

Attachment 7-1-3-2-Emission Consent of convinginous parties and other lands of the convinginous parties and convincion parties a Impact Assessment

IEL Review Application W0232-01

Application ID LA003577

Dublin Waste to Energy Limited

19 June 20199

Quality information

Prepared by

Frankie Pickworth Air Quality Consultant Verified by

Gareth Hodgkiss Associate Director Approved by

Yuz Hays

Fergus Hayes Director

Revision History

Revision	Revision date	Details	Authorized	Name	Position
DRAFT	January 2019	Draft report	Υ	FH	Director
01	February 2019	Final Report	Υ	FH	Director
02	June 2019	Revised Final Report	Υ	FH	Director

Prepared for:

Dublin Waste to Energy Limited Mark Heffernan, Ringsend, Dublin 4

Prepared by:

Frankie Pickworth
Air Quality Consultant
E: frankie.pickworth@aecom.com

© 2019 AECOM Limited. All Rights Reserved.

This document has been prepared by AECOM Limited ("AECOM) for sole use of our client (the "Client") in accordance with generally accepted consultancy principles the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Prepared for: Dublin Waste to Energy Limited Attachment-7-1-3-2-Emissions Impact Assessment.docx

Table of Contents

1.	Introduction	5
2.	The Receiving Environment and Predicted Impacts 2006	5
	orted Background Air Quality	
Repo	orted Predicted Impacts	6
3.	DWtE, Commissioning and Operation 2017/2018/2019	8
4.	Receiving Environment 2018	12
	ing Air Quality	
5.	Updated Air Quality Impact	17
Upda	ated Dispersion Model Results	17
6.	Conclusions	22
Ann	nendix A 1	23

1. Introduction

Dublin Waste to Energy (DWtE) Limited is proposing an increase in the annual capacity of the waste to energy plant at Pigeon House Road, Poolbeg from the current 600,000 tonnes per annum (tpa) to 690,000 tpa.

This report focuses on impacts on air quality with a particular emphasis on:

- The receiving environment and predicted impacts as described in the original environmental impact assessment completed in 2006;
- Emissions to air from the facility since commissioning in 2017;
- The receiving environment in 2018 and an updated air quality impact assessment.

2. The Receiving Environment and Predicted Impacts 2006

Reported Background Air Quality

Background data was sourced from a baseline survey undertaken between July 2003 and December 2005. The survey included the monitoring of the following pollutants:

- Oxides of nitrogen (NO_X);
- Nitrogen dioxide (NO₂);
- Particulate matter (PM₁₀);
- Fine particulate matter (PM_{2.5});
- Benzene (C₆H₆);
- Sulphur dioxide (SO₂);
- Heavy metals (Antimony (Sb), Arsenic (As), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Copper (CU),
 Mercury (Hg), Manganese (Mn), Nickel (Ni), Lead (Pb), Thallium (Tl) and Vanadium (V));
- Hydrogen Chloride (HCI);
- Hydrogen Fluoride (HF); and
- Polychlorinated dibenzodioxins (PCDDs)/Polychlorinated dibenzofurans (PCDFs).

Some of the listed pollutants were monitored using a continuous analyser at a location on the Irish Glass Bottle Co. Ltd. site in Ringsend, Dublin 4. NO₂ and SO₂ were also measured passively at four other locations in close proximity to the DWtE plant site, at Irishtown Nature Park, Sean Moore Park, Sandymount Green, Ringsend Park, and further afield, at Belgrove Road, in Clontarf, and on Bull Island.

This data is provided in Table 2.1, as it was summarised in the 2006 EIS. The data indicated that none of the pollutants monitored exceeded the air quality Limit Values during the survey. It also indicated that concentrations of NO_2 , PM_{10} and $PM_{2.5}$ were elevated at the monitoring site/s situated at the roadside locations (Irish Glass Bottle site), and that concentrations of SO_2 were elevated at the monitoring site situated close to the Port and nearby industry.

Table 2-1: Monitored Background Air Quality Survey Data, as reported in the 2006 EIS

Pollutant	Monitoring Info	Averaging Period	Average Concentration µg/m³	Limit Value ¹ µg/m³
	Continuous analyzar hatusan July 2002 and August 2005	Annual	30.5	40
NO ₂	Continuous analyser between July 2003 and August 2005 (continuous)	99.8 th percentile of 1 hour values	101.0	200
	Diffusion tube measurements between July 2003 and August 2005 (24 monthly results)	Annual	16.0 to 30.6	40
		Annual	34.0	40
PM ₁₀	Continuous analyser between July 2003 and August 2005 (three hundred and fourteen (314) 24-hour samples)	90 th percentile of 24-hour values	57.0	50
PM _{2.5}	Continuous analyser between September 2003 and October 2005 (sixty (60) 24-hour samples)	Annual	11.0	25
	Diffusion tubes between July 2003 and August 2005 (24 monthly results)	Annual	4.8	20
SO ₂	Diffusion tubes between January 2004 and March 2005 (2 monthly results only)	Annual	4.7 to 11.7	20
C ₆ H ₆	Diffusion tubes between July 2003 and August 2005 (16 weekly results)	Annual	2.0	5
HCI	Nylon Membrane Filter analysis between August 2003 and August 2005 (16 weekly results)	Annual	0.18	20
HF	Nylon Membrane Filter analysis between August 2003 and August 2005 (16 weekly results)	Amnual	0.01	0.3
Hg	ICP monitoring between August 2003 and August 2005 (16 weekly results)	Annual Annual	0.001	1
Cd	ICP monitoring between August 2003 and August 2005; (16 weekly results)	Annual	0.001	0.005
As	ICP monitoring between August 2003 and August 2005 (16 weekly results)	Annual	0.001	0.006
V	ICP monitoring between August 2003 and August 2005 (16 weekly results)	Annual	0.005	5
Ni	ICP monitoring between August 2003 and August 2005 (16 weekly results)	Annual	0.006	0.02

^{1.} Statutory limits for NO_x , NO_2 , PM_{10_1} , SO_2 , derived environmental assessment levels (EALs) for other parameters.

