

Comhairle Chontae Luimnigh

Tier 2 –Site Investigation Reports **VOLUME 1**

For

For Churchtown Landfill Site

Newcastle West

Co. Limerick

CORECT EPA Ref: S22-02465

19 October 2013

Prepared by:

Barry Murphy EE

Environment Section

Limerick County Council

Table of Contents

1.	Int	rodu	ction	. 1
	1.1	Bac	ckground	. 1
	1.2	Lim	nitations	. 2
	1.3	Rep	oort structure	. 2
	1.4	Tie	r 1 Risk Assessment	. 5
2	On	site	Site investigations	. 6
	2.1	Tria	al Hole Report	. 6
	2.1		Objective	
	2.1	L. 2	Methodology	. 6
	2.2	Slit	Methodology	. 8
	2.2	2.1	Objective	. 8
	2.2	2.2	Methodology	. 8
	2.3	Geo	ophysical Report by Minerex Geophysics Ltd	10
	2.4 P	ump	Test Report – Tobin Consulting Engineers	11
3			Surveys and Monitoring	
	3.1	Lan	ndfill Gas Survey 2012	12
	3.2	Gas	s Monitoring Boreholes	14
	3.3	Gas	s Survey by Odour Monitoring Ireland	16
	3.4	Gas	s Survey by AWN Consulting	17
	3.5	Env	vironmental Assessment of Receiving Waters	18
	3.6	Sur	vey of Possible Receptors	19
	3.7	Sur	vey of Private Wells	20
4	Tie	er 2 S	ampling and Analysis	21

	4.1	Introduction	. 21
	4.2	Solid Waste Analysis	. 22
	4.3	Leachate Analysis	. 28
	4.4	Geotechnical Testing	. 31
	4.5	Historic Leachate Monitoring by Limerick Co Council	. 32
5	Site	Information	. 34
	5.1	Exiting LFG Collection and Treatment System	. 34
	5.2	Existing Leachate Collection and Treatment System	. 34
	5.3	Gas Sim Model By Tobin Consulting Engineers	
	5.4	Type of Waste – EU Decision 2003/33/EU	. 35
	5.5	Composition of Wastedho	. 35
	5.6	Waste Age	. 38
	5.7	Volume of Waste	. 38
	5.8	Extent of the Waste	. 40
	5.9	Type of Waste – EU Decision 2003/33/EU Composition of Waste Waste Age Volume of Waste Extent of the Waste Decomposition of the Waste	. 41
	5.10	Depth and Composition of the Capping Layer.	
6	Арр	propriate Assessment	. 44

1. Introduction

1.1 Background

Limerick Co Council operated a historic landfill site at Churchtown, Newcastle West during the period 1950 to 1986. In accordance with the requirements of the *Waste Management (Certification of Historic Unlicensed Waste Disposal and Recovery Activity) Regulations 2008 (S.I. No. 524 of 2008)*, Limerick County Council is required to achieve Certification of Authorisation for the site. The Certification process requires that an Environmental Risk Assessment is carried out in accordance with the EPA document – 'Code of Practice: *Environmental Risk Assessment for Unregulated Waste Disposal Sites'*.

In accordance with the EPA Code of Practice, the Environment Risk Assessment is carried out in three phases;

• Tier 1 Conceptual Site Model and Risks creening and Prioritisation

• Tier 2 Site Investigations and Testing

• Tier 3 Refinement of CSM and Quantitive Risk Assessment.

This report contains the results of the Tier 2 site investigations carried out at Churchtown historic landfill site during the period November 2012 to August 2013. The investigations were carried out in accordance with the EPA Code of Practice: Environmental Risk Assessment for Unregulated Waste Disposal Sites. The site investigations were carried out in three phases:

Preliminary Investigation March 2012

Main investigation December 2012

Additional Investigation March 2013

The onsite investigations were designed and supervised by *Tobin Consulting Engineering* and the Environment Section of Limerick Co Council.

1.2 Limitations

This report consolidates the factual information obtained from each phase of the Tier 2 site investigations and provides information on the contamination sources, pathways and receptors at Churchtown landfill site.

The *Tier 1 Report for Churchtown Landfill Site* contains information on the operational history of the site together with geological information and the preliminary environmental risk assessment which is not included in this report. The Tier 1 Report also contains a detailed draft report produced by *Tobin Consulting Engineers* titled *Newcastle Risk Assessment for Churchtown Landfill Site- September 2007* which provides information on the extensive site investigation and monitoring carried out at the site in 2007.

This report contains mainly factual information intended for use and interpretation in a separate follow on report, *Tier 3 Report for Churchtown Landfill*.

1.3 Report structure

This report is divided into two volumes. Volume one contains:

- Reports and surveys carried out directly by Limerick Co Council
- Summary of surveys and investigations produced by external Consultants
- Additional site information on the waste body, existing leachate collection system and capping layer.

 Consent of the waste body, existing leachate collection system and capping layer.

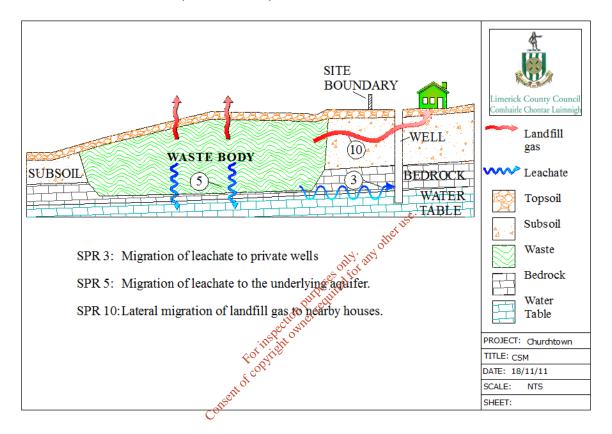
Volume two contains:

- Site investigation and survey reports produced by external Consultants
- Ongoing LFG monitoring 2013
- Appendices for site investigations carried out by directly by Limerick Co Council.
- Ecological Assessment
- Historical monitoring data from 2001 to 2003
- Environment assessment of receiving waters.
- Gas Sim Model

Table 1 shows a schedule of the location with the report of the various investigations and surveys.

Table 1: Schedule of Site Investigation and Survey Reports.

