml Plastic	(ALE208)	250ml BOD (ALE212)	HNO3 Filtered	(ALE204)	H2SO4 (ALE244)	500ml Plastic (ALE208)	250ml BOD	HNO3 Filtered	(ALE204)	H2SO4 (ALE244)	500ml Plastic	(ALE208)	250ml BOD (ALE212)	Vial (ALE297)	NaOH (ALE245)
SW	SW	WS		SW		WS		SW	WS		SW	WS		SW	SM	WS	WS		SW	WS		SW	GW	GW
		ĸ	>							x					x					x		1		
_																								
																								-
-		-															1					-	x	

ALS

SDG:

181010-48

CERTIFICATE OF ANALYSIS

P1724

Report Number:

Client Reference:

Validated

#

#

477247

Knockcronaghan Order Number: Z1260 Superseded Report: 476957 Location: Customer Sample Ref GW01 GW02 GW03 SW1 SW2 SW3 ults Le ISO17025 accredited mCERTS accredited mCERTS accredited. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. Depth (m 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 aq diss.filt Ground Water (GW) 09/10/2018 Sample Type Ground Water (GW) Ground Water (GW) Surface Water (SW) Surface Water (SW) Surface Water (SW) tot.unfil Subcontracted test Date Sample 09/10/2018 09/10/2018 09/10/2018 09/10/2018 09/10/2018 Subcontracted test.
 % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery (F) Trigger breach confirmed
 1-5&+§@ Sample deviation (see appendix) Sample Tim 10/10/2018 10/10/2018 10/10/2018 10/10/2018 10/10/2018 10/10/2018 Date Receive 181010-48 18494255 181010-48 18494263 181010-48 181010-48 181010-48 181010-48 SDG Re 18494217 18494226 18494235 18494244 Lab Sample No.(s AGS Referenc Component LOD/Units Method 866 1590 698 Coliforms Total CFU/100ml SUB Alkalinity, Total as CaCO3 <2 mg/l TM043 291 421 333 ± # Ħ BOD, unfiltered <1 mg/l TM045 <1 <1 <1 <1 2.18 <1 # # # # Oxygen, dissolved <0.3 mg/l TM046 9.45 9.04 8.81 10.1 9.88 9.64 Organic Carbon, Total <3 mg/l TM090 <3 <3 9.93 ± Ħ Ammoniacal Nitrogen as N TM099 <0.2 1.14 33.2 0.258 <0.2 <0.2 <0.2 mg/l Ħ ± Fluoride TM104 <0.5 <0.5 <0.5 <0.5 mg/l Ħ # # COD, unfiltered TM107 7.21 <7 30.9 29.9 28.5 28.1 <7 ma/l # # # Ħ # < 0.005 TM120 0.524 0.793 0.702 0.466 Conductivity @ 20 deg.C 03 0.29 mS/cm # # # # # <1 µg/l TM152 Antimony (diss.filt) 1.05 <1 1.51 TM152 Arsenic (diss.filt) <0.5 µg/l 0.81 4 53 1.15 # ŧ # TM152 Barium (diss.filt) <0.2 µg/l 133 780 352 # # # Beryllium (diss.filt) <0.1 µg/l TM152 <0.1 <0.1 <0.1 # # # Boron (diss.filt) <10 µg/l TM152 57.6 18.2 88.8 # # # TM152 <0.08 <0.08 0.101 Cadmium (diss.filt) <0.08 µg/l # # # TM152 1.02 <1 Chromium (diss.filt) <1 µg/l <1 # # # Cobalt (diss.filt) <0.5 µg/l TM152 0.794 <0.5 <0.5 # # # TM152 <0.3 µg/l 4.46 < 0.3 3.35 Copper (diss.filt) # # # TM152 Lead (diss.filt) <0.2 µg/l 278 27.4 136 ŧ # # Manganese (diss.filt) <3 µg/l TM152 51.6 406 51.2 # # Ħ Molybdenum (diss.filt) <3 µg/l TM152 <3 3.08 4.14 # # # Nickel (diss.filt) <0.4 µg/l TM152 3.27 0.771 4.13 # # # Phosphorus (diss.filt) <10 µg/l TM152 31.2 13.7 910 # # # TM152 Selenium (diss.filt) <1 µg/l <1 6.06 <1 ŧ # # TM152 Tellurium (diss.filt) <2 µg/l <2 <2 <2 Thallium (diss.filt) TM152 <2 <2 <2 <2 µg/l # # # TM152 Titanium (diss.filt) <1 µg/l 10.8 2 96 6.11 # # # TM152 Uranium (diss.filt) <0.5 µg/l < 0.5 2.99 1.87 # # # TM152 Vanadium (diss.filt) <1 µg/l 1.12 <1 <1 ŧ # # Zinc (diss.filt) <1 µg/l TM152 53.3 6.97 18.9 # # # Tin (Diss.Filt) TM152 <1 <1 µg/ <1 <1 # # # TM152 <0.5 <0.5 <0.5 Silver (diss.filt) <0.5 µg/l # # # Sodium (Dis.Filt) <0.076 mg/l TM152 19.1 43 20.2 13.5 11.4 11.7

