

The Tecpro Building, Clonshaugh Business & Technology Park, Dublin 17, Ireland.

T: + 353 1 847 4220 F: + 353 1 847 4257 E: info@awnconsulting.com W: www.awnconsulting.com

SOIL WATER BASELINE REPORT FOR AMENDMENT OF SITE BOUNDARY FOR IE **LICENCE P1011-01**

TOM ROES POINT PORT **TERMINAL**

Technical Report Prepared For

Drogheda Port Company.

Technical Report Prepared By

Ses ally. any other use. Ashley O' Toole, Senior Environmental Consultant Fergal Callaghan, Director

Our Reference

AOT/19/10737/R01

Date of Issue

25th July 2019

Cork Office Unit 5, ATS Building, Carrigaline Industrial Estate, Carrigaline, Co. Cork. T: +353 21 438 7400 F: +353 21 483 4606

AWN Consulting Limited Registered in Ireland No. 319812 Directors: F Callaghan, C Dilworth, T Donnelly, T Hayes, D Kelly, E Porter

Document History

Document Reference		Original Issue Date		
T:\D\Drogheda Port\19_10737/S/R/01		25 July 2019		
Revision Level	Revision Date	Description Sections Affected		

Record of Approval

Details	Written by	Approved by
Signature	andley O' Zoole	Al Colfre
Name	Ashley O' Toole	Fergal Callaghan
Title	Senior Environmental Consultant	Director
Date	25 July 2019	25 July 2019
	25 July 2019 25 July 2019 Consent of convinging to what required from the convincence of the convincence o	

EXECUTIVE SUMMARY

In 2015, a soil and groundwater quality baseline report was completed for Drogheda Port Company as part of an IE Licence application for Tom Roes Point Port Terminal (TRP), Drogheda, Co Louth. The boundary of the TRP site was defined as part of the licence which was subsequently granted (IE Licence Reg No. P1011-01) however DPC now wishes to amend the site boundary to remove an area of 2121 metres squared (m²). In 2019, AWN was appointed by DPC to update the previous baseline soil and groundwater report compiled in 2015 as a part of this amendment to the licence. This report has been prepared in compliance with *European Commission Guidance concerning baseline reports under Article 22(2) of Directive 2010/75/EU on industrial emissions.*

There is no bulk storage of chemicals or other hazardous substances present within the area proposed for IE Licence activities. The only potential sources identified are accidental releases of contaminated runoff/leachates from RDF & SRF bales, which are set down temporarily on site, and possible minor diesel/oil leaks from operating traffic on site. These were identified as substances of concern at the site which have the potential to impact soil and groundwater if not adequately mitigated on site.

In 2015, the dominant pathway for any potential sources of contamination was through the existing surface water drainage system which discharged via an interceptor to the River Boyne. A new fully contained drainage system for the waste set down areas consisting of modifications to the existing drainage was installed at the site which eliminated this pathway to the estuary. Surface water drains in the licensed area now divert to a suitably sized attenuation tank, the contents of which is removed from the site and disposed of by McBreen Environmental. This eliminates the pathway and subsequently any risk to the Boyne River, Capping of the site has reduced the potential for recharge to mobilise any historically contaminated soil. However, the potential for mobilisation should be considered in the event of any future subsurface construction on the site. The presence of low permeability capping and thickness of soil cover reduces the potential for impact on the underlying bedrock aquifer.

A review of the site history confirmed that the port was constructed in 1997 on reclaimed land and made ground deposits. The site investigations confirmed the presence of gravelly fill, cement by-products and inert landfill materials. These made ground deposits are juxtaposed with black organic silt (estuarine sediments). Beneath the silt is a thick layer up to 13 metres in thickness of fine sand which sits on top of gravels. The depth to possible bedrock was encountered in 103D in at 20.5 metres below ground and confirmed the presence of shaley limestone and pale sandstone (Impure Limestones).

A review of soil quality confirms that there is historic contamination at the site. During the 2015 site investigation, heavy metals (Cadmium, Lead and Copper) were detected within made ground deposits at the centre of the site. Exceedances of Nickel are observed in both made ground and natural ground. Exceedances of Polyaromatic Hydrocarbons are observed within the black organic silt unit. It should be noted that there is no legislative threshold for soils in Ireland. The exceedances noted relate to guideline concentrations. The metal concentrations detected do not exceed guideline levels for commercial use of the site.

During the 2019 site investigation, heavy metals (Arsenic, Cadmium, Copper, Nickel, Lead and Zinc) and Polyaromatic hydrocarbons (PAHs) were detected within and in close proximity to made ground deposits on the site. Capping of the site has reduced the potential for recharge to mobilise any contaminated soil. However, the potential for mobilisation should be considered in the event of any future subsurface construction on the site.

A review of groundwater quality in 2015 found that the groundwater beneath the site is tidally effected. There is also evidence of metal and hydrocarbon contamination likely to originate from the historic made ground deposits which were located at the centre of the port site during the site investigation.

A review of groundwater quality in 2019 also found that the groundwater beneath the site is tidally effected. There is also evidence of metal contamination likely to originate from the historic made ground deposits which were located at the centre of the port site during the site investigation.

There is historical contamination in the underlying soil likely to originate from the historic made ground deposits which were located at the centre of the port site. There is no evidence that this contamination is caused by current activities at the site. Capping of the site has reduced the potential for recharge to mobilise any contamination to the Boyne Estuary.

It is concluded that the portion of land (2121 m²) proposed to be removed from the IE Licence boundary does not pose a risk of contamination to the site or surrounding lands. However, the potential for mobilisation of historic contamination underlying this area should be considered in the event of any future subsurface construction on the site.

Consent of copyright owner reduited for any other use.

TABLE OF CONTENTS

List	of Fi	gures	.6
List	t of Ta	bles	.6
Арр	endic	ces	.7
1.0		INTRODUCTION	.8
	1.1 1.1 1.2 1.3	Instruction	.8 .9
2.0		METHODOLOGY	11
	2.1 2.2 2.3	Methodology Outlined	11
3.0		STAGE 1 & 2 - IDENTIFYING SUBSTANCES OF CONCERN	12
4.0		STAGE 3 - ASSESSMENT OF THE SITE SPECIFIC POLLUTION RISK	14
	4.1 4.2	Protection Systems and Procedures Risk of Environmental Contamination STAGE 4 – SITE HISTORY STAGE 5 – ENVIRONMENTAL SETTING.	14 14
5.0		STAGE 4 – SITE HISTORY	16
6.0		STAGE 5 – ENVIRONMENTAL SETTING	18
	6.3.2 6.3.2 6.3.2	3	20 20 22 23
7.0		STAGE 6 - CONCEPTUAL SITE MODEL	
8.0		STAGE 7 - SITE INVESTIGATION & BASELINE SOIL & WATER QUALI ASSESSMENT	
	8.1.2 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2	2015 Site Investigation	31 31 31 32 33 33 33
	8.3.3		

8.5 8.5.1 8.5.2 8.6 8.6.1	201: Gro 201: 201: Bas 201:	meability of Soils 5 Site Investigation und Gas Monitoring 5 Site Investigation 9 Site Investigation eline Groundwater Quality 5 Site Investigation 9 Site Investigation	40 41 41 42
9.0	COI	NCLUSIONS	53
10.0	REF	ERENCES	55
		List of Figures	
Figure 1.1 Figure 3.1 Figure 5.2 Figure 5.3 Figure 6.4 Figure 6.5 Figure 6.1 Figure 6.1 Figure 7.1	 2 3 2 3 4 5 6 7 8 1 1	Portion of land to be removed from IE licence boundary Location of Existing waste set down areas at Tom Roes Point (in red) OSi Aerial Image (2005) Historical Maps Sketch of Tom Roes Point in 1996 Site Location and Hydrological Environment Solid Geology Underlying the Site Soils Underlying the Site Subsoils Underlying the Site Exploratory Borehole Locations at Tom Roes Point in 2015 Geological Cross Section (A – A') Geological Cross Section (B – B') Exploratory Borehole Locations at Tom Roes Point in 2019 Aquifer Classification Groundwater Vulnerability GSI Wells within Study Area Groundwater Flow at Tom Roes Point (January 2015) Conceptual Site Model for Tom Roes Point (Feb 2015)	8 12 16 17 17 18 19 20 21 22 22 23 24 25 26 27 30

List of Tables

Table 6.1 GSI Well Descriptions 26 Table 6.2 Groundwater Level Measurements 27 Table 7.1 Source-Pathway-Receptor Assessment Summary 29 Table 8.1 Monitoring Well Construction Details (January 2015) 32 Table 8.2 Monitoring Well Construction Details (May 2019) 32 Table 8.3 Soil Quality Results (BH102-BH106) 35 Table 8.4 Soil Quality Results (BH107-BH111) 36 Table 8.5 Soil Quality exceedances at Tom Roes Point in 2015 37 Table 8.6 Soil Quality Results (BH01-BH02) 38 Table 8.7 Soil Quality exceedances at TRP in 2019 40 Table 8.8 Particle Size Distribution Sample Results 41	Table 3.1	List of typical constituents of Acetogenic Leachate	13
Table 6.2Groundwater Level Measurements27Table 7.1Source-Pathway-Receptor Assessment Summary29Table 8.1Monitoring Well Construction Details (January 2015)32Table 8.2Monitoring Well Construction Details (May 2019)32Table 8.3Soil Quality Results (BH102-BH106)35Table 8.4Soil Quality Results (BH107-BH111)36Table 8.5Soil Quality exceedances at Tom Roes Point in 201537Table 8.6Soil Quality Results (BH01-BH02)38Table 8.7Soil Quality exceedances at TRP in 201940Table 8.8Particle Size Distribution Sample Results41	Table 4.1	Surface Water Drainage Parameters and Limits	15
Table 7.1 Source-Pathway-Receptor Assessment Summary Table 8.1 Monitoring Well Construction Details (January 2015) Table 8.2 Monitoring Well Construction Details (May 2019) Table 8.3 Soil Quality Results (BH102-BH106) Table 8.4 Soil Quality Results (BH107-BH111) Table 8.5 Soil Quality exceedances at Tom Roes Point in 2015 Table 8.6 Soil Quality Results (BH01-BH02) Table 8.7 Soil Quality exceedances at TRP in 2019 Table 8.8 Particle Size Distribution Sample Results	Table 6.1	GSI Well Descriptions	26
Table 8.1 Monitoring Well Construction Details (January 2015) Table 8.2 Monitoring Well Construction Details (May 2019) Table 8.3 Soil Quality Results (BH102-BH106) Table 8.4 Soil Quality Results (BH107-BH111) Table 8.5 Soil Quality exceedances at Tom Roes Point in 2015 Table 8.6 Soil Quality Results (BH01-BH02) Table 8.7 Soil Quality exceedances at TRP in 2019 Table 8.8 Particle Size Distribution Sample Results 41	Table 6.2	Groundwater Level Measurements	27
Table 8.2Monitoring Well Construction Details (May 2019)32Table 8.3Soil Quality Results (BH102-BH106)35Table 8.4Soil Quality Results (BH107-BH111)36Table 8.5Soil Quality exceedances at Tom Roes Point in 201537Table 8.6Soil Quality Results (BH01-BH02)38Table 8.7Soil Quality exceedances at TRP in 201940Table 8.8Particle Size Distribution Sample Results41	Table 7.1	Source-Pathway-Receptor Assessment Summary	29
Table 8.3 Soil Quality Results (BH102-BH106) 35 Table 8.4 Soil Quality Results (BH107-BH111) 36 Table 8.5 Soil Quality exceedances at Tom Roes Point in 2015 37 Table 8.6 Soil Quality Results (BH01-BH02) 38 Table 8.7 Soil Quality exceedances at TRP in 2019 40 Table 8.8 Particle Size Distribution Sample Results 41	Table 8.1	Monitoring Well Construction Details (January 2015)	32
Table 8.4 Soil Quality Results (BH107-BH111) Table 8.5 Soil Quality exceedances at Tom Roes Point in 2015 Table 8.6 Soil Quality Results (BH01-BH02) Table 8.7 Soil Quality exceedances at TRP in 2019 Table 8.8 Particle Size Distribution Sample Results 41	Table 8.2	Monitoring Well Construction Details (May 2019)	32
Table 8.5Soil Quality exceedances at Tom Roes Point in 201537Table 8.6Soil Quality Results (BH01-BH02)38Table 8.7Soil Quality exceedances at TRP in 201940Table 8.8Particle Size Distribution Sample Results41	Table 8.3	Soil Quality Results (BH102-BH106)	35
Table 8.6Soil Quality Results (BH01-BH02)38Table 8.7Soil Quality exceedances at TRP in 201940Table 8.8Particle Size Distribution Sample Results41	Table 8.4	Soil Quality Results (BH107-BH111)	36
Table 8.7Soil Quality exceedances at TRP in 201940Table 8.8Particle Size Distribution Sample Results41	Table 8.5	Soil Quality exceedances at Tom Roes Point in 2015	37
Table 8.8 Particle Size Distribution Sample Results 41	Table 8.6	Soil Quality Results (BH01-BH02)	38
	Table 8.7	Soil Quality exceedances at TRP in 2019	40
Table 8.9Permeability Tests41	Table 8.8	Particle Size Distribution Sample Results	41
	Table 8.9	Permeability Tests	41
Table 8.10 Groundwater Quality (Inorganics) 2015 43	Table 8.10	Groundwater Quality (Inorganics) 2015	43
Table 8.11 Groundwater Quality (Hydrocarbons) 2015 44	Table 8.11	Groundwater Quality (Hydrocarbons) 2015	44

Table 8.12	Groundwater Quality (Volatiles Organic Compounds) 2015	45
Table 8.13	Groundwater Quality (semi Volatiles Organic Compounds 2015	46
Table 8.14	Groundwater Quality (Pesticides) 2015	47
Table 8.15	Groundwater Quality (Inorganics) 2019	49
Table 8.16	Groundwater Quality (Hydrocarbons) 2019	49
Table 8.17	Groundwater Quality (Volatiles Organic Compounds) 2019	50
Table 8.18	Groundwater Quality (semi Volatiles Organic Compounds 2019	51
Table 8.19	Groundwater Quality (Pesticides) 2019	53

Appendices

Appendix A Exploratory Logs & Permeability Tests for both 2015 & 2019
Appendix B Laboratory Analytical Results & Gas Monitoring for both 2015 & 2019

1.0 INTRODUCTION

1.1 Instruction

In 2015, AWN Consulting Ltd. (AWN) was appointed by Drogheda Port Company (DPC), to complete a baseline soil and groundwater report for a proposed IE waste licensed facility (Figure 3.1) at Tom Roes Point Port Terminal (TRP), Drogheda, Co Louth. Baled/Wrapped MSW waste requires being temporarily stored by Drogheda Port Authority at the TRP Terminal prior to its onward shipment. This operation has been classified by the EPA as a "waste pre-treatment operation" and is licensed by the EPA under IE Licence Reg No. P1011-01.

The boundary of the site has been defined as part of the current licence however DPC now wishes to amend the site boundary to remove an area of 2121 metres squared (m²), see Figure 1.1 below. In 2019, AWN was appointed by DPC to update the previous baseline soil and groundwater report as a part of this amendment to the licence.

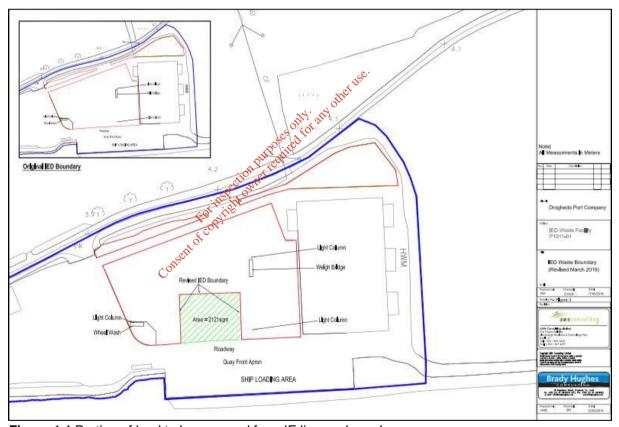


Figure 1.1 Portion of land to be removed from IE licence boundary

This report was completed in accordance with European Commission guidance concerning baseline reports under Article 22(2) of Directive 2010/75/EU on industrial emissions.

1.1 Background – Soil & Groundwater Compliance

In April 2013 Ireland implemented the requirements of the Industrial Emissions Directive (IED) through SI 137 of 2013 and SI 138 of 2013. The regulations come into operation on 7 January 2014. The requirements of the IE include a soil and groundwater compliance report.

Soil and groundwater compliance is defined in SI 138 in Regulation 13 as:

'Baseline report and permanent cessation of activity'

Section 86B. (1) Where an industrial emissions directive activity involves the use. production or release of relevant hazardous substances, and having regard to the possibility of soil and groundwater contamination at the site of an installation concerned, the Agency shall require an applicant under this Part for a licence or review of a licence or revised licence relating to the activity, including such a review by the Agency of its own volition, to furnish to the Agency a baseline report in accordance with regulations under section 89.

- (2) In relation to the installation, a baseline report shall contain information necessary to determine the state of contamination of soil and groundwater at the time that the report is drawn up in order that a quantified comparison may be made to the state of the site upon the permanent cessation (including cessation by abandonment) of the industrial emissions directive activity concerned and the applicant in preparing the baseline report shall include any information prescribed in regulations under section 89.
- (3) Notwithstanding the generality of subsection (2), a baseline report shall include at least the following information —
 - (a) the current use and, where available, the past use of the site; and ागित, आर्य
 - (b) any available information on -
 - (i) Soil or groundwater measurements that reflect the state of the site at the time that the baseline report is drawn up, or
 - (ii) New soil and groundwater measurements, having regard to the possibility of soil and groundwater contamination by the hazardous substances proposed to be used, produced or released by the installation concerned.

The scope of the baseline report is outlined in European Commission Guidance concerning baseline reports under Article 22(2) of Directive 2010/75/EU on industrial emissions.

Objectives & Reporting Format 1.2

The Soil and Groundwater report includes items listed in Section 1.1 above and follows the guidance below:

- European Commission Guidance concerning baseline reports under Article 22(2) of Directive 2010/75/EU on industrial emissions, and, where relevant:
- Guidance on the Management of Contaminated Land and Groundwater at EPA Licensed Sites, EPA, July 2013;
- Guidance on the Authorisation of Discharges to Groundwater, EPA, December 2011;
- Guidelines for the Preparation of Soils, Geology and Hydrogeology Chapters of Environmental Impact Statements, Draft Guidance, IGI 2013.

1.3 **Limitations of Report**

The conclusions presented in this report are professional opinions based solely on the tasks outlined herein and the information made available to AWN. They are intended for the purpose outlined herein and for the indicated site and project. Furthermore, this

AWW Oorsulting Limited

report is produced solely for the benefit of Drogheda Port Company (Harbourville, Mornington, Drogheda, Co. Meath) to address an EPA requirement for their licence.

This report may not be relied upon by any other party without explicit agreement from AWN. Opinions and recommendations presented herein apply to the site conditions existing at the time of the recently completed field work and subsequent assessment. They cannot apply to changes at the site of which AWN is not aware and has not had the opportunity to evaluate. This report is intended for use in its entirety; no excerpt may be taken to be representative of this baseline assessment. All work carried out in preparing this report has utilised and is based on AWN professional knowledge and understanding of the current relevant Irish and European Community standards, codes and legislation.

Copyright © This report is the copyright of AWN Consulting Limited. Any unauthorised reproduction or usage by any other person other than Drogheda Port Company is strictly prohibited.

Consent of copyright owner required for any other use.

2.0 METHODOLOGY

2.1 Methodology Outlined

Table 5 of the Guidance (European Commission Guidance concerning baseline reports under Article 22(2) of Directive 2010/75/EU on industrial emissions), outlines the requirements for this report. These requirements form the methodology adopted for this report which is outlined below as Stages 1 to 8.

- Stage 1 Identifying the potential hazardous substances that are currently used, produced or released at the site
- Stage 2 Identifying the relevant hazardous substances i.e. those which have the potential to cause soil and groundwater contamination
- Stage 3 Assessment of the site specific pollution risk
- Stage 4 Site History
- Stage 5 Environmental Setting
- Stage 6 Conceptual Site Model
- Stage 7 Site Investigation Soil & Water Quality Assessment
- Stage 8 Production of the Baseline Report

2.2 Sources of Information

Reference is made in this report to information from number of existing data sources and reports including the following:

- Geological Survey of Ireland (GSt) On-line mapping resources, available at www.gsi.ie including *inter alia* groundwater well database, Karst feature database, geology, aquifer classification and vulnerability;
- Geology Survey of Ireland (2001) Geology of Meath: A Geological Description to accompany the Bedrock Geology 1:100,000 Scale Map Series, Sheet 13. Meath.
- Environmental Protection Agency (EPA): On-line data resources available at http://gis.epa.ie/Envision/
- National Parks & Wildlife Service (NPWS): On-line data resources available at http://webgis.npws.ie/npwsviewer/
- Kirk McClure Morton (1996). Drogheda Harbour Commissioners Environmental Statement, Proposed Port Development at TRP.

2.3 Scope of Work Undertaken

The scope of the work undertaken for this assessment included the following:

- A desktop review of regional and site geology and hydrogeology, review of baled Refuse Derived Fuel (RDF) and Solid Recovered Fuel (SRF) set down and operations at the Port site;
- Additional site investigation, including soil quality sampling systematically across the site, in situ permeability testing and groundwater sampling;
- Review of available soil and groundwater quality data.

AWW Consulting Limited

3.0 STAGE 1 & 2 - IDENTIFYING SUBSTANCES OF CONCERN

This section summarises any substances of concern that are currently in use or stored within the licensed area at TRP. Within this area there is no bulk chemical storage or any direct discharges to ground. The only potential source of contamination is accidental discharge of contaminated runoff/leachate should a waste bale become damaged and leachate not be contained or accidental minor leakage of hydrocarbon from traffic on site.

A designated area of the Port is currently permitted (under the Waste Management (Facility Permit & Registration Regulations as amended) for the set down of Solid Recovered Fuel (SRF) and Refuse Derived Fuel (RDF) for the purpose of export. SRF and RDF are fuels produced by processing and shredding municipal solid waste. The SRF and RDF is received in the form of sealed shrink wrapped bales of varying (generally 1-2 tonnes) sizes.

The total area of the current site amounts to c.17,400 square metres. Bales are laid end on, two high, on a smooth clean densophalt surface (suitable for high surface loadings) which also provides a protective cover for the underlying soil from runoff. Square bales may be stacked two to four high.

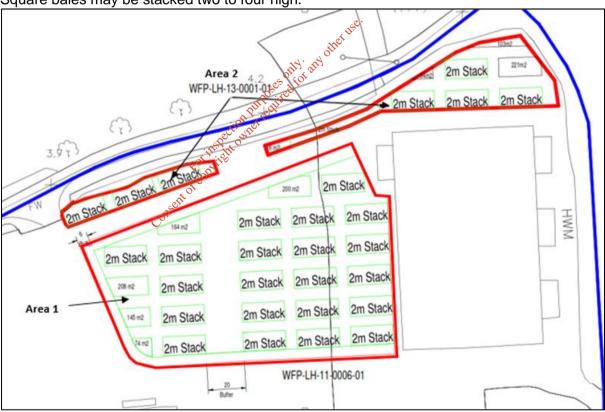


Figure 3.1 Location of Existing waste set down areas at TRP (in red)

The sealed bales of RDF and SRF comprise a wide range of materials and include a significant fraction of biodegradable organic waste material. In the event that a bale is damaged during loading or unloading the bales are repaired and will be re-wrapped however some runoff/leachate may arise.

Leachate by its very nature is a highly variable substance. The EPA manual (Leachate Management Treatment EPA manual on Landfill Site Design, 2000) presents typical data for inert or hazardous leachate, neither of which are considered particularly relevant to the leachate likely to arise from RDF and SRF bales for the proposal. The

AWW Consulting Limited

UK DoE document (Leachate Quality UK Department of Environment Waste Management Paper 26B) also presents leachate generated from acetogenic and methanogenic landfills. Leachate data for acetogenic landfills is considered likely to be closest in terms of comparison to leachate for recently produced bales of treated municipal waste. In simple terms, leachate from methanogenic landfills tends to be more dilute as it is older.

Based on information from Appendix I (Leachate Quality UK Department of Environment, Waste Management Paper 26B), typical constituents of acetogenic leachates as is likely to be generated from set down of RDF and SRF at Tom Roes Point are summarised in Table 3.1. This type of leachate is likely to contain high concentrations of Chemical Oxygen Demand (COD) and other contaminants including heavy metals, which could potentially pose a risk to the water and geological environment without mitigation.

	Overall F	Range	Overall Values	3
Determinant	Minimum	Maximum	Median	Mean
H-value	5.12	7.8 52,000 15,870 152,000 68,000 29,000 and other of the state of	6.0	6.73
conductivity (µS/cm)	5,800	52,000	13,195	16,921
Ikalinity (as CaCO ₃)	2,720	15,870	5,155	7,251
COD	2,740	152,000	23,600	36,817
OD ₂₀	2,000	125,000	14,900	25,108
OD ₅	2,000	68,000	14,600	18,632
OC	1.010	29.000 200	7.800	12,217
atty acids (as C)	963	22,4140	5.144	8,197
mmmoniacal-N	194	3,640	582	922
itrate-N	<0.2	NIT 18.0	0.7	1.8
itrite-N	0.01	30 × 1.4	0.1	0.2
ulphate (as SO ₄)	<5	1,560	608	676
hosphate (as P)	0.6 ع	22.6	3.3	5.0
hloride	659	4,670	1,490	1,805
odium	474 PO NOTE	2,400	1,270	1,371
agnesium	25 و ^{کرک}	820	400	384
otassium	350,	3,100	900	1,143
alcium	270	6,240	1,600	2,241
hromium	⊘ 0.03	0.3	0.12	0.13
nanganese	1.40	164.0	22.95	32.94
on	48.3	2,300	475	653.8
ickel	<0.03	1.87	0.23	0.42
opper	0.02	1.1	0.075	0.13
inc	0.09	140.0	6.85	17.37
rsenic	<0.001	0.148	0.010	0.024
admium	<0.01	0.1	0.01	0.02
ercury	<0.0001	0.0015	0.0003	0.0004
ad	<0.04	0.65	0.3	0.28

Table 3.1 List of typical constituents of Acetogenic Leachate (Source: Appendix I: Leachate Quality UK Department of Environment Waste Management Paper 26B).

.....g _.....g

4.0 STAGE 3 - ASSESSMENT OF THE SITE SPECIFIC POLLUTION RISK

This section includes a review of the containment measures in place for the chemicals of concerns as identified in Stage 1 & 2 above.

4.1 Protection Systems and Procedures

The following handling and containment arrangements are in place at the site to prevent any release of generated runoff/leachate to the environment:

- Only sealed shrink wrapped bales transported in authorised waste collectors from licenced processing facilities (under Waste Collection Permit Regulations 2007) are accepted at TRP;
- The waste set down area for all bales is on a smooth clean densophalt impervious surface which prevents the vertical migration of potential contaminants into the underlying soil and geological environment. Based on observations during the 2015 site investigation, this densophalt layer ranges in thickness from 0.20-0.35 m across the site;
- Bales are lifted using a forklift fitted with special hydraulic clamshell clamps with clean fair faced damp faces, reducing the risk of damaging the shrink wrap material:
- On completion of unloading each truck, all bales are checked for bale damage and/or perforation, where found tape sealing is immediately applied. Bale damage found beyond the tape sealing are returned to the manufacturing/processing facility;
- Every day, the outer perimeter of bale set down area is checked for bale damage;
- Any material which may have escaped from a damaged bale is collected and deposited in one of several large closed skips, adjacent to the set down area, for return to the manufacturing/processing facility.

4.2 Risk of Environmental Contamination

In terms of environmental contamination at TRP, the highest risk is associated with the release of contaminated runoff/leachate from SRF and RDF bales and small, localised accidental releases of hydrocarbons from operating site traffic. Both scenarios pose the risk of contamination entering the water and soil environments via the surface water drainage system. There is a reduced risk of impact to the underlying aquifer due to the presence of a low permeability surface and a drainage catchment system.

4.2.1 Stormwater Drainage System

The waste set down areas are serviced by a series of surface water drains.

As part of the licensing of the facility, the existing drainage system was enhanced to eliminate the pathway to the estuary and the risk of any impact on water quality. All surface water drains in the waste set down areas divert to a suitably sized (based on 1:100 year storm flow) attenuation tank. The water in the tank is then disposed of by McBreen Environmental.

Stormwater Quality

Annual surface discharge water monitoring at TRP was undertaken by Axis Environmental Services in accordance with the Waste Facility Permit (LH-11-0006-01, LH-12-0004-01 and LH-13-0001-01) requirements in, since September 2012, to assess the quality of discharge to the Boyne River (at the discharge point).

7.WW Conducting Elithoo

The Waste Facility Permit for Drogheda Port Company at TRP was granted by Louth County Council on 16th of December 2011, which sets the listed parameters for surface water runoff, summarised in Table 4.1, prior to discharge to the Boyne River.

In the period 2012- 2014, the surface water discharge parameters listed in Table 4.1 did not exceed the set Waste Permit limits as set by Louth County Council.

It should be noted that after the diversion of drainage to the onsite attenuation tank, there is no further discharge to the Estuary.

Parameter	Units	Result	Waste Permit Limits
	7/11/2014	l	Lillits
Electrical Conductivity	uS/cm	6000	None
Biochemical Oxygen Demand	mg/l	2	25
Chemical Oxygen Demand	mg/l	20	None
рН	pH units	7.4	6-9
Mineral Oil	mg/l	<0.1	5
Suspended Solids	mg/l	11	25
	20/12/2013		
Electrical Conductivity	uS/cm	2310	None
Biochemical Oxygen Demand	mg/l 💉	11	25
Chemical Oxygen Demand	mg/l ₄ 00	45	None
рН	pH units	7.8	6-9
Mineral Oil	ৣsong/l	<0.1	5
Suspended Solids	will mg/l	23	25
0	28/12/2012		
Biochemical Oxygen Demand	mg/l	9	25
Chemical Oxygen Demand Mineral Oil Chemical Oxygen Demand Chemical Oxygen Demand Chemical Oxygen Demand Chemical Oxygen Demand	mg/l	54	None
Mineral Oil	mg/l	<0.1	5
pH	pH units	7.5	6-9
Suspended Solids	mg/l	6	25
cceedances in bold	-		

Table 4.1 Surface Water Drainage Parameters and Limits

4.2.3 Operational Traffic

The site operates a strict traffic management system around the main facility. Vehicles enter via the main entrance and traffic operates in a one way direction before returning to the main access road/weighbridge area. The port area leaves sufficient wide areas for turning of waste deliveries at the site if necessary. However, due to the level of traffic, there is the potential for occasional drips and leaks from vehicle fuel tanks to occur.

In the event of an accidental hydrocarbon leak from a vehicle, the minor spillage will be collected by the surface water drainage system and diverted to the attenuation tank mitigating the environmental impact on the Boyne River / Estuary.

3

5.0 STAGE 4 – SITE HISTORY

This section includes an evaluation of the likelihood of the presence of any historical contamination on soil/ groundwater at the site.

Drogheda has historically been an industrial town with a wide range of manufacturing companies. A zinc study was carried out in July 2013, by AXIS Environmental Services on behalf of Drogheda Port Company, to investigate the potential sources of zinc in the vicinity of TRP to comply with requirements outlines by the Environmental Protection Agency (EPA) Condition 4.4 of Drogheda Ports Dumping at Sea permit S0015-02. The study highlighted that many of the historic industries had contributed to the sources of zinc built up in river sediment. The study found that sediment samples taken along the Boyne River, between the years 1996 – 2011, were Class 2 (marginally contaminated) or lower. The majority of samples were Class 1 (uncontaminated) as classified under the Guidelines for the Assessment of Dredge Material for the Disposal of Irish Waters (2006).

Aerial Imagery from the Ordnance Survey Ireland (OSi) from 2005 (Figure 5.1) and historic maps from 1830 and 1990 of the Port site at TRP (Figure 5.2) were analysed. The historical maps from 1830 and 1990, highlight that the entire port site used to comprise large mud flats between the low and high water mark along the Boyne River.