Description	Company	Report location
Trail Hole Report	Limerick Co Council	Main Report in Chapter 2.1,
		Appendix to report contained
		Volume 2 - Appendix 1
Slit Trench Report	Limerick Co Council	Main Report in Chapter 2.2,
		Appendix to report contained in
		Volume 2 - Appendix 2
Geophysical Survey	Minerex Geophysics	Report summarised in Chapter
	Ltd	2.3, full report contained in
		Volume 2 - Appendix 3
Pump Test	Tobin Consulting	Report summarised in Chapter
	Engineers	र्द्भ, full report contained in
	ारिय वर्ष	Volume 2 - Appendix 4
Gas Monitoring Boreholes	Limerick Co Council	Report contained in Chapter 3.2,
	on puredu	Appendix to report contained in
	spectite winer	Volume 2 - Appendix 5
VOC Surface Emissions and	Odour Monitoring	Report summarised in
Flux Box Survey	Ireland	Chapter3.3, full report
	eni	contained in Volume 2 –
Cos		Appendix 6.
VOC monitoring adjacent to	AWN Consulting	Report summarised in
Old Landfill Site.		Chapter3.4, full report
		contained in Volume 2 –
		Appendix 7.
Environmental Assessment of	Limerick Co Council	Report summarised in
receiving waters for		Chapter3.5, full report
Churchtown Landfill.		contained in Volume 2 –
		Appendix 8.
Survey, sampling and analysis	BHP Laboratories	Report summarised in Chapter4,
of Waste Materials from		full report in Volume 2 –
Landfill in Churchtown,		Appendix 9
Newcastle West		



Description	Company	Report location
Historic Sampling Analysis	Limerick Co Council	Information summarised in
from Pumping Station		Chapter 4.5, information
		contained in Volume 2 –
		Appendix 10
LFG Model for Churchtown	Tobin Consulting	Report summarised in Chapter
Landfill Site	Engineers	5.3, full report in Volume 2 –
		Appendix 11
Appropriate Assessment:	Limerick Co Council	Report summarised in Chapter
Screening Document		6, full report in Appendix 12

1.4 Tier 1 Risk Assessment

The preliminary CSM and risk screening for the site is contained in the Limerick Co Council report *Tier 1 Report for Churchtown Historic Landfill Site*. The site is classified as a HIGH risk site in accordance with the EPA Code of Practice. The CSM for the site is contained in the Tier 1 report and is reproduced below:

Onsite Site investigations

The objective of the site investigations was to provide information to confirm or otherwise the HIGH risk classification for the site as well as informing the quantitative risk assessment to be undertaken as part of the Tier 3 Report.

The intrusive onsite investigations consisted of trial holing and slit trenching and the installation of additional monitoring boreholes. The non-intrusive investigation consisted of two geophysical surveys.

2.1 Trial Hole Report

2.1.1 Objective

The objectives of excavating trial holes were to provide information on:

- The age and composition of the waste

- Potential for LFG and leachate production of the leaf and leachate production of the leac
- Condition of existing capping layer
- Allow sampling of the waste and leachate

2.1.2 Methodology

10 trial holes were excavated during the preliminary site investigation carried out between the 13th and the 18th February 2012. One additional trial hole, TH11 was excavated on the 3rd December 2012 to provide information to provide information on the source of high conductivity levels detected during the geophysical survey.

The location of the trial holes are shown in **Volume 2 -Appendix 1** on Drg ref: C -01.

The trial hole logs including photographs and detailed descriptions are shown in Volume 2 - Appendix 1.

The trial holes were excavated on a 40 x 40 metre rectangular grid. The location of each trial hole was set out using a one metre sub accuracy GPS. Minor changes were made to TH05 and TH09 to avoid an overhead power line.

The trial hole excavations were carried out under the supervision of Mr Barry Murphy, Executive Engineer, Limerick Co Council. A 20 T tracked excavator was used which permitted a maximum depth of 5 metres for the trial holes.

The top soil and subsoil was stripped and set to one side for latter reinstatement. The nature and depth of the capping layer was recorded and photographed. The excavation was continued in 300 m layers down to a maximum depth of 5 metres.

The trial holes were photographed and logged in accordance with British Standards BS5930:1999+A2: Code of Practice for Site Investigations. The trial hole locations were mapped onto the site specific topographical map drawn to Irish National Grid coordinates.

The trial holes were monitored for landfill gas (LFG) using a GFM series handheld gas monitor. The spoil heap was also monitored for LFG using the gas monitor and a 1 metre long searcher bar driven into the soil heap.

The factual information obtained from the trial holes in conjunction with the geophysical survey and analytical and sampling results are presented in Chapter 5 of this report.

2.2 Slit Trench Report

2.2.1 Objective

The objectives of taking the slit trenches were:

- Establish the extent of the waste around the site perimeter
- Provide information on the capping layer.

2.2.2 Methodology

12 Slit Trenches were excavated on the 15th February 2012, using a 20-tonne tracked machine fitted with a 450 mm wide bucket. An additional 3 number slit trenches were excavated on the 20th April 2013. The slit trenches were excavated under the supervision of Ms Carol Sweetnam, Executive Scientist, Regional Waste Office.

The location of the slit trenches is shown on drawing ref: C₂02 contained in **Volume 2** - **Appendix 2**

The slit trench logs including photographs are shown in Volume 2 - Appendix 2.

The extent of the slit trenches were logged using a sub metre hand held GPS. Each slit trench was photographed and a brief description was given of the waste encountered ad the condition of the capping layer.

It was not possible to extend Slit Trenches SL07 to SL14 to the site boundary due to a line of mature trees. No slit trenches were taken along the eastern perimeter of the site as the Tier 1 Risk Assessment Report (Tobin, 2007) established that the waste body extends onto the residential properties.

Slit trenches SL03 to SL06 show that the waste body extends beyond the northern boundary of the site. Slit trenches SL07 to SL14 show that the waste body extends very close to the southern boundary of the site. SL04 and SL15 show the extent of the waste body.

The information obtained from the slit trenches and the geophysical survey is used to define the extent of the waste body in Chapter 5.8 of this report.

2.3 Geophysical Report by Minerex Geophysics Ltd.

Minerex Geophysics Ltd. carried out a geophysical survey in 2012 consisting of EM31 ground conductivity, 2D resistivity and seismic refraction profiling. The main objective of the survey was to determine the extent and volume of the waste body and depth to bedrock.

In June 2013, Minerex carried out a further seismic survey of 8 short profiles in properties located along the eastern boundary of the site. The aim of the survey was to define the landfill boundary as precisely as possible.

The survey report and detailed results are contained in **Volume 2 -Appendix 3** and should be consulted for a detailed description of the site. The main findings of the geophysics report are:

- The boundary of the waste is well defined when combining the geophysics surveys, slit trenches and historic maps;
- The waste body extends beyond the northern and eastern present site boundaries. The eastern boundary of the site has been accurately defined using seismic profiling.
- The base of the quarry floor is 63 65 m AOD. The existing ground level varies from 68 to 78 m AOD. The thickness of the waste body is 5 to 15 metres;
- The waste body is approximately 1.86 Ha and contains approximately 186,000 m³ of waste.
- The resistivity data shows that it is likely that some leachate has penetrated in to the bedrock occurs at the north-east of the site.

The factual information obtained from geophysical report in conjunction with trial holing and slit trenching, analytical and sampling results are presented in Chapter 5 of this report.

2.4 Pump Test Report - Tobin Consulting Engineers

Tobin's Consulting Engineers supervised the installation of two additional groundwater monitoring boreholes and three gas monitoring boreholes in November and December 2013. The additional monitoring boreholes were installed by Irish Drilling Limited and the factual site report is contained in **Volume 2 – Appendix 4**

A 5 day pump test was carried out in December 2013 to provide information on the groundwater flow regime at the site.