#

#

#

#

SDG:

Location:

181010-48

Knockcronaghan

CERTIFICATE OF ANALYSIS P1724 Z1260

Client Reference:

Order Number:

Validated

477247 476957

Report Number: Superseded Report:

Double Lower		untermore Communic Darf						
Results Legend # ISO17025 accredited. M mCERTS accredited.		ustomer Sample Ref.	GW01	GW02	GW03	SW1	SW2	SW3
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
tot.unfilt Total / unfiltered sample.		Sample Type	Ground Water (GW)	Ground Water (GW)	Ground Water (GW)	Surface Water (SW)	Surface Water (SW)	Surface Water (SW)
* Subcontracted test. ** % recovery of the surrogate stand	lard to	Date Sampled Sample Time	09/10/2018	09/10/2018	09/10/2018	09/10/2018	09/10/2018	09/10/2018
check the efficiency of the methor results of individual compounds v		Date Received	10/10/2018	10/10/2018	10/10/2018	10/10/2018	10/10/2018	10/10/2018
samples aren't corrected for the n (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	181010-48 18494217	181010-48 18494226	181010-48 18494235	181010-48 18494244	181010-48 18494255	181010-48 18494263
1-5&+§@ Sample deviation (see appendix)		AGS Reference						
Component	LOD/Units	Method	07.4		7.04			
Magnesium (Dis.Filt)	<0.036 mg/l	TM152	27.4 #	14.4 #	7.01 #			
Potassium (Dis.Filt)	<0.2 mg/l	TM152	1.96 #	1.8 #	17.7 #	5.58 #	6.87 #	6.62
Calcium (Dis.Filt)	<0.2 mg/l	TM152	72.4 #	135 #	54.3 #			
Iron (Dis.Filt)	<0.019 mg/l	TM152	0.547 #	3.47 #	0.0376			
Mineral oil >C10 C40 (aq)	<100 µg/l	TM172	<100	<100	<100			
Mercury (diss.filt)	<0.01 µg/l	TM183	<0.01 #	<0.01	<0.01 #			
Phosphate (Ortho as PO4)	<0.05 mg/l	TM184	<0.05 #	** <0.05 #				
Chloride	<2 mg/l	TM184		26.6 #		21 #	19.8	19.6
Nitrite as N	<0.0152 mg/l	TM184	<0.0152 #		0.0797 #	π	π	T
Total Oxidised Nitrogen as N	<0.1 mg/l	TM184	<0.1 #	<0.1 #	0.538 #			
Sulphate (soluble) as S	<1 mg/l	TM184	6.97 #	9.93 #	5.77 #	6.47	2.8	2.73
Cyanide, Total	<0.05 mg/l	TM227	<0.05	<0.05	<0.05			
Cyanide, Free	<0.05 mg/l	TM227	<0.05	<0.05 #	<0.05 #			
pH	<1 pH Units	TM256	7.8	7.66 #	7.91 #	8.06 #	7.92 #	7.78 #
Silicon (diss.filt)	<0.05 mg/l	TM284	7.68	4.3	1.91			
Dibutyl tin	<5 ng/l	TM328	<5	<5	<5			
Tributyl tin	<1 ng/l	TM328	<1	<1	<1			
Tetrabutyl tin	<2 ng/l	TM328	<2	<2	<2			
Triphenyl tin	<1 ng/l	TM328	<1	<1	<1			
Surrogate	%	TM328	66.5	73.7	65.8			
Trifluralin	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			
alpha-HCH	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			
gamma-HCH (Lindane)	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			
Heptachlor	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			
Aldrin	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			
beta-HCH	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			
Isodrin	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			
Heptachlor epoxide	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			
o,p'-DDE	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			
Endosulphan I	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			
trans-Chlordane	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			
cis-Chlordane	<0.01 µg/l	TM343	<0.01	<0.01	<0.01			

