

APPENDIX G ENVIRONMENTAL LABORATORY TEST RESULTS

Chemtest The right chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	18-29299-1		
Initial Date of Issue:	05-Oct-2018		
Client	Causeway Geotech Ltd		
Client Address:	8 Drumahiskey Road Balnamore Ballymoney County Antrim BT53 7QL		
Contact(s):	Carin Cornwall Colm Hurley Darren O'Mahony Gabriella Horan John Cameron Lucy Newland Matthew Gilbert Neil Haggan Paul Dunlop Paul McNamara Sean Ross Stephen Franey Stephen Watson Stuart Abraham	et use.	
Project	18-0838A Monaghan Landfills, Killycard		
Quotation No.:		Date Received:	24-Sep-2018
Order No.:		Date Instructed:	27-Sep-2018
No. of Samples:	2		
Turnaround (Wkdays):	7	Results Due:	05-Oct-2018
Date Approved:	05-Oct-2018		
Approved By:			

Details:

Glynn Harvey, Laboratory Manager

The right chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Consent for inspection purpose only any other use.

Troject. To boooA monagnan Ean									
Chemtest Job No:	18-29299						Landfill V	Vaste Acceptano	e Criteria
Chemtest Sample ID:	694799							Limits	
Sample Ref:								Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP08							hazardous	Hazardous
Top Depth(m):	0.50						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	21-Sep-2018							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			0.92	3	5	6
Loss On Ignition	2610	U	%			3.0			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	U	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
рН	2010	U				7.8		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			< 0.0020		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	<mark>_2:1</mark>	Cumulative		for compliance	-
			mg/l	mg/l	`mg/kg	mg/kg 10:1	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1450	U	< 0.0010	0.0041	o ^{ver} < 0.050	< 0.050	0.5	2	25
Barium	1450	U	0.0028	0.0063	< 0.50	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	< 0.00010	< 0.010	< 0.010	0.04	1	5
Chromium	1450	U	0.0033	0.0031	< 0.050	< 0.050	0.5	10	70
Copper	1450	U	0.0017	<u>v</u> 00045	< 0.050	< 0.050	2	50	100
Mercury	1450	U	< 0.00050	0.00050	< 0.0010	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	0.0013	ð [*] 0.0022	< 0.050	< 0.050	0.5	10	30
Nickel	1450	U	< 0.0010	0.0040	< 0.050	< 0.050	0.4	10	40
Lead	1450	U	< 0.0010	0.0095	< 0.010	0.080	0.5	10	50
Antimony	1450	U	< 0.0010	< 0.0010	< 0.010	< 0.010	0.06	0.7	5
Selenium	1450	U	€0.0010	< 0.0010	< 0.010	< 0.010	0.1	0.5	7
Zinc	1450	U	Cons 0.0028	0.014	< 0.50	< 0.50	4	50	200
Chloride	1220	U	< 1.0	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.11	0.13	< 1.0	1.3	10	150	500
Sulphate	1220	U	8.2	6.2	16	65	1000	20000	50000
Total Dissolved Solids	1020	N	37	28	73	290	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	8.2	6.6	< 50	68	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.175
Moisture (%)	14

Leachate Test Information	
Leachant volume 1st extract/l	0.322
Leachant volume 2nd extract/l	1.400
Eluant recovered from 1st extract/l	0.278

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Proj	ject:	18-0838A	Monaghan	Landfills,	, Killycard	
------	-------	----------	----------	------------	-------------	--

Chemtest Job No:	18-29299						LandfIII V	Vaste Acceptano	ce Criteria
Chemtest Sample ID:	694800							Limits	
Sample Ref:								Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP04							hazardous	Hazardous
Top Depth(m):	0.50						Inert Waste	waste in non-	Waste
Bottom Depth(m):							Landfill	hazardous	Landfill
Sampling Date:	21-Sep-2018							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%			3.0	3	5	6
Loss On Ignition	2610	U	%			7.4			10
Total BTEX	2760	U	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	U	mg/kg			< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	U	mg/kg			< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg			< 2.0	100		
рН	2010	U				7.6		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			< 0.0020		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	_2:1	Cumulative		for compliance	•
			mg/l	mg/l	💦 mg/kg	mg/kg 10:1	using BS	S EN 12457 at L/	/S 10 I/kg
Arsenic	1450	U	< 0.0010	0.0065	o ^{str} < 0.050	0.054	0.5	2	25
Barium	1450	U	0.0061	0.0086	< 0.50	< 0.50	20	100	300
Cadmium	1450	U	< 0.00010	0.00011	< 0.010	< 0.010	0.04	1	5
Chromium	1450	U	< 0.0010	<u>≲0.0010</u>	< 0.050	< 0.050	0.5	10	70
Copper	1450	U	0.0034	<u>v</u> 00086	< 0.050	< 0.050	2	50	100
Mercury	1450	U	< 0.00050 🔬	0.00050	< 0.0010	< 0.0050	0.01	0.2	2
Molybdenum	1450	U	< 0.00100	0.0015	< 0.050	< 0.050	0.5	10	30
Nickel	1450	U	0.0012	0.0059	< 0.050	0.051	0.4	10	40
Lead	1450	U	< 0.0010	0.017	< 0.010	0.14	0.5	10	50
Antimony	1450	U	< 0,0010	< 0.0010	< 0.010	< 0.010	0.06	0.7	5
Selenium	1450	U	₹0.0010	< 0.0010	< 0.010	< 0.010	0.1	0.5	7
Zinc	1450	U	Con 0.0026	0.020	< 0.50	< 0.50	4	50	200
Chloride	1220	U	< 1.0	1.1	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.096	0.14	< 1.0	1.3	10	150	500
Sulphate	1220	U	6.0	4.7	12	49	1000	20000	50000
Total Dissolved Solids	1020	N	43	28	84	300	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	15	12	< 50	130	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.175
Moisture (%)	16

Leachate Test Information	
Leachant volume 1st extract/l	0.316
Leachant volume 2nd extract/l	1.400
Eluant recovered from 1st extract/l	0.300

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Report Information

Key

- **UKAS** accredited U
- Μ MCERTS and UKAS accredited
- Ν Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- This analysis has been subcontracted to an unaccredited laboratory Т
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- "less than" <
- "greater than" >

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry

weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent ports are incremented by 1 ction owner

Sample Deviation Codes

- A Date of sampling not supplied
- FOI B - Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com

Conserver of the server of the

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Daniel Hayden

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CERTIFICATE OF ANALYSIS

Date:
Customer:
Sample Delivery Group (SDG):
Your Reference:
Location:
Report No:

22 October 2018 D_FTIM_DUB 181003-45 P1724 Killycard 477957

This report has been revised and directly supersedes 476315 in its entirety.

We received 5 samples on Wednesday October 03, 2018 and 5 of these samples were scheduled for analysis which was completed on Thursday October 11, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALSALife Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

	SDG:
(ALS)	Location:

181003-45 P1724 477957 **Client Reference:** Report Number: Killycard Superseded Report: 476315 Order Number: Z1260

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
18449562	GW01		0.00 - 0.00	02/10/2018
18449572	GW02		0.00 - 0.00	02/10/2018
18449587	GW03		0.00 - 0.00	02/10/2018
18449607	SW1		0.00 - 0.00	02/10/2018
18449622	SW2		0.00 - 0.00	02/10/2018

Maximum Sample/Coolbox Temperature (°C) : ISO5667-3 Water quality - Sampling - Part3 -

11.0

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Validated

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

Only received samples which have had analysis scheduled will be shown on the following pages.

Consent of conviet owner required for any other use.

SDG: Location:	181003-45 Killycard	j			feren mber:		P17 Z12						port I				4779 476				
Results Legend X Test N No Determination Possible	Lab Sam	ble No(s)					18449562					18449572					18449587				18449607
	Custo Sample R	-					GW01					GW02					GW03				SW1
Sample Types - S - Soil/Solid INS - Unspecified Solid GW - Ground Water GW - Surface Water E - Land Leachate	AGS Re	ference																			
PL - Prepared Leachate PR - Process Water SA - Saline Water IE - Trade Effluent IS - Treated Sewage JS - Untreated Sewage	Depti	ו (m)					0.00 - 0.00					0.00 - 0.00					0.00 - 0.00				0.00 - 0.00
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Conta	ainer	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	250ml BOD (ALE212)	500ml Plastic (ALE208)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)
	Sample	э Туре	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	WS	WS	SM	SW
Nkalinity as CaCO3	All	NDPs: 0 Tests: 3		x						et 15	5• •			X							
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 5			X		ر میں	aly.	and o	X					X					X	
Anions by Kone (w)	All	NDPs: 0 Tests: 5		x	X Pectito	a put	o ^{ses} zquire	,~	X					X					X		
30D True Total	All	NDPs: 0 Tests: 2	<hr/>	oin	Pot o	Ar.												X			
Coliforms (W)	All	NDPs: 2 Tests: 1	No Sett	COA				N					x								
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 5		x					X					X					X		
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 3					X					X					X				
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 5				X					X					x					x
Dissolved Oxygen by Probe	All	NDPs: 0 Tests: 5		X					X					X					X		
luoride	All	NDPs: 0 Tests: 3		X					x					x							
Aercury Dissolved	All	NDPs: 0 Tests: 3				x					X					x					
H Value	All	NDPs: 0 Tests: 5		X					X					X					X		
Total Organic and Inorganic Carbon	All	NDPs: 0 Tests: 3	\vdash																~		

			18449622
			SW2
			0.00 - 0.00
1000ml glass bottle (ALE220)	250ml BOD SW (ALE212)	H2SO4 (ALE244) SW	0.00 - 0.00 HNO3 Filtered SW (ALE204)
WS	WS	WS	WS
		X	
		^	
Х			
	x		
X			
~			
			x
X			
x			

Consent of copyright owner required for any other use.

CERTIFICATE OF ANALYSIS SDG: 181003-45 P1724 **Client Reference:** Report Number: 477957 Location: Killycard Order Number: Z1260 Superseded Report: 476315 Customer Sample Ref. Results Leg ISO17025 accredited. GW01 GW02 GW03 SW1 SW2 mCERTS accredited. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. м aq diss.filt tot.unfilt Depth (m) 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 Ground Water (GW) 02/10/2018 Ground Water (GW) 02/10/2018 Ground Water (GW) 02/10/2018 Surface Water (SW) 02/10/2018 Surface Water (SW) 02/10/2018 Sample Type Subcontracted test.
 Subcontest.
 Subcontracted test.
 Subcontracted test.
 Subcontra Date Sample Sample Time . 03/10/2018 . 03/10/2018 . 03/10/2018 . 03/10/2018 . 03/10/2018 Date Received 181003-45 18449562 181003-45 18449572 181003-45 18449587 181003-45 18449607 181003-45 18449622 SDG Re Lab Sample No.(s) AGS Reference Component LOD/Units Method Coliforms, Total >2420 CFU/100ml SUB Alkalinity, Total as CaCO3 <2 mg/l TM043 230 265 405 # # # 3.23 BOD, unfiltered TM045 <1 mg/l <1 # # Oxygen, dissolved <0.3 mg/l TM046 8.55 8.35 8.34 12.2 9.04 Organic Carbon, Total <3 mg/l TM090 9.29 <3 3.15 # # # Ammoniacal Nitrogen as N <0.2 mg/l TM099 14.5 1.13 4.1 0.318 <0.2 # # # # Ħ Fluoride <0.5 mg/l TM104 <0.5 <0.5 <0.5 # # # Conductivity @ 20 deg.C < 0.005 TM120 0.736 0.473 0.708 0.421 0.434 # # # # mS/cm Ħ <0.5 µg/l Arsenic (diss.filt) TM152 14.7 3.67 2.15 # # # Boron (diss filt) <10 ua/l TM152 23.5 13.8 16 1

Boron (diss.filt)	<10 µg/l	TM152	23.5 #	13.8 #	16.1			
Cadmium (diss.filt)	<0.08 µg/l	TM152	<0.08 #	0.108	0.111et #			
Chromium (diss.filt)	<1 µg/l	TM152	<1 #	<1 #	0.1114e1 15 ⁶ #			
Copper (diss.filt)	<0.3 µg/l	TM152	0.769 #	1.48 put pos	2.36 #			
Lead (diss.filt)	<0.2 µg/l	TM152	0.524 #	cition et "	74.3 #			
Manganese (diss.filt)	<3 µg/l	TM152	1230	theperative theperative title #	267 #			
Nickel (diss.filt)	<0.4 µg/l	TM152	22.8	्रे 4.52 #	5.79 #			
Phosphorus (diss.filt)	<10 µg/l	TM152	91.6 91.6 #	<10 #	79.3 #			
Zinc (diss.filt)	<1 µg/l	TM152	38.7 #	18.7 #	25 #			
Sodium (Dis.Filt)	<0.076 mg/l	TM152	21.5 #	17.1 #	44.3 #	33.4	30.4 #	
Magnesium (Dis.Filt)	<0.036 mg/l	TM152	15.1 #	21.5 #	21 #			
Potassium (Dis.Filt)	<0.2 mg/l	TM152	8.15 #	2.72 #	3.59 #	5.02	5.04 #	
Calcium (Dis.Filt)	<0.2 mg/l	TM152	109 #	64.2 #	105 #			
Iron (Dis.Filt)	<0.019 mg/l	TM152	0.772 #	<0.019 #	0.0356 #	:		
Mercury (diss.filt)	<0.01 µg/l	TM183	<0.01	<0.01	<0.01 #			
Chloride	<2 mg/l	TM184	31.7 #	13.8 #	15.1 #	46.9	46.6 #	
Total Oxidised Nitrogen as N	<0.1 mg/l	TM184	0.119 #	0.119	0.111 #			
Sulphate (soluble) as S	<1 mg/l	TM184	49.7 #	<1 #	1.97	7.63	7.4 #	
Cyanide, Total	<0.05 mg/l	TM227	<0.05	<0.05	<0.05			
рН	<1 pH Units	TM256	6.69	7.68	7.48	7.84	7.54 #	
			, in the second s					
	_		1		!			I

 SDG:
 181003-45
 Client Reference:
 P1724
 Report Number:
 477957

 Location:
 Killycard
 Order Number:
 Z1260
 Superseded Report:
 476315

Notification of NDPs (No determination possible)

Date Received : 03/10/2018 10:13:24						
Sample No	Customer Sample Ref.	Depth (m)	Test	Comment		
18449562	GW01	0.00 - 0.00	Coliforms (W)	See Comments for cancellation details		
18449572	GW02	0.00 - 0.00	Coliforms (W)	See Comments for cancellation details		

Consent of copyright owner convict for any other use.

