

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Customer

Customer Services ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Certificate Of Analysis

Job Number:18-47977Issue Number:1Report Date:11 October 2018

Site:Killycard: 181010-49PO Number:Not SuppliedDate Samples Received:10/10/2018

Please find attached the results for the samples received at our laboratory on 10/10/2018.

Should you have any queries regarding the report or require any further services, we would be happy to discuss your requirements. For additional information about the company please log-on to our website at the above address.

Thank you for choosing City Analysts Limited. We look forward to assisting you again.

Authorised By:

Caitlin Quinn Deputy Quality Manager

Authorised Date: 11 Octo

11 October 2018

Notes:

Results relate only to the items tested. Information on methods of analysis and performance characteristics is available on request. Any opinions or interpretations indicated are outside the scope of our INAB accreditation. This test report shall not be reproduced except in full or with written approval of City Analysts Limited.

Page 1 of 3

Template: 1146 Revision: 018

Report Reference: 18-47977

Report Version: 1

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Site:	Killycard: 181010-49	
Sample Description:	GW 01	Date of Sampling:
Sample Type:	Ground	Date Sample Received

Lab Reference Number: 414286

Date of Sampling:	09/10/2018
Date Sample Received:	10/10/2018

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	10/10/2018	Coliforms	1986.3	MPN/100ml	-

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely. NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 2 of 3

Report Reference: 18-47977

Report Version: 1

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer

Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Site:	Killycard: 181010-49		
Sample Description:	GW 03	Date of Sampling:	09/10/2018
Sample Type:	Ground	Date Sample Received:	10/10/2018
Lab Reference Numbe	r: 414287		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	10/10/2018	Coliforms	1119.9	MPN/100ml	-

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely. NAC & ATC - No abnormal change and acceptable to customers.

TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 3 of 3

	-					
ALS	SDG: Location:	181010-49 Killycard	Client Reference: Order Number:	P1724 Z1260	Report Number: Superseded Report:	477084 476448
(ALS)						

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All sumples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

14. **Product analyses** - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-lsopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysofile	White Asbestos
Amosite	Brow n Asbestos
Cio d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Daniel Hayden

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 17 October 2018 D_FTIM_DUB 181011-82 P1724 Killycard 477251

We received 1 sample on Thursday October 11, 2018 and 1 of these samples were scheduled for analysis which was completed on Wednesday October 17, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

Report Number: Superseded Report: 477251

Validated

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
18505196	GW02		0.00 - 0.00	10/10/2018
Maximum Sample/Coolbo	x Temperature (°C) :	8		

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG:	181011-82		Clie	nt Ref	erence	:	P172	24	Report Number:	477251
(ALS) Location:	Killycard	_	Ord	er Nui	nber:		Z126	50	Superseded Report:	
Results Legend X Test No Determination	Lab Sample	No(s)						18505196		
Possible	Custome Sample Refe	er rence						GW02		
Sample Types - Sol/Solid INS - Unspecified Solid SW - Ground Water W - Surface Water E - Land Leachate	AGS Refere	ence								
2L - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent S - Treated Sewage JS - Untreated Sewage	Depth (m	1)						0.00 - 0.00		
US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	nal Water Vater Non-regulatory fied Liquid Container			250ml BOD (ALE212) 0.5I glass bottle (ALE227)		HNO3 Filtered (ALE204) H2SO4 (ALE244)		Vial (ALE297)		
	Sample Ty	pe	GW	GW	GW	GW	GW	GW		
Ikalinity as CaCO3	All	NDPs: 0 Tests: 1	x							
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 1	-		x					
Anions by Kone (w)	All	NDPs: 0 Tests: 1	x							
30D True Total	All	NDPs: 0 Tests: 1		v						
COD Unfiltered	All	NDPs: 0 Tests: 1		^ _						
Coliforms (W)	All	NDPs: 0 Tests: 1		^				-		
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 1		×				-		
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 1	X				×			
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 1					*			
bissolved Oxygen by Probe	All	NDPs: 0 Tests: 1				*				
luoride	All	NDPs: 0 Tests: 1	X							
lercury Dissolved	All	NDPs: 0 Tests: 1				×		-		
lineral Oil C10-40 Aqueous (W)	All	NDPs: 0 Tests: 1				^				
Nitrite by Kone (w)	All	NDPs: 0 Tests: 1	x							
Organotins in Aqueous Samples	All	NDPs: 0					x			
		Testa 1								