SDG:

181010-48

CERTIFICATE OF ANALYSIS

P1724

Report Number:

Superseded Report:

Client Reference:

Validated

477247

476957

Knockcronaghan Order Number: Z1260 Location: Customer Sample Ref GW01 GW02 GW03 SW2 SW3 **Results Leg** SW1 ISO17025 accredited mCERTS accredited. Aqueous / settled sample Aqueous / settled samp Dissolved / filtered samp Total / unfiltered sample. Depth (m 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 diss filt nnle Sample Typ Ground Water (GW) Ground Water (GW) Ground Water (GW) Surface Water (SW) Surface Water (SW) Surface Water (SW) Total / unfiltered sample. Subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery Trigger breach confirmed Date Sam 09/10/2018 09/10/2018 09/10/2018 09/10/2018 09/10/2018 09/10/2018 ** Sample Tim Date Receiv . 10/10/2018 10/10/2018 10/10/2018 10/10/2018 10/10/2018 10/10/2018 SDG Re 181010-48 181010-48 181010-48 181010-48 181010-48 181010-48 18494217 18494226 18494235 18494244 18494255 18494263 Lah Sample No (s (E) Sample deviation (see appendix . &+§@ AGS Referen LOD/Units Component Method p,p'-DDE <0.01 µg/l TM343 <0.01 <0.01 <0.01 TM343 <0.01 Dieldrin <0.01 µg/l <0.01 <0.01 o,p'-DDD (TDE) <0.01 µg/l TM343 <0.01 <0.01 <0.01 TM343 Endrin <0.01 <0.01 <0.01 <0.01 µg/l TM343 o,p'-DDT <0.01 <0.01 <0.01 <0.01 µg/l p,p'-DDD (TDE) <0.01 µg/l TM343 < 0.01 < 0.01 < 0.01 Endosulphan II <0.02 µg/l TM343 < 0.02 <0.02 < 0.02 p,p'-DDT <0.01 µg/l TM343 <0.01 <0.01 <0.01 p,p'-Methoxychlor <0.01 µg/l TM343 <0.01 <0.01 <0.01 TM343 < 0.02 Endosulphan Sulphate <0.02 µg/l <0.02 <0.02 TM343 <0.01 µg/l <0.01 <0.01 <0.01 Permethrin I <0.01 µg/l TM343 Permethrin II <0.01 <0.01 <0.01 Dichlorvos TM344 < 0.01 < 0.01 <0.01 µg/l < 0.01 TM344 Mevinphos <0.01 µg/l < 0.01 < 0.01 < 0.01 Tecnazene <0.01 µg/l TM344 < 0.01 < 0.01 < 0.01 Hexachlorobenzene <0.01 µg/l TM344 < 0.01 < 0.01 <0.01 Diazinon <0.01 µg/l TM344 <0.01 <0.01 < 0.01 Triallate TM344 <0.01 <0.01 <0.01 <0.01 µg/l Atrazine <0.01 µg/l TM344 <0.01 <0.01 <0.01 <0.01 µg/l TM344 <0.01 <0.01 <0.01 Simazine TM344 < 0.01 < 0.01 Disulfoton <0.01 µg/l < 0.01 Propetamphos <0.01 µg/l TM344 < 0.01 < 0.01 < 0.01 Chlorpyriphos-methyl <0.01 µg/l TM344 < 0.01 < 0.01 < 0.01 Dimethoate <0.01 µg/l TM344 < 0.01 <0.01 < 0.01 Pirimiphos-methyl <0.01 µg/l TM344 <0.01 <0.01 <0.01 Chlorpyriphos <0.01 µg/l TM344 <0.01 <0.01 <0.01 TM344 Methyl Parathion <0.01 µg/l <0.01 <0.01 <0.01 Malathion <0.01 µg/l TM344 <0.01 <0.01 <0.01 TM344 < 0.01 <0.01 <0.01 Fenthion <0.01 µg/l <0.01 µg/l TM344 < 0.01 <0.01 <0.01 Fenitrothion TM344 Triadimefon <0.01 µg/l < 0.01 < 0.01 < 0.01 Pendimethalin <0.01 µg/l TM344 < 0.01 <0.01 <0.01

