

Air I Noise I Water I Soil I Environmental Consultancy www.axisenv.ie

> Unit 5 Caherdavin Business Centre, Ennis Road, Limerick. 061 324587 <u>info@axisenv.ie</u>

Arran Chemicals Limited

Athlone, Co. Roscommon.

Baseline Report 2019

In accordance with Article 22(2) of Directive 2010/75/EU on Industrial Emissions

Report Reference Number:4750-19-01Version:1Date of Issue:26-09-2019

Contents

Exec	cutive Summary	3
1.	Introduction	4
2.	Objectives	5
3.	Baseline Report Methodology	6
4.	Site Description and Layout	8
5. insta	Stage 1: Identifying the hazardous substances that are currently used, produced or released at the Ilation	11
6.	Stage 2: Identifying the relevant hazardous substances	11
7.	Stage 3: Assessment of the site-specific pollution possibility	14
8.	Stage 4: Site History	16
9.	Stage 5: Site Environmental Setting	17
9.	1 Topography	19
9.	2 Bedrock and Structural Geology	19
9.	3 Soils and Subsoils	20
9.	4 Hydrogeology	20
9.	5 Hydrology	22
9.	6 Surrounding Land Use	22
10.	Stage 6: Site Characterisation	24
11.	Stage 7: Site Investigation	25
Stag	e 8: Baseline Report	26
Listo	of Appendices:	27

Executive Summary

This Baseline Report has been prepared for Arran Chemicals Limited (referred to hereinafter as Arran) as part of an application for an Environmental Protection Agency (EPA) Industrial Emissions Licence Review at its facility at Monksland Industrial Estate, Athlone, Co. Roscommon. The activity which is listed in the amended First Schedule of the EPA Act 1992, as amended;

5.16: The production of pharmaceutical products including intermediates (production means the production on an industrial scale by chemical or biological processing)

Baseline reports are required to meet the requirements of Article 22(2) of the Industrial Emissions Directive (2010/75/EU). The objective of the report is to obtain a current status of the site prior to issue or review of Industrial emissions licences. This information will be used to assess the impact of the facility on the local soils and groundwater since the baseline concentrations were established.

The facility is located in Monksland Industrial Estate and is adjacent to several other pharmaceutical facility's including Alexion, Alkermes and Jazz Pharmaceuticals. The site is almost 100% hardstanding with concrete cover. There are no underground storage tanks for raw materials. As part of the existing EPA licence all chemicals are stored in suitably bunded areas and the bund integrity is reviewed every three years. All materials with environmental hazard statements are classified, labelled and packaged in accordance with Regulation 1272/2008.

During routine monitoring of groundwater carried out in August 2018, an increase in concentration of contaminants was detected. The origin of this leak was determined to be an effluent sump onsite. Since then a remedial pumping system has been setup and is being improved based on performance observations. Concentrations of CoPCs since the remedial pumping started are decreasing in the majority of the monitoring wells with some exceptions. The recommendations made in the following corrective action procedures are being implemented including further testing of sumps and drainage network, reducing laboratory limits of detection and continuing assessment of performance.

The licence review application is for the purposes of installing a new air abatement system which in accordance with BAT will be more energy efficient and effective in control of pollution to atmosphere as well as new emission limits to sewer which have been agreed with Irish Water.

Project Nun	nber: 4750-19-01				
1	Original Draft	СВ	СВ	MMcG	30/09/2019
Revision	Purpose/Description	Originated	Checked	Authorised	Date
Additional Notes:					

1. Introduction

The Arran facility at Monksland, Athlone, Co. Roscommon currently operates under EPA licence P0110-02. Arran are in the process of applying for a revised Industrial Emissions Licence as a result of installation of a new emission point, updating the abatement equipment and an increase in emissions.

The requirement for a baseline report comes from European Legislation, specifically the Industrial Emissions Directive (2010/75/EU) or IED which entered into force within the European Union on the 6th January 2011. The Baseline report shall contain the information necessary to determine the state of soil and groundwater contamination so as to make a quantified comparison with the state upon definitive cessation of activities.

The company is currently licensed by the EPA for the following activity:

5.16: The production of pharm aceutical products including intermediates (Production means the production on an industrial scale by chemical or biological processing)

The scope of the report follows the stages set out in the European Guidance concerning baseline reports under Article 22(2) of Directive 2010/75/EU on Industrial Emissions.

Stage1: Identifying the hazardous substances that are currently used, produced or released at the installation.

Stage 2: Identifying the relevant hazardous substances.

Stage 3: Assessment of the site-specific pollution possibility.

Stage 4: Site History.

Stage 5: Environmental setting.

Stage 6: Site characterisation.

Stage 7: Site investigation.

Stage 8: Production of the baseline report.

2. Objectives

The objective of this Baseline Report screen was to determine if the installation would warrant progression from a screen to a full intrusive investigation into potential groundwater and soil contamination on site.

The objectives of this screening report were met by considering the following:

- Identification of the hazardous substances use, produced or released from site;
- Listing, assessing and restricting the hazardous substances to relevant hazardous substances;
- Discarding hazardous substances which are incapable of contaminating soil or groundwater;
- Justifying the decisions to exclude certain hazardous substances;
- Identifying the actual possibility for soil and groundwater contamination of the site;
- Inclusion probability of releases and the consequences of a release;
- Assessment of quantities of hazardous materials stored on site;
- Review the storage arrangements, use and transport procedures around site;
- Procedures, policies and measures adapted to minimise or eliminate possibility of groundwater and soil contamination.

3. Baseline Report Methodology

The installation was assessed in line with Table 1 to identify if activities and operations attributed significant risk to groundwater and soil contamination on site.

Stage	Activity	Objective
1	Identify which hazardous substances are used, produced or released at the installation and produce a list of these hazardous substances	Determine whether or not hazardous substances are used, produced or released in view of deciding on the need to prepare and submit a baseline report.
2	Identify which of the hazardous substances from Stage 1 are relevant hazardous substances. Discard substances which are incapable of contaminating soil or groundwater. Justify and record the decisions taken to exclude certain hazardous substances	To restrict further consideration to only the relevant hazardous substances in view of deciding on the need to prepare a baseline report

Table 1 Baseline Report Screening Assessment

If the site is considered a threat or potentially impacting on the local soil and groundwater quality with substances considered as Hazardous under Article 3 of Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008, the Screening Assessment is extended to a detailed Baseline Report.

Table 2 Baseline Re	port
---------------------	------

Stage	Activity	Objective
3	From each relevant hazardous substance brought forward from	To identify which of the relevant hazardous
	Stage 2, identify the actual possibility for soil or groundwater	substances represent a potential pollution
	contamination at the site of the installation, including the	risk at the site based on the likelihood of
	probability of releases and their consequences, and taking	releases of such substances occurring.
	particular account of:	For these substances, information must be
	The quantities of each hazardous substance or groups	included in the baseline report.
	of similar hazardous substances concerned;	
	How and where hazardous substances are stored,	
	used and to be transported around the installation;	
	 Where they pose a risk to be released; 	
	In the case of existing installations also the measures	
	that have been adapted to ensure that it is impossible	
	in practice that contamination of soil or groundwater	
	takes place.	
4	Provide a site history. Consider available data and information:	Identify potential sources which may have
	- In relation to the present use of the site, and on emissions of	resulted in the hazardous substances
	hazardous substances which have occurred and which may give	identified in Stage 3 being already present
	rise to pollution. In particular, consider accidents or incidents,	on the site of the installation.
	drips or spills from routine operations, changes in operational	
	practice, site surfacing, changes in the hazardous substances	
	used.	
	- Previous uses of the site that may have resulted in the release	
	of hazardous substances, be they the same as those used,	
	produced or released by the existing installation, or different	
	ones. Review of previous investigation reports may assist in	
	compiling this data.	

Stage	Activity	Objective
5	Identify the site's environmental setting including:	Determine where hazardous substances
	— Topography;	may go if released and where to look for
	— Geology;	them. Also identify the environmental
	- Direction of groundwater flow;	media and receptors that are potentially at
	- Other potential migration pathways such as drains and service	risk and where there are other activities in
	channels;	the area which release the same
	- Environmental aspects (e.g. particular habitats, species,	hazardous substances and may cause
	protected areas etc.); and	them to migrate onto the site.
	- Surrounding land use.	
6	Use the results of Stages 3 to 5 to describe the site, in particular	Identify the location, nature and extent of
	demonstrating the location, type, extent and quantity of historic	existing pollution on the site and to
	pollution and potential future emissions sources noting the	determine which strata and groundwater
	strata and groundwater likely to be affected by those emissions	might be affected by such pollution.
	- making links between sources of emissions, the pathways by	Compare with potential future emissions
	which pollution may move and the receptors likely to be	to see if areas are coincident.
	affected.	
7	If there is sufficient information to quantify the state of soil and	Collect additional information as
	groundwater pollution by relevant hazardous substances on the	necessary to allow a quantified
	basis of Stages (1) to (6) then go directly to Stage 8. If in sufficient	assessment of soil and groundwater
	information exists then intrusive investigation of the site will be	pollution by relevant hazardous
	required in order to gather such information. The details of such	substances.
	investigation should be clarified with the competent authority.	
8	Produce a baseline report for the installation that quantifies the	Provide a baseline report in line with the
	state of soil and groundwater pollution by relevant hazardous	IED.
	substances.	

4. Site Description and Layout

Arran Chemicals was originally founded by Anthony Owens in 1984 at a site in Galway which operated a lab and produced on pilot scale for three years. The operation then moved to Athlone when commercial production commenced. Arran Chemical Company commenced manufacturing on-site in Monksland in 1988. The operation was acquired by the Almac Group in 2015. Almac, whose headquarters are located in Craigavon, Northern Ireland are a contract development and manufacturing organisation that can offer a range of services that can cover the full life cycle of a product from R & D through to commercial-scale manufacture. Arran is a fine chemical company specialising in the manufacture of products for pharmaceutical and health care and other specialised chemical and industrial applications. The current facility employs 100 personnel who operate over a twenty-four-hour shift. Arran's first operated under EPA licence in 1996 and that licence was replaced by the current licence, P0110-02 in 2007. The facility is located in Monksland Industrial Estate, Athlone, Co. Roscommon and is adjacent to other licensed facility's including Alkermes Pharmaceutical and Alexion Pharmaceutical and is 500m east of Jazz Pharmaceuticals. The company is accredited to ISO 14001:2015 and ISO 9001:2015 standards which both demonstrates and defines the commitment of the organisation to quality and environmental standards.

Arran first commenced operation as an R & D and pilot production facility in Galway but relocated to Monksland to facilitate more commercial production. The strategic location of Arran is in line with the Westmeath County Development Plan 2014-2020 which aims to promote and sustain development of high value, knowledge based industrial activities. The three-acre site facilities include range from laboratory and kilo laboratory for process development and prototype manufacture, to pilot plant (with stainless steel, Hastelloy and glass lined vessels of volume up to 1,000 L) and to manufacture plant (with stainless steel, Hastelloy and glass lined vessels of volume up to 8,000 L). A range of filters and centrifuges are available for product isolation and distillation technologies are widely deployed to enhanced product purity and quality. A total of 88 m³ of manufacturing vessel capacity is available with a potential to produce approximately 1,500 - 2,000 batches of product per calendar quarter.

Figure 1: Area Development Plan

Figure 2; Site Layout & Ownership

Table 3 Inventory of Equipment, Buildings and Plant

Item Name	Item Description	
Unit 1	Offices, QC & R+D laboratory and small volume lab chemical storage	
Unit 2	Processing Building made up of 14 no. reactors & 3 no. centrifuges	
Unit 3	Dryer Area & 3 no. distillation evaporator units & 1 no. centrifuge	
Unit 4	Bunded raw material warehouse for solvents and aqueous chemicals	
Unit 5	Pilot Plant & TBE laboratory & new Kilo Laboratory	
Tray Dryer Building	Tray Dryer	
Unit 6	Bunded raw material & in-process material warehouse	
Front Unit 6	QC material sampling room.	
Front Unit 5-6	Tray Dryer is located in front of Units 5 and 6. The Tray Dryer is incorporated within the operations at the pilot plant.	
Unit 7	Dry Product Warehouse (in-process material)	
Unit 8	Dry Waste Warehouse	
Maintenance	Engineering workshop	
Unit 9	Engineering equipment & packaging store	
Unit 10	Dry Product & raw material warehouse	
Unit 11	Dry Product & Goods outwards storage warehouse	
Port cabin (2-storey)	Administration and Meeting rooms in front of Unit 10-11	
Port cabin (2-storey)	Site Canteen & Production Locker room in front of Unit 2-3	
Sub Station	Electrical Sub Station	
Other	Car park Processing Yard Bunded Tank farms Loading & Unloading Area Emergency Power only generator Refrigerated Container storage (40ft) for dry material Refrigerated Container storage (20ft) x 3 no	
Utilities	1.4 Mw gas boiler In front of Unit 2 Backup oil steam Boiler Domestic Heating oil Boiler x 3 Domestic Heating gas Boiler Pilot Plant Chiller New Cooling Water Tower/Tanks New chiller unit	
Fuel Storage	4 Diesel tanks 3 x 1,000L 1 x 10,000L	
40 Foot Container	Lock Up Container for Metal supplies	
Fire Water Retention	700m3 Firewater lagoon	
Sumps	Process water control sumps 2, 3 & 5 Front Yard Storm water sump Firewater control sump	
Drains	Process Drains Storm Water Drains Firewater Diversion Drains	
Equipment	Various including forklifts reactors, feed vessels etc	
Storage	Bunded tank farms, bunded warehouses, prefabricated bunds.	

5. Stage 1: Identifying the hazardous substances that are currently used, produced or released at the installation.

All materials used, produced and released are included in Appendix 1 of this report. The Safety Data Sheets for the materials were used to compile a list of materials that had relevant hazardous substances such as substances that are known to contribute to contamination of soils and groundwater in the event of an accidental release.

6. Stage 2: Identifying the relevant hazardous substances

As stated in the EC Guidance this stage consists of identifying potential contaminants from the list produced in Stage 1 by considering the composition, physical state, solubility, toxicity, mobility and persistence to determine its potential to cause pollution to soil and groundwater. Hazardous substances can be defined as substances that are toxic and persistent and liable to bio-accumulate. A review of the chemicals that fit this description can be seen in Table 3.

	Raw Material name	CASNo.	Ton. Band	Hazard Phrases
1.	1'-Acetonaphthone*	941-98-0	1-10	H302, H412
2.	AIBN (2,2'-Azobis(2- methylpropionitrile)	78-67-1	<1MT	H242, H302, H312, H332, H412
3.	2-Amino-1-butanol*	96-20-8	1-10	H302, H314., H400
4.	(+)-2-Aminobutane	13952-84-6	<1MT	H225, H302, H332, H314, H400
5.	4-Aminophenol	123-30-8	<1MT	H302, H332, H341, H410
6.	Ammonia (Gas)	7664-41-7	<1MT	H221, H280, H314, H331, H410
7.	Ammonia Solution	1336-21-6	1-10	H314, H335, H400
8.	Aniline	62-53-3	<1MT	H301, H311, H317, H318, H330, H341, H351, H372, H400
9.	Benzophenone*	119-61-9	1-10	H373, H411
10.	Benzyl Chloroformate	501-53-1	<1MT	H314, H410
11.	Benzylchloromethyl Ether	3587-60-8	<1MT	H302, H315, H318, H331, H334, H335, H350, H373, H400
12.	BHT	128-37-0	<1MT	H410
13.	Bromine	7726-95-6	<1MT	H330, H314, H400
14.	Bromobenzene	203-623-8	<1MT	H226, H315, H411
15.	1-Bromo-3-chloropropane*	109-70-6	10-100	H302, H331, H341, H335, H412
16.	4-t-ButyIbenzaldehyde	939-97-9	<1MT	H302, H334, H410
17.	4-t-Butylcatechol	98-29-3	1-10	H302+H312, H314, H317, H410
18.	4-tert-Butylcyclohexanol*	98-52-2	1-10	H302+H312, H314, H317, H410
19.	t-Butyl Hydroquinone	1948-33-0	<1MT	H302+H312, H315, H319, H400
20.	N-Butyllithium (24%) in Hexane	203-698-7/265- 151-9	<1MT	H225, H250, H260, H304, H314, H336, H361f, H373, H411, EUH014
21.	3-Chloro-2-methylpropene	563-47-3	<1MT	H225, H302+H332, H314, H317, H411
22.	Chloroacetyl Chloride	201-171-6	<1MT	H301, H311, H314, H331, H372, H400, EUH014

Table 4 Summary of Materials listed as Environmentally Hazardous

23.	2-Chloroacrylonitrile	920-37-6	<1MT	H225, H300+H310+H330, H314, H334, H350, H400
24.	Cobalt Acetate Tetreahydrate	612-153-6 (200- 755-8)	<1MT	H302, H317, H332, H334, H341, H350i, H360F, H410
25.	Copper (I) Chloride	7758-89-6	<1MT	H302, H315, H318, H335,
26.	Copper (II) Chloride	7447-39-4	<1MT	H302, H315, H319, H335, H410
27.	Copper (I) lodide	7681-65-4	<1MT	H302, H315, H317, H318, H335, H410
28.	Cyclohexane	110-82-7	1-10	H225, H304, H315, H336, H400, H410
29.	Dichlorobis(triphenylphosphine) Palladium(II)	13965-03-2	<1MT	H302+H312+H332, H315, H317, H319, H413
30.	Dichloro (p-cymene) RU (II) Dimer	52462-29-0	<1MT	H302. H319. H412
31.	4-Dimethylaminopyridine (DMAP)	1122-58-3	<1MT	H301+H331, H310, H314, H411
32.	Dimethylaluminium Chloride (13%) in Hexane	110-54-3/1184- 58-3	<1MT	H225, H250, H260, H304, H314, H336, H361, H373, H411, EUH014
33.	N,N-Dimethylaniline	204-493-5	<1MT	H301, H311, H331, H351, H411
34.	2,5-Diphenyl-1,4-benzoquinone	844-51-9	<1MT	H302, H317, H400
35.	Furan	110-00-9	<1MT	H224, H302, H315, H331, H341, H350, H373, H412, EUH019
36.	Heptane	142-82-5	10-100	H225, H304, H315, H336, H400, H410
37.	1-Hexane	110-54-3	<1MT	H225, H304, H315, H335+H336, H361, H373, H411
38.	Hexamethyldisilazane	999-97-3	<1MT	H225, H302, H311, H314, H332, H412
39.	Hexamethyldisiloxane	107-46-0	<1MT	H225, H410
40.	Hexyllithium (33%) in Hexane	21369-64-2/ 64742-49-0	<1MT	H314, H225, H304, H336, H361f, H373, H411, EUH014
41.	Hydrazine Monohydrate	7803-57-8	<1MT	301, 311, 330, 314, 317, 350, 410
42.	Hydroxylamine Sulfate*	10039-54-0	1-10	H290, H302, H312, H315, H319, H317, H351, H373, H400, H412
43.	lodine	7553-56-2	<1MT	H312, H332, H400
44.	lodomethane	74-88-4	<1MT	H301, H312, H315, H331, H335, H351
45.	Irgacure 250	344562-80-7	<1MT	H302, H317, H318, H373, H410
46.	Lithium Hexamethyldisilazine (24%) in THF	109-99-9/4039- 32-1/513-35-9	1-10	H341, H351, H225, H314, H302, H335, H412, EUH019
47.	Marlotherm	27776-01-8/ 53585-53-8	<1MT	H304, H315, H413
48.	2-Mercaptoethanol	60-24-2	<1MT	H301+H331, H310, H315, H317, H318, H373, H410
49.	2-Nitropropane	79-46-9	<1MT	226, 302, 331, 341, 350, 412
50.	Octamethylcyclotetrasiloxane	556-67-2	<1MT	H226, H361, H413
51.	Peracetic Acid (40%)*	79-21-0	1-10	242, 271, 290, 301+331, 312, 314, 335, 410
52.	Potassium Cyanide	151-50-8	<1MT	H290, H300, H330, H310, H370, H372, H400, H410

53.	Quizarin	81-64-1	<1MT	H410
54.	Ruthenium (III) Chloride Hydrate	14898-67-0	<1MT	H290, H302, H314, H412
55.	Silver Nitrate	7761-88-8	<1MT	H272, H290, H314, H410
56.	Sodium Chlorite (25%)	7758-19-2	<1MT	H271, H301, H310, H314, H373, H410
57.	Sodium Cyanide	143-33-9	<1MT	H290, H300+H310+H330, H372, H410, EUH032
58.	Sodium Hypochlorite	7681-52-9	1-10	H314, H400
59.	Sodium Nitrite	7632-00-0	<1MT	H272, H301, H400
60.	Tetrabutylammonium Bromide	1643-19-2	<1MT	H315, H319, H412
61.	Toluene	108-88-3	10-100	H225, H304, H315, H336, H361d, H373, H412
62.	Tributylamine	102-82-9	<1MT	H302, H310, H330, H315, H319, H411
63.	(S)-3,5,5-Trimethylpyrrolidin-2- one	14482-00-9	1-10	H402, H412
64.	Zinc Chloride Anhydrous*	7646-85-7	1-10	H314, H335, H302, H410
65.	Zinc Bromide (30%) in THF	109-99-9 7699- 45-8	<1MT	H351, H225, H314, H317, H335, H411, EUH019
66.	Zinc Dust	7440-66-6/ 1314-13-2	<1MT	H410
67.	Diesel	Ultra Low Sulphur Diesel	10,000L	H411, H350, H315, H304, H332, H373

Hazardous Waste

There are three main process stages including lab, pilot plant and manufacturing. All of these stages have various volumes of aqueous and solvent waste. All chemicals including waste are stored onsite in bunded areas to minimise the potential for escape to soils or groundwater. A list of these areas is below:

Table 5 Bunded Storage

Bund Identity	Construction Material	Bund Contents
Bund No. 1	Concrete	Tanks - T913, T914, T915, T916, T917, T918
Bund No. 2	Concrete	Tanks - T907, T908, T909, T911, T912
Effluent Tank Bund	Concrete	Effluent Tank A, Effluent Tank B, Tank D
Bund No.6	Concrete	Chillers & Glycol Tank Bund
Bund No.7	Concrete	IBC Storage
Bund No. 8	Concrete	Tanks - T903, T904, T922, T923
Acids Bund	Concrete	Drums and IBC's containing acids
Bases Bund	Concrete	Drums and IBC's containing bases
Mobile Bund 1	Prefabricated	Mixed Solvent drums for Lab
Mobile Bund 2	Prefabricated	Acid drums for Effluent
Mobile Bund 3	Prefabricated	Base drums for Effluent
Mobile Bund 4	Prefabricated	Drums and IBC's
Mobile Bund 5	Prefabricated	Drums and IBC's
Mobile Bund 6	Prefabricated	Drums & IBC's

Mobile Bund 7 Prefabricated		DIW drum storage
Mobile Bund 8	Prefabricated	Water treatment storage
Mobile Bund 9	Prefabricated	Lab waste solvent
Mobile Bund 10	Prefabricated	Insiderefrigeration unit
Unit 4	Lined Concrete	Bunded warehouse
Unit 6	Lined Concrete	Drums and IBCs in warehouse
U4B1	Double skinned tank	Double bunded Oil Tank
U8B1	Double skinned tank	Double bunded Oil Tank
U10B1	Double skinned tank	Double bunded Oil Tank
U11B1	Double skinned tank	Oil Tank not in use

All bunded areas are monitored in accordance with the conditions laid out in the existing IE licence. Details of this monitoring programme and test conclusions are submitted annually to the Agency as part of the AER. Waste is collected from site on a regular basis by licensed contractors and disposed of in a responsible manner. Total volumes of hazardous waste for the period 2018 are outlined in the table below. This includes laboratory wastes, empty hazardous containers and waste oils. All documentation is retained on site in accordance with legislative requirements and the EMS for the site. Therefore, waste materials are not included in Stage 2.

Table 6 AER Waste 2018

Hazardous	Quantity Tonnes	Description	Contractor
Yes	51.5	Aqueous washing liquids and mother liquors	McQuillan Envirocare
Yes	312.9	Organic Solvents, liquids and mother liquors	Soltec Ireland
Yes	285	Other organic solvents	SAVA Sonderabfall
Yes	599	Organic Solvents, liquids and mother liquors	Tradebe Solvent
Yes	811	Organic Solvents, liquids and mother liquors	Tradebe Fawley
Yes	358	Organic Solvents, liquids and mother liquors	Veolia Env
Yes	85	Other still bottoms and reaction residues	SAVA Sonderabfall
Yes	0.2	Engine, gear and lubricating oils	Safety Kleen Ireland
Yes	30	Packaging containing dangerous substances	Soltec Ireland
Yes	63	Packaging containing residues of dangerous substances	Rilta Env

Stage 3: Assessment of the site-specific pollution possibility 7.

For substances brought forward from Stage 2, the possibility of a release of a substance in sufficient quantities to represent a pollution risk, either as a single emission or as a result of accumulation from multiple emissions requires assessment.

The facility is operational 24 hours on a three-shift basis, six days a week, Monday to Saturday. There is a total of 100 employees with c. 12 employees operating during the night shift. Staff rotations are outlined in the table below.

Table 7 Personnel Schedule

DepartmentorPosition	Numbers	Shift
Management	5	Day
Administration	5	Day
Manufacturing Supervisors & Operators	35	3 shift cycle
Pilot Plant & kilo	15	2 & 3 shift cycle
R&D Laboratory	5	Day
QC Laboratory	15	2 shift cycle
Environmental & Warehouse	10	2 shift cycle
Engineering & Maintenance	10	Day
Total	100	

Arran Chemicals operate to ISO 14001 environmental management which implements strict procedural controls for the storage, handling and movement of hazardous materials onsite. In addition to these procedures they've implemented spill control and emergency response procedures in the event of an incident. Suitably trained staff are always onsite during each shift in the event of a spill or fire. The ERP and Spill Response Procedures are Appendix 2 & 3 attached to this report.

Procedural controls include:

- All bulk storage facilities are specified in order to be compatible to what is being stored.
- Staff are trained and follow SOPs.
- The processes on site have undergone/will undergo HAZOPs to ensure that the necessary controls are in place in the case of deviations from operating norms. The facility has been designed in order to allow for ease of and safe access for maintenance.
- Emergency Response Procedure training.
- Site-Wide Spill Control Programme.
- Firewater retention protocol.

The design of the facility and storage of chemicals are highlighted on the map below, Figure 3.

Figure 3

Bulk liquid chemical storage takes the form of a tank farm and an open chemical storage area for the IBCs/drums at the rear of Units 1 to 6. The area is covered by reinforced concrete bunding and the gradient is such that liquids are directed towards one of three sumps serving the area. The main sump adjacent to the tank farm has a 3,000L capacity. The sump operates on a high-level switch and pumps to the effluent tank when the level of liquid rises sufficiently. Any surface water from the bunded area or liquid which enters these sumps is pumped via the main sump into the standby effluent tank for balancing and containment. Two effluent tanks run as duty and standby, one filling whilst one discharges to the Monksland Wastewater Treatment facility under permission and limits from Irish Water.

Storage of Dry Materials, packaging stores, engineering equipment and dry product goods outwards are contained in Units 7-11 on the eastern boundary of the facility.

All bunds, sumps and drainage systems have been tested and results submitted to the Agency as part of the AER. These documents can be reviewed in Appendix 4 of this report.

In the event of a major spill or fire at the facility the Emergency Response Procedure is instigated mitigating against the potential for ground contamination. The procedure involved the diversion of surface and foul water drains to the fire water retention pond. There is a new fire detection and alarm system in place across the entire facility. This should ensure a very fast response in the event of a fire decreasing the likelihood of escape of contaminants to surface and foul water drains before the diversion measures can be implemented. In addition, effluent works have been upgraded with a fully automated management system to include pump control and high-level alarms.

Continuous upgrade works, system controls, staff training and procedural controls combined with a revised Emergency Response Procedure and Fire water retention capacity combine to minimise potential risk of contamination to soils and groundwater.

8. Stage 4: Site History

Arran first began operation in Monksland Industrial Estate in 1988. Currently there are three other pharmaceutical facility's adjacent to the site, Alkermes, Alexion and Jazz Pharmaceuticals which are all EPA licensed sites. There is a significant groundwater quality set available for the local area. There have been a number of h istorical accidental discharges resulting in shallow groundwater contamination which have occurred and reported to the EPA.

- Prior to 1997 a leak in the sewer line which contained Volatile Organic Compounds (VOCs) at Arran.
- A loss of Trichloroethene (TCE) at Alkermes (1993)
- A solvent spill with Tetrachloroethene (PCE) at an undetermined location but resulting in highest concentrations at a borehole installed on the eastern site boundary of Arran Chemicals
- August 2018, Groundwater monitoring at Arran detected an increase in VOC's which was attributed to a leak in a sump within the facility. Remediation measures have been implemented since on an ongoing basis.

A hydrogeological corrective action procedure has been submitted to the EPA by Minerex Environmental on behalf of Arran. The report outlines the response to remediation as well as recommendations including:

- a) Testing of sumps and drainage system;
- b) Remedial pumping rate increase;
- c) Continuous water level monitoring;
- d) Water levels in the Monksland Spring;
- e) Reduce laboratory limits of detection;
- f) Continue assessing performance of remediation system.

A full copy of the investigation is attached in Appendix 5 below. Subsequent to these recommendations Arran have completed extensive testing of sumps and the drainage system. These reports can be viewed in Appendix 4 below.

Investigation of soils is not a requirement of the licence however some soil samples were tested in August 2017. These samples were sent to a UKAS accredited laboratory and results show no contamination at the location tested. The results can be seen in Appendix 6 below.

9. Stage 5: Site Environmental Setting

The facility is located in Monksland Industrial Estate, Athlone since 1988 and was granted its first EPA licence in 1996. The location of the facility is a strategic location in accordance with the Westmeath County Development Plan and the Roscommon County Development Plan 2014-2020 which aims to promote and sustain development of high value, knowledge based industrial activities. Roscommon County Council has earmarked Monksland as an area for industry and manufacturing development opportunities, to aid the Country's economic recovery and increase job opportunities in the County¹. The site is characterised by significant industrial and pharmaceutical developments of varying scale. The M6 motorway runs south and east of the site. The Monksland Wastewater treatment facility is 170, south west of the facility. The new emission abatement e quipment and emission point will be located at the back of the site, within the current site boundary.

There is no exposed soil within the confines of the facility and the only grass areas are either side of the entrance outside the boundary of operation. The nearest surface water is the Cross River which is 450m south west of the facility. The only discharge to Local Authority Surface Water drains from Arran is storm water. The proposed new abatement installation is highlighted in Figure 2. The Cross river is classified as status 'Good' to 'Moderate' at separate locations under the Water Framework Directive 2010-2015. Arran holds a Licence from Irish Water with agreed emission to sewer. This licence has been reviewed by Irish Water in light of the IE review and the updated version is included in Appendix 7.

Figure 4: Site Location

¹ http://www.roscommoncoco.ie/en/Services/Planning/Roscommon-County-Council-Planning-Publications/Roscommon-County-Council-Planning-Publications/County_Development_Plan_2014 _- 2020/Variations-No-1-Plans/1c%20Chapters%201%20-%204.pdf

9.1 Topography

The majority of the site is concrete hardstand. The topography of the site slopes in a southerly direction, see Figure 6

Figure 6 Topography

9.2 Bedrock and Structural Geology

Unit Name	Waulsortian Limestones 100k – 500k
Unit Code	WA
Description	Massive unbedded Lime-mudstone
Formation	Waulsortian Limestones
Summary	Dominantly pale-grey, crudely bedded or massive limestone.
System	Carboniferous

Figure 7 Geology

9.3 Soils and Subsoils

The GSI classify the soils of Monksland Industrial Estate as Urban (Urban) which is substantially modified and has low permeability. The surrounding soils composition are a combination of Mullabane, Burren and Crush all of which are defined as loamy drift over limestone.

The planned installation of the thermal oxidiser will take place inside the facility boundary on an existing hardstand area.

Figure 8 Soils

Table 8 Subsoil Classification

Category	N.A.
Description	Man made
Texture	N.A.
Class	N.A.
County	Roscommon/Westmeath

9.4 Hydrogeology

The limestone bedrock underlays made ground with the subsoil permeability classified as moderate. The a quifer is described as a Locally Important Aquifer-Bedrock which is Moderately Productive only in Local Zones. The flow regime is classified as poorly productive bedrock. The site bedrock is primarily Waulsortian Limestones. These consist of pre dominantly pale grey, crudely bedded or massive limestone. Subsoils are classified made ground consisting of man-made soils and other materials with the overlying soil as peaty and poorly drained.

Recharge calculations were developed by the GSI on a regional scale by calculating the effective rainfall (minus evapotranspiration) and then applying a recharge coefficient to indicate the proportion of the effective rainfall that recharges groundwater. Recharge is therefore closely linked to vulnerability. The recharge coefficient for made ground is 20%.

The SAAR (Standard Average Annual Rainfall 2008-2018) recorded at Athlone (Glynwood). (ca. 9km south east of the Arran location), the closet rainfall station to the site with long term SAAR data, is 1046mm annual average rainfall (<u>www.met.ie</u>). The average potential evapotranspiration (PE) at Mount Dillon, north of Athlone has an annual average of 491mm. The actual evapotranspiration (AE) is calculated to be 466 (95% PE). Using the above figures, the effective rainfall (ER) for the area is calculated to be (ER = SAAR – AE) 580mm.

Figure 9 Groundwater Vulnerability

Figure 10 Groundwater Recharge

9.5 Hydrology

The site is located in an industrial estate with the nearest river over 400m south of the site. Surface water quality at the Cross Stream most southerly to the Arran facility is classified as high and changes to moderate beyond the point of the R446 road. The Cross (Roscommon)_040 which connects downstream to the River Shannon (Upper)_120 are both classified 'At Risk' of not attaining their objectives under the Water Framework Directive

Figure 11 River System

There are no process discharges to surface water from the facility. All storm water is discharged to the Local Authority Surface Water drainage system.

Table 9 River Classification

River Status	2010-2015
European Code	IE_SW_26C100300
Name	Cross (Roscommon)_030
Status	Good
Bio Status	Good
Chemical Status	Good
Dissolved Oxygen Saturation	Pass
General Condition	Pass
Invertebrate Status	Good
Nutrient Conditions	Pass
Supporting Chemistry Conditions	Pass
Projection	At Risk

9.6 Surrounding Land Use

The land use in the surrounding area is predominantly industrial with some agricultural. The site is approximately 2.5km west of Athlone Town Centre. The nearby Monksland Waste Water treatment facility is located 200m south west of the site which was designed with sufficient capacity to service the surrounding area. Irish Water, operators

of the facility have agreed volume discharge, parameters and emission limits for discharge to sewer with Arran Chemicals. Copy of agreement attached Appendix 7.

9.7 Flora and Fauna

The site is not located within or directly adjacent to any designated conservation site. There are 12 Special Areas of Conservation (SACs) and 4 Special Protection Areas (SPA's) located within 15km of the proposed development site.

The River Shannon Callows is a proposed Natural Heritage Area (pNHA) and is addressed under the higher conservation status of SAC. Carrickynaghtan Bog NHA is located c. 2.5km to the south of the site and has no hydrological connectivity and no relevant biological connectivity with the proposed development site and will not be affected. No other conservation areas have the biological or hydrological connectivity with the facility.

10. Stage 6: Site Characterisation

The conceptual site model (CSM) for the site presented in Figure: 7.1 produced by Minerex shows a schematic cross section of the site. It summarises the soil, bedrock and hydrogeology characteristics of the site.

11. Stage 7: Site Investigation

As outlined in the EC Guidance, if there is sufficient information available from Stages 1-6 to characterise the site both laterally and vertically in terms of pollution of soil and groundwater by relevant hazardous substances, then go directly to stage 8. Based up the following points this step may be taken:

- Significant site investigations have been performed to date providing site specific soil and groundwater monitoring data.
- There is a substantial body of soil and groundwater investigative data submitted by three other adjacent EPA licenced sites.
- The site operated under EPA licence for over 20 years and all bunding, storage and handling of hazardous materials practices have been reviewed by the EPA over this period.

Based on the information provided in the Site Investigation and previous sections it can be concluded that Arran Chemicals will continue to employ Best Available Techniques and implement EPA guidance on the bunding, storage and handling of hazardous materials. In addition to this they will continue to implement monitoring and remediation measures to ensure that the operation of the facility will have no long-term negative impact on the condition of the site.

Stage 8: Baseline Report

The purpose of this stage is to summarise all of the information collated in Stages 1-7. This report has been prepared in accordance with Regulation 9 of the EPA (Industrial Emissions) (Licensing) Regulations, 2013. The EC Guidance on the content of the baseline report as required by Article 22(2) of the Industrial Emissions Directive has been used in the preparation of this report. The EC Guidance identifies key stages to be undertaken and in order in which the baseline report is produced. This baseline report follows these stages.

Stage 1: Identifying the hazardous substances that are currently used, produced or released at the installation.

A complete inventory of raw and ancillary materials, substances, preparations and fuels which is produced by or utilised within the installation boundary is contained within Appendix 1 of this report.

Stage 2: Identifying the relevant hazardous substances

A review of the substances listed in Appendix 1 has been undertaken to identify substances that are potentially hazardous to soils and groundwater, these are included in Table 4 of this report. These are defined as 'relevant hazardous substances'.

Stage 3: Assessment of the site-specific pollution possibility

The quantity and locations of the relevant hazardous identified in Stage 2 were detailed. Assessment of the risk of site-specific pollution from the relevant hazardous substances identified in Stage 2 by considering (1) Storage and usage quantities; (2) Storage and Usage locations; (3) Controls and measures in place to prevent contamination of soils and groundwater; (4) Review of historical environmental records; (5) Review of integrity testing of bunds, process and foul drainage; (6) Site Inspection results; (7) Environmental setting of the site.

Stage 4: Site History

A summary of numerous site investigations which have been carried out on site previously to establish the baselines soils, geology and hydrogeology, hydrology, flora & fauna and land use.

Stage 5: Environmental Setting

The existing environment of the site is analysed using data collect from a desk study. The information has been derived from a number of different sources and provided information on the surrounding topography, geology, hydrogeology, hydrology, flora & fauna and land use.

Stage 6: Site Characterisation

Based on previous site monitoring well drilling works and reports, the Conceptual Site Model for Arran Athlone is shown in Figure: 7.1

Stage 7: Site Investigation

A detailed environmental assessment of the extent of groundwater contamination at the Arran site was undertaken by Minerex Environmental and a Conceptual Site Model was compiled. Based on the model and ongoing groundwater monitoring a corrective action procedure outlining remediation measures for the contamination plume was submitted to the agency. The recommendations that were outlined in this report are also in the process of being implemented including the surveying of all process drains onsite. Copies of these reports are attached in the appendices.

Soil investigations that were carried out did not show any indication of contamination onsite.

List of Appendices:

- Appendix 1 Complete Chemical List
- Appendix 2 Emergency Response Procedure
- Appendix 3 Spill Response Procedure
- Appendix 4 Sump, Drain and Bund Integrity Testing
- Appendix 5 Hydrogeological Corrective Action Procedure
- Appendix 6 Soil Sample Results
- Appendix 7 Irish Water Discharge Agreement

	Raw Material name	CAS No	Ton Band	Hazard Phrases
1		941-98-0	1-10	Hazaru Fillases
· ·	AIBN (2.2'-Azobis(2-			11002, 11112
2	methylpropionitrile)	78-67-1	<1MT	H242, H302, H312, H332, H412
3	2-Amino-1-butanol*	96-20-8	1-10	H302, H314., H400
4	(+)-2-Aminobutane	13952-84-6	<1MT	H225, H302, H332, H314, H400
5	4-Aminophenol	123-30-8	<1MT	H302, H332, H341, H410
6	Ammonia (Gas)	7664-41-7	<1MT	221, 280, 314, 331, 410
7	Ammonia Solution	1336-21-6	1-10	H314, H335, H400
8	Aniline	62-53-3	<1MT	H301, H311, H317, H318, H330, H341, H351, H372, H400
9	Benzophenone*	119-61-9	1-10	H373, H411
10	Benzoyl Chloride	98-88-4	<1MT	H302, H331, H315, H318, H350, H335, H373
11	Benzyl Chloroformate	501-53-1	<1MT	H314, H410
12	Benzylchloromethyl Ether	3587-60-8	<1MT	H302, H315, H318, H331, H334, H335, H350, H373, H400
13	ВНТ	128-37-0	<1MT	H410
14	Bromine	7726-95-6	<1MT	H330, H314, H400
15	Bromobenzene	203-623-8	<1MT	H226, H315, H411
16	1-Bromo-3-chloropropane*	109-70-6	10-100	H302, H331, H341, H335, H412
17	1-Bromopropane	106-94-5	<1MT	H225, H315, H319, H335, H336, H360, H373
18	4-t-Butylbenzaldehyde	939-97-9	<1MT	H302, H334, H410
19	4-t-Butylcatechol	98-29-3	1-10	H302+H312, H314, H317, H410
20	4-tert-Butylcyclohexanol*	98-52-2	1-10	H302+H312, H314, H317, H410
21	t-Butyl Hydroquinone	1948-33-0	<1MT	H302+H312, H315, H319, H400
22	N-Butyllithium (24%) in Hexane	203-698-7 /265- 151-9	<1MT	H225, H250, H260, H304, H314, H336, H361f, H373, H411, EUH014
23	Catechol	120-80-9	1-10	H301, H311, H315, H317, H318, H332, H341, H
24	3-Chloro-2-methylpropene	563-47-3	<1MT	H225, H302+H332, H314, H317, H411
25	Chloroacetyl Chloride	201-171-6	<1MT	H301, H311, H314, H331, H372, H400, EUH014
26	2-Chloroacrylonitrile	920-37-6	<1MT	H225, H300+H310+H330, H314, H334, H350, H400
27	Cobalt Acetate Tetreahydrate	612-153-6 (200-755- 8)	<1MT	H302, H317, H332, H334, H341, H350i, H360F, H410
28	Copper (I) Chloride	7758-89-6	<1MT	H302, H315, H318, H335, H410
29	Copper (II) Chloride	7447-39-4	<1MT	H302, H315, H319, H335, H410
30	Copper (I) Iodide	7681-65-4	<1MT	H302, H315, H317, H318, H335, H410
31	Cyclohexane	110-82-7	1-10	H225, H304, H315, H336, H400, H410

32	Dichlorobis(triphenylphosphin e) Palladium (II)	13965-03-2	<1MT	H302+H312+H332, H315, H317, H319, H413
33	Dichloro (p-cymene) RU (II) Dimer	52462-29-0	<1MT	H302, H319, H412
34	1,1-Dichloroethene	75-35-4	<1MT	H224, H332, H351
35	N,N-Dimethylacetamide*	127-19-5	<1MT	H312, H332, H360D
36	4-Dimethylaminopyridine (DMAP)	1122-58-3	<1MT	H301+H331, H310, H314, H411
37	Dimethylaluminium Chloride (13%) in Hexane	110-54-3 / 1184-58- 3	<1MT	H225, H250, H260, H304, H314, H336, H361, H373, H411, EUH014
38	N,N-Dimethylaniline	204-493-5	<1MT	H301, H311, H331, H351, H411
39	Dimethylformamide (DMF)*	68-12-2	10-100	H226, H312, H319, H332, H360D
40	2,5-Diphenyl-1,4- benzoquinone	844-51-9	<1MT	H302, H317, H400
41	1,4-Dioxane	123-91-1	<1MT	H225+EUH019, H319+EUH066, H351, H335
42	DMPU	230-625-6	<1MT	H302, H318, H361
43	(+)-Epichlorhydyrdin	106-89-8	<1MT	H226, H301, H311, H331, H314, H317, H350
44	Formaldehyde (37%)	50-00-0	1-10	H301, H311, H314, H317, H331, H335, H351, H370
45	Formamide*	75-12-7	1-10	H351, H360D, H373
46	Furan	110-00-9	<1MT	H224, H302, H315, H331, H341, H350, H373, H412, EUH019
47	Heptane	142-82-5	10-100	H225, H304, H315, H336, H400, H410
48	1-Hexane	110-54-3	<1MT	H225, H304, H315, H335+H336, H361, H373, H411
49	Hexamethyldisilazane	999-97-3	<1MT	H225, H302, H311, H314, H332, H412
50	Hexamethyldisiloxane	107-46-0	<1MT	H225, H410
51	Hexyllithium (33%) in Hexane	21369-64-2 / 64742- 49-0	<1MT	H314, H225, H304, H336, H361f, H373, H411, EUH014
52	Hydrazine Monohydrate	7803-57-8	<1MT	301, 311, 330, 314, 317, 350, 410
53	Hydroxylamine Sulfate*	10039-54-0	1-10	H290, H302, H312, H315, H319, H317, H351, H373, H400, H412
54	Imidazole	206-019-2	<1MT	H302, H314, H360D
55	lodine	7553-56-2	<1MT	H312, H332, H400
56	lodomethane	74-88-4	<1MT	H301, H312, H315, H331, H335, H351
57	Irgacure 250	344562-80-7	<1MT	H302, H317, H318, H373, H410
58	Isopropylmagnesium Chloride (20%) in Tetrahydrofuran	1068-55-9	1-10	H225, EUH014, H260, H314, H335, H351
59	Isopropylmagnesium Chloride (21%) in Tetrahydrofuran	109-99-9 / 1068-55- 9	<1MT	H225, EUH014, H260, H314, H335, H351
60	Lithium Hexamethyldisilazine (24%) in THF	109-99-9 / 4039-32- 1 / 513-35-9	1-10	H341, H351, H225, H314, H302, H335, H412, EUH019

61	Marlotherm	27776-01-8 / 53585-	<1MT	H304 H315 H413
01		53-8		H301+H331, H310, H315, H317,
62	2-Mercaptoethanol	60-24-2	<1MT	H318, H373, H410
63	N-Methyl-2-Pyrrolidone (NMP)	872-50-4	1-10	H315, H319, H335, H360D,
64	2-Nitropropane	79-46-9	<1MT	226, 302, 331, 341, 350, 412
65	Octamethylcyclotetrasiloxane	556-67-2	<1MT	H226, H361, H413
66	Paraformaldehyde*	30525-89-4	1-10	H228, H302+H332, H315, H317, H318, H335, H351
67	Peracetic Acid (40%)*	79-21-0	1-10	242, 271, 290, 301+331, 312, 314, 335, 410
68	Potassium Cyanide	151-50-8	<1MT	H290, H300, H330, H310, H370, H372, H400, H410
69	Quizarin	81-64-1	<1MT	H410
	Ruthenium (III) Chloride			
70	Hydrate	14898-67-0	<1M1	H290, H302, H314, H412
71	Silver Nitrate	7761-88-8	<1MT	H272, H290, H314, H410
72	Sodium Borohydride	16940-66-2	<1MT	H260, H301, H314, H360F, EUH014
73	Sodium Chlorite (25%)	7758-19-2	<1MT	H271, H301, H310, H314, H373, H410
74	Sodium Cyanide	143-33-9	<1MT	H290, H300+H310+H330, H372, H410, EUH032
75	Sodium Hypochlorite	7681-52-9	1-10	H314, H400
76	Sodium Nitrite	7632-00-0	<1MT	H272, H301, H400
77	Tetrabutylammonium Bromide	1643-19-2	<1MT	H315, H319, H412
78	Tetrahydrofuran*	109-99-9	10-100	H225, H302, H319, H335, H351
79	Toluene	108-88-3	10-100	H225, H304, H315, H336, H361d, H373, H412
80	Tributylamine	102-82-9	<1MT	H302, H310, H330, H315, H319, H411
81	(S)-3,5,5-Trimethylpyrrolidin-2 one	14482-00-9	1-10	H402,H412
82	N-Vinyl-2-pyrrolidone	88-12-0	<1MT	H302, H311, H318, H332, H335, H351, H371
83	Zinc Chloride Anhydrous*	7646-85-7	1-10	314, 335, 302, 410
84	Zinc Bromide (30%) in THF	109-99-9 7699-45- 8	<1MT	H351, H225, H314, H317, H335, H411, EUH019
85	Zinc Dust	7440-66-6 / 1314-13- 2	<1MT	H410
86	Acetic Acid	64-19-7	1-10	H226, H314
87	Acetone	67-64-1	1-10	H225, H319, H336
88	4-Acetomidophenol	103-90-2	1-10	H302, H315, H317, H319
89	Acetonitrile*	75-05-2	10-100	H225, H332, H312, H302, H319
90	D-Alanine Methyl Ester HCl	14316-06-4	1-10	H302, H315, H319, H335
91	(+)-2-Amino-1-butanol*	13054-87-0	1-10	
92	(R)-2-Amino-1-butanol*	5856-63-3	1-10	H302, H314
93	Ammonia Hydroxide*	1336-21-6	1-10	
94	Ammonium Acetate*	631-61-8	10-100	
95	Ammonium Chloride*	12125-02-9	1-10	H302, H319