Х

		C	ERT	IFIC	AT	EO		NAL	5	
SDG: Location:	181011-82 Killycard		Clie Orde	nt Ref er Nur	erend nber:	ce:	P172 Z126	24 60	Report Number: Superseded Repor	47 t:
sults Legend X Test No Determination	Lab Sample No(s) Customer Sample Reference							18505196		
Possible								GW02		
ample Types - - Soil/Solid NS - Unspecified Solid W - Ground Water M - Surface Water E - Land Leachate	AGS Re	ference						-		
- Prepared Leachate - Process Water - Saline Water - Trade Effluent - Traeted Sewage - Untracted Sewage	Depti	n (m)						0.00 - 0.00		
US - Untreated Sewage RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Conta	Container			H2SO4 (ALE244)	HNO3 Filtered (ALE204)	NaOH (ALE245)	Vial (ALE297)		
	Sample	е Туре	GW	GW	GW	GW	GW	GW		
ticides (Suite I) by GCMS	All	NDPs: 0 Tests: 1	x				_			
ticides (Suite II) by GCMS	All	NDPs: 0 Tests: 1	X							
ticides (Suite III) by GCMS	All	NDPs: 0 Tests: 1	X							
Value	All	NDPs: 0 Tests: 1	X							
rsphate by Kone (w)	All	NDPs: 0 Tests: 1	x	-						
on Dissolved by ICP-OES	All	NDPs: 0 Tests: 1				X		_		
DC MS (W) - Aqueous	All	NDPs: 0 Tests: 1	x		-					
I Organic and Inorganic Carbon	All	NDPs: 0 Tests: 1			x					
C MS (W)	All	NDPs: 0 Tests: 1								

ALS

CERTIFICATE OF ANALYSIS

Validated

Magnesium (Dis.Filt)

<0.036 mg/l

TM152

15.1

#

	5
(ALS)	1

Validated

M <i>m</i> -LERIS accretited. aq Aqueous / settied sample. diss.fit Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate standa check the efficiency of the method. results of individual compounds wi samples aren't corrected for the ret (F) Trigger breach confirmed 1-58+§@ Sample deviation (see appendix)	rd to The thin covery	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.00 - 0.00 Ground Water (GW) 10/10/2018 11/10/2018 181011-82 18505196			
Component Potassium (Dis.Filt)	LOD/Units <0.2 mg/l	Method TM152	3.49			
Calcium (Dis.Filt)	<0.2 mg/l	TM152	# 71.2			
Iron (Dis.Filt)	<0.019 mg/l	TM152	# 0.0546			
Mineral oil >C10 C40 (aq)	<100 µg/l	TM172	# 181			
Mercury (diss.filt)	<0.01 µg/l	TM183	<0.01			
Phosphate (Ortho as PO4)	<0.05 mg/l	TM184	# <0.05			
Chloride	<2 mg/l	TM184	# 15.2			
Nitrite as N	<0.0152	TM184	# <0.0152			
Total Oxidised Nitrogen as N	mg/l <0.1 mg/l	TM184	# 0.203			
Sulphate (soluble) as S	<1 mg/l	TM184	#			
Cyanide, Total	<0.05 mg/l	TM227	# <0.05			
Cyanide, Free	<0.05 mg/l	TM227	# <0.05			
рН	<1 pH Units	TM256	# 7.27			
Silicon (diss.filt)	<0.05 mg/l	TM284	2.61			
Dibutyl tin	<5 ng/l	TM328	<5			
Tributyl tin	<1 ng/l	TM328	<1			
Tetrabutyl tin	<2 ng/l	TM328	<2			
Triphenyl tin	<1 ng/l	TM328	<1			
Surrogate	%	TM328	51.9			
Trifluralin	<0.01 µg/l	TM343	<0.01			
alpha-HCH	<0.01 µg/l	TM343	<0.01			
gamma-HCH (Lindane)	<0.01 µg/l	TM343	<0.01			
Heptachlor	<0.01 µg/l	TM343	<0.01			
Aldrin	<0.01 µg/l	TM343	<0.01			
beta-HCH	<0.01 µg/l	TM343	<0.01			
Isodrin	<0.01 µg/l	TM343	<0.01			
Heptachlor epoxide	<0.01 µg/l	TM343	<0.01			
o,p'-DDE	<0.01 µg/l	TM343	<0.01			
Endosulphan I	<0.01 µg/l	TM343	<0.01			
trans-Chlordane	<0.01 µg/l	TM343	<0.01			
cis-Chlordane	<0.01 µg/l	TM343	<0.01			
p,p'-DDE	<0.01 µg/l	TM343	<0.01			

