

APPENDIX A

ICW System – Preliminary Design Calculations

Prepared By: J Merrick Date: 21.01.13

Checked By: P McShane

PROPOSED CONSTRUCTED WETLANDS SYSTEM - CONNOLLY'S REDMILLS, GORESBRIDGE, CO KILKENNY

Date: 21.01.13

PROJECT:

PRELIMINARY CALCULATIONS

Prepared By: J Merrick Date: 21.01.13

Checked By: P McShane

Date: 21.01.13

PROJECT: PROPOSED CONSTRUCTED WETLANDS SYSTEM – CONNOLLY'S REDMILLS, GORESBRIDGE, CO KILKENNY

SUBJECT: PRELIMINARY CALCULATIONS

											-		-		_	_	-				-						-		<u> </u>		<u> </u>	<u> </u>			-	
		- 1													-		_																			
a)	<u></u>	oiui	<u>ne</u>											_	+																				-	
Th	e to	otal	va	rd c	ato	hn	ner	nt a	rea	is	ap	pro	xin	nat	elv	12	2.3	00	m².	of	wł	nich	48	10	m²	is r	oot	ar	ea a	anc	174	190	m²			
f h	arc	lsta	nd	ng	ya	rd a	are	as.			<u> </u>						<i>.</i>																		-	
•					"			r.					-		_		_		~	~~	_															
Ap ar	piyi	ng is t	a r hoi	un- ofo		- -	-er	lice	ent (of C	1.90		r re	JOI	are	eas	s a	ina	0.0	80	TOP	ya	ra a	irea	as,	tne	ег	ect	ive	ca	tcn	me	nt		-	
arc	/40	15 1		010	10.																															
(48	310	x 0	.9)	+ (71	90	x C).8)	= '	10,0	081	l m²																							-	
ть	~ ~			~~~~	ro	20	roi	ofo			Int	fro	_	thic				εV	iller			- oʻ	22~			3 inch			•	to	_				-	
in av	e a era	nnu ne d	iai 1ail	ave v ra	aint	je fall	an	noi	inar Int	noi of 2	2111 21/2	5mr	nn n	uns		ea	10	IN	like	3011	y is	5 04	2311	IIII.	vya >	MCI	iec	Jua	les	10	а				-	
~**	2.4	30		,	an 1	an				. 2					+		\neg					1		ojt	-											
Th	ere	fore	e, tl	ne N	/ol	Jm	e c	of s	urfa	ce	wa	ater	ru	n-c	off g	ger	ner	ate	ed	froi	m t	he?	cat	chr	ner	nt a	rea	ı, ba	ase	d o	n i	the				
ave	era	ge o	dai	y ra	aint	fall	an	nou	int	is tl	her	efo	re:	-	_	_	\dashv			~	ي م ، د	2 ⁴⁴					-							<u> </u>	-	
10	08	1 x	22	5/1	00	0 -	2	2.7	m ²	-	-	-	-	_	+	-	+		~	JIY e	<u>din</u>		-		-	-	-	-						-		
		. ^	<u> </u>		50	<u> </u>				-	-	+	-		+	+	+	نام	on	et v	-	-	-		-	-	-	-						-	-	
Со	nsi	der	ing	dai	ily	rai	nfa	ll a	mo	unt	s o	f 5r	nn	n po	er o	Jay	_k á	nd	90	mr	n p	er	day	th	e v	olui	me	of	surl	face	e w	ate	r			
rur	n-of	f ge	ene	rate	ed	fro	m t	he	cat	chr	ne	nt a	ire	a w	/oų	Įą,	bę	<i>9</i> 5	0.4	m³	ar	nd 1	00.	.8n	n ³ r	esp	ec	tive	ly							
Th	0 0	ron	000	d l	CM	10	vet	om	ie -	tho	rof	oro	20		206	ۇ _ر ۇ	N' in i	001	neir	hor	otic	n (of th		abc		da	ilv d	liec	ha	rao				-	
	e p um	es.	030	su i	Cv	v S	ysı	CIII	15	uie		JIE	as	, जन्म ब	500	FU I		001	1510	JEI	aut				auc	,ve	ua	iiy (JISC	na	iye				-	
													C	012																						
b)		raa	nia	~	nte	-nf	of	c.,	for		No	tor	Ь,		.ff																					
<i>D)</i>	<u>U</u>	rya	mc	00	1110	711	01	Su	lia	,e i	va		πι	<i></i> -0	<u>///</u>		_																		-	
Th	e o	rga	nic	cor	nte	nt	of t	he	sui	fac	e v	vate	ər I	run	-of	f is	s ba	ase	ed i	n c	on	sid	era	tior	n of	the	e m	ain	wa	ter	qu	alit	y			
pa	ram	ete	ers	of A	۱M	mc	nia	a (N	I) a	nd	Or	tho-	-Pł	าอร	ph	ate	e (F	P) ;	as	we	ll a	s C	OD	. T	he	lev	el c	o fo	rga	nic	ma	ater	ial		-	
as	sun	ned	is	bas	ed	or	ו th	e r	nax	im	Jm	lev	els	s re	co	rde	ed	by	Kil	ker	nny	C C	oun	ty (Οοι	nc	il ir	Se	pte	emt	ber	20	11.			
cc	חי	- 5	110) m	a/l																														-	
	.0		710	,	g, i		-			-	-	-	_	_	_	_	-				-		<u> </u>				-							<u> </u>	-	
An	nmc	onia	I (N	l) =	13	.5	mg	j/				-	-	_	+	_	+						-											-		
~						(D)	-	4.0	~			+	-	-	+	+	+																			
Ur	ino	-Ph	osp	ona	te	(P)	=	10	.2 r	ng/	1]	
																	\square																			
c)	<u>0</u>	the	r F	act	ors		-	-	-	-	-	-		_	_	_	-				-	-			-	-	-	-							-	
-													-	_		_	-	. 0	(1				-											-		
	e a	ver	age	e te	mp	era	atu	re (of th	ne (col	des	t n	nor	th	IS 4	4.5	°⊂	; ()	,			-											-	1	
Th																																			File Num	ber
Th																	_																		IE771	
Th																																				
Th																	_																		Page	