477957

476315

SDG:

Location:

181003-45 Killycard Client Reference: P1724 Order Number: Z1260 Report Number: Superseded Report:

Table of Results - Appendix

Method No	Reference	Description
SUB		Subcontracted Test
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM046	Method 4500G, AWWA/APHA, 20th Ed., 1999	Measurement of Dissolved Oxygen by Oxygen Meter
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Consent of copyright owner required for any other tog

Client Reference:

Order Number:

		Tes	t Com	pletior	n Dates
Lab Sample No(s)	18449562	18449572	18449587	18449607	18449622
Customer Sample Ref.	GW01	GW02	GW03	SW1	SW2
AGS Ref.					
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	Ground Water	Ground Water	Ground Water	Surface Water	Surface Water
Alkalinity as CaCO3	10-Oct-2018	10-Oct-2018	10-Oct-2018		
Ammoniacal Nitrogen	11-Oct-2018	11-Oct-2018	11-Oct-2018	11-Oct-2018	11-Oct-2018
Anions by Kone (w)	10-Oct-2018	10-Oct-2018	10-Oct-2018	11-Oct-2018	11-Oct-2018
BOD True Total				09-Oct-2018	08-Oct-2018
Coliforms (W)			08-Oct-2018		
Conductivity (at 20 deg.C)	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018
Cyanide Comp/Free/Total/Thiocyanate	08-Oct-2018	08-Oct-2018	08-Oct-2018		
Dissolved Metals by ICP-MS	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018
Dissolved Oxygen by Probe	04-Oct-2018	05-Oct-2018	04-Oct-2018	04-Oct-2018	05-Oct-2018
Fluoride	10-Oct-2018	10-Oct-2018	10-Oct-2018		
Mercury Dissolved	08-Oct-2018	08-Oct-2018	08-Oct-2018		
pH Value	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018	10-Oct-2018
Total Organic and Inorganic Carbon	05-Oct-2018	05-Oct-2018	05-Oct-2018		

181003-45

Killycard

4:

Z1260

DETAILED IN SCOPE REG NO. 138

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Customer

Customer Services ALS Environmental Ltd Hawarden Business Park Manor Land Hawarden, Deeside UK CH5 3US

Certificate Of Analysis

Job Number:	18-47692
Issue Number:	1
Report Date:	5 October 2018

Site: Not Applicable PO Number: 181003-45 Date Samples Received: 03/10/2018

For inspection numposes only any other use. Please find attached the results for the samples received at our laboratory on 03/10/2018.

Should you have any queries regarding the report or require any further services, we would be happy to discuss your requirements. For additional information about the company please log-on to our website at the above address.

Thank you for choosing City Analysts Limited. We look forward to assisting you again.

Authorised By:

Shane Reynolds Laboratory Manager Authorised Date: 5 October 2018

Notes:

Results relate only to the items tested. Information on methods of analysis and performance characteristics is available on request. Any opinions or interpretations indicated are outside the scope of our INAB accreditation. This test report shall not be reproduced except in full or with written approval of City Analysts Limited.

Page 1 of 2

Template: 1146 Revision: 018

Not Applicable

GW03 Killycard

413443

Ground

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

DETAILED IN SCOPE REG NO. 138

Report Reference: 18-47692

Report Version: 1

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer

Site:

Customer Services

Sample Description:

Lab Reference Number:

Sample Type:

ALS Environmental Ltd Hawarden Business Park Manor Land Hawarden, Deeside UK CH5 3US

Date of Sampling: 03/10/2018

Date Sample Received: 03/10/20

03/10/2010
03/10/2018

Site / Method Ref.	Analysis Start Date	Parameter	otter Result	Units	PV Value (Drinking Water Only)
D/D1201#	03/10/2018	California	0410.0	MPN/100ml	i B
		Consent of convisition of the printing of the			

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 2 of 2

ALS	SDG: Location:	181003-45 Killycard	Client Reference: Order Number:	P1724 Z1260	Report Number: Superseded Report:	477957 476315
	/					

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on received

prace on receipting
prace on receipting
provide the provided the provide

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect

14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. We are accredited to MCERTS for sand, clav and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	ncorrect container received
A. 80	Deviation from method
A STA	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.
A 1	1

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name		
Chrysof le	White Asbestos		
Amosite	Brow n Asbestos		
Cro d dolite	Blue Asbe stos		
Fibrous Actinolite			
Fib to us Anthop hyll ite	-		
Fibrous Tremol ite	-		

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Daniel Hayden

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CERTIFICATE OF ANALYSIS

Date:
Customer:
Sample Delivery Group (SDG):
Your Reference:
Location:
Report No:

16 October 2018 D_FTIM_DUB 181010-49 P1724 Killycard 477084

This report has been revised and directly supersedes 476448 in its entirety.

We received 4 samples on Wednesday October 10, 2018 and 4 of these samples were scheduled for analysis which was completed on Tuesday October 16, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALSALife Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

	SDG:
(ALS)	Locatio

181010-49 P1724 477084 **Client Reference:** Report Number: Killycard Superseded Report: 476448 Order Number: Z1260 on:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
18494289	GW01		0.00 - 0.00	09/10/2018
18494298	GW03		0.00 - 0.00	09/10/2018
18494307	SW1		0.00 - 0.00	09/10/2018
18494313	SW2		0.00 - 0.00	09/10/2018

Maximum Sample/Coolbox Temperature (°C) : ISO5667-3 Water quality - Sampling - Part3 -

13.0

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Validated

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

Only received samples which have had analysis scheduled will be shown on the following pages.

Consent of copyright owner required for any other use.

1 V 9 1 9		

		С				OF			SIS									Valio	dated	1
SDG: Location:	181010-49 Killycard				ference mber:		724 260						Numi ded R			4770 476				
Results Legend								_												
X Test	Lab Sample	No(s)						18494289				18494298				18494307				18494313
No Determination Possible								8				86				7				13
	Custome Sample Refe	-						GW01				GW03				SW1				SW2
Sample Types - S - Soil/Solid																				
UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prepared Leachate	AGS Refere	nce																		
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m	ı)						0.00 - 0.00				0.00 - 0.00	0.00 - 0.00							0.00 - 0.00
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	H2SO4 (ALE244)	HNO3 Filtered	NaOH (ALE245)	(ALE227) Vial (ALE297)	250ml BOD (ALE212)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	1lplastic (ALE221)	250ml BOD (ALE212)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	1 lplastic (ALE221)	250ml BOD (ALE212)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)
	Sample Ty	ре	GW	GW	GW	GW	GW	GW C	GW GW	GW	GW	GW	SW		SM	SM			SM	SM
Alkalinity as CaCO3	All	NDPs: 0 Tests: 2							ortis	ş.										
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 4					only	JI 2113												
Anions by Kone (w)	All	NDPs: 0 Tests: 4	x		x	pur ose	red	Y		X			X		X		X		x	
BOD True Total	All	NDPs: 0 Tests: 4		or ine	Pert of	P ^{UII} ZUU		^	X				^	X			^	X		
COD Unfiltered	All	NDPs: 0 Tests: 4	ento	204					X					X				x		
Coliforms (W)	All	NDPs: 0 Tests: 2	_	x					x											
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 4	x					x					x				x			
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 2				×						X								
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 4				x					x					x				x
Dissolved Oxygen by Probe	All	NDPs: 0 Tests: 4	x					x					x				x			
Fluoride	All	NDPs: 0 Tests: 2	x					x												
Mercury Dissolved	All	NDPs: 0 Tests: 2				x					x									
Mineral Oil C10-40 Aqueous (W)	All	NDPs: 0 Tests: 2	x					x												
Nitrite by Kone (w)	All	NDPs: 0 Tests: 2				×						x								
Organotins in Aqueous Samples	All	NDPs: 0 Tests: 2	x					X												

	CERTIFICATE C	OF ANALYSIS	
010-49	Client Reference:	P1724	Rep
			-

		С	ERT	IFIC	CAT	ΕO	FA	NAL	YS	IS									Valio	dated	
SDG: Location:	181010-49 Killycard			nt Ref er Nur			P172 Z120						port I persec				4770 476				
Results Legend X Test N Determination Possible Possible	Lab Sample N	No(s)						18494289					18494298				18494307				18494313
Sample Types -	Customer Sample Reference							GW01					GW03				SW1				SW2
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate																					
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)						0.00 - 0.00					0.00 - 0.00				0.00 - 0.00				0.00 - 0.00
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	r	0.5I glass bottle (ALE227)	250ml BOD (ALE212)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	1lplastic (ALE221)	250ml BOD (ALE212)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	1lplastic (ALE221)	250ml BOD (ALE212)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)
	Sample Ty	ре	GW	GW	GW	GW	GW	GW	GW		GW	GW	GW	WS	SW	WS	WS	WS	SW	WS	WS
Pesticides (Suite I) by GCMS	All	NDPs: 0 Tests: 2	x						XX	let USC	•										
Pesticides (Suite II) by GCMS	All	NDPs: 0 Tests: 2	x				o ^{Ses} equire	aly. d for	ny Ny												
Pesticides (Suite III) by GCMS	All	NDPs: 0 Tests: 2	x		cito	a pur	201111		x												
pH Value	All	NDPs: 0 Tests: 4	xÝ	1.22	left o	4			X					X				X			
Phosphate by Kone (w)	All	NDPs: 0 Tests: 2	N ^O	0,					x												
Silicon Dissolved by ICP-OES	All	NDPs: 0 Tests: 2				X						x									
SVOC MS (W) - Aqueous	All	NDPs: 0 Tests: 2	x						x												
Total Organic and Inorganic Carbon	All	NDPs: 0 Tests: 2			x						x										
VOC MS (W)	All	NDPs: 0 Tests: 2						x	x												

Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.	C	ustomer Sample Ref.	GW01	GW03	SW1	SW2		
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test.		Depth (m) Sample Type Date Sampled	0.00 - 0.00 Ground Water (GW) 09/10/2018	0.00 - 0.00 Ground Water (GW) 09/10/2018	0.00 - 0.00 Surface Water (SW) 09/10/2018	0.00 - 0.00 Surface Water (SW) 09/10/2018		
** % recovery of the surrogate stands check the efficiency of the method		Sample Time						
results of individual compounds w samples aren't corrected for the re	vithin	Date Received SDG Ref	10/10/2018 181010-49	10/10/2018 181010-49	10/10/2018 181010-49	10/10/2018 181010-49		
(F) Trigger breach confirmed	covery	Lab Sample No.(s)	18494289	18494298	18494307	18494313		
1-5&+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method						
Coliforms, Total*	CFU/100ml	SUB	1990	1120				
Alkalinity, Total as CaCO3	<2 mg/l	TM043	377 #	357 #				
BOD, unfiltered	<1 mg/l	TM045	2.7 #	<1 #	3.73 #	<1 #		
Oxygen, dissolved	<0.3 mg/l	TM046	7.76	8.6	9.9	10.2		
Organic Carbon, Total	<3 mg/l	TM090	12.3	<3 #				
Ammoniacal Nitrogen as N	<0.2 mg/l	TM099	19.2 #	1.17 #	<0.2	<0.2		
Fluoride	<0.5 mg/l	TM104	<0.5	<0.5				
COD, unfiltered	<7 mg/l	TM107	48.7 #	9.93 #	35.5 #	20.8		
Conductivity @ 20 deg.C	<0.005 mS/cm	TM120	0.702 #	0.657 #	0.405 #	0.427 #		
Antimony (diss.filt)	<1 µg/l	TM152	6.43		"se.			
Arsenic (diss.filt)	<0.5 µg/l	TM152	8.73	1.22	ontri and the use.			
Barium (diss.filt)	<0.2 µg/l	TM152	294 #	119 #	only and			
Beryllium (diss.filt)	<0.1 µg/l	TM152	<0.1	<0.1 Contractions	e de la companya de l			
Boron (diss.filt)	<10 µg/l	TM152	106 #	<0.1 00 00 00 00 00 00 00 00 00 00 00 00 00				
Cadmium (diss.filt)	<0.08 µg/l	TM152	<0.08	K X H				
Chromium (diss.filt)	<1 µg/l	TM152	<1	≪ √ <1 #				
Cobalt (diss.filt)	<0.5 µg/l	TM152	2.93 ent #	0.565 #				
Copper (diss.filt)	<0.3 µg/l	TM152	< 0.3 #	1.34 #				
Lead (diss.filt)	<0.2 µg/l	TM152	0.208 #	58.6 #				
Manganese (diss.filt)	<3 µg/l	TM152	1920 #	360 #				
Molybdenum (diss.filt)	<3 µg/l	TM152	17.5 #	9.08 #				
Nickel (diss.filt)	<0.4 µg/l	TM152	7.65 #	1.9 #				
Phosphorus (diss.filt)	<10 µg/l	TM152	24.8 #	<10 #				
Selenium (diss.filt)	<1 µg/l	TM152	18.2 #	26.7 #				
Tellurium (diss.filt)	<2 µg/l	TM152	<2	<2				
Thallium (diss.filt)	<2 µg/l	TM152	<2 #	<2 #				
Titanium (diss.filt)	<1 µg/l	TM152	13.1 #	7.86 #				
Uranium (diss.filt)	<0.5 µg/l	TM152	1.73 #	5.32 #				
Vanadium (diss.filt)	<1 µg/l	TM152	<1 #	<1 #				
Zinc (diss.filt)	<1 µg/l	TM152	10.6 #	4.8				
Tin (Diss.Filt)	<1 µg/l	TM152	<1 #	<1 #				
Silver (diss.filt)	<0.5 µg/l	TM152	<0.5	<0.5				
Sodium (Dis.Filt)	<0.076 mg/l	TM152	59.4 #	64.8 #	29.1 #	29.5 #		
17:28:39 16/10/2018	-						•	

(ALS)

	Results Legend		Customer Sample Ref.	GW01	GW03	SW1	SW2	
# M	ISO17025 accredited. mCERTS accredited.			Gilli	01100	0001	0112	
aq	Aqueous / settled sample. Dissolved / filtered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	
tot.unfilt	Total / unfiltered sample.		Sample Type	Ground Water (GW)	Ground Water (GW)	Surface Water (SW)	Surface Water (SW)	
	Subcontracted test. % recovery of the surrogate standa		Date Sampled Sample Time	09/10/2018	09/10/2018	09/10/2018	09/10/2018	
	check the efficiency of the method. results of individual compounds wi		Date Received	10/10/2018	10/10/2018	10/10/2018	10/10/2018	
	samples aren't corrected for the rea Trigger breach confirmed	covery	SDG Ref Lab Sample No.(s)	181010-49 18494289	181010-49 18494298	181010-49 18494307	181010-49 18494313	
1-5&+§@	Sample deviation (see appendix)		AGS Reference					
Compo Magnes	um (Dis.Filt)	LOD/Units <0.036 mg		20.2	19.8			
magnee		0.000		#	#			
Potassiu	m (Dis.Filt)	<0.2 mg/l	TM152	15.6	2.99	4.67	5.07	
				#	#	#	#	
Calcium	(Dis.Filt)	<0.2 mg/l	TM152	115	73.8			
				#	#			
Iron (Dis	.Filt)	<0.019 mg	/I TM152	6.22 #	0.0936 #			
Mineral	oil >C10 C40 (aq)	<100 µg/l	TM172	<100	* <100			
	5 010 010 (aq)	100 µg/1		100				
Mercury	(diss.filt)	<0.01 µg/l	TM183	<0.01	<0.01			
				#	#			
Phospha	ate (Ortho as PO4)	<0.05 mg/	I TM184	<0.05	<0.05			
011.11		0 "		#	#	10.0	10.0	
Chloride		<2 mg/l	TM184	42.3 #	15.5 #	46.3	46.6	
Nitrite as	N	<0.0152	TM184	<0.0152	# <0.0152	#	#	
Nunto ac		mg/l	INITOT	40.0102	40.0102			
Total Ox	idised Nitrogen as N	<0.1 mg/l	TM184	0.102	<0.1	.		
	_	_		#	#	TISC.		
Sulphate	e (soluble) as S	<1 mg/l	TM184	5.5	15.3	7.570et #	7.4	
				#	#	#	#	
Cyanide	, Total	<0.05 mg/	I TM227	<0.05	<0.05	onthe any #		
Cyanide	Free	<0.05 mg/	TM227	<0.05		2		
Cyanice	, Fiee	<0.05 mg/	1 111/227	<0.05 #	<0.05 pupo an			
pН		<1 pH Unit	s TM256	7.66	:159 0	7.6	7.43	
r		F		#	pecity Signer 10	#	#	
Silicon (diss.filt)	<0.05 mg/	I TM284	8.26	tinsett5.37			
					A VILE			
Dibutyl t	n	<5 ng/l	TM328	<5	S ^S <5			
Tributul	in	<1 ng/l	TM328	-1 mt 01	<1			
Tributyl	.111	<1 ng/l	1101320	<1 consent.	~1			
Tetrabut	vl tin	<2 ng/l	TM328		<2			
		5						
Tripheny	l tin	<1 ng/l	TM328	<1	<1			
Surrogat	e	%	TM328	61.3	61.3			
Trifluratio		<0.01 µg/l	TM343	<0.01	<0.01			
Triflurali	1	<0.01 µg/i	1101343	<0.01	<0.01			
alpha-H	СН	<0.01 µg/l	TM343	<0.01	<0.01			
gamma-	HCH (Lindane)	<0.01 µg/l	TM343	<0.01	<0.01			
Heptach	lor	<0.01 µg/l	TM343	<0.01	<0.01			
Aldrin		<0.01 µg/l	TM343	<0.01	<0.01			
AUTU		~0.01 µg/l	1111040	NU.U I	NU.U I			
beta-HC	Н	<0.01 µg/l	TM343	<0.01	<0.01			
Isodrin		<0.01 µg/l	TM343	<0.01	<0.01			
Heptach	lor epoxide	<0.01 µg/l	TM343	<0.01	<0.01			
o,p'-DDE	:	<0.01 µg/l	TM343	<0.01	<0.01			
υ,μ -υυ	-	~v.v1 µg/l	1101040	NU.U 1	NU.U I			
Endosul	phan I	<0.01 µg/l	TM343	<0.01	<0.01			
trans-Ch	lordane	<0.01 µg/l	TM343	<0.01	<0.01			
<u> </u>								
cis-Chlo	rdane	<0.01 µg/l	TM343	<0.01	<0.01			