The additional site investigation and pump test results are contained in **Volume 2 – Appendix 4** and should be consulted for a full description of the test.

The main findings of the additional monitoring boreholes and pump test are:

- The direction of groundwater flow is from the north east to south west direction towards the tributary of the Dooally River.
- The underlying limestone has a moderate to low permeability estimated as 4.5 x 10^{-7} m/s.
- The transmissivity of the bedrock is low to moderate and estimated at 2 m²/d.
- The landfill site does not have a major impact on the Dooally River.

3 Onsite Surveys and Monitoring

7 onsite surveys were carried out as part of the Tier 2 Site investigations. 4 related to LFG, 2 related to human presence and one to surface water quality in the nearby Dooally River.

3.1 Landfill Gas Survey 2012

A Landfill Gas (LFG) survey was taken as part of the Tier 2 Preliminary Site Investigation carried out in December 2012. The purpose of the survey was to check for the present of LFG in houses surrounding the landfill site and to check for the presence of LFG during and after the excavation of the trial holes.

The gas survey was carried out by Mr Barry Murphy, Executive Engineer, Limerick Co Council.

The measurements were taken with a GFM 456 Series hand held gas detector. Searcher bars were used to sample the subsoils to a maximum depth of 1 metre. Searcher bars were also used to detect the presence of LFG in the spoil heaps created during excavation of the trail holes.

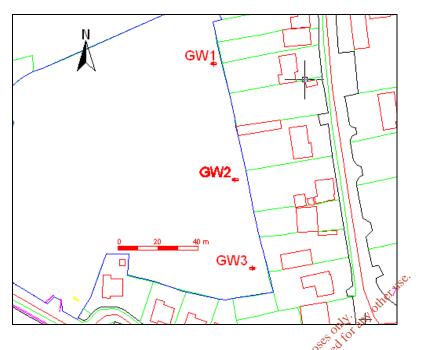
Picture 1: Monitoring of spoil heap for LFG

Churchtown Landfill Tier 2 Report

The gas sampling locations are shown on Figure 1 below.

Figure 1: Location of Gas Survey monitoring points												
The results of the LFG survey are presented in Table 2 below:												
\mathcal{N} . \mathcal{N}												
Description	cent of cor				ppm	mb						
TH01	Surface	18/02/2011	0	0.1		`1007						
TH02	Surface	17/02/2012	0.1	0.1	0	1016						
TH03	Surface	17/02/2012	0.1	0.1	0	1016						
TH04	Surface	17/02/2012	0	0.1	0	1016						
TH05	Surface	17/02/2012	0	0.1	0	1016						
TH06	Surface	17/02/2012	0.1	0.1	0	1016						
TH07	Surface	17/02/2012	0.1	0.1	0	1016						
TH08	Surface	17/02/2012	0.1	0.1	0	1016						
	ts of the LFG surv	ts of the LFG survey are presendfill Gas Monitoring Results Location Type Condition TH01 Surface TH02 Surface TH03 Surface TH04 Surface TH05 Surface TH06 Surface TH07 Surface	Location Type Time/Date	ts of the LFG survey are presented in Table 2 below ndfill Gas Monitoring Results Location Type of Time/Date % CH4	Location Type of Time/Date % CH4 % CO2	Location Type Time/Date % CH ₄ % CO ₂ H ₂ S ppm						

Location No	Location Description	Туре	Time/Date	% CH₄	% CO₂	H ₂ S ppm	Pressure mb
9	TH09	Surface	17/02/2012	0.1	0.1	0	1016
10	TH10	Surface	18/02/2012	0	0.1	0	1007
11	Eastern Boundary	Subsurface	18/02/2012	0	0.1	0	1007
12	Eastern Boundary	Subsurface	18/02/2012	0.1	0.1	0	1007
13	Eastern Boundary	Subsurface	18/02/2012	0.1	0.1	0	1007
14	No.2 Evergreen Close	Living Room	18/02/2012	0.1	0.1	0	1007
15	No. 3 Evergreen Close	Living Room	18/02/2012	O offer has	0.1	0	1007
16	Dwelling House	Living Room	18/02/2012	0	0.1	0	1007


LFG was not detected at any location within the site during and after the excavation of trial holes in December. LFG was not detected in any of the three houses sampled.

3.2 Gas Monitoring Boreholes

Three gas monitoring boreholes were installed in December 2012 along the eastern boundary of the site in order to assess the level of LFG at the eastern perimeter of the site. The purpose of the boreholes was to check for the presence and concentration of LFG along the eastern perimeter of the site.

The location of the boreholes is shown in Figure 2 below:

Figure 2: Location of Gas Monitoring Boreholes

The boreholes were monitored using a handheld gas monitoring Model GF 450. The following parameters were recorded on each visit:

- Methane
- Carbon Dioxide
- Oxygen
- Differential pressure between borehole and atmosphere
- Gas Flow
- Atmospheric pressure

The rise /fall in atmospheric pressure were gauged from data taken at Shannon meteorological station.

The results of the monitoring with appropriate certification for the gas monitor is contained in **Volume 2 - Appendix 5** of this report. A summary of methane levels for each borehole is shown on the following page:

Table 3: Methane Readings at Churchtown boreholes

Date	Atmospheric Pressure (mbar)	GW1 (%)	GW2 (%)	GW3 (%)
14/03/2013	1011 steady	24.8	38.2	63.6
24/05/2013	1014 steady	35.7	4.3	72.8
04/06/2013	1027 falling	26.4	3.2	10.3
25/06/2013	1030 rising	30.4	1.1	0.0
05/07/2013	1028 falling	36.5	4.1	73.6
09/08/2013	1015 steady	28.6	4.2	4.0

Note: No differential pressure was recorded between the boreholes and atmosphere and no gas flows were recorded.

3.3 Gas Survey by Odour Monitoring Ireland

Odour Monitoring Ireland carried out a Volatile Organic Compound (VOC) walkover surface emissions survey and a flux box survey in May 2013. The main objective of the survey was to quantify landfill gas surface emissions on and adjacent to the site.

The survey report is contained in Volume 2-Appendix 6 and should be consulted for a full description of the survey and results.

The main findings of the report are:

- The total VOC's emissions as methane from the permanently capped areas within the site is less than the guidance value of 100 ppm in LFTGN 07.
- The total VOC's as methane exceed the guidance value of 500 ppm at the top of boreholes GW1 and GW3.
- The flux chamber results within the site complied with the guideline limit values in LFTGN 07.

 Elevated VOC's were recorded with the hand held monitor at two localised hotspots to the east of the site, 129 ppm in the undeveloped site and 634 ppm in one garden.

- The flu chamber results exceed the guideline limits in LFTGN at three locations to the east of the site.
- Insufficient differential pressure was recorded as GW1, GW2 and GW3 to create gas flows.