Reported Predicted Impacts

The results of the dispersion modelling assessment to inform the 2006 EIS are summarised in Table 2.2, which are based on the impact from maximum operation at the location of maximum impact. The results reported in the 2006 EIS refer to the inclusion of the cumulative and site traffic contributions within the background (ambient) concentrations reported.

Table 2.2 provides the relevant Environmental Assessment Levels (EALs) for each pollutant (including statutory air quality standards, where applicable), the background concentration (intended to represent existing conditions), the Process Contribution (the impact of emissions associated with the DWtE site's stack emissions) and the Predicted Environmental Concentration (the Process Contribution added to the background concentration), as well as the proportion of the Process Contribution and Predicted Environmental Concentration to the relevant EAL.

The predicted results suggested that impacts would not be significant and that the Process Contribution would be less than 10% of the EAL for the majority of pollutants, and that there would be no exceedances of the EALs considered.

Table 2-2: Predicted Air Quality Values, as reported in the 2006 EIS

Pollutant	Averaging Period	Environmental Assessment Level (µg/m³ unless stated)	Background/ Ambient Concentration (µg/m³)	Process Contribution (PC) (µg/m³ unless stated)	PC % of EAL	Predicted Environmental Concentration (PEC) (µg/m³ unless stated)	PEC % of EAL
NO ₂	1-Hour	200	55.2	39.1	20	94.3	47
	Annual	40	27.6	3.3	8	30.9	77
NO _x	Annual	30	19.8	3.7	12	23.5	78
	1-hr	350	28.0	19.3	6	47.3	14
SO ₂	24-hr	125	14.0	7.1	6	21.1	17
	Annual	20	14.0	0.9	5	14.9	75
DM	24-hr	50	30.0	0.6	1	30.6	61
PM ₁₀	Annual	40	30.0	0.2	1	30.2	76
PM _{2.5}	Annual	25	10.5	0.2	1	10.7	43
СО	8-hr	10,000	120.0	51.0	1	171.0	1.2
TOC	Annual	5	1.7	0.2	5	1.9	38
.ue	1-hr	3	2.0 x10 ⁻⁰²	0.3	9	0.3	9
HF	Annual	0.3	1.0 x10 ⁻⁰²	2.0x10 ⁻⁰²	7	3.0 x10 ⁻⁰²	10
PCDD/PCDF	N/A	N/A	5.5 x10 ⁻⁰⁵	2.3x10 ⁻⁰⁶	N/A	5.9 x10 ⁻⁰⁵	N/A
PAHs	Annual	1,000	180.0	2.3x10	<1	180.0	18
Hg	Annual	1	1.0 x10 ⁻⁰³	011 1X10-03	<1	2.1 x10 ⁻⁰³	0
Cd	Annual	5.0 x10 ⁻⁰³	1.0 x10 ⁻⁰³	€ 1.1x10 ⁻⁰³	22	2.1 x10 ⁻⁰³	42
As	Annual	6.0 x10 ⁻⁰³	1.0 x10 ⁻⁰³¹⁰	4.0x10 ⁻⁰⁴	7	1.4 x10 ⁻⁰³	23
V	Max 1-Hour	1	1.0 ×10 021	8.0x10 ⁻⁰³	1	1.8 x10 ⁻⁰²	2

It is noted that additional modelling, including the use of CALPUFF, was completed in 2007/2008 to support the Waste Management Licensing Process. However, the predicted air quality impacts did not differ materially from those presented in the 2006 EIS.

3. DWtE, Commissioning and Operation 2017/2018/2019

The DWtE plant was commissioned in the summer of 2017 and began accepting waste as an annual run rate equivalent of 600,000 tonnes in September 2017.

Emissions to air through the main stack have been constantly monitored since commissioning by means of a permanently installed continuous emission monitoring (CEM) system and quarterly independent testing by a stack gas testing company.

The CEM systems (one for each line), plus a redundant system, continuously monitors flue gas flow, NO_x, SO₂, particulate, HCl, and Total Organic Carbon (as C). The CEM systems were designed, commissioned and calibrated in accordance with IS EN 14181 Stationary source emissions. Quality Assurance of automated measuring systems.

The independent quarterly testing has been completed by Exova Catalyst, a UKAS ISO/IEC 17205 accredited testing laboratory. The parameters tested included all the parameters measured by the CEMs system as well as Hg, Cd & Tl, other heavy metals, hydrogen fluoride, and PCDD/PCDF.

AECOM has reviewed the independent test data for eight sets of quarterly tests and this data is summarised in Tables 3.1a, 3.1b and 3.2 below. Tables 3.1a and 3.1b contains a summary of the actual data while Table 3.2 details the average for each parameter over the series of tests, the relevant Emission Limit Value (ELV) as defined in the site IE Licence issued by the EPA, the actual average mass flow of the pollutant as released to atmosphere, the licensed mass flow (ELV multiplied by the maximum permitted flue gas flow rate) and indicative percentages of the ELV and mass flow represented by the average data.

