

Grange Castle Golf Course

Environmental Risk Assessment

Grange Castle Golf Course

Environmental Risk Assessment

DOCUMENT CONTROL SHEET

Client	South Dublin County Council					
Project Title	Grange Cas	Grange Castle Golf Course Infill Assessment				
Document Title	Environmer	Environmental Risk Assessment				
Document No.	MDR0813R	MDR0813Rp0003				
This Document	DCS	тос	Text	List of Tables	List of Figures	No. of Appendices
Comprises	1	1	44	1	1	15

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
F01	Final	Laura Dowdall Eleanor Roche	Carol Connery Niall Mitchell	Larry O'Toole	Westpier	May 2011
			CardConney	Adate		
				V		

TABLE OF CONTENTS

EXECU	ITIVE SU	JMMAR	Υ	I
1	INTRO	DUCTIO	Ν	1
	1.1	BACKGF	ROUND	1
	1.2	OBJECT	IVES	1
	1.3	OVERAL	L METHODOLOGY	2
	1.4	Assess	MENT APPROACH	2
	1.5	ASSUMF	TIONS	4
	1.6	Consu	TATIONS	4
2	TIER 1	– PREL	IMINARY INVESTIGATION & RISK SCREENING	6
	2.1	INFORM	ATION SOURCES	6
		2.1.1	Public Information	6
	2.2	SITE DE	SCRIPTION	6
		2.2.1	Site Location & Setting	6
		2.2.2	Initial Site Inspection	7
		2.2.3	Aerial Photographs	9
		2.2.4	Historical Land Use	. 11
		2.2.5	Local Sensitive Sites	. 11
		2.2.6	Geology	. 11
		2.2.7	Hydrogeology & Hydrology	. 12
	2.3	tier 1 –	CONCEPTUAL MODEL	. 17
	2.4	tier 1 -	RISK SCREENING	. 17
3	TIER 2	– SITE I	INVESTIGATION & TESTING	. 19
	3.1	INTROD		. 19
	3.2	TIER 2 M	IETHODOLOGY	. 19
		3.2.1	Approach	. 19
		3.2.2	Targeted Investigation	. 20
		3.2.3	Non-Targeted Investigation	. 21
		3.2.4	Sampling	. 22
		3.2.5	Laboratory Analysis	. 24
	3.3	OBSERV	ED GROUND CONDITIONS	. 26
		3.3.1	Made Ground	. 26
		3.3.2	Natural Ground	. 26
		3.3.3	Groundwater Observations	. 26
		3.3.4	Summary of Ground Conditions	. 27
	3.4	SOIL CH	EMICAL RESULTS	. 27
		3.4.1	Bulk Soil	. 27
		3.4.2	Bulk Soil Analysis	. 28

		3.4.3	Soil Leachate (CEN 10:1)	. 28
		3.4.4	Soil Leachate Analysis	29
	3.5	STOCKP	ILE CHEMICAL RESULTS	. 29
		3.5.1	Bulk Compositional Analysis	29
		3.5.2	Waste Acceptance Criteria	. 30
		3.5.3	Asbestos	. 31
	3.6	GROUN	DWATER CHEMICAL RESULTS	. 31
		3.6.1	Introduction	. 31
		3.6.2	Groundwater Properties	32
	3.7	SURFAC	E WATER CHEMICAL RESULTS	. 32
		3.7.1	Introduction	. 32
		3.7.2	Surface Water Properties	33
	3.8	CHARAC	TERISATION SURVEY RESULTS	. 34
		3.8.1	Waste Characterisation Summary	. 38
	3.9	CONCLU	ISION OF TIER 2 SITE INVESTIGATIONS	38
4	REFIN	EMENT	OF CONCEPTUAL MODEL	. 39
	4.1	REFIN	ED CONCEPTUAL SITE MODEL	39
		4.1.1	Source	. 39
	4.2	REVISE	DRISK SCREENING	. 39
	4.3	RISKS	TO HUMAN HEALTH	. 40
		4.3.1	Soil Source	40
		4.3.2	Leachate Source	41
		4.3.3	Gas Source	41
	4.4	RISKS	TO GROUNDWATER	. 41
		4.4.1	Leachate Source	41
	4.5	RISK TO	SURFACE WATER	
		4.5.1	Leachate Source	
5			S	
6	RECO	MEND	ATIONS	. 44

LIST OF FIGURES

- FIGURE 1 SITE LOCATION AND SITE LAYOUT
- FIGURE 2 AERIAL PHOTOGRAPH OF GCGC DELINEATING INDIVIDUAL SITES
- FIGURE 3 ORDNANCE SURVEY 2000 AERIAL PHOTOGRAPHY
- FIGURE 4 ORDNANCE SURVEY 2007 AERIAL PHOTOGRAPHY
- FIGURE 5 ORDNANCE SURVEY 2009 AERIAL PHOTOGRAPHY
- FIGURE 6 BEDROCK GEOLOGY
- FIGURE 7 AQUIFER MAP
- FIGURE 8 AQUIFER VULNERABILITY
- FIGURE 9 GSI WELLS
- FIGURE 10 DRAINAGE LAYOUT
- FIGURE 11 STOCKPILE LOCATIONS
- FIGURE 12 8 HOLE TRIAL PIT LOCATIONS
- FIGURE 13 TRIAL PIT LOCATIONS
- FIGURE 14 GROUNDWATER MONITORING LOCATIONS
- FIGURE 15 CONCEPTUAL SITE MODEL

LIST OF TABLES

Table 1:	Risk Category and Prioritisation Class	17
Table 2:	Tier 1 Conceptual Model & Risk Scoring	18
Table 3:	Summary of Investigative Sampling	22
Table 4:	Well Details (GW1 and GW2)	23
Table 5:	Well Details (Castle Bagot House)	24
Table 6:	Summary of Laboratory Analysis	25
Table 7:	Summary of Ground Conditions	27
Table 8:	Definition of Waste Relating to Waste Acceptance Criteria	30
Table 9:	Asbestos: Concrete pipe details	31
Table 10:	Summary of characterisation results	35
Table 11:	Revised Conceptual Model & Risk Scoring	40

APPENDICES

Appendix 1	Walkover Survey Checklist
Appendix 2	Tier 1 Assessment Matrix
Appendix 3	Stockpile Photographs
Appendix 4	Stockpile Logs
Appendix 5	Trial Pit Photographs
Appendix 6	Trial Pit Logs
Appendix 7	Sampling Plan
Appendix 8	Trial Pit Analytical Results
Appendix 9	Stockpile Analytical Results
Appendix 10	Groundwater Analytical Results
Appendix 11	Surface Water Analytical Results
Appendix 12	Characterisation Survey Results
Appendix 13	Characterisation Survey Photographs
Appendix 14	Asbestos Results
Appendix 15	Revised Tier 1 Assessment Matrix

EXECUTIVE SUMMARY

RPS was commissioned by South Dublin County Council to undertake an Environmental Risk Assessment (ERA) at Grange Castle Golf Course. The golf course was originally opened in April 1998 and was later extended with the addition of Phase 1 known as the '8 holes' which was completed in June 2006 and which now forms part of the active course. Further works commenced within the areas termed the '5 holes' (Phase 2) and 'holes 14 & 15' (Phase 3) in October 2007 and February 2008 respectively with works in these areas being later placed on hold. An exploratory investigation was completed on Phases 1 to 3 of the course between January and February 2011 in response to correspondence received by South Dublin County Council (SDCC) from the Environmental Protection Agency (EPA).

The principle objectives of the ERA are to:

- Determine the nature and extent of the material imported to Phases 1 to 3,
- Assess any potential risks to human or environmental receptors associated with the presence of the infill material; and
- Provide recommendations in relation to the management of the site.

The Tier 1 assessment identified the site as a Class C low risk site. A Tier 2 exploratory investigation was subsequently completed to verify the low risk categorisation and confirm the site does not pose a risk to human health or the environment. This investigation involved trial pitting, soil and water sampling and chemical analysis, material characterisation and comprised targeted and non-targeted investigations

The interpreted lithology of the site comprises topsoil, overlying reworked clay containing minor amounts of waste material with an average thickness of 2.3m. Soft to firm brown to red/ brown slightly gravelly clay with a maximum depth >4.7m underlies the reworked clays. Bedrock was not encountered during the exploratory investigation.

The volume of infill material within the '5 holes' (Phase 2) and 'holes 14 & 15' (Phase 3) was calculated following a review of historic (1998) and current (2009) topographic surveys which provided information on pre and post filling levels. The volume of infill material was calculated at 90,230m³ for Phase 2 and 126,726m³ for Phase 3.

No leachate or shallow groundwater was encountered during the exploratory investigation. The river Liffey is located approximately 4km to the north of the site and regional groundwater flow in the direction of the Liffey is expected. Groundwater monitoring at the nearby Wyeth Medica site concluded that local groundwater flow was to the north and northwest.

The targeted investigation was conducted within distinct stockpiled material containing material other than soil and stones. Sampling focused on obtaining sufficient information to characterise the material and provide information to assess available options to remove this material off site for recovery or disposal. A total of twenty samples were collected from the stockpiled material and analysed for a broad range of analysis including Waste Acceptance Criteria (WAC) for inert landfills in accordance with Council Decision 2003/33/EC with resulting data indicating that the material is acceptable for disposal at an inert landfill with the exception of fluoride exceedances in two samples.

The non targeted investigation involved the collection of 39 soil samples from the infill material. Soil analytical data indicates that the infill material contains low level hydrocarbons and heavy metals such as antimony, barium, cadmium and molybdenum across the site which are not considered to pose a risk to Human Health or the Environment.

The contaminants identified in groundwater samples collected from both on-site and off-site monitoring wells were limited to arsenic and chloride. Elevated levels of arsenic were recorded at the monitoring location at Castle Bagot House (Figure 14). Elevated levels of arsenic were not recorded in the soil bulk or leachate analysis on the site, which suggests the detection may be attributable to off site sources.

Elevated levels of chloride were detected at two groundwater monitoring locations however chloride was not recorded in the soil bulk or leachate analysis, which suggests it may originate from off site sources or is naturally occuring. Chloride does not pose a risk to human health however it does affect palatability.

The contaminants identified in surface water samples collected from the site were limited to manganese at one location and chloride and suspended solids at a second location. Elevated levels of manganese and chloride were not recorded in the soil bulk and leachate analysis which suggests these contaminants may originate from off-site sources.

Material characterisation was conducted on 39 soil samples as part of the non targeted investigative works. The results of the survey indicated that the samples primarily comprised soil (<20mm) (72%) and soil and stones (>20mm) (26%) with these two categories accounting for 98% of the total volume of material sampled. Some natural wood found in the form of branches and biodegradable waste from garden and park comprising rootlets and grass were also found. Other waste elements accounting for 2% found in the samples were wood – timber, tar, ceramics, bricks, concrete; metals; plastics; textiles and composites. No hazardous or food waste was found in the samples.

Based on the soil analytical data, the potential risk to site users associated with contaminants within the infill material is considered to be low.

At this stage no specific remedial requirements are considered necessary with regard to the infill material and the potential risk to human health and controlled water receptors is considered low.

1 INTRODUCTION

RPS was appointed by South Dublin County Council (SDCC) to carry out an Environmental Risk Assessment (ERA) at Grange Castle Golf Course, Nangor Road, Clondalkin, Dublin 22 (see Figure 1 for site location). This report has been completed to provide the required response to correspondence received by SDCC from the Environmental Protection Agency (EPA) dated 28th of October 2010 and 30th of November 2010 in relation to Grange Castle Golf Course (GCGC).

The importation of material into GCGC for the further development of the course was the subject of an initial complaint to the Environmental Protection Agency (EPA), with the core of the complaint relating to the requirement for waste authorisation. Following receipt of information from SDCC the EPA issued a decision indicating that the activity was not subject to waste authorisation. Following this decision, two additional complaints were received in September 2010. The EPA completed a site inspection in October 2010 and subsequently issued a site inspection report whereby they advised they were rescinding their previous declaration and considered the infill material to be a waste.

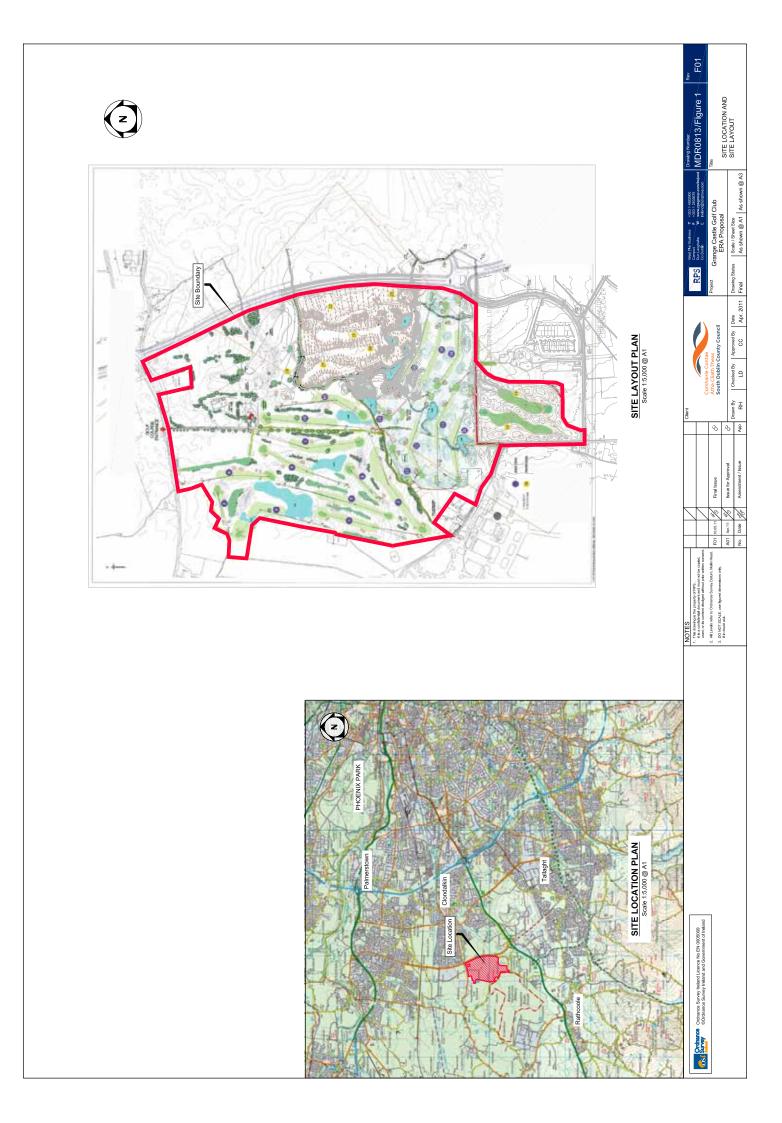
1.1 BACKGROUND

Development of the initial golf course commenced in the Autumn of 1995 with the golf course opening in April 1998. The course was later extended with the addition of Phase 1 known as '8 holes' which commenced in June 2003 and which was completed in June 2006 and now forms part of the active course.

Further works commenced within the areas termed the '5 holes' (Phase 2) and 'holes 14 & 15' (Phase 3). Works on the '5 holes', which is located adjacent to the Outer Ring Road, commenced in October 2007 and were placed on hold in Spring 2008 on account of access restrictions due to poor ground conditions.

Works commenced within 'Holes 14 & 15' (Phase 3), located to the south of Phase 1, in February 2008 but were subsequently placed on hold in May 2009.

The material which was imported to the areas defined as the '5 holes' (Phase 2) and 'holes 14 & 15' (Phase 3) of GCGC during the period October 2007 and May 2009 was brought to site in order to;


- Provide mounding around the perimeter of the course and between fairways to enhance safety and prevent stray balls leaving the course or injuring players on the adjacent hole.
- Create a challenging and interesting course.

The material is reported to have been imported from a range of different development sites within the Dublin Region.

1.2 OBJECTIVES

The principle objectives of the ERA are to:

- Determine the nature and extent of the material imported to Phases 1 to 3;
- Assess any potential risks to human or environmental receptors associated with the presence of the infill material; and,
- Provide recommendations in relation to the management of the site.

1.3 OVERALL METHODOLOGY

In order to achieve the above objectives the following scope of work was undertaken:

- Desk based survey and site walkover including collation of information from relevant authorities;
- Development and subsequent refinement of a Conceptual Site Model (CSM) based on available information;
- Design and implementation of an exploratory soil and water site investigation in accordance with BS 10175:2001 and BS5930:1999.
- Characterisation of the infill material from selected trial pits;
- Assessment of risks to human and environmental receptors in accordance with the Environmental Protection Agency (EPA) Code of Practice for the Environmental Risk Assessment for Unregulated Waste Disposal Sites, 2007; and,
- Preparation of a report as per Chapter 8 "Reporting Requirements" in the EPA Code of Practice for Environmental Risk Assessment for Unregulated Waste Disposal Sites, 2007.

1.4 ASSESSMENT APPROACH

As part of the Tier 2 Assessment the exploratory investigation identified the nature and extent of infill material across the site. Consequently, the assessment has been carried out in accordance with the EPA Code of Practice for the Environmental Risk Assessment for Unregulated Waste Disposal Sites, 2007 (EPA Code of Practice).

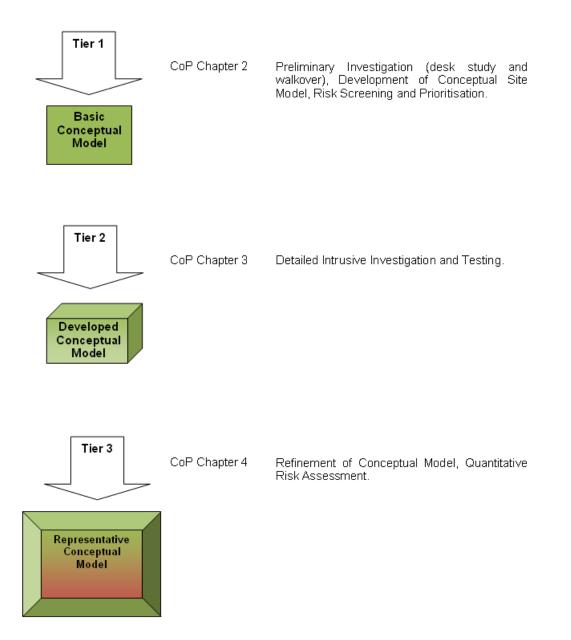
The consideration of the impact of the site on the environment is based on a risk assessment on the 'Source – Pathway – Receptor' model where the probability of damage occurring is considered in the context of the severity of consequence of that event actually happening. The S-P-R approach underpins the EPA Code of Practice.

The assessment looks at the relationship of possible contamination on the environment (*i.e.* the surroundings and habitats) and on a range of receptors (such as humans, flora, fauna, groundwater and ecological systems) to develop a conceptual understanding of what is occurring. The relevant components of the system are determined in conjunction with how they are potentially connected or linked. Aspects of the source material and impacts on the receptors are identified and measured as part of a characterisation process. This in turn facilitates the development of environmental engineering design controls to manage, mitigate, protect, and/or remediate the situation.

The primary environmental system which is exposed is the hydrogeological and hydrological system (surface water flow, interflow and subsurface and groundwater flow). A factor that makes this process difficult is that many of the processes in hydrology and hydrogeology are unseen, so there is a need for conceptualisation – shaping a structure of the situation to aid understanding and development of a system model against which measurement can take place.

In this case, the relationship between the discrete **source** of the contamination (*i.e.* infill material) and the receiving environment known as the **receptor** (*i.e.* the water systems, for example: groundwater bodies, soil matrix) is considered. The connecting route, known as the **pathway** (groundwater flow, drainage systems and soil systems) and the driving force in the form of a fluid (*i.e.* liquid in the form of

rainfall and leachate) can induce contamination to move through the system. Thus the system can be summarised by the following:


Source — Pathway — Receptor

- **Source:** Substance or material that has the potential to cause harm to the environment or human health by virtue of its physical or chemical characteristics.
- **Receptor:** A human or environmental entity which has the potential to be harmed through direct or indirect exposure to the source.

Pathway: Mechanism by which the receptor can be exposed to the source.

In the EPA Code of Practice "Source-Pathway-Receptor" (SPR) approach to risk assessment, all three elements have to be present and linked in order for a risk to be present. If any of these components is absent there is, by definition, no risk.

The Code of Practice utilises a structured phased approach to identify the S-P-R components and conduct a risk assessment of the linkages between the elements. The process involves preliminary site investigations and initial screening to indicate the range of high to low risk factors. Areas requiring further investigation are identified, and finally the model is fine-tuned. At each stage the information and risks are reviewed and assessed before progressing to the next phase. The Code of Practice tiered methodology is as follows:

1.5 ASSUMPTIONS

Assumptions and uncertainties in the development of a conceptual model must be identified and clearly expressed to ensure that the degree of representation is understood before evaluation can meaningfully take place. The tiered technique of risk assessment within the Code of Practice seeks to minimise gaps in characterising each of the components within the S-P-R framework, so that at each stage the conceptual model is 'fine tuned' and uncertainties are reduced. Accordingly, the extent of information and data available at each stage of the model development is incorporated within each individual section of the assessment for individual Tiers.

1.6 CONSULTATIONS

On the 28th of October 2010 the EPA requested SDCC to submit a proposal of works for the completion of an Environmental Risk Assessment (ERA) for the site at GCGC.

SDCC issued a scope of works for completion of an ERA to the EPA on the 18th of November 2010 following which the EPA requested additional information on the 30th November 2010.

A revised scope of works for the completion of the ERA was submitted to the EPA by SDCC on the 14th of December 2010 and EPA approval of such was subsequently received on the 17th of December 2010.

2 TIER 1 – PRELIMINARY INVESTIGATION & RISK SCREENING

2.1 INFORMATION SOURCES

In accordance with the EPA Code of Practice a comprehensive desk study review of the available existing data for the site and the surrounding area is required to complete a Tier 1 Assessment including a gap analysis and collation of necessary outstanding information from relevant authorities (*i.e.* EPA, OSI, NPWS, OPW, Teagasc, South Dublin County Council).

2.1.1 Public Information

The following sources of publicly available information were consulted as part of the desk study:

- Ordnance Survey of Ireland (OSI) Discovery Series, Sheet 50;
- OSI Aerial Photography;
- Geology of South Dublin, Geological Survey of Ireland (GSI) (1:100,000), Sheet 16;
- GSI On-line Groundwater database. Aquifer Classification, Aquifer Vulnerability, Teagasc Subsoils Data, Bedrock Data <u>http://spatial.dcenr.gov.ie/imf/imf.jsp?site=Groundwater</u>
- GSI On-line Geotechnical Map Viewer database; <u>http://spatial.dcenr.gov.ie/GSIGeotech/Default.aspx</u>
- National Parks and Wildlife Service (NPWS) online maps and data. Database of Special Areas of Conservation, National Heritage Areas, National Parks, Special Protection Areas including site synopsis reports;
- Environmental Impact Statement for Profile Park
- Environmental Impact Statement for IDA Ireland at Grange Castle Business Park
- Consultation with South Dublin County Council.

2.2 SITE DESCRIPTION

2.2.1 Site Location & Setting

Grange Castle Golf Course is located just off the N7 in Clondalkin, Dublin 22 (See Figure 1 for site location). The site is bounded by the R136 Outer Ring Road to the east and the Nangor Road to the north. A number of industrial units are located immediately north of the main entrance off the Nangor Road. Corkagh Park is located immediately to the east with Casement Aerodrome situated to the south west. An industrial unit and football pitch are located to the south. High density housing developments are located to the north east. 125 acres of lands to the east were developed in 2007 for Profile Park Business Park however to date only one unit has been developed within the business park. The surrounding landscape is made up

of a patchwork of pasture and arable fields, with grassland being the dominant land cover. The field system is separated by clumps of mixed woodland and sparse hedgerow networks. Dense patches of

mixed woodland, playing pitches and landscaped areas dominate the southern part of the area in Corkagh Park. The predominant landscape character type is flat urban fringe farmland.

GCGC was established in April 1998 as an undertaking by SDCC Parks Department. The 18 hole Championship Course was designed by Patrick F Merrigan. The course is located within a parkland setting with 7 lakes and a number of streams.

Work commenced on Phase 1 (8 holes) in June 2003 following receipt of Part 8 planning permission in 2002 and were completed with the area open for play in June 2006. Further work commenced on Phase 2 (5 holes) in October 2007 following receipt of Part 8 planning permissions in 2002 and 2006 and were indefinitely placed on hold in Spring 2008 due to bad weather conditions and access difficulties. Phase 3 (holes 14 & 15) received Part 8 planning permission in 2006 and in February 2008 work commenced within this area due to ease of access however these development works were also placed on hold in May 2009.

The areas of GCGC which are the subject of this investigation comprise Phase 1 (8 Holes) which is located within the active area of the course and is delineated by blue in Figure 2 below; Phase 2 (5 holes) delineated in yellow; Phase 3 (holes 14 & 15) delineated in red and the haul road connecting the '5 holes' to 'holes 14 & 15'.

2.2.2 Initial Site Inspection

RPS carried out an initial site inspection on 15th November 2010. This was undertaken by a chartered waste manager and a chartered civil engineer, both with over 11 years experience in the waste industry including landfill and environmental risk assessment. The walkover survey checklist was completed and is included in Appendix 1. No significant impacts were uncovered in this initial walkover. An understanding of the delineation of and the location of imported material was obtained and an opinion on the composition of the surface visible material was established. During the initial site inspection there was no evidence of landfill gas, vegetation die back or leachate seepage emanating from the material.

Figure 2: Aerial Photograph of GCGC delineating individual sites

2.2.3 Aerial Photographs

The following Ordnance Survey aerial photographs from 2000 to 2009 (Figures 3 to 5) highlight the development phases of GCGC.

Figure 3: Ordnance Survey 2000 Aerial Photography

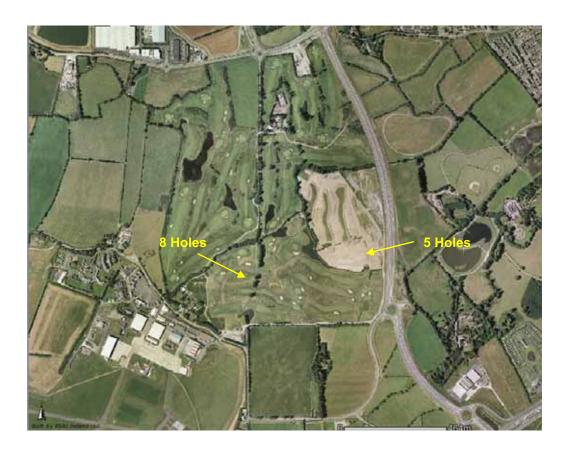


Figure 4: Ordnance Survey 2007 Aerial Photography



Figure 5: Ordnance Survey 2009 Aerial Photography

2.2.4 Historical Land Use

The entire site, active and inactive areas are within SDCC ownership. Prior to the development of Phases 1 to 3 the historical land use was primarily agricultural as detailed in the aerial photography presented in Figure 3 above. Part of Phase 2 (5 holes) was used a construction compound during the construction of the R136 Outer Ring Road. No other activities are known to have taken place on these lands prior to their development by SDCC.

2.2.5 Local Sensitive Sites

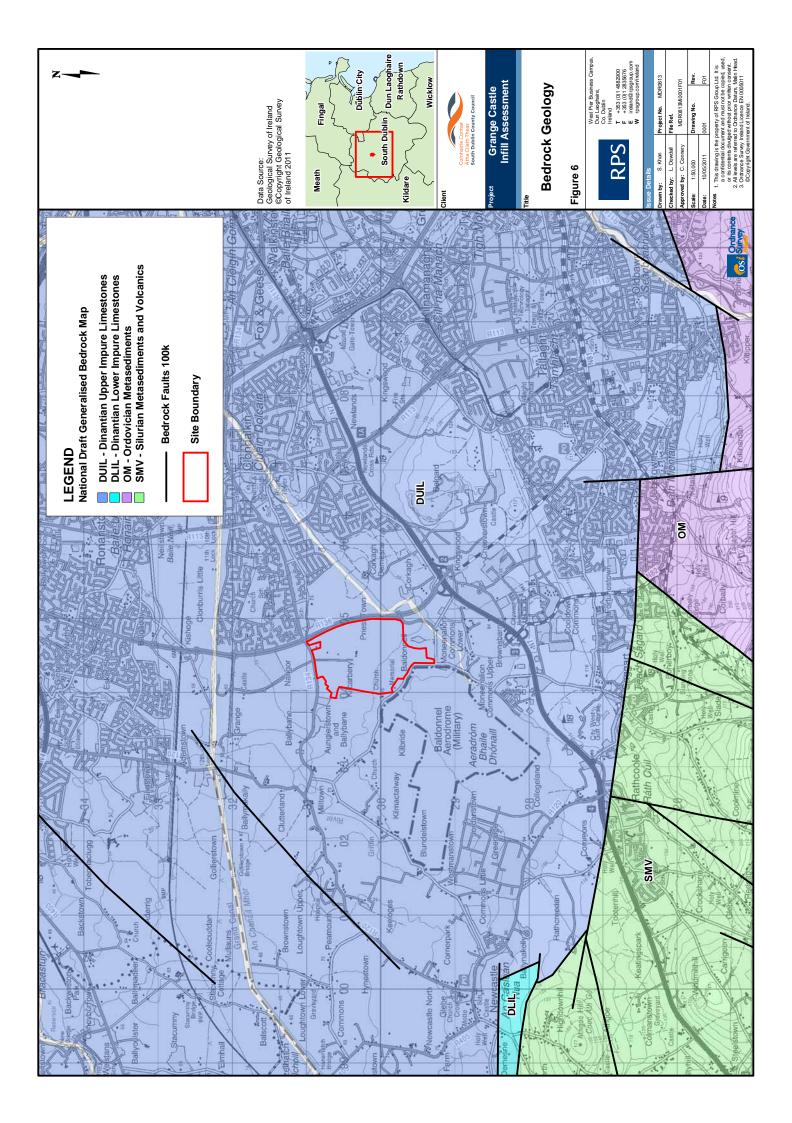
The site is fully within the boundary of lands owned by SDCC. The majority of the site comprises the active golf course consisting of an 18 hole Championship Course. The areas to which the investigation relates are both active and non active areas of the course. Phase 1 (8 holes) is an active area of the course located southeast and north of Phase 2 (5 holes) and Phase 3 (holes 14 & 15) respectively. The general public has no access to the inactive areas of Phases 2 and 3.

The site is not in an area of special interest, within or adjacent to wetlands, nor is it within a Natural Heritage Area (NHA), a candidate Special Area of Conservation (cSAC) or Special Protection Area (SPA).

Following a review of the National Parks and Wildlife Service (NPWS) website there are four proposed Natural Heritage Areas (pNHAs) within approximately 10km of the site (001212 Lugmore Glen; 000211 Slade of Saggart and Crooksling Glen; 001209 Glenasmole Valley and 002104 Grand Canal). There is also one Special Area of Conservation located within 10 kilometres of the site; 001209 Glenasmole Valley located to the south of the site.

2.2.6 Geology

2.2.6.1 Regional Bedrock Geology


The Geology of Kildare – Wicklow 1:100,000 map (GSI Sheet 16) which includes the area under consideration shows the site is underlain by Calp Limestone which comprises varied dark grey to black basinal limestone in several different formations, mainly undifferentiated. The Calp ranges in age from Chadian to Brigantian.

The site is located within the Dublin Basin which is both depositional and structural. The southern margin of the basin is largely fault controlled e.g. along the line of the Rathcoole Fault located to the south and southwest of the site.

The GSI online bedrock map of Ireland classifies the bedrock underlying the site as Dinantian Upper Impure Limestone (see Figure 6).

2.2.6.2 Local Conditions

A review of the GSI On-line Geotechnical Map Viewer database revealed investigative data from two schemes located within 2.5km of GCGC; North Eastern Gas Pipeline (NEP1) (report ref: 717) and Corkagh Technical Park (report ref: 2262). NEP1 trial pit, rotary open hole coring and cable percussion (shell and auger) investigations revealed depth to bedrock ranging from 0.6m to >10m bgl. Corkagh Park trial pit investigations revealed depth to bedrock ranging from 0.2m to 2.1m bgl.

16 No. trial pits were excavated during site investigation works carried out as part of the EIS for Grange Castle International Business Park, located to the north of the site, where limestone bedrock was encountered between 0.8 and 1.5m bgl. The bedrock geology encountered in the area comprised dark grey limestone which was typically weathered and fractured. Weaker mudstone layers were also encountered in places. Fractures and white calcite veins were encountered at greater depth within the limestone bedrock.

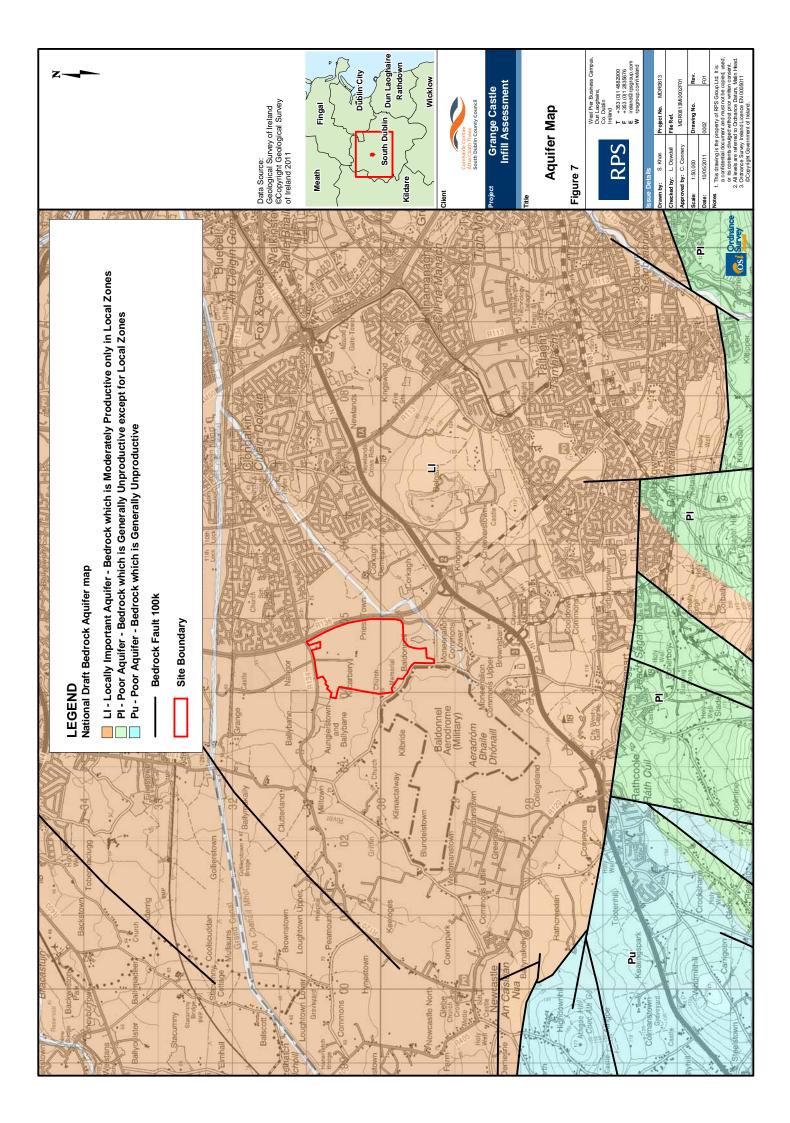
2.2.6.3 Regional Quaternary Geology

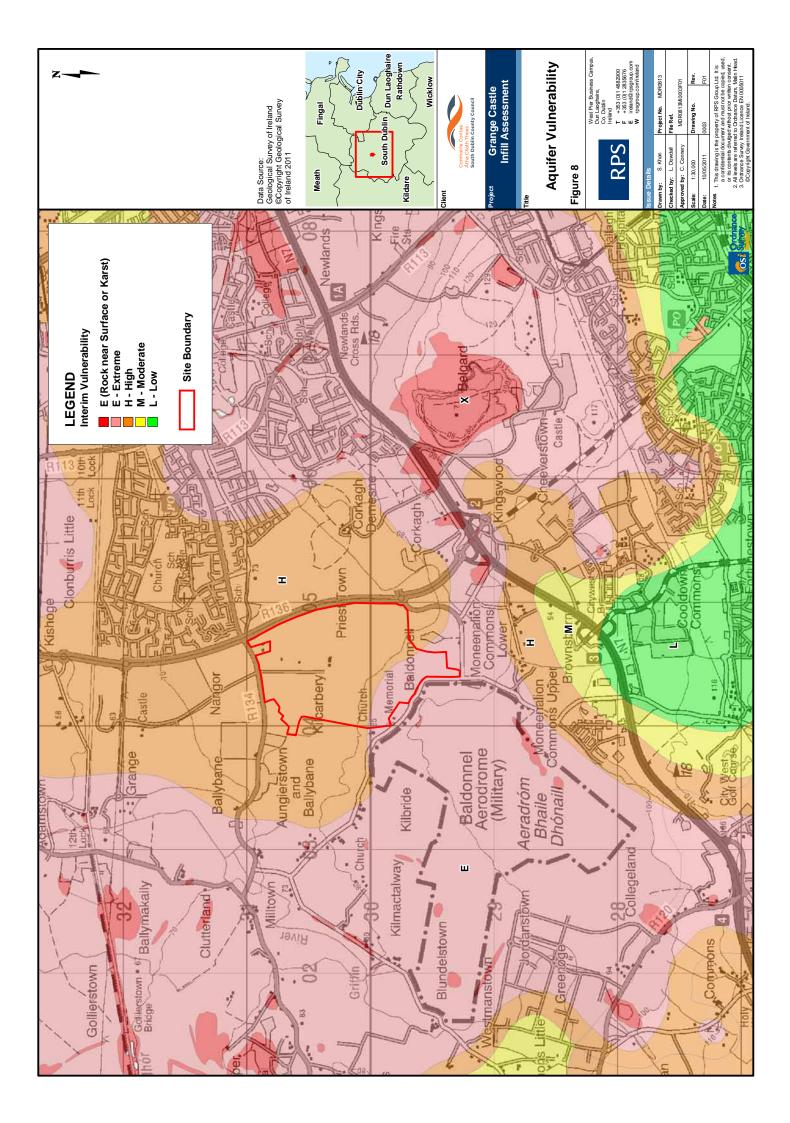
According to the GSI/Teagasc online subsoil map of Ireland, the site and surrounding area is expected to be underlain by tills derived chiefly from limestones.

A review of existing NEP1 and Corkagh Technical Park intrusive investigations, as highlighted in Section 2.2.6.2 above, also indicated that geological conditions underlying the area comprised dry brown boulder clays ranging in depth between 0.1 and 0.5m bgl. Thickness of this clay material ranged between 0.15 and 10 metres.

2.2.6.4 Local Conditions

From the initial site inspection infill material within Phase 2 (5 holes) and Phase 3 (holes 14 & 15) appeared to comprise light brown slightly gravelly clay with some cobbles. Previous investigations from the area recorded topsoil comprising light grey to brown, soft clay with subsoils comprising firm to stiff grey brown silty gravelly clay.


Phase 1 (8 holes) comprises part of the active golf course and is therefore covered in established grass. Works on Phases 2 (5 holes) and 3 (holes 14 &15) were suspended in 2008 and 2009 respectively. Since this period the infill material has remained undisturbed. The infill material within these areas generally comprises stiff clays with wild vegetation beginning to establish across the exposed surface.


2.2.7 Hydrogeology & Hydrology

2.2.7.1 Aquifer Classification

The GSI online bedrock map of Ireland, classifies the limestone bedrock underlying the site as a locally important (LI) aquifer (i.e. bedrock which is Moderately Productive only in Local Zones (see Figure 7). The Glacial Deposits are not classified as an aquifer by the GSI.

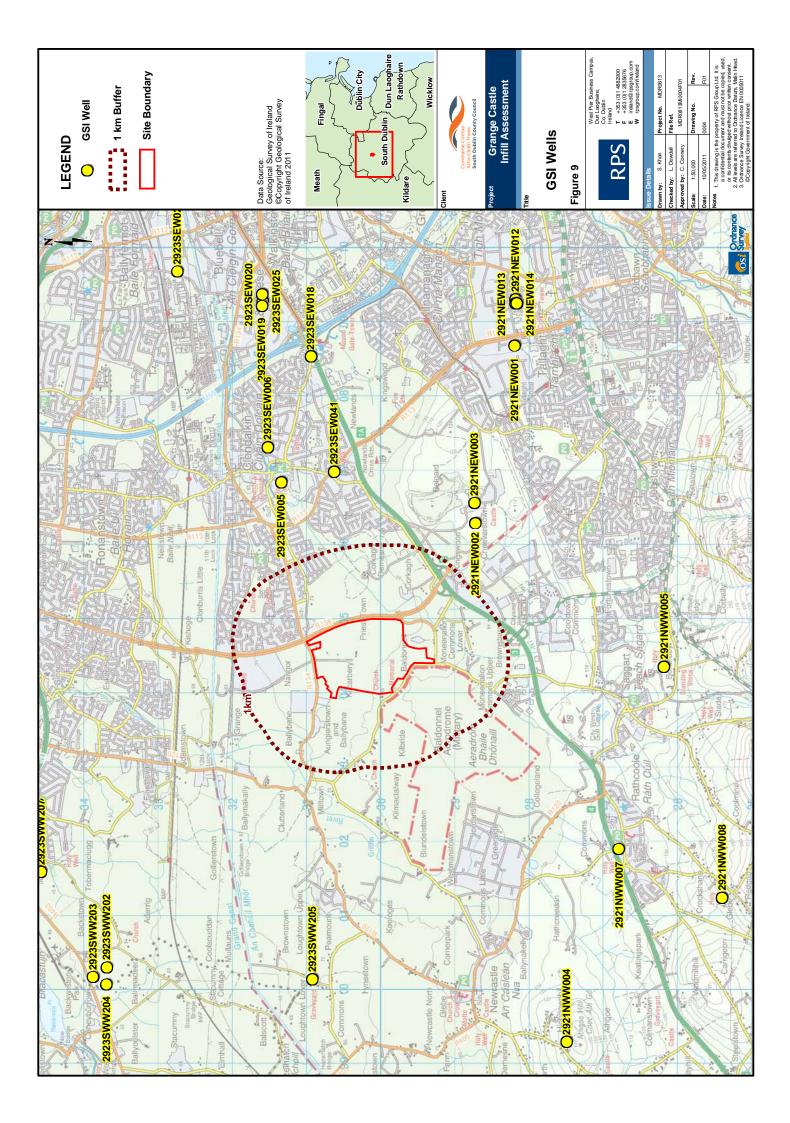
The groundwater within the bedrock has been classified as high vulnerability for the majority of the site with a portion of Phase 1 (8 holes) and Phase 3 (holes 14 & 15) classified as extreme vulnerability. This indicates that the underlying aquifer is predominantly highly vulnerable with limited areas of the site considered to be extremely vulnerable to contamination (See Figure 8).

2.2.7.2 Groundwater Flow

The EIS for IDA Ireland at Grange Castle Business Park indicated that site investigations conducted at the Wyeth Medica and Takaeda Pharma developments located to north of GCGC the involved the drilling of boreholes. Groundwater encountered was in weathered bedrock at depths varying between 1.05 and 1.49 m below top of casing.

The EIS further states that groundwater flow generally follows the topographic variation of

the site and was expected to flow from southeast to west and northwest towards the Griffeen River. The river Liffey is located approximately 4km to the north of the site and regional groundwater flow in the direction of the Liffey is expected. Groundwater monitoring at the Wyeth Medica site concluded that local groundwater flow was to the north and northwest.


2.2.7.3 Groundwater Users

During the initial site inspection it was ascertained that there are two groundwater wells located on the site which are used for irrigation purposes only.

Following a review of SDCC water records it was determined that there are two potential groundwater users within the vicinity of the site; Castle Bagot House and Baldonnel House. Baldonnel House is located upgradient of the site.

GSI records have no boreholes recorded within 1km of GCGC (See Figure 9). The following are a sample of boreholes which were recorded by the GSI in the vicinity of the site:

- GSI well reference number 2921NEW002 is located approximately 1.7km to the south east of the site. The depth of borehole is 24.4m bgl and the depth to rock is 2.1m bgl. The well use is unknown and the yield class is "good" and estimated at 109.1m³/d.
- GSI well reference number 2921NEW003 is located approximately 2km south east of the site. Well depth and depth to bedrock are unavailable. The well use is industrial and the yield class is "excellent" and estimated at 654m³/d.
- GSI well reference number 2923SEW005 is located approximately 2km north east of the site. The borehole is 72.8m bgl and the depth to rock is 1.2m bgl. The well use is industrial and the yield class is "good" and estimated at 185m³/d.
- GSI well reference number 2923SEW006 is located approximately 2.5km north east of the site in Clondalkin. The borehole is 53.3m bgl and the depth to rock is 3m bgl. The well use is industrial and the yield class is "good" and estimated at 157.1m³/d.

2.2.7.4 Surface Water

GCGC has several artificial ponds which are connected via a series of interconnecting drains. The site's internal drainage network discharges to the Griffeen and Cammock Rivers. Both the Griffeen and Cammock River catchments discharge to the River Liffey.

For each of the artificial ponds (Sites) the inflows and outflows were identified, preliminary flow rates identified and general ecological condition described. See Figure 10 for a drainage map of GCGC. The blue arrows indicate the direction of the surface water flow from the fairways and surrounding lands.

<u>Site 1</u>

In the north east section of GCGC is a small artificial pond which discharges to a small stream that forms part of the Griffeen River catchment. The pond has a depth of 3-4m at its deepest point, with a substrate comprised of gravel/sand/silt. There is a gentle inflow to the pond from the larger pond (Site 2) to the south east.

The pond is surrounded by emergent macrophytes and contains a community of submerged macrophytes. No algal blooms were observed during the mapping exercise or were previously noted for this pond.

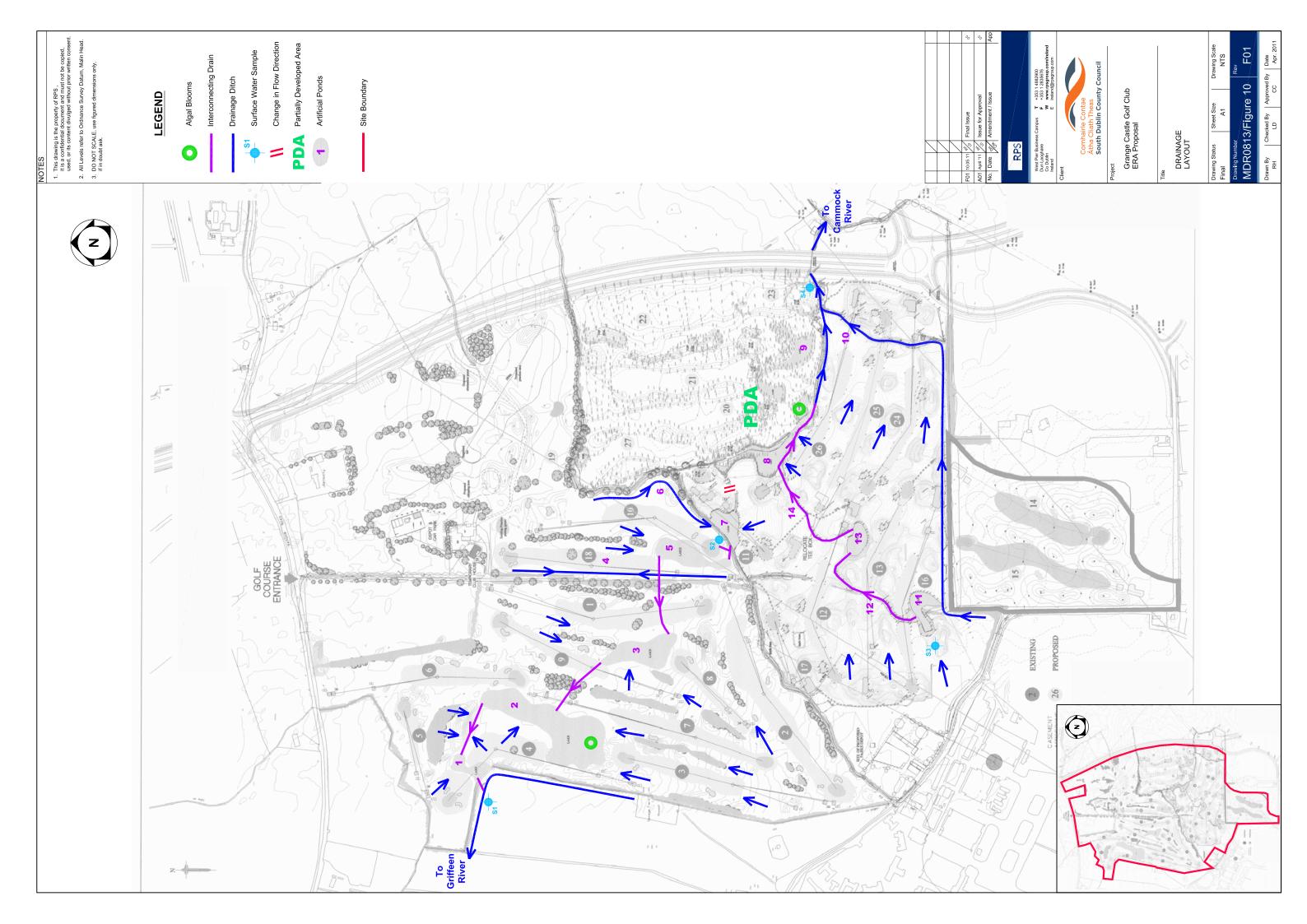
<u>Site 2</u>

Site 2 is located to the south east of Site 1 and discharges to Site 1 via a combination of a below ground interconnecting drain and an open channel. Part of the GCGC surface drainage is directly into this open channel and pond. This pond has a depth of 3-4m at its lowest point, with a substrate comprised of gravel/sand/silt. There is a gentle inflow to this pond from another interconnected pond (Site 3) to the south east.