Figure 5.1 OSi Aerial Image (2005) (source www.osi.ie)

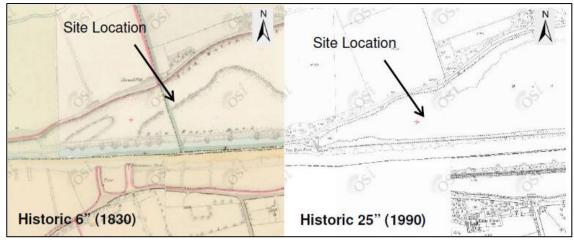
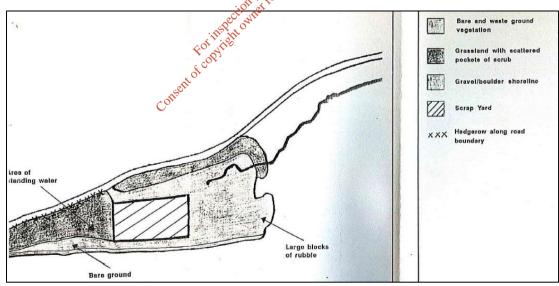



Figure 5.2 Historical Maps (source www.osi.ie)

Post 1990 up until 1996, the land was reclaimed and is described as, consisting of an area of grass land with places of standing water to the west. The use of coal storage and distribution depot is listed as one of its historic land-uses (EIS 1996). Later a scrap yard was located towards the centre of the site (comprising a general cargo storage area with shed, temporary buildings, mounds of metallic scrap, a 20 m lightning column and security fencing) and area of bare and waste ground vegetation to the east, according to Kirk McClure Morton Environmental Impact Statement for Drogheda Port (1996), see Figure 5.3. The 6 hectare site of undeveloped reclaimed lands with a total water frontage of 560 m, located 2 km outside of Drogheda and 5km from the sea, was and remains adjacent to the Licenced (IPRC) facility known as RHI Premier Periclase Factory (producer of seawater magnesia products).

Figure 5.3 Sketch of TRP in 1996 (EIS 1996)

Construction of the deep water terminal at TRP began in 1997 to facilitate the handling of larger vessels along the Boyne Estuary. The quay itself consists of a driven anchored sheet pile wall with a reinforced concrete capping beam. The area behind the sheet pile wall was intended to be filled with fill materials obtained from excavations and associated slope stability works adjacent to the quay structure, to make up the difference between the existing ground level and the required quay level (EIS 1996).

Page 17

6.0 STAGE 5 – ENVIRONMENTAL SETTING

This section includes an assessment of the likely fate of potential spills or leakages based on the topography, soil and groundwater characteristics at the location. Based on the findings of Stages 1 to 5 above, the waste set down areas have been assessed with regard to confirming source-pathway-receptor linkages i.e. in the unlikely event of a leakage/spillage which is not mitigated on site.

6.1 Topography

The natural topography at the site is relatively flat and close to sea level, and situated on the flood plain of the Boyne Estuary. Before the land was reclaimed, the site used to lie between the high and low water marks along the Boyne Estuary, gently sloping east towards the Irish Sea. The concrete terminal lies between 3.50-4.50 metres above Ordinance Datum (mAOD), (Malin Head).

6.2 Hydrology

The site is located along the Boyne River catchment which is the main water feature in the study area. The River Boyne rises near Carbury, Co. Kildare and flows into the Boyne Estuary towards the Irish Sea. The Boyne River, Estuary and Coast is designated as a Special Area of Conservation (SAC – 001957) and a proposed National Heritage Area (pNHA) by the National Parks and Wildlife Service.

The site is located within the Eastern River Basin District (ERBD), as defined under the EU Water Framework Directive (2000/60EC) European Communities Directive 2000/60EC, establishing a framework for community action in the field of water policy, (commonly known as the Water Framework Directive [WFD]).

The WFD requires 'Good Water Status' for all European waters by 2015, to be achieved through a system of river basin management planning and extensive monitoring. 'Good status' means both 'good ecological status' and 'good chemical status'. The current WFD status for the Boyne Estuary (Transitional waterbody) is classified as 'Moderate and is 'at risk of not achieving Good status' by 2015 (GSI 2015).

Figure 6.1 Site Location and Hydrological Environment (Source <u>www.epa.ie</u>)

7.VVV Constituting Entitled

Figure 6.1 presents the site location and the surrounding hydrological environment.

There is expected to be little overland flow onto the site from the surrounding area due to the presence of a quarry to the north and natural drainage to streams located to the north and west which will capture surface water flow in these areas. As part of the application for the waste permit 2012-2013, a flood study was undertaken and the Tom Roes Point Port were set to provide an additional freeboard of approximately 1m (minimum) over the historic quay levels.

The port itself is serviced by a network of surface drains (Section 4.2.1) which currently diverts all surface water into an attenuation tank which is then disposed of by McBreen Environmental.

6.3 Geology & Hydrogeology

6.3.1 Regional Geology

The site appears to be underlain by Dinantian Upper Impure Limestone bedrock (see Figure 6.2 below). The bedrock to the north of the site, bounded by a northeast-southwest trending fault, consists of Dinantian Pure Bedded Limestone. The bedrock forms part of the Milverton Group (which is composed of various Formations) and commonly observed rock types include Limestone, pale coloured Dolomite, feldspathic sandstone, shale and conglomerate (GSI Sheet 13).

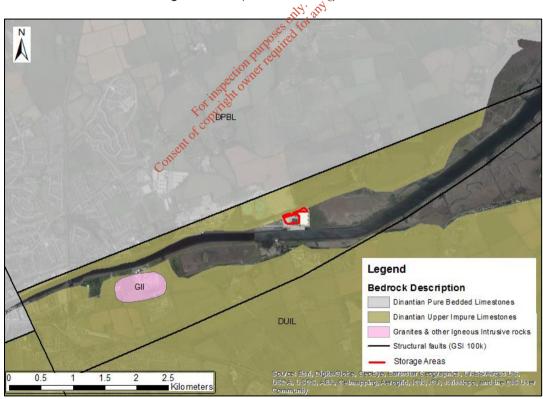


Figure 6.2 Solid Geology Underlying the Site (source www.gsi.ie)

The port site is currently covered in Made Ground (Concrete and fill material). According to the GSI (2015) classification the site is underlain by Marine Sediments (MarSed) soils (see Figure 6.3) and Estuarine Sediments (Mesc) subsoils such as silts/clays, as highlighted in Figure 6.4.

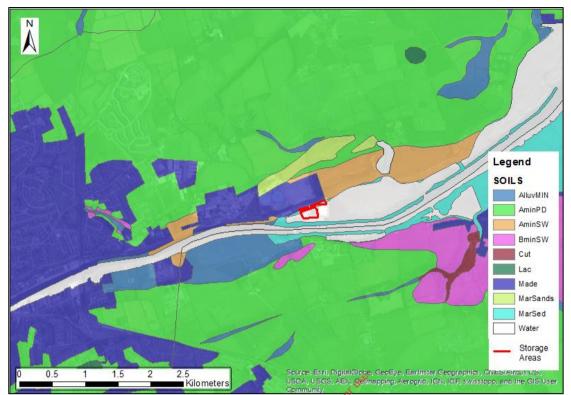


Figure 6.3 Soils Underlying the Site (source www. Si.ie)

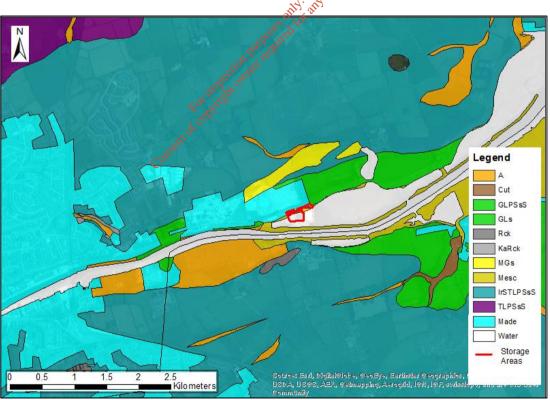


Figure 6.4 Subsoils Underlying the Site (source www.gsi.ie)

6.3.2 Superficial Geology - Local Setting

6.3.2.1 2015 Site Investigation

A site investigation completed in January 2015 involved the drilling of 11 no. boreholes across the site at TRP (see Section 8.0). Figure 6.5 below presents the locations of these wells.

C .

Figure 6.5 Exploratory Borehole Locations at TRP in 2015

Borehole locations were chosen to be representative of the location of waste set down areas and to provide upgradient and downgradient sampling points. Ground conditions at all locations were recorded during the drilling process by an AWN Hydrogeologist, in conjunction with driller's logs (including geological successions and water strikes).

In general, following review of all borehole logs, the site stratigraphy varies slightly across the site but generally consists of concrete and fill (MADE GROUND) overlying different variations of silt & clays (natural ground), underlain by estuarine sand and gravel, overlying bedrock. A summary of the ground stratigraphy observed together with indicative depths encountered is outlined as follows:

- Concrete (made ground) (0.0-0.4 mbgl);
- Fill (made ground) (0.15-3.0 mbgl);
- Soft to firm gravelly clay with occasional cobbles (1.0-14.3 mbgl);
- Cement by-products or landfill materials (made ground) (0.9-4.5 mbgl);
- Soft black organic silt (2.8-6.5 mbgl);
- Fine sand with shell fragments (2.6-17.00 mbgl);
- Angular to sub-rounded gravels (14.0-20.5 mbgl); and
- Possible bedrock (impure limestones) at 20.5 mbgl (in 103d)

The recorded details of the superficial deposits are presented on the borehole logs in Appendix A. Observed cement by-products consist of soft white and green clay materials and hardened cement fragments. Other manmade deposits include landfill deposits (106S). These manmade deposits are found at the centre of the site (Boreholes 102,106, 108 and 109) and have the potential to contain historic contamination.

The manmade deposits are underlain by gravelly clays in the north and underlain by fine sand in the centre of the site. Closer to the Boyne River the site is underlain by a black silt which sits on top of the fine sand. A pungent odour was observed during drilling from the black organic silt.

Figure 6.6 below presents the geological cross section for the site (approximately west to east) which aims to show the spatial and vertical distribution of the encountered

successions. Similarly Figure 6.7 illustrates the geological section across the site in a northwest to southeast direction.

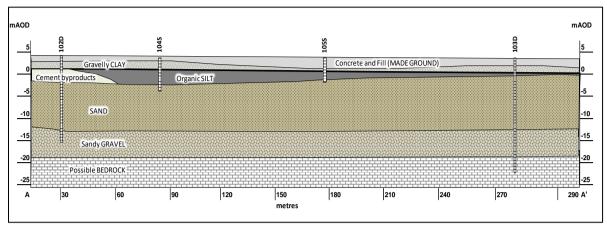


Figure 6.6 Geological Cross Section (A – A')

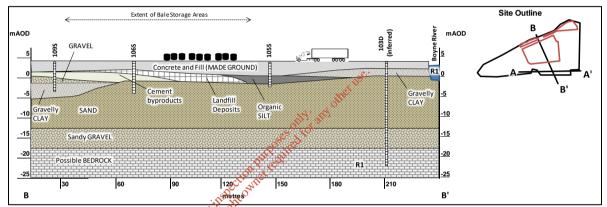


Figure 6.7 Geological Cross Section (B – B')

6.3.2.2 2019 Site Investigation

A site investigation completed in May 2019 involved the drilling of 2 no. boreholes on the site at TRP (see Section 8.0) i.e. 1 no. location (BH01) in an area which will remain within the IE licensed boundary and 1 no. location (BH02) which will be removed from the site and will therefore be outside the IE licensed boundary. Figure 6.8 below presents the locations of these boreholes.

Figure 6.8 Exploratory Borehole Locations at TRP in 2019

Ground conditions at all locations were recorded during the drilling process by Causeway Geotech Limited.

A summary of the ground stratigraphy observed together with indicative depths encountered is outlined as follows:

- Paved surface: BH01 and BH02 encountered 250mm of macadam surfacing;
- Made Ground (sub-base): BH01 and BH02 encountered 950 1050mm of aggregate fill mixed with lear mix concrete beneath the paved surface;
- Made Ground (fill): reworked sandy gravelly clay fill with fragments of concrete, red brick and timber encountered in both boreholes to a maximum depth of 3.00m. A material which was described as hardened cement mix, pink and green in colour was encountered down to 4.0m in BH02; and
- Estuarine deposits: medium dense sands and firm to stiff sandy silt encountered to 8.0m in both holes.

The recorded details of the superficial deposits are presented in the borehole logs in Appendix A.

6.3.3 Regional Hydrogeology

The Milverton Group has been classified as a Locally Important Bedrock Aquifer which is generally moderately productive. Figure 6.9 below presents the aquifer classification for the site according to the GSI (2014).

The site is located within the Drogheda WFD groundwater body (IE_EA_G_025) which is classified as a karstic aquifer. The Drogheda groundwater body encompasses both the regionally important karstified aquifer dominated by diffuse flow to the north of the site (See Figure 6.8) and the locally important aquifer directly underlying the site. The groundwater body WFD Status (which is based on overall chemical status and quantities status) between the years 2007-2009 was 'Poor' and was upgraded to 'Good' between the years 2010-2012. However, the WFD score suggests that the Drogheda groundwater body is 'at risk of not achieving good status' by 2015 (EPA 2015).

3

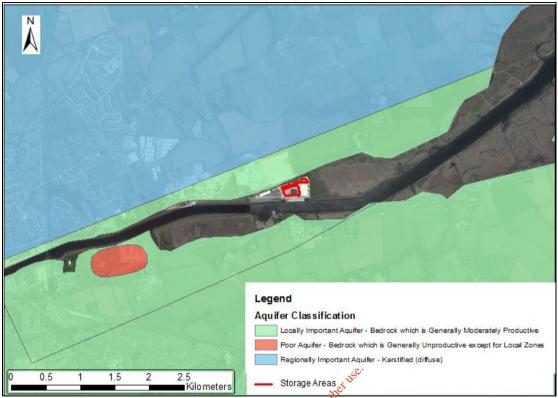


Figure 6.9 Aquifer Classification (source www.gsi_ie)

The nature of groundwater flow depends on the degree of karstification of the limestone. Where the aquifer is heavily karstified (north of the site), groundwater flow tends to be concentrated along a relatively small number of enlarged conduits. Where the bedrock is less karstified (i.e. directly beneath the site), the groundwater flow tends to be through a series of connected fractures and joints. Water enters the aquifer by point and diffuse recharge and waters will discharge from the aquifer directly to the coast and also, where the water table is above the river stage, to the rivers in the area (GSI 2015).

The hydrochemical signature for the Drogheda groundwater body consistently shows a calcium bicarbonate signature. Typical electrical conductivity values range from 550 to 650 uS/cm, with moderately hard to very hard waters and alkalinity values of 150 to 350 mg/l.

Figure 6.10 below highlights the groundwater vulnerability beneath the site. The groundwater vulnerability index is related to the thickness and permeability of the overburden. Based on the site investigation which confirmed the presence of a thick layer (up to 0.40 m) of MADE GROUND concrete (densophalt), and a depth to bedrock greater than 20 metres below ground level (mbgl), the aquifer immediately beneath the site may be considered as low.

Figure 6.10 Groundwater Vulnerability (source www.gsi.ie)

Figure 6.11 presents the GSI listed well data. Note: As boreholes currently do not require licensing in Ireland, this data source may not be representative of a complete record for the area.

Figure 6.11 GSI Wells within Study Area

Page 25

AVIV Obligating Limited

The GSI well data highlights the presence of several wells close to TRP, primarily in the regionally important aquifer, north of the site. These industrial and agricultural use wells demonstrate moderate to excellent well yields, as can be seen in Table 6.1 below.

Table 6.1 below summarises the GSI well data including available descriptions.

GSI Name	Туре	Depth of Borehole (mbgl)	Depth to Bedrock (mbgl)	Use	Yield Class	Yield m³/d	Water Strike (mbgl)
2927SEW004	Dug well	3	-	-	-	-	-
2927SEW050	Borehole	25.9	-	Industrial	Good	218.2	-
2927SEW051	Borehole	19.8	-	Industrial	Moderate	54.5	-
2927SEW053	Borehole	62	42	Industrial	Good	231	-
2927SEW057	Borehole	31	Not Met	Agri & domestic	Moderate	43.2	-
2927SEW058	Borehole	17	Not Met	Agri & domestic	Moderate	51.8	-
2927SEW060	Borehole	22	Not Met	Industrial	Excellent	734.4	-
2927SEW061	Borehole	-	-	Industrial	Good	103	-
2927SEW062	Borehole	29	Not Met	Industrial	Good	130	-
2927SEW063	Borehole	50	- 93. 0	ndustrial	Good	130	-
2927SEW064	Borehole	54	- ody.	Industrial	-	-	-
2927SEW067	Borehole	54.9	n Pirit 241.3	Agri & domestic	Moderate	43.6	42.7

mbgl = metres below ground level

Table 6.1 GSI Well Descriptions

GSI well 2927SEW060 (well depth of 22.0 mbgl) is situated within the RHI Premier Periclase Ltd Site, just north of the Port site at TRP. The groundwater well is present for monitoring purposes and not used for abstraction purposes. An assessment of groundwater quality found "the groundwater beneath the RHI Periclase site had elevated levels of Na, CI and SO₄ indicating the presence of brackish to saline water and is not fit for human consumption without treatment (RHI Premier Periclase Annual Environmental Reports 2008-2012).

Groundwater Flow

Regional groundwater flow would be expected to be in the direction of the Boyne Estuary and towards the sea provided that water levels are not influenced dewatering/pumping activities in the immediate vicinity of TRP.

Static water levels (SWLs) were measured following the drilling and installation of the wells at TRP in order to confirm the direction of ground flow. SWLs taken on the 21st of January 2015 are summarised in Table 6.2 below.

AVIV Obligating Limited

Date	23/01	/2014	05/02	/2015
Well ID	mbgl mAOD		mbgl	mAOD
101D	2.76	1.2	2.68	1.28
102D	3.95	0.27	2.54	1.68
103D	3.265	0.225	2.41	1.08
104S	3.31	0.2	2.83	0.68
106S	3.74	0.29	2.51	1.52
108S	2.85	1.79	2.29	2.35

Note: mbgl= metres below ground level; mAOD = metres Above Ordnance Datum

Table 6.2 Groundwater Level Measurements

Figure 6.12 Groundwater Flow at TRP (January 2015)

Groundwater flow contouring was undertaken to confirm the local groundwater direction beneath the site at TRP as illustrated in Figure 6.12. The local shallow groundwater flow (as determined from 104S, 106S & 108S) is consistent with flow in a south-southeast direction and towards the Boyne River with a hydraulic gradient of approximately 0.02. The direction of groundwater flow in the bedrock could not be determined from the site investigation since only one well (103D) encountered bedrock. However as groundwater will discharge to the estuary it is expected to be also in a southerly direction.

6.4 Surrounding Land Use

Immediately adjacent to Drogheda Port at TRP, is the Licenced Integrated Pollution Prevention and Control (IPPC) facility known as RHI Premier Periclase Limited which produces high quality seawater sinter magnesia at its plant. The magnesia is precipitated from seawater by the addition of slaked lime, the latter of which is produced on-site. Part of the RHI Premier Perglase site includes a landfill for inert material (RHI Premier Periclase Annual Environmental Reports 2008-2012).

The main land uses surrounding the site are agricultural, marsh land between the low and high tide marks and residential areas towards Drogheda town.

7.0 STAGE 6 - CONCEPTUAL SITE MODEL

This section presents the Conceptual Site Model (CSM) for the site based on the information obtained above.

The pollutant linkages based on the primary sources of possible contaminants on site are summarised in Table 7.1. Note this CSM is presented on the basis that contamination following a leak/spill is not mitigated by the mitigation measures operating at the site.

The CSM is illustrated as Figure 7.1 below.

The qualitative risk assessment has considered the following risk levels:

- **High Risk**: These are considered to be high-level risks requiring priority attention. These risks have the potential to be catastrophic and need to be addressed quickly;
- Moderate Risk: These are medium-level risks requiring action but not considered critical; and
- Low Risk: These are the lowest risks and indicate a need for continuing awareness and a possible need for on-going monitoring.

 Low Risk: These are the lowest risks and indicate a need for continuing awareness and a possible need for on-going monitoring.

 Low Risk: These are the lowest risks and indicate a need for continuing awareness and a possible need for on-going monitoring.

 Low Risk: These are the lowest risks and indicate a need for continuing awareness and a possible need for on-going monitoring.

 Low Risk: These are the lowest risks and indicate a need for continuing awareness and a possible need for on-going monitoring.

 Low Risk: These are the lowest risks and indicate a need for continuing awareness and a possible need for on-going monitoring.

 Low Risk: These are the lowest risks and indicate a need for continuing awareness and a possible need for on-going monitoring.

Contaminant of Concern	Potential Sources	Migration/ Pathways	Receptors	Risk Assessment
	Historical leakage from underlying Fill materials (S1)	Migration of contaminants via groundwater (P1)	Migration of potential contaminants through overburden into Boyne River/ Estuary (R1)	Low to Mod The presence of waste made ground has the potential for migration of historical contaminants via shallow groundwater flow to the Estuary. Low to medium permeabilities of the sand and silt layers provide a pathway for contamination migration into the River/Estuary. Direct recharge is limited due to the presence of low permeability capping which will reduce the mobilisation of any contaminants present.
	(31)		Vertical migration of potential contaminants into competent bedrock (R2)	Low Shallow groundwater flow direction is towards the estuary and flow is less likely to migrate vertically into the bedrock/ aquifer due to the thickness of the overburden and the proximity of the estuary.
Inorganics (including Metals) & Hydrocarbons	Accidental release of leachate/ contaminate d runoff from RDF and SRF set down areas (S2)	Migration of contaminants via groundwater (P1)	Vertical migration of potential contaminants into competent bedrock (R2) Migration of potential contaminants through overburden into Boyne River/	Low The presence of low permeability capping and stormwater drains reduces the potential of accidental release of leachate resulting in contaminated water migrating into underlying soils. In addition the thickness of soil will protect the underlying bedrock aquifer
	Accidental minor hydrocarbon drips/leaks from operating traffic (S3)	Migration of the contaminants via stormwater drains (P2)	Migration from stormwater drains into Estuary (R1)	Low to Mod Strict bale handling procedures are implemented onsite to minimise the volumes of contaminated run-off entering the surface drainage system. An improved closed drainage system is now in place which would divert leachate into an attenuation tank. As this removes any pathway to the river, the risk is considered to be low.

Table 7.1 Source-Pathway Receptor Assessment Summary

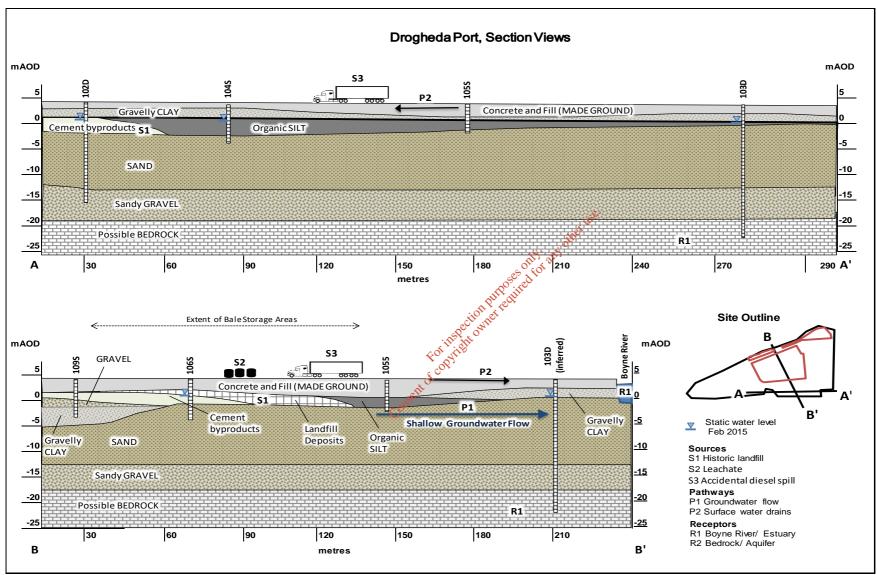


Figure 7.1 Conceptual Site Model for TRP (Feb 2015)

8.0 STAGE 7 - SITE INVESTIGATION & BASELINE SOIL & WATER QUALITY **ASSESSMENT**

Additional site investigation including soil and water sampling was undertaken in 2015 and 2019 at systematically laid out locations to confirm the nature of the geology and soil quality across the site. Baseline soil and groundwater quality is also presented below.

8.1 **Additional Site Investigations**

2015 Site Investigation 8.1.1

In 2015, a total of 11 no. shallow and deep wells were drilled and installed to obtain soil and groundwater quality data across the Port site. The wells were drilled by Causeway Geotech Limited and supervised by an AWN Hydrogeologist.

3 deep wells to a maximum of 25 metres below ground level (mbgl) were drilled and installed by an air rotary percussive drilling method, commonly used to identify inflowing water strikes at depth. 8 no. shallow wells (to a maximum of 8 mbgl) were drilled by cable percussion technique of which 3 no. wells were installed for groundwater and ground gas monitoring purposes.

Locations of all shallow and deep wells across the site are shown in Figure 6.5. Borehole log descriptions are presented in Appendix A.

2019 Site Investigation 8.1.2

2019 Site Investigation
In 2019, 2 no. light cable percussion boreholes were drilled and installed between the 13th and the 15th of May 2019 to obtain soil and groundwater quality data i.e. 1 no. location (BH01) in an area which will remain within the IE licensed boundary and 1 no. location (BH02) in the area which will be removed from the site and will therefore be outside the IE licensed boundary. The wells were drilled by Causeway Geotech Limited.

The 2 no. boreholes (BH01-BH02) were drilled down to completion (to a maximum of 8 mbgl) in minimum 200mm diameter using a Dando 2000 light cable percussion boring rig. Both boreholes were terminated at their scheduled completion depths. A groundwater monitoring standpipe was installed in both boreholes.

Locations of the wells across the site are shown in Figure 6.8. Borehole log descriptions are presented in Appendix A.

8.2 **Installation of Groundwater Monitoring Wells**

2015 Site Investigation

The groundwater monitoring wells were drilled and installed between the 13th and 21st of January 2015. The well construction details are summarised in Table 8.1 below.

Well ID	Date drilled	Depth to bedrock (mbgl)	Depth of pipe (mbgl)	Standpipe diameter (mm)	Well depth (m)	Well diameter (mm)
101D	13/01/2015	n/a	20.1	50	20.1	128
102D	14/01/2015	n/a	20.0	50	20.0	128
103D	15/01/2015	20.5	25.0	50	25.0	128
104S	15/01/2015	n/a	7.9	50	7.9	203
105S	15/01/2015	n/a	No in	No installation		203
106S	16/01/2015	n/a	8.0	50	8.0	203
107S	19/01/2015	n/a	No in	stallation	7.5	203
108S	20/01/2015	n/a	8.5	50	8.5	203
109S	20/01/2015	n/a	No installation		7.4	203
110S	21/01/2015	n/a	No installation		1.7	203
101S	21/01/2015	n/a	No in	stallation	8.0	203

Note: mbgl = metres below ground level;

Table 8.1 Monitoring Well Construction Details (January 2015)

Each monitoring well was constructed with the following specifications:

- 50mm diameter PVC liner installed from ground surface to base of borehole with machine-slotted sections as indicated on borehole logs;
- The annular space around the well is filled with gravel pack on top of which a bentonite seal (0.3-0.5m) is placed, to prevent vertical migration of any solute down the well:
- The tops standpipe installations require removable gas tables for water and gas monitoring; and
- Well head construction consisted of steel flush covers secured by simple bolts.

The locations of the wells are highlighted on Figure 6.5. The borehole and well construction details for all wells 101-108 (S-Shallow, D-Deep) are presented in Appendix A.

8.2.2 2019 Site Investigation

The groundwater monitoring wells were drilled and installed between the 13th and 15th of May 2019 according to the specifications outlined in Section 8.2.1 above. The well construction details are summarised in Table 8.2 below.

Well ID	Date drilled	Depth to bedrock (mbgl)	Depth of pipe (mbgl)	Standpipe diameter (mm)	Well depth (m)		
BH01	13/05/2019	n/a	8	50	8		
BH02	15/05/2019	n/a	8	50	8		

Table 8.2 Monitoring Well Construction Details (May 2019)

Locations of the wells are shown in Figure 6.8. Borehole log descriptions are presented in Appendix A.

8.3 Soil Sampling

8.3.1 2015 Site Investigation

In 2015, soil samples were taken at a minimum of one sample per metre or at every change in strata, during the drilling by the AWN Hydrogeologist. The soil samples were taken between the 13th and 21st of January 2015 sent to Chemtest Laboratories (UKAS accredited) immediately following the completion of drilling.

The suite of soil quality parameters tested is listed below:

- Asbestos Screening
- Aluminium
- Arsenic-total
- Boron-water soluble
- Cadmium-total
- Chromium-total
- Chromium-hexavalent
- Copper-total
- Lead-total
- Iron
- Manganese
- Magnesium
- Sodium
- Potassium

- Mercury-total
- Nickel-total
- Zinc-total
- Cyanide, Total
- Phenols-total
- Sulphate, Total
- Sulphate, water 2:1
- p,₩
- AAPAH
- Ammonical Nitrogen
- Total Petroleum Hydrocarbons
- Mineral Oil

Soil sampling depths are recorded on borehole logs presented in Appendix A.

8.3.2 2019 Site Investigation

The soil samples were taken between the 13th and 15th of May 2019 and sent to Chemtest Laboratories (UKAS accredited) immediately following the completion of drilling. The suite of soil quality parameters tested is listed in Section 8.3.1 above. Soil sampling depths are recorded on borehole logs presented in Appendix A.

8.3.3 Soil Analysis and Quality

The presence of any contamination above the laboratory detection limits has been considered. In addition, soil samples were compared to a Generic Assessment Criteria (GAC) derived to be protective of human health and also ecology for a commercial/industrial end use.

Generic Assessment Criteria are soil concentrations that have been derived for a defined set of generic assumptions and are used as trigger values in determining whether further risk management action is required in cases where detailed quantitative risk assessment is not being undertaken. There are no published Generic Assessment Criteria for soils in the Republic of Ireland. Instead reliance is often placed on criteria from the UK and the Netherlands.

Generic Assessment Criteria in the UK has been derived using the Contaminated Land Exposure Assessment (CLEA) model to be protective of human health for a number of

different land uses. To date, the UK's Environment Agency has released reports with Soil Guidance Values on a number of organic substances including BTEX and is intending to release further reports for PAHs. In the interim, LQM (Land Quality Management) and the CIEH (Chartered Institute of Environmental Health) developed a document in July 2009 detailing their own research and derivation of their own 'LQM GACs'. A total of 82 substances including many organic substances had LQM GACs derived, for the standard land uses of residential, commercial/industrial and allotments.

The Dutch Guideline values are derived based on a consideration of toxicity to human and ecological receptors. There are two values for each contaminant, an intervention value and a target value. The target value is the value one would expect in uncontaminated soil (from say an agricultural environment). The intervention value is set on the basis of a toxicological assessment of the impact of the contaminant on the health of human receptors and assumes that the human receptor is exposed to the contaminant through ingestion of soil and water, dermal contact with soil and water, eating vegetables grown on soil and inhalation of soil dust and vapour. According to the publication accompanying the Dutch Values, any value above the intervention value is regarded as indicating contamination, which may require further investigation and possible remediation. However, caution was used when applying the Dutch Values as they are not site end use specific and assess for vegetable growing, provision of drinking water and washing and showering in water from the site. Nevertheless, they are a useful screening tool for determining the significance of site contamination.

Neither the Dutch nor the UK values have any legal standing within the Republic of Ireland and no statutory guidance for assessing the significance of soil contamination currently exists. However, the values do provide a means of placing the data within context when considering magnitude of risk and have been used in that capacity for this assessment. The main basis of the assessment remains the conceptual site model and consideration of the pollutant linkages: Source - Pathway – Receptor.

The laboratory results for 11 no of selected samples analysed in 2015 and the 8 no. of samples analysed in 2019 are attached in Appendix B. A comparison of the soil data against UK and Dutch derived guideline values was made. Tables 8.3, 8.4, 8.5, 8.6 and 8.7 below summarises results for representative soil quality testing where a GAC is exceeded it is highlighted in pink.