The data indicates that emissions to air from the DWtE facility are generally running at less than 10% of the licence limits with respect to the concentration ELVs and mass flows. The mass flow of PCDD/PCDF is less than 1% of the licence limit, while the mass flow of HCl is less than 0.5% of the limit value.

The only exception to the statements in the paragraph above is with respect to NO₂ which is averaging 72.44% of the ELV and 62.6% of the mass flow limit, values still well below relevant limit values.

AECOM has also reviewed the 2018 CEM data and available 2019 data which consists of validated 30-minute average values for flue gas flow, NO_x, SO₂, particulate, HoI, and Total Organic Carbon (as C). This data is continuous and contains over 200,000 data-points per incineration line and is consistent with the data generated in the quarterly reports. The CEM data indicates no exceedance of any 30 minute or daily average values and long-term average results well within the minimum and maximums described in Table 3.1 below.

The ELVs in the sites IE licence are transcribed from Chapter IV and Annex VI of the Industrial Emission Directive (IED) (2010/75/EU). The ELVs are consistent with BAT as defined in the relevant Reference Document on the Best Available Techniques for Waste Incineration (August 2006). It is noted that a revised reference document on best available techniques is currently being finalised by the European IPPC Bureau and this will ultimately lead to revised and binding BAT conclusions and BATAELs. AECOM has reviewed the draft BAT AELs (Best Available Techniques (BAT) Reference Document for Waste Incineration Final Draft December 2018) and the performance of both lines of the DWtE plant and concluded that the plant is currently operating not only well within the ELVs as provided in the current licence but also well within the 2018 draft BAT AELs.

The data indicates a waste to energy plant operating within its design envelope with regard to capacity and also generating emission to air well below those anticipated and modelled in 2006 as part of the air quality impact assessment.

Application ID LA003577 Project number: PR-351653

Table 3-1a: Independent Emissions Data from 2017 and 2018 Quarterly Tests

		20-21st September 2017		4th-8th	4th-8th December 2017		8th-19th January 2018		30th April- 4	4th May 2018	17th - 26th Sept 2018	
Parameter	Units	Result			Result			sult	Re	sult	Result	
	Line	1	2	1	2	2	1	2	1	2	1	2
Total Particulate Matter	mg/m³	1.35	0.83	-	-	-	0.434	1.25	0.48	0.948	0.095	0.31
Hydrogen Chloride	mg/m³	0.03	0.072	-	-	-	<0.018	<0.017	<0.018	<0.015	0.02	<0.019
Cadmium & Thallium	mg/m³	< 0.00071	<0.00056	0.00067	0.00065	0.00068	<0.00063	<0.00066	0.00068	<0.00065	<0.00081	<0.001
Heavy Metals	mg/m³	0.159	0.13	0.052	0.105	0.040	0.019	0.020	0.03526	0.023	0.0114	0.0181
Mercury	mg/m³	< 0.00030	0.00091	0.00292	0.00056	0.00124	0.00056	0.00056	<0.00027	0.00084	0.00048	0.00073
Dioxins & Furans (NATO I-TEQ)	ng/m³	0.0035	0.00022	0.00235	0.00016	0.00016	0,000,003	0.00060	0.00169	0.00080	0.00082	0.00124
Hydrogen Fluoride	mg/m³	< 0.036	0.042	0.092	0.051	0.051pi	0.040	0.074	<0.049	<0.05	<0.038	0.09
Sulphur Dioxide	mg/m³	0.062	0.068	-		15Pectionites	3.59	2.95	0.37	0.36	0.84	0.41
Total VOCs (as Carbon)	mg/m³	2	0.29	-	For V	YIIO -	0.342	1.350	0.28	0.30	0.26	0.26
Oxides of Nitrogen (as NO ₂)	mg/m³	103.2	106.7	-	sent of U	-	150.6	156.7	139.2	173.20	117.74	163.03
Carbon Monoxide	mg/m³	1.82	0.23	ن -	187	-	11.11	15.03	6.29	5.30	2.75	14.80
Volumetric Flow Rate (REF)	Nm³/hr	211,623	236,824	226,647	240,009	234,447	227,461	223,451	229,496	232,687	245,802	240,015

Application ID LA003577 Project number: PR-351653

Table 3-1b: Independent Emissions Data from 2018 and 2019 Quarterly Tests

Parameter		12 th - 15 ^{tl}	h Nov 2018	21 st – 25 th J	anuary 2019	2 nd – 11 th April 2019		
	Units	Result		Re	sult	Result		
	Line	1	2	1	2	1	2	
Total Particulate Matter	mg/m³	0.09	0.40	0.336	0.54	0.114	0.317	
Hydrogen Chloride	mg/m³	0.016	0.025	0.018	0.02	0.03	0.018	
Cadmium & Thallium	mg/m³	0.00073	<0.00061	0.00062	0.001	0.00062	0.00065	
Heavy Metals	mg/m³	0.037	0.014	0.024	0.028	0.024	0.0072	
Mercury	mg/m³	<0.00023	0.00034	0.00043	0.00036	0.00069	0.00125	
Dioxins & Furans (NATO I-TEQ)	ng/m³	0.0022	0.00035	9 .00160	0.00060	0.00040	0.00043	
Hydrogen Fluoride	mg/m³	0.42	0.50	mer 0.11	0.05	0.17	0.051	
Sulphur Dioxide	mg/m³	3.88	6.95 ally ally	24.62	11.46	2.13	4.95	
Total VOCs (as Carbon)	mg/m³	0.28	0.26,010	0.28	0.35	0.28	1.28	
Oxides of Nitrogen (as NO ₂)	mg/m³	143.9	QUI 10153	127.30	140.48	179.70	163.40	
Carbon Monoxide	mg/m³	7.68	ection 10.26	11.47	13.09	3.69	10.17	
Volumetric Flow Rate (REF)	Nm³/hr	260,869	248,468	261,910	248,059	245,562	229,680	