96	L-Arabinose	5328-37-0	10-100	-
97	Benzaldehyde*	100-52-7	10-100	H302
98	1-Bromo-3-chloro-2- methylpropane*	6974-77-2	10-100	H302, H319
99	3-Bromobenzytrifluoride*	401-78-5	1-10	
100	1-Butanol	71-36-3	1-10	H226, H302, H315, H318, H335, H336
101	2-Butanol	78-92-2	1-10	H226, H319, H335, H336
102	Butyl Acetate*	123-86-4	1-10	H226, H336, EUH066
103	Di-t-Butyl Dicarbonate	24424-99-5	1-10	H226, H228, H330, H315, H317, H319, H335
104	Carbon (Charcoal)*	7440-44-0	1-10	-
105	Carbon Dioxide (Liquid)	124-38-9	1-10	H281
106	Catechol	120-80-9	1-10	H301, H311, H315, H317, H318, H332, H341
107	Celite (Clarcel Flo)*	14808-60-7	1-10	
108	Chloroacetic Acid*	79-11-8	1-10	
109	2-Chlorobenzaldehyde	89-98-5	1-10	H314, H317
110	1-(2-Chloroethyl)pyrrolidine Hydrochloride	7250-67-1	1-10	
111	Cyclohex-2-ene-1R- carboxylicaid	5709-98-8	1-10	H371
112	Cyclohexanol	108-93-0	1-10	302, 315, 319, 332, 335
113	3-Cyclohexene-1-carboxylic Acid	4771-80-6	1-10	H312, H314
114	Cyclohexyl Bromide (Bromocyclohexane)*	108-85-0	1-10	H226, H315, H332, H302, H335
115	Cyclopentyl Bromide*	137-43-9	1-10	H226
116	Danish Weed Spray	64-19-7	1-10	
117	Desicant		1-10	-
118	1,2-Diaminocyclohexane*	694-83-7	1-10	H314, H318, H335, H302, H312, H332
119	cis Enriched 1,2- Diaminocyclohexane	694-83-7	1-10	
120	Dibutylamine*	111-92-2	1-10	H226, H302, H311, H314, H330
121	Dichloromethane (DCM)	75-09-2	1-10	H315, H319, H335, H336, H351, H373
122	Diethyl Malonate	105-53-3	1-10	H319
123	Diethyl Oxalate*	95-92-1	1-10	H302, H319
124	Diethyl Sulfate*	64-67-5	1-10	
125	Dihydroeugenol	2785-87-7	1-10	H315, H317, H318, H335
126	Dimethylamine (60%)*	124-40-3	10-100	H225, H332, H302, H314
127	Ethanol (Denatured)	64-17-5	1-10	H225, H319
128	Ethyl Acetate	141-78-6	10-100	H225, H336, EUH066
129	Ethyl Butyrate*	105-54-4	1-10	H226
130	Ethyl Formate	109-94-4	1-10	H225, H302, H319, H332
131	Ethylene Glycol	107-21-1	1-10	H302, H373
132	Eugenol*	97-53-0	1-10	H315, H317, H319, H334, H335
133	Formaldehyde (37%)	50-00-0	1-10	H301, H311, H314, H317, H331, H335, H351, H370

134	Formamide*	75-12-7	1-10	H351, H360D, H373
135	Formamidine Acetate	3473-63-0	1-10	H315, H317, H319, H335
136	Formic Acid*	64-18-6	1-10	H225, H314
137	D-(+)-Glucose Monohydrate	14431-43-7	1-10	
138	1-Heptane (99%)	142-82-5	10-100	
139	Hexane	64742-49-0	1-10	
140	Hydrobromic Acid (48%)	10035-10-6	1-10	H314, H318, H335
141	Hydrochloric Acid (28%)	7647-01-0	10-100	290, 314, 335
142	Hydrochloric Acid (36%)	7647-01-0	1-10	290, 314, 335
143	Hydrogen Chloride (Gas)	7647-01-0	10-100	H280, H331, H314, EUH071
144	4-Hydroxybenzaldehyde*	123-08-0	1-10	H315, H319, H335
145	4-(4-Hydroxyphenyl)-2- butanone (Raspberry Ketone) (RM)*	5471-51-2	1-10	-
146	Immobead A150	133396-60-8	1-10	-
147	IMS	64-17-5	>100	H225, H371, H332
148	Indene*	95-13-6	1-10	
149	Isopropanol*	67-63-0	10-100	225, 319, 336
150	Isopropylamine	75-31-0	1-10	H224, H319, H315, H311, H331, H301, H335
151	Isopropyl Acetate*	108-21-4	1-10	H225, H319, H336
152	4-Isopropyl Catechol	2138-43-4	1-10	
153	Isopropylmagnesium Chloride (20%) in Tetrahydrofuran	1068-55-9	1-10	H225, EUH014, H260, H314, H335, H351
154	Lithium Aluminium Hydride (10%) in THF	16853-85-3	1-10	H351, H225, H260, H314, H335, EUH019
155	Magnesium Hydroxide	1309-42-8	1-10	-
156	Malonic Acid*	141-82-2	1-10	H302, H318
157	Mandelic Acid	90-64-2	1-10	H318
158	(D)-(-)-Mandelic Acid*	611-71-2	1-10	H318
159	(L)-(+)-Mandelic Acid*	17199-29-0	1-10	-
160	Mannose Syrup	6153-56-6	10-100	-
161	Methacrylic Acid	79-41-4	1-10	H302, H311, H314, H332, H335
162	Methanesulphonyl Chloride	124-63-0	1-10	H301, H311, H330, H314, H318, H317, H335
163	Methanol	67-56-1	10-100	H225, H301, H311, H331, H370
164	4-Methylacetophenone	122-00-9	1-10	H302, H315
165	Methyl Acrylate*	96-33-3	1-10	H319, H315, H312, H331, H302, H317, H225, H335
166	4-Methyl Catechol*	452-86-8	10-100	H315, H319, H335
167	4-Methyl Catechol Diacetic Acid (WMK Diester)	52589-39-6	10-200	
168	Methyl Chloroacetate*	96-34-4	10-100	H226, H301+H331, H315, H318, H335
169	Methyl-t-Butyl Ether (MTBE)	1634-04-4	10-100	H225, H315
170	2-Methyltetrahydrofuran	96-47-9	1-10	H225, H302, H315, H318
171	Nitrogen (Liquid)	7727-37-9	10-100	
172	PEG 300	25322-68-3	1-10	-

173	PEG 400	25322-68-3	1-10	
174	D-Phenylalanine	673-06-3	1-10	-
175	L-Phenylalanine	63-91-2	1-10	-
176	D-Phenylalanine Methyl Ester HCl	13033-84-6	1-10	
177	Phenylglyoxylic Acid Methyl Ether (PGME)*	15206-55-0	1-10	
178	4-Picoline*	108-89-4	1-10	H226, H302, H311, H315, H319, H332, H335
179	Potassium Hydroxide*	1310-58-3	1-10	H290, H302, H314
180	1-Propanol*	71-23-8	1-10	H225, H318, H336
181	Propionaldehyde	123-38-6	1-10	
182	Propylene Glycol	57-55-6	10-100	-
183	L-Pyroglutamic Acid	98-79-3	1-10	H318
184	Pyridine*	110-86-1	1-10	H225, H302, H312, H332
185	Sodium Bicarbonate*	144-55-8	1-10	-
186	Sodium Carbonate*	497-19-8	1-10	H319
187	Sodium Chloroacetate	3926-62-3	10-100	
188	Sodium Chloride	7647-14-5	1-10	-
189	Sodium Ethoxide (Crystals)*	141-52-6	1-10	H228, H251, H314, EUH014
190	Sodium Ethoxide (21%) in Ethanol	141-52-6 / 64- 17-5	1-10	H226, H290, H314
191	Sodium Hydroxide	1310-73-2	1-10	H290, H314
192	Sodium Hydroxide (30%)	1310-73-2	>100	
193	Sodium Metabisulphite*	7681-57-4	1-10	H318, H302, EUH031
194	Sodium Methoxide*	124-41-4	10-100	EUH014, 225, 314
195	Sodium Methoxide (30%) in Methanol	124-41-4	10-100	H226, H290, H301, H311, H314, H331, H370
196	Succinic Anhydride*	108-30-5	1-10	H302, H314, H317, H334, H335
197	Sulphuric Acid (50%)*	7664-93-9	10-100	H314
198	Sulphuric Acid (96%)*	7664-93-9	10-100	H290, H314
199	(D)-(-)-Tartaric Acid*	147-71-7	1-10	
200	(L)-(+)-Tartaric Acid*	87-69-4	1-10	H318
201	Tetrahydrofuran*	109-99-9	10-100	H225, H302, H319, H335, H351
202	Thionyl Chloride	7719-09-7	1-10	H302, H331, H314, H318, H335, EUH014, EUH029
203	Toluene (Recovered)	108-88-3	10-100	
204	Triflic Anhydride (Trifluoromethanesulfonic Anhydride)	358-23-6	1-10	EUH014, 302, 314
205	Triethylamine*	121-44-8	10-100	H225, H302, H31 <u>1, H331, H3</u> 14, H335
206	Veratraldehyde*	120-14-9	1-10	H302, H315, H319
207	Xylene	1330-20-7	1-10	
208	D-Xylose	58-86-6	1-10	-
209	L-Xylose	609-06-3	1-10	

Emergency Response Procedure

Rev No: 9

Procedure: EP 7

1. PURPOSE

This procedure clearly sets out duties for key personnel in the event of an emergency and makes provision for normal safety requirements and environmental protection. This procedure is designed to provide employees, Supervisors and Management with the training required to deal with emergency situations and drills in an effective coordinated manner.

2. SCOPE

To ensure efficient and effective response to any emergency on the site by defining the actions and responsibilities necessary and the occurrences which warrant such action. The plan is intended to prevent or minimise any damage or danger to employees, the general public, the environment or the plant. This procedure addresses potential emergency situations, drills, and false alarms. This procedure also identifies the roles and responsibilities of key personnel and the arrangements for contact & communications, both in planning for and in managing major emergencies

Likely Emergency situations:

- Large uncontained fire within or outside factory premises or on immediately adjoining property
- Explosion or Ignition of hazardous material
- Significant Toxic Release
- Fatality due to an on-site event
- Significant Off-Site impact
- An incident, other than a chemical spillage, which may be a threat to the environment
- Personal injury, not related to above, following a fall, collision or other incident.
- Break-in by intruders leading to theft, damage or hazardous operating conditions.
- Overfill of a receiving vessel or bund of a hazardous material
- Any scenario likely to result in significant production downtime or product loss or which could adversely affect the company's reputation in any way.

3. **RESPONSIBILITIES**

The <u>Emergency controller</u> will be the Production Supervisor on shift, who will coordinate and supervise action within the plant, in accordance with procedures laid down (SOP 1 Fire Evacuation & SOP 3 Spillage Procedure) and any drills carried out. The *emergency controller* may call for back-up assistance from one of the following; Managing Director, Production Manager, Technical Manager or Environmental Manager. EL-13 is a check list for the Emergency Controller and copies are available in the emergency equipment holding cabinet in unit 1.

The <u>Assistant controller</u> will be a designated person on each shift, normally the lead operator, who will be responsible, subject to direction from the <u>emergency</u> controller, for evacuation of personnel to assembly points in accordance with

Emergency Response Procedure

Rev No: 9

Procedure: EP 7

procedures and drills. EL-14 is a checklist for the Assistant Controller and copies are available in the emergency equipment holding cabinet in unit 1.

<u>All Staff members</u> are charged with the responsibility to quickly and effectively assist the Emergency Controller and Assistant controller to deal with the emergency. This will require as a minimum that each employee making the workplace safe before evacuating, to actively assist the evacuation headcount, being alert to requests from the emergency Controller.

4. **PROCEDURES**

Action Outside Normal Working Hours:

Outside normal working hours, back-up advice is available on call. A list of emergency telephone numbers is available at a number of locations on the premises and an EPA notice board containing all relevant information is located on the front gate.

Key Emergency Points & Supplies:

Main Assembly point: The main assembly point is located at the front of the premises close to the entrance of the courtyard. This assembly point is for all personnel and visitors. The assembly point is divided in to four separate sections, A, B, C and D to simplify roll call duties in an emergency situation. Different groups should assemble at separate points as indicated. Communication on this arrangement is delivered to personnel at induction and subsequent procedure training.

Breathing Apparatus:

The self-contained breathing apparatus is located outside the engineering office in the hallway unit 1 in a marked cabinet. If evacuation of personnel from the danger area using breathing apparatus is required, this will be done by those persons specially trained for this task. A training log of all those trained is maintained at the holding point for SCBA.

SABRE BA Escape Hoods are located on the Condenser Floor for use to evacuate the Production Areas.

Emergency Kit:

The emergency kit is located in the hallway unit 1 in a marked cabinet in a suitably marked container easily accessible to emergency personnel. It contains the items listed in Appendix 3. In addition a defibrillator together with a list of trained personnel and a fully stocked portable first aid kit are located within 2m of the emergency kit.

Emergency file:

Located in 'Athlone Fire Brigade' office, containing list of telephone numbers, copy of Emergency Response Procedure, site drawing showing water supplies and locations and an extract from the Master Substance List.

Emergency Response Procedure

Rev No: 9

Procedure: EP 7

After every review an updated copy of this procedure is forwarded to the Athlone Fire Brigade Office.

Evacuation Drills:

Drills are carried out at regular intervals to determine the effectiveness of the fire alarm system and evacuation efficiency. Evacuation drills are logged in the Emergency Incident Record EL-24.

Master Substance List: A Master Substance List has been drawn up as part of the REACH Management System. An extract from this list with UN numbers, quantities and storage locations of substances is kept in the Emergency file and in the Emergency Kit.

- Raw Material SDS Reception Office
- Product SDS Reception Office
- General SDS Library
- Master Substance (REACH) List Emergency Kit

Emergency First Aid Kits:

A large portable first aid kit is available at reception. There are fixed large first aid kits located around the site. Lists of trained first aid personnel are posted throughout the site and first aid markers are indicated on employees clocking station card.

Emergency Procedures for On-site incident:

- 1. Any person noticing a Fire/Smoke/Spillage or any other incident which may be a threat to personnel, the plant or the environment, shall activate the alarm at the nearest break-glass unit and report the fire/incident to their supervisor or department head. Personnel are trained on the correct procedure at site induction/ orientation training.
- 2. The *Emergency Controller* will determine where the alarm has been activated and assess the severity of the incident. If necessary the *Emergency Controller* should call the emergency services. Two trained persons can be instructed to don the fire tunics in Unit 9 locker room and the BA sets in case they are required to assist in the evacuation of staff or the Emergency Services.
- 3. The emergency services call will be answered by the main emergency control centre which is located in Dublin. The Arran *Emergency Controller* should give the name and address of Arran, phone no., state the type of incident, e.g. chemical fire or chemical incident and an estimate of the severity. The *Emergency Controller* should ensure that he informs them that the <u>Athlone Fire Brigade is required</u>.

The presence of the Gardai may also be requested when warranted as listed;

Rev No: 9

- Loss of life (Compulsory)
- Serious life threatening injury has occurred
- Smoke or fumes affecting traffic on local roads,
- Evacuation of neighbouring premises or homes required
- Breaches of security, theft or violence involved

4. **Evacuation Procedure**

On hearing the fire alarm start evacuation process. In so far as is safe to do so, all persons shall make their work safe and any materials at risk of propagating the incident should be removed from the danger area. Machines should be stopped or shut-down as appropriate and power turned off in so far as is practicable in accordance with training and drills.

Evacuate the premises and go directly to the assembly point at the Front Gate. The assembly point is divided in to four separate sections, A, B, C and D to simplify roll call duties in an emergency situation.

- 5. On hearing the firm alarm, the *Assistant Controller / Receptionist* shall supervise the evacuation of personnel to the assembly point. Three log books (white visitors sign in log, green truck drivers sign in log, and blue staff sign out log), 2 racks of clock cards marked "IN" (are easily removed from the wall) and the emergency kit are taken to the assembly point, by the *Receptionist* during normal business hours and by the *Assistant Controller* outside business hours.
- 6. All Staff should ensure that they co-operate to ensure the evacuation procedure is carried out efficiently and accurately. Staff are required to remain alert during an evacuation for requests of assistance from the Emergency Controller or Assistant Controller or other instructions.
- 7. Employees shall be accounted for by means of the clock cards in the "IN" racks less those signed out in the staff sign out book. All visitors and contractors onsite can be identified from the 'Visitors' logbook and drivers from truck-drivers logbook. Any un-accounted for personnel should be communicated to the Fire Chief or *Emergency Controller* immediately.
- 8. Once the Emergency Service arrives on site the *Fire Brigade Incident Controller* will take charge following an update from the Arran Emergency Controller.

9. <u>Injured Persons</u>:

Casualties, whose injuries appear to be such that being moved would worsen their injury, should only be moved if in immediate danger.

Casualties should be removed to a safe area* and given First Aid treatment as appropriate. Medical assistance or the ambulance service should be summoned immediately if there are significant injuries or the scope or extent of injury is not known.

Casualties with minor injuries will be treated on-site by trained First-Aiders, or sent to the Doctor at Athlone Town Surgery.

Rev No: 9

Procedure: EP 7

*NOTE: Fire brigade personnel are trained in rescue techniques and are specially equipped for the lifting and transport of badly injured persons. 'Search and Rescue' is the responsibility of trained Fire brigade personnel.

- 10. Injured Persons Leaving the site Injured Staff Checklist EL-25 The Incident Controller can use "Injured Persons Record" to record vital information with regard to any staff or visitor/contractor sent to hospital or a Doctor's Medical Surgery. Injured persons should whenever possible or
 - practical be accompanied by another member of staff when sent off site for medical assessment or treatment. This is for practical reasons to provide assistance or support until a family relative or next of kin arrives. The Incident Controller should request another member of staff to accompany them or call Management to provide assistance. If the accompanying person cannot be accompanied in an ambulance, they should follow in a car. The checklist is completed to record the details of when, where and how they can be contacted for updates. Arran Staff Next of Kin contact details are available in a sealed envelope in the Emergency Kit.
- 11. If necessary, consult the compilation of safety data sheets (kept at Reception) for particular fire fighting procedures or details of protective clothing and make these available to emergency services on their arrival. In storage areas, refer to overall directions for each storage bay or classification.
- 12. Transport of materials of a hazardous nature from the plant is carried out by 'Hazchem'-trained drivers from an 'Approved Freight Agents' list. Arran Chemical Co. Ltd. co-operates with Local Authorities and Emergency Services in all matters relating to transport of materials to and from the site and this co-operation is extended on a voluntary basis in other cases as applicable.

Environmental considerations:

13. In the case of a spillage or incident that is thought to be a threat to the environment, the following procedures should be adhered to :

Containment:

- a. Use all means possible to prevent chemicals or contaminated water from entering the environment. Initial actions should start with containment in the Backyard, Tankfarm tanks, Effluent tanks & bunds.
- b. Divert firewater to Fire Water Retention Pond by switching value at control panel to the right of the main gate towards Reception.
- c. If flammable or toxic material is directed towards the FWR pond, consider the likelihood of vapours arising from the pond, and the necessity of foaming the pond itself to minimise atmospheric losses and risk of fire. Contact Alkermes about the situation as may need to extend a safe zone on their site.

Rev No: 9

Procedure: EP 7

A spillage station is located in 'Unit 3' containing materials for use in containing/soaking up contents of such a spillage. Alkermes will have additional spillage supplies if there is a major spillage – Contact Alkermes Security?

Breathing Apparatus & Chemical suits may be required to deal with a spillage using staff trained in their operation. The Chemical Suit is stored in Unit 9 locker room along with three Fire Tunics (S, M &L), Flash Hoods & Fire Gloves

16. Following any spillage or incident, which is thought to be a threat to the environment, a formal notification must be made to the Environmental Protection Agency in accordance with condition 11.1 of the company's IPPC licence No.P0110-02

EF-05, Environmental Incident Notification, should be completed and faxed to the EPA as soon as practicable after the incident. Prior to sending EF-05, the EPA should be contacted by telephone which is manned by an answering machine outside of normal working hours. A message should be left giving details as per EF-05.

Reference: IPCC Licence, Condition 11, Notification, Records and Reports EF-05 Environmental Incident Notification

Safety and Health

17. Following any incident which is considered to have caused an injury to an employee which is deemed to be immediately reportable, a formal notification must be made to the Health and Safety Authority in accordance with the Safety and Health at Work Act 2005

The HSA should also be contacted by telephone. A message should be left giving full details if outside normal working hours. A full report should be sent as soon as practicable to the HSA

Reference: Safety, Health and Welfare at Work Act 2005

Stand-Down / All Clear :

When it is clear that the incident has been handled safely and that it is safe to return, the *Emergency Controller* or *Assistant Controller* may give approval for personnel to return to their work stations.

In certain cases it may be necessary to call in the Electrician before the all clear can be given.

The Emergency Controller may organize workgroups to inspect the premises to assess the extent of any damage and check control and containment systems. All plant and equipment should be inspected and tested, if necessary, prior to a startup. If the incident

Rev No: 9

Procedure: EP 7

did not affect any of equipment the Emergency Controller may decide to give the go ahead to resume normal operations.

The *Emergency Controller* should delegate a person to inform the neighbours and the Police, if necessary, that the all clear has been given.

Incident Report

Following an incident an Emergency Incident Report should be completed by the *Emergency Controller* and circulated to Management, who will review the report and determine if Regulatory Authorities need to be contacted. An internal review may be required to determine lessons learnt and corrective & preventative actions.

Training

All employees should be re-trained in the Procedure annually and each time the Procedure is revised.

Review of Emergency Response Procedure:

Carried out at regular intervals and when changes in site arrangements will require procedural change,, working through Production, safety and environmental personnel and in consultation with outside emergency services and other appropriate third parties.

Referenced procedures

- SOP1 Fire Procedure
- SOP3 Spillage Procedure
- SOP70 Fire Water Retention Pond Procedure
- EF-05 Environmental Incident Notification
- EL-13 Emergency Controller Checklist
- EL-14 Assistant Controller Checklist
- EL-24 Emergency Incident Record
- EL-25 Emergency Incident Injured Persons Record
- EP-20 Accident Prevention Procedure

IPPC Licence No. P-0110-02

- Safety, Health and Welfare at Work Act 2005
- S-05 Incident Report Form

Rev No: 9

Procedure: EP 7

Revision HISTORY

Document Change Requ	uest	
New Procedure format.		
	Approval	
Signature	Department	Date
Warne allera hours	H&S Officer	16 anno 18
6000/0 + 000 + 000 + 010 - 0		
Signature	Department	Date
Cyrel Janey	EHS Manager	16 Auc 2018
	······	
Aignature	Title	Date
Marin M'Cox	Site Manager	20 Aug 2018
	Document Change Requ New Procedure format.	Document Change Request New Procedure format. Approval Signature Department WMM/WMM H&S Officer Signature Department Signature Department Signature Department Signature Department Signature Department Main during EHS Manager Main M´(L) Site Manager

Rev No: 9

Procedure: EP 7

Emergency Procedure Appendix 1

Emergency Services Contact Phone numbers :

<u>Service</u>	<u>Name / Details</u>	<u>Phone No.</u>
Fire Brigade	"Ask for Athlone Fire Brigade"	999 / 112
Ambulance	Arran Eircode N37 DN24	999 / 112
Doctor	Dr. John Rice Surgery MIDOC	090 6472595 1850 302 702
Hospital	Portiuncula, Ballinasloe.	090 9648200
	Midland Hospital, Tullamore.	057 9321501
Garda (Athlone)	090 6492600 / 6492609	999 / 112
Electrician	Frank Dempsey	(087) 2351830
Transformer Failure	Brendan Geoghegan	(087) 6799531
ESB (Day & Night)	Supply Failure / Emergencies	1850 372999
GAS (smell or leak)	For all gas suppliers	1850 20 50 50
EPA OEE Office	Out of hours Answer machine	094 9048400
HSA Offices	Workplace Contact Unit	01 617000

Arran Staff Contact details for Next of Kin in Emergency Kit Bag in Old Reception

Emergency Phone Arran Supervisor's Phone		(086) 2500729 (086) 0408356
<u>Waste Shipment Contacts</u> Veolia Environ Services DEE Environmental Indaver	24 hour Emergency Service Emergency Service 24 hour Emergency Service	021- 459331 041-6856900 01 2804534
Monksland Treatment Plant	Caretaker (Joe O Grady)	(087) 8148922

Rev No: 9

Procedure: EP 7

Emergency Procedure Appendix 1

Arran Staff Contact numbers :

Name	<u>P</u>	<u>hone No.</u>	
Martin McCabe	Site Manager	086	
Peter Cairns	Technical Manager	086	
Cyril Furey	E H S Manager	087	
Rhona Fitzgerald	Admin Manager	086	
Philip Killeen	Plant Engineer	087	
Emer Nooney	Process Engineer	085	
Shane Naughton	Environmental	086	
Karen Fahey	PhD Chemist	087	

.

Rev No: 9

Procedure: EP 7

Emergency Procedure Appendix 2

Emergency Response Plans Spreadsheet

Locations of plans:

- Administration office
- Supervisors Office
- Pilot Plant Office
- Engineering Office
- Warehouse Office
- Environmental Supervisors Office
- Safety Officers Office
- Emergency Plans & Drawings
- Management Offices
 - Martin
 - o Cyril
 - o Peter
 - o Rhona
 - o Andrew

Rev No: 9

Procedure: EP 7

Emergency Procedure Appendix 3

Emergency Equipment Type & Location

Respiratory Protective Equipment	
Breathing Apparatus	Old Reception Press
SABRE escape sets	Unit 2 at Electric Panel
	Unit 5 in Bay area
Air Hoods & Filters	PPE Room Unit 3
Full Face Masks & Filters	PPE Room Unit 3
Chemical & Splash Protection	
Tyvek Suits, Gloves	PPE Room Unit 3
	Unit 9 on RHS rack
Chemical Splash Suit	
Wellington Boots	
Emanage of Bins To a b	T
Linergency Fire 100is	TT 10
i i i i i i i i i i i i i i i i i i i	Unit 9 entrance
Manhale cover lifting kove	Unit 2 Side Gate exit
Walmole cover mining keys	Unit 9 entrance
	Unit 2 Side Gate exit
Firefighting Foam Drums & Diffuser attachment	Livit Q ontrongo
Thenghung I bain Druins & Diffuser attachment	Unit 9 chiralice
Fire Suits – Tunic & pull-ups	PPE Room Unit 3
Fire Gloves	PPF Room Unit 3
Flash Hoods	PPE Room Unit 3
First Aid Kits	Unit 1 Hallway (PORTABLE)
	Unit 2 Supervisors Office
	Unit 5 Pilot Plant Bay
	Unit 10 Canteen
	Unit 1 QC
	Maintenance Workshop
Defibrillator (AED)	Unit 1 Hallway
	Prov
Emergency telephone numbers	Emergency Kit Bag in old reception
Next of Kin Contact number	
Torch and batteries	
Master keys, Locker Keys,	
Leakstop Putty	
Spare Male & Female Clothing & towels bags	Emergency Kit Press in old reception

Rev No: 9

Procedure: EP 7

Emergency Procedure Appendix 3 Emergency Equipment Type & Location

 Site drawings: Water Hydrants Electrical Isolation Panels & switches Gas & Diesel supply isolation points Cylinder storage locations Firewater Diversion to Retention pond Fire Extinguishing Equipment Safety Shower locations 	Emergency Kit Press in old reception
 EP7 Emergency Response Procedure, EL-13 Emergency Controller Checklist, EL-14 Assistant Controller Checklist, notebook and pen, Incident Scenarios? Sample bottles 	Emergency Kit Bag in old reception

Procedure No.	AHS.002	Standard Operating	
Revision No.	00	Procedure	arran
Pages	1 of 3	SPILLAGE PROCEDURE	CHEMICAL COMPANY LTD A Member of the Almac Group
Effective Date			

APPR	OVAL SIGNATURES	JOB TITLE	DATE
Prepared by:	Share Naughta	Em. Superior	30 Sep 2019
Reviewed by:	Cynl Juney	EHS Monogen.	30 Sep 2019
QA Approved:	found out on the state		en Sillinnen.

1 PURPOSE AND SCOPE

1.1 This SOP details the process to be followed by Arran personnel when dealing with spillages. The type of spillage either minor or major is outlined in AHS.002 App01.00 and outlines suitable response considerations. This is important in the provision of training on this procedure.

2 RESONSIBILITY

2.1 The activities described in this SOP are the responsibility of Supervisors, Warehouse, Environmental Health & Safety and all operational personnel in labs, pilot plant and production.

3 PROCEDURE

- 3.1 Determine the spillage situation as defined above at either a Minor or Major spillage, using guidelines in AHS.002 App01.00
- 3.2 Raise the alarm with colleagues before taking any action, avoiding acting alone if at all possible.
- 3.3 For a MINOR Spillage, that you know the substance involved, can see the extent of the spillage or the rate of expansion, get suitable PPE especially RPE before attempting to stop the spillage or starting to clean it up.
- 3.4 For a Major Spillage that you have come across, and don't know exactly the chemical risk involved then set up a safety zone safety sign to warn & prevent personnel from entering the area. Alert Supervisor (if necessary, sound fire alarm). Identify the material involved and select suitable PPE especially RPE as per SDS instructions or instructions on container.
- 3.5 Use all means possible to contain chemical or contaminated water on-site:
 - (a) Cover drains /gullies with drain blockers if there is a risk of material getting to drains.
 - (b) If spillage occurs in front yard, ensure valve is closed.
 - (c) If spillage occurs in back yard, turn off the sump pump to contain the spillage in the sump, until a dedicated tank or IBC can be setup.
 - (d) If the front yard surface water drains are reached by the spillage and it cannot be stopped activate the Fire water diversion system to direct all flow to the fire water retention pond.

Procedure No.	AHS.002	SPILLAGE PROCEDURE	arran
Revision No.	00		CHEMICAL COMPANY LTD A Member of the Almac Group

- 3.6 The CODE 01234* opens the Spillage Station at Unit 3, with bulk quantities of absorbent material. An exclusion area with barrier tape & cones may be required to prevent pedestrian or forklift access during clean-up.
- 3.7 Lay out absorbent material / matting to contain spillage. Spread absorbent matting/material over the affected area to soak up spillage. Use the correct absorbent mats White mats are oil only, Grey mats are for all substances and Yellow / Pink mats are specially designed for strong acids or bases or chemicals. The absorbent material must be treated in the same manner as the chemical that was absorbed.
- 3.8 Transfer wetted absorbent material to the waste drum, seal the lid and label for disposal, indicating contents as it will have to be classified for transport.
- 3.9 Check area for toxicity/flammability using Gas detector and PPE may be required for this clean-up.
- 3.10 The Supervisor declares the area safe and writes an incident report.
- 3.11 The Environmental Protection Agency may need to be informed as soon as is practicable, after the incident has occurred, in consultation with EHS Manager. Refer to EP7 Emergency Response Procedure.

NOTES:

 Spillage Stations are located in the following areas: Unit 3 (Main Spillage Station), Unit 4, Unit 5, Unit 6 and Unit 7. Three mobile spill kits are located outside Unit 4 (front) & Base bund & backyard at Oil heater shed.

Procedure No.	AHS.002	SPILLAGE PROCEDURE	arran
Revision No.	00		CHEMICAL COMPANY LTD A Member of the Almac Group

4.0 APPENDICES

AHS.002 App01.00

5.0 REFERENCES

6.0 **REVISION HISTORY**

•

1 - <u>8</u> - 1

an order of March 199 States and States affait

는 아파 아님, 다가 전망 성장에 가지 않는

BACKGROUND

In the event of a spillage, the main consideration is for human safety and then containment to protect the environment. The initial action taken will depend on the seriousness of the situation e.g. a minor spillage vs major spillage. How they are defined determines the appropriate response.

Minor Spillage:

- Less than 2m² in surface area
- Known source of spillage, found by person working in that area or happens when staff present
- Allows staff assess the risks, the substance involved and access suitable PPE quickly
- Allows fast response by staff to contain / stop spill before vapours or odours become stronger and more serious.
- Extent of spillage present is obvious and not spreading

Major Spillage:

- Greater than 2m² in surface area
- Spillage found by passing staff or in unmanned area of the site
- Source of spillage not obvious immediately
- Vapours & odours potentially strong
- Fast response by staff is inappropriate due to unknown factor above or type of spillage
- Extent of spillage and risks not obvious

Resources for Spillage control on Site:

- Bunded areas
- Isolation valves on pipework
- Sump isolation points
- Effluent tanks
- Absorbent pads & mats
 - White for oil only
 - Grey for all-purpose mats & rolls
 - o Yellow for strong fuming acids
- Absorbent rolls
- Drain blocker mats
- Spillage Kit Bins for mobile response x4
- Central Spillage station at entrance to Unit 3
- Fire water Diversion system to prevent excursions to surface water
- Fire alarm system to raise the alarm or seek help & assistance
- SDS for all materials, or hazard information on containers or batch sheets
- Personnel protective equipment
 - o Full face mask
 - o BA sets
 - o Wellingtons

전화 문제 전체 소리.

1.8.2 M 9.2 M 1.1 M

- Carl and a second constraints of
- ්රී කියා විද්යාවයක් කරන්නේදිය. කිසින්දිය කරන්නේ සිදුවන් සිංහා කරන්න විද්යා කරන්නේ. කියා විද්යාන විස්දුවන කරන
- 가는 가방 가방지를 위험한 모두 가지 만나는 것이 한 한 방법 방법에 있는 것이 가 한 것이 있다. 이 한 것이 있다. 것이 가 있는 것이 같이 있는 것이 같이 같이 같이 같이 같이 같이 같이 있다. 2018년 1월
- ਦਾ ਦਾ ਦਰਦੇ ਕੀ ਦਵਾਰਾਂ ਤਿਸ਼੍ਰੇ ਦਾ ਇਹ ਜੋ ਪ੍ਰਭਾਵਨਾਂ ਹੈ ਕਿਸੇ ਵੱਖ ਦਿੱਤਾ। ਦਾ ਦਾ ਸ਼ਰੂਬੀਕੇ ਇਹ ਜਹਿੰਦਾ ਕਿ ਦਾ ਦਾ ਦਾ ਤੱਕ ਦੇ ਸਿੱਖਿਆ ਜਾਂ ਦੇ ਇਹਿੰਦਰ ਵਾਰਾਂ ਵਿੱਚ ਜਿਸਦੇ ਹਿੰਦਾ – ਕੀਤੇ ਦਾ ਇਹ

- a da a 18 an firsting a transformation and a first state of the stat
 - and Britten Village I.
 - 이는 이는 이가 해외 있는 것이 있는 것이 가지 않는 것이 없다. 이는 것이 가지 않는 것이 가지 않는 것이 없다.
- 가 가 가 나 가 나라 있는 사람은 가는 것과까? 이상도 가장에 가지 않는 것 같아. 이가 동네가 있는 것 같아. 맛있는 것 - 것 같은 :____
 - The definition of the second second
 - - Strategy and set of processing and set
 - state in the American State

 - efilter, company philos
 - an II na h-Alf 1994 i an Ann An Alf I I an
 - - 1. All Sugar and A.
 - et al et a lla na deficiel de la Roma
 - n 19 Maria Sala Mahari Jalika Mala 1997
 - 化丁基丙二酸丁二酸丁二酸丁二酸丁基医丁酸医丁二酸医丁二酸医丁基乙酸
 - 승규는 방법 이는 것은 것은 것을 다니라. 이는 것은 것은 것을 받아 있다는 것이 다. 것을 것으로 가지 않는 것을 수 있다.
 - - n andre af the s

2018 Additional information Year Yes 3 years Yes Yes 12 Yes Yes 25 24 13 ഹ PO110-02 Does the site maintain a register of bunds, underground pipelines (including stormwater and foul), Tanks, sumps and containers? (containers
 Bund testing
 dropdown menu click to see opuons

 Are you required by your licence to undertake integrity testing on bunds and containment structures if yes please fill out table B1 below listing all new bunds and containment structures on site, in addition to all bunds which failed the integrity test-all bunding structures

 1 which failed including mobile bunds much failed the integrity test-all bunding structures
 Lic No: Please list any sump integrity failures in table **B1** 11 Do all sumps and chambers have high level liquid alarms? 12 If yes to Q11 are these failsafe systems included in a maintenance and testing programme? 8 How many of these mobile bunds have been tested witin the required test schedule? 5 How many of these bunds have been tested witin the required test schedule? 10 How many of these sumps are integrity tested within the test schedule? 9 How many sumps on site are included in the integrity test schedule? 7 Are the mobile bunds included in the bund test schedule? 3 refers to "Chemstore" type units and mobile bunds) 2 Please provide integrity testing frequency period Bund/Pipeline testing template 6 How many mobile bunds are on site? 4 How many bunds are on site?

Table B1: St	ummary details of bund	/containment stru	ructure integrity test											
					-				Integrity reports		ntegrity est failure		:	kesults of etest(if in
Bund/Containment structure ID	be	Specify Other typ	o Product containment	Actual capacity	Capacity required*	Tvpe of integrity tes	Other t test type	Test date	maintained on site?	Results of test	explanation (<50 words a	Corrective action taken	Scheduled date for retest	current eporting vear)
Bund No 1 re	inforced concrete		Solvent waste tanks	6	36.5	Hydraulic test		Dec-17	Yes	Pass			Jul-20	
Bund No 2 re	inforced concrete		Aqueous waste tanks	117	80	Hydraulic test		Jun-16	Yes	Pass			Jun-19	
Effluent Tank Bund re	inforced concrete		Aqueous waste tanks	90	80	Hydraulic test		Jul-18	Yes	Pass			Jul-21	
Bund No 6	inforced concrete		Chiller & glycol tanks	6.7	6	Hydraulic test		Dec-17	Yes	Pass			Jul-20	
Bund No 7	inforced concrete		Aqueous IBC storage	6.6	26	Hydraulic test		Dec-17	Yes	Pass			Jul-20	
Bund No 8 re	inforced concrete		Aqueous waste tanks	20	19.5	Hydraulic test		Jun-16	Yes	Pass			Jun-19	
Acid Bund re	inforced concrete		Acid storage	7.4	12	Hydraulic test		Aug-16	Yes	Pass			Aug-19	
Base Bund re	inforced concrete		Base storage	7.4	12	Hydraulic test		Oct-16	Yes	Pass			Oct-19	
Mobile Bund No 1 pi	refabricated		Unit 11 liquid products	0.5	0.4	Hydraulic test		Aug-16	Yes	Pass			Aug-19	
Mobile Bund No 2 pi	refabricated		Acid for effluent	0.5	0.4	Hydraulic test		Aug-16	Yes	Pass			Aug-19	
Mobile Bund No 3 pi	refabricated		Base for effluent	0.5	0.4	Hydraulic test		Aug-16	Yes	Pass		2.2	Aug-19	
Mobile Bund No 4 pi	refabricated		Drums & IBCs	1.2	0.4	Hydraulic test		Aug-16	Yes	Pass	4	5.	Aug-19	
Mobile Bund No 5 pi	refabricated		Drums & IBCs	1.2	0.4	Hydraulic test		Aug-16	Yes	Pass	0		Aug-19	
Mobile Bund No 6 pi	refabricated		Drums & IBCs	1.1	1	Hydraulic test		Jul-18	Yes	Pass D	(JC 1)		Jul-21	
Mobile Bund No 7 pi	refabricated		DIW drum additives	0.25	0.22	Hydraulic test		Jul-18	Yes	Pass 🔊	5 J. C.		Jul-21	
Mobile Bund No 8 pi	refabricated		Water treatment storage	0.25	0.22	Hydraulic test		Jul-18	Yes	Pass 🖉 🔪			Jul-21	
Mobile Bund No 9 pi	refabricated		Lab solvent drum storage	0.25	0.22	Hydraulic test		Jul-18	Yes	Pass 🔊 💦			Jul-21	
Unit 4 Warehouse	inforced concrete		Raw material warehouse	34.6	33	Hydraulic test		Apr-18	Yes	Fair S			Apr-21	
Unit 6 Warehouse	inforced concrete		Process material warehouse	33.7	33	Hydraulic test		Jun-16	Yes 🔥	Pass, V			Jun-19	
Lab Tray 1 ot	ther (Stainless)		Drums	0.5	0.22	Hydraulic test		Jul-18	Yes 🔊	Pass			Jul-21	
Lab Tray 2 ot	ther (Stainless)		Drums	0.3	0.22	Hydraulic test		Jul-18	Yes	Pass			Jul-21	
* Capacity required should comply w	vith 25% or 110% containment ru	ile as detailed in your lice.	ence				Commentary		19.01					
Has integrity testing been	carried out in accordant	ce with licence req	quirements and are all structures		-	:			101 101					

tested in line with BS8007/EPA Guidance?
 Are channels/transfer systems to remote containment systems tested?
 Are channels/transfer systems compliant in both integrity and available volume?

Yes Yes

tor sto Hastlo

bunding and storage guidelines

Bund/Pipeline testing template
Pipeline/underground structure testing

Are you required by your licence to undertake integrity testing on underground structures e.g. pipelines or sumps etc ? if yes please fill out 1 table 2 below listing all underground structures and pipelines on site **which failed the integrity test 2** Please provide integrity testing frequency period

2018

Year

PO110-02

Lic No:

Table B2: S	ummary details of pipelin	e/underground str	uctures integrity test								
Structure ID	Type system	Material of construction:	Does this structure have Secondary containment?	Type of secondary containment	Type integrity testing	Integrity reports maintained on site?	Results of test	Integrity test failure explanation <50 words	Corrective action taken	Scheduled date for retest 1	Results of etest(if in current eporting /ear)
Unit 2 Sump	Process	concrete	No		Hydraulic	Yes	Pass			Sep-19	SELECT
Unit 3 Sump	Process	concrete	No		Hydraulic	Yes	Pass			Jul-21	
Unit 5 Sump	Process	concrete	No		Hydraulic	Yes	Pass			Jul-20	
Front Yard Sump	Process	concrete	No		Hydraulic	Yes	Pass			Jul-20	
Fire Water Retention	Storm	polypropylene	No		Combination	Yes	Pass			May-20	
Fire Water Main Sump	Storm	concrete	No		Hydraulic	Yes	Pass			Dec-20	
Line A (SE-1 Effluent)	Process	polypropylene	Yes	Double walled piping	Air		Pass			Nov-21	
Line B	Process	concrete	Yes	Pipe in channel	Hydraulic	Yes	Pass			Dec-20	
Line C	Process	concrete	Yes	Pipe in channel	Air	Yes	Pass			Jul-19	
Line D	Process	concrete	Yes	Pipe in channel	Air	Yes	Pass			Jul-19	
Line E	Process	polypropylene	Yes	Pipe in channel	Air	Yes	Pass			Jul-19	
Line F	Process	polypropylene	Yes	Pipe in channel	Air	Yes	Pass			Jul-19	
Line G	Storm	polypropylene	Yes	Pipe in channel	Air	Yes	Pass			Dec-20	
Line H	Storm	polypropylene	Yes	Pipe in channel	Air	Yes	Pass			Dec-20	
Line I	Storm	polypropylene	Yes	Pipe in channel	Air	Yes	Pass			Dec-20	
Line J	Storm	polypropylene	Yes	Pipe in channel	Air	Yes	Pass			Dec-20	
Line K	Storm	pvc	No		CCTV	Yes	Pass			Dec-20	
Foul Sewer	Foul	pvc	No		CCTV	Yes	Pass			Dec-20	
Line L	Process	polypropylene	No	Pipe in channel	Air	Yes	Pass			Jul-19	
Line M (New Kilo)	Process	polypropylene	Yes	Double walled piping	Hydraulic	Yes	Pass			Dec-20	

Hydrualic and pneumatic testing of underground drains has been extended replacing the CCTV testing previously carried out. Further works are planned for the drainage system in 2017 as part of plant extension.