3.4 Gas Survey by AWN Consulting

AWN Consulting carried out a Volatile Organic Compound (VOC) monitoring survey at five locations on and adjacent to the Churchtown landfill site in June 2013. Active monitoring was carried out over a 2 hour period at each location on the 4th June 2013 Passive monitoring was conducted at three locations adjacent to the eastern perimeter of the site between the 4th June and the 4th July 2013.

The main objective of the survey was to quantify landfill gas emissions at private properties located along the eastern perimeter of the site.

The survey report is contained in **Volume 2 - Appendix 7** and should be consulted for a full description of the survey and results.

The main findings from the gas survey are:

- Benzene levels exceeded Council Directive 2008/50/EC annual mean level of 5
 μg/m³ at two locations, a large garden shed and domestic garage.
- The concentrations of VOC detected at all locations during active sampling were below the limits of detection

Comment Benzene is very mobile in the environment and its source is likely to be of recent origin. There may be a secondary source of contamination at the site connected with leakage of fuel from storage tanks. Further investigations and long term monitoring

may be required to establish the source of the benzene and to establish an annual mean level.

3.5 Environmental Assessment of Receiving Waters

There are no surface water outfalls from the Churchtown landfill and consequently the Tier 1 Report did not identify any significant environmental risk to surface waters. However, the hydrogeological report for the site identified the possibility of a groundwater connection between the site and the Dooally River which flows approximately 500 metres to the south of the site.

Limerick Co Council carried out a biological water quality survey in May 2013 on the Dooally River in the vicinity of the landfill site. The sampling was carried out by Mr Rob Imbusch, Scientist, Limerick Co Council in accordance with the EPA Q-rating scheme.

The report is contained in **Volume 2 – Appendix 8** and should be consulted for full details of the site.

The key find of the report is that Churchtown landfill site is not having an impact on the biological water quality of the Dooally River in the vicinity of the site.

3.6 Survey of Possible Receptors

The extent of the waste body is larger than envisaged at the time of the Tier 1 Desktop study particularly with regard to the eastern boundary. Consequently, an insitu survey was required to update the number of human receptors sitting directly over the waste body and within 50 metres of the site.

The survey shows that there is one shed which extends directly over the waste body, as shown on Picture 1 below.

Picture 2 Building Directly Over Waste Body

- 1 building directly over the waste body, as discussed above and as shown on Picture 1 above;
- o 15 properties within 50 metres of the waste body;
- o 57 properties within 250 metres of the waste body.

3.7 Survey of Private Wells

There are no private wells within 250 metres of the landfill site. The closest private well is located 260 metres to the south-west of the landfill site on the lands of Mr. Peter Leonard. This well was installed in 2007. The well was bored to a depth of 40 metres. The well is used to supply water for cattle and horses only and is not used for human consumption. The well has never been sampled, to date.

The houses to the south and east of the site are supplied from the Newcastle West public water supply. The Newcastle West supply is supplied from the River Deal, the intake is located 3.5km south-east of NCW. The cluster of houses located 500 metres of the south-west are on the Killaughteen group water scheme which is supplied from the Newcastle West public water supply.

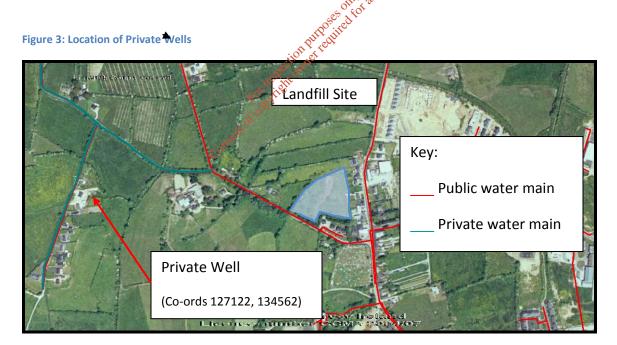


Figure Location of Public Water Mains

4 Tier 2 Sampling and Analysis

4.1 Introduction

The EPA Code of Practice and additional information from *Matrix 1-Guidance for Preliminary Investigations for all Unregulated Waste Disposal Sites* sets out the sampling requirements for site investigations at historic landfills.

The sampling and analysis results for the Tier 2 investigation are contained in **Volume 2 Appendix 9**. The sampling was carried out in three phases summarised below:

Table 4: Summary of Tier 2 Sampling

Phase	Date	Company	Items
Preliminary	February 2012	BHP Ltd	Solid Waste
Investigation			Leachate
		Eafly, any other tise.	Soil Samples
		other	Surface Water
		could any	Sample
Main Investigation	December	Alcontrol	Borehole samples
	2012	Laboratories	Surface water
	· ASPECT	WITE	samples
Additional Investigation	April 20131 Vites	City Analysts Ltd	Surface water
	ofcold		Boreholes

The solid waste samples were sampled to show comparison with Council Decision 2003/33/EC European Waste Acceptance Criteria (WAC) analysis, as per the BS EN 12457/3 testing standard.

Soil samples were analysed in accordance with BS5930 and tested for particle size analysis, Attenberg Limits and permeability.

The onsite samples during the Preliminary Investigation were taken by Mr Paul O'Sullivan of *BHP*, Thomondgate, Co. Limerick. The following samples were taken:

Table 5: Samples taken by BHP

Sample Type	Sampling Location (bgl = below ground level)	Parameters Tested
Leachate	TH02 – 4.4 metres bgl TH03 – 2.5 metres bgl TH04 – 3.8 metres bgl TH05 – 1.8 metres bgl	Table C.2 of EPA Landfill Manual – 'Landfill Monitoring', 2003 SI 12/2001 - Water Quality (Dangerous Substances) Regulations, 2001
Solid Waste	TH02 – composite TH03- composite TH04 – composite	Council Decision - 2003/33/EU Acceptance Criteria for Landfill for Inert Waste
Surface water	Leonard's Ditch	Table C.2 of EPA Landfill Manual— 'Landfill Monitoring', 2003 SI 12/2001 - Water Quality (Dangerous Substances) Regulations, 2001
Capping layer	TH04	Particle Size Distribution
Subsoil	TH05 For you	Rermeability Attenberg Limits Particle Size Distribution Moisture Content

The analytical and test results are contained BHP report *Survey, sampling and analysis of Waste Materials from Landfill in Churchtown, Newcastle West* -see **Volume 2 - Appendix 9**.

4.2 Solid Waste Analysis

A summary of the solid waste sample analysis results for TH02, TH03 and TH04 with a comparison with the Acceptance Criteria for Landfill for Inert Waste – (*Council Decision - 2003/33/EU*) is presented on the following Tables 6, 7 and 8.