Prepared By: J Merrick Date: 21.01.13

Checked By: P McShane

Date: 21.01.13

PROJECT: PROPOSED CONSTRUCTED WETLANDS SYSTEM – CONNOLLY'S REDMILLS, GORESBRIDGE, CO KILKENNY

SUBJECT: PRELIMINARY CALCULATIONS

		WO	uell	nig	and	<i>D</i> e3	ng																									
i)	Pre	elimi	nary	/ Ini	forma	tion																										
-1-		. 41								_					N/								I			-						
n	e we	etian	10 S	yste	em is		sig	inec		Sã	a si	eries	10 tion		v p	onc		ells Ndo	in :	serie	es a	is s	nov	/n (on I	Jra	wir	ng	_			
nu nii	nimu	m n	ond	are	1. FU	n un s liet	no l Dou	ho	low		ap	piica	uon	4 V	veu	ano	μυ	nus	an	e pro	JPO:	seu	, יייי	.11 0	ppi		ma	lie				
	mnu	mр	unu	are	as a	5 1131	eu	De		•																						
C	N Pa	ond	Cell	No		A	Are	а																								
	1				-	2	125	5 m	2																							
	2					2	125	5 m	2																							
	3					2	125	5 m	2																							
	4					2	12	5 m	2											N.	ģ.											
																				net												
1	typic	al v	vetla	ind	dept	h o	f C).25	m	etr	es	is a	ssu	neo	d th	rou	ighc	out	the	` sys	tem	ז. T	his	de	pth	ca	n k	се				
าต	reas	ed f	rom	tim	e to t	ime	wi	tho	ut a	ldv	/ers	ely a	ffec	ting	sy	ster	n g	èrto	m	ance												
	_	_	_													6	500	xv														
))	De	sign	For	mu	lae											JIP.	JIIC															
_		_													OI)	2,5°	~											_				
/IC	st of	t the	de	sıgr	n app	road	che	es fo	or c	on	str	icteo	i we	tlar	NG S	yst		s us	e tl	ne sa	ame	e pa	ISIC	torr	nula	a, v	vhi	ch				
sk	base	d or	the	de	sign	form	nula	a to	r a	plι	ıg t	ow r	eac	ør,	0900	lel	~)															
													201 -	(1°																		
				~		1.00	(0		\ *\				, ⁰ 0	·																		
	A	=		<u>Q</u>	-	Ln	(<u>C</u>	in <u>- (</u>	<u>(ژر</u>				<u>5</u>																			
				ĸ	, _t n		(C	out ⁻	(°)			05er																				
						^			- 11-		C						/ <u></u> 2	、														
		N / / / -							c tn	\mathbf{n}	non	IIIII	CIII					-														
		Wh	iere			A		1	5 11		eq	ineu	Sui		e ar	ea	(11))	_3/													
		VVh	lere			Q		i:	s th	e a	ave	rage	oro	lesi	e ar gn '	ea flov	(m / rat) :e (r	n³/c	day)												
		Wh	lere			A Q h		i: i: i:	s th s th s th		ave wat	rage er de	or c or c	lesi	gn gn	ea flow	v rat) te (r	n ³ /c	day)												
		VVh	lere			A Q h C _{in}			s th s th s th s th	e a e v e i	ave wat	rage er de it pa	or c pth	lesi etei	gn gn	ea flow nce	rat rat) te (r atior	n ³ /c	day) g/l												
		VVh	lere			A Q h C _{in} C _{ot}	μt		s th s th s th s th s th		ave wat npu des	rage er de it pa ired	or c pth ram outp	lesi etei ut o	gn gn con	ea flow nce cen	(m / rat) atior ion	n ³ /c n m mg,	day) g/l /l												
		VVh				A Q h C _{in} C ^{ot}	ut		s th s th s th s th s th s th		ave wat npu des esti	rage er de it pa ired mate	or c pth ram outp d ba	eter out o	gn con grou	ea flow nce cen und	rat rat entrat trat) atior ion ncer	n ³ /c n m mg, ntra	day) g/l /l ition												
		VVh				A Q h C _{in} C [*] K _{v,t}	ut t		s th s th s th s th s th s th		ave wat npu des esti rate	rage er de it pa ired mate con	or c pth ram outp d ba star	eter out o ack	gn con grou	flow nce cen und	v rat entra trati cor) atior ion ncei	n ³ /a n m mg, ntra	day) g/l /l ition												
		VVh				A Q h C _{in} C ^{ot} C [*]	ut t		s th s th s th s th s th s th		ave wat npu des esti rate	rage er de it pa ired mate con	or c pth ram outp d ba star	eter out o ack	gn r co con grou	ea flow nce cen und	rat entra trati) atior ion ncer	n ³ /c n m mg, ntra	day) g/l /l ition												
		VVh				A Q h C _{in} C ^{ot} K _{v,t}	ut t		s th s th s th s th s th s th		ave wat npu des esti rate	rage er de it pa ired mate con	or c pth ram outp d ba star	eter out c ack	gn r co con groi	ea flow nce cen und	rat entra trati) atior ion ncer	n ³ /c n m mg, ntra	day) g/l /l ition												
		VVh				A Q h C _{in} C ^{ot} K _{v,t}	ut t		s th s th s th s th s th s th		ave wat npu des esti rate	rage er de it pa ired mate con	or c pth ram outp d ba star	eter out o ack	gn con grou	flow nce cen	rat ntrat trati) atior ion ncer	n ³ /a mg, ntra	day) g/l /l ition												
2)	From	Kadl		nd K	night 1	A Q h C _{in} C [*] K _v ,	ut t		s th s th s th s th s th s th	e i e i e i e i e i e i	ave wat npu des esti rate	rage er de ired mate con	or c pth ram outp d ba	eter out o ack	gn co con grou	ea flow nce cen und	rat entra trati) atior ion ncer	n ³ /c n m mg, ntra	day) g/l /l												
2)	From	Kadl	ec ar	nd K	night 1	A Q h C _{in} C* K _v ,	ut t	i i i i i i i	s th s th s th s th s th s th	ei ei ei ei ei	vet wat npu des esti rate	rage er de it pa ired mate con	or c pth ram outp d ba star		gn r co con grou	flow nce cen und	rat entrat trat) atior ion ncei	n ³ /c n m mg, ntra	day) g/l /l ition												
2)	From	VVh Kadl		od K	night 1	A Q h C _{in} C _{ot} C [*] K _v ,	ut t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	s th s th s th s th s th s th	e i e i e i e i e i	wat npu des esti rate	rage er de it pa ired mate con	or c pth ram outp d ba star	eter ut (ack		flow nce cen und	rat entra trati) atior ion	n ³ /c n m mg, ntra	day) g/l /l ition												
2)	From	Kadl	ec ar	nd K	night 1	A Q h C _{in} C [*] K _v ,	ut t and		s th s th s th s th s th s th	e i e i e i e i e i	ave wat npu des esti rate	rage er de it pa ired mate con	or c pth ram outp d ba star			flow nce cen und	rat entra trat cor) atior ion ncer	n ³ /c n m mg, ntra	day) g/l /l ition												
2)	From	Kadl		nd K	night 1	A Q h C _{in} C _{ou} C* K _v ,	ut t	i i i i i i i i	s th s th s th s th s th s th	e i e i e i e i e i	ave wat npu des esti rate	rage er de it pa ired mate con	or c pth ram outp d ba star			flow nce cen und	(m) v rat entra trati cor) atior ion ncer	n ³ /c n m mg, ntra	day) g/l /l ition												
2)	From	Kadl		nd K	night 1	A Q h C _{in} C _{ot} C* K _v ,	ut t		s th s th s th s th s th s th	e i e i e i e i e i	ave wat npu des esti rate	rage er de it pa ired mate con	or c pth ram outp d ba star			flow nce cen und	rat entra trati) atior ion ncer	n ³ /c n m mg, ntra	day) g/l /l ttion												
2)	From	Kadl		nd K	night 1	A Q h C _{in} C ₀ C* K _v ,	ut t ano		s th s th s th s th s th s th	e i e i e i e i e i	ave wat npu des esti rate	rage er de it pa ired mate con	or c ppth ram outp d ba star			flow nce cen und	(m v rat entra trat cor) atior ion ncer	n ³ /(n m mg, ntra	day) g/l /l ition												
2)	From	Kadl		nd K	night 1	A Q h C _{in} C ₀ C* K _V ,	ut t and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	s th s th s th s th s th S th	e i e i e i e i e i	ave wat npu des esti rate	rage er de it pa ired mate con	or c ppth ram outp d ba star			flow nce cen und	(m v rat entra trati cor) atior ion ncer	n ³ /c n m mg, ntra	day) g/l /l ition												
2)	From	Kadl		nd K	night 1	A Q h C _{in} C _{ot} K _v ,	ano		s th s th s th s th s th S th	e i e i e i e i e i	ave wat npu des esti rate	rage er de it pa ired mate con	or c epth ram outp d ba star			flow nce cen und	(m v rat entra trati cor) ce (r ation ion ncei	n ³ /c n m mg, ntra	day) g/I /I ition	Image: section of the sectio									File N	lumb	ər
2)	From	Kadl		nd K	night 1	A Q h C _{in} C _o C* K _v ,	ana		s th s th s th s th s th S th	e i e i e i e i e i	ave wat inpu des esti rate	rage er de it pa ired mate con	or c epth ram outp d ba star			flow nce cen und	(m v rat entra trati cor) atior ion ncer	n ³ /c n m mg, ntra	day) g/I /I ition	Image: section of the sectio									File N	lumbo	ər