The pond is surrounded by emergent macrophytes and contains a community of submerged macrophytes. Algal blooms were not observed during the mapping exercise but have been previously recorded in this pond.

<u>Site 3</u>

Site 3 is located adjacent to holes nine and one and discharges to Site 2 via a combination of a below ground interconnecting drain and an open channel. Part of the GCGC surface drainage is directly into this pond. This pond has a depth of 3-4m at its lowest point, with a substrate comprised of gravel/sand/silt. There is a gentle inflow to this pond from another interconnected pond (Site 5) to the east.


The pond is surrounded by emergent macrophytes and contains a community of submerged macrophytes. No algal blooms were observed during the mapping exercise or were previously noted for this pond.

<u>Site 4</u>

Site 4 is an ephemeral open drainage ditch adjacent to the eighteenth hole. It does not discharge to any other watercourse and only contains water following heavy precipitation.

<u>Site 5</u>

Site 5 is located adjacent to the tenth hole and discharges to Site 3 via a below ground interconnecting drain. Part of the GCGC surface drainage is directly into this pond. This pond has a depth of 3-4m at its lowest point, with a substrate comprised of gravel/sand/silt. There is a gentle inflow to this pond from another interconnected pond (Site 7) to the south east.

The pond is surrounded by emergent macrophytes and contains a community of submerged macrophytes. There is evidence of eutrophication/nutrient enrichment at the inlet location from Site 7.

<u>Site 6</u>

Site 6 is a stagnant open drainage ditch adjacent to the tenth hole, which discharges to the artificial pond, Site 7. There is strong evidence of eutrophication/nutrient enrichment within this ditch, with anoxic sediments. The water appears to be dark blue/grey in colour and there is a strong smell of hydrogen sulphide from the watercourse.

<u>Site 7</u>

Site 7 is located adjacent to the eleventh green and discharges to Site 5 via a belowground interconnecting drain. Part of the GCGC surface drainage is directly into this pond. This pond has a depth of 2m at its lowest point, with a substrate comprised of gravel/sand/silt. There is a gentle inflow to this pond from a stagnant drainage ditch (Site 6) to the north.

The pond is surrounded by emergent macrophytes and contains a community of submerged macrophytes. There is evidence of eutrophication/nutrient enrichment within this watercourse.

There is a channel connecting Site 7 to Site 8, however, there is no flow between these two water bodies. The flow from Site 8 appears to change direction towards the Cammock River to the south east of GCGC.

<u>Site 8</u>

Site 8 is located adjacent to the twenty sixth hole (area of '8 holes') as shown on Figure 10 and discharges to the Cammock catchment via a drainage ditch. Part of the GCGC surface drainage is directly into this pond. This pond has a depth of 2m at its lowest point, with a substrate comprised of gravel/sand/silt. There is surface water inflow to this pond from the partially developed area (PDA) on Figure 10.

There is a gentle inflow to this pond from a stagnant drainage ditch (Site 6) to the north.

The pond is surrounded by emergent macrophytes along its south western banks but is devoid of macrophytes along its banks with the PDA. Algal blooms and sewage fungus are present. The water appears to be dark blue/grey in colour and there is a strong smell of hydrogen sulphide from the watercourse.

<u>Site 9</u>

Site 9 is located within the partially developed area (PDA) adjacent to the twenty sixth hole as shown on Figure 10 and does not appear to discharge to the Cammock catchment via a drainage ditch. This pond has a depth of 2m at its lowest point, with a substrate comprised of gravel/sand/silt. There is surface water inflow to this pond from the PDA. The water appears to be dark blue/grey in colour and is devoid of any aquatic macrophytes and riparian vegetation.

<u>Site 10</u>

Site 10 is an open drainage ditch along the south eastern portion of the GCGC, which appears to drain this portion, and discharges to the Cammock catchment via a drainage ditch. There is no riparian plant species or emergent macrophytes present, but there is some evidence of eutrophication/nutrient enrichment within this drainage ditch.

<u>Site 11</u>

Site 11 is located adjacent to the sixteenth hole and discharges to Site 13 via an open channel. Part of the GCGC surface drainage is directly into this pond. This pond has a depth of 2m at its deepest point, with a substrate comprised of gravel/sand/silt.

The pond is surrounded by emergent macrophytes and contains a community of submerged macrophytes. There is evidence of eutrophication/nutrient enrichment at the outlet location to Site 12.

<u>Site 12</u>

Site 12 is an open channel connecting Site 11 to Site 13. There is evidence of eutrophication/nutrient enrichment within this channel, with sewage fungus present.

<u>Site 13</u>

Site 13 is located adjacent to the twelfth and thirteenth holes and discharges to Site 8 via an open channel. Part of the GCGC surface drainage is directly into this pond. This pond has a depth of 2m at its lowest point, with a substrate comprised of gravel/sand/silt.

The pond is surrounded by emergent macrophytes and contains a community of submerged macrophytes. There is evidence of eutrophication/nutrient enrichment with algal blooms and sewage fungus present.

<u>Site 14</u>

Site 14 is an open channel connecting Site 13 to Site 8. There is evidence of eutrophication/nutrient enrichment within this channel, with algal blooms and sewage fungus present.

2.2.7.5 Summary of Surface Waters

A total of 14 individual artificial ponds (Sites) were observed as part of the drainage mapping exercise completed for the Tier 1 investigation.

Evidence of eutrophication/ nutrient enrichment was found in sites 5, 6, 10, 12, 13 and 14 with algal blooms and sewage fungus also evident in sites 6, 8, 12, 13 and 14. Algal blooms were not observed at Site 2 during the mapping exercise but have been previously recorded in this pond.

2.2.7.6 Services

No services were identified to date.

2.2.7.7 Potential Sources of Contamination

There are no known potential sources of contamination on site. There is industrial land to the north of the site, dense residential land use to the north east and east and Casement Aerodrome located to the south west of the site. The EIS for Profile Park located to the west of the GCGC recorded an area of waste within the eastern margin of the Profile Park site.

2.3 TIER 1 – CONCEPTUAL MODEL

From background information, a conceptual model was developed in accordance with the EPA Code of Practice document.

2.4 TIER 1 - RISK SCREENING

The EPA Code of Practice identifies eleven SPR linkages that should be considered within the conceptual model and assessed as part of the Tier 1 Assessment. Each of these linkages can be scored using the scheme provided in the EPA Code of Practice in order to provide an overall risk categorisation for the site.

An initial conceptual model was developed based on the information given above with consideration given to the eleven Source-Pathway-Receptor (SPR) linkages identified in the EPA Code of Practice. At Tier 1 each aspect of each SPR linkage can be assessed according to particular criteria as defined within the EPA Code of Practice. The Code of Practice uses a separate scoring matrix for each aspect of each SPR linkage and these are defined within Tables 1a to 3f of the Code of Practice. Where an individual aspect is not present or not relevant within the context of the conceptual model it is given a score of 0.

The score for each linkage is normalised with respect to 100 by dividing the score for each linkage by the maximum available points for that linkage to give a percentage. The overall score for the site is taken as the maximum of the individual normalised scores. The site can then be placed in a prioritisation category depending upon the potential level of risk identified. Sites with a higher score represent those with either a higher level of risk, which may require remediation, or a high level of uncertainty, which requires further intrusive investigation. If a high score is due to a high level of uncertainty then the assessment should proceed to Tier 2.

The conceptual site model and risk scoring is presented in Tables 1 and 2 below. The full assessment is presented in Appendix 2. The risk category bands relating to site scores as defined in the EPA Code of Practice are presented in Table 1.

Score	Priority Class	Risk Category	Definition		
> 70%	A	High	High risk/high uncertainty sites. Further investigation required to confirm status. Presents potentially high risk to environment in current condition. Remediation / mitigation will be necessary. Highest priority with Regulating Authority.		
40% to 70%	В	Moderate	Moderate risk/moderate uncertainty sites. Further investigation required to confirm status. Presents potentially moderate risk to environment in current condition. Remediation / mitigation may be required.		
< 40%	0% C Low environment in cu		Low risk sites. Not considered to present risk to environment in current condition however further investigation may be required in case of change of land use.		

Table 1: Risk Category and Prioritisation Class

Table 2:	Tier 1 Conceptual Model & Risk Scoring
----------	--

Source	Pathway	Receptor	% Score	Risk Classification
	(2a,b&c) Groundwater and Surface Water migration	(3e) Surface Water body (3b) Protected Area (Surface Water dependent terrestrial	3	Low
	Ingration	ecosystem)	3	Low
		(3a) Private Well	5	Low
(1.)		(3b) Protected Area (Groundwater dependent		
(1a) Leachate	(2a&b) Groundwater	terrestrial ecosystem)	2.5	Low
Leachate	Migration	(3c) Aquifer	4.5	Low
		(3d) Public Water Supply	0	No Linkage
		(3e) Surface Water body	2.5	Low
		(3e) Surface Water body	5	Low
	(2c) Surface Water Migration	(3b) Protected Area (Surface Water dependent terrestrial		
		ecosystem)	5	Low
(1b) Landfill Gas	(2d) Lateral migration in subsoil	(3f) Human Presence	1	Low
	(2e) Vertical Migration in subsoil	(Buildings, enclosed spaces)	0	No Linkage

Matrix 1 – *Guidance for preliminary* & *exploratory investigations for all unregulated waste disposal sites*, under the heading *Tier 1; Preliminary investigation* recommends the mandatory completion of a desk study, walkover survey and the development of a conceptual site model (CSM). All of these have been completed for Grange Castle Golf Course. A copy of Matrix 1 is also provided in Appendix 2.

The pollutant linkage with the highest individual score was identified as 5%. There are 3 linkages with this score, the migration of leachate to groundwater (5%), leachate to surface water (5%) and groundwater to surface water (5%),

The overall score for the site is therefore 5% which classifies it as a Class C low risk site. Although the risk is deemed low, a reappraisal assessment of the risk is proposed following the completion of the Tier 2 exploratory site investigation and testing programme in order to further confirm that the site does not pose a risk to human health or the environment.

3 TIER 2 – SITE INVESTIGATION & TESTING

3.1 INTRODUCTION & OBJECTIVES

The Tier 1 assessment identified the site as a Class C low risk site. The Tier 1 assessment identified the following potential low risks in relation to the infill material:

- Low risk to human health from the abstraction of groundwater for private use.
- Low risk to water bodies from the migration of leachate within shallow groundwater, and
- Low risk to protected areas from the migration of leachate within surface water

The following exploratory investigative programme was developed to provide sufficient information to verify the low risk site categorisation and confirm that the site does not pose a risk to the environment or human health while also allowing recommendations to be made on follow up actions should they be required.

The overall objective of the site investigation was to confirm the site characterisation determined by the Tier 1 assessment by obtaining information on:

- The nature of the infill material;
- The lateral and vertical extent of the infill material;
- The material characterisation of any waste encountered within the infilled areas;
- The potential for leachate generation;
- Surface water quality; and
- Water quality within the limestone aquifer.

3.2 TIER 2 METHODOLOGY

3.2.1 Approach

The exploratory investigation involved trial pitting, groundwater sampling, surface water sampling, soil sampling, and material characterisation.

The investigations were carried out in accordance with;

- BS 10175:2001 Investigation of Potentially Contaminated Sites Code of Practice
- BS 5930 Code of Practice for Site Investigation

- Applicable CEN and ISO Standards for Analysis and Sampling
- All relevant Health and Safety Regulations and Guidance (including the Health, Safety and Welfare at Work Act 2005 and the Construction Regulations (2006).
- EPA Code of Practice Environmental Risk Assessment for Unregulated Waste Disposal Sites, 2007.
- European Standard EN14899, Characterisation of Waste sampling of waste materials framework for the preparation and application of a sampling plan.

The exploratory investigation comprised a targeted and non targeted investigation which is described in further detail below.

3.2.2 Targeted Investigation

From the initial site walkover it was evident that there were distinct stockpiles, primarily located at the entrance to Phase 2 (5 holes) and Phase 3 (holes 14 & 15) which contained material other than soil and stones. Bricks, concrete, plastics tiles and tyres were identified within these stockpiles, and therefore, a targeted investigation and sampling regime was conducted within these areas. The sampling focused on obtaining sufficient information to characterise the material and provide information to assess the available options to remove this material off-site for onward recovery or disposal should it be a requirement.

Trial pits were excavated within the stockpiled material at regular intervals in order to obtain a comprehensive representation of the material in question.

Analysis following targeted sampling was carried out in accordance with the Waste Acceptance Criteria (WAC) for inert landfills as set out in Council Decision 2003/33/EC. The resultant soil samples were chemically analysed by Severn Trent Analytical Services (a UKAS/MCERT accredited independent laboratory). An untested portion of each sample will be retained for a minimum of 6 months in sufficient quantity to enable one further round of compositional and leachate testing should it be required.

Each trial pit was supervised and logged by an appropriately qualified person who noted the following:

- Type of material encountered;
- Notable odours if detected; and
- All other requirements in accordance with BS5930:1999.

A total of 10 No. individual stockpiles were investigated (SP01 to SP10) with a number of trial pits excavated within each stockpile dependant on the volume of material encountered and identification of any stratification. See Figure 11 for the location of all trial pits excavated within the stockpiled areas.

A total of 18 individual trial pits were excavated within the stockpiled material. The largest stockpiled area (SP06) was located within the north eastern corner of Phase 3 (holes 14 & 15) where 6 trial pits (SP06-01 to SP06-06) were excavated in order to obtain a representative characterisation of the material.

The trial pit photographs and logs for the targeted investigation of stockpiled material are presented in Appendix 3 and 4 respectively.

3.2.3 Non-Targeted Investigation

3.2.3.1 Phase 1

Phase 1 (8 holes) comprises a completed and active area of GCGC and in light of this all investigative works were completed within untrafficked areas such as access areas and boundary locations in order to minimise disturbance within this area. As the fairways within Phase 1 are natural ground, investigative works concentrated on the fill/contoured areas which were generally located within the rough. A total of 7 No trial pits were excavated within this area (see Figure 12) as agreed in advance with the EPA.

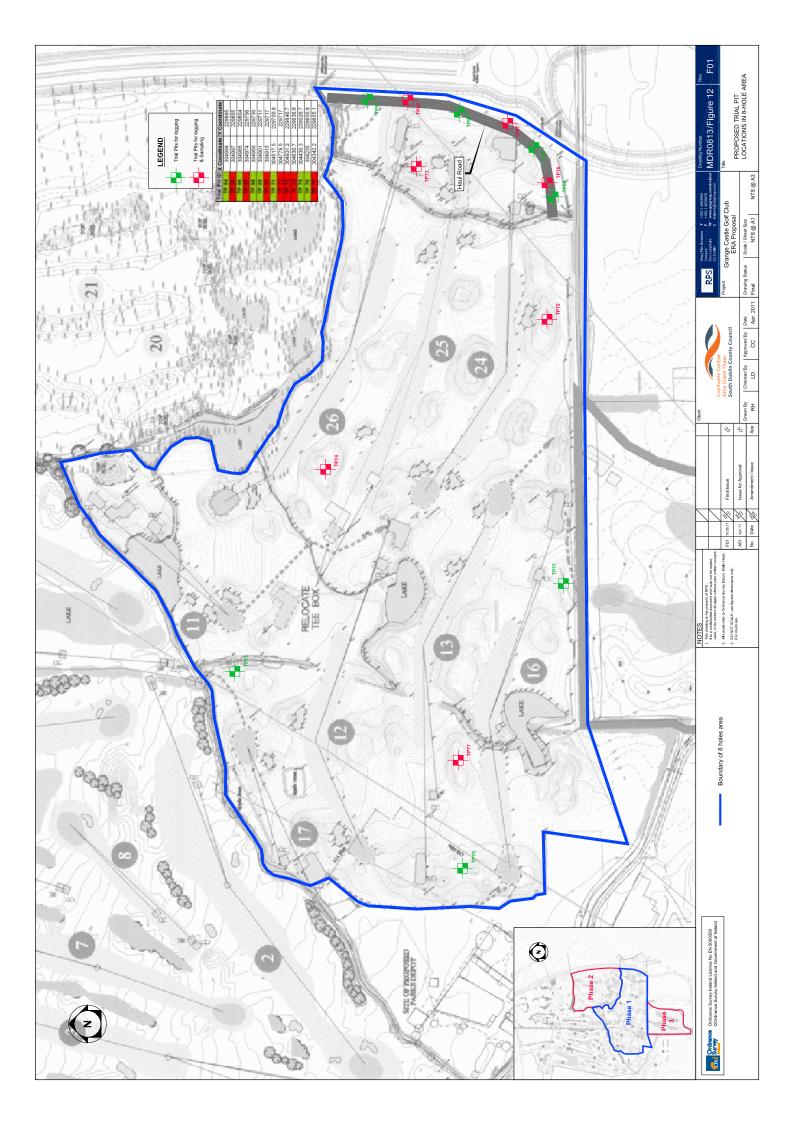
The trial pit photographs and logs for the non targeted investigation are presented in Appendix 5 and 6 respectively.

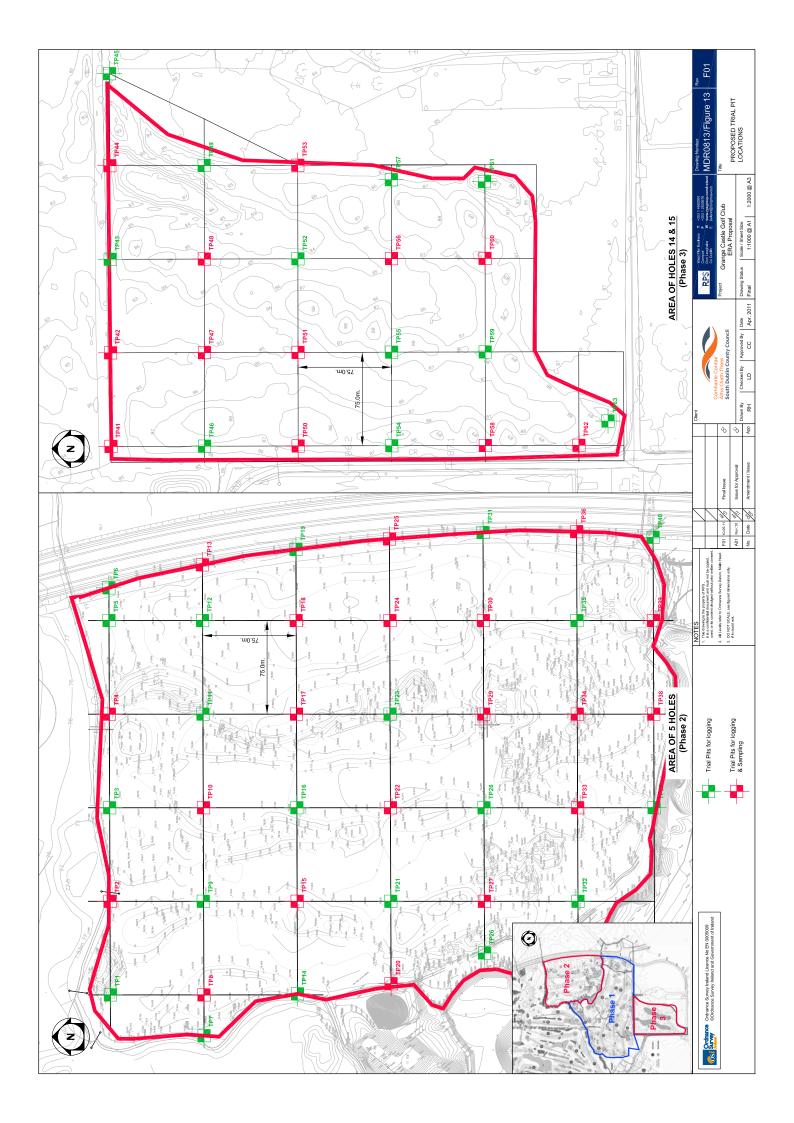
3.2.3.2 Phase 2 and 3 and the Haul Road

The majority of Phase 2 (5 holes) and Phase 3 (holes 14 & 15) contain large areas of mounded material which have been contoured and appeared on the surface to contain soil and stones with minimal contamination with other materials including waste. On this basis and having considered BS10175:2001 *Investigation of Potentially Contaminated Sites – Code of Practice,* a non-targeted sampling regime was conducted. BS10175:2001 recommends typical densities of sampling grids of between 50m and 100m for 'exploratory investigations' therefore a grid spacing of 75m was adopted for intrusive investigations within Phases 2 & 3. The 75m grid is presented in Figure 13.

The area termed the haul road connects Phase 2 (5 holes) and Phase 3 (holes 14 & 15) (see Figure 12) and 7 No. additional trial pits were excavated within this area.

3.2.3.3 Non-Targeted Trial Pits


The trial pits were excavated by Breffni Plant Hire using 2 No 20 tonne mechanical excavators for Phases 2 and 3 and a mini digger for Phase 1. All trial pits were excavated to the base of the infill material with natural ground identified. All trial pits were back filled on completion by replacing material in the order in which it was excavated.


Each trial pit was supervised, photographed and logged by an appropriately qualified person with the following noted:

- Type of material encountered;
- % of contamination, if encountered;
- Constituents of contamination;
- Notable odours if detected;
- Water strikes if encountered; and
- All other requirements in accordance with BS5930:1999.

A total of 77 No. trial pits (TP1-TP77) were excavated to depths ranging between 0.55m and 4.70m bgl (metres below ground level) between January and February 2011.

- Phase 1 (8 Holes): 7 Trial Pits
- Phase 2 (5 Holes): 40 Trial Pits
- Phase 3 (holes 14 & 15): 23 Trial Pits
- The Haul Road: 7 Trial Pits

Trial pit photographs and logs are presented in Appendix 5 and 6 respectively.

A Photo-Ionisation Detector (PID) with a lamp size 10.6 eV was used on samples taken from the excavated spoil to determine the presence of vapours. A sample from the trial pit was placed in a plastic bag. The probe of the PID was placed in the bag with the sample and the bag was sealed. Readings of 5.3 – 100 ppm were recorded across the site. However 2 trial pits recorded results in excess of this, TP43 (400ppm) and TP60 (316ppm), the elevated results may indicate the presence of hydrocarbon vapours due to the presence of tarmac.

3.2.3.4 Material Characterisation

Material encountered during investigative works was characterised with the amount of soil, stone and extraneous material (e.g. concrete, tarmac, plastic, metal, fabric) quantified. This characterisation followed a sampling plan prepared in accordance with the European Standard EN14899, *Characterisation of Waste – Sampling of Waste Material – Framework for the Preparation and Application of a Sampling Plan.* A copy of the Sampling Plan is provided in Appendix 7. Material characterisation sampling locations are identified on Figure 13.

A total of 39 No. samples were characterised from the 77 trial pits excavated. Material characterisation was completed on 4 of the 7 trial pits excavated within Phase 1 (8 holes), 32 of the 63 trial pits excavated within Phase 2 (5 holes) and Phase 3 (holes 14 & 15) with a further 3 completed within the 7 trial pits excavated along the Haul Road.

3.2.4 Sampling

Samples of soil and stockpiled material were obtained during the intrusive investigation in addition to groundwater and surface water samples as outlined in Table 3 below.

Table 3: Summary of Investigative Sampling

Stockpile (targeted)	20 samples (18 trial pits)
Soil (non targeted)	39
Surface Water	4
Groundwater	3

3.2.4.1 Soil

Material characterisation and soil sampling was conducted on 39 of the 77 trial pits excavated as part of the non targeted investigation. On completion of the trial pit designated for sampling, the excavated spoil was mixed by the excavator and a composite sample of approximately 500kg retrieved. As no obvious layering or stratification of material was identified one composite sample was taken from the excavated spoil. The 500kg sample comprised samples from four quarters of the excavated spoil. The 500kg sample was loaded into a mini-dumper and transported to a designated area where waste characterisation testing was conducted.

The sample was placed in a designated area underlain by a heavy duty plastic sheet and any extraneous material was extracted and sorted into a variety of containers including, timber, plastic, concrete, tar, tiles, rubber etc. The remaining soil and stone fraction was sieved through a purpose built table with a 20mm tray mesh. Each individual constituent was weighed and recorded and compositional % derived from the total sample obtained.

Representative composite soil samples were taken from the remaining soils fraction for laboratory analysis as outlined in Section 3.2.5 below (i.e. <20mm fraction) using the 'nine point sample' as

described in Annex D of BS 10175:2001 – Investigation of Potentially Contaminated Sites – Code of Practice.

3.2.4.2 Groundwater

There are two boreholes located on site which are currently used for irrigation purposes (see Figure 14 for location). As part of the exploratory investigation samples were taken (GW 1 and GW2) from the on site boreholes for analyses as outlined in Section 3.2.5 below. GW1 is located within the compound to the rear of GCGC clubhouse. GW2 is located at the south west corner of GCGC adjacent to Phase 1 (8 holes). Table 4 below provides well details for GW1 and GW2.

Table 4: Well Details (GW1 and GW2)

GW1		GW2	
Depth 14.30m bgl		14.63m bgl	
Standing Water Level	2.61m bgl	2.52m bgl	
Use Irrigation for Golf Course		Irrigation for Golf Course	

Following a review of SDCC water records it was determined that there are two potential groundwater users within the vicinity of the site; Castle Bagot House and Baldonnel House (see Figure 14). The groundwater well at Castle Bagot House was surveyed on the 28th of March 2011. The well is currently in use for general domestic purposes as the premises is not connected to the water mains and also supplies the Junior Genius Childcare facility located on the grounds. Well details are presented in Table 5 below. No access was granted to Baldonnel House therefore no sample or well details were obtained.

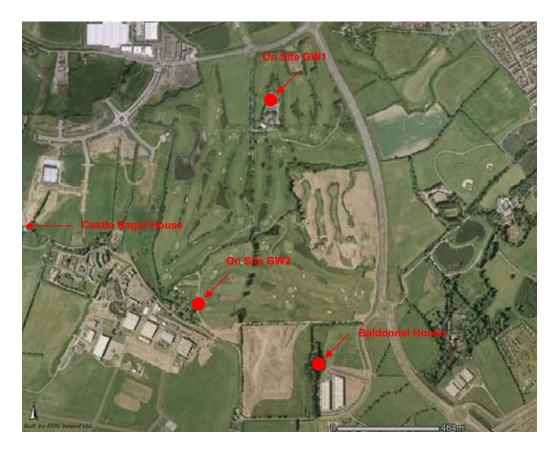


Figure 14 Groundwater Monitoring Locations

Depth	34.57m		
Standing Water Level	1.86m		
Use	Used for general domestic purposes and supply to on site childcare facility.		
Age	Unknown		
Volume Purged	60L		
рН	8.0 (@10L); 7.75(@ 30L); 7.77 (@50L)		
Conductivity	668µS/cm (@10L); 653µS/cm (@30L) 661µS/cm (@50L)		
Temperature	11.6°C(@10L); 9.7°C (@30L); 9.8°C (@50L)		

Table 5: Well Details (Castle Bagot House)

All groundwater sampling was undertaken in accordance with:

- BS 10175:2001 Investigation of Potentially contaminated Sites Code of Practice
- BS 1SO 5667 18:2001 Water Quality Sampling Part 18: Guidance on sampling of groundwater at Contaminated Sites; and
- EPA Landfill Manual, landfill monitoring, 2nd ed. 2003.

Groundwater sampling equipment was dedicated to each well to prevent cross contamination during sampling rounds.

3.2.4.3 Surface Water

Following the completion of a mapping exercise of the surface water drainage regime within GCGC, surface water samples were taken in upstream and downstream locations along the drainage systems flowing to both the Griffen and Cammock Rivers. A total of 4 No. surface water samples were collected (See Figure 10) for analyses as outlined in Section 3.2.5 below.

All surface water sampling undertaken at the site were undertaken in accordance with:

- BS 10175:2001 Investigation of Potentially Contaminated Sites Code of Practice; and
- EPA Landfill Manual, Landfill Monitoring, 2nd ed. 2003.

3.2.5 Laboratory Analysis

Soil and water samples were analysed for a range of parameters. All analysis was undertaken by Severn Trent Analytical Services. Table 6 identifies the parameters and suite of analysis completed as part of the investigative works at GCGC:

 Table 6:
 Summary of Laboratory Analysis

Soil	Stockpiles	Groundwater	Surface Water
 Bulk Soil Compositional Analysis Heavy Metals (Arsenic, Barium, Cadmium, Chromium, Copper, Mercury, Molybdenum, Nickel, Lead, Antimony Selenium and Zinc) Total Organic Carbon (TOC), pH, Nitrate, Nitrite, Phosphate, Sulphate BTEX, 16 Polycyclic Aromatic Compounds (PAHs)¹, Mineral Oil (C10- C40), 7 Polychlorinated Biphenyls (PCBs)² Volatile and Semi Volatile Organic Compounds (VOCs and SVOCs) Leachate Soil Testing (CEN 10:1) Dissolved Heavy Metals (Arsenic, Barium, Cadmium, Chromium, Copper, Mercury, Molybdenum, Nickel, Lead, Antimony, Selenium and Zinc) Nitrate, Nitrite, Phosphate, Sulphate, Chloride, Fluoride, Phenol Index, Dissolved Organic Carbon, Total Dissolved Solids 	 Bulk Soil Compositional Analysis Heavy Metals (Arsenic, Barium, Cadmium, Chromium, Copper, Mercury, Molybdenum, Nickel, Lead, Antimony Selenium and Zinc) Total Organic Carbon (TOC), pH, Nitrate, Nitrite, Phosphate, Sulphate BTEX, 17 Polycyclic Aromatic Compounds (PAHs)^{3,} Mineral Oil (C10-C40), 7 Polychlorinated Biphenyls (PCBs)⁴ Volatile and Semi Volatile Organic Compounds (VOCs and SVOCs) WAC Waste Acceptance Criteria (WAC) eluate analysis for inert landfills as set out in Council Decision 2003/33/EC 	 Dissolved Heavy Metals (Arsenic, Barium, Cadmium, Chromium, Copper, Mercury, Molybdenum, Nickel, Lead, Antimony, Selenium and Zinc) Nitrate, Nitrite, Phosphate, Sulphate, Chloride, Fluoride, Phenol Index, Dissolved Organic Carbon, Total Dissolved Solids. 	 Table C.2, of Appendix C of the EPA Landfill Monitoring Manual (2003)

² PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153 and PCB-180

¹ Napthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h.i)perylene, Benzo(a)pyrene, Chrysene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indenol(1,2,3-c,d)pyrene, Phenanthrene and Pyrene (PAH 16)

³ Napthalene, Acenaphthylene, Acenaphthene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(g,h.i)perylene, Benzo(a)pyrene, Chrysene, Coronene, Dibenzo(a,h)anthracene, Fluorene, Fluoranthene, Indenol(1,2,3-c,d)pyrene, Phenanthrene and Pyrene (PAH 17)

⁴ PCB-28, PCB-52, PCB-101, PCB-118, PCB-138, PCB-153 and PCB-180

3.3 OBSERVED GROUND CONDITIONS

3.3.1 Made Ground

3.3.1.1 Topsoil

Topsoil was encountered in a number of locations to depths of between 0.1m to 0.5m. Topsoil was recorded in the following Trial Pits TP1, TP5, TP6, TP13, TP16, TP19, TP20, TP21, TP28, TP29, TP71, TP73, TP75, TP76, TP77. The topsoil typically comprised soft medium brown to dark brown sandy clay with occasional rootlets. There was no visual or olfactory evidence of contamination in the topsoil.

3.3.1.2 Reworked Clays/Infill Material

The depth of infill material varied from 0m to 4.6 mbgl. The maximum observed depth of infill material was recorded in TP67 (4.6m), located along the haul road in the south eastern region of the site. The base of the infill material was confirmed in all trial pits by excavation to natural ground.

The infill material typically comprised a grey/ brown gravelly clay matrix with a minor waste component comprising materials such as plastic, tarmac, textiles, timber, brick, concrete and metals.

The volume of infill material within the '5 holes' (Phase 2) and 'holes 14 & 15' (Phase 3) was calculated following a review of historic (1998) and current (2009) topographic surveys which provided information on pre and post filling levels. The volume of infill material was calculated at 90,230m³ for Phase 2 and 126,726m³ for Phase 3.

3.3.2 Natural Ground

3.3.2.1 Glacial Till

Undisturbed natural ground was encountered in all trial pits across the site. For the trial pits listed in 3.3.1.1 (excluding TP73, TP76 and TP77), natural ground was encountered below a layer of topsoil. For all other trial pits natural ground was encountered underlying the infill material. The material generally comprised soft to firm brown to red/ brown slightly gravelly clay.

3.3.2.2 Bedrock

No bedrock was encountered during the excavation of trial pits at GCGC.

3.3.3 Groundwater Observations

No groundwater observations were noted during the intrusive investigation as all exploratory works were located within fill material above natural grade.

3.3.4 Summary of Ground Conditions

The general sequence of soil conditions encountered during the intrusive investigations at GCGC is presented in Table 7.

Table 7: Summary of Ground Conditions

Strata	Average Thickness (m)	Description
Topsoil	0.3	Soft medium brown to dark brown sandy clay with occasional rootlets
Reworked Clay/Infill Clay	2.3	Grey/ brown gravelly clay matrix with a minor waste component comprising materials such as plastic, tarmac, textiles, timber, brick, concrete and metals
Strata	Maximum Depth (m)	Description
Glacial Till	>4.6	Soft to firm brown to red/ brown slightly gravelly clay
Bedrock	-	Not proven

3.4 SOIL CHEMICAL RESULTS

Thirty nine (39) soil samples were sent for laboratory testing from the 77 trial pits excavated during the exploratory investigation. Samples taken from the infill material were analysed for the broad suite of parameters for compositional and leachate testing as listed in Table 6. The results are summarised in Appendix 8.

3.4.1 Bulk Soil

With regard to Human Health there are no Irish soil criteria available, therefore Generic Assessment Criteria (GACs) have been selected from the following:

DEFRA in the UK have stated that the new CLEA 1.06 model is currently the preferred for the production of risk assessment values for human health protection. Revised Soil Guideline Values (SGV) have been published by DEFRA in this model which have been used as GAC's in this instance. As this site is a golf course and is not used for residential or commercial purposes the SGVs for *'allotments (without lifetime exposure)'* are considered to be the most appropriate in this instance. The exposure pathways of 'residential' or 'commercial' were not used as these are not as representative of the use of a golf course as a general amenity.

As SGVs are only available for a limited number of substances, additional criteria have been sourced from current Dutch Government guidance and from criteria published by LQM/CIEH using the old CLEA model that was used to derive historical SGVs. The Dutch guidance Target Values (DTVs) have been used to represent 'minimal or no risk' levels of contamination. LQM/CIEH values are used in the same way as SGVs (Soil Generic Assessment Criteria for Human Health Risk Assessment, LQM/CIEH (2007))

In summary, where a commercial SGV is available for a substance, this is used as the GAC. Where this is not available the DTV or LQM/CIEH criteria is used as the appropriate GAC.

3.4.2 Bulk Soil Analysis

The results of the bulk soils analysis recorded low levels of hydrocarbons across the site with the following results noted;

- C5 C44, Total Aliphatic; the results ranged from below the laboratory Limit of Detection (LoD) to 140mg/kg (TP18).
- C5 C44, Total Aromatic; the results ranged from below laboratory LoD to 220mg/kg (TP18).
- C5 C44, Total Hydrocarbons; the results ranged from below laboratory LoD to 360mg/kg (TP18)

It should be noted that the above maximum hydrocarbon concentrations is likely to be attributable to the presence of tarmac in TP18.

Results for Polycyclic Aromatic Hydrocarbons (PAHs) (speciated) ranged from below laboratory LoD to 17mg/kg (TP 44) are considered low and not likely to pose a risk to Human Health or to the Environment.

There were no detections of Methyl tertiary butyl ether (MTBE) or BTEX (benzene, toluene, ethylbenzene, and xylene) across the site.

Low levels of polychlorinated biphenyls (PCBs) were recorded at TP 74 and TP 77 with values of $1.1\mu g/I$ recorded for PCB 153 which is slightly above the laboratory LoD (< $1.0\mu g/I$). PCBs were below the laboratory LoD in all remaining trial pits across the site.

The following range of heavy metals were analysed for all trial pits across the site; arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, antimony selenium and zinc.

- Antimony slightly exceeded the Dutch Target Value (DTV) of (3mg/kg) in TP4 (3.1mg/kg), TP13 (5.5mg/kg) and TP17 (7.6mg/kg) however all of the above were considerably below the Dutch Intervention Value (DIV) of 15mg/kg.
- Barium slightly exceeded the DTV of (160mg/kg) in TP4 (190mg/kg), TP22 (190mg/kg) and TP72 (170mg/kg) however all of the above were considerably below the DIV of 625mg/kg.
- Cadmium slightly exceeded the SGV of (1.8mg/kg) in eleven trial pits ranging from 1.9mg/kg (TPs 34, 50, 58 & 67) to 4mg/kg (TP10).
- Molybdenum slightly exceeded the DTV of (3mg/kg) in TP13 (7.6mg/kg) and TP58 (3.1mg/kg) however all of the above were considerably below the DIV of 200mg/kg.

No volatile or semi volatile organic compounds (VOCs and SVOCs) were detected across the site.

3.4.3 Soil Leachate (CEN 10:1)

Soil leachate concentrations have been compared to the Interim Guideline Values (IGV) for Groundwater as presented in EPA interim report "Towards Setting Guideline Values for the Protection of Groundwater in Ireland" 2002. The Dutch Guidance Target Values (DTVs) which represent 'minimal or no risk' levels of contamination have also been used for comparative purposes.

There are currently no published generic assessment criteria for groundwater derived specifically to be protective of human health via direct contact. However it can be assumed that if water is considered safe for human consumption then there are no risks from direct contact.

3.4.4 Soil Leachate Analysis

The results indicated nitrite as NO_2 was slightly elevated above the IGV (0.1mg/l) in TP25 (1.26mg/l), TP36 (0.73mg/l), TP67 (0.61mg/l), TP70 (0.51mg/l) and TP74 (0.64mg/l).

Molybdenum was slightly elevated above the DTV of 0.005mg/l for shallow soils at TP65 (0.02mg/l) and TP70 (0.006mg/l).

No other exceedances above guideline values were noted.

3.5 STOCKPILE CHEMICAL RESULTS

3.5.1 Bulk Compositional Analysis

As part of the exploratory investigation twenty samples were taken from stockpiles located at the site (see Appendix 9 for chemical results).

The results were analysed against Soil Guideline Values (SGVs) published by DEFRA. As this site is a golf course and is not used for residential or commercial purposes the SGVs for 'allotments (without lifetime exposure)' are considered to be most appropriate in this instance.

As SGVs are only available for a limited number of substances additional criteria have been sourced from criteria published by LQM/ CIEH and current Dutch Government Guidance. Where the Dutch guidance Target Values (DTVs) are used, these represent 'minimal or no risk' levels of contamination. LQM/ CIEH values are be used in the same way as SGVs (Soil Generic Assessment Criteria for Health Risk assessment, LQM/ CIEH (2007))

The results indicate that all sample results were below the relevant SGV/DTV for heavy metals with the exception of the following;

- Antimony slightly exceeded the DTV (3mg/lkg) at SP7-1 (3.1 mg/kg), however this is below the Dutch Intervention Value (DIV) (15mg/kg).
- Cadmium exceeded the SGV (1.8mg/kg) at SP7-1 (1.9mg/kg) and SP5-1 (5mg/kg) however remained below the DIV (12mg/kg).
- Molybdenum slightly exceeded the DTV (3mg/kg) at SP7-1 with a result of 3.2mg/kg however this remains well below the DIV (200mg/kg).
- Mineral Oils are below the DIV and BTEX and below the SGV with the exception of Benzene where the SGV is below the laboratory LoD. All results for Benzene are below the laboratory LoD.

Results for Total Polycyclic Aromatic Hydrocarbons (PAHs) exceeded the laboratory LoD in eleven samples ranging in value from 3.2mg/kg (SP6-4(2)) to 14mg/kg (SP4-1) which are considered low and not likely to pose a risk to Human Health or the Environment. Phenanthrene, fluoranthene, pyrene and benzo(a)pyrene are the predominant PAH's recorded within the eleven samples.

3.5.2 Waste Acceptance Criteria

As part of the exploratory investigation all samples from the stockpiled material were tested for Waste Acceptance Criteria (WAC) (Murphy Suite) to give an initial indication of the likely waste classification of the material. The results are presented in Appendix 9.

The testing was conducted in order to provide information to assess available options to remove this material off site for recovery/disposal if required.

The results were compared to the WAC for inert landfills as set out in Council Decision 2003/33/EC.

The results indicate the concentration of Fluoride at SP2-1 and SP2-2 slightly exceeded the criteria for inert waste (10mg/kg) at 11mg/kg and 26mg/kg respectively, however they are below the limit values for non hazardous waste.

Phenol concentrations recorded were below the laboratory limit of detection (LoD) in all samples.

Table 8 provides definitions relating to waste acceptance criteria.

Table 8: Definition of Waste Relating to Waste Acceptance Criteria

In out Manto	Masta is inset if:
Inert Waste	 Waste is inert if: (a) it does not undergo any significant physical, chemical or biological transformations; (b) it does not dissolve, burn or otherwise physically or chemically react, biodegrade or adversely affect other matter with which it comes into contact in a way likely to give rise to environmental pollution or harm to human health; and, (c) its total leachability and pollutant content and the eco-toxicity of its leachate are insignificant and, in particular, do not endanger the quality of any surface water or groundwater.
Non-Hazardous Waste	 Non-hazardous waste is waste which is stable and non-reactive, which means that the leaching behaviour of the waste will not change adversely in the long-term, under landfill design conditions or foreseeable accidents: (a) in the waste alone (for example, by biodegradation); (b) under the impact of long-term ambient conditions (for example, water, air, temperature, mechanical constraints), and, (c) by the impact of other wastes (including waste products such as leachate and gas).
Hazardous Waste	Hazardous waste is waste which possesses one or more of the following hazardous properties: explosive, oxidizing, flammable, irritant, harmful, toxic, carcinogenic, corrosive, infection, toxic for reproduction, mutagenic, releases toxic gases in contact with air, water or acid and ecotoxic.
Putrescible Waste	Putrescible waste is any waste which is subject to biological and chemical decomposition or decay.
International Swill	Catering waste containing products of animal origin generated from means of transport operating internationally.

3.5.3 Asbestos

Trial Pit SP5-3 excavated a concrete pipe which displayed asbestos characteristics therefore a sample was taken and analysed at RPS' Warrington laboratory, a UKAS accredited laboratory. The results confirmed that the pipe contained Chrysotile asbestos fibers. See Appendix 14 for certificate of analysis and Table 9 below for details of concrete pipe.

Table 9: Asbestos: Concrete pipe details

Location	SP5-3 (see figure 11)
Description	Concrete pipe approximately 0.15 m diameter, 0.8m long
Photo	

3.6 GROUNDWATER CHEMICAL RESULTS

3.6.1 Introduction

Groundwater samples were taken from boreholes G1 and G2 located on site and a private well located at Castle Bagot House. The samples were analysed for a broad suite of parameters listed in Table 6 and results are presented in Appendix 10.

Borehole G1 is located to the rear of the clubhouse situated to the north of the infill material and borehole G2 is located to the south west of the infill material. The results indicate the depth to groundwater in each borehole was approximately 2.6 metres and 2.5 metres below ground level respectively.

The private well located at Castle Bagot House is >1km west of the infill material and the depth to groundwater is approximately 1.86 meters below ground level.

Groundwater concentrations have been compared to the European Communities Environmental Objectives (Groundwater) Regulations, 2010 (S.I. No. 9 of 2010) and the Interim Guideline Values (IGV) for Groundwater as presented in EPA interim report "Towards Setting Guideline Values for the Protection of Groundwater in Ireland" 2002.

There are currently no published generic assessment criteria for groundwater derived specifically to be protective of human health via direct contact. However it can be assumed that if water is considered safe for human consumption then there are no risks from direct contact.

3.6.2 Groundwater Properties

The concentrations of chloride detected in G1 and G2 was 37.6 mg/l and 25.5 mg/l respectively. This is slightly elevated above the lower threshold value of 24mg/l set out in the European Communities Environmental Objectives (Groundwater) Regulations, 2010 (S.I. No. 9 of 2010), however it is considerably below the higher threshold value of 187.5mg/l. G1 also exceeds the EPA Interim Guideline Value (IGV) of 30mg/l. Sources of chloride may include natural soil and rock formations, farmyard runoff, landspreading of organic wastes, leachate, sewage and industrial effluent. Chloride does not pose a risk to human health however it does affect palatability.

The concentration of nitrite (N) detected in G1, G2 and Castle Bagot House was <0.0006mg/l, <0.0006mg/l and 0.0008mg/l respectively. However no threshold limits are provided for Nitrite as N in the European Communities Environmental Objectives (Groundwater) Regulations, 2010 (S.I. No. 9 of 2010), the 2003 EPA IGV's for the protection of groundwater or the Dutch target/intervention limits. The limit specified for nitrite as NO₂ in the 2010 Groundwater Regulations is 0.375mg/l. All the results for nitrite as N are below the limit of 0.375mg/l for NO₂. Nitrate levels from all groundwater samples are below the relevant standard within the 2010 Groundwater Regulations (37.5mg/l). The presence of nitrite may be attributable to the use of fertilisers within the area.

The concentration of antimony detected at Castle Bagot House was slightly elevated at 0.0028mg/l but did not exceed the DIV (0.02mg/l).

Slightly elevated levels of arsenic were recorded at the private well at Castle Bagot House (0.0134mg/l) which slightly exceeds the threshold limits specified in the 2010 Groundwater Regulations (0.0075mg/l) and the EPA IGV's (0.01mg/l). It should be noted that arsenic was below the threshold limits at the two on-site groundwater monitoring locations (G1 and G2). Elevated levels of arsenic were not recorded in the on-site soil bulk or leachate analysis therefore the exceedance at Castle Bagot House may be attributable to off site sources.

The concentration of phosphate (P) recorded at monitoring location G1, G2 and Castle Bagot House was 0.222mg/l, 0.015mg/l and 0.866mg/l respectively.

3.7 SURFACE WATER CHEMICAL RESULTS

3.7.1 Introduction

GCGC has seven artificial ponds which are connected via a series of interconnecting drains. The site's internal drainage network discharges to the Griffeen and Cammock Rivers. Both the Griffeen and Cammock River catchments discharge to the River Liffey.

Surface water samples were collected from four locations within the site boundary (see Figure 10). The samples were analysed for the suite of parameters as outlined in Table C.2, of Appendix C of the EPA Landfill Monitoring Manual (2003).

- Location S1 Downstream of Griffeen River
- Location S2 Upstream of Griffeen River
- Location S3 Upstream Cammock River
- Location S4 Downstream Cammock River

Surface Water concentrations have been compared to the Minimum Reporting Value for Clean Waters (MRV's), the European Communities Environmental Objectives (Surface Water) Regulations 2009 and the IGVs. Detailed results are presented in Appendix 11.

3.7.2 Surface Water Properties

Concentrations of calcium, magnesium, manganese, sodium, chloride, sulphate, conductivity and alkalinity recorded at all four monitoring locations (upstream and downstream) were above the minimum reporting value (MRV) for clean water as specified in the EPA Landfill Monitoring Manual, 2003. No threshold limits are listed in the 2009 Surface Water Regulations for these parameters. However, the concentration of calcium, magnesium, sodium, sulphate, conductivity and alkalinity recorded at all four monitoring locations are below the Interim Guideline Values for groundwater (IGV).

Manganese was slightly elevated above the IGV (0.05mg/l) at S4 (0.128mg/l). Chloride was slightly elevated above the IGV (30mg/l) at monitoring location SW3 (38.3mg/l). It should be noted that elevated levels of manganese and chloride were not recorded in the soil bulk and leachate analysis.

Concentrations of suspended solids were recorded above the MRV for clean water (5mg/l) at S3 (16mg/l) and S4 (6mg/l), these levels are considered to be low. No threshold limits are listed in the Surface Waters Regulations 2009 or the IGVs for suspended solids.

Concentrations of potassium above the MRV for clean waters were recorded at monitoring locations S1 (1.95mg/l), S2 (1.59mg/l) and S3 (3.42 mg/l), however concentrations at all locations are below the relevant IGV (5mg/l).

Cadmium concentrations recorded at all monitoring locations are below the maximum allowable concentration (MAC) EQS of 0.0015mg/l as reported in the Surface Waters Regulations 2009 and the IGV at all locations.

Furthermore, fluoride concentrations recorded at all monitoring locations are below the annual allowable (AA) EQS of 0.5mg/l as reported in the Surface Waters Regulations 2009 and the IGV.

Concentrations of all remaining parameters at all locations were below the threshold limits specified in the MRV for clean water, as specified in the EPA Landfill Monitoring Manual, 2003, the Surface Waters Regulations 2009 and the IGV where applicable.

3.8 CHARACTERISATION SURVEY RESULTS

In accordance with the EPA's correspondence dated 28th of October 2010 material characterisation was conducted on 39 of the 77 trial pits excavated as part of the non targeted investigation. On completion of each trial pit designated for sampling, the excavated spoil was mixed by the excavator and a composite sample of approximately 500kg retrieved.

Extraneous material was extracted and sorted into a variety of containers including, timber, plastic, concrete, tar, tiles, rubber etc. The remaining soil and stone fraction was sieved through a purpose built table with a 20mm tray mesh. Each individual constituent, listed below, was weighed, recorded and compositional % derived from the total sample obtained.