Arran Chemicals

Integrity Testing Report

Project Handover & Completion File

- Client: Arran Chemicals
- Site: Arran Chemicals, Athlone, Roscommon Project Number: J-008330 Purpose of Project: Testing of
 - Underground Services
 - Project Contact:
 - File Prepared by:
- Dwayne

Cyril Fuery

Watson

Table of Contents

- Section 1: Tracking Document
- Section 2: Integrity Test(s) Report

	McB Envi	reer	n nental	Project: Contact: Client: Network: Date:	Integrity Testing at Arron Chemica Cyril Furey Arran Chemicals Proicess & Storm Network 22/08/2019	ls, Athlone				EMICAL CC	
U/S MH REF	D/S MH REF	Length (m)	Diameter	Air / Water	Network or Individual Test	Number of Laterals (if Network)	Test Result	Test No	Order No	Test Date	Location
				I	Process						
SE1	COUNCIL SEWER	18	100	Air	Individual	N/A	Pass	54	2	09/08/2019	Arron Chemicals
UNIT 3 SUMP	GULLY AT BB	10	100	Air	Individual	N/A	Pass	54	3	09/08/2019	Arron Chemicals
PP SUMP	KILO LABS	21	100	Air	Individual	N/A	Pass	54	5	09/08/2019	Arron Chemicals
PP SUMP	TBE LABS	11	100	Air	Individual	N/A	Pass	54	6	09/08/2019	Arron Chemicals
GULLY AT BB	SIEVE ROOM	48	150	Air	Individual	N/A	Pass	54	4	09/08/2019	Arron Chemicals
PP SUMP	COOLING WATER GULLY	17	150	Air	Individual	N/A	Pass	54	7	09/08/2019	Arron Chemicals
					Storm						
FYS	GULLY J	25	150	Air	Individual	N/A	Pass	55	1	09/08/2019	Arron Chemicals
FYS	GULLY G	22	150	Air	Individual	N/A	Pass	55	2	09/08/2019	Arron Chemicals

Order no.: 54 Test no.: 6					
McBreen Environmental					
Lismagratty, Co. Cavan - Cootehill Road - Tel: +353 (0)49 432 6306					
	Client: ARRAN CH	EMICALS			
	Pressure t	est report Pip	e - Air/EN 16	510	
Pressure					
14.0 mbar	I				
12.4 mbar		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
9.9 mbar					
0.0 mbar Time in min 0 Pressur Pre-fill	1 e build-up time Test duration	2	3	4	5
Location	: UNIT 5				
Location	: MONKSLAND		Drawing No.		: NONE
Street	: MAIN STREET		Section no.:		: PROCESS
Tester	: NIALL MC CABE		from manhole		: PP SUMP
Test equipment	: MASTERTEST® SN:170210		to manhole		: TBE LABS
Order no.	: 54		Length of test sec	tion	: 11.0 m
Test date	: 09/08/2019 11:56:55		Pipe profile		: Circle
Test method	: Air/EN 1610		Diameter		: 100 mm
Test category	: Air LA				
Test section	: Pipe		Pipe no.		: PP SUMP
Material	: High-density polyethylene		Internal protection	n	: without
Remark	:		-		
Sensor Approval	: PMC131 -300 - +300 mbar, :	SN: LC0E4001052	Sensor test		: 25/03/2019
Test pressure	: 12.4 mbar	Pre-fill	time	: 0:49 min	
Permiss. pressure loss	: 2.5 mbar	Test d	uration	: 5:02 min	
Act. pressure loss	: -0.1 mbar	Result		: Passed	
Testing contractor		ā	 ient		·

Order no.: 55 Test no.: 1

Lismagratty, Co. Cavan - Cootehill Road - Tel : +353 (0)49 432 6306

Pressure test report Pipe - Air/EN 1610

Laterals for this section no.:

No.	Position	Diameter	Longitude	Remark	Material	
		[mm]	[m]			
1	1	150	11	GULLY I	PVC	

Order no.: 55 Test no.: 2

Lismagratty, Co. Cavan - Cootehill Road - Tel : +353 (0)49 432 6306

Pressure test report Pipe - Air/EN 1610

Laterals for this section no.:

No.	Position	Diameter	Longitude	Remark	Material
		[mm]	[m]		
1	1	150	10	GULLY H	PVC

LICENCE	REFERENCE
	No.

RISK ASSESSMENT METHODOLOGY STAGE & STEP

REPORT VERSION

P0110-02

Stage 3 Step 2

Rev. 6

Corrective Action Implementation & Verification Report for the Environmental Protection Agency (July 2019)

(P0110-02)

Project Title:	Plume 4 Progress Report
Licence No:	P0110-02
Project No:	1099
Contract No:	
Report Ref:	1099-780
Status:	Rev. 6
Client:	Arran Chemical Company
Client Details:	Monksland Industrial Estate,
	Athlone,
	Co Roscommon, Ireland
Issued By:	Minerex Environmental Limited
	Hydrogeological, Environmental and
	Geophysical Services
	Taney Hall, Dundrum, Dublin 14, Ireland
	Dublin 14, Ireland

Document Production/Approval Record

	Name	Signature	Date	Position	% Input
Prepared by (consultant)	Zala Uriel	82	11/07/19	Hydrogeologist	85
Approved by (consultant)	Cecil Shine	Cecil Shine	11/07/19	Director	15
Site Approval by	Cyril Furey		11/07/19		N/A

LIMITATION

- Although every effort has been made to ensure the accuracy of the material contained in this document, complete accuracy cannot be guaranteed. Neither the Minerex Environmental Limited nor the author(s) accept any responsibility whatsoever for loss or damage occasioned or claimed to have been occasioned, in part or in full, as a consequence of any person acting or refraining from acting, as a result of a matter contained in this publication.
- 2. Minerex Environmental Limited (MEL) has prepared this document for the sole use of its client in accordance with the work authorised.
- 3. No warranty, expressed or implied, is made as to the professional advice included in this report or any other services provided by MEL. However, MEL does carry Professional Indemnity (PI) Insurance.
- 4. All or part of this document may not be reproduced or be relied upon by any other party without prior and express written permission from MEL.
- 5. Interpretations contained in this report are derived from available information of the site conditions, the likely environmental responses and the experience of the company.
- 6. MEL has prepared this report in line with best current practice and with all reasonable professional judgement, skill, care and diligence in consideration of the limits imposed by materials, equipment and methodologies used, and the time constraints and resources devoted to it as agreed with the client.
- 7. The interpretative basis of the conclusions contained in this report should be taken into account in any future use of this report. If the scope of the works includes drilling, pitting, sampling, or interpretation of such information, the client's attention is drawn to the fact that special risks occur whenever hydrogeological and related disciplines are applied to identify subsurface conditions.
- 8. The environmental, geological, geotechnical, geochemical, hydrological and hydrogeological conditions etc. that MEL interprets to exist between sampling points may differ from those that actually exist. Trial pitting and drilling, for example, exposes the subsoils over typically <1% of a site and in sites with long histories with several owners and business practices, interpretations and interpolations can be very different to the actual site conditions. Even a comprehensive sampling and testing programme, implemented in accordance with a professional Standard of Care considering Industry Standard Guidance, may fail to detect certain physical conditions, geology, geochemistry and hydrochemistry etc only discovered later on during bulk excavations for example.</p>
- 9. Also, the passage of time, natural occurrences, and activities within and in the adjacent sites to the site, may substantially alter the discovered conditions at any time after the Site Investigations and interpretations are carried out by MEL.
- 10. Changes in the legislation, industry standards and guidance may cause opinion, advice, conclusions and recommendations set out in MEL reports to become out of date, inappropriate or incorrect. Once a report has been issued to a Client, MEL will have no obligation to advise the Client of any such changes, or their repercussions.
- 11. While MEL endeavours to take reasonable effort to assess data in hand at the time of writing and give the best advice possible, MEL will accept no responsibility for how the information within this report is interpreted and used. Where elements of this report are based upon information provided by others, it is assumed that all the relevant information has been supplied to MEL in full and is reliable, accurate and representative. It should always be assumed that MEL has not independently verified any information provided by others. MEL, its agents, directors, owners, employees, and contractors therefore will not be held responsible for any loss (reputation, financial, technical or otherwise) occurring from the use of this report, however caused.

TABLE OF CONTENTS

Sectio	on		Page No
EXEC		SUMMARY	1
1.	INTRO	DDUCTION	4
1.1.	GENE	RAL INTRODUCTION	4
1.2.	BACK	GROUND INFORMATION	4
	1.2.1.	DETERMINATION OF THE CONTAMINANTS OF POTENTIAL CONCERN (COPCS)	5
	1.2.2.	DETERMINATION OF THE EFFLUENT SIGNATURE	5
	1.2.3.	PLUME 4 TRAVEL TIME ESTIMATION	7
1.3.	PROJ	ECT OBJECTIVES	8
2.	SYSTI	EM PERFORMANCE	8
3.	MONI	TORING RESULTS	11
3.1.	WATE	R LEVELS	11
3.2.	COND		12
3.3.	RESU	LTS FROM LABORATORY ANALYSIS	16
	3.3.1.	WELLS HISTORICALLY RELATED WITH 1990S PLUME 1 AND IN CLOSE PROXIMITY TO EFFLUENT SUMP, (SOURCE OF A KNOWN LEAK DURING 2018)	16
	3.3.2.	WELLS HISTORICALLY RELATED WITH OFF-SITE PLUME 2	18
	3.3.3.	WELLS NOT HISTORICALLY RELATED TO CONTAMINATION PLUMES	20
	3.3.4.	EFFLUENT CHEMISTRY:	22
4.	VERIF	ICATION	25
4.1.	WELL AND T IDENT	S LOCATED IN CLOSE PROXIMITY TO ACCL FACILITIES THE EFFLUENT SUMP WHERE THE KNOWN 2018 LEAK WAS TIFIED:	25
4.2.		S LOCATED UPSTREAM THE EFFLUENT SUMP AND NSTREAM OR WITHIN THE ACCL SITE	26
4.3.	WELL	S LOCATED UPSTREAM THE ACCL FACILITIES.	26
4.4.	OTHE	R WELLS LOCATED AT THE SOUT FROM ACCL FACILITIES	26
	4.4.1.	AMW 7, AMW 8 AND AMW 9	26
	4.4.2.	BH 105 AND BH 107	27
4.5.	MONK	SLAND STREAM: SW 104	27
4.6.	SUMM	IARY	27
5.	CONC	LUSIONS	28
6.	RECO	MMENDATIONS:	29

FIGURES

Figure 1.1	Location map
Figure 1.2	Signature of the effluent
Figure 2.1	Location of Effluent Sump and Remediation Wells.
Figure 3.1	Piezometric map for the overburden – 27/02/19
Figure 3.2	Piezometric map for the bedrock – 27/02/19
Figure 3.3	Concentration of CoPCs vs. Conductivity
Figure 3.4	Variation of the conductivity and the COD over time when pumping was occurring at AMW 3 between November 2018 and January 2019.
Figure 3.5	Variation of the conductivity and the COD over time when pumping was occurring at AMW 11 with first pump setup, between March and May 2019.
Figure 3.6	Variation of the conductivity and the COD over time when pumping was occurring at AMW 11 with second pump setup, between May and June 2019.
Figure 3.7	Variation of conductivity during pumping and not-pumping periods.
Figure 3.8	AMW3 CoPCs concentrations
Figure 3.9	AMW4 CoPCs concentrations
Figure 3.10	AMW11 CoPCs concentrations
Figure 3.11	AMW5 CoPCs concentrations
Figure 3.12	AMW2 CoPCs concentrations
Figure 3.13	AMW7 CoPCs concentrations
Figure 3.14	AMW8 CoPCs concentrations
Figure 3.15	AMW9 CoPCs concentrations
Figure 3.16	AMW1 CoPCs concentrations
Figure 3.17	AMW6 CoPCs concentrations
Figure 3.18	BH105 CoPCs concentrations
Figure 3.19	BH107 CoPCs concentrations
Figure 3.20	SW104 CoPCs concentrations
Figure 3.21	Effluent CoPCs concentrations
Figure 3.22	Concentration of o-Xylene in the Effluent, in AMW 3 and in AMW 11.
Figure 3.23	Concentration of Ethylbenzene in the Effluent, in AMW 3 and in AMW 11.
Figure 3.24	MIBK concentrations in the groundwater and in the effluent.
Figure 4.1	AMW 11 estimated ZoI and ZoC in the Overburden.

TABLES

Table 1.1	CoPCs and their concentration in the effluent (µg/l)
Table 2.1	Remediation system performance and actions taken to improve performance
Table 3.1	CoPCs with higher concentration in the groundwater than in the Effluent

APPENDICES

Appendix A	Well Logs
Appendix B	Wells Inventory
Appendix C	AECOM Slug Tests reports
Appendix D	Water Level Records
Appendix E	Hydrochemistry Records
Appendix F	Simulated Rain Test: Extract from 2018 Hydrogeological Report

REFERENCES

Ref.1	Report into the recent investigation in relation to monitoring well AMW3 (2015) – (Minerex Doc. Ref. 1099-751)
Ref.2	2018 Hydrogeological Assessment (2019) – (Minerex Doc. Ref. 1099-775)
Ref.3	Reply on EPA comment on AMW 3 chemistry (2015) – (Minerex Doc. Ref. 1099-774)

EXECUTIVE SUMMARY

- 1. ACCL is a chemical company specialising in the manufacture of products for pharmaceutical and health care, flavour/fragrance, personal care, and other specialised chemical and industrial applications.
- Historically, back in the 1990s, a leak in the sewage system generated a plume of contaminants (Plume 1) into the ground close to AMW3 monitoring well. Concentration reduced to practically nil by the end of 1998 and remained <2% of the peak concentration until 2010-2013.
- 3. Over the period 2010-2013, several leaks in the main water supply is understood to have led to water flowing along the top of a clay layer in significant amounts and mobilised residual contamination (which normal rainfall could not achieve) giving as a result new peaks in concentration. By the end of 2015 and up to 2018 the contaminant concentrations where again reducing.
- 4. During 2018, peaks in the concentration of contaminants were detected after the routine Q3 groundwater monitoring round. The origin of this leak was most likely an effluent sump that had some remedial repairs performed in August of 2018, but the leak was not evident at the time of the inspection.
- 5. A remedial pumping system has been setup and is being improved based on performance observations. Concentrations of CoPCs since the remedial pumping started are decreasing in the majority of the monitoring wells but some exceptions remain. Based on evidence several possible reasons have been postulated to explain this, namely:
 - a) Off-site source of contamination: Mainly supported by the persistence of a number of CoPCs in the groundwater at a higher concentration than in the Effluent.
 - b) Unidentified leak in ACCL drainage/effluent system: Mainly supported by the increase of MTBE in AMW6 over time.
 - c) Remnant contamination from Plume 4: Under this assumption, remedial pumping has not been running for enough time yet to draw firm conclusions.

erburden to bedrock

10⁻¹m/d

10⁻³ m/d

(Shrinking plume) (Migrating plume)

4

Plume

Plume 4

10⁻⁴ m/d

10⁻³ m/d (hydraulic permeability from rising head test in boreholes)

Dolomitised limestone with

zones of preferential flow

6

5.5m thickness

8H 39 S Cross River Probable hydraulic boundary A Geophysical survey has indicated that overburden thins towards the Cross river and becomes clay-rich BH 40 gra Alluvium (clay & silt) & peat over **Considering hydraulic conductivity (K)** in the overburden as the average K obtained in the slug tests carried out by AECOM in BH107 = 25m/day Using Darcy's law = V = (K * dh/dx) / $m_e = (25 \text{ m/d} * 0.0134) / 0.2 = 1.675 \text{m/d} * 365 \text{d/yr} = 611.4 \text{m/yr}$ iezometric head (bedrock) Phreatic surface Phreatic surface TL SM considering horizontal hydraulic gradient between AMW5 and AMW 8 (gravel overburden) in May 2018 = dh/dx = 1.364/100 = 0.0134 (Spring in drain, bedrock derived) 8SM MS1 LSM 9 SMV 7 WMA 8 WMA 8 WMA silt & clay Sand with ~ 100m **BWMA** 4 WWA II WWA Effluent Sump: Source of Plume 4 0 Source is historical activity at now Arran chemical site Arran (amulq-non) 8 WMA S WMA Gravel Boulder clay with gravels Silt and clay z

-Timeframe: February 2018 – August 2018

Speed of plume

-Source: Effluent Sump

Plume 4:

EPA Contaminated Land & Groundwater Risk Assessment Methodology		Report Reference	Report Date	Status		
	STAGE 1: SITE CHARACTERISATION & ASSESSMENT					
1.1	PRELIMINARY SITE ASSESSMENT					
1.2	DETAILED SITE ASSESSMENT					
1.3	QUANTITATIVE RISK ASSESSMENT					
	STAGE 2: CORRE	CTIVE ACTION FEAS	IBILITY & DESIGN			
2.1	OUTLINE CORRECTIVE ACTION STRATEGY					
2.2	FEASIBILITY STUDY & OUTLINE DESIGN					
2.3	DETAILED DESIGN					
2.4	FINAL STRATEGY & IMPLEMENTATION PLAN					
STAGE 3: CORRECTIVE ACTION IMPLEMENTATION & AFTERCARE						
3.1	ENABLING WORKS					
3.2	CORRECTIVE ACTION IMPLEMENTATION & VERIFICATION	1099-780	11/07/19	Rev.6		
3.3	AFTERCARE					

1. INTRODUCTION

1.1. GENERAL INTRODUCTION

Minerex Environmental Limited (MEL) was contracted by Arran Chemicals Co. Limited (ACCL) to generate a report to respond to the EPA.

Zala Uriel (Hydrogeologist at Minerex, 4 years' experience) has been in charge of the writing of this report with the continuous assistance of Cecil Shine (Director at Minerex, 35 years' experience).

1.2. BACKGROUND INFORMATION

ACCL is a chemical company specialising in the manufacture of products for pharmaceutical and health care, flavour/fragrance, personal care, and other specialised chemical and industrial applications.

Historically, back in the 1990s, a leak in the effluent system generated a plume of contaminants (plume 1) into the ground close to AMW3 monitoring well. Concentration reduced to practically nil by the end of 1998 and remained <2% of the peak concentration until 2010-2013 (Ref.1).

Over the period 2010-2013, several leaks in the main water supply flowed along the top of the clay layer in significant amounts and mobilised residual contamination (which normal rainfall could not achieve) giving as a result new peaks in concentration. By the end of 2015 and up to 2018 the contaminant concentrations where again reducing.

During 2018, peaks in the concentration of contaminants were detected after the routine Q3 groundwater monitoring round carried out by BnM (Ref.3). Figure 1.1 shows the location of the wells being monitored up to date.

Appendix A shows the borehole logs for the monitoring wells and Appendix B show the wells inventory from Arran and Alkermes (extracted from the 2014 Targeted Site Investigation Reports by URS-AECOM).

Figure 1.1 – Location map.

1.2.1. DETERMINATION OF THE CONTAMINANTS OF POTENTIAL CONCERN (COPCS)

Contaminants of potential concern have been determined to be the chemical compounds present in ACCL effluent before the pumping commenced in November plus MIBK (as MIBK is being detected in moderate concentrations in the groundwater despite not being originally present in ACCL effluent). Table 1.1 below lists the CoPCs and their maximum and average concentrations in the effluent during 2018.

Table 1.1 – CoPCs and their concentration in the effluent (µg/I)				
		Minimum	Maximum	Average
	Chemical Compound	concentration	concentration	concentration
1	Methanol	1,000	2,144,000	1,121,353
2	Ethanol	104,000	600,000	337,922
3	Isopropanol	79,000	454,000	248,437
4	Acetone	93,000	295,800	188,934
5	THF	50,000	120,390	80,404
6	Acetonitrile	20,000	159,819	78,214
7	MTBE	4,000	184,000	77,120
8	Toluene	3,350	18,300	11,763
9	Dichloromethane	4	46,900	5356
10	m,p-Xylene	1 (LOD)	98	24
11	1,3 dichloropropane	1 (LOD)	96	20
12	o-Xylene	1 (LOD)	58	18
13	Ethylbenzene	1 (LOD)	26	9
14	Chloromethane	1 (LOD)	10	6
15	Bromoform	1 (LOD)	10	3
16	Bromochloromethane	1 (LOD)	15	2
17	Styrene	1 (LOD)	8	2
18	MIBK	100 (LOD)	100 (LOD)	100 (LOD)

1.2.2. DETERMINATION OF THE EFFLUENT SIGNATURE

Figure 1.2 below shows the concentration of CoPCs in the effluent and in the groundwater. It is noted some of the compounds are more elevated in the groundwater than in the effluent.

Figure 1.2 – Signature of the effluent in red vs. signature of the groundwater CoPCs.

ACCL effluent is characterised by having high levels for 9 compounds including Ethanol, Acetonitrile, Methanol, Acetone, Isopropanol, Tetrahydrofuran (THF), Methyl-tert butyl ether (MTBE), Toluene and Dichloromethane (DCM).

1.2.3. PLUME 4 TRAVEL TIME ESTIMATION

A travel time estimation exercise has been carried out to determine if it has been possible for the plume to reach the downstream boreholes (BH107 and BH105, 250m downstream from the Effluent Sump) since the leak started (the earliest in February 2018) (Ref.2).

1. Variables

v = real speed of groudwater (metres/day) q = Darcy speed of groundwater (metres/day) K = hydraulic conductivity / permeability (metres/day) i = hydraulic gradient (adimensional) $m_e = effective porosity (adimensional)$ d = distance between the Effluent sump and BH 107 (metres) $t_t = travel time between the Effluent Sump and BH107 (days)$

2. Assumptions:

$K = 25.229 \ m/d$

Value for K has been taken from the average hydraulic conductivity obtained by AECOM during the slug tests carried out at BH107. Appendix C shows the results for these tests.

 $m_{e} = 0.2$

Value for effective porosity has been set at 0.2 which is a widely accepted average effective

porosity for fine sands.

$$i = \frac{dh}{dx} = \frac{1.364}{100} = 1.364 * 10^{-2}$$

Value for hydraulic gradient has been calculated from the water level difference (dh) and distance (dx) between AMW5 and AMW8 in May 2018.

d = 215 m

3. <u>Travel time calculation:</u>

$$q = K * i$$

$$v = \frac{q}{m_e}$$

$$v = \frac{K * i}{m_e}$$

$$t_t = \frac{d}{v}$$

$$t_t = \frac{d}{(K * i)/m_e}$$

$$t_t = \frac{215}{(25.229 * 0.0134)/0.2}$$

$$t_t = 127.19 d$$

4. Conclusion

Based on the travel time approximation calculated above, it is likely that Plume 4 has had time to travel from the Effluent Sump to the downgradient boreholes in between February 2018 and November 2018.

1.3. PROJECT OBJECTIVES

The objective of this project is:

- 1. SOURCE DETERMINATION Validate the source of the contamination plume that developed during 2018 (Plume 4).
- 2. INSTALL REMEDIATION SYSTEM Put in place a remediation system capable of stopping the contaminants migration from ACCL site and reduce the contaminant concentrations in the most affected area (that is the southern limit of ACCL facilities).
- 3. MONITOR AND MODIFY AS NECESSARY Monitor the contamination levels downstream where the leak occurred.
- 4. REPORT Report on results.

2. SYSTEM PERFORMANCE

The remediation system performance is continuously under review and the optimisation of the system is still ongoing based on monitoring results. The table 3.1 below summarizes the amendments that have been made to the system up to date.

Table 2.1 – Remediation system performance and actions taken to improve performance				
Date	Action taken	Validation/Comments		
20/11/18	Setup AMW 3 as a remediation well.			
	 Installation of a WASP-P5 pump. Installation of telemetric water level logger Daily Conductivity and COD manual readings until January. 	 Constant pumping could not be achieved (low yield, well going dry). Pump setup with an automatic timer turning pump on and off as required. CONCLUSION - To obtain optimal configuration to maximise pumping rate. 		
December 2018	Optimisation of AMW 3 pumping.			
	 Optimal configuration of timer achieved: Maximum abstraction rate obtained = 3 m3/day. 	CONCLUSION - Zone of Influence of remedial action to be increased to guarantee contaminants capture so decided to drill an additional remediation well.		
15/01/19	Drilling of an additional well: AMW10	·		
	 Well was drilled to refusal (7 mbGL) with shell and auger (screened in the overburden). Located within 5 m from AMW 3 and within 25 m from the Effluent Sump. 	 AMW 10 yield = 1 l/min approx. AMW 3 yield = 2 l/min approx. CONCLUSIONS - Pumping continued from AMW 3. Decision made to drill a well which would straddle overburden and bedrock. 		
20/03/19	Drilling of an additional well: AMW 11	·		
20/05/10	 Well drilled several metres into rock (15 mbGL) with rotary coring machine. Located within 19 m from AMW 3 and within 24 m from the Effluent Sump. Installation of telemetric water level logger and telemetric conductivity logger. Installation of a Vortex 2GD1 pump (<i>first pump</i>) (capacity = 0.06 l/s) Daily Conductivity and COD manual readings. 	 AMW 11 yield > 1 l/s. Pumping at pump capacity: 5.5 m3/day. Few weeks after it was seen that conductivity was not decreasing as expected, CONCLUSION - To increase the pumping rate by changing the pump. 		
23/05/19	Increase AMW 11 pumping capacity.			
	 Installation of a Grundfos SQ2-55 pump <u>(second pump)</u> (capacity 1 l/s approx.). Installation of a telemetric flow meter. 	 Due to the IW Discharge Licence volume limitation requirements, pumping rate had to be limited to approximately 0.11 I/s (daily abstraction rate = 10 m³/day approx.). Due to the IW Discharge Licence volume limitation requirements, pumping had to cease with heavy rain events. Conductivity decreases while pumping but rebounds when pumping stops. CONCLUSION - IW discharge licence to be reviewed to allow a higher pumping rate 		

Figure 2.1 below shows the location of AMW 3, AMW 10, AMW 11 and the Effluent Sump, source of the Plume 4 in 2018.

3. MONITORING RESULTS

Monitoring results are presented here in order to validate and support the actions being taken.

3.1. WATER LEVELS

Groundwater level maps have been drawn for the Overburden and The Bedrock based on groundwater level readings taken on the 27/02/19 by AECOM & BNM. These can be seen in figures 3.1 and 3.2 below:

Figure 3.1: Piezometric map for the overburden - 27/02/19

Figure 3.2: Piezometric map for the bedrock – 27/02/19

The firewater water retention pond is 150m to the south from ACCL. Based on piezometry, it is noted that the pond could be leaking water into the Overburden and Bedrock producing a groundwater mound.

The Overburden groundwater flows in a southeast direction within ACCL site. The pathway is likely (to be confirmed after acquiring level data – see recommendations) to connect downstream with the Monksland Stream Spring.

The Bedrock groundwater flows in a south to southwest direction within ACCL site. There are 2 possible pathways for the groundwater downstream the site, one links with the Monksland Stream Spring and the other with the western side of the Monskland Spring.

Water level readings reports from AECOM and BnM can be seen in Appendix D.

3.2. CONDUCTIVITY

Conductivity values broadly mirrors the CoPCs concentrations as shown in the figure 3.3 below (Ref.3).

Figure 3.3 – Concentration of CoPCs vs. Conductivity

Conductivity and COD have been regularly monitored manually since the pumping at AMW3 started on November 2018. Figure 3.4 below shows the manual conductivity and COD values recorded.

Conductivity decreased between November 2018 and early December 2019 from approximately 3500 μ S/cm to 2500 μ S/cm, but remained stable between December and January. Overall conductivity reduction was about 9 μ S/day. This decrease rate was not considered adequate to reach the objectives and a plan was put in place to drill an additional well capable of pumping at a higher rate.

Conductivity has been regularly monitored manually since the pumping in AMW11 started with the first pump on the 20/03/19. Figure 3.5 below shows the manual conductivity and COD values obtained.

EC and COD in AMW11 from 21/03/19 until 17/05/19 4500 4000 3500 COD (mg/l) and EC (µS/cm) 3000 2500 2000 1500 y = -11.572x + 50628 1000 500 0 16/3/19 514/19 25/4/19 5/5/19 26/3/19 15/4/19 15/5/19 25/5/19 -AMW11 COD AMW11 EC

Figure 3.5 – Variation of the conductivity and the COD over time when pumping was occurring at AMW 11 with first pump setup, between March and May 2019.

Conductivity did show a stable trend over the period from the $21/03/19 \ \mu$ S/cm until the 03/05/19. It was considered that the pumping rate was not enough and, in response to that, a plan was put in place to install a more powerful pump to increase the pumping rate.

Conductivity has been regularly monitored manually since the pumping in AMW11 started with the second pump on the 23/03/19. Figure 3.6 below shows the manual conductivity and COD values obtained together with the pumping rate in m³/day.

Figure 3.6 – Variation of the conductivity and the COD over time when pumping was occurring at AMW 11 with second pump setup, between May and June 2019.

As it can be observed, conductivity and COD have been progressively decreasing from 3000 μ S/cm to 2500 μ S/cm and approximately 2000 to 1000 mg/l. It is also noted that when pumping ceases both rebound to values close to those values at beginning of period being considered here.

Figure 3.7 below shows that the conductivity returned to values close to 4000 μ S/cm when pumping had to stop due to heavy rains. This is a higher than normal rebound.

Figure 3.7 – Variation of conductivity during pumping and not-pumping periods.

3.3. RESULTS FROM LABORATORY ANALYSIS

Figures 3.8 to 3.21 below show the variation of the CoPCs over time in the monitoring boreholes. Analysis results compared with EQS and laboratory certificates are shown in Appendix E.

3.3.1. WELLS HISTORICALLY RELATED WITH 1990S PLUME 1 AND IN CLOSE PROXIMITY TO EFFLUENT SUMP, (SOURCE OF A KNOWN LEAK DURING 2018)

Figure 3.8 – AMW3 CoPCs concentrations

Well AMW3 (depth: 6.9m, screened in the overburden) has shown a downwards trend in all the CoPCs concentrations since the pumping started.

Figure 3.9 – AMW4 CoPCs concentrations

Well AMW4 (depth 18.44m, screened in bedrock) shows a broadly stable CoPCs concentration in the last 2 years. Substances detected during 2018 in this well are THF, MTBE and, at lower concentrations, 1,3-Dichloropropane.

Figure 3.10 – AMW11 CoPCs concentrations

Figure 3.11 – AMW5 CoPCs concentrations

Well AMW11 (depth: 15m, screened in bedrock) has shown a downwards trend in certain CoPCs concentration since the pumping started: Isopropanol, Acetonitrile, Acetone, MIBK and Methanol. Other CoPCs remain stable or are increasing: THF, Toluene, MTBE, Benzene, Ethylbenzene, Xylenes, Chlorobenzene, DCM and 1,3-Dichloropropane.

Well AMW5 (depth: 7.41m, screened in the overburden) shows a generally increasing trend in THF and MTBE concentration over the last 2 years.

Peaks in the concentrations of THF, Toluene, Methanol, Acetonitrile, MTBE, Acetone and Isopropanol were recorded in November 2018; general trend for these substances over the

next 2 sampling events was decrease.

Peaks in o-Xylene and Ethylbenzene were detected in February and May 2018.

3.3.2. WELLS HISTORICALLY RELATED WITH OFF-SITE PLUME 2

Well AMW2 (depth 7.61m, screened in the overburden) recorded peaks in the concentration of THF, Toluene, MTBE, Acetone and Isopropanol in November 2018. Concentration of these substances has decreased since the pumping started.

Well AMW7 (depth: 26m, screened in bedrock) shows stable presence of MTBE, THF and, at lower concentrations, 1,3-Dichloropropane since 2015. Concentration of THF has decreased in between May 2018 and February 2019.

Figure 3.14 – AMW8 CoPCs concentrations

Well AMW8 (depth: 11m, screened in the overburden and bedrock) has no record of the presence of contaminants since October 2016, although LOD for several of the substances has been 500 μ g/l up to May 2018. In May 2018, DCM was detected but returned to below LOD in February 2019. In May 2018 THF and MTBE were detected and concentration has risen in February 2019.

Well AMW9 (depth: >30m, screened in bedrock) has no records of CoPCs presence since October 2016. In May 2018 THF and MTBE were detected and concentration has decreased in February 2019.

3.3.3. WELLS NOT HISTORICALLY RELATED TO CONTAMINATION PLUMES

No CoPCs were detected above LOD in AMW1 (depth: 8.20m, screened in the overburden) in the last 2 years.

Figure 3.17 – AMW6 CoPCs concentrations

MTBE shows an upward trend in AMW6 (depth 23.73m, screened in bedrock) in the last year, the rest of the CoPCs are below LOD.

Figure 3.18 – BH105 CoPCs concentrations

Well BH105 (depth: 7.78m, screened in bedrock) has no record of the presence of any CoPC between May 2016 and May 2018. THF, MTBE, o-Xylene and 1,3-Dichloropropane were detected in 2018 and peaked in between May and November 2018. Concentrations of all the detected CoPCs have decreased since then and in May 2019 only MTBE was above LOD.

BH107 (depth: 7.62m, screened in overburden and weathered bedrock) has no records of presence of any CoPC between October 2011 and March 2017. In October 2017 o-Xylene and m/p-Xylene were detected, MTBE was detected in February 2018 and by August 2018 concentration in CoPCs peaked when MTBE, Ethylbenzene, o-Xylene, m/p-Xylene, Toluene and 1,3-Dichloropropane were detected (THF was analysed for first time on May 2019). Since then concentration in all the CoPCs detected has been decreasing and in May 2019

Ethylbenzene and Toluene were below LOD.

SW104 (surface water, Monksland Stream) recorded the presence of MTBE since May 2017 and THF since November 2017. Concentrations peaked in November 2018 and remain stable or are decreasing since then.

3.3.4. EFFLUENT CHEMISTRY:

Figure 3.21 above shows the pre-pumping CoPCs concentrations. It is noted that some CoPCs are found in the groundwater at significantly higher concentrations than in the Effluent; this is summarized in the table 3.1.

Table 3.1 – CoPCs with higher concentration in the groundwater than in the Effluent					
Substance	Well	2018-2019 Maximum concentration in well (µg/l)	2018-2019 Average concentration in well (µg/l)	2017-2018 Maximum concentration in effluent (µg/l)	2017-2018 Average concentration in effluent (µg/l)
	AMW 3	357	232		10
Ethylbonzono	AMW 5	44800	7,522	20	
Euryibenzene	AMW 11	175	111	29	
	BH 107	59	30		
	AMW 3	386	235	75	21
a Vulana	AMW 5	56900	10,396		
0-Aylerie	AMW 11	290	193		
	BH 107	88	44		
	AMW 3	1290	890	404	32
	AMW 5	646	269		
m/p-Xylene	AMW 11	824	467	101	
	BH 107	237	119		
1.0	AMW 3	187	116		
I,J- Dichlerenrenene	AMW 5	36	25	58	17
Dichloroproparie	AMW 11	53	37		
MIDIZ	AMW 3	1240	805	0.1	0.1
WIDA	AMW 11	7990	3523	0.1	0.1

Figures 3.22 and 3.23 illustrate the significantly higher content of o-Xylene and Ethylbenzene in AMW 11 and AMW 3 than in the effluent.

Figure 3.22 - Concentration of o-Xylene in the Effluent, in AMW 3 and in AMW 11.

Figure 3.23 – Concentration of Ethylbenzene in the Effluent, in AMW 3 and in AMW 11.

Special attention is paid to MIBK, whose concentration in the effluent is below LOD while it is found at significant concentrations in AMW 3 and AMW 11. Figure 3.24 below illustrates this.

4. VERIFICATION

4.1. WELLS LOCATED IN CLOSE PROXIMITY TO ACCL FACILITIES AND THE EFFLUENT SUMP WHERE THE KNOWN 2018 LEAK WAS IDENTIFIED:

The hydrochemistry of the wells located in the area historically related with the plume of contamination occurred in the 1990s and located closer to the area where the known 2018 leak occurred (AMW 3, AMW 4, AMW 5 and AMW 11) show variable trends:

- 1. AMW3 and AMW11 show a decrease in the concentration of all the CoPCs since the pumping started.
- 2. AMW4 shows a stable long-term trend in THF (the other CoPCs analysed are below LOD) and any clear variation in this has been detected since the pumping started.
- 3. In AMW 5, concentrations in most of the contaminants decreased from the November 2018 peak values since pumping started; however THF seems to continue with the long term increase and o-Xylene and Ethylbenzene peaked in May 2019 with concentrations above ACCL effluent concentrations.

AMW11 is capturing groundwater in a radius estimated to be at least 15m from the well as there is influence in AMW3 (Figure 4.1 below) (the influence in AMW4 and 5 is currently unknown, see recommendations), but it is thought that the zone of influence does not cover all the south side of ACCL facilities and therefore, in the event any source of contaminants still exists at ACCL, those could be flowing southwards through the south-eastern side of the site.

Figure 4.1 – AMW 11 estimated Zol and ZoC in the Overburden.

Based on the decreasing trend in most of the CoPCs in AMW 3 and 5 (overburden), it is thought that AMW11 pumping is capturing most of the contaminants leaked during 2018 in the area close to where the leak occurred. The presence of o-Xylene and Ethylbenzene at concentrations well above the Effluent concentrations points towards an off-site leak and / or historical leak both unrelated with the effluent, i.e. a petrol or diesel spill, MIBK and 1,3-Dichloropropane at the surface or below ground, but this has not been reported up to date.

AMW 4 (bedrock) show long-term stable trends and concentrations which do not seem to have been affected by pumping. Minerex considers 2 possible reasons for that:

- 1. Zone of Influence of current remedial pumping does not reach AMW4 and contaminants are not attenuating nor diluting over the years.
- 2. An active source of these contaminants still exists.

4.2. WELLS LOCATED UPSTREAM THE EFFLUENT SUMP AND DOWNSTREAM OR WITHIN THE ACCL SITE.

AMW2 (overburden) is located downstream of ACCL manufacturing and labs area and AMW 6 (bedrock) is located downstream the offices and lab areas but in close proximity to the manufacturing area. Due to exceptionally dry weather conditions last year, these wells were positioned downstream of the Effluent Sump and this was thought to be the reason for the CoPCs rise recorded in the wells. Based on current piezometry, AMW 2 and AMW 6 are now located upstream of the effluent sump where the known 2018 leak (plume 4) occurred. Please see summary below.

- AMW 2: While the analysis carried out on the sample taken on November 2018 at AMW2 detected the presence of several CoPCs (THF, Toluene, MTBE, Acetone and Isopropanol) in the groundwater, the last analysis carried out on the sample taken on May 2019 shows the concentrations of these are below LOD. It is noted that certain analysis are carried out with an LOD of 500 µg/l which is unacceptably high (see recommendations). Figures 3.9 and 3.14 illustrate this.
- 2. AMW 6: Analysis carried out on samples taken from AMW6 show the presence of MTBE in the groundwater from August 2018 and the trend is upwards.

It is thought that the natural dilution and dispersion was successful in reducing CoPCs concentrations in AMW2; however the persistence and increasing trend of MTBE in AMW6 points towards either:

- 1. Zone of Influence of current remedial pumping does not reach AMW 6 and contaminants are not attenuating nor diluting over the years.
- 2. An active source of these contaminants still exists. It is thought, based on the groundwater piezometry for the bedrock, that such a source would be located in a north-east direction from AMW 6 but due to the proximity of ACCL manufacturing area it is not discarded the MTBE could be sourced on-site.
- 3. Remnant contamination of Plume 4, from when the wells were located downstream the effluent sump.

4.3. WELLS LOCATED UPSTREAM THE ACCL FACILITIES.

Analysis carried out on samples taken from AMW1 (overburden), located upstream ACCL facilities, show all the CoPCs are below LOD. Figure 3.13 illustrates this.

4.4. OTHER WELLS LOCATED AT THE SOUT FROM ACCL FACILITIES.

4.4.1. AMW 7, AMW 8 AND AMW 9

AMW 7, 8 and 9 are a group of wells located in close proximity to each other and within 85 m

downstream ACCL facilities; while AMW7 and 9 are screened in the Bedrock, AMW8 is screened in the overburden and the bedrock. Please see summary below.

- 1. AMW 7 and AMW 9 show the presence of THF and MTBE. Concentrations are decreasing in both wells with the exception of MTBE in AMW7, that is following a slowly increasing trend.
- 2. AMW 8 shows an increasing trend for MTBE and THF since May 2018. DCM presence, detected in May 2018, returned to below LOD by February 2019.

Based on distance and piezometry, it is concluded that the remedial pumping would have no influence on these wells, that is, outside of Zone of Influence (ZoI).

Concentrations in AMW 8 are higher than in AMW 7 and 9. This could be explained by the fact that the source of contaminants is or has been located in the overburden and the migration path towards the bedrock could be AMW 8 itself (as it is screened in both the overburden and the weathered bedrock, effectively connecting hydraulically both layers).

Based on that, the persistence and increasing trend for THF and MTBE is thought to be related to either:

- 1. Remnants from Plume 4 migrating towards these wells in favour of hydraulic gradient.
- 2. An active source of THF and MTBE upstream of AMW 8 but the location of a source remains unclear.

4.4.2. BH 105 AND BH 107

BH105 and BH107 are wells located within 250m and 200m downstream ACCL facilities respectively. Both wells recorded a peak in the concentration of certain CoPCs (THF and MTBE in BH105 and MTBE and Toluene in BH107) during 2018 (due to Plume 4, Ref.2). Concentration of the detected CoPCs in BH105 and BH107 have decreased significantly (for BH105, THF was in May 2019 below LOD while MTBE decreased from 826 µg/l in August 2018 to 57.4 in May 2019; for BH107, all CoPCs have at least halved from peak values of 2018). Figures 3.15 and 3.16 illustrate this.

It is thought that this decreasing trend of CoPCs concentration is due to natural influences such as attenuation and dilution, as a result of natural groundwater flow. It is thought that this trend will continue over time until contaminants are completely dissipated.

4.5. MONKSLAND STREAM: SW 104

The presence of MTBE in the Monksland Stream is noted since November 2017 with values between 7 and 30 μ g/l approximately and these have remained broadly stable over the sampling events since.

THF has been detected since February 2018 with values between 2 to 15µg/l approximately and have remained broadly stable over the sampling events since.

It is noted that MTBE started to be detected in SW104 in November 2017 and THF in February 2018. It is thought that Plume 4 source was active from February 2018 until August 2018 (Ref.2). Based on that, the persistence and increasing trend for THF and MTBE is thought to be related to either:

- 1. Remnant contaminants from Plume 4 reaching the stream.
- 2. Additional source for THF and MTBE exists upstream SW 104 apart from plume 4.
- 3. Both of the above.

4.6. SUMMARY

1. ZOI AND ZOC OF REMEDIAL WELL:

It is thought Zone of Influence (ZoI) (area affected by drawdown) of the remedial well currently possesses a radius of 15m approximately (assuming circular shape) and the Zone of Contribution (ZoC) in the overburden is thought to include the ACCL manufacturing area on the western side the site (see figure 4.1). Consideration should be given to extending the ZoI to cover all the south side of ACCL site and avoid any potential contaminant to migrate downstream the site. The entire ACCL site would then be inside the ZoC.

2. REMEDIAL PUMPING EFFICIENCY:

Concentrations of CoPCs in the wells in close proximity to the source of the known 2018 leak (Plume 4), AMW3 and AMW11, show a decreasing trend for the majority of CoPCs detected since remedial pumping started. Also, most of the wells downstream the remedial well (i.e. BH 105, BH 107, AMW 5) show a decreasing trend in the concentration of CoPCs since the pumping started.

Therefore it is considered that the pumping is helping to reduce the concentration of contaminants from the ground and blocking the migration of new contaminants that could be sourced at ACCL facilities along most part of the southern limit of the site.

3. POSSIBLE UNIDENTIFIED LEAK WITHIN ACCL:

The conductivity of groundwater in AMW11 rebounds when pumping has to stop because the eluent volume has been reached during heavy rain events. Also, some of the CoPCs detected in AMW11 do not seem to be reducing in concentration (i.e. THF, Toluene, MTBE, Benzene, Ethylbenzene, Xylenes, Chlorobenzene, DCM and 1,3-Dichloropropane).

Some CoPCs show an increasing trend in AMW 8 (MTBE and THF), although the source for these remain unclear and it is possible they are migrating off site to the south east.

Based on that it is thought that an unidentified leak in the ACCL effluent drainage system could exist.

4. POSSIBLE OFF-SITE SOURCE OF CONTAMINATION:

Concentration of certain CoPCs is, in some of the wells (i.e. AMW 5 and AMW 11 and others), greater than the effluent concentrations.

MIBK is found in the groundwater but not in the effluent.

Concentration of certain CoPCs is rising in some of the wells (i.e. AMW 6, AMW 4) that are, based on the piezometry, not downstream of the ACCL manufacturing area.

Based on that it is suspected that an off-site source of contamination exists or historically existed.

5. LIKELY EXTENT OF PLUME 4

Based on the decreasing CoPCs concentrations found in most part of the monitoring wells, it is thought that Plume 4 concentration is decreasing with time. However it is understood that the Plume may have extended its area under the influence of groundwater transport: advection, dispersion and diffusion.

5. CONCLUSIONS

1. RECHARGE OVER 1990S LEAK IS NOT THE CAUSE OF THE CURRENT CONTAMINATION (PLUME 4) – The simulated rain test carried out in the grass

area close to where the first plume occurred did not increase the conductivity/contaminants concentration in the AMW3 well. Details and results of these tests were included in the 2018 Hydrogeological Report (Ref.2) and the extract from this report concerning the simulated rain test is shown in Appendix F. Rain percolating through the soil and entraining residual contaminants in the groundwater is not likely to be the cause of the peaks in CoPCs experienced during 2018. Rather it is possible, that despite integrity tests to date, rain falling on the urbanised area of the site could be flowing through unidentified leaks in the ACCL drainage system.

- EFFLUENT SUMP INTEGRITY TESTING The origin of this leak was most likely an effluent sump that had some remedial repairs performed in August of 2018, but the leak was not evident at the time of the inspection, and was fixed at the time. This would explain the increase in the concentrations of CoPCs in the groundwater during 2018. Since then a new stainless steel sump has been installed in April 2019.
- REMEDIATION STRATEGY A remediation strategy was put in place consisting of pumping water from the ground while monitoring the conductivity, flow rate and water levels continuously, and taking regular samples to determine the water quality variations with time. AMW3 was poorly productive. AMW10 was drilled to refusal and showed poor yield also. AMW11 (primary current remediation well) was drilled several metres into rock and yield is greater than 1 I/s. ACCL has been pumping from it since 23/5/19.
- 4. RESPONSE TO REMEDIATION The conductivity in the remediation well decreases while pumping is ongoing (approximately 2200µS/cm), but rises to pre-pumping values (over 3000 µS/cm) rapidly after pumping ceases. Therefore it is possible that a still unknown leak exists in the ACCL effluent drainage system. However, concentrations of some of the contaminants in the groundwater (MIBK, Xylenes, Benzene, Ethylbenzene, Chlorobenzene and 1,3-Dichloropropane) are higher in the groundwater than they are in the 2017 and 2018 effluent (MIBK is not present in the effluent) therefore it is possible that an off-site source of CoPCs could also exist.
- 5. **ZONE OF INFLUENCE** After several attempts of pumping from different wells and with different pumps, a ZoI (effectively cone of depression) was developed sufficiently large enough in May 2019 to extend to AMW3 and probably the effluent sump, where there was a known leak.
- 6. **SIZE OF PLUME 4** It is thought that Plume 4 covers now a bigger area and CoPCs will be less concentrated as a result of transport (advection, dispersion and diffusion).

6. **RECOMMENDATIONS**:

- 1. **TRACER TESTING OF SUMPS AND DRAINAGE SYSTEM** Other leaks could exist in the ACCL effluent drainage system. Therefore tracer tests are recommended to be carried out in the ACCL drainage system to confirm if any leak still exists.
- REMEDIAL PUMPING RATE INCREASE It is recommended to increase the pumping rate to the WWTP from the remediation well to allow a bigger Zol (cone of depression) to develop. The objective is to pump at such a rate to ensure that all of the manufacturing area is within the ZoC. This would prevent the migration southwards of any contaminant sourced at ACCL.
- 3. **CONTINUOUS WATER LEVEL MONITORING -** It is recommended to install a water level logger in AMW1, 2, 4, 5 & 6 to monitor water level variations and

evaluate the influence that the pumping from the remediation well has on it to further delineate the ZoI and ZoC.

- 4. WATER LEVELS IN THE MONKSLAND SPRING It is recommended to include Monksland Stream Spring in the monitoring events and take readings of the water levels (hydrochemistry samples are taken by Alkermes for lab analysis). Also it is recommended that the elevation above ordnance datum of the V notch weir is obtained.
- 5. **REDUCE LABORATORY LIMITS OF DETECTION -** It is recommended that the LODs of the laboratory analyses are always below the EQS (environmental quality standards).
- 6. **CONTINUE ASSESSING PERFORMANCE OF REMEDIATION SYSTEM** Make changes to the pumping rate, consider pumping from other wells, installing new sensors and setup and on-site treatment system together with recharging to ground the treated water.