SDG: Location:		181010-48 Knockcronaghar			724 260	Report Numb Superseded Re		
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.fitt DisoNed / filtered sample. tot.unfilt Total / unfiltered sample. * % recovery of the surrogate stands check the efficiency of the method results of individual compounds was samples aren't corrected for the re (F) Tigger breach confirmed Tigger breach confirmed 1-58-§@ Sample deviation (see appendix)	rd to The ithin covery	ustomer Sample Ref. Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	GW01 0.00 - 0.00 Ground Water (GW) 09/10/2018 10/10/2018 181010-48 18494217	GW02 0.00 - 0.00 Ground Water (GW) 09/10/2018 10/10/2018 181010-48 18494226	GW03 0.00 - 0.00 Ground Water (GW) 09/10/2018 10/10/2018 181010-48 18494235	SW1 0.00 - 0.00 Surface Water (SW) 09/10/2018 10/10/2018 181010-48 18494244	SW2 0.00 - 0.00 Surface Water (SW) 09/10/2018 10/10/2018 181010-48 18494255	SW3 0.00 - 0.00 Surface Water (SW) 09/10/2018 10/10/2018 181010-48 18494263
Component Parathion	LOD/Units <0.01 μg/l	Method TM344	<0.01	<0.01	<0.01			
Chlorfenvinphos	<0.01 µg/l	TM344	<0.01	<0.01	<0.01			
Ethion	<0.01 µg/l	TM344	<0.01	<0.01	<0.01			
Carbophenothion	<0.01 µg/l	TM344	<0.01	<0.01	<0.01			
Triazophos	<0.01 µg/l	TM344	<0.01	<0.01	<0.01			
Phosalone	<0.01 µg/l	TM344	<0.01	<0.01	<0.01			
Azinphos methyl	<0.02 µg/l	TM344	<0.02	<0.02	<0.02			
Azinphos ethyl	<0.02 µg/l	TM344	<0.02	<0.02	<0.02			
Quintozene (PCNB)	<0.01 µg/l	TM345	<0.01	<0.01	<0.01			
Telodrin	<0.01 µg/l	TM345	<0.01	<0.01	<0.01			
	<0.01 µg/l	TM345	<0.01	<0.01	<0.01			
Etrimphos	<0.01 µg/l	TM345	<0.01	<0.01	<0.01			