Prepared By: J Merrick

Checked By: P McShane

PROPOSED CONSTRUCTED WETLANDS SYSTEM - CONNOLLY'S REDMILLS, GORESBRIDGE, CO KILKENNY

Date: 21.01.13 Date: 21.01.13

PROJECT: SUBJECT:

PRELIMINARY CALCULATIONS

																															1
_			_										-					_			+		-		_					<u> </u>	Rema
⊢or	par	ticu	ilar c	lima	atic falle	cor	nditi	on	s ti	ne	rate	e c	ons	star	nt a	nd	back	gro	und	con	cent	rati	on	nee	dt	o t	e	adj	ust	ed	
tor to	emp	per	ature	as	TOIIC	ows	5.											_													-
		١٨/	ooro			k						v	6	t-20																	
		vv	iere			n	v,t		-			n _v ,	20¢	,																	
						C	*		_			<u>^*</u>	t-20)																	
						Ľ			_																						
c) S	ite :	sne	cific	Par	ame	ter	· Va	lue	s																						
<u>, , ,</u>		500	00																												
		Αv	erag	e te	mpe	era	ture	of	со	lde	st i	mo	nth				4.5	⁰ C													
		Ar	nual	ave	rag	e ra	ainfa	all	am	ou	nt ⁽³	6)					823	mm	า		16	ģ.									-
		Ту	pical	des	sign	av	eraç	je	dai	ly ı	air	fal	I				2.25	i mr	n/da	y Į	net ~										
		Av	erag	e de	epth	of	con	stı	ruc	ted	we	tla	nd				0.30) m		20	<u> </u>										-
																			oni	gr.	_										-
																		. °°.	21		_										-
d) G	en	era	Des	ign	Par	am	eter	S										2 11	-		_										-
																ي ا	OT X	YUT,	+		_										-
					<u> </u>							.				ect	MA		++		<u> </u>										-
Usin	g c	on	serva	tive	val	ues	s, th	еç	gen	era	al d	esi	gn	par	an	ete	rs 🖓	are	give	n in	Tab	ble	1 be	elow	/:-						-
				_										Ŷ	n a	20		_			_										-
					<u> </u>						~			Ś	.0x	.					-					_					
						<u></u>	nits	2				ענ	5	¥.,	<u>(</u>	Jrτ	no-P	nos nos	pna	<u>te</u>		An		onia V	2	_					
	k	,		_								~	39 ⁵⁰				(<u>P)</u>				_	<u>(/N</u>	2		_					
(volum	r etric r	NV rate c	onstant	1		ח	<u>-</u>	1			0	5					0	12				6	17			_					
(uy				0.						0	∠													-
0 (t	em	р. с	oeff				$\left \right $												+						-			-	-	-	1
	for	K _v)									1.(96					1	.00				1	.04			_					
_	C*	20		_		Λ	//g												+ +							_					
Back	jroi	und	con	С.					3.	5 +	- 0.	05	3Ci	n			- 0	.02					0			_					
				_																										-	
0 te	mp). C	oeff	+																+		-								-	1
_	foi	r C		_							1.(υU					1	.00				-	1.00	ر ا		╧					1
										.																					-
							Iai	ole	1:	Ger	era	I SI	urta	се г	low	we	tiand	Desi	ign Pa	aram	eters	5									
																															1
+				-	1															+	+									-	
				-	1															+	+									-	
				-	+															+										-	
				-	1															+	+									-	
				-	1															+	+									-	
				-	-															-	-									-	
(3) Fi	от	Met	Éirea	nn R	ainfa	all Da	ata (I	Goi	resb	rida	e -	Kilk	enn	V)						+	+									-	File Numł
(4) Fi	от	Kao	lec an	id Kr	night	199	6 an	10	'Su	lliva	n 19	998	-							+	+									-	IE771
				-	1															+	+									-	i
				-	-															+										-	Page
					-	<u> </u>						-	-	-					+ +		_	-	-					-	-	-	4