00000

Respectfully submitted On behalf of **Minerex Environmental**

APPENDIX A

Arran Chemical Company Limited Groundwater monitoring well installation

Geology & Monitoring Well Design Well No. AMW 1

Hydrogeological, Environmental and Geotechnical Consultants

Doc. Ref.: 1099d034 & 186

Arran Chemical Company Limited Groundwater monitoring well installation

Geology & Monitoring Well Design Well No. AMW 2

Monitoring Summary Geology well design (meters below ground level) +0.15 Top of casing (reference) is 45.013maOD (Data from Elan - URS survey 01/09/11) 0 Top soil, dark brown in colour, clayey **S**1 0.30 Reference point (top of casing) is 0.15m S2 0.65 Clay, silt & sand lenses, brown at top to grey at above ground level and 47.643maOD &S3 1 bottom 1.30 1.65 Well drilled 8" nominal diameter using Sands, fine grained, grey to pale yellow in colour, 2 shell & auger method. occasional lenses of clay also semi-consolidated & S4 Piezometer nominal 2" diameter, uPVC very porous sandstone lenses up to several cm thick 3 Piezometer reduced down to 19mm diameter uPVC S5 4.33 4.35 4.65 5 Water level at 5.20m (AHE,SD 15/02/12) S6 5.80 6 **S**7 Gravel, 0.1cm to 8cm in diameter, angular to rounded, limestone and sandstone clasts Thickness of sediment AFTER cleaning = 0.00m Base of well = 7.52m (AHE,SD 15/02/12) 7.52 EOH Suction pump used to purge well before installing screen and casing - at least 200g removed via bailer and suction pump, As much sand still making into well at end of purging Legend Compacted backfill (geological monitoring well casing with centralisers bentonite pellets material which was removed composed of stainless steel and uPVC, (1 bag ~25kg) during drilling) positions of joins indicated by dark line monitoring well screen with nominal 5mm, rounded and S4 Sediment sample washed Limestone gravel pack, centralisers and screw cap on number base acquired from local quarry MEL Report Ref.: 1099r058 Minerex Environmental Ltd

Hydrogeological, Environmental and Geotechnical Consultants

MEL Report Ref.: 1099r058 Doc. Ref.: 1099d034 & 186

Arran Chemical Company Limited Groundwater monitoring well installation

Geology & Monitoring Well Design Well No. AMW 3

Summary Geology

(meters below ground level)

Top soil, dark brown in colour, clayey Clay/silt , pebbly, possibly made ground

Sand, fine to medium grained, grey to brown in colour, with occasional silt & clay lenses

Clay, with rounded gravels, <4mm in diameter clasts, mostly limestone with occasional sandstone clasts

Gravel, bouldery, limestone clasts 0.20cm to >20cm in diameter, rounded to subangular

> On 13/3/97, suction pump used to purge well before installing screen and casing. 15l/minute pumped out for 15 minutes, intake at 6.50mbgl and dynamic water level 6.13 (SWL 5.50mbgl). Yield therefore ~1m3/hr for drawdown of 1m at least over 15 minutes. Water white colour, strong odour and little surface, very little silt at end of purging.

EOH

Monitoring

well design

Reference point (top of casing) is 0.15m above ground level and 48.090 maOD Well drilled 8" nominal diameter using shell & auger method. Piezometer nominal 2" diameter, uPVC

Water level at 6.23 - 0.15 = 6.08mb ground level (ANUA September 2014) Water level at 6.50m (AHE,SD 15/02/12) Thickness of sediment AFTER cleaning = 0.00m at base of well which = 6.90mbgl

(AHE,SD 15/02/12)

Legend

Compacted backfill (geological material which was removed during drilling)

S4

bentonite pellets (1 bag ~25kg)

monitoring well casing with centralisers composed of stainless steel and uPVC, positions of joins indicated by dark line

nominal 5mm, rounded and washed Limestone gravel pack, acquired from local quarry

Sediment sample number

monitoring well screen with

centralisers and screw cap on base

Minerex Environmental Ltd

Hydrogeological, Environmental and Geotechnical Consultants

MEL Report Ref.: 1099r058 Doc. Ref.: 1099d034 & 186

Hydrogeological, Environmental and Geotechnical Consultants

Doc. Ref.: 1099d112 & 186

Bore	ehole/ Trial	Soil (S) / Wa	ling												
Pit	Design &	Sample number							Client, Proj	ect, Location	Arı	ran Chem	ical Comp	any	
FLE	VATION	& interval		(MAT:	Ę	d for			Minerex wo	ork item					
STI	L TO BE	(mbGL)		(BHA)	riptic	nce used	MDO	6	Page No.		1 c	of 2			
DETI	ERMINED	(Sample 10 kg minimum)		al Pit sings	desc	bols	elov (maC	alo	Date & time	e drilled / formed:	15/	/01/19			
Borehol	e diameter:	Red line = Single channel		s); Tri H Aris OC)	th & erate,	r occ sym wet)	es b also	phic	Logged by	(drawn by) [checked		ZU ant Shall and augor			
⇒ 20 Screen	Umm & Casing ID:	sample (from field)	Non-Natural	Ps (TF	reng. mode	id for and	vel, a	(gra	Minerey Dr	iai pitting co. & eo					
→ 10 Capped	0 mm	sample (generated in office	Ground	samp e (SC Clum	LE st weak,	eger amp	<u>h</u> in Id ley ckne	, bc	Irish Transv	verse Mercator (l'	TM)**	00 100			
→ at t	top and bottom	Green line = Grab sample	Percentage	agged oil Cor	Ddol.	See I See I Iry, d	Irour	Seol	Geolog	ical descri	ption		LAYER ID, RECOVERY	NN	
100.0.		(acquired on site)	8: <1%	L¤ŭĕ⊨	NO		000		TOPSOIL	NON-DOMINANT GRAVELS	COLOUR BROWN	SOFT	& STONE	OR N NN	
							_		CLAY	COBBLES					
							_								
							-								
							_								
222	222				NO		0.5	i i i i i i i i i i i i i i i i i i i		CLAY	LICUT	0057		NN	
333	333	Ī			NO				FINE	CLUSTERS	BROWN	SUFT		ININ	
1333	333						_		SANDS	<1%					
333	333								1						
333	333								1						
333	333														
1222	222						1.0								
1222	222	SS1													
1222	222						_								
1222	222				NO		_		CLEAN		BROWN	SOFT		Ν	
1333	222						-		SANDS		TOGRET				
1333							1.5 —		1						
1355									1						
1333	333								1						
1333	333	¥ i			YES		_		1						
1333	333			U	Strong	ed			1						
333	333			0.	HC??	ou.			1						
333	333				YES		2.0		FINE	CLAY	GREY	SOFT		Ν	
1333	333			U	nidentif	ed	_		SAND	2%					
1333	333	SS2			HC??		_								
1333	333								}						
1333	333								}						
1333	333						2.5		}						
1355															
1333		▼					_	••••							
1333		▲			YES				SILTY		GREY	SOFT			
1355		SS3		U	nidentif	ed			SAND						
1355		¥			HC??		3.0			01.01/		0057			
1355		..			Strong				GRAVEL	COBBLES	GREY	SUFT			
333				Ur	iidentifi HC??	ed				BOULDERS					
333															
333	333														
333	333						35								
	12.25						5.5								
		SS4													
	and the second														
100	12/2														
	12-3						4.0								
* No	on-natural m	naterial %s with to	tal % in ()		1	1			J	1	1	1	1	-	
NON-	DEGRADABL	_E % (ND): 1 = Brick	, 2 = Concrete	, 3 = Glas	s, 4 =										
Cera	nic tiles, $5 = 1$	ACMs (asbestos con	taining material	s such as	roof til	es,									
DEG	RADABLE % ((D): 7 = Plastic, 8 = I	Metal, 9 = Woo	d / Organ	ic / Le	aves /									
Twige	s / Peat, 10 =	Ash & Clinker, 11 =	Charcoal, 12 =	= Tarmaca	dam,	13 =									
	ler.						Write addi on macror	itional help oores, mot	o notes ttling			11	CAlina	rov	
**1-From hand held GPS, 2-Estimated from goggle maps or 3-Surveyed with theodolite.								ce allows				C		nental	

Borehole/ Trial	rehole/ Trial Soil (S) / Water (W) / Vapour (V) Sam				ing				AMW10	
Completion	Sample number		9:					Client, Project, Location	Arran Chemical Compa	ny
	& interval		(TPW	uo	ed for	(F		Minerex work item		
Reduced levels	(mbGL) (Sample 10 kg		it Wall s (BH/	scripti ng)	ence s use		(bo	Page No.	1 of 2	
Ref. Point = top of uPVC Casing = XX	minimum)		Trial P rising	& des e, stro	ccurr mbol	belc (ma	call	Logged by (drawn by) [checked by]:	ZU	
maTBM, Ground level (GL) = XX maTBM	Red line = Single channel sample (from field)		(BS); ⁻ BH A (TPC)	ngth . oderat	for sy d we	etres I, also]	raph	Drilling / Trial pitting co. & equip	ment Shell and auger	
	Blue line = Composite sample (generated in office	Non-Natural Ground	mple (SC); umps	strei ak, mi	dwa gend np an	in m level	6) A	Minerex Doc. Ref.	1099-186	
	or lab)	Percentage	ged se Core - LPit CI	<mark>iour</mark> ne, we	oun ee leç , dan	pth pund Thick	joloŝ	Geological descripti	00 LAYER ID,	
	(acquired on site)	(see [*] below)	PIC Bag Soil Tria	õ	ହା ରୁ କି	0 2 2 3	ŭ	DOMINANT NON-DOMINANT CO	LOUR STIFFNESS & STONE	IN DR N
1.50						_				
						_				
2017年1月1日						_				
						_				
						4.5 —				
						_				
13 Carl						_				
1.50						_				
1493						_				
145	SS4					5.0 —				
						_				
						_				
						_				
						_				
						5.5 —				
430 CPL						_				
						_				
2893 (MAR)						_				
(S) (M)	•					~ ~ ~				
22 - C.S.	•					6.0			VERY	
						_				
						65-				
1. A.						0.5				
10.57						_				
						_				
						_				
1220						7.0	5011			
							EOH	+ REFUSAL - PROBABL	Y BEDROCK WE I	
						_				
						_				
						_				
						7.5 —				
						_				
						8.0				
* <u>Non-natural m</u>	naterial %s with to	<u>otal % in ()</u>				DOMINAN	IT GEOLO	A /B /C		F
NON-DEGRADABI	_E % (ND): 1 = Brick ACMs (asbestos cont	, 2 = Concrete taining material	,3 = Glass s such as	s, 4 = roof til	es,	Clay, S	COMPO Silt, Sand,	Gravel, COMPONICAL	(B) VST - V. Soft STONE	or N
piping). 6 = Blue B	angor slate.	Motal 0 - Mca	d / Orean	ic / Le	avee !	Cobble	e, Boulder	deposit Clay - Silt - Sand - GREY	(G) ST = Soft (G) F = Firm S = Stiff S = Stiff	
Twigs / Peat, 10 =	Ash & Clinker, 11 =	Charcoal, 12 =	Tarmaca	dam,	13 =		nvironme	ental Gravel - Cobble - (LG, MC Boulder - Beige	MG, DG) ige (tan) VS = V. Stiff)	
Leather.						Write additional help notes on macropores, mottling			F Interpretat	ion
** 1-From hand held GPS, 2-Estimated from goggle maps or 3-Surveyed with theodolite							ce allows	NN = Non-	natural ground (fill / made up ground / disturbed na $N = Natural gr$	itural); round)

Minerex Template Ref: Drill027. Tel: 01-2964435, Web: www.minerex.ie

URS Ireland Ltd. 4th Floor, Iveagh Court, 6-8 Harcourt Road, Dublin 2, Ireland. Telephone: 01 4155100 Fax: 01 4155101

Trial Pit Log

Project Nam	ne and	Site Lo	cation		~ *	Client						TRIAL PIT No			
	ł	lan Gi	reenfie	Id E	SA			Elan	Pharm	a Corporation	n Ltd		В	H105	
Job No	1000		Date Start Date	-	04.00	Groun	d Level (I	m)	Co-Ord	inates ()					
4934 Contractor	1699		End Date	28-	01-09	Metho	d / Plant	llsed					Sheet		
Glov	er S	ite Inve	estigati	on			Komac	chi Ria					1	of 1	
				1					STRAT	-Δ		_			
Depth BGL	Sar	nple / Te	est d	ater	De	pth				~					fill
		Details	믭	>	Legend (Th	nick ss)		DES	SCRIPTI	ON			COMMEN	TS	nstrun /Back
0.5	×	BH105 0.3	m 0			T (00.	OPSOIL	/ Loose s	ilty SANI	y SAND NEC					
1.0	\times	BH105 1.0	m 0												
E 1.5					$\mathbf{x} = \mathbf{x} + $.00)	Loose brown yellow silty SAND								
E 2.0		DU105.0.0	_ 0		* <u>*</u>	2.00									
E as	١	/OC & SVC			000		oose cao	orse brown	1 yellow	GRAVEL		N	IEC		
E 2.3					000	3.00									
E ^{3.0}	\times	BH105 3.0	m 0			S	oft brown	n yellow s	andy gra	velly CLAY		N	IEC		
3.5						.00)									
4.0	⊠ .	BH105 4.0	m 0			4.00	oose bro	wn yellow	angular	GRAVEL		N	IEC		
4.5	\	/OC & SVC	5, 5C		0,07	4.50	Redrock I	IMESTON	JE				IFC		
5.0													20		1996) - 19
5.5				4											
E ₆₀				÷		00)									
E 6.5															
E 7.0															
- 7.5						7.50						+			···: 日··
Ē															
È.															
27/4/0															
GDT															
					Ē										
AGS3															
GPJ															
OGS					Ē										
AN					Ē										
Back	cfill				Sample	Details	s	Le	gend				GEI	NERAL	
Top Cap: 1st pipe	2 pipe	group,			Small dis	turbed sar	nple	Brick		Silty/Clayey	SAND		REN	MARKS	
group, 1 p	eal: 2 ipe	pipe						GRAVEL		Gravelly CL	AY	5	umm Piez Istalled	ometer	
group, 1 p	ipe Seal: 2	2 pipe						LIMESTON	E			2 N	mm slot si IEC: No ev	ze vidence of	f
group, 1 p	ipe pe: 2 p	ipe									C	ontaminat	ion		
group, 1 p	ipe					Groundwater Table									
VIHON						Ľ. ¥.									
URS EN								Logged By R Rafferty				Approved By CAG			

URS Ireland Ltd. Acorn Business Campus Mahon Industrial Park Blackrock Cork Phone 021 4536 136/7

URS

AIR ROTARY DRILLING LOG Fax 021 4350 666 Project Name and Site Location Client BOREHOLE No Alkermes Pharma Ltd. Alkermes Groundwater Assessment 2011 **BH107** Job No Ground Level (m) Co-Ordinates () Date Date Start Date 24-08-11 End Date 24-08-11 46403003 43.19 E 200,723.79 N 240,731.30 End Date Contractor Method / Plant Used Sheet JSD Air Rotary - Beretta T51 1 of 1 STRATA (mdd) Water Sample / Test Legend (Thicknstalation /Backfill Depth BGL Details PID DESCRIPTION COMMENTS ness) MADE GROUND Dry, NEC Soft to firm brown gravelly clay with frequent cobbles. Gravel is medium to large. - 0.5 0.2 (1.70)1.0 0.3 1.5 1.70 Soft red/brown slightly gravelly clayey SAND. Gravel is Dry, NEC - 2.0 fine to medium, subangular to subrounded. Sand is fine to coarse. 2.5 (2.60)3.0 3.5 4.0 4.30 Damp at 4.3m. Wet at 5m, NEC Soft grey brown slightly sandy CLAY/SILT. Sand is fine. 4.5 Ţ 5.0 5.5 (2.90) 6.0 6.5 7.0 7.20 Weathered uniform grey limestone BEDROCK. Water at 7.2m, NEC 7.40 EOH @ 7.4m L.GDT 100 000 Ц ATHLONE WELL INSTALLATION DETAILS LEGEND GENERAL REMARKS ELAN / Cement seal riser Bentonite seal riser \times Made Ground ÷. Gravelly Clayey Sand NEC - No Evidence of Filter pack riser Filter pack screen Sandy Silt/Clay LIMESTONE - X DOG Contamination EOH - End of Hole DRILLING SAMPLE TYPE DETAILS Located in the field to the south east corner of the fire water retention pond. ROTARY Groundwater Table Water Strike Upright red cover approx ⋬ 3m from the ditch. bal = Below Ground Level NDDK Logged By Approved By EOH RC

								BH T	ype & No.	AWS1	
			Soil/Water B		Page 1 of 1						
Re Re	Tem	porary	Soil/	Water/ r Sample	urrei		al lo	Total	Depth (m)	4.2	
Bo	reho	le Design	v apou	i Sampie	000.		uphic	Date of Lagran	drilled:	09/12/98	
					/ater	(1	- gra	Date of	drawn:	18/01/99 (E)	y McC)
					hpu	th (n	. ygc	Drillin	ng/Excavation	Percussion	Window
			No.	Depth	Grou	Dept	Geol	Equip	ment		
				intervar				Descr	intion	Diy	Interpretation/
		Clay pushed				0.09	XXX	Firm fr	resh (some mottling) medium to dark	Comments
	16	around standpipe					***	brown,	gravelly (angular),	clayey SILT	Topsoil
					$\left \begin{array}{c} \longrightarrow \\ 0.32 \end{array} \right $	_	***	Soft, fr	esh, yellow-brown, v (subrounded to su	slightly bangular).	
					0.46	_	XX	sandy S	SILT with medium	grading	
		27mm OD/ 18mm ID uPVC				0.8-	∞	Firm, fre	sh, medium to dark b	rown, silty CLAY	
		casing				1-	 XXX	with med	lium grading	· •	
Ð	Ц	_1.2				_	***	Firm, fr	esh to mottled, yell	ow-brown,	
0mm	E	27mm OD/ 18mm ID uPVC			$ \rightarrow$ 1.0-1.9	_	\bigotimes	slightly sandy, o	gravelly (angular to clayey SILT with 1	nedium grading	
lled 6		screen				_	XX	2			
Dri						1.88	\bigotimes	<u> </u>			
2.0	Ξr	J				2—		Firm, fr	esh, light grey, poo	rly	
G						_		graded,	silty, fine SAND		
mm						_					
led 5(_					Transitional
Dril						2.8-	XXX	§ 			contact
						3-	XX	Dense/f	irm, fresh, grey to l	ght	More clay with
							***	brown, medium	very clayey SILT	with	depth
						_	***	3			
							\bigotimes	Boulder diamete	Cobble at base, fil or of "window", at l	ling east	
						3.75	<u> </u>	<u>6 40mm e</u>	3		Increase in no &
4.0						4	<u></u>	Dense, f	fresh, yellow-brown welly (angular) CL	, AY	size of micritic
Drilled		- 4 2	W1			4.2-	335	with ver	y low plasticity		with depth
40mm OD	•							4.2 EC	ЭН		
						<u> </u>					
						_					
						5 -					
Operati	on C	omments		Leger	nd			Title	BOREHO	LE LOG	
• The we	ell des	sign involving a pl	nreatic	W1	Water sam	ple		Client	Arran Chemi	cal Company Lto	1.
tube was	s a ten hdraw	nporary installation	n and v was	G1 (Gas sample	;		Job Desc	ription Brie	f B.6 PWS Reco	nnaissance
logged,	the wa	ater levels measur	ed and		sediment s	ample		Documer	nt & Report Ref	. 1099d186 m	pt & 1099r206.doc
• The int	take fo	or all water sample	ing was		Cone tip	w	⊢				
at the ba	ise of	each tube			Push on car)		116	\mathcal{D}	viin	erex
					Back-filled	clay		lle		Enviror	nmental
			a	cting as se	ai		11	I CO	Limited		

Appendi	x D
---------	-----

								Bł	І Туре б	& No.	A	AWS2			
					nce		go	Pag	e Numb	er	Pa	ige 1 of	1		
T T	[emp	orary aissance	Soil/	Water/ Ir Sample	urre		cal 1	Tot	al Depth	(m)	4.2	2			
Bor	ehol	e Design	v apou	n Sample	000		aphi	Dat	e drilled		08	/12/98 McCart			
		-			ater	a	- 510	Log Dat	gged by: e drawn		E. 18	McCart	ny EMcC)		
				Denth	mpu	h (n	ogy	Dri	lling/Exe	cavation	Pe	rcussion	Window		
			No.	Interval	Jrou	Dept	Geol	Equ	uipment		Sa	mpling			
								We	ather			ry	Interpretation/		
								De	scription	n			Comments		
	in In	Clay pushed around standpipe				0.29		Firm, round	fresh, dark ed), silty C	brown, slightly LAY with me	gravelly (s dium to poo	sub- or grading	Topsoil		
		27mm OD/ 18mm ID uPVC casing						Very grave grade plast	stiff, fresh d), mediun d, gravelly city	n (occasionall n brown, mec 7, sandy SIL	y weatherd lium to po T with ve	ed oorly ry low	Pro-glacial outwash		
Drilled 60mm OD		_1.2 27mm OD/ 18mm ID uPVC screen			→ 1.63	1.1 — — — — 1.88		Very brow CLA	stiff, fresh n, gap gra Y with ve	n to mottled, ded, gravelly ery low plast	yellow to (angular) icity	light , silty	Fibrous plant stems visible		
2.0 OO						2		Very silty,	stiff, fresh very fine \$	ı, grey-brown SAND	, poorly g	raded,	Fibrous plants, fining up pattern distinguished		
50m					\rightarrow	2.5 <u>4</u> 2.5		Stiff, Silty	fresh to mot	ttled, light brov	wn, poorly g	graded,			
rilled								Firm, silty	fresh , grey- fine SAND	-brown, mediu	m to poorly	graded			
						2.78 		Firm light claye	to soft (with brown, poor y SILT wi	h depth), fresh ly graded, med th interlaminat	to discolour lium plastic tions of CL	red, ity, AY	Clay laminations occur from 3.1- 3.2m		
								Firm grad	, fresh, gre ed GRAV	ey-brown, me EL	dium to w	vell	Fining up trend		
						3.58		Firm, subro	fresh, grey- unded, sand	-brown, medium ly, medium to t	m to well g fine GRAV	raded, VEL	Outwash "grit"		
4.0 Drilled		4.2	W1			3.85	3000	Firm, (suba	fresh, ligh ngular to a	nt brown, ver ngular) CLA	y gravelly AY		Fining upward Diamicton/Boulder clay		
40mm OD	•							4.2	EOH						
						5 -									
General	Head	d Protection	<u> </u>	Legend	l		Titl	e	BOF	REHOL	E LOG	.			
• The well	ll desi	gn involving a ph	reatic	W1 W	ater samp	le	Clie	nt	Arran	Chemical	Compa	ny Ltd.			
tube was was withe	a temj drawn	porary installation after the geology	n and was	G1 Ga S1 Sec	is sample diment sar	nple	Job	Desc	ription	Brief B	8.6 PWS	Reconn	aissance		
logged, th water sam	he wat nples t	er levels measure taken	d and	\rightarrow w	ater inflow		Doct	ument	& Repo	ort Ref.	1099	d186.pp	t & 1099r206.doc		
• The intake for all water sampling was at the base of each tube			AS Water inflow Cone tip Push on cap Back-filled clay acting as seal		Minerez Environment				rex nental						

Appendix D

									BH T	ype & N	lo.	1	AWS.	3
						nce		вo	Page	Number		F	Page 1	of 1
F F	Te Seco	mp	orary aissance	Soil/	Water/ r Samnle	anre		ical l	Total	Depth (r	n)	4	1.0	
B	orel	hol	e Design	• apou	i Sampie	000		aphi	Date	drilled:		0	9/12/9	8
						/ater		- 20	Date	ea by: drawn:		1	2. MCC 8/01/9	artny 9 (EMcC)
						Mpui	h (m	ogy	Drillin	ng/Excav	ation	F	Percuss	tion Window
				No	Depth	Grou	Dept	Geol	Equip	ment		5	Sampli	ng
				INU.	Interval				Weath	ier			Dry	Interpretation/
									Descr	iption				Comments
			Clay pushed around standpipe				0.27		Soft, di brown, plastici	scoloured (medium gr ty	mottled hor aded, silty	rizons), n CLAY w	nedium vith low	Topsoil
							0.57		Stiff, fre silty SA	sh to discolo ND	oured, light b	rown, clay	yey,	
							0.52_							
			27mm OD/ 18mm ID uPVC				-		Stiff to grey to	soft (with intermitter	depth), disc ntly brown-0	coloured, orange,	light	Locally known as "dob". Tree roots
			casing				1-		mediun	n graded, sl	lightly grav	elly		evident, highly
Ð			1.2				-		plastici	ty.	ULAY W	vith low		phable, conesive
mm			27mm OD/ 18mm ID uPVC				_		(A mino	r clayey, silt	y SAND ho	rizon occu	ırs	
led 6			screen			\rightarrow			between CLAY I	1.01-1.09m, aver occurs a	, while a med at 1.9-2.0)	lium to da	rk	
Dril						1.3-1.9	-			-	,			
2.0_	LΕ	ļ					2_							
9														
d 50r							2.5 <u>-</u> 2.56							
Drille														
						2.8	_		Thin	y interbed	ded silty SA	AND &		
							3-							Fining up trend
							_		depth	ease in sanc i, average s	and $\phi = 0.4$	with 5m,		
									while	e average ø riables in h	clay = 0.35 between	5m, with		
							_							
		ĻL	4.0	W1			4-							
							_		4.0 H	EOH				
							_							
							_							
Gener	al H	ead	Protection		T	. 1	3 -]	[Fitle	DOD	FIIOLI		C	
	ar 11	Juu			Leger	IU				DUK	CUUL	e lu	ս	
• The	well a	desig	gn involving a pl	nreatic	W1	Water sam	ple		Client	Arran	Chemica	ls Ltd.		
tube w was w	as a t ithdra	temp awn	oorary installation	n and y was	G1 S1	Gas sample Sediment s	e ample		lob Desc	ription	Brief E	3.6 PW	S Reco	onnaissance
logged water	l, the samp	wate les t	er levels measur aken	ed and	$ \rightarrow $	Water inflo)W	Ι	Documer	nt & Rep	ort Ref.	1099	d186.j	opt & 1099r206.doc
• The	intake	e for	all water sampl	ing was		Cone tip			10		Ν	1:	n /	arov
at the base of each tube			🔳 1	Push on cap	р	(((6	زرد	<u>₹</u> 1	↓ I Ì	110			
				Back-filled	clay al	Environmenta			mental					
									11	C	🖉 Lii	mite	d	

	-									Appendix D
						Bŀ	I Туре &	k No.	AWS4	
			nce		go	Pag	e Numbe	er	Page 1 of	1
Temporary Reconnaissance	Soil/	/Water/ ir Sample	curre		ical l	Tot	al Depth	(m)	3.25	
Borehole Design	• apot	n Sample	r occ		aphi	Dat	e drilled:	:	09/12/98 E_McCar	thy
		1	water	l î	50	Dat	e drawn:		19/01/99	(EMcC)
		Depth	\pun	oth (i	logy	Dri	lling/Exc	avation	Percussio	n Window
	No.	Interval	Gro	Dep	Geo	Equ We	ather		Drv	
						De	scription	l		Interpretation/ Comments
Clay pushed around standpipe				-		Soft t (mott mediu	o dense/stif led) to fresh im graded,	ff (with dept h , medium silty CLA	th), discoloured to dark brown, Y with low	Fibrous topsoil
COULUG 27mm OD/ 18mm ID uPVC casing 1.2 27mm OD/ 18mm ID uPVC screen 3.25	W1		2.82			Loos grav 3.2	eity e/stiff to fir led), light b um to poorl laminations 1.48m, (ave 4.48m, (ave 1.48m, (ave 1.48m, (ave 1.48m, (ave 5.EOH	m (with dep prown to yel y graded, si s of fine SA erage $\phi = 0$.	noderately brounded), very	Predominance of clay over last metre
General Head Protection		Legend	 	5 -	Title	e	BOR	EHOL	E LOG	
		W1	ator	la.	Cli	nt	Δ ντον	Chemica	Company I to	
• The well design involving a p tube was a temporary installation	hreatic on and	WI W G1 Ga	ater samp is sample	le	Che	nt	Arran			
was withdrawn after the geolog logged, the water levels measur	y was ed and	S1 See	diment sa	nple	Job	Desc	ription	Brief	3.6 PWS Recom	naissance
water samples taken	.	\rightarrow w	ater inflov	v		ocum	ent & Re	eport Ref.	1099d186.pj	pt & 1099r206.doc
• The intake for all water sampl at the base of each tube	ing was	Co Pu: Co Pu: acti	ne tip sh on cap ck-filled c ing as sea	lay	Q	C	6	N E1 Li	Aine nvironi mited	erex nental

Appendi	x D
---------	-----

						BF	I Type & No.	AWS5	
			nce		go	Pag	ge Number	Page 1 of	1
Temporary Reconnaissance	Soil/	Water/	urrei		cal l	Tot	al Depth (m)	3.4	
Borehole Design	vapou	ii Sampie	000		aphi	Dat	e drilled:	09/12/98	d
			ater	Ê	- 913	Log Dat	gged by: re drawn:	E. McCar	(EMcC)
		Danth	mpu	h (n	by .	Dri	lling/Excavation	Percussion	n Window
	No.	Interval	irou	Jept	ieolo	Equ	uipment	Sampling	
			0		0	We	eather	Dry	Internetation/
						De	scription		Comments
Clay pushed around standpipe						Firm, medi plasti	, fresh to discoloured, n um graded, silty CLA icity	nedium brown, Y with low	Topsoil - lower 0.14m showing signs of leaching
27mm OD/				0.0	0.000				
COLUMN ID uPVC casing 1.2 27mm OD/ 18mm ID uPVC casing 27mm OD/ 18mm ID uPVC screen			→ 1.14			Very disco CLA	stiff, thickly to very th loured, yellow-orange/I Y& grey silty SAND	inly laminated, brown, silty	Lamination thickness = 0.01- 0.03m, more sand with depth
				1.77- 2		Firm, brow CLA	, intermixed, discoloure n, well graded, silty, gr Y with low plasticity	ed, light grey to avelly (angular)	Shattered limestone fragments evident
Drilled 50m	W1	WI		3		Soft to lig GR A	to loose, intermixed, di ght brown, well graded, AVEL (very angular)	scoloured, grey silty, clayey	Boulder clay/diamicton, or possibly rock head
3.4				3.4		3.4	EOH		
				4					
				_					
				_					
				5 -					
General Head Protection		Legend			Title	e	BOREHOL	E LOG	
• The well design involving a ph	reatic	W1 W	ater samp	le	Clie	nt	Arran Chemical	Company Ltd.	
tube was a temporary installation was withdrawn after the geology	n and was	G1 Ga S1 Sec	s sample liment sau	nple	Job	Desc	ription Brief E	8.6 PWS Recom	naissance
logged, the water levels measure water samples taken	d and	\rightarrow wa	ater inflow	r	Doc	cumer	nt & Report Ref.	1099d186.pp	ot & 1099r206.doc
• The intake for all water sampli at the base of each tube	ng was	Co	ne tip		12			Tino	rov
		Pus Pus Bac acti	sh on cap sk-filled c ng as seal	lay				VIIIIC NVIIONI mited	nental

Appen	dix	D
-------	-----	---

								Bł	I Type & No.		AWS6	
	_				nce		og	Pag	ge Number		Page 1 of	1
Rec	'emporary connaissanc	e	Soil/ Vapou	Water/ r Sample	curre		ical l	Tot	al Depth (m)		3.5	
Bor	ehole Desig	n			er oc		grapł	Log	gged by:		E. McCartl	hy
					lwat	(II)	3 - 8	Dat	te drawn:		19/01/99 (I	EMcC)
			No	Depth	counc	epth	solog	Dri Equ	uipment	n	Sampling	willdow
			INU.	mervar	J	Ω	Ğ	We	eather		Dry	T
								De	scription			Interpretation/ Comments
	Clay push around sta	ied andpipe						Firm brow low j	, fresh to discoloure n, medium graded, plasticity	ed, mediu very silty	m to dark CLAY with	Topsoil - roots plentiful
D n	27mm OI 18mm ID casing 1.2	D/ uPVC						Firm (mot sligh subro	to soft, intermixed, tled), light grey to y tly gravelly (occasio bunded), silty CLA	discolou rellow-bro onal, suba Y	red own, angular to	"Gley" - iron reduction evident
led 60m	18mm ID screen	uPVC			\rightarrow	1.4-		Soft, CLA	interbedded, discolour Y & fresh, grey SIL	ed, light be T, with me	rown edium	~50:50 representation
ін 2.0 ООШ					1.6	1.73 2		Soft, sligh	fresh, light grey wit tly gravelly (angula	th a hint c r), clayey	of brown, SILT	Transition
Drilled 50m												Gravel content increasing in size and proportion with depth
			W1			25		Loos GR (thic	se, angular to suban AVEL with a minor kness = 0.1-0.15m)	gular, silt or CLAY at 3.2m	y 7 layer	Transition
	▼ 3.5							3.5	ЕОН			
						4						
General	Head Protec	tion		Legend	I	<u> </u>	Title	e	BOREHO	DLE L	OG	
• The wel	l design involv	ing a nh	reatic	W1 W	ater samp	le	Clie	nt	Arran Chemi	cal Cor	npany Ltd.	
tube was was witho	a temporary ins drawn after the	stallation geology	and was	G1 Ga	s sample	1.	Job	Desc	ription Brie	ef B.6 P	WS Reconn	aissance
logged, th water sam	he water levels nples taken	measure	d and	$\rightarrow w$	ument sar		Doc	cumer	nt & Report Ref.	. 1	099d186.pp	t & 1099r206.doc
• The inta at the bas	ake for all water e of each tube	samplir	ng was	✓ Con ■ Pus acti	ne tip sh on cap sk-filled c ng as seal	elay al Environmer Limited				nental		

Appendix E

							BF	І Туре б	& No.	AW	/S7	
				nce		90 80	Pag	e Numb	er	Page	e 1 of	1
Temporary		Soil/	Water/	urrei		cal l	Tot	al Depth	(m)	5.0		
Borehole Desi	ign	vapou	ir Sample	000		aphi	Dat	e drilled	:	11/12	2/98	
	0			ater	Ê	- 918	Log Dat	gged by:		E. M	lcCart	hy FMcC)
			Depth	mpu	h (n	ogy	Dri	lling/Ex	cavation	Perc	ussion	Window
		No.	Interval	Jrou	Dept	Geol	Equ	uipment		Sam	pling	
			We	ather		Dry		Interpretation/				
							De	scriptio	n			Comments
Clay pu around 27mm 1 18mm 1 casing	ished standpipe OD/ ID uPVC				0.68		Soft, dark	fresh to di brown PE	scoloured (m AT 	with depth),	um to	Acting as topsoil - anaerobic conditions Transitional contact Very pliable,
C U U U U U U U U U U U U U U U U U U U	OD/ ID uPVC				2 		silty	CLAY w	ith medium p	lasticity		fibrous ~50:50 representation
Drilled 50mm O					3		Firm plast	, light brov icity, silty	vn, medium ş CLAY	graded, low		
4.0 Drilled 40mm OD		W1			3. <u>47</u> 		Very Loos (50:5	e, grey, an 50) GRAV 0 EOH	ID lens/horiz	onsilty/clayey		Large angular clasts, at least 0.04m ø, fine to medium gravel or "grit" acting as matrix with depth
General Head Prote	ection		Legend		5	ANNA Titl		BOE	PEHOLI	FLOC		
]		205010	-		1111					T . •	
• The well design invo tube was a temporary i	lving a ph nstallation	reatic and	W1 W G1 G2	ater sample	e	Clie	nt	Arran	Chemical	Company	Ltd.	
was withdrawn after the	e geology	was	S1 Sec	diment sar	nple	Job	Desc	ription	Brief B	8.6 PWS R	econn	aissance
water samples taken	5 measure		\rightarrow wa	ater inflow	7	Doo	cumer	it & Rep	ort Ref.	1099d1	86.pp	t & 1099r206.doc
• The intake for all wat at the base of each tube	ter samplir e	ng was	Co Pus Bac acti	ne tip sh on cap sk-filled ci ng as seal	lay	Q		00	N Er	Air NVIRC	ne onr	e rex nental

												Appendix D
							BE	Г Туре &	& No.	A	WS8	
				nce		go	Pag	e Numb	er	Р	age 1 of	1
To Rec	emporary onnaissance	Soil/	Water/ r Sample	urre		cal 1	Total Depth (m)		5.	.0		
Bor	ehole Design	v apou	ii Sampie		000		ihqa	Date drilled:		10	0/12/98	
				ater	2	- grg	Log Dat	ged by: e drawn		E.	. McCart	ny EMcC)
			Depth	mpu	h (n	ogy	Dri	lling/Ex	cavation	P	ercussion	Window
		No.	Interval	Jrou	Dept	Geol	Equ	ipment		Sa	ampling	
)		Ŭ	We	ather			ry	Interpretation/
							De	scription	n			Comments
	Clay pushed around standpipe 27mm OD/ 18mm ID uPVC casing				- - - - - - - - - - - - - - - - - - -		Very decor	Very soft, homogeneous, fresh to slightly decomposed (with depth), dark brown PEA			htly 1 PEAT	Acting as topsoil horizon from 0.3-0.68 = hard & friable
l 60mm OD	1.2 27mm OD/ 18mm ID uPVC screen				1 <u>-</u>		Soft, grado medi	fresh (wea ed, very cl um to higl	athered roots ayey, very fi h plasticity	s), grey, po îne SILT	oorly with	Very pliable, "Argilla"
brilled					-	***						Transition
Drilled 50mm OD					2		Soft, depth (50:5	fresh, grey 1), poorly § 0) with mo	y to yellow-g graded SIL 7 edium plasti	grey/brown T/CLAY icity	n (with	Coarsening upwards
				\rightarrow	3- 3.17 3. <u>46</u>		Soft t	o firm, fresl y, sandy SI	n, grey, poorly LT with med	y graded, sli lium to low	ghtly plasticity	First distinct sandy, silt lens/horizon
4.0 Drilled 40mm					4	xxxx 5.5.5.5 5.5.5.5 5.5.5 5.5.5 5.5.5.5 5	Inter fresh yello	bedded & n, grey, ver ow/brown,	interlamina ry clayey SI very silty C	ited, soft to ILT & CLAY	o firm,	Coarsening upwards, silt beds thicken towards the top. More clay at base
OD					4.5-		Soft (ang	to firm, fre ular) SIL T	esh, grey, cla Г	ayey, grav	elly	
	5.0 EOH	W1			5 -		Loos	e, grey, an	igular, claye	y, silty G l	RAVEL	Boulder clay/ Diamicton
General I	Head Protection		Legend			Title	e	BOF	REHOL	E LOO	С J	
• The well	design involving a ph	reatic	W1 Wa	ater samp	le	Clie	nt	Arran	Chemica	l Compa	any Ltd.	
tube was a was withd	temporary installation rawn after the geology	n and was	G1 Ga	s sample	nnlc	Job	Desci	ription	Brief I	B.6 PWS	S Reconn	aissance
logged, th water sam	e water levels measure ples taken	d and	$\rightarrow w$	nment sat	npie	Doc	umen	it & Rep	ort Ref.	1099	9d186.pp	t & 1099r206.doc
• The intal at the base	ke for all water sampling of each tube	ng was	Con Pus	ne tip h on cap k-filled c ng as seal	lay	Q	C	0	N Ei	Ai nvir	ne onr	rex

Appendix I)
------------	---

						Bł	І Туре &	& No.	AW	/S9	
_			nce		go	Pag	e Numb	er	Page	e 1 of	1
Temporary Reconnaissance	Soil/ Vapou	/Water/ 1r Sample	curre		ical]	Tot	Total Depth (m) Date drilled: Logged by:		3.0	3.0 12/01/99 E. McCarthy	
Borehole Design			er oc		graph	Dat Log			E. M		
			dwat	(m)	- V9	Dat	e drawn	:	19/0	1/99 (1	EMcC) Window
	No	Depth Interval	roun	epth	eolog	Equ	uipment	cavation	Sam	pling	window
			9		U	We	eather		Dry		
						De	scriptio	n			Comments
Clay pushed around standpipe				0. <u>49</u>		Soft brow plast	to firm, fre n, poorly ន្ icity	esh (roots), me graded, damp	edium to dar PEAT with	rk h low	Fresh topsoil layer
C 27mm OD/ 18mm ID uPVC casing 						Firm light grave CLA deptl	to soft, sli grey, dam el occurrin (average	ghtly discolo p, very silty (g (slightly gra 1m, increasing $\phi = <0.01$ m)	ured (mottle CLAY with avelly, very s g in size with	ed), silty h	Original root structures - orange/brown mottling
2/mm OD/ 18mm ID uPVC screen				1.5 	***	Firm wet, sandy	to loose, fre gravelly (ang v SILT, wit	sh, light grey, v gular to subang h medium plasi	well graded, d ular), clayey, ticity	lamp to very	Gravel contingent increasing in size with depth.
				2		LOS Firm claye suba	S , fresh, lig ey, silty, ve ngular), co	ht grey, poorl ery gravelly (a	y graded, we angular to	et,	Outwash mixture
20mm				2.3 <u>5</u>		Firm GR	to loose, gr	ey, very sandy,	fine to mediu	ım	
rilled				2.57_		Soft,	fresh, ligh	t brown ("cre	eam"), wet,		
	W1			_		grav LOS	s (angua	<u>alar), siity CI</u>	<u>_A Y</u>		
				3		3.0	EOH				
				_							
				4							
				_							
				_							
General Head Protection		Legend	 	<u> </u>	Titl	e	BOF	REHOLI	ELOG		
		W1 W	otor com-1	la	Clic	- nt	Arron	Chemical	Company	7 I td	
• The well design involving a ph tube was a temporary installatio	neatic n and	G1 Ga	ater sample		Lob	Desc	rintion	BriafD	6 DWC D	Aconn	aissance
was withdrawn after the geology logged, the water levels measure	was and	S1 Sec	diment sar	nple		Climer	nt & Ren	ort Ref	100041		aissailut
water samples takenThe intake for all water sampli	ng was	\rightarrow wa	ater inflow	7		Jumer				100.pp	1 x 10991200.00C
at the base of each tube						nental					

											Appendix D
							Bŀ	І Туре &	k No.	AWS10	
				nce		go	Pag	e Numb	er	Page 1 of	1
Tem	porary	Soil/	Water/	urrei		cal l	Tot	al Depth	(m)	3.5	
Boreho	naissance de Design	vapou	ir Sample	000		phid	Dat	e drilled	:	10/12/98	
Borene	besign			ter		gra	Log	gged by:		E. McCart	hy
			1	wa	E I	- 2	Dat	e drawn:		19/01/99 (EMcC)
			Depth	pun	pth	log	Dri	lling/Exc	cavation	Percussion	Window
		No.	Interval	Gro	Del	Gec	Eq	athor		Dry	
						-	we			Diy	Interpretation/
	a						De	scription	1		Comments
	 Clay pushed around standpipe 27mm OD/ 18mm ID uPVC 						Very deco medi	soft, homo mposed (w um plastic	Acting as topsoil horizon		
	casing				1	XXX	Cla	yey SILT	lens		Man-made? - drainage
	_1.2					XXX	PE	AT, as abo			
Drilled 60mm C	27mm OD/ 18mm ID uPVC screen						Firm SIL	, fresh, gre T with me	y, very clay dium to low	ey, very fine plasticity	
2.0 O					2						
Drilled 50					2. <u>45</u> 2.85		Firm	ı, grey, clay	yey, fine SI	LT	
					3	XXX 8888 8888	Inter	bedded cla	yey SILT &	& silty CLAY	
	_	W1			25	888	Firm, silty	discoloured CLAY	, yellow/brow	vn, gravelly (angular),	From 3.3-3.38 = very
•	3.5						3.5	5 EOH			gravel (grit), under which 0.12m of clay dominated diamicton
					4						
					5 -						
General Hea	ad Protection		Legend		_	Title	e	BOR	REHOL	E LOG	
• The well de	sign involving a ph	reatic	W1 W	ater sampl	le	Clie	nt	Arran	Chemica	l Company Ltd.	
was withdraw	n after the geology	was	SI Sec	s sample liment sa	nple	Job	Desc	ription	Brief I	B.6 PWS Reconn	aissance
logged, the w	ater levels measure s taken	d and	<u> </u>	tor infl-	, ,	Doc	umer	nt & Rep	ort Ref.	1099d186.pp	t & 1099r206.doc
• The intake f at the base of	or all water samplin each tube	ng was	Con Pus	ne tip sh on cap sk-filled c	lay	((C	9)	N	Aine	rex
			acti	ng as seal	_		ii	C		mited	nontal

											Appendix D
							BH	Туре &	& No.	AWS11	
				nce		og	Pag	e Numb	er	Page 1 of	f 1
Temporar	y nco	Soil/	Water/		aurre		cal l	Total Depth (m) 4.85		4.85	
Borehole Des	sign	vapou	r Sample	000		phi	Date	e drilled	:	10/12/98	
	-8			ater		gra	Log	ged by:		E. McCa	rthy/A. Milner
				Bwbi	m (m	gy -	Date	ling/Exe	: cavation	Percussio	on Window
		No	Depth Interval	rour	eptł	eolo	Equ	ipment	•••••••••	Sampling	5
		110.	inter var	G		IJ	We	ather		WET	
							Des	criptio	n		Interpretation/ Comments
// // Clay p	oushed 1 standpipe				0.54		Very s decon mediu	soft, home posed (w m plastici	More "soily" than before		
CO U U U U U U U U U U U U U	OD/ ID uPVC OD/ ID uPVC						Firm disco claye SAN 3.6m	to soft, in loured (m y SILT & D horizon	terbedded, fi ottled), grey & silty CLA ns between 1	resh to -brown, sandy, V , with two silty 1.5-1.6m & 3.5-	
Drilled 50mm OD					3						
4.0					4		Soft, medi	medium l um plastic	brown, silty city	CLAY with	
OD 4.85		W1			4.85	2000 2000 2000	Firm (suba Grav wind 4.85	light bro ingular) C el compor ow ~0.041 EOH	wn, silty, ve TLAY nent reaching m	ery gravelly g diameter of	Heterogeneous mixture =Diamicton/ Boulder clay with matrix in silt-clay spectrum
General Head Prot	tection		Legend			Title	e	BOF	REHOL	E LOG	
• The well design invo	olving a ph	reatic	W1 Wa	ater samp	le	Clie	nt	Arran	Chemica	l Company Ltd	
tube was a temporary was withdrawn after t	installation he geology	n and was	G1 Ga	s sample	male	Job	Descr	iption	Brief	B.6 PWS Recon	naissance
logged, the water leve	els measure	d and	51 Sed	minent sai	npie	Doc	umen	t & Rep	ort Ref.	1099d186.n	pt & 1099r206.doc
• The intake for all wa at the base of each tub	ater samplin be	ng was	Con Pus	he tip h on cap k-filled c ng as seal	ay I	Q		0		Aine nviron	erex mental