ALS

CERTIFICATE OF ANALYSIS

Validated

SDG: Location:	_	181010-48 Knockcronagha	Clien	FICALE OF t Reference: r Number:	P1 Z12	724	Report Number: Superseded Report:	477247 476957
SVOC MS (W) - Aqueou	s		<u></u>					
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Customer Sample Ref. Depth (m) Sample Type	GW01 0.00 - 0.00 Ground Water (GW)	GW02 0.00 - 0.00 Ground Water (GW)		GW03 0.00 - 0.00 Ground Water (GW)		
 Subcontracted test. % recovery of the surrogate stand check the efficiency of the method results of individual compounds v samples aren't corrected for the re (F) Trigger breach confirmed 	i. The vithin	Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s)	09/10/2018 10/10/2018 181010-48 18494217	09/10/2018 10/10/2018 181010-48 18494226		09/10/2018 10/10/2018 181010-48 18494235		
1-5&+§@ Sample deviation (see appendix) Component	LOD/Units							
1,2,4-Trichlorobenzene (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #		
1,2-Dichlorobenzene (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #		
1,3-Dichlorobenzene (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #		
1,4-Dichlorobenzene (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #		
2,4,5-Trichlorophenol (aq)	<1 µg/l	TM176	<1 #	<1	#	~1 #		
2,4,6-Trichlorophenol (aq)	<1 µg/l	TM176		<1	#			
2,4-Dichlorophenol (aq)	<1 µg/l	TM176	* <1 #	<1	#			
2,4-Dimethylphenol (aq)	<1 µg/l	TM176	<1	<1		<1		
2,4-Dinitrotoluene (aq)	<1 µg/l	TM176	# <1	<1	#	# <1		
2,6-Dinitrotoluene (aq)	<1 µg/l	TM176	# <1	<1	#	# <1		
2-Chloronaphthalene (aq)	<1 µg/l	TM176	# <1	<1	#	# <1		
2-Chlorophenol (aq)	<1 µg/l	TM176	# <1	<1	#	# <1		
2-Methylnaphthalene (aq)	<1 µg/l	TM176	# <1	<1	#	# <1		
2-Methylphenol (aq)	<1 µg/l	TM176	#	<1	#	# <1		
2-Nitroaniline (ag)	<1 µg/l	TM176	#	<1	#	# <1		
2-Nitrophenol (aq)	<1 µg/l	TM176	#	<1	#	#		
3-Nitroaniline (aq)	<1 µg/l	TM176	- # <1	<1	#	- 		
	<1 µg/l	TM176	<1 #	<1	#	<1 **		
4-Bromophenylphenylether (aq)			#		#	#		
4-Chloro-3-methylphenol (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #		
4-Chloroaniline (aq)	<1 µg/l	TM176	<1	<1		<1		
4-Chlorophenylphenylether (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #		
4-Methylphenol (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #		
4-Nitroaniline (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #		
4-Nitrophenol (aq)	<1 µg/l	TM176	<1	<1		<1		
Azobenzene (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #		
Acenaphthylene (aq)	<1 µg/l	TM176	<1 #	<1	#	~1 #		
Acenaphthene (aq)	<1 µg/l	TM176	<1	<1		<1		
Anthracene (aq)	<1 µg/l	TM176	# <1	<1	#	# <1		
bis(2-Chloroethyl)ether (aq)	<1 µg/l	TM176	# <1	<1	#	# <1		
bis(2-Chloroethoxy)methane	<1 µg/l	TM176	# <1	<1	#	# <1		
(aq) bis(2-Ethylhexyl) phthalate (aq)	<2 µg/l	TM176	# <2	14.3	#	# 10.6		
Butylbenzyl phthalate (aq)	<1 µg/l	TM176	# <1	<1	#	# <1		
Benzo(a)anthracene (aq)	<1 µg/l	TM176	#	<1	#	#		
15:34:19 17/10/2018	r or		#		#	#		

ALS

CERTIFICATE OF ANALYSIS

SDG:		181010-48	Clien	TICATE O	P17	724	Report Number:	477247	
(ALS) Location:		Knockcronagh	an Orde	r Number:	Z12	260	Superseded Report:	476957	
VOC MS (W) - Aqueou Results Legend		Customer Sample Ref.			_		· · · · ·		
# ISO17025 accredited. M mCERTS accredited.		sustomer Sample Rei.	GW01	GW02		GW03			
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00		0.00 - 0.00			
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Ground Water (GW) 09/10/2018	Ground Water (GW 09/10/2018)	Ground Water (GW) 09/10/2018			
** % recovery of the surrogate stand check the efficiency of the method		Sample Time Date Received	10/10/2018	10/10/2018		10/10/2018			
results of individual compounds v samples aren't corrected for the re	vithin	SDG Ref	181010-48	181010-48		181010-48			
(F) Trigger breach confirmed I-5&+§@ Sample deviation (see appendix)	,	Lab Sample No.(s) AGS Reference	18494217	18494226		18494235			
Component	LOD/Units	Method							
Benzo(b)fluoranthene (aq)	<1 µg/l	TM176	<1	<1		<1			
Benzo(k)fluoranthene (aq)	<1 µg/l	TM176	<1 #	<1	#	# <1			
	. 63.		. #		#	. #			
Benzo(a)pyrene (aq)	<1 µg/l	TM176	<1	<1	щ	<1			
Benzo(g,h,i)perylene (aq)	<1 µg/l	TM176	<1 #	<1	#	# <1			
	τ μg/i	TWITTO	#		#	#			
Carbazole (aq)	<1 µg/l	TM176	<1	<1		<1			
Chrysene (aq)	<1 µg/l	TM176	<1 *1	<1	#	# <1			
Shi ysene (aq)	<1 µg/i	1101170	<ı #		#	-1 #			
Dibenzofuran (aq)	<1 µg/l	TM176	<1	<1		<1			
	.4 0	T144-20	#		#	#			
n-Dibutyl phthalate (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #			
Diethyl phthalate (aq)	<1 µg/l	TM176	<1	<1	"	<1			
			#		#	#			
Dibenzo(a,h)anthracene (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #			
Dimethyl phthalate (aq)	<1 µg/l	TM176	<1	<1	#	<1 **			
···) · · · · · (· ·)/	1.2.		#		#	#			
n-Dioctyl phthalate (aq)	<5 µg/l	TM176	<5	<5	ш	<5			
Fluoranthene (aq)	<1 µg/l	TM176	=======================================	<1	#	# <1			
laoranaiono (aq)	. µ9,.		. #		#	. #			
Fluorene (aq)	<1 µg/l	TM176	<1	<1		<1			
Hexachlorobenzene (aq)	<1 µg/l	TM176	=======================================	<1	#	# <1			
lexachiorobenzene (aq)	<1 µg/i	1101170	<1 #		#				
Hexachlorobutadiene (aq)	<1 µg/l	TM176	<1	<1		<1			
	14	TN4470	#	-1	#	#			
Pentachlorophenol (aq)	<1 µg/l	TM176	<1	<1		<1			
Phenol (aq)	<1 µg/l	TM176	<1	<1		<1			
		T14470							
n-Nitroso-n-dipropylamine (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #			
Hexachloroethane (aq)	<1 µg/l	TM176	<1	<1		<1			
			#		#	#			
Nitrobenzene (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #			
Naphthalene (aq)	<1 µg/l	TM176	<1	<1	#	# <1			
			#		#	#			
sophorone (aq)	<1 µg/l	TM176	<1 #	<1	#	<1 #			
Hexachlorocyclopentadiene (aq)	<1 µg/l	TM176	=======================================	<1	#	# <1	├ ── ├ ─		
Phenanthrene (aq)	<1 µg/l	TM176	<1 "	<1	,,	<1			
ndeno(1,2,3-cd)pyrene (aq)	<1 µg/l	TM176	=======================================	<1	#	# <1	├ ── ├ ─	<u> </u>	
	· • µ9/i		#	.,	#	#			
^D yrene (aq)	<1 µg/l	TM176	<1	<1		<1			
		<u> </u>	#		#	#			
		+ +							
		T							_