							i	
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.		Customer Sample Ref. Depth (m)	GW01	GW03	SW1 0.00 - 0.00	SW2 0.00 - 0.00		
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Ground Water (GW) 09/10/2018	Ground Water (GW) 09/10/2018	Surface Water (SW) 09/10/2018	Surface Water (SW) 09/10/2018		
** % recovery of the surrogate stand check the efficiency of the method results of individual compounds w	i. The	Sample Time Date Received	10/10/2018	10/10/2018	10/10/2018	10/10/2018		
samples aren't corrected for the re (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	181010-49 18494289	181010-49 18494298	181010-49 18494307	181010-49 18494313		
1-5&+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference						
p,p'-DDE	<0.01 µg/l		<0.01	<0.01				
Dieldrin	<0.01 µg/l	TM343	<0.01	<0.01				
o,p'-DDD (TDE)	<0.01 µg/l	TM343	<0.01	<0.01				
Endrin	<0.01 µg/l	TM343	<0.01	<0.01				
o,p'-DDT	<0.01 µg/l		<0.01	<0.01				
p,p'-DDD (TDE)	<0.01 µg/l		<0.01	<0.01				
Endosulphan II	<0.02 µg/l		<0.02	<0.02				
p,p'-DDT	<0.01 µg/l		<0.01	<0.01				
p,p'-Methoxychlor	<0.01 µg/l		<0.01	<0.01				
Endosulphan Sulphate	<0.02 µg/l		<0.02	<0.02	et USC.			
Permethrin I	<0.01 µg/l		<0.01	<0.01	onthi and other use.			
Permethrin II	<0.01 µg/l		<0.01	<0.01	offor a			
Dichlorvos	<0.01 µg/l		<0.01	Pure pure pure	~			
Mevinphos	<0.01 µg/l		<0.01	Spectro 0121				
Tecnazene	<0.01 µg/l			the two of two				
Hexachlorobenzene	<0.01 µg/l		<0.01	्रि <0.01				
Diazinon	<0.01 µg/l		<0.01 sente	<0.01				
Triallate	<0.01 µg/l		<0.01	<0.01				
Atrazine	<0.01 µg/l		<0.01	<0.01				
Simazine	<0.01 µg/l		<0.01	<0.01				
Disulfoton	<0.01 µg/l		<0.01	<0.01				
Propetamphos	<0.01 µg/l		<0.01	<0.01				
Chlorpyriphos-methyl	<0.01 µg/l		<0.01	<0.01				
Dimethoate	<0.01 µg/l		<0.01	<0.01				
Pirimiphos-methyl	<0.01 µg/l		<0.01	<0.01				
Chlorpyriphos	<0.01 µg/l		<0.01	<0.01				
Methyl Parathion	<0.01 µg/l		<0.01	<0.01				
Malathion	<0.01 µg/l		<0.01	<0.01				
Fenthion	<0.01 µg/l		<0.01	<0.01				
Fenitrothion	<0.01 µg/l		<0.01	<0.01				
Triadimefon	<0.01 µg/l		<0.01	<0.01				
Pendimethalin	<0.01 µg/l	TM344	<0.01	<0.01				
							•	

(ALS)

Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.		Customer Sample Ref.	GW01	GW03	SW1	SW2	
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.00 - 0.00 Ground Water (GW)	0.00 - 0.00 Ground Water (GW)	0.00 - 0.00 Surface Water (SW)	0.00 - 0.00 Surface Water (SW)	
* Subcontracted test. ** % recovery of the surrogate standa	ard to	Date Sampled Sample Time	09/10/2018	09/10/2018	09/10/2018	09/10/2018	
check the efficiency of the method results of individual compounds w	. The ithin	Date Received	10/10/2018 181010-49	10/10/2018 181010-49	10/10/2018 181010-49	10/10/2018 181010-49	
samples aren't corrected for the re (F) Trigger breach confirmed	covery	SDG Ref Lab Sample No.(s)	18494289	18494298	18494307	18494313	
1-5&+\$@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method					
Parathion	<0.01 µg/l	-	<0.01	<0.01			
Chlorfenvinphos	<0.01 µg/l	TM344	<0.01	<0.01			
Ethion	<0.01 µg/l	TM344	<0.01	<0.01			
Carbophenothion	<0.01 µg/l	TM344	<0.01	<0.01			
Triazophos	<0.01 µg/l	TM344	<0.01	<0.01			
Phosalone	<0.01 µg/l	TM344	<0.01	<0.01			
Azinphos methyl	<0.02 µg/l	TM344	<0.02	<0.02			
Azinphos ethyl	<0.02 µg/l	TM344	<0.02	<0.02			
Quintozene (PCNB)	<0.01 µg/l	TM345	<0.01	<0.01			
Telodrin	<0.01 µg/l	TM345	<0.01	<0.01	. 1 ⁵⁰ .		
Chlorothalonil	<0.01 µg/l		<0.01	<0.01	other		
Etrimphos	<0.01 µg/l	TM345	<0.01	<0.01 چې	only alt.		
				Purporti	2°		
				oection nert			
			Ŷ	K INSI SHU	onti-any offertise.		
			Consent of	07.			
			Consen				

CERTIFICATE OF ANALYSIS

Validated

_

SDG:		31010-49		ent Reference:		724	Report Number:		
(ALS) Location:		illycard	Ord	ler Number:	Z12	260	Superseded Repo	rt: 476448	
VOC MS (W) - Aqueous Results Legend		tomer Sample Ref.	GW01	GW03					
# ISO17025 accredited. M mCERTS accredited.			Gilli	01100					
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.00 - 0.00 Ground Water (GW)	0.00 - 0.00 Ground Water (GV	M				
* Subcontracted test. ** % recovery of the surrogate standa	ard to	Date Sampled Sample Time	09/10/2018	09/10/2018	•)				
check the efficiency of the method results of individual compounds w	l. The /ithin	Date Received	10/10/2018 181010-49	10/10/2018 181010-49					
samples aren't corrected for the re (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	18494289	18494298					
1-5&+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method							
1,2,4-Trichlorobenzene (aq)	<1 µg/l	TM176	<1	<1	#				
1,2-Dichlorobenzene (aq)	<1 µg/l	TM176	<1	<1					
1,3-Dichlorobenzene (aq)	<1 µg/l	TM176	<1	# <<1	#				
1,4-Dichlorobenzene (aq)	<1 µg/l	TM176	<1	# <<1	#				
2,4,5-Trichlorophenol (aq)	<1 µg/l	TM176	<1	# <<1	#				
2,4,6-Trichlorophenol (aq)	<1 µg/l	TM176	<1	# <<1	#				
2,4-Dichlorophenol (aq)	<1 µg/l	TM176	<1	#<<1 #	#				
2,4-Dimethylphenol (aq)	<1 µg/l	TM176	<1	#<<1	#				
2,4-Dinitrotoluene (aq)	<1 µg/l	TM176	<1	#<<1 #	#				
2,6-Dinitrotoluene (aq)	<1 µg/l	TM176	<1	#<<1 #	#	15 ⁸ .			
2-Chloronaphthalene (aq)	<1 µg/l	TM176	<1	#<1 #	#	other			
2-Chlorophenol (aq)	<1 µg/l	TM176	<1	<1		ally and			
2-Methylnaphthalene (aq)	<1 µg/l	TM176	<1		203.1	2 ⁰			
2-Methylphenol (aq)	<1 µg/l	TM176	<1	# <1 put # cectient of put	#				
2-Nitroaniline (aq)	<1 µg/l	TM176	<1	# 11 12 11 <1	#				
2-Nitrophenol (aq)	<1 µg/l	TM176	<1	(¹ <1	#				
3-Nitroaniline (aq)	<1 µg/l	TM176		<1 #	#				
4-Bromophenylphenylether (aq)	<1 µg/l	TM176		<1	#				
4-Chloro-3-methylphenol (aq)	<1 µg/l	TM176	<1	<1	#				
4-Chloroaniline (aq)	<1 µg/l	TM176	<1	<1					
4-Chlorophenylphenylether (aq)	<1 µg/l	TM176		<1	#				
4-Methylphenol (aq)	<1 µg/l	TM176	<1	<1	#				
4-Nitroaniline (aq)	<1 µg/l	TM176		<1	#				
4-Nitrophenol (aq)	<1 µg/l	TM176	<1	<1					
Azobenzene (aq)	<1 µg/l	TM176		<1	#				
Acenaphthylene (aq)	<1 µg/l	TM176		<1	#				
Acenaphthene (aq)	<1 µg/l	TM176		<1	#				
Anthracene (aq)	<1 µg/l	TM176		<1	#				
bis(2-Chloroethyl)ether (aq)	<1 µg/l	TM176		<1	#				
bis(2-Chloroethoxy)methane (aq)	<1 µg/l	TM176		<1	#				
bis(2-Ethylhexyl) phthalate (aq)	<2 µg/l	TM176		<2 #	#				
Butylbenzyl phthalate (aq)	<1 µg/l	TM176		<1	#				
Benzo(a)anthracene (aq)	<1 µg/l	TM176	<1	<1					

ALS

CERTIFICATE OF ANALYSIS

SDG: 181010-49 P1724 **Client Reference:** Report Number: 477084 Killycard Order Number: Z1260 Superseded Report: 476448 Location: SVOC MS (W) - Aqueous Customer Sample Ref. GW01 GW03 ISO17025 accredited м mCERTS accredited. Aqueous / settled sample Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. Subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery Trigger breach confirmed Depth (m) 0.00 - 0.00 0.00 - 0.00 diss filt Sample Type Ground Water (GW) Ground Water (GW) tot.unfil Date Sample 09/10/2018 09/10/2018 ** Sample Time . 10/10/2018 . 10/10/2018 Date Receive SDG Re 181010-49 181010-49 18494289 18494298 (F) Lab Sample No (s 1-5&+§@ Sample deviation (see appendix) AGS Reference Component LOD/Units Method Benzo(b)fluoranthene (aq) <1 µg/l TM176 <1 <1 # # Benzo(k)fluoranthene (aq) TM176 <1 <1 <1 µg/l Ħ # Benzo(a)pyrene (aq) <1 µg/l TM176 <1 <1 # # TM176 <1 Benzo(g,h,i)perylene (aq) <1 µg/l <1 # # Carbazole (aq) <1 µg/l TM176 <1 <1 # # Chrysene (aq) <1 µg/l TM176 <1 <1 # # Dibenzofuran (aq) <1 µg/l TM176 <1 <1 # # n-Dibutyl phthalate (aq) <1 µg/l TM176 <1 <1 # # Diethyl phthalate (aq) <1 µg/l TM176 5.93 <1 # # TM176 <1 other Use. Dibenzo(a,h)anthracene (aq) <1 µg/l <1 # # TM176 Dimethyl phthalate (ag) <1 <1 <1 µg/l # # for an 2 n-Dioctyl phthalate (aq) TM176 <5 <5 <5 µg/l # đ Fluoranthene (aq) TM176 <1 µg/l <1 <1 pif 9¥ # citer 1 NINET Fluorene (aq) TM176 <1 µg/l <1 # # in tight <1 Hexachlorobenzene (aq) <1 µg/l TM176 <1 \$ # đ Hexachlorobutadiene (aq) <1 µg/l TM176 <1 <1 å # nser Pentachlorophenol (aq) TM176 <1 <1 <1 µg/l TM176 <1 <1 Phenol (aq) <1 µg/l n-Nitroso-n-dipropylamine (aq) <1 µg/l TM176 <1 <1 # # Hexachloroethane (aq) TM176 <1 <1 µg/l <1 # # Nitrobenzene (aq) TM176 <1 µg/l <1 <1 # # TM176 Naphthalene (aq) <1 µg/l <1 <1 # # Isophorone (aq) <1 µg/l TM176 <1 <1 # # Hexachlorocyclopentadiene (aq) <1 µg/l TM176 <1 <1 Phenanthrene (aq) <1 µg/l TM176 <1 <1 # # Indeno(1,2,3-cd)pyrene (aq) TM176 <1 <1 <1 µg/l # # TM176 <1 Pyrene (aq) <1 µg/l <1 # #