Table 3-2: Average Emission Test Results

Total Particulate Matter 0.535 10 5.35 2.75 0.128 Hydrogen Chloride 0.024 10 0.24 2.75 0.0077 Cadmium & Thallium 0.0007 0.05 1.4 0.01375 0.0002 Heavy Metals 0.044 0.5 8.8 0.1375 0.01 Mercury 0.00075 0.05 1.49 0.01375 0.0002 Dioxins & Furans 0.001 (ng/m³) 0.1 1.04 0.0275 (ng/m³) (g/hr) Hydrogen Fluoride 0.113 2 5.63 0.55 0.027 Sulphur Dioxide 4.47 50 8.95 13.75 1.06 Total VOCs (as Carbon) 0.56 10 5.58 2.75 0.1327 Oxides of Nitrogen (as NO₂) 144.87 200 72.44 55 34.45 Carbon Monoxide 8.44 100 8.44 27.5 2.01 Volumetric Flow Rate (REF) 237,824 275,000 86.48 n/a n/a Note 1: ELVs are B 30-minute averages from W0232-01. Note 2: less than (<) values included in average at detection limit	of Licensed Mass Flow	Actual Mass Flow	Licenced Mass Flow	% of ELV %	ELV ¹ mg/m ³	Average mg/m³	Parameter
Hydrogen Chloride 0.024 10 0.24 2.75 0.0077 Cadmium & Thallium 0.0007 0.05 1.4 0.01375 0.0002 Heavy Metals 0.044 0.5 8.8 0.1375 0.01 Mercury 0.00075 0.05 1.49 0.01375 0.0002 Dioxins & Furans 0.001 (ng/m³) 0.1 1.04 0.0275 0.0002 NATO I-TEQ) (ng/m³) (g/hr) (g/hr) Hydrogen Fluoride 0.113 2 5.63 0.55 0.027 Sulphur Dioxide 4.47 50 8.95 13.75 1.06 Total VOCs (as Carbon) 0.56 10 5.58 2.75 0.1327 Dxides of Nitrogen (as NO2) 144.87 200 72.44 55 34.45 Carbon Monoxide 8.44 100 8.44 27.5 2.01	%	kg/hr	kg/hr			3	
Cadmium & Thallium 0.0007 0.05 1.4 0.01375 0.0002 Heavy Metals 0.044 0.5 8.8 0.1375 0.01 Mercury 0.00075 0.05 1.49 0.01375 0.0002 Dioxins & Furans NATO I-TEQ) 0.001 (ng/m³) 0.1 (ng/m³) 1.04 (g/hr) 0.0275 (g/hr) 0.0002 (g/hr) Hydrogen Fluoride 0.113 2 5.63 0.55 0.027 Sulphur Dioxide 4.47 50 8.95 13.75 1.06 Total VOCs (as Carbon) 0.56 10 5.58 2.75 0.1327 Oxides of Nitrogen (as NO2) 144.87 200 72.44 55 34.45 Carbon Monoxide 8.44 100 8.44 27.5 2.01	4.63	0.128	2.75	5.35	10	0.535	Total Particulate Matter
Heavy Metals 0.044 0.5 8.8 0.1375 0.01	0.21	0.0077	2.75	0.24	10	0.024	lydrogen Chloride
Mercury 0.00075 0.05 1.49 0.01375 0.0002 Dioxins & Furans (NATO I-TEQ) 0.001 (ng/m³) 0.1 1.04 0.0275 0.0002 (g/hr) Hydrogen Fluoride 0.113 2 5.63 0.55 0.027 Sulphur Dioxide 4.47 50 8.95 13.75 1.06 Total VOCs (as Carbon) 0.56 10 5.58 2.75 0.1327 Oxides of Nitrogen (as NO2) 144.87 200 72.44 55 34.45 Carbon Monoxide 8.44 100 8.44 27.5 2.01	1.21	0.0002	0.01375	1.4	0.05	0.0007	Cadmium & Thallium
Dioxins & Furans (NATO I-TEQ) 0.001 (ng/m³) 0.1 (ng/m³) 1.04 (g/hr) 0.0275 (g/hr) 0.0002 (g/hr) Hydrogen Fluoride 0.113 2 5.63 0.55 0.027 Sulphur Dioxide 4.47 50 8.95 13.75 1.06 Fotal VOCs (as Carbon) 0.56 10 5.58 2.75 0.1327 Oxides of Nitrogen (as NO2) 144.87 200 72.44 55 34.45 Carbon Monoxide 8.44 100 8.44 27.5 2.01	7.6	0.01	0.1375	8.8	0.5	0.044	Heavy Metals
(NATO I-TEQ) (ng/m³) (g/hr) (g/hr) Hydrogen Fluoride 0.113 2 5.63 0.55 0.027 Sulphur Dioxide 4.47 50 8.95 13.75 1.06 Total VOCs (as Carbon) 0.56 10 5.58 2.75 0.1327 Oxides of Nitrogen (as NO2) 144.87 200 72.44 55 34.45 Carbon Monoxide 8.44 100 8.44 27.5 2.01	1.29	0.0002	0.01375	1.49	0.05	0.00075	Mercury
Sulphur Dioxide 4.47 50 8.95 13.75 1.06 Total VOCs (as Carbon) 0.56 10 5.58 2.75 0.1327 Oxides of Nitrogen (as NO2) 144.87 200 72.44 55 34.45 Carbon Monoxide 8.44 100 8.44 27.5 2.01	0.9			1.04		0.001 (ng/m³)	
Total VOCs (as Carbon) 0.56 10 5.58 2.75 0.1327 Oxides of Nitrogen (as NO ₂) 144.87 200 72.44 55 34.45 Carbon Monoxide 8.44 100 8.44 27.5 2.01	4.87	0.027	0.55	5.63	2	0.113	Hydrogen Fluoride
Oxides of Nitrogen (as NO ₂) 144.87 200 72.44 55 34.45 Carbon Monoxide 8.44 100 8.44 27.5 2.01	7.74	1.06	13.75	8.95	50	4.47	Sulphur Dioxide
Carbon Monoxide 8.44 100 8.44 27.5 2.01	4.83	0.1327	2.75	5.58	10	0.56	Total VOCs (as Carbon)
	62.6	34.45	55	72.44	200	144.87	Oxides of Nitrogen (as NO ₂)
Volumetric Flow Rate (REF) 237,824 275,000 86.48 n/a n/a Note 1: ELVs are B 30-minute averages from W0232-01. Note 2: less than (<) values included in average at detection limit	7.3	2.01					Carbon Monoxide
Note 1: ELVs are B 30-minute averages from W0232-01. Note 2: less than (<) values included in average at detection limit The property of the control of th	n/a	n/a	n/a	86.48	275,000	237,824	Volumetric Flow Rate (REF)
Eorita Petro Mart Lee .			A. any other t	n limit	at detection	cluded in average	Note 2: less than (<) values in