5

CERTIFICATE OF ANALYSIS

Validated

#

#

Validated

SDG:		81010-48	Clien	t Reference:	P17	/24	Report Number:	477247
(ALS) Location:	r	Knockcronagha	in Ordei	r Number:	Z12	260	Superseded Report:	476957
VOC MS (W) Results Legend	Cu	stomer Sample Ref.	GW01	GW02		GW03	1 T	
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test.		Depth (m) Sample Type Date Sampled	0.00 - 0.00 Ground Water (GW) 09/10/2018	0.00 - 0.00 Ground Water (GW) 09/10/2018		0.00 - 0.00 Ground Water (GW) 09/10/2018		
** % recovery of the surrogate stand check the efficiency of the methoo results of individual compounds v samples aren't corrected for the re	d. The within	Sample Time Date Received SDG Ref	10/10/2018 181010-48	10/10/2018 181010-48		10/10/2018 181010-48		
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)	,	Lab Sample No.(s) AGS Reference	18494217	18494226		18494235		
Component Tetrachloroethene	LOD/Units <1 µg/l	Method TM208	<1	<1	_	<1		
Dibromochloromethane	<1 µg/l	TM200	<1 *1	<1	#	<1		
1,2-Dibromoethane	<1 µg/l	TM208	<1 #	<1	#	<1		
Chlorobenzene	<1 µg/l	TM200	<1 *1	<1	#	<1		
1,1,1,2-Tetrachloroethane	<1 µg/l	TM208	<1 #	<1	#	<1		
Ethylbenzene	<1 µg/l	TM200	<1 #	<1	#	<1		
m,p-Xylene	<1 µg/l	TM200	<1 #	<1	#	<1		
o-Xylene	<1 µg/l	TM200	<1 #	<1	#	<1		
Styrene	<1 µg/l	TM200	<1 #	<1	#	<1		
Bromoform	<1 µg/l	TM200	<1 *1	<1	#	<1		
Isopropylbenzene		TM200	<1 *1	<1	#	<1		
1,1,2,2-Tetrachloroethane	<1 µg/l	TM208	<1 *1	<1	#	<1		
	<1 µg/l		#		#	#		
1,2,3-Trichloropropane	<1 µg/l	TM208	<1 #	<1	#	<1		
Bromobenzene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
Propylbenzene	<1 µg/l	TM208	<1 #	<1	#	<1		
2-Chlorotoluene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
1,3,5-Trimethylbenzene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
4-Chlorotoluene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
tert-Butylbenzene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
1,2,4-Trimethylbenzene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
sec-Butylbenzene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
4-iso-Propyltoluene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
1,3-Dichlorobenzene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
1,4-Dichlorobenzene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
n-Butylbenzene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
1,2-Dichlorobenzene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
1,2-Dibromo-3-chloropropane	<1 µg/l	TM208	<1	<1		<1		
1,2,4-Trichlorobenzene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
Hexachlorobutadiene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
tert-Amyl methyl ether (TAME)	<1 µg/l	TM208	<1 #	<1	#	<1 #		
Naphthalene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
1,2,3-Trichlorobenzene	<1 µg/l	TM208	<1 #	<1	#	<1 #		
			"				· · · · ·	