Validated

SDG: Location:		181010-49 Killycard		t Reference: r Number:	P1 Z12		Report Num Superseded R		477084 476448	
OC MS (W)							· · · ·			
Results Legend	Cu	ustomer Sample Ref.	GW01	GW03				-		
# ISO17025 accredited. M mCERTS accredited.										
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00						
ot.unfilt Total / unfiltered sample.		Sample Type	Ground Water (GW)	Ground Water (GV	V)					
* Subcontracted test. ** % recovery of the surrogate stan	dard to	Date Sampled Sample Time	09/10/2018	09/10/2018						
check the efficiency of the methor results of individual compounds		Date Received	10/10/2018	10/10/2018						
samples aren't corrected for the		SDG Ref	181010-49 18494289	181010-49 18494298						
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	10454205	10434230						
Component	LOD/Units	Method								
Dibromofluoromethane**	%	TM208	113	116	1					
Foluene-d8**	%	TM208	101	101						
I-Bromofluorobenzene**	%	TM208	98.6	96.7	1					
Polonolidorobenzene	70	110200	50.0	50.7	1					
Dichlorodifluoromethane	<1 µg/l	TM208	<1 #	<1	1#					
Chloromethane	<1 µg/l	TM208	<1	<1						
Vinyl chloride	<1 µg/l	TM208	=======================================	<1	1#					
Bromomethane	<1 µg/l	TM208	#	<1	1#					
			#		1#					
Chloroethane	<1 µg/l	TM208	<1 #	<1	1#					
Trichlorofluoromethane	<1 µg/l	TM208	<1 #	<1	1#					
1,1-Dichloroethene	<1 µg/l	TM208	<1	<1		.Ø.*				
Carbon disulphide	<1 µg/l	TM208	=======================================	<1	1#	net use.				
Dichloromethane	<3 µg/l	TM208	=======================================	<3	1 #	officiant official services				
			#	-	1#5	offor o				
Methyl tertiary butyl ether (MTBE)	<1 µg/l	TM208	<1 #	CI DIL	20.11	2				
trans-1,2-Dichloroethene	<1 µg/l	TM208	<1 #	ctioner	1#					
1,1-Dichloroethane	<1 µg/l	TM208	<1	THEPHON	1 17					
cis-1,2-Dichloroethene	<1 µg/l	TM208	<1	op <1	1#					
2,2-Dichloropropane	<1 µg/l	TM208	<1	<1	1#					
			<1 ento		1					
Bromochloromethane	<1 µg/l	TM208	کر #	<1	1#					
Chloroform	<1 µg/l	TM208	<1 #	<1	1#					
1,1,1-Trichloroethane	<1 µg/l	TM208	<1	<1						
1,1-Dichloropropene	<1 µg/l	TM208	=======================================	<1	1#					
Carbontetrachloride	<1 µg/l	TM208	=======================================	<1	1#					
			#		1#					
1,2-Dichloroethane	<1 µg/l	TM208	<1 #	<1	1#					
Benzene	<1 µg/l	TM208	<1 #	<1	1#					
Trichloroethene	<1 µg/l	TM208	<1	<1						
1,2-Dichloropropane	<1 µg/l	TM208	# <1	<1	1 #					
Dibromomethane	<1 µg/l	TM208	= #	<1	1#					
			#		1#					
Bromodichloromethane	<1 µg/l	TM208	<1 #	<1	1#					
cis-1,3-Dichloropropene	<1 µg/l	TM208	<1 #	<1	1#					
Toluene	<1 µg/l	TM208	<1	<1						
trans-1,3-Dichloropropene	<1 µg/l	TM208	# <1	<1	1 #					
1,1,2-Trichloroethane	<1 µg/l	TM208	=======================================	<1	1 #					
			#		1#					
1,3-Dichloropropane	<1 µg/l	TM208	<1 #	<1	1#					

17:28:39 16/10/2018

CERTIFICATE OF ANALYSIS

Validated

	SDG: Location:		81010-49 (illycard		t Reference: r Number:	P17: Z12		Report Number: Superseded Report:	477084 476448	
VOC MS (W)										
	Legend ted.	Cu	stomer Sample Ref.	GW01	GW03					
M mCERTS accredit aq Aqueous / settide diss.filt Dissolved / filtere tot.unfilt Total / unfiltered s * Subcontracted tes ** % recovery of the check the efficien results of individu	ted. I sample. d sample. sample. st. surrogate standard t icy of the method. The ual compounds within prected for the recover infirmed	9 1	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.00 - 0.00 Ground Water (GW) 09/10/2018 10/10/2018 181010-49 18494289	0.00 - 0.00 Ground Water (G 09/10/2018 10/10/2018 181010-49 18494298	W)				
Component		LOD/Units	Method							
Tetrachloroethene		<1 µg/l	TM208	<1 #	<1	1#				
Dibromochloromethane)	<1 µg/l	TM208	<1 #	<1	1#				
1,2-Dibromoethane		<1 µg/l	TM208	<1 #	<1	1#				
Chlorobenzene		<1 µg/l	TM208	<1 #	<1	1#				
1,1,1,2-Tetrachloroetha	ine	<1 µg/l	TM208	<1 #	<1	1#				
Ethylbenzene		<1 µg/l	TM208	<1 #	<1	1#				
m,p-Xylene		<1 µg/l	TM208	<1 #	<1	1#				
o-Xylene		<1 µg/l	TM208	<1 #	<1	1#				
Styrene		<1 µg/l	TM208	<1 #	<1	1#				
Bromoform		<1 µg/l	TM208	<1 #	<1	1#	NSC.			
lsopropylbenzene		<1 µg/l	TM208	1.02 #	<1	1#	ther			
1,1,2,2-Tetrachloroetha	ine	<1 µg/l	TM208	<1 #	<1	1,#	nt and or			
1,2,3-Trichloropropane		<1 µg/l	TM208	<1 #	<1 2011	i Politike	<u>,</u>			
Bromobenzene		<1 µg/l	TM208	<1 #	ecties where	1#				
Propylbenzene		<1 µg/l	TM208	2.51	tinspector	1#				
2-Chlorotoluene		<1 µg/l	TM208	<1	०१, <1	1#				
1,3,5-Trimethylbenzene)	<1 µg/l	TM208	8.43 ent	<1	1#				
4-Chlorotoluene		<1 µg/l	TM208	<1 #	<1	1#				
tert-Butylbenzene		<1 µg/l	TM208	<1 #	<1	1#				
1,2,4-Trimethylbenzene	9	<1 µg/l	TM208	23.5 #	<1	1#				
sec-Butylbenzene		<1 µg/l	TM208	<1 #	<1	1#				
4-iso-Propyltoluene		<1 µg/l	TM208	2.15 #	<1	1#				
1,3-Dichlorobenzene		<1 µg/l	TM208	<1 #	<1	1#				
1,4-Dichlorobenzene		<1 µg/l	TM208	<1 #	<1	1#				
n-Butylbenzene		<1 µg/l	TM208	<1 #	<1	1#				
1,2-Dichlorobenzene		<1 µg/l	TM208	<1 #	<1	1#				
1,2-Dibromo-3-chloropr	opane	<1 µg/l	TM208	<1	<1	1				
1,2,4-Trichlorobenzene		<1 µg/l	TM208	<1 #	<1	1#				
Hexachlorobutadiene		<1 µg/l	TM208	<1 #	<1	1#				
tert-Amyl methyl ether ((TAME)	<1 µg/l	TM208	<1 #	<1	1#				
Naphthalene		<1 µg/l	TM208	<1 #	<1	1#				
1,2,3-Trichlorobenzene		<1 µg/l	TM208	<1 #	<1	1#				

|--|

SDG:	18	31010-49	Clien	t Reference:	P1724	Report Number:	477084
(ALS) Location:	Ki	llycard	Orde	r Number:	Z1260	Superseded Report:	476448
OC MS (W)		tomor Semala D. C			_	,	
Results Legend # ISO17025 accredited. M m/CERTS accredited. aq Aqueous / settled sample. diss.fit Disolved / filtered sample. ids.fit Total / unfiltered sample. Subcontracted test. * * vr coovery of the surrogate stand check the efficiency of the methoc results of individual compounds v samples aren't corrected for the re (F) Trigger breach confirmed I-5&+5@ Sample deviation (see appendix)	ard to I. The vithin covery	tomer Sample Ref. Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	GW01 0.00 - 0.00 Ground Water (GW) 09/10/2018 10/10/2018 181010-49 18494289	GW03 0.00 - 0.00 Ground Water (GW) 09/10/2018 18/1010-49 18494298			
Component I,3,5-Trichlorobenzene	LOD/Units <1 µg/l	Method TM208	<1	<1			
1,5,5-111chlorobenzene	<1 µg/i	T WIZUO	N		1		
					See only any other use.	<u> </u>	
					at use.		
					other		
					OIL AR		
				an Pure	, CLV		
				Dectionnet			
			¢(Thight			
				0831			
			of of				
			Consentor				
			Č				
					_		
	+ +						
					-		

Report Number: Superseded Report:

477084 476448

Validated

Table of Results - Appendix

Method No	Reference	Description
SUB		Subcontracted Test
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM046	Method 4500G, AWWA/APHA, 20th Ed., 1999	Measurement of Dissolved Oxygen by Oxygen Meter
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM172	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	EPH in Waters
TM176	EPA 8270D Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of SVOCs in Water by GCMS
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM284		Mo iter
TM328		NTV LEVY
TM343	EPA 8270D - Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of Selected Pesticides (Suite I) in Liquids by GCMS
TM344	EPA 8270D – Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of selected Pesticides (Suite II) by GCMS
TM345	EPA 8270D – Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	S Determination of selected pesticides (Suite III) by GCMS

NA = not applicable.

NA = not applicable. Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Dawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

181010-49 Killycard

Client Reference: Order Number:

CERTIFICATE OF ANALYSIS

P1724

Client Reference:

Report Number: Superseded Report:

477084 476448

Location: Ki	illycard	1	Order Numbe	er: Z126	0
		Tes	st Com	pletior	n Dates
Lab Sample No(s)	18494289	18494298	18494307	18494313	I
Customer Sample Ref.	GW01	GW03	SW1	SW2	
AGS Ref.					
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	
Туре		Ground Water	Surface Water	Surface Water	
Alkalinity as CaCO3	16-Oct-2018	16-Oct-2018			
Ammoniacal Nitrogen	15-Oct-2018	15-Oct-2018	15-Oct-2018	15-Oct-2018	
-					
Anions by Kone (w)	16-Oct-2018	16-Oct-2018	15-Oct-2018	15-Oct-2018	
BOD True Total	16-Oct-2018	15-Oct-2018	16-Oct-2018	16-Oct-2018	
COD Unfiltered	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	
Coliforms (W)	11-Oct-2018	11-Oct-2018			
Conductivity (at 20 deg.C)	11-Oct-2018	11-Oct-2018	11-Oct-2018	11-Oct-2018	
Cyanide Comp/Free/Total/Thiocyanate	12-Oct-2018	12-Oct-2018			
Dissolved Metals by ICP-MS	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	
Dissolved Oxygen by Probe	12-Oct-2018	12-Oct-2018	12-Oct-2018	12-Oct-2018	
Fluoride	16-Oct-2018	16-Oct-2018			
Mercury Dissolved	12-Oct-2018	12-Oct-2018			
Mineral Oil C10-40 Aqueous (W)	16-Oct-2018	16-Oct-2018			
Nitrite by Kone (w)	16-Oct-2018	16-Oct-2018			
Organotins in Aqueous Samples	16-Oct-2018	16-Oct-2018			
Pesticides (Suite I) by GCMS	15-Oct-2018	15-Oct-2018			
Pesticides (Suite II) by GCMS	15-Oct-2018	15-Oct-2018			
Pesticides (Suite III) by GCMS	15-Oct-2018	15-Oct-2018			
pH Value	15-Oct-2018		15-Oct-2018	15-Oct-2018	
Phosphate by Kone (w)	15-Oct-2018	15-Oct-2018			
Silicon Dissolved by ICP-OES	16-Oct-2018	16-Oct-2018			
SVOC MS (W) - Aqueous	15-Oct-2018	15-Oct-2018			
Total Organic and Inorganic Carbon	11-Oct-2018	12-Oct-2018			, N
VOC MS (W)	11-Oct-2018	16-Oct-2018			thei
			For inspect	on purposes of	N. any offer us

181010-49

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Customer

Customer Services ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK **CH5 3US**

Certificate Of Analysis

Job Number:	18-47977
Issue Number:	1
Report Date:	11 October 2018

Site: Killycard: 181010-49 **PO Number:** Not Supplied Date Samples Received: 10/10/2018

For inspection numposes only any other use. Please find attached the results for the samples received at our laboratory on 10/10/2018.

Should you have any queries regarding the report or require any further services, we would be happy to discuss your requirements. For additional information about the company please log-on to our website at the above address.

Thank you for choosing City Analysts Limited. We look forward to assisting you again.

Authorised By:

Caitlin Quinn Deputy Quality Manager Authorised Date:

11 October 2018

Notes:

Results relate only to the items tested. Information on methods of analysis and performance characteristics is available on request. Any opinions or interpretations indicated are outside the scope of our INAB accreditation. This test report shall not be reproduced except in full or with written approval of City Analysts Limited.

Page 1 of 3

Template: 1146 Revision: 018

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Report Version: 1

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis Report Reference: 18-47977

Customer Services ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK

CH5 3US

Customer

Site:	Killycard: 181010-49		
Sample Description:	GW 01	Date of Sampling:	09/10/2018
Sample Type:	Ground	Date Sample Received:	10/10/2018
Lab Reference Numb	ber: 414286		

Site / Method Ref.	Analysis Start Date	Parameter	otter Result	Units	PV Value (Drinking Water Only)
D/D1201#	10/10/2018	Coliforms	1000.0	MPN/100ml	- To
		Consent of constraint of	anet to		

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 2 of 3

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Report Reference: 18-47977

Report Version: 1

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer

Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Site:	Killycard: 181010-49		
Sample Description:	GW 03	Date of Sampling:	09/10/2018
Sample Type:	Ground	Date Sample Received:	10/10/2018
Lab Reference Numbe	er: 414287		

Site / Method Ref.	Analysis Start Date	Parameter	offer Result	Units	PV Value (Drinking Water Only)
D/D1201#	10/10/2018	Coliforms	0.5 1119.9	MPN/100ml	- E
		Consent of copyright owner requir			

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 3 of 3

AIS	SDG: Location:	181010-49 Killycard	Client Reference: Order Number:	P1724 Z1260	Report Number: Superseded Report:	477084 476448

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on received

prace on receipting
prace on receipting
provide the provided the provide

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect

14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. We are accredited to MCERTS for sand, clav and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	ncorrect container received
A. 80	Deviation from method
A STA	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.
A 1	

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow n Asbestos
Cro d dolite	Blue Asbe stos
Fibrous Actinolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Daniel Hayden

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 17 October 2018 D_FTIM_DUB 181011-82 P1724 Killycard 477251

We received 1 sample on Thursday October 11, 2018 and 1 of these samples were scheduled for analysis which was completed on Wednesday October 17, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

any other use

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALSALife Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

Report Number: Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
18505196	GW02		0.00 - 0.00	10/10/2018
Maximum Sample/Coolbox	x Temperature (°C) :	8		

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

Consent of copyright owner required for any other use.