		-									Appendix D
							Bŀ	I Type & N	0.	AWS12	
				lce		g	Pag	e Number		Page 1 of	1
Ter	mporary	Soil	/Water/	urrer		cal lo	Total Depth (m) Date drilled:			4.0	
Borel	nnaissance iole Design	Vapou	ir Sample	000		phic				11/12/98	
						gra	Log	gged by:		E. McCartl	ny/A. Milner
				idwa	m (m	gy -	Dai	e drawn: lling/Excava	ation	Percussion	Window
		No.	Depth Interval	rour	ept	eolo	Equ	ipment		Sampling	
				9		9	We	ather		WET	T () () ()
							De	scription			Interpretation/ Comments
	Clay pushed around standpipe				0 25		Stiff, sand	discoloured (m y SILT	nottled), n	nedium brown,	Topsoil, some root matter
						XXXX	Firm	medium brow	n to grev	low to	
	27mm OD/				-	×××>	medi	um plasticity C	CLAY, wi	ith minor	
	18mm ID uPVC casing						SIL	Danus			
	_1.2				1						
	27mm OD/				1.3 <u>5</u>						
lled 6(screen				-		Firm plast	medium brown city SILT , wit	n to grey, th minor (low to medium	
Dri					-		(<0.0	5m)			
2.0					2-	$\times \times \times$					
					-		LOS	S			
id 50m											
Drill					-						
					3-						
					33		Firm	very gravelly ((angular)	CLAY	
					3.5-		Firm,	well graded, ve	ry sandy,	angular GRAVEL	
					=		Well	graded, very sa	ndy GR A	VEL	75-80% large, angular clasts
	,	W1									
│	4.0						4.0	EOH			
					-						
					_ 						
General H	ead Protection	<u> </u>	Legend	. 		Title	e	BOREI	HOLE	LOG	
• The well d	lesign involving a ph	reatic	W1 W	ater samp	le	Clie	nt	Arran Ch	emical (Company Ltd.	
tube was a t was withdra	emporary installation wn after the geology	n and was	G1 Ga	s sample	nnle	Job	Desc	ription I	Brief B.	6 PWS Reconn	aissance
logged, the water sample	water levels measure es taken	d and	\rightarrow wa	ater inflov	V	Doc	cumer	t & Report	Ref.	1099d186.pp	t & 1099r206.doc
• The intake at the base of	for all water sampling for all water sampling for a sampling for the same state of the same state of the same same same same same same same sam	ng was	▼ Co	ne tip		12	2		N	line	rev
			Pus	sh on cap	lov	(((6		⊥V. E∽		nontal
			acti	ng as seal	ldy		37	(0)		VIIUII	
									LIII	<u>meu</u>	

												Appendix D
								Bŀ	І Туре б	& No.	AWS1	3
					nce		go	Pag	e Numb	er	Page 1 c	of 2
] Re	Fempo	orary issance	Soil/	Water/ r Sampla	curre		cal l	Tot	al Depth	(m)	6.04	
Boi	rehole	Design	v apou	i sample	000		aphi	Dat	e drilled	•	13/12/98	setter (A. Mile en
					/ater	Î	- 100	Log Dat	gged by: e drawn:	:	19/01/99	(EMcC)
				Depth	wbut	th (r	logy	Dri	Drilling/Excavation		Percussi	on Window
			No.	Interval	Grou	Dep	Geol	Equ	uipment		Samplin	g
								Do	sorintio	<u> </u>	WLI	Interpretation/
///		They much ad						De	scription			Comments
//. //.		round standpipe				=		Stiff, decor	homogene nposed (w	ous, slightly	y to moderately lark brown to	Colour darkening with depth
								damp	, poorly gr PEAT	aded, mediu	im plasticity,	
	2	27mm OD/										
		8mm ID uPVC casing				0.82						
Q	LL	.2						Firm	very thinl	v bedded fi	resh grev	
0 mm		27mm OD/				_		medi	um to poor	ly graded, d	lamp to wet,	
ed 60)		8mm ID uPVC						siigii	ily clayey,	very sitty, i	ine SAIND	
Drill					\rightarrow	_						
2.0					1.8	2_						
Q								LOS	S			
mm (2.5_		Sam	e as above	i.e. very thi	inly	
led 50						260		beda	led, fine S.	AND		
Dril							2222	Trar	sition - int	terbedded fi	ne SAND	
						$\frac{2.97}{3}$		(abc	ove) & CL	AY (below	i)	
								Stift poor	f to slightly ly graded,	firm, fresh low plastic	, grey-brown, ity, damp,	Impermeable layer
						_		sligl	ntly silty C	CLAY		
4.0						4-						
n OD						_						
40mr												
rilled						_						
D						5 -						
General	Head	Protection		Legend			Title	e	BOF	REHOL	E LOG	1
• The we	ell desigr	n involving a ph	reatic	W1 Wa	ater samp	e	Clie	nt	Arran	Chemica	l Company Ltd	
tube was was with	s a tempo ndrawn a	orary installation fter the geology	and was	Gl Ga	s sample	nnle	Job	Desc	ription	Brief	B.6 PWS Reco	nnaissance
logged, t water sar	the water mples ta	levels measure ken	d and	\rightarrow Wa	ter inflow		Doc	umer	nt & Rep	ort Ref.	1099d186.j	opt & 1099r206.doc
• The int	ake for a	all water sampling the type	ng was	Con	ne tip		13				Tin	74037
at the Day		n tube		Pus	h on cap		(((C	زرو	L	\T İII(
				Bac	k-filled c ng as seal	lay	1	5	16	\mathcal{U} Ei	nviron	mental
								11	C	🖉 Li	mited	

Appendix D

						BH Type & No. AWS13					
			8		ත	Page 1	Numbe	r		Page 2 of	2
Temporary	Soil/	/Water/	Irren		al lo	Total	Depth	(m)		6.04	
Reconnaissance Borehole Design	Vapou	ir Sample	0001		phic	Date of	drilled:	ed: 13/12/98			
2 of those 2 toigh			ater		- gra	Logge	ed by:			E. McCarthy/A. Milner	
		Donth	mpu	h (m	- ygc	Date C Drillin	ng/Exc	avation		Percussion	Window
	No.	Interval	Jrou	Dept	jeolo	Equip	ment			Sampling	
			0	I	0	Weat	her			WET	Interpretation/
						Desci	ription	l			Comments
CO WILL O PP3 II II II II II II II II II I				5. <u>54</u>		 Stiff to slightly firm, fresh, grey- brown, poorly graded, low plasticity, damp, slightly silty CLAY, with very thinly bedded, brown, silty SAND horizons occurring from 5.54m 			Continued from page 1		
	W1			$6_{\overline{6.04}}$		Brown-	grey, gra	avelly (angu	ılar), si	ilty CLAY	Boulder clay/rock head at base - stopped
▼ 6.04						6.04 I	ЕОН				drilling
				_							
				_							
				7—							
				_							
				_							
				8							
				_							
				9							
				10-							
General Head Protection		Legend	I		Title	e	BOR	EHOL	E L(OG	1
• The well design involving a ph	reatic	W1 W	ater sampl	e	Clie	nt	Arran	Chemical	Com	npany Ltd.	
tube was a temporary installation was withdrawn after the geology	n and was	G1 Ga	s sample		Job	Descrip	tion	Brief B	3.6 PV	WS Reconn	aissance
logged, the water levels measure	d and	S1 Sec	liment sar	nple	Doc	cument &	& Repo	ort Ref.	10)99d186.nn	t & 1099r206.doc
• The intake for all water sampli	ng was	Wa	ater inflow	7				T		•	
at the base of each tube			sh on cap k-filled c ng as seal	lay	9	C		IN Er Fr	/]]V] mit	ine ironr	nental

Appendi	x D
---------	-----

						Bł	I Type & I	No.	AWS14	
			nce		og	Pag	ge Number		Page 1 of	2
Temporary Reconnaissance	Soil	/Water/ ur Sample	nrrei		cal l	Tot	al Depth (r	n)	6.0	
Borehole Design	v apot	n Sample	000		aphi	Dat	te drilled:		13/12/98	hy/A Milner
			vater	n (i	- 29	Da	gged by: te drawn:		19/01/99 (EMcC)
		Depth	opur	th (r	logy	Dri	illing/Exca	vation	Percussion	Window
	No.	Interval	Groi	Dep	Geo	Eq W	uipment		WET	
						De	scription		WEI	Interpretation/
Clay pushed				_		LOS	s			Comments
<i>iii</i> , <i>iii</i> , around standpipe				0.25	<u></u>					
						Firm	, homogeneou	us, modera	tely	Colour darkening
27mm OD/						deco	mposed, dark	brown to l AT with lo	black, poorly	with depth
18mm ID uPVC casing				_		8			· · · P-····	
				1						
				_		Firm very	, fresh, grey, silty, fine SA	damp, sligl	ntly clayey, minor CLAY	
18mm ID uPVC screen						lamii	nations occurr	ring from ~	-1.7m	
Drille					<u></u>					Transition
2.0				-	\times	Firm, with	fresh, grey, slig nedium plastici	ghtly sandy, itv	very clayey SILT	
				2-			I	<u> </u>		
				-		Firn med	n, fresh, grey, jum plasticity	poorly gra	nded, erv silty	
d 50n				_		CL	AY	,, uump,		
Drille				-						
				3 - 3 + 3 + 18						
				-		Firm	n. fresh. vello	w-brown.	poorly	
						grac	led, medium j	plasticity, d	lamp,	
						very	sity CLAI	L		
				_						
				4	3999	G4:0	freeh reller		ل ماه مسم الم	Gravel increases
40mm				-	XXX	med	ium plasticity	v-brown, w	avelly (very	
					XXXX	angı very	ilar), very silt sandy GRA	y CLAY ⁻ VEL	with well graded,	Diamicton/Boulder clay
				_	8888					
				5 -						
General Head Protection		Legend			Title	e	BORE	EHOLI	E LOG	
• The well design involving a nl	reatic	W1 W	ater sampl	le	Clie	nt	Arran C	hemical	Company Ltd.	
tube was a temporary installation was withdrawn after the geology	n and was	G1 Ga	s sample		Job	Desc	ription	Brief B	.6 PWS Reconn	aissance
logged, the water levels measure water samples taken	ed and	\rightarrow W	ater inflow	npie v	Doc	cumer	nt & Repor	t Ref.	1099d186.pp	t & 1099r206.doc
• The intake for all water sample	ng was	V Co	ne tip		12			Ν	Tino	rov
		Pus	sh on cap		(((Ć	<u>)))</u>	ĽŤ∧	TillG	
		acti	k-filled c ng as seal	lay	1	5	TO	s Er	NV1ronr	nental
						11	Je starter	<u> </u>	nited	

				3						Appendix D
						Bŀ	Г Туре &	& No.	AWS14	
			nce		og	Pag	e Numb	er	Page 2 of	2
Temporary	Soil/	Water/	urre		cal l	Tot	al Depth	(m)	6.0	
Borehole Design	vapou	ir Sample	000		phid	Dat	e drilled	:	13/12/98	
			ater		- gra	Log	ged by:		E. McCart	hy/A. Milner
		Denth	mpr	h (m	- ygu	Dai	lling/Exe	cavation	Percussion	n Window
	No.	Interval	rour	Deptl	eolc	Equ	ipment		Sampling	
			9		9	We	ather		WET	
						De	scriptio	n		Comments
CO umo Policia Contraction of the second sec	W1					Stiff low p (angu	- loose, fre lasticity, c lar)	sh, brown-g lamp, clayey	grey, well graded, 7, silty GRAVEL	Transition from 5m
				-						
				-						
				-						
				7—						
				_						
				-						
				-						
				-						
				8						
				=						
				-						
				-						
				9						
				-						
				_						
				_						
				10-						
General Head Protection		Legend			Title	e	BOF	REHOL	E LOG	
• The well design involving a ph	reatic	W1 Wa	ater samp	le	Clie	nt	Arran	Chemica	l Company Ltd.	
was withdrawn after the geology	was	SI Ga	liment sa	mple	Job	Desc	ription	Brief I	B.6 PWS Reconn	aissance
water samples taken	a and	\rightarrow wa	ater inflov	v	Doc	cumer	it & Rep	ort Ref.	1099d186.pp	ot & 1099r206.doc
• The intake for all water sampli	ng was	Con	ne tip		12				Tino	1037
		Pus	sh on cap		(((6	D)	Ξ	\TİHG	
		acti	k-filled c ng as sea	lay I	1		6	SE1	nV1ron1 mited	nental

Appendix D

	Drilling Log
Project No. : 632 Date : 05/09/1994	brinning rog
Drilling Location : Adj. B.8 Boring No : MW - 1	
Supervisor: Teri Hayes	site : tion Corp pic.
Drilling Contractor Glover Site Investigations Ud	Monks land Industrial Est.
	Athlone
Drilling Method :Percussion	Co. West Meath

and annual second			
	0 - 0.2	Top Soil	
	0.2-0.6	Siity gravel	
		Cobbles up to 15 cm in diameter	01111111
		Molst	
	0.6 - 1.5	Boulders with clay matrix Driting difficult - Chiseling for two hours	*****
ammun ammana	1.5 - 2.0	Clayey gravels, moist	*****
	2.0-4.0	Clays, silts and clayey gravels	
		Very Dry and compact, drilling difficult	
	4.0 - 6.0	Silt and Clay	
	6-6.5	Cobbles and boulders with a clay matrix	
	10-02-1-110-110	Pry	
		· · · · · · · · · · · · · · · · · · ·	

K.T.Cullen & Co. Ltd.

Baring No+MW+2	
bound no time a	an Elon Com ela
	Monkiland indistid Estate
	Alhione

Sample.	Depth	Description / Comments etc.
	0.0-0.3	Sandy Toosoli
	and the second second	
	0.5-1.3	Light brown silt, dry
	1.3-2.0	Boulder -chiselling
	2.0-3.0	Clayey sit with pebble
	4, 0 - 6, 5	Boulder Clay. Cobbles with clameters up to 30 cm, moist
	6.5-7.8	Boulder clay with water saturated silt lenses
niw wine:	7.8-8.4	Boulders , drilling impedied
	-	
T Cullo	n & Co	Itd. David David

Project No. :	632 Date	: 8/9/1994	Drilling Log
Drilling Location :	S of B4 Bo	wing No : MW - 3	sile Elan Corporation pic
Supervisor :	Teri Hayes		Montriand lad Ed
Drilling Contractor :	Glaver		Atolese
Drilling Method :	Percussion		Children and Child
		The second second second second second second second second second second second second second second second se	Manufilition and a second second second second second second second second second second second second second s

	0.0-0.4	Topsoil
	0.4-1.6	Ught brown intermixed sand and silt, moist
	-	Clay with sill lenses,
	1.6-3.5	Pebbles approx 2 - 5 cm in diameter, moist
	3.5-52	Boulder Clay with sandy lenses which ae saturated.
	5.2-6.4	Bouider Clay with lorge cobbles
		Cohesive cicy, fow permeability
		Drilling impeded due to boulders

Hiles - 14		
	() ((1)) (

lydrogeological & Environmental Consultants

Project No. : 63	32 Date : 8- 9/9/1994	Drilling Log		
rilling Location : SV Supervisor : Te ing Contractor : G Dritting Method : Pe	V of site Boring No <u>MW -5</u> ni Hayes lover ercussion	Site : MW -5 Elan Corporation pic. Manksland industrial Estate Athlane Co. Westmeath		
iomple Depth	Descr	iption / Comments etc.		
0.0-0.7	Fill material			
0.7 - 2.1	Boulder Clay, Cobbles with a Moist, strong flow at 2 metres	diameter of 20 cm approx. bis		
2.1 - 5.0	Sit with clay and sand lenses.	Saturated		

Site :	alan Corporatio	in pic.	wipton - three communications
Drilling Location :	SW of site (on n	oadway)	
ling Contractor :	Glover		
Supervisor :	Terl Hayes	Observer :	The second second second second second second second second second second second second second second second s
Well No. :	MW ~ 1	Date : 5/9/1994	Time :
í .	(d)	(a) Protection 1	Manhole Cover
(a)		(b) Casing / lockable :	RO
	(c)	(c) Well material :	PVC
		TOC (msl) : .	48.64 ms
		Stickup :	0.0 m
		(d) Grout Type :	NA
		Grout Length :	NA
	6	(e) Seal Type :	Bentonite
		Seal Length :	1.0 m
		(0 Pock Type :	Silica Sand
	00	Pack Length :	4.0 m
		(g) Screen Length :	3.0m
		(h) Well Depth (bis) :	6.0m
		0 Water Level :	
		(D. Boring Depth (bls) :	6.5m
		(k) Borehole Digmeter :	20 cm
-		() Well Digmeter :	5 cm
	(0)	(m) Well con :	Screw Cap
-		(0) Covice Level	1.5m
-		Coung Length :	15 cm
		Casing Diameter :	Very good
	(1)	(w) Kecovery role :	Ver
		(p) Cement pad :	

Hydrogeological & Environmental Consultants

	We	I Construction Log	
s	te : Ean Corporati	on pic.	7
villing Locatio	on: SW of site (on i	roadway)	
ling Contract	for: Glover		11
Supervis	or: Teri Hayes	Observer :	
Well N	lo.: MW - 2	Date : 6-7/1994 Time :	
13	(0)	(a) Protection : Monhole Covor	11
(0)		(b) Casing / lockable : ^{NO}	
	(c)	(c) Well material : PVC	
	00	TOC (msl) : 44.89 msl	
		Stickup: 0.0 m	11
		(d) Grout Type : NA	
		Grout Length : NA	
	0	(e) Seal Type : Bentanite	
		Seal Length : 1.0 m	
		(0 Pack Type : Silicia Sand	
	O.C.	Pack Length: 5.0 m	
		(g) Screen Length : 4.5 m	11
		(h) Well Depth (bis) : 7.5 m	
	(9)	(i) Water Level: 6.55 m bloc	
		(i) Boring Depth (bla) : 8.4 m	
		(k) Borehole Diameter: 20 cm	
		() Well Diameter : 5 cm	
	(0)	(m) Well cap : Screw Cap	
	(0)	(n) Casing Length : 1.5 m	11
		Casing Diameter : 15 cm	
		(o) Recovery rate : Very good	
	(h) (h)	(p) Cement pod : Vet	

T.Cullen & Co. Ltd.

We	ell Construction Lo	g
Site : Elan Corpore	ation pic.	
illing Location : SW of site (or	n roadway)	
ng Contractor : Glover		
Supervisor : Teri Hayes	Observer :	
Well No. : MW - 3	Date : 8/9/1994	Time :
(1)	(c) Protection :	Manhole Caver
(a)	(b) Casing / lockable :	no
(c)	(c) Well material :	PVC
	TOC (msi) :	45.165 msl
	Stickup :	0.0m
	(d) Grout Type :	NA
	Grout Length :	NA
8	(e) Seal Type :	Bentonite
	Seal Length :	1.0 m
	(0 Pack Type :	Silica Sand
00	Pack Length :	4.0 m
	(g) Screen Length :	3.0 m
	(h) Well Depth (bis) :	6.0m
(0)	(0 Water Level :	4. 55 m btoc
	(D Boring Depth (bis) :	6.4 m
	(k) Borehole Diameter :	20 cm
	() Well Diameter :	5 cm
(g)	(m) Well cap :	Screw Cap
0	(n) Casing Length :	1.5 m
	Casing Diameter :	15 cm
	(o) Recovery rate :	Very good
「空間のの無意思	(p) Cement pad :	Ves

K.T.Cullen & Co. Ltd. Hydrogeological & Environmental Consultants
Etter Flow Co	more than all a
Sile : Clon Co	portaion pic.
Drilling Location : SW ors	e (on loodwdy)
milling Contractor : Giover	
Supervisor : Tert Have	5Observer :
Well No. : <u>MW-5</u>	Date: Nov. 18, 1993 Time:
(b)	(a) Protection: Manhole Cover
	(b) Casing / lockable : no
(e)	(c) Well material : PVC
	TOC (msl) : 44.47 mtl
	Stickup: 0.0 m
	(d) Grout Type : NA
	Grout Length : NA
18	(e) Seal Type : Bentonite
	Seal Length : 1.1 m
	(7) Pack Type : Slica Sand
0¢	Pack Length : 5.0 m
	(g) Screen Length : 4.5 m
	(h) Well Depth (bis) : <u>6.3 m</u>
(0)	0 Water Level : 475 m btoc
	Boring Depth (bis): 6.5 m
	(k) Borehole Diameter : 20 cm
	(1) Well Diameter : 5 cm
(0)	(m) Well cop : Screw Cop
m	(n) Casing Length : 1.5 m
	Casing Diameter : 15 cm
	(o) Recovery rate : Very good
(h) 10	(p) Cement pod : Yes

Cullen & Co. Ltd.

Project No: T074

Log of Borehole: MW-07

Client: Elan Corporation

Location: West side of plant

Date: 05/03/2001

SORD NA MONA ERVIRONMENTAL LIMITED

Site: Athlone

Logged by: Garrett Leech

	SL	BSURFACE PROFILE			SAMPLI	E		
Depth	Symbol	Description	Depth/ Elev.	Number	Samplo Interval	(mqc)	Well Data	Remarks
1-		ight Brown Clav	1					Lockable steel case fitted Bentonite to grout 1m
2-		CtawSand Light coloured clay with high content (30%) sand content						Plain 50mm standpipe
3-	200		3					Slotted 50mm PVC standpipe
4-	0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,	Sand/Grave/ Dark coloured till with a clay/sand matric containing rounded clasts/cobbles (up to 5cm). Thought to be of glacial origin.	10					Backtilled with washed pea gravel After drilling water
5- 5- 7- 8-		End of Borehole						was sitting at 4.8m
Drille Drill I Drill I	id By: Glo Method: S Date: 05/0	ver Site Investigation hell & Auger 3/2001	En	Bord vironn Ma Ne Co	i na Mo nental in Stre wbridg . Kildar	óna Limiteo et re	4) 1 1	Hole Size (mm): 4 inch Datum (m AOD): Sheet: 1 of 1

URS Ireland Limited 410/411 Q House, 76 Furze Road, Sandyford, Dublin 18, Ireland. Telephone: 01 2933213 Fax: 01 2933201

BOREHOL	E LOG
---------	-------

/ ADP	08-09 15-09	egend (Thick ness	round Level (m) lethod / Plant Used Disab Vaccu Disab Vaccu Reinforced CON Dense greyish bi fine to coarse an Medium dense to SAND Commission	Co-Ordinates () um Tanker / Commachio Geo STRATA DESCRIPTION CRETE. lack SAND and GRAVEL. Gravel is d subangular. (FILL)	205 She	MW10d
/ ADP	08-09 15-09 Jatem Mater Access (15-09	egend Depti egend (Thick ness	lethod / Plant Used Disab Vacci Reinforced CON Dense greytsh bi fine to coarse an Medium dense to SAND O	um Tanker / Commachio Geo STRATA DESCRIPTION CRETE. lack SAND and GRAVEL. Gravel is d subangular. (FILL)	205 She	eet 1 of 1 WENTS
/ ADP Sample / Test Details	Water	egend (Thick ness	Lethod / Plant Used Disab Vaccu Reinforced CON Dense greyish bi fine to coarse an Medium dense to SAND Commission	UM Tanker / Commachio Geo STRATA DESCRIPTION CRETE. lack SAND and GRAVEL. Gravel is d subangular. (FILL)	205 She	1 of 1 MENTS
/ ADP Sample / Test Details	Water	egend (Thick ness	Disab Vacci Reinforced CON Dense greytsh bi fine to coarse an Medium dense to SAND Commission	Um Tanker / Commachio Geo STRATA DESCRIPTION CRETE. lack SAND and GRAVEL. Gravel is d subangular. (FILL)	205 COMP	1 of 1 MENTS
Sample / Test Details	Water	egend (Thick ness	Reinforced CON Dense greyish bi fine to coarse an Medium dense to SAND Coartie	STRATA DESCRIPTION CRETE. lack SAND and GRAVEL. Gravel is d subangular. (FILL)		WENTS
Sample / Test O	Water	egend Deptr (Thick ness 0.2 0.2 0.2	Reinforced CON Dense greytsh bi fine to coarse an Medium dense to SAND Commission	DESCRIPTION CRETE. lack SAND and GRAVEL. Gravel is d subangular. (FILL)		WENTS
Details Q	M Mar activity of the	egend (Thick ness 2020 0.11	Reinforced CON Dense greyish bi fine to coarse an Medium dense to	DESCRIPTION CRETE. lack SAND and GRAVEL. Gravel is id subangular. (FILL)		MENTS
			Reinforced CON Dense grevish bl fine to coarse an Medium dense to	CRETE. lack SAND and GRAVEL. Gravel is d subangular. (FILL)	NEC	
			Dense greyish bi fine to coarse an Medium dense to	ack SAND and GRAVEL. Gravel is d subangular. (FILL)	/\NEC	
			Medium dense to	a subanguiar, (r icc)	1 4150	
	16219-026		CAND Converting	o dense slightly silty slightly gravelly	_/ NEG	
	TOR LOOP		GAND, Gravel IS	fine to coarse and subangular.		
	a la companya da Contraction of the second second second second second second second second second second second second second s	Subrounded cob	bles at 2.8 m.		4	
	8	# GE				
	2	(5.25)	9			
	202	₩-E				
	100	े लगे				
		6. St				
	100	E				
	100	5.50	0		0.00-0-0	
			Weathered LIME	STONE bedrock.	NEC	
	0					
	0	(2.50)				
	0					
	Y	<u></u>	_			
			Competent LIME	STONE bedrock.	NEC	
	· 2	ц <u>т</u>			11-00404110	200
	¥ _	ĻŢ				
	0	(3.00)				
	4	LT.				
	¥	ĻĘ				0
		11.00	50110110-0		-	D.
		Ē	EOH @ 11.0 m c	ogi	1	
		Ē				
		Ē				
		Ē				
		Ē				
		Ē				
		Ē				
		E				
II DICTALLAT	ONE	TATE		EGEND		GENERAL
LL INSTALLAT	Eller off	AILS	5050 c	NOT		REMARKS
innia saal deer	Filler on	nk someon	Con	crees Solo Fill (made ground) (Clayey Gravely	NEC -	No evidence of
Collacse	- new part	A REAL PROPERTY	LA SAN	D Limestone	Contar	nination
SAMPLE TYPE	DET	All S			m bgi -	End of Hole metres below
SAMPLE ITPE	DEI	ALC .			ground Vac Ex	tevel to 3.4 m hai
				wher Table . Water States	THE LA	a sea an aga
			Y Croundy	low Ground Laval		
				ad Du	Anno 10	× 143741
	LI INSTALLAT ent seel riser III onite seel riser III Cotiapse SAMPLE TYPE	LINSTALLATION I erd seel riser I Filter pa colles seel riser I Filter pa Collapse SAMPLE TYPE DET.	LINSTALLATION DETAILS	LINSTALLATION DETAILS Collapse SAMPLE TYPE DETAILS Weathered LIME (2.50) Weathered LIME (3.00) Weathered LIME (3.00) Competent LIME (3.00)	Image: State of the second	Image: Solution of the sear form 5.50 Image: Solution of the sear form 6.50 Image: Solution of the sear form 0 Image: Solution of the sear form 0

Project Nam	e and Site L	.ocation				Client		/100%00100		BOREHOLE	E No
	Alkermes	Target	ed S	2014			All	kermes		MW11	S
ob No	0.70	Date Start Date	17-	09-14	G	round Level (m)	Co-Ordi	nates ()			
47092	2672	End Date	17-	09-14		Inthod / Diant Line				Short	
Jonuación A O C						Disab Va	u Tanka	/ Commonhia Co	a 205	Sneet 1 of 1	
AUS	TADE	2	-	1		Disab Val		Commacino Ge	0 200	1011	-
epth BGL	Sample / Details	Test Ol	Water	Legend	Deptr (Thick	3	DESCRIPTIC	a N		COMMENTS	tallation
0.5 1.0 2.0 2.5 3.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5			Ŧ		0.0 0.3 (1.50) 1.8 (6.80)	EOH @ 8.6 m	ey sandy GRA igular. (FILL) cobbley gravel bunded to subr brounded. Ium dense brow to coarse and s	VEL. Gravel is fine to y slightly slity SAND ounded. Gravel is fine wh gravelly slity SAND subrounded.	to	NEC	
	ELL INST		TON	DETA	ILS	1	LEGEND	Ell (made ground)		GENERAL REMARKS	S
D Ho	e Collapse SAMPL		DE	TAILS			SAND			Contamination EOH - End of Hole m bgl - metres belor ground level	w

Alkarmes Date 17.09-14 Ground Level (m) Co-Ordinates () MWY Contractor Method / Plant Used Disab Vaccum Tanker / Commachio Geo 205 Sheet 1 of ACS / ADP Depth BOL Sample / Test Stream Sheet 1 of Depth BOL Sample / Test Stream Depth BOL Stream Commachio Geo 205 NEC 0.5 Stream Stream Description DESCRIPTION COMMENTS 0.5 Stream Contractor and subrounded. NEC NEC 0.5 Stream Contractor and subrounded. NEC NEC 1.5 Stream Contractor and subrounded. NEC NEC 2.5 Stream Stream Stream NEC NEC 3.5 Stream Stream Stream NEC NEC 3.5 Stream Stream Stream Stream NEC <th>OLEN</th>	OLEN
Dot No Date 17-09-14 Ground Level (m) Co-Ordinates () AC092672 Endbaw 17-09-14 Method / Plant Used Sheet 1 of AQS / ADP Disab Vaccum Tanker / Commachio Geo 205 Sheet 1 of Depth BOL Sample / Test 6 Smell StrRATA Depth BOL Sample / Test 6 Smell StrRATA Depth BOL Sample / Test 6 Smell NEC 05 Sample / Test 0 StrRATA DESCRIPTION COMMENTS 05 Sample / Test 0 Sample / Test Description cobleg grave sandy GRAVEL. Gravel is fine to NEC 05 Sample / Test 0 Sample / Test Sample / Test NEC NEC 05 Sample / Test 0 Sample / Test Sample / Test NEC NEC 05 Sample / Test Sample / Test Sample / Test NEC NEC 05 Sample / Test Sample / Test Sample / Test NEC NEC 05 Sample / Test Sample / Test Sample / Test NEC NEC 05 Sample / Test Sample / Test Sample / Test NEC NEC 05 Sample / Test <t< th=""><th>444</th></t<>	444
47092672 inclum 17-09-14 Sheet AOS / ADP Disab Vaccum Tanker / Commachio Geo 205 1 of AOS / ADP Disab Vaccum Tanker / Commachio Geo 205 1 of Jepth BGL Sample / Test NeC <	110
Contractor Method / Plant Used Streat Sheet AOS / ADP Eagend Depth Disab Vaccum Tanker / Commachio Geo 205 I of Jepth BOL Sample / Test Signature Streat Description Jac Description DESCRIPTION COMMENTS Jac Comment Comment NEC NEC Jac Comment Comment NEC NEC Jac Comment Comment NEC NEC Jac Sample / Test Sample / Test Sample / Test NEC Jac Sample / Test Sample / Test Sample / Test NEC Jac Sample / Test Sample / Test Sample / Test NEC Jac Sample / Test Sample / Test Sample / Test Sample / Test Jac Sample / Test Sample / Test Sample / Test Sample / Test Jac Sample / Test Sample / Test Sample / Test Sample / Test Jac Sample / Test Sample / Test Sample / Test Sample / Test Jac Sample / Test Sample / Test Sample / Test Sample / Test Jac Sample / Test Sample / Test Sample / Test Sample / Test	
AQS / ADP Disab Vaccum Tanker / Commachio Geo 205 1 of isponse Strppie / Test Details Strppie / Test Go NEC NEC is Image: Strppie / Test Go Image: Strppie / Test Go Image: Strppie / Test Go NEC NEC NEC is Image: Strppie / Test Go Image: Strppie / Test Go Image: Strppie / Test Go NEC NEC NEC is Image: Strppie / Test Go Image: Strppie / Test Go Image: Strppie / Test Go NEC NEC NEC is Image: Strppie / Test Go NEC NEC Image: Strppie / Test Go NEC Image: Strppie / Test Go Image: Strppie / Tes	
STRATA STRATA Depth BGL Sample / Test Details Sample / Test Details Sample / Test Depth BGL Stratu COMMENTS 5 0 Comment and angluiz. (Fills) DESCRIPTION COMMENTS 5 0 Comment and angluiz. (Fills) DESCRIPTION COMMENTS 6 0 Comment and angluiz. (Fills) Descentrown cobleg gravely sliphty sliph SAND. NEC 0 0 Comment and angluiz. (Fills) Loose to medium dense brown gravely sliph SAND. NEC 0 0 Comment and subrounded. NEC NEC 0 0 Comment and subrounded. NEC NEC 0 0 0 Comment and subrounded. NEC 0 0 0 0 Comment and subrounded. NEC 0 0 0 0 0 0 NEC NEC 0 0 0 0 0 0 0 NEC NEC NEC NEC 0 0 0 0 0 0 NEC NEC NEC <td>of 1</td>	of 1
epth BGL Sample / Test Details B C B C Description (ness) DESCRIPTION COMMENTS 5 0 0 0 0 0 0 0 0 NRC 5 0 0 0 0 0 0 0 NRC NRC 5 0 0 0 0 0 0 0 0 NRC NRC 5 0 0 0 0 0 0 0 0 NRC NRC 5 0 0 0 0 0 0 0 0 NRC NRC 6 0 0 0 0 0 0 0 0 0 NRC NRC 6 0	
6 ness) 5 0.25 6 0.25 7 0.25 8 0.25 9 0.25 9 0.25 10 1.20 11 0.25 12 0.25 13 0.25 14 1.20 15 0.25 15 0.25 15 0.25 15 0.25 15 0.25 15 0.25 16 1.20 17 0.25 18 0.25 19 0.25 10 0.25 10 0.25 10 0.25 10 0.25 10 0.25 10 0.25 10 0.25 11 0.25 12 0.25 13 0.25 14.00 0.25 14.00 0.26 14.00 0.26 14.00 0.26 14.00 0.26 14.00 0.26 14.00 0.26 14.00 0.26 14.00 14.00 <td>585. S</td>	585. S
A Contact and angular. (FLL) Very dense grey sandy GRAVEL. Gravel is fine to Coartse and angular. (FLL) Dense torwn cobleg grey sandy GRAVEL. Gravel is fine to Coartse and subrounded. Iso Cobles are rounded to subrounded. Gravel is fine to Coartse and subrounded. Rec R	
0 Coartes and angular. (HLL) NEC 0 Dense and angular. (HLL) NEC 0 Dense town coblet of subrounded. Gravel is fine to coartes and subrounded. NEC 100 Cobles are nounded to subrounded. NEC 0 Cobles are nounded to subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 Coartes and subrounded. NEC 0 EOH @	-
Image: Stand	-1
Image: Second Subrounded NEC Image: Second Subrounded NEC <td< td=""><td></td></td<>	
Loose to medium dense brown gravely sity SAND. Cravel is fine to coarse and subrounded. LIMESTONE BEDROCK NEC	
Convertise and subtroutibed. Convertise and subtroutibed	
WELL INSTALLATION DETAILS LIMESTONE BEDROCK NEC WELL INSTALLATION DETAILS LEGEND GENER SNOT WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND School Compare Filmpack filme Mile Collague Filmpack filme SAMPLE TYPE DETAILS Sample Sample County	
WELL INSTALLATION DETAILS LIMESTONE BEDROCK NEC WELL INSTALLATION DETAILS LEGEND GENER WELL INSTALLATION DETAILS LEGEND GENER WELL INSTALLATION DETAILS LEGEND GENER WELL INSTALLATION DETAILS LEGEND MEC WELL INSTALLATION DETAILS LEGEND GENER WELL INSTALLATION DETAILS LEGEND MEC WELL INSTALLATION DETAILS Nexternation MEC WELL INSTALLATION DETAILS Immac MEC WELL INSTALLATION DETAILS Immac MEC	3
(6.80) (6.80) (6.80) (6.80) (6.40) (6.40) (6.40) (6.40) (6.40) (6.40) (6.40) (6.40) (6.40) EOH @ 14.0 m bgl (6.40) EOH @ 14.0 m bgl WELL INSTALLATION DETAILS LEGEND Connect seal riser If Film pack riser Meter Collague Film pack riser SAMPLE TYPE DETAILS Tamac	
WELL INSTALLATION DETAILS LIMESTONE BEDROCK NEC WELL INSTALLATION DETAILS EOH @ 14.0 m bgl WELL INSTALLATION DETAILS LEGEND REMARK REMARK Method face Pitter pack face Bendudas and face Pitter pack face Method face Pitter pack face SAMPLE TYPE DETAILS Tamalo	
WELL INSTALLATION DETAILS LIMESTONE BEDROCK NEC WELL INSTALLATION DETAILS EOH @ 14.0 m bgl WELL INSTALLATION DETAILS LEGEND Bentoritie and new IP Filter pack new Image: Consert Seal filter IP Filter pack streen SAMPLE TYPE DETAILS Tamala	
WELL INSTALLATION DETAILS LEGEND REC WELL INSTALLATION DETAILS LEGEND REMAR Microard seal frame Priar pack frame Tamada Microard seal frame Priar pack screen SAMPLE TYPE DETAILS	
WELL INSTALLATION DETAILS LEGEND REMAP WELL INSTALLATION DETAILS Tamac Plan pack frage Bendente seal frage Plan pack frage Tamac Bendente seal frage Plan pack frage Tamac Bendente seal frage Plan pack frage NEC - No evide Content seal frage Plan pack frage Tamac Bendente seal frage Plan pack frage Tamac SAMPLE TYPE DETAILS Lineatone NEC - No evide	
WELL INSTALLATION DETAILS LIMESTONE BEDROCK NEC WELL INSTALLATION DETAILS EOH @ 14.0 m bgl Image: Sample is and name If Fill pack name Image: Sample is and name If Fill pack screen Image: Sample is and name If Fill pack screen Image: Sample is and name If Fill pack screen Image: Sample is and name Image: ShyClayery Drawnly Image: Sample is and name Image: ShyClayery Drawnly Image: Sample is and name Image: ShyClayery Drawnly	
WELL INSTALLATION DETAILS LEGEND Filler pack fore Methods seal fore Filler pack fore SMMPLE TYPE DETAILS	
Image: Source of the set of	
WELL INSTALLATION DETAILS LIMESTONE BEDROCK NEC WELL INSTALLATION DETAILS LEGEND GENEFICATION DETAILS WELL INSTALLATION DETAILS LEGEND Fill (made ground) Mic Content seal rise IF Filler pack rise StavDit Clavely Clavely Mic Collapse StavDit Clavely Clavely It mestore Mic Collapse SAMPLE TYPE DETAILS NEC - No evide Contamination	
WELL INSTALLATION DETAILS LIMESTONE BEDROCK NEC WELL INSTALLATION DETAILS LEGEND GENEF Bendonite seal riser IFiler pack riser StavDir Stavely Dravely It meation Mic Content seal riser IFiler pack riser StavDir Stavely Dravely It meation Mic Content seal riser IFiler pack riser StavDir Dravely It meation Mic Content seal riser IFiler pack riser StavDir Dravely It meation SAMPLE TYPE DETAILS Limestone NEC - No evide Contamination	
WELL INSTALLATION DETAILS LEGEND REC WELL INSTALLATION DETAILS LEGEND GENEF Bentorite seal riser Filter pack itser SMND Filt (made ground) Mice Collapse Filter pack itser SMND Limestone	
WELL INSTALLATION DETAILS LIMESTONE BEDROCK NEC WELL INSTALLATION DETAILS EOH @ 14.0 m bgl Imesione WELL INSTALLATION DETAILS LEGEND GENEFREMAR Microsofte seal riser Filer pack riser SBM/Clayory Gravely Imesione Microsofte seal riser Filer pack screen SBM/Clayory Gravely Imesione NEC - No evide Contamination Microsofte SAMPLE TYPE DETAILS SAMPLE TYPE DETAILS Imesione NEC - No evide Contamination	
WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND Well INSTALLATION DETAILS LEGEND Well INSTALLATION DETAILS LEGEND Well INSTALLATION DETAILS LEGEND Well INSTALLATION DETAILS LEGEND Well INSTALLATION DETAILS LEGEND Well INSTALLATION DETAILS Legend Well INSTALLATION DETAILS Legend Well INSTALLATION DETAILS Legend Well INSTALLATION DETAILS Legend Well INSTALLATION DETAILS Legend Well INSTALLATION DETAILS Legend Well INSTALLATION DETAILS Medication	
Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate Image: Source Stand Integrate <td< td=""><td></td></td<>	
WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND Methods seal riser Filter pack riser Bendonite seal riser Filter pack riser Methods seal riser Filter pack riser Methods seal riser Filter pack riser Methods seal riser Filter pack riser Methods seal riser Filter pack riser Methods seal riser Filter pack riser Methods seal riser Filter pack riser SAMPLE TYPE DETAILS Sample Type DETAILS	
WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND Methods as all face Filter pack frace Image: StayClaywy Grawsity Fill (made ground) Methods as all face Filter pack screen Image: StayClaywy Grawsity Limestone Methods as all face Filter pack screen Image: StayClaywy Grawsity Limestone	
WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND Generit teal iteer Pilar pack iteer Bentonite seal iteer Pilar pack iteer Bentonite seal iteer Fil (made ground) Hele Collapse SBN/Clayey Graveity SAMPLE TYPE DETAILS Limestone	
WELL INSTALLATION DETAILS EOH @ 14.0 m bgl WELL INSTALLATION DETAILS LEGEND Generat seal riser Filer pack riser Bentoritie seal riser Filer pack riser Hole Collapse Stat/Clayey Gravelly SAMPLE TYPE DETAILS Legend	
WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND Image: Center t seal riser Filter pack riser Image: Center t seal riser Filter pack screen	
WELL INSTALLATION DETAILS LEGEND GENER Image: Source of the seal face Filter pack screen Sity/Clayed Gravely Fil (made ground) Image: State of the seal face Filter pack screen Sity/Clayed Gravely Limestone Image: State of the seal face Filter pack screen Sity/Clayed Gravely Limestone SAMPLE TYPE DETAILS Image: State of the seal face Sity/Clayed Gravely Image: Sity/Clayed Gravely	
WELL INSTALLATION DETAILS LEGEND GENER Image: Same seal riser Filter pack screen Filter pack screen Image: Same seal riser Filter pack screen Sitty/Clayog Gravelly Limestone Image: Same seal riser Filter pack screen Sitty/Clayog Gravelly Limestone Image: Same seal riser Filter pack screen Sitty/Clayog Gravelly Limestone Image: Same seal riser Filter pack screen Sitty/Clayog Gravelly Limestone	- 4
WELL INSTALLATION DETAILS LEGEND WELL INSTALLATION DETAILS LEGEND Generit seal riser Filter pack riser Bentonite seal riser Filter pack screen Hole Cotiapse SithyClayey Bravelly SAMPLE TYPE DETAILS Limestone	
WELL INSTALLATION DETAILS LEGEND GENEF Image: Certent seal riser Filer pack riser Tarmac Fil (made ground) Image: Certent seal riser Filer pack riser Sity/Cayey GraveBy Limestone Image: Collapse Filer pack screen Sity/Cayey GraveBy Limestone SAMPLE TYPE DETAILS Sity/Cayey GraveBy Limestone NEC - No evide Contamination EOH - End of H m bgl - metres to the term of the m bgl - metres to the term of the m bgl - metres to the term of the m bgl - metres to the term of the m bgl - metres to the term of the m bgl - metres to the term of the m bgl - metres to the term of the m bgl - metres to the term of the m bgl - metres to the term of the m bgl - metres to the term of the m bgl - metres to the term of the m bgl - metres to the term of the term of term of the term of term	
WELL INSTALLATION DETAILS LEGEND GENER Image: Comment seal riser Filter pack riser Image: Comment seal riser GENER Image: Comment seal riser Filter pack screen Sitty/Clayoy GraveBy Image: Comment seal riser Image: Comment seal riser Filter pack screen Sitty/Clayoy GraveBy Image: Comment seal riser Image: Comment seal riser Filter pack screen Sitty/Clayoy GraveBy Image: Comment seal riser Image: Collapse SAMPLE TYPE DETAILS Image: Collapse Image: Collapse	
WELL INSTALLATION DETAILS LEGEND GENER Image: Comment seal riser Filter pack riser Image: Comment seal riser Filter pack riser Image: Comment seal riser Filter pack screen Sitty/Clayve Gravelly Filter pack screen Image: Contamination EOH - End of H Sample Type DETAILS Image: Contamination EOH - End of H	
WELL INSTALLATION DETAILS LEGEND GENER Image: Content seal riser Image: Fill (made ground) REMAR Image: Bentonite seal riser Image: Fill (made ground) NEC - No evide (Contamination EOH - End of H m bgl - metres) Image: Stample Type DETAILS Sample Type DETAILS Image: Fill (made ground)	
WELL INSTALLATION DETAILS LEGEND GENER Image: Comment seal riser REMAR Image: Comment seal riser Image: Comment seal riser Image: Comment seal riser Image: Comment seal riser REMAR Image: Comment seal riser Image: Comment seal riser Image: Comment seal riser Image: Comment seal riser NEC - No evide Contamination EOH - End of H m bgl - metrices Image: Comment seal riser SAMPLE TYPE DETAILS Image: Comment seal riser Image: Comment seal riser	
WELL INSTALLATION DETAILS CENER GENER Image: Commit seal riser Image: Camerit seal riser Image: Camerit seal riser REMAR Image: Commit seal riser Image: Camerit seal riser Image: Camerit seal riser REMAR Image: Commit seal riser Image: Camerit seal riser Image: Camerit seal riser REMAR Image: Commit seal riser Image: Camerit seal riser Image: Camerit seal riser REMAR Image: Commit seal riser Image: Camerit seal riser Image: Camerit seal riser NEC - No evide Image: Commit seal riser Image: Camerit seal riser Image: Camerit seal riser NEC - No evide Image: Commit seal riser Image: Camerit seal riser Image: Camerit seal riser NEC - No evide Image: Commit seal riser Image: Camerit seal riser Image: Camerit seal riser NEC - No evide Image: Commit seal riser Image: Camerit seal riser Image: Camerit seal riser NEC - No evide Image: Commit seal riser SAMPLE TYPE DETAILS Image: Camerit seal riser NEC - No evide	DAL
Image: Same seal riser Image: Sity/Clayey Gravely Fill (made ground) Image: Sity/Clayey Gravely Image: Sity/Clayey Gravely Image: Sity/Clayey Gravely Image: Sity/Clayey Gravely Image: Sity/Clayey Gravely Image: Sity/Clayey Hole Collapse Sity/Clayey Gravely Image: Sity/Clayey Gravely Image: Sity/Clayey Gravely Image: Sity/Clayey Hole Collapse Sity/Clayey Gravely Image: Sity/Clayey Gravely Image: Sity/Clayey Gravely SAMPLE TYPE DETAILS Sity/Clayey Gravely Image: Sity/Clayey Gravely Image: Sity/Clayey Gravely Image: Sity/Clayey Gravely	RKS
Bentonite seal riser Hole Collapse SAMPLE TYPE DETAILS	longe of
EOH - End of H SAMPLE TYPE DETAILS	ience of
SAMPLE TYPE DETAILS	Hole
ground level	Delow
Vac Ex to 2.4 m	m bgl
Traundwater Table & Water Strise	
bgi = Below Ground Level	