	SDG:		181010-48	Clien	t Reference: P1	724	Report Numb	er: 477247	
A	SDG: Location:		Knockcronagh	nan Orde	r Number: Z1	260	Superseded Re	eport: 476957	
voci	NS (W)								
	Results Legend		Customer Sample Ref.	GW01	GW02	GW03			
tot.unfilt * **	ISO17025 accredited. mCERTS accredited. Aqueous / settide sample. Dissolved / filtered sample. Total / unfiltered sample. Subcontracted test. % recovery of the surrogate stand check the efficiency of the method results of individual compounds w samples arent corrected for the re Trigger breach confirmed	i. The vithin	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s)	Ground Water (GW)	0.00 - 0.00 Ground Water (GW) 09/10/2018 10/10/2018 18/1010-48 18494226	0.00 - 0.00 Ground Water (GW) 09/10/2018 10/10/2018 181010-48 18494235			
1-5& + §@	Sample deviation (see appendix)	LOD/Unit	AGS Reference						
Compc 1,3,5-Ti	ichlorobenzene	<1 µg/l		<1	<1	<1			
			_						
		1							

SDG:

181010-48 Knockcronaghan Client Reference: P1724 Z1260 Order Number:

Report Number: Superseded Report:

Validated

477247 476957

Table of Results - Appendix

Method No	Reference	Description
SUB		Subcontracted Test
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM046	Method 4500G, AWWA/APHA, 20th Ed., 1999	Measurement of Dissolved Oxygen by Oxygen Meter
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM172	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	EPH in Waters
TM176	EPA 8270D Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of SVOCs in Water by GCMS
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM284		
TM328		
TM343	EPA 8270D - Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of Selected Pesticides (Suite I) in Liquids by GCMS
TM344	EPA 8270D – Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of selected pesticides (Suite II) by GCMS
TM345	EPA 8270D – Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of selected pesticides (Suite III) by GCMS

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

ALS	SDG:	181010-48	Client Reference:	P1724
	Location:	Knockcronaghan	Order Number:	Z1260
ALS)	Location.	Kilockeronaghan	Order Number.	21200