Table 9 provides a comparison of the organic parameters from TH02, TH03 and TH04 with Table 2.1.2.2 of the Acceptance Criteria for Landfill (*Council Decision - 2003/33/EU*). Parameters exceeding the criteria for non-hazardous waste are highlighted in red. The solid waste samples indicate that the waste body at Churchtown can be considered as non-hazardous in accordance with EU Waste Acceptance Criteria;

Table 6 Waste Acceptance Criteria for Trial Hole – TH02

Determinant		TH02			lues for Ine il Decision 2003		Limit Values for Non- Hazardous Waste (Council Decision 2003/33/EU)			
Dotorminant	2 l/kg (mg/kg Dry Substance)	10 l/kg (mg/kg Dry Substance)	0.1 l/kg (mg/l)	2 I/kg (mg/kg Dry Substance)	10 l/kg (mg/kg Dry Substance)	0.1 l/kg (mg/l)	2 I/kg (mg/kg Dry Substance)	10 l/kg (mg/kg Dry Substance)	0.1 l/kg (mg/l)	
Arsenic	0.002	<0.001	0.002	0.1	0.5	0.06	0.4	2	0.3	
Barium	0.012	0.004	0.012	7	20	4	30	100	20	
Cadmium	<0.001	0.001	0.006	0.03	0.04	0.02	0.6	1	0.3	
Total Chromium	0.04	0.002	0.011	0.2	other 150.5	0.1	4	10	2.5	
Copper	0.49	0.027	0.096	0.9.	any off 2	0.6	25	50	30	
Mercury	<0.0002	<0.0002	<0.0002	0,0035	0.01	0.002	0.05	0.2	0.03	
Molybdenum	0.012	0.001	0.002	ality div.3	0.5	0.2	5	10	3.5	
Nickel	0.18	0.004	0.027	ion of the 0.2	0.4	0.12	5	10	3	
Lead	0.024	0.011	0.032	0.2	0.5	0.15	5	10	3	
Antimony	<0.001	<0.001	<0.001	0.02	0.06	0.1	0.2	0.7	.015	
Selenium	0.004	0.001	0.001	0.06	0.1	0.04	0.3	0.5	0.2	
Zinc	0.21	0.014	0.039	2	4	1.2	25	50	15	
Chloride	18.8	2.49	16.7	550	800	460	10000	15000	8500	
Fluoride	0.74	0.16	0.52	4	10	2.5	60	150	40	
Sulphate	254	24.7	224.7	560	1000	1500	10000	20000	7000	
Dissolved Organic Carbon	108	120	510	240	500	160	380	800	250	
Total Dissolved Solids	378	1012	-	2500	4000	-	40000	60000	-	
Phenol Index	0.008	0.012	0.124	0.5	1	0.3				

Table 7 Waste Acceptance Criteria for Trial Hole – TH03

Determinant		TH03			ues for Ine Decision 2003		Limit Values for Non Hazardous Waste (Council Decision 2003/33/EC)			
Determinant	2 I/kg (mg/kg Dry Substance)	10 l/kg (mg/kg Dry Substance)	0.1 I/kg (mg/l)	2 I/kg (mg/kg Dry Substance)	10 l/kg (mg/kg Dry Substance)	0.1 l/kg (mg/l)	2 l/kg (mg/kg Dry Substance)	10 l/kg (mg/kg Dry Substance)	0.1 l/kg (mg/l)	
Arsenic	<0.001	<0.001	0.001	0.1	0.5	0.06	0.4	2	0.3	
Barium	0.024	0.006	0.036	7	20	4	30	100	20	
Cadmium	<0.001	0.001	0.006	0.03	0.04	<u>v</u> 0.02	0.6	1	0.3	
Total Chromium	0.07	0.012	0.018	0.2	0,5	0.1	4	10	2.5	
Copper	0.31	0.18	0.049	0.9	مالا علام 2	0.6	25	50	30	
Mercury	<0.0002	<0.0002	<0.002	0.003	0.01	0.002	0.05	0.2	0.03	
Molybdenum	0.008	0.002	0.003	0.30	0.5	0.2	5	10	3.5	
Nickel	0.039	0.019	0.054	ection 0.2	0.4	0.12	5	10	3	
Lead	0.024	0.009	0.036	insperior 0.2	0.5	0.15	5	10	3	
Antimony	<0.001	<0.001	<0.00%	0.02	0.06	0.1	0.2	0.7	.015	
Selenium	0.002	0.001	0.0015	0.06	0.1	0.04	0.3	0.5	0.2	
Zinc	0.16	0.024	0.022	2	4	1.2	25	50	15	
Chloride	98	10.7	231	550	800	460	10000	15000	8500	
Fluoride	0.68	0.15	0.25	4	10	2.5	60	150	40	
Sulphate	101	127	459	560	1000	1500	10000	20000	7000	
Dissolved Organic Carbon	82	270	670	240	500	160	380	800	250	
Total Dissolved Solids	458	880	-	2500	4000	-	40000	60000	-	
Phenol Index	0.122	0.036	0.212	0.5	1	0.3				

Table 8 Waste Acceptance Criteria for Trial Hole – TH04

Determinant		TH04			lues for Ine il Decision 2003		Limit Values for Non Hazardous Waste (Council Decision 2003/33/EU)			
Determinant	2 I/kg (mg/kg Dry Substance)	10 l/kg (mg/kg Dry Substance)	0.1 l/kg (mg/l)	2 l/kg (mg/kg Dry Substance)	10 l/kg (mg/kg Dry Substance)	0.1 l/kg (mg/l)	2 I/kg (mg/kg Dry Substance)	10 l/kg (mg/kg Dry Substance)	0.1 l/kg (mg/l)	
Arsenic	<0.001	<0.001	0.002	0.1	0.5	0.06	0.4	2	0.3	
Barium	0.036	0.014	0.041	7	20	4	30	100	20	
Cadmium	<0.001	0.011	0.007	0.03	0,04	0.02	0.6	1	0.3	
Total Chromium	0.019	0.008	0.032	0.2	other 0.5	0.1	4	10	2.5	
Copper	0.3	0.21	0.049	0.9	Tany 2	0.6	25	50	30	
Mercury	<0.0002	<0.0002	<0.002	0.003	0.01	0.002	0.05	0.2	0.03	
Molybdenum	0.012	0.001	0.001	ion puriodita	0.5	0.2	5	10	3.5	
Nickel	0.043	0.008	0.054	Ctowner 0.2	0.4	0.12	5	10	3	
Lead	0.021	0.006	0.031	0.2	0.5	0.15	5	10	3	
Antimony	<0.001	<0.001	<0.001	0.02	0.06	0.1	0.2	0.7	.015	
Selenium	0.001	0.001	nseni 0.001	0.06	0.1	0.04	0.3	0.5	0.2	
Zinc	0.11	0.036	0.029	2	4	1.2	25	50	15	
Chloride	80	19.1	229	550	800	460	10000	15000	8500	
Fluoride	0.62	0.6	0.43	4	10	2.5	60	150	40	
Sulphate	208	19.1	295	560	1000	1500	10000	20000	7000	
Dissolved Organic Carbon	360	180	610	240	500	160	380	800	250	
Total Dissolved Solids	1010	568	-	2500	4000	-	40000	60000	-	
Phenol Index	0.245	0.048	0.185	0.5	1	0.3				

Table 9 Organic Parameters for Solid Waste Samples

Determinant (mg/kg)	TH02	TH03	TH04	Limit Values for Inert Waste (Council Decision 203/33/EC)			
Total Organic Carbon	75,000 See Note 1	92,500 ^{See Note 1}	111,200 See Note 1	30,000			
BTEX	<0.01	<0.01	<0.01	6			
PCBs	<0.001	0.001	<0.001	1			
Mineral Oil (C10 to C40)	<0.1	of airs < 0.1	<0.1	500			
PAHs (16)	<0.005 ut of the difference of the contract of	<0.005	<0.005	-			
Note 1: EC Council decision 2003/33/EC allows a higher limit to be admitted by a competent authority provided that the Dissolved Organic Carbon value is less than 800 mg/l.							