UR	URS Ireland Limited 410/411 Q House, 76 Furze Road, Sandyford, Dublin 18, Ireland. Telephone: 01 2933213 Fax: 01 2933201 Project Name and Site Location Alkermes Targeted SI 2014					В	OREHO	LE LOG	6			
Project Nam	e and Site L	.ocation	45	2014		C	lient	Alk	00000		BOREHOLE	ENo
lob No	Alkennes	Targete Date	10 01	2014	G	Provind Le	avel (m)	Co-Ordir	lermes		MW12	S
47092	0672	Start Date	22-	09-14	-	ITOURINA CO.	aver find	GD Grosse	ISTRE ()			1000
Contractor	.012	Englisher	44	19-14	N	Method /	Plant Used	<u>.</u>			Sheet	
AQS	/ ADP					Di	isab Vaccu	m Tanker	/ Commachi	io Geo 205	1 of 1	
		Ê		T				STRAT/	Δ.			T
Depth BGL	Sample / 1 Details	fest a Old	Water	Legend	Depth (Thick ness	h k s)	Di	ESCRIPTIO	N		COMMENTS	Backfill
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 7.5 8.0					(8.10) 8.4	Beco	CRETE se brownish g e to coarse ar to firm brown D. Gravel is fi bles are subro ming less gra	rey sandy c nd subangu very gravel iunded to ro ivelly and le	obbley GRAVE	L. Gravel ed. (FILL) Ily silty led.	NEC	
WE	TI INST	ALLAT	TON	DETA	IIS		LI	EGEND			GENERAL	
Cer Ber Hoł	e Collapse		Filter (Filter (DETA sack riser pack screen			Conce SalvC SAND	ito layey Gravedy	Fil (made	(ground)	REMARKS NEC - No evidence Contamination EOH - End of Hole m bgl - metres belo ground level Vac Ex to 2.4 m bg	s of w
<u>.</u>	1						tgl = Belo	er Table wGround Level d By	EJ	Appr	roved By CF	

EXPLORATORY HOLE LDG 21/08/07 BH LDGS GPJ AGS3 ALLGDT 4/2/15

Alkermes Targeted SI 2014 Alkermes DOULTION Job No Job No Job No Date 22-09-14 Ground Level (m) Co-Ordinates () MW12 Alkermes Method / Plant Used Sthet Sthet MW12 Contractor Method / Plant Used Sthet Sthet Sthet Depth BOL Sample / Test Sthet Description CoMMENTS Depth BOL Sample / Test Sthet Description CoMMENTS Sthet Description COMMENTS Sthet Description Comments gravely and best doubled to suborget it t	Project Nam	Fax: e and Site	01 290	3320	1				ient				BOREHO	ENO
Job No But Base Base Base 22-09-14 Introduc 22-09-14 Ground Level (m) Co-Ordinates () MW12 Contractor Method / Plant Used Disab Vaccum Tanker / Commachio Geo 205 Sheet 1 of 1 Sheet Sheet Depth BGL Details Sample / Test Details Simple / Test Details Simple / Test Details Simple / Test Details NEC NEC 0.5 Sample / Test Details Simple / Test Details Simple / Test Details NEC NEC 0.5 Details Simple / Test Details Simple / Test Details NEC NEC 0.5 Details Details Simple / Test Details NEC NEC 0.5 Details Details Details NEC NEC 0.5 Details Details Details NEC NEC 0.5 Sim to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely coblex signified (PLL) Sin to imborne veg ravely cob	Project Nall	Alkerme	s Targ	gete	d SI	2014		0	Hern.	A	kermes		BURENU	LE NO
47092672 Barclass 22:09-14 Introduce 22:09-14 Sheet Sheet AQS / ADP Disab Vaccum Tanker / Commachio Geo 205 1 of 1 Depth BGL Sample / Test Details Sample / Test Sample / Test Details Sample / Test Sample Job No	NG BRANCH	Dat	e	20.0	0.44	Gr	ound Le	vel (m)	Co-Ord	inates ()		MW1	2d	
Contractor Method / Plant Used Sheet Depth BQL Siteb Vaccum Tanker / Commachio Geo 205 Depth BQL Depth BQL Sample / Test Siteb DESCRIPTION COMMENTS 05 Description DESCRIPTION COMMENTS 05 Description DESCRIPTION COMMENTS 05 Darte brownish gray sandy cobbley GRAVEL Grave NEC 10 Darte brownish gray sandy cobbley GRAVEL Grave NEC 10 Darte brownish gray sandy cobbley GRAVEL Grave NEC 10 Darte brownish gray sandy cobbley GRAVEL Grave NEC 10 Darte brownish gray sandy cobbley GRAVEL Grave NEC 10 Darte brownish gray sandy cobbley slightly	4709	2672	End I	Date Date	22-0	9-14								
Disab Vaccum Tanker / Commachio Geo 205 1 of 1 Depth BOL Sample / Test Details End Edge Status Depth Depth Bol Depth Depth Depth Bol DESCRIPTION COMMENTS 55 0	Contractor		222				Me	ethod / F	Nant Used	L.	vecente at		Sheet	
Depth BGL Sample / Test Details Bit Details Bit Depth BGL STRATA 55 Converted mession DESCRIPTION COMMENTS 55 Converted mession CONCRETE NEC 15 Converted mession Converted mession NEC 16 Converted mession Converted mession NEC 15 Converted mession Converted mession NEC 16 Converted mession Converted mession NEC 17 Converted mession Converted mession NEC 16 Converted mession Converted mession NEC 17 Converted mession Converted mession NEC 18 Converted mession Converted mession NEC 19 Converted mession Converted mession NEC 10 Converted mession Converted mession NEC 10 Fill pac	AQS	ADP						Dis	sab Vac	cum Tanke	r / Commachi	io Geo 205	i 1 of	1
Depth BGL Sample/Test Defails So E So E Depth (nkc) (ness) DESCRIPTION COMMENTS 0.5 10 10 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 11.5 10.0 10.0				(md				2		STRAT	A			
055 0.15 CONCRETE NEC 10 000 Dense bownish grey sandy cobbley (GRAVEL, Gravel is fine to coarse and submunded. (FLL) Soft to fim brown every gravely cobbley gintly sity SAND. Gravel is fine to coarse and submunded. Cobbles are subrunded to rounded. NEC 20 000 Becoming less gravely and less cobble? With depth. 215 000 000 255 000 000 256 000 000 255 000 000 256 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255 000 000 255	Depth BGL	Sample / Detai	/ Test is	PID (p	Wate	Legend	Depth Thick ness)			DESCRIPTI	ON		COMMENTS	In and in the
WELL INSTALLATION DETAILS LEGEND GENERAL Image: Concente seal riser Image: Fill (made ground) REMARKS Image: StatyClayery Gravely Image: Fill (made ground) NEC - No evidence SAMPLE TYPE DETAILS SAMPLE TYPE DETAILS Image: Fill (made ground)	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.5 6.0 6.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5				지않는 것은 것을 가지 않는지 않는지 않는지 않는지 않는지 않는지 않는지 않는지 않는지 않는		(8.10) (8.40) (3.60) 12.00	LIME EOH	CRETE e brownis to coarse o firm bro). Gravel les are su ming less	h grey sandy and subang wn very grave s fine to coar brounded to gravelly and BEDROCK	cobbley GRAVE ular to subround ally cobbley slight se and subround rounded. less cobbleY with	L. Gravel ed. (FILL) thy slity Jed. h depth.	NEC	
Cement seal riser Filter pack riser Filter pack riser Structure SAMPLE TYPE DETAILS	W	ELL INS	TALL	AT	ION	DETA	LS			LEGEND			GENER	AL
	E Gr	ment seal rise ritorite seal ris SAMPL	E TY	(PE	Filter p Filter p	ack itser ack screen			a a a	increte ty/Clayey Graveily MD	Fil (made	ground) e	REMAR NEC - No evider Contamination EOH - End of Ho m bgl - metres b ground level	IKS nce of ole elow
Groundwater Table togl = Below Ground Level Water Strike			0						⊈ Groun tg(=F	dwater Table Ielow Ground Leve	🖕 Water Strike		Vac Ex to 2.4 m	bgi

URS Ireland Limited

EXPLORATORY HOLE LOG ZIVER/7 BH LOGS GPJ AGSI, ALGUT 42H5

URS Ireland Limited 410/411 Q House, 76 Furze Road, Sandyford, Dublin 18, Ireland. Telephone: 01 2933213 Fax: 01 2933201

BOREHOLE LOG	
--------------	--

	Alkermes T	argeter	d SI 2014	1	Coent	Alkermes		BUREHULE	NO	
loh No	in an	late		Gr	(m) level (m)	Co-Ordinates ()		MW13s	;	
47000	670	art Date	10-09-14	Gre	and cave (m)	Co-Cituriates ()		1999		
47092	0/2 E	ind Date	18-09-14	8	thed / Direct Line 4	A1		0		
ontractor				Me	chod / mant Used	005	Sheet			
AQS	/ ADP				Disab Vacc	um Tanker / Commachio Ge	10 205	1 of 1	_	
	Sample / Tes	(mdo	10	D	-	STRATA	32			
epth BGL	Details	DID ()	E Leger	nd (Thick		DESCRIPTION		COMMENTS	and why	
~				× 0.05	TARMAC			NEC	N	
5			1	- 0.35	Dense grey brow	n sandy GRAVEL. Gravel is fine t		NEC /		
				4	EOH @ 8.0 m b	o dense brown very cobbley very ND with occasional boulders. Cob ubrounded. Gravel fine to coarse	bles and			
WE		LATI	ON DET	AILS	1	EGEND		GENERAL		
III Cen	ient soai riser	TT :	Filter pack dat	1	Tar	nac 🕅 El Imada emire	8	REMARKS		
E Bon	contes seal riser Collapse SAMPLE		Filter pack sor	een S	E Ground	IClayery Gravely		NEC - No evidence of Contamination EOH - End of Hole m bgl - metres below ground level Vac Ex to 2.4 m bgl	of	

U.	3

URS Ireland Limited 410/411 Q House, 76 Furze Road, Sandyford, Dublin 18, Ireland, Telephone: 01 2933213 Fax: 01 2933201

BOREHOLE LOG

Interfice Date of the set	Project Name	e and Site L Alkermes	ocation	d SI 2014		Client	Alk	ermes		BOREHOLE	No
Artogozórz Bartolas 10-09-14 Societation (n) Societation (n) Societation (n) AOS / ADP Method / Plant Used Disab Vaccum Tanker / Commachio Geo 205 1 of 1 Hepth BGL Sample / Test Good (n) STRATA COMMENTS Hepth BGL Sample / Test Good (n) Dense grey brown sandy GRAVEL. Gravel is fine to coarse and subargular. (FILL) NEC S Dense grey brown sandy GRAVEL. Gravel is fine to coarse and subargular. (FILL) NEC NEC S Dense grey brown sandy GRAVEL. Gravel is fine to coarse and subargular. (FILL) NEC Medium deb to subrounded. Gravel fine to coarse and subrounded. NEC S Sample / Test Good (n) S Sample / Test Sample / Test S Sample / Test Sample / Test S Sample / Test <td< td=""><td>lob No</td><td></td><td>Date</td><td></td><td>Grou</td><td>ind Level (m)</td><td>Co-Ordin</td><td>ates ()</td><td></td><td>MW13</td><td>d</td></td<>	lob No		Date		Grou	ind Level (m)	Co-Ordin	ates ()		MW13	d
Auge Descrite Descrite Sheet AQS / ADP Method / Plant Used Disab Vaccum Tanker / Commachio Geo 205 1 of 1 epth BOL Sample / Test Details G O Bol Sample / Test Details Descrite s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0 0 0 s 0 0 0 0	47000	672	Start Date	10-09-14	5.00	and the full	and Grain				
ACS / ADP Disab Vaccum Tanker / Commachio Geo 205 1 of 1 hepth BGL Sample / Test Details 0 0 0 0 0 0 0 0 0 STRATA COMMENTS is 0 0 0 0 0 0 0 is 0 0 0 0 0 0 0 0 is 0 0 0 0 0 0 0 0 is 0 0 0 0 0 0 0 0 is 0 0 0 0 0 0 0 0 is 0 0 0 0 0 0 0 0 is 0 0 0 0 0 0 0 0 is 0 0 0 0 0 0 0 0 is 0 0 0 0 0 0 0	Contractor		FUR MER	10-03-14	Meth	od / Plant Used	d.			Sheet	
Independent of the color of	AOS	ADP				Disab Vacci	m Tanker	/ Commachio Ger	0.205	1 of 1	
Bight BGL Sample / Text Big Big Depth is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is is	nao	/ HDI	2	8 8		01560 16000	CTDATA	Commissing Oct	0 200	101	TE.
Bolt Details C S Legend (Thick ness) DESCRIPTION COMMENTS 5 -0.3 ARMAC -0.3 ARMAC NEC NEC 6 -0.3 Medium dense to dense brown very cobbley very mobiles very gravelity sitis SAND with cocasinal builders. Cobbles are rounded to subnounded. Gravel fine to coarse and subnounded. NEC NEC 7 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 8 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 9 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 9 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 9 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 9 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 9 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 9 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 9 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 9 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 9 -0.3 -0.3 -0.3 -0.3<		Sample / 1	Test d	te	Denth		STRATA				8
Image: Second	epth BGL	Details	9	Legend	Thick	D	ESCRIPTION	N		COMMENTS	and hot
is 0.38 Dense grey brown sandy ORAVEL. Gravel is fine to Medium dense to dense brown very cobbley very gravely sity SAND with occasional boulders. Cobbles are rounded to subrounded. Gravel fine to coarse and subrounded. NEC is 0 is 0 <tr< td=""><td>. 8</td><td>2</td><td></td><td></td><td>0.05</td><td>TARMAC</td><td></td><td></td><td></td><td>NEC</td><td>H N</td></tr<>	. 8	2			0.05	TARMAC				NEC	H N
0 Coarse and subarguiar. (rLL) NEC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5			20(1)	0.35	Dense grey brow	n sandy GRA	VEL. Gravel is fine to		NEC	1
gravely sty SADD with occasional boulders. Coboles are rounded to subrounded. Gravel fine to coarse and subrounded.	.0					coarse and subat Medium dense to	dense brow) n verv cobblev verv		NEC	
10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			+ + + + + + + + + + + + + +	(7.85)	gravelly silty SAN are rounded to su subrounded.	D with occas	ional boulders. Cobbl ravel fine to coarse a	les ind		$= \frac{1}{2} \sum_{i=1}^{N} \frac{1}{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{$
	5 0 5 0 5 0				(4.40)	EOH @ 12.4 m b	gl			NEC	
				-						Vac Ex to 2.4 m bgl	E S
Groundwater Table J Water Strike J Selow Ground Level						Eroundw	eter Table ow Ground Level	t Water Strike			

APPENDIX B

Table 1 - Summary of Drilling and Well Installations at APIL and Arran Chemicals, Monksland, Athlone

Matrix Matrix<		_		_	_			_	_			_	_	_			_			_	_		_	-	_			
Image: black	Siltation	E	98	0.19	2.14	0.23	0.07	•	34.,	ð.	0.75	ŝ	2	ŝ	0.04	0.00	0.06	0.03	0.20	0.80	0.10	0.69	0.59	1.27	0.31	5.39		
Model Model <th< td=""><td>Screened Unit</td><td></td><td>Overburden</td><td>Probably Bedrock</td><td>Overburden</td><td>Overburden</td><td>Limestone bedrock</td><td>Overburden</td><td>Probably Overburden</td><td>Probably Bedrock</td><td>Overburden</td><td>Overburden</td><td>Probably Overburden</td><td>Probably Overburden</td><td>Overburden</td><td>Limestone bedrock</td><td>Overburden</td><td>Limestone bedrock</td><td>Limestone bedrock</td><td></td><td>Limestone bedrock</td><td></td><td>Limestone bedrock</td><td></td><td>Limestone bedrock</td><td>Angular limestone gravel (weathered bedrock)</td><td>well</td><td>well</td></th<>	Screened Unit		Overburden	Probably Bedrock	Overburden	Overburden	Limestone bedrock	Overburden	Probably Overburden	Probably Bedrock	Overburden	Overburden	Probably Overburden	Probably Overburden	Overburden	Limestone bedrock	Overburden	Limestone bedrock	Limestone bedrock		Limestone bedrock		Limestone bedrock		Limestone bedrock	Angular limestone gravel (weathered bedrock)	well	well
Model Model <th< td=""><td>Base of Screen Section</td><td>m bct</td><td>6.00</td><td>,</td><td>7.50</td><td>8.50</td><td>14.93</td><td>6.00</td><td>2</td><td>•</td><td>ut reported to I length</td><td>6.30</td><td>÷</td><td>ł.</td><td>3.96</td><td>10.93</td><td>5.00</td><td>14.47</td><td>10.00</td><td>7.50</td><td>13.40</td><td>7.41</td><td>11.41</td><td>6.53</td><td>11.69</td><td>12.00</td><td>s a monitoring</td><td>s a monitoring</td></th<>	Base of Screen Section	m bct	6.00	,	7.50	8.50	14.93	6.00	2	•	ut reported to I length	6.30	÷	ł.	3.96	10.93	5.00	14.47	10.00	7.50	13.40	7.41	11.41	6.53	11.69	12.00	s a monitoring	s a monitoring
	fop of Screen Section	m bct	3.00	5	3.00	3.50	11.93	3.00	a.	÷	Not recorded, b be 3 m ir	1.80	8	T	0.96	7.93	1.00	11.47	8.20	6.60	10.50	6.10	9.00	5.80	9.00	00'6	Not installed a	Not installed a
	fotal Depth Gauged ⁵	m bct	6.27	9.34	5.36	8.27	14.93		8.31	18.46	6.95	7.98	8.62	3.77	3.96	10.93	4.94	14.47	10.00	7.50	13.40	7.41	11.41	6.53	11.69	6.62	-	
Matrix Matrix<	Reported Depth Installed	m bgl	6.00	9.53	7.50	8.50	15.00	6.00		÷	7.70	6.30		ž	4.00	10.93	5.00	14.50	10.20	8.30	13.50	8.10	12.00	7.80	12.00	12.00	-	
Model Model <t< td=""><td>pth Drilled</td><td>Justification</td><td>Target depth</td><td></td><td>Target depth</td><td>Target depth</td><td>Target depth</td><td>Retusal (on boulders)</td><td></td><td></td><td>Refusal (on boulders)</td><td>Target depth</td><td>•5</td><td></td><td>Target depth</td><td>Target depth</td><td>Refusal</td><td>Target depth</td><td>Target depth</td></t<>	pth Drilled	Justification	Target depth		Target depth	Target depth	Target depth	Retusal (on boulders)			Refusal (on boulders)	Target depth	•5		Target depth	Target depth	Target depth	Target depth	Target depth	Target depth	Target depth	Target depth	Target depth	Target depth	Target depth	Refusal	Target depth	Target depth
Matrix Matrix	Total De	m bgl	6.50	-	8.40	8.50	15.00	6.40	24	. 1	7.70	i least 6.00	e	ĸ	4.00	11.10	5.00	14.50	11.00	8.60	14.00	8.40	12.00	8.00	12.40	12.00	4.00	3.00
	Depth to Competent Bedrock	m bgl	Vot proven		Not proven	Vot proven	9.80	Vot proven	а. С	-	Vot proven	Not proven at	8	x		8.50	a.	11.20	8.00	-			4			Vot proven	Vot proven	Vot proven
LowLowControlTextControl </td <td>ed Bedrock</td> <td>Description</td> <td></td> <td></td> <td>22</td> <td>÷</td> <td>r.</td> <td>4</td> <td>-</td> <td></td> <td>2</td> <td></td> <td>w</td> <td></td> <td>4</td> <td>Fine, angular greyish black limestone</td> <td>4</td> <td>ine, angular dark grey limestone</td> <td>Weathered, fractured limestone</td> <td></td> <td></td> <td>÷</td> <td>4</td> <td></td> <td>×.</td> <td>Loose, angular imestone gravel</td> <td></td> <td></td>	ed Bedrock	Description			22	÷	r.	4	-		2		w		4	Fine, angular greyish black limestone	4	ine, angular dark grey limestone	Weathered, fractured limestone			÷	4		×.	Loose, angular imestone gravel		
Local bias Imagination bias Imaginand bias Imagination bias	Weathere	Depth m bal	Not proven		Not proven	Not proven		Not proven	2		Not proven	Not proven		2	4.00	4.20	5.00	6.50 F	5.50	8.60	8.60	8.40	8.40	8.00	8.00	8.00	Not proven	Not proven
	rburden	Description	Clayey gravel with cobbles and boulders		Boulder clay	Made ground on sandy clay/silt ollowed by sandy gravel/gravelly sand.	Made ground on sandy clay/silt ollowed by sandy gravel.	Boulder clay		-	Boulder clay	Boulder clay	ŝ	•	Light brown sand	Light brown sand	-ight brown sandy silt	-ight brown sandy gravelly silt	Brown gravelly silty sand	Brown gravelly silty sand	Brown gravelly silty sand	Brown gravelly silty sand	Brown gravelly silty sand	Brown gravelly silty sand	Brown gravelly silty sand	Peat on alternating oft clay and loose sand	Peat on dense sand, soft clay, and terminating in dense, angular nravel	Peat on dense sand, dense gravel, and lerminating in soft clay
$ \left \begin{array}{ $	Ove	Thickness	>6.50	- 4 -	>8.4	10. 87	08.6	>6.4	<u>.</u>		2.7<	>6.3	R	÷	4.00	4.20	5.00	6.50	5.50	8.60	8.60	8.40	8.40	8.00	8.00	8.00	24.00	>3.00
Currents Currents Top of Viral Tasing Interval Currents Top of Viral Tasing Interval Card of Card Card Card Card Card Card Card Card	rdinates ⁴	Northing (m)	241073.108	241072.901	12	240917.178	240907.842	s	240873.815	240875.375	240885.840	240929.544	241017.173	241052.290	240949.684	240950.167	240995.240	240991.095	240970.587	241019.596	241020.597	240973.587	240971.586	240930.577	240932.578	240587.523	a.	ĸ
Control Functions Funcions Funcions F	Grid Co-Or	Easting (m)	201025.672	201028.494	53	201074.928	201078.603	94	200917.954	200918.026	200843.801	200797.804	200799.589	200758.004	200958.933	200956.408	200981.432	200981.691	200961.450	200798.414	200799.414	200803.415	200803.415	200805.416	200805.416	200493.886	×	ŝ
Image: control of the contr	wation	m OD ³	48.661	48.774	e)	44.698	44.675	3	45.809	45.798	44.289	44.356	45.987	46.616	45.500	45.580	46.650	46.580	46.566	45.923	46.039	45.377	45.235	44.360	44.384	39.072		
Leasibility Inclusion Inclusion Top of model MW1S Nonitoring well 1994 48.738 48.640 MW1S Nonitoring well 1994 48.802 - MW2D Monitoring well 1994 44.803 - MW2D Nonitoring well 1994 44.803 - MW2D Nonitoring well 1994 44.473 - MW2D Nonitoring well 1994 44.473 - MW2D Nonitoring well 1994 44.473 - MW1D Nonitoring well 1994 44.473 - MW1D Nonitoring well 1994 44.473 - MW1D Nonitoring well 2012 - - MW1D Nonitoring well 2012	ell Casing Ele	m OD ²	a)	48.372	44.630	2	æ	44,897	44,897 ⁶	13	44.897	44.417 and 44.447 ⁶	ţ.	2	÷	3	Q.		2	Ŧ	÷	÷	×.	4	3	Ŧ	H	R
Location Site Installation Ground MW1S Monitoring well 1994 48.738 MW2D Monitoring well 1994 48.738 MW2D Monitoring well 1994 44.800 MW2D Monitoring well 2011 44.803 MW2D Monitoring well 1994 44.800 MW2D Monitoring well 1994 44.300 MW2D Monitoring well 1994 44.300	Top of We	m op ¹	48.640	2	44,900	e	E)	45,165	8	-5	45,250	44,475	ţz	8		a				15					æ	*	-	
Location Site Function/Status Installation MW1S Monitoring well 1994 MW1S Monitoring well 1994 MW1S Monitoring well 1994 MW1S Monitoring well 1994 MW2D Monitoring well 2011 MW2D Monitoring well 1994 MW2D Monitoring well 1994 MW2 Monitoring well 2011 MW2 Monitoring well 1994 MW4 Monitoring well 2012 MW2 Monitoring well 2012 MW15 Monitoring well 2014 MW15 Monitoring well 2014 MW15 Monitoring well 2014 MW15 Monitoring well 2014 MW15 Monitoring well 2014 <td>Ground Elevation</td> <td>do m</td> <td>48.738</td> <td>48.802</td> <td>44.800</td> <td>44.815</td> <td>44.808</td> <td>44.920</td> <td>45.960</td> <td>45.953</td> <td>44.257</td> <td>44,423</td> <td>46.097</td> <td>46.890</td> <td></td> <td>×</td> <td>4</td> <td>×</td> <td>ĸ</td> <td>10</td> <td>•</td> <td>÷</td> <td></td> <td></td> <td>2</td> <td>37.629</td> <td>×</td> <td></td>	Ground Elevation	do m	48.738	48.802	44.800	44.815	44.808	44.920	45.960	45.953	44.257	44,423	46.097	46.890		×	4	×	ĸ	10	•	÷			2	37.629	×	
Location Stel Function/Status MW15 Monitoring well MW15 Monitoring well MW25 Monitoring well MW26 Monitoring well MW27 Monitoring well MW28 Monitoring well MW29 Monitoring well MW29 Monitoring well MW29 Monitoring well MW3 Monitoring well MW3 Monitoring well MW8 Monitoring well MW19 Monitoring well MW19 Monitoring well MW110 Monitoring well MW112 Monitoring well MW112 Monitoring well MW112 Monitoring well MW112 Monitoring well MW113 Monitoring well	Installation	Date	1994	Pre 2000	1994	2011	2011	1994	Sep/Nov-2003	Pre May-2003	1994	1994	Pre 2000	Pre 2000	2012	2012	2012	2012	2014	2014	2014	2014	2014	2014	2014	2009	2009	2009
Lecation Site MW15 MW15 MW15 MW15 MW15 MW15 MW15 MW15	Function/Status		Nonitoring well	Monitoring well	Monitoring well, decommissioned	Replacement monitoring well	Monitoring well	Monitoring well, replaced	Replacement monitoring well	Monitoring well	Nonitoring well	Monitoring well	Nonitoring well	Monitoring well	Monitoring well	Nonitoring well	Nonitoring well	Nonitoring well	Nonitoring well	Nonitoring well	Nonitoring well	Nonitoring well	Nonitoring well	Monitoring well	Nonitoring well	Nonitoring well	Borehole	Borehole
Location MW15 MW25 MW25 MW25 MW26 MW26 MW35 MW35 MW35 MW36 MW35 MW35 MW35 MW35 MW35 MW35 MW35 MW35	Site				_				_			_	_	_							btJ lei	noiten	netni i	emier	l9 sən	nexiA		
	Location		MW1S	MW1D	MW2	MW2S	MW2D		SWW	MW3D	MW4	MW5	MW6	7WW	MW8S	MW8D	S6WM	D6WM	MW10D	MW11S	MW11D	MW12S	MW12D	MW13S	MW13D	BH101	BH102	BH103

C:\UsersiKevin_FordelDesktopIURS'Proposals and JobsIAlkermes Athlone/Alkermes/Alkermes SI 2014 report/Tables.xis

Table 1 - Summary of Drilling and Well Installations at APIL and Arran Chemicals, Monksland, Athlone

Status	Installation	Ground	Top of V	/ell Casing E	levation	Grid Co-O	ordinates ⁴	ó	/erburden	Weath	ered Bedrock	Depth to Competent Bedrock	Total C	bepth Drilled	Reported Depth Installed	Total Depth Gauged ⁵	Top of Screen Section	Base of Screen Section	Screened Unit	Siltation
	Date	m OD	m OD [†]	m OD ²	m OD ³	Easting (m)	Northing (m)	Thickness m	Description	Depth m bgl	Description	m bgl	m bgl	Justification	m bgl	m bct	m bct	m bct		ε
1	2009	45.624	£9	10	46.121	200964.444	240855.119	8.50	Peat on dense sand at first then loose sand	Absent		8.50	10.00	Target depth	10.00	8.78	8.25	10.00	Limestone bedrock	1.23
· · · · ·	2009	40.544	St.	21	40,510	200611.090	240698.741	4.00	Loose sand on gravel and gravelly clay.	4.00	Loose angular gravel	4.50	7.50	Target depth	7.50	7.74	5.00	7.50	Limestone bedrock	8
	2009	43.927	5	a .	44.422	200845.221	240750.810	6.00	Sand on gravel, peat, stiff silt and soft clay.	6.00	Loose angular gravel	6.50	8.50	Target depth	8.50	7.01	6.00	8.50	Weathered and competent limestone bedrock	1.49
	2011	43.194	Z	œ.	43,397	200723.793	240731.299	7.20	Made ground on slightly gravelly, clayey sand, followed by sandy clavisiti.	7.20	Weathered, fractured limestone	Not proven	7.40	Target depth	7.40	7.64	4.64	7.64	Sandy/clay silt and top of weatehred limestone bedrock	
	2008			NR				5.40	-			5.40	5.40	Refusal			Not installed a	s a monitoring	well	
1	2008	,		NR				7.40		4		6.40	7.40	Refusal			Not installed a	s a monitoring	well	
1	2008			RN				6.30	+		æ	7.40	6.30	Refusal			Not installed a	s a monitoring	well	
	2008			RN		4	9	6.90				8.40	6.90	Refusal			Not installed a	s a monitoring	well	
	Jan-1995	51.772	s	52.085	52.227	200812.450	241106.695	e	ŝ	÷	E.	÷	e.		33.00	R		÷	Probably Bedrock	ŝ
_	e	51.572	25	Ð	51.857	200807.575	241105.119	10	R	÷				2	•				Probably Bedrock	•
	1999 ⁶	49.218	te.	75	49.379	201047.529	241116.007	10.00 ⁶	8 m of clay and 2 m of coarse gravel	2	-	10.00 ⁶	92.00 ⁶	t:	92.00 ⁶	5		ŝ	Probably Bedrock	i.
_	-	46.699	0.4%)	1410	47.010	201105.937	240988.236	:a2	4	чę			282		e.			•	Probably Bedrock	
-	15	47.044	<u>1</u>	18	÷	201108.667	240993.670	-	÷	K.	-5	e	e	10	÷	15		ŝ	Probably Bedrock	ŝ
۵.	re Apr-1997	ĸ	10	52.302	×	£	÷	÷	•	¥.	45	45	8	2		÷	æ	2	Probably Bedrock	÷
-	×	×	æ	<i>v</i>	,	ĩ	÷	×	×	3		÷	x		•	÷			Probably Bedrock	÷
1	're Mar-1997	45.809	*	45.972	45,647	200733.834	241044.373	•	•				8.20 ⁶		8.10 5	7.92	4.00 ⁶	8.20 6.7	Overburden, sand	0.28
۵.	re Mar-1997	44.971	2	44.965	45.013	200789.793	240973.693	×			×		7.65 6	3	7.65 5	7.59	4.35 ⁶	7.65 6	Overburden, sand	0.06
۵.	tre Mar-1997	45.395	199	45.412	45.394	200688.696	240920.339			Ŷ			7.00 6		7.00 ⁶	6.97	4.50 6	7.00 6	Overburden, sand and gravel	0.03
-	Pre Jul-1997	44.991	2	45.074	44.918	200720.834	240903.980	8.30 6	Sand and gravel	÷	a.	8.30 6	24.75 6	*	20.30	18.74	16.80 ⁶	24.75 6.7	Bedrock	9.01
sit.	Pre Jul-1997	44.994	3	45.034	44.933	200718.370	240903.659	8.30 6	Sand and gravel	3	4	٩.	11.50 ⁶	3	8.40 ⁵	7.20	4.80 6	8.60 6.7	Overburden, sand and gravel	1.40
-	Pre Jul-1997	45.059	5	45,103	45.061	200731.423	240981.142	9 ^{.30}	Sand and gravel	•	2	9.30 6	24.70 6	8	24.206	23.72	20.50 ⁶	24.70 6.7	Bedrock	0.98
ш.	re Oct-1997	43.866		43.970	43.436	200779.649	240842.962	7.35 6	Sand		1	7.35 6	30.70 6	•5	27.506	27.00	22.00 6	30.70 6.7	Bedrock	3.70
۵.	re Oct-1997	43.971	3	44.040	43.500	200785.182	240842.698	7.35 6	Sand	•	÷	7.35 6	11.00 6		11.00 ⁶	11.01	3.60 6	11.00 6	Overburden and bedrock	•
a	re Jan-1999	43.945		44.150	43.442	200790.292	240842.758	7.35 6	Sand			7.35 6	60.96 ⁶		58.80 ⁶	>30	51.80 ⁶	60.96 ^{6, 7}	Bedrock	•

Motes:
 Nerves:
 Terlocates will encommissioned and no longer in axistence, or superceded data.
 Nerves:
 Nerves:
 To or of well casing elvation reported by KT Cullen (1994). Environmental Site Assessment Phase II, report reference #532-Dec 1994.
 To or of well casing elvation reported by KT Cullen (1994). Environmental Site Assessment Phase II, report reference #532-Dec 1994.
 To or of well casing elvation reported by KT Cullen (1994). Environmental Site Assessment Phase II, report reference #532-Dec 1994.
 To or of well casing elvation reported by Winerex Environmental LG, 2004, Arran Chemical Company Ltd. 2004 Review of Hydrochemistry and Plume Migration, report reference 1099-342 (Final).
 Cali co-ordinates as measured realive to infair National Grid Fleterece, 01 September 2011.
 Cali co-ordinates as measured realive to infair National Grid Fleterece, 01 September 2011.
 Cali co-ordinates as measured realive to infair National Grid Fleterece, 01 September 2011.
 Reported by Minerex Environmental LLL (2011). Arran Chemical Company Ltd. 2011 Review of Hydrochemistry and Plume Migration, report reference 1099-558 (Final).
 Reported by Minerex Environmental LLL (2011). Arran Chemical Company Ltd. 2011 Review of Hydrochemistry and Plume Migration, report reference 1099-558 (Final).
 Reported by Minerex Environmental LLL (2011). Arran Chemical Company Ltd. 2011 Review of Hydrochemistry and Plume Migration, report reference 1099-558 (Final).
 Reported by Minerex Environmental LLL (2011). Arran Chemical Company Ltd. 2011 Review of Hydrochemistry and Plume Migration, report reference 1099-558 (Final).
 Reported by Minerex Environmental LLL (2011). Arran Chemical Company Ltd. 2011 Review of Hydrochemistry and Plume Migration, report reference 1099-558 (Final).

C:/Users/Kevin_Forde/Desktop/URS/Proposals and Jobs/Alkermes Athlone/Alkermes/Alkermes SI 2014 report/Tables/Tables.xls

APPENDIX C

APPENDIX D

SAMPLING D	AMW1		AMW2		AMW3		AMW4		AMW5		AMW6		AMW7		AMW8		
	Overburden		Overburden		Overburden		Bedrock		Overburden		Bedrock		Bedrock		Overburden		
Date of WL measurement	AMW1 mbtc	From 01/09/11 using URS maODM AMW1 maOD Malin	AMW2 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey maOD Malin	AMW3 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey maOD Malin	AMW4 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey maOD Malin	AMW5 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey maOD Malin	AMW6 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey maOD Malin	AMW7 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey maOD Malin	AMW8 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey maOD Malin	
		-				-							-		-		
04/02/2016			4.470	40.543	5.050	40.344							4.320	39.116	4.160	39.340	
26/05/2016	5.930	39.717	5.160	39.853	5.700	39.694	6.220	38.698	5.410	39.523	6.260	38.801	4.760	38.676	4.680	38.820	
22/09/2016	6.400	39.247	5.470	39.543	5.960	39.434	6.440	38.478	5.630	39.303	6.350	38.711	4.660	38.776	4.540	38.960	
03/05/2017			5.640	39.373	6.050	39.344	6.630	38.288	5.760	39.173	6.350	38.711	4.660	38.776	4.540	38.960	
00/09/2017			5.000	39.333	0.150 5.670	39.244	6.020	30.290 20 120	5.770	20 202							
27/02/2018	5 140	40 507	<u>3.430</u> 4 700	<u>39.303</u> 10.313	5.070	<u>39.724</u> 10 311	5 800	30.430	5.040	30,883	5 150	30 011	5 010	38 426	4 520	38.080	
17/05/2018	5 800	39 847	5 200	39 813	5.050	20 024	6 010	38 908	5 140	39.003	6 020	39.041	5 250	38 186	4.320	38 570	
28/08/2018	0.000	00.047	5.810	39.203	5.880	39.514	7,710	37.208	5.590	39.343	0.020	00.0+1	0.200	00.100	4.000	00.070	
15/11/2018			5.980	39.033	5.990	39.404	6.370	38.548	5.730	39.203							
15/11/2018	6.130	39.517	5.150	39.863	1		5.610	39.308	5.710	39.223	5.540	39.521	5.180	38.256	5.180	38.320	
27/02/2019	4.840	40.807	5.740	39.273			6.370	38.548	5.720	39.213	6.320	38.741	5.100	38.336	5.140	38.360	

SAMPLING D	AMW9		MW1a (d) MW1 (s)	MW2 (s)		MW2 (d)		MW3S		MW4	MW5		MW6		MW7
	Bedrock		Probably Lir	Overburden	Overburden		Overburden		Overburden		Overburden	Overburden		Probably Ov	erburden	Probably Ov
Date of WL measurement	AMW9 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey maOD Malin	MW1a (D-Deep) mbtc	MW1 (S-shallow) mbtc	MW2 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey TOC maOD Malin	MW2 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey TOC maOD Malin	MW3 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey TOC maOD Malin	MW4 mbtc	MW5 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey TOC maOD Malin	MW6 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey TOC maOD Malin	MW7 mbtc
											•					
04/02/2016	4.560	38.882														
26/05/2016	4.680	38.762														
22/09/2016	5.140	38.302														
)3/05/2017	5.140	38.302														
06/09/2017																
9/11/2017																
7/02/2018	6.050	37.392														
7/05/2018	4.240	39,202														
28/08/2018																
15/11/2018																
15/11/2018	6.400	37.042											1			
27/02/2019	5.140	38.302	Drv	Drv	5.782	38.916	5 755	38,920	6.611	39.198	Drv	4 967	39,389	6.442	39 545	Drv
SAMPLING D	BH101		BH104		BH105		BH107		MW8S		MW8D		MW9S	MW9D		
---------------------------	-------------	---	-------------	---	-------------	---	------------	---	------------------	-----------------------------	-----------------	-----------------------------	------------------	------------------------------	-----------------------------	
	Limestone E	Bedrock	Limestone E	Bedrock	Limestone B	edrock	Overburden		URS Data 29/01/1	15 (CG)	URS Data 29/01/	15 (CG)	URS Data 29/01/1	URS Data 29/01/ ⁻	15 (CG)	
Date of WL measurement	BH101 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey TOC maOD Malin	BH104 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey TOC maOD Malin	BH105 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey TOC maOD Malin	BH107 mbtc	From 1/9/11 using URS maODM (1099-655) URS Well Survey TOC maOD Malin	SWL (m bTOC)	TOC maOD Malin 45.500	SWL (m bTOC)	TOC maOD Malin 45.580	SWL (m bTOC)	SWL (m bTOC)	TOC maOD Malin 46.580	
04/02/2016																
26/05/2016					4.760	35.750										
22/09/2016																
03/05/2017																
06/09/2017					2.400	38.110									-	
09/11/2017					2.620	37.890										
27/02/2018					2.280	38.230									-	
17/05/2018					2.470	38.040									-	
28/08/2018			-	-	2./10	37.800									┨─────┤	
15/11/2018					2.740	37.770									ļ	
15/11/2018			-		2.640	37.870	4.820	38.577								
27/02/2019	0.235	38.837	7.232	38.889	2.580	37.930	4.621	38.776	3.871	41.629	6.692	38.888	Dry	7.693	38.887	

SAMPLING	DM	W10D		MW11S		MW11D		MW12S				MW13S		MW13D	
	UR	S Data 29/01/ [,]	15 (CG)	URS Data 29/01/	15 (CG)	URS Data 29/01/	15 (CG)							URS Data 29/01/	15 (CG)
	SW	/L (m bTOC)	TOC maOD Malin	SWL (m bTOC)	TOC maOD Malin	SWL (m bTOC)	TOC maOD Malin	SWL (m bTOC)	TOC maOD Malin	SWL (m bTOC)	TOC maOD Malin	SWL (m bTOC)	TOC maOD Malin	SWL (m bTOC)	TOC maOD Malin
			46.566		45.923		46.039		45.377		45.235		44.360		44.384
Date of WL measurement															
04/02/2016				1											
26/05/2016					1		1		1		1				
22/09/2016															
03/05/2017															
06/09/2017															
09/11/2017															
27/02/2018	_														
17/05/2018															
28/08/2018	_														
15/11/2018	_														
27/02/2019	7.6	66	38 900	6 270	39 653	6 471	39 568	6.037	39 340	5 952	39 283	5 958	38 402	5 282	39 102

APPENDIX E

Substances & categorisation		S.I. No.	Dutch	1 2009	AMW3												
		2016	Lev	veis	2016			2017				2018				1st Baseline Sampling	
													r.	1		Event	
Substance analysed (also known as)		Overall threshold	Target Levels	Interventi on													
		Values	(optimu m)	(action)													
(C. Minorov		(from			2016	2016	2016	2017	2017	2017	2017	2018	2018	2018	2018	2018	2018
Environmental	11-14-	Column test 1 to			5/02/	\$/05/	//60/3	2/02/	8/05/	/60//	8/11/	2/02/	102/	1/05/1	/05//	//90/(3/08/
Styrene	Units ua/l	column	6.00	300	05	1 26	1 22	22	03	5	<u> </u>	1 22	27	5	17	1	1 28
Ethanol	µg/l					500	500	500		500	500	500		500		500	500
Ethyl acetate	µg/i µg/i					500	500	500		500	3,900	500		11000		17339	10000
Chloroethane Methanol	µg/l µa/l					1 500	1 500	500		1 500	<u>1</u> 500	1 500		500		<u>1</u> 500	1 79670
Acetone	µg/l					500	500	500		500	500	500 500		34000 37000		23969 25591	17000
Tetrahydrofuran	µg/l		0.50	300		32,900	22,000	29,000	27,000	39,000	37,320	19200		37000		65996	76653
MTBE Benzene	µg/l µg/l	10.00 0.75				5,160	2,340	2,690	4,620	4,650	4,360	3410		19000		22900	26000 3.91
Ethylbenzene Xvlene o	µg/l		4.00	150		128	1	85	90	169	247 147	83.1 18.9		299		320	289 317
Xylene m/p	µg/l		0.20	70		46	156	265	328	804	924	316		1180		1070	1160
Toluene Sum of BTEX	µg/I µg/I	525.00	7.00 0.20	1000 70		316	1	14	18	16	1,920	706		21400		25000	34500
MIBK Chlorobenzene	µg/l ug/l		7.00	1000		12	1		8	10.2	14 1	5.94		18.4		2	16.8
Bromobenzene	µg/l					1	1		•	1	1.31	1		1.98		2.24	1.74
1,2-Dichloropropane 2,2-Dichloropropane	µg/I µg/I		0.80	80 20		1	1	1		1	1	1		1		1	1
1,3-Dichloropropane	µg/l ug/l		0.80	80 20		107	39	95	68	89	116	37.1		122		129	116
Bromochloromethane	µg/l		0.04	200	1	1	1			1	1	1		1		1	1
1,1,1-Trichloroethane 1,1,2-Trichloroethane	µg/I µg/I		0.01	20	1	-	I			1	1	1		1		1	1
1,1-Dichloroethane 1,2-Dichloroethane	µg/l µg/l	2.25	7.00	900 400	1	1	1	2		1	1	1		2.86		1	1
Dissolved ethane	mg/l		6.00	400	1							4		1			4
Dichloromethane	нул µg/l	15.00	0.01	1000	3	1	3	3	1	3	3	3		306		25.9	280
Dichlorodifluoromethane Dissolved methane	µg/l ma/l		0.01	20		1						1		1		1	1
Tetrachloroethene	µg/l	7.50	0.01	40	0.05	1	1		1	1	1	1		1		1	1
1,1-Dichloroethene	µg/l	7.50	0.01	10		1	1			1	1	1		1		1	1
cis-1,2-Dichloroethene Chloromethane	µg/l µg/l	0.38	0.01 0.01	20 20		1	1		1	1	1	1		1		1	1
2-Chlorotoluene	µg/l		0.01	20								1		1		1	1
trans-1,2-Dichloroethene	µg/l	0.38	0.01	20								1		1.71		1.43	1
Trichlorofluoromethane Dibromomethane	µg/l µg/l		0.01	20 20								1		1		1	1
1,2-Dibromoethane	µg/l ug/l		0.01	20								1		1		1	1
1,1,2,2-Tetrachloroethane	µg/l		0.01	20													
Bromodichioromethane Dibromochloromethane	µg/I µg/I		0.01	20								1		1		1	1
1,2-Dibromo-3-chloropropane	µg/l ug/l		0.01	20 20								1		1		1	1
4-Isopropyltoluene	µg/l		0.01	20								1		1		1	1
sec-Butylbenzene	µg/I µg/I		0.01	20								1		1		1	1
tert-Butylbenzene n-Butylbenzene	µg/l µa/l		0.01	20 20								1		1		1	1
1,2,3-Trichlorobenzene	µg/l		0.01	20								1		1		1	1
Bromoform	µg/i µg/i		0.01	20								1		1		1	1
Hexachlorobutadiene Naphthalene	µg/l µg/l		0.01 0.01	20 20				-				1		1		1	1
Chloroethene	µg/l	0.375	0.01	5		1	1			1	1	1		1 48		1	2 82
1, 3, 5-Trimethylbenzene	µg/l					1				1	1	1		1		1.2	1.11
cis-1, 3-Dichloropropene trans-1, 3-Dichloropropene	µg/I µg/I		0.01	20		1				1	1	1		1		1	1
1,1-Dichloropropene 1 2-Dichloropenzene	µg/l ug/l		0.01	20		1				1	1	1		1		1	1
1, 3-Dichlorobenzene	µg/l		0.01	20								1		1		1	1
n-Propylbenzene	µg/I		0.01	20								1		1		1	1
Isopropylbenzene Aluminium	μg/l μg/l	150.00				1		-		1	1.85	1		1.76		1.89	1.88
Ammonia Antimony	mg/l ug/l	0.065 - 0.1	75			11								10			
Arsenic	µg/l	7.50				14								15.8			
Barium Beryllium	µg/I µg/I					2/6								419			
Boron Cadmium	µg/l ua/l	750.00				2								46			
Calcium	mg/l					496								180			
Chloride	mg/l	24-187.50				409								452			
Chromium Cobalt	µg/l µg/l	37.50				2								1.03			
Copper	µg/l µS/cm @	1500.00	@25°C			2			2164	2320	2240		1273	0.3	2290		3490
Electrical conductivity (EC) (left)	µS/cm @	800 - 1875	@25°C			2464			2104	2320	2240		12/0	2377		3370	
Hydrogen ion concentration (field) Hydrogen ion concentration (lab)	pH units pH units					7		-	7.20	7.23	7.54	-	7.64	7.3	7.19	7.3	7.29
Iron	mg/l	7 50				0.1								1.62			
Manganese	μg/l					698								425			
Magnesium Mercury	mg/l µg/l	0.75				39								37 0.01			
Nickel Nitrate Nitrogen	µg/l ma/l	15.00				5								4.02			
Phosphate	mg/l	51.50												0.16			
Potassium Redox Potential (eH)	mV					13			-102.0	-91.5	-102.7		-128.1	7.58	-107.9		-127.3
Selenium Silver	µg/l ua/l					132								1			
Sodium Sulphate	mg/l	150				580								333			
Tin	µg/l	101.00				2								0.5			
Total alkalinity Zinc	mg/l µg/l	75.00				584 14								782			