4. Receiving Environment 2018

Existing Air Quality

Since the completion of the EIS in 2006, monitoring of NO_2 , NO_X , SO_2 and PM_{10} has been undertaken for several periods at the Dublin City Council Recycling Centre, Sean Moore Road, Ringsend, Dublin 4 using a continuous analyser. This data is summarised in Table 4-1. The equivalent data gathered at the Glass Bottle site in 2003 - 2005 is also provided again for comparison. Both the Glass Bottle site and Sean Moore Road site monitoring locations could be described as roadside, in that they are both located adjacent to Sean Moore Road (R131) and the concentrations measured directly influenced by the vehicles emissions from road traffic movements on that road.

Table 4-1: EPA Pollutant Monitoring Data, gathered at the Glass Bottle Factory (2003 – 2005) and Sean Moore Road (2009 – 2011, 2017 and 2018)

Dellorent	Accessed to the Books of	Air Quality Limit Value	Years						
Pollutant	Averaging Period		2003 - 2005 ¹	2009	2010	2011	2017	2018	
NO	1-Hour (99.8 th percentile)	200	101.0	(6) ²	$(1)^{2}$	$(0)^{2}$	99.5	87.9	
NO ₂ μg/m ³	Annual	40	30.5	27.7	30.4	28.1	27.3	21.9	
NO _x μg/m ³	Annual	N/A	N/A	56.6	58.0	50.0	49.7	54.3	
	1-hr (99.7 th percentile)	350	N/A [©]	N/A	17.3	N/A	24.7	N/A	
SO ₂ µg/m ³	24-hr (99.2 nd percentile)	125	χÑ/A	N/A	12.9	N/A	17.4	N/A	
	Annual	20	4.8	5.7	3.5	2.5	4.3	N/A	
DM ug/m³	24-hr (90.4 th percentile)	50 25015	ئە 57.0	(6) ³	(16) ³	(6) ³	21	30.5	
PM ₁₀ µg/m ³	Annual	40 005 ited	34.0	17.7	23.0	17.8	13.4	13.3	

¹ As reported in Table 2.1, ² Number of exceedances of the 1 hour mean NO₂ air quality standard, ³ Number of exceedance of the 24 hour PM₁₀ air quality standard.

There is no significant variation in the trend of monitoring data gathered at the Sean Moore Road site, between 2009 and 2018, other than the dip in annual mean NO₂ concentrations in 2018. The NO_X, NO₂ and SO₂ data gathered at the Sean Moore Road site from 2009 to 2017 is also fairly consistent with pollutant data gathered at the Glass Bottle site from 2003 to 2005, albeit generally slightly lower. However, annual mean and 1 hour mean PM₁₀ concentrations monitored at the Sean Moore Road site are markedly lower than those monitored at the Glass Bottle site.

Any suggestion of a reduction in pollutants associated with road traffic emissions (NO_X , NO_2 , PM_{10} and $PM_{2.5}$) can potentially be attributed to improvements in vehicles emissions technology that has occurred over the years, and the evolution of that technology into the local vehicle fleet. However, the effect of such improvements on concentrations of NO_X , NO_2 , PM_{10} and $PM_{2.5}$ is partially offset by the year on year increase in vehicle movements on the local road network, due to general growth and vehicle movements associated with nearby developments.