Prepared By: J Merrick	Date: 21.01.13
Checked By: P McShane	Date: 21.01.13

PROJECT: PROPOSED CONSTRUCTED WETLANDS SYSTEM – CONNOLLY'S REDMILLS, GORESBRIDGE, CO KILKENNY

SUBJECT: CONSTRUCTED WETLANDS SYSTEM – DESIGN CALCULATIONS

he prop	bosed co	onstructe	ed wetland	ds system will	comprise a to	tal of 4 ponds	of simila	r areas	s		
he pluç	g flow re	eactor m	odel was	run for ponds	s 1-4 in series	and the redu	ictions in	COD,	Amr	nonia	a
v) and	Ortno-P	nospnat	e (P) were	e calculated.							
ho roci	ulte of th	o plug f	low roacto	or model in co	posidoration o	f a 10mm dail	v roinfall	avont	(100	9m ³	
	uns of the	ie plug I isod in 7	ow react			r a Tumm uan	y raimaii	event	(100	.0111)
	summan			10 vv							
Pond	Pond		COD	Ammonia	Ammonia	Ortho-Pin	Ortho-	Pout			
No.	Area						ė.	- 001			
	(m^{2})	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/	1)			
						d. A Oth					
1	2125	5400	1472	13.50	7.20	10.20	5.30)			
2	2125	1472	403	7.20	4.10	e 5.30	2.10)			
3	2125	403	112	4.10	1.90	s ^{ee} 2.10	0.98	3			
4	2125	112	30	1.90	0.96 <	0.98	0.34	1			
Total	8500		30		0.96		0.34	1			
					× N. 32						
	· · · · ·	Table 2 –	Predicted P	erformance of R	Roposed ICW Sy	rstem – 100.8m³ i	Daily Inflov	v			
	· · · · · · · · · · · · · · · · · · ·	Table 2 –	Predicted P	erformance of R	Proposed ICW Sy	rstem – 100.8m³ i	Daily Inflov	v			
he resi	ults of th	Table 2 –	Predicted P	erformance of R	poposed ICW Sy	rstem – 100.8m³ i	Daily Inflov	w vent (5 1	0 4m	³) rur	
he resu	ults of th	Table 2 – e plug fl in Table	Predicted P ow reacto	r model in to	nsideration of	rstem – 100.8m³ í a 5mm daily r	Daily Inflov ainfall ev	v ent (5 0	0.4m	³) rur	1
he resu e sum	ults of th marised	Table 2 – e plug fl in Table	Predicted P ow reacto 9 3 below:	r model is con	nsideration of	rstem – 100.8m³ i a 5mm daily r	Daily Inflov ainfall ev	v vent (5 0	0.4m	³) rur)
he resu re sum	ults of th	Table 2 – e plug fl in Table	Predicted P ow reacto 9 3 below:	r model in Cor	nsideration of	rstem – 100.8m³ i a 5mm daily r	Daily Inflov ainfall ev	v vent (50	0.4m	³) rur	
he resu re sum Pond	ults of th marised Pond	Table 2 – e plug fl in Table COD _{in}	Predicted P ow reacto 3 below: COD _{out}	erformance of B or model in Cor - Cor Ammonia _{in}	nsideration of	a 5mm daily r	Daily Inflov ainfall ev Ortho-	v rent (50 P _{out}	0.4m	³) rur	
he resu re sum Pond No.	ults of th marised Pond Area	Table 2 – e plug fl in <i>Tabl</i> e COD _{in}	Predicted P ow reacto a 3 below: COD out	erformance of B r model in cor - Cor Ammonia _{in}	nsideration of Ammonia _{out}	a 5mm daily r	Daily Inflov ainfall ev Ortho-	v rent (50 P _{out}	0.4m	³) rur	
ne resu re sum Pond No.	ults of th marised Pond Area (m ²)	Table 2 – e plug fl in Table COD _{in} (mg/l)	Predicted P ow reacto 3 below: COD _{out} (mg/l)	erformance of B r model in Cor - Cor Ammonia _{in} (mg/l)	Ammonia _{out}	a 5mm daily r Ortho-P _{in} (mg/l)	Daily Inflor ainfall ev Ortho- (mg/	v rent (50 P _{out}	0.4m	³) rur	
ne resu re sum Pond No.	ults of th marised Pond Area (m ²)	Table 2 – e plug fl in Table COD _{in} (mg/l)	Predicted P ow reacto > 3 below: COD _{out} (mg/l)	Ammonia _{in}	Ammonia _{out}	a 5mm daily r ortho-P _{in} (mg/l)	Daily Inflo ainfall ev Ortho- (mg/	v rent (50 P _{out}	0.4m	³) rur	
he resum re sum Pond No.	ults of th marised Pond Area (m ²) 2125	Table 2 – e plug fl in Table COD _{in} (mg/l) 5400	Predicted P ow reacto > 3 below: COD _{out} (mg/l) 632	Ammonia _{in} (mg/l)	Ammonia _{out} (mg/l)	a 5mm daily r ortho-P _{in} (mg/l)	Daily Inflov ainfall ev Ortho- (mg/ 2.0	v ent (50 P _{out} 1)	0.4m	³) rur	
he resum Pond No.	ults of th marised Pond Area (m ²) 2125 2125	e plug fl in <i>Table</i> COD _{in} (mg/l) 5400 632	Predicted P ow reacto > 3 below: COD _{out} (mg/l) 	Ammonia _{in} (mg/l) 13.50 4.10	Ammonia _{out} (mg/l) 4.10 1.70	 a 5mm daily r Ortho-P_{in} (mg/l) 10.20 2.01 	Daily Inflov ainfall ev Ortho- (mg) 2.07	v rent (50 P _{out} 1) 7	0.4m	³) rur	
he resum re sum Pond No.	ults of th marised Pond Area (m ²) 2125 2125 2125	Table 2 – e plug fl in Table COD _{in} (mg/l) 5400 632 79	Predicted P ow reacto > 3 below: COD _{out} (mg/l) 632 79 26	Ammonia _{in} (mg/l) 13.50 4.10 1.70	Ammonia _{out} (mg/l) 4.10 0.51	 stem – 100.8m³ a 5mm daily r Ortho-P_{in} (mg/l) 10.20 2.01 0.97 	Daily Inflov ainfall ev Ortho- (mg/ 2.0 0.91 0.23	v ent (50 P _{out} 1) 1 7	0.4m	³) rur	
he resum re sum No.	ults of th marised Pond Area (m ²) 2125 2125 2125 2125	Table 2 – e plug fl in <i>Table</i> COD _{in} (mg/l) 5400 632 79 26	Predicted P ow reacto o 3 below: COD _{out} (mg/l) 632 79 26 9	Ammonia _{in} (mg/l) 13.50 4.10 0.51	Ammonia _{out} (mg/l) 4.10 1.70 0.51 0.24	stem – 100.8m ³ a 5mm daily r Ortho-P _{in} (mg/l) 10.20 2.01 0.97 0.25	Daily Inflov ainfall ev Ortho- (mg/ 2.0 0.9 0.2 0.0	v ent (50 P _{out} 1) 1 7 5 3	0.4m	³) rur	
he resum Pond No. 1 2 3 4 Fotal	ults of th marised Pond Area (m ²) 2125 2125 2125 2125 2125 8500	Table 2 – e plug fl in Table COD _{in} (mg/l) 5400 632 79 26	Predicted P ow reacto 2 3 below: COD _{out} (mg/l) 632 79 26 9 9 9	erformance of 8 r model in con- - Con- Ammoniain (mg/l) - 13.50 - 4.10 - 1.70 - 0.51	Ammonia _{out} (mg/l) 4.10 1.70 0.51 0.24 0.24	stem – 100.8m ³ a 5mm daily r Ortho-P _{in} (mg/l) 10.20 2.01 0.97 0.25	Daily Inflor ainfall ev Ortho- (mg/ 0.97 0.23 0.08 0.08	v ent (50 Pout 1 7 5 3 3	0.4m	³) rur	
he resum Pond No. 1 2 3 4 Total	ults of th marised <i>Pond</i> <i>Area</i> (m ²) 2125 2125 2125 2125 2125 8500	Table 2 – e plug fl in Table COD _{in} (mg/l) 5400 632 79 26	Predicted P ow reacto > 3 below: COD _{out} (mg/l) 	Ammonia _{in} (mg/l) 13.50 4.10 0.51	Ammonia _{out} (mg/l) 4.10 1.70 0.51 0.24 0.24	a 5mm daily r a 5mm daily r Ortho-P _{in} (mg/l) 10.20 2.01 0.97 0.25	Daily Inflor ainfall ev Ortho- (mg) 2.07 0.97 0.21 0.08	vent (50	0.4m	³) rur	
he resum re sum No. 1 2 3 4 Total	ults of th marised <i>Pond</i> <i>Area</i> (m ²) 2125 2125 2125 2125 8500	Table 2 – e plug fl in Table COD _{in} (mg/l) 5400 632 79 26 79 26 79	Predicted P Ow reacto > 3 below: COD _{out} (mg/l) 	Ammonia _{in} (mg/l) 13.50 4.10 1.70 0.51	Ammonia _{out} (mg/l) 4.10 1.70 0.51 0.24 Proposed ICW S	 a 5mm daily r a 5mm daily r Ortho-P_{in} (mg/l) 10.20 2.01 0.97 0.25 ystem - 50.4m³ L 	Daily Inflor ainfall ev Ortho- (mg) 2.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vent (50	0.4m	³) rur	
Pond No. 1 2 3 4 Total	ults of th marised Pond Area (m ²) 2125 2125 2125 2125 8500	Table 2 – e plug fl in Table CODin (mg/l) 5400 632 79 26 Table 3 – me	Predicted P Ow reacto > 3 below: COD _{out} (mg/l) - 632 79 26 9 9 Predicted F	Ammonia _{in} (mg/l) 13.50 4.10 1.70 0.51	Ammonia _{out} (mg/l) 4.10 1.70 0.51 0.24 0.24 Proposed ICW Sy	 stem – 100.8m³ a 5mm daily r Ortho-P_{in} (mg/l) 10.20 2.01 0.97 0.25 ystem – 50.4m³ L 	Daily Inflov ainfall ev Ortho- (mg) 2.0 0.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	vent (50	0.4m	³) rur	
he resum re sum No. 1 2 3 4 Total	ults of th marised Pond Area (m ²) 2125 2125 2125 2125 2125 8500	Table 2 – e plug fl in Table CODin (mg/l) 5400 632 79 26 Table 3 – me	Predicted P ow reacto > 3 below: COD _{out} (mg/l) 632 79 26 9 9 9 Predicted F	Ammonia _{in} (mg/l) 13.50 4.10 1.70 0.51	Ammonia _{out} (mg/l) 4.10 1.70 0.51 0.24 0.24 Proposed ICW Sp	<pre>rstem - 100.8m³ a 5mm daily r a 5mm daily r a 0rtho-P_{in} (mg/l) a 10.20 2.01 0.97 0.25 ystem - 50.4m³ L</pre>	Daily Inflov ainfall ev Ortho- (mg) 2.0 0.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	v ent (50	0.4m	³) rur	
he resum re sum No. 1 2 3 4 Total) Resia	ults of th marised Pond Area (m ²) 2125 2125 2125 2125 2125 8500	Table 2 – e plug fl in Table CODin (mg/l) 5400 632 79 26 Table 3 – me vpical or	Predicted P ow reacto a 3 below: COD _{out} (mg/l) 632 79 26 9 9 9 9 Predicted F	Ammonia _{in} (mg/l) 13.50 4.10 1.70 0.51 Performance of F	Ammonia _{out} (mg/l) 4.10 1.70 0.51 0.24 0.24 Proposed ICW Sp	 stem – 100.8m³ a 5mm daily r Ortho-P_{in} (mg/l) 10.20 2.01 0.97 0.25 ystem – 50.4m³ L 	Daily Inflov ainfall ev Ortho- (mg/ 0.97 0.23 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	v	0.4m	³) rur	
he resum Pond No. 1 2 3 4 Total) Resia	ults of th marised Pond Area (m ²) 2125 2125 2125 2125 2125 8500	e plug fl in <i>Table</i> COD _{in} (mg/l) 5400 632 79 26 79 26 Table 3 – <u>me</u> ypical op ands sv	Predicted P ow reacto a below: COD _{out} (mg/l) 632 79 26 9 9 9 Predicted P	Ammoniain (mg/l) 13.50 4.10 1.70 0.51 Performance of P	Ammonia _{out} (mg/l) 4.10 1.70 0.51 0.24 0.24 Proposed ICW Sp of 0.30m, the 23 m ³ .	rstem – 100.8m ³ a 5mm daily r a 5mm daily r ortho-P _{in} (mg/l) 10.20 2.01 0.97 0.25 0.25 0.25 0.25 0.25 0.25 0.25	Daily Inflov ainfall ev Ortho- (mg/ 0.97 0.23 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	v ent (50 Pout 7) 1 3 3 4 2 5 3 1 7 4 5 5 1 7 7 1 5 1 7 1 7 1 7 1 7 1 7 1 7 1	0.4m	³) rur n the	
he resum Pond No. 1 2 3 4 Total) Resia	Ilts of th marised Pond Area (m ²) 2125 2125 2125 2125 2125 8500	Table 2 – e plug fl in Table COD _{in} (mg/l) 5400 632 79 26 79 26 Table 3 – me ypical op ands sy	Predicted P ow reacto a 3 below: COD _{out} (mg/l) 632 79 26 9 9 9 9 Predicted P	erformance of R r model in con- - C A A A A A A A A A A A A A A A A A A	Ammonia _{out} (mg/l) 4.10 1.70 0.51 0.24 0.24 Proposed ICW Sy of 0.30m, the 23 m ³ .	rstem – 100.8m ³ a 5mm daily r a 5mm daily r ortho-P _{in} (mg/l) 10.20 2.01 0.97 0.25 ystem – 50.4m ³ L total volume	Daily Inflov ainfall ev Ortho- (mg/ 0.97 0.23 0.08 0.08 0.08 0.08 0.08 0.08	v ent (50 Pout 1 7 5 3 3 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.4m	³) rur n the	
he resum Pond No. 1 2 3 4 Total) Reside onside onside	ults of th marised Pond Area (m ²) 2125 2125 2125 2125 2125 8500	Table 2 – e plug fl in Table CODin (mg/l) 5400 632 79 26 79 79 26 79 79 26 79 79 26 79 79 26 79 79 26 79 79 26 79 79 79 26 79 79 79 79 79 79 79 79 79 79 79 79 79	Predicted P ow reacto a 3 below: COD _{out} (mg/l) 632 79 26 9 9 9 Predicted P perational stem is ap	erformance of R r model in con- - Con- Ammonia (mg/l) 13.50 4.10 1.70 0.51 - - Performance of R water depth of proximately 4 31.2 m ³ /day fil	Ammonia _{out} (mg/l) 4.10 1.70 0.51 0.24 0.24 Proposed ICW Sp of 0.30m, the 23 m ³ .	stem – 100.8m ³ a 5mm daily r Ortho-P _{in} (mg/l) 10.20 2.01 0.97 0.25 ystem – 50.4m ³ L total volume	Daily Inflor ainfall ev Ortho- (mg/ 0.21 0.21 0.01 0.01 0.01 0.01 0.01 0.01	vent (50	0.4m	³) rur	File Number