Validated

SDG: Location	181011-82 n: Killycard			nt Re er Nu			P17: Z12(Report Number: Superseded Report:	4772
Results Legend X Test N No Determination	Lab Sampl	e No(s)						18505196			
Possible	Custor Sample Re							GW02			
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refe	erence									
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth	(m)						0.00 - 0.00			
US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	y Contai	ner	0.5l glass bottle (ALE227)	250ml BOD (ALE212)	H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)			
	Sample	Туре	GW	GW	GW	GW	GW	GW			
Alkalinity as CaCO3	All	NDPs: 0 Tests: 1							of USC.		
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 1	X		×			hly.	by other use.		
Anions by Kone (w)	All	NDPs: 0 Tests: 1	x		كلأى	n Put	o ⁵ .re oquire	~			
BOD True Total	All	NDPs: 0 Tests: 1	~	of the	Polit C	A.					
COD Unfiltered	All	NDPs: 0 Tests: 1	entor	x							
Coliforms (W)	All	NDPs: 0 Tests: 1		x							
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 1	x								
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 1					x				
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 1				x					
Dissolved Oxygen by Probe	All	NDPs: 0 Tests: 1	x								
Fluoride	All	NDPs: 0 Tests: 1	x								
Mercury Dissolved	Ali	NDPs: 0 Tests: 1				X					
Mineral Oil C10-40 Aqueous (W)	All	NDPs: 0 Tests: 1									

NDPs: 0 Tests: 1

NDPs: 0 Tests: 1

All

All

Х

Х

Validated

Organotins in Aqueous Samples

Nitrite by Kone (w)

Х

			Yele		Validated
C	ERTIFICATE C	PF ANAL	YSIS		
181011-82	Client Reference:	P1724	Report Number:	477251	
Killycard	Order Number:	Z1260	Superseded Report:		
Lab Sample No(s)		18505196			

Results Legend	Lah Samula I							185	
X Test	Lab Sample No(s)							18505196	
No Determination Possible			-						
Sample Types -	Custome Sample Refe							GW02	
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prepared Leachate	AGS Refere	nce							
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)						0.00 - 0.00	
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	0.5l glass bottle (ALE227)		H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)		
	Sample Type			GW	GW	GW	GW	GW	
Pesticides (Suite I) by GCMS	All	NDPs: 0 Tests: 1	x						ther use.
Pesticides (Suite II) by GCMS	All	NDPs: 0 Tests: 1	x				585 C	aly. a	hy other use.
Pesticides (Suite III) by GCMS	All	NDPs: 0 Tests: 1	x		citic	a pur	solite		
pH Value	All	NDPs: 0 Tests: 1	x	oring	Pon o				
Phosphate by Kone (w)	Ali	NDPs: 0 Tests: 1	enx X	e ·					
Silicon Dissolved by ICP-OES	Ali	NDPs: 0 Tests: 1				x			
SVOC MS (W) - Aqueous	All	NDPs: 0 Tests: 1	x						
Total Organic and Inorganic Carbon	All	NDPs: 0 Tests: 1			x				
VOC MS (W)	All	NDPs: 0 Tests: 1							

SDG: Location:

(ALS)

SDG: Location		81011-82 (illycard		ient Reference: der Number:	P1724 Z1260	Report Number: Superseded Report:	477251
Results Legend		stomer Sample Ref.	011/00	_			
# ISO17025 accredited. M mCERTS accredited.	Cu	stomer Sample Ret.	GW02				
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	0.00 - 0.00 Ground Water (GW)				
tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate	standard to	Date Sampled Sample Time	10/10/2018				
check the efficiency of the m results of individual compou	nethod. The	Date Received	11/10/2018				
samples aren't corrected for (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	181011-82 18505196				
1-5&+§@ Sample deviation (see apper Component	udix) LOD/Units	AGS Reference Method					
Coliforms, Total*	CFU/100ml	SUB	549				
Alkalinity, Total as CaCO3	<2 mg/l	TM043	305				
BOD, unfiltered	<1 mg/l	TM045	2.04	#			
Oxygen, dissolved	<0.3 mg/l	TM046	6.01	#			
Organic Carbon, Total	<3 mg/l	TM090	4.66				
Ammoniacal Nitrogen as N	<0.2 mg/l	TM099	0.414	#			
Fluoride	<0.5 mg/l	TM104	1.04	#			
COD, unfiltered	<7 mg/l	TM107	115	#			
Conductivity @ 20 deg.C	<0.005 mS/cm	TM120	0.472	#			
Antimony (diss.filt)	<1 µg/l	TM152	2.1	π		use.	
Arsenic (diss.filt)	<0.5 µg/l	TM152	1.48	#	onthe and	hert	
Barium (diss.filt)	<0.2 µg/l	TM152	76.1		CONTROL SIL		
Beryllium (diss.filt)	<0.1 µg/l	TM152	<0.1	# pput	205 ed t		
Boron (diss.filt)	<10 µg/l	TM152	28.3	# section et	(e.		
Cadmium (diss.filt)	<0.08 µg/l	TM152	<0.08	# CONT			
Chromium (diss.filt)	<1 µg/l	TM152	<1	्रि २ र्भ			
Cobalt (diss.filt)	<0.5 µg/l	TM152	<0.5 consent	#			
Copper (diss.filt)	<0.3 µg/l	TM152	1.23	#			
Lead (diss.filt)	<0.2 µg/l	TM152	11.5	#			
Manganese (diss.filt)	<3 µg/l	TM152	121	#			
Molybdenum (diss.filt)	<3 µg/l	TM152	12.2	#			
Nickel (diss.filt)	<0.4 µg/l	TM152	2.16	#			
Phosphorus (diss.filt)	<10 µg/l	TM152	23.3	#			
Selenium (diss.filt)	<1 µg/l	TM152	<1	#			
Tellurium (diss.filt)	<2 µg/l	TM152	5.87				
Thallium (diss.filt)	<2 µg/l	TM152	<2	#			
Titanium (diss.filt)	<1 µg/l	TM152	1.54	#			
Vanadium (diss.filt)	<1 µg/l	TM152	<1	#			
Zinc (diss.filt)	<1 µg/l	TM152	68.3	#			
Tin (Diss.Filt)	<1 µg/l	TM152	7.15	#			
Silver (diss.filt)	<0.5 µg/l	TM152	<0.5	#			
Sodium (Dis.Filt)	<0.076 mg/l	TM152	14.5	#			
Magnesium (Dis.Filt)	<0.036 mg/l	TM152	15.1	#			

Silicon (diss.filt)	<0.05 mg/l	TM284	2.61	Dection net		
Dibutyl tin	<5 ng/l	TM328	<5	K INSTERN		
Tributyl tin	<1 ng/l	TM328	<1	s insection owner.		
Tetrabutyl tin	<2 ng/l	TM328	<2 consent			
Triphenyl tin	<1 ng/l	TM328	<1			
Surrogate	%	TM328	51.9			
Trifluralin	<0.01 µg/l	TM343	<0.01			
alpha-HCH	<0.01 µg/l	TM343	<0.01			
gamma-HCH (Lindane)	<0.01 µg/l	TM343	<0.01			
Heptachlor	<0.01 µg/l	TM343	<0.01			
Aldrin	<0.01 µg/l	TM343	<0.01			
beta-HCH	<0.01 µg/l	TM343	<0.01			
Isodrin	<0.01 µg/l	TM343	<0.01			
Heptachlor epoxide	<0.01 µg/l	TM343	<0.01			
o,p'-DDE	<0.01 µg/l	TM343	<0.01			
Endosulphan I	<0.01 µg/l	TM343	<0.01			
trans-Chlordane	<0.01 µg/l	TM343	<0.01			
cis-Chlordane	<0.01 µg/l	TM343	<0.01			
p,p'-DDE	<0.01 µg/l	TM343	<0.01			

Triadimefon

Pendimethalin

Parathion

TM344

TM344

TM344

<0.01 µg/l

<0.01 µg/l

<0.01 µg/l

< 0.01

< 0.01

< 0.01

(ALS)

			CERT	FICALE OF				
SDG: Location:	1 K	81011-82 Killycard		t Reference: F r Number: 2	21724 21260	Report Number: Superseded Report:	477251	
						· · ·		
Results Legend	Cu	stomer Sample Ref.	GW02	İ				
# ISO17025 accredited. M mCERTS accredited.								
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.00 - 0.00					
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Ground Water (GW) 10/10/2018					
** % recovery of the surrogate stand	dard to	Sample Time						
check the efficiency of the metho results of individual compounds		Date Received	11/10/2018 181011-82					
samples aren't corrected for the r (F) Trigger breach confirmed	recovery	SDG Ref Lab Sample No.(s)	18505196					
1-5&+§@ Sample deviation (see appendix)		AGS Reference						
Component	LOD/Units	Method	0.01					
Chlorfenvinphos	<0.01 µg/l	TM344	<0.01					
Ethion	<0.01 µg/l	TM344	<0.01					
Carbophenothion	<0.01 µg/l	TM344	<0.01					
Triazophos	<0.01 µg/l	TM344	<0.01					
Phosalone	<0.01 µg/l	TM344	<0.01					
Azinphos methyl	<0.02 µg/l	TM344	<0.02					
Azinphos ethyl	<0.02 µg/l	TM344	<0.02					
Quintozene (PCNB)								
	<0.01 µg/l	TM345	<0.01					
Telodrin	<0.01 µg/l	TM345	<0.01					
Chlorothalonil	<0.01 µg/l	TM345	<0.01		, 11 ⁵⁰ .			
Etrimphos	<0.01 µg/l	TM345	<0.01		de vottet			
					only and			
				outpo	es onthe any officience.			
				ection beree				
			•	11150 HOX				
				OPILI				
			Consent or					
			Coll					

ALS

CERTIFICATE OF ANALYSIS

_

SDG: Location:		181011-82 Killycard		nt Reference: er Number:	P1724 Z1260		Report Number Superseded Repo	
SVOC MS (W) - Aqueou		Tanyoara	Orde		21200		Caporocaca riop	
Results Legend		ustomer Sample Ref.	GW02					
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.fit Dissolved / filtered sample. tot.unfit Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate stand check the efficiency of the methoc results of individual compounds v	d. The vithin	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref	0.00 - 0.00 Ground Water (GW) 10/10/2018 11/10/2018 18/1011-82					
(F) Trigger breach confirmed -5&+§@ Sample deviation (see appendix)	ecovery	Lab Sample No.(s)	18505196					
Component	LOD/Units	AGS Reference Method						
1,2,4-Trichlorobenzene (aq)	<1 µg/l	TM176	<1 #					
1,2-Dichlorobenzene (aq)	<1 µg/l	TM176	<1 #					
1,3-Dichlorobenzene (aq)	<1 µg/l	TM176	<1 #					
1,4-Dichlorobenzene (aq)	<1 µg/l	TM176	<1 #					
2,4,5-Trichlorophenol (aq)	<1 µg/l	TM176	<1 #					
2,4,6-Trichlorophenol (aq)	<1 µg/l	TM176	<1 #					
2,4-Dichlorophenol (aq)	<1 µg/l	TM176	<1 #					
2,4-Dimethylphenol (aq)	<1 µg/l	TM176	<1 #					
2,4-Dinitrotoluene (aq)	<1 µg/l	TM176	<1 #					
2,6-Dinitrotoluene (aq)	<1 µg/l	TM176	<1 #			150.		
2-Chloronaphthalene (aq)	<1 µg/l	TM176	<1 #					
2-Chlorophenol (aq)	<1 µg/l	TM176	<1 #			2		
2-Methylnaphthalene (aq)	<1 µg/l	TM176	<1 #	ites an owned	ipost red			
2-Methylphenol (aq)	<1 µg/l	TM176	<1 #	ection et				
2-Nitroaniline (aq)	<1 µg/l	TM176	<1	A INSPECTORY				
2-Nitrophenol (aq)	<1 µg/l	TM176	<1	OX.				
3-Nitroaniline (aq)	<1 µg/l	TM176	<1 consent of					
4-Bromophenylphenylether (aq)	<1 µg/l	TM176	₹ #					
4-Chloro-3-methylphenol (aq)	<1 µg/l	TM176	<1 #					
4-Chloroaniline (aq)	<1 µg/l	TM176	<1					
4-Chlorophenylphenylether (aq)	<1 µg/l	TM176	<1 #					
4-Methylphenol (aq)	<1 µg/l	TM176	<1 #					
4-Nitroaniline (aq)	<1 µg/l	TM176	<1 #					
4-Nitrophenol (aq)	<1 µg/l	TM176	<1					
Azobenzene (aq)	<1 µg/l	TM176	<1 #					
Acenaphthylene (aq)	<1 µg/l	TM176	<1 #					
Acenaphthene (aq)	<1 µg/l	TM176	<1 #					
Anthracene (aq)	<1 µg/l	TM176	<1 #					
bis(2-Chloroethyl)ether (aq)	<1 µg/l	TM176	<1 #					
bis(2-Chloroethoxy)methane (aq)	<1 µg/l	TM176	<1 #					
bis(2-Ethylhexyl) phthalate (aq)	<2 µg/l	TM176	<2 #					
Butylbenzyl phthalate (aq)	<1 µg/l	TM176	<1 #					
Benzo(a)anthracene (aq)	<1 µg/l	TM176						

15:37:44 17/10/2018

ALS

CERTIFICATE OF ANALYSIS

SDG: Location:		181011-82 Killycard			P1724 Z1260	Report Number: Superseded Report:	477251
VOC MS (W) - Aqueou		NilyCalu	Orde	r number:	21200	Superseded Report.	
Results Legend		ustomer Sample Ref.	GW02				
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. to.tunfit Total / unfiltered sample. Subcontracted test. * % recovery of the surgate stand check the efficiency of the methoc results of individual compounds v samples aren't corrected for ther	d. The vithin	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref	0.00 - 0.00 Ground Water (GW) 10/10/2018 11/10/2018 181011-82 1850196				
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	10202130				
Component Benzo(b)fluoranthene (aq)	LOD/Units <1 μg/l	Method TM176	<1				
Benzo(k)fluoranthene (aq)	<1 µg/l	TM176	=======================================				
		TM176					
Benzo(a)pyrene (aq)	<1 µg/l		#				
Benzo(g,h,i)perylene (aq)	<1 µg/l	TM176	<1 #				
Carbazole (aq)	<1 µg/l	TM176	<1 #				
Chrysene (aq)	<1 µg/l	TM176	<1 #				
Dibenzofuran (aq)	<1 µg/l	TM176	<1 #				
n-Dibutyl phthalate (aq)	<1 µg/l	TM176	5.53 #				
Diethyl phthalate (aq)	<1 µg/l	TM176	<1 #				
Dibenzo(a,h)anthracene (aq)	<1 µg/l	TM176	* <1 #		THSC.		
Dimethyl phthalate (aq)	<1 µg/l	TM176	* <1 #		South and other use		
n-Dioctyl phthalate (aq)	<5 µg/l	TM176			sonth and		
Fluoranthene (aq)	<1 µg/l	TM176	<1	autp	NIL COLOR		
Fluorene (aq)	<1 µg/l	TM176	# <1 #	insection purp	<u>, , , , , , , , , , , , , , , , , , , </u>		
Hexachlorobenzene (aq)	<1 µg/l	TM176	<1 (1	L'ITSPE DA			
Hexachlorobutadiene (aq)	<1 µg/l	TM176	<1	08 ³ ,			
Pentachlorophenol (aq)	<1 µg/l	TM176	<1 CONSENT				
Phenol (aq)	<1 µg/l	TM176	<1				
n-Nitroso-n-dipropylamine (aq)	<1 µg/l	TM176	<1				
Hexachloroethane (aq)	<1 µg/l	TM176	# <1				
Nitrobenzene (aq)	<1 µg/l	TM176	# <1				
Naphthalene (aq)	<1 µg/l	TM176	# <1				
Isophorone (aq)	<1 µg/l	TM176	#				
Hexachlorocyclopentadiene (aq)	<1 µg/l	TM176	=======================================				
Phenanthrene (aq)	<1 µg/l	TM176	<1				
Indeno(1,2,3-cd)pyrene (aq)	<1 µg/l	TM176	#				
Pyrene (aq)	<1 µg/l	TM176	#				
• • • • •	ישיי.		#				
					+	· · · · · · · · · · · · · · · · · · ·	