- Biodegradable waste from garden & park
- Papers & Cardboard
- Composites
- Textiles
- Plastics
- Glass
- Metals
- Wood
- Stones/rocks (>20mm)
- Soils and Stones (<20mm)
- Concrete
- Bricks
- Wire
- Rope
- Natural Wood
- Timber
- Man Made Wood
- Ceramic
- Tar

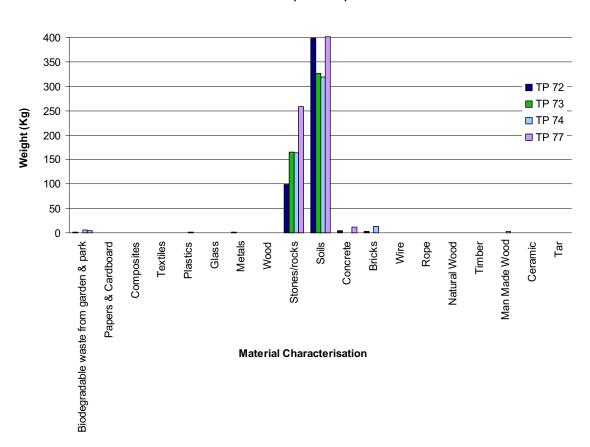
A summary of the characterisation results for each of the areas investigated are outlined below in Table 10 with detailed analyses presented in Appendix 12.

The samples primarily comprised soil (<20mm) (71.79%) and soil and stones (>20mm) (25.59%) with these two categories accounting for 97.38% of the total volume of material sampled.

Some Natural Wood found in the form of branches (0.04%) and Biodegradable Waste from Garden and Park comprising rootlets and grass (0.27%) were also found.

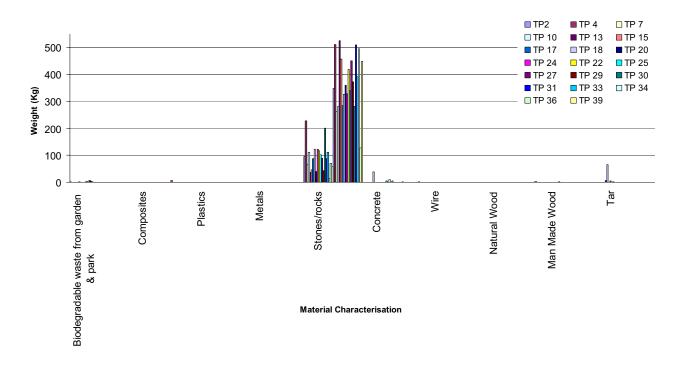
Other waste elements accounting for 2.31% found in the samples were Wood – Timber (0.07%), Tar (0.48%), Ceramics (0.01%), Bricks (0.17%), Concrete (1.26%); Metals (0.03%); Plastics (0.04%); Textiles (0.04%) and Composites (0.20%).

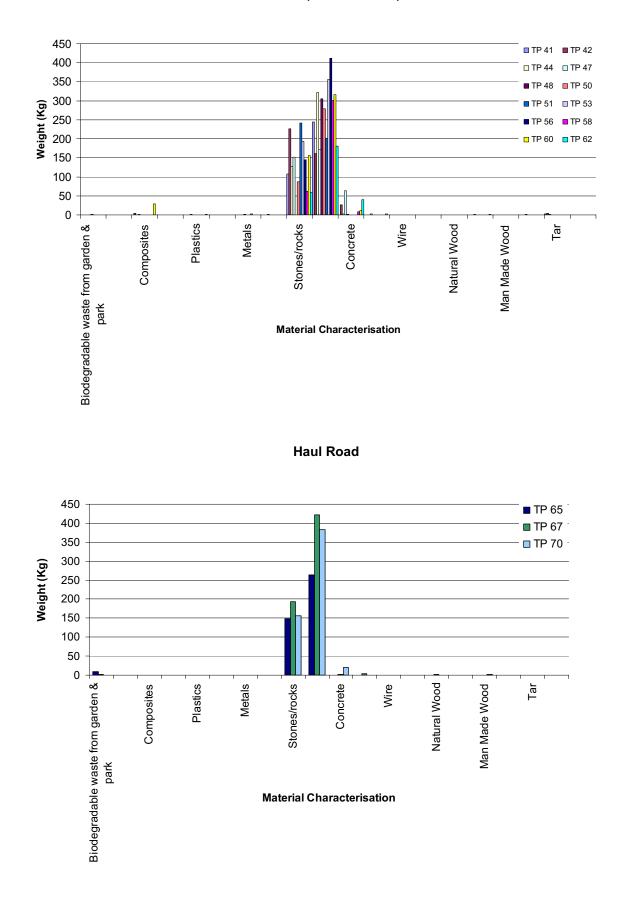
No hazardous or food waste was found in the samples.


The category **Soil** was made up of all the elements that passed through the 20mm round mesh. The concentration of soil in the samples ranged from 38.4% in Trial Pit 42 (Phase 3) to 97.2% in Trial Pit 34 (Phase 2).

Typically, soil due to its sticky nature would also be found in the other categories. This would affect the true weight found in those categories leading to an overestimation of their quantities.

Table 10: Summary of characterisation results


Constituent	Description		
Soil and Stones (>20mm)	Ranged from 2.8% in Trial Pit 34 (Phase 2) to 54.6% in Trial Pit 51 (Phase 3).		
Tar	Ranged from 0.1% in Trial Pits 30 (Phase 2), 56 & 60 (Phase 3) to 11.9% in Trial Pit 18 (Phase 1). It should be noted that tar was either not present or recorded low weights amounting to 0% of the total sample weight in a total of 25 of the 39 samples characterised.		
Ceramics	Ranged from 0.1% at Trial Pit 25 (Phase 2) to 0.3% at Trial Pit 47 (Phase 3). Ceramics recorded during characterisation accounted for 0% of total sample weights in 16 trial pits and were not registered in a further 21 of the total 39 samples characterised.		
Bricks	Ranged from 0.1% in Trial Pits 10, 17 (Phase 2) and 70 (Haul Road) to 2.6% in Trial Pit 74 (Phase 1). Bricks recorded during characterisation accounted for 0% of total sample weights in 14 trial pits and were not registered in a further 14 of the total 39 samples characterised.		
Concrete	Ranged from 0.1% in Trial Pits 17, 27 and 39 (Phase 2) to 16% TP47 (Phase 3). Concrete accounted for 0% of total sample weights in 5 trial pits and was not registered in a further 17 of the total 39 samples characterised.		
Metals	Generally comprised pipes and wires with some nails, cans and a bathroom tap in Trial Pit 65 (see Appendix 13 for photographs). The concentration of metallic materials in the samples characterised ranged from 0.1% in Trial Pit 47 (Phase 3) to 0.4% in Trial P 53 (Phase 3). Metals were not recorded nor did they exceed 0% of the total sample weight in 33 of 39 trial pits characterised.		
Plastic	Materials encountered principally comprised light plastic packaging with a plastic bottle (TP 41) and plastic piping (TP 51) also noted. The concentration of plastic materials in the samples ranged from 0.1% in Trial Pit 72 (Phase 1), Trial Pits 17, 18, 25, 30 and 33 (Phase 2) and Trial Pits 44 and 62 (Phase 3) to 0.3% in Trial Pit 47 (Phase 3). It is likely that the weights of the plastic materials are overestimated due to cross-contamination with soil. Plastic was either not present or recorded low weights amounting to 0% of the total sample weight in 27 of 39 trial pits characterised.		
Textile	Materials were mainly made up of a cloth fragments. The concentration of textile material in the samples ranged from 0.1% in Trial Pits 7 and 33 in Phase 2 and Trail Pit 62 in Phase 3 to 1.3% in Trial Pit 24 (Phase 2). It is likely that the weights of the textile materials are overestimated due to cross-contamination with soil. Textiles were either not present or recorded low weights amounting to 0% of the total sample weight in 35 of 39 trial pits characterised.		
Composites	Were defined as a fraction in which the sample comprised a combination of individual constituents e.g. metal wiring with plastic coating. The concentration of composite materials in the samples characterised ranged from 0.1% in Trial Pit 74 (Phase 1), Trial Pits 4 & 17 (Phase 2) and Trial Pit 62 (Phase 3) to 5.7% in Trial P 60 (Phase 3). Composites were either not present or recored low weights amounting to 0% of the total sample weight in 33 of 39 trial pits		
Man made Wood and Timber	Recorded within a number of the trial pits excavated and sampled. Man made Wood ranged from 0.2% in Trial Pit 30 (Phase 2) and Trial Pit 70 (Haul Road) to 0.7% in Trial Pit 74 (Phase 1). Timber ranged from 0.1% in Trial Pit 25 (Phase 2) to 0.3% in Trial Pit 47 (Phase 3). Man made Wood and Timber were either not present or recorded low weights amounting to 0% of the total sample weight in 33 of 39 trial pits characterised.		
Food or Kitchen waste	None was found in any of the samples.		
Hazardous materials	None were found in the samples.		


These results are presented graphically below.

Phase 1 (8 Holes)

Phase 2 (5 Holes)

Phase 3 (Holes 14 & 15)

3.8.1 Waste Characterisation Summary

The samples primarily comprised soil (<20mm) (71.79%) and soil and stones (>20mm) (25.59%) with these two categories accounting for 97.38% of the total volume of material sampled.

It should be noted the EIS for Profile Park located to the west of GCGC recorded waste material within its eastern margin ranging in thickness from 2.5 to 3.75m. A waste characterisation assessment was also completed within this area with the results indicating the 79.7% comprised stones, concrete and soil with 16.8% comprising elements >20mm. Wood accounted for 3.4% and was considered to pose a risk in terms of methane generation.

3.9 CONCLUSION OF TIER 2 SITE INVESTIGATIONS

The findings of the Tier 2 intrusive exploratory investigations and testing has provided the following conclusions:

- The interpreted lithology of the site comprises topsoil, overlying reworked clay containing minor amounts of waste material with an average thickness of 2.3m. Soft to firm brown to red/ brown slightly gravelly clay with a maximum depth >4.7m underlies the reworked clays. Bedrock was not encountered during the exploratory investigation, however GSI records indicate the site is underlain by Calp Limestone.
- Following a review of GSI mapping, the limestone bedrock underlying the site is classified as a locally important aquifer. The underlying aquifer is predominantly highly vulnerable with limited areas of the site considered to be extremely vulnerable to contamination. Local groundwater flow is to the northwest.
- The waste characterisation study found the >97% of the infill material consisted of soil (<20mm) and soil and stones (>20mm).
- The soil analytical data indicates that the infill material contains low level hydrocarbons and heavy metals such as antimony, barium, cadmium and molybdenum across the site which are not likely to pose a risk to Human Health or the Environment.
- Flouride was the only parameter to exceed the WAC limits for the acceptance of waste at inert landfills. Slightly elevated levels were detected in two of the twenty samples. As all remaining samples were below the threshold limits for inert waste, the majority of this material is suitable for acceptance at suitably licenced inert landfills should off site disposal be required.
- The contaminants identified in groundwater samples were limited to arsenic and chloride. Elevated levels of arsenic were recorded at the monitoring location at Castle Bagot House. While elevated levels of arsenic are of concern, elevated levels of arsenic were not recorded from on site monitoring locations or within the soil bulk or leachate analysis, which suggests it may originate from off site sources.
- Elevated levels of chloride were detected at two groundwater monitoring locations, however as above chloride was not recorded in the soil bulk or leachate analysis, which suggests it may also originate from off site/alternative sources or is naturally occuring. Chloride does not pose a health hazard to humans. The principal consideration is in relation to palatability.
- The contaminants identified in surface water samples collected from the site were limited to manganese at one location and chloride and suspended solids at a second location. Elevated levels of manganese, chloride and suspended solid were not recorded in the soils bulk and leachate analysis which suggests these contaminants may originate from off-site sources.

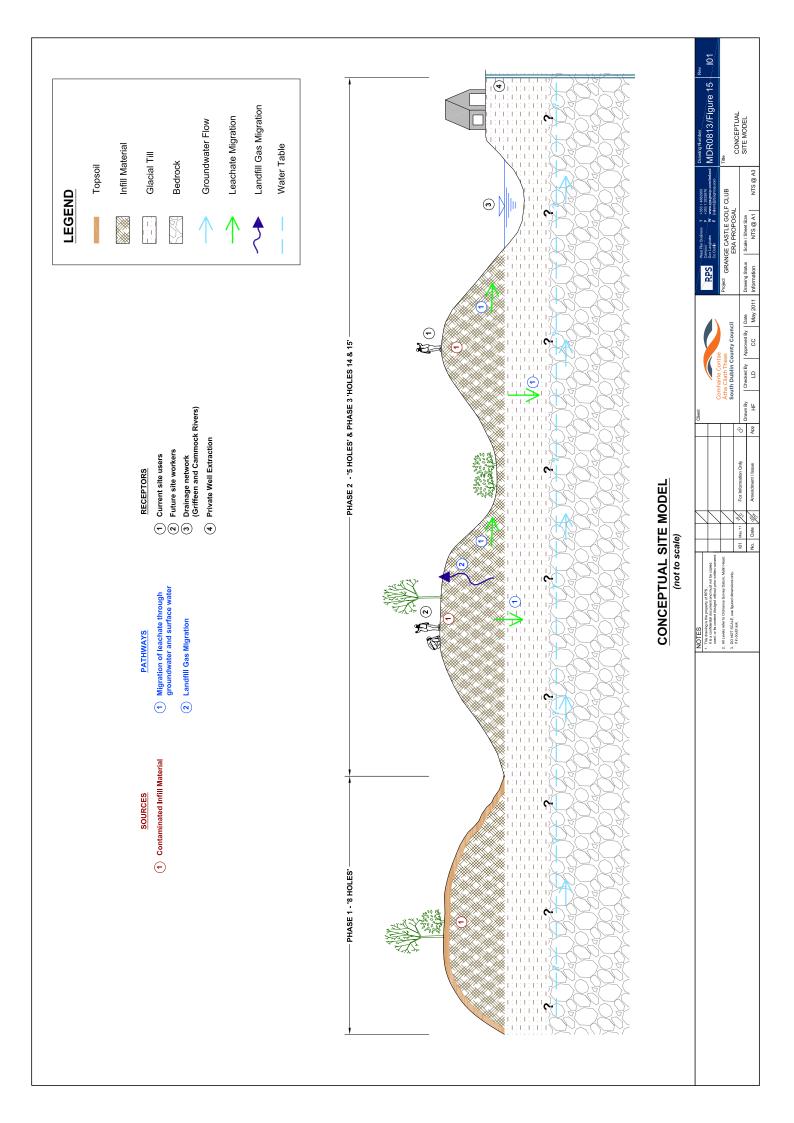
4 REFINEMENT OF CONCEPTUAL MODEL

4.1 REFINED CONCEPTUAL SITE MODEL

The conceptual model, initially developed at Tier 1 stage (refer to Section 2.3 above) has been refined based upon the findings of the site investigation. The Source-Pathway-Receptor Linkages identified at Tier 1 have been considered in more detail to take account of site specific conditions. The refined conceptual model is discussed in detail below and presented in Figure 15.

4.1.1 Source

The primary source of contamination identified at the Tier 1 stage is the infill material. This material has been characterised as part of this investigation and following a review of the findings no substances that may be harmful to human or environmental receptors have been recorded at detectable concentrations within the soil matrix, groundwater or surface water therefore no contaminants of concern (CoC) with respect to human health and environmental receptors were identified during the site investigation.


The Tier 1 assessment identified the site as a Class C low risk site. The Tier 1 assessment also identified the following potential low risks in relation to the infill material:

- Low risk to human health from the abstraction of groundwater for private use.
- Low risk to water bodies from the migration of leachate within shallow groundwater, and
- Low risk to protected areas from the migration of leachate within surface water

4.2 REVISED RISK SCREENING

The risk screening exercise was repeated in order to confirm the initial risk ranking assigned in the Tier 1 Conceptual Site Model, Risk Screening and Prioritisation.

The conceptual site model and risk scoring is presented in Table 11 below. The full assessment is presented in Appendix 15.

Table 11: Revised Conceptual Model & Risk Scoring

Source	Pathway	Receptor	% Score	Risk Classification
	(2a,b&c) Groundwater	(3e) Surface Water body	6	Low
	and Surface Water migration	(3b) Protected Area (Surface Water dependent terrestrial ecosystem)	0	No Linkage
		(3a) Private Well	2.5	
(1a) (2a&b) Groundwater	(3b) Protected Area (Groundwater dependent terrestrial ecosystem)	0	No Linkage	
Leachate	Leachate Migration	(3c) Aquifer	4.5	Low
		(3d) Public Water Supply	0	No Linkage
		(3e) Surface Water body	5	Low
		(3e) Surface Water body	10	Low
(2c) Surface Water Migration	(3b) Protected Area (Surface Water dependent terrestrial ecosystem)	0	No Linkage	
(1b) Landfill	(2d) Lateral migration in subsoil	(3f) Human Presence	5	Low
Gas	(2e) Vertical Migration in subsoil	(Buildings, enclosed spaces)	0	No Linkage

Following the review of the conceptual model and risk scoring the pollutant linkage with the highest individual score was identified as leachate to surface water (10%).

The overall score for the site is therefore 10% which reconfirms the classification of the site as a Class C low risk site.

- Low risks to surface water bodies from migration of leachate through groundwater and surface water;
- Low risk to human health from the abstraction of groundwater for private use;
- Low risks to water quality in the underlying aquifer; and
- Low risks to humans and buildings in proximity to the site from migration of landfill gas.

The potential risk to human health, surface water and groundwater are further discussed below.

4.3 RISKS TO HUMAN HEALTH

4.3.1 Soil Source

The findings of the Tier 2 investigation indicated that low level hydrocarbons were present in soils across the site which may be attributable to the presence of minor amounts of tarmac and are not considered likely to pose a risk to human health.

Slightly elevated levels of the following heavy metals were recorded within the soils analysis; antimony, barium cadmium and molybdenum recorded concentrations in excess of their respective guideline concentrations however all were considerably below their applicable DIV.

Soil leachate results were compared to the EPA Interim Guideline Values (IGVs) and Dutch Target (DTV) and Intervention (DIV). The results of the soils leachate analysis indicated the presence of slightly elevated nitrite and molybdenum at two discrete locations across the site. No other concentrations above guideline values were noted.

The soil analytical results from the infilled areas of the site indicate there are low risks to human health. The completion of the development will result in the placement of topsoil across the infill material and grassing the site with this surface cover acting as a physical barrier. Therefore, there is considered to be no risk to future site users.

Should dry/windy conditions prevail during recommencement of development works at the site there is the potential that soil dust may become airborne. Dust suppression measures should be adopted as necessary in order to control the risk to off-site receptors associated with airborne soil dust.

4.3.2 Leachate Source

Risks to human health from leachate will be driven by direct contact. No leachate generation was observed during investigative works. Based on the soil leachate analytical data it is not considered to present a risk to human health to current or future site users.

4.3.3 Gas Source

No biodegradable waste was encountered during the Tier 2 exploratory investigative works and no buildings are currently in existence or proposed within the areas in question therefore the risk is considered to be low.

If the future site use were to change to include buildings directly above the infill material then additional gas monitoring may need to be considered.

4.4 RISKS TO GROUNDWATER

4.4.1 Leachate Source

Risks to groundwater from leachate will be driven by downward percolation of leachate into the groundwater aquifer. No leachate generation was observed during investigative works.

Soil leachate results were compared to the EPA Interim Guideline Values (IGVs) and Dutch Target (DTV) and Intervention Values (DIV). The results of the soils leachate analysis indicated the presence of slightly elevated nitrite and molybdenum at two discrete locations across the site. No other concentrations above guideline values were noted.

Given the general absence of other contaminants in the soils leachate analysis, the low levels of nitrite recorded at discrete locations and the relatively low sensitivity of the aquifer, the risk to groundwater is considered to be low.

4.5 RISK TO SURFACE WATER

4.5.1 Leachate Source

Risks to surface water from leachate will be driven by the potential mobilisation of leachable contaminants to the underlying shallow/overburden aquifer which is likely to be in direct hydraulic continuity with the Cammock and Griffen Rivers.

As previously outlined above the results of the soils leachate analysis indicated the presence of slightly elevated nitrite and molybdenum at two discrete locations across the site. No other concentrations above guideline values were noted.

Given the general absence of other contaminants in the soils leachate analysis, the low levels of nitrite recorded at discrete locations and the low risk to groundwater outlined above, the risk to surface water is considered to be low.

5 CONCLUSIONS

An environmental risk assessment has been carried out with respect to infill material at Grange Castle Golf Course. The assessment was carried out in accordance with the EPA Code of Practice for Environmental Risk Assessment of Unregulated Waste Disposal Sites, 2007, and comprised Tier 1 Preliminary Assessment and Screening and Tier 2 Site investigation and Testing.

The assessment has concluded the following:

The interpreted lithology of the site comprises topsoil, overlying reworked clay containing minor amounts of waste material with an average thickness of 2.3m. Soft to firm brown to red/ brown slightly gravelly clay with a maximum depth >4.7m underlies the reworked clays. Bedrock was not encountered during the exploratory investigation.

Following a review of GSI mapping, the limestone bedrock underlying the site is classified as a locally important aquifer. The underlying aquifer is predominantly highly vulnerable with limited areas of the site considered to be extremely vulnerable to contamination.

The volume of infill material within the '5 holes' (Phase 2) and 'holes 14 & 15' (Phase 3) was calculated following a review of historic (1998) and current (2009) topographic surveys which provided information on pre and post filling levels. The volume of infill material was calculated at 90,230m³ for Phase 2 and 126,726m³ for Phase 3.

Material characterisation indicated that the samples primarily comprised soil (<20mm) (72%) and soil and stones (>20mm) (26%) with these two categories accounting for 98% of the total volume of material sampled. Some Natural Wood found in the form of branches and Biodegradable Waste from Garden and Park comprising rootlets and grass were also found. Other waste elements accounting for 2% found in the samples were Wood – Timber, Tar, Ceramics, Bricks, Concrete; Metals; Plastics; Textiles and Composites. No hazardous or food waste was found in the samples.

Samples were collected from the stockpiled material and analysed for a broad range of analysis including Waste Acceptance Criteria (WAC) for inert landfills with resulting data indicating that the material is acceptable for disposal at an inert landfill with the exception of fluoride exceedances in two samples.

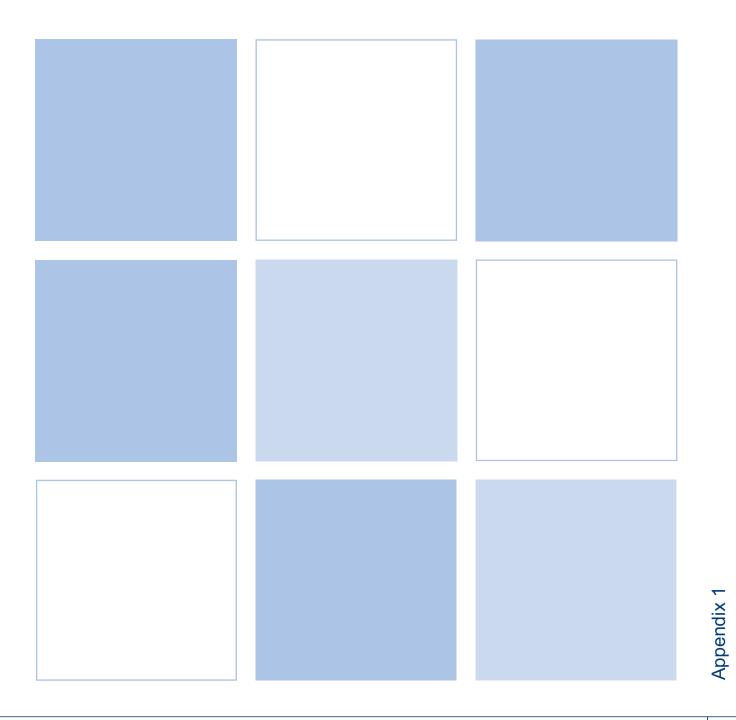
Soil analytical data indicates that the infill material contains low level hydrocarbons and heavy metals such as antimony, barium, cadmium and molybdenum across the site which are not likely to pose a risk to Human Health or the Environment.

The contaminants identified in groundwater samples were limited to arsenic and chloride. Elevated levels of arsenic were recorded at the private well at Castle Bagot House. Elevated levels of arsenic was not recorded in either the on site groundwater sampling locations or the soil bulk or leachate analysis on the site, which suggests it may be attributable to off site sources.

Elevated levels of chloride were detected at two groundwater monitoring locations however chloride was not recorded in the soil bulk and leachate analysis, which suggests it may originate from off site sources, or is naturally occuring. Chloride does not pose a risk to human health however it does affect palatability.

The contaminants identified in surface water samples collected from the site were limited to manganese at one location and chloride and suspended solids at a second location. Elevated levels of manganese and chloride were not recorded in the soils bulk and leachate analysis which suggests these contaminants may originate from off-site sources.

Based on the soil analytical data, the potential risk to site users associated with contaminants within the infill material is considered to be low.


6 **RECOMMENDATIONS**

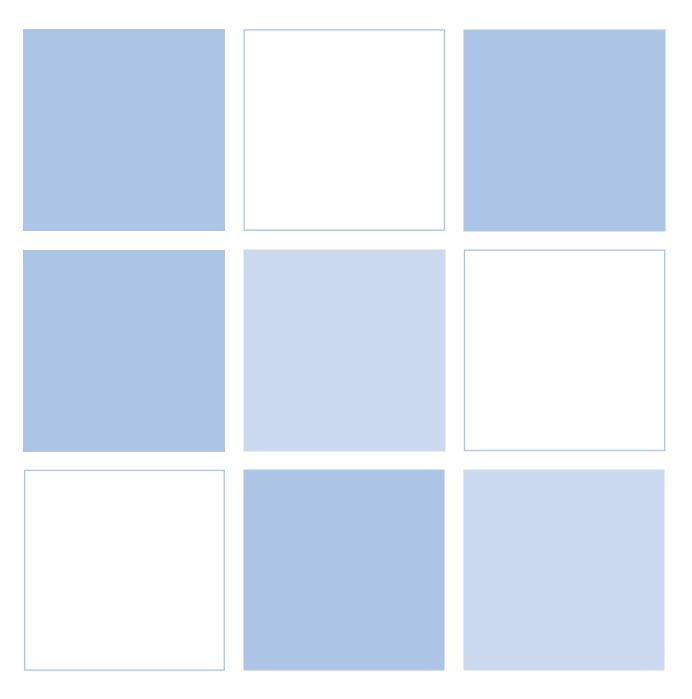
At this stage no specific remedial requirements are considered necessary with regard to the infill material as the potential risk to human health and the environment is considered low. However the following recommendations are made:

- Should dry/windy conditions prevail during recommencement of development works on the site there is the potential that soil dust may become airborne. Dust suppression measures should be adopted as necessary in order to control the risk to off-site receptors associated with airborne soil dust.
- Should it be necessary to dispose of materials other than the stockpiled material from the site, WAC testing of all material will be required.

Walkover Survey Checklist

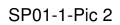
Walkover Survey Checklist				
Information	Checked	Comment		
1. What is current Land Use?	V	Golf Course with additional holes under development (extension works on hold at time of survey)		
2. What are the neighbouring Land Uses?	V	The site is bounded by the R136 Outer Ring Road to the east and the Nangor Road to the north. A number of industrial units are located immediately north of the main entrance off the Nangor Road. Corkagh Park is located immediately to the east with Casement Aerodrome situated to the south west. High density housing developments are located to the north east. 125 acres of lands to the east were developed in 2007 for Profile Park Business Park however to date only one unit has been developed within the business park. The surrounding landscape is made up of a patchwork of pasture and arable fields, with grassland being the dominant land cover. The field system is separated by clumps of mixed woodland and sparse hedgerow networks. Dense patches of mixed woodland, playing pitches and landscaped areas dominate the southern part of the area in Corkagh Park. The predominant landscape character type is flat urban fringe farmland.		
3. What is the size of the site?		5 holes is 150,141m ² and 14&15 is 88,665m ²		
4. What is the topography?		The topography is generally gently undulating with man made features to accommodate golf course requirements.		
5. Are there potential receptors (if yes, give details)?	V	See Below		
Houses		High density housing was noted to the north east with		
Surface water features (if yes, distance and direction of flow)	√	ribbon development noted to the west It was noted that drainage from the site is to the Griffeen and Cammock rivers. On site drainage consists of a complex networks of man made drainage systems incorporating 7 artificial lakes with an interconnected drainage system		
Any wetland or protected areas		No details regarding protected areas or wetlands noted during site walkover		
Public Water Supplies	V	It was assumed during the site walkover that the high density housing located to the north east and ribbon housing development located to the west were on public mains		
Private Wells	V	No private wells noted during walkover with the exception of 2 No on site wells used for irrigation purposes No services noted during walkover		
Services Other buildings	<u>الم</u>	A number of industrial units are located to the north of		
Other		the golf course on the Nangor Road		
 Are there any potential sources of contamination (if yes, give details)? 	V	See below		
Surface waste (if yes, what type?)	V	Surface inspection noted some fragments of plastic, metal, brick and tarmac on the surface of the infill material within the 5 holes and holes 14&15. Stockpiles of concrete, tarmac and brick were noted at the entrance to holes 14& 15 and between the 5 holes and 14 & 15		
Surface ponding of leachate Leachate seepage	<u>م</u>	No surface ponding of leachate was noted No leachate seepage was noted		
Landfill gas odours	V	No landfill gas odours were noted		
7. Are there any outfalls to surface water? (If yes, are there discharges and what is the nature of the discharge?)		No outfalls to surface water were noted		
8. Are there any signs of impact on the environment?	V	See below		
(If yes, take photographic evidence) Vegetation die off, bare ground		No vegetation die off was noted during the site walkover		
Leachate seepages	V	No leachate seepage was noted during the site walkover		
Odours		No odour was noted during the site walkover		
Litter	\checkmark	Fragments of plastic, metal, concrete and brick were noted on the surface of the infill material within the 5 holes and holes 14&15		
Gas bubbling through water	\checkmark	No gas bubbling through water was noted during the site walkover		
Signs of settlement, subsidence, water logged areas	V	No settlement or subsidence issues were noted during the site walkover		
Drainage or hydraulic issues		No drainage or hydraulic issues were noted during the site walkover		
Downstream water quality appears poorer than upstream water quality	\checkmark	Downstream water quality did not appear poorer than upstream water quality		
9. Are there any indications of remedial measures? (Provide details) Capping	V	No remedial measures N/A		
Landfill gas collection Leachate collection		N/A N/A		
10. Describe fences and security features (if any)				
Any other relevant information?		N/A		

Tier 1 Assessment Matrix


	Score Matrix	Score	Мах	Notes/ Justification
Leachate	1a	1.5	10	> 5ha
Gas	1b	1	10	> 5ha
Leachate Migration Pathway Assessment S	Score Matrix	Score	Max	Notes/ Justification
Vertical Pathway (Aquifer Vulnerability)	2a	3	8	Holes 14 & 15 (E) 5 Holes (H) (from GSI website)
Horizontal Pathway (Groundwater Flow Regime)	2b	-	5	LI (Locally Important Aquifer)
Surface Water Pathway	2c	2	2	Yes
Gas Migration Pathway Assessment	Score Matrix	Score	Мах	Notes/ Justification
Assuming lateral migration (assuming receptor within 250m of source))	2d	3	£	Sand and Gravel, Made Ground
Vertical migration (assuming receptor located above source)	2e	N/A	5	N/A
Receptor Assessment S	Score Matrix	Score	Max	Notes/ Justification
Residential dwellings with potential for private water supply	3a	2	£	Potentially.Greater than 50m but less than 250m of the waste body
Protected Areas	46		r	Greater than 250m but less than 1km of
Aquifer	30	- ന	о С	LI (Locally Important Aquifer)
Public Water Supplies	3d	0	7	Greater than 1km (no karst aquifer)
Surface Water Bodies	3e	-	3	Greater than 250m but less than 1km
Buildings and enclosed spaces used by humans or livestock	3f	0.5	5	Greater than 250m

(2a		Receptor	% SCORE	Risk Classification
70	c b 8 c) Groundwater and	(3e) Surface Water body	3	Low
Ū	(za,bac) Groundwater and Surface Mater miaration	(3b) Protected Area (Surface Water		
0		dependent terrestrial ecosystem)	3	Low
		(3a) Private Well	9	
		(3b) Protected Area (Groundwater		
	b) Croundwater Microtice	dependent terrestrial ecosystem)	2.5	Low
		(3c) Aquifer	4.5	Low
		(3d) Public Water Supply	0	No Linkage
		(3e) Surface Water body	2.5	Low
		(3e) Surface Water body	9	Low
(2c)	(2c) Surface Water Migration	(3b) Protected Area (Surface Water		
		dependent terrestrial ecosystem)	5	Low
(1b) I and fill Gae (2d) L	(2d) Lateral migration in subsoil	(3f) Human Presence (Buildings,	1	Low
	(2e) Vertical Migration in subsoil	enclosed spaces)	0	No Linkage

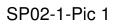
IMPORT	ANT NOTE: THT	IIS INITIAL PHASE OF WORK IS												
MANDATORY FOR ALL SITES AND SHOULD AIM TO COMPLETE A TIER 1, THE FINDING OF WHICH WILL BE CONFIRMED BY THE INITIAL TIER 2 WORKS. EACH PHASE OF ASSESSMENT WILL DEVELOP THE CONCEPTUAL SITE MODEL (CSM) AND SHOULD GUIDE THE DESIGN OF THE NEXT PHASE OF SITE NVESTIGATION (SI). THE APPLICATION OF THE SI PROCESS AND METHODOLOGIES SHOULD BE COMPLETED IN		TIER 1: PRELIMINARY INVESTIGATION				TIER 2: EXPLORATORY INVESTIGATION & SAMPLING								
	OCUMENTS AN	HE RELEVANT STANDARDS/EPA ND UNDERTAKEN BY EXPERIENCED ICTITIONERS.		DESK STUDY	WALKOVER SURVEY	CONCEPTUAL SITE MODEL (CSM)		TRIAL PITS & TRENCHES	WASTE TYPE	WASTE SAMPLING	LEACHATE SAMPLING	SOIL SAMPLING	Surface or Groundwater Sampling	Topographic & GPS SURVEY
PR NKAGE	SOURCE	PATHWAY	RECEPTOR	process - includes gathering baseline	examines access issues, visual	The development of the CSM is a critical aspect of the risk assessment and defining SPR linkages and therefore SI requirements	INVESTIGATION	good bulk samples & visual assessment. Allows for sampling and possibly temporary standpipes (not	Assessment of waste type in terms of content and determining composition of C&D, Municipal, Industrial, Pre 1977 sites. Should confirm reported waste types deposited as identified in Tier 1.	is contained soli matrix that waste is contained in. Dry soils analysis to assess the potential impact on buman health and to enable	Liquid samples of leachate recovered for List 1 & List 2 substances contamination - Parameters to be considered as per Table C.2 of EPA Landfill Monitoring Manual 2003.	Principle purpose of soil sampling at this stage is to assess permeability potential of surrounding materials (pathway assessment), composition of any cap and potential for local material to be used for remediation/capping. In some cases contamination assessment may be required.	parameter screening. Surface waters and/or existing boreholes can be sampled at this stage. Gas monitoring with hand held equipment can be completed. Parameters to be considered as per Table C.2 of EPA	flow direction mapping. GPS system will determine grid ref for SI works
R 1	LEACHATE	Vertical & Horizontal Groundwater to Surface Water Drainage/Runoff	Surface Water Body	м	м	м	ATORY I	м	м	R	R	R	R/S	R/S
R 2	LEACHATE	Vertical & Horizontal Groundwater to Surface Water Drainage/Runoff	Surface Water Body Protected Area (SWDTE)	м	м	м	EXPLOR	м	м	R	R	R	R/S	R/S
23	LEACHATE	Vertical & Horizontal Groundwater Migration	Human Presence (Private Well)	м	м	м	& SCOPE	м	м	R	R	R	R/S	R/S
R 4	LEACHATE		Groundwater Protected area (GWDTE)	м	м	м	CATION 8	м	м	R	R	R	R/S	R/S
R 5	LEACHATE	Vertical & Horizontal Groundwater Migration	Aquifer Category	м	м	м	ASSIFI	м	м	R	R	R	R/S	R/S
R 6	LEACHATE		Public Supply (Well) (includes Group Water Schemes)	м	м	м	E RISK CI	м	м	R	R	R	R/S	R/S
7	LEACHATE	Vertical & Horizontal Groundwater Migration	Surface Water Body	м	м	м	IERMINE	м	м	R	R	R	R/S	R/S
18	LEACHATE	Surface Water Drainage/Runoff	Surface Water Body	м	м	м	DEL, DE'	м	м	R	R	R	R/S	R/S
۲9	LEACHATE		Surface Water Body Protected Area (SWDTE)	м	м	м	SITE MO	м	м	R	R	R	R/S	R/S
R 10	LANDFILL GAS	Lateral Migration (Subsoil)	Human Presence	м	м	м	EPTUAL	м	м	R	R	R	R/S	R/S
R 11	LANDFILL GAS	Vertical Migration (Subsoil)	Human Presence	м	м	м	OP CONCE	м	м	R	R	R	R/S	R/S
source & Pathway & Receptor Parameters Targeted for CSM & Risk Screening			historic sources, local receptors,	Walkover should confirm desk study data and investigate Source Pathway Receptor scenarios being considered.	The CSM should graphically represent the relationship's between the waste body and potential receptor's developed on the basis of hazard identification and refined during subsequent phases of assessment.	IGATION, DEVELO	Waste type/composition, footprint, volume, depth & groundwater vulnerability, leachate & gas source & migration potential. Should assess nature and depth of any cap or undersoils, if encountered.	waste type, general composition and extent within the landfill area, leachate and gas source & migration potential.	waste type, dry soils quality and	waste type, leachate concentrations and leachate potential	ground vulnerability, horizontal or vertical pathway assessment & material use in remediation of site.	surface water or groundwater receptor and potential horizontal pathway information.	waste area & volume estimate using trial pit data, site topography, layout/setting, access roads, surfact features, accurate SI points, levels for groundwater flow direction, etc	
General comments & COP Section Reference - Note: the development of the CSM and design of the site investigation should involve an experienced SI practitioner. Critical first step in site and waste characterisation, all potential data sources should be considered. Note Section 3.2 of COP Critical first step in site and waste characterisation, all potential data sources should be considered. Note Section 3.4 of COP This is a fundamental part of the Risk Assessment of site and local environs, important that walkover confirms findings of desk step of COP				AFTER TIER 1 INVESTI	Trial pits and trenching is a very important phase of work to enable the potential sources and types of leachate & gas to be determined. Detailed logs and photographic records important. Note Section 5.5.2 of COP.	characterises waste type and contamination potential. Note Section 4.3.1 of COP & Table 1a & Table 1b of Scoring Matrix.	Table 1b of Scoring Matrix. Dry soils analysis for comparison and screening against accepted Target Screening Values (TSVs) such as the	from existing borehole infrastructure, if present. Leachate characteristics can be compared to parameters in EPA Landfill Design Document 2000 - Sections 7.1 & 7.2	Characterises geology type, material strength and permeability	per best practice and relevant	topographic surveys give base map for site layout, investigation points, sample and water level depths, groundwater flow direction etc. recommended.			
Provisional Guidance on Extent of Testing/Sampling - This will ultimately depend on the type of risk identified, size of site, extent & volume of waste, ground conditions, variability of the waste material, etc		Authorisation requires ecological Appropriate Assessment Habitat	Locations and access issues for	A good conceptual site model will facilitate an initial risk classification for the site and guide future works.		Typically 7 to 10 trial pits are completed to 3 to 5m per day. Depending on size of site one to two days of trial pitting should be undertaken on and around the waste body to confirm extent and composition. Initial gas monitoring can be by hand held gas and volatile monitors & based on physical observations. Further Trial Pits & Trenching can be completed as part of the Main S1 if required and boreholes may be necessary to achieve greater depths.	BS 5930:1999 or ISO 14688-2 (2006) and nature of waste and composition recorded. Photographic records important. Potential to cause	minimum of two samples should be acquired for the test for the trial pit phase of work. Results should be used as a preliminary screening tool	Will depend on nature and composition of the waste and number of investigation points. Initially one to three samples should be taken with one full screen as per Table C.2 of EPA Landfill Monitoring Manual 2003, and at other locations to do indicator parameters such as pH Conductivity, Temp, BOD, Ammonia, Chloride, Sulphate, Sodium and Potassium.	of soil material around waste body and number of investigation points. Initially three disturbed samples should be taken and assessed for soil type narticle size analysis and if	indicator parameters such as pH, Conductivity, Temp, BOD, Ammonia,	A topographical survey should be considered for the site area and immediate environs of low risk sites and is recommended for all moderat and high risk sites. GPS survey locations as required.		
= Recom	mended tech	could be completed as thorough chnique assuming site condition red but is dependent on site su	ns allow.	ıy.									DATE: March 2011 Prepared by White Young Green on behalf of the OEE	



Stockpile Photographs

SP01-1-Pic 1

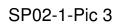
SP01-1-Pic 3


SP01-1-Pic 4

SP01-1-Pic 6

SP01-1-Pic 7

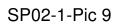
SP02-1-Pic 10


SP02-1-Pic 11

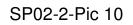
SP02-1-Pic 13

SP02-1-Pic 2

SP02-1-Pic 4


SP02-1-Pic 5

SP02-1-Pic 7



SP02-1-Pic 8

SP02-2-Pic 1

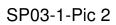
SP02-2-Pic 3

SP02-2-Pic 4

SP02-2-Pic 5

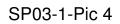
SP02-2-Pic 6

SP02-2-Pic 7



SP02-2-Pic 8

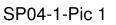
SP02-2-Pic 9



SP03-1-Pic 1

SP03-1-Pic 3

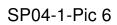
SP03-1-Pic 5


SP03-1-Pic 6

SP03-1-Pic 7

SP03-1-Pic 8

SP04-1-Pic 2



SP04-1-Pic 4

SP04-1-Pic 5

SP04-1-Pic 7

SP04-1-Pic 8

SP05-1-Pic 10

SP05-1-Pic 11

SP05-1-Pic 2

SP05-1-Pic 3

SP05-1-Pic 5

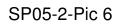
SP05-1-Pic 6

SP05-1-Pic 7

SP05-1-Pic 8

SP05-2-Pic 1

SP05-2-Pic 2


SP05-2-Pic 3

SP05-2-Pic 4

SP05-2-Pic 5

SP05-2-Pic 7

SP05-2-Pic 8

SP05-2-Pic 9

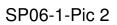
SP05-3-Pic 3

SP05-3-Pic 2

SP05-3-Pic 4

SP05-3-Pic 5

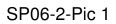
SP05-3-Pic 6


SP05-3-Pic 7

SP05-3-Pic 8

SP06-1-Pic 1

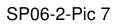
SP06-1-Pic 3


SP06-1-Pic 4

SP06-1-Pic 6

SP06-1-Pic 7

SP06-2-Pic 2


SP06-2-Pic 3

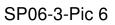
SP06-2-Pic 5

SP06-2-Pic 6

SP06-2-Pic 8

SP06-3-Pic 1

SP06-3-Pic 3



SP06-3-Pic 4

SP06-3-Pic 5

SP06-3-Pic 7

SP06-3-Pic 8

SP06-4-Pic 1

SP06-4-Pic 10

SP06-4-Pic 12

SP06-4-Pic 14

SP06-4-Pic 11

SP06-4-Pic 13

SP06-4-Pic 15

SP06-4-Pic 3

SP06-4-Pic 4

SP06-4-Pic 5

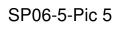
SP06-4-Pic 7

SP06-4-Pic 6

SP06-4-Pic 8

SP06-4-Pic 9

SP06-5-Pic 1


SP06-5-Pic 2

SP06-5-Pic 4



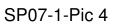
SP06-5-Pic 6

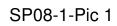
SP06-6-Pic 3

SP06-6-Pic 4

SP06-6-Pic 5

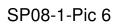
SP06-6-Pic 6


SP06-6-Pic 7


SP07-1-Pic 1

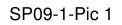
SP07-1-Pic 3

SP08-1-Pic 3


SP08-1-Pic 2

SP08-1-Pic 4

SP08-1-Pic 5


SP08-1-Pic 7

SP08-1-Pic 8

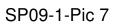
SP09-1-Pic 10

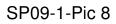
SP09-1-Pic 11

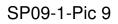
SP09-1-Pic 12

SP09-1-Pic 3

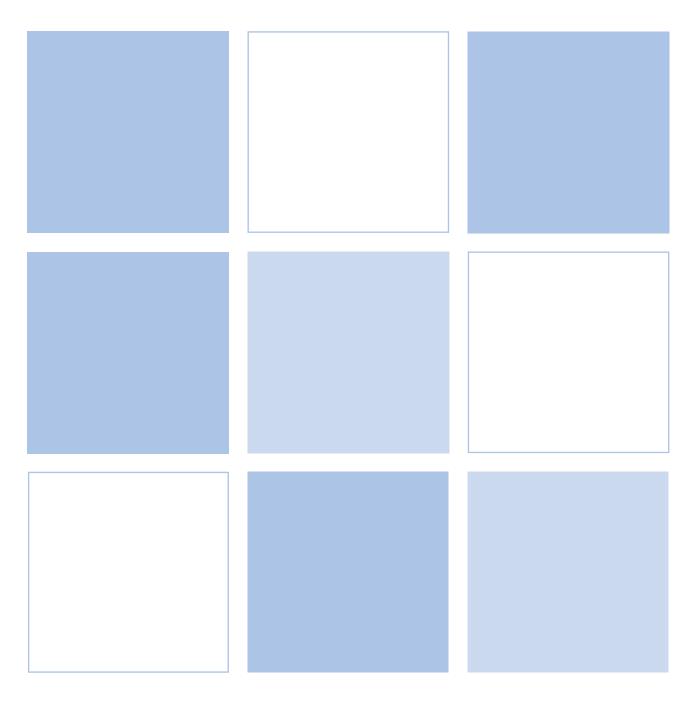
SP09-1-Pic 2




SP09-1-Pic 4


SP09-1-Pic 6

SP10-1-Pic 1


SP10-1-Pic 3

SP10-1-Pic 4

Stockpile Logs

		Telephone Fax: 01 2	e: 01 48 835676	882900 3)		TR	IAL P	PIT				
Project												Hole	No
	Grang	e Castle Ir		ssessn	nent							SP0	1_1
Job No			Date	26-0	1-11	G	round Level (n	n)	Co-Ordinates ()				1-1
	1DR0	813		26-0	1-11				E 304,32	1.0 N 229,65	2.0		
Contrac		: D1										Sheet	2 1
		i Plant Hi										1 of	: 1
SAMF	PLES	& TESTS	5		1	D	.1		STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dep (Thick-	oth -		DESC	RIPTION			bao
	110					ness)	Made Gr	ound; Cla					
						(0.75)	(<1% wa	ste on sur	yey GRAVEL wit face; tarmac, tin c	an)			
						<u> </u>	75						
					- -	0.	15						
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					Ę								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
		GENE REMA	ERAL										
Stocknil	e 1 100	cated near en			14 and 1	5							
near ten	nt)												
GPS co- Trial pit	ordinat was du	tes located us	sing hai top to t	he base	GPS uni e of the	τ							
stockpile	e												
All dir	mension	ns in metres	tres Client South Dublin Con				County	nty Method/ Logged By					
011	Scale	1:50		č	Council		··· - J	Plant Us	ed				

		Telephone Fax: 01 28	: 01 48 335676	382900)		TR	IAL P	IT			
Projec	t	1 4341 01 24									Hole N	lo
	Grang	ge Castle In	fill As	sessn	nent						6000	4
Job N	0		Date	26-0	1-11	Grou	und Level (n	I)	Co-Ordinates ()		SP02	-1
	MDR(0813		26-0	1-11				E 304,330.	0 N 229,654.0		
Contr	actor										Sheet	
	Breff	ni Plant Hir	e								1 of 2	1
SAM	IPLES	& TESTS						(STRATA			
Depth	Type No	Sample Name	Water	Reduce Level	Legend	Depth (Thick- ness)			DESCR	IPTION		backfill
						(2.00)	boulders (2% was Layer of Tiny ame	te; wood, j light brow		AY with occasional c ilding block, plastic pi sibly ashes) from appr wrapping		
15 (ne GPS c	ar tent) o-ordina oit was d	GENE REMA cated near the ttes located us ug from the t	RKS entranc	dheld	GPS unit							
All o	limensic Scale	ons in metres 1:50	Clier	nt S	outh D Council	ublin Co	unty	Method/ Plant Use	ed.		Logged By	

RPS

	RPS Consulting Engineers
	West Pier Business Campus
	Dun Laoghaire
>	Co. Dublin
	Telephone: 01 4882900
	Fax: 01 2835676