ALS	

Validated

SDG: 181011-82 **Client Reference:** P1724 Report Number: 477251 Killycard Order Number: Z1260 Superseded Report: Location: Customer Sample Ref GW02 **Results Leg** ISO17025 accredited м mCERTS accredited. Aqueous / settled sample Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. Subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery Trigger breach confirmed Depth (m 0.00 - 0.00 diss filt Sample Typ Ground Water (GW) tot.unfil Date Sam 10/10/2018 ** Sample Tim . 11/10/2018 Date Receive SDG Re 181011-82 18505196 (F) Lab Sample No (s) Sample deviation (see appendix . &+§@ AGS Referen Component LOD/Units Method Dieldrin <0.01 µg/l TM343 <0.01 o,p'-DDD (TDE) TM343 <0.01 <0.01 µg/l Endrin <0.01 µg/l TM343 <0.01 TM343 o,p'-DDT <0.01 <0.01 µg/l TM343 p,p'-DDD (TDE) <0.01 µg/l <0.01 TM343 Endosulphan II <0.02 µg/l < 0.02 p,p'-DDT <0.01 µg/l TM343 < 0.01 p,p'-Methoxychlor <0.01 µg/l TM343 < 0.01 Endosulphan Sulphate <0.02 µg/l TM343 < 0.02 TM343 < 0.01 Permethrin I <0.01 µg/l <0.01 µg/l TM343 Permethrin II <0.01 TM344 Dichlorvos <0.01 µg/l <0.01 Mevinphos <0.01 µg/l TM344 < 0.01 <0.01 TM344 Tecnazene <0.01 µg/l Hexachlorobenzene <0.01 µg/l TM344 < 0.01 Diazinon <0.01 µg/l TM344 0.419 Triallate <0.01 µg/l TM344 < 0.01 Atrazine <0.01 µg/l TM344 <0.01 Simazine <0.01 µg/l TM344 <0.01 Disulfoton TM344 <0.01 <0.01 µg/l <0.01 µg/l TM344 Propetamphos < 0.01 TM344 Chlorpyriphos-methyl <0.01 µg/l < 0.01 TM344 Dimethoate <0.01 µg/l < 0.01 Pirimiphos-methyl <0.01 µg/l TM344 < 0.01 Chlorpyriphos <0.01 µg/l TM344 < 0.01 Methyl Parathion <0.01 µg/l TM344 <0.01 <0.01 µg/l TM344 Malathion <0.01