The 2006 EIS also noted a number of other industrial point sources (especially for NO_x) in the general vicinity of the Poolbeg peninsula i.e.:

- Synergen Power Limited operates a 750 MWth gas-fired power station on Pigeon House Road. The site
 environmental licence was revised in 2012 and again by technical amendment in 2015 to bring it into line with
 the ELVs for large combustion plant in the IED;
- The ESB operates Poolbeg Power Station. The 510 MWe thermal power station closed in 2010. The 470
 MWe CCGT plant was subject to licence review in 2012 and again in 2015 to ensure conformity with the ELVs
 in the IED.
- North Wall Generating Station consisted of two gas turbine generators with a combined 272 MWe. One of the
 turbines ceased operation in 2010 with the other continuing as a limited-hours peaking plant. Since 2016, the
 operational hours of this plant have been further limited and final closure is anticipated by 2023.

Consequently, there has been a significant reduction in point source emissions of NOx since 2006 as a result of plant closures and reduced ELVs as plants are updated to bring them into line with the IED.

The monitoring data reported in Table 2-1 and Table 4-1, as well as the reported 2006 EIS impacts summarised in Table 2-2, were influenced by local meteorology. Figure 4-1 provides a set of windroses based on wind speed and wind direction data gathered at Dublin Airport (2015 -2017). The updated windroses (which are similar to those used in the 2006 EIS) demonstrate that the predominant wind direction is blowing from west to east, although the wind does blow from all directions on occasions throughout the year. Therefore, maximum annual mean impacts from the DWtE stacks are likely to occur to the east of the site, in Dublin Bay, rather than at any of the sensitive receptors located to the north, south or west of the site. Because winds still blow from other directions over the course of the year, this assumption is unlikely to apply to maximum short term mean impacts.

Figure 4-1 also provides a windrose plot for 2018, gathered by a meteorological station located at the DWtE site. It demonstrates a similar pattern frequency in winds blown from each direction at Dublin Airport, but does suggest wind speeds are often lower at this location.

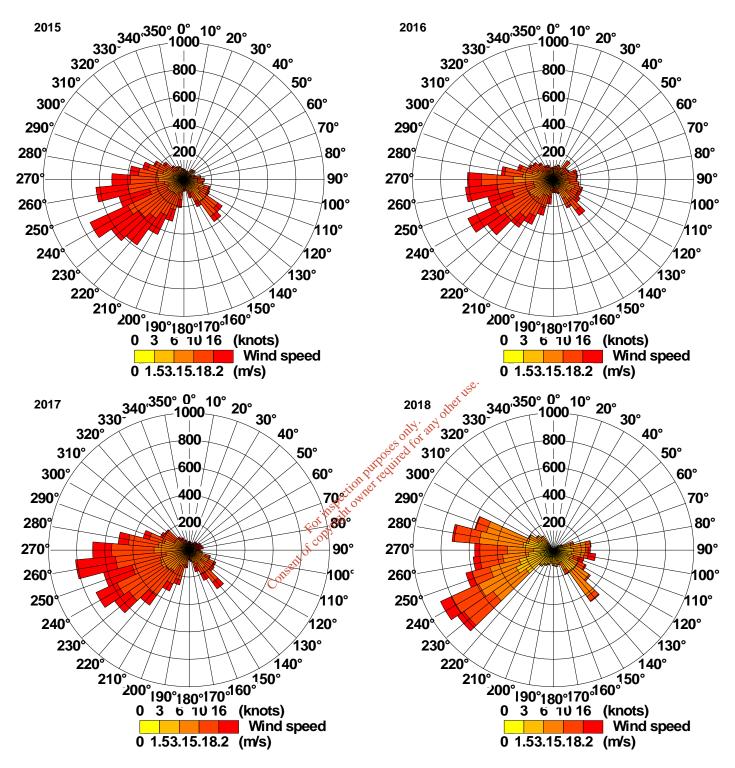


Figure 4-1: Dublin Airport Windrose Plots (2015 – 2017) and Site-Specific Windrose Plot (2018)

There are a number of human health sensitive receptor located in the vicinity of the DWtE site that could be impacted by emissions to air from the site's stacks and from the site's associated vehicle movements on the public road network. Selected human health sensitive receptors are shown in Figure 4-2 and include residential properties at Ringsend. In addition to the human health sensitive receptors, there are also a number of ecologically sensitive receptors nearby, which form part of the EU's Natura 2000 Network, that could be impacted by emissions to air from the DWtE site's stacks. Selected locations that represent these ecological receptors are also shown on Figure 4-2.

Figure 4-2: Air Quality Sensitive Receptors

5. Updated Air Quality Impact

Updated Dispersion Model Results

The assessment of air quality impacts associated with the operation of the DWtE site has been revisited. The contribution of the facility's stack emissions to pollutant concentrations have been quantified, at their currently permitted levels (maximum ELVs and maximum flue gas flow rate), at the worst affected offsite location. Modelling has been undertaken using three years of meteorological data for Dublin Airport (2015 – 2017), and one year of meteorological data from the DWtE site (2018). These results are provided in Table 5-1. It is noted that the ELVs set by the IE Licence for arsenic (As) differ to the Emission Limits included in the assessment that accompanied the 2006 EIS (i.e. 0.2 mg/m³ in the licence and 0.5 mg/m³ included in the 2006 EIS).

The results suggest that the licenced impacts are less than 10% of the relevant EALs for the majority of pollutants and averaging periods, with little risk of any exceedance of the EALs considered for the protection of human health. The largest impacts concern hourly mean NO₂ and annual mean As, although the Predicted Environmental Concentrations for both pollutants remain well below their relevant EALs.

Appendix A1 provides isopleths for the key pollutants of concern listed in Table 5-1. Plots are provided for annual mean NO₂, hourly mean NO₂, based on the worst of the meteorological years considered for Dublin Airport, and the 2018 meteorological year for the DWtE site.