Projec											Hole N	0
		Grange Castle Infill Assessment SP02- MDR0813 Tate 26-01-11 Grand Level (m) Co-Ordinats () E 304,346.0 N 229,654.0 SP02- ctor Sheet I of 1 PLES & TESTS STRATA Depth Depth Depth Depth I of 1 Name Water Eased Legend (Depth Depth Depth DestRIPTION Name Water Eased Legend (Depth Depth DestRIPTION Mdd Grand, brown very gravelly CLAY with occasional cobbies and beaders Vision Other 0.11 Mdd Grand, brown very gravelly CLAY with occasional cobbies and beaders C2% waster: birkk, wood, metal) Mdd Grand, brown very gravelly CLAY (possibly ashes or birkk dust) I also and the state of the st	-2									
Job No	Grange Castle Infill Assessment SP02-3 No Date 26-01-11 Ground Level (n) Co-Ordinates () E 304,346.0 N 229,654.0 SP02-3 attactor Breffin Plant Hire Steet 1 of 1 MPLES & TESTS STRATA DESCRIPTION I of 1 MPLES & TESTS Canade Degrad Depth Level DescRiption DescRiption Mark Reduced Legend Depth Level Output DescRiption I Value Reduced Legend Depth Castle DescRiption I I Value Castle Infill Assessment I I I I Value Reduced Legend Depth Castle DescRiption I Value I I I I I IIII Value I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII								-			
		Date 26-01-11 Ground Level (m) Co-Ordinates () SP02-2 DR0813 26-01-11 Ground Level (m) E 304,346.0 N 229,654.0 Steet reffni Plant Hire Steet 1 of 1 LES & TESTS STRATA 1 of 1 Legend Depth (Thick-ness) DESCRIPTION 1 Vo Sample Name Water Reduced Legend (Thick-ness) 0.10 Made Ground; brown very gravelly CLAY with occasional cobbles and boulders (2% waste: metal, wood, plastic band) Made Ground; light brown/ orange CLAY (possibly ashes or brick dust) (<2% waste; brick, wood, metal)										
cond		ni Plant Hi	re									[
SAM			1						STRATA			-
				Reduced		Dep	th		5110111			1 1 611
Depth	No	Name	Water		Legend	(Thick- ness)						backfill
15 (nea	ar tent) o-ordina vit was d	REMA cated near the	RKS entranc		oles 14 a	(1.80) <u>1.9</u>	boulders (2% was Made Gi (<2% wa	te: metal,	wood, plastic band)		/	
All d		ons in metres	Clier	nt S	outh Du	ıblin C	ounty	Method/ Plant Us	ed		Logged By	
	Scale	e 1:50		C	Council				~~			

TRIAL PIT

RPS West F Dun La Co. Du Teleph

RPS Consulting Engineers West Pier Business Campus
Dun Laoghaire
Co. Dublin
Telephone: 01 4882900
Fax: 01 2835676

Projec											Hole N	0
		ge Castle Ir		ssessn	nent						SP03-	.1
Job No			Date	26-0	1-11	C	Fround Level (r	n)	Co-Ordinates ()	NT 000 ((5 0		•
Contra	MDR(0813		26-0	1-11				E 304,366.0	N 229,665.0	Sheet	
		ni Plant Hiı	e								1 of 1	
SAM									STRATA		1 01 1	
				Dadaaa		De	pth		SIKAIA			
Depth	No I ype	Name	Water	Level	Legend	(Thick	-		DESCRIPT	ION		backfill
Stockp	No Name Level 0 Image: Second					ness) (1.30)	Made G CLAY brick. ta	rmac, reba naterial in	ge concrete pieces up to r, plastic, cavity blocks, the stockpile approxima	1m x 0.7m intermiz		
stockpi	15 (near tent) GPS co-ordinates located using handheld GPS unit Trial pit was dug from the top to the base of the stockpile											
All d		ons in metres e 1:50	Clier	nt S	outh D Council	ublin (County	Method/ Plant Us	ed		Logged By	
	Scale	1.50		Ľ	Junch							

TRIAL PIT

RPS C

RPS Consulting Engineers West Pier Business Campus Dun Laoghaire Co. Dublin Telephone: 01 4882900 Fax: 01 2835676

		Telephone Fax: 01 28)		TR	IAL P	TI				
Projec	ct			·								Hole	No
	Grang	ge Castle In	fill As	ssessn	nent							0.00	
Job N	0		Date	26-0	1-11	G	round Level (n	ı)	Co-Ordinates ())		SP0	4-1
	MDR0	813		26-0	1-11				E 304,37	78.0 N 22	9,659.0		
Contr	actor											Sheet	
	Breffi	ni Plant Hir	e									1 0	f 1
SAM	IPLES	& TESTS							STRATA				
Depth	-	Sample	Water	Reduce	Legend	Dep (Thick-	th						back
		GENE	RAL			ness) (1.20)	Made Gr (2% was blocks, p	ound; bro te; wood, lastic bag,	DESC wn slightly grave large tractor tyre drinks can, texti	CRIPTION Ily CLAY w metal rope, les)	ith occasional clay pipe, bri	l boulders ck, concrete,	
15 (nea GPS co	ar tent) o-ordina vit was d	eated near the tes located us ug from the	sing har	ndheld he base	GPS unit of the	t							
All c		ns in metres	Clie	nt S	outh D	ublin C	County	Method/ Plant Use	ed			Logged By	
	Scale	1:30		(Council								

		Telephone Fax: 01 28	: 01 48 335676	382900)		TR	IAL P	TI				
Projec	t											Hole N	0
	Grang	ge Castle In	nfill As	ssessn	nent							0005	4
Job No	0		Date	26-0	1-11	Gro	und Level (n	ı)	Co-Ordinates	s ()		SP05	•1
	MDR0	0813		26-0	1-11				E 304,	589.0 N 2	29,601.0		
Contra	actor											Sheet	
	Breffi	ni Plant Hir	e									1 of 1	L
SAM	PLES	& TESTS							STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	d Legend	Depth (Thick- ness)	n		DE	ESCRIPTION	-		backfill
		GENE	RAL			(1.60)	tractor ty	ound; dar te; bricks, re to one	k brown slight concrete (up tr side, wire, woo	ly gravelly CI o Im x 1m), 1 od, aluminium	AY rebar, tiles, plas a sheeting, plas	ttic, blocks. large tic sheeting)	
Stockp	ile 5 loc it was d ile	GENE REMA cated near hau ug from the	RKS	at Hole ne base	es 14 and e of the	115							
All d	limensio Scale	ons in metres 1:50	Clier	nt S	South D Council	ublin Cc	ounty	Method/ Plant Us	ed			Logged By	

		Telephone Fax: 01 28	335676	02900			TR	IAL P	TI			
Projec	t										Hole	No
	Grang	ge Castle In	ıfill As	sessn	nent						600	
Job No	0		Date	26-01	-11	Gro	und Level (m	l)	Co-Ordinates ()		SP0	D- Z
1	MDR(0813		26-01	-11				E 304,599.0	N 229,628.0		
Contra	actor										Sheet	
	Breff	ni Plant Hir	e								1 of	1
SAM	PLES	& TESTS							STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIP	TION		backfi
						(1.60)		ound; dar ie; wood,	c brown gravelly CLA concrete, brick, plastic	Y c pipe, plastic, tarma	c, steel)	
Stockp Trial p stockpi	it was d	GENE REMA	RKS	at Hole ne base	s 14 and of the	15						
Stockp Trial p stockpi	limensic Scale	ons in metres 1:50	Clier	nt S C	outh D	ublin Co	unty	Method/ Plant Us	ed		Logged By	

Fax: 01 283	01 4882900 35676	TF	RIAL PIT	
Project				Hole No
Grange Castle Inf				SP05-3
	Date 27-01-11	Ground Level (1	·	
MDR0813	27-01-11		E 304,609.0 N 229,65	
Contractor				Sheet
Breffni Plant Hire	2			1 of 1
SAMPLES & TESTS		D d	STRATA	
Depth Type Sample No Name	Water Reduced Legend	ness)	DESCRIPTION	ba
GENEF GENEF BENEF COMPANY	RAL RKS	(1.08) 1.08 (0.52) Made G (<1% w water pi	round; dark brown/ grey slightly gravelly CLAY wi aste; wood, plastic, brick, rubber, water pipe) to is suspected of containing asbestos	
All dimensions in metres Scale 1:50	Client South Du Council	ıblin County	Method/ Plant Used	Logged By

		Telephone Fax: 01 28	: 01 48 335676	382900)		TR	IAL P	IT			
Projec	t	100.0120	000010								Hole N	0
	Grang	ge Castle In	fill As	ssessn	nent						0.000	
Job No	0		Date	27-0	1_11	Gro	und Level (n	l)	Co-Ordinates ()		SP06	-1
	MDR	0813		27-0	1-11				E 304,636.0	N 229,639.0		
Contra	actor	· · ·				ľ					Sheet	
	Breffi	ni Plant Hir	e								1 of 1	l
SAM	PLES	& TESTS						(STRATA		•	
Depth	Type No	Sample Name		Reduced Level	Legend	Depth (Thick- ness)	1		DESCRIPT	ION		backfill
							Made Gr	ound; brov	vn sandy gravelly CLA	Y with occasional	cobbles and	
• •						(0.38) 0.38	rootlets		plastic, tarmac, concre			
-						(0.38) 0.76	Made Gr	ound; grey	sandy gravelly CLAY	with occasional co	bbles and rootlets	
Ē						0.76		ste; wood	plastic, tarmac, concre vn gravelly CLAY with	ete, brick, wire)		
- -					-	0.90	(<1% was)	ste; wood	plastic, tarmac, concre	ete, brick, wire)	r cobbles	1
-					-							
F I												
-					-							
-					-							
					Ę							
-					-							
-												
Ē					-							
E					-							
					Ē							
-					-							
-					-							
Ē					-							
-					-							
E					E							
Ē					Ę							
-					-							
-					E							
-												
F					-							
E					-							
-					F							
F					-							
E					E							
F					-							
F					-							
Ē												
F					-							
-					-							
		GENE	ΡΛΤ		_							_
		REMA										
Stockn	ile 6 loc	cated near hau		at Hole	s 14 and	15						
Trial p	it was d	ug from the	top to th	ne base	of the	10						
stockp	ile											
Stockp Trial p stockp		ons in metres	Clier	nt S	outh D	ublin Co	unty	Method/			Logged By	
	Scale			C	Council		-	Plant Use	d			

	Telephor Fax: 01	ie: 01 48 2835676	382900 i)		TRI	AL P	[T]				
Project											Hole	No
	range Castle		ssessn	nent							SPO	3-2
Job No		Date	27-0	1-11	Gro	und Level (m)		Co-Ordinates ()			SF 0	J-2
	DR0813		27-0	1-11				E 304,63	1.0 N 229,6	27.0		
Contracto											Sheet	
	effni Plant H										1 of	1
SAMPL	ES & TEST	S	1	1	1	1	S	TRATA				
Depth Ty	vpe Sample No Name	Water	Reduced Level	Legend	Depth (Thick- ness)	1		DESC	CRIPTION			back
Stockpile (GEN	ERAL			(1.60)	(<5% wast rebar)	und; brow te; wire, r	n gravelly CLA ylon rope, wood	Y with occasiona l, concrete, plasti	al boulder ic, brick, 1	rs metal sheeting,	
Stockpile (Trial pit was stockpile	REM 5 located near h as dug from the	ARKS aul road	at Hole he base	es 14 and of the	15							
All dime S	ensions in metre cale 1:50	s Clie		outh D Council	ublin Co	ounty	Method/ Plant Use	d			Logged By	

		Telephone Fax: 01 28	: 01 48 335676	82900)		TR	IAL P	IT				
Projec	t											Hole N	No
	Grang	ge Castle Ir	nfill As	sessn	nent							0000	• •
Job N	0		Date	27-01	1-11	Grou	ind Level (m)	Co-Ordinates ()			SP06)-3
	MDR(0813		27-01	1-11				E 304,62	4.0 N 229,6	14.0		
Contr	actor											Sheet	
	Breff	ni Plant Hiı	e									1 of	1
SAM	PLES	& TESTS						(STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESC	RIPTION			backfil
						(2.80)	wrapper, layer of b Hydrocar	plastic pij rown grey	vn gravelly CLA bottle, plastic pet be, tree stump, cla (not continuous l) smell - no obvi	ty pipe, concret around the trial	e, tarmac) pit	d, bricks, sweet	
Stockp Trial p stockp	it was d	GENE REMA cated near hat ug from the	ARKS	at Hole ne base	es 14 and of the	15							
All dimensions in metres Scale 1:50 Client South Dublin Co Council					unty	Method/ Plant Use	d			Logged By			

		Fax: 01 2	835676				1 1 1	AL PIT			
Projec	t									Hole N	0
	Grang	ge Castle II	nfill As	ssessn	nent					8006	4
Job No)		Date	27-01	1-11	Gro	und Level (m)	Co-Ordinates ()		SP06	-4
]	MDR0	813		27-01	1-11			E 304,619.0	N 229,601.0		
Contra	actor									Sheet	
	Breffr	ni Plant Hi	re							1 of 1	1
SAM	PLES	& TESTS	5					STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)	1	DESCRIPT	ION		back
-		GENF	ERAL			(2.10)	(<2% wast tarmac mat Intermitten Made Grou intermitten (<5% wast sack) Water at ba staining. Sl	nd; brown slightly gravelly CL. ; concrete, textiles, plastic pipe, cavity block, clay pipe) black staining id; brown/ grey slightly gravelly black staining ; cushion foam, wood, plastic localised ght smell of petrol.	e, wood, slate, wire, p ly CLAY with occasi bottles, clay blocks, t	onal cobbles armac, wooven	
	it was dı	ated near ha	ul road a			15					
		ns in metres	Clier	. ~	.1	ublin Co		lethod/	I	Logged By	

		Telephone Fax: 01 28)		TR	IAL P	IT			
Projec	t										Hole N	ю
	Grang	ge Castle In	fill As	ssessn	nent						SDOC	5
Job No	C		Date	27-0	1-11	Grou	ind Level (n	l)	Co-Ordinates ()		SP06	-၁
-	MDR	813		27-0	1-11				E 304,612	.0 N 229,589.0		
Contra	actor										Sheet	
	Breffi	ni Plant Hir	e								1 of 1	1
SAM	PLES	& TESTS						(STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCR	IPTION		backfil
		GENE				(1.70) <u>1.70</u> (0.50) <u>2.20</u> (1.40) <u>3.60</u>	(<2% wa sack) Made Gr occasion (<2% wa can) Smell of Made Gr (<2% wa sack)	ound; darl al cobbles. ste; wood petrol	c grey isolated laye clay brick, blue pl	CLAY with occasiona sk, circular metal blade r of clayey gravelly SA astic bag, plastic ties, r CLAY with occasiona sk, circular metal blade	ND with	
	it was d	REMA eated near hau ug from the	ıl road a			15						
All dimensions in metres Scale 1:50 Client South Dublin Council					ublin Cou	in County Method/ Plant Used Logged By						

		Telephone Fax: 01 28	: 01 48 335676	382900)		TR	IAL P	TI					
Projec	t	107.0120	555070	·									Hole N	No
	Grang	ge Castle In	nfill As	ssessn	nent								0.000	•
Job No		-	D.4.	28-0		Gro	und Level (n	ı)	Co-Ordinat	es ()			SP06	5-6
]	MDR	0813		28-0	1-11 1-11				E 304	4,605.0	N 224,598	8.0		
Contra	actor												Sheet	
	Breffi	ni Plant Hir	e										1 of	1
SAM	PLES	& TESTS							STRATA				1	
						Depth	ı		51101111					
Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick- ness)			Ľ	DESCRIPT	ION			backfil
Stockp		GENE	RAL			(2.80)	gravelly (<1% wa	CLAY wi	wn with loca th occasional c, brick, cond	lised lighte	er brown and		nclusions, slightly	
Stockp Trial p stockp	it was d	cated near hat ug from the	il road a	at Hole he base	es 14 and e of the	15								
All d	limensic	ons in metres	Clie	nt S	outh D	ublin Co	unty	Method/					Logged By	
	Scale 1:50 Council					-	Plant Us	ed				•		

Projec												
	Grange Castle Infill Assessment SP07-1											
Job No			Date	02-02	2-11	Gro	und Level (n	1)	Co-Ordinates ()		JE UT	- 1
	MDR(0813		02-02	2-11				E 304,882.0 N	N 230,376.0		
Contra											Sheet	
		ni Plant Hir									1 of 1	
SAM	IPLES	& TESTS		1	1		1		STRATA			1
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Deptł (Thick- ness)			DESCRIPTIO			backfill
Stockpr Stockpr Stockpr Stockpr Stockp	it was d	GENE REMA cated in the arr tes located us ug from the t	RKS ea of 5 ing han	holes 1	near TP4 GPS unit of the	(1.95) <u>1.95</u> <u>2.20</u> <u>2.30</u>	boulder	round; dar	k brown/ grey gravelly CL gravelly CLAY			
		ons in metres	Clier	nt S	outh D	ublin Co	unty	Method/	-1		Logged By	
ž	Scale 1:50 Council					Plant Us	eu					

RPS

RPS Consulting Engineers West Pier Business Campus Dun Laoghaire Co. Dublin Telephone: 01 4882900 Fax: 01 2835676

Fax: 01 28	01 488290 35676	J	TR	IAL PIT		
Project					Hole N	lo
Grange Castle In		nent			SP08	_1
	Date 03-0	2-11	Ground Level (m			- 1
MDR0813	03-0	2-11		E 304,882.0 N 229,993		
Contractor	_				Sheet	1
Breffni Plant Hir	e				1 of 1	1
SAMPLES & TESTS			N 41	STRATA		1
Depth Type Sample No Name	Water Reduce	d Legend (Thio ness))	DESCRIPTION		backfil
	RKS ea of 5 holes ing handheld	near TP34 GPS unit	20)	ound; soft brown slightly gravelly slightly san al cobbles. material very loose. ghtly gravelly CLAY	dy CLAY with	
All dimensions in metres Scale 1:50	Client S	South Dublin	n County	Method/ Plant Used	Logged By	

RPS

	RPS Consulting Engineers West Pier Business Campus
5	Dun Laoghaire Co. Dublin
	Telephone: 01 4882900
	Fax: 01 2835676

Projec	roject Hole No											
	Grange Castle Infill Assessment SP09										-1	
Job No			Date	03-0	2-11	Grou	and Level (m)		~			•
	MDR(0813		03-0	2-11				E 304,861.0 N 2	30,012.0		
Contra											Sheet	
	Breff	ni Plant Hi	re								1 of	1
SAM	PLES	& TESTS	5						STRATA			
Depth	Type No	Sample	Water	Reduce	Legend	Depth (Thick-						back
- · P · · ·	No	Name		Level		ness)			DESCRIPTION			
							Made Grou	nd: bro	wn slightly gravelly CLAY w	vith occasional	l cobbles	
						(0.80)						
						0.80						
						4	Made Grou	nd: sof	dark brown CLAY with occ	casional cobble	es (some isolated	
							areas of wh	ne coai	ing on clay)			
						(2.00)						
						2.80						
						3.00		Y				_
					-							
					-							
					-							
					-							
					-							
					-							
					-							
					-							
					-							
					-							
					-							
					-							
					-							
					-							
					-							
					-							
					-							
					E							
					-							
					t	<u> </u>						
		GENI	ERAL									
		REM										
Stockp GPS co	oile 9 loo	cated in the a ites located u	rea of 5 using har	holes idheld	near TP3 GPS unit	4						
rial p	it was d	lug from the	top to t	he base	e of the							
tockp	ne											
All d	limensio	ons in metres	Clie	nt S	outh D	ublin Co	unty M	lethod/			Logged By	
Scale 1:50 Council					P	lant Us	ea					

	Projec	roject Hole No												
		Grang	ge Castle In	fill As	ssessn	nent							SD10	4
	Job No	0		Date	04-02	2-11	C	drour	nd Level (m)	Co-Ordinates ()		SP10	- 1
		MDR(0813		04-02	2-11					E 304,713.0	N 230,036.0		
	Contra												Sheet	
		Breff	ni Plant Hir	e									1 of 1	l
	SAM	PLES	& TESTS								STRATA			
	Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick	pth -			DESCRIF	TION		backfill
RPS TRIAL PIT MDR0813_G10002_STOCKPILES.GPJ AGS 3_1.GDT 8/4/11		ile 10 k	Server GENE REMA ocated in the a use from the t	RAL RKS rrea of 1	5 holes	rear TP GPS unit	ness) (0.80) 0	-	Made Gro angular-sı No waste	ıb-angul	DESCRIF ft brown slightly grave ar cobbles.		ional	
RIAL PIT MDR08											,			
RPS TF	All dimensions in metres Scale 1:50 Client South Dublin Council			Clier	nt S	ublin (Cou	nty	Method Plant Us	sed		Logged By		

TRIAL PIT

Trial Pit Photographs

TP01-Pic 1

TP01-Pic 2

TP02-Pic 1

TP02-Pic 2

TP02-Pic 4

TP02-Pic 5

TP03-Pic 1

TP03-Pic 3

TP03-Pic 4

TP03-Pic 5

TP04-Pic 3

TP04-Pic 2

TP04-Pic 4

TP05-Pic 1

TP05-Pic 2

TP06-Pic 3

TP07-Pic 1

TP07-Pic 2

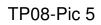
TP07-Pic 3

TP07-Pic 4

TP08-Pic8

TP07-Pic 5

TP08-Pic 1


TP08-Pic 2

TP08-Pic 3

TP08-Pic 7

TP09-Pic 3

TP09-Pic 5

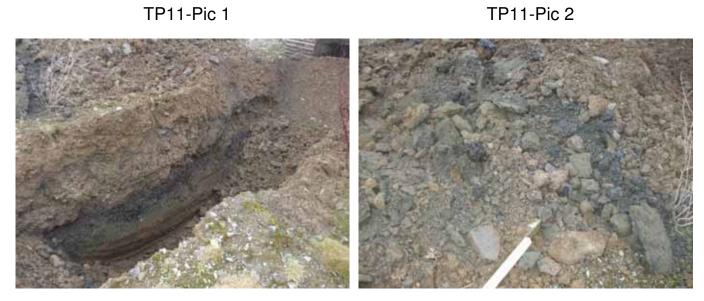
TP09-Pic 2

TP09-Pic 4

TP09-Pic 6

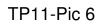
TP09-Pic 8

Tp10-Pic 1


Tp10-Pic 5

Tp10-Pic 6

TP11-Pic 2


TP11-Pic 3

TP11-Pic 4

TP11-Pic 5

TP12-Pic 1

TP12-Pic 4

TP13-Pic 1

TP13-Pic 3



TP14-Pic 1

TP15-Pic 1

TP14-Pic 3

TP14-Pic 5

TP15-Pic 2

TP15-Pic 3

TP15-Pic 5

TP16-Pic 1

TP16-Pic 2

TP16-Pic 3

TP17-Pic 1

TP17-Pic 2

TP17-Pic 4

TP17-Pic 5

TP17-Pic 6

TP17-Pic 9

TP18-Pic 1

TP18-Pic 3

TP18-Pic 4

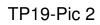
TP18-Pic 5

TP18-Pic 6

TP18-Pic 8

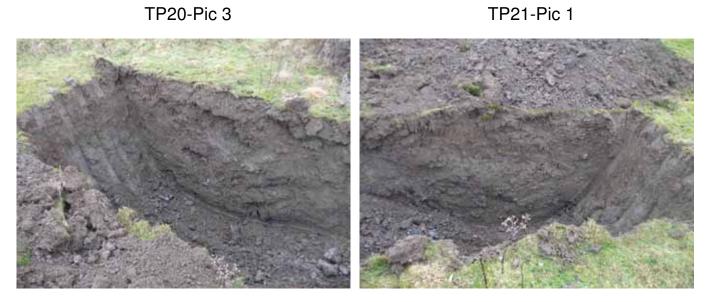
TP18-Pic 7

TP18-Pic 9


TP18-Pic 10

TP18-Pic 11

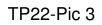
TP19-Pic 5


TP20-Pic 1

TP20-Pic 2

TP21-Pic 1

TP21-Pic 3


TP21-Pic 4

TP22-Pic 1

TP22-Pic 2

TP23-Pic 2

TP23-Pic 3

TP23-Pic 4

TP23-Pic 5

TP23-Pic 6

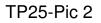
TP24-Pic 3

TP24-Pic 4

TP24-Pic 5

TP24-Pic 6

TP24-Pic 7


TP24-Pic 8

TP24-Pic 9

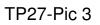
TP25-Pic 5

TP25-Pic 6

TP26-Pic 1

TP26-Pic 2

TP26-Pic 3



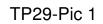
TP27-Pic 1

TP27-Pic 2

TP27-Pic 4

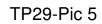


TP28-Pic 1



TP28-Pic 2

TP28-Pic 4



TP29-Pic 3

TP29-Pic 4

TP30-Pic 1

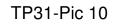
TP30-Pic 10

TP30-Pic 2

TP30-Pic 3

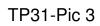


TP30-Pic 7



TP30-Pic 8

TP31-Pic 1


TP31-Pic 13

TP31-Pic 5

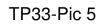
TP31-Pic 6

TP32-Pic 2

TP32-Pic 3

TP32-Pic 5

TP32-Pic 4


TP33-Pic 1

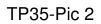
TP33-Pic 3

TP33-Pic 4

TP33-Pic 6

TP34-Pic 1

TP34-Pic 3



TP35-Pic 4

TP35-Pic 5

TP35-Pic 6

TP37-Pic 1

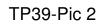
TP37-Pic 3

TP37-Pic 4

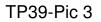
TP38-Pic 2

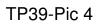
TP38-Pic 3

TP38-Pic 5



TP38-Pic 6




TP39-Pic 1

TP39-Pic 5

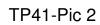
TP40-Pic 1

TP40-Pic 2

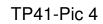
TP40-Pic 4

TP40-Pic 3

TP40-Pic 5


TP40-Pic 7

TP40-Pic 8



TP42-Pic 2

TP42-Pic 3

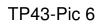
TP42-Pic 5



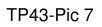
TP42-Pic 6

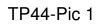
TP42-Pic 7

TP42-Pic 8

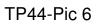


TP43-Pic 2





TP43-Pic 5


TP44-Pic 3



TP45-Pic 4

TP45-Pic 5

TP45-Pic 6

TP46-Pic 2

TP46-Pic 1

TP46-Pic 4

TP47-Pic 2

TP46-Pic 5

TP47-Pic 10

TP47-Pic 3

TP47-Pic 6

TP47-Pic 5

TP47-Pic 7

TP48-Pic 2

TP48-Pic 3

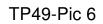
TP48-Pic 4

TP48-Pic 7

TP49-Pic 1

TP49-Pic 3

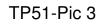
TP48-Pic 8


TP49-Pic 2

TP49-Pic 4

TP49-Pic 5

TP50-Pic 1


TP50-Pic 5

TP51-Pic 1

TP51-Pic 2

TP51-Pic 5

TP52-Pic 1

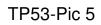
TP52-Pic 10

TP52-Pic 11

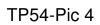
TP52-Pic 2

TP52-Pic 7

TP52-Pic 8



TP53-Pic 4



TP54-Pic 2

TP54-Pic 3

TP54-Pic 5

TP54-Pic 6

TP55-Pic 2

TP55-Pic 6

TP55-Pic 3

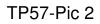
TP55-Pic 5

TP55-Pic 7

TP55-Pic 8

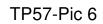
TP56-Pic 2

TP56-Pic 3

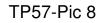


TP56-Pic 6

TP56-Pic 7



TP57-Pic 4



TP57-Pic 5

TP57-Pic 7

TP58-Pic 1

TP58-Pic 2

TP58-Pic 3

TP58-Pic 5

TP59-Pic 1

TP59-Pic 10

TP59-Pic 11

TP59-Pic 13

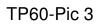
TP59-Pic 14

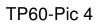
TP59-Pic 2

TP59-Pic 8

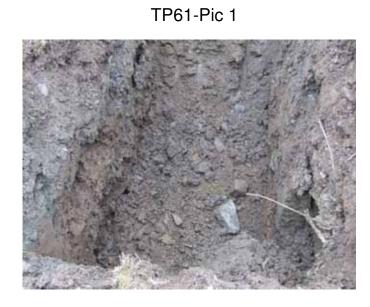
TP59-Pic 7

TP59-Pic 9




TP60-Pic 1

TP60-Pic 2

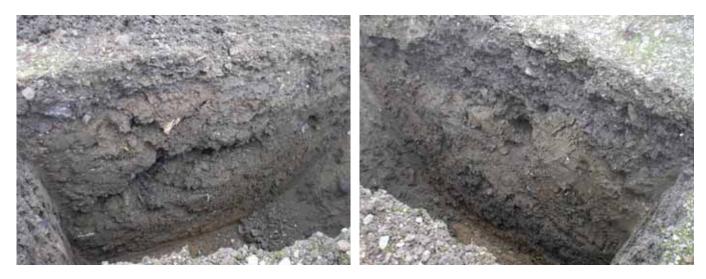


TP60-Pic 6

TP61-Pic 5

TP61-Pic 6

TP62-Pic 2



TP62-Pic 4

TP62-Pic 3

TP63-Pic 1

TP63-Pic 2

TP63-Pic 3

TP63-Pic 4

TP63-Pic 5

TP63-Pic 6

TP63-Pic 7

TP64-Pic 1

TP64-Pic 3

TP64-Pic 5

TP64-Pic 2

TP64-Pic 4

TP64-Pic 6

TP64-Pic 7

TP64-Pic 9

TP65-Pic 1

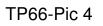
TP65-Pic 3

TP65-Pic 4

TP65-Pic 5

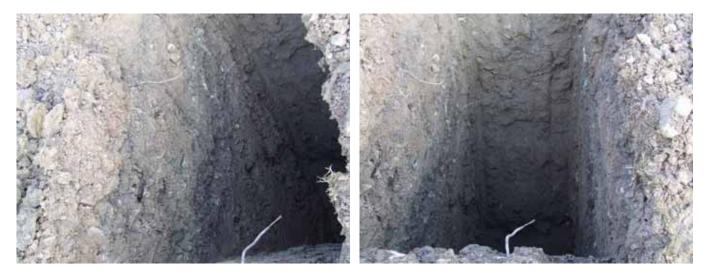
TP65-Pic 6

TP65-Pic 7


TP66-Pic 1

TP66-Pic 2

TP66-Pic 3



TP66-Pic 7

TP66-Pic 8

TP67-Pic 1

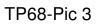

TP67-Pic 2

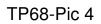
TP67-Pic 4

TP67-Pic 5

TP67-Pic 7

TP68-Pic 1


TP68-Pic 10



TP68-Pic 11

TP68-Pic 6

TP68-Pic 7

TP68-Pic 8

TP68-Pic 9

TP69-Pic 1

TP69-Pic 3

TP69-Pic 4

TP69-Pic 5

TP69-Pic 6

TP69-Pic 7

TP69-Pic 9

TP70-Pic 1

TP70-Pic 3

TP70-Pic 4

TP70-Pic 5

TP70-Pic 9

TP71-Pic 1

TP71-Pic 3

TP72-Pic 1

TP72-Pic 2

TP72-Pic 3

TP72-Pic 5

TP72-Pic 4

TP72-Pic 6

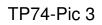
TP72-Pic 8

TP73-Pic 1

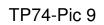
TP73-Pic 3



TP73-Pic 4

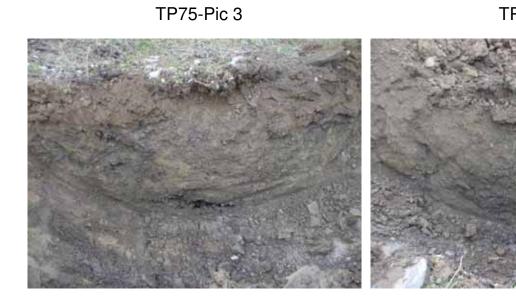


TP74-Pic 2


TP74-Pic 6

TP74-Pic 7

TP74-Pic 8



TP75-Pic 2

TP75-Pic 4

TP75-Pic 6

TP75-Pic 7

TP75-Pic 8

TP75-Pic 9

TP76-Pic 2

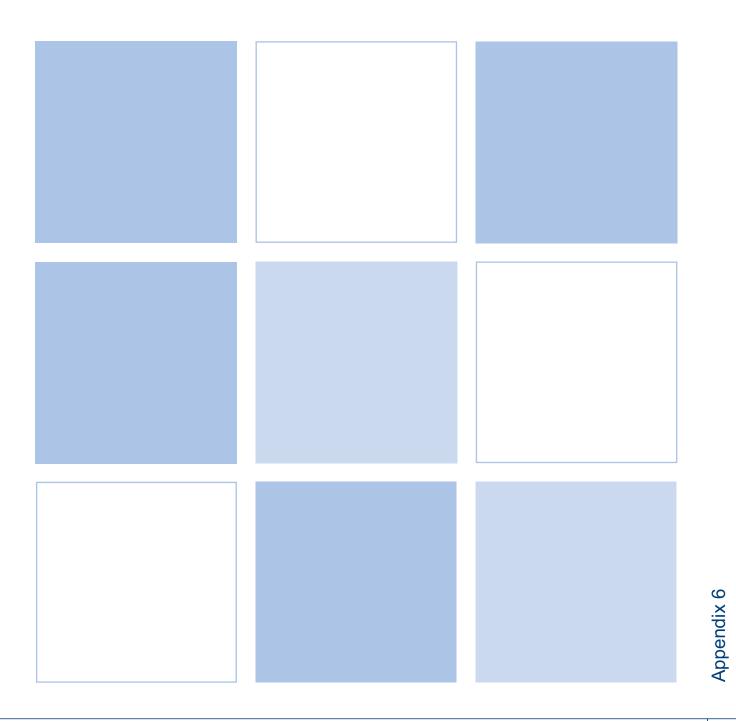
TP76-Pic 4

TP76-Pic 1

TP76-Pic 3

TP77-Pic 1

TP77-Pic 2



TP77-Pic 5

TP77-Pic 6

Trial Pit Logs

RPS Consulting Engineers West Pier Business Campus Dun Laoghaire Co. Dublin

	F	Felephone: Fax: 01 283	01 488 35676	32900			TR	AL PI	Г				
Projec												Hole	No
	Grang	ge Castle I	nfill A	ssess	ment							ТРО	1
Job N			Date	24-0	1-11	Grou	und Level (m)) C	o-Ordinates ()			IFU	, ,
	MDR0	0813		24-0	1-11				E 304,649	0.0 N 230,3	64.0		
Contr			•									Sheet	
		ni Plant H										1 of	l
SAM	PLES	& TESTS	5	1	1		1	ST	RATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCI	RIPTION			backfi
						0.30	Topsoil						
					<u> </u>		Soft brow	n/grey grav	elly CLAY with	n occasional co	bbles. No	o waste	
						(0.90)							
-													
					-	1.20							_
					-								
					Ę								
-					-								
					Ē								
					E								
					-								
-					-								
					-								
					-								
-													
					-								
					Ę								
-					-								
					È								
					-								
-					-								
					-								
					Ē								
-					-								
					-								
					Ē								
	I			1	L		1						I
		GENE REMA	LKAL ARKS										
GPSC	o-ordin	ates entered		ndheld	GPS 11	nit							
5150	5 Signi				ul								
A11.4	limensio	ons in metres	Clie	nt S	outh F	ublin Cc	ounty	Method/				Logged By	
1 11 U		1 50	1					Diant Llaad					

Å					
RPS IRI	All dimensions in metres Scale 1:50	Client	South Dublin County Council	Method/ Plant Used	Logged By

		Telephone: (Fax: 01 283	01 488: 5676	2900			TR	IAL P	IT			
Projec											Hole N	0
	Grang	ge Castle Iı	nfill A	ssess	ment						TDO	2
Job N	0		Date	02-02	2-11	Gro	und Level (n	I)	Co-Ordinates ()		TP02	2
	MDR(0813		02-02	2-11				E 304,710.0	N 230,355.0		
Contr											Sheet	
	Breff	ni Plant Hi	re								1 of 1	
SAM	PLES	& TESTS					1	S	STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPT	TION		backfil
-						(0.55)	No waste	ound; Sof	t light brown gravelly	CLAY with occasic	onal cobbles	
- - -						0.55 (0.38) 0.93 0.94	Made Gr		t dark brown grey grav	velly CLAY with oc	casional cobbles	
F					<u> </u>	0.93	(<1% was)	ste; plasti	c, polystyrene, brick) gravelly CLAY		/	1
-					-		Soft brow	vn slightly	gravelly CLAY		/	
F					-							
Ē												
-					-							
Ē					E							
-					-							
					E							
-					-							
-												
-					-							
Ē					E							
-					_							
-					-							
Ę					Ę							
-					-							
-					Ē.							
-					-							
E					E							
-					-							
-					E							
Ē					Ē							
					F							
E					E							
					F							
					Ē							
5					F							
<u>;</u>					È							
					F							
2		CENE	D Λ Τ									
2.00		GENE REMA	RKS									
GPSC	o-ordin	ates entered f		ndheld	GPS up	it						
	o orain	and entered I			. GI 5 ull							
2100												
	limensic	ons in metres	Clier	nt S	outh D	ublin Co	ounty	Method/			Logged By	
Ŷ	Scale	1:50		C	Council			Plant Us	ea			

Project Hole No Grange Castle Infill Assessment TP03 Job No Date 24-01-11 24-01-11 Ground Level (m) Co-Ordinates () E 304,791.0 N 230,371.0 TP03 Contractor Breffni Plant Hire 1 of 1 SAMPLES & TESTS STRATA		F	Felephone: ax: 01 283	01 488 5676	2900			TR	IAL P	IT			
Job No Date 24-01-11 Ground Level (m) Co-Ordinates () IPU3 Contractor E 304,791.0 N 230,371.0 Sheet 1 of 1 SAMPLES & TESTS Depth Top Sample Name Vater Value Level Icent Depth DESCRIPTION backfil 0 Name Vater Level Depth DESCRIPTION backfil 0 1.75 Firm brown/red slightly gravelly CLAY with frequent cobbles and boulders. <1% waste (bricks)	Projec											Hole N	No
MDR0813 Date 24-01-11 Ordinal Circle (in) Coordinated () Contractor Breffni Plant Hire 1 of 1 SAMPLES & TESTS STRATA Depth Type Sample Water Redaxed Depth Local Legand Chick- Depth No Sample Water Calced Legand (1.75) (1.75) 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75		Grang	ge Castle Iı	nfill A	ssess	ment						ТРО	っ
MDR0813 24-01-11 E 304,791.0 N 230,371.0 Contractor Sheet 1 of 1 SAMPLES & TESTS STRATA Depth Type Sample Vater Easteed Legend (Thick-ness) DESCRIPTION backfil Mode Ground: Soft brown slightly gravelly CLAY with frequent cobbles and boulders. <1% waste (bricks)	Job N	0		Date	24-0	1-11	Grou	und Level (n	n)	Co-Ordinates ()		190	3
I of 1 SAMPLES & TESTS STRATA Depth Type Sample Water Legend Depth (Thick - ness) DESCRIPTION backfil Image: strate str			813		24-0	1-11				E 304,791.	.0 N 230,371.0		
SAMPLES & TESTS Depth Type Sample Water Reduces Legend Depth (Thick- ness) DESCRIPTION backfil Made Ground; Soft brown slightly gravelly CLAY with frequent cobbles and boulders. <1% waste (bricks)	Contr												
Depth Type Sample Water Restor Legend Depth Image: Solution of the system o		Breff	ni Plant Hi	re								1 of	1
Depth Open Single No. Water Level Level Level Level Description backfil Made Ground; Soft brown slightly gravelly CLAY with frequent cobbles and boulders. <1% waste (bricks)	SAM	PLES	& TESTS							STRATA			
Made Ground; Soft brown slightly gravelly CLAY with frequent cobbles and boulders. <1% waste (bricks) (1.75) (0.50) 2.25 Firm brown/red slightly gravelly CLAY	Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick-						backfil
All dimensions in metres Client South Dublin County Method/ Scale 1:50 Council Dublin County Plant Used	GPS C		GENE	RKS	ndheld	GPS un	(1.75) <u>1.75</u> (0.50) <u>2.25</u>	Firm bro		t brown slightly gra te (bricks)	avelly CLAY with fre	quent cobbles and	
	All d	imensio Scale	ns in metres 1:50	Clier	nt S	South D	ublin Co	ounty	Method/ Plant Us	ed		Logged By	

		Telephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	IT				
Proj												Hole	e No
	Gran	ge Castle II	nfill A	ssess	ment							тр	04
Job			Date	24-0	1-11	Grou	und Level (n	1)	Co-Ordinates (04
	MDR	0813		24-0	1-11				E 304,82	26.0 N 230	,380.0		
Cor	ntractor											Sheet	
		ni Plant Hi										1 0	of 1
SA	MPLES	& TESTS	•				I	,	STRATA				
Dept	h Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)				CRIPTION			backfill
RPS TRIAL PIT MDR0813_GI0001_TP LOGS.GPU AGS 3.1.GDT 8/4/11 Image: Second conduction of the second condition of the second conduction of the second conducti	Co-ordir	GENE REMA nates entered f	RKS	ndheld	I GPS un	(1.20) 1.20 (0.80) 2.00	Soft brov		t grey gravelly C		aste (cable,	iron bar)	
TRIAL PIT MDR08	1 dimons:	ons in metres	Clie	nt s	outh D	ublin Cc	nintv	Method/				Logged By	
	Scale	e 1:50		(Council		Juny	Plant Us	ed				

	- C	Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	TI					
Projec													Hole	No
	Grang	ge Castle I	nfill A	ssess	ment								то)E
Job N	0		Date	24-0	1-11	Gro	und Level (n	1)	Co-Ordinate	es ()			- TPC	15
	MDR	0813		24-0	1-11				E 304,	,932.0	N 230,373	3.0		
Contr													Sheet	
	Breff	ni Plant Hi	ire										1 of	1
SAM	PLES	& TESTS						(STRATA					
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DI	ESCRIPT	ION			backfill
-					<u><u>xt Iz</u> .<u>xt Iz</u></u>	0.20	Topsoil							
-						0.55		lightly gra	velly CLAY					
					F <u> </u>	0.55								
-					-									
-					-									
-					Ē									
-					-									
E					E_									
-					-									
Ē					Ę									
-														
-					-									
-														
-					-									
Ē					Ę									
-					-									
-					-									
-														
-					-									
-					-									
-					-									
-					-									
					E									
-					-									
-					-									
					Ē									
- 8/2														
1.60					-									
<u>20</u>														
₹ <u> </u>				I	L		1							1
20.00		GENE REMA	ARKS											
J GPS C	o-ordin	ates entered f		ndheld	GPS un	it								
	5 Sram				uli									
eigr														
(0813														
NUM														
	imensio	ons in metres	Clie	nt S	outh D	ublin Co	ounty	Method/					Logged By	
	Scale	1:50		Č	Council			Plant Us	ed					

		Fax: 01 283	5676				1 IN		11			
Projec	t										Hole	No
		ge Castle I		ssess	ment						- TPO	6
Job N	o MDR(0813	Date	24-01 24-01	-11 -11	Gro	und Level (n	n)	Co-Ordinates () E 304,956.0 N 230,3	74.0		Ū
Contr									2001,90010 11 200,0	,	Sheet	
	Breff	fni Plant Hi	ire								1 of	1
SAM	PLES	& TESTS	5						STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)	1		DESCRIPTION			backfill
					<u>x¹ / x . <u>x¹ / x</u></u>	0.20) Topsoil					
-						(0.55)	Brown v	ery slight	ly gravelly CLAY (firm)			
-					 	0.75	5					
-					- 							
-					-							
-					- - -							
-					-							
-					-							
-					-							
-					-							
-					-							
-					-							
-					-							
-					-							
-					-							
-					-							
-					-							
-					 - -							
-					-							
-					-							
-					-							
-					-							
-					-							
-					-							
					-							
					-							
					-							
įt					-							
5000		GENE REMA	ARKS									
GPS C	o-ordin	ates entered		ndheld	GPS un	it						
2												
2 - -												
GPS C	limensio	ons in metres e 1:50	Clie	nt S	outh D	ublin C	ounty	Method Plant U	/ sed		Logged By	
2	Scat	1.50		U	ouncil			1 U				

TRIAL PIT

		Felephone: Fax: 01 283	01 488 5676	2900				TR	IAL P	ΤI			
Projec												Hole N	No
		ge Castle I		ssess	ment							TP0	7
Job N			Date	04-02	2-11		Grou	nd Level (n	1)	Co-Ordinates ()			1
	MDR(0813		04-02	2-11					E 304,609.	.0 N 230,297.7	C1 /	
Contr		ni Plant Hi	ro									Sheet 1 of	1
												1 01	1
SAM		& TESTS				D	epth			STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thio ness)	ck-			DESCR			backfil
-						(0.6	50)	Made Gr occasion	ound; Sof al cobbles	t brown slightly gra	avelly CLAY with roc	tlets and	
						(0.5	0.60	Made Gr	ound; Sof al cobbles	t dark brown slight	ly gravelly CLAY wit	h rootlets and	_
-							1.10	(<1% wa	ste; tarma	ic, tile)			
							$\frac{1.30}{1.35}$	Made Gr	ound; Sof sional cob	t dark brown/ grey	slightly gravelly CLA	Y with rootlets	
-					-	·	1	∖\ (<1% wa	ste; tarma	ıc, tile)			/
Ē					-			Soft brow	vn CLAY				/
F					-								
Ę					-								
Ē													
E													
-					-								
Ē													
E													
Ē					-								
Ē													
F					-								
Ę					-								
F					-								
-					-								
-					-								
-					-								
-					-								
-					-								
Ę					-								
E													
F					_								
E					-								
F					-								
Ē					-								
		GENE			L								
		REMA											
I													
All d	limensio Scale	ons in metres	Clie		outh D	ublir	n Co	unty	Method/ Plant Us	ed		Logged By	
	Scale	1.50		C	Council				1 1011 05	~~			

	F	Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL F	TI			
Projec											Hole	No
	Grang	ge Castle I	nfill A	ssess	ment						тр	00
Job No	O		Date	24-0	1-11	Grou	und Level (m	I)	Co-Ordinates ()		– TP	VO
]	MDR0	813		24-0	1-11				E 304,631.0	N 230,305.0		
Contra											Sheet	
	Breff	ni Plant Hi	ire								1 0	f 1
SAM	PLES	& TESTS							STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPTI	ION		back
						0.20			t brown CLAY with oc			
						(1.30) <u>1.50</u> (1.50) <u>3.00</u> (0.50) <u>3.50</u>	boulders Made Gr boulders Brown g	ound; Sti 5% wast	ff black boulder CLAY ff black boulder CLAY e (plastic, metal, brick, AY	with occasional co		
	imensio	GENE REMA ates entered f	RKS	nt S	outh D	it ublin Co	punty	Methody			Logged By	
All d	Scale	1:50		C	Council		unity	Plant Us	ed			

	- C	Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	TI			
Projec											Hole	No
	Grang	ge Castle I	nfill A	ssess	ment						ТРО	0
Job N	0		Date	24-0	1-11	Grou	und Level (n	n)	Co-Ordinates ()		TP0	9
	MDR	0813		24-0	1-11				E 304,734.	0 N 230,319.0		
Contr											Sheet	
		ni Plant Hi									1 of	1
SAM	PLES	& TESTS					1		STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCR			backfill
GPS C		GENE REMA ates entered f	RKS	ndheld	I GPS un	(1.00) <u>1.00</u> (0.40) <u>1.40</u> (0.50) <u>1.90</u>	Made Gr metal)	ders	t grey gravelly CLA	AY. 5% waste (plastic rr cobbles and boulde	, brick, timber,	
All d	imensic	ons in metres	Clie	nt S	South D	ublin Co	ounty	Method/ Plant Us			Logged By	
2	Scale	1:50		0	Council			Plant Us	eu			

		Telephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	IT				
Projec												Hole N	No
	Grang	ge Castle Iı	nfill A	ssess	ment							тр1	0
Job N	O		Date	07-02	2-11	Grou	und Level (n	1)	Co-Ordinates ()			TP1	U
	MDR(0813		07-02	2-11				E 304,78	1.0 N 230,303.	.0		
Contra												Sheet	
		ni Plant Hi										1 of	1
SAM	PLES	& TESTS					1	5	STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)				RIPTION			backfil
GPS C	o-ordin	GENE REMA ates entered f	RKS	ndheld	I GPS un	(1.20)	and boul (<1% wa	ders	ete blocks, brick,	gravelly CLAY with clay pipe)		ional cobbles	
All d	imensic Scale	ons in metres 1:50	Clier	nt S	outh D	ublin Co	ounty	Method/ Plant Use	ed			Logged By	

	F F	ax: 01 283	5676				1 K	IAL F	11			
Projec											Hole	No
	Grang	ge Castle I	nfill A	ssess	ment							
Job N	0		Date	24-0	1-11	Gr	ound Level (n	n)	Co-Ordinates ()		TP1	1
	MDR0	813		24-0	1-11				E 304,872.0	N 230,336.0		
Contr											Sheet	
	Breff	ni Plant H	ire								1 of	1
SAM	PLES	& TESTS	5						STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick- ness)	h		DESCRI	PTION		back
- - - - - - - - - - - - - - - - - - -		GENE REMA	ERAL			(1.20) <u>1.2</u> <u>1.4</u> (0.60) <u>2.0</u>	0 0 Made Gr Firm bro	ound; Bla	t brown gravelly cla ste (tarmac, plastic)	y with occasional cob		
Water	ingress	ates entered i at 1.2m.	Clier			ublin C	Jounty	Method/			Logged By	
AII 0	Scale	1:50			Council	uoini C	Junty	Plant Us	ed		y	