Fenthion

Fenitrothion

Triadimefon

Pendimethalin

Parathion

<0.01 µg/l

<0.01 µg/l

<0.01 µg/l

<0.01 µg/l

<0.01 µg/l

TM344

TM344

TM344

TM344

TM344

<0.01

< 0.01

< 0.01

< 0.01

< 0.01

(ALS)	l

Validated

SDG: 181011-82 P1724 **Client Reference:** Report Number: 477251 Location: Killycard Order Number: Z1260 Superseded Report: Customer Sample Ref. Results Lege ISO17025 accredited. GW02 ISO17025 accredited. mCERTS accredited. Aqueous / settled sample. Dissolved / filtered sample. Subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery Trigger breach confirmed Sample deviation (see appendix) Puent м aα Depth (m Sample Type 0.00 - 0.00 diss.filt tot.unfilt Ground Water (GW) Date Sample 10/10/2018 ** Sample Time Date Receive . 11/10/2018 181011-82 SDG Re 18505196 (F) Lab Sample No.(s) 1-5&+§@ AGS Reference Component LOD/Units Method <0.01 µg/l Chlorfenvinphos TM344 <0.01 Ethion <0.01 µg/l TM344 <0.01 <0.01 µg/l TM344 Carbophenothion <0.01 TM344 < 0.01 <0.01 µg/l Triazophos TM344 <0.01 Phosalone <0.01 µg/l <0.02 µg/l Azinphos methyl TM344 < 0.02 TM344 Azinphos ethyl <0.02 µg/l < 0.02 Quintozene (PCNB) <0.01 µg/l TM345 < 0.01 Telodrin <0.01 µg/l TM345 < 0.01 Chlorothalonil <0.01 µg/l TM345 < 0.01 Etrimphos <0.01 µg/l TM345 <0.01

SDG:		181011-82	Clien	t Reference:	P1724	Report Number:	477251
SVOC MS (M) Aqueou	e	Nilycaro	Orde	r Number:	L120U	Superseded Report:	
Results Legend	3	ustomer Sample Ref.	GW02				
M mCERTS accredited. aq Aqueous / settled sample.		Depth (m)	0.00 - 0.00				
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Ground Water (GW)				
** % recovery of the surrogate stands check the efficiency of the method	ard to I. The	Sample Time					
results of individual compounds w samples aren't corrected for the re	vithin ecovery	SDG Ref	181011-82 18505196				
1-5&+§@ Sample deviation (see appendix)	LOD/Units	AGS Reference					
1,2,4-Trichlorobenzene (aq)	<1 µg/l	TM176	<1 #				
1,2-Dichlorobenzene (aq)	<1 µg/l	TM176	<1 #				
1,3-Dichlorobenzene (aq)	<1 µg/l	TM176	<1 #				
1,4-Dichlorobenzene (aq)	<1 µg/l	TM176	<1 #				
2,4,5-Trichlorophenol (aq)	<1 µg/l	TM176	<1 #				
2,4,6-Trichlorophenol (aq)	<1 µg/l	TM176	<1 #				
2,4-Dichlorophenol (aq)	<1 µg/l	TM176	<1 #				
2,4-Dimethylphenol (aq)	<1 µg/l	TM176	<1 #				
2,4-Dinitrotoluene (aq)	<1 µg/l	TM176	<1 #				
2,6-Dinitrotoluene (aq)	<1 µg/l	1M176	<1 #				
2-Chloronaphthalene (aq)	<1 µg/l	TM176	<1 #				
2-Chlorophenol (aq)	<1 µg/l	TM176	<1 #				
2-Methylnaphthalene (aq)	<1 µg/l	TM176	<1 #				
2-Metnyiphenoi (aq)	<1 µg/l	TM176	<1				
2 Nitrophonol (ag)	<1 µg/l	TM176	<1 <1				
2 Nitrophiling (aq)	<1 µg/l	TM176	<1 <1		_		
4-Bromonhenvinhenviether (aq)	<1 µg/l	TM176	=======================================				
4-Chloro-3-methylphenol (aq)	<1 µg/l	TM176	<1				
4-Chloroaniline (aq)	<1 µg/l	TM176	<1				
	>+ µy/i	TM170	~1				
4-Oniorophenyiphenyiether (aq)	<1 µg/l	TM176	<i #</i 				
	<1 µg/l	TM176	<pre>>1 </pre>				
4-Nitrophenel (aq)	<1 µg/l	TM176	<pre></pre>				
	<1 µg/l	TM176	~1				
	<1 µy/i	TM176	<1				
	<1 un/	TM176	<1				
Anthracene (aq)	<1 µg/l	TM170	<1				
his(2-Chloroethyl)ether (ag)	<1 µg/l	TM170	<1				
his(2-Chloroethovu)methana	<1 µg/l	TM176	~1 ~1				
(aq)	> i µg/i	TWTTO	#				
bis(2-Ethylhexyl) phthalate (aq)	<2 µg/l	TM176	<2 #				
Butylbenzyl phthalate (aq)	<1 µg/l	TM176	<1 #				
Benzo(a)anthracene (aq)	<1 µg/l	TM176	<1 #				