APPENDIX D

ICW – Operation & Maintenance Procedures

Management and Maintenance of Wetland System 1

1.1 General

A correctly designed, constructed and planted integrated constructed wetland system (ICW) will require effective management and maintenance if long term viability and performance of the system is to be achieved on a consistent basis.

In general constructed wetland systems do not require constant attention, however periodic ongoing analysis of wastewater and effluent are require to ensure the system is operating as designed, as well as good management and house-keeping procedures. As a minimum, visual assessment of the system should be undertaken on a weekly basis, to identify any problems at an early stage.

-W SJ A properly designed, constructed and maintained ICW system should have a life expectancy in excess of 20 years.

1.2 Water Level Control

Water level control is an important component of overall constructed wetlands management. Poor water level control can inhibit the performance of a constructed wetland system by allowing over saturation, high water levels, short-circuiting of influent and unintentional drying out of the plant support medium layer. Pest and weed control can also be affected by differing water levels. Water level control in the wetland system is achieved by raising or lowering the discharge pipe. Outlet control for this particular wetland system will be provided by manually adjustable long radius bends provided at each outlet pipe.

Water level control will be dependent on the particular climatic conditions and the volume of flow through the wetland system. During the summer months or periods of drought the wetland system will be affected by evapotranspiration which may decrease the depth of water in each pond, thereby requiring the outlets to be raised to prevent the ponds from drying out. During the winter months ice formation in the ponds can decrease the retention time, in which case the outlets may also have to be raised to increase the water depth to minimise the effect of ice formation.

In times of extreme rainfall events or floods temporary storage can be provided within the wetlands system by raising the outlets. However, care should be taken to ensure that the plants do not become overwhelmed by high water levels over a long period of time. The typical operational water depth of the wetland system will be 300 – 350mm, however water depths of 500-550mmmm for periods of up to 10-12 days will normally not have any adverse impact on the wetland plants.

1 or 2 persons be responsible for water level control in the wetlands system. A procedure will be implemented whereas the water levels are visually monitored on a weekly basis during normal flow conditions and on a daily basis during periods of drought or extreme flow conditions.

1.3 Weed Control

Weeds can be used as indicators of system performance and to predict maintenance requirements. Consideration will be given in the wettand management programme as to the extent of weed control and whether weeds should or should not be allowed to proliferate. It should be noted that weeds are not necessarily detrimental to the overall wetland treatment processes, however weeds are not normally regarded as an important component of the treatment process.

Appearance of weeds can be an indication of poor water level control, with most weeds appearing when pond water levels are low. One method of weed control is to periodically flood the wetland ponds to a depth greater that the operating depth, say 400-500mm, for short periods of time, say 3-4 days.

Chemical based weed killers should not be used to control weeds in a constructed wetlands environment as these can affect non-target aquatic plants, micro-organisms and water quality.

During plant establishment phase daily inspection will note any signs of weed growth. At this stage weed seedlings can be hand removed, however care should be taken not to extract weeds with large root mats as extraction of these can cause damage the wetland plant support medium.

Weed control inspections and procedures shall form an integral part of any management and maintenance procedures.

1.4 Other Vegetation Management Considerations

There is a tendency on occasions for emergent plants growing in a constructed wetland system to be flattened, bent or collapsed by heavy horizontal wind driven rain and strong winds, especially in exposed areas. Bent or broken reed plants sometimes die and this can lead to the development of bald patches in the wetland system. However, many types of reeds, including all of the common species normally used in constructed wetlands, tend to develop a screening zone around the periphery as a result of collapse and re-growth, which minimises storm damage to other reeds in the pond. At this particular site the earth embankments of each pond will provide a degree of shelter and protection. Inspection of the system, and in particular inspection of periphery reed plants, will be undertaken following a severe storm or rainfall event.

Wind blown seeds from some reed plant species can become established in surrounding areas, however this normally only causes a nuisance if residential areas are within close proximity to the wetland system. Wind blown seed dispersion is greatest where the reed plants are sited in exposed areas and are offered no protection from pond embankments or other vegetation screenings. At this particular site the earthembankments of each pond will offer a degree of shelter and seed dispersion should be minimised.

1.5 **Odour Control**

- Inspection put post of the office of the office of the optical the owner required the optical the op FOI IS POLION PULPO Odour control in a constructed wetlands system is only normally of concern when treatment of raw domestic sewage is undertaken and where no dilution of the effluent is undertaken. Odour is much less of an issue when dealing with surface water run-off.