Substances & categorisation		S.I. No.	Duto	h 2009					AMW3	AMW4								
		2016	Le	veis	2nd Baseline Sampling	1st post	2nd post		2019	2016		2017				2018		
					Event	sampling	sampling											
Substance analysed		Overall	Target	Interventi	i													
(also known as)		Values	(optimu	(action)														
		Range (from	m)		18	18	18	18	19	116	116	17	17	17	117	118	18	18
Minerex		Column			9/20	9/20	9/20	1/20	2/20	5/20	9/20	2/20	5/20	9/20	1/20	2/20	2/20	5/20
Environmental	Units	test 1 to			17/0	24/0	25/0	15/1	28/0	26/0	22/0	22/0	0/80	0/20	06/1	22/0	27/0	0/10
Styrene	µg/l	tanumn	6.00	300	1	1	1	1	1	1	1			1	1	1		1
Ethanol Acetonitrile	µg/i µg/i				500 19500	500 8690	30500	500 99145	37255	500	500	500		500	500	500		500
Ethyl acetate	µg/l				10000	0000	00000	100	500	000	000	500		000	000	000		000
Chloroethane Methonol	µg/l				4.93	500	500	478342	1	1	500	500		1	500	500		500
Acetone	µg/i				27700	21700	65400	134615	96895	500	500	500		500	500	500		500
Isopropanol	µg/l		0.50	200	38900	21500	61000	222821	48930	500	500	500	20000	500	500	500		500
MTBE	µg/i µg/i	10.00	0.50	300	20100	6360	17200	6960	6980	20000	2200	2330	3330	2530	1810	1850		24000
Benzene	µg/l	0.75	4.00	150	5.11	1.55	4.07	2.21	1.92	1	1	1	1	1	1	1		1.25
Ethylbenzene Xylene o	µg/I µg/I		0.20	70	357	122	350	111	131	1	1	1	4.72	1	1	1		1
Xylene m/p	µg/l	505.00	0.20	70	1290	487	1070	410	635	1	2	1	25.6	1	1.11	2.41		10.9
Sum of BTEX	µg/i µg/i	525.00	0.20	70	51700	20200	43500	97400	12400	1	1	1	1.01	1	1	1		
MIBK	µg/l		7.00	1000	1210	363	1240											
Chlorobenzene Bromobenzene	µg/l µg/l				20.5	5.5	13.5	3.71	5.35	1	1		2.36	1	1	1		1.08
1,2-Dichloropropane	µg/l		0.80	80	1	1	1	1	1	1	1	1		1	1	1		1
2,2-Dichloropropane	µg/i µg/i		0.01	20	156	56 1	152	1 187	56.3	24.4	26.6	28.5	32	27.7	29.1	16.6		33.5
1,2,3-Trichloropropane	µg/l		0.01	20	1	1	1	1	1	2	20.0	20.0	ŰĹ	21.1	20.1	1		1
Bromochloromethane	µg/l		0.01	300	1	1	1	1	1	1	1			1	1	1		1
1,1,2-Trichloroethane	µg/l		0.01	20	1	1	1	1	1							1		1
1,1-Dichloroethane	µg/l	2 25	7.00	900	1 97	1	1	1	1	1	1	1 / 0		1 20	1 50	1		1 77
Dissolved ethane	mg/l	2.20	1.00	400	1.07		2.1					1.40		1.39	1.30	1		1.//
Trichloromethane (Chloroform)	µg/l	15.00	6.00	400	1	1.02	1	1	1.27	1.00	1.00	-	1.00			1		1
Dichlorodifluoromethane	µg/i µg/i	15.00	0.01	20	126	1	1	180	3	1	3	3		3	3	3		1
Dissolved methane	mg/l	7.50	0.01	40				4.00		1.00	4.00		4.00					
Trichloroethene	µg/i µa/i	7.50	24.00	40 500	1	1	1	1.23	1	1.00	1.00		1.00	1	1	1		1
1,1-Dichloroethene	µg/l		0.01	10	1	,		1	1	1	1			1	1	1		1
cis-1,2-Dichloroethene Chloromethane	µg/l µg/l	0.38	0.01	20	1	537	1150	1	1	1	1		1.00	1	1	1		1
2-Chlorotoluene	µg/l		0.01	20	1	1	1	1	1							1		1
4-Chlorotoluene trans-1 2-Dichloroethene	µg/i µg/i	0.38	0.01	20	2.59	1	2.34	1.39	3.07							1		1
Trichlorofluoromethane	µg/l	0.00	0.01	20	1			1	1							1		1
Dibromomethane	µg/l		0.01	20	1	1	1	1	1							1		1
1,1,1,2-Tetrachloroethane	μg/i		0.01	20	1	1	1	1	•							1		1
1,1,2,2-Tetrachloroethane	µg/l		0.01	20	1	1	1	1	1							1		1
Dibromochloromethane	µg/i µg/i		0.01	20	1	1	1	1	1							1		1
1,2-Dibromo-3-chloropropane	µg/l		0.01	20	1	1	1	1	1							1		1
4-lsopropyltoluene	μg/i μg/i		0.01	20	1	1	1	1	1							1		1
Bromomethane	µg/l		0.01	20	1	4	4	1	1							1		1
sec-Butylbenzene tert-Butylbenzene	µg/I µa/I		0.01	20	1	1	1	1	1							1		1
n-Butylbenzene	µg/l		0.01	20	1	1	1	1	1							1		1
1,2,3-Trichlorobenzene 1.2.4-Trichlorobenzene	µg/l ua/l		0.01	20	1	1	1	1	1							1		1
Bromoform	µg/l		0.01	20	1	1	1	1	1							1		1
Hexachlorobutadiene Nanhthalene	µg/i µg/i		0.01	20	1	1	1	1	1							1		1
Chloroethene	µg/l	0.375	0.01	5	1			1	1	1	1					1		1
1, 2, 4-Trimethylbenzene	µg/l				4.18	1.73	5.75	5.48	1.32	1				1	1	1		1
cis-1, 3-Dichloropropene	µg/l				1	1	1	1	1	1				1	1	1		1
trans-1, 3-Dichloropropene	µg/i µg/i		0.01	20	1	1	1	1	1							1		1
1, 2-Dichlorobenzene	µg/l		0.01	20	1	1	1	1	1	1				1	1	1		1
1, 3-Dichlorobenzene	µg/l		0.01	20	1	1	1	1	1							1		1
n-Propylbenzene	µg/l		0.01	20	1	1	1	1	1							1		1
Isopropylbenzene	µg/l	150.00			2.74	1	2.21	1	1	1				1	1	1		1
Ammonia	mg/l	0.065 - 0.	175						2.6	13								3.4
Antimony	µg/l	7.50							26.3	4								1 26
Barium	μg/I	7.50	L						302	695								4.20
Beryllium	µg/l	750.00							0.1	2								0.1
Boron Cadmium	µg/i µg/l	3.75							44.5	2								0.08
Calcium	mg/l								219	50								58.9
Chemical Oxygen demand Chloride	mg/l	24-187.50							495	312								270
Chromium	µg/l	37.50							1	2								1
Cobalt Copper	µg/l µa/l	1500.00							0.3	3								0.626
Electrical conductivity (EC) (field)	µŠ/cm @	800 - 1875	@25°C					2970					1616	1418	1582		1227	1504
Electrical conductivity (EC) (lab)	pH units	800 - 1875	5@25°C		3830	1602	3300	6.85	2787	312			7.46	7.57	7.88		7.59	1425
Hydrogen ion concentration (lab)	pH units				0.0		6.8		6.7	7			7.40	1.01	7.00		,	8
Iron	mg/l	7.50	+		<u> </u>		<u> </u>		17.8	0.1]	0.019
Manganese	µg/l	1.00							739	2295								481
Magnesium	mg/l	0.75	-						17.2	28	-							17.8
Nickel	μg/I μg/I	15.00	1			<u> </u>			0.129	27								5.31
Nitrate Nitrogen	mg/l	37.50							0.05	0								0.045
Pnospnate Potassium	mg/l mg/l	+	<u> </u>	+	ł		1		0.16	14		-						0.16
Redox Potential (eH)	mV	1						-84.7				-109.8	-109.8	-61.3	93.2		-82	-119.5
Selenium Silver	μg/I μg/I	1	1	1					0.5	495								1
Sodium	mg/l	150							334	574								251
Sulphate Tin	mg/l µa/l	187.50	-	-					2.2	2	-							0.94
Total alkalinity	mg/l								845	348								391
ZINC	µg/I	75.00	1	1	1		L	1	2.93	52	1		L	L				36.9

Substances & categorisation		S.I. No.	Dutc	h 2009					AMW4	AMW5								
		2016	Le	veis						2016		2017				2018		
Substance analysed	1	Overall	Target	Interventi		1	ĺ					1				ĺ		
also known as)		threshold Values Range	Levels (optimu m)	on (action)														
((SMinerex		(from Column	,		5/2018	3/2018	1/2018	2/2019	5/2019	5/2016	0/2016	2/2017	5/2017	9/2017	1/2017	2/2018	2/2018	5/2018
Environmental	Units	test 1 to column			17/05	28/06	15/1	28/02	14/0	26/05	12/10	22/0	03/06	\$0/20	06/1	22/02	27/02	17/05
Styrene Ethanol	µg/l µg/l		6.00	300		1 500	1 500	1 500	1 500	1 500	500	500		500	1 500	1 500		1 500
Acetonitrile Ethyl acetate	µg/I µg/I					500	100	500	1	500	500	500		500	500	500		500
Methanol	µg/i µg/i					500	500	500	500	500	500	500		500	500	500		500
Acetone Isopropanol Tetrobudzefuren	µg/i µg/i		0.50	200		500	100	500	500	500	500	500	0200	500	500	500		500
Tetranyorofuran MTBE Bonzono	µg/i µg/i	10.00	0.50	300		3570	24443	3720	3580	7900	269	590	1460	22000	1610	2320		4010
Benzene Ethylbenzene	µg/i µg/i	0.75	4.00	150		1	1	1	1	1	1	30.3	62.4	1.8	1	13		42
Xylene o Xylene m/p	µg/i µg/i	505.00	0.20	70		1	1	1	1	1	1	74.4	24.5	47.6	25 50.7	18.5		147
Sum of BTEX	µg/l	525.00	0.20	70		1	1	I	1	-	I	40.5	3.00	-	140	97.0		2090
MIBA Chlorobenzene	µg/i µg/i		7.00	1000		1	1	1	1	1	1		3.02	1	1.18	1.13		2.08
Bromobenzene 1,2-Dichloropropane	µg/i µg/i		0.80	80		1	1	1 1	1	1	1	1		1	1	1		1
2,2-Dichloropropane	µg/i µg/i		0.80	80		34.7	28.8	1 28.7 1	32.6	1	6.5	15.7	22.9	25.3	13.1	12		20.9
Bromochloromethane	µg/i µg/i		0.01	20		1	1	1	1	1	1			1	1	1		1
1,1,1-1 richloroethane 1,1,2-Trichloroethane	µg/i µg/i		0.01	20		1	1	1	1	1	1			1	1	1		1
1, I-Dichloroethane	µg/i µg/i	2.25	7.00	400		1	1.34	1	1.58	1	1	1		1	1	1		1
Dissolved ethane Trichloromethane (Chloroform)	mg/i µg/i	15.00	6.00	400		1	1	1	1	1	1.00		1			1		1
Dicnioromethane Dichlorodifluoromethane	µg/I µg/I	15.00	0.01	20		3	3	1	1	3	3	3		3	3	3		3.5
Dissolved methane Tetrachloroethene	mg/l µg/l	7.50	0.01	40		1	1	1	1	1	1.00		1	1	1	1		1
1,1-Dichloroethene	µg/I µg/I	7.50	24.00	10		1	1	1	1	1.78	1.43		4 70	1	1	1.1		1.84
Chloromethane	µg/I µg/I	0.38	0.01	20		1	1	1	1	1	1.28		1.73	1	1./2	1.11		4.64
2-Chlorotoluene 4-Chlorotoluene	µg/l µg/l		0.01	20		1	1	1	1							1		1
trans-1,2-Dichloroethene Trichlorofluoromethane	µg/l µg/l	0.38	0.01	20		1	1	1	1							1		1
Dibromomethane 1,2-Dibromoethane	µg/l µg/l		0.01	20		1	1	1 1	1							1		1
1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	μg/l μg/l		0.01	20		1	1	1	1							1		1
Bromodichioromethane Dibromochloromethane	µg/I µg/I		0.01	20		1	1	1	1							1		1
1,2-Dibromo-3-chloropropane Carbon Tetrachloride	μg/l μg/l		0.01	20		1	1	1	1							1		1
4-isopropyltoluene Bromomethane	µg/I µg/I		0.01	20		1	1	1	1							1		1
tert-Butylbenzene	µg/I µg/I		0.01	20		1	1	1	1							1		1
n-Butylbenzene 1,2,3-Trichlorobenzene	µg/I µg/I		0.01	20		1	1	1	1							1		1
1,2,4-Trichlorobenzene Bromoform	μg/l μg/l		0.01	20		1	1	1	1							1		1
Hexachlorobutadiene Naphthalene	μg/l μg/l	0.075	0.01	20		1	1	1	1							1		1
Chloroethene 1, 2, 4-Trimethylbenzene	μg/l μg/l	0.375	0.01	5		1	1	1	1	1	1			1	1	1		1.47
1, 3, 5-Trimethylbenzene cis-1, 3-Dichloropropene	μg/l μg/l					1	1	1	1	1				1	1	1		1
trans-1, 3-Dichloropropene 1,1-Dichloropropene	μg/l μg/l		0.01	20		1	1	1 1	1					_		1		1
1, 2-Dichlorobenzene 1, 3-Dichlorobenzene	μg/l μg/l		0.01	20		1	1	1 1	1	1				1	1	1		1
1, 4-Dichlorobenzene n-Propylbenzene	μg/l μg/l		0.01 0.01	20 20		1	1	1 1	1					_		1		1
sopropylbenzene Aluminium	µg/l µg/l	150.00				1	1	1 10	1	1 57				1	1	1		1
Ammonia Antimony	mg/l µg/l	0.065 - 0.1	75					4.4 1		4								1.5
Arsenic Barium	µg/l µg/l	7.50						4.77 417		238								10.3 269
Beryllium Boron	µg/l µg/l	750.00						0.1 13.2		2								0.1 40.8
Cadmium Calcium	µg/l mg/l	3.75						0.08 70.9		2 501								0.08 164
Chemical Oxygen demand Chloride	µg/l mg/l	24-187.50						158 297		132								196
Chromium Cobalt	µg/l µg/l	37.50						1 0.761		2								0.77
Copper Electrical conductivity (EC) (field)	μg/l μS/cm @	1500.00 800 - 1875	@25°C		1504	1406	1083	0.3		2			1224	1503	1462		1025	0.3
Electrical conductivity (EC) (lab) Hydrogen ion concentration (field)	µS/cm @ pH units	800 - 1875	@25°C		7.63	8.16	7.73	1749		1199			7.34	7.28	7.89		7.47	1397 7.4
Hydrogen ion concentration (lab) ron	pH units mg/l							7.3 0.019		7								7.4
Lead Manganese	µg/l µg/l	7.50						0.2 630		2 947								0.2
Magnesium Mercury	mg/l µg/l	0.75						19 0.01		26 1								20.5 0.01
Nickel Nitrate Nitrogen	µg/l mg/l	15.00 37.50						4.15 0.05		2								1.43 0.05
Phosphate Potassium	mg/l mg/l							0.16 4.56		13								0.16 6.51
Redox Potential (eH) Selenium	mV µg/l				-119.5	-113.6	-102.6	1		34			-95.4	-99.7	-110.4		-114.9	-125.6 1
Silver	µg/l mg/l	150						0.5 249		2 226								0.5 143
Sulphate Fin	mg/l µg/l	187.50						0.98		3								0.5
Fotal alkalinity Zinc	mg/l µg/l	75.00			<u> </u>			460 3.86		379								456

Substances & categorisation		S.I. No.	Dutc	h 2009				AMW5	AMW11						AMW11	Effluent		
		2016	Le	veis				2019	2019							2017		
Substance analysed	1	Overall	Target	Interventi		1	I			1	1	1	1	1	1		1	
(also known as)		threshold	Levels	on														
		Range	(opumu m)	(action)	8	80	6	6	6	6	6	6	6	6	6			
Minerex		Column			18/20	1/20	12/20	15/20	13/20	4/20	4/20	15/20	15/20	15/20	15/20	2017	-2017	-2017
Environmental	Units	test 1 to column			28/C	15/1	28/C	14/C	27/0	02/0	10/0	08/0	14/0	23/0	28/C	Jan	Feb	Mar
Styrene Ethanol	μg/l μg/l		6.00	300	1 500	1 500	1 500	1 500	500	500	500	500	1 500	500	500	1 849000	18 312000	13 577000
Acetonitrile Ethyl acetate	µg/l ug/l				500	10770 100	500 500	4100	48977	75840	96021	35686	30000	64768	38272	22000	21000	24000
Chloroethane Methanol	µg/l				1	1 14756	1 500	1 500	29449	23572	26098	500	1	500	500	2.000	1.000	1.000
Acetone	μg/l				500	3556	500	500	102045	146875	136864	28742	44000	85294	38020	149000	113000	93000
Tetrahydrofuran	µg/i	40.00	0.50	300	34865	34674	18935	20196	23329	35946	27204	37038	35060	29342	25282	73000	60000	00000
MIBE Benzene	μg/I μg/I	0.75			1.67	2.28	1	4070	1	2.92	1.81	0.5	2.32	11500	1.89	42000	70900	9100
Ethylbenzene Xylene o	µg/l µg/l		4.00 0.20	150 70	119	160 187	1 5080	44800 56900	51.4 111	126 207	89.5	121 212	175 290	101 173	116 207	20 46	9 1	24 40
Xylene m/p Toluene	µg/l µg/l	525.00	0.20	70 1000	508	646 14500	120 1	178 550	325 11800	629 24900	430 27900	0.5	824 28500	486	578 12900	64 35000	27 26700	76 22000
Sum of BTEX MIBK	µg/l		0.20	70 1000					7990	4870	2270	831		3350	1830			
Chlorobenzene	μg/l				3.47	4.51	1	1.59	1.46	3.12	1	3.53	4.53	2.48	3.38	1	1	1
1,2-Dichloropropane	µg/i		0.80	80	1	1	1	1					1			1	1	1
1,3-Dichloropropane	µg/i µg/i		0.80	80	31.5	36.4	11.6	13.6	40.3	53.2	52.2	38.4	31.8	22	25.1	58	10	13
1,2,3-Trichloropropane Bromochloromethane	μg/I μg/I		0.01	20	1	1	1 1	1					1 1			1	1	1
1,1,1-Trichloroethane 1,1,2-Trichloroethane	μg/l μg/l		0.01	300 20	1	1	1 1	1 1					1 1			1	1	1
1,1-Dichloroethane 1,2-Dichloroethane	µg/l µg/l	2.25	7.00 7.00	900 400	1	1	1 1	1 1					1			1	1	1
Dissolved ethane	mg/l		6.00	400	1	1	1	1					1			1	1	1
Dichloromethane	μg/l	15.00	0.01	1000	3	4.37	3	3	725	5100	2290	99.8	99.9	4410	529	1040	1620	1110
Dissolved methane	mg/l	7.50	0.01	20			1	1					1					
Trichloroethene	µg/I µg/I	7.50 7.50	0.01 24.00	40 500	1	1	1 1	1 1	1	1	1	1	1	1	1	1	1	1
1,1-Dichloroethene cis-1,2-Dichloroethene	μg/l μg/l	0.38	0.01 0.01	10 20	1	1	1	1 1					1 1			1	1	1
Chloromethane 2-Chlorotoluene	µg/l µg/l		0.01	20 20	1	1	1 1	1 1					1			4	4	5
4-Chlorotoluene	µg/l	0.38	0.01	20	1	1	1	1					1			1	1	1
Trichlorofloromethane	µg/l	0.00	0.01	20	1	1	1	1					1					
1,2-Dibromoethane	μg/I μg/I		0.01	20	1	1	1	1					1			1	1	1
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	μg/I μg/I		0.01	20	1	1	1	1					1			1	1	1
Bromodichloromethane Dibromochloromethane	μg/l μg/l		0.01 0.01	20 20	1	1	1 1	1 1					1 1					
1,2-Dibromo-3-chloropropane Carbon Tetrachloride	μg/i μg/i		0.01 0.01	20 20	1	1	1	1 1					1 1			1	1	1
4-Isopropyltoluene Bromomethane	µg/l µg/l		0.01	20 20	1	1	1	1					1			1	1	1
sec-Butylbenzene	µg/l		0.01	20	1	1	1	1					1			1	1	1
n-Butylbenzene	µg/l		0.01	20	1	1	1	1					1			. 1	. 1	1
1,2,3-Trichlorobenzene	µg/i µg/i		0.01	20	1	1	1	1					1					
Bromotorm Hexachlorobutadiene	μg/l μg/l		0.01	20 20	1	1	1 1	1					1 1			1	1	1
Naphthalene Chloroethene	μg/l μg/l	0.375	0.01	20 5	1	1	1 1	1 1					1 1			1	<u>1</u> 1	<u>1</u>
1, 2, 4-Trimethylbenzene 1, 3, 5-Trimethylbenzene	μg/i μg/i				1	1.2	1	1 1					2.13 1			1	1	1
cis-1, 3-Dichloropropene trans-1, 3-Dichloropropene	µg/l µg/l		0.01	20	1	1	1	1					1			1	1	1
1,1-Dichloropropene	µg/l		0.01	20	1	1	1	1					1			1	1	1
1, 3-Dichlorobenzene	µg/l		0.01	20	1	1	1	1 1					1				. 1	
n-Propylbenzene	µg/i µg/i		0.01	20	1	1	1	1					1			1	1	1
isopropylbenzene Aluminium	μg/I μg/I	150.00				1.24	10	1					1.0			1	1	1
Ammonia Antimony	mg/l µg/l	0.065 - 0.1	175				2											
Arsenic Barium	μg/l μg/l	7.50					16.1 83											
Beryllium Boron	µg/l µg/l	750.00					0.1 61											
Cadmium Calcium	µg/l ma/l	3.75					0.08											
Chemical Oxygen demand	µg/l	24 187 50					120											
Chronium	µg/l	37.50					1											
Cobalt Copper	μg/i μg/i	1500.00					0.3											
Electrical conductivity (EC) (field) Electrical conductivity (EC) (lab)	μS/cm @ μS/cm @	800 - 1875 800 - 1875	@25°C @25°C		1332	1341	1520											
Hydrogen ion concentration (field) Hydrogen ion concentration (lab)	pH units pH units				7.62	7.29	7.2											
lron Lead	mg/l µg/l	7.50					0.208											
Manganese Magnesium	µg/l ma/l						342 15.3											
Mercury Nickel	μg/l	0.75					0.01											
Nitrate Nitrogen	mg/l	37.50		1			0.05											
Potassium	mg/l mg/l			1			5.33											
Redox Potential (eH) Selenium	m∨ µg/l				-137.2	-118.1	1											
Silver	µg/l mg/l	150					0.5 171											
Sulphate Tin	mg/l µg/l	187.50		-			2 2.59	-										
Total alkalinity Zinc	mg/l ug/l	75.00		-			559 1.71							-				
	17 M	1. 0.00		1		1				1	1	1	1	1				

Substances & categorisation		S.I. No.	Dutc	h 2009			Effluent											
		2016	Le	iveis										2018				
Substance analysed also known as)		Overall threshold	Target Levels	Interventi on														
		Values Range	(optimu m)	(action)														~
(C Minerex		(from Column			-2017	y-2017	1-2017	-2017	g-2017	o-2017	-2017	-2017	-2017	1-2018	-2018	r-2018	2018	y-2018
Styrene	Units µg/l	column	6.00	300	14	е У 10	Jur 0	5	ny 1	as 4	8	2 2	<u>م</u> 11	Jar	Let L	<u>М</u> 8	1 1	в М 1
Ethanol Acetonitrile	μg/l μg/l				366000 27000	369000 38000	327000 47000	369000 20000	140000 62000	281000 86000	104000 59000	382000 82000	141000 53900	169000 57000	600000 66000	373000 63000	117000 80000	356000 70000
Ethyl acetate Chloroethane	μg/l μg/l				1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	3.000	1.000	1.000	1.000	1.000	1.000
vernanoi Acetone sopropanol	µg/i µg/i ug/i				144000	127000	207000	215000	386000	393000	182000	299000	179000	296000	230000	152000	158000	2144000 187000 279000
Tetrahydrofuran MTBE	µg/l µg/l	10.00	0.50	300	84000 49000	106000	84000 39000	91000 4000	69000 27000	104000	99000 213000	130000 428000	66000 674000	120000	50000	72000	68000 54000	88000 46000
Benzene Ethylbenzene	μg/l μg/l	0.75	4.00	150	8 17	11 1	13 1	9	1 29	1	1	1 28	1 18	1	1	4	1 22	1
Kylene o Kylene m/p	µg/l µg/l		0.20 0.20	70 70	23 41	5 6	3	25 41	75 101	9 10	4	58 87	40 65	6 10	1	2	41 67	14 21
Toluene Sum of BTEX	μg/l μg/l	525.00	7.00	1000 70	28500	30000	6300	4910	3350	6350	4000	11500	12000	14300	5780	8150	17700	10800
MIBK Chlorobenzene	µg/l µg/l		7.00	1000	1	1	1	1	1	1	1	1	1	0.1	0.1	0.1	0.1	0.1
1,2-Dichloropropane	µg/l µg/l		0.80	80	1	1	1	1	1	1	1	1	1	1	1	1	1	1
I,3-Dichloropropane I,2.3-Trichloropropane	μg/l μg/l		0.80	80 20	37 1	7	56 1	15 1	18 1	10 1	3	1	26 1	4	6	1	24	9 1
Bromochloromethane I,1,1-Trichloroethane	μg/i μg/i		0.01	300	1	1 1	1	1	1	1	1	1	1	15 1	1	1	1	1
I,1,2-Trichloroethane I,1-Dichloroethane	μg/l μg/l		0.01 7.00	20 900	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1,2-Dichloroethane	µg/l mg/l	2.25	7.00	400	1	1	1	1	1	1	1	1	1	1	1	1	1	1
i ricnioromethane (Chloroform) Dichloromethane	μg/i μg/i	15.00	6.00 0.01	400	1400	1 2680	1800	1 749	10 1350	1 896	1 319	1 2330	1090	1 3210	1 3120	46900	1 5050	1 2940
Dichlorodinuorometnane Dissolved methane	µg/i mg/i	7 50	0.01	40	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Frichloroethene	µg/l µg/l	7.50	24.00 0.01	500 10	1	1	1	1	1	1	1	1	1	1	1	1	1	1
cis-1,2-Dichloroethene	µg/l µg/l	0.38	0.01	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2-Chlorotoluene 1-Chlorotoluene	μg/l μg/l		0.01	20 20	1	1	1	1	1	1	<u>1</u>	1	1	3	1	1	1	1
trans-1,2-Dichloroethene Trichlorofluoromethane	µg/l µg/l	0.38	0.01 0.01	20 20	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Dibromomethane 1,2-Dibromoethane	μg/i μg/i		0.01 0.01	20 20	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	μg/l μg/l		0.01	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bromodichioromethane Dibromochloromethane 1 2-Dibromo-3-chloropropane	μg/i μg/i		0.01	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Carbon Tetrachloride 4-Isopropyltoluene	µg/l µg/l		0.01	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bromomethane sec-Butylbenzene	μg/l μg/l		0.01	20 20	1	1	1	1	1	1	1	1	1	1	1	1	1	1
tert-Butylbenzene n-Butylbenzene	µg/l µg/l		0.01 0.01	20 20	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	μg/l μg/l		0.01	20 20														
Bromotorm Hexachlorobutadiene	μg/l μg/l		0.01	20 20 20	1	1	1	1	1	1	1	4	5	10	4	4	1	1
Naphthalene Chloroethene 1. 2. 4-Trimethylbenzene	µg/l µg/l	0.375	0.01	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1, 3, 5-Trimethylbenzene cis-1, 3-Dichloropropene	µg/l µg/l				1	1	1	1	1	1	1	1	1	1	1	1	1	1
trans-1, 3-Dichloropropene 1,1-Dichloropropene	μg/l μg/l		0.01 0.01	20 20	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1, 2-Dichlorobenzene 1, 3-Dichlorobenzene	μg/l μg/l		0.01	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1, 4-Dichlorobenzene n-Propylbenzene	μg/l μg/l		0.01 0.01	20 20	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sopropylbenzene Aluminium	µg/l µg/l	150.00	75		1	1	1	1	1	1	1	1	1	1	1	1	1	1
Ammonia Antimony Arsenic	µg/l µg/l	7.50	175															
Barium Bervilium	µg/l µg/l	1.00																
Boron Cadmium	μg/l μg/l	750.00 3.75																
Calcium Chemical Oxygen demand	mg/l µg/l																	
Chloride Chromium	mg/l µg/l	24-187.50 37.50																
Cobalt Copper The strike Learning Strike (FC) (Strike)	µg/l µg/l µS/cm @	1500.00	@15°C															
Electrical conductivity (EC) (field) Electrical conductivity (EC) (lab)	µS/cm @ pH units	800 - 1875	@25°C															
Hydrogen ion concentration (lab)	pH units ma/l																	
_ead Manganese	µg/l µg/l	7.50																
Magnesium Mercury	mg/l µg/l	0.75																
Nickel Nitrate Nitrogen	µg/l mg/l	15.00 37.50																
Phosphate Potassium	mg/l mg/l		<u> </u>															
xeaox Potential (eH) Selenium Silvor	μg/l																	
Sodium Sodium Sulnhate	ng/l	150	<u> </u>															
Fin Fin Fotal alkalinity	µg/l ma/l	101.00	-															
Zinc	µg/l	75.00																

Substances & categorisation		S.I. No.	Dutcl	h 2009							Effluent	AMW2						
		366 of 2016	Le	vels								2016			2017			2018
Substance analysed	1	Overall	Target	Interventi					1		1			l				
(also known as)		threshold	Levels	on (action)														
		Range	m)	(action)								o	Q	Q	~	~	2	
((Minerey		(from Column			018	118	018	018	018	018	018	/201	/201	/201	/201	/201	/201	/201
Environmental	Unite	test 1 to			un-2	J⊢20	ug-2	ep-2	ct-21	ov-2	ec-2	1/02.	3/05,	2/09,	3/05,	60/2	7/11.	2/02,
Styrene	ua/l	column	6.00	300	۲ 1		<u> </u>	<u>ن</u> 1	0	<u>Ž</u>	<u> </u>	ò	1	1	ö	1	1	N 1
Ethanol	µg/l		0.00	000	370000	349000	308000	561000					500	500		500	500	500
Acetonitrile	µg/l				43000	84000	55000	104000					500	500		500	500	500
Chloroethane	µg/l				1.000	1.000	1.000	1.000	1.000	1.000	1.000		1	1		1	1	1
Methanol	µg/l				924000	1103000	1125000	1314000					500	500		500	500	500
sopropanol	μg/l				162000	232000	164000	454000					500	500		500	500	500
Tetrahydrofuran	µg/l	10.00	0.50	300	73000	65000	82000	111000					1	1	1	500	500	1
Benzene	µg/i	0.75			10000	23000	23000	1	1	1	1		1	1	1	1	1	1
Ethylbenzene	µg/l		4.00	150	3	12	6	3	1	1	1		1	1	1	1	1	1
Xylene m/p	μg/l		0.20	70	1	4	20	11					1	1	1	1	1	1
Toluene	µg/l	525.00	7.00	1000	12800	8330	12100	9370					1	1	1	1	1	1
MIBK	µg/i µg/i		7.00	1000	0.1	0.1	0.1	0.1	0.1	0.1	0.1							
Chlorobenzene	µg/l				1	1	1	1	1	1	1							1
Bromobenzene 1.2-Dichloropropane	µg/l µg/l		0.80	80	1	1	1	1	1	1	1					1	1	1
2,2-Dichloropropane	µg/l		0.01	20	1	1	1	1	1	1	1							1
וט-ט.ט.cnloropropane 1,2,3-Trichloropropane	µg/l µg/l	+	0.80	80 20	9	4	28	19	1	1	1		1	1	1	1	1	1
Bromochloromethane	µg/l		0.01	200	1	1	1	1	1	1	1		1	1		1	1	1
1,1,1-Trichloroethane 1.1.2-Trichloroethane	µg/l µa/l		0.01	300 20	1	1	1	1	1	1	1		1	1		1	1	1
1,1-Dichloroethane	µg/l		7.00	900	1	1	1	1	1	1	1		3	3		1	1	1
1,2-Dichloroethane Dissolved ethane	µg/l ma/l	2.25	7.00	400	1	1	1	1	1	1	1		1	1		1	1	1
Trichloromethane (Chloroform)	µg/l		6.00	400	1	2	1	1	1	1	1		1.00	1.00				1
Dichloromethane	µg/l ug/l	15.00	0.01	1000	28800	4	4010	2060				<u> </u>	3	3		4.07	3.00	3
Dissolved methane	mg/l		3.01															
Tetrachloroethene	µg/l	7.50	0.01	40	1	1	1	1	1	1	1	513	869	229	81.8	99.6	98.2	519
1,1-Dichloroethene	µg/l	1.30	0.01	10	1	1	1	1	1	1	1		1.00	1.00		1	1	1
cis-1,2-Dichloroethene	µg/l	0.38	0.01	20	1	1	1	1	1	1	1		1.00	1.00		1	1	1
2-Chlorotoluene	µg/i µg/i		0.01	20	4	0	1	1	1	1	1							1
4-Chlorotoluene	µg/l	0.00	0.01	20	1	1	1	1	1	1	1							1
rrans-1,2-Dichloroethene Trichlorofluoromethane	µg/I µg/I	0.38	0.01	20	1	1	1	1	1	1	1							1
Dibromomethane	µg/l		0.01	20														1
1,2-Dibromoethane 1.1.1.2-Tetrachloroethane	µg/l ug/l		0.01	20	1	1	1	1	1	1	1							1
1,1,2,2-Tetrachloroethane	µg/l																	
Bromodichloromethane Dibromochloromethane	µg/l ua/l		0.01	20														1
1,2-Dibromo-3-chloropropane	µg/l		0.01	20	1	1	1	1	1	1	1							1
Carbon Tetrachloride	µg/l		0.01	20	1	1	1	1	1	1	1							1
Bromomethane	µg/l		0.01	20														1
sec-Butylbenzene	µg/l		0.01	20	1	1	1	1	1	1	1							1
n-Butylbenzene	µg/l		0.01	20	1	1	1	1	1	1	1							. 1
1,2,3-Trichlorobenzene	µg/l		0.01	20														1
Bromoform	µg/l		0.01	20	1	1	1	2	1	1	1							1
Hexachlorobutadiene	µg/l		0.01	20	1	1	1	1	1	1	1							1
Chloroethene	µg/l	0.375	0.01	5	1	1	1	1	1	1	1		1.00	1.00				1
1, 2, 4-Trimethylbenzene	µg/l				1	1	1	1	1	1	1							1
cis-1, 3-Dichloropropene	µg/i				1	1	1	1	1	1	1							1
trans-1, 3-Dichloropropene	µg/l		0.01	20	1	1	1	1	1	1	1							1
1, 2-Dichlorobenzene	на		0.01	20	1	1	1	1	1	1	1							1
1, 3-Dichlorobenzene	µg/l		0.01	20	1	1	- 1	1	1	4	1							1
n-Propylbenzene	µg/i		0.01	20	1	1	1	1	1	1	1							1
sopropylbenzene	µg/l	150.00		1	1	1	1	1	1	1	1		11.0					1
Ammonia	mg/l	0.065 - 0.	175										0.0					
Antimony	µg/l	7 50											2.0					L
Barium	µg/l	1.50											37.0					
Beryllium	µg/l	750.00	-	-									2.0					<u> </u>
Cadmium	µg/i µg/i	3.75											2.0					
Calcium	mg/l		-	-									296.0					
Chemical Oxygen demand Chloride	mg/l	24-187.50											37.0					
Chromium	µg/l	37.50											3.0					
Cobalt Copper	µg/I µg/I	1500.00											2.0					
Electrical conductivity (EC) (field)	µŠ/cm @	800 - 1875	@25°C												889	857	946	
Electrical conductivity (EC) (lab) Hydrogen ion concentration (field)	pH units	800 - 1875	@25°C										708.0		7.58	7.71	7.22	
Hydrogen ion concentration (lab)	pH units												7.3					
iron Lead	mg/l µa/l	7.50											U.1 2.0					<u> </u>
Manganese	µg/l	1											2.0					1
Magnesium Mercury	mg/l µa/l	0.75											14.0					
Nickel	µg/l	15.00											2.0					
Nitrate Nitrogen	mg/l mg/l	37.50				<u> </u>						<u> </u>	1.2					<u> </u>
Potassium	mg/l												3.7					
Redox Potential (eH)	mV ua/l	+				⊢ T							17.0		17.7	48.1	24.5	
Silver	µg/l												2.0					
Sodium	mg/l	150				<u> </u>							38.0					<u> </u>
Tin	µg/l												9.0					
Total alkalinity Zinc	mg/l µg/l	75.00											243.0 18.0					

Substances & categorisation		S.I. No.	Dutcl	h 2009						AMW2	AMW7			AMW7	AMW8			AMW8
		2016	Le	veis					2019		2016		2018	2019	2016	2016	2018	2019
Substance analysed (also known as)		Overall threshold	Target	Interventi on														
		Values	(optimu	(action)														
		Range (from	m)		018	18	018	018	019	019	16	016	18	019	016	016	018	019
<u>Minerex</u>		Column			02/20)5/2(08/20	11/20	02/20	05/20	- Contraction	09/20	05/20	02/20)5 <i>1</i> 20	09/2 (05/20	02/20
Environmental	Units	column			27/0	17/0	28/(15/-	28/(14/(Jein	22/(17/0	28/(26/0	22/(17/0	28/(
Styrene Ethanol	µg/l	1	6.00	300		500	500	500	1 500	1 500	1	1	500	1 500	1	1	1	1 500
Acetonitrile	µg/l					500	500	500	500	500	500	500	500	500	500	500	500	500
Ethyl acetate	µg/l					1	1	100	500	1	1	1	1	500	1	1	1	500
Methanol	µg/l					500	500	500	500	500	500	500	500	500	500	500	500	500
Acetone	µg/l					500	500	170	500 500	500	500 500	500	500	500 500	500 500	500	500	500 500
Tetrahydrofuran	µg/l		0.50	300		41	1	1935	0.066	1	500	500	120	79	500	500	90	454
MTBE	µg/l	10.00				2.62	4.91	446	27.4	1.39	33	19	22.3	28.2	2	1	44.2	181
Ethylbenzene	µg/l	0.75	4.00	150		1	1	4.17	1	1	1	1	1	1	1	1	1	1
Xylene o	µg/l		0.20	70		1	1	6.87	1	1	1	1	1	1	1	1	1	1
Toluene	µg/i µg/i	525.00	7.00	1000		1	1	1270	1	1	1	1	1	1	1	1	1	1
Sum of BTEX	µg/l		0.20	70														
MIBK Chlorobenzene	µg/l µa/l		7.00	1000		1	1	1	1	1			1	1			1	1
Bromobenzene	µg/l					1	1	1	1	1			1	1			1	1
1,2-Dichloropropane 2.2-Dichloropropane	µg/l ua/l		0.80	80 20		1	1	1	1	1 1	1	2	1	1	1	1	1	1
1,3-Dichloropropane	µg/l		0.80	80		1	1	1.01	1	1	1	2	1.67	1.9	1	1	1	1
1,2,3-Trichloropropane Bromochloromethane	µg/l ug/l		0.01	20		1	1	1	1	1	1	1	1	1	1	1	1	1
1,1,1-Trichloroethane	µg/l	1	0.01	300		1	1	1	1	1	1	1	1	1	1	1	1	1
1,1,2- i richloroethane 1.1-Dichloroethane	µg/I µa/I		0.01 7.00	20 900		1	1	1	1	1	4	5	5.31	1 3.73	1	1	1	1
1,2-Dichloroethane	µg/l	2.25	7.00	400		1	1	1	1	1	1	1	1.34	1	1	1	1	1
Dissolved ethane Trichloromethane (Chloroform)	mg/l ug/l		6.00	400		1	1	1	1	1	1.00	1.00	1	1	2.33	2.23	1 96	1
Dichloromethane	µg/l	15.00	0.01	1000		21.3	3	3	3	3	3	3	3	3	3	4	84.1	3
Dichlorodifluoromethane	µg/l mg/l		0.01	20		1	1	1	1	1			1	1			1	1
Tetrachloroethene	µg/l	7.50	0.01	40		780	291	109	108	1	60	21	55.2	34.5	218	254	120	34.5
Trichloroethene	µg/l	7.50	24.00	500		1	1	1	13.2	1	3.9	3.3	6.53	5.18	1	1	3.64	3.23
cis-1,2-Dichloroethene	µg/l	0.38	0.01	20		1	1	1	1.5	1	32.70	89.50	92.2	55.8	8	3.98	13	58.8
Chloromethane	µg/l		0.01	20		1	1	1	1	1			1	1			1	1
4-Chlorotoluene	µg/l		0.01	20		1	1	1	1	1			1	1			1	1
trans-1,2-Dichloroethene	µg/l	0.38	0.01	20		1	1	1	1	1			1	1			1	1
Dibromomethane	µg/i µg/i		0.01	20		1	1	1	1	1			1	1			1	1
1,2-Dibromoethane	µg/l		0.01	20		1	1	1	1	1			1	1			1	1
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	µg/l µa/l		0.01	20		1	1	1	1	1			1	1			1	1
Bromodichloromethane	µg/l		0.01	20		1	1	1	1	1			1	1			1	1
Dibromochloromethane 1.2-Dibromo-3-chloropropane	µg/l ug/l		0.01	20		1	1	1	1	1			1	1			1	1
Carbon Tetrachloride	µg/l		0.01	20		1	1	1	1	1			1	1			. 1	1
4-Isopropyltoluene Bromomethane	µg/l ug/l		0.01	20		1	1	1	1	<u>1</u> 1			1	1			1	1
sec-Butylbenzene	µg/l		0.01	20		1	1	1	1	1			1	1			1	1
tert-Butylbenzene	µg/l ug/l		0.01	20		1	1	1	1	1			1	1			1	1
1,2,3-Trichlorobenzene	µg/l		0.01	20		1	1	1	1	1			1	1			. 1	1
1,2,4-Trichlorobenzene	µg/l		0.01	20		1	1	1	1	1		-	1	1			1	1
Hexachlorobutadiene	µg/l		0.01	20		1	1	1	1	1			1	1			1	1
Naphthalene Chloroothono	µg/l	0.375	0.01	20		1	1	1	1	1	1	2	1	1	1	1	1	1
1, 2, 4-Trimethylbenzene	µg/l	0.373	0.01	5		1	1	1	1	1	-	2	1	1		1	1	1
1, 3, 5-Trimethylbenzene	µg/l					1	1	1	1	1			1	1			1	1
trans-1, 3-Dichloropropene	µg/l		0.01	20		1	1	1	1	1			1	1			1	1
1,1-Dichloropropene	µg/l		0.01	20		1	1	1	1	1			1	1			1	1
1, 3-Dichlorobenzene	µg/l		0.01	20		1	1	1	1	1			1	1			1	1
1, 4-Dichlorobenzene	µg/l		0.01	20		1	1	1	1	1		-	1	1			1	1
Isopropylbenzene	μg/l		3.01			1	1	1	1	1			1	1			1	1
Aluminium Ammonia	µg/l mg/l	150.00	175			10			10		4.0	-	10	10	9.0		10	10
Antimony	µg/l	5.500 - 0.				1			1		2.0		1	1	2.0		1	1
Arsenic Barium	µg/l	7.50				0.5			0.624		3.0 213.0		1.67	2.19	2.0		0.5	1.59
Beryllium	µg/l					0.1			0.1		2.0		0.1	0.1	2.0		0.1	0.1
Boron Cadmium	µg/l	750.00				21.5			10		2.0	-	12.8	10	2.0		16.8	10
Calcium	mg/l	3.75				99.8			60.6		2.0 501.0		100	105	2.0 1504.0		109	95.1
Chemical Oxygen demand	µg/l	24 197 50				00			10		56.0		40	10	26.0		45	66
Chromium	µg/l	37.50				1.5			121		2.0		42	1	2.0		43	1
Cobalt	µg/l	1500.00				0.5			0.948		5.0		2.8	2.77	2.0		0.5	1.5
Electrical conductivity (EC) (field)	µS/cm @	800 - 1875	@25°C		811	855	866	700	0.5		2.0 792		761	0.5	2.0		777	0.515
Electrical conductivity (EC) (lab)	µS/cm @	800 - 1875	@25°C		0.1	852	7.0	7.76	922				704	774	775.0		717.5	873
Hydrogen ion concentration (field) Hydrogen ion concentration (lab)	pH units	1	<u> </u>	1	0.1	7.6	7.6	1.75	7.5		7.2	+	7.5	7.3	7.2		7.5	7.6
Iron	mg/l	7.50				0.019			0.019		0.1	_	0.019	0.0472	0.1		0.019	0.019
Leau Manganese	μg/I μg/I	1.50	-	1		0.2			132		2.0 2678.0	-	0.2	976	2.0		0.2	885
Magnesium	mg/l	0.75				9.06			7.66		33.0		18	18.1	24.0		12.8	12.5
mercury Nickel	µg/l µa/l	0.75				0.01			0.01 3.47		12.0		0.01	0.01 5.67	3.0		0.01	0.01
Nitrate Nitrogen	mg/l	37.50				1.4			0.26		0.3		0.13	0.05	2.7		2	0.05
Pnospnate Potassium	mg/l mg/l					0.16			U.16 2.28		2.6	+	0.16	U.16 1.04	5.7		0.16	U.16 2.69
Redox Potential (eH)	mV				-10.2	21.1	125.9	-76.9	4.50		17.5		-48.5	4			-2.6	4
Selenium Silver	μg/I μg/I			-		0.5			0.5		2.0		1	0.5	68.0 2.0		0.5	0.5
Sodium	mg/l	150				79			127		69.0		35.6	37.2	79.0		39.1	75.2
Suipnate Tin	mg/i µg/l	187.50		-		13			10 1		2.0		16	15	14.0 2.0		15	14
Total alkalinity	mg/l	75.05				288			264		281.0		307	328	299.0		301	324
LINC	μ9/1	/5.00	I	1	I	23.4			J./ I		27.0		23.5	3.04	o2.0		20.5	2.1