**The Triple of The Table 5-1. Plots are provided for annual mean NO₂, hourly mean NO₂, based on the worst of the meteorological years considered for Dublin Airport, and the 2018 meteorological year for the DWtE site.

**The Triple of Table 5-1. Plots are provided for annual mean NO₂, hourly mean NO₂, based on the worst of the meteorological years considered for Dublin Airport, and the 2018 meteorological year for the DWtE site.

Prepared for: Dublin Waste to Energy Limited Attachment-7-1-3-2-Emissions Impact Assessment.docx

Table 5-1: Predicted Air Quality Values, Point of Maximum Offsite Impact (Stack Emissions Only)

Worst Case Dublin Airport Met Data (2015 – 2017)

Pigeon House Road Site Met Data (2018)

Pollutant	Averaging Period	Environmental Assessment Level (µg/m³ unless stated)	(µg/m³)	Process Contribution (PC) (µg/m³ unless stated)	PC % of EAL	Predicted Environmental Concentration (PEC) (µg/m³ unless stated)	PEC % of EAL	Process Contribution (PC) (µg/m³ unless stated)	PC % of EAL	Predicted Environmental Concentration (PEC) (µg/m³ unless stated)	PEC % of EAL
NO ₂	1-Hour	200	45.2 ^{(1),(2)}	40.3	20	85.5	43	49.1	25	94.3	47
	Annual	40	22.6 ⁽²⁾	1.3	3	23.9	60	2.7	7	25.3	63
00	1-hr	350	8.6 ^{(1),(3)}	9.9	3	18.5	5	12.0	3	20.6	6
SO ₂	24-hr	125	8.6 ^{(1),(3)}	2.8	2	11.4	9	4.8	4	13.4	11
DM	24-hr	50	26.2(1),(2)	0.2	<1	26.4	53,&°	0.5	1	26.7	53
PM ₁₀	Annual	40	13.1 ⁽²⁾	0.1	<1	13.2	33	0.1	<1	13.2	33
PM _{2.5}	Annual	25	9.5 ⁽²⁾	0.1	<1	9.6	38	0.1	<1	9.6	38
CO	Max 8-hr	10000	2000.0(2)	17.0	<1	2017.001	20	20.7	<1	2020.7	20
TOC	Annual	5	1.7 ⁽⁴⁾	0.1	2	1.80 20	36	0.1	2	1.8	36
HCI	Max 1-hr	100	0.5 ⁽⁴⁾	1.0	1	Duff Suit	2	1.6	2	2.1	2
HF	Max 1-hr	3	2.0x10 ^{-2(1),(4)}	0.2	7	ijon reid.2	7	0.3	10	0.3	11
пг	Annual	0.3	1.0x10 ⁻²⁽⁴⁾	1.3x10 ⁻²	4 🖧	2.3x10 ⁻²	8	2.7x10 ⁻²	9	3.7x10 ⁻²	12
Dioxins	Annual	N/A	5.6x10 ⁻⁸⁽⁴⁾	6.6x10 ⁻⁷	N/A ¹⁷ 10	7.2x10 ⁻⁷	N/A	1.4x10 ⁻⁶	N/A	1.5x10 ⁻⁶	N/A
Hg	Annual	1	1.0x10 ⁻³⁽⁴⁾	3.3x10 ⁻⁴	£163	1.3x10 ⁻³	<1	6.9x10 ⁻⁴	<1	1.7x10 ⁻³	<1
Cd	Annual	5.0x10 ⁻³	1.0x10 ⁻³⁽⁴⁾	3.3x10 ⁻⁴	JO 7	1.3x10 ⁻³	27	6.9x10 ⁻⁴	14	1.7x10 ⁻³	34
As	Annual	6.0x10 ⁻³	1.0x10 ⁻³⁽⁴⁾	1.3x10 ⁻³	22 est 22	2.3x10 ⁻³	38	2.7x10 ⁻³	45	3.7x10 ⁻³	62
V	Max 24-Hour	1	1.0x10 ⁻²⁽⁴⁾	4.9x10 ⁻²	5	5.9x10 ⁻²	6	6.8x10 ⁻²	7	7.8x10 ⁻²	8

⁽¹⁾ Short term Background Contributions are double the long-term contributions, (2) Background sourced from Environmental Protection Agency Monitoring undertaken at background locations in Zone A, in 2016, (3) Background sourced from Environmental Protection Agency Monitoring at Ringsend (2017 & 2018), (4) Background sourced from 2006 EIAR.

Table 5-2 presents updated impacts at nearby ecologically sensitive receptors for the pollutants of ecological concern (NO_X and SO_2). The updated results also include consideration of Ammonia (NH_3), which was not included in the 2006 EIS.

Table 5-2 suggests that impacts at the worst affected ecologically sensitive location are relatively minor (PC <5% of EAL), but does show that annual mean concentrations (PEC) of NO_X exceed the air quality Limit Value for this pollutant, because of elevated background/ambient conditions, which are already in exceedance.