8.3.3.1 2015 Site Investigation

Date 26-Jan 2015	COMMER-											
Sample ID.:	CIAL/ INDUST-	Ref.	Dutch S-	Dutch I-	Units	LOD	BH102	BH103	BH104	BH104	BH106	BH106
Sample Type:	RIAL	iver.	Value	Value	Onics	LOD	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Top Depth (m):	HHRA						5.00	18.50	2.00	6.00	2.00	4.50
Inorganics												
Asbestos Identification					%	0.001	NAD	NAD	NAD	NAD	NAD	NAD
Moisture					%	0.02	42	15	32	19	34	24
рН							11.4	9.3	10.1	9.9	9.3	8.9
Boron (Hot Water Soluble)					mg/kg	0.4	1.7	0.84	1.6	0.65	5.5	3
Sulphate (2:1 Water Soluble) a	s SO4				g/l	0.01	2.3	0.13	1.1	0.39	1.5	0.77
Cyanide (Total)			1	20	mg/kg	0.5	-	-	-	-	-	-
Potassium (Available)					mg/l	2	13000	420	8500	950	280	950
Sodium					mg/l	2	16000	2800	3400	600	250	650
Ammoniacal Nitrogen					mg/kg	0.5	-	-	-	-	3	5.1
Heavy Metals												
Aluminium (Total)					mg/kg	100	6300	8600	9200	3600	6400	5400
Iron (Total)					mg/kg	100	7600	14000	14000	10000	8800	12000
Magnesium (Total)					mg/kg		1100	790	620	410	1200	610
Sulphate (Total)					%	0.01	1.3	0.43	1.5	0.27	2.9	1.4
Arsenic	640	SGV	29	55	mg/kg	1	24	16	21	8.4	24	8.7
Cadmium	230	SGV	0.8	12	mg/kg	0.1	3.2	0.33	0.58	0.26	6.6	0.28
Chromium	35	LQM GAC	100	380	mg/kg	1	22 💸	40	27	15	24	18
Copper	71700	LQM GAC	39	190	mg/kg	0.5	56	26	24	6.6	36	9.5
Mercury	3600	SGV	0.3	10	mg/kg	0.1	4000	-	0.15	-	-	-
Manganese	0000	001	0.0	10	mg/kg	oligi a	540	740	440	290	530	330
Nickel	1800	SGV	35	210	mg/kg.	0.5	23	51	25	15	23	18
Lead	1000	001	85	530	mg/kg	0.5	1000	23	59	11	170	20
Zinc	665000	LQM GAC	140	720	mg/kg	0.5	57	55	65	29	55	38
Chromium (Hexavalent)	000000	LQIVIOAO	140	Sec. 34	mg/kg	0.5	-	-	-	-	-	-
TPHs			78	delit	mg/kg	0.0						
Mineral Oil			5000	5000	mg/kg	10	-	_	-	_	_	_
Total TPH >C6-C40			" of	3000		10	-	-	-	-		_
PAHs		d			mg/kg	10						
		Course			ma/ka	0.1	_	_	-	_	_	_
Naphthalene					mg/kg		-			-		
Acenaphthylene					mg/kg	0.1		-	-		-	-
Acenaphthene					mg/kg	0.1	-	-	-	-	-	-
Fluorene					mg/kg	0.1	-	-	- 0.5	-	-	-
Phenanthrene					mg/kg	0.1	-	-	0.5	-	-	-
Anthracene					mg/kg	0.1	- 0.45	-	1.5	-	-	-
Fluoranthene					mg/kg	0.1	0.15	-	0.47	-	-	-
Pyrene					mg/kg	0.1	0.28	-	0.45	-	-	-
Benzo[a]anthracene					mg/kg	0.1	-	-	0.21	-	-	-
Chrysene					mg/kg	0.1	-	-	0.49	-	-	-
Benzo[b]fluoranthene					mg/kg	0.1	-	-	0.32	-	-	-
Benzo[k]fluoranthene					mg/kg	0.1	-	-	0.26	-	-	-
Benzo[a]pyrene					mg/kg	0.1	-	-	0.42	-	-	-
Indeno(1,2,3-c,d)Pyrene					mg/kg	0.1	-	-	0.16	-	-	-
Dibenz(a,h)Anthracene					mg/kg	0.1	-	-	-	-	-	-
Benzo[g,h,i]perylene					mg/kg	0.1	-	-	0.3	-	-	-
Total Of 16 PAH's			1	40	mg/kg	2	-	-	5.1	-	-	-
<u>Phenols</u>												
Total Phenols					mg/kg	0.3	0.55	-	-	-	-	-

Note: Dutch values for normal uncontaminated soil

Legend: - below detection limit NAD No Asbestos Detected above Dutch S value LOD Limits of Detection

Table 8.3 Soil Quality Results (BH102-BH106) in 2015

•

	COMMER-										
Date 26-Jan 2015	CIAL/						D11407	BULLOO	DIMOS	DIMOS	Butta
Sample ID.:	INDUST-	Ref.	Dutch S- Value	Dutch I- Value	Units	LOD	BH107	BH108	BH109	BH109	BH111
Sample Type:	RIAL HHRA						SOIL 5.00	SOIL 3.50	SOIL 1.20	SOIL 7.00	3.00
Top Depth (m):	THIOX						5.00	3.30	1.20	7.00	3.00
<u>Inorganics</u>					0/	0.004	NAD	NAD	NAD	NAD	NAD
Asbestos Identification					%	0.001	NAD	NAD	NAD	NAD	NAD
Moisture					%	0.02	27	28	13	12	37
pH							8.8	10.1	8.6	9.5	10.2
Boron (Hot Water Soluble)					mg/kg	0.4	8.5	7.2	0.79	0.74	0.85
Sulphate (2:1 Water Soluble) as	S SO4				g/l	0.01	0.97	1.2	0.08	0.081	0.1
Cyanide (Total)			1	20	mg/kg	0.5	-	-	-	-	-
Potassium (Available)					mg/l	2	1600	3400	320	480	6500
Sodium					mg/l	2	3100	4000	200	1300	6500
Ammoniacal Nitrogen					mg/kg	0.5	4.6	-	5.7	-	-
Heavy Metals											
Aluminium (Total)					mg/kg	100	3600	7000	5000	12000	11000
Iron (Total)					mg/kg	100	20000	14000	16000	19000	19000
Magnesium (Total)					mg/kg		2100	540	820	1500	440
Sulphate (Total)					%	0.01	0.62	1.1	0.13	0.027	1.6
Arsenic	640	SGV	29	55	mg/kg	1	24	16	21	10	17
Cadmium	230	SGV	0.8	12	mg/kg	0.1	0.51	0.36	1.9	0.2	0.49
Chromium	35	LQM GAC	100	380	mg/kg	1	14	22	19	41	37
Copper	71700	LQM GAC	39	190	mg/kg	0.5	9	18	23	26	24
Mercury	3600	SGV	0.3	10	mg/kg	0.1	-	0.14	-	-	0.21
Manganese					mg/kg	5	1900 🖇	820	1700	720	500
Nickel	1800	SGV	35	210	mg/kg	0.5	37	22	44	51	34
Lead			85	530	mg/kg	0.5	032	62	72	17	69
Zinc	665000	LQM GAC	140	720	mg/kg	93	73	77	88	55	120
Chromium (Hexavalent)					mg/kg	Ses 0.510'	-	-	-	-	-
<u>TPHs</u>					NI P	wife					
Mineral Oil			50	5000	mg/kg	10	-	-	-	-	-
Total TPH >C6-C40				్జరు	mg/kg	10	-	-	-	-	-
<u>PAHs</u>				inspirat	0						
Naphthalene			\$.C	1116	mg/kg	0.1	-	-	-	-	-
Acenaphthylene			ۍ د د	οδ,	mg/kg	0.1	-	-	-	-	-
Acenaphthene			, of		mg/kg	0.1	-	-	-	-	-
Fluorene			sent or		mg/kg	0.1	-	-	-	-	-
Phenanthrene		C	,		mg/kg	0.1	1.1	1.7	-	-	-
Anthracene					mg/kg	0.1	0.65	0.64	-	-	-
Fluoranthene					mg/kg	0.1	0.34	0.38	-	-	0.56
Pyrene					mg/kg	0.1	0.43	0.31	-	-	0.63
Benzo[a]anthracene					mg/kg	0.1	-	0.51	-	-	0.26
Chrysene					mg/kg	0.1	0.24	0.22	-	-	0.31
Benzo[b]fluoranthene					mg/kg	0.1	0.29	0.14	-	-	0.64
Benzo[k]fluoranthene					mg/kg	0.1	0.21	0.17	-	-	0.66
Benzo[a]pyrene					mg/kg	0.1	0.25	0.22	-	-	0.41
Indeno(1,2,3-c,d)Pyrene					mg/kg	0.1	-	0.17	-	-	0.27
Dibenz(a,h)Anthracene					mg/kg	0.1	-	0.2	-	-	0.2
Benzo[g,h,i]perylene					mg/kg	0.1	-	0.47	-	-	0.62
Total Of 16 PAH's			1	40	mg/kg	2	3.5	5.1	-	-	4.6
Phenols					, ,						
Total Phenols					mg/kg	0.3	_	1.3	_	_	0.8
					59						

Note: Dutch values for normal uncontaminated soil

Legend: - below detection limit NAD No Asbestos Detected above Dutch S value LOD Limits of Detection

Table 8.4 Soil Quality Results (BH107-BH111)

The results show the exceedances of Dutch S values in a number of different heavy metals and Polyaromatic hydrocarbons (PAHs), but these do not exceed the Dutch I values or CLEA guidance concentrations.

A CONTROL AND CONTROL

Table 8.5 briefly summarises these exceedances above Dutch S values, with associated soil horizons more clearly. The results highlight that these exceedances of cadmium, lead and copper are associated with the Made Ground deposits found at the centre of the site. Exceedances of Nickel on the other hand are observed both in Made Ground and at much greater depth, with a possible natural geological background concentration in the deeper units.

Parameters in exceedance of Dutch S value	BH ID	Depth mbgl	Soil Description
Cadmium	106S	2.0	Grey/Brown Clay with cement by-products (MADE GROUND)
	109S	1.2	Sandy gravelly CLAY (MADE GROUND)
Lead	106S	2.0	Grey/Brown Clay with cement by-products (MADE GROUND)
	102D	5.0	Cement by-product (MADE GROUND)
Copper	102D	5.0	Cement by-product (MADE GROUND)
	109S	1.2	Sandy gravelly CLAY (MADE GROUND)
Nickel	107S	5.0	Silty SAND
MICKEI	109S	7.0	Brown gravelly CLAY
	103D	18.5	GRAVEL
	104S	2.0	Hze.
PAH	107S	5.0	Black organic SILT
FAIT	108S	3.5	Solly, and or
	111S	3.0	25 Off of the

Table 8.5 Soil Quality exceedances (Dutch S) at TRP in 2015

Note no exceedances above Dutch I or CIEA guidance concentrations.

The presence of PAH correspond to the black SILT horizon (with notably pungent odour) at all corners of the site o

8.3.3.1 2019 Site Investigation

Date: 15 May 2019 Sample ID	Commerical/		Dutch	Dutch L			BH01	BH01	BH01	BH01	BH02	BH02	BH02	BH02
Sample Type	Industrial HHRA	Ref.	S Value	Value	Units	LOD	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Top Depth (m)	ппка						0.50	1.50	2.00	4.00	0.50	1.00	2.00	4.00
ACM Type						N/A	Fibres/ Clumps	Fibres/ Clumps	-	-	-	-	-	-
Asbestos Identification					%	0.001	Chrysotile	Chrysotile Crocidolite	NAD	NAD	NAD	NAD	NAD	NAD
ACM Detection Stage						N/A	Stereo Microscop y	Stereo Microscopy	-	-	-	-	-	-
Moisture					%	0.020	15	19	6.8	24	11	38	40	43
pH						N/A	9.3	9.7	9.7	9.3	9.3	12.3	12.1	11.8
Boron (Hot Water Soluble) Sulphate (2:1 Water Soluble) as					mg/kg	0.40	1.5	1.6	0.87	0.61	0.88	1.2	1.7	1.6
SO4					g/l	0.010	0.80	0.48	0.034	0.13	0.39	2.0	2.2	2.0
Cyanide (Free)					mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)			1	20	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Thiocyanate					mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Sulphide (Easily Liberatable)					mg/kg	0.50	18	13	4.5	5.8	4.7	9.8	7.7	7.7
Sulphate (Total)		0.017			%	0.010	0.47	0.37	0.040	0.17	0.25	2.8	2.4	2.5
Arsenic	640 230	SGV	29 0.8	55	mg/kg	1.0 0.10	27	25	30	4.8	23	42 1.9	40 1.9	1.7
Cadmium	/	SGV LQM		12	mg/kg		1.8	6.4	0.36	< 0.10	0.78			
Chromium	8600	GAC	100	380	mg/kg	1.0	28	99	13	10	16	37	34	35
Copper	71700	LQM GAC	39	190	mg/kg	0.50	27	44	8.5	2.0	14	48	44	44
Mercury	3600	SGV	0.3	10	mg/kg	0.10	0.13	0.14	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	1800	SGV	35 85	210 530	mg/kg	0.50	24 130	39 170	9.2 6.4	10 2.8	24 15	37 170	32 140	32 120
Lead Selenium			85	530	mg/kg mg/kg	0.50	< 0.20	0.87	< 0.20	< 0.20	0.20	0.83	0.75	0.77
Zinc	665000	LQM GAC	140	720	mg/kg	0.50	58	80	11	19	29	140	120	97
Chromium (Hexavalent)		GAC			mg/kg	0.50	≤ 0250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter					%	0.40	₩.2 .5.0	1.1	< 0.40	< 0.40	0.59	< 0.40	0.41	< 0.40
Total Aliphatic Hydrocarbons Total Aromatic Hydrocarbons					mg/kg mg/kg	5.0	< 5.0 < 5.0	39 53	100 130	33 51	16 25	22 68	22 68	34 62
Total Petroleum Hydrocarbons					mg/kg	10.0	< 10	92	240	84	41	90	89	96
Naphthalene					mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene				4	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene				- III	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene				~~~	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene				Horiet	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene Fluoranthene				20 317	mg/kg	0.10	< 0.10 0.37	< 0.10 < 0.10	< 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10
Pyrene			:05)	(N)	mg/kg mg/kg	0.10	0.37	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene			0 3	6	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene		—	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene			000		mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		Š	\		mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		al.			mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		SO.			mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	اوم	7			mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene			4	40	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's Benzene			1	40	mg/kg	2.0 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0	< 2.0 < 1.0	< 2.0 < 1.0	< 2.0 < 1.0
Toluene					μg/kg μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene					μg/kg μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene					μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene					μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols					mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Note: Dutch values for normal uncor	ntaminated soil													
	Legend	-	below de	tection limit			NAD	No asbestos	detected					
			above Di	utch S value			LOD	Limits of dete	ection					

Table 8.6 Soil Quality Results (BH01-BH02)

The results show the exceedances of Dutch S values in a number of different heavy metals and Polyaromatic hydrocarbons (PAHs), and no exceedances of the LQM GAC for any of the parameters in both borehole locations.

Table 8.7 briefly summarises these exceedances with associated soil horizons more clearly. The results highlight that these exceedances of arsenic, cadmium, copper, nickel, lead, zinc and PAHs are associated with (either within or in close proximity) the Made Ground deposits found on the site.

3 ... **3** ...

Parameters in exceedance of Dutch S value	BH ID	Depth mbgl	Soil Description
Daton o value	BH01	2.0	MADE GROUND: Very stiff brown slightly sandy gravelly CLAY
Arsenic	BH02	1.0	MADE GROUND: Very stiff green SILT (described by driller has hardened cement mix)
	BH02	2.0	MADE GROUND: Very stiff green SILT (described by driller has hardened cement mix)
	BH02	4.0	Medium dense silty fine to coarse SAND
	BH01	0.5	MADE GROUND: Grey sandy angular fine to coarse GRAVEL
	BH01	1.5	MADE GROUND: Stiff brown slightly sandy CLAY with fragments of red brick, concrete and timber
Cadmium	BH02	1.0	MADE GROUND: Very stiff green SILT (described by driller has hardened cement mix)
	BH02	2.0	MADE GROUND: Very stiff green SILT (described by driller has hardened cement mix).
	BH02	4.0	Medium dense silty fine to coarse SAND
	BH01	1.5 pu	MADE GROUND: Stiff brown slightly sandy CLAY with fragments of red brick, concrete and timber
Copper	BH020	heber out	MADE GROUND: Very stiff green SILT (described by driller has hardened cement mix)
	BH02	2.0	MADE GROUND: Very stiff green SILT (described by driller has hardened cement mix)
	BH02	4.0	Medium dense silty fine to coarse SAND
Niekol	BH01	1.5	MADE GROUND: Stiff brown slightly sandy CLAY with fragments of red brick, concrete and timber
Nickel	BH02	1.0	MADE GROUND: Very stiff green SILT (described by driller has hardened cement mix)
	BH01	0.5	MADE GROUND: Grey sandy angular fine to coarse GRAVEL
	BH01	1.5	MADE GROUND: Stiff brown slightly sandy CLAY with fragments of red brick, concrete and timber
Lead	BH02	1.0	MADE GROUND: Very stiff green SILT (described by driller has hardened cement mix)
	BH02	2.0	MADE GROUND: Very stiff green SILT (described by driller has hardened cement mix)
	BH02	4.0	Medium dense silty fine to coarse SAND

g ------g

Zinc	BH02	1.0	MADE GROUND: Very stiff green SILT (described by driller has hardened cement mix)
	BH01	0.5	MADE GROUND: Grey sandy angular fine to
	БПОТ	0.5	coarse GRAVEL
			MADE GROUND: Stiff brown slightly sandy
	BH01	1.5	CLAY with fragments of red brick, concrete
			and timber
	BH01	2.0	MADE GROUND: Very stiff brown slightly
	D. 10 1	2.0	sandy gravelly CLAY
	BH01	4.0	Firm grey sandy SILT
PAH	BH02	٥.	MADE GROUND: Grey sandy angular fine to
	БПОZ	0.5	coarse GRAVEL
			MADE GROUND: Very stiff green SILT
	BH02	1.0	(described by driller has hardened cement
			mix)
			MADE GROUND: Very stiff green SILT
	BH02	2.0	(described by driller has hardened cement
			mix)
	BH02	4.0	Medium dense silty fine to coarse SAND

 Table 8.7
 Soil Quality exceedances at TRP in 2019

Asbestos was also detected in BH01 i.e. fibres/clumps of chrysotile at 0.5mbgl and fibres/clumps of chrysotile/crocidolite at 1.5mbgl. BH01 is located inside the area of the IE Licence boundary and therefore will remain as part of the TRP Set Down Facility and will not be subject to possible disturbance/excavation. As asbestos does not pose a risk to human health if it remains buried and undisturbed, further quantification of the asbestos at this location is not required at this time.

8.4 Permeability of Soils

8.4.1 2015 Site Investigation

To add to our understanding of shallow permeability data within the overburden at the site, a range of tests (including falling head, U100s and Particle Size Distribution) were also undertaken on selected soil sections/samples.

Permeability is a measure of the ease at which water can migrate through the soil. There are a number of tests which can provide an indication of soil permeability or provide a direct measure of permeability (hydraulic conductivity). Permeability data of the overburden allows assessment of potential vertical migration of contamination to the underlying bedrock aquifer.

Three samples were taken for Particle Size Distribution (PSD) laboratory testing. PSD testing provides information of the percentage of different grain sizes contained in a soil sample and aids in the overall classification of subsoil materials. The distribution of different grain sizes affects the permeability of subsoils. PSD laboratory results are presented in Appendix A and summarised in Table 8.7 below.

Well ID	Depth (mbgl)	PSD Description	Associated Permeability
105S	3.0-3.5	Slightly sandy organic SILT	Low - Med
105S	5.0-5.5	Grey SAND	Med
108S	7.0	Grey gravelly very silty SAND	Low- Med

 Table 8.8
 Particle Size Distribution Sample Results

2 no. of in-situ fallen head tests were undertaken during the drilling process in wells 105S and 107S. Falling head tests consist of instantaneously adding a known volume of water to the well (generally clean tap water) and measuring the rate of water level decline over time. Water levels are measured using a standard water level dip meter. The water level decline over time data was subsequently analysed using the Hvorslev (1951) method for variable head/slug analysis to estimate values of hydraulic conductivity (permeability) in metres/ day for each target zone. The tests were carried out and analysed by Causeway Geotech Ltd.

The results are presented in Appendix A and summarised in Table 8.9 below.

Well ID	Type of Test	Depth (mbgl)	Log Description	Hydraulic Conductivity (metres/day)
105S	Falling	5.3	Fine SAND with shell fragments	4.15x10 ⁻⁰⁴
107S	Falling	7.5	Silty SAND with occasional cobbles	9.50x10 ⁻⁰⁴
105S	U100s	3.0	Organic SILT	3.72x10 ⁻⁰³
106S	U100s	2.0	Cement by-product	4.75x10 ⁻⁰³

Table 8.9 Permeability Tests

2 no. of U100 samples were also taken during drilling of clay rich horizons in wells 105S and 106S. The U100 samples are used to determine the permeability of undisturbed soil samples. These samples were analysed by Causeway Geotech Ltd.

The results are consistent with typical permeability ranges of silts (10⁻⁹-10⁻⁵ m/s) and silty sands (10⁻⁷-10⁻³ m/s), (Freeze and Cherry 1979) which are considered of relative low to medium permeability, based on appermeability range from Stiff Clays (low) to loose Gravels (high). The natural sands and silt estuarine deposits there provide a pathway, beneath the site, for contaminant migration towards the Boyne River.

Permeability testing was not considered to be necessary as part of the 2019 site investigation.

8.5 Ground Gas Monitoring

8.5.1 2015 Site Investigation

Ground gas monitoring was undertaken on 5th of February 2015 by Causeway Geotech Ltd. engineers. All installed wells have specially designed gas monitoring gas taps which allows the measuring of gases including Methane, Carbon Dioxide, Oxygen, Hydrogen Sulphide and Carbon Monoxide.

The gas monitoring results are presented in Appendix B. The results highlight that no detection of any of the aforementioned gases was made in any of the installed wells BH01 or BH02. The locations of the wells are illustrated in Figure 6.5.

8.5.2 2019 Site Investigation

Ground gas monitoring was undertaken on 12th of July 2019 by Causeway Geotech Ltd. engineers. All installed wells have specially designed gas monitoring gas taps which allows the measuring of gases including Methane, Carbon Dioxide, Oxygen, Hydrogen Sulphide and Carbon Monoxide.

The gas monitoring results are presented in Appendix B. The results highlight that no detection of any of the aforementioned gases at significant levels was made in either of the installed wells BH01 or BH02. The locations of the wells are illustrated in Figure 6.8.

· ·

8.6 Baseline Groundwater Quality

8.6.1 2015 Site Investigation

Groundwater samples were taken on two separate days (30th of January 2015 and 4th February 2015) due to restricted access to wells on the first day. The wells were purged (by 3 times the water well column) using a bailer and sampled immediately after. The water samples were sent to Chemtest Laboratories (UKAS accredited) immediately following.

The suite of groundwater quality parameters tested is listed below:

- pH
- Conductivity
- Total Dissolved Solids
- Arsenic-total
- Cadmium-total
- Chromium-total
- Chromium-hexavalent
- Lead-total
- Mercury-total
- Calcium
- Sodium
- Potassium
- Iron
- Manganese
- Magnesium
- Boron water soluble
- Copper-total

- Nickel-total
- Zinc-total
- Cyanide, Total
- Ammonical Nitrogen as N
- Total Oxidised Nitrogen
- Total Organic Carbon
- Phenols total
- Sulphate
- Chloride
- Total Alkalinity
- Fluoride
- Total Petroleum Hydrocarbons
- Mineral Oil
 - Diesel Range Organics
- Petrol Range Organics
- VOCs and SVOCs
- Pesticide suite

The laboratory analytical results are presented in Appendix B.

Groundwater quality is briefly assessed herein by comparing analytical results to the European Communities Environmental Objectives (Groundwater) Regulations, 2010 (Statutory Instrument No. 9 of 2010) and the Environmental Protection Agency's Draft Interim Guidelines Values (IGVs) for the Protection of Groundwater, 2003. It should be noted that the groundwater on site is adjacent to an estuary which is tidal and as such these guidelines may not strictly apply.

Tables 8.10 - 8.14 highlight the exceedances for groundwater threshold values (in pink) for inorganics (including metals), hydrocarbons, volatiles and pesticides.

The results highlight exceedances in electrical conductivity, total dissolved solids, ammoniacal nitrogen, potassium, sodium and chloride likely due to brackish water from estuary.

Exceedances of metals are observed in most wells particularly nickel, chromium and arsenic both in shallow and deep wells all across the site.

Hydrocarbons are found in 102 D (20m), 104S (7.9m) and 108 (8.5m) towards the centre of the site (where the scrap yard was formerly located) and is found at both shallow and deep (20m) depth.

No VOCs or Semi-VOC are found with the exception of Acenaphthene in 102D which is just above detection limit at 0.67 ug/l.

3

No pesticides were detected in any of the wells.

The groundwater results at TRP provides a baseline quality for the Port and highlights the presence of metal and hydrocarbon contamination which is most likely due to historic made ground fill material which was used to reclaim the land between 1990 and 1997 or as a result of discharges to ground on upgradient lands.

Sample ID	Ground-	EPA	Surface			BH101D	BH104S	BH108S	BH102D	BH103D	BH106S
Depth	water Regs SINo	Interim Ground-	Water Regs SI			2.30	6.00	11.50	2.30	6.00	11.50
Date Samples	9 of 2010	water	No. 272 of			30-Jan-15	30-Jan-15	30-Jan-15			
<u>Inorganics</u>				Units	LOD						
pН	6.5-9.5	6.5 - 9.5	4.5-9.0			7.9	9.6	12	8	10	9.1
Electrical Conductivity	1875	1000		μS/cm	1	13000	2700	7900	11000	2100	2000
Total Dissolved Solids		1000		mg/l	1	7900	1600	4800	6800	1200	1200
Alkalinity (Total)		N.A.C		mg CaCO3/I	10	89	240	1600	110	70	66
Chloride	187.5	30		mg/l	1	4200	640	730	4000	480	350
Fluoride		1	0.5	mg/l	0.05	0.25	3.1	1.3	-	0.18	0.32
Ammoniacal Nitrogen	0.175	0.15	0.065	mg/l	0.01	1.4	16	0.61	1.3	0.29	6.5
Sulphate	187.5	200		mg/l	1	830	2300	67	610	130	510
Total Oxidised Nitrogen		NAC		mg/l	0.2	1	-	1.6	-	4.1	0.32
Cyanide (Total)	0.0375	0.01		mg/l	0.05	-	0.06		-	-	-
Calcium		200		mg/l	5	410	79	19	540	150	120
Potassium		5		mg/l	0.5	120	180	1100	41	79	78
Magnesium		50		mg/l	0.5	150	15	0.8	110	79	4.2
Sodium	150	150		mg/l	0.5	3100	500	910	1100	1000	260
Boron (Dissolved)	750	1000		μg/l 💉	. 20	1400	430	73	760	520	180
Manganese (Dissolved)		50		μgĄ	5 1	600	130	19	510	9.5	-
Arsenic (Total)	7.5	10	20	10 Balker	1	19	18	11	58	12	7.4
Cadmium (Total)	3.75	5	,	QUI Jug/I	0.08	0.27	0.2	0.18	1.5	-	0.091
Chromium (Total)	37.5	30	32,10	ø μg/l	1	49	31	14	200	140	46
Copper (Total)	1500	30	S32 0 T	μg/l	1	46	5.3	8	29	13	7.7
Mercury (Total)	0.75	1	Q:05	μg/l	0.5	-	-		-	-	-
Nickel (Total)	15	20	2 0	μg/l	1	9.2	19	17	33	2.3	5.1
Lead (Total)	18.75	10 8	7.2	μg/l	1	37	8.1	1.6	-	-	-
Zinc (Total)		190	40	μg/l	1	170	170	46	41	12	20
Iron (Dissolved)		200		μg/l	20	-	130	70	20	-	
Chromium (Hexavalent)		30	3.4	μg/l	20	-	-	-	-	(A) 91	-
Total Organic Carbon		NAC		mg/l	1	2.5	36	74	3.8	7.2	7.6
Legend	-		elow detection limit NAC No abnorma nove groundwater guideline values (low est LOD Limits of Det						A Deviating sampl (date not supplied)		

Table 8.10 Groundwater Quality (Inorganics) 2015

Sample ID	Ground- water	EPA Interim	Surface Water			BH101D	BH104S	BH108S	BH102D	BH103D	BH106S
Depth	Regs SI No	Ground-	Regs SI			2.30	6.00	11.50	2.30	6.00	11.50
Date Samples	9 of 2010	water Values	No. 272 of 2009			30-Jan-15	30-Jan-15	30-Jan-15			
<u>Hydrocarbons</u>				Units	LOD						
Mineral Oil				μg/l	10	-	460	960	A -	A -	A -
TPH >C6-C10		10 (Total		μg/l	0.1	-	-	-	A -	A -	A -
TPH >C10-C21		Hydrocarbo		μg/l	0.1	-	180	7.2	(A) 1800	A -	A -
TPH >C21-C40		ns)		μg/l	0.1	-	480	1200	(A) 21	Α -	A -
Total TPH >C6-C40				μg/l	10	-	660	1200	(A) 1800	A -	A -
Legend	Legend - Below detection limit NAC No abnormal change A Above groundwater quideline values (k LOD Limits of Detection										

Table 8.11 Groundwater Quality (Hydrocarbons) 2015

Sample ID	Ground-	EPA Interim	Surface			BH101D	BH104S	BH108S	BH102D	BH103D	BH106S
Depth	water	Ground-	Water Regs SI			2.30	6.00	11.50	2.30	6.00	11.50
	Regs SI No	water	No. 272 of						2.50	0.00	11.50
Date Samples	9 of 2010	Values 2003	2009			30-Jan-15	30-Jan-15	30-Jan-15			
<u>VOCs</u>				Units	LOD						
Dichlorodifluoromethane				μg/l	1	-	-	-	-	-	-
Chloromethane				μg/l	1	-	-	-	-	-	-
Vinyl Chloride	0.375			μg/l	1	ı	-	-	-	-	-
Bromomethane				μg/l	5	-	-	-	-	-	-
Chloroethane				μg/l	2	-	-	-	-	-	-
Trichlorofluoromethane				μg/l	1	-	-	-	-	-	-
1,1-Dichloroethene		30		μg/l	1	-	-	-	-	-	-
Trans 1,2-Dichloroethene				μg/l	1	-	-	-	-	-	-
1,1-Dichloroethane				μg/l	1	-	-	-	-	-	-
cis 1,2-Dichloroethene				μg/l	1	-	-	-	-	-	-
Bromochloromethane				μg/l	5	-	-	-	-	-	-
Trichloromethane				μg/l	1	-	-	-	-	-	-
1,1,1-Trichloroethane		500		μg/l	1	-	-	-	-	-	-
Tetrachloromethane				μg/l	1	-	-	-	-	-	-
1,1-Dichloropropene				μg/l	1	-	-	-	-	-	-
Benzene	0.75	1	50	μg/l	1	-	-	-	-	-	-
1,2-Dichloroethane	2.25	30	10	μg/l	2	-	-	-	-	-	-
Trichloroethene	7.5	70		μg/l	1	-	-	-	-	-	-
1,2-Dichloropropane				μg/l	1	-	-	-	-	-	-
Dibromomethane				µg/l	10	- يو.	_	_	-	_	-
Bromodichloromethane				μg/l	5	, et iso	_	_	-	_	-
cis-1,3-Dichloropropene				μg/l	10	die	_	_	-	_	-
Toluene		10		μgA	. 20		_				_
Trans-1,3-Dichloropropene				Sug/K	10		_			_	_
1,1,2-Trichloroethane			20	: ug/l	10	_	_	_		_	_
Tetrachloroethene	7.5	40	2 Direct	µg/l	1	_	_	-		_	_
1,3-Dichloropropane	7.0	70	citon to the	μg/l	2	-	-	_	-	-	_
Dibromochloromethane		6	Cr Office	μg/l	10					_	_
1,2-Dibromoethane		ox 1750	City Co	μg/l	5						_
Chlorobenzene		4084)	0	μg/l	1						
1,1,1,2-Tetrachloroethane		- Sold.			2	-					
Ethylbenzene		10		μg/l	1	-		-			-
	20	,		μg/l	1	-		-			-
m & p-Xylene	Coll	10		μg/l	1	-		-	-	-	-
o-Xylene		10		μg/l							
Styrene				μg/l	1	-	-	-	-	-	-
Tribromomethane				μg/l	1	-	-	-	-	-	-
Isopropylbenzene				μg/l	1	-	-	-	-	-	-
Bromobenzene				μg/l	1 50	-	-	-	-	-	-
1,2,3-Trichloropropane				μg/l	50	-	-	-	-	-	-
N-Propylbenzene				μg/l	1	-	-	-	-	-	-
2-Chlorotoluene				μg/l	1	-	-	-	-	-	-
1,3,5-Trimethylbenzene				μg/l	1	-	-	-	-	-	-
4-Chlorotoluene				μg/l	1	-	-	-	-	-	-
Tert-Butylbenzene				μg/l	1	-	-	-	-	-	-
1,2,4-Trimethylbenzene				μg/l	1	-	-	-	-	-	-
Sec-Butylbenzene				μg/l	1	-	-	-	-	-	-
1,3-Dichlorobenzene		10		μg/l	1	-	-	-	-	-	-
4-Isopropyltoluene				μg/l	1	-	-	-	-	-	-
1,4-Dichlorobenzene				μg/l	1	-	-	-	-	-	-
N-Butylbenzene				μg/l	1	-	-	-	-	-	-
1,2-Dichlorobenzene				μg/l	1	-	-	-	-	-	-
1,2-Dibromo-3-Chloropropane				μg/l	50	-	-	-	-	-	-
1,2,4-Trichlorobenzene		0.4		μg/l	1	-	-	-	-	-	-
Hexachlorobutadiene				μg/l	1	-	-	-	-	-	-
1,2,3-Trichlorobenzene		0.4		μg/l	2	-	-	-	-	-	-