One of the benefits of growing vegetation in a constructed wetland system is that the plants and associated litter layer provide a natural biofilter, with the reed plants developing a population of de-odorising micro-organisms which will assist in limiting odours from the system.

Retention of effluent for short periods of time in a primary collection or storage tank can also minimise any odour.

1.6 Pest Control

The range of pests which can affect constructed wetland systems include birds, flies, mosquitoes, rats and rabbits, however a well managed constructed wetland system should not experience any significant pest control issues. Pest control can be an issue when wetland systems are employed as primary and secondary wastewater treatment systems, however the proposed system at Faha shall be employed on a tertiary treatment basis only.

Stagnant areas in a wetland system can promote fly and mosquito breeding zones and these can be controlled by temporarily flooding the particular stagnant area.

Burrowing animals can cause damage to earth embankments, particularly before a vegetation growth is established on the embankments. If burrowing damage becomes a problem then installation of close mesh fencing maybe required, or aggressive hunting, trapping or poisoning in accordance with appropriate guidelines may be necessary

2 Construction Stage Monitoring & Management

It is critical during the construction stage of the **development** that construction run-off, which may have elevated levels of suspended solids and other pollutants, does not discharge to the Integrated Constructed Wetlands (ICW) system and pond areas during the establishment period.

In this instance it is proposed to implement the recommendations of *CIRIA document C532* – *Control of Water Pollution from Construction Sites.* This document deals with various measures and methods which can be implemented to control pollution from construction water run-off. Particular control measures and methods will depend on actual construction phases, procedures and methods to be employed and shall be designed at the pre-construction stage.

Inspection of the ICW system and pond areas area shall generally be in accordance with the recommendations given in *CIRIA document C609 – Sustainable Drainage Systems*, and, as listed in CIRIA C609 will generally include the following:-

- 1. Inspection of excavations for ICW and pond areas
- 2. Inspection during the laying of incoming pipework and any interconnecting pipework within the overall system
- 3. Inspection and testing of earthworks material and any filter material to ensure adequate permeability levels are achieved
- 4. Inspection of ICW areas to ensure correct preparation prior to planting
- 5. Inspection of completed planting to ensure compliance with planting specification

3 **Operation Stage Monitoring & Assessment**

Operational stage management and maintenance shall generally be implemented in accordance with CIRIA document C609 - Sustainable Drainage Systems and will encompass the following procedures duplicated from CIRIA C609:-

On-going Inspection

Routine inspection of the system shall be undertaken twice weekly for the first 2 months of operation, then weekly thereafter. Inspections shall be undertaken by site managers and/or persons responsible for landscape maintenance. The advantage of using these personnel is that they will have intimate knowledge of the development and visit the site on a frequent basis. This recurring attendance ensures monitoring of the overall wastewater treatment system and a rapid response to any problems that may be identified. A log shall be kept of all inspections and shall include the following:-

- .
- Name of person undertaking inspection Time and date of inspection Weather conditions Details of areas within the attenuation system being inspected
- Brief description of general conditions of ICW and pond areas
- Details of any problems encountered and action taken cons

<u>Owner's Manual</u>

Prior to full commissioning of the system a detailed owner's manual for the system shall be developed, which shall include the following:-

- Appropriate mapping showing the location of all elements of the wastewater treatment system within the overall development site
- Detailed as-built drawings showing specific details of the ICW system, incoming pipework, outgoing pipework and pond areas.
- A summary of how the ICW and pond areas work, their purpose and how they can be damaged
- Maintenance requirements (a maintenance plan) and a maintenance record
- Explanation of the consequences of not carrying out the maintenance that is specified
- Identification of areas where certain activities are prohibited (for example spraying of weedkiller in and around the vegetation of the ICW system)
- An action plan for dealing with accidental spillages or extreme pollution events
- Advice on what to do if alterations are to be triade to the development and/or its associated drainage system or if service or utility companies undertake excavations or other similar works that could affect the overall wastewater treatment system.
- Advice for on-going performance monitoring of the overall system

Cone

The owner's manual shall also include brief details of the design concept for the wastewater treatment system and how the owner or operator should ensure that any works undertaken within the development do not compromise this.

Routine Monitoring & Operation

Routine maintenance requirements for the ICW system and pond system shall be included in the owner's manual. A summary of maintenance requirements as duplicated from CIRIA C609 is listed below:-

Operation	Frequency
Inspections to identify any areas not operating correctly, eroded areas, blocked inlets or outlets	Weekly
Collect and remove from site area and area around ICW system rubbish that may be detrimental to the operation of the system, including paper, packaging, bottles and cans	Monthly
Maintain grass height on side slope of ICW and pond areas within the specified range. Ensure that soil and grass does not become compacted. Do not cut during periods of drought or when ground be conditions or grass are wet, without prior agreement.	Monthly or as required
Pond bank clearance to remove bank vegetation by cutting to ground level, using an approved technique and as directed on site, up to 25% of all vegetation from the waters edge to a minimum of 1m above water level. The work shall be undertaken between September and November in any one year. This is necessary to stimulate vegetation growth at ground level, to protect banks from erosion and to provide cover for wildlife and maintain amenity	Annually or every three years
Hand-cut approximately 25% of ICW submerged and emergent aquatic plants at least 100mm above ICW base, removing all arisings to a composting facility or approved tip	Annually or every three years
Remove sediment from the first pond of the ICW system when 25% full, followed by re-planting or any wetland plants in areas disturbed by sediment removal procedures	5-7 year period

4 ICW System Performance Monitoring

In order to assess the on-going performance of the ICW system it is proposed to undertaken routine sampling and laboratory analysis of waters at selected locations within the ICW system. It is proposed that sampling and analysis shall only be undertaken during the period of the grain harvest campaign.

The proposed sampling and analysis regime is summarised in Table 1 below:-

Sample Point	Sample Method	Analysis Parameter	Sampling Frequency
Inlet to ICW Pond 1	Grab	BOD (mg/l)	Monthly
	Grab	COD (mg/l)	Bi-weekly
	Grab	Ammonia-N (mg/l)	Bi-weekly
	Grab	Ortho-Phosphate-P (mg/l)	Bi-weekly
Outlet From ICW Pond 4	Grab	er off of BOD (mg/l)	Monthly
	Grab Grab	COD (mg/l)	Bi-weekly
	Grabinstan o	Ammonia-N (mg/l)	Bi-weekly
	Grab	Ortho-Phosphate-P (mg/l)	Bi-weekly

Table 1

APPENDIX E

29 APR 2013 13 119 BY ATER ENVIRONMENTAL-CIV

Received Line ICW – Assimilative Capacity Assessment

other

REDMILLS,

GORESBRIDGE, CO KILKENNY

PROPOSED INTEGRATED CONSTRUCTED WETLAND (ICW) SYSTEM

Innovation Centre Green Road Carlow

Received

Tel:- 059 91 33084 Fax:- 059 91 40499 Email:- info@iece.ie

C

Integrated Engineering Consulting An Associate Company of VA Consulting Engineers & Geotechnical & Environmental Services Ltd

EPA Export 31-10-2019:03:52:44

				Contraction of the second seco	ANN DEC	eived	90	
C				2	g APR 20	131	YE CONS WATERVENVIRON	ULTING IMENTAL-CIVIL
And and a second se	Table of	f Contents			k	2 	ON	
	1. INT	RODUCTION					5	
	2. DES	SCRIPTION OF RECI	EIVING WATER COU	R\$E				4
	3. ASS	SESSMENT OF FLO	W CONDITIONS IN R	ECEIVING WATERCOU	RSE			4
	4. BAC	CKGROUND PHYSIC	CO-CHEMICAL QUAL	LITY OF RECEIVING WA	TERCOURSE .			4
		Table 1: Hydrocher	mical Results for Ba	rrow River at "Upstrea	m Barrow" (L	Jpstream of eisch	arge location)	5
	5. CH/	ARACTERISTICS OF	WASTEWATER EFFL	LUENT			,	
	5.16	Effluent Volume				\	<u>.</u>	
	5.26	Effluent Quality						
	6 455							5
	D. ASS	Undre shemiad Rev	culto for Barrow Riv	or at "Illoctroam Parro	w" /l lactroam	of discharge line	ation	د _ه ي. 5
	Table 1: F	Predicted Wat	er Quality in Rec	er at "Opstream Barro eiving Watercours	ner inserver	i oj alscharge loc		6
	7. SUM	MMARY AND CON		Mit and				
	8. REF	ERENCES		OS STOL				7
				an Quill Calif				
			4	CT ALC				
	/	Appendix A E	Estimation of 95%	Elow in River Barr	ow (14_217)			
			Stor,					
		Appendix B A	Assimilative Capac	ity Calculations				
			Co.					
	" (I							
ilini, .in								
	William Conno	bily & Sons		Page 3 of 3		iE771 –Ass	imilative Capacity Asses	sment

i.