4.3 Leachate Analysis

Liquid samples were analysed to show comparison with Table C.2 of EPA Landfill Monitoring Manual 2003.

The key finding of the BHP report is that the water samples meet the standards set down in SI 12/01 Water Quality (Dangerous Substances) Regulations 2001.

- The leachate samples from the trial holes indicate very low levels of contamination. The ammonia levels from the 4 trial holes samples indicate slightly elevated levels in the range 64 to 75 mg/l.
- The leachate does not contain elevated levels of heavy metals or organic parameters;
- The water sample from Leonard's ditch does not exhibit parameters associated with leachate.

 **The water sample from Leonard's ditch does not exhibit parameters associated with leachate.

 **Expringer to the water sample from Leonard's ditch does not exhibit parameters associated with leachate.

 **Expringer to the water sample from Leonard's ditch does not exhibit parameters associated with leachate.

 **Expringer to the water sample from Leonard's ditch does not exhibit parameters associated with leachate.

 **Expringer to the water sample from Leonard's ditch does not exhibit parameters associated with leachate.

 **Expringer to the water sample from Leonard's ditch does not exhibit parameters associated with leachate.

 **Expringer to the water sample from Leonard's ditch does not exhibit parameters associated with leachate.

 **Expringer to the water sample from Leonard's ditch does not exhibit parameters associated with leach to the water sample from Leonard's ditch does not exhibit parameters associated with leach to the water sample from Leonard's ditch does not exhibit parameters associated with leach to the water sample from Leonard's ditch does not exhibit parameters associated with leach to the water sample from Leonard's ditch does not exhibit parameters associated with leach to the water sample from Leonard's ditch does not exhibit parameters as a second discharge dis

Limerick Co Council Page 28

EPA Export 10-05-2019:03:42:07

Table 10 Leachate Parameters

Determinant	Units	TH02	TH03	TH04	TH05	Leonard's Stream	Typical Methanogenic Leachate *Note 1
Water Level	m	4.4	2.5	3.8	1.8	N/A	N/A
Temperature	оС	11	11	12.6	12.4	9.8	N/A
pH-value		6.6	6.48	6.4	6.76	6.68	7.35
Conductivity	uS/cm	1942	1667	1418	681	429	10,000
Ammonia (as NH ₃ -N)	mg/l	64.6	75.28	70.73	6 3.75	0.43	902
Nitrate (as NO ₃)	mg/l	1.55	0.81	0.9.	2.66	0.53	3.1
Nitrite (as NO ₂)	mg/l	<0.1	<0.1	_e<0,₫	<0.1	<0.1	0.3
Total Oxidised Nitrogen (as N)	mg/l	0.35	0.18	PolitiO.2	0.6	0.12	-
BOD ₅	mg/l	11	9citothe	25	28	3	253
COD	mg/l	158	×437	659	84	44	1,770
Calcium	mg/l	48.9	₹5.4	82.4	65.8	54.2	117
Magnesium	mg/l	15.6 sent	22.49	21.16	17.86	16.83	166
Sodium	mg/l	34.51	34.56	36.54	39.77	62.11	1,400
Potassium	mg/l	32.05	21.99	41.87	44.68	34.1	791
Iron	ug/l	560	453	652	893	<1	1,530
Manganese	ug/l	206	11	24	406	759	300
Cadmium	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1	<10
Total Chromium	ug/l	<1	<1	1	<1	<1	70
Copper	ug/l	<1	<1	<1	<1	<1	70

Determinant	Units	TH02	TH03	TH04	TH05	Leonard's Stream	Typical Methanogenic Leachate *Note 1
Nickel	ug/l	<1	<1	<1	<1	<1	140
Lead	ug/l	2	2	2	3	3	130
Zinc	ug/l	12	12	13	14	7	780
Arsenic	ug/l	<0.9	<0.9	<0.9	<0.9	<0.9	9
Boron	ug/l	9	11	16	8	12	-
Mercury	ug/l	<0.2	<0.2	<0.2	€0.2	<0.2	<0.1
Sulphate	mg/l	6.1	19.9	5.42	9.63	10.43	35
Chloride	mg/l	47.8	71.7	47,5	47.6	51.27	1,950
Molybate Reactive Phosphorus (as P)	mg/l	0.23		0.24	0.75	0.15	2.7
Total Cyanide	mg/l	0.05	0.1019410	0.031	0.032	0.015	-
Fluoride	mg/l	0.13	ço 20.0 5	<0.05	0.14	0.12	-
Atrazine	ug/l	<1	5 cop <1	<1	<1	<1	-
Dichloromethane	ug/l	<1 nsent	<1	<1	<1	<1	-
Simazine	ug/l	<1 represent	<1	<1	<1	<1	-
Toluene	ug/l	<1	<1	<1	<1	<1	-
Tributyltin	ug/l	<0.001	<0.001	<0.001	<0.001	<0.001	-
Total Xylenes	ug/l	<1	<1	<1	<1	<1	-

^{*} Note 1: Median Values for Methanogenic Leachates Sampled from Large Landfills with a Relatively Dry High Waste Input Rate' (Table 7.2, EPA Landfill Manual – 'Landfill Site Design' 2000)

4.4 Geotechnical Testing

BHP carried out geotechnical testing on two soil samples taken at Churchtown landfill site. The purpose of the samples was to provide information on the insitu subsoils and on the composition of the existing capping layer.

A sample of the subsoil from beneath the waste at TH10 was sampled and analysed for

- Permeability
- Attenberg Limits
- Particle Size Distribution
- Moisture Content

The detailed soil analysis results are contained in Volume 2 - **Appendix 9**, the results are summarised below:

Liquid Limit	40
Plasticity Limit	19 21 22.2% 52% 35% 1 x 10 ⁻¹⁰ m/s _k condition m/s _k c
Plasticity Index	21 of the state of
Moisture Content	22.2% utrasses all to
% CLAY	52% ation of the feet
% SILT	35% to its did to a second
Permeability	1 x 10 ⁻¹⁰ m/s

The subsoils consist of a light brown firm CLAY with a massive structure and intermediate plasticity. The native subsoils have an extremely high CLAY content and low permeability. These soils have the potential to form an effective barrier to prevent leachate migrating to the underlying aquifer.