SDG: Location:		181011-82 Killycard	Clien Orde	t Reference: r Number:	P1724 Z1260	Report Number: Superseded Report	477251 t:	
VOC MS (W) - Aqueou	s		0.40		-			
Results Legend # ISO17025 accredited. M mCERTS accredited.	C	ustomer Sample Ref.	GW02					
ad Adjours Status Sample. diss.fit Dissolved / filtered sample. tot.unfit Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate stand check the efficiency of the method results of individual compounds w samples aren't corrected for the re	ard to I. The vithin scovery	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref	0.00 - 0.00 Ground Water (GW) 10/10/2018 11/10/2018 181011-82 18505196					
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	1000130					
Component Benzo(b)fluoranthene (aq)	LOD/Units <1 μg/l	Method TM176	<1					
Benzo(k)fluoranthene (aq)	<1 µg/l	TM176	# <1					
Benzo(a)pyrene (aq)	<1 µg/l	TM176						
Benzo(g,h,i)perylene (aq)	<1 µg/l	TM176						
Carbazole (aq)	<1 µg/l	TM176	<1 #					
Chrysene (aq)	<1 µg/l	TM176	<1 #					
Dibenzofuran (aq)	<1 µg/l	TM176	<1#					
n-Dibutyl phthalate (aq)	<1 µg/l	TM176	5.53 #					
Diethyl phthalate (aq)	<1 µg/l	TM176	<1 #					
Dibenzo(a,h)anthracene (aq)	<1 µg/l	TM176	<1 #					
Dimethyl phthalate (aq)	<1 µg/l	TM176	<1 #					
n-Dioctyl phthalate (aq)	<5 µg/l	TM176	<5 #					
Fluoranthene (aq)	<1 µg/l	TM176	<1 #					
Fluorene (aq)	<1 µg/l	TM176	<1 #					
Hexachlorobenzene (aq)	<1 µg/l	TM176	<1 #					
Rexachioroputadiene (aq)	<1 µg/i	TM170	<1 #					
Pentachiorophenoi (aq)	<1 µg/l	TM176	<1					
n Nitroco n dipropulamino (ag)	<1 µg/l	TM176	<1					
	<1 µg/l	TM176	<1					
	<1 µg/l	TM176	<1					
Naphthalene (aq)	<1 µg/l	TM176	<1					
Isophorone (aq)	<1 µg/i	TM176	<1 **					
Hexachlorocyclopentadiene (ag)	<1 µa/l	TM176	<1 #					
Phenanthrene (aq)	<1 µg/l	TM176	<1			_		
Indeno(1,2,3-cd)pyrene (aq)	<1 µq/l	TM176	# <1					
Pyrene (aq)	<1 µg/l	TM176	#		_			
		$\left \right $	#		_			
					_			

Validated

15:37:44 17/10/2018

#

Validated

1,2,3-Trichlorobenzene

<1 µg/l

TM208

<1

#

				CERT	IFICATE O	F ANALYS	SIS	L	Validated
	SDG:		181011-82	Clien	t Reference:	P1724	Report	Number: 477251	
(ALS)	Location:		Killycard	Orde	r Number:	Z1260	Superse	eded Report:	
VOC MS (W) Rest # ISOT7025 accr M mCERTS accr M mCERTS accr Aqueous / sett diss.filt Dissolved / filt total / unfilter * Subcontracted * % recovery of check the effic results of indit samples acro?	ults Legend edited. Jed sample. Ied sample. I est. I est. the surrogate standa iency of the method ridual compounds w	ard to . The ithin	Lustomer Sample Ref. Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref	GW02 0.00 - 0.00 Ground Water (GW) 10/10/2018 11/10/2018 18/1011-82					
(F) Trigger breach 1-5&+§@ Sample deviat	confirmed ion (see appendix)	covery	Lab Sample No.(s) AGS Reference	18505196					
Component 1 3 5-Trichlorobenze	ne	LOD/Units	Method TM208	<1					
.,.,.		. 1.2.				_			
									1

SDG:

Location:

181011-82 Killycard

Client Reference: P1724 Z1260 Order Number:

Report Number: Superseded Report:

Validated

477251

Table of Results - Appendix

Method No	Reference	Description
SUB		Subcontracted Test
TM043	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids
TM046	Method 4500G, AWWA/APHA, 20th Ed., 1999	Measurement of Dissolved Oxygen by Oxygen Meter
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM172	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	EPH in Waters
TM176	EPA 8270D Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of SVOCs in Water by GCMS
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/APHA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM284		
TM328		
TM343	EPA 8270D - Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of Selected Pesticides (Suite I) in Liquids by GCMS
TM344	EPA 8270D – Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of selected pesticides (Suite II) by GCMS
TM345	EPA 8270D – Semi-Volatile Organic Compounds by Gas	Determination of selected pesticides (Suite III) by GCMS

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Client Reference:P1724Order Number:Z1260

Report Number: Superseded Report: Validated

477251

Lab Sample No(s)	18505196
Customer Sample Ref.	GW02
·	(
AGS Ref.	
Depth	0.00 - 0.00
Туре	Ground Water
Alkalinity as CaCO3	15-Oct-2018
Ammoniacal Nitrogen	17-Oct-2018
Anions by Kone (w)	16-Oct-2018
BOD True Total	16-Oct-2018
COD Unfiltered	12-Oct-2018
Coliforms (W)	12-Oct-2018
Conductivity (at 20 deg.C)	12-Oct-2018
Cyanide Comp/Free/Total/Thiocyanate	15-Oct-2018
Dissolved Metals by ICP-MS	17-Oct-2018
Dissolved Oxygen by Probe	12-Oct-2018
Fluoride	17-Oct-2018
Mercury Dissolved	17-Oct-2018
Mineral Oil C10-40 Aqueous (W)	17-Oct-2018
Nitrite by Kone (w)	16-Oct-2018
Organotins in Aqueous Samples	16-Oct-2018
Pesticides (Suite I) by GCMS	17-Oct-2018
Pesticides (Suite II) by GCMS	17-Oct-2018
Pesticides (Suite III) by GCMS	17-Oct-2018
pH Value	12-Oct-2018
Phosphate by Kone (w)	15-Oct-2018
Silicon Dissolved by ICP-OES	16-Oct-2018
SVOC MS (W) - Aqueous	15-Oct-2018
Total Organic and Inorganic Carbon	13-Oct-2018
VOC MS (W)	15-Oct-2018

Test Completion Dates

DETAILED IN SCOPE REG NO. 138

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Customer

Customer Services ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Certificate Of Analysis

18-48075 Job Number: **Issue Number:** 1 12 October 2018 **Report Date:**

Site: Killycard **PO Number:** Not Supplied Date Samples Received: 11/10/2018

Please find attached the results for the samples received at our laboratory on 11/10/2018.

Should you have any queries regarding the report or require any further services, we would be happy to discuss your requirements. For additional information about the company please log-on to our website at the above address.

Thank you for choosing City Analysts Limited. We look forward to assisting you again.

Authorised By:

Shane Reynolds Laboratory Manager Authorised Date:

12 October 2018

Notes:

Results relate only to the items tested. Information on methods of analysis and performance characteristics is available on request. Any opinions or interpretations indicated are outside the scope of our INAB accreditation. This test report shall not be reproduced except in full or with written approval of City Analysts Limited.

Page 1 of 2

Template: 1146 Revision: 018

Report Reference: 18-48075

Report Version: 1

City Analysts Limited, Pigeon House Road, Ringsend, Dublin 4.

Tel: (01) 613 6003 Fax: (01) 613 6008

Email: reports@cityanalysts.ie

www.cityanalysts.ie

Certificate Of Analysis

Customer

Customer Services

ALS Life Sciences Hawarden Business Park Manor Lane Hawarden, Deeside UK CH5 3US

Site: Killycard

Sample Description: GW02

Ground Sample Type:

Lab Reference Number: 414589

Date of Sampling:	10/10/2018		
Date Sample Received:	11/10/2018		

Site / Method Ref.	Analysis Start Date	Parameter	Result	Units	PV Value (Drinking Water Only)
D/D1201#	11/10/2018	Coliforms	549.3	MPN/100ml	+

= INAB Accredited, U = UKAS Accredited, * = Subcontracted

Note:

PV Value is the parametric value, taken from European Communities, (Drinking Water) Regulations, 2014. S.I. No. 122 of 2014 and relates only to drinking water samples.