1. INTRODUCTION

IE Consulting was retained by William Connolly & Sons Ltd. to undertake an essimilative capacity assessment in respect of a proposed Integrated Constructed Wetland (ICW) system to be constructed on lands opposite the Connolly's Redmills facility, Goresbridge Co Kilkenny.

29 APR 2013 13/196

The proposed ICW system shall intercept and treat surface water runoff from a hardstanding are within the Redmills facility. The ICW system shall comprise a series of constructed ponds interconnected with pipeworl and planted with emergent plant spices. Surface water run-off from hardstanding areas shard ischarge to the first pond of the ICW system and flow via gravity through the remaining ponds. Final difference from the last pond of the ICW system shall be to an adjacent drainage ditch, which in turn discharges the fiver Barrow approximately 140m downstream.

This assimilative capacity assessment is therefore based on consideration that the River Barrow is the primary receiving watercourse and considers the impact that the discharge from the ICW system may or may not have on the River Barrow.

2. DESCRIPTION OF RECEIVING WATER COURSE

In the context of this particular assimilative capacity assessment the River Barrow is the 'receiving watercourse'. The River Barrow is located to the east of the proposed ICW site and flows in a southerly direction along the site boundary.

3. ASSESSMENT OF FLOW CONDITIONS IN RECEIVING WATERCOURSE

The 95%ile flow condition in the River Barrow the point of discharge were sourced from the EPA's online *Hydrometrical Data System*, the full report can be found in *Appendix A*. The catchment area of the receiving watercourse upstream of the discharge location estimated at approximately 2523.5 km², and predominately comprises agricultural lands with smaller areas of urban development.

BACKGROUND PHYSICO-CHEMICAL QUALITY OF RECEIVING WATERCOURSE

The current status or classification of the receiving watercourse is 'Good' under the Water Framework Directive (WFD). As part of an on-going surface water monitoring program undertaken by Connolly's Redmills water samples from the River Barrow are obtained and laboratory on a regular basis from a point approximately 30m upstream of the proposed ICW system. *Table 1* illustrates the levels of COD, Ammonia and Orthophosphate analysed at this upstream location at various dates between 2010 and 2012.

William Connolly & Sons

			a Laman R	2013
Date.	COD (mg/1 O ²)	Ammonia (me/ii)	Ortho-P (mg/l)	
31-08-2010	11	0.01	K. Kil	(i • • • • ¹ · • • · · · · · · · · · · · · · · · ·
24-02-2011	13	0.05	0.03	
15-06-2011	17	0.01	0.05	
20-10-2012	19	0.06	-	
25-01-2012	19	0.01	0.05	
17-05-2012	25	0.01	0.05	Ĵ
Total	104	0.15	0.18	
Average Value	17.33	0.03	0.05	

Table 1: Hydro-chemical Results for Barrow River at "Upstream Barrow" (Upstream of distribute location

5. CHARACTERISTICS OF DISCHARGE FROM ICW SYSTEM

5.1 Discharge Volume

(

The maximum volume of discharge from the proposed ICW system is 100.8m³/day, or 0.0012m³/s (see ICW planning report for details of ICW discharge volumes

5.2 Discharge Quality

The proposed ICW system has been designed to achieve the following effluent discharge quality, based on a maximum daily discharge volume of 200.8m³/day :-

COD – 30 mg/l

Total Ammonia (N) – 0.96 mg/l Ortho-Phosphate (P) – 0.34 mg/l *

(*Note: Ortho-Phosphate is assumed as Molybdate Reactive Phosphorus)

ASSIMILATIVE CAPACITY CALCULATIONS

The assimilative capacity assessment outlines the water quality for the parameters of COD, Total Ammonia and Ortho-Phosphate. It uses the 95% ile flow of the receiving watercourse (River Barrow) of **5.758m³/s**, the upstream background water quality information as illustrated in *Table 1* above and the discharge volume and average discharge quality from the proposed ICW system as listed in *Section 5* above.

The Assimilation Capacity (WAC) at daily average discharge flow is calculated as follows:

William Connolly & Sons

IE771 - Assimilative Capacity Assessment

ÎÓN

Co. Counci

Where:

 Q_u = the receiving watercourse flow upstream of the discharge (5.758m³/s)

m of the discharge C_u = the background concentration of pollutants in the receiving watercourse upspan Q_d = the discharge flow from the proposed ICW system (0.0012m³/s) C_d = concentration of pollutants in the discharge from the ICW system C_{ds} = the resultant concentration of pollutant in the receiving watercourse

 $C_{ds} = \frac{((Q_u \times C_u)^2 + (Q_d \times C_u)^2 +$

(See Appendix B for assimilative capacity calculations).

A summary of the results from the assimilative capacity calculations are illustrated be seen in Table 2 below:-

	at V		
Date S	CGĐ S(ng/l)	Ammonia (mg/l)	Ortho-P
Background Water Quality in Receiving Watercourse (upstream of discharge)	^{رم 1} 7.33	0.03	0.05
Average Discharge Quality from ICW System	30	0.96	0.34
Predicted concentration after Discharge	17.33	0.030	0.050
Increase from Background Concentration	0.01%	0.63%	0.12%

edicted Water Quality in Receiving Watercourse

SUMMARY AND CONCLUSION

An assimilative capacity assessment has been undertaken for the River Barrow, which will be the receiving watercourse for discharge from the proposed ICW system.

Using the EPA's Hydrometric Data System, the 95%ile flow of the receiving watercourse was determined along the reach adjacent to the proposed discharge location. Background quality of the receiving watercourse was based on water quality analysis undertaken by Connolly's Redmills between 2010 and 2012.

In summary, the assimilative capacity assessment indicates that discharge from the final pond of the proposed ICW system will not have an adverse impact on the water quality in the River Barrow.

William Connolly & Sons

ouno

8. REFERENCES

Ć.

161

- European Communities Environmental Objectives (Surface Waters) Reg 2009.
- Environmental Protection Agency (EPA) Hydrometric Data System

William Connolly & Sons

IE771 –Assimilative Capacity Assessment

SECTION

3

IE CONSUL

APR 2013

Ś.I. No.

Received

.

11

150 other

Kilker

272

29 At ons 2009.

196

Council

Co. Council

The source hydrometric data used to estimate the flow duration curve ordinates for ungauged catchments was obtained from (1) water level data and (2) the rating curve(s) generated for each hydrometric station. The Environmental Protection Agency and the Office of Public Works used these data, respectively, to calculate daily mean flows. The daily mean flows were then used by the Environmental Protection Agency to prepare flow duration curves for each station. Neither body accepts any liability for the subsequent handling of the data.

The source of hydrometric data used to estimate the flow duration curveordinates for ungauged catchments was obtained from (1) water level data and (2) the rating curve(s) generated for each hydrometric station. The Environmental Protection Agency and the Office of Public Works used these data, respectively, to calculate daily mean flows. The daily mean flows were then used by the Environmental Protection Agency to prepare flow duration curves for each station. Neither body accepts any liability for the subsequent handling of the data.

 κ_{11}

The user should familiarise himself/herself with the catchment being studied and confirm that the ungauged site is in a natural catchment where flows conditions are suitable for the use of the model.