		101011			OF ANALYSIS				
SDG: Location:		181011-82 Killycard		nt Reference: er Number:	P1724 Z1260		rt Number: seded Report:	477251	
OC MS (W)									
Results Legend	(Customer Sample Ref.	GW02						
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.									
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.00 - 0.00 Ground Water (GW)						
* Subcontracted test.		Date Sampled	10/10/2018						
** % recovery of the surrogate stands check the efficiency of the method	. The	Sample Time Date Received	11/10/2018						
results of individual compounds w samples aren't corrected for the re		SDG Ref	181011-82						
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s)	18505196						
Component	LOD/Units	AGS Reference Method							
Dibromofluoromethane**	%	TM208	113						
Toluene-d8**	%	TM208	101						
4-Bromofluorobenzene**	%	TM208	96.6						
Dichlorodifluoromethane	<1 µg/l	TM208	<1	+					
Chloromethane	<1 µg/l	TM208	# <1						
Vinyl chloride	<1 µg/l	TM208	# <1						
Bromomethane	<1 µg/l	TM208	# <1	¢		_			
Chloroethane	<1 µg/l	TM208	<1	¢					
Trichlorofluoromethane	<1 µg/l	TM208	# <1	<u> </u>					
1,1-Dichloroethene	<1 µg/l	TM208	/ <1	¢					
Carbon disulphide	<1 µg/l	TM208	/ <1	¢		NS ^{C.}			
Dichloromethane	<3 µg/l	TM208	* <3		2015 and other				
			#	ŧ	es of fort				
Methyl tertiary butyl ether (MTBE)	<1 µg/l	TM208	<1	4 4 4 4 4 4 4 4 4 4 4 4 4 4	ROLLINE C				
rans-1,2-Dichloroethene	<1 µg/l	TM208	<1 #	t pection per	, Y				
1,1-Dichloroethane	<1 µg/l	TM208	<1	of installe					
cis-1,2-Dichloroethene	<1 µg/l	TM208	<1	t 02,					
2,2-Dichloropropane	<1 µg/l	TM208	<1 consent of						
Bromochloromethane	<1 µg/l	TM208	#						
Chloroform	<1 µg/l	TM208	<1	¢					
1,1,1-Trichloroethane	<1 µg/l	TM208	<1	ŧ					
1,1-Dichloropropene	<1 µg/l	TM208	<1	±					
Carbontetrachloride	<1 µg/l	TM208	<1						
1,2-Dichloroethane	<1 µg/l	TM208	<1	¢					
Benzene	<1 µg/l	TM208	<1						
Frichloroethene	<1 µg/l	TM208	<1						
,2-Dichloropropane	<1 µg/l	TM208	<1	+ +					
Dibromomethane	<1 µg/l	TM208	<1 <1						
Bromodichloromethane	<1 µg/l	TM208	<1						
cis-1,3-Dichloropropene	<1 µg/l	TM208							
Toluene	<1 µg/l	TM208	<1	‡ _					
rans-1,3-Dichloropropene	<1 µg/l	TM208	<1						
		Th (000	#	#					

15:37:44 17/10/2018

1,1,2-Trichloroethane

1,3-Dichloropropane

<1 µg/l

<1 µg/l

TM208

TM208

<1

<1

#

#

			CERTI	FICATE OF	ANALYSIS			Validated
SDG: Location:		81011-82 (illycard			21724 21260	Report Number: Superseded Repor	477251 t:	
VOC MS (W)		anycaru	Orde	r Number. 2	1200	Superseded Repor		
Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / sottled sample. diss.fit Dissolved / filtered sample. tot.unfit Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate stand check the efficiency of the method results of individual compounds w (F) Trigger breach confirmed 1-5&4+@ Sample daviation (see appendix)	lard to 1. The vithin	stomer Sample Ref. Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	GW02 0.00 - 0.00 Ground Water (GW) 10/10/2018 11/10/2018 181011-82 18505196					
Component	LOD/Units	Method	-4					
Tetrachloroethene	<1 µg/l	TM208	<1 #					
Dibromochloromethane	<1 µg/l	TM208	<1 #					
1,2-Dibromoethane	<1 µg/l	TM208	<1 #					
Chlorobenzene	<1 µg/l	TM208	<1 #					
1,1,1,2-Tetrachloroethane	<1 µg/l	TM208	<1 #					
Ethylbenzene	<1 µg/l	TM208	<1 #					
m,p-Xylene	<1 µg/l	TM208	<1 #					
o-Xylene	<1 µg/l	TM208	<1 #					
Styrene	<1 µg/l	TM208	<1 #					
Bromoform	<1 µg/l	TM208	<1 #		USE.			
Isopropylbenzene	<1 µg/l	TM208	<1 #					
1,1,2,2-Tetrachloroethane	<1 µg/l	TM208	<1 #	c	inti any official			
1,2,3-Trichloropropane	<1 µg/l	TM208	<1 #	Durpo	inco			
Bromobenzene	<1 µg/l	TM208	<1 #	er av				
Propylbenzene	<1 µg/l	TM208	<1	THEFT				
2-Chlorotoluene	<1 µg/l	TM208	<1	QF,				
1,3,5-Trimethylbenzene	<1 µg/l	TM208	<1 sent 4 consent #					
4-Chlorotoluene	<1 µg/l	TM208	<1 #					
tert-Butylbenzene	<1 µg/l	TM208	<1 #					
1,2,4-Trimethylbenzene	<1 µg/l	TM208	<1 #					
sec-Butylbenzene	<1 µg/l	TM208	<1 #					
4-iso-Propyltoluene	<1 µg/l	TM208	<1 #					
1,3-Dichlorobenzene	<1 µg/l	TM208	<1 #					
1,4-Dichlorobenzene	<1 µg/l	TM208	<1 #					
n-Butylbenzene	<1 µg/l	TM208	<1 #					
1,2-Dichlorobenzene	<1 µg/l	TM208	<1 #					
1,2-Dibromo-3-chloropropane	<1 µg/l	TM208	<1					
1,2,4-Trichlorobenzene	<1 µg/l	TM208	<1 #					
Hexachlorobutadiene	<1 µg/l	TM208	<1 #					
tert-Amyl methyl ether (TAME)	<1 µg/l	TM208	<1 #					
Naphthalene	<1 µg/l	TM208	<1 #					
1,2,3-Trichlorobenzene	<1 µg/l	TM208	<1 #					

Validated

			CERT	FICATE OF A	ANALYSIS			
SDG:	1	81011-82			724	Report Numb	er: 477251	
VOC MS (W)	k	Killycard	Orde	r Number: Z1	260	Superseded Re	port:	
Results Legend # ISO17025 accredited.	Cu	istomer Sample Ref.	GW02					
M mCERTS accredited. aq Aqueous / settled sample.		Depth (m)	0.00 - 0.00					
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Ground Water (GW)					
* Subcontracted test. ** % recovery of the surrogate standar check the efficiency of the method	ard to	Date Sampled Sample Time	10/10/2018					
results of individual compounds w samples aren't corrected for the re	ithin	Date Received SDG Ref	11/10/2018 181011-82					
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	18505196					
Component	LOD/Units	Method						
1,3,5-Trichlorobenzene	<1 µg/l	TM208	<1					
				STREETON PURCH	. 11 ⁵⁰ .			
					ther			
					N. mor			
				, c	offeria			
				arposi	2 ⁰			
				· OF DU EOU				
				Dectremptor				
				k install				
				OPILE				
				, 				
			Consent or					

Validated

Validated

477251

181011-82 Killycard

Table of Results - Appendix

Method No	Reference	Description
SUB		Subcontracted Test
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM046	Method 4500G, AWWA/APHA, 20th Ed., 1999	Measurement of Dissolved Oxygen by Oxygen Meter
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM172	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	EPH in Waters
TM176	EPA 8270D Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of SVOCs in Water by GCMS
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM284		105 irec
TM328		N D' L'ENY
TM343	EPA 8270D - Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of Selected Pesticides (Suite I) in Liquids by GCMS
TM344	EPA 8270D – Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Control of selected pesticides (Suite II) by GCMS
TM345	EPA 8270D – Semi-Volatile Organic Compounds by Gas	Determination of selected pesticides (Suite III) by GCMS

NA = not applicable.

NA = not applicable. Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Dawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Client Reference: P1724 Order Number: Z1260 Report Number: Superseded Report: Validated

477251

Test C	ompletion	Dates
--------	-----------	-------

Consent of copyright owner required for any other use.

Lab Sample No(s)	18505196
Customer Sample Ref.	GW02
AGS Ref.	
Depth	0.00 - 0.00
Туре	Ground Water
Alkalinity as CaCO3	15-Oct-2018
Ammoniacal Nitrogen	17-Oct-2018
Anions by Kone (w)	16-Oct-2018
BOD True Total	16-Oct-2018
COD Unfiltered	12-Oct-2018
Coliforms (W)	12-Oct-2018
Conductivity (at 20 deg.C)	12-Oct-2018
Cyanide Comp/Free/Total/Thiocyanate	15-Oct-2018
Dissolved Metals by ICP-MS	17-Oct-2018
Dissolved Oxygen by Probe	12-Oct-2018
Fluoride	17-Oct-2018
Mercury Dissolved	17-Oct-2018
Mineral Oil C10-40 Aqueous (W)	17-Oct-2018
Nitrite by Kone (w)	16-Oct-2018
Organotins in Aqueous Samples	16-Oct-2018
Pesticides (Suite I) by GCMS	17-Oct-2018
Pesticides (Suite II) by GCMS	17-Oct-2018
Pesticides (Suite III) by GCMS	17-Oct-2018
pH Value	12-Oct-2018
Phosphate by Kone (w)	15-Oct-2018
Silicon Dissolved by ICP-OES	16-Oct-2018
SVOC MS (W) - Aqueous	15-Oct-2018
Total Organic and Inorganic Carbon	13-Oct-2018
VOC MS (W)	15-Oct-2018

DETAILED IN SCOPE REG NO. 138

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Customer

Customer Services ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Certificate Of Analysis

Job Number:	18-48075
Issue Number:	1
Report Date:	12 October 2018

Site: Killycard PO Number: Not Supplied Date Samples Received: 11/10/2018

For inspection numoses only in other use. Please find attached the results for the samples received at our laboratory on 11/10/2018.

Should you have any queries regarding the report or require any further services, we would be happy to discuss your requirements. For additional information about the company please log-on to our website at the above address.

Thank you for choosing City Analysts Limited. We look forward to assisting you again.

Authorised By:

Shane Reynolds Laboratory Manager Authorised Date: 12 October 2018

Notes:

Results relate only to the items tested. Information on methods of analysis and performance characteristics is available on request. Any opinions or interpretations indicated are outside the scope of our INAB accreditation. This test report shall not be reproduced except in full or with written approval of City Analysts Limited.

Page 1 of 2

Template: 1146 Revision: 018

Killycard GW02

Ground

414589

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

DETAILED IN SCOPE REG NO. 138

Report Reference: 18-48075

Report Version: 1

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer Services

Sample Description:

Lab Reference Number:

Sample Type:

Customer

Site:

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Date of Sampling:

Date Sample Received: 11/10/20

10/10/2018 11/10/2018

Site / Method Ref.	Analysis Start Date	Parameter	aby any other Result	Units	PV Value (Drinking Water Only)
D/D1201#	11/10/2018	Coliforms	5/03	MPN/100ml	÷.
		Consent of copyright own	\$		

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely.

NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 2 of 2

AIS	SDG: Location:	181011-82 Killycard	Client Reference: Order Number:	P1724 Z1260	Report Number: Superseded Report:	477251
(ALS)						

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on received prace on receipting
prace on receipting
provide the provided the provide

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect

14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. We are accredited to MCERTS for sand, clav and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	ncorrect container received
A. 80	Deviation from method
A STA	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
Ş	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.
A 1	1

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name	
Chrysof le	White Asbestos	
Amosite	Brow n Asbestos	
Cro d dolite	Blue Asbe stos	
Fibrous Actinolite	-	
Fib to us Anthop hyll ite	-	
Fibrous Tremol ite	-	

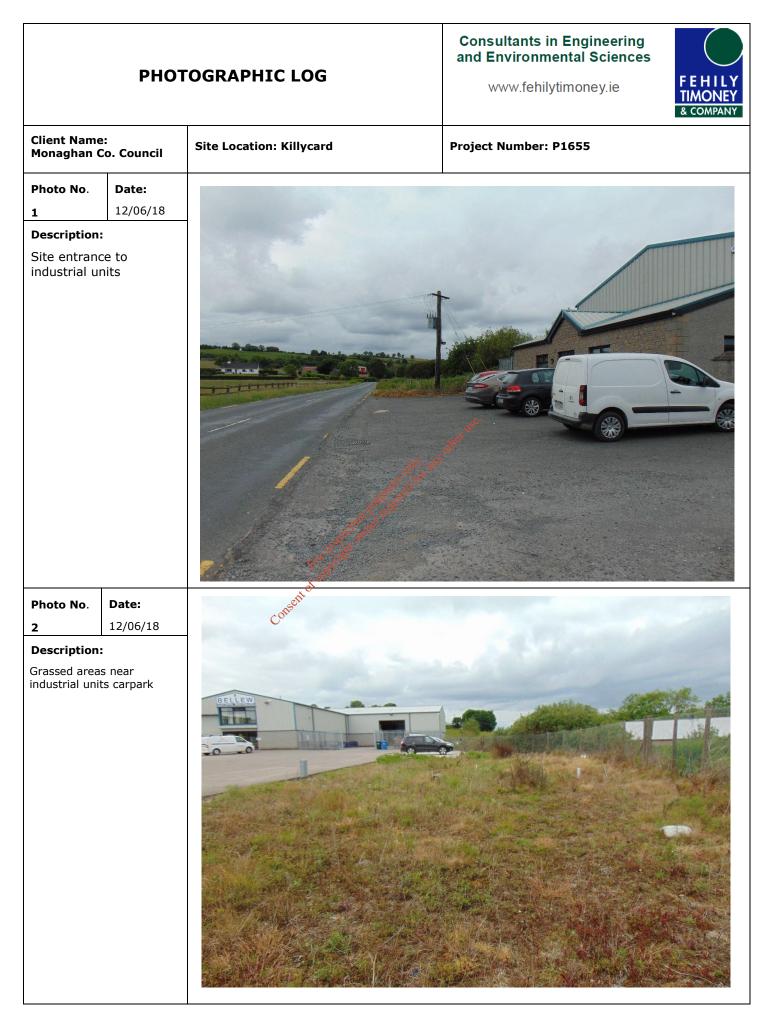
Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Commentary of the second of th



Killycard Walkover Survey Checklist – 12th June 2018

Information	Checked	Comment (include distances from site boundary)
1. What is the current land use?		The majority of the site is vegetated and used for agriculture. Derelict mushroom buildings and industrial units are also present to the east of the site.
2. What are the neighbouring land uses?		Primarily agricultural with some residential buildings to the southwest of the site.
3. What is the size of the site?		The site occupies approximately 2 Hectares
4. What is the topography?		The site is relatively flat throughout.
5. Are there potential receptors (if yes, give details)?		Yes, leachate to west of site
Houses		Yes
Surface water features (if yes, distance and direction of flow)		Corrinshigo lake borders the site to the west. Surface water ditches border the site to eh
Any wetland or protected areas	aurpo	Ňo
Public water supplies	ction per re	No
Private wells	inspectow	Not evident
Services	COPYIE	Overhead wires along the southeast of the site connecting to industrial units.
Other buildings		Derelict mushroom buildings onsite. Farm buildings to east and south of the site. Residential buildings within 100m to the southwest of the site.
Other		No
6. Are there any potential sources of contamination (if yes, give details)?		Yes – Waste from former landfill
Surface waste (if yes, what type?)		Waste found protruding through soil cover throughout the site. Generally residual inert domestic and C&D waste.
Surface ponding of leachate		No
Leachate seepage		No
Landfill gas odours		No
7. Are there any outfalls to surface water? (If yes, are there discharges and what is the nature of discharge?)		Yes, lake to west of site/ Receptors north and SW of site

Information	Checked	Comment (include distances from site boundary)
8. Are there any signs of impact on the environment? (If yes, take photographic evidence)		Yes, waste depositing into lake
Vegetation die off, bare ground		No
Leachate seepages		No
Odours		No
Litter		Yes, waste found protruding through soil cover throughout the site.
Gas bubbling through water		No
Signs of settlement		No
Subsidence, water logged areas		No
Drainage or hydraulic issues		No
Downstream water quality appears poorer than upstream water quality		No
9. Are there any indications of remedial measures? (Provide details)		No ate 158.
Capping		Next and
Landfill gas collection	~ ⁰⁵	ENA C
Leachate collection	an Purte	No
	A in solution purpos	
10. Describe fences and security features (if any)	opyright out	Fencing and walls around buildings, ditches around most of site, wall along the road
ato		
Any other relevant information?		