		Fax: 01 283	5676								
Projec										Hole 1	No
		ge Castle I		ssess	ment						2
Job N		0012	Date	24-0	1-11	Grou	und Level (n	n)	Co-Ordinates ()		-
Contr	MDR(1813		24-0	1-11				E 304,936.0 N 230,333.0	Sheet	
Conu		ni Plant Hi	ire							1 of	1
SAM		& TESTS							STRATA	1 01	1
				Baduaad		Depth			SIRAIA		
Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick- ness)			DESCRIPTION		backfil
-							Made G	round; B	own gravelly CLAY with occasional bou d, plastic, wire, brick)	lders	
-						(0.55) 0.55					
-					<u> </u>		grey bro	wn firm s	lightly gravelly CLAY with rootlets		
-					- <u> </u>						
-						(1.20)					
-					<u> </u>	1.75					
-						1.75					_
-											
-											
-					-						
-											
-											
-											
-											
-					-						
-											
-											
-					-						
-											
-											
-											
-					-						
-											
-											
111					-						
DT 8/-											
1.GI											
AGS					-						
GPJ		GENE	ERAL								
LOGS		REMA	ARKS								
GPS C	o-ordin	ates entered f	from ha	ndheld	GPS unit	t					
00015											
813_0											
MDR(
P IIP Constraint of the second	imensio	ons in metres	Clier		outh Du	ıblin Co	ounty	Method	1	Logged By	
RPS	Scale	21:50			Council		5	Plant Us	sed		

TRIAL PIT

		Fax: 01 283	5676				IN	IAL I	11			
Projec	et										Hol	e No
Job N	0	ge Castle I				Grou	und Level (n	1)	Co-Ordinates ()		- TF	P13
	MDR	0813		24-01 24-01	1-11				E 304,983.0 N	230,320.0		
Contr		fni Plant H	ira								Sheet	of 1
		& TESTS	-									
				Reduced		Depth (Thick-			STRATA			
Depth	Type No	Sample Name	Water	Level	Legend	(Thick- ness)			DESCRIPTIO	DN		backfill
F						0.20	Topsoil	ightly are	velly CLAY			
E						(0.60)	010WII 31	iginiy gia				
E					- <u>o</u>	0.80						
-					-							
E												
Ę					-							
F					-							
E					-							
E					-							
E					-							
E					-							
E												
E					-							
E					-							
E												
E												
-					-							
E												
E					E							
E					-							
E					L							
E					Ē							
F					F							
[<u> </u>							
					F							
<u> </u>												
		GENE	ERAL									
GPSC	o_ordin	REMA nates entered		ndheld	GPS 110	it						
	o-orun		n onn na	nunciu	or 5 un							
GPS C	limensio	ons in metres e 1:50	Clie	nt S	outh D	ublin Cc	ounty	Method/			Logged By	
	Scale	e 1:50		C	Council			Plant Us	ed			

TRIAL PIT

		Felephone: (Fax: 01 283	01 488 5676	2900			TR	IAL P	TI			
Projec											Hole N	No
	Grang	ge Castle Ir	nfill A	ssess	ment							
Job N	D		Date	24-0	1-11	Gr	ound Level (n	n)	Co-Ordinates ()		TP1	4
	MDR	0813		24-0	1-11				E 304,652.0	N 230,241.0		
Contr											Sheet	
	Breff	ni Plant Hi	re								1 of	1
SAM	PLES	& TESTS			1				STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick- ness)			DESCRIP			backfil
		GENE	RAL			(2.20)	0		n brown slightly grave	elly CLAY with occ:	asional cobbles	
No wa	ste	REMA	RAL IRKS									
All d	imensio Scale	ns in metres 1:50	Clier	nt S	outh D	ublin C	County	Method/ Plant Us	ed		Logged By	

	-	Felephone: (Fax: 01 283	01 488. 5676	2900			TR	IAL P	IT				
Projec												Hole M	No
	Grang	ge Castle Iı	nfill A	ssess	ment								F
Job N	0		Date	04-02	2-11	Grou	und Level (m	I)	Co-Ordinates ())		TP1	อ
	MDR	0813		04-02	2-11				E 304,71	6.7 N 230,2	223.1		
Contr												Sheet	
	Breff	ni Plant Hi	re									1 of	1
SAM	PLES	& TESTS						(STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESC	CRIPTION			back
						(2.20) 2.20 2.40			t light brown slig and 1 large boul		LAY, loca	Illy darker with wood)	
		GENE REMA	RAL RKS										
All d	imensio Scale	ons in metres 1:50	Clier		outh D council	ublin Co	ounty	Method/ Plant Us	ed			Logged By	

	- C	Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	IT			
Projec											Hole N	lo
	Grang	ge Castle II	nfill A	ssess	ment							c
Job N			Date	24-01	1-11	Gro	und Level (r	n)	Co-Ordinates ()		TP1	D
	MDR	813		24-01	l - 11				E 304,836.0 N 2	30,277.0		
Contr											Sheet	
	Breff	ni Plant Hi	re								1 of 1	1
SAM	PLES	& TESTS						Ŷ	STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPTION			backfil
					$\frac{\sqrt{1}}{2} \cdot \frac{\sqrt{1}}{\sqrt{1}} \cdot \frac{\sqrt{1}}{\sqrt{1}} \cdot \frac{\sqrt{1}}{\sqrt{1}}$	(0.50)	Topsoil					
						(1.10)	Soft grav	velly CLA	Y with frequent angular cob	bles and bould	lers	-
		GENE REMA	RKS	<u> </u>	L		1					<u> </u>
	o-ordin	ates entered f	rom ha	ndheld	GPS un	it						
All d	imensic Scale	ns in metres 1:50	Clier	nt S C	outh D Council	ublin Co	ounty	Method/ Plant Us	ed		Logged By	

	F	elephone: ax: 01 283	5676	2000			TR	AL P	11					
Projec													Hole	No
	Grang	ge Castle I	nfill A	ssess	ment									7
Job No	0		Date	31-01	1-11	Gro	ound Level (m		Co-Ordinates (0			TP1	1
]	MDR0	813		31-01	l-11				E 304,8	66.7	N 230,22	23.6		
Contra	actor	•											Sheet	
	Breff	ni Plant Hi	ire										1 of	1
SAM	PLES	& TESTS	5					S	STRATA					
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Deptl (Thick-	n		DES	CRIPT	TION			bac
						ness) (1.10) 1.10	(1% wast organics)	e; brick, t	y gravelly CLA ile, car mirror, v	Y with wood, j	occasional oplastic, meta	al pipe, c		
						(0.40) 1.5 1.7	organics)		k grey gravelly ile, car mirror, v	wood, j	plastic, meta	al pipe, c	oncrete block,	
					-	1./	brown gra	velly CL	AY					/
		GENE												
		REMA	AKKS											

		Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	ΤI				
Projec												Hole	No
	Grang	ge Castle II	nfill A	ssess	ment							ТО	40
Job N	D		Date	31-0	1-11	Gro	und Level (n	1)	Co-Ordinates ()			– TP	10
	MDR	0813		31-0	1-11				E 304,94	1.7 N 230	,223.9		
Contra												Sheet	
	Breff	ni Plant Hi	re									1 0	f 1
SAM	PLES	& TESTS					-	1	STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)				RIPTION			backfil
		GENE	RAI			(2.20) <u>2.20</u> (0.40) <u>2.60</u> 2.80) Made Gr) (80% wa	ound; sara	wn gravelly CLA y blocks, brick, v dy gravelly CLA c) Smell of tar.		cobbles twine, steel	wire)	
		GENE REMA	RAL ARKS										
All d	imensic Scale	ons in metres 1:50	Clie	nt S C	outh D	ublin C	ounty	Method/ Plant Us	ed			Logged By	

		Telephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	TI			
Projec											Hole N	0
	Grang	ge Castle I		ssess	ment							~ \
Job N			Date	24-0	1-11	Grou	und Level (n	1)	Co-Ordinates ()		TP19(a)
	MDR(0813		21-0	1-11				E 304,988.0	N 230,279.0		
Contr											Sheet	
	Breff	ni Plant Hi	re								1 of 1	
SAM	PLES	& TESTS							STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIP	TION		backfill
-					<u></u>	0.10			velly CLAY		/	
Ē						(0.54)		ignity gra	Velly CLAY			
Ē						0.64	Light hr	wn firm (CLAY			
-					-	0.90						-
Ē												
-					-							
Ē					F							
F					-							
Ē					Ę							
F					-							
F					-							
E					E							
Ę					Ę							
					-							
-					-							
Ē					Ē							
E					E							
Ę					Ę							
Ē												
F					-							
Ē					Ē							
-					-							
Ē					Ē							
-					-							
-					-							
-					-							
3/4/11					-							
3 1.0					-							
AGS					-							
CGPJ		GENE	RAL									
LOGS		REMA	RKS									
GPS C	o-ordin	ates entered f	from ha	ndheld	l GPS un	it						
10001												
813_0												
IDRO												
≥ ⊢												
			01.			1-1' C		M.4. 1/			Lagrad D-	
PLINE TRIAL PIT MDR0813_G10001_TP_LOGS.GPU_AGS 3.1.GDT 8/4/11 DILY DIL	imensic Scale	ons in metres 1:50	Clier		South D	ublin Co	ounty	Method/ Plant Us	ed		Logged By	

		Telephone: (Fax: 01 283	01 488: 5676	2900			TR	IAL P	IT			
Proje											Hole N	0
	Gran	ge Castle Iı	nfill A	ssess	ment							`b `
Job 1	No		Date	24-0	1-11	Gro	und Level (n	1)	Co-Ordinates ()		— TP19(D)
	MDR	0813		24-0	1-11				E 304,988.0 N	230,279.0		
Con	tractor										Sheet	_
		ni Plant Hi									1 of 2	1
SAN	MPLES	& TESTS					1	,	STRATA			
Deptl	h Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPTIC			backfill
-						0.35		ound; Bro	wn gravelly CLAY. (<19	6 waste; clay pip	e, plastic)	
Ē						0.63	Made G	ound; Bro	wn gravelly CLAY. (<1%	6 waste; clay pip	e, plastic)	-
Ē					<u>****</u>	-	light bro	wn firm C	LAY			
È.					<u></u>	0.94						-
F					-							
Ē					-							
Ē					-							
-					-							
Ē					-							
Ē					-							
F					-							
Ē					-							
Ē												
E					-							
F					-							
Ē												
E					-							
F					-							
-					-							
Ē												
F					-							
Ē					-							
-					-							
Ē					-							
Ē					-							
F					-							
4/11					-							
≫- ⊼					-							
<u>]</u> [-							
GPJ		GENE	RAL									
		REMA	RKS									
GPS	Co-ordin	ates entered f	rom ha	ndheld	l GPS un	it						
0001												
13.6												
W I												
											× 15	
	dimensio Scale	ons in metres e 1:50	Clier	nt S	South D Council	ublin Co	ounty	Method/ Plant Us	ed		Logged By	
- L												

		Felephone: Fax: 01 283	01 488 5676	2900				TR	IAL F	PIT						
Projec															Hole No)
		ge Castle I	nfill A	ssess	ment										TP20	
Job N			Date	04-03	3-11		Grou	nd Level (n	ı)	Co-Ordinat					1720	
	MDR	0813		04-03	3-11					E 304	4,650.6	N 230,1	47.8			
Contr														Sheet	1.61	
		ni Plant Hi													1 of 1	
SAM		& TESTS			1		epth			STRATA						
Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thic ness)	ck-			Γ	DESCRIPT	TION				backfill
Ē					$\frac{\chi(\eta_{\chi})}{\chi(\eta_{\chi})} = \frac{\chi(\eta_{\chi})}{\chi(\eta_{\chi})}$	(0.4	0) 0.40	Topsoil								
Ē								lighter b	own CLA	ΑY						
-						(0.5	0) 0.90	No waste	2							
-					-											
-																
- - L					E											
Ē					Ę											
-					-											
-					-											
-					F											
-																
- - L					E											
-					-											
-																
-					-											
-					-											
-					Ę											
-					-											
-					-											
-																
-					-											
-					-											
-					-											
- - L					-											
F					-											
-					E											
-					-											
- r					-											
- F					Ē											
					E											
		GENE	RAL													
		REMA	AKKS													
All d																
All d	imensic	ons in metres	Clie	nt S	outh D	ublir	n Cou	inty	Method	/				Logged By	7	
	Scale	1:50		Č	Council			-	Plant Us	sed						

	F	Felephone: Fax: 01 283	01 488 5676	2900				TR	IAL F	TI						
Projec															Hole N	0
	Grang	ge Castle I	nfill A	ssess	ment										TD24	
Job N			Date	25-0	1-11	0	Ground I	Level (m)	Co-Ordina	ates ()				TP21	I
	MDR0	813		25-0	1-11					E 30	04,716.7	7 N 230	,148.1			
Contr														Sheet		
		ni Plant Hi													1 of 1	
SAM	PLES	& TESTS								STRATA						1
Depth	Type No	Sample Name	Water	Reduced Level	Legend	De (Thicl ness)					DESCRI	PTION				backfil
E					$\frac{\sqrt{1/2}}{1/2} \cdot \frac{\sqrt{1/2}}{1/2} \cdot \sqrt{$	(0.40)) ₄₀ T	opsoil								
- - -						-	S	oft grey	/brown s	ightly grave	elly CLA	Y with free	quent angu	lar cobbles		_
- -						(1.00										
Ē						1	.40									-
Ę					-											
-					-											
-					-											
-					-											
-					-											
-					-											
-					-											
-					-											
-					-											
-					-											
-					-											
-					-											
-					-											
Ē																
E					-											
-					-											
Ę					-											
Ē					-											
-					-											
-					-											
-					-											
					-											
-					-											
No wa		GENE REMA	RAL													
No wa	ste															
1																
All d	imensio	ns in metres	Clie		South D	ublin	Count	у	Method/ Plant Us	ed				Logged B	у	
	Scale	1.30		(Council				1 min US	i u						

Project H Grange Castle Infill Assessment F Job No Date 04-02-11 MDR0813 04-02-11 Ground Level (m) Co-Ordinates () Contractor Sheet			Telephone: Fax: 01 283	01 488 5676	2900			TRL	AL F	PIT					
Job No Date Od+02-11 04-02-11 Ground Level (m) Co-Ordinates () E 304,791.7 N 230,148.3 Contractor Breffni Plant Hire Sheet SAMPLES & TESTS STRATA Depth Type Sample None Water Kalwor Legend Chick- ness) DESCRIPTION Made Ground; soft dark brown gravelly CLAY with some cobbles. Loca Made Ground; soft dark brown gravelly CLAY with some cobbles. Loca 0 2.10 2.10 2.10 2.10	Projec		<u>a.a.</u> 01 200											Но	le No
Job NO Date of 4-02-11 04-02-11 Ordan LSC (n) E 304,791.7 N 230,148.3 Contractor Breffni Plant Hire StrATA SAMPLES & TESTS STRATA Depti Type Sample Name Water Reduced Legend (Thick- ness) Depti dark. DESCRIPTION Image: Contractor Image: Contractor Image: Contractor Image: Contractor Depti Image: Contractor Image: Contractor Image: Contractor Image: Contractor Stream Image: Contractor Image: Contractor Image: Contractor Image: Contractor Stream Image: Contractor Image: Contractor Image: Contractor Image: Contractor Stream Image: Contractor Image: Contractor Image: Contractor Image: Contractor Stream Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor		Gran	ge Castle I	nfill A	ssess	ment									222
MDR0813 04-02-11 E 304,791.7 N 230,148.3 Contractor Breffni Plant Hire Sheet SAMPLES & TESTS STRATA Depti No Sample No Sample Legend Depti Image: No Name Water Reduce (Thick-Incomposition of the constraint) of the constraint of the	Job N	0		Date	04-02	2-11	Gro	ound Level (m)		Co-Ordinates ()					P22
SAMPLES & TESTS STRATA Depth Type Sample Water Retend Legend (Trick-mess) DESCRIPTION -		MDR(0813		04-02	2-11				E 304,791	1.7 1	N 230,14	18.3		
SAMPLES & TESTS STRATA Depth Type Sumple Name Water Legend (Thick- ness) A A A A A A A A A A A A A A A A A A A	Contr														
Depth Type Sample Name Water Reduce Legend (Thuckness) Depth Instance A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A		Breff	ni Plant Hi	ire										1	of 1
Image: Constraint of the second se	SAM	IPLES	& TESTS	b						STRATA					
GENERAL	Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depti (Thick-	h		DESCI	RIPTI	ON			back
GENERAL							(2.10)	dark. No waste	nd; sof	t dark brown grave	elly Cl	LAY with	some co	bbles. Locally	
GENERAL							2.1	0 50 aaft light h	iour C	LAV					
REMARKS			GENF	ERAL											
All dimensions in metres Client South Dublin County Method/ Nethod/ Logged By		1	REMA	ARKS		outh D	whin C	ounty. N	Jethod	,				Logged By	

	- C	Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	IT				
Projec											Hole M	No	
	Grang	ge Castle I	nfill A	ssess	ment						трэ	າ	
Job N	0		Date	25-0	1-11	Grou	und Level (n	1)	Co-Ordinates ()		TP2	ა	
	MDR	0813		25-0	1-11				E 304,894.0	N 230,206.0			
Contr											Sheet		
		ni Plant Hi									1 of	1	
SAM	PLES	& TESTS					1	C.	STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPT			backfil	
						(0.50) 0.50		ound; Sof	t brown slightly gravel	lly CLAY with occa	sional cobbles		
						(0.90)	Made Gr 2mx1mx	ound; Firr 0.1m, plas	n grey/brown gravelly tic, timber, brick)	CLAY. 5% waste (concrete slab		
E						1.40							
-						1.40	Firm bro	irm brown gravelly CLAY with occasional boulders and cobbles					
-						(0.90)							
						2.30							
-					-								
-													
-													
F													
-					-								
					-								
					-								
E					-								
F					-								
F													
					-								
					-								
E					-								
-					-								
F					-								
					-								
=					-								
0-					-								
2					-								
					-								
		GENE		1	L		1						
		REMA	RKS										
GPS C	o-ordin	ates entered f	from ha	ndheld	l GPS un	it							
	imensio Scale	ons in metres	Clie	nt S	South D	ublin Cc	ounty	Method/ Plant Us	ed		Logged By		
Ľ	Seule			C	Jounell								

	F	ax: 01 283	5676	82900			TR	AL PIT					
Projec												Hole	No
	Grang	ge Castle I	nfill A	Assess	ment							то	1 4
Job No	0		Date	31-0	1-11	Gro	ound Level (m	Co-Ordinates	s ()			TP2	24
1	MDR0	813		31-0	1-11			E 304,	941.7	N 230,14	8.7		
Contra	actor							·				Sheet	
	Breff	ni Plant H	ire									1 of	1
SAM	PLES	& TESTS	5					STRATA					
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick-	h	DE	SCRIP	TION			back
						ness) (3.10) (0.40) 3.5	0 occasion (<1% wa hose pipe	ound; brown locally dar l cobbles ste; carpet, nylon rope, o	k browr	n/ grey grave			
	GENERAL												
		REMA											
All d	imensio	ns in metres 1:50	Clie	ent S	outh D Council	ublin C	ounty	Method/ Plant Used				Logged By	

	Fax: 01 283	5676			1 1 1 1 1			
Project							Hole	No
	nge Castle I			C		Co. Outinates ()	TP2	25
Job No	R0813	Date 3	31-01-11 31-01-11	Grou	und Level (m)	Co-Ordinates () E 305,007.1 N 230,149.		-
Contractor	(0815	-	51-01-11			E 303,007.1 IN 230,149.	Sheet	
	ffni Plant Hi	ire					1 of	1
SAMPLE	S & TESTS	5				STRATA	l	
			Reduced	Depth				backfil
Depth Typ No	Name	water	Level Legend	(Thick- ness)		DESCRIPTION		Udekiii
		-		(1.20) <u>1.20</u> <u>1.40</u>		I; brown slightly gravelly CLAY with occa wood, concrete, tiles, organics, plastic, gla ck staining probably due to organics but no lly CLAY	ss) o odour	
-								
All dimens	GENE REMA	ERAL	I		1			
All dimens	sions in metres lle 1:50	Client	t South D Council	ublin Co	ounty Me Plan	thod/ nt Used	Logged By	

TRIAL PIT

	- <mark></mark> -	Felephone: Fax: 01 283	5676	2900			TR	IAL F	TI			
Projec											Hole	No
		ge Castle I		ssess	ment						TP2	96
Job N			Date	25-01	l - 11	G	round Level (n	n)	Co-Ordinates ()			.0
	MDR	0813		25-01	l-11				E 304,699	.0 N 230,120.0		
Contr											Sheet	
		ni Plant Hi									1 of	1
SAM	IPLES	& TESTS	5					i	STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dep (Thick- ness)	oth -		DESCR	RIPTION		ba
-						(0.80)	20 Firm gre boulders			LAY with occasional		
					- - - - - - - -							
GPS C No wa	Co-ordin iste	GENE REMA ates entered f	ARKS		GPS un	it.						
All d	limensio Scale	ons in metres 1:50	Clie		outh D Council	ublin (County	Method/ Plant Us	ed		Logged By	

	F	Telephone: Fax: 01 283	01 488 35676	32900			TR	IAL P	ΤI						
Project														Hole	No
	Grang	ge Castle I	nfill A	Assess	ment									то	דר
Job No)		Date	04-0	2-11	Gro	und Level (m)	Co-Ordin	ates ()				TP2	27
ľ	MDR0	813		04-0	2-11				E 3	04,705.0	N 230),118.0			
Contra													She		
	Breff	ni Plant H	ire											1 of	1
SAM	PLES	& TESTS	5					9	STRATA	۱					
Depth	Type No	Sample Name	Water	Reduce	Legend	Depth (Thick- ness)	1			DESCRIF	PTION				bac
						(2.40) 2.40 2.50	No waste		t light brows		/ CLAY v	vith some o	cobbles an	ıd	
GPS Co					-										
		GENE	ERAI		-										
		REMA	ARKS												
GPS Co	o-ordina	ates entered	from ha	andheld	l GPS un	it									
All di	imensio Scale	ns in metres	Clie	ent S	South D Council	ublin Co	ounty Method/ Logged By Plant Used								

	F F	Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	IT				
Projec											Hole N	lo	
	Grang	ge Castle I	nfill A	ssess	ment						тра	0	
Job N	0		Date	25-0	1-11	Gro	ound Level (n	1)	Co-Ordinates ()		TP2	Ō	
	MDR0	0813		25-0	1-11				E 304,791.7 N 230,	073.3			
Contr											Sheet		
	Breff	ni Plant Hi	re								1 of	1	
SAM	PLES	& TESTS			1			9	STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick- ness)			DESCRIPTION			backfil	
						0.3	0 Topsoil						
Ę							Soft bro	wn slightly	gravelly CLAY with occasion	al cobbles			
						-							
-						(1.50)							
-													
-						•							
Ę					_ <u>o</u>	1.8	0					-	
-					-								
-					-								
-													
-					E								
-													
-					-								
					-								
-					-								
Ę					Ę								
					F								
-					 -								
					F								
-													
					F								
					-								
					F								
					E								
έ∟ ≥					L							<u> </u>	
5.00		GENE REMA											
No wa	ste	1.1.1.11											
-													
No wa													
All d	limensio Scale	ns in metres	Clier		outh D					Logged By			
2	Scale	1.50		C	Council			1					

	r F	Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	TI						
Projec												Ho	le No		
	Grang	ge Castle I	nfill A	ssess	ment								220		
Job N	0		Date	07-02	2-11	Gro	und Level (n	l)	Co-Ordinates	0		- 11	29		
	MDR0	813		07-02	2-11				E 304,8	66.7	N 230,073.6				
Contr	actor											Sheet			
	Breff	ni Plant Hi	ire									1	of 1		
SAM	PLES	& TESTS	3					(STRATA						
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)	ı		DES	SCRIPT	ION		backf		
					<u> </u>		Topsoil								
					0	0.30	soft brov	n slightly	gravelly CLAY	with r	ootlets				
						(0.50)		0,	0						
					-	0.80)								
					-										
					-										
					-										
					E										
					-										
					E										
					Ę										
					Ę										
					-										
					Ę										
					-										
					Ę										
					F										
					Ę										
					-										
					Ē										
					-										
					Ę										
					-										
					Ē										
					-										
					Ē										
					-										
					-										
		OFNE			L										
		GENE REMA	ARKS												
		ICLIVII	nuto												
Alld	limensio	ns in metres	Clie	nt S	outh D	ublin Co	ountv	Method/				Logged By			
u	Scale	1:50		C	Council	ublin Co		Plant Us	ed						

		Telephone: Fax: 01 283	01 488 5676	2900			TR	IAL F	PIT				
Projec												Hole	No
	Grang	ge Castle II	nfill A	ssess	ment								20
Job N	0		Date	24-0	1-11	Gro	und Level (m)	Co-Ordinates ()			- TP	30
	MDR(0813		24-0	1-11				E 304,93	7.0 N 230,	117.0		
Contr												Sheet	
	Breff	ni Plant Hi	re									1 of	f 1
SAM	PLES	& TESTS							STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)	L		DESC	RIPTION			backf
						(2.90)) brown sli		wn gravelly CLA stic, textiles, con	Y with cobbles crete, sack	s and bould	lers.	
GPS C	o-ordin	GENE REMA ates entered f	RKS	ndheld	GPS un	it							
All d	limensic Scale	ons in metres 1:50	Clier		outh D	ublin Co	ounty	Method/ Plant Us	ed			Logged By	

		Felephone: Fax: 01 283		32900			TRL	L PIT			
Project	t									Hole N	lo
		ge Castle I		Assess	ment			-		TP3	1
Job No			Date	24-0	1-11	Gro	ound Level (m)	Co-Ordinates ()			•
	MDR0	813		24-0	1-11			E 305,003.0	N 230,105.0		
Contra		'D1 (II								Sheet	1
		ni Plant H	1							1 of	I
SAM	PLES	& TESTS	5		1			STRATA			_
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPT			ba
-						(1.22)	(2% waste; Note: water	d; brown slightly gravelly CL oricks, steel, ceramic, plastic, infill from sides	AY rebar, wire, steel b	and, hub cap)	
						1.5	Made Grou cobbles and (15% waste	chicken wire, concrete, glass			
						(0.83)	second laye Black stain Rapid inflo	r)) ng (mat of fibres) v of water			/
					·`	2.40	brown sligh	ly sandy slightly gravelly CL	AY		
		GENE	ERAL								
Water i	inflow b	REMA ates entered 1 between 1.25 wn discolour	ARKS from ha	undheld lower	waste lay	it /er.					
All di	imensio Scale	ns in metres 1:50	Clie		outh D	ublin C		ethod/ ant Used		Logged By	

	F	Felephone: Fax: 01 283	01 488: 5676	2900			TR	IAL P	TI			
Projec											Hole N	No
	Grang	ge Castle I	nfill A	ssess	ment						TP3	າ
Job N			Date	25-0	1-11	Gro	und Level (n	n)	Co-Ordinates ()		IFJ	2
	MDR0	813		25-0	1-11				E 304,716.0	N 230,005.0		
Contr		· D1 / II									Sheet 1	1
		ni Plant Hi									1 of	1
SAM	PLES	& TESTS		1	1	D (1			STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRII			backfil
-						0.30	Made Gi cobbles	ound; Sof	t grey slightly gravel	ly CLAY with freque	ent angular	
						(1.10)	Made G	round; Sof	t brown slightly grav	elly CLAY with occa	asional cobbles	
-					<u> <u> </u></u>	1.40) Firm gro	v elightly	gravelly CLAV with	frequent cobbles and	boulders	_
-						1.70)	y singinity		frequent coopies and	louiders	_
GPS C No wa		GENE REMA	Firm grey slightly gravelly CLAY with frequent cobbles and bould									
GPS C No wa		ates entered f	rom ha	ndheld	GPS un	it.						
All d	imensio	ns in metres	Clier	nt S	outh D	ublin Co	ounty	nty Method/ Logged By				
	Scale	1:50		C	Council			Plant Us	eu			

		Telephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	ΤI			
Projec											Hole	No
		ge Castle II		ssess	ment						ТР3	3
Job N			Date	04-02	2-11	Grou	und Level (n	n)	Co-Ordinates ()			5
	MDR	0813		04-02	2-11				E 304,776.	0 N 230,055.0		
Contr		ni Plant Hi	**								Sheet 1 of	1
											1 of	1
SAM		& TESTS			1	Depth			STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick- ness)			DESCR			backfil
	'o-ordin	GENE REMA ates entered f	RKS	ndheld		(1.30)	water ini <2% wa	flow at ba ste; plastic	t brown gravelly CL se. c, tarmac, wood	AY with occasional of AY	cobbles. Slight	
All d	limensic Scale	ons in metres 1:50	Clie	nt S	outh D Council	ublin Co	ounty	Method/ Plant Us	ed		Logged By	
r [1	Ľ	. Janen			1			1	

	F	ax: 01 283	5676				1 1 1	IAL P	11			
Projec											Hole	No
	Grang	ge Castle Iı	nfill A	ssess	ment						тр	D A
Job No			Date	02-02	2-11	Gr	round Level (m))	Co-Ordinates ()		TP:)4
	MDR0	813		02-02	2-11				E 304,866.7	V N 229,998.6		
Contra											Sheet	
		ni Plant Hi									1 of	l
SAM	PLES	& TESTS							STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick- ness)			DESCRI	PTION		back
		GENE REMA	RAL			(1.00)		n slightly	r gravelly CLAY			
A 11 -			Clier	at S	auth D		Sount:	Method/			Logged By	
All d	imensio Scale	ns in metres 1:50		m S C	outh D	ublin C	Jounty	Plant Us	ed		Logged By	

	F	Felephone: ax: 01 283	01 488 5676	2900			TR	IAL PIT	•			
Projec											Hole N	0
	Grang	ge Castle Iı	nfill A	ssess	ment						тра	F
Job No)		Date	24-0	1-11	G	round Level (n	n) Co	-Ordinates ()		- TP3	0
	MDR0	813		24-0	1-11				E 304,961.0	0 N 230,049.0		
Contra											Sheet	
	Breff	ni Plant Hi	re								1 of 1	1
SAM	PLES	& TESTS						STF	RATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dep (Thick- ness)	th		DESCRI	PTION		backfill
GPS C		GENE REMA	RKS			(1.30) 1.3 (0.70) 2.0 (1.00) 3.1 3.2	30 Made Gri (<2% wa 00 Wet grey Occasion 00	ound; Damp s ste; plastic, m	gravelly CLAY [plastic) oft grey gravell; ietal, wood, meta vY with natural vater evident	with cobbles y CLAY with cobbles al appliance cover)	and boulders	
All d	imensio Scale	ns in metres	Clier	nt S	South D	ublin (County	Method/ Plant Used			Logged By	
2	Scale	1.30		C	Council							

		Telephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	TI						
Projec														Hole N	0
	Grang	ge Castle II	nfill A	ssess	ment									TDO	•
Job N	D		Date	31-0	1-11	Gro	ound Level (n	1)	Co-Ordina	tes ()				TP36	כ
	MDR	0813		31-0	1-11				E 30	5,012.9	N 229,9	999.1			
Contra													Sheet		
		ni Plant Hi												1 of 1	
SAM	PLES	& TESTS					-1		STRATA						
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Deptl (Thick- ness)				DESCRIP					backfill
60.2.10.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1						(1.80) <u>1.8</u> 2.0	0		wn slightly g , steel band,	gravelly C organics)	LAY with				
	I	GENE REMA	RAL RKS	<u>I</u>											
	imensic	ons in metres	Clier	nt S	South D	ublin C	ounty	Method/					Logged E	Зу	
212	Scale	1:50		0	Council		•	Plant Us	ed						

		Fax: 01 283	35676				111		11		
Projec	t									Hole	No
		ge Castle I	1	ssess	sment					— TP3	7
Job N		0.10	Date	25-0	1-11	Grou	ind Level (m	ı)	Co-Ordinates ()		•
Contr	MDR	0813		25-0	1-11				E 304,802.0 N 229,956.0	Sheet	
Contr		fni Plant H	ira							1 of	1
<u></u>										1 01	1
SAM		& TESTS	8			Depth			STRATA		
Depth	Type No	Sample Name	Water	Reduce Level	Legend (Fhick- ess)			DESCRIPTION		back
						ess)	Made Gro	ound; Sot	t grey/brown slightly gravelly CLAY wers	rith occasional	
						(0.70)	cobbles a	and bould	ers		
						0.70					
_							Firm brow	wn very s	lightly gravelly CLAY with very occasi	onal cobbles	
						(1.20)					
						(1.20)					
					· · · · · ·	1.90					
_						1.90					_
-					-						
_					-						
					-						
					Ē						
—											
					Ē						
					Ē						
					-						
-											
					-						
					E						
		GENI REMA	ERAL								
GPSC	o_ordin	REIVIA ates entered		ndhal	GPS unit	_					
No wa	ste	ates entered	пош па	nunei	i or o utilt.						
GPS C No wa	imensi	ons in metres	Clie	nt S	South Dul	olin Co	unty	Method/		Logged By	
	Scale	e 1:50		(Council			Plant Us	ea		

TRIAL PIT

		Felephone: Fax: 01 283	01 488 5676	32900			TR	IAL P	PIT				
Projec												Hole	No
		ge Castle I		ssess	ment							ТР	38
Job N			Date	03-02	2-11	Gro	ound Level (n	n)	Co-Ordinates ()				50
Contr	MDR(0813		03-02	2-11				E 304,866.7	7 N 229,937	.3	Sheet	
Contr		ni Plant Hi	ire									1 or	f 1
CAN		& TESTS							STRATA			1 0	
SAW]	Dept	h	k	SIKAIA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick- ness)			DESCRI	PTION			backfil
-						(0.44) 0.4	Made Gr (occasio 4 No wast	round; bro nal white j	own slightly gravelly patches within clay)	CLAY with occ	asional	cobbles	
- -							soft light	brown C	LAY				
						(0.96)							
						1.4							
						1.4	dark bro	wn/ black	CLAY with occasic	onal cobbles and	1 large	boulder	
						(0.90)							
-													
					<u></u> _	2.3	0						
					-								
-					-								
-					-								
-					-								
-					-								
-					-								
-					-								
-													
-					-								
-													
-					-								
-					-								
-					-								
-					-								
- -					-								
-					-								
-					-								
-					-								
-					-								
-					-								
		CENT		1	L								
		GENE REMA	ARKS										
No wa	ste												
No wa													
All d	limensic Scale	ons in metres	Clie	nt S	South D	ublin C	County	Method/ Plant Us	ed		I	Logged By	
	Scale	1.50		C	Council			1 1011 05					

		Telephone: Fax: 01 283	01 488 5676	2900				TR	IAL I	PIT					
Projec														Hole N	lo
		ge Castle I		ssess	ment									TP39	D
Job N			Date	31-01	1-11		Grou	nd Level (n	l)	Co-Ordin					5
	MDR(0813		31-01	1-11					E 3	04,941.7	N 229,	937.6	Sheet	
Contr		ni Plant Hi	ire											I of 1	1
														1 01	1
SAM		& TESTS)epth			STRATA	1				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thioness)	ck-)				DESCRIP	TION			backfill
-							0.10		ound; Br	own CLAY				/	
Ę						(0.4	40) 0.50	slightly g	ravelly C	LAY					-
Ę															
F					-										
E															
F					-										
Ę					F										
Ē					-										
E					-										
F					-										
E					-										
Ē					-										
E					E										
Ę					Ę										
F					-										
E															
F					-										
F					F										
Ē															
E															
E					-										
E					E_										
Ē															
E					-										
F					-										
==					-										
- 6					-										
					-										
					Ę										
а <u>-</u>	<u> </u>	GENE	RAL	1		•									-
		REMA	RKS												
000															
	limensio	ons in metres	Clie	nt S	outh D	ubliı	n Co	unty	Method Plant Us	/				Logged By	
2	Scale	1:50		C	Council				r iant Us	scu					

		Fax: 01 283	5676				1 1 1 1 1				
Projec										Hole N	lo
		ge Castle I		ssess	ment					TP4	0
Job N		0012	Date	24-0	1-11	Gro	und Level (m)	Co-Ordinates ()	220.077.0		•
Contr	MDR(1813		24-0	1-11			E 305,008.0 N	229,967.0	Sheet	
Conu		ni Plant Hi	ire							1 of	1
SAM		& TESTS						STRATA		1 01	1
						Depth		SIKAIA			
Depth	Type No	Sample Name	Water	Level	Legend	(Thick- ness)		DESCRIPTIO	N		backfil
-						0.20		l; Brown gravelly CLAY with c			
-						-	Grey gravelly	CLAY with occasional cobble	S		
-											
-											
					<u> </u>	-					
-						(2.40)					
-						-					
-						_					
-						-					
-						2.60					_
-					F						
-					– [
-					E						
-					F						
-											
-					-						
-					E						
-					F						
-											
					E						
-					-						
-											
-					 [
-					-						
-											
-					<u>-</u>						
					F						
					F						
źŁ					<u>E</u>						
		GENE	RAL								
	0 0 1!	REMA		ndhali	CDS	:+					
No wa	ste mat	ates entered f erial	rom na	naneia	GPS un	II					
GPS C All d	imensio	ons in metres	Clier	nt S	outh D	ublin Co	ounty Me	thod/		Logged By	
ź	Scale	21:50		C	Council		Pla	nt Used			

TRIAL PIT

	F	Felephone: ax: 01 283	5676	2000			TRIA	L PIT			
Projec										Hole N	No
	Grang	ge Castle Iı	nfill A	ssess	ment						
Job No	D		Date	26-01	1-11	Grou	und Level (m)	Co-Ordinates ()		TP4	
	MDR0	813		26-01	1-11			E 304,395.7	N 229,675.9		
Contra										Sheet	
	Breff	ni Plant Hi	re							1 of	1
SAM	PLES	& TESTS						STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIP	TION		back
						(2.30) 2.30 2.60	Stiff black (t; Firm brown/grey gravelly % waste (timber, wire, plass boulder) slightly gravelly C			
		GENE REMA	RAL		<u>[</u>						
All d	imensio	ns in metres	Clier	nt S	outh D	ublin Cc	ounty Me	thod/		Logged By	
AII û	Scale	1:50			Council	uonn CC	Pla	nt Used		2000000	

	F	Felephone: ax: 01 283	5676	2000			TR	IAL P	TT				
Projec												Hole	No
	Grang	ge Castle Iı	nfill A	ssess	ment							три	2
Job N	0		Date	27-01	-11	Gro	ound Level (n	1)	Co-Ordinates ()			TP4	·Z
	MDR	0813		27-01	-11				E 304,470	0.7 N 229,676	6.2		
Contr												Sheet	
	Breff	ni Plant Hi	re									1 of	1
SAM	PLES	& TESTS						Ç	STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Deptl (Thick- ness)	h		DESC	RIPTION			back
-						(1.70) <u>1.7</u> <u>1.9</u>	0			elly CLAY with fragments, brick, ti			
		GENE	RAL		-								
		REMA											
All d	limensio Scale	ns in metres	Clier		outh D council	ublin C	ounty	Method/ Plant Us	ed]	Logged By	

		ax: 01 283	0100				TRIAL				
Projec										Hole N	lo
	Grang	ge Castle I	nfill A	ssessi	ment						n
Job No			Date	28-01	-11	Gro	und Level (m)	Co-Ordinates ()		TP4	3
	MDR0	813		28-01	-11			E 304,545.7 N 229,	676.5		
Contra										Sheet	
		ni Plant Hi								1 of	1
SAM	PLES	& TESTS						STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION			back
		GENE				(1.60)		Soft grey/brown gravelly CLAY w waste (brick, tar fragments)			
All d		REMA	RKS								
		ns in metres	Clier	. ~	.1	ublin Co	ounty Meth	1/	1-	ogged By	

	F	Felephone: ax: 01 283	01 488 5676	2900			TR	IAL P	TI			
Projec											Hole	No
	Grang	ge Castle Iı	nfill A	ssess	ment						тр	14
Job N	O		Date	28-0	1-11	Grou	und Level (n	1)	Co-Ordinates ()		TP4	14
	MDR0	813		28-0	1-11				E 304,580.	0 N 229,666.0		
Contr											Sheet	
		ni Plant Hi									1 of	1
SAM	PLES	& TESTS					1	1	STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRI			backfil
GPS C	o-ordina	GENE REMA ates entered f	RKS	ndheld		(2.80)	Soft redd	lish browi	t grey/brown gravel ste (tar fragments)			
All d	imensio Scale	ns in metres 1:50	Clier	nt S	outh D Council	ublin Co	ounty	Method/ Plant Us	ed		Logged By	

		Felephone: Fax: 01 283	01 400 5676	2900			TRL	AL PIT			
Projec			-							Hole N	lo
		ge Castle I		ssess	ment					TP4	5
Job N			Date	28-0	1-11	Gro	und Level (m)	Co-Ordinates ()		164	5
	MDR	813		28-0	1-11			E 304,689.0 N 229	9,679.0		
Contr										Sheet	
		ni Plant Hi								1 of	1
SAM	PLES	& TESTS	5				1	STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION			bac
						(1.60)	cobbles	nd; Soft red/brown very slightly grave			
GPS C Trickle					- - - - - - - - - -						
		GENE	ERAL		<u> </u>						
GPS C Trickle	Co-ordinate of wat	REMA ates entered f	ARKS		GPS un	it.					
Alld	limensio Scale	ns in metres 1:50	Clie		outh D	Publin Co	ounty M	fethod/ lant Used		Logged By	

		Telephone: Fax: 01 283	5676				TR	IAL P	IT			
Projec											Hole N	lo
	Gran	ge Castle Iı	nfill A	ssess	ment						TP4	6
Job N			Date	26-0	1-11	Gr	ound Level (n	1)	Co-Ordinates ()		164	0
	MDR(0813		26-0	1-11				E 304,395	.9 N 229,600.9		
Contr		· • • • • • • • • • • • • • • • • • • •									Sheet	1
		ni Plant Hi	-								1 of	1
SAM	PLES	& TESTS			1		1		STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick- ness)				RIPTION		back
						(0.50) 0.5		ound; Sof	t brown gravelly C	LAY with frequent c	obbles and boulders	
_						(0.70)	Made Gr (timber,	ound; Sof plastic)	t grey gravelly CL	AY with frequent col	bbles. <0.5% waste	
					<u></u>	1.2	20 Firm bro	wn slightl	y gravelly CLAY v	with occasional cobb	es and boulders	-
					 	-						
-						(1.90)						
-						3.1	0					-
- - -												
-												
-												
-												
					-	<u> </u>						
		GENE REMA	RAL									
Trickl	e of wat	er at 3m bgl										
Trickl												
All c	dimensions in metres Scale 1:50 Client South Dul Council					ublin C	County	Method/ Plant Us	ed		Logged By	

		Felephone: Fax: 01 283	01 488 35676	32900			TR	IAL P	TI			
Projec											Hole N	lo
	Grang	ge Castle I	nfill A	Assess	ment						TP4	7
Job N			Date	27-0	1-11	Gr	ound Level (n	1)	Co-Ordinates ()		164	1
	MDR	0813		27-0	1-11				E 304,470.9	N 229,601.0		
Contr											Sheet	
		ni Plant H									1 of	1
SAM	IPLES	& TESTS	5					(STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick- ness)			DESCRIF			bacl
						(0.60)	(timber,	ound; Sof metal)	t brown gravelly CL	AY with occasional of	obbles. 1% waste	
_						0.6	Made Gr (timber,	ound; Sof	t brown/grey gravelly locks, brick, metal, p	y CLAY with cobble plastic)	s. 5% waste	
						(1.40)						
						2.0	Firm bro	wn, very g	gravelly CLAY with	frequent angular cob	bles and boulders	_
						2.3	80			1 0		_
					- - -							
					-							
					- - -							
					-							
-					-							
					-							
					-							
					-							
					-							
					Ę							
	1	GENE	TR A I									
		REMA	ARKS									
All d	limensio Scale	ns in metres	Clie		outh D	ublin C	County	Method/ Plant Us	ed		Logged By	
	Scale	1.50		C	Council			1 min US	~~			

	F	elephone: ax: 01 283	5676	2900			TRIA	L PIT			
Project										Hole N	lo
	Grang	ge Castle II		ssess	sment					TP4	8
Job No			Date	27-0	1-11	Gr	ound Level (m)	Co-Ordinates ()			-
	1DR0	813		27-0	1-11			E 304,54	5.9 N 229,601.1		
Contrac		· D1 (11								Sheet	1
		ni Plant Hi								1 of	I
SAMP	PLES	& TESTS			1			STRATA			-
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick- ness)			RIPTION		ba
All dir		GENE	RAL			(3.00)	0 Firm brown		CLAY with frequent col s, tarmac, plastic, brick)		
		REMA	<u>RKS</u>								
All dir	nensio Scale	ns in metres 1:50	Clie		South D	ublin C	County M Pla	ethod/ unt Used		Logged By	

	- C	Felephone: (Fax: 01 283	01 488 5676	2900			TR	IAL P	IT				
Projec												Hole	No
L		ge Castle II		ssess	ment							TP4	0
Job No			Date	28-01	-11	Gro	ound Level (n	1)	Co-Ordinates ()			164	9
	MDR	0813		28-01	-11				E 304,292	2.0 N 229,549	.0	~	
Contra		· D1 / II'										Sheet	1
		ni Plant Hi										1 of	1
SAM	PLES	& TESTS					1	,	STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)				RIPTION			backf
						(1.50)) Firm gre			elly CLAY with fr			
GPS Co Trickle No was	e of wat	GENE REMA ates entered f er at 1.7.	RKS	ndheld	GPS un	it.							
Alld	Il dimensions in metres Scale 1:50 Client South Dublin Co Council						ounty	Method/ Plant Us	ed		1	Logged By	

	F	Felephone: Fax: 01 283	5676				TRIA	L PIT			
Projec										Hole N	lo
	Grang	ge Castle I	nfill A	ssess	ment						0
Job N	0		Date	26-01	-11	Gro	und Level (m)	Co-Ordinates ()		- TP5	U
	MDR	0813		26-01	-11			E 304,39	6.0 N 229,525.9		
Contr										Sheet	
	Breff	ni Plant Hi	ire							1 of	1
SAM	PLES	& TESTS	5					STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			CRIPTION		back
						(2.30) 2.3(2.5(htly gravelly CLAY with innum can)		
		GENE REMA	RAL ARKS								
All d	limensic Scale	ons in metres 1:50	Clier		outh D council	ublin Co	ounty M Pl	ethod/ unt Used		Logged By	

	F	elephone: ax: 01 283	01 488 5676	2900			TRL	AL P	IT			
Project											Hole N	No
	Grang	ge Castle II	nfill A	ssess	ment						TDE	4
Job No			Date	27-0	1-11	Gro	und Level (m)		Co-Ordinates ()		TP5	1
	ADR0	813		27-0	1-11				E 304,471.0 N 22	9,526.0		
Contra											Sheet	
	Breffi	ni Plant Hi	re								1 of	1
SAMI	PLES	& TESTS						S	STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)	L		DESCRIPTION			back
						(0.50) 0.50	boulders	und; Sof	t brown gravelly CLAY with	occasional c	obbles and	
						0.50	Soft brown boulders	n/grey ve	ry gravelly CLAY with very	frequent ang	ular cobbles and	
					· · ·	(1.20)						
						1.70						_
					-							
					-							
					-							
					-							
					-							
					-							
					- - -							
					-							
					- - -							
					-							
					-							
		GENE REMA	RAL									
No was	te											
A 11 - J'	:	no in motor	Clie	nt S	outh D	ublin Co	Nuntry N	/ Method/			Logged By	
All di	Scale	ns in metres 1:50			Council		Pullty P	Plant Us	ed		LUEBOU Dy	

			-ax: 01 283	5676				111					
	Projec											Hole N	No
	Job No		ge Castle II				Grou	und Level (n	2)	Co-Ordinates ()		TP5	2
		, MDR(1813	Date	27-01 27-01	l-11 L-11	Grou	ind Level (n	1)	E 304,546.0 N 229,526	1		
	Contra		/015		27-01					L 504,540.0 11 229,520	• 1	Sheet	
		Breff	ni Plant Hi	re								1 of	1
	SAM	PLES	& TESTS							STRATA		-	
	Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth Thick-						backfill
	Depui	No	Name	water	Level		ness)		1.0	DESCRIPTION	111	11 11	
RPS TRIAL PIT MDR0813_G10001_TP LOGS.GPJ AGS 3_1.GDT 8/4/11			GENE	RAL			(2.20)			ft grey gravelly CLAY with frequent is, plastic piping, brick)			
PS TRIAL PIT MDR0813	All dimensions in metres Scale 1:50 Client South Dul Council							ounty	Method Plant Us	, sed]	Logged By	