Table 8.12 Groundwater Quality (Volatile Organic Compounds) 2015

Sample ID	Ground-	EPA	Surface			BH101D	BH104S	BH108S	BH102D	BH103D	BH106S
Depth	water	Interim	Water			2.30	6.00	11.50	2.30	6.00	11.50
Date Samples	Regs SI No 9 of 2010	Ground- water	Regs SI No. 272 of			30-Jan-15	30-Jan-15	30-Jan-15	2.00	0.00	11.00
Semi VOCs	9 01 2010	water	NO. 2/2 01	Units	LOD	00 0411 10	00 0011 10	00 0411 10			
Methyl Tert-Butyl Ether				μg/l	1	-	_	-	-	-	_
N-Nitrosodimethylamine				μg/l	0.5	-	-	-	-	-	-
Phenol		0.5	46	μg/l	0.5	-	-	-	-	-	-
2-Chlorophenol		200		μg/l	0.5	-	-	-	-	-	-
Bis-(2-Chloroethyl)Ether				μg/l	0.5	-	-	-	-	-	-
1,3-Dichlorobenzene				μg/l	0.5	-	-	-	-	-	-
1,4-Dichlorobenzene				μg/l	0.5	-	-	-	-	-	-
1,2-Dichlorobenzene		10		μg/l	0.5	-	-	-	-	-	-
2-Methylphenol (o-Cresol)				μg/l	0.5	-	-	-	-	-	-
Bis(2-Chloroisopropyl)Ether				μg/l	0.5	-	-	-	-	-	-
Hexachloroethane				μg/l	0.5	-	-	-	-	-	-
N-Nitrosodi-n-propylamine				μg/l	0.5	-	-	-	-	-	-
4-Methylphenol				μg/l	0.5	-	-	-	-	-	-
Nitrobenzene		10		μg/l	0.5	-	-	-	-	-	-
Isophorone				μg/l	0.5	-	-	-	-	-	-
2-Nitrophenol				μg/l	0.5	-	-	-	-	-	-
2,4-Dimethylphenol				μg/l	0.5	-	-	-	-	-	-
Bis(2-Chloroethoxy)Methane				μg/l	0.5	-	-	-	-	-	-
2,4-Dichlorophenol		0 :		μg/l	0.5	-	-	-	-	-	-
1,2,4-Trichlorobenzene		0.4	0.4	μg/l	0.5	-	-	-	-	-	-
Naphthalene		1	2.4	μg/l	0.5	-	-	-	-	-	-
4-Chloroaniline		0.4	0.0	µg/l	0.5	-	-	-	-	-	-
Hexachlorobutadiene		0.1	0.6	μg/l	0.5	-	-	-	-	-	-
4-Chloro-3-Methylphenol				μg/l	0.5		[€] 6.	-	-	-	-
2-Methylnaphthalene Hexachlorocyclopentadiene				μg/l μg/l	0.5	net	-	-	-		
2,4,6-Trichlorophenol				μg/l	0.5	Office		-	-		
2,4,5-Trichlorophenol				μg/l	0.5	MIN-	-	-	-	-	
2-Chloronaphthalene				µg/↓	0.6	-	_	-	-		
2-Nitroaniline				490/L	20.5	-	_	-	-	-	_
Acenaphthylene			Á	HON	0.5	-	_	-	-	-	_
Dimethylphthalate			ion	µg/l	0.5	-	-	-	-	-	-
2,6-Dinitrotoluene			-ecte with	μg/l	0.5	-	-	-	-	-	-
Acenaphthene			159 110°	μg/l	0.5	-	-	-	0.67	-	-
3-Nitroaniline		COL	100	μg/l	0.5	-	-	-	-	-	-
Dibenzofuran		*C	8,	μg/l	0.5	-	-	-	-	-	-
4-Chlorophenylphenylether		St.		μg/l	0.5	-	-	-	-	-	-
2,4-Dinitrotoluene		onl		μg/l	0.5	-	-	-	-	-	-
Fluorene	_	Olise		μg/l	0.5	-	-	-	-	-	-
Diethyl Phthalate				μg/l	0.5	-	-	-	-	-	
4-Nitroaniline				μg/l	0.5	-	-	-	-	-	-
2-Methyl-4,6-Dinitrophenol				μg/l	0.5	-	-	-	-	-	-
Azobenzene				μg/l	0.5	-	-	-	-	-	-
4-Bromophenylphenyl Ether				μg/l	0.5	-	-	-	-	-	-
Hexachlorobenzene		0.03		μg/l	0.5	-	-	-	-	-	-
Pentachlorophenol		2		μg/l	0.5	-	-	-	-	-	-
Phenanthrene				μg/l	0.5	-	-	-	-	-	-
Anthracene		10000	0.4	μg/l	0.5	-	-	-	-	-	-
Carbazole				μg/l	0.5	-	-	-	-	-	-
Di-N-Butyl Phthalate				μg/l	0.5	-	-	-	-	-	-
Fluoranthene		1	1	μg/l	0.5	-	-	-	-	-	-
Pyrene				μg/l	0.5	-	-	-	-	-	-
Butylbenzyl Phthalate				μg/l	0.5	-	-	-	-	-	-
Benzo[a]anthracene Chrysene				µg/l	0.5	-	-	-	-	-	-
Bis(2-Ethylhexyl)Phthalate				µg/l	0.5	-	-	-	-	-	-
Di-N-Octyl Phthalate				μg/l μg/l	0.5	-	-	-		-	
Benzo[b]fluoranthene		0.5	0.3	μg/l	0.5	-		-	-	-	-
Benzo[k]fluoranthene		0.5	0.3	μg/l	0.5	-	-	-	-	-	-
Benzo[a]pyrene	0.0075	0.01	0.3	μg/l	0.5	-	_	-	-	-	-
Indeno(1,2,3-c,d)Pyrene	5.0075	0.01	0.1	μg/l	0.5	-	-	-	-		
Dibenz(a,h)Anthracene		5.00		μg/l	0.5	-	-	-	-	-	-
Benzo[g,h,i]perylene		0.05	0.02	μg/l	0.5	-	-	-	-		-
4-Nitrophenol		1.00	3.02	μg/l	0.5	-	-	-	-	-	-
Total Phenols				mg/l	0.03	-	0.31	0.38	0.06	0.04	0.08
Total Friends				9/	0.03	<u> </u>	0.01	5.55	0.00	5.54	0.00

Table 8.13 Groundwater Quality (Semi-Volatile Organic Compounds) 2015

•

Sample ID	Ground-	EPA	Surface			BH101D	BH104S	BH108S	BH102D	BH103D	BH106S
Depth	water	Interim	Water			2.30	6.00	11.50	2.30	6.00	11.50
Date Samples	Regs SI No 9 of 2010	Ground- water	Regs SI No. 272 of			30-Jan-15	30-Jan-15	30-Jan-15	2.00	0.00	11100
Pesticides	9 01 2010	water	NO. 2/2 Of	Units	LOD	30-3an-13	30-3an-13	30-Jan-13			
Demeton-O				μg/l	0.2	-	_	-	-	-	-
Phorate				μg/l	0.2	-			-		-
Demeton-S				μg/l	0.2	-		-	-	-	-
Disulfoton					0.2	-	-	-	-	-	-
				μg/l		-	-	-	-	-	-
Fenthion				μg/l	0.2						
Trichloronate				μg/l	0.2	-	-	-	-	-	-
Prothiofos				μg/l	0.2	-	-	-	-	-	-
Fensulphothion				μg/l	0.2	-	-	-	-	-	-
Sulprofos				μg/l	0.2	-	-	-	-	-	-
Azinphos-Methyl				μg/l	0.2	-	-	-	-	-	-
Coumaphos				μg/l	0.2	-	-	-	-	-	-
Atraton				μg/l	0.2	-	-	-	-	-	-
Prometon				μg/l	0.2	-	-	-	-	-	-
Simazine	0.075	1	4	μg/l	0.2	-	-	-	-	-	-
Atrazine	0.075	1	0.7	μg/l	0.2	-	-	-	-	-	-
Propazine				μg/l	0.2		-	-			-
Terbuthylazine				μg/l	0.2	-	-	-	-	-	-
Secbumeton				μg/l	0.2	-	-	-	-	-	-
Simetryn				μg/l	0.2	-	-	-	-	-	-
Ametryn				μg/l	0.2	-	-	-	-	-	-
Prometryn				μg/l	0.2	-	-	-	-	-	-
Terbutryn				μg/l	0.2	-	-	-	-	-	-
Alpha-Lindane				μg/l	0.2	-	-	-	-	-	-
Gamma-Lindane				μg/l	0.2	-	Jeg.	-	-	-	-
Beta-Lindane	0.075	0.1		μg/l	0.2		01.	-	-	-	-
Delta-Lindane				μg/l	0.2	- 0		-	-	-	-
Heptachlor				μg/l	0.2	17 2013	-	-	-	-	-
Aldrin		0.01	0.005	μg/l	0.2	801	_	-	-	_	_
Heptachlor Epoxide		***		μg/l	,02°. ,e		_	_	-	_	
Gamma-Chlordane				μg/l	Oli Osli II	-	-	-	-	-	-
Alpha-Chlordane				μg/l.	0.2	-	-	-	-	-	-
Endosulfan I		0.001		Hall 3	0.2	-			-		-
4,4-DDE		0.001		. 05 have	0.2	-	-	-	-	-	-
Dieldrin	0.075	0.01	0.005	, pg/l	0.2	-			-	-	-
Endrin	0.075	0.01	0.005	μg/I	0.2	-	-	-	-	-	-
4,4-DDD			€ €	- 10		-		-	-	-	
		0.004	centor	µg/l	0.2			-	-	-	
Endosulfan II		0.001	View .	µg/l	0.2	-	-				-
Endrin Aldehyde	0.5==		Or	μg/l	0.2	-	-	-	-	-	-
4,4-DDT	0.075	0.004	0.025	μg/l	0.2	-	-	-	-	-	-
Endosulfan Sulphate		0.001		μg/l	0.2	-	-	-	-	-	-
Methoxychlor				μg/l	0.2	-	-	-	-	-	-
Endrin Ketone				μg/l	0.2	-	-	-	-	-	-
Total Pesticides	0.375	0.5		μg/l							
Legend		Below detect					No abnormal	•	А	Deviating s not su	
		Above grou	ndw ater guide	eline values (k	ow est)	LOD	Limits of Det	ection		HOL SU	ppiicu)

Table 8.14 Groundwater Quality (Pesticides) 2015

8.6.2 2019 Site Investigation

Groundwater samples were taken on the 12th of July 2019. The wells were purged (by 3 times the water well column) using a bailer and sampled immediately after. The water samples were sent to Chemtest Laboratories (UKAS accredited) immediately following.

The suite of groundwater quality parameters tested is listed below:

- pH
- Conductivity
- Total Dissolved Solids
- Arsenic-total
- Cadmium-total
- Chromium-total
- Chromium-hexavalent
- Lead-total
- Mercury-total
- Calcium
- Sodium
- Potassium
- Iron
- Manganese
- Magnesium
- Boron water soluble
- Copper-total

- Nickel-total
- Zinc-total
- Cyanide, Total
- Ammonical Nitrogen as N
- Total Oxidised Nitrogen
- Total Organic Carbon
- Phenols total
- Sulphate
- Chloride
- Total Alkalinity
- Fluoride
- Total Petroleum Hydrocarbons
- Mineral Oil
- Diesel Range Organics
- Petrol Range Organics
- VOCs and SVOCs
- Pesticide suite

The laboratory analytical results are presented in Appendix B.

Groundwater quality is briefly assessed herein by comparing analytical results to the European Communities Environmental Objectives (Groundwater) Regulations, 2010 (Statutory Instrument No. 9 of 2010) and the Environmental Protection Agency's Draft Interim Guidelines Values (IGVs) for the Protection of Groundwater, 2003. It should be noted that the groundwater on site is adjacent to an estuary which is tidal and as such these guidelines may not strictly apply.

Tables 8.15 – 8.19 highlight any exceedances for groundwater threshold values (in pink) for inorganics (including metals), hydrocarbons, volatiles and pesticides.

The results highlight exceedances in pH, electrical conductivity, total dissolved solids, ammoniacal nitrogen, sulphates potassium, sodium, fluoride and chloride most likely due to brackish water from the estuary.

Exceedances of metals are observed in both wells particularly iron, chromium, copper and arsenic.

No hydrocarbons were detected in either of the wells.

No VOCs or Semi-VOCs were detected in either of the wells.

No pesticides were detected in either of the wells.

The groundwater results at TRP provides a baseline quality for the Port and highlights the presence of metal contamination which is most likely due to historic made ground fill material which was used to reclaim the land between 1990 and 1997 or as a result of discharges to ground on upgradient lands.

			Surface				
Sample ID	Groundwater	EPA Interim Groundwater	Water Regs			BH01	BH02
Date Samples	Regs SI 9 of 2010	Values	SI No. 272 of 2009			12-Jul- 2019	12-Jul- 2019
Inorganics				Units	LOD		
pH	6.5 - 9.5	6.5 - 9.5	4.5 - 9		N/A	8.5	8.6
Electrical Conductivity	1875	1000		μS/cm	1.0	1900	3800
Total Dissolved Solids		1000		mg/l	1.0	1200	2500
Alkalinity (Total)		NAC		mg/l	10	43	240
Chloride	187.5	30		mg/l	1.0	290	990
Fluoride		1	0.5	mg/l	0.050	0.38	0.83
Ammoniacal Nitrogen	0.175	0.15	0.065	mg/l	0.050	3.6	6.1
Sulphate	187.5	200		mg/l	1.0	470	280
Total Oxidised Nitrogen		NAC		mg/l	0.20	0.29	-
Cyanide (Total)	0.0375	0.01		mg/l	0.050	-	-
Calcium		200		mg/l	5.0	120	27
Potassium		5		mg/l	0.50	93	310
Magnesium		50		mg/l	0.50	0.95	3.1
Sodium	150	150		mg/l	0.50	210	630
Boron (Dissolved)	750	1000		μg/l	20	210	470
Iron (Dissolved)		200		μg/l	20	560	520
Manganese (Dissolved)		50		μg/l	1.0	7.2	22
Arsenic (Total)	7.5	10	20	√rg/l	1.0	8.8	18
Cadmium (Total)	3.75	5	8	🔑 μg/l	0.080	-	0.11
Chromium (Total)	37.5	30	32.	μg/l	1.0	8.3	32
Copper (Total)	1500	30	32. 25	μg/l	1.0	7.5	55
Mercury (Total)	0.75	1	Q.05	μg/l	0.50	-	-
Nickel (Total)	15	20	170 jij 20	μg/l	1.0	3.8	8.6
Lead (Total)	18.75	10	7.2	μg/l	1.0	-	1.8
Zinc (Total)		100 300 100	40	μg/l	1.0	5.4	7.9
Chromium (Hexavalent)		100 did onie	3.4	μg/l	20	-	-
Total Organic Carbon		FONAC		mg/l	2.0	16	41
Legend	- Cours	below detection above Groundw values (lowest)		NAC LOD	No abnor change Limits of o	detection	

Table 8.15 Groundwater Quality (Inorganics) 2019

	Groundwater	EPA Interim	Surface		•		
Sample ID	Regs SI 9 of	Groundwater	Water Regs			BH01	BH02
Date Samples	2010	Values	SI No. 272 of 2009			12-Jul- 2019	12-Jul- 2019
<u>Hydrocarbons</u>				Units	LOD		
Mineral Oil				μg/l	10	-	-
TPH >C6-C10				μg/l	0.10	-	-
TPH >C10-C21				μg/l	0.10	-	-
TPH >C21-C40				μg/l	0.10	-	-
Total TPH >C6- C40		10		μg/l	10	-	-
Legend	-	below detection above Groundway values (lowest)		NAC LOD	No abr change Limits		
		values (lowest)		Α	Deviate	ed sample	

Table 8.16Groundwater Quality (Hydrocarbons) 2019

Sample ID	Groundwater Regs SI 9 of	EPA Interim Groundwater	Surface Water Regs			BH01	BH02
Date Samples	2010	Values	SI No. 272 of 2009			12-Jul- 2019	12-Jul- 2019
VOCs				Units	LOD		
Dichlorodifluoromethane				μg/l	1.0	A -	A -
Chloromethane				μg/l	1.0	Α-	Α-
Vinyl Chloride	0.375			μg/l	1.0	A -	A -
Bromomethane				μg/l	5.0	A -	A -
Chloroethane				μg/l	2.0	A -	A -
Trichlorofluoromethane				μg/l	1.0	A -	A -
1,1-Dichloroethene		30		μg/l	1.0	A -	A -
Trans 1,2-					1.0	A -	Α-
Dichloroethene				μg/l	1.0	Α-	Α-
1,1-Dichloroethane				μg/l	1.0	A -	A -
cis 1,2-Dichloroethene				μg/l	1.0	A -	A -
Bromochloromethane				μg/l	5.0	A -	A -
Trichloromethane				μg/l	1.0	A -	A -
1,1,1-Trichloroethane		500		μg/l	1.0	A -	A -
Tetrachloromethane				μg/l	1.0	A -	A -
1,1-Dichloropropene				μg/l	1.0	A -	A -
Benzene	0.75	1	50	μg/l	1.0	A -	A -
1,2-Dichloroethane	2.25	30	10	μg/l	2.0	A -	A -
Trichloroethene	7.5	70		μg/l	1.0	A -	A -
1,2-Dichloropropane				μg/l	1.0	A -	A -
Dibromomethane				μg/l	10	A -	A -
Bromodichloromethane				&∙µg/l	5.0	A -	A -
cis-1,3-Dichloropropene			weit.	μg/l	10	A -	A -
Toluene		10	ott	μg/l	1.0	A -	A -
Trans-1,3- Dichloropropene			solly and the f	μg/l	10	A -	A -
1,1,2-Trichloroethane		20,		μg/l	10	Α-	Α -
Tetrachloroethene	7.5	40 1117	N.	μg/l	1.0	Α-	Α -
1,3-Dichloropropane		ion of rel		μg/l	2.0	A -	A -
Dibromochloromethane		acct with		μg/l	10	A -	A -
1,2-Dibromoethane		institu		μg/l	5.0	A -	A -
Chlorobenzene	4	of vite 1		μg/l	1.0	A -	A -
1,1,1,2- Tetrachloroethane	S	COSYL		μg/l	2.0	A -	Α -
Ethylbenzene	ont	10		μg/l	1.0	A -	A -
m & p-Xylene	COTIS	10		μg/l	1.0	A -	A -
o-Xylene		10		μg/l	1.0	Α -	A -
Styrene		-		μg/l	1.0	Α -	A -
Tribromomethane				μg/l	1.0	A -	A -
Isopropylbenzene				μg/l	1.0	A -	A -
Bromobenzene				μg/l	1.0	Α -	Α-
1,2,3-Trichloropropane				μg/l	50	Α-	Α-
N-Propylbenzene				μg/l	1.0	Α-	Α-
2-Chlorotoluene				μg/l	1.0	Α-	Α-
1,3,5-Trimethylbenzene				μg/l	1.0	A -	A -
4-Chlorotoluene				μg/l	1.0	Α -	A -
Tert-Butylbenzene				μg/l	1.0	A -	A -
1,2,4-Trimethylbenzene				μg/l	1.0	Α-	Α-
Sec-Butylbenzene				μg/l	1.0	Α-	Α-
1,3-Dichlorobenzene		10		μg/l	1.0	Α -	Α -
4-Isopropyltoluene				μg/l	1.0	Α-	Α-
1,4-Dichlorobenzene				μg/l	1.0	Α-	Α-
N-Butylbenzene				μg/l	1.0	A -	A -
1,2-Dichlorobenzene				μg/l	1.0	Α -	A -
1,2-Dibromo-3-				_			
Chloropropane				μg/l	50	A -	A -
1,2,4-Trichlorobenzene		0.4		μg/l	1.0	A -	A -
Hexachlorobutadiene				μg/l	1.0	A -	A -
1,2,3-Trichlorobenzene		0.4		μg/l	2.0	A -	A -
1,2,0 111011010001120110		0.7		μу/	2.0	Α.	
Legend	-	below detection	limit	NAC	No abn		

Legend - below detection limit NAC change

above Groundwater guideline LOD Limits of values (lowest) detection

Deviated sample

Table 8.17 Groundwater Quality (Volatile Organic Compounds) 2019

			Surface				
Sample ID	Groundwater	EPA Interim	Water Regs			BH01	BH02
'	Regs SI 9 of	Groundwater	SI No. 272			12-Jul-	12-Jul-
Date Samples	2010	Values	of 2009			2019	2019
Semi VOCs				Units	LOD		
Methyl Tert-Butyl Ether				µg/l	1.0	A -	A -
N-Nitrosodimethylamine				μg/l	0.50	-	-
Phenol		0.5	46	μg/l	0.50	-	-
2-Chlorophenol		200		μg/l	0.50	_	-
Bis-(2-Chloroethyl)Ether				μg/l	0.50	_	-
1,3-Dichlorobenzene				μg/l	0.50	-	_
1,4-Dichlorobenzene				μg/l	0.50	-	-
1,2-Dichlorobenzene		10		μg/l	0.50	-	-
2-Methylphenol (o-					0.50	_	
Cresol)				μg/l	0.50	-	-
Bis(2-				μg/l	0.50	-	-
Chloroisopropyl)Ether							
Hexachloroethane				μg/l	0.50	-	-
N-Nitrosodi-n- propylamine				μg/l	0.50	-	-
4-Methylphenol				μg/l	0.50	_	_
Nitrobenzene		10	, درلا	μg/l	0.50	-	
Isophorone		10	A CET TO	μg/l	0.50	-	-
2-Nitrophenol			otherine	μg/l	0.50	_	_
2,4-Dimethylphenol				μg/l	0.50	_	_
Bis(2-		1600 sti	0, KQ.				
Chloroethoxy)Methane		100°50	eo	μg/l	0.50	-	-
2,4-Dichlorophenol		Dill'edit	ed tra at .	μg/l	0.50	-	-
1,2,4-Trichlorobenzene		; 0 , 4 , 5	0.4	μg/l	0.50	-	-
Naphthalene		Dec Style	2.4	μg/l	0.50	-	-
4-Chloroaniline		Holl		μg/l	0.50	-	-
Hexachlorobutadiene	Ŷ ⁽	0.1	0.6	μg/l	0.50	-	-
4-Chloro-3-Methylphenol	ç (.0%		μg/l	0.50	-	-
2-Methylnaphthalene	ator			μg/l	0.50	i	-
Hexachlorocyclopentadi	-11501			μg/l	0.50	-	_
ene	Coused of						
2,4,6-Trichlorophenol				μg/l	0.50	-	-
2,4,5-Trichlorophenol				μg/l	0.50	-	-
2-Chloronaphthalene				μg/l	0.50	-	-
2-Nitroaniline				μg/l	0.50	-	-
Acenaphthylene Dimethylphthalate				μg/l	0.50	-	-
2.6-Dinitrotoluene				μg/l	0.50 0.50	-	-
				µg/l	0.50		
Acenaphthene 3-Nitroaniline				μg/l μg/l	0.50	-	-
Dibenzofuran				μg/l	0.50	-	_
4-				μд/1	0.00		
Chlorophenylphenylethe				μg/l	0.50	-	-
r				. 0			
2,4-Dinitrotoluene				μg/l	0.50	-	-
Fluorene				μg/l	0.50	-	-
Diethyl Phthalate				μg/l	0.50	-	-
4-Nitroaniline				μg/l	0.50	-	-
2-Methyl-4,6-				μg/l	0.50	-	-
Dinitrophenol							
Azobenzene 4-Bromophenylphenyl				μg/l	0.50	-	-
4-Bromopnenyipnenyi Ether				μg/l	0.50	-	-
Hexachlorobenzene		0.03		μg/l	0.50	-	-
Pentachlorophenol		2		μg/l	0.50	-	-
Phenanthrene		_		μg/l	0.50	-	_
Anthracene		10000	0.4	μg/l	0.50	-	-
Carbazole		10000	0.7	μg/l	0.50	-	_
- SI DULLOID				M9/1	0.00		

Di-N-Butyl Phthalate				μg/l	0.50	-	-
Fluoranthene		1	1	μg/l	0.50	-	-
Pyrene				μg/l	0.50	-	-
Butylbenzyl Phthalate				μg/l	0.50	-	-
Benzo[a]anthracene				μg/l	0.50	-	-
Chrysene				μg/l	0.50	-	-
Bis(2- Ethylhexyl)Phthalate				μg/l	0.50	-	1
Di-N-Octyl Phthalate				μg/l	0.50	-	-
Benzo[b]fluoranthene		0.5	0.3	μg/l	0.50	-	-
Benzo[k]fluoranthene		0.5	0.3	μg/l	0.50	-	-
Benzo[a]pyrene	0.0075	0.01	0.1	μg/l	0.50	-	-
Indeno(1,2,3-c,d)Pyrene		0.05		μg/l	0.50	-	-
Dibenz(a,h)Anthracene				μg/l	0.50	-	-
Benzo[g,h,i]perylene		0.05	0.02	μg/l	0.50	-	-
4-Nitrophenol				μg/l	0.50	-	-
Legend	_	below detection limit above Groundwater guideline values (lowest)		NAC LOD	No abno change Limits of detection		
				Α	Deviated	d sample	

 Table 8.18
 Groundwater Quality (Semi-Volatile Organic Compounds) 2019

Sample ID	Groundwater Regs SI 9 of	EPA Interim Groundwater	Surface Water Regs SI No.			BH01	BH02
Date Samples	2010	Values	272 of 2009			12-Jul- 2019	12-Jul- 2019
Pesticides				Units	LOD		
Demeton-O				μg/l	0.20	-	-
Phorate				μg/l	0.20	-	-
Demeton-S				μg/l	0.20	-	-
Disulfoton				μg/l	0.20	-	-
Fenthion				μg/l	0.20	-	-
Trichloronate				μg/l	0.20	-	-
Prothiofos				μg/l	0.20	-	-
Fensulphothion				μg/l	0.20	-	-
Sulprofos				μg/l	0.20	-	-
Azinphos-Methyl				μg/l	0.20	-	-
Coumaphos				μg/l	0.20	=	-
Atraton				μg/l	0.20	=	-
Prometon				μg/l	0.20	=	-
Simazine	0.075	1	4	μg/l	0.20	-	-
Atrazine	0.075	1	0.7	μg/l	0.20	-	-
Propazine			-	μg/l	0.20	-	-
Terbuthylazine				μg/l	0.20	_	_
Secbumeton				μg/l	0.20	-	_
Simetryn				μg/l	0.20	_	_
Ametryn				μg/l	0.20	_	_
Prometryn				μg/l	0.20	_	_
Terbutryn			~	(V)	0.20	_	_
Alpha-HCH			1 4	μg/l	0.20	_	_
Gamma-HCH			on ited for and of	μg/1			
(Lindane)	0.075	0.1	es 7 to	μg/l	0.20	-	-
Beta-HCH	0.0.0	5	100 ited	μg/l	0.20	-	-
Delta-HCH			Diffe Clay	μg/l	0.20	=	-
Heptachlor		io		μg/l	0.20	-	-
Aldrin		0.01.00	0.005	μg/l	0.20	-	-
Heptachlor		0.01 gent of		μg/l	0.20	-	-
Epoxide		1000		10			
Gamma- Chlordane		Stor.		μg/l	0.20	-	-
Alpha-		Onsent or					
Chlordane		MSE.		μg/l	0.20	-	-
Endosulfan I		0.001		μg/l	0.20	_	_
4,4-DDE		3.301		μg/l	0.20	_	-
Dieldrin	0.0075	0.01	0.005	µg/l	0.20	-	-
Endrin	3.0070	0.01	0.005	μg/l	0.20	-	-
4,4-DDD			0.000	μg/l	0.20	_	_
Endosulfan II		0.001		μg/l	0.20	_	_
Endrin Aldehyde		0.001		μg/l	0.20	-	-
4,4-DDT	0.075		0.025	μg/l	0.20	-	_
Endosulfan	0.073	0.004	0.020				
Sulphate		0.001		μg/l	0.20	-	-
Methoxychlor				μg/l	0.20	=	-
Endrin Ketone				μg/l	0.20	-	-
Total Phenols				mg/l	0.030	-	-
Legend	-	below detection above Groundw values (lowest)		NAC LOD		e of detection	
				Α	Deviate	ed sample	

Table 8.19 Groundwater Quality (Pesticides) 2019

9.0 CONCLUSIONS

On the basis of the current soil and groundwater investigation undertaken at the Tom Roes Port Terminal and an assessment of source, pathways and receptors the following conclusions have been made:

There is no bulk storage of chemicals present within the area proposed for IE Licence activities. The only potential sources identified are accidental releases of contaminated runoff/leachates from RDF & SRF bales, which are stored temporarily on site, and possible minor hydrocarbon leakages from operating traffic on site. Soil and groundwater sampling has also confirmed the presence of historical contamination most likely originating from the material used in infilling the site or due to discharges to ground on upgradient sites.

The port site was constructed on reclaimed land along the Boyne Estuary. Beneath a layer (0-0.40m) of concrete/ densophalt and fill material, the site is underlain by different types of made ground including cement by-products, landfill material and gravelly clays. These made ground deposits are juxtaposed with black organic silt (estuarine sediments). Beneath the silt is a thick layer up to 13 metres in thickness of fine sand which sits on top of gravels. The depth to possible bedrock was encountered in 103D in at 20.5 metres below ground and confirmed the presence of shaley limestone and pale sandstone (Impure Limestones).

Environmental receptors include the aquifer and the SAC Boyne River/ Estuary. The thick layer of overburden provides protection to the underlying locally important karstified and fractured aquifer.

A review of soil quality confirms that there is historic contamination at the site.

During the 2015 site investigation, heavy metals (Cadmium, Lead and Copper) were detected within made ground deposits at the centre of the site. Exceedances of Nickel are observed in both made ground and natural ground. Exceedances of Polyaromatic Hydrocarbons are observed within the black organic silt unit. It should be noted that there is no legislative threshold for soils in Ireland. The exceedances noted relate to guideline concentrations. The metal concentrations detected do not exceed guideline levels for commercial use of the site.

During the 2019 site investigation, heavy metals (Arsenic, Cadmium, Copper, Nickel, Lead and Zinc) and Polyaromatic hydrocarbons (PAHs) were detected within and in close proximity to made ground deposits on the site. Capping of the site has reduced the potential for recharge to mobilise any contaminated soil. However, the potential for mobilisation should be considered in the event of any future subsurface construction on the site.

A review of groundwater quality in 2015 found that the groundwater beneath the site is tidally affected. There is also evidence of metal and hydrocarbon contamination likely to originate from the historic made ground deposits which were located at the centre of the port site during the site investigation.

A review of groundwater quality in 2019 also found that the groundwater beneath the site is tidally affected. There is also evidence of metal contamination likely to originate from the historic made ground deposits which were located at the centre of the port site during the site investigation.

Currently the primary pathway for any contaminated water (originating from a leaking bale or hydrocarbon from a leaking vehicle) is through the stormwater drainage system

via a hydrocarbon interceptor to the Boyne Estuary. With the installation of the new drainage system, the leachate/runoff and possible hydrocarbon runoff will be directed to the attenuation tank and will subsequently be removed from the site and disposed of by McBreen Environmental, removing the risk of contamination reaching the SAC Boyne River/ Estuary.

There is historical contamination in the underlying soil likely to originate from the historic made ground deposits which were located at the centre of the port site. There is no evidence that this contamination is caused by current activities at the site. Capping of the site has reduced the potential for recharge to mobilise any contamination to the Boyne Estuary. However, the potential for mobilisation should be considered in the event of any future subsurface construction on the site.

It is concluded that the portion of land (2121 m²) proposed to be removed from the IE Licence boundary does not pose a risk of contamination to the site or surrounding lands. However, the potential for mobilisation of historic contamination underlying this area should be considered in the event of any future subsurface construction on the site.

10.0 REFERENCES

AXIS Environmental Services (2013) Drogheda Port Company, Drogheda Co. Louth, Condition 4.4. Identify and Evaluate Point Sources of Zinc. Report No. 3480-13-02.

EPA, (2003). 'Towards Setting Guidelines for the Protection of Groundwater in Ireland'; Interim Report; Environmental Protection Agency, 2003.

EPA, (2000). Land Fill Manuals Landfill Site Design, Co. Wexford, Ireland.

EPA, (2015). Environmental Protection Agency, Available on-line at: http://gis.epa.ie/Envision/ [Accessed: 12-01-2015].

European Communities Environmental Objectives (Groundwater) Regulations (20100 Statutory Instrument No. 9 of 2010.

Freeze and Cherry, (1979). Groundwater. Prentice-Hall, Englewood Cliffs, NJ, Prentice-Hall.