For queries on results, please contact us within two weeks of the report date to ensure that we can accommodate your query as samples cannot be stored indefinitely. NAC & ATC - No abnormal change and acceptable to customers. TVC - Total viable count

Site D = Analysed at City Analysts Dublin. Site S = Analysed at City Analysts Shannon

Page 2 of 2

	-					
	SDG:	181011-82	Client Reference:	P1724	Report Number:	477251
(ALS)	Location:	Killycard	Order Number:	Z1260	Superseded Report:	

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All sumples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

14. **Product analyses** - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-lsopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysofile	White Asbestos
Amosite	Brow n Asbestos
Cio d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix IV

SITE WALKOVER CHECKLIST AND PHOTOGRAPHIC LOG

Killycard Walkover Survey Checklist – 12th June 2018

Comment (include distances from site boundary)	
ajority of the site is vegetated and used riculture. Derelict mushroom buildings idustrial units are also present to the f the site.	
ily agricultural with some residential gs to the southwest of the site.	
e occupies approximately 2 Hectares	
e is relatively flat throughout.	
achate to west of site	
shigo lake borders the site to the west. e water ditches border the site to eh vest and north.	
ident	
ead wires along the southeast of the site site to industrial units.	
ct mushroom buildings onsite. Farm igs to east and south of the site. intial buildings within 100m to the vest of the site.	
Waste from former landfill	
found protruding through soil cover hout the site. Generally residual inert tic and C&D waste.	

Information	Checked	Comment (include distances from site boundary)
8. Are there any signs of impact on the environment? (If yes, take photographic evidence)		Yes, waste depositing into lake
Vegetation die off, bare ground		No
Leachate seepages		No
Odours		No
Litter		Yes, waste found protruding through soil cover throughout the site.
Gas bubbling through water		No
Signs of settlement		No
Subsidence, water logged areas		No
Drainage or hydraulic issues		No
Downstream water quality appears poorer than upstream water quality		No
9. Are there any indications of remedial measures? (Provide details)		No
Capping		No
Landfill gas collection		No
Leachate collection		No
10. Describe fences and security features (if any)		Fencing and walls around buildings, ditches around most of site, wall along the road
Any other relevant information?		

PHOTOGRAPHIC LOG		OGRAPHIC LOG	Consultants in Engineering and Environmental Sciences www.fehilytimoney.ie
Client Name: Monaghan Co. Council		Site Location: Killycard	Project Number: P1655
Photo No. 3 Description: Old gas well industrial ur carpark	Date: 12/06/18 near nit		
Photo No. 4 Description: Site entranc derelict mus buildings	Date: 12/06/18 ee to shroom		

PHOTOGRAPHIC LOG		OGRAPHIC LOG	Consultants in Engineering and Environmental Sciences www.fehilytimoney.ie	
Client Name Monaghan C	: co. Council	Site Location: Killycard	Project Number: P1655	
Photo No. 5 Description: Area in fron derelict mus buildings	Date: 12/06/18 t of shroom			
Photo No. 6 Description: Site entrance vegetated fiel	Date: 12/06/18 to d			

PHOTOGRAPHIC LOG		OGRAPHIC LOG	Consultants in Engineering and Environmental Sciences www.fehilytimoney.ie
Client Name Monaghan C	: o. Council	Site Location: Killycard	Project Number: P1655
Photo No. 11 Description: Exposed was material at w boundary of Corrinshigo	Date: 12/06/18 ste western lake		
Photo No. 12 Description: Exposed was material and Japanese Kr at western b of Corrinshig	Date: 12/06/18 ste hotweed boundary go lake		<image/>

PHOTOGRAPHIC LOG		OGRAPHIC LOG	Consultants in Engineering and Environmental Sciences www.fehilytimoney.ie FEHILY TIMONEY & COMPANY
Client Name Monaghan C	: o. Council	Site Location: Killycard	Project Number: P1655
Photo No. 13 Description: Waste mate protruding fi surface	Date: 12/06/18 rial rom soil		
Photo No. 14 Description: Waste mate protruding fi surface	Date: 12/06/18 rial rom soil		