TRIAL PIT

Project Hole No Grange Castle Infill Assessment TP53 Job No Date 28-01-11 28-01-11 Ground Level (m) Co-Ordinates () E 304,621.0 N 229,526.2 MDR0813 28-01-11 Ground Level (m) E 304,621.0 N 229,526.2 Contractor Sheet 1 of 1 SAMPLES & TESTS STRATA		- C	Telephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	TI			
Job No Date 28-01-11 Ground Level (m) Co-Ordinates () Figure 304,621.0 N 229,526.2 Contractor Breeffni Plant Hire STRATA Streeffni Plant Hire I of 1 SAMPLES & TESTS STRATA Depth Type Sample Name Water Depth Depth Type Sample Streef I of 1 SAMPLES & TESTS STRATA Depth Type Sample Mater Depth Depth Type Sample I of 1 Image: Sample Name Water Reader Legend Depth Depth Depth Type Sample I of 1 Image: Sample Name Water Reader Legend Depth Depth Discription N Depth Image: Sample Name Water Reader Legend Depth Depth <t< td=""><td>Projec</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Hole 1</td><td>No</td></t<>	Projec											Hole 1	No
John Work Late 28-01-11 28-01-11 Gound Lete (n) Cooleman (1) Contractor Breffni Plant Hire 1 of 1 SAMPLES & TESTS STRATA Depth Type Nume Water Katace Legend (1.70) Made Ground, brown to dark brown slightly gravelly CLAY with occasional (1.70) Image: Contract of the state o		Grang	ge Castle Iı	nfill A	ssess	ment						TDS	2
MDR0813 28-01-11 E 304,621.0 N 229,526.2 Contractor Sheet Breffni Plant Hire I of 1 SAMPLES & TESTS STRATA Depth Type Sample Water Reduced Logend Depth 10 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 </td <td>Job No</td> <td>0</td> <td></td> <td></td> <td>28-0</td> <td>1-11</td> <td>Gro</td> <td>ound Level (n</td> <td>n)</td> <td>Co-Ordinates ()</td> <td></td> <td>153</td> <td>5</td>	Job No	0			28-0	1-11	Gro	ound Level (n	n)	Co-Ordinates ()		153	5
Interfini Plant Hire STRATA STRATA Depth Type Sample Water Tedeed Depth DESCRIPTION br Image: state			0813		28-0	1-11				E 304,621	.0 N 229,526.2		
SAMPLES & TESTS STRATA Depth Type Sample Water Reserved Legend (Thick-iness) DESCRIPTION be Image: Sample No Name Water Reserved Legend (Thick-iness) DESCRIPTION be Image: Sample No Name Image: Sample No Name Image: Sample No Image: Sample No Name Image: Sample No Image: Sample No </td <td>Contra</td> <td></td>	Contra												
Depth Type Sample Water Seture Level Legend Thick- mess DESCRIPTION be Image: Seture of Non- restriction Image: Seture of Non- restricin Image: Seture of Non- restriction		Breff	ni Plant Hi	re								1 of	1
Depth Jype Simple Water Construction Image: I	SAM	PLES	& TESTS							STRATA			
Made Ground: brown to dark brown slightly gravelly CLAY with occasional cobbles (<1% waste; wood, plastic, roots) (1.70)	Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick-	h		DESCR	RIPTION		backfil
All dimensions in metres Scale 1:50 Client South Dublin County Council Method/ Plant Used	Damp Hole c	at base	GENE REMA of hole, base	RKS	te ral gro		(1.70)	cobbles (<1% wa	aste; wood	, plastic, roots)	slightly gravelly CL4	AY with occasional	
	All d	imensic Scale	ons in metres 1:50	Clie	nt S	outh D	ublin C	County	Method/ Plant Us	ed		Logged By	

	-	Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	IT			
Projec											Hole	No
	Grang	ge Castle Iı	nfill A	ssess	ment						то	- 4
Job No	0		Date	26-01	-11	Gro	und Level (m)	Co-Ordinates ()		TP5	94
]	MDR	0813		26-01	-11				E 304,396	.2 N 229,450.9		
Contra											Sheet	
	Breff	ni Plant Hi	re								1 of	1
SAM	PLES	& TESTS						S	STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)	1		DESCR	IPTION		back
-						(1.70) 1.70 (0.50) 2.20) Firm brov			ly gravelly CLAY wi aste (concrete slab 0.: vith frequent angular		
					-							
		GENE REMA	RAL RKS									
All d	dimensions in metres Scale 1:50 Client South Dublin C Council						ounty	Method/ Plant Use	ed		Logged By	

	F C	Felephone: Fax: 01 283	01 488 35676	32900			TR	AL PIT			
Projec										Hole N	lo
	Grang	ge Castle l	Infill A	Assess	ment					TP5	5
Job N			Date	27-0	1-11	Gro	ound Level (m	Co-Ordinates ()		153	J
	MDR0	0813		27-0	1-11			E 304,471.2 N 2	29,451.0		
Contr										Sheet	
		ni Plant H								1 of	1
SAM	PLES	& TESTS	S				.	STRATA			
Depth	Type No	Sample Name	Water	Reduced	Legend	Dept (Thick- ness)		DESCRIPTION			bac
						(0.80)	Made Gro boulders	nd; Soft brown gravelly CLAY wi	th occasional co	obbles and	
						0.8	0 Made Gro cobbles. < timber, pl	nd; Firm brown/grey very slightly % waste (concrete blocks, fragme stic, wire)	gravelly CLAY nts of concrete n	with frequent nanhole rings,	
						(1.80)					
						2.6		own very slightly gravelly CLAY v	with frequent an	gular cobbles	
						2.0			fuir ir equeint ung	Sului coooles	
					-						
					F						
					E						
					F						
					Ę						
					-						
					-						
					-						
					-						
					-						
					-						
					-						
					-						
					-						
					-						
					-						
					-						
		CD									
		GENI REM/	±KAL ARKS								
		REIM	indito								
All d	limensio	ons in metres	Clie		outh D	ublin C	ounty	/lethod/ lant Used		Logged By	
	Scale	1:50		(Council						

Projec		ax. 01203	5070								Hole N	lo
		ge Castle I		ssess	ment						TP5	6
Job N			Date	27-0	1-11	Gro	ound Level (r	n)	Co-Ordinates ()		IFS	0
	MDR(0813		27-0	1-11				E 304,546.2 N 2	29,451.1		
Contr											Sheet	
		ni Plant Hi									1 of	1
SAM		& TESTS	5			Dent			STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depti (Thick-	1		DESCRIPTION			backfi
		GENE	ERAL			(1.30) <u>1.3</u> <u>1.5</u>	0		ravelly CLAY with frequent			
	imensio Scale	ons in metres 21:50	Clier		outh D	ublin C	ounty	Method Plant U	/ sed		Logged By	

TRIAL PIT

	-	Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	ТI					
Projec													Hole	No
	Grang	ge Castle Iı	nfill A	ssess	ment									-7
Job N)		Date	28-01	1-11	Gro	und Level (n	n)	Co-Ordina	tes ()			- TP	57
	MDR	0813		28-01	1-11				E 304	4,609.5	N 229,	451.2		
Contra													Sheet	
	Breff	ni Plant Hi	re										1 of	1
SAM	PLES	& TESTS						,	STRATA					
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)	I		Ι	DESCRIP	TION			backfil
Page 3. 1:001 8:4111		GENE				(2.60)	(<1% wa drinks ca	round; bro husions of histe; wood an, rebar, j	, organics, t	CLAY w 'black ass yre, rubbe	ith occasis tociated w er, concret	onal cobble ith organic e, metal pij	es and boulders spe, aluminium	
LOGS.GPJ		GENE REMA	RAL											
All d	1 dimensions in metres Scale 1:50 Client South Du Council						ounty	Method/ Plant Us	ed				Logged By	

		Fax: 01 283	5676					111			
Projec										Hole N	0
		ge Castle I		ssess	ment		17 1/)			TP58	3
lob N			Date	26-0	1-11	Grou	ind Level (m)	Co-Ordinates ()			
	MDR(0813		26-0	1-11			E 304,396.4 N 229,3	75.9	<u> </u>	
Contr			•							Sheet	
		fni Plant H								1 of 1	
SAM	PLES	& TESTS	5			Dent		STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick-		DESCRIPTION			ba
	110					ness)	Made Ground:	Soft brown gravelly CLAY with fre	auent cobbles	ŝ	
						(0.00)			1		
						(0.90)					
						0.90	Mada Cassada	E '	-41-4		
						1.20	cobbles and bo	Firm black (boulder) CLAY with ro ulders. 1% waste (brick, plastic)			
						(0.40) 1.60	Firm grey/brow	n gravelly CLAY with frequent ang	ular cobbles	and boulders	
					-	1.60					
					-						
					-						
					-						
					-						
					-						
					-						
					-						
					-						
					-						
		GENE									
		REMA	ARKS								
All d	imensio	ons in metres	Clie	nt S	outh D	ublin Co	unty Meth	od/ Used	Lo	gged By	
	Scale	e 1:50		0	Council		Plant	Used			

TRIAL PIT

Grange Castle Infill Assessment Ground Level (m) Co-Ordinates () TP59 Job No Date 27-01-11 Ground Level (m) Co-Ordinates () E 304,471.4 N 229,376.0 MDR0813 27-01-11 Image: Constractor Image: Constractor Sheet Orntractor Image: Constractor Image: Constractor Image: Constractor Breffni Plant Hire Image: Constractor Sheet SAMPLES & TESTS Image: Constractor Image: Constractor		F C	Felephone: Fax: 01 283	01 488 5676	32900			TRI	AL P	ΊT				
Job No Date 27-01-11 Ground Level (m) Co-Ordinates () E 304,471.4 N 229,376.0 Contractor Breffini Plant Hire I of 1 Sheet 1 of 1 SAMPLES & TESTS STRATA Deck (Thick nees) Deck (Thick nees) Deck (Thick nees) Depth Type Name Water Legend (Thick nees) DECRIPTION Image: Strange (Thick nees) Image: Strange (Thick nees) DECRIPTION DECRIPTION Image: Strange (Thick nees) Image: Strange (Thick nees) DECRIPTION Image: Strange (Thick nees) Image: Strange (Thick nees) Image: Strange (Thick nees) DECRIPTION Image: Strange (Thick nees) DECRIPTION Image: Strange (Thick nees) Image: Strange (Thick nees) Image: Strange (Thick nees) DECRIPTION Image: Strange (Thick nees) DECRIPTION Image: Strange (Thick nees) Image: Strange (Thick nees) Image: Strange (Thick nees) Image: Strange (Thick nees) Image: Strange (Thick nees) Image: Strange (Thick nees) Image: Strange (Thick nees) Image: Strange (Thick	Projec												Hole No	,
MDR0813 Diff 27-01-11 Ground Even (iii) Contractor E 304,471.4 N 229,376.0 Breffni Plant Hire 1 of 1 SAMPLES & TESTS STRATA Depth Depth Depth No No No No Sample Water Legand (Thick- Legand			ge Castle I		Assess	sment							TP59	
Contractor Breffni Plant Hire Sheet 1 of 1 SAMPLES & TESTS STRATA DESCRIPTION No Sumple Water Leaged Chick Le				Date			G	round Level (m)			4 31 000 074	<u>_</u>		
1 of 1 SAMPLES & TESTS STRATA Depth Type Sample Water Leader Depth (nest) DESCRIPTION And Council Soft brown very slightly gravelly CLAY with frequent cobbles and occasional boulders. 1% waste (timber, plastic, concrete blocks) Made Ground; Soft brown very slightly gravelly CLAY with occasional cobles and boulders. 510% waste (timber, plastic, concrete blocks) And Ground; Soft brown very slightly gravelly CLAY with occasional cobles and boulders. 510% waste (timber, nubber mini-digger frack, cable, wire, motorbike(car battery) 1.00 2.00 Reddish brown very slightly gravelly CLAY with frequent angular cobbles 2.00 Reddish brown very slightly gravelly CLAY with frequent angular cobbles 1.10 2.00 2.00 Reddish brown very slightly gravelly CLAY with frequent angular cobbles			0813		27-0	1-11				E 304,471	.4 N 229,376.		~4	
SAMPLES & TESTS STRATA Jepth Type Sample Water Legend Depth DESCRIPTION Made Ground: Soft brown very slightly gravelly CLAY with frequent cobbles and occasional boulders. 1% waste (timber, plastic, concrete blocks) Made Ground: Soft brown very slightly gravelly CLAY with occasional cobbles and boulders. 5-10% waste (concrete slabs, timber, nubber mini-digger track, cable, wre, motorbike(car battery) 1.50 Made Ground: Soft brown very slightly gravelly CLAY with frequent angular cobbles 2.60 Soft and boulders. 5-10% waste (concrete slabs, timber, nubber mini-digger track, cable, wre, motorbike(car battery) 2.60 Reddish brown very slightly gravelly CLAY with frequent angular cobbles 2.90 Reddish brown very slightly gravelly CLAY with frequent angular cobbles 1.100 2.60 2.90 Reddish brown very slightly gravelly CLAY with frequent angular cobbles 1.100 2.60 2.90 Reddish brown very slightly gravelly CLAY with frequent angular cobbles	Contra		ni Plant Hi	ire								Shee		
Depth Type Sample Name Water Relation Legend Depth Legend Depth Depth Legend DESCRIPTION .	G 4 3 4												1 01 1	
Septi Yere Sample Water Loss Loss DESCRIPTION No Name Image: Second Control of Con	SAM						Den	th		SIRAIA				
Amount Amount Amount Soft brown very slightly gravelly CLAY with frequent cobbles and occasional boulders. 1% waste (timber, plastic, concrete blocks) Interview Interview Interview Interview	Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick-	-		DESCR	IPTION			bad
GENERAL REMARKS	- - -	No	Name	water			ness) (1.50) (1.10) (1.10)	50 Made Grou and occasi 50 Made Grou cobbles an mini-digge 60 Reddish bu	ınd; Firr d boulde r track,	t brown very slight Ilders. 1% waste (t n grey/brown very ers. 5-10% waste (c cable, wire, motort	ly gravelly CLAY mber, plastic, con slightly gravelly C concrete slabs, timl bike/car battery)	LAY with oct ber, rubber	casional	
REMARKS			GENE	IR AT	1	L								
			REMA	ARKS										
All dimensions in metres Scale 1:50 Client South Dublin County Council Method/ Plant Used Logged By	All d	imensio	ns in metres	Clie		South D	ublin (County M	Method/	ed		Logged	By	

	F C	Felephone: Fax: 01 283	01 488 5676	32900			TRIA	L PIT			
Projec										Hole M	No
		ge Castle I		ssessm	ent					TP6	0
Job No			Date	28-01-	11	Gro	ound Level (m)	Co-Ordinates ()		IFU	U
	MDR0	813		28-01-	11			E 304,546.4 N	229,376.1		
Contra										Sheet	
	Breff	ni Plant H	ire							1 of	1
SAM	PLES	& TESTS	5					STRATA			
Depth	Type No	Sample Name	Water	Reduced Level L	egend	Deptl (Thick- ness)	1	DESCRIPTIO	N		ba
						(1.10)	angular bould (<1% waste;	; brown slightly gravelly CLAY ers netal wire, wood, concrete, org			
						(0.60)	Made Ground (<1% waste;	; grey slightly gravelly CLAY netal wire, wood, organics, pla	stic, tile)		
						(1.10)	Light brown s	lightly gravelly CLAY			
		GENE REMA	ERAL								
All d	imensio Scale	ns in metres 1:50	Clie		uth Du uncil	ublin C	ounty Me Pla	hod/ nt Used		Logged By	

	- C	elephone: ax: 01 283	01 488 5676	2900			TR	IAL P	TI			
Projec											Hole N	lo
	Grang	ge Castle I	nfill A	ssess	ment						тре	4
Job N	0		Date	07-02	2-11	Gro	ound Level (n	1)	Co-Ordinates ()		TP6	1
	MDR	813		07-02	2-11				E 304,607.	.9 N 229,376.5		
Contr											Sheet	
	Breff	ni Plant Hi	re								1 of	1
SAM	PLES	& TESTS							STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)	1		DESCR	IPTION		backfi
		GENE	RAL			(2.15)	5	elly CLA		Ily CLAY with occas pipe, plastic, wire rop	sional cobbles be, tarmac, metal)	
All d		REMA	ARKS									
All d	imensio	ns in metres	Clie		outh D	ublin C	ounty	Method/			Logged By	
	Scale	1:50			Council		-	Plant Us	ed			

		Telephone: Fax: 01 283	01 488 5676	2900				TR	IAL P	TI					
Projec														Hole	No
	Grang	ge Castle Iı	nfill A	ssess	ment									TP6	`
Job N			Date	26-0	1-11	0	Ground	d Level (n	1)	Co-Ordinat					2
	MDR	0813		26-0	1-11					E 304	4,396.6	N 229,3	300.6	~	
Contr		· D1 (11)												Sheet	1
		ni Plant Hi												1 of	1
SAM	IPLES	& TESTS			1		.1		1	STRATA					
Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick ness)	epth k-				DESCRIP				backfil
		GENE	RAL				2.80							frequent cobbles , timber)	
All d		REMA	<u>IKKS</u>												
All d	limensic Scale	ons in metres 1:50	Clier	nt S	South D	ublin	Cour	nty	Method/ Plant Us	ed				Logged By	
L									1						

	T F	elephone: ax: 01 283	5676	2900			TRIA	L PIT			
Project										Hole 1	No
	Grang	ge Castle II		ssess	ment					TP6	3
Job No			Date	26-0	1-11	Gro	ound Level (m)	Co-Ordinates ()			5
	1DR0	813		26-0	1-11			E 304,416.0	N 229,277.6		
Contrac										Sheet	
		ni Plant Hi								1 of	1
SAMP	PLES	& TESTS			1	1		STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPT			ba
All din						(3.20)) Reddish brow	; Soft brown/grey gravelly waste (timber, cable, concre n very slightly gravelly CL			
		GENE REMA	IRKS								
All din	nension Scale	ns in metres 1:50	Clie		outh D	ublin C	ounty Met Plar	hod/ it Used		Logged By	

	r C I	Felephone: Fax: 01 283	01 488 35676	2900			TR	IAL P	IT						
Projec													Н	ole No	
		ge Castle l		ssess	ment								_	P64	
Job N			Date	02-02	2-11	Gro	ound Level (m	1)	Co-Ordinate				•	104	
	MDR0	813		02-02	2-11				E 304,	998.0	N 229,8	95.0			
Contr													Sheet		
		ni Plant H											1	of 1	
SAM	IPLES	& TESTS	8					,	STRATA						
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)	n		DE	ESCRIPT	FION			ba	iC
-		GENI	ERAL			(3.50)	cobbles. fragment	(1% wast s)	n brown very e (gas mask, p	lastic pij	pe, electric	al cable, l	brick, concre		
GPS C Trickle	Co-ordinate of wate	REM/ ates entered er at 1.7.	ARKS	ndheld	GPS un	it.									
All d	limensio	ns in metres	Clie	nt S	outh D	ublin C	ounty	Method/					Logged By		-
0	Scale	1:50		Õ	Council		5	Plant Us	ed						

	F	Felephone: Fax: 01 283	01 400 35676	2900			TR	IAL P	TI						
Projec	et												H	Hole No	
		ge Castle I		ssess	ment								•	TP65	
Job N			Date	02-02	2-11	Gro	ound Level (m)	Co-Ordinat					11 00	
	MDR0	813		02-02	2-11				E 304	,997.0	N 229,8	55.0	~		
Contr													Sheet	1 0 1	
		ni Plant H	-											1 of 1	
SAM	PLES	& TESTS	8				- 1	(STRATA						
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick- ness)	h		D	ESCRIP	TION			ł	bacl
-		GENE	ERAL			(3.80)	0		y gravelly CI						
GPS C Trickle	co-ordina e of wate	KEIVIA ates entered er at 1.7.		ndheld	l GPS un	it.									
All d	limensio	ns in metres	Clie	nt S	outh D	ublin C	ounty	Method/					Logged By		
0	Scale	1:50		Č	Council	-	5	Plant Us	ed				•		

	F	Felephone: Fax: 01 283	5676				TR	IAL P	11			
Projec											Н	lole No
		ge Castle I		ssess	sment							FP66
Job No			Date	02-02	2-11	Gro	ound Level (m	1)	Co-Ordinates ()			
	MDR0	0813		02-02	2-11				E 304,985.0	N 229,804.0	01 (
Contra		ni Plant Hi	ira								Sheet	l of 1
<u></u>												
SAM		& TESTS) 			Dept	h		STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick- ness)			DESCRI	PTION		ba
-		GENE	ERAL			(3.20)	<1% was	ste (plastic	n dark brown CLAY pipe, timber, metal, y gravelly CLAY wi	blocks of tarmac)		ders.
Trickle	e of wat	ates entered f er at 1.7.						Method/			Logged By	
All d	scalo	ns in metres 1:50			Council	ublin C	ounty	Plant Us	ed		Logged By	

	F	Telephone: Fax: 01 283	01 400 35676	2900			TR	IAL P	Π					
Projec	t												Hole	No
		ge Castle I		ssess	ment								TP	67
Job No				02-02		Gro	ound Level (n)	Co-Ordinate					51
	MDR0	813		02-02	2-11				E 304	,974.0	N 229,	756.0		
Contra													Sheet	
	Breff	ni Plant H	ire										1 of	f 1
SAM	PLES	& TESTS	8						STRATA					
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick- ness)	h		DI	ESCRIPT	FION			back
		GENH	ERAL			4.6	and boul plastic fl	lers. <1%	y CLAY with	ic pipe, p	lastic bag	, concrete	frequent cobbles slabs, brick,	
GPS C Trickle	o-ordina e of wate	REMA ates entered er at 1.7.	ARKS	ndheld	GPS un	it.								
All d	imensio Scale	ns in metres 1:50	Clie	nt S	outh D	ublin C	County	Method/ Plant Us	ed				Logged By	

		Telephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	ΊT				
Projec												Hole N	lo
	Grang	ge Castle Iı	nfill A	ssess	ment							TDC	0
Job N	0		Date	02-02	2-11	Grou	und Level (m)	Co-Ordinates ()			TP6	D
]	MDR(0813		02-02	2-11				E 304,950.	0 N 229,730.0)		
Contr												Sheet	
	Breff	ni Plant Hi	re									1 of	1
SAM	PLES	& TESTS						9	STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCR	IPTION			back
-		GENE	RAL			(3.30)	wire, stee	l bar)	t dark brown very s ers. 5% waste ("city of copper pipe, part CLAY with freque			h occasional ber, plastic er, chicken	
GPS C Trickle	co-ordin e of wat	REMA ates entered f er at 1.7.	RKS	ndheld	l GPS un	it.							
All d	limensic	ons in metres	Clier	nt S	South D	ublin Co	ounty	Method/			Log	gged By	
	Scale	:1:50		(Council			Plant Us	ed				

	F	ax: 01 283	5676				IN	IAL P	11			
Projec	t										Hole N	lo
		ge Castle I		ssess	ment						TP6	9
Job No			Date	02-02	2-11	Gr	ound Level (n	1)	Co-Ordinates ()			•
	MDR0	813		02-02	2-11				E 304,901.0	N 229,711.0	~	
Contra			•								Sheet	1
		ni Plant Hi									1 of	I
SAM	PLES	& TESTS	S			Dent	1.		STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick- ness)			DESCRIP			bac
-		GENE	ERAL			(2.90)	0		n dark brown very sli e (concrete slabs, gla: CLAY with frequent		can)	
Trickle	e of wate	REMA ates entered f er at 1.7.	from ha								1	
A 11 d	limensio	ns in metres 1:50	Clie	nt S	outh D	ublin C	County	Method/ Plant Us			Logged By	

		ne: 01 48 2835676	382900			TRL	AL P	IT						
Project												Н	lole No	,
Gı	ange Cast	le Infill	Assessme	ent										
Job No		Date	02-02-1	11	Grou	and Level (m)		Co-Ordinates ()				ГР70	
ME	DR0813		02-02-1	11				E 304,91	15.0 1	N 229,71	7.0			
Contracto	r											Sheet		
Br	effni Plan	t Hire										1	1 of 1	
SAMPL	ES & TES	STS					S	TRATA						
	rpe Sampl lo Name		er Reduced Level Level	egend (1	Depth Thick- ess)				CRIPTI	ON			1	back
· · · · · · · · · · · · · · · · · · ·					(3.20)	waste (tyre	, timber,	dark brown gra plastic, textile,	concret	e, brick, ti	le, metal)	nal cobbles. :	<5%	
GPS Co-or Trickle of	GE RE rdinates ente water at 1.7.	NERAI MARK red from l	S	PS unit.										
All dime	nsions in me cale 1:50	tres Cl	ient Sou Cou	th Dul uncil	olin Co	blin County Method/ Logged By Plant Used								

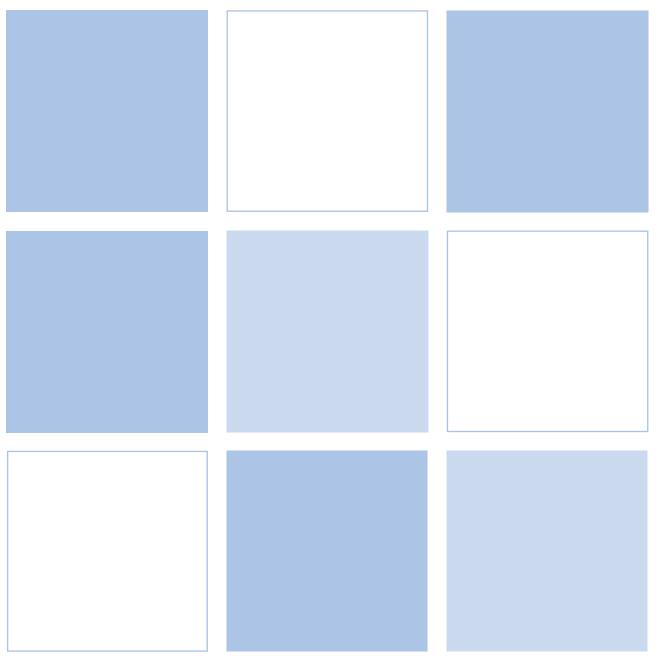
	F C	Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	IT			
Projec											Hole N	lo
	Grang	ge Castle II	nfill A	ssess	ment						ТО7	4
Job N	0		Date	03-02	2-11	Gro	und Level (n	n)	Co-Ordinates ()		TP7	1
	MDR0	813		03-02	2-11				E 304,517.5	5 N 229,700.8		
Contra											Sheet	
	Breff	ni Plant Hi	re								1 of	1
SAM	PLES	& TESTS					1	,	STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRI	PTION		backfil
Ę						0.20	Topsoil		aller CLAV with free	equent cobbles and oc	and hould and	_
						(1.30)						
C D O		GENE REMA	RAL									
No wa	ste	KEMA										
All d	imensio Scale	ns in metres 1:50	Clier		outh D Council	ublin County Method/ Logged Plant Used						

	- -	Felephone: Fax: 01 283	5676	2900			TR	IAL P	IT				
Projec												Hole N	lo
		ge Castle II		ssess	ment							- TP7	2
Job N			Date	04-02	2-11	Gro	und Level (m)	Co-Ordinates				L
	MDR	0813		04-02	2-11				E 304,7	79.5 N 229,	717.0		
Contr		· · D1 / II										Sheet	1
		ni Plant Hi										1 of	1
SAM	PLES	& TESTS				D (1	1		STRATA				
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)				CRIPTION			back
All d		GENE				(2.40)				ent angular cobb		with occasional s).	
		REMA	ARKS										
All d	limensions in metres Scale 1:50 Client South Dubl Council						ounty	Method/ Plant Us	ed			Logged By	

Image: Note of the second reset of the second res			Fax: 01 283	5676				11					
Job No Date 04-02-11 Ground Level (m) Co-Ordinates () E 304,931.2 N 229,846.7 Contractor Breffini Plant Hire Sheet 1 of 1 SAMPLES & TESTS STRATA Doph Type Sample Water Reinford Legand Trink- mession DESCRIPTION backd Opth Type Sample Water Reinford Legand Topsoil DESCRIPTION backd Image: Contractor Source Source Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Source Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contractor Image: Contretor I	Projec											Hole 1	No
MDR0813 Old 04-02-11 Old 04-02-11 Old 04-02-11 E 304,931.2 N 229,846.7 Contractor E 304,931.2 N 229,846.7 I of 1 SAMPLES & TESTS STRATA Depth Type Sample Water Redust Lovel Lovel Depth Type Sample Water (2.70) 0.30 Topsoil DESCRIPTION backd (2.70) (2.70) 3.10 Reddish/brown very slightly gravelly CLAY with frequent angular (2.70) 3.10 Reddish/brown very slightly gravelly clay (2.70)			ge Castle I		ssess	ment				1		ТР7	3
Outractor Sheet Interfini Plant Hire STRATA SAMPLES & TESTS STRATA Depth Type Sample Wate Reduest Legend Depth Topsoil DESCRIPTION backd 0.30 Topsoil 0.30 Topsoil Made Ground; Soft grey/brown slightly gravelly CLAY with frequent angular cobbles 0.30 Topsoil 0.30 0.30 Topsoil Made Ground; Soft grey/brown slightly gravelly CLAY with frequent angular 0.30 0.30 0.30 Reddish/brown very slightly gravelly CLAY with frequent angular 3.00 0.30 3.00 Reddish/brown very slightly gravelly clay Image: Clay Soft grey/brown slightly gravelly clay					04-02	2-11	Gro	und Level (r	n)				5
I of 1 SAMPLES & TESTS STRATA Depth Type Sample Wate Percent Depth Topsoil DESCRIPTION backt Image: state sta			0813		04-02	2-11				E 304,931.2 N	229,846.7		
SAMPLES & TESTS STRATA Depth Type Sample Name Water Sate Legend Depth Topsoil 0.30 Topsoil Made Ground; Soft grey/brown slightly gravelly CLAY with frequent angular cobbles (2.70) (2.70) Cobbles Cobbles	Contra												
Depth Number Water Returner Legend Depth (Thick-transmission) DESCRIPTION backf A X X X X X 0.30 Topsoil A X X X X X X Add Ground; Soft grey/brown slightly gravelly CLAY with frequent angular cobbles A X X X X X X X A X X X X X X X A X X X X X X X A X X X X X X X A X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X												1 of	1
Depth Type Strappe Water Legend (Thick- ness) Topsoil - - - - 0.30 Topsoil - - - - 0.30 Made Ground; Soft grey/brown slightly gravelly CLAY with frequent angular cobbles - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>SAM</td> <td>PLES</td> <td>& TESTS</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>STRATA</td> <td></td> <td></td> <td></td>	SAM	PLES	& TESTS			1	1	1		STRATA			
Image: Section of the section of th	Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick-			DESCRIPTION	N		backfi
Made Ground; Soft grey/brown slightly gravelly CLAY with frequent angular cobbles (2.70) (2.70) 3.00 3.00 3.10 Reddish/brown very slightly gravelly clay	_					$\frac{\frac{\sqrt{1}}{\sqrt{1}}}{\frac{1}{\sqrt{1}}} = \frac{\sqrt{1}}{\sqrt{1}} \frac{1}{\sqrt{1}}$		Topsoil					
All dimensions in metres Client South Dublin County Method/ Logged By	No was	ste.Slig	REMA	RKS	nto ho	le at 3m	(2.70)	Made Gr cobbles	round; Sc		elly CLAY with	frequent angular	
Scale 1:50 Council Plant Used	All d	imensio	ons in metres	Clie	nt S	outh D	ublin Co	ounty	Method	/ ced		Logged By	

TRIAL PIT

Project Grange Castle Infill Assessment Hole N Job Xo Date (4402-11) Ground Level (m) Co-Ordinates () TP74 Connsor Breeffini Plant Hire Status Status Status Status SAMPLES & TESTS STRATA Description Status Status Status Status Status Status I of 1 Consor Status Vale Tagged 1 Description Status			Telephone: Fax: 01 283	5676				TRIA	LPI	l			
Job No Date 04-02-11 04-02-11 Ground Level (m) Co-Ordinates () E 304,630.7 N 229,936.6 Contractor Breef Tri Plant Hire 1 of 1 SAMPLES & TESTS STRATA Depth Type No Sample Name Water Pethod Legend Optimic Trible (Depth Depth/ No Depth/ Type Sumple Sample Vater Pethod Legend Depth/ Trible (Depth/ ness) DESCRIPTION Quick No Sample Vater Legend Thick ness) Depth/ Description DESCRIPTION Image: Comparison of the tributer Vater Legend Thick ness) Description DESCRIPTION Image: Comparison of the tributer Image: Comparison of the tributer Image: Comparison of the tributer Description Description Image: Comparison of the tributer Image: Comparison of the tributer Image: Comparison of the tributer Image: Comparison of the tributer Image: Comparison of the tributer Image: Comparison of the tributer Image: Comparison of the tributer Image: Comparison of the tribute	Projec											Hole 1	No
MDR0813 Office Office Office Office E 304,630.7 N 229,936.6 Contractor Breeffni Plant Hire Start A SAMPLES & TESTS STRATA Depti Type Sample Water Contractor Depti Type Sample Water Contractor 0 Street Depti Type Sample Name Water Redeted Contractor Depti 1 Type Sample Water Contractor Depti 0 Sample Water Redeted Contractor DESCRIPTION 0 Sample Water Contractor Depti DESCRIPTION 0 Sample Water Redeted Depti Depti 0 Sample Water Contractor Depti 0 Sample Water Contractor Depti 0 Sample Water Contractor Depti 0 Sample Contractor Depti Depti 0 Sample Contractor Depti Depti 0 Sample Contractor Contractor Sample 0 Sample Contractor		Gran	ge Castle I	nfill A	ssess	ment						тр7	A
MDR0813 04-02-11 E 304,630.7 N 229,936.6 Contractor Sheet 1 of 1 SAMPLES & TESTS STRATA Depth Type Sample Vate Redeword Legend (Depth) Profile Depth No Name Wate Redeword Legend (Depth) Depth Wate Redeword Depth No Name Vate Legend (2.60) Made Ground: Soft grey/brown slightly gravelly CLAY with occasional boulders. <5% waste (timber, brick fragments, plywood, concrete blocks, coal allowet, tar fragments)	Job N	0		Date	04-02	2-11	Gro	und Level (m)	C	Co-Ordinates ()			4
I of 1 SAMPLES & TESTS STRATA Depth Type Name Water Reduced Depth DESCRIPTION Junc I I Image: Imag			0813		04-02	2-11				E 304,630.7	7 N 229,936.6		
SAMPLES & TESTS STRATA kepth Type Sample Water Legend (Thick- ness) Depth Made Ground: Soft greybown slightly gravelly (CLAY with occasional boulders: <5% water (imber, brick fragments, plywood, concrete blocks, coal shovel, tar fragments) Made Ground: Soft greybown slightly gravelly (CLAY with occasional boulders: <5% water (imber, brick fragments, plywood, concrete blocks, coal shovel, tar fragments) T 2.60 T 2.60 GENERAL	Contr												
Xppth Type Sample Name Water Relatest Legend Depth Inside ness) DESCRIPTION Apph Apph Apph Apph Apph Apph Apph Depth Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph Apph		Breff	ni Plant Hi	re								1 of	1
bepth Nume Water Legend [(Thick- ited) DESCRIPTION Made Ground: Soft grey/brown slightly gravelly CLAY with occasional bowl, tar fragments, plywood, concrete blocks, coal shovel, tar fragments) Made Ground: Soft grey/brown slightly gravelly CLAY with occasional bowle, sc% waters (imber, brick fragments, plywood, concrete blocks, coal shovel, tar fragments) 0 2.60 0 2.60 0 2.70 0 2.70 Brown gravelly CLAY	SAM	PLES	& TESTS						ST	TRATA			
GENERAL)epth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick-	L		DESCRI	PTION		back
GENERAL REMARKS							2.60	shovel, tar fi	agments)	y gravelly CLAY w gments, plywood, c	ith occasional oncrete blocks, coal	
			GENE	RAL		-							
All dimensions in metres Client South Dublin County Method/ Logged By			REMA	ARKS		th			athod (Logged Pre	


	- C	Felephone: Fax: 01 283	01 488 5676	2900			TR	IAL P	TI			
Projec											Hole N	lo
	Grang	ge Castle I	nfill A	ssess	ment						ТО7	-
Job N	0		Date	03-02	2-11	Gr	ound Level (n	n)	Co-Ordinates ()		- TP7	0
	MDR	813		03-02	2-11				E 304,430.3	N 230,026.7		
Contr											Sheet	
	Breff	ni Plant Hi	ire								1 of 2	1
SAM	PLES	& TESTS			1				STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Dept (Thick- ness)			DESCRIP	TION		backfil
-					$\frac{\sqrt{1}}{2} \cdot \frac{\sqrt{1}}{2} \cdot \frac{\sqrt{1}}{2} \cdot \frac{\sqrt{1}}{2}$	(0.50)	50					
-							Soft bro	wn very sl	ightly gravelly CLAY	7		
-						(1.70)						
						2.2	20					_
-												
-					- - -							
-												
-					-							
-					-							
-												
					- - -							
					- - -							
					- - -							
All d					-							
		GENE REMA	RAL	<u> </u>	<u>L</u>							<u> </u>
No wa	ste	KEIVIA	1112									
All d	imensio Scale	ns in metres 1:50	Clie		outh D	ublin C	County	Method/ Plant Us	ed		Logged By	

	- C	Felephone: Fax: 01 283	01 488 5676	2900			TRIAI	L PIT					
Projec										Hole N	lo		
	Grang	ge Castle I	nfill A	ssess	ment					TD7	c		
Job No	0		Date	03-02	2-11	Grou	und Level (m)	Co-Ordinates ()		TP7	0		
	MDR	0813		03-02	2-11			E 304,235.0 N 229,	,800.8				
Contra										Sheet			
	Breff	ni Plant Hi	re							1 of	1		
SAM	PLES	& TESTS						STRATA					
Depth	Type No	Sample Name	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION			back		
					$\frac{\sqrt{1}}{1} \cdot \frac{\sqrt{1}}{\sqrt{1}} \cdot \frac{\sqrt{1}}{\sqrt{1}} \cdot \frac{\sqrt{1}}{\sqrt{1}}$	(0.50) 0.50	Topsoil						
(2.40) Made Ground; Soft brown/grey very slightly gravelly CL cobbles. <0.5% waste (fabric)													
-		2.90 3.10 Soft brown very slightly gravelly CLAY											
					- - - - - - - - - - - -								
					- - - - - - - -								
					- - - - - - - -								
		GENE REMA	RAL RKS	1	<u>L</u>		1						
All d	imensic Scale	ns in metres 1:50	Clier		outh D Council	ublin Cc	ounty Met Plan	nod/ t Used	I	logged By			

		Telephone: Fax: 01 283	01 488 35676	2900			TRIAL	PIT			
Projec	et									Hole No	
		ge Castle I		ssess	ment					TP77	
Job N			Date	04-02	2-11	Gro	ound Level (m)	Co-Ordinates ()			
	MDRO	0813		04-02	2-11			E 304,342.2 N 229	7,805.1	Sheet	
Contr		ni Plant H	ira							I of 1	
~										1 01 1	
SAM		& TESTS	\$			Dept	h	STRATA			
Depth	Type No	Sample Name	Water	Reduced Level	Legend	(Thick- ness)		DESCRIPTION		1	ba
					<u>NIZ</u> <u>XIZ</u>		Topsoil				
· · · ·						0.3	Made Ground; and boulders. 1	Soft brown slightly gravelly CLA % waste (fragments of tarmac)	Y with occasion	nal cobbles	
- - - - - - -						2.6	0 0 soft brown ver	y slightly gravelly CLAY			
-											
-											
		GENI REMA	ERAL ARKS								
All d	limensio Scale	ons in metres	Clie		outh D	ublin C	County Meth Plant	od/ Used	Lo	gged By	-

Sampling Plan

SAMPLING PLAN												
GENERAL INFORMATION												
Sampling Plan completed by: RPS	On behalf of: South Dublin County Council											
Client: South Dublin County Council	Material Producer: material was originally sourced from a number of construction sites											
Contact: David Fennell												
Other involved parties: Environmental Protection Agency, contact Stephen McCarthy												
Sampling to be carried out by: RPS Specify name of sampler: Isidore McCormack.												
SAMPLING OBJECTIVE:												
To determine the characteristics of imported material on site at Grange Castle Golf Club present within two distinct areas of the site, named 'the 5 holes' and 'holes 14 and 15'.												
SAMPLING APPROACH:												
SAMPLING APPROACH: Sampling is to be carried out from approximately 40 no. of trial pits. As the trial pits are dug, the excavator driver will side cast excavated material to a designated area, adjacent to the trial pit. On completion of the trial pit the material within the designated area will be mixed by the excavator and a composite sample of approximately 500kg retrieved. The 500kg sample will be made up of samples from four quarters of the material within the designated area. The 500kg sample will be loaded onto a mini-dumper and brought to an on-site cabin where waste characterization equipment will be set up and an appropriately qualified RPS staff member will carry out the testing.												
On receipt of the material at the cabin, the material will be off loaded into a designated area underlain by a heavy duty plastic sheet.												
The material will then be picked for any extraneous material which will be sorted into a variety of containers including, timber, plastic, concrete, tar, tiles, rubber etc. The remaining soil and stone will be sieved through a purpose built table with a tray of 20mm round mesh holes and the constituents obtained weighed and compositional % derived.												

Approximately two samples will be analysed per day.

Representative composite soil samples will be taken from the remaining soils fraction for laboratory analysis (i.e. <20mm fraction) using the 'nine point sample' as described in Annex D of BS 10175:2001 – Investigation of Potentially Contaminated Sites – Code of Practice.

MATERIAL

Type of material: Imported Stone and Soil with the possibility of contamination from C&D waste.Locati	on: Grange Castle Golf Club
with the possibility of contamination from	

Source and origin of the material (e.g. form and nature of arising):

The material was imported with the purpose of creating new holes at the golf course. The material is believed to be primarily sourced from green field construction sites.

Process/activity producing the material: land reclamation.

Identify access problems that may affect sampling programme:

Plant delays, sampling equipment failure.

SAMPLING METHODOLOGY

Specify detailed sampling location: Sampling is to be carried out from the trial pits

Define sub-population or consignment to be sampled:

A circa 500kg sample of material will be separated from the excavated material.

Define place and point of sampling: On-site cabin

Specify date and time(s) of sampling: from 24th of January 2011

Specify persons to be present : Isidore McCormack and support staff

Identify sampling technique : '9 point sample' as described in Annex d of BS 10175:2001 Investigation of Potentially Contaminated Sites – Code of Practice to be used for laboratory samples following characterisation of sample.

Identify equipment: Spade, 3 large heavy-duty plastic sheeting sections, a scoop, weighing scales, containers for different waste constituents, sampling table, PPE gear. Excavator, mini dumper.

Specify no. of samples to be collected : 1 for characterisation testing and 1 for laboratory analysis

Specify sample size : approximately 500kg for characterization.

Detail requirements for on-site determinations: None

Identify sample coding methodology: n/a

Identify safety precautions: Gloves and protection suits to be worn during sampling. Specific Health and Safety protocol to be developed and all staff informed of content.

SUB-SAMPLING

N / A at this stage

PACKAGING, PRESERVATION, STORAGE AND TRANSPORT REQUIREMENTS

Packaging: As per STS requirements

Preservation: As per STS requirements

Storage: As per STS requirements

Transport: As per STS requirements

ANALYTICAL LABORATORY

Company details: STS

Contact: N / A

Delivery date: from 24/01/2011

Trial Pit Analytical Results

										Bul	k Soil F	lesults														
Sample Ref								TP2	TP4	TP7	TP10	TP13	TP15	TP17	TP18	TP20	TP22	TP24	TP25	TP27	TP29	TP30	TP31	TP33	TP34	TP36
Analyte	Units	LOD	SGVs ¹	RPS GAC ²	LQM/CIEH ³	DTV ⁴	DIV⁵																			
EN 12457-3 Leachate																										
Antimony as Sb, dry weight	mg/kg	1	43			3	15	2.6 16	3.1	2	2.3	5.5	2	7.6	2.3	2.4	2.1	2.1	2.1	1.7	2.9	2.7	1.8	2	2.3	1.8
Arsenic as As, dry weight Barium as Ba, dry weight	mg/kg mg/kg	5	43			160	625	79	24 190	22 110	16 84	19 58	<u>28</u> 150	20 120	14 73	16 80	25 190	21 120	19 100	25 89	14 73	11 94	9.8 68	11 68	18 94	22 86
Cadmium as Cd, dry weight	mg/kg	0.2	1.8			100	020	1.2	1.7	2.1	4	3.5	1.4	1.6	1.4	2.3	1.6	1.2	1.4	1.8	2.8	1.7	1.6	1.4	1.9	1.1
Chromium as Cr, dry weight	mg/kg	1			34600			15	16	20	18	21	27	18	15	22	18	16	14	20	15	12	9.8	8.5	19	14
Copper as Cu, dry weight	mg/kg	5		500	524			34	26	31	35	45	36	38	30	31	27	25	31	25	39	27	20	26	32	21
Lead as Pb, dry weight	mg/kg	2		530				37	65	42	44	23	53	54	15	33	54	43	41	35	20	33	13	10	36	22
Mercury as Hg, dry weight Molybdenum as Mo, dry weight	mg/kg mg/kg	0.35 0.5				3	200	<0.35 1.5	<0.35 1.8	<0.35 1.5	<0.35 1.4	<0.35 7.6	<0.35 0.59	<0.35 0.96	<0.35 0.62	<0.35 2.8	<0.35 <0.50	<0.35 <0.50	<0.35 <0.50	<0.35 1	<0.35 2.1	<0.35 2.3	<0.35 0.82	<0.35 0.59	<0.35 0.68	<0.35 <0.50
Nickel as Ni, dry weight	mg/kg	1	230			0	200	36	35	46	53	86	50	43	42	43	37	35	39	40	63	33	30	37	44	31
Phosphate as PO4, dry weight	mg/kg	25						2600	2100	2200	2100	1600	1900	2600	3000	2500	2000	2200	2300	2000	1900	2200	2300	2300	2800	2100
Selenium as Se, dry weight	mg/kg	0.35	120		010			1.2	1.5	0.71	0.71	2.1	0.47	0.9	0.51	0.84	1.2	1.1	2.1	0.63	0.62	0.85	0.94	0.59	0.77	0.5
Zinc as Zn, dry weight Moisture Content Ratio at 105C	mg/kg % ratio	5 0.1			618			93 5.52	130 0.7	120 6.68	140 0.69	170 30.35	120 18.33	150 7.22	87 3.4	98 8.5	120 2.09	100 2.48	100 9.25	98 3.04	95 8.02	83 2.24	56 5.25	70 4.47	130 5.33	77
Moisture at 105C	%	0.1						5.2	0.7	6.3	0.68	23	15	6.7	3.3	7.8	2	2.4	8.5	2.9	7.4	2.2	5	4.3	5.1	
Sulphate, Total as SO4 dw	mg/kg	240						<240	340	<240	<240	<240	<240	<240	320	<240	<240	<240	340	<240	<240	680	<240	260	<240	<240
TOC by Ignition in O2	%	0.1						0.71	1.5	0.53	0.85	0.43	<0.10	0.79	1.4	0.84	0.39	1.1	1.5	<0.10	0.94	1.6	1.8	1.2	1.5	1.3
рн Nitrate as NO3, Water Sol dw	pH units mg/kg	2 4.5						8.1 20	8.3 11	8.3 28	8.3 35	8 21	<u>8</u> 44	8 12	8.1 17	8.2 54	8.3 31	8.2 9.4	8 8.6	8.3 25	8.4 39	8.2 17	8.2 15	8.1 15	8.4 19	8.1 13
Nitrite as NO2, Water Sol dw	mg/kg	0.2						0.89	0.46	0.9	0.88	0.95	0.29	0.87	1.4	2.5	<0.20	0.78	2.2	0.31	2.2	1.1	0.55	0.51	0.46	1.9
7 PCBs															-											
PCB 28 PCB 52	ug/kg	1				0.69		<1.0 <1.0																		
PCB 52 PCB 101	ug/kg ug/kg	1				0.28		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
PCB 118	ug/kg	1				1.9		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
PCB 138	ug/kg	1				0.32		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
PCB 153 PCB 180	ug/kg ua/ka	1				0.46		<1.0 <1.0																		
MTBE (Methyl-tert-Butyl Ether)	mg/kg	0.01				-	100	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
BTEX																										
Benzene	mg/kg	0.01	0.07					< 0.010	< 0.010	< 0.010	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Toluene Ethylbenzene	mg/kg mg/kg	0.01	<u>120</u> 90					<0.010 <0.010																		
m&p-Xylene	mg/kg	0.01	160					<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
o-Xylene	mg/kg	0.01	160					<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Mineral Oils		0.1			4700			-0.40	-0.40	-0.40	10.40	10,10	-0.40	-0.40	-0.40	10.40	10.40	10.40	10.40	-0.40	-0.40	-0.40	10.40	-0.40		10.10
VPH >C5 - C6, aliphatic VPH >C6 - C8, aliphatic	mg/kg mg/kg	0.1			1700 5600			<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 0.16	<0.10 <0.10	<0.10 0.22	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10								
VPH >C8 - C10, aliphatic	mg/kg	0.1			770			<0.10	<0.10	<0.10	<0.10	0.16	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.29	<0.10	<0.10	<0.10	<0.10
EPH >C10 - C12, aliphatic	mg/kg	1			4400			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
EPH >C12 - C16, aliphatic EPH >C16 - C35, aliphatic	mg/kg mg/kg	1			13000 270000			<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 22	4.8 72	<1.0 <1.0	<1.0 <1.0	<1.0 50	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 8.6	<1.0 <1.0	<1.0 <1.0	<1.0 16	<1.0 <1.0
EPH >C35 - C44, aliphatic	mg/kg	1			270000			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	8.4	67	<1.0	<1.0	14	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	6.3	<1.0
EPH >C5 - C44, Total aliphatic	mg/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	31	140	<5.0	<5.0	64	<5.0	<5.0	<5.0	9.1	<5.0	<5.0	22	<5.0
VPH >C5- C7, aromatic	mg/kg	0.01			27			< 0.010	<0.010	< 0.010	<0.010	< 0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010
VPH >C7 - C8, aromatic VPH >C8 - C10, aromatic	mg/kg mg/kg	0.01			51 21			<0.010 <0.10																		
EPH >C10 - C12, aromatic	mg/kg	1			31			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
EPH >C12 - C16, aromatic	mg/kg	1			57			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
EPH >C16 - C21, aromatic EPH >C21 - C35, aromatic	mg/kg	1			110 820			<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 14	11 86	<1.0 <1.0										
EPH >C35 - C44, aromatic	mg/kg mg/kg	1			2100			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	14	120	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
EPH >C5 - C44, Total aromatic	mg/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	26	220	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
EPH >C5 - C44, Total	mg/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	56	360	<5.0	<5.0	64	<5.0	<5.0	<5.0	9.1	<5.0	<5.0	22	<5.0
Naphthalene Acenaphthylene	mg/kg mg/kg	0.01			9.9 69			0.048	0.014	0.012	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	0.019	0.12	0.01 <0.010	<0.010 <0.010	0.027	0.028	<0.010 <0.010	<0.010 <0.010	0.014	0.011 <0.010	0.017	0.025	0.02
Acenaphthene	mg/kg	0.01			85			0.010	<0.010	0.010	0.011	<0.010	<0.010	<0.010	0.051	0.010	<0.010	<0.010	0.018	<0.010	0.026	<0.010	<0.010	<0.010	<0.010	<0.010
Fluorene	mg/kg	0.01			67			0.012	<0.010	0.014	<0.010	<0.010	<0.010	0.01	0.063	0.058	<0.010	0.01	0.017	<0.010	0.021	<0.010	<0.010	<0.010	<0.010	0.02
Phenanthrene Anthracene	mg/kg	0.01			38 950			0.076	0.035	0.14 0.025	0.094 0.018	0.01 <0.010	<0.010 <0.010	0.059	0.29	0.52 0.033	0.011	0.082	0.21 0.061	0.028	0.24 0.053	0.049	0.02	0.034	0.06	0.17 0.035
Anthracene Fluoranthene	mg/kg mg/kg	0.01			950 130			0.021	<0.010 0.038	0.025	0.018	<0.010 0.014	<0.010	0.017	0.099	0.033	<0.010	0.02	0.061	0.012	0.053	0.01	<0.010	<0.010 0.039	<0.010 0.1	0.035
Pyrene	mg/kg	0.01			270			0.10	0.038	0.2	0.10	0.014	<0.010	0.10	0.32	0.3	<0.010	0.1	0.58	0.028	0.3	0.089	0.018	0.034	0.058	0.16
Benzo(a)anthracene	mg/kg	0.01			5.5			0.078	0.015	0.087	0.048	< 0.010	< 0.010	0.068	0.16	0.03	< 0.010	0.049	0.29	0.014	0.14	0.043	< 0.010	0.013	< 0.010	0.073
Chrysene Benzo(b)fluoranthene	mg/kg mg/kg	0.01 0.01			5.8 7.4			0.067	0.018	0.085	0.051	<0.010 0.011	<0.010 <0.010	0.06	0.13	0.026	<0.010 <0.010	0.051 0.08	0.24	0.013	0.12 0.15	0.042	<0.010 0.011	0.012	<0.010 <0.010	0.061
Benzo(b)fluoranthene	mg/kg mg/kg	0.01			14			0.037	<0.031	0.12	0.072	<0.011	<0.010	0.093	0.19	0.036	<0.010	0.08	0.38	<0.014	0.15	0.063	<0.011	<0.022	<0.010	0.1
Benzo(a)pyrene	mg/kg	0.01			1.2			0.081	0.016	0.09	0.051	<0.010	<0.010	0.062	0.15	0.027	<0.010	0.05	0.26	0.01	0.11	0.049	<0.010	0.014	<0.010	0.069
Indeno(1,2,3-c,d)pyrene	mg/kg	0.01			3.8			0.071	0.011	0.061	0.034	<0.010	< 0.010	0.05	0.11	0.02	< 0.010	0.036	0.18	< 0.010	0.075	0.036	< 0.010	0.011	< 0.010	0.044
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	mg/kg	0.01 0.01			1.5 120			0.015	<0.010 0.014	0.016	<0.010 0.038	<0.010 <0.010	<0.010 <0.010	0.011	0.022	<0.010 0.02	<0.010 <0.010	<0.010 0.04	0.034	<0.010 <0.010	0.018	<0.010 0.042	<0.010 <0.010	<0.010 0.014	<0.010 <0.010	0.011 0.047
PAH, Total of 16 EPA	mg/kg mg/kg	0.01			120			0.07	0.014	1.2	0.038	<0.010	<0.010	0.054	2.2	1.7	<0.010	0.04	3.3	0.15	1.7	0.042	<0.010	0.014	<0.010 0.24	1
Dry Ratio (BSEN 12457)	%	•						94.77	99.3	93.74	99.32	76.72	84.51	93.27	96.71	92.17	97.95	97.58	91.53	97.05	93.74	97.81	95.01	95.72	94.94	
SVOC								.4.0	.4.0	.4.0	.4.0	.4.0	-1.0	.4.0	.4.0		-10	.1.0	-10	.4.0						
2-Picoline o-Toluidine	mg/kg mg/kg	1						<1.0 <1.0																		
Phenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
bis-(2-Chloroethyl)-ether	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorophenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene 1.4-Dichlorobenzene	mg/kg	1						<1.0 <1.0																		
Benzyl Alcohol	mg/kg mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	e ^{,,,} e ^{,,} ,																									