It is strongly recommended that the user examine the catchment descriptors contained in the report produced and confirm that the percentages of the various constituent elements are comparable to a natural catchment.

If the flow in a catchment is not entirely natural, the estimation of flows using the model in these catchments could be affected due to:

- existence of local conduit karst within the catchments
- the selected location itself is on local conduit karsts
- regulation of the river flow on the river change (e.g. power station, sluice gates etc)
- impacts of abstractions upstream of the selected location or the impact of the discharge associated with the abstraction into the same/different catchment;
- estimates of flow being sought at locations effected by storage effects at, or near, lake outfalls;
- lack of similar catchments with observed flows, ie where catchment descriptors lie outside the range of available gauging station catchments (e.g. the catchment area is under 5 km²);
- any other special circumstances that may affect river flows.

Expert judgement will be required to ensure that the estimate of flow is not unduly affected by any of these influences.

Please note that the model does not provide estimates of flood peaks and, specifically, should not be used for that purpose.

The EPA has also prepared estimates of DWF and long term 95 percentile flows which are also presented on the EPA web site. These data are presented at http://www.epa.ie/whatwedo/monitoring/water/hydrometrics/data/

The data produced by the model for specific stations should be compared to the data contained in this file of DWF and long term 95percentile flows.

Disclaimer

The source hydrometric data used to estimate the flow duration curve ordinates for ungauged catchments was obtained from (1) water level data and (2) the rating curve(s) generated for each hydrometric station. The Environmental Protection Agency and the Office of Public Works used these data, respectively, to calculate daily mean flows. The daily mean flows were then used by the Environmental Protection Agency to prepare flow duration curves for each station. Neither body accepts any liability for the subsequent handling of the data.

4.41

1.01

t is

. . ÷р.

> The source hydrometric data used to estimate the flow duration curve ordinates for ungauged catchments was obtained from (1) water level data and (2) the rating curve(s) generated for each hydrometric station. The Environmental Protection Agency and the Office of Public Works used these data, respectively, to calculate daily mean flows. The daily mean flows were then used by the Environmental Protection Agency to prepare flow duration curves for each station. Neither body accepts any liability for the subsequent handling of the data.

The source hydrometric data used to estimate the flow duration curve ordinates for ungauged catchments was obtained from (1) water level data and (2) the rating curve(s) generated for each hydrometric station. The Environmental Protection Agency and the Office of Public Works used these data, respectively, to calculate daily mean flows. The daily mean flows were then used by the Environmental Protection Agency to prepare flow duration curves for each station. Neither body accepts any liability for the subsequent handling of the data.

		SECTION
epa		29 APR 2013 13 119
Catchment Descriptors		A CONTRACT
General		
Descriptor	Umts	Value Value
Area	sq km	2523.5
Average Annual Rainfall (61-90)	mm/yr	862
Stream Length	km	1848.9
Drainage Density	Channel length (km)/catchment area (sqkm)	0.7
Slope	Percent Slope	2.8
FARL	Index (range 0:1)	1
Soll		
Code		% of Catchment
Poorly Drained	á	<mark>[%] 23.5</mark>
Well Drained	14. 5V off	47.6
Alluvmin	es offor a	5.6
Post	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE	22.2

QP)

. Solo

, ô

ofcopy Ś

0

1.2

Disclaimer

Peat

Water

Made

,

.

Insciaimer The source hydrometric data used to estimate the flow duration curve ordinates for ungauged catchments was obtained from (1) water level data and (2) the rating curve(s) generated for each hydrometric station. The Environmental Protection Agency and the Office of Public Works used these data, respectively, to calculate daily mean flows. The daily mean flows were then used by the Environmental Protection Agency to prepare flow duration curves for each station. Neither body accepts any liability for the subsequent handling of the data.

an fan an ar an		n an		SECTION	
			29 AP	Received 13 119 R 2013	6 uneil
SUDSOL	L'Hérméability				
Code	Explanation		%of Catchine		
н	High		16.5		
м	Moderate		46.8		
L	Low		20.5		· · ·
ML	Moderate/Low		0	M M	
NA	No Subsoil/Bare Rock		16.2		

Aquifer			
Code	Explanation	%of@atchman*<	
LG_RG	LG:Locally important sand-gravel aquifer RG: Regionally important sand-gravel aquifer	14.5	
LL	Locally important aquifer which is moderately productive only in local zones	35.5	
LM_RF	LM: Locally important aquifer which is generally moderately productive RF: Regionally important fissured bedrock aquifer of the second second second second second second second second	6.7	
PU_PL	PU: Poor aquifer which is generally unproductive PL: Poor aquifer which is generally unproductive except for local zones	17.2	
RKC_RK	Regionally important karstified aquifer commated by conduit flow	0	5
RKD_LK	Regionally important karstified adulter dominated by diffuse flow	25.5	

Stations in P	ooling,group, 🔬 👾	and the second state	
%ile Flow	Station 1	Station 2	Station 3
5	07012	15006	07009
10	07012	15006	07009
20	07012	15006	07009
30	07012	15006	07009
40	07012	15006	07009
50	07003	14019	07009
60	07003	14019	07009
70	07003	14019	07009
80	07003	14019	07009

Disclaimer

> .

> > The source hydrometric data used to estimate the flow duration curve ordinates for ungauged catchments was obtained from (1) water level data and (2) the rating curve(s) generated for each hydrometric station. The Environmental Protection Agency and the Office of Public Works used these data, respectively, to calculate daily mean flows. The daily mean flows were then used by the Environmental Protection Agency to prepare flow duration curves for each station. Neither body accepts any liability for the subsequent handling of the data.

.

C	ep		(29 APR 7	SECTION Derved 013 13 11 96
Г	90	07003	14019	07009 K	
	95	07003	14019	07009	
			end contraction of the second	Live John Contraction of the second s	

...,

19964

-je ih i tri sél

, ha na

Disclaimer The source hydrometric data used to estimate the flow duration curve ordinates for ungauged catchments was obtained from (1) water level data and (2) the rating curve(s) generated for each hydrometric station. The Environmental Protection Agency and the Office of Public Works used these data, respectively, to calculate daily mean flows. The daily mean flows were then used by the Environmental Protection Agency to prepare flow duration curves for each station. Neither body accepts any liability for the subsequent handling of the data.

The source hydrometric data used to estimate the flow duration curve ordinates for ungauged catchments was obtained from (1) water level data and (2) the rating curve(s) generated for each hydrometric station. The Environmental Protection Agency and the Office of Public Works used these data, respectively, to calculate daily mean flows. The daily mean flows were then used by the Environmental Protection Agency to prepare flow duration curves for each station. Neither body accepts any liability for the subsequent handling of the data.

APPENDIX B

29 APR 2013 13 1 196

Kuker

IE SONTULTING

Juncill

()²⁴

Received St Assimilative Capacity Calculations

other

	Conservative D				
WATER-ENVIRONMENTAL-CIVIL	- Connolly S Re	increase			
COD					
Background stream conc	17.33				
Effluent conc	30				
Effluent flow m3/s	0.0012		1		
Stream avg now mais	5.756				
Predicted conc. Avg flow	17.333	0.01			
Ammonia					
Background stream conc	0.03				
Effluent conc	0.96				
Effluent flow m3/s	0.0012				
Stream avg flow m3/s	5.758				
Predicted conc. Avg flow	0.030	0.63			
Ortho-P					
Background stream conc	0.05				
Effluent conc	0.34			· 150.	
Effluent flow m3/s	0.0012			ather	
Stream avg flow m3/s	5.758			17. my	
Predicted conc. Avg flow	0.050	0.12	Ser.	diora	
			OILOUIS		
			ion let		
		059	o l		
		*01 J12	r.		
		⁵ 08,			
		x or			
		ð V			
	Cor				
	~				

•

> s 1 1

. .

00 L

5 a. - 1 and d

li ilst

Received K

12023