Substances & categorisation		S.I. No.	Dutc	h 2009	AMW9			AMW9	AMW1			AMW1	AMW6		AMW6	SW1	SW2	SW2
		2016	Le	VEIS	2016		2018	2019	2016		2018	2019	2018	2019		2018	2019	
				.		I				I					ı.			
Substance analysed (also known as)		Overall threshold	Levels	Interventi on														
		Values Range	(optimu m)	(action)				-							-		-	-
((Minorey		(from	,		2016	2016	2016	2016	2016	2016	2016	2016	2018	2016	2016	2018	2016	2016
Environmental	Units	test 1 to			6/05/	2/09/	7/05/	8/02/	6/05/	2/09/	7/05/	8/02/	7/05/	8/02/	0/05/	7/05/	6/02/	0/05/
Styrene	µg/i	column	6.00	300	<u>ຈັ</u>	1	÷– 1	N 1	N 1	2:	1	<u>ณี</u> 1	. –	<u>กั</u> 1	∓ 1	1	2	7
Ethanol Acetonitrile	µg/l µa/l				500 500	500 500	500 500	500 500	500 500		500 500	500 500	500 500	500 500	500 500	500 500	500	500 500
Ethyl acetate	µg/l				4	4		500	4			500		500	4		100	
Methanol	µg/i µg/i				500	500	500	500	500		500	500	500	500	500	500	500	500
Acetone Isopropanol	µg/l µa/l				500 500	500 500	500 500	500 500	500 500		500 500	500 500	500 500	500 500	500 500	500 500	500 100	500 500
Tetrahydrofuran	µg/l	10.00	0.50	300	500	500 1	10	4	500	1	1	1	1 60 1	1	1	20	26	1
Benzene	µg/l	0.75	4.00	450	4		1	1	1		1	1	1	1	1	1	0.5	1
Ethyldenzene Xylene o	µg/i µg/i		0.20	70	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1
Xylene m/p Toluene	µg/l µg/l	525.00	0.20 7.00	70 1000	1 1	1	1	1 1	1 1	1	1	1 1	1	1 1	1	1	2	1 1
Sum of BTEX	µg/l		0.20	70														
Chlorobenzene	µg/l		1.00	1000			1	1			1	1	1	1	1	1	2	1
Bromobenzene 1,2-Dichloropropane	µg/l µg/l		0.80	80	1	1	1	1 1	1	1	1	1 1	1	1 1	1 1	1	2	1
2,2-Dichloropropane 1.3-Dichloropropane	µg/i µa/i		0.01	20 80	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1
1,2,3-Trichloropropane	µg/l		0.01	20	1	1	1	1	1	1	1	1	1	1	1	1	3	1
1,1,1-Trichloroethane	µg/l		0.01	300	1	1	1	1	1	1	1	1	1	1	1	1	2	1
1,1,2-1 richloroethane	μg/I μg/I		0.01 7.00	20 900	1	1	1.23	1	1	1	1	1	1	1	1	1	2	1
1,2-Dichloroethane Dissolved ethane	µg/l ma/l	2.25	7.00	400			1	1	1	1	1	1	1	1	1	1	2	1
Trichloromethane (Chloroform)	µg/l	15.00	6.00	400	1	1	1	1	3.73	4.2	3.14	3.08	1	1	1	1	2	1
Dichlorodifluoromethane	µg/I µg/I	13.00	0.01	20	5	5	1	1	•	<u> </u>	1	1	1	1	1	0.89	5	1
Dissolved methane Tetrachloroethene	mg/l µg/l	7.50	0.01	40	28	5	81.3	37.9	1	1	1	1	1	1	1	21	3	1.46
Trichloroethene	µg/l	7.50	24.00	500 10	3.0 1	1.0	5.4	2.14	1	1	1	1	1	1	1	2.23	3	1
cis-1,2-Dichloroethene	µg/l	0.38	0.01	20	1.10	1.00	3.28	1.58	1	1	1	1	1	1	1	2.4	3	2.27
Chloromethane 2-Chlorotoluene	µg/l µg/l		0.01	20			1	1 1			1	1 1	1	1 1	1 1	1	3	1
4-Chlorotoluene trans-1,2-Dichloroethene	µg/l µg/l	0.38	0.01 0.01	20 20			1	1 1			1	1 1	1	1 1	1	1	3	1 1
Trichlorofluoromethane	µg/l ug/l		0.01	20			1	1			1	1	1	1	1	1	3	1
1,2-Dibromoethane	µg/l		0.01	20			1	1			1	1	1	1	1	1	2	1
1,1,2-Tetrachloroethane	µg/l		0.01	20				1				1		1	1		4	1
Bromodichloromethane Dibromochloromethane	µg/l µg/l		0.01 0.01	20 20			1	1 1			1	1 1	1	1 1	1 1	1	2	1 1
1,2-Dibromo-3-chloropropane Carbon Tetrachloride	µg/l µg/l		0.01	20 20			1	1 1			1	1 1	1	1 1	1	1	2	1 1
4-IsopropyItoluene Bromomethane	µg/l		0.01	20 20			1	1			1	1 1	1	1	1	1	3	1
sec-Butylbenzene	µg/l		0.01	20			1	1			1	1	1	1	1	1	3	1
n-Butylbenzene	µg/i µg/i		0.01	20			1	1			1	1	1	1	1	1	3	1
1,2,3- i richlorobenzene 1,2,4-Trichlorobenzene	µg/I µg/I		0.01	20			1	1			1	1 1	1	1	1 1	1	3	1
Bromoform Hexachlorobutadiene	µg/l µg/l		0.01	20 20			1	1 1			1	1 1	1	1 1	1	1	2	1 1
Naphthalene	µg/l	0.375	0.01	20	1	1	1	1		1	1	1	1	1	1	1	2	1
1, 2, 4-Trimethylbenzene	µg/l	0.070	0.01				1	1			1	1	1	1	1	1	3	1
1, 3, 5-Trimethylbenzene cis-1, 3-Dichloropropene	µg/l µg/l						1	1 1			1	1 1	1	1 1	1	1	3	1 1
trans-1, 3-Dichloropropene 1.1-Dichloropropene	µg/i µa/i		0.01	20 20			1	1			1	1 1	1	1	1	1	2	1
1, 2-Dichlorobenzene	µg/l		0.01	20			1	1			1	1	1	1	1	1	3	1
1, 4-Dichlorobenzene	µg/l		0.01	20			1	1			1	1	1	1	1	1	3	1
n-Propylbenzene Isopropylbenzene	µg/i µg/i		0.01	20			1	1			1	1	1	1	1	1	3	1
Aluminium Ammonia	µg/l mg/l	150.00 0.065 - 0.1	175		20.0 0.0		0.02	10 0.02	6 0		10 0.02	10 0.02	0.02	10 0.02		0.02		
Antimony Arsenic	μg/l μg/l	7.50			2.0 5.0		1	1 0.5	6 5		1 0.5	1 0.5	0.5	1 0.5		4		
Barium Beryllium	µg/l				20.0		138	12.4	43		167	40.5 0 1	141	16.5		45.4		
Boron	µg/l	750.00			2.0		10	10			30	10	18.9	10		333		
Calcium	mg/i	3.75			2.0 50.0		44.4	42.5	292		102	105	95.2	100		121		
Chemical Oxygen demand Chloride	µg/l mg/l	24-187.50			11.0		110	10 102	53		69	18 70	40	41 43		85		
Chromium Cobalt	µg/l µg/l	37.50			2.0		0.5	1 0.5	2		1 0.5	1 0.591	1	1 0.5		3		
Copper	µg/l µS/cm @	1500.00	@25°C		3.0		0.801	0.717	2		0.3	0.3	1.82	0.677		1	898	
Electrical conductivity (EC) (lab)	µS/cm @	800 - 1875	@25°C		265.0		600	626	507		982	1066	723	792		798	7.0	
Hydrogen ion concentration (field)	pH units				7.7		7.88	7.7	7.2		7.33	7.2	7.6	7.4		7.6	1.3	
Iron Lead	mg/l µg/l	7.50			0.1 2.0		0.019	0.019 0.2	0 2		0.019	0.019 0.27	0.019	0.019 0.2		0.0304 28.9		
Manganese Magnesium	µg/l mg/l		-	-	2.0 48.0		4.13 4.31	8.94 2.98	4 16.0		60.4 11.1	55.8 11.4	8.97 25.3	5.42 24.6		17.8		
Mercury	µg/l	0.75			1.0		0.01	0.01	1		0.01	0.01	0.01	0.01		0.02		
Nitrate Nitrogen	mg/l	37.50		1	0.7		0.52	0.05	-		1.3	0.28	1.6	0.17		1.3		
Potassium	mg/l				2.3		0.16	0.662	2.6		0.16	2.48	0.16	1.45		2.8		
Kedox Potential (eH) Selenium	mv µg/l				34.0		-15.2	1	17		213 1	1.13	39.3	1		1	162	
Silver Sodium	µg/l mg/l	150			2.0 16.0		0.5	0.5 80.3	2 159		0.5	0.5 124	0.5	0.5 38.7		67.2		
Sulphate Tin	mg/l µg/l	187.50			5.1		7.1	5.6	22 5		30	35	22	24		18		
Total alkalinity	mg/l	75.00		I	100.0		165	129	350		407	423	297	330		316		
	ro''	10.00	1	1	-+J.U		10.1	J.7J	14		22.2	7.00	20.2			5		

Substances & categorisation		S.I. No. 366 of	Dutc	h 2009 vels	SW3	MS1	MW2D	MW3D	MW8D	MW9D	MW10D	MW11S	MW11D	MW12S	MW12D	MW13S
		2016			2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019
Substance analysed	1	Overall	Target	Interventi												
(also known as)		threshold	Levels	on (action)												
		Range	m)	(action)	19	19	19	6	6	6	6	6	19	19	6	6
Minerex		Column			15/20	12/20	12/20	12/20	02/20	12/20	12/20	12/20	12/20	12/20	12/20	12/20
Environmental	Units	test 1 to column			10/0	26/0	, 26/0	26/0	27/0	26/0	27/0	27/0	27/0	27/0	27/0	27/0
Ethanol	µg/I µg/I		6.00	300	1 500	500	500	2 500	2 500	2 500	500	500	500	500	500	500
Acetonitrile Ethyl acetate	µg/l µg/l				500	100	100	100	100	100	100	100	100	100	100	100
Chloroethane Methanol	µg/l µg/l				1 500	3 500	3 500									
Acetone Isopropanol	µg/l µg/l				500 500	50 100	50 100									
Tetrahydrofuran MTRE	µg/l	10.00	0.50	300	1	0.2	0.1	0.1	0.1	0.4	0.1	0.1	0.1	18	61	0.1
Benzene Sthulbonzono	µg/l	0.75	4.00	150	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Xylene o	µg/l		0.20	70	1	1	1	1	1	1	1	1	1	1	1	1
Xylene m/p Toluene	µg/i µg/i	525.00	7.00	1000	1	5	5	5	5	5	5	5	5	5	5	5
Sum of BTEX MIBK	µg/l µg/l		0.20 7.00	70 1000												
Chlorobenzene Bromobenzene	µg/l µg/l				1 1	2	2	2	2	2	2	2	2	2	2	2
1,2-Dichloropropane 2.2-Dichloropropane	µg/l µg/l		0.80	80 20	1	2	2	2	2	2	2	2	2	2	2	2
1,3-Dichloropropane	µg/l		0.80	80 20	1	2	2	2	2	2	2	2	2	2	2	2
Bromochloromethane	µg/l		0.01	300	1	2	2	2	2	2	2	2	2	2	2	2
1,1,2-Trichloroethane	µg/l		0.01	20	1	2	2	2	2	2	2	2	2	2	2	2
1,1-Dichloroethane	µg/I µg/I	2.25	7.00	400	1	2	2	2	2	2	2	2	2	2	2	2
Dissolved ethane Trichloromethane (Chloroform)	mg/l µg/l		6.00	400	1	2	2	2	11	2	2	2	2	2	2	7
Dichloromethane Dichlorodifluoromethane	μg/l μg/l	15.00	0.01	1000 20	3 1	5	5	5	5	5	5	5	5	5	5	5
Dissolved methane Tetrachloroethene	mg/l µg/l	7.50	0.01	40	1	3	3	3	3	3	3	3	3	93	21	3
Trichloroethene	µg/l	7.50	24.00 0.01	500 10	1	3	3	7	3	3	6	3	3	7	18	3
cis-1,2-Dichloroethene	µg/l	0.38	0.01	20	1	3	3	62	3	3	6	3	3	3	3	3
2-Chlorotoluene	µg/l		0.01	20	1 1	3	3	3	3	3	3	3	3	3	3	3
trans-1,2-Dichloroethene	µg/l	0.38	0.01	20	1	3	3	3	3	3	3	3	3	3	3	3
Dibromomethane	µg/i µg/i		0.01	20	1	3	3	3	3	3	3	3	3	3	3	3
1,2-Dibromoethane 1,1,1,2-Tetrachloroethane	μg/l μg/l		0.01	20 20	1	2	2	2	2	2	2	2	2	2	2	2
1,1,2,2-Tetrachloroethane Bromodichloromethane	μg/l μg/l		0.01	20	1 1	2	4	4	4	4	4	4	4	4	4	4
Dibromochloromethane 1,2-Dibromo-3-chloropropane	µg/l µg/l		0.01 0.01	20 20	1 1	2	2	2	2	2	2	2	2	2	2	2
Carbon Tetrachloride 4-Isopropyltoluene	µg/l µg/l		0.01	20 20	1	2	2	2	2	2	2	2	2	2	2	2
Bromomethane sec-Butylbenzene	µg/l µg/l		0.01	20 20	1	1	1	1	1	1	1	1	1	1	1	1
tert-Butylbenzene	µg/l		0.01	20	1	3	3	3	3	3	3	3	3	3	3	3
1,2,3-Trichlorobenzene	µg/l		0.01	20	1 1	3	3	3	3	3	3	3	3	3	3	3
Bromoform	µg/l		0.01	20	1	2	2	2	2	2	2	2	2	2	2	2
Naphthalene	µg/i µg/i	0.075	0.01	20	1	2	2	2	2	2	2	2	2	2	2	2
Chloroethene 1, 2, 4-Trimethylbenzene	µg/I µg/I	0.375	0.01	5	1	3	3	3	0.1	0.1	0.4	3	3	3	3	3
1, 3, 5-Trimethylbenzene cis-1, 3-Dichloropropene	μg/l μg/l				1 1	2	2	3	3	3	3	2	2	2	2	2
trans-1, 3-Dichloropropene 1,1-Dichloropropene	μg/l μg/l		0.01	20 20	1 1	2	2	2	2	2	2	2	2	2	2	2
1, 2-Dichlorobenzene 1, 3-Dichlorobenzene	µg/l µg/l		0.01	20	1 1	3	3	3	3	3	3	3	3	3	3	3
1, 4-Dichlorobenzene n-Propylbenzene	µg/l µg/l		0.01 0.01	20 20	1	3	3	3	3	3	3	3	3	3	3	3
Isopropylbenzene Aluminium	µg/l µg/l	150.00			1	3	3	3	3	3	3	3	3	3	3	3
Ammonia Antimony	mg/l	0.065 - 0.1	175													
Arsenic Barium	µg/l	7.50														
Beryllium	μg/l	750.00														
Cadaium	µg/l	3.75														
Chemical Oxygen demand	µg/l	04 407 50														
Chloride Chromium	mg/l µg/l	24-187.50 37.50														
Cobalt Copper	μg/l μg/l	1500.00														
Electrical conductivity (EC) (field) Electrical conductivity (EC) (lab)	μS/cm @ μS/cm @	800 - 1875 800 - 1875	@25°C @25°C			534	1202	736	1338	514	909	1022	1045	8	744	578
Hydrogen ion concentration (field) Hydrogen ion concentration (lab)	pH units pH units					7.3	7.1	7.2	7.3	7.5	7.1	7.8	7.5	7.7	7.1	7.3
Iron Lead	mg/l µg/l	7.50														
Manganese Magnesium	µg/l ma/l		-													
Mercury	μg/l	0.75														
Nitrate Nitrogen	mg/l	37.50	<u> </u>	-												
Potassium	mg/l			1				<u> </u>							, <u> </u>	
Redox Potential (eH) Selenium	µg/l			1		108	19	-9	43	24	35	25	29	32	-46	38
Silver Sodium	µg/l mg/l	150														
Sulphate	mg/l µg/l	187.50														
Total alkalinity Zinc	mg/l µg/l	75.00														

Substances & categorisation		S.I. No. 366 of	Duto	h 2009 Ivels	MW13D	WW1/TW1	WW5	BH101	BH104	BH105							
		2016			2019	2019	2019	2019	2019	2016	2017		2018				2019
Substance analysed	1	Overall	Target	Interventi								I		1			
(also known as)		threshold	Levels	on (action)													
		Range	m)	(action)	19	19	19	6	19	16	4	4	8	8	8	9	6
(<u>Minerex</u>		Column			02/20	02/20	02/20	02/20	02/20	05/20	35/20	35/20	02/20)5/20	08/20	11/20	02/20
Environmental	Units	column			27/0	, 27/0	27/0	26/0	26/0	26/(03/(03/(22/0	17/0	28/0	15/	28/(
Ethanol	µg/i µg/i		6.00	300	500	500	500	500	500	500	500	500	500	500	500	500	500
Acetonitrile Ethyl acetate	µg/l µg/l				100	100	100	100	100	500	500	500	500	500	500	500 100	500 500
Chloroethane Methanol	µg/l µg/l				3 500	3 500	3 500	3 500	3 500	500	1 500	1 500	1 500	1 500	1 500	1 500	1 500
Acetone sopropanol	µg/l µg/l				50 100	50 100	50 100	50 100	50 100	500	500 500	500 500	500 500	500 500	500 500	50 100	500 500
Tetrahydrofuran MTRE	µg/l	10.00	0.50	300	22	0.1	0.1	0.3	0.1	500	500	500 1	1	11.8	1849 826	3907 811	22 85.3
Benzene Sthylbonzono	µg/l	0.75	4.00	150	0.5	0.5	0.5	0.5	0.5	1	1	1	1	1	1	1	1
Xylene o	µg/l		0.20	70	1	1	1	1	1	1	1	1	1	1	1.02	1	1
Kylene m/p Toluene	µg/i µg/i	525.00	7.00	1000	5	5	5	5	5	i 1	1	1	1	1	1	100	1
Sum of BTEX MIBK	µg/l µg/l		0.20 7.00	70 1000													
Chlorobenzene Bromobenzene	µg/l µg/l				2	2	2	2	2				1	1	1	1 1	1 1
1,2-Dichloropropane 2.2-Dichloropropane	µg/i µg/i		0.80	80 20	2	2	2	2	2	1	1	1	1	1	1	1	1 1
1,3-Dichloropropane	µg/l		0.80	80 20	2	2	2	2	2	1	1	1	1	1	1.74	2.26	1
Bromochloromethane	µg/l		0.01	300	2	2	2	2	2	3	1	1	1	1	1	1	1 1
1,1,2-Trichloroethane	µg/l		0.01	20	2	2	2	2	2				1	1	1	1	1
1,1-Dichloroethane	µg/i µg/i	2.25	7.00	400	3	3	2	2	2	1	1	1	1	1	1	1	1
Dissolved ethane Trichloromethane (Chloroform)	mg/l µg/l		6.00	400	2	2	2	2	2	1	1	1	1	1	1	1	1
Dichloromethane Dichlorodifluoromethane	µg/l µg/l	15.00	0.01	1000 20	5	5	5	5	5		3	3	3	3	3	3	3 1
Dissolved methane Tetrachloroethene	mg/l µg/l	7.50	0.01	40	15	3	3	3	3	1.83	1.3	1.3	1	1.1	1.35	1	1.09
Trichloroethene	µg/l	7.50	24.00 0.01	500 10	3	3	3	3	3	1	1	1	1	1	1	1	1
cis-1,2-Dichloroethene	µg/l	0.38	0.01	20	18	3	3	3	3	1	1	1	1	1	1.95	1.09	1 1
2-Chlorotoluene	µg/l		0.01	20	3	3	3	3	3				1	1	1	1	1
trans-1,2-Dichloroethene	µg/i µg/i	0.38	0.01	20	3	3	3	3	3	5 			1	1	1	1	1
Dibromomethane	µg/I µg/I		0.01	20	3	3	3	3	3	6			1	1	1	1	1
1,2-Dibromoethane 1,1,1,2-Tetrachloroethane	µg/l µg/l		0.01 0.01	20 20	2	2	2	2	2				1	1	1	1	1
1,1,2,2-Tetrachloroethane Bromodichloromethane	µg/l µg/l		0.01	20	4	4	4	4	4				1	1	1	1	1 1
Dibromochloromethane 1,2-Dibromo-3-chloropropane	µg/l µg/l		0.01	20 20	2	2	2	2	2				1	1	1	1	1 1
Carbon Tetrachloride 4-Isopropyltoluene	µg/l µg/l		0.01	20 20	2	2	2	2	2				1	1	1	1	1
Bromothane	µg/l		0.01	20	1	1	1	1	1				1	1	1	1	1 1
tert-Butylbenzene	µg/l		0.01	20	3	3	3	3	3				1	1	1	1	1
1,2,3-Trichlorobenzene	µg/i µg/i		0.01	20	3	3	3	3	3				1	1	1	1	1
1,2,4-1 richlorobenzene Bromoform	μg/I μg/I		0.01	20	3	2	3	3	2				1	1	1	1	1
Hexachlorobutadiene Naphthalene	µg/l µg/l		0.01	20	3	2	3	3	2				1	1	1	1	1
Chloroethene 1, 2, 4-Trimethylbenzene	µg/l µg/l	0.375	0.01	5	1.5	0.1	0.1	0.1	0.1	1			1	1	1	1	1 1
1, 3, 5-Trimethylbenzene cis-1, 3-Dichloropropene	µg/l µg/l				3	3	3	3	3				1	1	1	1	1 1
trans-1, 3-Dichloropropene	µg/l µg/l		0.01	20 20	2	2	2	2	2				1	1	1	1	1
1, 2-Dichlorobenzene	µg/l		0.01	20	3	3	3	3	3				1	1	1	1	1 1
1, 4-Dichlorobenzene	µg/l		0.01	20	3	3	3	3	3				1	1	1	1	1
Isopropylbenzene	µg/i µg/i	150.00	0.01	20	3	3	3	3	3	6			1	1	1	1	1
Aluminium Ammonia	µg/I mg/I	0.065 - 0.1	175											0.02			10 0.1
Antimony Arsenic	µg/l µg/l	7.50												0.5			1 0.5
Barium Beryllium	µg/l µg/l													285			46.4 0.1
Boron Cadmium	µg/l µg/l	750.00 3.75												22.2			10 0.08
Calcium Chemical Oxygen demand	mg/l µa/l													121			117 10
Chloride Chromium	mg/l	24-187.50												33			45
Cobalt	µg/l	1500.00												0.5			2.17
Electrical conductivity (EC) (field)	µ\$/cm @	800 - 1875	@25°C		669	667	967	644	810		711	702		762	793	716	0.004
Electrical conductivity (EC) (Iab) Hydrogen ion concentration (field)	pH units	800 - 1875	@25°C		7.4	7.7	7.3	6.7	7.1		7.28	7.18		702	7.73	7.38	/16
Hydrogen ion concentration (lab) Iron	pH units mg/l													0.019			7.2 0.019
Lead Manganese	µg/l µg/l	7.50												0.2			0.2 759
Magnesium Mercury	mg/l µg/l	0.75	<u> </u>											10.4			9.92 0.01
Nickel Nitrate Nitrogen	µg/l mg/l	15.00 37.50								-				1.72			13.1 0.53
Phosphate Potassium	mg/l ma/l													0.16			0.16 1.46
Redox Potential (eH)	mV ug/l			-	52	37	39	235	-15	i	61.0	192.3		21.4	32.9	-52.3	1
Silver	µg/l	450												0.5			0.5
Sulphate	mg/l	187.50	<u> </u>	-										22.7			9.7
i in Total alkalinity	µg/i mg/i													316			320
Zinc	µg/i	75.00	1	1	I					1				59.1			3.69

Substances & categorisation		S.I. No.	Dutc	h 2009	BH105	BH107							BH1	07	SW104			
		2016	Le	veis		2016		2017			2018		2019	2	2016	2017		2018
														- 1				
Substance analysed		Overall	Target	Interventi										- 1				
(also known as)		Values	(optimu	on (action)										- 1				
		Range	m)		6	9	16	4	4	4	9	9	6	19	16	4	17	9
C Minerex		Column			5/20	5/20	9/20	2/20	3/20	9/20	2/20	8/20	5/20	5/20	5/20	5/20	1/20	2/20
Environmental	Units	test 1 to			00	0/23	01/0	22/0	28/0	28/0	0/23	28/0	56/0	0/0	26/0	33/0	06/1	22/0
Styrene	µg/l	casiurrin	6.00	300	1	1	1	1	1	2	2	2	2 1	-	1	1	1	1
Ethanol Acetopitrile	µg/l				500	500	500	500	500	500	500	500	500	500	500	500 500	500	500
Ethyl acetate	μg/l				000	000		000	000	000	100	100	100	000	000	500	500	500
Chloroethane Methonol	µg/l				1 500	1	500	500	500	1	3	500	3 1	500	500	1	500	1
Acetone	µg/i				500	500	500	500	500	500	50	50	500	500	500	500	500	500
Isopropanol	µg/l		0.50	200	500						100	100	100	500	500	500	500	500
MTBE	µg/i	10.00	0.50	300	57.4						204	3468	959 1430		1	1	21.6	7.82
Benzene	µg/l	0.75	4.00	450	1	0.5	0.5	0.5	0.5	0.5	0.5	0.8	0.5 1			1	1	1
Ethylbenzene Xvlene o	µg/I µa/I		0.20	70	1	1	1	1	1	3	1	59 88	1 4.84		1	1	1	1
Xylene m/p	µg/l		0.20	70	1			1	1	14	2	237	10 15		1	1	1	1
Sum of BTEX	µg/I µa/I	525.00	0.20	1000	1	1	1	1	1	5	5	34//	8 1		1	21.6	1	1
MIBK	µg/l		7.00	1000														
Chlorobenzene Bromobenzene	µg/l ug/l				1	1	1	1	1	1	2	2	21					1
1,2-Dichloropropane	µg/l		0.80	80	1	1	1	1	1	1	2	2	2 1		1	1	1	1
2,2-Dichloropropane	µg/i ug/i		0.01	20	1	1	1	1	1	5.72	1	12	11	-	1	1	1	1
1,2,3-Trichloropropane	µg/l		0.01	20	1	1	1	. 1	. 1	1	3	3	3 1					1
Bromochloromethane	µg/l ug/l	-	0.01	300	1	1	1	1	1	1	2	2	21		1	1	1	1
1,1,2-Trichloroethane	µg/l		0.01	20	1	1	1	1	1	1	2	2	2 1					1
1,1-Dichloroethane	µg/l	2 25	7.00	900	1	1	1	1	1	1	3	3	31		4	1	1	1
Dissolved ethane	mg/l	2.23	1.00	400	-				1		2	2	. 21					
Trichloromethane (Chloroform)	µg/l	15.00	6.00	400	1	1	1	1	1	1	2	2	21		1.44	1	1	1
Dichlorodifluoromethane	µg/i µg/i	15.00	0.01	20	1	1	1	1	1	1	2	2	2 1		3	3	- 3	3
Dissolved methane	mg/l	7.50		10		4.00	7.00								50.7			10.5
Trichloroethene	µg/I µa/I	7.50	24.00	40 500	1	1.38	7.22	1.4	2.12	3.17	3	3	31		50.7	21.7	21.7	13.5
1,1-Dichloroethene	µg/l		0.01	10	1	1	1	1	1	1	3	3	31		1	1	1	1
cis-1,2-Dichloroethene Chloromethane	µg/l ua/l	0.38	0.01	20	1	1	1	1	1	1	3	<u>3.0</u> 3	31		2	1	1	1.97
2-Chlorotoluene	µg/l		0.01	20	1	1	1	1	1	1	3	3	3 1					1
4-Chlorotoluene trans-1 2-Dichloroethene	µg/i ug/i	0.38	0.01	20	1	1	1	1	1	1	3	3	31	_				1
Trichlorofluoromethane	µg/l	0.00	0.01	20	1	1	1	. 1	. 1	1	3	3	3 1					1
Dibromomethane	µg/l		0.01	20	1	1	1	1	1	1	3	2	31	_				1
1,1,1,2-Tetrachloroethane	µg/l		0.01	20		1	1	1	1	1	2	2	2					1
1,1,2,2-Tetrachloroethane	µg/l		0.01	20	1	1	1	1	1	1	2	2	4 1					1
Dibromochloromethane	µg/i		0.01	20	1	1	1	1	1	1	2	2	2 1					1
1,2-Dibromo-3-chloropropane	µg/l		0.01	20	1	1	1	1	1	1	2	2	2 1					1
4-Isopropyltoluene	µg/i		0.01	20	1	•					3	3	3 1					1
Bromomethane	µg/l		0.01	20	1	1	1	1	1	1	1	1	11					1
tert-Butylbenzene	µg/i		0.01	20	1	1	1	1	1	1	3	3	31					1
n-Butylbenzene	µg/l		0.01	20	1	1	1	1	1	1	3	3	31					1
1,2,3-1 richlorobenzene 1.2.4-Trichlorobenzene	µg/I µa/I		0.01	20	1	1	1	1	1	1	3	3	31					1
Bromoform	µg/l		0.01	20	1	1	1	1	1	1	2	2	2 1					1
Hexachlorobutadiene Naphthalene	µg/l µa/l		0.01	20	1	1	1	1	1	1	2	3	21	_				1
Chloroethene	µg/l	0.375	0.01	5	1	1	1	1	1	1	0.1	2.1	0.7 1		1			1
1, 2, 4-Trimethylbenzene 1, 3, 5-Trimethylbenzene	µg/l ua/l				1	1	1	1	1	1	3	3	31	_				1
cis-1, 3-Dichloropropene	µg/l				1	1	1	1	1	1	2	2	2 1					1
trans-1, 3-Dichloropropene 1.1-Dichloropropene	µg/l ua/l		0.01	20	1	1	1	1	1	1	2	2	21					1
1, 2-Dichlorobenzene	µg/l		0.01	20	1	1	1	. 1	1	1	3	3	3 1					1
1, 3-Dichlorobenzene	µg/l		0.01	20	1	1	1	1	1	1	3	3	31	_				1
n-Propylbenzene	µg/l		0.01	20	1	1	1	1	1	1	3	3	3 1					1
Isopropylbenzene Aluminium	µg/l ua/l	150.00			1	1	1	1	1	1	3	3	31					1
Ammonia	mg/l	0.065 - 0.	175	1					0.28									
Antimony Arsenic	µg/l ua/l	7.50												_				
Barium	µg/l																	
Beryllium Boron	µg/l	750.00												_				
Cadmium	µg/l	3.75																
Calcium Chemical Oxygen demand	mg/l								128									
Chloride	mg/l	24-187.50							41									
Cobalt	µg/l	37.50																
Copper	µg/l	1500.00																
Electrical conductivity (EC) (field)	µS/cm @	800 - 1875	6 @25°C						820				927				856	
Hydrogen ion concentration (field)	pH units	000 - 10/5	5 @25 C						020				6.9				7.90	
Hydrogen ion concentration (lab)	pH units		-	1					7.2				+					
Lead	µg/l	7.50	1	+			<u> </u>											<u> </u>
Manganese Magnasium	µg/l	-							44.0			-	+					
magnesium Mercury	mg/I µg/I	0.75	+	1				<u>├</u>	11.2		<u>├</u> ──		+					
Nickel	µg/l	15.00																
Nitrate Nitrogen Phosphate	mg/I mg/I	37.50	+	1					0.01		<u>├</u> ──		+					
Potassium	mg/l								2				79				4.00 -	
Redox Potential (eH) Selenium	µg/l		+	+									-/3				140.9	
Silver	µg/l																	
Soaium Sulphate	mg/I mg/I	150 187.50	-	+					28.6				+					
Tin	µg/l		-															
i otal alkalinity Zinc	mg/l µg/l	75.00	+	+									<u> </u>					

Substances & categorisation		S.I. No.	Dutcl	h 2009				SW104
		366 of 2016	Le	vels			2019	•••••
		2010						
Substance analysed		Overall	Target	Interventi				
also known as)		threshold Values	Levels (optimu	on (action)				
		Range	m)	0	8	<u>8</u>	6	19
Minerex		(from Column			3/201	1/20	5/20	5/20
Environmental	Units	test 1 to			28/0	15/1	28/0	10/01
Styrene	µg/l	саялини	6.00	300	1	1	1	1
Ethanol Acetonitrile	µg/l µa/l				500	500	500	500
Ethyl acetate	µg/l					100	500	4
Methanol	µg/i µg/i				500	500	500	500
Acetone	µg/l				500	50	500 500	500 500
Fetrahydrofuran	µg/i µg/i		0.50	300	2	23	10	12
MTBE	µg/l ug/l	10.00			13.6	30.5	18.2	21.5
Ethylbenzene	µg/l	0.70	4.00	150	1	1	1	1
Kylene o Kylene m/p	µg/l ua/l		0.20	70 70	1	1	1	1
Foluene	µg/l	525.00	7.00	1000	1	1	1	1
MIBK	µg/I µg/I		7.00	1000				
Chlorobenzene	µg/l				1	1	1	1
I,2-Dichloropropane	µg/i µg/i		0.80	80	1	1	1	1
2,2-Dichloropropane	µg/l		0.01	20	1	1	1	1
I,2,3-Trichloropropane	µg/i µg/i		0.00	20	1	1	1	1
Bromochloromethane	µg/l ug/l		0.01	300	1	1	1	1
I,1,2-Trichloroethane	µg/l		0.01	20	1	1	1	1
I,1-Dichloroethane	µg/l ua/l	2.25	7.00	900	1	1	1	1
Dissolved ethane	mg/l							
Frichloromethane (Chloroform) Dichloromethane	µg/l µa/l	15.00	6.00 0.01	400	1	1	1 3	1 3
Dichlorodifluoromethane	µg/l		0.01	20	1	1	1	1
Dissolved methane Fetrachloroethene	mg/l µg/l	7.50	0.01	40	13	3.41	2.47	6.43
Trichloroethene	µg/l	7.50	24.00	500	1.05	1	1	2.26
i,1-Dichloroethene cis-1,2-Dichloroethene	µg/I µg/I	0.38	0.01	20	3.33	1.53	1 5.95	1 10
Chloromethane	µg/l		0.01	20	1	1	1	1
I-Chlorotoluene	µg/i µg/i		0.01	20	1	1	1	1
rans-1,2-Dichloroethene	µg/l ug/l	0.38	0.01	20	1	1	1	1
Dibromomethane	µg/l		0.01	20	1	. 1	1	1
I,2-Dibromoethane I.1.1.2-Tetrachloroethane	µg/l µa/l		0.01	20	1	1	1	1
1,1,2,2-Tetrachloroethane	µg/l						1	1
Dibromochloromethane	µg/i µg/i		0.01	20	1	1	1	1
I,2-Dibromo-3-chloropropane	µg/l		0.01	20	1	1	1	1
I-Isopropyltoluene	µg/i µg/i		0.01	20	1	1	1	1
Bromomethane	µg/l ug/l		0.01	20	1	1	1	1
ert-Butylbenzene	µg/l		0.01	20	1	1	1	1
1-Butylbenzene	µg/l ug/l		0.01	20	1	1	1	1
I,2,4-Trichlorobenzene	µg/l		0.01	20	1	1	1	1
Bromotorm Hexachlorobutadiene	µg/l µa/l		0.01	20	1	1	1	1
Naphthalene	µg/l	0.075	0.01	20	1	1	1	1
1, 2, 4-Trimethylbenzene	µg/I µg/I	0.375	0.01	5	1	1	1	1
I, 3, 5-Trimethylbenzene	µg/l				1	1	1	1
rans-1, 3-Dichloropropene	µg/i µg/i		0.01	20	1	1	1	1
I,1-Dichloropropene	µg/l		0.01	20	1	1	1	1
I, 3-Dichlorobenzene	µg/i µg/i		0.01	20	1	1	1	1
I, 4-Dichlorobenzene	µg/l ug/l		0.01	20	1	1	1	1
sopropylbenzene	µg/l		0.01	2.0	1	1	1	1
Aluminium Ammonia	µg/l ma/l	150.00 0.065 - 0.1	75				10 0.06	
Antimony	µg/l	7.50					1	
Arsenic Barium	μg/I μg/I	1.50		L			35	
Beryllium Boron	µg/l	750.00					0.1	
Cadmium	µg/i µg/i	3.75					0.08	
Calcium	mg/l ug/l						90.4	
Chloride	mg/l	24-187.50					205	
Chromium Cobalt	µg/l ua/l	37.50					1	
Copper	µg/l	1500.00					0.3	
Electrical conductivity (EC) (field) Electrical conductivity (EC) (lab)	µS/cm @ µS/cm @	800 - 1875 800 - 1875	@25°C @25°C		1290	905	1210	
Hydrogen ion concentration (field)	pH units				8.15	7.82	7.0	
ron	mg/l						0.019	
Lead	µg/l	7.50			-		0.2	
Magnesium	mg/l						10.7	
Mercury Nickel	µg/l	0.75		-			0.01	
Nitrate Nitrogen	mg/l	37.50					0.2	
Phosphate	mg/l mg/l						0.16	
Redox Potential (eH)	mV	İ.			50.5	38.8	1	
Selenium Silver	µg/l µg/l						1 0.5	
Sodium	mg/l	150					147	
Fin	μg/l	107.50					1	
Total alkalinity	mg/l ug/l	75.00					325	
	". . .	. 0.00	·		1	1		
Value Abov	e S.I. No. 36	66 of 2016	VALUE					

Value above Dutch 2009 circular Target levels VALUE Value above Dutch 2009 circular Intervention levels VALUE

APPENDIX F

5. Effect of rainfall events investigation (EPA question C)

Since the leakage of the water main back in 2010, it has been hypothesized that the peaks in the concentration of several substances found in AMW3 since the leak was fixed were due to remobilisation of substances stored in the soil above the phreatic surface by heavy rainfall events.

To validate this hypothesis a test has been carried out by simulating a heavy rainfall event by means of sprinklers in the affected area, near AMW3, where 2 baseline samples were taken prior to the simulated rain event and 2 samples were taken after the simulated rainfall event concluded. Baseline sample was taken on the 17/09/18, before the test started

The rainfall simulation consisted in 3no. sprinklers evenly distributed over the grass area beside the location were the original 1997 leak occurred. The sprinklers were distributing water 24h a day for 6 days, from the 18/09/18 until the 24/09/18. The total volume sprinkled to simulate heavy rain events over 6 days was $363m^3$ approximately (0.7 l/s), which, over the $400m^2$ area, is equivalent to a 150mm/day rainfall.

The decision to stop the sprinkling and proceed with the sampling was decided based on the water level response in AMW3 to overcome the soil moisture deficit, evident countywide during the long dry period this summer. A telemetric water level logger was installed in the well and the water level was recorded in a continuous basis (every 15 minutes a reading was taken) and accessible online. When the water level in AMW3 showed a response (rising water level), the sprinkling was stopped and the first post-sprinkling groundwater sample was taken on the next working day in AMW3 (figure 5.1).

Figure 5.1 – Graph showing the water level variationin AMW3 over the days when the test took place

The graphs in the figures below show the chemical trends of THF, MTBE and Toluene over this period of time:

Figure 5.3 – Chemical trends of MTBE during the rainfall test event.

Figure 5.4 – Chemical trends of Sum of Toluene during the rainfall test event.

As shown in the graphs the simulated heavy rainfall event caused a dilution of the concentrations rather than an increase as it was suggested by the hypothesis.

However, interpretation is not possible given the events that were happening in the background, i.e. ongoing leaking instead of contaminants trapped in the soil.

Chemtest The right chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.co.uk

Report No.:	17-20149-1		
Initial Date of Issue:	11-Aug-2017		
Client	Minerex Environmental Limited		
Client Address:	Taney Hall Eglinton Terrace Dundrum Ireland		
Contact(s):	Sven Klinkenbergh Jen Caleno Michael Owens		
Project	Arran Chemical Company, Athlone, Co. Roscommon		
Quotation No.:		Date Received:	02-Aug-2017
Order No.:		Date Instructed:	07-Aug-2017
No. of Samples:	4		
Turnaround (Wkdays):	5	Results Due:	11-Aug-2017
Date Approved:	11-Aug-2017		
Approved By:			
Ah.			

Details:

Robert Monk, Technical Development Chemist

Results - Soil

Project: Arran Chemical Company, Athlone, Co. Roscommon

Client: Minerex Environmental	Chemtest Job No :			17 20140	17 20140	17 20140	17 20140	
Limited	Offernitest bob No			17-20149	17-20149	17-20149	17-20149	
Quotation No.:	(Chemte	st Sam	ple ID.:	491797	491798	491799	491800
					1099-Skip 1-	1099-Skip 2-	1099-Skip 3-	1099-Skip 4-
		Clie	ent Sam	ple ID.:	Composite	Composite	Composite	Composite
					SS1	SS1	SS1	SS1
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	2.00	4.50	4.50	8.50
		Bot	tom Dep	oth (m):	4.50	9.50	8.50	11.00
			Date Sa	ampled:	28-Jul-2017	28-Jul-2017	28-Jul-2017	28-Jul-2017
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD				
Moisture	N	2030	%	0.020	9.8	13	9.9	11
Dichlorodifluoromethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	U	2760	µg/kg	20	< 20	< 20	< 20	< 20
Chloroethane	U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans 1,2-Dichloroethene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane	U	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichloromethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichloroethene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	U	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	N	2760	µg/kg	10	< 10	< 10	< 10	< 10
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene	N	2760	µg/kg	10	< 10	< 10	< 10	< 10
1,1,2-Trichloroethane	U	2760	µg/kg	10	< 10	< 10	< 10	< 10
Tetrachloroethene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane	U	2760	µg/kg	10	< 10	< 10	< 10	< 10
1,2-Dibromoethane	U	2760	µg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0

Results - Soil

Project: Arran Chemical Company, Athlone, Co. Roscommon

Client: Minerex Environmental	Chemtest Job No.:			17-20149	17-20149	17-20149	17-20149	
Quotation No.:	(Chemtest Sample ID.:			491797	491798	491799	491800
		Cli	ent Sam	ple ID.:	1099-Skip 1- Composite SS1	1099-Skip 2- Composite SS1	1099-Skip 3- Composite SS1	1099-Skip 4- Composite SS1
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	2.00	4.50	4.50	8.50
		Bot	tom Dep	oth (m):	4.50	9.50	8.50	11.00
			Date Sa	ampled:	28-Jul-2017	28-Jul-2017	28-Jul-2017	28-Jul-2017
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD				
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	Ν	2760	µg/kg	50	< 50	< 50	< 50	< 50
N-Propylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50	< 50	< 50	< 50	< 50
1,2,4-Trichlorobenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	U	2760	µg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrahydrofuran	Ν	2760	µg/kg	10	< 10	< 10	< 10	< 10
Acetone	Ν	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methanol	Ν		mg/kg	10	< 10	< 10	< 10	< 10
Ethanol	N		mg/kg	10	< 10	< 10	< 10	< 10
Isopropanol	Ν		mg/kg	10	< 10	< 10	< 10	< 10
Acetonitrile	Ν	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethyl Acetate	N	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

The right chemistry to deliver results

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

Mr Cyril Furey, EHS Manager Arran Chemical Company Ltd, Monksland Industrial Estate, Athlone, Co Roscommon, Reg No: PO110-02 **Uisce Éireann** Bosca OP 6000 Baile Átha Cliath 1 Éire

Irish Water PO Box 6000 Dublin 1 Ireland

T: +353 1 89 25000 F: +353 1 89 25001 www.water.ie

Ref: - Proposal to amend conditions relating to emissions to sewer via Technical Amendment.

17 April 2019

Dear Mr Furey,

I refer to your proposal to amend conditions relating to emissions to sewer set out in EPA Licence Reg. No. P0110-02 via Technical Amendment. Irish Water is satisfied to support your Technical Amendment request to the EPA subject to the amendments of *Schedule B.3 Emissions to Sewer and Schedule C .3.2 Monitoring of Emissions to Sewer* of P0110-02 as outlined below;

Schedule B.3

Emission Point Reference No.:	SE1	
Name of Receiving Sewer:	Irish Water sewer	
Location:	IW sewer in Monksland Industrial Estate	
Volume to be emitted:	Maximum in any one hour:	5.5 m ³
	Maximum in any one day:	100 m ³
	Average in any one day (on monthly basis):	80 m ³

Parameter	Emission Limit Value			
рН	7-11 pH Units			
Temperature	35 ° C			
	mg/l	kg/day		
Biochemical Oxygen Demand	5,000	240		
Chemical Oxygen Demand	10,000	600		
Suspended Solids	500	30		
Sulphates (as SO4)	1,500	90		
Sulphites (as SO3)	200	12		
Chlorides (as Cl)	3,750	225		
Phenols (as C6H5OH)	15	0.9		
Total Phosphorus (as P)	10	0.6		

Stiúrthóirí / Directors: Mike Quinn (Chairman), Eamon Gallen, Cathal Marley, Brendan Murphy, Michael G. O'Sullivan

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Total Dissolved Solids	7,500	450
Detergents (as Lauryl Sulphate)	10	0.6
Total Heavy Metals	5	0.3
Cadmium (Cd)	1	0.06
Chromium (Cr)	0.5	0.03
Copper (Cu)	0.5	0.03
Lead (Pb)	0.05	0.003
Mercury (Hg)	0.05	0.003
Nickel (Ni)	0.5	0.03
Silver (Ag)	0.05	0.003
Zinc (Zn)	1	0.06
Molybdenum	0.5	0.03

Schedule C.3.2 Monitoring of Emissions to Sewer

Parameter	Monitoring Frequency	Analysis Method/Technique		
Flow	Continuous	On-line flow meter with		
		recorder		
Temperature	Daily (when discharged) Note 2	Temperature probe		
рН	Continuous	pH electrode/meter and		
		recorder		
Chemical Oxygen Demand	Weekly Note 1	Standard Method		
Biochemical Oxygen Demand	Monthly Note 1	Standard Method		
BOD/COD Ratio	Monthly	-		
Dissolved Oxygen	Daily (when discharged) Note 2	Dissolved Oxygen meter		
Suspended Solids	Monthly Note 1	Gravimetric		
Sulphates (as SO4)	Monthly Note 1	Standard Method		
Sulphites (as SO3)	Quarterly Note 1	Standard Method		
Chlorides (Cl)	Monthly Note 1	Standard Method		
Phenols (as C6H5OH)	Quarterly Note 1	Standard Method		
Total Dissolved Solids	Monthly Note 1	Standard Method		
Total Phosphorus (as P)	Quarterly Note 1	Standard Method		
Orthophosphate	Quarterly Note 1	Standard Method		
Full Metal Suite	Quarterly Note 1	Atomic Absorption/ICP		
Detergents (as Lauryl Sulphate)	Quarterly Note 1	Standard Method		
Organic Solvents Note 3	Quarterly Note 1	Gas Chromatography		
Respirometry	Annually Note 1	Standard Method		
Toxicity	As Required	Standard Method		

Note 1: All samples shall be collected on a 24 hour flow proportional composite sampling basis.

Note 2: Sample to be obtained by discrete sampling.

Note 3: Screening for priority pollutant list substances (such as US EPA volatile and/or semi-volatile compounds). This analysis shall include those organic solvents

Irish water shall only support the amendments as outlined above.

If you have any further queries, please do not hesitate to contact Irish Water.

Yours sincerely

haven Comally

Ronan Connolly, Licensing Manager Wastewater Source Control