Geology Survey of Ireland (2001) Geology of Meath: A Geological Description to accompany the Bedrock Geology 1:100,000 Scale Map Series, Sheet 13. Meath.

GSI, (2015). Geological Survey of Ireland; Available on-line at: http://www.gsi.ie [Accessed: 12-01-2015].

Kirk McClure Morton (1996). Drogheda Harbour Commissioners Environmental Statement, Proposed Port Development at RP.

NPWS, (2013). National Parks and Wildlife Service; Available on-line at: http://webgis.npws.ie/npwsviewer (Accessed: 12-01-2015).

APPENDICES

Appendix A Exploratory Logs and Permeability Tests

Exploratory Log: 101 Deep

Sheet 1/2

JN/PG

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 13/01/2015

Ground Level (mAOD): 3.96 Grid Reference: 312023.694, 276112.3

312023.694, 276112.361 Location: Drogheda Port Logged/Checked:

		I		
	SUBSURFACE PROFILE	Depth mbgl (mAOD)	Lithology	Well Construction
	Ground surface		sample (mbgl, PID)	Flush cover
0.1	Concrete (MADE GROUND)	2.22		Concrete
0.5	Brown/grey slightly clayey, sandy Gravel FILL (MADE GROUND)	0.26 (3.70)		Gorierete
0.7	Detail : Dry, NEC	, ,		
0.9 1.1		1.00		1881 1881 1881 1881 1881 1881 1881 1881 1881 1881 1881 1881 1881 1881 1881 1
1.3	(Soft) Dark brown slightly sandy gravelly CLAY.	(2.96)	(1.0, 0.0)	
1.5	Gravel is angular to subrounded fine to coarse (possible MADE GROUND)			
1.7 1.9	Detail : Damp stratum, NEC			
2.1				Arisings
2.3		2.30		
2.5 2.7	(Soft) Grey slightly gravelly CLAY	(1.66)		
2.9	Gravel is subrounded, fine to medium, Dry, NEC			
3.1 3.3				
3.5				50mm dia.
3.7			(3.8, 1.7)	slotted
3.9 4.1				standpipe
4.3			©· 33	
4.5		iner		333
4.7 4.9	<u> </u>	· Mor		
5.1	Z OTE	of dr.		555 <mark>: </mark> 555
5.3 5.5	(Soft) Brown slightly gravelly CLAY Gravel is subangular to subrounded, fine to medium. Wet, NEC Consent of Contribution of the Contribution of t	5.30		
5.7	(Soft) Brown slightly gravelly CLAY Gravel is subangular to subrounded, fine to medium. Wet, NEC			
5.9	ation restrict			331 333
6.1 6.3	्रव्यू ^ट वस्तेर			
6.5	or itight			
6.7 6.9	Legist.		(6.5, 1.6)	
7.1	x of C			
7.3	nsett ^v			
7.5 7.7	Cox			483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 483 483
7.9				
8.1				444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 444 44
8.3 8.5				
8.7				
8.9 9.1				
9.3				
9.5				
9.7 9.9				
10.1				
10.3 10.5				
10.7				
10.9				
11.1 11.3		11.30		
11.5	(Firm) Brown slightly gravelly CLAY Gravel is subangular to subrounded, fine to coarse, Dry, NEC	(-7.34)		
11.7 11.9	Graver is subangular to subrounded, line to coarse, Dry, INEC			
12.1				
12.3				
12.5 12.7				Betonite
12.9				
13.1	(Cont'd/)		(13.0, 0.0)	Willian Willia
	Drill Method: Air Rotary	Hole Diam	eter: 5"	
	Drill Rig: Commachio MC405		sing (mAOD):	-
	Casing Length (m): 20.1mbgl (retracted)		· · · · · · · · · · · · · · · · · · ·	
	-		kes (mbgl):	5.30
	Driller: Causeway Geotech Ltd.	Static Wat	er Level (mbgl):	2.76 on 21/01/2015

Exploratory Log: 101 Deep

Sheet 2/2

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 13/01/2015

Ground Level (mAOD): 3.96 Grid Reference: 312023.694, 276112.3

312023.694, 276112.361 Location: Drogheda Port Logged/Checked: JN/PG

and i	Reference: 312023.694, 276112.361 Location: Drogheda Port			Logged/Checked: JN/PG
	SUBSURFACE PROFILE	Depth mbgl	Lithology	Well Construction
		(mAOD)	Lithology	Well Constituction
13.2	Ground surface		sample (mbgl, PID)	
13.4 13.6 13.8 14.0 14.2				
14.4 14.6 14.8 15.0 15.2 15.4 15.6	Brown/grey clayey GRAVEL Gravel is subangular, fine to medium.	14.30 (-10.34)		
15.8 16.0 16.2 16.4 16.6 16.8 17.0	quartz noted).		27	Gravel 50mm dia
17.4 17.6 17.8 18.0 18.2 18.4 18.6		tanyother v		
18.8 19.0 19.2	(Soft) Brown/grey gravelly CLAY.Gravel is subangular, fine to coarse, went to the coarse of the coar	(-14.64) 19.20		50mm dia.
19.4 19.6 19.8	(Firm-Stiff) Brown slightly gravelly CLAY. Gravel is subangular to subrounded, fine to coarse	(-15.24)		solid standpipe
20.0	5 1 (2 1 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2	20.10		
20.2	End of Borenole at 20.10 mbgi	(-16.14)		End cap
20.6	Const			·
20.8 21.0				
21.2				
21.4				
21.6 21.8				
22.0				
22.2 22.4				
22.6				
22.8				
23.0 23.2				
23.4				
23.6 23.8				
24.0				
24.2				
24.4 24.6				
24.8				
25.0 25.2				
25.4				
25.6				
25.8 26.0				
26.2				
	Drill Method: Air Rotary	Hole Diam		
	Drill Rig: Commachio MC405	Top of Cas	sing (mAOD):	-
	Casing Length (m): 20.1mbgl (retracted)	144		1 4400
	Drille v. Occasion Octable Ltd	Water Strik		14.30
Щ	Driller: Causeway Geotech Ltd.	Static Wate	er Level (mbgl):	2.76 on 21/01/2015

Exploratory Log: 102 Deep

Sheet 1/2

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 14/01/2015

Ground Level (mAOD): 4.22 Grid Reference: 311809.8, 275924.111

Location: Drogheda Port

Logged/Checked: JN/PG

	SUBSURFACE PROFILE	Depth mbgl (mAOD)	Lithology	Well Construction
	Ground surface	, ,	sample (mbgl, PID)	Flush cover
0.1	Bitmac (MADE GROUND)	0.15		
0.3 0.5 0.7 0.9 1.1		(4.07)	(1.0, 0.2)	Concrete
1.5 1.7 1.9 2.1 2.3 2.5 2.7	(Soft-Firm) Dark brown slightly gravelly CLAY (possible MADE GROUND) Gravel is subangular to subrounded fine to medium, Dry, NEC	1.80 (2.42)		Arisings
2.9 3.1 3.3 3.5 3.7 3.9	(Soft) Light grey/green CLAYs (Cement by-products - MADE GROUND) Slightly gravelly, subrounded, fine to medium, damp	3.00		50mm dia. solid standpipe
4.1 4.3 4.5 4.7	Detail: 4.10m Waterstrike: slight inflow	otheri	(4.0, 0.0)	
4.9 5.1 5.3 5.5 5.7 5.9	Detail: 5.00m soil sample taken On Purpose of the control of the	of altry	(5.0, 0.0)	
6.1 6.3 6.5 6.7 6.9 7.1 7.3 7.5 7.7 7.9 8.1 8.3 8.5 8.7 9.1 9.3 9.5 9.7 9.9 10.1 11.3 10.5 11.7 11.9 12.1 12.3 12.5 12.7 12.9 13.1	Grey fine SAND with many shell fragments, dry Consecutor Control of Control	6.00 (-2.22)		
	Drill Method: Air Rotary	Hole Diam	eter: 5"	
	Drill Rig: Commachio MC405	-1	sing (mAOD):	-
	Casing Length (m): 20.00mbgl (retracted)			
			kes (mbgl):	4.10
	Driller: Causeway Geotech Ltd.	Static Wat	er Level (mbgl):	3.95 on 21/01/2015

Exploratory Log: 102 Deep

Sheet 2/2

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 14/01/2015

Ground Level (mAOD): 4.22 Grid Reference: 311809.8, 275924.111

Location: Drogheda Port

Logged/Checked: JN/PG

	neletetice. 311009.6, 273924.111 Location. Diognetia Fort			Logged/Checked. 314/1 G
	CLIDCLIDEACE DDOEILE	Depth mbgl	l ith along	Wall Capatrustian
		(mAOD)		Well Construction
12.0			sample (mbgl, PID)	
13.2 13.4 13.6 14.0 14.2 14.4 15.6 15.2 16.4 15.6 17.0 17.2 17.4 17.6 18.8 19.0 19.2 19.2 19.2 19.2 20.4 20.6 21.2 21.4 21.6 21.8 22.0 22.2 21.4 22.6 22.8 23.0 23.2 23.4 23.6 23.8	Ground surface Detail: 14.00-17.00m large/whole shell fragments Detail: 15.80m Waterstrike, slight to moderate inflow Brown/grey slightly clayey, slightly sandy GRAVEL. Gravel is angular to subangular, fine to coarse. Detail: 18.00m Waterstrike, moderate to high inflow End of Borehole at 20.00 mgbl Consolidation of the coarse of t		Lithology sample (mbgl, PID)	Well Construction Bentonite Gravel filter 50mm dia. slotted standpipe End cap
24.0 24.2 24.4 24.6				
24.8 25.0				
25.2				
25.4 25.6				
25.8				
26.0 26.2				
	Drill Method: Air Rotary	Hole Diam	eter: 5"	l
	Drill Rig: Commachio MC405		sing (mAOD):	-
	Casing Length (m): 20.00mbgl (retracted)			<u> </u>
		Water Strik		15.80 18.00 -
	Driller: Causeway Geotech Ltd.	Static Wate	er Level (mbgl):	3.95 on 21/01/2015

103 Deep **Exploratory Log:**

Sheet 1/2

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 15/01/2015

Ground Level (mAOD): 3.49 Grid Reference: 312047.723, 275939.619

Location: Drogheda Port

JN/PG Logged/Checked:

	011001100000000000000000000000000000000	Depth mbgl		W 11.5
	SUBSURFACE PROFILE	(mAOD)	Lithology	Well Construction
0.1	Ground surface		sample (mbgl, PID)	Flush cover
0.3 0.5 0.7 0.9	Brown/grey slightly clayey, Gravel FILL (MADE GROUND)	0.28		Concrete
1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5	(Soft-Firm) Dark brown gravelly CLAY, occasionally red/brown, mottled Gravel is subrounded fine to medium. Damp, NEC	1.10 (2.39)	(1.8, 0.0)	• Arisings
2.7 2.8 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 5.1	Occasional whole shells (Bivalves)	2.60 (0.89)	ွဲ	50mm dia. standpipe
5.3 5.5 5.7 5.9 6. 1 6.3 6.5 6.7 7.5 7.5 7.5 8.1 8.3	Detail: 6.00-7.50m wet stratum Detail: 6.50m waterstrike, slight to moderate inflow Consent of Copyright Owner teaching Copyright O			
8.7 8.9 9.1 9.3 9.5 9.7 9.9 9.7 10.1 11.2 11.5 12.5 12.5 12.7 12.9 13.1			(9.0, 0.0)	
	Drill Method: Air Rotary	Hole Diam		
	Drill Rig: Commachio MC405	Top of Cas	sing (mAOD):	-
	Casing Length (m): 25.00mbgl (retracted)			
			kes (mbgl):	6.50 13.00
	Driller: Causeway Geotech Ltd.	Static Wat	er Level (mbgl):	3.265 on 21/01/2015

Exploratory Log: 103 Deep

Sheet 2/2

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 15/01/2015

Ground Level (mAOD): 3.49
Grid Reference: 312047.723, 275939.619

Location: Drogheda Port

Logged/Checked: JN/PG

		1	1	<u> </u>
	SUBSURFACE PROFILE	Depth mbgl (mAOD)	Lithology	Well Construction
	Ground surface		sample (mbgl, PID)	
13.2 13.4 13.6 13.8 14.0 14.2 15.4 15.0 15.2 15.4 16.6 16.8 16.0 16.2 17.0 17.2 17.4 17.6 17.8 18.0 19.2 19.4 19.6 19.2 19.4 19.6 20.0 20.2 20.4 20.6 20.8 21.0 20.2 21.4 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	Grey sandy GRAVEL. Gravel is subangular to subrounded, fine to coarse. Detail: 16:00 m waterstrike, high inflow Detail: 18:00m slightly clayey, gravel is angular to subangular, fine to coarse Detail: 18:00m slightly clayey, gravel is angular to subangular, fine to coarse Detail: 18:00m slightly clayey, gravel is angular to subangular, fine to coarse Gravel-sized fragments of MUDSTONE & SANDSTONE (Possible weathered rockhead) Detail: 20.50-25.00m slow to drill, Detail: 22.00m Water strike, moderate water inflow Detail: 24.00-24.50 collapsing material, possible fracture zone	15.90 (-12.41)	_	50mm dia. standpipe Bentonite Find cap
25.4 25.6 25.8 26.0 26.2	•	(-21.51)		1
	Drill Method: Air Rotary	Hole Diam	eter: 5"	
	Drill Rig: Commachio MC405		sing (mAOD):	-
	Casing Length (m): 25.00mbgl (retracted)	1 op oi Oas	g (IIIAOD).	
	Saving Longin (m). Lo. comby (rendeled)	Water Stril	kes (mbgl):	16.00 22.00 -
	Driller: Causeway Geotech Ltd.		er Level (mbgl):	3.265 on 21/01/2015
ш	Dillier. Oauseway Geolecii Llu.	Static Wal	or Level (IIIDGI).	3.203 UH 2 I/U I/2013

Exploratory Log: 104 Shallow

Sheet 1/1

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 15/01/2015

Ground Level (mAOD): 3.51
Grid Reference: 311861.524, 27592

311861.524, 275928.557 Location: Drogheda Port Logged/Checked: JN/PG

	SUBSURFACE PROFILE	Depth mbgl (mAOD)	Lithology	Well Construction
	Ground surface	·	sample (mbgl, PID)	Flush cover
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5	Concrete (MADE GROUND) Brown/grey slightly clayey Gravel FILL (MADE GROUND)	- 0.30 (3.21)	(1.5, 0.0)	Concrete
1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9	(Uncompact) Black slightly gravelly SILT. Gravel is subrounded, fine to medium. Detail: Occasional lenses of grey/brown (firm) CLAY Detail: 2.00m soil sample taken	1.90 (1.61)		50mm di <u>a.</u> solid standpipe
4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5 5.7	Grey fine SAND with many shell fragments Detai: 6.00m soil sample taken Consent of Convicting Conv	t any other b	Ş	Bentonite
6.1 6.3 6.5 6.7 6.9 7.1 7.3 7.5	Grey fine SAND with many shell fragments Detai: 6.00m soil sample taken Consent of Contribution	(-2.49)		50mm dia. slotted standpipe Gravel filter
7.9 8.1 8.3 8.5	End of Borehole at 7.90 mbgl	7.90 (-4.39)		End cap
8.7 8.9 9.1 9.3 9.5				
9.7 9.9 10.1 10.3 10.5				
10.5 10.7 10.9 11.1 11.3				
11.5 11.7 11.9 12.1				
12.3 12.5 12.7 12.9 13.1				
ŀ	Drill Method: Cable Percussion (water added to progress drilling)	Hole Diam	eter: 8"	
-	Drill Rig: Dando 2000		ing (mAOD):	-
-	Casing Length (m): 7.90mbgl (retracted)			
		Water Strik		
	Driller: Causeway Geotech Ltd.	Static Wate	er Level (mbgl):	3.31 on 21/01/2015

Exploratory Log: 105 Shallow

Sheet 1/1

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 15/01/2015

Ground Level (mAOD): 3.66

Grid Reference: 311940.024, 275945.789 Location: Drogheda Port Logged/Checked: JN/PG

Reference: 311940.024, 275945.789 Location: Drogheda Port			Logged/Checked: JN/PG
SUBSURFACE PROFILE	Depth mbgl (mAOD)	Lithology	Well Construction
Ground surface		sample (mbgl, PID)	
Concrete (MADE GROUND)	0.00		
Brown/grey slightly clayey Gravel FILL (MADE GROUND)	0.38 (3.28)		
Detail: Occasional clods of black (firm) CLAY, slight odour - undefined			
Social Social State of States (IIIII) 52 11, Sign Cook. Gildelined			No installation
		(1.0, 0.0)	Backfilled with bentonite, arisings and cement seal
			anomge and coment coal
	0.00		
(Uncompact) Dark grey/black slightly sandy, organic SILT Detail: 3.00m-3.50m U100 & PSD sample taken	3.00 (0.66)		
'		(3.5, 0.6)	
Detail: occasionally lenses of light brown/grey silty CLAY.			
	× 5	,	
	. A other u		
Grey fine SAND with many shell fragments Detail: 5.00-5.30m Falling Head Test, and PSD sample, rare gravel. End of Borehole at 5.50 mbgl Consent of Cons	W5.00	55558	
Grey fine SAND with many shell fragments Detail: 5.00-5.30m Falling Head Test, and PSD sample, rare gravel.	D.		
End of Borehole at 5.50 mbgl	5.50 (-1.84)		
tion of real	, ,		
aspect owith			
cor itight			
Footh.			
at of the state of			
- Ottsett			
C			
Drill Method: Cable Percussion (water added to progress drilling)	Hole Diam	otor: 0"	
Drill Rig: Dando 2000		eter: 8" sing (mAOD):	-
Casing Length (m): 5.50mbgl (retracted)	. 17 0. 040	g ().	
	Water Strik		
Driller: Causeway Geotech Ltd.	Static Water	er Level (mbgl):	-

Exploratory Log: 106 Shallow

Sheet 1/1

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 16/01/2015

Ground Level (mAOD): 4.03 Grid Reference: 311920.386, 275998.113

Location: Drogheda Port

Logged/Checked: JN/PG

		Depth mbgl		
	SUBSURFACE PROFILE	(mAOD)	Lithology	Well Construction
0.1	Ground surface		sample (mbgl, PID)	Flush cover
0.3 0.5	Concrete (Made Ground) Brown/grey slightly sandy Gravel Fill (MADE GROUND)	0.22 (3.81)		50mm dia. Concrete
0.7 0.9 1.1				standpipe Bentonite
1.3 1.5 1.7	Sandy GRAVEL with some cobbles and red brick, tiles, string, animal tooth, delph china (MADE GROUND)	1.50 (2.53)		
1.9 2.1 2.3	(Soft) Light grey/brown slightly gravelly CLAY, dry Detail: 2.00m soil sample taken & U100 sample taken	1.90 (2.13)	(2.0, 0.0)	Gravel filter
2.5 2.7 2.9 3.1	Detail: Contains modules of white soft clays and black clays. Gravel is subangular to subrounded, medium to coarse (Cement by-product- MADE GROUND).			
3.3 3.5 3.7 3.9				
4.1 4.3 4.5		4.50.0	<u>د</u> (4.5, 0.0)	50mm dia
4.7 4.9 5.1	Dark Grey/Black silty fine SAND with many shell fragments. Detail: 4.50m soil sample taken Detail: Silt content reduces with depth and shell fragments become more frequent, becoming grey in colour.	4.50 et 1 (-0 (*)	(1.0, 0.0)	slotted :
5.3 5.5 5.7	Detail: 4.50m soil sample taken Detail: Silt content reduces with depth and shell fragments become more frequent, becoming grey in colour. Consett of contribution of contrib			
5.9 6.1 6.3	specion reference			
6.5 6.7 6.9	For the first			
7.1 7.3	osept of C			
7.5 7.7 7.9	Car	8.00		
8.1 8.3 8.5	End of Borehole at 8.00 mbgl	(-3.97)		End cap
8.7 8.9 9.1				
9.3 9.5				
9.7 9.9 10.1				
10.3 10.5 10.7				
10.9 11.1 11.3				
11.5 11.7 11.9				
12.1 12.3				
12.5 12.7 12.9				
13.1	Drill Method: Cable Percussion (water added to progress drilling)	Hole Diam	eter: 8"	
	Drill Rig: Dando 2000		eier. 6 sing (mAOD):	<u>-</u>
	Casing Length (m): 7.90mbgl (retracted)	10p of Ods	mig (mAOD).	<u>-</u>
	5	Water Strik	kes (mbgl):	
	Driller: Causeway Geotech Ltd.		er Level (mbgl):	3.74 on 21/01/2015

Exploratory Log: 107 Shallow

Sheet 1/1

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 19/01/2015

Ground Level (mAOD): 3.84

Grid Reference: 312029.827, 276104.598 Location: Drogheda Port Logged/Checked: JN/PG

	SUBSURFACE PROFILE	Depth mbgl	Lithology	Well Construction
	Ground surface	(mAOD)		VVCII CONSTIUCTION
0.1	Concrete (MADE GROUND)		sample (mbgl, PID)	
0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7	Brown/grey slightly sandy Gravel FILL (MADE GROUND)	0.27 (3.87)		No installation Backfilled with bentonite, arisings and cement seal
2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3	(Soft) Light grey, slightly gravelly CLAY with occasional cobbles. Gravel is subrounded to rounded, coarse. Occasional large (possible cement by-products - MADE GROUND) (Soft-firm) Dark grey/ black gravelly, cobbly CLAY. occasional shell fragments. Gravel is subrounded to rounded, coarse.	2.70 (1.14) 3.80 (0.04)	(2.7, 0.0)	
4.5 4.7 4.9 5.1	Detail: 5.00m soil sample taken Grey slightly silty, SAND with occasional cobbles and some shell fragments wet her the state of the same shell fragments wet her the same shell fragments we have the same shell fragments with the same shell fragments we have the same shell fragments with the same shell fragments we have the same shell fragments we have the same shell fragments we have the same shell fragments with the same shell fragments we have the same shell fragments with the same shell fragments we have the same shell fragments we have the same shell fragments with the same shell fra	5.30 (-1.46)	(5.5, 0.0)	
6.5 6.7 6.9 7.1 7.3 7.5 7.7 7.9 8.1	Detail: 7.00-7.50m Falling Head test End of Borehole at 7.50 mbgl	7.50 (-3.66)		
8.3 8.5 8.7 8.9 9.1 9.3 9.5 9.7				
10.1 10.3 10.5 10.7 10.9 11.1 11.3 11.5				
11.7 11.9 12.1 12.3 12.5 12.7 12.9 13.1				
ŀ	Drill Method: Cable Percussion (water added to progress drilling)	Hole Diam	eter: 8"	
	Drill Rig: Dando 2000		eter: 8" sing (mAOD):	_
	Casing Length (m): 7.50mbgl (retracted)	Top or Cas	sing (IIIAOD).	<u> </u>
ŀ	odomy congan (m). 1.00mbyl (retracted)	Water Stril	kes (mbgl):	
	Driller: Causeway Geotech Ltd.		er Level (mbgl):	

Exploratory Log: 108 Shallow

Sheet 1/1

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 20/01/2015

Ground Level (mAOD): 4.64

Grid Reference: 311797.045, 276021.658 Location: Drogheda Port Logged/Checked: JN/PG

Gnu	Reference: 311797.045, 276021.658 Location: Drogheda Port			Logged/Checked:	JN/PG
	SUBSURFACE PROFILE	Depth mbgl (mAOD)	Lithology	Well Constr	uction
	Ground surf	ace	sample (mbgl, PID)	Flush cov	
0.1 0.3	Concrete (MADE GROUND)	0.24		50mm dia	Concrete
0.5 0.7	Grey slightly sandy Gravel FILL (MADE GROUND)	(4.40)		aglid #####	Bentonite
0.9 1.1 1.3 1.5 1.7	(Soft-firm) Light grey/brown slightly gravelly CLAY. Contains modules of white soft clay. Gravel is angular to subangular, fine to medium. Contains green/grey cement fragments (Cement by-product - MADE GROUND).	0.90 (5.54)	(0.9, 0.0)		
1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5	Detail: 1.90m pure cement (difficult to drive casing)				
3.7 3.9 4.1	(Soft-firm) Dark grey gravelly CLAY with occasional cobbles and many shell fragments. Gravel is rounded, fine to coarse, pungent odour, wet stratum	3.50 (1.14)	(3.5, 0.6)		Gravel filter
4.3 4.5 4.7 4.9	Detail: 3.5m soil sample taken, Gravel content increases with depth	and other i	ř		
5.1 5.3 5.5 5.7 5.9	(Compact) Grey/brown slightly gravelly SILT with occasional cobbles. Gravel is subangular to subrounded, fine to coarse, slight pungent odour, dry	S. S. C. S. C.	(5.5, 0.7)		
6.1 6.3 6.5 6.7	Detail: Becoming sandier with depth, gravel content also increases with depth			50mm dia.	
8.1	(Compact) Grey/brown slightly gravelly SILT with occasional cobbles. Gravel is subangular to subrounded, fine to coarse, slight pungent odour, dry Detail: Becoming sandier with depth, gravel content also increases with depth Local Figure 1. Detail: 7.00m PSD sample taken,			standpipe	
8.3 8.5 8.7 8.9 9.1	End of Borehole at 8.50 mbgl	8.50 (-3.86)		End ca _l	
9.3 9.5 9.7 9.9					
10.1 10.3 10.5					
10.7 10.9 11.1 11.3					
1.5 1.7 1.9					
12.1 12.3 12.5 12.7					
12.7 12.9 13.1					
	Drill Method: Cable Percussion (water added to progress drilling)	Hole Diam			
	Drill Rig: Dando 2000	Top of Cas	sing (mAOD):	-	
	Casing Length (m): 8.00mbgl (retracted)				
ļ			kes (mbgl):		-
	Driller: Causeway Geotech Ltd.	Static Wat	er Level (mbgl):	2.85 on 21/0)1/15

Exploratory Log: 109 Shallow

Sheet 1/1

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 20/01/2015

Ground Level (mAOD): 3.5

Grid Reference: 312050.227, 276023.289 Location: Drogheda Port

Logged/Checked: JN/PG

	elerence. 312050.227, 276023.269 Location. Diognetia Fort			Logged/Criecked. 311/1 G
	SUBSURFACE PROFILE	Depth mbgl (mAOD)	Lithology	Well Construction
0.1	Ground surface		sample (mbgl, PID)	
0.1	Concrete (MADE GROUND)	0.30		
0.5	Soft-firm) Brown/grey slightly gravelly CLAY, wih occasional cobbles. Gravel is angular to subangular, fine to coarse (possible MADE GROUND)	(3.20)		
1.1	Grey slighlty gravelly coarse SAND with shell fragments and occasional cobbles.	1.00 (4.50) 1.20		No installation Backfilled with bentonite,
	Grey, sandy gravelly CLAY with shell fragments and occasional rounded cobbles. Gravel is angular to rounded, fine to coarse. Soil sample taken	(2.30)	(1.5, 0.0)	arisings and cement seal
1.9 F	Fine to Coarse GRAVEL with occasional cobbles comprised of broken cement ragments. (Cement by-products - MADE GROUND).	1.80 (1.70)		
2.3	Detail: 2.5m pure cement? (difficult to drive casing).			
2.7 2.9				
3.1				
3.3 3.5				
3.7 3.9	Fine to course GRAVEL with occasional cobbles. Gravel is rounded.	3.60		
4.1			⊘ ·	
4.3 4.5	Stiff-Very stiff) Red/brown slightly gravelly CLAY with occasional cobbles. Gravel is	4.40		
	Detail: 4.50 soil sample taken, clay becoming firmer with depth. Detail: 4.50 soil sample taken, clay becoming firmer with depth.	4.40 (-0.9) Per 10		
	Detail: 4.50 soil sample taken, clay becoming firmer with depth.	of divi		
5.5	if possible of the control of the co			
5.7 5.9	ion griede		(4.5, 0.2)	
6.1 6.3	specti antic			
6.5	corition that			
6.7 6.9	F COUNTY.			
7.1 7.3	ent of			
7.5		7.40 (-3.9)		
7.7 7.9	End of Borehole at 7.40 mbgl			
8.1 8.3				
8.5				
8.7 8.9				
9.1 9.3				
9.5 9.7				
9.9				
10.1 10.3				
10.5 10.7				
10.9				
11.1 11.3				
11.5				
11.7 11.9				
12.1 12.3				
12.5				
12.7 12.9				
13.1				
	rill Method: Cable Percussion (water added to progress drilling)	Hole Diam	eter: 8"	
	rill Rig: Dando 2000	Top of Cas	sing (mAOD):	-
C	asing Length (m): 7.40mbgl (retracted)	Water Strik	(es (mhal):	
Di	riller: Causeway Geotech Ltd.		er Level (mbgl):	
	I de la company de la c	at	20.0. (111091).	l

Exploratory Log: 110 Shallow

Sheet 1/1

AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 21/01/2015

Ground Level (mAOD): 4.15 Grid Reference: 311830.782, 275987.602

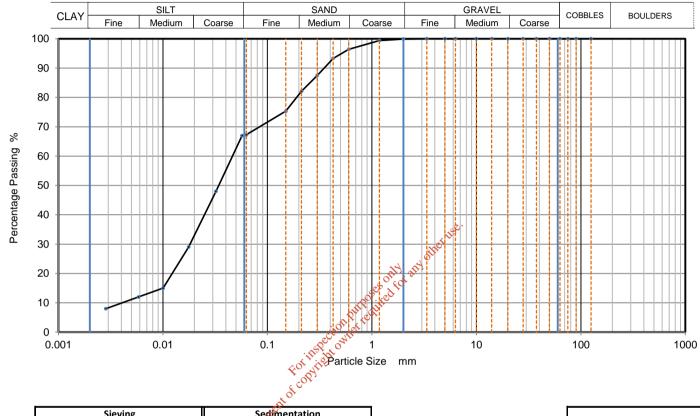
Location: Drogheda Port

Logged/Checked: JN/PG

		I	 	
	SUBSURFACE PROFILE	Depth mbgl (mAOD)	Lithology	Well Construction
0.1	Ground surface		sample (mbgl, PID)	
0.3	Concrete (MADE GROUND) Sandy Gravel FILL (MADE GROUND).	0.23 (3.92)		
0.5 0.7	Contains red brick.			
0.9	Concrete encounted (MADE GROUND)	0.70 (3.45)		
1.1 1.3				Backfilled with
1.5	Detail: 1.70m no further depth achieved, due to thickness of concrete			cement seal
1.7 1.9	End of Borehole at 1.70 mbgl	1.70 (2.45)		
2.1 2.3				
2.5				
2.7 2.9				
3.1				
3.3 3.5				
3.7 3.9				
4.1			g ₃ .	
4.3 4.5		051	ř	
4.7	Consent of copyright owner required for the copyright owner requir	othe.		
4.9 5.1	or of the second se	1 2017		
5.3 5.5	The state of the s	Ĭ		
5.7	2 Party State			
5.9 6.1	action that I			
6.3	instruction in the state of the			
6.5 6.7	Fortyfile			
6.9 7.1	of cox			
7.1	sent			
7.5 7.7	Contr			
7.9				
8.1 8.3				
8.5 8.7				
8.9				
9.1 9.3				
9.5				
9.7 9.9				
10.1				
10.3 10.5				
10.7 10.9				
11.1				
11.3 11.5				
11.7 11.9				
12.1				
12.3 12.5				
12.7				
12.9 13.1				
	Drill Method: Cable Percussion Drill Rig: Dando 2000	Hole Diam	eter: 8" sing (mAOD):	_
	Casing Length (m):	Top of Cas	ong (IIIAOD):	<u> </u>
			kes (mbgl):	
	Driller: Causeway Geotech Ltd.		er Level (mbgl):	-

Exploratory Log: 111 Shallow

Sheet 1/1


AWN Project Ref: 14/7893 Client: Drogheda Port Company Drill date: 21/01/2015

Ground Level (mAOD): 4.39

Grid Reference: 311880.258, 276045.22 Location: Drogheda Port Logged/Checked: JN/PG