Application ID LA003577 Project number: PR-351653

Table 5-2: Predicted Air Quality Values, Worst Case Ecological Site Impacts (Irishtown Nature Reserve) (Stack Emissions Only)

Worst Case Dublin Airport Met Data (2015 – 2017)

Pigeon House Road Site Met Data (2018)

Pollutant	Averaging Period	Environmental Assessment Level (µg/m³)	Background/ Ambient Concentration (µg/m³)	Process Contribution (PC) (µg/m³)	PC % of EAL	Predicted Environmental Concentration (PEC) (µg/m³)	PEC % of EAL	Process Contribution (PC) (µg/m³)	PC % of EAL	Predicted Environmental Concentration (PEC) (µg/m³)	PEC % of EAL
NO _X	Annual	30	37.2 ⁽²⁾	1.3	4	38.5	128	1.4	7	38.6	129
NH ₃	Annual	3 ⁽¹⁾	1.7 ⁽³⁾	0.1	3	1.8	60	0.1	3	1.8	60
SO ₂	Annual	20	4.8 ⁽⁴⁾	0.3	2	5.1	26	0.4	2	5.2	26

⁽¹⁾ NH₃ EAL based on the standard set by the UK Environment Agency assumed (2) Background sourced from Environmental Protection Agency Monitoring undertaken at background locations in Zone A, in 2016, (3) Background sourced from Environmental Protection Agency Research (Ambient Atmospheric Ammonia in Ireland, 2013-2014), (4) Background sourced from 2006 EIAR.

The impact (Process Contribution) reported in Table 5-1 and Table 5-2 are based on the ELVs as set by the existing IED Licence for the site.

The concentrations reported in Table 5-1 and 5-2 are also considered to be conservative, in that stack monitoring undertaken at the site reported in Section 3 above confirms that actual emission concentrations and mass flows are significantly less than those described in the IE Licence. The monitored emission concentration of HCl, for example, accounts for less than 1% of the licenced emission concentration for that pollutant. The monitored emissions concentrations for PM_{10} , Cd, Hg, Heavy metals, HF, SO_2 , TOC, CO and Dioxins and Furans account for less than 10% of the relevant licenced emission concentrations. The monitored emission concentration of NO_X accounts for 72% of its licenced emission concentration. Stack monitoring suggests that the volumetric flow rate is also lower than licenced, accounting for 86% of that value.

6. Conclusions

AECOM has reviewed emissions data from the DWtE facility for 2017, 2018 and 2019 and concluded that emissions to air are well below the ELVs in the sites IE Licence. The data indicates a waste to energy plant operating well within its design envelope with regard to capacity and also generating emission to air well below those anticipated and modelled in 2006 as part of the air quality impact assessment.

AECOM has remodelled emissions to air from the DWtE facility using both updated meteorological data from Dublin Airport (2015 – 2017) and site-specific data from the Pigeon House Road site (2018), using the latest version of the relevant dispersion modelling software ADMs 5. The model also assumed "worst-case" emissions at the licensed ELVs and mass flows rather than actual mass-flows.

The modelling results with respect to emissions to air from the DWtE stacks indicate that the worst-case direct air quality impact is <u>not significant</u> with the process contribution for most parameters less than 5% of the relevant EAL. The predicted levels for some of the metals (Cd, As and V) are higher. However, emission monitoring indicates emissions of these metals are very low and considerably below the relevant ELVs. Consequently, the metals impacts can again be considered to be <u>not significant</u> or <u>imperceptible</u>. The worst-case NO₂ process contribution is approximately 20% of the 1-hour average EAL.

Appendix A 1

Figure A-1: Annual Mean NO₂ Process Contribution (Dublin Airport Meteorological Data 2017)

Figure A-2: Annual Mean NO₂ Process Contribution (DWTE Meteorological Data 2018)

Figure A-3: 1hr Mean NO₂ Process Contribution (Dublin Airport Meteorological Data 2018)

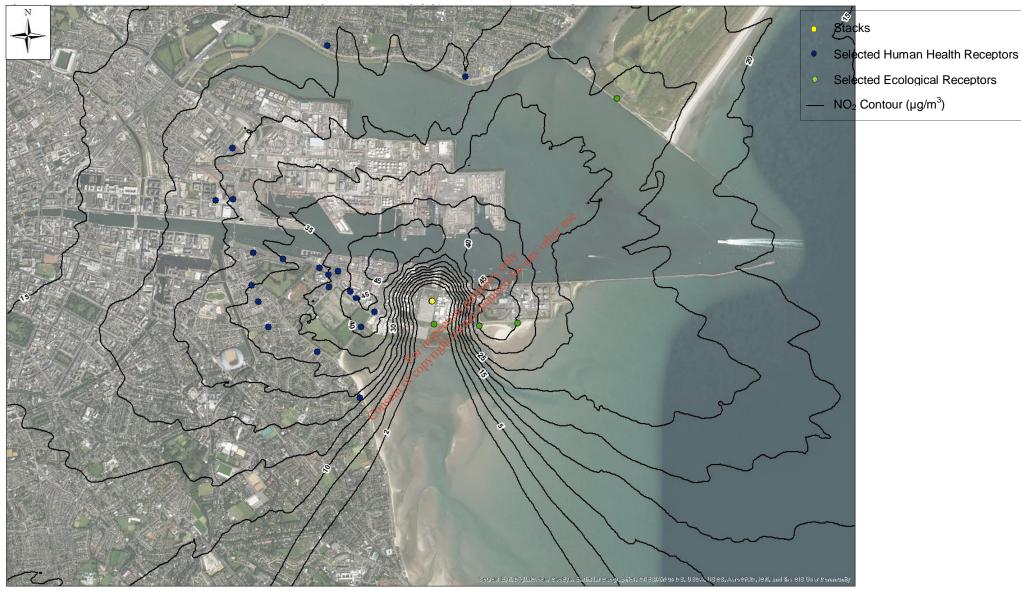


Figure A-4: 1hr Mean NO₂ Process Contribution (DWTE Meteorological Data 2018

aecom.com