PHOTOGRAPHIC LOG			Consultants in Engineering and Environmental Sciences www.fehilytimoney.ie		
Client Name Monaghan C		Site Location: Killycard	Project Number: P1655		
Photo No. 3	Date: 12/06/18				
Description: Old gas wel industrial ur carpark	l near				
Photo No. 4 Description: Site entrand derelict mus buildings	ce to				

PHOTOGRAPHIC LOG			Consultants in Engineering and Environmental Sciences www.fehilytimoney.ie F E H I L Y TIMONEY & COMPANY		
Client Name Monaghan C	: Co. Council	Site Location: Killycard	Project Number: P1655		
Photo No. 5	Date: 12/06/18				
Description:	 				
Area in fron derelict mus buildings					
Photo No.	Date:	nsett of			
6	12/06/18	Con	and a state of the		
Description: Site entrance vegetated fiel	to				

Page 4 of 7

	РНОТ	OGRAPHIC LOG	Consultants in Engineering and Environmental Sciences www.fehilytimoney.ie & company
Client Name Monaghan C		Site Location: Killycard	Project Number: P1655
Photo No. 9	Date: 12/06/18	STATISTICS A	
Description	•		Transferra and a second
Northern se site, looking westwards	ction of		
Photo No.	Date:		
10	12/06/18		
Description: Waste materi from northerr adjacent to su ditch	al protruding 1 boundary		

	РНОТ	OGRAPHIC LOG	Consultants in Engineering and Environmental Sciences www.fehilytimoney.ie		
Client Name Monaghan C		Site Location: Killycard	Project Number: P1655		
Photo No. 11	Date: 12/06/18				
Description:		A STATE OF A			
Exposed waste material at western boundary of Corrinshigo lake					
Photo No. 12 Description: Exposed was material and Japanese Kr at western b of Corrinshig	ste 1 notweed poundary				

PHOTOGRAPHIC LOG			Consultants in Engineering and Environmental Sciences www.fehilytimoney.ie FEHILY TIMONEY & COMPANY		
Client Name Monaghan C		Site Location: Killycard	Project Number: P1655		
Photo No. 13	Date: 12/06/18				
Description:					
Waste mate protruding fi surface	rial				
Photo No.	Date:	States & States and			
14	12/06/18	Surface of the second second second	Constant of the second s		
Description:		the second states and			
Waste mate protruding fi surface	rial rom soil				

Appendix V

APEX GEOSERVICES Consent of constitution of the realized for any other GEOPHYSICAL REPORT

AGL18164_01

REPORT

ON THE

GEOPHYSICAL SURVEY

Ат

Consert of constraint of the real indication of the section of the KILLYCARD, CASTLEBLAYNEY

CO. MONAGHAN

FOR

FEHILLY TIMONEY & CO.

14TH NOVEMBER 2018

APEX Geoservices Limited Unit 6 Knockmullen Business Pk., Gorey, Co. Wexford, Ireland

T: 0402 21842 F: 0402 21843 E: info@apexgeoservices.ie W: www.apexgeoservices.com

PRIVATE AND CONFIDENTIAL

THE FINDINGS OF THIS REPORT ARE THE RESULT OF A GEOPHYSICAL SURVEY USING NON-INVASIVE SURVEY TECHNIQUES CARRIED OUT AT THE GROUND SURFACE. INTERPRETATIONS CONTAINED IN THIS REPORT ARE DERIVED FROM A KNOWLEDGE OF THE GROUND CONDITIONS, THE GEOPHYSICAL RESPONSES OF GROUND MATERIALS AND THE EXPERIENCE OF THE AUTHOR. APEX GEOSERVICES LTD. HAS PREPARED THIS REPORT IN LINE WITH BEST CURRENT PRACTICE AND WITH ALL REASONABLE SKILL, CARE AND DILIGENCE IN CONSIDERATION OF THE LIMITS IMPOSED BY THE SURVEY TECHNIQUES USED AND THE RESOURCES DEVOTED TO IS BY AGREEMENT WITH THE CLIENT. THE INTERPRETATIVE BASIS OF THE CONCLUSIONS CONTAINED IN THIS REPORT SHOULD BE TAKEN INTO ACCOUNT IN ANY FUTURE USE OF THIS REPORT.

For inspection pupper required for any of

PROJECT NUMBER	AGL18164		
AUTHOR	CHECKED	REPORT STATUS	DATE
EURGEOL PETER O'CONNOR M.SC. (GEOPHYSICS), P.GEO. DIP EIA MGT.	TONY LOMBARD M.SC. (GEOPHYSICS)	v1 Draft	14 TH NOVEMBER 2018

CONTENTS

1.	EXECUTIVE SUMMARY1
2.	INTRODUCTION
2.1	Project Objectives2
2.2	Site Background2
2.3	Geology & Soils
2.4	Site Investigation4
2.5	Survey Rationale4
3	RESULTS & INTERPRETATION6
3.1	EM Ground Conductivity Mapping6
3.2	Electrical Resistivity Tomography6
3.3	Seismic Refraction Profiling7
3.4	MASW
3.5	Discussion
3.5.1	Extent of the waste
3.5.2	Seismic Refraction Profiling
3.5.3	Thickness of waste and other information and the state of
4	RECOMMENDATIONS
REFEF	RENCES
APPE	IDIX A: DETAILED METHODOLOGY12
A.1	EM Ground Conductivity Mapping12
A.2	Electrical Resistivity Tomography12
A.3	Seismic Refraction Profiling13
A.4	Multichannel Analysis of Surface Waves13
A.5	Spatial Relocation14
APPE	IDIX B: DRAWINGS
APPE	IDIX C: SEISMIC PLATES16
APPE	IDIX D: MASW DATA17

1. EXECUTIVE SUMMARY

APEX Geoservices Ltd. was requested by Fehilly Timoney & Co. to carry out a geophysical survey at a landfill site in Killycard, County Monaghan. The purpose of the investigation is to determine the extent, thickness, type and volume of imported material across the site. The site area covers approximately 2.2Ha of which approximately 0.9 Ha is covered in buildings and hardstands.

The site is underlain by cut away peat, with Lower Palaeozoic glacial till on the more elevated ground to the north and south.

The rock type locally is black pyritic, occasionally graptolitic, shale-schist of the Oghill Formation. Depth to rock is shallow and a number of old quarry workings occur in the vicinity.

Trial pit logs from a previous investigation show thin topsoil over mixed waste over soft peat and clay/silt. A number of the trial pit logs record 'black waste' on the logs.

The geophysical investigation consisted of EM ground conductivity mapping with follow-up Electrical Resistivity Tomography (ERT), Seismic Refraction profiling and MASW.

Both the elevated EM conductivity readings and the trial pit bgs show waste to be present across the all of the survey area. Two zones with different types of waste have been outlined:

Zone A - TOPSOIL over MADE GROUND/WASTE (Predominantly organic) over very soft PEAT/CLAY with LEACHATE extending between 2 and 5m into the underlying peat, clay and silt layers. This area corresponds well with the location of these trial pits where 'black waste' was encountered.

Zone B - TOPSOIL over MADE GROUND WASTE (mixed with CLAY/SILT) over very soft PEAT/CLAY.

As electrical contrasts between waste, leachate and soils are low the most reliable waste thickness information comes from the trial pit and MASW data. The average thickness of the Zone A waste is 2.1m and the average thickness of the Zone B waste is 2.4m.

The S-wave velocities for the survey area indicate soft to very soft waste and underlying soils and some **long term settlement** can be expected.

Zone	Extent	Thickness	Volume	Tonnes
	(sq. m.)	(m.)	(cu. m.)	(@ 1.4 tonnes/cu.m.)
А	6743	2.1	14,160	19,824
В	6473	2.4	15,535	21,750
Totals	13,216		29,695	41,574

The volumes of waste calculated are as follows:

Bedrock elevation is around 85-90 mOD increasing to around 88-90 mOD to the south of the survey area. Combined waste and soil thicknesses range from around 5m to 10m.

Boreholes are recommended to confirm the findings of the geophysical report.

The geophysical report should be reviewed after the completion of any further direct investigation.

2. INTRODUCTION

APEX Geoservices Ltd. was requested by Fehilly Timoney & Co. to carry out a geophysical survey at a landfill site in Killycard, County Monaghan. A Tier 2 environmental risk assessment is being carried out at the site. As part of the risk assessment there is a requirement for a geophysical investigation. The purpose of the investigation is to determine the extent, thickness and type of imported material across the site.

2.1 Project Objectives

The objectives of the survey were to provide information on:

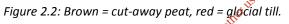
- The extent of the waste body
- The type of waste present •
- The thickness of the waste and presence of any anomalous features
- A volume calculation
- Depth to bedrock (if within limits of the survey)
- Proposed location of direct investigation points.

2.2 Site Background

redfor The historic landfill is located approximately 1.7km tothe north-west of Castleblayney Town on the R-183 Castleblayney to Ballybay regional road Afrier 1 environmental risk assessment (ERA) was conducted by Fehilly Timoney & Co. in June 2018 which included a detailed desk study and site walkover. The ERA concluded that a high risk classification (Class A) can be assigned to the site and that further investigation was warranted. The area to be investigated covers approximately 2.2Ha of which approximately 0.9 Ha is covered in buildings and hardstands (Fig. 2.1).

anyother

Figure 2.1. Site location indicated by magenta boundary.


The site is bounded to the north by agricultural land, to the west by Corrinshigo Lough and to the east and south by farmland and farm buildings. The site is relatively flat lying at an elevation of c. 94 mOD.

2.3 Geology & Soils

The Teagasc soils map for the area (Fig. 2.2) indicates that the site is originally underlain by cut away peat, with Lower Palaeozoic glacial till on the more elevated ground to the north and south.

The Geological Survey of Ireland (GSI) 1:100,000 Bedrock Geology map for the area (Figure 2.3) indicates that the site is underlain by the Oghill Formation, which consists of grey to grey-green massive sandstone (greywacke), microconglomerate and amalgamated beds with subordinate thin to thick-bedded greywacke and locally infaulted dark grey or black pyritic, occasionally graptolitic shale-mudstone.

Examination of the GSI 6" geology sheet for the site shows the rock in the immediate vicinity of the site to be dark fissile, pyritic shale with occasional schists and white quartz veins. Depth to rock is shallow and a number of old quarty workings occur in the vicinity.

Figure 2.3. Bedrock geological map for the survey area.

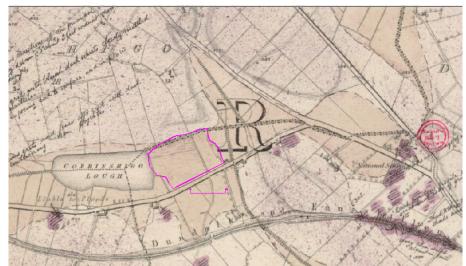


Figure 2.4. Geological Survey of Ireland 6" sheet for the area.

2.4 Site Investigation

Thirteen trial pits and 3 monitoring wells were completed at the site in a previous investigation. The trial pit logs show the following general stratigraphy; thin topsoil (0.1m) over made ground consisting of mixed waste material to between 1.1 and 3.4m bgl. The waste is underlain by between between 0.8 and 1.6m of soft peat which in turn overlies soft to firm clay. The trial pit data have been incorporated into the geophysical interpretation presented in this report.

The location of the trial pits are shown on AGL18164_01. A number of trial pits record 'black waste' on the logs. These locations are designated with a 'K' after the Trial Pit number.

2.5 Survey Rationale

The investigation consisted of reconnaissance EM ground conductivity mapping with follow-up Electrical Resistivity Tomography (ERT), Seismic Refraction profiling and MASW:

EM ground conductivity mapping operates on the principle of inducing currents in conductive substrata and measuring the resultant secondary electro-magnetic field. The strength of this secondary EM field is calibrated to give apparent ground conductivity in milliSiemens/metre (mS/m). This technique will provide information on the shallow (0-6m below ground level) variation of the superficial deposits and outline the extent of any shallow bedrock.

ERT soundings image the resistivity of the materials in the subsurface along a profile to produce a pseudo-section showing the variation in resistivity to depths dependent on the length of the profile. Each pseudo-section is interpreted to determine the material type along the profile based on the typical resistivities returned for Irish ground materials.

Seismic Refraction Profiling measures the P-wave velocity of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher seismic velocities while soft, loose or fractured materials have lower velocities. This method profiles the depth to the top of the stiff soils and bedrock, and provides information on the quality/strength of the bedrock.

The **MASW** method is used to estimate shear-wave velocities (Vs) in the ground material. Overburden material with a Vs <175 m/s is generally classified as soft/loose.

As with all geophysical methods the results are based on indirect readings of the subsurface properties. The effectiveness of the proposed approach will be affected by variations in the ground properties. By combining a number of techniques it is possible to provide a higher quality interpretation and reduce any ambiguities which may otherwise exist. Further information on the detailed methodology of each geophysical method employed in this investigation is given in **APPENDIX A: DETAILED METHODOLOGY**.

Consent of copyright owner required for any other use.

3 RESULTS & INTERPRETATION

The geophysical survey locations are indicated on Drawing AGL18164_01 (Appendix B). The survey area to the west of the yards and buildings extends to approximately 1.32 Ha.

3.1 EM Ground Conductivity Mapping

The EM31 conductivity survey locations are shown on Drawing AGL18164_01. The recorded EM31 conductivity values are contoured on Drawing AGL18164_02. The conductivity values range from 25-125 milliSiemens/metre (mS/m). The conductivity values have been interpreted as follows:

Conductivity (mS/m)	Interpretation
25 - 60	TOPSOIL over MADE GROUND/WASTE (mixed with CLAY/SILT) over very soft PEAT/CLAY
60 - 125	TOPSOIL over MADE GROUND/WASTE (Predominantly organic) over very soft PEAT/CLAY with LEACHATE

Note: EM31 measurements refer to the bulk electrical conductivity of the <u>upper 6m</u> of ground.

3.2 Electrical Resistivity Tomography

Five resistivity profiles were recorded across the site (Profiles R106 R5). The locations are shown on Drawing AGL18164_01. Interpreted cross sections were compared for the profiles and are presented on Drawings AGL18164_R1-R5.

In determining the various types of imported material present from the resistivity sections R1-R5 it should be noted that:

- typical resistivities of Irish soils range from 20 ohm-m (clays) to around 3000 Ohm-m (dry gravel),
- the resistivity generally increases as the sand/gravel content increases,
- silt/clay typically has values in the range 30-50 Ohm-m,
- silty gravelly clay typically has resistivity values in the range 50-100 Ohm-m,
- deposits of predominantly organic waste such as those occurring in municipal landfills typically have resistivities in the range 5-30 Ohm-m.
- leachate saturated soils originating from predominantly organic waste have a similar resistivity range to organic waste, but will be influenced by the resistivities of the host material and the degree of dilution and dispersion of the leachate,
- inert C & D waste such as concrete, brick and mixed rock fill, stone and clay will usually have resistivities similar to gravelly material (50-500 Ohm-m).