		1		
	SUBSURFACE PROFILE	Depth mbgl (mAOD)	Lithology	Well Construction
	Ground surface		sample (mbgl, PID)	
0.3	Concrete (MADE GROUND) Brown/grey slightly clayey Gravel FILL (MADE GROUND)	0.35 (4.04)		No installation
1.3 1.5 1.7 1.9 2.1 ((Soft) Light grey CLAY, with occasional subangular, coarse gravel (Cement by-products - MADE GROUND)	2.00 (2.39)	(2.0, 0.0)	Backfilled with bentonite, arisings and cement seal
2.9	(Firm) Green/grey CLAY with cement fragments (Cement by-products- MADE GROUND). Undefined odour	2.60 (1.79) 2.80	(2.8, 0.0)	
3.1 (3.3 3.5 3.7 3.9 4.1 4.3	(Uncompact) Black SILT, wet, pungent odour	(1.59)		
4.5 4.7 4.9 5.1 5.3 5.5 5.7	Grey fine SAND with many shell fragments Detail: 7.00m soil sample taken	t any other o		
6.9	Grey fine SAND with many shell fragments Detail: 7.00m soil sample taken Consent of copyright of the copyr	6.50 (-2.11)		
7.9 8.1 8.3 8.5 8.7	End of Borehole at 8.00 mbgl	8.00 (-3.61)		
8.9 9.1 9.3 9.5				
9.7 9.9 10.1 10.3				
10.5 10.7 10.9 11.1				
11.3 11.5 11.7 11.9				
12.1 12.3 12.5 12.7 12.9				
13.1				
<u> </u>	rill Method: Cable Percussion (water added to progress drilling)	Holo Diar-	otor: 9"	
	rill Rig: Dando 2000	Hole Diam	eter: 8" sing (mAOD):	_
	asing Length (m): 7.50mbgl (retracted)	rop or Cas	mig (IIIAOD).	<u> </u>
F	acing =2gui (iii). Floorings (roudolou)	Water Strik	kes (mbgl):	
<u> </u>	riller: Causeway Geotech Ltd.		er Level (mbgl):	, ,

CAUSEWAY	USEWAY PARTICLE SIZE DISTRIBUTION -		Job Ref	14-1076	
——GEOTECH			Borehole/Pit No.	BH105	
Site Name	Tom Roes Point Drogh	Tom Roes Point Drogheda			2
Soil Description	Slightly sandy organic SILT		Depth, m	3.00	
Specimen Reference	2 Specimen m		Sample Type	В	
Test Method	BS1377:Part 2:1990, clau	S1377:Part 2:1990, clauses 9.2 and 9.5			141076BH105B1

Siev	/ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0571	67	
90	100	0.0322	48	
75	100	0.0176	29	
63	100	0.0100	15	
50	100	0.0059	12	
37.5	100	0.0028	8	
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	99			
0.6	96	Particle density	(assumed)	
0.425	93	1.50	Mg/m3	
0.3	88			
0.212	82			
0.15	75			
0.063	67			

Dry Mass of sample, g	1354

Sample Proportions	% dry mass
Very coarse	0
Gravel	0
Sand	33
Fines < 0.063mm	67

Grading Analysis		
D100	mm	
D60	mm	0.0459
D30	mm	0.0183
D10	mm	0.00438
Uniformity Coefficient		10
Curvature Coefficient		1.7

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Stephen.Watson 11/02/2015 15:27 Sheet	Approved	Sheet printed	Fig	1
	Stephen. Watson	11/02/2015 15:27	Sheet	

CAUSEWAY P							PARTICLE SIZE DISTRIBUTION														Job Ref									14-1076										
																		-	Borehole/Pit No.							BH105														
Sit	e Nan	me		Ton	n Ro	es F	oin	t Dr	Drogheda													-	Sample No.							3										
Soil Description Grey SAND																					Depth, m							5.00												
Sp	ecime	en Refere	nce			2	2		Specimen Depth						m								Sample Type						В											
Test Method BS1377:Part 2:199						90,																	KeyLAB ID							1410				076BH105B3						
	-	CLAY				SILT									SAND											GRAVEL						COBBLES			BOULDERS					
	100	T T	Fin	e	M	ediu	m	C	Coarse Fine						M				oars	se	Fine		i	Medium						 		T		_				<u>_</u>		
	90		_							\perp						/	_	4						-		+						+					\mathbb{H}	#		\parallel
	80		_		+					+								\parallel	\parallel							+					H	+					H	#	H	\parallel
	70		_		\parallel					+	+	+		_	/				\parallel							\parallel						-					\vdash	#	Н	\parallel
	60		_		\parallel					+	+	\parallel		\dashv					\parallel							\parallel						-					\square	+	Н	\parallel
•	50				\parallel					\perp		#		1					\parallel					_		\parallel						+					H	#	Н	\parallel
	40				#					\perp				\parallel					\parallel							\parallel						-					\square	+	Н	\parallel
	30		+		\parallel					\perp	-	+		\mathbb{H}					\parallel				- XX	No.	OGE)				_			-					H	4	Н	\parallel
	20		_		\parallel					\perp									\parallel		only diffe	ali	1	_								_					\sqcup	+	Ш	\parallel
	10		+							+	/	$/\!\!/$	/					50	Q	1.00	<u>ت</u>											+					H	+	H	\parallel
	0	.001				.01						0.1			_	حود	S	MI	۲ ^۳ ۲)	1						1						_	1	00					Ш.	∐ 100
	0.					.01		11				0.1	al land	F ^C	n in	is	ar	ticl	e S	i Size	e r	nm				•	O													100
	Pai	rticle Size		ving	% Pa	assin	g	-	Parti	icle	-	eg	me	nta	itio	n Pa:								ry	M	ass	of s	sam	nple	e, g							4794	4		
		125		100				╁								70 1 435						Sample Pro													% dry n					
	-	75 100						100 100															Very coarse Gravel					<u>:</u>					3							
			100						Sand								ł			-							93													
	37.5 100 28 98 20 98				#							Fines < 0.063							63n								4													
					士						Grading An						naly																							
14 10 6.3			98 98														D10 D60	0			mm mm					F				0.202	2									
			6.3 98				98										D30											m		İ				0.26						
		5				97		1													L	D10									m	m				0	0.088			
		3.35		_		97		#														Unif															2.3			
2 97						ЦL												l	Ĺ	Curv	atu	re (COE	TTIC	ient										1.5					

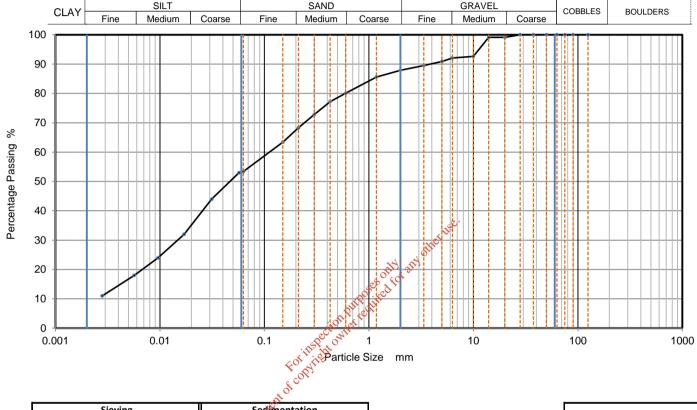
Approved	Sheet printed	Fig	2
Stephen.Watson	11/02/2015 15:27	Sheet	
	EDA EV	zport 25 04 20	20.04.2

Sheet printed

84

67

20


4

0.3 0.212

0.15

0.063

CAUSEWAY	PARTICLE SIZE DISTRIBUTION -			Job Ref		14-1076	
GEOTECH PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.		BH108		
Site Name	Tom Roes Point Drogheda			Sample No.		1	
Soil Description	Grey gravelly very silty SAND			Depth, m		7.00	
Specimen Reference	2	2 Specimen m Depth		Sample Type		В	
Test Method	BS1377:Part 2:1990, clauses 9.2 and 9.5			KeyLAB ID	14	1076BH108B1	
CLAY SILT SAND					GRAVEL	COBBLES	BOULDERS

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0571	53
90	100	0.0313	44
75	100	0.0170	32
63	100	0.0096	24
50	100	0.0057	18
37.5	100	0.0028	11
28	100		
20	99		
14	99		
10	93		
6.3	92		
5	91		
3.35	90		
2	88		
1.18	86		
0.6	80	Particle density	(assumed)
0.425	77	1.50	Mg/m3
0.3	73		
0.212	68		
0.15	63		
0.063	53		

Dry Mass of sample, g	3250
Dry Mass of Sample, g	3250

Sample Proportions	% dry mass	
Very coarse	0	
Gravel	12	
Sand	35	
,		
Fines < 0.063mm	53	

Grading Analysis		
D100	mm	
D60	mm	0.112
D30	mm	0.0146
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

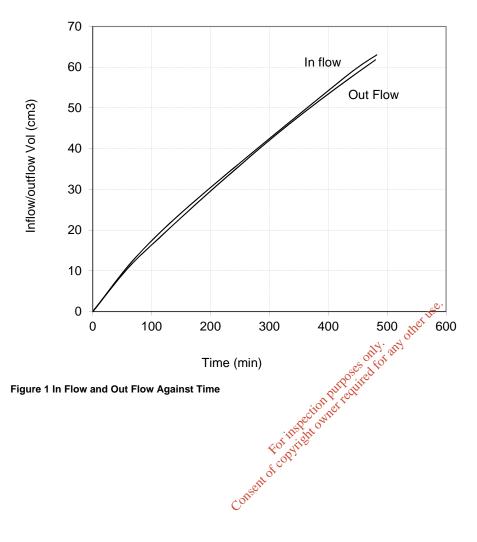
Remarks

Preparation and testing in accordance with BS1377 unless noted below

11/02/2015 15:27	Approved	Sheet printed	Fig	3
Sheet	Stephen.Watson	11/02/2015 15:27	Sheet	

Date	06-Feb-15	5		
Client	AWN consulting		Sample Height mm	100
Test Constant Head			Sample Diameter mm	105
	Permeability			
Site	Drogheda Port		Sample Volume cm3	865
Sample Reference		BH105	Initial Wet Mass g	1735
Area/Cell		NA	Final Wet Mass g	1725
S.no		NA	Dry Mass g	1404
Sampling Method		U4	Bulk Density Mg/m3	2005
Depth m		3	Dry Density Mg/m3	1622
			Initial Water Content %	23.6
			Final Water Content %	22.9

Soil type Grey Sandy SILT


Initail B Value		<0.5
Back Pore Water Pressure During Saturation kPa	.4	350
Cell Pressure kPa	othe	340
Final B Value	Ald Ald	1
Duration days	es of for	4

Consolidation Stage

Cell pressure kPa	250,0	400
Back Pore Water Pressure kPa	COLITICAL	350
Duration of Consolidation days	COBS	1

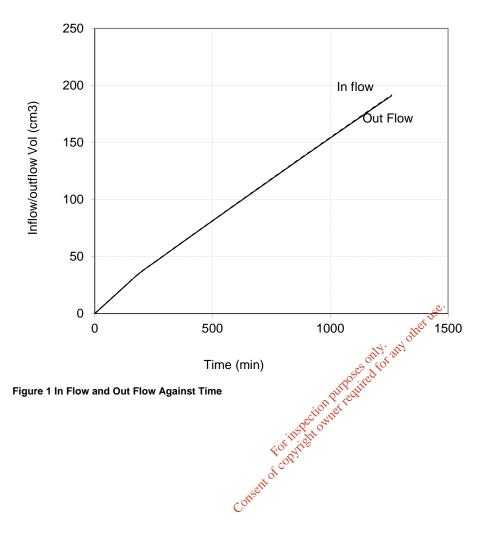
Permeability Stage

Temperature C°	20
Cell Pressure kPa	400
Pore Water Pressure (Top) kPa	358
Pore Water Pressure (Bottom) kPa	365
Average Effective Stress kPa	38.5
Head Difference kPa	7
Head Loss kPa	2
Net Head difference m	0.51
Sample Height m	0.098
Hydraulic Gradient i	5.22
Flow Rate cm ³ /min	0.11
Area of the Sample cm ²	82.5
Permeability m/s	4.3E-08
Duration of permeability stage days	1

Date	06-Feb-1	5		
Client	AWN consulting	3	Sample Height mm	100
Test Constant Head			Sample Diameter mm	105
	Permeability			
Site	Drogheda Port		Sample Volume cm3	865
Sample Reference		BH106	Initial Wet Mass g	1342
Area/Cell		NA	Final Wet Mass g	1328
S.no		NA	Dry Mass g	853
Sampling Method		U4	Bulk Density Mg/m3	1551
Depth m		2	Dry Density Mg/m3	986
•			Initial Water Content %	57.3
			Final Water Content %	55.7

Soil type Light brown gravelly clayey SILT

Saturation	Stage
------------	-------


Initail B Value		<0.5
Back Pore Water Pressure During Saturation kPa	.4	350
Cell Pressure kPa	othe	340
Final B Value	Ald Ald	1
Duration days	es of for	4

Consolidation Stage

Cell pressure kPa	282 04	400
Back Pore Water Pressure kPa	COLITICATION	350
Duration of Consolidation days	coby	1

Permeability Stage

Temperature C°	20
Cell Pressure kPa	400
Pore Water Pressure (Top) kPa	358
Pore Water Pressure (Bottom) kPa	365
Average Effective Stress kPa	38.5
Head Difference kPa	7
Head Loss kPa	2
Net Head difference m	0.51
Sample Height m	0.099
Hydraulic Gradient i	5.15
Flow Rate cm ³ /min	0.144
Area of the Sample cm2	84.9
Permeability m/s	5.5E-08
Duration of permeability stage days	1

CONTRACT: TEST No: 1 14-1076: Drogheda Port BOREHOLE: BH106

> DATE: 16-Jan-15

TYPE OF TEST: Falling HEAD

50 (mm) Diameter of standpipe (d):

Height of TOP of standpipe above ground level: 0.00 (m) (use -ve values if BELOW g.l.)

Depth to centre of piezo. tip below ground level NA (m) Depth to top of filter below ground level (m): 0.00 (m) Depth to bottom of filter below ground level (m): 5.30 (m) Diameter of filter (D): 200 (mm)

Standing ground water level SWL (mbgl): 2.95 (m) on: ######

DATUM:All depths to water level measured from top of casing.

i.e.SWL

2.95 m below datum.

5, 0	i., iii acpiii	3 to water	
TIME	WATER	HEAD	HEAD
ELAPSED	LEVEL*	пеар Н	RATIO
(mins)	(m)	п (m)	H/Ho
(111115)	(111)	2.95	1.0000
0.5	0.01	2.93	0.9966
0.5	0.01	2.94	0.9932
1.5	0.02	2.92	0.9898
2	0.03	2.91	0.9864
2.5	0.04	2.91	0.9864
3	0.04	2.91	0.9864
3.5	0.04	2.91	0.9864
4	0.05	2.9	0.9831
4.5	0.06	2.89	0.9797
5	0.07	2.88	0.9763
6	0.08	2.87	0.9729
7	0.08	2.87	0.9729
8	0.08	2.87	0.9729
9	0.09	2.86	0.9695
10	0.1	2.85	0.9661
12	0.13	2.82	0.9559
14	0.13	2.82	0.9559
16	0.14	2.81	0.9525
18	0.14	2.81	0.9525
20	0.15	2.8	0.9492
22	0.15	2.8	0.9492
24	0.17	2.78	0.9424
26	0.17	2.78	0.9424
28	0.18	2.77	0.9390
30	0.18	2.77	0.9390
35	0.19	2.76	0.9356
40	0.2	2.75	0.9322
45	0.21	2.74	0.9288
50	0.22	2.73	0.9254
55	0.23	2.72	0.9220
60	0.24	2.71	0.9186

CALCULATION OF PERMEABILITY OF SOIL:

Employing Hvorslev formula: k = A/FT where:

k is the permeability of soil

A is the cross-section area of standpipe F is the intake factor (see below)

T is the basic time lag factor as defined

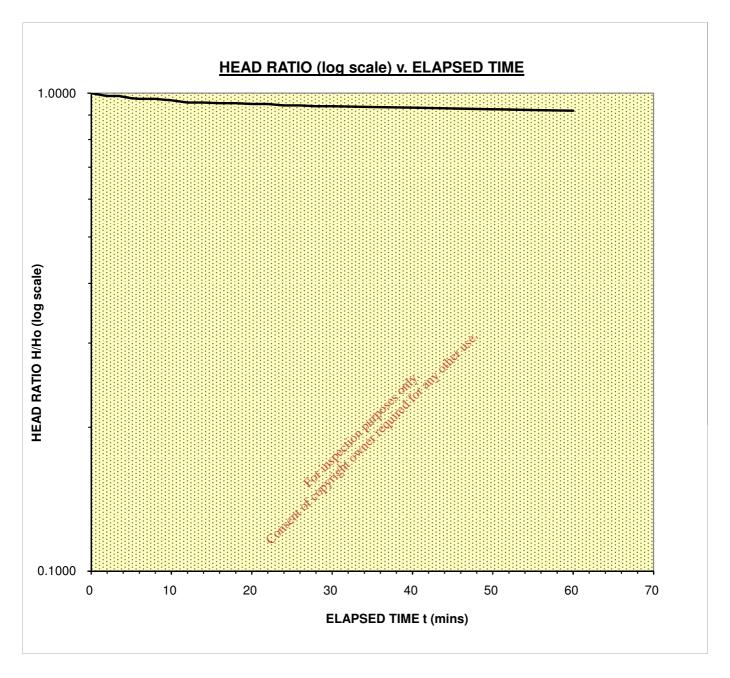
Figure 9 of BS 5930:1981 (page 38)

consecution of the property of zones of length to diameter ratio (L/D) are given in Figure 8

and A = 0.00196 (m²) and T = 708.33 mins

(see graph of log H/Ho v Time.)

hence, k 4.8E-09 m/s


4.8 x 10⁻⁹ i.e., k =___ m/s

Sheet 1 of 2 Causeway Geotech Ltd

TYPE OF TEST: Falling HEAD

CONTRACT: 14-1076: Drogheda Port BOREHOLE No.: BH106 TEST #: 1

DATE: 16-Jan-15

Basic Time Lag Factor T =	708.33 minutes
---------------------------	----------------

wt99

CONTRACT: 14-1076: Drogheda Port BOREHOLE: BH107 TEST No: 1

> DATE: 19-Jan-15

TYPE OF TEST: Falling HEAD Diameter of standpipe (d): *50* (mm)

Height of TOP of standpipe above ground level: 0.50 (m) (use -ve values if BELOW g.l.)

Depth to centre of piezo. tip below ground level (m NA (m) Depth to top of filter below ground level (m): 0.00 (m) Depth to bottom of filter below ground level (m): 7.50 (m) Diameter of filter (D): 200 (mm)

Standing ground water level SWL (mbgl): 4.1 (m) on: #######

DATUM:All depths to water level measured from top of casing.

i.e.SWL

4.10 m below datum.

DATION	i.Aii ucpii is	to water i	CVCI IIICasi
			1
TIME ELAPSED	WATER LEVEL*	HEAD H	HEAD RATIO
(mins)	(m)	(m)	H/Ho
0	0.42	3.68	1.0000
0.5	0.42	3.68	1.0000
1	0.44	3.66	0.9946
1.5	0.46	3.64	0.9891
2	0.48	3.62	0.9837
2.5	0.49	3.61 3.59	0.9810 0.9755
3	0.51		
3.5 4	0.52 0.53	3.58 3.57	0.9728 0.9701
4.5	0.55	3.55	0.9701
4.5 5	0.56	3.54	0.9647
6	0.58	3.52	0.9565
7	0.6	3.5	0.9511
8	0.62	3.48	0.9457
9	0.64	3.46	0.9402
10	0.66	3.44	0.9348
11	0.68	3.42	0.9293
12	0.7	3.4	0.9239
14	0.74	3.36	0.9130
16	0.75	3.35	0.9103
18	0.78	3.32	0.9022
20	0.81	3.29	0.8940
22	0.83	3.27	0.8886
24	0.88	3.22	0.8750
26	0.89	3.21	0.8723
28	0.92	3.18	0.8641
30	0.94	3.16	0.8587
32	0.96	3.14	0.8533
36	0.99	3.11	0.8451
40	1.02	3.08	0.8370
44	1.07	3.03	0.8234
48	1.1	3	0.8152
52	1.11	2.99	0.8125
56	1.13	2.97	0.8071
60	1.15	2.95	0.8016

CALCULATION OF PERMEABILITY OF SOIL:

Employing Hvorslev formula; k = A/FT

where:

k is the permeability of soil

area of standpipe intake factor (see below)

To the basic time lag factor as defined in Figure 9 of Po To the basic time lag factor as defined in Figure 9 of Po To the basic time lag factor as defined as the basic time lag factor as defined in Figure 9 of Po To the basic time lag factor as defined in Figu

in Figure 9 of BS 5930:1981 (page 38)

Values of intake factors (F/D) for various cylindrical intake Szones of length to diameter ratio (L/D) are given in Figure 8 66 BS 5930:1981 (p37); also Dunn and Razouki formula: $F/D = 2.32*PI*(L/D)/loge[1.1*(L/D)+{1+1.1*(L/D)^2}^0.5]$

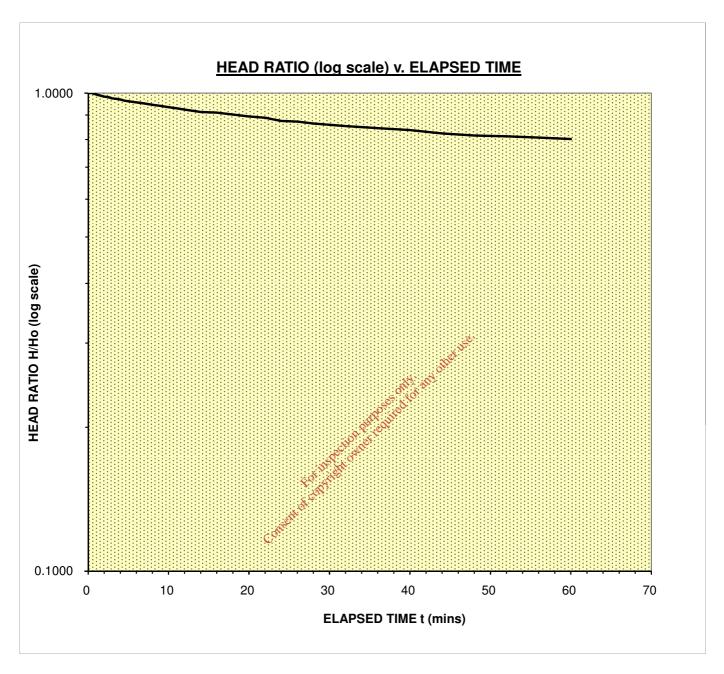
> L/D ratio = 37.50 thus F/D= 62.27 i.e. F =

12.45 (m) and A = 0.00196 (m²) and T = 248.65 mins

(see graph of log H/Ho v Time.)

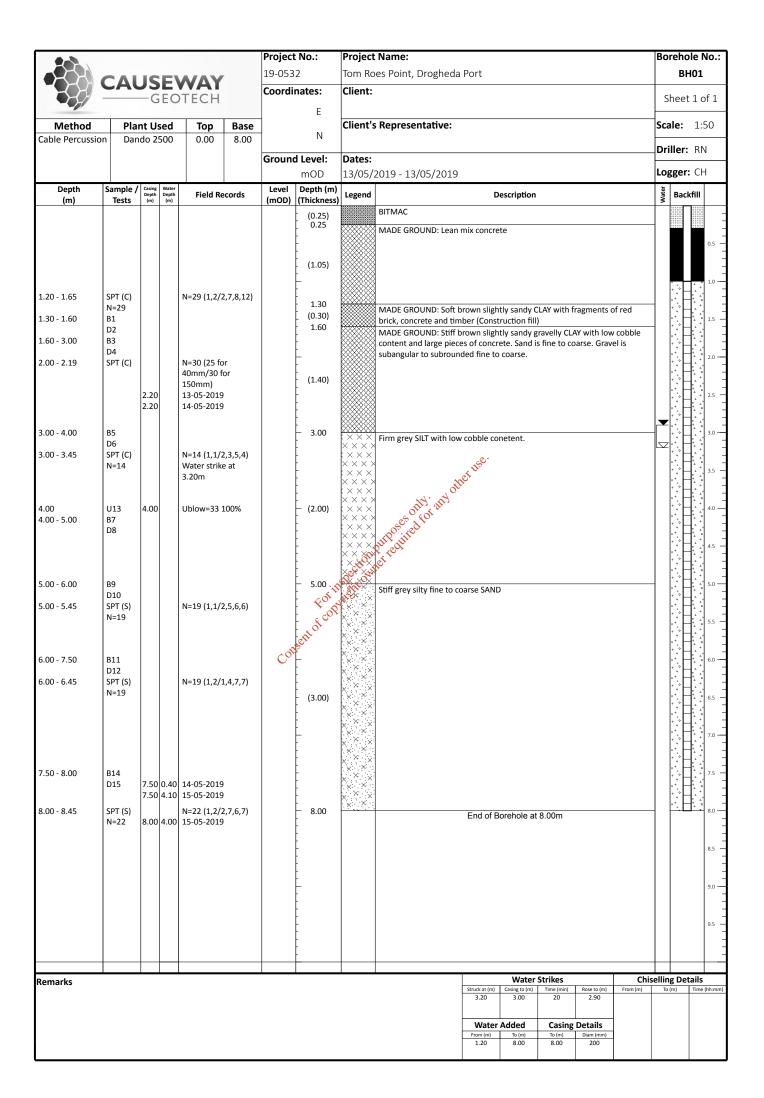
hence, | 1.1E-08 m/s

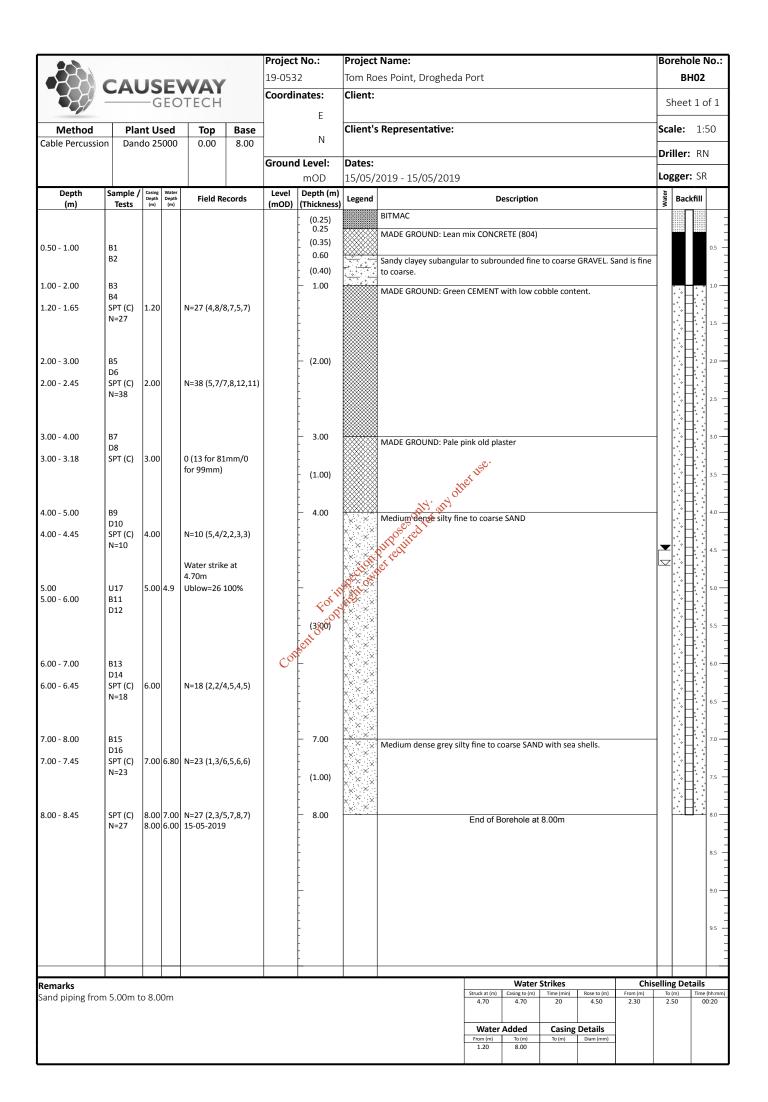
1.1 x 10⁻⁸ i.e., k = m/s


Causeway Geotech Ltd

Sheet 1 of 2

TYPE OF TEST: Falling HEAD


CONTRACT: 14-1076: Drogheda Port BOREHOLE No.: BH107 TEST #: 1


DATE: 19-Jan-15

Basic Time Lag Factor T =	248.65 minutes
---------------------------	----------------

wt99

AOT/19/10737/R01 AWN Consulting Limited

APPENDICES

Appendix B Laboratory Analytical Reports & Gas Monitoring

Consent of copyright owner required for any other use.

Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.co.uk

Final Report

15-01611 Issue-1 **Report Number:**

Initial Date of Issue: 09-Feb-2015

Client: Causeway Geotech Ltd

8 Drumahiskey Road

Balnamore

Client Address: Ballymoney

County Antrim **BT53 7QL**

Darren O'Mahony

Contact(s): Paul Dunlop

Stephen Franey

14-1076- Drogheda Port **Project:**

Consent of copyright owner teatined for any other use. **Quotation No.: Date Received:** 26-Jan-2015

Order No.: **Date Instructed:** 26-Jan-2015

No. of Samples: 34

Results Due Date: Turnaround: (Wkdays) 5 30-Jan-2015

30-Jan-2015 **Date Approved:**

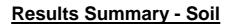
Approved By:

Details: Phil Hellier, Project Director

Results Summary - Soil

Project: 14-1076- Drogheda Port

Client: Causeway Geotech Ltd		Chem	ntest Jo	b No.:	15-01611	15-01611	15-01611	15-01611	15-01611	15-01611	15-01611	15-01611	15-01611	15-01611
Quotation No.:	Ch		st Samp		93783	93791	93792	93793	93797	93798	93800	93802	93804	93806
Order No.:		Clien	t Sampl	e Ref.:										
		Clier	nt Samp	le ID.:	BH102	BH103	BH104	BH104	BH106	BH106	BH107	BH108	BH109	BH109
			Sample	Type:	SOIL									
			Гор Dер		5.00	18.50	2.00	6.00	2.00	4.50	5.00	3.50	1.20	7.00
			tom Der											
		[Date Sa	mpled:										
Determinand	Accred.	SOP	Units	LOD										
ACM Type	U	2192			-	-	-	-	-	-	-	=	-	-
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected									
Moisture	N	2030	%	0.02	42	15	32	19	34	24	27	28	13	12
pH	U	2010			11.4	9.3	10.1	9.9	9.3	8.9	8.8	10.1	8.6	9.5
Boron (Hot Water Soluble)	Ū		mg/kg	0.4	1.7	0.84	1.6	0.65	&° 5.5	3.0	8.5	7.2	0.79	0.74
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.01	2.3	0.13	1.1	0.39	1.5	0.77	0.97	1.2	0.080	0.081
Cyanide (Total)	U	2300	mg/kg	0.5	< 0.50	< 0.50	< 0.50	< 0.50,	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Potassium (Available)	N	2400	mg/l	2	13000	420	8500	39500	280	950	1600	3400	320	480
Sodium	N	2410	mg/l	2	16000	2800	3400	e 600	250	650	3100	4000	200	1300
Ammoniacal Nitrogen	U	2425	mg/kg	0.5	< 2.0	< 2.0	< 2.0	۶. رواح 2.0	3.0	5.1	4.6	< 2.0	5.7	< 2.0
Aluminium (Total)	N	2430	mg/kg	100	6300	8600	9200	3600	6400	5400	3600	7000	5000	12000
Iron (Total)	N	2430	mg/kg	100	7600	14000	14000	10000	8800	12000	20000	14000	16000	19000
Magnesium (Total)	N	2430	mg/kg		1100	790.0	620 Q ⁽⁾	410.0	1200	610.0	2100	540.0	820.0	1500
Sulphate (Total)	U	2430	%	0.01	1.3	0.43	105/16	0.27	2.9	1.4	0.62	1.1	0.13	0.027
Arsenic	U	2450	mg/kg	1	24	16 💸	11221	8.4	24	8.7	24	16	21	10
Cadmium	U	2450	mg/kg	0.1	3.2	0.33	0.58	0.26	6.6	0.28	0.51	0.36	1.9	0.20
Chromium	U	2450	mg/kg	1	22	40 8	27	15	24	18	14	22	19	41
Copper	U	2450	mg/kg	0.5	50	26 cm	24	6.6	36	9.5	9.0	18	23	26
Mercury	U	2450	mg/kg	0.1	< 0.10	≤ 6 .10	0.15	< 0.10	< 0.10	< 0.10	< 0.10	0.14	< 0.10	< 0.10
Manganese	U	2450	mg/kg	5	540	740	440	290	530	330	1900	820	1700	720
Nickel	U	2450	mg/kg	0.5	23	51	25	15	23	18	37	22	44	51
Lead	U	2450	mg/kg	0.5	1000	23	59	11	170	20	32	62	72	17
Zinc	U	2450	mg/kg	0.5	57	55	65	29	55	38	73	77	88	55
Chromium (Hexavalent)	N	2490	mg/kg	0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Mineral Oil	N	2670	mg/kg	10	A < 10	A < 10	A < 10	A < 10	A < 10	A < 10	A < 10	A < 10	A < 10	A < 10
Total TPH >C6-C40	U	2670	mg/kg	10	A < 10	A < 10	A < 10	A < 10	A < 10	A < 10	A < 10	A < 10	A < 10	A < 10
Naphthalene	U	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.1	< 0.10	< 0.10	0.50	< 0.10	< 0.10	< 0.10	1.1	1.7	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.1	< 0.10	< 0.10	1.5	< 0.10	< 0.10	< 0.10	0.65	0.64	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.1	0.15	< 0.10	0.47	< 0.10	< 0.10	< 0.10	0.34	0.38	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.1	0.28	< 0.10	0.45	< 0.10	< 0.10	< 0.10	0.43	0.31	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.1	< 0.10	< 0.10	0.21	< 0.10	< 0.10	< 0.10	< 0.10	0.51	< 0.10	< 0.10



Results Summary - Soil

Project: 14-1076- Drogheda Port

Client: Causeway Geotech Ltd		Chen	ntest Jo	b No.:	15-01611	15-01611	15-01611	15-01611	15-01611	15-01611	15-01611	15-01611	15-01611	15-01611
Quotation No.:	CI	hemte	st Samp	ole ID.:	93783	93791	93792	93793	93797	93798	93800	93802	93804	93806
Order No.:		Clien	it Sampl	e Ref.:										
		Clie	nt Samp	ole ID.:	BH102	BH103	BH104	BH104	BH106	BH106	BH107	BH108	BH109	BH109
			Sample	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Гор Dep	th (m):	5.00	18.50	2.00	6.00	2.00	4.50	5.00	3.50	1.20	7.00
		Bot	tom Dep	pth(m):										
			Date Sa	mpled:										
Determinand	Accred.	SOP	Units	LOD										
Chrysene	U	2700	mg/kg	0.1	< 0.10	< 0.10	0.49	< 0.10	< 0.10	< 0.10	0.24	0.22	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.1	< 0.10	< 0.10	0.32	< 0.10	< 0.10	< 0.10	0.29	0.14	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.1	< 0.10	< 0.10	0.26	< 0.10	< 0.10	< 0.10	0.21	0.17	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.1	< 0.10	< 0.10	0.42	< 0.10	< 0.10	< 0.10	0.25	0.22	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.1	< 0.10	< 0.10	0.16	< 0.10	< 0.10	< 0.10	< 0.10	0.17	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10	< 0.10	<i>,</i> ≪ 0.10	< 0.10	< 0.10	0.20	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.1	< 0.10	< 0.10	0.30	< 0.10	్ < 0.10	< 0.10	< 0.10	0.47	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2	< 2.0	< 2.0	5.1	< 2.0	< 2.0	< 2.0	3.5	5.1	< 2.0	< 2.0
Total Phenols	U	2920	ma/ka	0.3	0.55	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	1.3	< 0.30	< 0.30

For its petion purposes

Project: 14-1076- Drogheda Port

		01	11 1-	I. M.	15.01011			
Client: Causeway Geotech Ltd	01		test Jo		15-01611			
Quotation No.:	Cn	93809						
Order No.:		Client Sample Ref.: Client Sample ID.:						
		BH111						
			Sample op Dep		SOIL			
			tom Dep		3.00			
			Date Sa					
Determinand	Accred.							
ACM Type	U Accrea.	2192	Ullits	LOD				
ACIVI Type	U	2192			No Asbestos			
Asbestos Identification	U	2192	%	0.001	Detected			
Moisture	N	2030	%	0.02	37			
рН	U	2010			10.2			
Boron (Hot Water Soluble)	U	2120	mg/kg	0.4	0.85			
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.01	0.10			
Cyanide (Total)	U	2300	mg/kg	0.5	< 0.50			
Potassium (Available)	N	2400	mg/l	2	6500			
Sodium	N		mg/l	2	6500			
Ammoniacal Nitrogen	U	2425	mg/kg	0.5	< 2.0			
Aluminium (Total)	N	2430	mg/kg	100	11000			
Iron (Total)	N	2430	mg/kg	100	19000			
Magnesium (Total)	N		mg/kg		440.0			
Sulphate (Total)	U	2430	%	0.01	1.6			
Arsenic	U	2450	mg/kg	1	17			
Cadmium	U	2450	mg/kg	0.1	0.49			
Chromium	U	2450	mg/kg	1	37			
Copper	U	2450	mg/kg	0.5	24			
Mercury	U	2450	mg/kg	0.1	0.21			
Manganese	U	2450	mg/kg	5	500			
Nickel	U	2450	mg/kg	0.5	34			
Lead	U	2450	mg/kg	0.5	69			
Zinc	U	2450	mg/kg	0.5	120			
Chromium (Hexavalent)	N	2490	mg/kg	0.5	< 0.50			
Mineral Oil	N	2670	mg/kg	10	A < 10			
Total TPH >C6-C40	U		mg/kg	10	A < 10			
Naphthalene	U	2700	mg/kg	0.1	< 0.10			
Acenaphthylene	U	2700	mg/kg	0.1	< 0.10			
Acenaphthene	U	2700	mg/kg	0.1	< 0.10			
Fluorene	U	2700	mg/kg	0.1	< 0.10			
Phenanthrene	U	2700	mg/kg	0.1	< 0.10			
Anthracene	U		mg/kg		< 0.10			
Fluoranthene	U		mg/kg	0.1	0.56			
Pyrene	U		mg/kg	0.1	0.63			
Benzo[a]anthracene	U	2700	mg/kg	0.1	0.26			

Consent of copyright owner required for any other use

Results Summary - Soil

Project: 14-1076- Drogheda Port

Client: Causeway Geotech Ltd		Chem	itest Jo	b No.:	15-01611	
Quotation No.:	Ch	emtes	le ID.:	93809		
Order No.:		Clien	t Sampl	e Ref.:		
		Clier	t Samp	le ID.:	BH111	
			Sample	Type:	SOIL	
		T	op Dep	th (m):	3.00	
		Bot	tom Dep	oth(m):		
		Date Sampled:				
Determinand	Accred.	SOP	Units	LOD		
Chrysene	U	2700	mg/kg	0.1	0.31	
Benzo[b]fluoranthene	U	2700	mg/kg	0.1	0.64	
Benzo[k]fluoranthene	U	2700	mg/kg	0.1	0.66	
Benzo[a]pyrene	U	2700	mg/kg	0.1	0.41	
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.1	0.27	
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.1	0.20	
Benzo[g,h,i]perylene	U	2700	mg/kg	0.1	0.62	
Total Of 16 PAH's	U	2700	mg/kg	2	4.6	
Total Phenols	U	2920	mg/kg	0.3	0.80	

Consent of copyright owner required for any other use

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Chemtest Sample ID:	Sample Ref:	Sample ID:	Sampled Date:	Containers Received:	Deviation Code(s):
93783		BH102	None Supplied	Amber Glass 250ml	А
93791		BH103	None Supplied	Amber Glass 250ml	А
93792		BH104	None Supplied	Amber Glass 250ml	А
93793		BH104	None Supplied	Amber Glass 250ml	А
93797		BH106	None Supplied	Amber Glass 250ml	А
93798		BH106	None Supplied	Amber Glass 250ml	А
93800		BH107	None Supplied	Amber Glass 250ml	Α
93802		BH108	None Supplied	Amber Glass 250ml	Α
93804		BH109	None Supplied	Amber Glass 250ml	Α
93806		BH109	None Supplied	Amber Glass 250ml	Α
93809		BH111	None Supplied	Amber Glass 250ml	А

BH111 None Supplied A

None Supplied A

Real Transport of Party of the

Report Information

Key

- **UKAS** accredited
- MCERTS and UKAS accredited Μ
- Ν Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- Т This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable sample
- N/E not evaluated
 - "less than" <
 - "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laborators

Issue numbers are sequential starting with 1 all subsequentive ports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 60 days from the date of receipt

COU

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.co.uk

Site: Drogheda Port

Project No: 14-1076

Date: 05/02/2015

Weather: Dry

Ambient Conditions	Barometric Pressure	CH ₄ (%)	CO ₂ (%)	02(%)
Before Monitoring	1030	0	0.1	18.9
After Monitoring	1030	0	0.1	18.9

BH101D

Time (sec) CH4 (%) CO2 (%) 02 (%) H2S (ppm) CO (ppm) Flow (I) 30 0.0 0.1 18.8 0 0 0.0 60 0.0 0.1 18.8 0 0 0.0 90 0.0 0.1 18.8 0 0 0.0 120 0.0 0.1 18.8 0 0 0.0 180 0.0 0.1 18.8 0 0 0.0 240 0.0 0.1 18.8 0 0 0.0 300 0.0 0.1 18.8 0 0 0.0							
60 0.0 0.1 18.8 0 0 0.0 90 0.0 0.1 18.8 0 0 0.0 120 0.0 0.1 18.8 0 0 0.0 180 0.0 0.1 18.8 0 0 0.0 240 0.0 0.1 18.8 0 0 0.0	Time (sec)	CH ₄ (%)	CO ₂ (%)	02(%)	H ₂ S (ppm)	CO (ppm)	Flow (l/h)
90 0.0 0.1 18.8 0 0 0.0 120 0.0 0.1 18.8 0 0 0.0 180 0.0 0.1 18.8 0 0 0.0 240 0.0 0.1 18.8 0 0 0.0	30	0.0	0.1	18.8	0	0	0.0
120 0.0 0.1 18.8 0 0 0.0 180 0.0 0.1 18.8 0 0 0.0 240 0.0 0.1 18.8 0 0 0.0	60	0.0	0.1	18.8	0	0	0.0
180 0.0 0.1 18.8 0 0 0.0 240 0.0 0.1 18.8 0 0 0.0	90	0.0	0.1	18.8	0	0	0.0
240 0.0 0.1 18.8 0 0 0.0	120	0.0	0.1	18.8	0	0	0.0
	180	0.0	0.1	18.8	0	0	0.0
300 0.0 0.1 18.8 0 0 0.0	240	0.0	0.1	18.8	0	0	0.0
	300	0.0	0.1	18.8	0	0	0.0

Water	mbgl
Depth to top of water	2.68
Sample collected (Y/N)	N

BH102D

Time (sec)	CH ₄ (%)	CO ₂ (%)	02(%)	H ₂ S (ppm)	CO (ppm)	Flow (l/h)
30	0.0	0.0	18.9	0	0	0.0
60	0.0	0.0	18.9	0	0	0.0
90	0.0	0.0	18.9	0	0	0.0
120	0.0	0.0	18.9	0	0	3 US 0.0
180	0.0	0.0	18.9	0	0	0.0
240	0.0	0.0	18.9	0	14.0°14	0.0
300	0.0	0.0	18.9	0	50,500	0.0

Water	mbgl
Depth to top of water	2.54
Sample collected (Y/N)	N

BH103D

Time (sec)	CH₄ (%)	CO ₂ (%)	02(%)	H ₂ S (ppm)	CO (ppm)	Flow (l/h)
30	0.0	0.1	18.8	Section Aire	0	0.1
60	0.0	0.1	18.7	Sitt 0	0	0.1
90	0.0	0.1	18.7	0	0	0.1
120	0.0	0.1	18.7 5	0	0	0.1
180	0.0	0.1	187	0	0	0.1
240	0.0	0.1	18.7	0	0	0.1
300	0.0	0.1	18.7	0	0	0.1

Water	mbgl
Depth to top of water	2.41
Sample collected (Y/N)	N

BH104S

Time (sec)	CH ₄ (%)	CO ₂ (%)	02(%)	H ₂ S (ppm)	CO (ppm)	Flow (l/h)
30	0.0	0.1	18.9	0	0	0.1
60	0.0	0.1	18.9	0	0	0.1
90	0.0	0.1	18.9	0	0	0.1
120	0.0	0.1	18.9	0	0	0.1
180	0.0	0.1	18.9	0	0	0.1
240	0.0	0.1	18.9	0	0	0.1
300	0.0	0.1	18.9	0	0	0.1

Water	mbgl
Depth to top of water	2.83
Sample collected (Y/N)	N

Site: Drogheda Port

Project No: 14-1076

BH106S

Time (sec)	CH ₄ (%)	CO ₂ (%)	02(%)	H ₂ S (ppm)	CO (ppm)	Flow (l/h)
30	0.0	0.0	18.9	0	0	0.0
60	0.0	0.0	18.9	0	0	0.0
90	0.0	0.0	18.9	0	0	0.0
120	0.0	0.1	18.8	0	0	0.0
180	0.0	0.1	18.8	0	0	0.0
240	0.0	0.1	18.8	0	0	0.0
300	0.0	0.1	18.8	0	0	0.0

Water	mbgl
Depth to top of water	2.51
Sample collected (Y/N)	N

BH108S

	CH ₄ (%)	CO ₂ (%)	02(%)	H ₂ S (ppm)	CO (ppm)	Flow (l/h)
30	0.0	0.1	18.3	0	0	0.1
60	0.0	0.1	18.3	0	0	0.1
90	0.0	0.1	17.3	0	0	0.1
120	0.0	0.1	17.3	0	0	0.1
180	0.0	0.1	17.3	0	0	0.1
240	0.0	0.1	17.3	0	0	0.1
300	0.0	0.1	17.3	0	0	0.1
			For i	170°5	ited for	

Water	mbgl
Depth to top of water	2.29
Sample collected (Y/N)	N

Causeway Geotech Ltd

Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.co.uk

Final Report

Report Number: 15-02079 Issue-1

Initial Date of Issue: 17-Feb-2015

Client: Causeway Geotech Ltd

8 Drumahiskey Road

Balnamore

Client Address: Ballymoney

> County Antrim **BT53 7QL**

Darren O'Mahony

Contact(s): Paul Dunlop

Stephen Franey

14-1076 - Drogheda Port **Project:**

Consent of copyright owner required for any other use. **Quotation No.: Date Received:** 02-Feb-2015

Order No.: **Date Instructed:** 13-Feb-2015

No. of Samples: 3

Turnaround: (Wkdays) Results Due Date: 17-Feb-2015

Date Approved: 17-Feb-2015

Approved By:

Keith Jones, Technical Manager **Details:**

Project: 14-1076 - Drogheda Port

Client: Causeway Geotech Ltd		(Chemtest Job	No.:	15-02079	15-02079	15-02079
Quotation No.:		Che	mtest Sampl	e ID.:	96507	96508	96509
Order No.:			Client Sample	Ref.:			
			Client Sampl	e ID.:	BH102	BH103	BH106
			Sample		WATER	WATER	WATER
			Top Dept	h (m):	2.30	6.00	11.50
			Bottom Dept	th(m):			
			Date San	npled:			
Determinand	Accred.	SOP	Units	LOD			
рН	U	1010			8.0	10.0	9.1
Electrical Conductivity	U	1020	μS/cm	1	11000	2100	2000
Total Dissolved Solids	N	1040	mg/l	1	6800	1200	1200
Alkalinity (Total)	U	1220	mg CaCO3/I	10	110	70	66
Chloride	U	1220	mg/l	1	4000	480	350
Fluoride	U	1220	mg/l	0.05	< 0.050	0.18	0.32
Ammoniacal Nitrogen	U	1220	mg/l	0.01	1.3	0.29	6.5
Sulphate	U	1220	mg/l	1	610	130	510
Total Oxidised Nitrogen	U	1220	mg/l	0.2	< 0.20	4.1	0.32
Cyanide (Total)	U	1300	mg/l	0.05	< 0.050	< 0.050	< 0.050
Calcium	U	1415	mg/l	5	540	150	120
Potassium	U	1415	mg/l	0.5	41	79	78
Magnesium	U	1415	mg/l	0.5	110	79	4.2
Sodium	U	1415	mg/l	0.5	1100	1000	260
Boron (Dissolved)	U	1450	μg/l	20	760	520	180
Manganese (Dissolved)	U	1450	μg/l	1	510	9.5	< 1.000
Arsenic (Total)	U	1450	μg/l	1	58	12	7.4
Cadmium (Total)	U	1450	μg/l	0.08	1.5	< 0.080	0.09
Chromium (Total)	U	1450	μg/l	1	200	140	.46
Copper (Total)	U	1450	μg/l	1	29	13	017.7
Mercury (Total)	U	1450	μg/l	0.5	< 0.50	< 0.50	< 0.50
Nickel (Total)	U	1450	μg/l	1	33	2.3	5.1
Lead (Total)	U	1450	μg/l	1	< 1.0	< 1.0	< 1.0
Zinc (Total)	U	1450	μg/l	1	41	12	20
Iron (Dissolved)	N	1470	μg/l	20	20	< 20	< 20
Chromium (Hexavalent)	U	1490	μg/l	20	A < 20	A 91	A < 20
Total Organic Carbon	N	1610	mg/l	1	3.8	7.2	7.6
Mineral Oil	U	1670	μg/l	10	A < 10	A < 10	A < 10
TPH >C6-C10	N	1670	μg/l	0.1	A < 0.10	A < 0.10	A < 0.10
TPH >C10-C21	N	1670	μg/l	0.1	A 1800	A < 0.10	A < 0.10
TPH >C21-C40	N	1670	μg/l	0.1	A 21	A < 0.10	A < 0.10
Total TPH >C6-C40	U	1670	μg/l	10	A 1800	A < 10	A < 10
Dichlorodifluoromethane	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Chloromethane	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Vinyl Chloride	N	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Bromomethane	U	1760	μg/l	5	A < 5	A < 5	A < 5

authoses only any of

Project: 14-1076 - Drogheda Port

Client: Causeway Geotech Ltd		(Chemtest Job	No.:	15-02079	15-02079	15-02079
Quotation No.:		Che	mtest Sampl	e ID.:	96507	96508	96509
Order No.:		-	Client Sample	Ref.:			
			Client Sampl		BH102	BH103	BH106
			Sample		WATER	WATER	WATER
			Top Dept	2.30	6.00	11.50	
			Bottom Dep				
			Date San	npled:			
Determinand	Accred.	SOP	Units	LOD			
Chloroethane	U	1760	μg/l	2	A < 2.0	A < 2.0	A < 2.0
Trichlorofluoromethane	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,1-Dichloroethene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Trans 1,2-Dichloroethene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,1-Dichloroethane	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
cis 1,2-Dichloroethene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Bromochloromethane	U	1760	μg/l	5	A < 5.0	A < 5.0	A < 5.0
Trichloromethane	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,1,1-Trichloroethane	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Tetrachloromethane	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,1-Dichloropropene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Benzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,2-Dichloroethane	U	1760	μg/l	2	A < 2.0	A < 2.0	A < 2.0
Trichloroethene	N	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,2-Dichloropropane	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Dibromomethane	U	1760	μg/l	10	A < 10	A < 10	A < 100
Bromodichloromethane	U	1760	μg/l	5	A < 5.0	A < 5.0	A < 5.0
cis-1,3-Dichloropropene	N	1760	μg/l	10	A < 10	A < 10	A < 10
Toluene	U	1760	μg/l	1	A < 1.0	A < 1.0	A 6 1.0
Trans-1,3-Dichloropropene	N	1760	μg/l	10	A < 10	A < 10	√ < 10
1,1,2-Trichloroethane	U	1760	μg/l	10	A < 10	A < 10	A < 10
Tetrachloroethene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,3-Dichloropropane	U	1760	μg/l	2	A < 2.0	A < 2.0	A < 2.0
Dibromochloromethane	U	1760	μg/l	10	A < 10	A < 10	A < 10
1,2-Dibromoethane	U	1760	μg/l	5	A < 5.0	A < 5.0	A < 5.0
Chlorobenzene	N	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,1,1,2-Tetrachloroethane	U	1760	μg/l	2	A < 2.0	A < 2.0	A < 2.0
Ethylbenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
m & p-Xylene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
o-Xylene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Styrene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Tribromomethane	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Isopropylbenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Bromobenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,2,3-Trichloropropane	N	1760	μg/l	50	A < 50	A < 50	A < 50
N-Propylbenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0

urposes orby any orbi

Project: 14-1076 - Drogheda Port

Client: Causeway Geotech Ltd		(Chemtest Job	No.:	15-02079	15-02079	15-02079
Quotation No.:		Che	mtest Sampl	le ID.:	96507	96508	96509
Order No.:		(Client Sample	Ref.:			
			Client Sampl	le ID.:	BH102	BH103	BH106
			Sample		WATER	WATER	WATER
			Top Dept	h (m):	2.30	6.00	11.50
			Bottom Dep	th(m):			
			Date San	npled:			
Determinand	Accred.	SOP	Units	LOD			
2-Chlorotoluene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,3,5-Trimethylbenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
4-Chlorotoluene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Tert-Butylbenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,2,4-Trimethylbenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Sec-Butylbenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,3-Dichlorobenzene	N	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
4-Isopropyltoluene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,4-Dichlorobenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
N-Butylbenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,2-Dichlorobenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,2-Dibromo-3-Chloropropane	U	1760	μg/l	50	A < 50	A < 50	A < 50
1,2,4-Trichlorobenzene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
Hexachlorobutadiene	U	1760	μg/l	1	A < 1.0	A < 1.0	A < 1.0
1,2,3-Trichlorobenzene	U	1760	μg/l	2	A < 2.0	A < 2.0	A < 2.0
Methyl Tert-Butyl Ether	N	1760	μg/l	1	A < 1.0	A < 1.0	A < 1,00
N-Nitrosodimethylamine	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Phenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Chlorophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Bis-(2-Chloroethyl)Ether	N	1790	μg/l	0.5	< 0.50	< 0.50	0.50
1,3-Dichlorobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
1,4-Dichlorobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
1,2-Dichlorobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Methylphenol (o-Cresol)	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Bis(2-Chloroisopropyl)Ether	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Hexachloroethane	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
N-Nitrosodi-n-propylamine	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Methylphenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Nitrobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Isophorone	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Nitrophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2,4-Dimethylphenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Bis(2-Chloroethoxy)Methane	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2,4-Dichlorophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
1,2,4-Trichlorobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Naphthalene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50

utdessoniy anyoth

Project: 14-1076 - Drogheda Port

Client: Causeway Geotech Ltd		(Chemtest Jol	o No.:	15-02079	15-02079	15-02079
Quotation No.:			mtest Sampl		96507	96508	96509
Order No.:		(Client Sample	Ref.:			
			Client Sampl	le ID.:	BH102	BH103	BH106
			Sample	Type:	WATER	WATER	WATER
			Top Dept	h (m):	2.30	6.00	11.50
			Bottom Dep	th(m):			
			Date San	npled:			
Determinand	Accred.	SOP	Units	LOD			
4-Chloroaniline	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Hexachlorobutadiene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Chloro-3-Methylphenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Methylnaphthalene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Hexachlorocyclopentadiene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2,4,6-Trichlorophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2,4,5-Trichlorophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Chloronaphthalene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Nitroaniline	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Acenaphthylene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Dimethylphthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2,6-Dinitrotoluene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Acenaphthene	N	1790	μg/l	0.5	0.67	< 0.50	< 0.50
3-Nitroaniline	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Dibenzofuran	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Chlorophenylphenylether	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.500
2,4-Dinitrotoluene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Fluorene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Diethyl Phthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Nitroaniline	N	1790	μg/l	0.5	< 0.50	< 0.50	0.50
2-Methyl-4,6-Dinitrophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Azobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Bromophenylphenyl Ether	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Hexachlorobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Pentachlorophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Phenanthrene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Anthracene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Carbazole	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Di-N-Butyl Phthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Fluoranthene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Pyrene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Butylbenzyl Phthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Benzo[a]anthracene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Chrysene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Bis(2-Ethylhexyl)Phthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Di-N-Octyl Phthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50

authores out any other

Project: 14-1076 - Drogheda Port

Client: Causeway Geotech Ltd		(Chemtest Jol	15-02079	15-02079	15-02079	
Quotation No.:			mtest Samp		96507	96508	96509
Order No.:			Client Sample				
			Client Samp	le ID.:	BH102	BH103	BH106
			Sample		WATER	WATER	WATER
			Top Dept		2.30	6.00	11.50
			Bottom Dep				
		Date Sampled:					
Determinand	Accred.	SOP	Units	LOD			
Benzo[b]fluoranthene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Benzo[k]fluoranthene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Benzo[a]pyrene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Indeno(1,2,3-c,d)Pyrene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Dibenz(a,h)Anthracene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Benzo[g,h,i]perylene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Nitrophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Demeton-O	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Phorate	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Demeton-S	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Disulfoton	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Fenthion	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Trichloronate	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Prothiofos	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Fensulphothion	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Sulprofos	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.200
Azinphos-Methyl	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Coumaphos	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Atraton	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Prometon	N	1830	μg/l	0.2	< 0.20	< 0.20	0.20
Simazine	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Atrazine	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Propazine	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Terbuthylazine	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Secbumeton	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Simetryn	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Ametryn	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Prometryn	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Terbutryn	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Alpha-Lindane	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Gamma-Lindane	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Beta-Lindane	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Delta-Lindane	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Heptachlor	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Aldrin	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Heptachlor Epoxide	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20

nut of seasons and other

Project: 14-1076 - Drogheda Port

Client: Causeway Geotech Ltd		(Chemtest Job	No.:	15-02079	15-02079	15-02079
Quotation No.:		Che	mtest Sampl	le ID.:	96507	96508	96509
Order No.:			Client Sample				
			Client Sampl	le ID.:	BH102	BH103	BH106
			Sample	Type:	WATER	WATER	WATER
	Top Depth (m):				2.30	6.00	11.50
			Bottom Dep				
	Date Sampled:						
Determinand	Accred.	SOP	Units	LOD			
Gamma-Chlordane	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Alpha-Chlordane	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Endosulfan I	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
4,4-DDE	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Dieldrin	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Endrin	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
4,4-DDD	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Endosulfan II	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Endrin Aldehyde	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
4,4-DDT	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Endosulfan Sulphate	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Methoxychlor	N 1840 μg/l 0.2				< 0.20	< 0.20	< 0.20
Endrin Ketone	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Total Phenols	U	1920	mg/l	0.03	0.060	0.040	0.080

uposes outh, suh oue

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Chemtest Sample ID:	Sample Ref:	Sample ID:	Sampled Date:	Containers Received:	Deviation Code(s):
96507		BH102	None Supplied	Coloured Winchester 1000ml	А
96507		BH102	None Supplied	EPA Vial 40ml	А
96507		BH102	None Supplied	Plastic Bottle 1000ml	А
96508		BH103	None Supplied	Coloured Winchester 1000ml	А
96508		BH103	None Supplied	EPA Vial 40ml	Α
96508		BH103	None Supplied	Plastic Bottle 1000ml	А
96509		BH106	None Supplied	Coloured Winchester 1000ml	А
96509		BH106	None Supplied	EPA Vial 40ml	Α
96509		BH106	None Supplied	Plastic Bottle 1000ml	А

BH106 None Supplied I

Report Information

Key

- **UKAS** accredited
- MCERTS and UKAS accredited Μ
- Ν Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- Т This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable sample
- N/E not evaluated
 - "less than" <
 - "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laborators

Issue numbers are sequential starting with 1 all subsequentive ports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 60 days from the date of receipt

COU

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.co.uk

Chemtest Ltd. **Depot Road** Newmarket CB8 0AL Tel: 01638 606070

Email: info@chemtest.co.uk

Final Report

Report Number: 15-02319 Issue-1

Initial Date of Issue: 12-Feb-2015

Client: Causeway Geotech Ltd

8 Drumahiskey Road

Balnamore

Client Address: Ballymoney

> County Antrim **BT53 7QL**

Darren O'Mahony

Contact(s): Paul Dunlop

Stephen Franey

14-1076 Drogheda Port Project:

Consent for its petion bulges only any other use. **Quotation No.: Date Received:** 04-Feb-2015

Order No.: **Date Instructed:** 03-Feb-2015

No. of Samples: 3

Turnaround: (Wkdays) **Results Due Date:** 5 09-Feb-2015

Date Approved: 09-Feb-2015

Approved By:

Details: Darrell Hall, Laboratory Director

Project: 14-1076 Drogheda Port

Client: Causeway Geotech Ltd	Chemtest Job N				15-02319	15-02319	15-02319
Quotation No.:		Cr	emtest Samp	le ID.:	97771	97772	97773
Order No.:	1		Client Sample	e Ref.:			
	1		Client Samp	le ID.:	BH101	BH104	BH108
			Sample	Type:	WATER	WATER	WATER
			Top Dept	th (m):	2.30	6.00	11.50
			Bottom Dep	th(m):			
			Date Sar	npled:	30-Jan-15	30-Jan-15	30-Jan-15
Determinand	Accred.	SOP	Units	LOD			
рН	U	1010			7.9	9.6	12.0
Electrical Conductivity	U	1020	μS/cm	1	13000	2700	7900
Total Dissolved Solids	N	1040	mg/l	1	7900	1600	4800
Alkalinity (Total)	U	1220	mg CaCO3/I	10	89	240	1600
Chloride	U	1220	mg/l	1	4200	640	730
Fluoride	U	1220	mg/l	0.05	0.25	3.1	1.3
Ammoniacal Nitrogen	U	1220	mg/l	0.01	1.4	16	0.61
Sulphate	U	1220	mg/l	1	830	2300	67
Total Oxidised Nitrogen	U	1220	mg/l	0.2	1.0	< 0.20	1.6
Cyanide (Total)	U	1300	mg/l	0.05	< 0.050	0.060	< 0.050
Calcium	U	1415	mg/l	5	410	79	19 👊
Potassium	U	1415	mg/l	0.5	120	180	1100 6
Magnesium	U	1415	mg/l	0.5	150	15	0.80
Sodium	U	1415	mg/l	0.5	3100	500	11. 6910
Boron (Dissolved)	U	1450	μg/l	20	1400	430 🎺	73
Manganese (Dissolved)	U	1450	μg/l	1	600	ئ پ 130	19
Arsenic (Total)	U	1450	μg/l	1	19	18	11
Cadmium (Total)	U	1450	μg/l	0.08	0.27	0.20	0.18
Chromium (Total)	U	1450	μg/l	1	49	31	14
Copper (Total)	U	1450	μg/l	1	46	5.3	8.0
Mercury (Total)	U	1450	μg/l	0.5	< 0.50	< 0.50	< 0.50
Nickel (Total)	U	1450	μg/l	1	9.2	19	17
Lead (Total)	U	1450	μg/l	1	37	8.1	1.6
Zinc (Total)	U	1450	μg/l	1	170	170	46
Iron (Dissolved)	N	1470	μg/l	20	< 20	130	70
Chromium (Hexavalent)	U	1490	μg/l	20	< 20	< 20	< 20
Total Organic Carbon	N	1610	mg/l	1	2.5	36	74
Mineral Oil	U	1670	μg/l	10	< 10	460	960
TPH >C6-C10	N	1670	μg/l	0.1	< 0.10	< 0.10	< 0.10
TPH >C10-C21	N	1670	μg/l	0.1	< 0.10	180	7.2
TPH >C21-C40	N	1670	μg/l	0.1	< 0.10	480	1200
Total TPH >C6-C40	U	1670	μg/l	10	< 10	660	1200
Dichlorodifluoromethane	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0

offy any other

Project: 14-1076 Drogheda Port

Client: Causeway Geotech Ltd			Chemtest Jo	b No.:	15-02319	15-02319	15-02319
Quotation No.:		Ch	emtest Samp	le ID.:	97771	97772	97773
Order No.:			Client Sampl	e Ref.:			
			Client Samp	le ID.:	BH101	BH104	BH108
			Sample	Type:	WATER	WATER	WATER
			Top Dep	th (m):	2.30	6.00	11.50
			Bottom Dep	oth(m):			
			Date Sa	mpled:	30-Jan-15	30-Jan-15	30-Jan-15
Determinand	Accred.	SOP	Units	LOD			
Chloromethane	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Vinyl Chloride	N	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Bromomethane	U	1760	μg/l	5	< 5	< 5	< 5
Chloroethane	U	1760	μg/l	2	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Trans 1,2-Dichloroethene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Bromochloromethane	U	1760	μg/l	5	< 5.0	< 5.0	< 5.0
Trichloromethane	U	1760	μg/l	1	< 1.0	< 1.0	< 1.000
1,1,1-Trichloroethane	U	1760	μg/l	1	< 1.0	< 1.0	<:100 %
Tetrachloromethane	U	1760	μg/l	1	< 1.0	< 1.0	08 100°
1,1-Dichloropropene	U	1760	μg/l	1	< 1.0	< 1.0	11.0
Benzene	U	1760	μg/l	1	< 1.0	< 1.0 🗘	√1°< 1.0
1,2-Dichloroethane	U	1760	μg/l	2	< 2.0	≥ 2.0 ح	< 2.0
Trichloroethene	N	1760	μg/l	1	< 1.0	< 1.00	< 1.0
1,2-Dichloropropane	U	1760	μg/l	1	< 1.0	₹ 1.0	< 1.0
Dibromomethane	U	1760	μg/l	10	< 10	C < 10	< 10
Bromodichloromethane	U	1760	μg/l	5	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	N	1760	μg/l	10	< 10	< 10	< 10
Toluene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene	N	1760	μg/l	10	< 10	< 10	< 10
1,1,2-Trichloroethane	U	1760	μg/l	10	< 10	< 10	< 10
Tetrachloroethene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	U	1760	μg/l	2	< 2.0	< 2.0	< 2.0
Dibromochloromethane	U	1760	μg/l	10	< 10	< 10	< 10
1,2-Dibromoethane	U	1760	μg/l	5	< 5.0	< 5.0	< 5.0
Chlorobenzene	N	1760	μg/l	1	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	U	1760	μg/l	2	< 2.0	< 2.0	< 2.0
Ethylbenzene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
o-Xylene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0