Bulk Soil Results

Image Part Part Part Part Part P																		Bulk Soil	i Result	S								
District	Sample Ref								TP39	TP41	TP42	TP44	TP47	TP48	TP50	TP51	TP53	TP56	TP58	TP60	TP62	TP65	TP67	TP70	TP72	TP73	TP74	TP77
Desc Desc <thdesc< th=""> Desc Desc De</thdesc<>	Analyte	Units	LOD	SGVs ¹	RPS GAC ²	LQM/CIEH ³	DTV⁴	DIV⁵																				
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	EN 12457-3 Leachate																											
	Antimony as Sb. dry weight	ma/ka	1				3	15	23	19	13	2	15	16	2.5	16	2	18	27	19	16	19	22	18	3	18	17	17
BADE MARCHANGE DAT DAT DAT DAT <t< td=""><td></td><td></td><td>1</td><td>43</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>_</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>16</td><td></td><td></td><td></td></t<>			1	43						-		_				-		-		-					16			
Same And	, , , , , , , , , , , , , , , , , , ,		5				160	625											-				-		-		-	
Sympo Control Sympo Contro				1.8					2											1								
Super-line SP SP SP SP <t< td=""><td></td><td></td><td>1</td><td></td><td></td><td>34600</td><td></td><td></td><td>14</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			1			34600			14		1									13								
minuscape minuscape <thminuscape< th=""> minuscape <th< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td></th<></thminuscape<>	· · · · · · · · · · · · · · · · · · ·		5							-		-	-						-	-	-		-		-			
Import on the import of the import		<u> </u>	-		530	021																						
Cale and a band Cale Cale Cale	, , , , , , , , , , , , , , , , ,								-					-	-				-								-	
Noi: Calibor Noi: Calibor<		<u> </u>																										
Depart of brow Piol Piol Piol							3	200					-			-			-									
Scale alpha O <tho< th=""> O O O O</tho<>	· · · · · · · · · · · · · · · · · · ·			230												-		-				-		-			-	-
Constraint Constra																												
Data Anomeningender Mode Norm Norm No		<u> </u>		120																					· ·	-		
Name Name <th< td=""><td></td><td><u> </u></td><td>-</td><td></td><td></td><td>618</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		<u> </u>	-			618				-												-						
Barb Allow Mathe Barb Allow Mathe<		% ratio							12.39		1										3.09		-		-			4.11
Dip Lange N A A A A A A A A A A B B B B<		14	-							-											, ,	-					-	
L L <thl< th=""> L L L</thl<>	Sulphate, Total as SO4 dw	mg/kg								<240	<240	360	<240	610	<240	<240	<240	350	<240	360	<240	240	600	660	440	340	610	610
Name Ack Nur Arte Name Act Arte Name	TOC by Ignition in O2	%	-									-	-			-		2				-	-		-	-		
Nume Nume Num Num </td <td>рН</td> <td>pH units</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8.1</td> <td>8.6</td> <td>8.6</td> <td>8.3</td> <td>8.3</td> <td>8.4</td> <td>8.3</td> <td>8.4</td> <td></td> <td>8.8</td> <td>8.1</td> <td>8.3</td> <td>8.3</td> <td></td> <td>8.2</td> <td>8.2</td> <td>7.9</td> <td></td> <td>8.1</td> <td>8.1</td>	рН	pH units							8.1	8.6	8.6	8.3	8.3	8.4	8.3	8.4		8.8	8.1	8.3	8.3		8.2	8.2	7.9		8.1	8.1
Tesh <td>Nitrate as NO3, Water Sol dw</td> <td>mg/kg</td> <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>18</td> <td>15</td> <td>9.6</td> <td>14</td> <td>15</td> <td>15</td> <td>21</td> <td>13</td> <td>9.9</td> <td>15</td> <td>17</td> <td>23</td> <td>12</td> <td>17</td> <td>13</td> <td>23</td> <td>20</td> <td>25</td> <td>17</td> <td>17</td>	Nitrate as NO3, Water Sol dw	mg/kg	4.5						18	15	9.6	14	15	15	21	13	9.9	15	17	23	12	17	13	23	20	25	17	17
PAR P		mg/kg	0.2						1.5	0.79	0.55	0.72	1.5	1	2.8	0.79	0.6	0.5	0.45	0.89	0.66	1.4	1.4	3.6	2.7	1.3	1.1	1.1
pgg m jegg m </td <td></td>																												
PARA PARA PARA PARA PA		<u> </u>	1						-	-		-				-		-	-	-	-	-	-		-	-	-	-
PAR 10 ONE Dia Dia<		<u> </u>	1																			-					-	-
PAC 00 AA AA AA AA AA			1																	-		-				-		-
PAC NO PAC NO PAC NO PAC NO <td></td> <td>ug/kg</td> <td>1</td> <td></td> <td><1.0</td> <td></td> <td>-</td> <td></td> <td></td> <td><1.0</td> <td>-</td> <td></td> <td>-</td> <td></td> <td><1.0</td> <td><1.0</td> <td></td> <td>-</td> <td></td>		ug/kg	1											<1.0		-			<1.0	-		-		<1.0	<1.0		-	
PAR 100 applic 1 PAR 100 <			1							-						-				-					-			
Distribution Particip Optimize Particip Optimize		ug/kg	1						-	-		-				-	-	-	-	-		-	-	-		-		
Dir. Original Original <th< td=""><td></td><td>ug/kg</td><td>1</td><td></td><td></td><td></td><td>0.17</td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td></th<>		ug/kg	1				0.17		-		-		-			-	-		-				-		-		-	
best best <th< td=""><td></td><td>mg/kg</td><td>0.01</td><td></td><td></td><td></td><td>-</td><td>100</td><td><0.010</td><td>< 0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td></th<>		mg/kg	0.01				-	100	<0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Taile Taile Part of the part of t																												
Implement real 0.01 9.01 9.01 9.01 <	Benzene	mg/kg	0.01	0.07					<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
mic bit MP P P P P	Toluene	mg/kg	0.01	120					<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.013	<0.010	<0.010	<0.010	<0.010	<0.010
chira mod mod <t< td=""><td>Ethylbenzene</td><td>mg/kg</td><td>0.01</td><td></td><td></td><td></td><td></td><td></td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td></t<>	Ethylbenzene	mg/kg	0.01						<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
immed immed <th< td=""><td>m&p-Xylene</td><td>mg/kg</td><td>0.01</td><td>160</td><td></td><td></td><td></td><td></td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td></th<>	m&p-Xylene	mg/kg	0.01	160					<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
OffNors Open Open Open Open <t< td=""><td>o-Xylene</td><td>mg/kg</td><td>0.01</td><td>160</td><td></td><td></td><td></td><td></td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td></t<>	o-Xylene	mg/kg	0.01	160					<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Phi-CS, Calandes mpb 0.1 Phi Point																												
eff cond	VPH >C5 - C6, aliphatic	mg/kg	0.1			1700			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Dirt C.C. C. Japante ngrég 1 4400 4400 410	VPH >C6 - C8, aliphatic	mg/kg	0.1			5600			<0.10	<0.10	0.12	<0.10	0.16	0.15	<0.10	<0.10	<0.10	<0.10	0.14	<0.10	<0.10	0.1	0.1	<0.10	<0.10	<0.10	<0.10	<0.10
EHI-ISC-18. algebraic mpkg 1 0 0 10 10 10 100 100 100 <th< td=""><td>VPH >C8 - C10, aliphatic</td><td>mg/kg</td><td>0.1</td><td></td><td></td><td>770</td><td></td><td></td><td><0.10</td><td><0.10</td><td>0.11</td><td><0.10</td><td>0.2</td><td>0.16</td><td><0.10</td><td><0.10</td><td><0.10</td><td><0.10</td><td>0.13</td><td><0.10</td><td><0.10</td><td>0.11</td><td>0.12</td><td>0.12</td><td><0.10</td><td><0.10</td><td><0.10</td><td><0.10</td></th<>	VPH >C8 - C10, aliphatic	mg/kg	0.1			770			<0.10	<0.10	0.11	<0.10	0.2	0.16	<0.10	<0.10	<0.10	<0.10	0.13	<0.10	<0.10	0.11	0.12	0.12	<0.10	<0.10	<0.10	<0.10
PHY-SC-28, signato mpla 1 P27000 - - 710 710 710	EPH >C10 - C12, aliphatic	mg/kg	1			4400			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
PHY-ASS-244 Jujunic mp/h 1 PH PH <td>EPH >C12 - C16, aliphatic</td> <td>mg/kg</td> <td>1</td> <td></td> <td></td> <td>13000</td> <td></td> <td></td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>6.1</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>10</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>5.6</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td>	EPH >C12 - C16, aliphatic	mg/kg	1			13000			<1.0	<1.0	<1.0	<1.0	<1.0	6.1	<1.0	<1.0	<1.0	<1.0	10	<1.0	<1.0	<1.0	<1.0	5.6	<1.0	<1.0	<1.0	<1.0
PH-15-C34. Total alphales PH PH PH PH PH		mg/kg	1			270000			<1.0	<1.0	15	50	15	29	<1.0	<1.0	43	<1.0	34	38	11	27	37	61	<1.0	<1.0	31	31
OPHICAC C1 manualis mpla Dot Part COT	EPH >C35 - C44, aliphatic	mg/kg	1			270000			<1.0	<1.0	12	17	<1.0	<1.0	<1.0	<1.0	10	<1.0	<1.0	11	5.5	17	9.4	28	<1.0	<1.0	23	23
vipH - C - C, auronetic mp/s 0.01 0.01 0.01 0.01 0.010 <td>EPH >C5 - C44, Total aliphatic</td> <td>mg/kg</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td><5.0</td> <td>27</td> <td>67</td> <td>16</td> <td>35</td> <td><5.0</td> <td><5.0</td> <td>53</td> <td><5.0</td> <td>44</td> <td>49</td> <td>17</td> <td>44</td> <td>47</td> <td>95</td> <td><5.0</td> <td><5.0</td> <td>54</td> <td>54</td>	EPH >C5 - C44, Total aliphatic	mg/kg	5						<5.0	<5.0	27	67	16	35	<5.0	<5.0	53	<5.0	44	49	17	44	47	95	<5.0	<5.0	54	54
VPH - CS-C10, aromatic mpkg 0.1 0.1 0.1 0.10 0.10 0.10 0.10 <td>VPH >C5- C7, aromatic</td> <td>mg/kg</td> <td>0.01</td> <td></td> <td></td> <td>27</td> <td></td> <td></td> <td><0.010</td>	VPH >C5- C7, aromatic	mg/kg	0.01			27			<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
EPH-SC-021, sconaids mg/s 1 c 31 c 410	VPH >C7 - C8, aromatic	mg/kg	0.01			51			<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.013	<0.010	<0.010	<0.010	<0.010	<0.010
EHH - Cor2 - C16, annais might 1 est F7 est eta		mg/kg	0.1			21			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
EPH-S1C-S21, scormale mg/hg 1 1 100 100 100 100 8.10 100	EPH >C10 - C12, aromatic	mg/kg	1			31			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
EPH 2G1 - CL3, servenile mgkg 1 200 410 17 400 62 19 23 410 410 440 42 22 22 23 31 100 410 24 28 28 EPH 2G3 - CL4, frail mgkg 5 0 - <th< td=""><td>EPH >C12 - C16, aromatic</td><td>mg/kg</td><td>1</td><td></td><td></td><td>57</td><td></td><td></td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td></th<>	EPH >C12 - C16, aromatic	mg/kg	1			57			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
EPH > C35 C44, aronable mg/sq 1 200 24 36 23 58 <10. <10. 38 38 EPH > C35 C44, aronable mg/sq 5 0 C35 C44 C50 C45 C45 C47 C40 C45 C47 C40 C45 C45 C45 C45 C45 C47 C40 C45 C45 C45 C45 C41 C45 C45<	EPH >C16 - C21, aromatic	mg/kg	1			110			<1.0	<1.0	<1.0	10	<1.0	6.8	<1.0	5.1	<1.0	<1.0	15	<1.0	<1.0	<1.0	<1.0	22	<1.0	<1.0	<1.0	<1.0
EPH 265-C44, Total make 5 etc <th< td=""><td></td><td>mg/kg</td><td>1</td><td></td><td></td><td>820</td><td></td><td></td><td><1.0</td><td>17</td><td>40</td><td>62</td><td>19</td><td>23</td><td><1.0</td><td>21</td><td><1.0</td><td>45</td><td>42</td><td>22</td><td>22</td><td>37</td><td>31</td><td>110</td><td><1.0</td><td><1.0</td><td>28</td><td>28</td></th<>		mg/kg	1			820			<1.0	17	40	62	19	23	<1.0	21	<1.0	45	42	22	22	37	31	110	<1.0	<1.0	28	28
EPH 205-C44, Total mg/kg 5 mg/kg 6.01 9.9 0.05 0.072 0.013 0.028 0.018 0.010 0.016 0.028 0.018 0.010 0.016 0.018	EPH >C35 - C44, aromatic	mg/kg	1			2100			<1.0	9.3	41	45	9.7	8.7	<1.0	16	<1.0	21	11	20	24	36	23	58	<1.0	<1.0	38	38
Naphtheine mg/kg 0.01 9.9 0.026 0.037 0.13 1 0.028 0.026 0.036 0.010 0.045 0.011 0.063 0.051 0.032 0.032 0.032 0.032 0.032 0.036 0.011 0.045 0.011 0.063 0.051 0.016 0.	EPH >C5 - C44, Total aromatic	mg/kg	5						<5.0	27	80	120	28	39	<5.0	43	<5.0	66	67	42	46	73	54	190	<5.0	<5.0	66	66
Accompatibility Onit Onit 6.01	EPH >C5 - C44, Total	mg/kg	÷									180				-			-					280				
Accompatibilities mgkg 0.01 e.0.01 0.091 0.12 0.01 0.010 0.010 0.016 e.0.010 0.048 0.024 0.024 0.013 0.016 Fluorence mgkg 0.01 677 0.61 0.016 0.016 0.016 0.016 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.011 0.016 0.010 0.018 0.011 0.017 0.018 0.011 0.016 0.016 0.016 0.011 0.018 0.011 0.018 0.011 0.016 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.011 0.011 0.013 0.011 0.013 0.012 0.011 0.011 0.013 0.011 0.011 0.011 0.011 0.011	Naphthalene	mg/kg							0.026	0.037		1				0.028								0.15	0.023	0.032		
Fluorenie mg/kg 0.01		mg/kg																										
Instructione mg/kg 0.01 38 0.031 0.036 1.8 0.077 0.1 0.016 0.28 0.065 0.11 0.13 0.063 0.64 0.42 0.67 0.020 0.051 Fluorenthene mg/kg 0.01 226 0.11 0.01 0.26 0.031 0.010 0.22 0.11 0.14 0.62 0.011 0.22 0.11 0.01 0.25 0.11 0.20 0.011 0.25 0.11 0.13 0.031 1.1 0.13 0.031 1.1 0.13 0.031 0.011 0.25 0.11 0.14 0.57 0.11 0.14 0.081 0.14 0.051 0.011 0.03 0.041 0.051 0.041 0.051 0.041 0.051 0.011 0.041 0.051 0.011 0.011 0.013 0.011 0.014 0.051 0.013 0.011 0.014 0.013 0.011 0.014 0.013 0.011 0.013 0.011 0.013	Acenaphthene	mg/kg																										
Anthrasene mg/kg 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01	Fluorene					•.				-																		
International marking 0.01 130 0.048 1.1 0.79 2.7 0.13 0.15 0.04 0.46 0.09 0.14 0.21 0.09 1.6 0.63 1.2 0.15 0.092 0.11 Dyrane mg/g 0.01 5.5 0.02 0.44 0.33 1.2 0.16 0.046 0.052 0.083 0.11 0.047 0.93 0.01 0.55 0.02 0.033 0.22 0.33 0.046 0.052 0.083 0.14 0.047 0.93 0.31 0.64 0.057 0.021 0.31 0.041 0.057 0.025 0.035 0.044 0.045 0.085 0.094 0.16 0.037 0.87 0.38 0.057 0.025 0.33 0.046 0.042 0.035 0.044 0.043 0.046 0.045 0.046 0.045 0.046 0.045 0.046 0.045 0.046 0.045 0.046 0.045 0.041 0.04 0.04 0.040	Phenanthrene	mg/kg																					-			-		
pycne mg/kg 0.01 270 0.048 0.68 0.67 2.3 0.12 0.13 0.01 0.67 1.1 0.13 0.03 0.032 0.032 0.032 0.032 0.032 0.032 0.033 0.04 0.041 0.031 0.041 0.073 0.063 0.01 0.04 0.073 0.063 0.01 0.041 0.032 0.033 0.032 0.032 0.032 0.032 0.033 0.031 0.041 0.041 0.044 0.033 0.041 0.073 0.044 0.033 0.043 0.051 0.041 0.044 0.033 0.041 0.071 0.041 0.041 0.041 0.041 0.041 0.044 0.033 0.041	Anthracene	<u> </u>																					-					
Berzockjanthracene mg/kg 0.01 5.5 0.02 0.44 0.33 12 0.068 0.02 0.34 0.01 0.062 0.083 0.11 0.047 0.9 0.31 0.64 0.021 0.032 0.032 0.032 0.032 0.032 0.033 0.032 0.033 0.032 0.033 0.041 0.067 0.062 0.084 0.044 0.73 0.26 0.5 0.062 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.044 0.033 0.034 0.044 0.033 0.035 0.033 0.034 0.044 0.048 0.056 0.025 0.026 0.035 0.025 0.033 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.046 0.047 0.026 0.014 0.014 </td <td>Fluoranthene</td> <td>mg/kg</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	Fluoranthene	mg/kg																		-		-					-	
Chrysnie mg/kg 0.01 5.8 0.021 0.33 0.28 0.057 0.076 0.021 0.31 0.048 0.059 0.094 0.044 0.73 0.26 0.5 0.061 0.023 0.033 0.033 0.033 0.033 0.033 0.033 0.034 0.044 0.059 0.094 0.016 0.073 0.26 0.5 0.061 0.033 0.034 0.048 Berzok(Bluoranthene mg/kg 0.01 1.4 <0.010 0.17 0.63 0.034 0.044 0.043 0.033 0.033 0.034 0.048 0.065 0.026 0.033 0.033 0.034 0.016 0.022 0.033 0.0	Pyrene	mg/kg				-				0.88					0.048			0.12	0.17	0.18			0.57		0.13	0.073		
Benzo(b)fluoranthene mg/kg 0.01 7.4 0.03 0.49 0.43 1.7 0.09 0.12 0.03 0.09 0.09 0.09 0.09 0.01 0.16 0.073 0.87 0.38 0.72 0.11 0.033 0.048 0.044 0.013 0.16 0.073 0.87 0.38 0.72 0.11 0.033 0.048 0.044 0.013 0.16 0.025 0.33 0.14 0.027 0.034 0.011 0.015 0.026 0.036 0.033 0.033 0.034 0.014 0.026 0.035 0.041 0.012 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.034 0.011 0.019 0.011	Benzo(a)anthracene	mg/kg	0.01						0.02	0.44			0.063		0.02	0.37			0.083				0.31			0.023		
Benzo(k)fluoranthene mg/kg 0.01 14 0.01 0.17 0.63 0.034 0.044 0.033 0.038 0.037 0.025 0.33 0.14 0.27 0.034 0.018 0.018 Benzo(a)pyree mg/kg 0.01 3.8 0.02 0.36 0.032 0.048 0.057 0.02 0.33 0.14 0.27 0.034 0.018 0.018 Inden(1,2,3-c.d)pyree mg/kg 0.01 3.8 0.015 0.22 0.26 0.85 0.049 0.05 0.67 0.11 0.05 0.64 0.27 0.03 0.031 Diberz(a,h)anthracene mg/kg 0.01 0.15 0.22 0.26 0.85 0.041 0.018 0.018 0.027 0.031 0.019 0.021 0.018 0.010 0.017 0.017 0.027 0.021 0.038 0.041 0.018 0.018 0.021 0.038 0.041 0.018 0.019 0.057 0.025 0.38 <td< td=""><td>Chrysene</td><td>mg/kg</td><td>0.01</td><td></td><td></td><td>5.8</td><td></td><td></td><td>0.021</td><td>0.33</td><td>0.28</td><td>0.88</td><td>0.057</td><td>0.076</td><td>0.021</td><td>0.31</td><td>0.041</td><td>0.059</td><td>0.085</td><td>0.094</td><td>0.044</td><td>0.73</td><td>0.26</td><td>0.5</td><td>0.066</td><td>0.024</td><td>0.033</td><td>0.033</td></td<>	Chrysene	mg/kg	0.01			5.8			0.021	0.33	0.28	0.88	0.057	0.076	0.021	0.31	0.041	0.059	0.085	0.094	0.044	0.73	0.26	0.5	0.066	0.024	0.033	0.033
Berzo(a)pyrene mg/kg 0.01 1.2 0.02 0.38 1.2 0.065 0.023 0.32 0.048 0.058 0.07 0.11 0.05 0.65 0.28 0.64 0.072 0.02 0.033 0.033 Indenc(1,2,3-c,d)pyree mg/kg 0.01 3.8 0.015 0.25 0.26 0.85 0.048 0.058 0.01 0.047 0.02 0.033 0.033 Diberz(3,h)perylene mg/kg 0.01 1.5 <0.010	Benzo(b)fluoranthene	mg/kg	0.01						0.03	0.49	0.43		0.09	0.12	0.032			0.09	0.094	0.16		0.87	0.38		0.11	0.033	0.048	0.048
Inden(1,2,3-c,d)pyrene mg/kg 0.01 3.8 0.015 0.25 0.26 0.85 0.049 0.016 0.022 0.038 0.041 0.042 0.035 0.47 0.23 0.4 0.063 0.014 0.027 0.027 Dibenz(a,h)anthracene mg/kg 0.01 1.5 0.016 0.025 0.026 0.038 0.041 0.04 0.045 0.010 0.018 0.010 0.018 0.021 0.016 0.027 0.010 0.048 0.011 0.019 0.010 0.014 0.018 0.010 0.018 0.021 0.016 0.027 0.01 0.016 0.015 0.027 0.01 0.018 0.021 0.025 0.026 0.078 0.010 0.015 0.024 0.015 0.024 0.015 0.024 0.025 0.026 0.078 0.016 0.025 0.017 0.029 0.025 0.078 0.017 0.025 0.017 0.025 0.017 0.025 0.017 0.025 0.017 <td>Benzo(k)fluoranthene</td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.17</td> <td></td> <td>0.63</td> <td>0.034</td> <td></td> <td>0.013</td> <td></td> <td></td> <td>0.033</td> <td>0.038</td> <td>0.057</td> <td>0.025</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>0.018</td> <td></td>	Benzo(k)fluoranthene	mg/kg								0.17		0.63	0.034		0.013			0.033	0.038	0.057	0.025		-				0.018	
Dibenz(a,h)anthracene mg/kg 0.01 1.5 <0.010 0.048 0.015 0.011 0.019 <0.010 0.018 <0.010 0.018 <0.010 0.018 <0.010 0.018 <0.010 0.018 <0.010 0.018 <0.010 0.018 <0.010 <0.010 <0.010 0.018 <0.010 0.018 <0.010 0.018 <0.010 0.018 <0.010 0.018 0.019 0.012 0.018 0.019 0.012 0.018 0.019 0.010 0.018 0.010 0.018 0.010 0.016 0.010 0.018 0.010 0.012 0.018 0.012 0.012 0.018 0.019 0.012 0.018 0.019 0.012 0.018 0.019 0.012 0.018 0.019 0.012 0.018 0.019 0.018 0.019 0.012 0.018 0.019 0.012 0.018 0.019 0.012 0.018 0.019 0.012 0.018 0.019 0.012 0.019 0.015 0.010	Benzo(a)pyrene	mg/kg	0.01			1.2			0.02	0.36	0.33	1.2	0.065	0.095	0.023	0.32	0.048	0.058	0.07	0.11	0.05	0.65	0.28	0.54	0.072	0.02	0.033	0.033
Benzogh, jperylene mg/kg 0.01 120 0.018 0.23 0.25 0.76 0.05 0.018 0.2 0.035 0.042 0.045 0.04 0.42 0.25 0.38 0.065 0.017 0.029 0.029 PAH, Total of 16 EPA mg/kg 0.1 0.01 0.27 5.6 4.4 17 0.82 1.1 0.25 4.2 0.6 0.85 0.94 1.3 0.57 8.6 3.8 7.1 0.92 0.57 0.57 0.57 Dry Ratio (BSEN 12457) % 0.57 0.57 0.57 9.82 98.29 98.29 98.29 98.29 98.29 98.64 98.21 98.7 91.61 <td< td=""><td>Indeno(1,2,3-c,d)pyrene</td><td></td><td>0.01</td><td></td><td></td><td>3.8</td><td></td><td></td><td>0.015</td><td>0.25</td><td>0.26</td><td>0.85</td><td>0.049</td><td>0.076</td><td>0.015</td><td>0.22</td><td>0.038</td><td>0.041</td><td>0.04</td><td>0.082</td><td>0.035</td><td>0.47</td><td>0.23</td><td>0.4</td><td>0.063</td><td>0.014</td><td>0.027</td><td>0.027</td></td<>	Indeno(1,2,3-c,d)pyrene		0.01			3.8			0.015	0.25	0.26	0.85	0.049	0.076	0.015	0.22	0.038	0.041	0.04	0.082	0.035	0.47	0.23	0.4	0.063	0.014	0.027	0.027
PAH, Total of 16 EPA mg/kg 0.1 0.1 0.27 5.6 4.4 17 0.82 1.1 0.25 4.2 0.6 0.85 0.94 1.3 0.57 8.6 3.8 7.1 0.92 0.51 0.57 0.57 Dry Ratio (BSEN 12457) % 88.98 96.25 99.22 96.65 98.22 98.2 95.69 98.21 92.4 95.78 97 94.56 92.62 93.15 93.47 93.72 93.58 96.05 SVOC mg/kg 1 0 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <th< td=""><td>Dibenz(a,h)anthracene</td><td>mg/kg</td><td>0.01</td><td></td><td></td><td>1.5</td><td></td><td></td><td><0.010</td><td>0.048</td><td>0.048</td><td>0.15</td><td>0.011</td><td>0.019</td><td><0.010</td><td>0.045</td><td>< 0.010</td><td><0.010</td><td>0.01</td><td>0.018</td><td>< 0.010</td><td>0.099</td><td>0.052</td><td>0.078</td><td>0.013</td><td><0.010</td><td><0.010</td><td><0.010</td></th<>	Dibenz(a,h)anthracene	mg/kg	0.01			1.5			<0.010	0.048	0.048	0.15	0.011	0.019	<0.010	0.045	< 0.010	<0.010	0.01	0.018	< 0.010	0.099	0.052	0.078	0.013	<0.010	<0.010	<0.010
PAH, Total of 16 EPA mg/kg 0.1 0	Benzo(g,h,i)perylene	mg/kg	0.01			120			0.018	0.23	0.25	0.76	0.05	0.087	0.018	0.2	0.035	0.042	0.045	0.078	0.04	0.42	0.25	0.38	0.065	0.017	0.029	0.029
Dry Ratio (BSEN 12457) % Image: Constraint of the constraint of			0.1						0.27	5.6	4.4	17	0.82	1.1	0.25	4.2	0.6	0.85	0.94	1.3	0.57	8.6	3.8	7.1	0.92	0.51	0.57	0.57
SVOC mg/kg 1 mg/kg 1 <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>88.98</td> <td>96.25</td> <td>99.22</td> <td>96.65</td> <td></td> <td>98.2</td> <td></td> <td></td> <td>96.54</td> <td></td> <td>92.4</td> <td>95.78</td> <td></td> <td></td> <td>92.62</td> <td>93.15</td> <td></td> <td>93.72</td> <td></td> <td></td>	,								88.98	96.25	99.22	96.65		98.2			96.54		92.4	95.78			92.62	93.15		93.72		
2-Picoline mg/kg 1 0 0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <																												
o-Toluidine mg/kg 1 Image: mg/kg 1		mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Phenol mg/kg 1 Image: Margine for the formation of		<u> </u>	1						-	-						-							_					-
bis-(2-Chlorophy)-ether mg/kg 1 Constraint Constrai																			-									
2-Chlorophenol mg/kg 1 M									-	-		-				-			-	-		-	-			-	-	
1,3-Dichlorobenzene mg/kg 1 C <td></td> <td></td> <td>1</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>			1													-			-								-	
1,4-Dichlorobenzene mg/kg 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									-	-		-		-	-	-		-	-	-	-	-	-		-	-	-	
			•																									
			1							-		-				-		-	-	-		-			-		-	
		I Wyryg							-1.0	-1.0	1 1.0	-1.0	-1.0	1 1.0	.1.0	1.0	-1.0	-1.0	•1.0	-1.0	-1.0	•1.0	-1.0	1 1.0	-1.0	.1.0	1.0	

Bulk Soil Results TP2 TP4 TP7 TP10 TP13 TP15 **TP17** TP18 TP20 TP22 TP25 Sample Ref TP24 RPS GAC² LQM/CIEH³ DTV⁴ Analyte Units LOD SGVs¹ ∿עוס <1.0 -Methylphenol mg/kg <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 3&4-Methylphenol <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dibenzofuran <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1.2-Dichlorobenzene mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 bis-(2-Chloroisopropyl)-ether mg/kg 1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 n-Nitroso-di-n-propylamine <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Hexachloroethane mg/kg 1 Nitrobenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1 Isophorone mg/kg <1.0 <1.0 <1.0 2.4-Dimethylphenol <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Acetophenone mg/kg 1 2-Nitrophenol mg/kg 1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 bis-(2-Chloroethoxy)-methane mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 2,4-Dichlorophenol 1 mg/kg 1,2,4-Trichlorobenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg <1.0 2,4-Dinitrophenol <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ma/ka <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Naphthalene <1.0 <1.0 <1.0 <1.0 mg/kg 1 Hexachlorobutadiene mg/kg 1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 4-Chloro-3-methylphenol 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <10 <1.0 mg/kg 2-Methylnaphthalene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 1 2,4,6-Trichlorophenol <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 1 n-Nitrosopiperidine <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1 mg/kg 2.4.5-Trichlorophenol <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1 <1.0 <1.0 mg/kg 2-Chloronaphthalene mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Dimethyl Phthalate 1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg 2.6-Dinitrotoluene <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg 1 Acenaphthylene 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Benzoic Acid 1 mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Acenaphthene mg/kg <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 2.4-Dinitrotoluene <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 1 <10 <10 <10 <10 <10 <10 Diethyl Phthalate mg/kg 1 <10 <10 <10 <10 <10 <10 4-Nitrophenol mg/kg 1 <1.0 <1.0 <10 <1.0 <1.0 <1.0 <10 <10 <10 <1.0 <10 <10 4-Chlorophenyl Phenyl Ether 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg Fluorene 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg Carbazole <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 4-Bromophenyl Phenyl Ether <1.0 <1.0 <1.0 <1.0 mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Hexachlorobenzene mg/kg Pentachlorophenol mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 2,6-Dichlorophenol <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 2.2 Phenanthren mg/kg 1 Anthracene 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg Di-n-butyl Phthalate 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ma/ka <1.0 <1.0 <1.0 <1.0 2.4 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Fluoranthene mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 n-Nitrosodibutvlamine mg/kg 1 <1.0 <1.0 Pyrene mg/kg 1 <10 <1.0 <10 <10 <10 <1.0 <10 <10 <10 <1.0 <10 1.9 Butyl Benzyl Phthalate mg/kg 1 <10 <1.0 <1.0 <10 <1.0 <1.0 <10 <10 <10 <1.0 <10 <10 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1.5 Benzo(a)anthracene mg/kg 1.1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Chrysene mg/kg 1,2,4,5-Tetrachlorobenzene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1 <1.0 mg/kg bis-(2-Ethylhexyl)-phthalate <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 1 Di-n-octyl Phthalate <10 <10 <10 <10 <10 <10 <10 <10 mg/kg 1 <10 <10 <10 <10 Benzo(b)fluoranthene 1 <10 <10 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 1.1 mg/kg Hexachlorocyclopentadiene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Benzo(k)fluoranthene 1 mg/kg Benzo(a)pyrene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Indeno(1,2,3-c,d)pyrene 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg <1.0 Dibenz(a,h)anthracene mg/kg 1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 Benzo(g,h,i)perylene mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 2-Nitroaniline <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <10 <1.0 <1.0 <10 <1.0 mg/kg 1 3-Nitroaniline <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Pentachlorobenzene 1 mg/kg <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1.2-Diphenvlhvdrazine <1.0 <1.0 ma/ka 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1-Naphthylamine 1 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg <1.0 <1.0 <1.0 2-Naphthylamine mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 2,3,4,6-Tetrachlorophenol 1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 mg/kg 4-Nitroaniline 1 <10 <1.0 <1.0 <10 <1.0 <1.0 <1.0 <10 <10 <1.0 <10 <1.0 mg/kg 2-Methyl-4,6-dinitrophenol <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1 mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 diphenylamine&diphenylnitrosam mg/kg <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 Phenacetin mg/kg 1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 4-Aminobiphenv <1.0 <1.0 <1.0 mg/kg 1 Benzidine mg/kg 1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 Dimethylaminoazobenzene 1 <10 <10 <1.0 <10 <10 <10 <10 <10 <10 <1.0 <10 <10 mg/kg n-Nitrosodimethylamine <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 1 <1.0 ,3-Dichlorobenzidine <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 mg/kg 7,12-Dimethylbenz(a)anthracene <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1 mg/kg <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 3-Methvlcholanthrene mg/kg VOC Dichlorodifluoromethane ug/kg <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 5 Chloromethane <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 ug/kg 5 Chloroethane ug/kg 5 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Bromomethane <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 ug/kg <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 Trichlorofluoromethane 5 ug/kg <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 1.1-Dichloroethene ug/kg 5

TD07	TDOO	TDOO	TD04	TDOO	TDOA	TDOO
TP27	TP29	TP30	TP31	TP33	TP34	TP36
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0 <1.0						
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0 <1.0						
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0 <1.0						
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0 <1.0						
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0 <1.0						
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0 <1.0						
<1.0	<1.0	<1.0	<1.0	<1.0	1.3	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0 <1.0						
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0 <1.0						
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0 <1.0						
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0
<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0 <1.0						
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0
<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

Bulk Soil Results

																		il Result									
Sample Ref	Unito	LOD	SGVs ¹	RPS GAC ²	LQM/CIEH ³	DTV⁴	DIV⁵	TP39	TP41	TP42	TP44	TP47	TP48	TP50	TP51	TP53	TP56	TP58	TP60	TP62	TP65	TP67	TP70	TP72	TP73	TP74	TP77
Analyte 2-Methylphenol	Units mg/kg	1	3678	RP5 GAC			DIV	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3&4-Methylphenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibenzofuran	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
bis-(2-Chloroisopropyl)-ether	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Nitroso-di-n-propylamine	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachloroethane	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Nitrobenzene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isophorone	mg/kg	1						<1.0 <1.0	<1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0							
2,4-Dimethylphenol Acetophenone	mg/kg mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0
2-Nitrophenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
bis-(2-Chloroethoxy)-methane	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dichlorophenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trichlorobenzene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dinitrophenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachlorobutadiene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chloro-3-methylphenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Methylnaphthalene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4,6-Trichlorophenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Nitrosopiperidine 2,4,5-Trichlorophenol	mg/kg mg/kg	1						<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0												
2,4,5-1 richlorophenol 2-Chloronaphthalene	mg/kg mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
Dimethyl Phthalate	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,6-Dinitrotoluene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthylene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzoic Acid	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acenaphthene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dinitrotoluene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diethyl Phthalate	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Nitrophenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chlorophenyl Phenyl Ether	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Fluorene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbazole 4-Bromophenyl Phenyl Ether	mg/kg mg/kg	1						<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0							
Hexachlorobenzene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Pentachlorophenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,6-Dichlorophenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Phenanthrene	mg/kg	1						<1.0	<1.0	<1.0	1.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Anthracene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Di-n-butyl Phthalate	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Fluoranthene	mg/kg	1						<1.0	<1.0	<1.0	1.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Nitrosodibutylamine	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Pyrene	mg/kg	1						<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
Butyl Benzyl Phthalate Benzo(a)anthracene	mg/kg mg/kg	1						<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0
Chrysene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4,5-Tetrachlorobenzene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
bis-(2-Ethylhexyl)-phthalate	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Di-n-octyl Phthalate	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(b)fluoranthene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachlorocyclopentadiene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(k)fluoranthene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzo(a)pyrene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Indeno(1,2,3-c,d)pyrene	mg/kg	1						<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	mg/kg mg/kg	1						<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0
2-Nitroaniline	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3-Nitroaniline	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Pentachlorobenzene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Diphenylhydrazine	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1-Naphthylamine	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Naphthylamine	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,3,4,6-Tetrachlorophenol	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Nitroaniline	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Methyl-4,6-dinitrophenol diphenylamine&diphenylnitrosam	mg/kg mg/kg	1						<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0												
Phenacetin	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Aminobiphenyl	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzidine	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dimethylaminoazobenzene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Nitrosodimethylamine	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3,3-Dichlorobenzidine	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
7,12-Dimethylbenz(a)anthracene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3-Methylcholanthrene	mg/kg	1						<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
VOC									_				_														
Dichlorodifluoromethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloromethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroethane	ug/kg	5 5						<5.0 <5.0	<5.0	<5.0 <5.0	<5.0	<5.0	< 5.0	<5.0	< 5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0
Bromomethane Trichlorofluoromethane	ug/kg ug/kg	5						<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0								
nonioronuoroniethane		5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1-Dichloroethene	ug/kg							~J.U	NU 11	, <u>`</u>	~J.U	- <u></u>	~ J.U	, ~J.U	- ~J.U	, ~J.U	- ~J.U	1 ~0.0	- S.U	, <u>~</u> J.U	, <u>~</u> 0.0	- <u>-</u>	, ~J.U	1 20.0	~J.U	~U.U	

										Bul	k Soil R	esults														
Sample Ref								TP2	TP4	TP7	TP10	TP13	TP15	TP17	TP18	TP20	TP22	TP24	TP25	TP27	TP29	TP30	TP31	TP33	TP34	TP36
Analyte	Units	LOD	SGVs ¹	RPS GAC ²	LQM/CIEH ³	DTV ⁴	DIV⁵						-													
Dichloromethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
trans-1.2-Dichloroethene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1.1-Dichloroethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
cis-1.2-Dichloroethene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2,2-Dichloropropane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chloroform	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromochloromethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1.1.1-Trichloroethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1-Dichloropropene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Trichloroethene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromodichloromethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Dibromomethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
cis-1.3-Dichloropropene	ug/kg	5						<5.0	-	<5.0	<5.0	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	<5.0	<5.0	<5.0	<5.0
Toluene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Carbon Tetrachloride	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinvl Chloride	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,3-Dichloropropane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Tetrachloroethene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Dibromochloromethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dibromoethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chlorobenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1.1.1.2-Tetrachloroethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Ethylbenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
m&p-Xylene	ug/kg	10						<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
o-Xylene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Styrene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromoform	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
iso-Propylbenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,2,2-Tetrachloroethane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2,3-Trichloropropane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
n-Propylbenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromobenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Chlorotoluene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,3,5-Trimethylbenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Chlorotoluene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
tert-Butylbenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2,4-Trimethylbenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
sec-Butylbenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
p-lsopropyltoluene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,3-Dichlorobenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
n-Butylbenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1.2-Dichlorobenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dibromo-3-chloropropane	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2,4-Trichlorobenzene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Hexachlorobutadiene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Naphthalene	ug/kg	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1.2.3-Trichlorobenzene	ua/ka	5						<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
¹ Revised Soil Guideline Value (SGV) pub		, v			1			1 0.0		0.0		0.0	0.0				5.0	0.0	1 3.0	0.0	5.5	5.0		5.0	0.0	<u></u>

 Revised Soil Guideline Value (SGV) published by Defra

 2
 RPS Generic Assessment Criteria

³ The LQM/ CIEH Generic Assessment Criteria for Human Health Risk Assessment (2nd Edition)

⁴ Dutch Target Value

⁵ Dutch Intervention Value

Bulk Soil Results

		-															Result	•								
Sample Ref							TP39	TP41	TP42	TP44	TP47	TP48	TP50	TP51	TP53	TP56	TP58	TP60	TP62	TP65	TP67	TP70	TP72	TP73	TP74	TP77
Analyte	Units	LOD	SGVs ¹	RPS GAC ² LQM/CIE	H ³ DTV ⁴	DIV⁵																				
Dichloromethane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
trans-1,2-Dichloroethene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1.1-Dichloroethane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
cis-1.2-Dichloroethene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2,2-Dichloropropane		5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	ug/kg	5																								
Chloroform	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromochloromethane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,1-Trichloroethane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1-Dichloropropene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloroethane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichloropropane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Trichloroethene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromodichloromethane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Dibromomethane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
cis-1,3-Dichloropropene	ug/kg	5					<5.0	-	-	-	-	-	-	-	<5.0	<5.0	-	<5.0	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Toluene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
trans-1,3-Dichloropropene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,2-Trichloroethane		5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
, ,	ug/kg																									
Carbon Tetrachloride	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Vinyl Chloride	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,3-Dichloropropane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Tetrachloroethene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Dibromochloromethane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dibromoethane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Chlorobenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,1,2-Tetrachloroethane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Ethylbenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
m&p-Xylene	ug/kg	10					<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
o-Xylene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Styrene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromoform	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
iso-Propylbenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,2,2-Tetrachloroethane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2,3-Trichloropropane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
n-Propylbenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bromobenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Chlorotoluene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,3,5-Trimethylbenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Chlorotoluene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
		5																								<5.0
tert-Butylbenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
1,2,4-Trimethylbenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
sec-Butylbenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
p-Isopropyltoluene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,3-Dichlorobenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
n-Butylbenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dichlorobenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dibromo-3-chloropropane	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2,4-Trichlorobenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Hexachlorobutadiene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Naphthalene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1.2.3-Trichlorobenzene	ug/kg	5					<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
¹ Revised Soil Guideline Value (SGV) pu	00	, v						0.0	0.0	5.0	0.0	5.0	5.0	5.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0
² RPS Generic Assessment Criteria																										
³ The LQM/ CIEH Generic Assessment (I Critoria for Uumon	Health Rick Acco	eemont (and Editio	ומכ																						
	uteria ior Human	i ieaitti rtisk ASSe	ssineni (Zna Editio	וות																						
⁴ Dutch Target Value																										

⁴ Dutch Target Value
 ⁵ Dutch Intervention Value

											Soil Le	achate Re	sults											
Sample Ref						TP2	TP4	TP7	TP10	TP13	TP15	TP17	TP18	TP20	TP22	TP24	TP25	TP27	TP29	TP30	TP31	TP33	TP34	TP36
Analyte	Units	LOD	IGV ¹	DTV ²	DIV ³																			
Leachate BSEN 10:1 extract																								
				0.005(s)																				
Molybdenum, Soluble WAC	ma/l	0.002		0.005(s) 0.0036 (d)		<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.002	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.005	<0.0020	<0.0020	<0.0020	<0.0020
	<u> </u>			· · · · ·	0.00																			
Antimony, Soluble WAC	mg/l	0.006	0.01	0.00015(d)	0.02	<0.0060	<0.0060	<0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	<0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Arsenic, Soluble WAC	mg/l	0.005	0.01			< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
Barium, Soluble WAC	mg/l	0.01	0.1			< 0.010	0.053	< 0.010	< 0.010	< 0.010	< 0.010	0.018	0.01	< 0.010	0.02	0.027	0.032	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<0.010
Cadmium, Soluble WAC	mg/l	0.0001	0.005			<0.00010	< 0.00010	< 0.00010	< 0.00010	<0.00010	<0.00010	< 0.00010	< 0.00010	<0.00010	<0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	<0.00010	<0.00010
Chromium, Soluble WAC	mg/l	0.0025	0.03			<0.0025	< 0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	<0.0025	<0.0025	< 0.0025	<0.0025	<0.0025	<0.0025	<0.0025	< 0.0025
Copper, Soluble WAC	mg/l	0.01	0.03			<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Lead, Soluble WAC	mg/l	0.01	0.01			<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Mercury, Soluble WAC	mg/l	0.0005	0.001			<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Nickel, Soluble WAC	mg/l	0.02	0.02			<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Selenium, Soluble WAC	mg/l	0.01	-	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Zinc, Soluble WAC	mg/l	0.025	0.1			<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Chloride as Cl	mg/l	0.9	30			<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	1.1	<0.9	<0.9	1.2	<0.9	<0.9	<0.9	<0.9	1.2	<0.9	1.2
Nitrate as NO3	mg/l	1.3	25			2.6	<1.3	<1.3	<1.3	1.9	<1.3	<1.3	1.9	3.3	<1.3	3.5	4	<1.3	1.8	1.5	<1.3	<1.3	<1.3	3.7
Nitrite as N	mg/l	0.006				0.015	0.009	<0.006	0.024	0.008	0.009	0.043	0.044	0.043	< 0.006	0.1	0.255	<0.006	0.011	0.037	<0.006	<0.006	<0.006	0.148
Sulphate as SO4	mg/l	1	200			8.4	24.9	1.5	3.9	2.6	3.7	21.7	21.4	2.8	15	12.5	44.6	<1.0	1	74.3	2.8	7.8	3.2	16.5
Solids, Tot Dissolved 180 DegC	mg/l	12	1000			70	64	45	66	74	47	105	81	66	34	64	166	24	47	168	34	43	41	98
TOC (Filtered)	mg/l	0.7	No abnormal change	е		3.69	1.33	1.46	3.22	1.78	2.61	3.42	4.44	4.78	1.05	5.17	6.35	1.59	2.91	3.52	1.91	2.19	2.19	5.82
Phenols Mono (Phenol Index)	mg/l	0.15	0.0005	0.0002	2	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
Fluoride as F	mg/l	0.2				0.4	0.3	0.7	0.8	0.5	0.5	0.4	0.4	0.7	0.3	0.5	0.4	0.4	0.6	0.6	0.6	0.6	0.8	0.5
Nitrite as N0 ₂	mg/l	0	0.1			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.26	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.73
Phosphate as P, Soluble	mg/l	0.011				<0.011	<0.019	<0.011	<0.011	<0.019	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.019	<0.011	<0.011	<0.011	<0.011
¹ Interim Guideline Values							-			-									-					
² Dutch Guidance Tarret Values																								