The existing capping layer in the eastern section of the site contains a large fraction of fractured shale stone with very little cohesive material. A sample was taken from the capping layer at TH04 and analysed for particle size distribution in accordance with IS EN 933-1.

The analysis indicates that 95% of the sample consists of gravel.

4.5 Historic Leachate Monitoring by Limerick Co Council

In 1990, Limerick County Council constructed a sump and a pumping station in the south-west corner of the site. Surface water from the site was discharged via a rising main to the foul public main.

In the period 2001-2003 Limerick County Council Environmental Laboratory analysed samples from the pumping station. The analysis results are contained in **Appendix 10.** A comparison if the median results with the 'Median Values for Methanogenic Leachates Sampled from Large Landfills with a Relatively Dry High Waste Input Rate' (Table 7.2, EPA Landfill Manual – 'Landfill Site Design' 2000) is given below, with elevated concentrations highlighted in yellow.

Table 11 Leachate Samples from Pumping Station

	<u> </u>	ైల.	
Determinant (mg/l unless otherwise stated)	Units Units (#5/45m)	Limerick County Council Pumping Station Results 2001 to 2003 -	BHP Trail Hole Results 2012
	outpostited allifed	Median	Median
pH-value	ection to real	7.6	6.54
conductivity	(M.O.OIII)	718.5	1542
alkalinity (CaCO ₃)	ron for mg/l	350.5	
COD	ng/l	60.5	297
BOD ₅	mg/l	12.34	18
TOC	mg/l	17	
ammmoniacal-N	mg/l	5.24	67
nitrate-N	mg/l	1.27	1.225
sulphate (as SO ₄)	mg/l	11.04	7.865
Chloride	mg/l	31.54	47.7
Sodium	mg/l	25.51	35.55
Magnesium	mg/l	23.25	19.51
Potassium	mg/l	28.08	36.96

Determinant (mg/l unless otherwise stated)	Units	Limerick County Council Pumping Station Results 2001 to 2003 - Median	BHP Trail Hole Results 2012 Median
Calcium	mg/l	66.3	70.6
Chromium	mg/l	0.0102	1
Manganese	mg/l	0.154	115
Iron	mg/l	1.3	606
Nickel	mg/l	0.02	<1
Copper	mg/l	0.01004	<1
Zinc	mg/l	0.04	12.5
Cadmium	mg/l	n _e .	<0.1
Mercury	mg/l	Land other use.	<0.2
Lead	mg/l stages	3. ~~	2

The analysis indicates that the water specific plus taken from the pumping station in 2002-2003 showed very slight levels of contamination.

5 Site Information

5.1 Exiting LFG Collection and Treatment System

There is no LFG collection or treatment system at Churchtown site.

5.2 Existing Leachate Collection and Treatment System

The site is unusual in that there is no surface water outfall or perimeter drainage ditches. All surface water drains towards the south-west corner of the site. Shortly after the closure of the site in the late 1980's, there was considerable ponding of contaminated water in the south-west corner of the site. Some the water overflowed onto the adjoining property. To prevent further surface water ponding, a concrete sump and pumping station was installed at the lowest part of the site and connected to the public foul main via a 100 mm rising main.

The pumping station operated from the late 1990's until approximately 2004. The pumping station was re-commissioned during the main site investigation in 2012 and is now operational. The pumping station effectively removes slightly contaminated water from the site.

5.3 Gas Sim Model By Tobin Consulting Engineers

Tobin Consulting Engineers carried out a Gas Sim Model to estimate the volume of LFG now being produced at the site.

The report is contained in Volume 2 Appendix 11 and should be consulted for full details of the site.

The main findings of the report are:

The theoretical volume of LFG produced in 2012 is in the order of 21 m^3 / hour. The theoretical volume in 1986 at the time of closure of the site was 54 m^3 /hour.

5.4 Type of Waste - EU Decision 2003/33/EU

Council Decision 2003/33/EU specifies the uniform classification and acceptance procedure for the landfill of waste in the EU (including Ireland). The Decision provides criteria for the classification of waste into three categories - inert, non-hazardous and hazardous.

During the Tier 2 Preliminary Site Investigation, *BHP Laboratories Ltd.* took solid waste and leachate samples from Trial Holes - TH02, TH03 and TH04. A further leachate sample was taken from Trial Hole - TH05. A summary of the analyses results are contained in Chapter 4.2 with the full analyses results sheets contained in Volume 2 **Appendix 9**.

The analyses results indicate that the waste material at Churchtown complies with the criteria for non hazardous waste and is very close to complying with the criteria for inert waste (with the exception of TOC limit).

5.5 Composition of Waste

The waste at Churchtown landfill site consists predominately of domestic and commercial waste with some pockets of industrial and inert waste. The commercial and domestic waste types are largely co-mingled throughout the site. The inert waste occurs in high concentrations at the south-west of the site in the vicinity of TH06 and TH11. Some industrial waste consisting of plastic moulds were uncovered at the northern extent of the site in TH01.

No hazardous waste was uncovered during the site investigations. Records held by Limerick County Council show that the site generated numerous odour and vermin complaints from local residents. If an effort to mitigate the problem, Limerick Co Council employed a full time gateman with instructions to exclude hazardous and malodourous waste from the site. In addition, the County Engineer in the 1970's instructed that the waste be covered with equal volumes of inert backfill.

The trial holes indicate that the waste throughout the site was mixed with a very high fraction of inert material, predominately fractured shale sourced locally but also with subsoil and occasionally C&D material. The high stone content provides numerous drainage pathways for the downward migration of surface water and the upward migration of LFG.

The waste body exposed in the trial holes, with the exception of TH05 is dry and contains very little perched leachate. The waste body at TH05 is noticeably wetter that elsewhere and contains leachate at 1.5 metres below ground level. TH05 is located at the lowest part of the site and the waste body is underlain by CLAY subsoils rather that bedrock. The waste at TH05 does not contain the large fraction of inert backfill that occurs elsewhere on site.

The European Waste Codes provide a system for cataloging and assigning waste codes to different types of waste. The following types of waste were uncovered in trial holes:

Table 12 Waste Types Found at Churchtown Landfill ite

EWC Code	Category Fortilities Copyright of	Description
02	Waste from Food Preparation	Fatty waste discovered in Slit Trench - SL01 likely to have originated from a former commercial cheese manufacturer in the area.
15	Waste Packaging	Paper and cardboard packaging in Trial holes - TH01, TH02, TH05 Plastic packaging in Trail Holes - TH01,TH02,TH05,TH10 Textile packaging in Trial Holes - TH01,TH05
16	End of life vehicles	Car tyre in Trial Holes - TH03,TH10 Car exhaust in Trial Hole - TH02
17	Construction and Demolition	Concrete, bricks in Trial Hole - TH06

tones in Trial Hole - TH06
Il Trial Holes. Il Trial Holes. Il Trial Holes. Il Trial Holes. Idable kitchen waste in all Trial Holes Idable kitchen waste in all Trial Hole Idable trial Holes - TH09 Idable Trial Holes - TH09 Idable trial Holes - TH01, TH05 and TH09 Idable trial Holes except Trial Hole - TH01 Idable trial Holes except Trial Hole - TH03 Idable trial Holes except Trial Hole - TH03 Idable trial Holes except Trial Hole - Idable trial Hole -

5.6 Waste Age

The waste body at Churchtown ranges from 27 to 78 years old.