only any other

Project: 14-1076 Drogheda Port

Client: Causeway Geotech Ltd			Chemtest Jo	b No.:	15-02319	15-02319	15-02319
Quotation No.:		Ch	emtest Samp	le ID.:	97771	97772	97773
Order No.:	1		Client Sampl	e Ref.:			
	1		Client Samp	le ID.:	BH101	BH104	BH108
			Sample	Type:	WATER	WATER	WATER
			Top Dep		2.30	6.00	11.50
			Bottom Dep	oth(m):			
			Date Sa	mpled:	30-Jan-15	30-Jan-15	30-Jan-15
Determinand	Accred. SOP Units LOD						
Styrene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Tribromomethane	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Isopropylbenzene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Bromobenzene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	N	1760	μg/l	50	< 50	< 50	< 50
N-Propylbenzene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.000
Sec-Butylbenzene	U	1760	μg/l	1	< 1.0	< 1.0	<:100 %
1,3-Dichlorobenzene	N	1760	μg/l	1	< 1.0	< 1.0	08 100 P
4-Isopropyltoluene	U	1760	μg/l	1	< 1.0	< 1.0	11.0
1,4-Dichlorobenzene	U	1760	μg/l	1	< 1.0	< 1.0 🗘	√1°< 1.0
N-Butylbenzene	U	1760	μg/l	1	< 1.0	ک ۽ 1.0 >	< 1.0
1,2-Dichlorobenzene	U	1760	μg/l	1	< 1.0	< 1,000	< 1.0
1,2-Dibromo-3-Chloropropane	U	1760	μg/l	50	< 50	6 50	< 50
1,2,4-Trichlorobenzene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	U	1760	μg/l	1	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	U	1760	μg/l	2	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether	N	1760	μg/l	1	< 1.0	< 1.0	< 1.0
N-Nitrosodimethylamine	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Phenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Chlorophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Bis-(2-Chloroethyl)Ether	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
1,3-Dichlorobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
1,4-Dichlorobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
1,2-Dichlorobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Methylphenol (o-Cresol)	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Bis(2-Chloroisopropyl)Ether	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Hexachloroethane	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
N-Nitrosodi-n-propylamine	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50

offy. any other

Project: 14-1076 Drogheda Port

Client: Causeway Geotech Ltd			Chemtest Jo	15-02319	15-02319	15-02319	
Quotation No.:		Ch	emtest Samp		97771	97772	97773
Order No.:			Client Sample	e Ref.:			
	Client Sample ID.:				BH101	BH104	BH108
	Sample Type:				WATER	WATER	WATER
	Top Depth (m): Bottom Depth(m):				2.30	6.00	11.50
			Date Sa	30-Jan-15	30-Jan-15	30-Jan-15	
Determinand	Accred.	SOP	Units	LOD			
4-Methylphenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Nitrobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Isophorone	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Nitrophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2,4-Dimethylphenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Bis(2-Chloroethoxy)Methane	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2,4-Dichlorophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
1,2,4-Trichlorobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Naphthalene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Chloroaniline	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Hexachlorobutadiene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Chloro-3-Methylphenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Methylnaphthalene	N	1790	μg/l	0.5	< 0.50	< 0.50	£0.50°
Hexachlorocyclopentadiene	N	1790	μg/l	0.5	< 0.50	< 0.50	VI 800.50
2,4,6-Trichlorophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	4 < 0.50
2,4,5-Trichlorophenol	N	1790	μg/l	0.5	< 0.50	< 0.50 _c o	< 0.50
2-Chloronaphthalene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Nitroaniline	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Acenaphthylene	N	1790	μg/l	0.5	< 0.50	0.50	< 0.50
Dimethylphthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2,6-Dinitrotoluene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Acenaphthene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
3-Nitroaniline	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Dibenzofuran	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Chlorophenylphenylether	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2,4-Dinitrotoluene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Fluorene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Diethyl Phthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Nitroaniline	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
2-Methyl-4,6-Dinitrophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Azobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Bromophenylphenyl Ether	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Hexachlorobenzene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50

only. any other

Project: 14-1076 Drogheda Port

Client: Causeway Geotech Ltd			Chemtest Jo	15-02319	15-02319	15-02319	
Quotation No.:		Ch	emtest Samp	le ID.:	97771	97772	97773
Order No.:			Client Sampl	e Ref.:			
	1		Client Samp	le ID.:	BH101	BH104	BH108
			Sample	WATER	WATER	WATER	
			Top Dep	2.30	6.00	11.50	
			Bottom Dep				
		Date Sampled:				30-Jan-15	30-Jan-15
Determinand	Accred.	SOP	Units	LOD			
Pentachlorophenol	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Phenanthrene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Anthracene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Carbazole	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Di-N-Butyl Phthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Fluoranthene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Pyrene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Butylbenzyl Phthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Benzo[a]anthracene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Chrysene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Bis(2-Ethylhexyl)Phthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Di-N-Octyl Phthalate	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50 5
Benzo[b]fluoranthene	N	1790	μg/l	0.5	< 0.50	< 0.50	&0.50°
Benzo[k]fluoranthene	N	1790	μg/l	0.5	< 0.50	< 0.50	V. 80.50
Benzo[a]pyrene	N	1790	μg/l	0.5	< 0.50	< 0.50	3 < 0.50
Indeno(1,2,3-c,d)Pyrene	N	1790	μg/l	0.5	< 0.50	< 0.50 _s o	< 0.50
Dibenz(a,h)Anthracene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
Benzo[g,h,i]perylene	N	1790	μg/l	0.5	< 0.50	< 0.50	< 0.50
4-Nitrophenol	N	1790	μg/l	0.5	< 0.50	0.50	< 0.50
Demeton-O	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Phorate	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Demeton-S	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Disulfoton	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Fenthion	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Trichloronate	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Prothiofos	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Fensulphothion	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Sulprofos	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Azinphos-Methyl	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Coumaphos	N	1820	μg/l	0.2	< 0.20	< 0.20	< 0.20
Atraton	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Prometon	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Simazine	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20

orth, and offern

Results Summary - Water

Project: 14-1076 Drogheda Port

Client: Causeway Geotech Ltd	Chemtest Job No.:			15-02319	15-02319	15-02319	
Quotation No.:		Ch	emtest Samp	le ID.:	97771	97772	97773
Order No.:			Client Sampl	e Ref.:			
			Client Samp		BH101	BH104	BH108
			Sample	Туре:	WATER	WATER	WATER
			Top Dep	th (m):	2.30	6.00	11.50
			Bottom Dep	oth(m):			
			Date Sa	mpled:	30-Jan-15	30-Jan-15	30-Jan-15
Determinand	Accred.	SOP	Units	LOD			
Atrazine	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Propazine	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Terbuthylazine	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Secbumeton	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Simetryn	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Ametryn	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Prometryn	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Terbutryn	N	1830	μg/l	0.2	< 0.20	< 0.20	< 0.20
Alpha-Lindane	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Gamma-Lindane	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Beta-Lindane	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Delta-Lindane	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Heptachlor	N	1840	μg/l	0.2	< 0.20	< 0.20	£0£0
Aldrin	N	1840	μg/l	0.2	< 0.20	< 0.20	VI 800.20
Heptachlor Epoxide	N	1840	μg/l	0.2	< 0.20	< 0.20	3 < 0.20
Gamma-Chlordane	N	1840	μg/l	0.2	< 0.20	< 0.20 ₅ o	< 0.20
Alpha-Chlordane	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Endosulfan I	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
4,4-DDE	N	1840	μg/l	0.2	< 0.20	€ 0.20	< 0.20
Dieldrin	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Endrin	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
4,4-DDD	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Endosulfan II	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Endrin Aldehyde	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
4,4-DDT	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Endosulfan Sulphate	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Methoxychlor	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Endrin Ketone	N	1840	μg/l	0.2	< 0.20	< 0.20	< 0.20
Total Phenols	U	1920	mg/l	0.03	< 0.030	0.31	0.38

any other u

Report Information

Key

- **UKAS** accredited
- MCERTS and UKAS accredited Μ
- Ν Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- This analysis has been subcontracted to an unaccredited laboratory Т
- I/S Insufficient Sample
- U/S Unsuitable sample
- N/E not evaluated
 - "less than" <
 - "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at our Coventry laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1 Owner

Fot

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

Sample Retention and Disposal

All soil samples will be retained for a period of 60 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.co.uk

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 19-18081-1

Initial Date of Issue: 05-Jun-2019

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Carin Cornwall

Colm Hurley
Darren O'Mahony
Gabriella Horan
Joe Gervin
John Cameron
Lucy Newland
Matthew Gilbert
Neil Haggan
Paul Dunlop
Paul McNamara
Sean Ross
Stephen Francisch

Sean Ross
Stephen Francy
Stephen McCracken
Stephen Watson
Stuart Abraham

Project 19-0532 Tom Roes Point

Quotation No.: Date Received: 29-May-2019

Order No.: Date Instructed: 29-May-2019

No. of Samples: 8

Turnaround (Wkdays): 5 Results Due: 04-Jun-2019

Date Approved: 05-Jun-2019

Approved By:

Depot Road Newmarket CB8 0AL Tel: 01638 606070

Email: info@chemtest.com

Consent of copyright owner required for any other use.

Project: 19-0532 Tom Roes Point												
Client: Causeway Geotech Ltd		Che	mtest J	ob No.:	19-18081	19-18081	19-18081	19-18081	19-18081	19-18081	19-18081	19-18081
Quotation No.:	(Chemte	est Sam	ple ID.:	834035	834036	834037	834039	834042	834043	834044	834046
		Sa	ample L	ocation:	BH01	BH01	BH01	BH01	BH02	BH02	BH02	BH02
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	0.50	1.50	2.00	4.00	0.50	1.00	2.00	4.00
			Date Sa	ampled:	15-May-2019	15-May-2019	15-May-2019	15-May-2019	15-May-2019	15-May-2019	15-May-2019	15-May-2019
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD								
ACM Type	U	2192		N/A	Fibres/Clumps	Fibres/Clumps	-	-	=	-	-	-
Asbestos Identification	U	2192	%	0.001	Chrysotile	Chrysotile Crocidolite	No Asbestos Detected					
ACM Detection Stage	U	2192		N/A	Stereo Microscopy	Stereo Microscopy	-	-	-	-	-	-
Moisture	N	2030	%	0.020	15	19	6.8	24	11	38	40	43
pH	U	2010		N/A	9.3	9.7	9.7	9.3	9.3	12.3	12.1	11.8
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	1.5	1.6	0.87	0.61	0.88	1.2	1.7	1.6
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.80	0.48	0.034	. \$ 0.13	0.39	2.0	2.2	2.0
Cyanide (Free)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	(0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)	U	2300	mg/kg	-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Thiocyanate	U	2300	mg/kg	5.0	< 5.0	< 5.0	<8.0x 3	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	18	13	SE 4.5	5.8	4.7	9.8	7.7	7.7
Sulphate (Total)	U	2430	%	0.010	0.47	0.37	JV 30.040	0.17	0.25	2.8	2.4	2.5
Arsenic	U	2450	mg/kg	1.0	27	25	30	4.8	23	42	40	40
Cadmium	U	2450	mg/kg		1.8	6.4 200	0.36	< 0.10	0.78	1.9	1.9	1.7
Chromium	U	2450	mg/kg	1.0	28	.990	13	10	16	37	34	35
Copper	U	2450	mg/kg	0.50	27	A 5 4450	8.5	2.0	14	48	44	44
Mercury	U	2450	mg/kg	0.10	0.13	6814	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	-	24	3 9	9.2	10	24	37	32	32
Lead	U	2450	mg/kg		130	170	6.4	2.8	15	170	140	120
Selenium	U	2450	mg/kg	0.20	< 0.20 ح	0.87	< 0.20	< 0.20	0.20	0.83	0.75	0.77
Zinc	U	2450	mg/kg	0.50	58	80	11	19	29	140	120	97
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	1.2	1.1	< 0.40	< 0.40	0.59	< 0.40	0.41	< 0.40
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg		< 1.0	5.4	4.6	4.2	< 1.0	1.3	1.8	1.8
Aliphatic TPH >C16-C21	U	2680	mg/kg		< 1.0	5.5	8.3	5.4	2.0	4.0	4.5	5.0
Aliphatic TPH >C21-C35	Ü	2680	mg/kg	1.0	< 1.0	28	88	24	14	17	15	27
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	2.8	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	39	100	33	16	22	22	34
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	Ü	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	Ü	2680			< 1.0	< 1.0	1.0	1.1	< 1.0	1.5	1.4	1.6
	_								-			

Results - Soil

Project: 19-0532 Tom Roes Point												
Client: Causeway Geotech Ltd			mtest Jo		19-18081	19-18081	19-18081	19-18081	19-18081	19-18081	19-18081	19-18081
Quotation No.:	(st Sam		834035	834036	834037	834039	834042	834043	834044	834046
		Sa	ample Lo		BH01	BH01	BH01	BH01	BH02	BH02	BH02	BH02
			Sample	,,	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep		0.50	1.50	2.00	4.00	0.50	1.00	2.00	4.00
			Date Sa	mpled:	15-May-2019	15-May-2019	15-May-2019	15-May-2019	15-May-2019	15-May-2019	15-May-2019	15-May-2019
			Asbest		COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD								
Aromatic TPH >C16-C21	U		mg/kg	1.0	< 1.0	1.5	2.3	1.5	< 1.0	8.3	2.1	2.8
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	51	130	48	25	59	64	58
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	53	130	51	25	68	68	62
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	92	240	84	41	90	89	96
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	, ∜ 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	0.37	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	0.36	< 0.10	<u> چ</u> چ <u>۵</u> 10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	11 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	<.0300	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	<u></u>	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	√0. 10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	o < 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	off < 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760		1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols	Ü	-		0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry

weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Site:	TOM ROES RD, DROGHEDA PORT
Project No.:	19-0532
Date:	12/07/2019
Weather:	₧ Gas Monitoring

quipment:		Geotechnical	Instruments	GA5000		
Ambient Conditions	Barometric Pressure	CH₄ (%)	CO ₂ (%)	0 ₂ (%)	CO (ppm)	H₂S (ppm)
Before:	1017	0	0	21.1	0	0
After:	1017	0	0	21.1	0	0

BH02	Gas readings							
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H₂S (ppm)			
30	0.1	0.3	19.7	0	0			
60	0.1	0.3	19.5	0	0			
90	0.1	0.3	19.4	0	0			
120	0.1	0.3	19.4	0	0			
150	0.1	0.3	19.4	0	0			
180	0.1	0.3	19.4	0	0			
240	0.1	0.3	19.5	0	0			
300	0.1	0.2	19.4	0	0			

Flow rates						
Time (sec)	Flow (I/h)					
30	0					
60	0.1					
90	0.1					
120	0.1					
150	0.1					
180	0.1					
240	0.1					
300	0.1					

Groundwater monitoring	mbgl
Depth to top of water	3.5
Depth to bottom of BH	6.85
Sample collected (Y/N)	Υ
Sample depth	3.5

BH01	Gas readings							
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)			
30	0	0.8	12	0	0			
60	0	0.7	12.6	0	0			
90	0	0.5	15.8	0	0			
120	0	0.8	11	0	0			
150	0	0.4	14.8	0	0			
180	0	0.7	12.6	0	0			
240	0	0.5	14.3	0	0			
300	0	0.5	15.4	0	0			

Flow rates							
Time (sec)	Flow (I/h)						
30	0.70 life						
60	:01 Q.P						
90	octown 0.1						
120 in	0.1						
150,00	0.2						
180	0.1						
cons ⁶² 40	0.2						
300	0.1						

Groundwater monitoring	mbgl
Depth to top of water	3.71
Depth to bottom of BH	7.54
Sample collected (Y/N)	Υ
Sample depth	

ВНххх	Gas readings						
Time (sec)	CH₄ (%)	CO ₂ (%)	02 (%)	CO (ppm)	H ₂ S (ppm)		
30							
60							
90							
120							
150							
180							
240							
300							

Flow rates							
Time (sec)	Flow (I/h)						
30							
60							
90							
120							
150							
180							
240	-						
300							

Groundwater monitoring	mbgl
Depth to top of water	
Depth to bottom of BH	
Sample collected (Y/N)	
Sample depth	

Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.com

Final Report

Report No.: 19-23723-1

Initial Date of Issue: 18-Jul-2019

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Colm Hurley

Project 19-0532 Drogheda

Order No.: Date Instructed: 15-Jul-2019

No. of Samples: 2

Turnaround (Wkdays): 3 Results Due: 17-Jul-2019

Date Approved: 18-Jul-2019

Approved By:

Details: Robert Monk, Technical Manager

Client: Causeway Geotech Ltd			mtest J	19-23723	19-23723	
Quotation No.: Q19-17585			est Sam	858068	858069	
			ent Sam	WS	WS	
		S	ample Lo		BH01	BH02
			Sampl	WATER	WATER	
			Date Sa	ampled:	12-Jul-2019	12-Jul-2019
Determinand	Accred.	SOP	Units	LOD		
рН	U	1010		N/A	8.5	8.6
Electrical Conductivity	U	1020	μS/cm	1.0	1900	3800
Total Dissolved Solids	N	1020	mg/l	1.0	1200	2500
Alkalinity (Total)	U	1220	mg/l	10	43	240
Chloride	U	1220	mg/l	1.0	290	990
Fluoride	U	1220	mg/l	0.050	0.38	0.83
Ammoniacal Nitrogen	U	1220	mg/l	0.050	3.6	6.1
Sulphate	U	1220	mg/l	1.0	470	280
Total Oxidised Nitrogen	U	1220	mg/l	0.20	0.29	< 0.20
Cyanide (Total)	U	1300	mg/l	0.050	< 0.050	< 0.050
Calcium	U	1415	mg/l	5.0	120	27
Potassium	U	1415	mg/l	0.50	93	310
Magnesium	U	1415	mg/l	0.50	0.95	3.1
Sodium	U	1415	mg/l	0.50	210	630
Boron (Dissolved)	U	1450	μg/l	20	210	470
Iron (Dissolved)	N	1450	μg/l	20	560	520
Manganese (Dissolved)	U	1450	μg/l	1.0	7.2	22
Arsenic (Total)	N	1450	μg/l	1.0	8.8	18 .
Cadmium (Total)	N	1450	μg/l	0.080	< 0.080	0.11.6
Chromium (Total)	N	1450	μg/l	1.0	8.3	32
Copper (Total)	N	1450	μg/l	1.0	7.5	555
Mercury (Total)	N	1450	μg/l	0.50	< 0.50	≤0.50
Nickel (Total)	N	1450	μg/l	1.0	3.8	CON 8.6
Lead (Total)	N	1450	μg/l	1.0	< 1.0	1.8
Zinc (Total)	N	1450	μg/l	1.0	5.4	7.9
Chromium (Hexavalent)	U	1490	μg/l	20	< 20	< 20
Total Organic Carbon	U	1610	mg/l	2.0	16	41
Mineral Oil	N	1670	μg/l	10	< 10	< 10
TPH >C6-C10	N	1670	μg/l	0.10	< 0.10	< 0.10
TPH >C10-C21	N	1670	μg/l	0.10	< 0.10	< 0.10
TPH >C21-C40	N	1670	μg/l	0.10	< 0.10	< 0.10
Total TPH >C6-C40	U	1670	μg/l	10	< 10	< 10
Dichlorodifluoromethane	Ū	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Chloromethane	Ū	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Vinyl Chloride	N	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Bromomethane	Ü	1760	μg/l	5.0	[C] < 5.0	[C] < 5.0
Chloroethane	Ü	1760	μg/l	2.0	[C] < 2.0	[C] < 2.0
Trichlorofluoromethane	Ü	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
1.1-Dichloroethene	Ü	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Trans 1,2-Dichloroethene	Ü	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0

Client: Causeway Geotech Ltd			mtest J	19-23723	19-23723	
Quotation No.: Q19-17585	on No.: Q19-17585 Chemtest Sample ID.					858069
	Client Sample ID.:				WS	WS
		S	ample Lo		BH01	BH02
				e Type:	WATER	WATER
			Date Sa	ampled:	12-Jul-2019	12-Jul-2019
Determinand	Accred.	SOP	Units	LOD		
1,1-Dichloroethane	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
cis 1,2-Dichloroethene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Bromochloromethane	U	1760	μg/l	5.0	[C] < 5.0	[C] < 5.0
Trichloromethane	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
1,1,1-Trichloroethane	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Tetrachloromethane	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
1,1-Dichloropropene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Benzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
1,2-Dichloroethane	U	1760	μg/l	2.0	[C] < 2.0	[C] < 2.0
Trichloroethene	N	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
1,2-Dichloropropane	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Dibromomethane	U	1760	μg/l	10	[C] < 10	[C] < 10
Bromodichloromethane	U	1760	μg/l	5.0	[C] < 5.0	[C] < 5.0
cis-1,3-Dichloropropene	N	1760	μg/l	10	[C] < 10	[C] < 10
Toluene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Trans-1,3-Dichloropropene	N	1760	μg/l	10	[C] < 10	[C] < 10
1,1,2-Trichloroethane	U	1760	μg/l	10	[C] < 10	[C] < 10
Tetrachloroethene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0.
1,3-Dichloropropane	U	1760	μg/l	2.0	[C] < 2.0	[C] < 2.6
Dibromochloromethane	U	1760	μg/l	10	[C] < 10	[C] < 100
1,2-Dibromoethane	U	1760	μg/l	5.0	[C] < 5.0	[C] < 5 .0
Chlorobenzene	N	1760	μg/l	1.0	[C] < 1.0	[Ç j × 1.0
1,1,1,2-Tetrachloroethane	U	1760	μg/l	2.0	[C] < 2.0	<u>~</u> (Ĉ] < 2.0
Ethylbenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
m & p-Xylene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
o-Xylene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Styrene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Tribromomethane	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Isopropylbenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Bromobenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
1,2,3-Trichloropropane	N	1760	μg/l	50	[C] < 50	[C] < 50
N-Propylbenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
2-Chlorotoluene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
1,3,5-Trimethylbenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
4-Chlorotoluene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Tert-Butylbenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
1,2,4-Trimethylbenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
Sec-Butylbenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
1,3-Dichlorobenzene	N	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0
4-Isopropyltoluene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0

Client: Causeway Geotech Ltd	ech Ltd Chemtest Job No.:					19-23723	
Quotation No.: Q19-17585		Chemte	est Sam	858068	858069		
Client S				ple ID.:	WS	WS	
	Sample Location				BH01	BH02	
				e Type:	WATER	WATER	
			Date Sa	ampled:	12-Jul-2019	12-Jul-2019	
Determinand	Accred.	SOP	Units	LOD			
1,4-Dichlorobenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0	
N-Butylbenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0	
1,2-Dichlorobenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0	
1,2-Dibromo-3-Chloropropane	U	1760	μg/l	50	[C] < 50	[C] < 50	
1,2,4-Trichlorobenzene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0	
Hexachlorobutadiene	U	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0	
1,2,3-Trichlorobenzene	U	1760	μg/l	2.0	[C] < 2.0	[C] < 2.0	
Methyl Tert-Butyl Ether	N	1760	μg/l	1.0	[C] < 1.0	[C] < 1.0	
N-Nitrosodimethylamine	N	1790	μg/l	0.50	< 0.50	< 0.50	
Phenol	N	1790	μg/l	0.50	< 0.50	< 0.50	
2-Chlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	
Bis-(2-Chloroethyl)Ether	N	1790	μg/l	0.50	< 0.50	< 0.50	
1,3-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	
1,4-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	
1,2-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	
2-Methylphenol (o-Cresol)	N	1790	μg/l	0.50	< 0.50	< 0.50	
Bis(2-Chloroisopropyl)Ether	N	1790	μg/l	0.50	< 0.50	< 0.50	
Hexachloroethane	N	1790	μg/l	0.50	< 0.50	< 0.50	
N-Nitrosodi-n-propylamine	N	1790	μg/l	0.50	< 0.50	< 0.505	
4-Methylphenol	N	1790	μg/l	0.50	< 0.50	< 0.50	
Nitrobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	
Isophorone	N	1790	μg/l	0.50	< 0.50	₹ 0.50	
2-Nitrophenol	N	1790	μg/l	0.50	< 0.50	0.50 > آم	
2,4-Dimethylphenol	N	1790	μg/l	0.50	< 0.50	< 0.50	
Bis(2-Chloroethoxy)Methane	N	1790	μg/l	0.50	< 0.50	< 0.50	
2,4-Dichlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	
1,2,4-Trichlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	
Naphthalene	N	1790	μg/l	0.50	< 0.50	< 0.50	
4-Chloroaniline	N	1790	μg/l	0.50	< 0.50	< 0.50	
Hexachlorobutadiene	N	1790	μg/l	0.50	< 0.50	< 0.50	
4-Chloro-3-Methylphenol	N	1790	μg/l	0.50	< 0.50	< 0.50	
2-Methylnaphthalene	N	1790	μg/l	0.50	< 0.50	< 0.50	
Hexachlorocyclopentadiene	N	1790	μg/l	0.50	< 0.50	< 0.50	
2,4,6-Trichlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	
2,4,5-Trichlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	
2-Chloronaphthalene	N	1790	μg/l	0.50	< 0.50	< 0.50	
2-Nitroaniline	N	1790	μg/l	0.50	< 0.50	< 0.50	
Acenaphthylene	N	1790	μg/l	0.50	< 0.50	< 0.50	
Dimethylphthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	
2,6-Dinitrotoluene	N	1790	μg/l	0.50	< 0.50	< 0.50	

Client: Causeway Geotech Ltd		ob No.:	19-23723	19-23723		
Quotation No.: Q19-17585			est Sam	858068	858069	
			ent Sam	WS	WS	
		S	ample Lo	BH01	BH02	
				е Туре:	WATER	WATER
			Date Sa	ampled:	12-Jul-2019	12-Jul-2019
Determinand	Accred.	SOP	Units	LOD		
Acenaphthene	N	1790	μg/l	0.50	< 0.50	< 0.50
3-Nitroaniline	N	1790	μg/l	0.50	< 0.50	< 0.50
Dibenzofuran	N	1790	μg/l	0.50	< 0.50	< 0.50
4-Chlorophenylphenylether	N	1790	μg/l	0.50	< 0.50	< 0.50
2,4-Dinitrotoluene	N	1790	μg/l	0.50	< 0.50	< 0.50
Fluorene	N	1790	μg/l	0.50	< 0.50	< 0.50
Diethyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50
4-Nitroaniline	N	1790	μg/l	0.50	< 0.50	< 0.50
2-Methyl-4,6-Dinitrophenol	N	1790	μg/l	0.50	< 0.50	< 0.50
Azobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50
4-Bromophenylphenyl Ether	N	1790	μg/l	0.50	< 0.50	< 0.50
Hexachlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50
Pentachlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50
Phenanthrene	N	1790	μg/l	0.50	< 0.50	< 0.50
Anthracene	N	1790	μg/l	0.50	< 0.50	< 0.50
Carbazole	N	1790	μg/l	0.50	< 0.50	< 0.50
Di-N-Butyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50
Fluoranthene	N	1790	μg/l	0.50	< 0.50	< 0.50 .
Pyrene	N	1790	μg/l	0.50	< 0.50	< 0.505
Butylbenzyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50
Benzo[a]anthracene	N	1790	μg/l	0.50	< 0.50	< 0.50
Chrysene	N	1790	μg/l	0.50	< 0.50	⊴0 .50
Bis(2-Ethylhexyl)Phthalate	N	1790	μg/l	0.50	< 0.50	0.50 چې
Di-N-Octyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50
Benzo[b]fluoranthene	N	1790	μg/l	0.50	< 0.50	< 0.50
Benzo[k]fluoranthene	N	1790	μg/l	0.50	< 0.50	< 0.50
Benzo[a]pyrene	N	1790	μg/l	0.50	< 0.50	< 0.50
Indeno(1,2,3-c,d)Pyrene	N	1790	μg/l	0.50	< 0.50	< 0.50
Dibenz(a,h)Anthracene	N	1790	μg/l	0.50	< 0.50	< 0.50
Benzo[g,h,i]perylene	N	1790	μg/l	0.50	< 0.50	< 0.50
4-Nitrophenol	N	1790	μg/l	0.50	< 0.50	< 0.50
Demeton-O	N	1820	µg/l	0.20	< 0.20	< 0.20
Phorate	N	1820	μg/l	0.20	< 0.20	< 0.20
Demeton-S	N	1820	μg/l	0.20	< 0.20	< 0.20
Disulfoton	N	1820	μg/l	0.20	< 0.20	< 0.20
Fenthion	N	1820	μg/l	0.20	< 0.20	< 0.20
Trichloronate	N	1820	μg/l	0.20	< 0.20	< 0.20
Prothiofos	N	1820	μg/l	0.20	< 0.20	< 0.20
Fensulphothion	N	1820	μg/l	0.20	< 0.20	< 0.20
Sulprofos	N	1820	μg/l	0.20	< 0.20	< 0.20

Client: Causeway Geotech Ltd		Che	mtest Jo	19-23723	19-23723	
Quotation No.: Q19-17585		Chemte	est Sam	858068	858069	
			ent Sam	WS	WS	
		Sa	ample Lo	BH01	BH02	
			Sampl	WATER	WATER	
			Date Sa	ampled:	12-Jul-2019	12-Jul-2019
Determinand	Accred.	SOP	Units	LOD		
Azinphos-Methyl	N	1820	μg/l	0.20	< 0.20	< 0.20
Coumaphos	N	1820	μg/l	0.20	< 0.20	< 0.20
Atraton	N	1830	μg/l	0.20	< 0.20	< 0.20
Prometon	N	1830	μg/l	0.20	< 0.20	< 0.20
Simazine	N	1830	μg/l	0.20	< 0.20	< 0.20
Atrazine	N	1830	μg/l	0.20	< 0.20	< 0.20
Propazine	N	1830	μg/l	0.20	< 0.20	< 0.20
Terbuthylazine	N	1830	μg/l	0.20	< 0.20	< 0.20
Secbumeton	N	1830	μg/l	0.20	< 0.20	< 0.20
Simetryn	N	1830	μg/l	0.20	< 0.20	< 0.20
Ametryn	N	1830	μg/l	0.20	< 0.20	< 0.20
Prometryn	N	1830	μg/l	0.20	< 0.20	< 0.20
Terbutryn	N	1830	μg/l	0.20	< 0.20	< 0.20
Alpha-HCH	N	1840	μg/l	0.20	< 0.20	< 0.20
Gamma-HCH (Lindane)	N	1840	μg/l	0.20	< 0.20	< 0.20
Beta-HCH	N	1840	μg/l	0.20	< 0.20	< 0.20
Delta-HCH	N	1840	μg/l	0.20	< 0.20	< 0.20
Heptachlor	N	1840	μg/l	0.20	< 0.20	< 0.20 .
Aldrin	N	1840	μg/l	0.20	< 0.20	< 0.205
Heptachlor Epoxide	N	1840	μg/l	0.20	< 0.20	< 0.20
Gamma-Chlordane	N	1840	μg/l	0.20	< 0.20	< 0.20
Alpha-Chlordane	N	1840	μg/l	0.20	< 0.20	₹0.20
Endosulfan I	N	1840	μg/l	0.20	< 0.20	€ 0.20
4,4-DDE	N	1840	μg/l	0.20	< 0.20	< 0.20
Dieldrin	N	1840	μg/l	0.20	< 0.20	< 0.20
Endrin	N	1840	μg/l	0.20	< 0.20	< 0.20
4,4-DDD	N	1840	μg/l	0.20	< 0.20	< 0.20
Endosulfan II	N	1840	μg/l	0.20	< 0.20	< 0.20
Endrin Aldehyde	N	1840	μg/l	0.20	< 0.20	< 0.20
4,4-DDT	N	1840	μg/l	0.20	< 0.20	< 0.20
Endosulfan Sulphate	N	1840	μg/l	0.20	< 0.20	< 0.20
Methoxychlor	N	1840	μg/l	0.20	< 0.20	< 0.20
Endrin Ketone	N	1840	μg/l	0.20	< 0.20	< 0.20
Total Phenols	U	1920	mg/l	0.030	< 0.030	< 0.030

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
858068		WS	BH01	12-Jul-2019	С	Coloured Winchester 1000ml
858068		WS	BH01	12-Jul-2019	С	Plastic Bottle 1000ml
858069		WS	BH02	12-Jul-2019	С	Coloured Winchester 1000ml
858069		WS	BH02	12-Jul-2019	С	Plastic Bottle 1000ml

Consent of copyright owner reduced for any other use.

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
 - < "less than"
 - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent eports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com