¹ Interim Guideline Values ² Dutch Guidance Target Values ³ Dutch Intervention Values

- 1. 4 -						TP39	TP41	TP42	TP44	TP47	TP48	TP50	TP51	TP53	TP56	TP58	TP60	TP62	TP65	TP67	TP70	TP72	TP73	TP74	TP77
alvte	Units	LOD	IGV ¹	DTV ²	DIV ³																				
achate BSEN 10:1 extract																									
	_			0.005(s)																					
lybdenum, Soluble WAC	mg/l	0.002		0.0036 (d)		<0.0020	<0.0020	<0.0020	0.002	0.003	0.003	0.002	0.002	<0.0020	0.005	<0.0020	<0.0020	<0.0020	0.02	0.004	0.006	0.002	<0.0020	<0.0020	< 0.0020
timony, Soluble WAC	mg/l	0.006		0.00015(d)	0.02	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060
senic, Soluble WAC	mg/l	0.005	0.01			<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
rium, Soluble WAC	mg/l	0.01	0.1			<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.01	0.029	<0.010	0.034	<0.010	0.027	<0.010
dmium, Soluble WAC	mg/l	0.0001	0.005			<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	< 0.0001
romium, Soluble WAC	mg/l	0.0025	0.03			<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	< 0.0025
pper, Soluble WAC	mg/l	0.01	0.03			<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.015	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
ad, Soluble WAC	mg/l	0.01	0.01			<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010
ercury, Soluble WAC	mg/l	0.0005	0.001			<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	< 0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050
kel, Soluble WAC	mg/l	0.02	0.02			<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	< 0.020	<0.020	< 0.020	< 0.020	< 0.020
lenium, Soluble WAC	mg/l	0.01	-	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	< 0.010
ic, Soluble WAC	mg/l	0.025	0.1			<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025	< 0.025	< 0.025	< 0.025
loride as Cl	mg/l	0.9	30			<0.9	<0.9	<0.9	1.6	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	2.6	1.5	1.2	<0.9	<0.9
rate as NO3	mg/l	1.3	25			<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	1.9	<1.3	<1.3	<1.3	<1.3	2.5	<1.3	2.3	2.1	6	4.6	2.8	2.1	1.7
rite as N	mg/l	0.006				< 0.006	0.021	0.015	< 0.006	0.028	0.022	0.033	0.025	0.006	< 0.006	0.008	0.009	0.027	0.041	0.124	0.104	0.086	< 0.006	0.129	0.007
lphate as SO4	mg/l	1	200			5.3	8	10	25.2	17.7	25	12	11.8	9.2	8.2	14.5	27.7	12.6	41.4	44.8	40.6	26	26.5	86.9	17.8
lids, Tot Dissolved 180 DegC	mg/l	12	1000			63	94	84	90	115	125	118	105	59	56	111	92	113	153	160	131	112	79	201	86
OC (Filtered)	mg/l	0.7	No abnormal change			3.24	4.79	3.51	4.15	4.79	7.05	5.71	6.55	3.44	2.43	3.11	5.69	3.85	13	9.81	10.5	5.08	3.22	4.86	3.42
enols Mono (Phenol Index)	ma/l	0.15	0.0005	0.0002	2	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	< 0.15	<0.15	<0.15	<0.15	< 0.15
loride as F	mg/l	0.2			_	0.6	0.5	0.4	0.4	0.5	0.4	0.9	0.3	0.4	0.4	0.4	0.7	0.4	0.6	0.5	0.7	0.6	0.7	0.5	0.6
rite as N0 ₂	ma/l	0	0.1			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.61	0.51	< 0.5	<0.5	0.64	< 0.5
osphate as P. Soluble	ma/l	0.011	0.1			< 0.011	<0.019	0.031	<0.011	0.212	0.035	< 0.019	0.026	<0.011	<0.011	< 0.019	<0.011	< 0.019	<0.011	<0.011	<0.011	<0.011	<0.011	<0.04	<0.011

¹ Interim Guideline Values ² Dutch Guidance Target Values ³ Dutch Intervention Values

Stockpile Analytical Results

Bulk Compositional Analysis Results

	1			07.11			0.004.4	0.000 (sitional	,			0.000 (0.007.4	0.50 4		
Sample Reference			· · 1		DARDS	4	SP1-1	SP2-1	SP2-2	SP3-1	SP4-1	SP5-1	SP5-2	SP5-3	SP6-1	SP6-2	SP6-3	SP6-4(1)	SP6-4(2)	SP6-5(1)	SP6-5(2)	SP6-6	SP7-1	SP8-1	SP9-1	SP10-1
Analyte	Units	LOD	SGV ¹	LQM/CIEH ²	DTV ³	DIV⁴																			 '	
EN 12457-3 Leachate																									′	
Antimony as Sb, dry weight	mg/kg	1			3	15	1.8	<1.0	1.9	1.1	1.9	2	2.3	2.2	1.7	2.3	2.5	1.8	1.8	1.7	1.7	2	3.1	1.5	1.6	1.6
Arsenic as As, dry weight	mg/kg	1	43				16	14	15	21	14	19	17	18	12	14	24	21	16	18	9.9	16	18	12	16	10
Barium as Ba, dry weight	mg/kg	5			160	625	69	36	110	69	61	71	89	53	64	67	78	62	71	58	50	74	48	68	100	57
Cadmium as Cd, dry weight	mg/kg	0.2	1.8	0.53	0.8	12	1.2	0.66	1.6	0.49	1.1	5	1.4	1.3	1.2	1.3	1.1	1.5	1.1	0.85	1.2	1.2	1.9	1.3	1.5	1.6
				34600°																					1	
Chromium as Cr, dry weight	mg/kg	1					17	21	20	14	13	13	14	13	11	14	17	13	11	14	12	13	13	12	12	8.5
Copper as Cu, dry weight	mg/kg	5		524			37	19	34	25	26	27	34	30	20	28	29	25	26	22	19	29	43	28	26	24
Lead as Pb, dry weight	mg/kg	2			85	530	24	6.2	33	37	31	27	38	27	9.7	39	29	27	29	24	22	29	19	12	27	8.9
Mercury as Hg, dry weight	mg/kg	0.35	26 ⁶				<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35	<0.35
Molybdenum as Mo, dry weight	mg/kg	0.5			3	200	2.5	< 0.50	1.4	< 0.50	< 0.50	0.7	1.7	1.8	1.5	1.8	1.7	1.8	1.7	1.3	1.6	0.99	3.2	0.74	0.51	0.7
Nickel as Ni. dry weight	mg/kg	1	230		-	200	39	20	41	22	36	30	35	38	26	34	34	30	32	27	26	35	62	40	37	34
Selenium as Se, dry weight	mg/kg	0.35	120				0.89	< 0.35	0.96	0.66	1	0.84	1.7	0.84	0.81	1	0.81	< 0.35	0.62	0.53	1.9	1.1	1.8	0.49	0.76	0.58
Zinc as Zn, dry weight	mg/kg	5		618			100	43	160	61	93	410	96	120	63	110	85	78	78	63	64	84	81	68	82	67
Moisture Content Ratio at 105C	% ratio	0.1					0.6	9.03	12.74	1.94	8.22	2.77	2.56	1.86	1.31	1.89	1.92	2.35	2.71	2.04	1.41	2.88	8.7	3.73	2.03	2.13
Moisture at 105C	%	0.1					0.6	8.3	11	1.9	7.6	2.7	2.5	1.8	1.3	1.9	1.9	2.3	2.6	2	1.4	2.8	8	3.6	2	2.1
TOC by Ignition in O2	%	0.1					1.4	<0.10	0.36	2.4	2.3	1.5	1.7	2.5	2.3	1.8	1.6	1.5	2	1.7	2.2	1.5	0.79	1.4	1.3	1.8
PCB, Total of 7 Congeners	mg/kg	0.01					<0.010	<0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Mineral Oils, >C10 - C40 ⁶	mg/kg	50			50	5000	<50	54	<50	380	2700	81	81	260	200	76	130	210	290	83	220	<50	<50	<50	<50	<50
PAH (17) WAC ⁷												•														
Naphthalene	mg/kg	0.1		9.9			<0.10	<0.10	<0.10	0.27	0.53	0.11	0.32	<0.10	<0.10	0.12	0.3	0.23	0.24	0.21	0.45	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthylene	mg/kg	0.1		69			<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10	<0.10	<0.10
Acenaphthene	mg/kg	0.1		85			<0.10	<0.10	<0.10	0.12	< 0.10	<0.10	0.26	0.12	<0.10	<0.10	0.11	<0.10	<0.10	0.11	0.22	< 0.10	<0.10	<0.10	<0.10	< 0.10
Fluorene	mg/kg	0.1		67			<0.10	<0.10	<0.10	<0.10	0.11	<0.10	0.23	<0.10	<0.10	<0.10	0.18	0.13	0.12	<0.10	0.57	<0.10	<0.10	<0.10	<0.10	<0.10
Phenanthrene	mg/kg	0.1		38			0.13	<0.10	<0.10	1.2	1	0.25	1.3	0.17	<0.10	0.24	0.66	0.87	0.51	0.47	1.7	0.26	<0.10	<0.10	<0.10	<0.10
Anthracene	mg/kg	0.1		950			<0.10	<0.10	<0.10	0.47	0.35	0.15	0.61	<0.10	<0.10	<0.10	0.26	0.51	0.21	0.31	0.64	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	mg/kg	0.1		130			0.12	<0.10	<0.10	1.7	2.2	0.66	2.5	<0.10	<0.10	0.25	0.61	1.9	0.61	1.2	1.8	0.17	<0.10	<0.10	<0.10	<0.10
Pyrene	mg/kg	0.1		270			0.11	<0.10	<0.10	1.7	2	0.64	2	0.25	<0.10	0.36	0.58	1.7	0.41	1	0.34	0.21	<0.10	<0.10	<0.10	<0.10
Benzo(a)anthracene	mg/kg	0.1		5.5			<0.10	<0.10	<0.10	0.85	1.2	0.36	1	0.17	<0.10	0.2	0.35	0.86	0.2	0.55	0.45	0.11	<0.10	<0.10	<0.10	<0.10
Chrysene	mg/kg	0.1		5.8			<0.10	<0.10	<0.10	0.76	1.2	0.35	0.91	0.17	<0.10	0.18	0.29	0.8	0.17	0.49	0.18	0.12	<0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	mg/kg	0.1		7.4			<0.10	<0.10	<0.10	0.66	1.1	0.33	0.72	0.15	<0.10	0.17	0.26	0.55	0.14	0.32	0.13	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	mg/kg	0.1		14			<0.10	<0.10	<0.10	0.42	0.66	0.2	0.48	<0.10	<0.10	<0.10	0.16	0.37	0.1	0.24	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	mg/kg	0.1		1.2			<0.10	<0.10	<0.10	0.85	1.2	0.39	1	0.23	<0.10	0.17	0.28	0.67	0.17	0.42	0.14	<0.10	<0.10	<0.10	<0.10	<0.10
Dibenz(a,h)anthracene	mg/kg	0.1		1.5			<0.10	<0.10	<0.10	<0.10	0.13	<0.10	0.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(g,h,i)perylene	mg/kg	0.1		120			<0.10	<0.10	<0.10	0.72	0.88	0.34	0.68	0.19	<0.10	0.14	0.22	0.61	0.14	0.37	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1		3.8			<0.10	<0.10	<0.10	0.72	0.84	0.36	0.64	0.18	<0.10	0.11	0.2	0.53	0.15	0.37	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Coronene	mg/kg	0.1					<0.10	<0.10	<0.10	0.12	0.16	<0.10	0.12	<0.10	<0.10	<0.10	<0.10	0.3	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
PAH, Total of 17 WAC	mg/kg	1					<1.0	<1.0	<1.0	11	14	4.1	13	1.6	<1.0	1.9	4.4	10	3.2	6.1	6.7	<1.0	<1.0	<1.0	<1.0	<1.0
Dry Ratio (BSEN 12457)	%						99.4	91.72	88.7	98.1	92.41	97.3	97.5	98.17	98.71	98.15	98.12	97.71	97.36	98	98.61	97.2	92	96.4	98.01	97.91
BTEX 327 Headspace GCMS mg/kg																										
Benzene ⁷	mg/kg	0.1	0.07		0.01	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Toluene	mg/kg	0.1	120				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	mg/kg	0.1	90				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
m&p-Xylene	mg/kg	0.2	160 ⁷				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
o-Xylene	mg/kg	0.1	160				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
										•				-		•				•		•	•			

¹ Soil Guideline Value

² The LQM/ CIEH Generic Assessment Criteria for Human Health Risk Assessment (2nd Edition)

³ Dutch Target Value

⁴ Dutch Intervention Value

⁵ Standard for Chromium III used from LQM

⁶ Value for Elemental Mercury used for SGV

⁷ Standard for p-xylene used for SGV

Waste Acceptance Criteria Results

Sample Ref				SP1-1	SP2-1	SP2-2	SP3-1	SP4-1	SP5-1	SP5-2	SP5-3	SP6-1	SP6-2	SP6-3	SP6-4(1)	SP6-4(2)	SP6-5(1)	SP6-5(2)	SP6-6	SP7-1	SP8-1	SP9-1	SP10-1
			WAC ¹ : Inert																				í
		LOD	10:1 Conc Leachate																				1
Analyte	Units	(mg/kg)	mg/kg																				1
Leachate BSEN 10:1 extract																							
Molybdenum, Soluble WAC	mg/kg	0.02	0.5	0.06	0.09	0.23	0.06	<0.02	0.1	0.17	< 0.02	0.03	0.08	0.05	0.06	0.08	0.08	0.07	0.17	0.02	0.06	0.08	0.08
Antimony, Soluble WAC	mg/kg	0.06	0.06	<0.06	< 0.06	< 0.06	<0.06	<0.06	<0.06	< 0.06	< 0.06	< 0.06	<0.06	<0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	<0.06	< 0.06	< 0.06
Arsenic, Soluble WAC	mg/kg	0.05	0.5	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Barium, Soluble WAC	mg/kg	0.1	20	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.11	<0.1	<0.1	<0.1	<0.1	<0.1	0.12	<0.1	0.12	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium, Soluble WAC	mg/kg	0.001	0.04	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.0010	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Chromium, Soluble WAC	mg/kg	0.025	0.5	<0.025	<0.025	<0.025	0.03	<0.025	< 0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	< 0.025	<0.025	<0.025	<0.025
Copper, Soluble WAC	mg/kg	0.1	2	<0.1	<0.1	0.13	0.2	<0.1	0.15	0.18	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.14	<0.1
Lead, Soluble WAC	mg/kg	0.1	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mercury, Soluble WAC	mg/kg	0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Nickel, Soluble WAC	mg/kg	0.2	0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Selenium, Soluble WAC	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Zinc, Soluble WAC	mg/kg	0.25	4	0.3	0.31	0.33	0.31	<0.25	0.31	0.6	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	0.26	0.27	0.27	0.28	0.29
Chloride as Cl	mg/kg	9	800	26	15	26	22	17	14	46	43	12	23	<9	<9	37	<9	47	20	21	19	21	12
Sulphate as SO4	mg/kg	10	1000	<10	98	124	313	618	160	201	116	71	170	159	227	842	415	357	307	13	<10	26	11
Solids, Tot Dissolved 180 DegC	mg/kg	120	4000	970	950	1060	1140	1300	780	800	970	450	990	830	920	1760	1470	1450	910	300	480	1250	370
TOC (Filtered)	mg/kg	7	30000	18.3	63.6	82.1	49.8	28.8	69.5	70.8	63.4	26.5	71.3	57.4	66.6	48.6	51.3	48.2	26.9	14.5	16.7	17.8	17.5
Phenols Mono (Phenol Index)	mg/kg	1.5	1	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Fluoride as F	mg/kg	2	10	<2	11	26	3	4	4	4	5	5	5	4	5	4	4	4	4	5	8	6	3
¹ Waste Acentance Criteria for inert landfill	le ac cot out in	Council Doois	aion 2002/22/EC																				

¹ Waste Aceptance Criteria for inert landfills as set out in Council Decision 2003/33/EC

Groundwater Analytical Results

ults
Resi
ater
Ndk
Grou
U

Sample Ref				STANDARDS	ARDS		G1 Groundwater	G2 Groundwater	Castle Baggot House
Analyte	Units	ГОР	2010 Regs ¹	EQS/ IGV ²	DTV ³	DIV ⁴			
Barium, Filtered as Ba	mg/l	0.0006		0.1			0.084	0.051	0.012
Cadmium, Filtered as Cd	mg/l	0.0006	0.00375	0.005			<0.0006	<0.0006	<0.0006
Chromium, Filtered as Cr	mg/l	0.0007	0.0375	0.03			2000'0	2000.0	<0.0007
Copper, Filtered as Cu	mg/l	0.001	1.5	0.03			0.001	0.001	<0.001
Lead, Filtered as Pb	mg/l	0.005	0.018	0.01			<0.005	<0.005	<0.005
Mercury, Filtered as Hg	mg/l	0.0001	0.00075	0.001			<0.0001	<0.0001	<0.0001
Molybdenum, Filtered as Mo	l/gm	0.002			0.005 (s) 0.0036 (d)	0.3	<0.002	<0.002	<0.002
Nickel, Filtered as Ni	mg/l	0.002	0.015	0.02			<0.002	0.002	<0.002
Zinc, Filtered as Zn	mg/l	0.003		0.1			<0.003	0.031	<0.003
Chloride as Cl	mg/l	0.9	24 - 187.5	30			37.6	25.5	8.9
Nitrate as NO3	mg/l	1.3	37.5	25			<1.3	<1.3	2.1
Nitrite as N	mg/l	0.006	•	•	•	•	<0.006	<0.006	0.008
Sulphate as SO4	mg/l	~	187.5				110	79.3	35.6
Solids, Tot Dissolved 180 DegC	mg/l	12		1000	-		533	467	358
TOC (Filtered)	mg/l	0.7	-	No abnormal change	-	-	86'0	1.03	1.03
Phenols Mono (Phenol Index)	mg/l	0.15	0.0005		0.0002	2	<0.15	<0.15	<0.15
Fluoride as F	mg/l	0.2	Ł	Ļ			Ļ	0.7	<0.2
Antimony, Filtered as Sb	l/gm	0.0016			No Value (s) 0.00015 (d)	0.02	<0.0016	<0.0016	0.0028
Arsenic, Filtered as As	l/gm	0.0008	0.0075	0.01	0.01 (s) 0.0072 (d)	0.06	×0.0008	0.0014	0.0134
Nitrite as N02	mg/l	Calc.	0.375	0.1			<0.5	<0.5	<0.5
Selenium, Filtered as Se	l/gm	0.0016			No value (s) 0.00007 (d)	0.16	0.002	0.002	<0.0016
Phosphate as P, Soluble	mg/l	0.011					0.222	0.015	0.866

¹ European Communities Environmental Objectives (Groundwater) Regulations, 2010 (S.I. No. 9 of 2010) (Schedule 5) ² Interim Guideline Values for Groundwater as presented in EPA Interim Report "Towards Setting Guideline Values for the Protection of Groundwater in Ireland, 2002" Tables 3.1, 3.2, 3.3 ³ Dutch Target Values for "target value shallow" (s) and "target value deep" (d) ⁴ Dutch Intervention Value

Surface Water Analytical Results

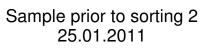
Results	
urfacewater	
Ñ	

STS Results Ref Sample Ref				STANDARDS			754391 S1 Surface	754391 S2 Surface	754391 S3 Surface	754391 S4 Surface
Analyte	Units	ſ	EPA Landfill Monitoring Manual 2003	Surface Water R	tegulations 2009	IGV's for groundwater 2003	Downstream Griffen River	Upstream Griffen River	Car	Downstream Cammock River
			MRV 'clean'	AA-EQS Inland surface water ²	MAC-EQS Inland surface water ³	IGV's ⁴				
Boron, Filtered as B Cadmium, Filtered as Cd Calaium Eitherad as Ca	//gm //gm	0.12 0.0006	0.005	0.00025	0.0015	1.0 0.005	<0.12 <0.0006	<0.12 0.0006 173	<0.12 <0.0006 135	<0.12
Calcium, Filtered as Ca Chromium, Filtered as Cr Conner Filtered as Cu	//gm //gm	0.0007	0.005	0.03	,	0.03	<0.0007	6.1<0.0007<0.0007	 <0.0007 <0.0007 	0000>
Iron, Filtered as Fe Lead, Filtered as Pb	l/gm	0.19	0.05	0.0072	n/a	0.01	<0.19	<0.05	<0.05	<0.19<0.005
Magnesium, Filtered as Mg Manganese, Filtered as Mn	l/gm l/gm	0.25 0.004	1 0.02			50 0.05	7.89 0.026	8.54 0.033	7.49 0.037	7.45 0.128
Mercury, Filtered as Hg Nickel, Filtered as Ni	mg/l mg/l	0.0001 0.002	0.0001 0.005	0.00005	0.00007 n/a	0.001	<0.0001 <0.002	<0.0001 <0.002	<0.0001 <0.002	<0.0001 <0.002
Potassium, Filtered as K Sodium, Filtered as Na	mg/l mg/l	0.18 0.31				5 150	1.95 8.7	1.59 10.2	3.42 16.9	0.83 6.6
Zinc, Filtered as Zn Conductivity- Electrical 20C	mg/l uS/cm	0.003 30	0.008 10	0.1		0.1 1000	<0.003 579	<0.003 682	0.004 617	0.005
Alkalinity as CaCO3 Ammoniacal Nitrogen as N	mg/l	2:2 0.19 2.5	5 0.05 0			no abnormal change	260 <0.19	30/ <0.19	226 <0.19	304 <0.19
Chloride as Cl Nitrogen, Total Oxidised as N	ng/l	0.9	7 5			30	23.5<0.29<0.20	21.1 <0.29	38.3 <0.29	19.4 <0.29
Phosphate, Ortho as P Sulphate as SO4	l/gm	0.08	20			200	<0.08 52.8	<0.08 70.8	<0.08 74.3	<0.08 45.5
Suspended Solids BOD + ATU (5 day)	mg/l mg/l	0.5	5				3 <1	4 2	16 <1	2 6
COD (Total) Cyanide, Total as CN	l/gm	11 0.009	10 0.01	0.01	-	0.01	<11 <0.009	<11 <0.009	<11 <0.009	<11 <0.009
Fluoride as F Atrazine	l/ɓn	0.2 0.04	0.1 0.1	0.5	- 2	1	<0.2 <0.040	<0.2 <0.040	<0.2 <0.040	<0.2 <0.040
Simazine Acenaphthene	l/ɓn l/ɓn	0.04 0.01	0.1 0.1	1	4		<0.040 <0.01	<0.040 <0.01	<0.040 <0.01	<0.040 <0.01
Acenaphthylene Anthracene	l/bn	0.01	0.1				<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Benzo (a) anthracene Benzo (g,h,i) perylene	l/bn	0.01	0.1				<0.01	<0.01	<0.01	<0.01
Benzo (a) pyrene Benzo (b) fluoranthene	l/bn	0.01	0.1				<0.01	<0.01 <0.01	<0.01 <0.01	<0.01
Benzo (k) fluoranthene Chrysene	l/bn	0.01	0.1				<0.01	<0.01	<0.01	<0.01
Dibenz (a,h) anthracene Fluoranthene	l/gu	0.01	0.1 0.1	0.1	-		<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Fluorene Indeno (1,2,3) cd pyrene	l/ɓn	0.01 0.01	0.1 0.1				<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Naphthalene Phenanthrene	l/bn	0.01	0.1	2.4	n/a		<0.01	<0.01	<0.01 <0.01	<0.01 <0.01
Pyrene PAH, Total	l/bn	0.01	0.1 0.1				<0.01 <0.01	<0.01 <0.01	<0.01 <0.01	<0.01 <0.01
Tributyl Tin Arsenic, Filtered as As	//gn	0.02	0.005				<0.02<0008	<0.02<0008	<0.008	<0.02 0.001
SVOC	l/bn	-	0 1	α.	46		y <10	y <10	×10	y 10
Bis(2-chloroethyl)ether	l/bn		0.1		2		6 0 0 0 0 0 0 0 0 0 0	21.0 21.0	0.12	6 0 0 0 0
 2-Critical Optication 1,3-Dichlorobenzene 	l/Bn	~ ~	0.1				0. 0. 0. 0. 7 7 7 7 7 7 7 7 7 7 7 7	21.0 21.0	0.12	0. V 0. V
2-Methylphenol	l/Bn		0.0				0.12	0.1.0	0.0	0.12
3&4-Ivietnyipnenoi Dibenzofuran	l/bn		0.1				 	0.12	0.0 2.0 2.0	0.10 1.0
Bis(2-chloroisopropyl)ether	l/bn		0.1					0.12	0.2	0.10
n-Nitrosodi-n-propylamine Hexachloroethane	l/bn		0.1				<1.0 <1.0	<1.0	<1.0	<1.0 <1.0
Nitrobenzene Isophorone	l/ɓn		0.1				<1.0 <1.0	<1.0 <1.0	<1.0	<1.0
2,4-Dimethylphenol 2-Nitrophenol	l/bn		0.1 0.1				<1.0	<1.0	<1.0	<1.0 <1.0
Bis(2-chloroethoxy)methane 2,4-Dichlorophenol	l/bn		0.1 0.1				<1.0<1.0	<1.0 <1.0	<1.0<1.0	<1.0 <1.0
1,2,4-Trichlorobenzene Naphthalene	l/gu	2	0.1				<1.0	<1.0 <2.0	<1.0	<1.0
Hexachlorobutadiene 4-Chloro-3-methvlphenol	ug/l ug/l		0.1	0.1	0.6		<1.0<1.0	<1.0	<1.0<1.0	<1.0
2-Methylnaphthalene 2.4.6-Trichlorophenol	ug/l ug/l		0.1				<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0
2,4,5-Trichlorophenol 2-Chloronaphthalene	ng/l	~ ~	0.1				<1.0	<1.0	 <1.0 <1.0 <1.0 	<1.0
Dimethylphthalate 2.6-Dinitrotoluene	l/bn		0.1				2 10 10	<1.0	 <td><1.0</td>	<1.0
Acenaphthylene Acenaphthene	l/bn		0.1				<1.0	<1.0 <1.0	<1.0	<1.0
2,4-Dinitrotoluene Diethvlphthalate	ng/l	~ ~	0.1				 	<1.0	<1.0	<1.0
4-Nitrophenol 4-Chlorophenvl phenvl ether	ug/l	1	0.1				<5.0	<5.0	<5.0	<5.0
Fluorene	l/bn	~ ~	0.1				 	<1.0	<1.0	<10
4-Bromophenyl Phenyl Ether	l/bn		0.1	100	0		<u>5</u> 0.0 7 7 7 7 7	21.0 21.0	0.12	<u>5</u> 0.7 7
Pentachlorophenol Dhenanthrana	l/bn		0.0	0.4	-		0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	21.0 21.0	0.12	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
Anthracene	l/bn		0.1	0.1	0.4		0.0. 7 7 7 7 7 7 7	21.0	0.12	0.10
Fluoranthene	l/bn		0.1				0.5 2	0.12	0.12	41.0
Enzyl Butyl Phthalate	l/bn		0.0				0.0	0.12	0.12	0.10
Chrysene	l/bn		0.0				<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.0<a>1.		<1.0	<
Bis(2-ethylnexyl)phthalate Di-n-octylphthalate	l/bn	Ω - -	0.1		-		0.65 1.0	< 0.02	0.02 <.1.0	<2.0<1.0
Benzo(b)fluoranthene Benzo(k)fluoranthene	l/bn	~ ~ ,	0.1	0.03	n/a n/a		7.0	<1.0	<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<	<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<
Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene	l/bn		0.0	c0.0 200.0	1.0 1/2		0.0.2	0.12	0.15 2.0	<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<1.0<
Dibenz(a,h,i)perylene Dibenz(a,h)anthracene	l/bn		0.1		n/a		< 	-1.0 -1.0 -2	<1.0	<1.0<1.0<1.0
Dichloromethane	l/bn	, ,	← <	10	n/a		× 1.0	× 1.0	× 1.0	41.0
I oluerie m.p-Xylene o-Xvlene	l/gu l/gu			0 0 0			<1.0	 	 <1.0 <1.0<td></td>	
2 232212	۲			2						;

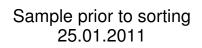
surfac

¹ Minimum Reporting Value for 'clean' (clean' waters refers to s 2 AA-EQS: Annual Average (Environmental Quality Standard) ³ MAC-EQS: Maximum Allowable Concentration (Environment ⁴ Interim Guideline Values

Characterisation Survey Results


	UNIT	TP2	TP 4	TP 7	TP 10	TP 13	TP 15	TP 17	TP 18	TP 20	TP 22	TP 24	TP 25	TP 27	TP 29	TP 30	TP 31	TP 33	TP 34	TP36	TP 39	TP 41
Date Characterised		02.02.2011	25.01.2011	04.02.2011	07.02.2011	24.01.2011	04.02.2011	01.02.2011	31.01.2011	04.02.2011	07.02.2011	31.01.2011	31.01.2011	04.02.2011	07.02.2011	25.01.2011	03.02.2011	04.02.2011	03.02.2011	31.01.2011	01.02.2011	26.01.2011
Sample Weight		452.680	740.750	330.035	392.970	562.150	502.525	383.065	553.390	399.425	536.490	461.665	448.935	542.260	422.390	489.375	600.220	508.955	510.990	514.140	507.765	356.640
Trial Pits Sampled	39																					
Biodegradable waste from garden & park	kg	2.110	0.055	0.225	0.310	0.045	0.060	0.940	<0.001	0.070			2.870		6.180	3.795	2.340		0.140	7.135	0.340	
Papers & Cardboard	kg								<0.001							0.040			<0.001			
Composites	kg		0.550					0.480					0.105			0.015						1
Textiles	kg			0.170				0.060				5.975	0.085			0.120		0.430				
Plastics	kg	0.110			< 0.001			0.305	0.360			0.055	0.270			0.285		0.310		0.110		0.370
Glass	kg		0.035		0.135	<0.001						<0.001	0.190		< 0.001	0.060		0.020			0.105	
Metals	kg			0.075				0.100				0.100	0.040								0.115	0.090
Wood	kg								0.010			0.065	0.075									0.125
Stones/rocks	kg	95.680	228.385	67.210	110.920	36.740	45.645	88.010	122.465	39.500	116.930	122.745	102.610	89.790	43.330	200.255	87.070	110.950	14.250	154.125	57.645	108.305
Soils	kg	349.650	511.110	262.355	281.260	525.330	456.820	285.885	326.210	359.670	419.560	327.990	339.555	451.730	372.310	282.415	510.410	392.375	496.580	351.665	449.150	244.810
Concrete	kg	0.045						0.220	37.565				0.035	0.700				4.780			0.280	
Bricks	kg	4.825			0.345		< 0.001	0.470	0.860	0.185		0.055	0.015	<0.001		0.140				0.075		0.005
Wire	kg																			<0.001		
Rope	kg											<0.001	0.010			0.050						
Natural Wood	kg	0.115	0.615			0.020		0.100	0.070			0.030	0.520	0.040	0.570	0.220	0.400	0.090	<0.001		0.130	0.210
Timber	kg							0.185					0.605			0.040						
Man Made Wood	kg							0.095			< 0.001		0.145			1.205			0.020			0.140
Ceramic	kg	0.145			< 0.001	0.015			0.175				0.495	<0.001		0.035				0.005		0.025
Tar	kg							6.215	65.675			4.650	1.310			0.700				1.025		2.560
Sample Size Total		452.680	740.750	330.035	392.970	562.150	502.525	383.065	553.390	399.425	536.490	461.665	448.935	542.260	422.390	489.375	600.220	508.955	510.990	514.140	507.765	356.640

	UNIT	TP 42	TP 44	TP 47	TP 48	TP 50	TP 51	TP 53	TP 56	TP 58	TP 60	TP 62	TP 65	TP 67	TP 70	TP 72	TP 73	TP 74	TP 77	TOTAL	%
Date Characterised		27.01.2011	28.01.2011	27.01.2011	28.01.2011	26.01.2011	27.01.2011	28.01.2011	28.01.2011	27.01.2011	28.01.2011	27.01.2011	01.02.2011	01.02.2011	02.02.2011	02.02.2012	04.02.2011	03.02.2013	03.02.2011		
Sample Weight		422.405	454.810	398.745	448.343	367.545	443.770	552.805	557.770	372.455	517.620	281.225	423.820	625.220	561.087	508.430	491.885	506.250	676.010		
Trial Pits Sampled	39																				
Biodegradable waste from garden & park	kg	0.080	0.305	0.190	0.115	1.260	0.285	0.440	0.005	0.060	0.115		8.780	1.480	0.712	1.350	0.095	5.440	3.720	51.047	0.27113705
Papers & Cardboard	kg													<0.001				<0.001		0.040	0.00021246
Composites	kg	3.835		2.045	<0.001				<0.001		29.435	0.175	0.045	0.225				<0.001		36.910	0.19604812
	kg	0.190			0.045						0.175	0.415				0.105				7.770	0.04127049
	kg	0.105	0.270	1.120	0.190	0.100		0.020	0.060	<0.001	0.900	0.175	0.110	0.265	<0.001	0.375		0.990		6.855	0.03641045
	kg		<0.001	<0.001		0.130			0.025	< 0.001	0.040				0.060	0.065		0.065		0.930	0.00493971
	kg		<0.001	0.540	0.750	0.180		2.135	<0.001		<0.001		0.695	0.185	0.060	0.825		0.520		6.410	0.03404683
	kg			0.760	<0.001											0.140				1.175	0.00624103
	kg	226.240	127.320	151.160	139.948	87.270	242.160	193.180	145.020	62.570	155.660	59.770	148.235	194.210	156.410	98.630	165.325	163.470	257.780	4816.918	25.585146
	kg	162.050	321.730	173.200	305.420	278.250	201.160	356.665	411.520	300.645	315.950	180.320	264.610	421.455	382.230	398.820	326.380	318.230	401.220	13516.695	71.794167
	kg	25.570	3.275	63.950	1.330			0.110	0.580	8.900	10.935	40.320	< 0.001	1.945	19.700	5.110		0.190	12.360	237.900	1.2636101
	kg		<0.001	3.200		<0.001		0.055	0.040	<0.001	2.610	<0.001	0.700	3.265	0.475	2.300		13.210		32.830	0.17437713
Wire	kg				0.105															0.105	0.00055771
Rope	kg																			0.060	0.00031869
Natural Wood	kg	0.585	0.075	0.235	0.235	0.120	0.165	0.120	0.055	0.145	0.075	0.050	0.470	1.955		0.290		0.555	0.175	8.435	0.04480265
Timber	kg		0.025	1.270	<0.001						1.030	<0.001	0.145							3.300	0.01752801
Man Made Wood	kg			0.050	0.205						0.020			0.235	0.995	0.145	0.085	3.440	0.020	6.800	0.03611832
Ceramic	kg			1.025	<0.001				<0.001	0.135	0.135		0.030	<0.001	0.195			0.090		2.505	0.01330535
Tar	kg	3.750	1.810			0.235		0.080	0.465		0.540		<0.001		0.250	0.275		0.050	0.735	90.325	0.47976285
																				0.000	0
Sample Size Total		422.405	454.810	398.745	448.343	367.545	443.770	552.805	557.770	372.455	517.620	281.225	423.820	625.220	561.087	508.430	491.885	506.250	676.010	18827.010	100



Characterisation Survey Photographs

TP02 Biodegradeable Waste

TP02 Brick

TP02 Ceramic

TP02 Concrete

TP02 Natural Wood

TP02 Plastic

TP02 Soil

TP04 Biodegradeable Waste from Garden and Park

TP04 Composite

TP04 Glass

TP04 Natural Wood

TP04 Stones

TP07 Biodegradeable Waste

TP07 Initial Sample

TP07 Metals

TP07 Soil

TP07 Textiles

TP10 Biodegradeable waste

TP10 Brick

TP10 Ceramics

TP10 Glass

TP10 Plastic

TP10 Soil

TP13 Soil less than 20mm TP15 Biodegradeable Waste 24.01.2011

TP15 Brick

TP15 Initial Sample

TP17 Biodegradable Waste from Garden

TP17 Brick

TP17 Concrete

TP17 Man Made Wood

TP17 Metals

TP17 Natural Wood

TP17 Other Composite Packaging

TP17 Plastics

TP17 Soil

TP17 Tar

TP17 Textile

TP17 Timber

TP17_Soil

TP18 Brick

TP18 Concrete

TP18 Ceramics

TP18 Biodegradable Waste from Garden

TP18 Natural Wood

TP18 Papers & Cardboard

TP18 Plastic

TP18 Tar

TP18 Wood

TP20 Biodegradeable Waste

TP20 Brick

TP20 Soil

TP22 Man Made Wood

TP22 Soil

TP24 Glass

TP24 Metals

TP24 Natural Wood

TP24 Plastic

TP24 Rope

TP24 Soil

TP24 Tar

TP24 Textile

TP24 Wood

TP24_

TP24_Soil

TP25 Biodegradable Waste from Garden

TP25 Brick

TP25 Ceramics

TP25 Concrete

TP25 Glass

TP25 Man Made Wood

TP25 Other Composite Packaging

TP25 Metals

TP25 Natural Wood

TP25 Plastic

TP25 Rope

TP25 Tar

TP25 Textile

TP25 Timber

TP25 Wood

TP25

TP27 Ceramics

TP27 Concrete

TP27 Natural Wood

TP29 Biodegradeable Waste

TP29 Initial Sample

TP29 Natural Wood

TP29 Plastic

TP29 Soil

TP30 Biodegradeable Waste from Garden and Park

TP30 Brick

TP30 Ceramics

TP30 Composites

TP30 Man Made Wood

TP30 Concrete

TP30 Glass

TP30 Natural Wood

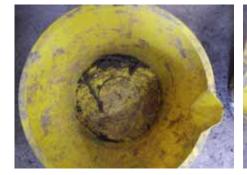
TP30 Plastic

TP30 Ropes

TP30 Sample Prior to Sampling 25.01.2011

TP30 Textiles

TP30 Timber


TP30 Unclassified Combustibles

TP33 Concrete

TP33 Glass

TP33 Initial Sample

TP33 Natural Wood

TP33 Plastic

TP33 Soil

TP33 Stones example

TP34 Initial Sample

TP33 Textile

TP34 Biodegradeable Waste

TP34 Natural Wood

TP34 Papers

TP36 Biodegradeable Waste from Garden and Park

TP36 Brick

TP36 Ceramics

TP36 Composites

TP36 Concrete

TP36 Glass

TP36 Metals

TP36 Plastic

TP36 Sample prior to sorting 26.01.2011

TP36 Soil

TP36 Timber

TP39 Biodegradable Waste from Garden

TP39 Concrete

TP39 Glass

TP39 Metals

TP39 Natural Wood

TP39 Soil

TP39

TP41 Ceramics

TP41 Man Made Wood

TP41 Metals

TP41 Natural Wood

TP41 Plastic

TP41 Sample prior to characterising 26.01.2011

TP41 Soil less than 20mm

TP41 Tar

TP41 Wood

TP42 Concrete

TP42 Metals

TP47 Biodegradable Waste from Garden

TP47 Plastic

TP47 Concrete

TP47 Natural Wood

TP47 Unclassified Incombustables

TP47 Textile

TP47_Concrete

TP47_Soil

TP50 Biodegradeable Wast from garden and park

TP50 Brick

TP50 Glass

TP50 Metals

TP50 Natural Wood

TP50 Plastic

TP50 Stones

TP50 Tar

TP51 Biodegradable Waste

from Garden

TP51 Ceramics

TP51 Concrete

TP51 Brick

TP51 Man Made Wood

TP51 Metals

TP51 Natural Wood

TP51 Plastic

TP51 Timber

TP51 Other Composite Packaging

TP51 Wood

TP51_Concrete

TP58 Biodegradable Waste from Garden

TP58 Brick

TP58 Ceramic

TP58 Concrete

TP58 Glass

TP58 Natural Wood

TP58 Plastic

TP58 soil

TP62 Ceramics

TP58 Sample prior to characterisation

TP62 Concrete

TP62 Natural Wood

TP62 Plastics

TP62 soil prior to characterisation

TP62 Unclassified Combustibles

TP62_Concrete

TP65 Biodegradable Waste from Garden

TP65 Brick

TP65 Ceramics

TP65 Concrete

TP65 Metals

Tp65 Natural Wood

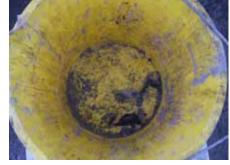
TP65 Other Composite Packaging

TP65 Soil prior to characterisation

TP65 Soil Sample

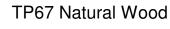
TP65 Tar

TP67 Biodegradable Waste from Garden


TP67 Brick

TP67 Ceramics

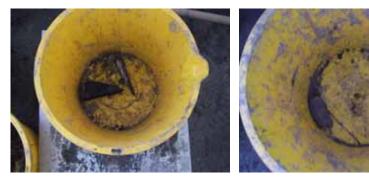
TP67 Concrete



TP67 Glass

TP67 Other Composite Packaging

TP67 Metals



TP67 Papers & Cardboard

TP67 Plastic

TP67 Soil prior to characterisation

TP67 Timber

TP67 Wood

TP70 Biodegradeable Waste

TP70 Brick

TP70 Ceramics

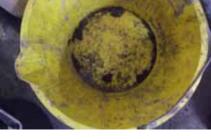
TP70 Concrete

TP70 Glass

TP70 manmade wood

- **TP70 Metals**
- **TP70 Natural Wood**

TP70 Plastic

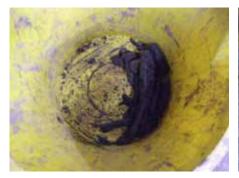

TP70 Soil

TP72 Biodegradable Waste

TP72 Brick

TP72 Concrete

TP72 Initial Samples



TP72 Manmade wood

TP72 Glass

TP72 Metal

TP72 Natural Wood

TP72 Plastic

TP72 Soil

TP72 Textiles

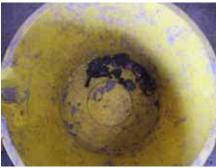
TP72 Wood

TP73 Biodegradeable Waste

TP73 Initial Sample

TP73 Man Made Wood

TP73 Soil



TP74 Biodegradeable Waste

TP74 Brick

TP74 Ceramic

TP74 Concrete

TP74 Glass

TP74 Initial Samples

TP74 Man Made Wood

TP74 Metal

TP74 Natural Wood

TP74 Plastic

TP74 Papers

TP74 Soil

TP74 Stones example

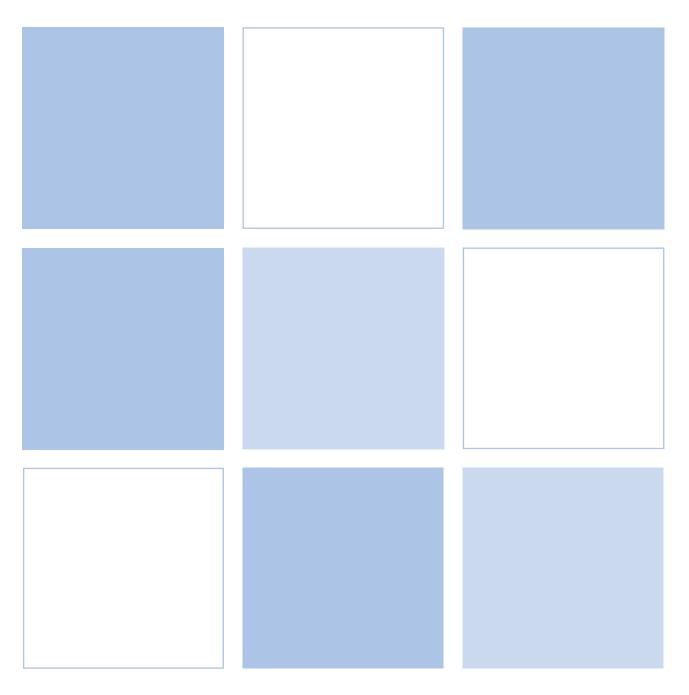
TP74 Tar

TP77 Biodegradeable Waste

TP77 Initial Sample

TP77 Man Made Wood

TP77 Natural Wood



TP77 Soil

Asbestos Results

633/635 Birchwood Boulevard, Warrington, Cheshire, WA3 7QU.

T +44 (0) 1925 849 800 E rpsanw@rpsgroup.com W www.rpsgroup.com

F +44 (0) 1925 849 839

CERTIFICATE OF ASBESTOS ANALYSIS

Analytical Laboratory: Warrington Laboratory

Date of issue: 22 Feb 2011 Page 1of 1

Report Number Client Address	:	FYAB0030/ 208 RPS Dublin RPS, West Pier Business Campus, Dun Laoghaire, Co Dublin
Number of samples		01
Sampling site*	:	Grangecastle Golf Course
Sampling address*	:	Unknown
Submitted by	:	P Lambe

Report

The sample(s) referred to below have been analysed for asbestos content dispersion staining and polarised light microscopy, using UKAS accredited RPS documented in-house test method RPSCA/3, in accordance with the requirements of HSE method HSG 248.

Lab Ref. No.	Date Analysed	Reported Location*	Description*	Asbestos Fibre Type(s)
S210843	22 Feb 11	External cement pipe (WP 000019)	Cement	Chrysotile

*Where samples are supplied by the client, RPS Consultants Ltd can accept no responsibility for the sampling strategies employed and the sampling information supplied. RPS Consultants Ltd can accept no responsibility for any interpretation of the sampling information contained in this report by any parties. The sampling description above is our opinion only and is not covered within the scope of our UKAS accreditation.

Technical Reviewer: Andy Groom

Analyst: G Cooper

Signed 🥑

This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

UpdatedTier 1 Assessment Matrix

Source Assessment	Score Matrix	Score	Max	Notes/ Justification
Leachate	1a	1.5	10	> 5ha
Gas	1b	~	10	> 5ha
- cochoto Microtico Bothway Accocomot	Score		A.C.M.	
Leadiale Migrandii Falliway Assessificiil		2000	Maa	
Vertical Pathway (Aquifer Vulnerability)	2a	З	ю	Holes 14 & 15 (E) 5 Holes (H) (from GSI website)
Horizontal Pathway (Groundwater Flow Regime)	2b	1	5	LI (Locally Important Aquifer)
Surface Water Pathway	2c	2	2	Yes
Gas Migration Pathway Assessment	Score Matrix	Score	Max	Notes/ Justification
Assuming lateral migration (assuming receptor within 250m of source))	2d	с	ю	Tills underlie infill material
Vertical migration (assuming receptor located above source)	2e	N/A	5	N/A No receptor located above source
Receptor Assessment	Score Matrix	Score	Мах	Notes/ Justification
Residential dwellings with potential for private water supply	3a 3	-	ო	Greater than 250m but less than 1km (Note houses <50m (Bladonnel House) are upgradient of groundwater flow direction and have been excluded)
Protected Areas	3b	0	e	Greater than 1km of waste body
Aquifer	3c	с	ъ	LI (Locally Important Aquifer)
Public Water Supplies	3d	0	7	Greater than 1km (no karst aquifer)
Surface Water Bodies	3e	2	с	Greater than 50m but less than 250m
Buildings and enclosed spaces used by humans or livestock	3f	5	5	House within 50m however no biodegradable waste encountered on site

	Pathway	Receptor	% Score	Risk Classification
	(2a b&c) Groundwater and	(3e) Surface Water body	9	Low
2)	Surface Water migration	(3b) Protected Area (Surface Water	C	No Linkada
		(3a) Private Well	2.5	Low
		(3b) Protected Area (Groundwater		
	8b) Groundwater Migration	dependent terrestrial ecosystem)	0	No Linkage
		(3c) Aquifer	4.5	Low
		(3d) Public Water Supply	0	No Linkage
		(3e) Surface Water body	5	Low
		(3e) Surface Water body	10	Low
(20	(2c) Surface Water Migration	(3b) Protected Area (Surface Water dependent terrestrial ecosystem)	0	No Linkage
(1b) Landfill	(2d) Lateral migration in subsoil	(3f) Human Presence (Buildings,	Q	Low
	(2e) Vertical Migration in subsoil	enclosed spaces)	0	No Linkage