Report Number:477247Superseded Report:476957

Test Completion Dates

Lab Sample No(s)	18494217	18494226	18494235	18494244	18494255	18494263	18494271
Customer Sample Ref.	GW01	GW02	GW03	SW1	SW2	SW3	SW4
AGS Ref.							
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	Ground Water	Ground Water	Ground Water	Surface Water	Surface Water	Surface Water	Surface Water
Alkalinity as CaCO3	16-Oct-2018	16-Oct-2018	16-Oct-2018				
Ammoniacal Nitrogen	15-Oct-2018	15-Oct-2018	15-Oct-2018	15-Oct-2018	15-Oct-2018	15-Oct-2018	15-Oct-2018
Anions by Kone (w)	16-Oct-2018	16-Oct-2018	16-Oct-2018	15-Oct-2018	15-Oct-2018	15-Oct-2018	15-Oct-2018
BOD True Total	16-Oct-2018	16-Oct-2018	15-Oct-2018	15-Oct-2018	16-Oct-2018	15-Oct-2018	16-Oct-2018
COD Unfiltered	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Coliforms (W)	16-Oct-2018	16-Oct-2018	16-Oct-2018				
Conductivity (at 20 deg.C)	11-Oct-2018	11-Oct-2018	11-Oct-2018	11-Oct-2018	11-Oct-2018	11-Oct-2018	11-Oct-2018
Cyanide Comp/Free/Total/Thiocyanate	12-Oct-2018	12-Oct-2018	12-Oct-2018				
Dissolved Metals by ICP-MS	12-Oct-2018	17-Oct-2018	12-Oct-2018	12-Oct-2018	16-Oct-2018	12-Oct-2018	16-Oct-2018
Dissolved Oxygen by Probe	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018
Fluoride	16-Oct-2018	16-Oct-2018	16-Oct-2018				
Mercury Dissolved	12-Oct-2018	12-Oct-2018	12-Oct-2018				
Mineral Oil C10-40 Aqueous (W)	16-Oct-2018	17-Oct-2018	17-Oct-2018				
Nitrite by Kone (w)	16-Oct-2018	16-Oct-2018	16-Oct-2018				
Organotins in Aqueous Samples	16-Oct-2018	16-Oct-2018	16-Oct-2018				
Pesticides (Suite I) by GCMS	15-Oct-2018	15-Oct-2018	15-Oct-2018				
Pesticides (Suite II) by GCMS	15-Oct-2018	15-Oct-2018	15-Oct-2018				
Pesticides (Suite III) by GCMS	15-Oct-2018	15-Oct-2018	15-Oct-2018				
pH Value	12-Oct-2018	15-Oct-2018	15-Oct-2018	12-Oct-2018	12-Oct-2018	15-Oct-2018	15-Oct-2018
Phosphate by Kone (w)	15-Oct-2018	15-Oct-2018	15-Oct-2018			-	
Silicon Dissolved by ICP-OES	16-Oct-2018	16-Oct-2018	16-Oct-2018				1
SVOC MS (W) - Aqueous	15-Oct-2018	15-Oct-2018	15-Oct-2018				
Total Organic and Inorganic Carbon	11-Oct-2018	11-Oct-2018	11-Oct-2018				1
VOC MS (W)	11-Oct-2018	11-Oct-2018	11-Oct-2018				

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

REG NO. 1381 Email: reports@cityanalysts.ie

www.cityanalysts.ie

Customer

Customer Services ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Certificate Of Analysis

Job Number:18-47978Issue Number:1Report Date:15 October 2018

Site:Knockcronaghan: 181010-48PO Number:Not SuppliedDate Samples Received:10/10/2018

Please find attached the results for the samples received at our laboratory on 10/10/2018.

Should you have any queries regarding the report or require any further services, we would be happy to discuss your requirements. For additional information about the company please log-on to our website at the above address.

Thank you for choosing City Analysts Limited. We look forward to assisting you again.

Authorised By:

Caitlin Quinn Deputy Quality Manager

Authorised Date: 15 Octo

15 October 2018

Notes:

Results relate only to the items tested. Information on methods of analysis and performance characteristics is available on request. Any opinions or interpretations indicated are outside the scope of our INAB accreditation. This test report shall not be reproduced except in full or with written approval of City Analysts Limited.

Page 1 of 4

Template: 1146 Revision: 018

Report Reference: 18-47978

Report Version: 1

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer

Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Site:	Knockcronaghan: 181010-48		
Sample Description:	GW 01	Date of Sampling:	09/10/2018
Sample Type:	Ground	Date Sample Received:	10/10/2018
Lab Reference Numbe	er: 414288		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	10/10/2018	Coliforms	866.4	MPN/100ml	-

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely. NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 2 of 4

Report Reference: 18-47978

Report Version: 1

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK **CH5 3US**

Site:	Knockcronaghan: 181010-48		
Sample Description:	GW 02	Date of Sampling:	09/10/2018
Sample Type:	Ground	Date Sample Received:	10/10/2018
Lab Reference Numbe	er: 414289		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	10/10/2018	Coliforms	1594.0	MPN/100ml	-

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely. NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 3 of 4

Report Reference: 18-47978

Report Version: 1

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer

Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK **CH5 3US**

Site:	Knockcronaghan: 181010-48		
Sample Description:	GW 03	Date of Sampling:	09/10/2018
Sample Type:	Ground	Date Sample Received:	10/10/2018
Lab Reference Numbe	er: 414290		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	10/10/2018	Coliforms	698.0	MPN/100ml	-

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely. NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 4 of 4

SDG:	181010-48 Cl	P1724	Report Number:	477247
Location:	Knockcronaghan Or	Z1260	Superseded Report:	476957

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All sumples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

14. **Product analyses** - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-lsopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.
A 1	

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow n Asbestos
Cro d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	· ·

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.