The resistivity values recorded at this site ranged from 5-150 Ohm-m and have been interpreted as follows:

Resistivity (Ohm-m)	Interpretation
5-24	MADE GROUND/WASTE (Predominantly organic) over very soft
	PEAT/CLAY with LEACHATE
24-34	MADE GROUND/WASTE (mixed with CLAY/SILT) over very soft
	PEAT/CLAY
34-48	CLAY/SILT
48-150	PYRITIC SHALE/SCHIST BEDROCK

3.3 Seismic Refraction Profiling

Three seismic refraction profiles (S1-S3) were recorded across the site. The locations are shown on Drawing AGL18164_01 and the results are included on the interpreted cross sections in Drawings AGL18164_R1-R5 and in Appendix C.

The P-wave seismic velocities have been interpreted as follows:

Layer	Velocity (m/s)	Interpretation
1	300-350	Soft/loose MADE GROUND/WASTE/PEAT
2	700-800	Firm/medium dense or semi-saturated CLAY/SILT
3	2500-3200	Weak to occasionally moderately strong, cleaved SHALE/SCHIST

3.4 MASW

Shear wave (S-wave) velocity (Vs) and Gmax values were determined for the made ground/waste and underlying soil material. Vs velocities and corresponding soil cohesion ranges are summarised in Figure 3.1.

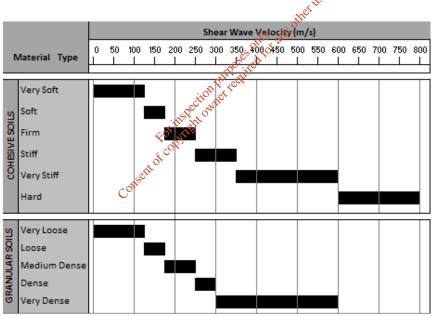


Fig 3.1: Vs velocities and corresponding soil cohesion ranges

The S-wave seismic velocities from this site have been interpreted as follows:

Layer	Velocity (m/s)	Interpretation
1	125 - 145	Soft/Loose MADE GROUND/WASTE (mixed with CLAY/SILT)
2	80 - 90	Very soft/Loose MADE GROUND/WASTE (Predominantly organic)
3	65 - 100	Very soft PEAT/CLAY

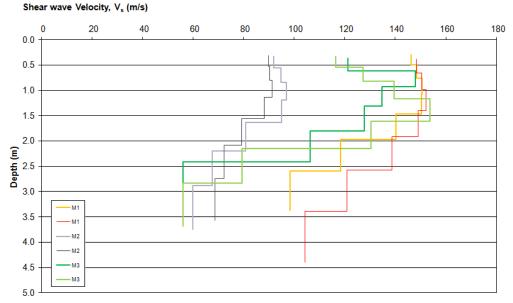


Fig 3.2: Vs velocities across site (M1-M3)

3.5 Discussion

other The interpretation of the geophysical data is plotted on gravings AGL18164_R1 to AGL18164_R5 Vor Pequired For and summarised on Drawings AGL18164 03.

3.5.1 Extent of the waste

Both the elevated EM conductivity readings and the trial pit logs show the waste to be present across the all of the survey area. ofcop

3.5.2 Type of waste

Both the EM Conductivity and the ERT profiles have outlined two types of waste present across the site:

The high EM conductivity and low ERT resistivity values have outlined an area of 0.67 Ha which has been interpreted as TOPSOIL over MADE GROUND/WASTE (Predominantly organic) over very soft PEAT/CLAY with LEACHATE (Zone A). This area corresponds well with the location of trial pits where 'black waste' was encountered.

The lower EM conductivity and higher ERT resistivity values have outlined an area of 0.65 Ha which has been interpreted as TOPSOIL over MADE GROUND/WASTE (mixed with CLAY/SILT) over very soft PEAT/CLAY (Zone B). This area corresponds well with the location of trial pits where brown or grey-black waste mixed with clay or silt was encountered.

3.5.3 Thickness of waste and other information.

Electrical contrasts between both waste types and the underlying peat and clay are poor and the best thickness information comes from the trial pit and MASW data. The average thickness of the Zone A waste is 2.1m and the average thickness of the Zone B waste is 2.4m.

All of the ERT profiles in Zone A show the low resistivity zone to extend between 2 and 5m below the bottom of the waste as found on the trial pit logs. This has been interpreted as a zone of leachate beneath the waste body extending into the underlying peat, clay and silt layers.

The S-wave velocities for the waste layer indicate that it is slightly more compacted/stiffer/denser than the softer underlying peat/clay/silt material on which it sits. Some long term settlement can be expected on this basis.

3.5.4 Volume calculation

The volumes of waste calculated using the extents and thicknesses shown above are as follows:

Zone	Extent (sq. m.)	Thickness (m.)	Volume (cu. m.)	Tonnes (@ 1.4 tonnes/cu.m.)
А	6743	2.1	14,160	19,824
В	6473	2.4	15,535	21,750
Totals	13,216		29,695	41,574

3.5.5 Bedrock The unusually low resistivity and the low seismic velocity for rock are both typical of what is expected from a fissile pyritic shale/schist of the type indicated on the GSI 6" sheet for the area. Bedrock elevation is around 85-90 mOD increasing to around 88-90 mOD to the south. Combined waste and soil thicknesses range from around 5m to 10m. Due to the poor resistivity and seismic velocity contrasts between the pyritic states that and overlying clays, silts, peat and waste, the exact bedrock profile is difficult to interpret with certainty.

4 **RECOMMENDATIONS**

To confirm the findings of the geophysical report the following boreholes are recommended:

No.	Easting	Northing	Comment
PBH1	680891.2	820416.5	to investigate predominantly organic waste and underlying leachate
PBH2	680948.3	820403.1	to investigate waste mixed with CLAY/SILT

The geophysical report should be reviewed after the completion of any direct investigation.

Consent of copyright owner required for any other use.

REFERENCES

Bell F.G., 1993; 'Engineering Geology', Blackwell Scientific Press.

Davies & Schulteiss, 1980; 'Seismic signal processing in Engineering Site Investigation – a case history', Ground Engineering, May 1980.

Deere, D. U., Hendron, A. J., Patton, F.D., and Cording, E.J. 1967; Design of surface and near surface construction in rock. Failure and breakage of rocks, proceedings 8th U.S. symposium rock mechanics, New York: Soc. Min Engrs, Am. Inst. Min Metall. PetroIm Engrs.

Geotomo Software, 2006; 'RES2DINV Users Manual', Malaysia.

Fehilly Timoney & Co. June 2018; Tier 1 Environmental Risk Assessment Historic Landfill at Killycard Landfill, Co. Monaghan,.

GSI, 2017; Bedrock Geology 1:100,000 Shapefile. http://www.gsi.ie/Mapping.htm

GSI, 2017; GSI Quaternary Deposits Shapefile. http://www.gsi.ie/Mapping.htm

GSI, 2017; Groundwater Vulnerability Shapefile. http://www.gsi.je/Mapping.htm

Hagedoorn, J.G., 1959;

'The plus - minus method of interpreting seismic refraction sections', Geophysical Prospecting, 7, 158 - 182.

Heerden, van H. 1987.

'Relation between Static and Dynamic moduli of cocks', Int. Journal of Rock Mech. Min. Sci. and Geomech Abs Vol. 24, No. 6 pp 381-385, Pergamon.

KGS, 2000; Surfseis Users Manual, Kansas Geological Survey.

Palmer, D., 1980; 'The Generalized Reciprocal Method of seismic refraction interpretation', SEG.

Park, C.B., Miller, R.D., and Xia, J., 1998; Ground roll as a tool to image near-surface anomaly:SEG Expanded Extracts, 68th Annual Meeting, New Orleans, Louisiana, 874-877.

Park, C.B., Miller, R.D., and Xia, J., 1999; Multi-channel analysis of surface waves (MASW): Geophysics, May-June issue.

Redpath, B.B., 1973; 'Seismic refraction exploration for engineering site investigations', NTIS, U.S. Dept. of Commerce

APPENDIX A: DETAILED METHODOLOGY

A combination of a number of geophysical techniques was used to provide the high quality interpretation and reduce any ambiguities, which may otherwise exist.

A.1 EM Ground Conductivity Mapping

Principles

This method operates on the principle of inducing currents in conductive substrata and measuring the resultant secondary electro-magnetic field. The strength of this secondary EM field is calibrated to give apparent ground conductivity in milliSiemens/metre (mS/m). Readings over material such as organic waste and peat give high conductivity values while readings over dry materials with low clay mineral content such as gravels, limestone or quartzite give low readings. The EM31 survey technique determines the apparent conductivity of the ground material from 0-6m bgl depending on the dipole mode used. Depending on the dipole mode used, the measured conductivity is a function of the different overburden layers and/or rock from 0 to 6m below ground level.

Data collection

The EM31 equipment used was a GF CMD-4 conductivity meter equipped with data logger. This instrument features a real time graphic display of the previous 20 measurement points to monitor data quality and results. Conductivity and in-phase values were recorded across the site. Local on conditions and variations were recorded. f01

purpo

Data processing

required The conductivity and in-phase field readings were downloaded, contoured and plotted using the SURFER 9 program (Golden Software, 2009), Data which was affected by metallic objects was removed. Assignation of material types and possible anomaly sources was carried out, with cross-800 reference to other data.

A.2 Electrical Resistivity Tomography

Principles

This surveying technique makes use of the Wenner resistivity array. The 2D-resistivity profiling method records a large number of resistivity readings in order to map lateral and vertical changes in material types. The 2D-resistivity profiling method involves the use of electrodes connected to a resistivity meter, using computer software to control the process of data collection and storage.

Data Collection

The data were recorded using a Tigre resistivity meter, imaging software, a 32 takeout multicore cables and 32 stainless steel electrodes. Saline solution was used at the electrode\ground interface in order to gain a good electrical contact required for the technique to work effectively. The recorded data were processed and viewed immediately after the survey.

Data Processing

The field readings were stored in computer files and inverted using the RES2DINV package (Campus Geophysical Instruments, 1997) with up to 5 iterations of the measured data carried out for each profile to obtain a 2D-Depth model of the resistivities.

The inverted 2D-Resistivity models and corresponding interpreted geology are displayed on the accompanying drawings. Distance is indicated along the horizontal axis of the profiles. Profiles have been contoured using the same contour intervals and colour codes.

A.3 Seismic Refraction Profiling

Principles

The seismic refraction profiling method measures the velocity of refracted seismic waves through the overburden and rock material and allows an assessment of the thickness and quality of the materials present to be made. Stiffer and stronger materials usually have higher seismic velocities while soft, loose or fractured materials have lower velocities. Readings are taken using geophones connected via multi-core cable to a seismograph.

Data Collection

Seismic spreads were recorded using a Geode high-resolution 24 channel digital seismograph with geophone spacings of 2 m and 3 m. The source of the seismic waves was a sledgehammer. Records from up to seven different positions were taken on each spread (2 x off-end, 2 x end, 3 x middle) to ensure optimum coverage of all refractors. otheruse

Data Processing

First break picking in digital format was carried out asing the FIRSTPIX software program to construct traveltime plots for each spread. The recorded data was processed and interpreted using the intercept-time and plus-minus methods, to acquire depths to boundaries and the P-wave velocities of these layers, using the GREMIX programme from INTERPEX

Approximate errors for velocities are estimated to be +/- 10%. Errors for the calculated layer thicknesses are of the order of +/-20% Possible errors due to the "hidden layer" and "velocity inversion" effects may also occur (Soske, 1959).

A.4 Multichannel Analysis of Surface Waves

Principles

The Multi-channel Analysis of Surface Waves (MASW) (Park et al., 1998, 1999) utilizes Surface waves (Rayleigh waves) to determine the elastic properties of the shallow subsurface (<15m). Surface waves carry up to two/thirds of the seismic energy but are usually considered as noise in conventional body wave reflection and refraction seismic surveys.

The penetration depth of surface waves changes with wavelength, i.e. longer wavelengths penetrate deeper. When the elastic properties of near surface materials vary with depth, surface waves then become dispersive, i.e. propagation velocity changes with frequency. The propagation (or phase) velocity is determined by the average elastic property of the medium within the penetration depth. Therefore the dispersive nature of surface waves may be used to investigate changes in elastic properties of the shallow subsurface.

The MASW method employs the multi-channel recording and processing techniques (Sheriff and Geldart, 1982) that have similarities to those used in a seismic reflection survey and which allow

better waveform analysis and noise elimination. The following procedure is followed to produce a shear wave velocity (Vs) profile and a stiffness profile of the subsurface using surface waves:

- (i) A point source (eg. a sledgehammer) is used to generate vertical ground motions,
- (ii) the ground motions are measured using low frequency geophones, which are deposited along a straight line directed toward the source,
- (iii) the ground motions are recorded using a seismograph,
- (iv) a dispersion curve is produced from spectral analysis of the data showing the variation of surface wave velocity with wavelength,
- (v) the dispersion curve in inverted using a modelling and least squares minimization process to produce a subsurface profile of the variation of shear wave velocity with depth.

Data Collection

The recording equipment consisted of a Geode 24 channel digital seismograph, 24 no. 4HZ vertical geophones, hammer energy source with mounted trigger and a 24 take-out cable, with geophone spacings of 2 m and 3 m.

Data Processing

MASW processing was carried out using the SURFSEIS processing package developed by Kansas Geological Survey (KGS, 2000). SURFSEIS data processing involves three steps:

- (i) Preparation of the acquired multichannel record. This involves converting data file into the processing format.
- (ii) Production of a dispersion curve from a spectral analysis of the data showing the variation of Raleigh wave phase velocity with wavelength. Confidence in the dispersion curve can be estimated through a measure of signal to horse ratio (S/N), which is obtained from a coherency analysis. Noise includes both body waves and higher mode surface waves. To obtain an accurate dispersion curve the spectral content and phase velocity characteristics are examined through an overtone analysis of the data.
- (iii) Inversion of the dispersion curve is then carried out to produce a subsurface profile of the variation of shear wave velocity with depth. The bedrock P-wave velocities were converted to S-wave velocities using the following equation:

Vs=(((Vp^2)-2*v*(Vp^2))/((1-v)*2))^0.5

Where Vs = S-wave velocity in m/s, Vp = P-wave velocity in m/s and v = Poisson's ratio.

A.5 Spatial Relocation

All the geophysical investigation locations were acquired using Trimble Geo 7X high-accuracy GNSS handheld GPS system using the settings listed below. This system allows collecting GPS data with c.20mm accuracy.

Projection:	Irish National Grid
Datum:	Ordnance
Coordinate units:	Meters
Altitude units:	Meters
Survey altitude reference:	MSL
Geoid model:	Republic of Ireland

APPENDIX B: DRAWINGS

The information derived from the geophysical investigation as well as correlation with the available direct investigation is presented in the following drawings:

AGL18164_01	Geophysical Investigation Locations	Scale 1:1000 @ A4
AGL18164_02	EM Conductivity Contours (mS/m)	Scale 1:1000 @ A4
AGL18164_03	Summary Interpretation Map	Scale 1:1000 @ A4

The ERT and seismic refraction data with geological interpretations are presented in the following drawings:

Drawing AGL18164_R1	Results and Interpretation R1	Scale 1:750 @ A4
Drawing AGL18164_R2	Results and Interpretation R2	Scale 1:750 @ A4
Drawing AGL18164_R3	Results and Interpretation R3	Scale 1:750 @ A4
Drawing AGL18164_R4	Results and Interpretation R4	Scale 1:750 @ A4
Drawing AGL18164_R5	Results and Interpretation R5	Scale 1:750 @ A4
Drawing AGL18164_R3 Drawing AGL18164_R4	Results and Interpretation R3 Results and Interpretation R4	Scale 1:750 @ A4 Scale 1:750 @ A4

Consent of copyright owner required for any other use.