Waste disposal started at the site in the mid 1930's when the site was in private ownership. Limerick County Council acquired the site in the late 1940's and operated a landfill site until the site closed in 1986. Waste disposal intensified in the early 1970's when Limerick Co Council started a commercial waste collection service.

The waste at the site appears to have been placed in two phases. The earliest waste, predating the 1960's was placed at the front of the site adjacent to the public road and existing site entrance. The waste is totally decomposed and contains no plastic, timber or metals. The main waste body was placed progressively across the entire site. Plastic was found in all trial holes and newspapers dated from September 1977 to May 1986 were found in eight trial holes

5.7 Volume of Waste

The Minerex Geophysics report estimates that the volume of the waste body, including inert backfill is 186,000 m³.

There was no weigh bridge in operation during the operation phase of Churchtown landfill. However, the volume of waste can be estimated from the An Foras Forbatha Report – 'National Database on Waste 1986' indicates that the site accepted 10,000 tonnes of waste per annum.

There are no figures available from 1935 to 1970, but the volumes of waste deposited would have been relatively low. Local knowledge says that commercial waste was collected on a daily basis from the town of Newcastle West using a horse and cart until the early 1960's.

The ERSI Report - ¹'Estimating Historical Landfill Quantities to Predict Methane Emissions' provides some guidance on the volumes of waste that were landfilled in the period 1960 to 2008. The report estimates that 1.98 million tonnes of waste was landfilled in 1960. Combining this with the 1961 census figures indicates that approximately 700 kg of waste was landfilled per head of population per annum. Churchtown landfill site was used mainly for Newcastle West town and environs which had a combined population of around 3,500. Therefore an approximation for the annual tonnage of waste in 1960 was:

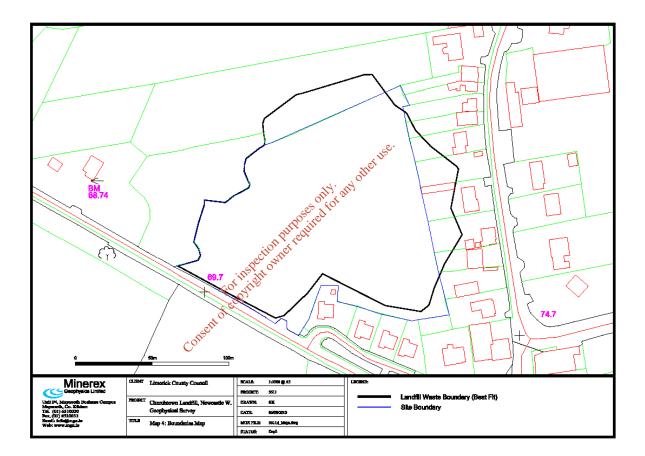
 $3,500 \times 0.7 = 2450 \text{ tonnes}.$

Assuming a figure of 2,500 tonnes per annum for the period 1935 to 1970, the total volume of waste at Churchtown landfill becomes:

Table 13 Amount of Waste Deposited

Period	Waste (Tonnes / Annum)	Total (Tonnes)
1935 to 1969	2,500 gift	87,500
1970 to 1979	5,000	50,000
1980 to 1986	10,000	70,000
	√ votal	207,500

Assuming a relatively low waste density of 1.5 tonnes/m³, this equates to a waste volume of 138,000 m³. This figure does not include for inert backfill material which was placed in unusually large amounts at the site in order to reduce odour complaints.


_

¹ Working Paper 333 December 2009

5.8 Extent of the Waste

The waste body at Churchtown is 1.86 Hectares in extent. The waste body extends beyond the current site boundary to the north and east of the site. The extent of the waste body is shown on Drg 5 in the Minerex Geophysics report and shown in outline below.

Figure 4: Extent of Waste Body

The extent of the waste body has been defined using the following data:

• Cobra probes from Tobin Report 2007 See Tier 1 Report

• Slit trenches carried out Limerick Co Council 2012-13 See Appendix 2

• Geophysical survey 2012 See Appendix 3

Additional seismic survey 2013
 See Appendix 3

5.9 Decomposition of the Waste

The waste body is highly decomposed throughout the site and consists largely of plastic packaging with occasional fragments of glass, timber, textiles and metal. Organic waste and paper are largely absent throughout the site.

There are pockets of less decomposed waste in the vicinity of TH03, TH05 and TH10.

The state of decomposition can be gauged from the presence or absence of different waste materials. The typical decomposition sequence for the waste streams, starting with the fastest decomposition rate is:

There was no organic food waste in the Trial Holes or Silt Trenches, with the exception of Slit Trench - SL01 and a preserved fragment of orange peel in Trial Hole - TH03. Most papers, cardboard, textiles and timber have fully decomposed although there are occasional small fragments surviving of each waste type in each trial hole. The localised variations in waste decomposition may be due to the formation of micro environments created by the entombing of sections of waste in intact plastic bags.

The Ground Conductivity Geophysical Survey indicates that there are large amounts of metal in the waste body along the eastern perimeter of the site and at one location in the south-west section of the site. TH11 was excavated at the hotspot in the south-west of the site. A large fraction of metal objects including a fridge, milking churn and wire meshing was uncovered.

Most large metal objects exposed in the trial holes showed low levels of corrosion which may indicate that large sections of the waste body are very dry.

The waste in TH09 is completely decomposed with the exception of glass bottles. There is no plastic at this location.

All the Trial Holes were monitored during excavation for LFG with a hand held gas meter. No methane was detected in any Trial Hole. However, the disturbance of the waste produced detectable transient odours at TH03, TH05, TH10 and TH11.

5.10 Depth and Composition of the Capping Layer.

There is no engineered capping layer at Churchtown landfill site. The existing cap is highly permeable and allows the free ingress of surface water and migration of LFG to the atmosphere.

Following closure of the site in the mid 1980's, the waste body was capped off with variable depths of fractured shale, topsoil and commaterial. There is no CLAY subsoil layer at the site.

The existing capping layer can be considered in three areas. The cap in the eastern section of the site consists mainly of fractured shale stone covered with a very shallow layer of topsoil/vegetation. The western part of the site consists mainly of a loose topsoil layer lying directly on the waste. The third area is centered on TH06 and TH011 and consists of coarse C&D material lying directly on the waste.

Within each area there is a high degree of variability in the depth and composition of the capping layer. The capping layer was recorded at 11 trial holes and 12 slit trenches. The thickness of the capping layer varies from 0.1 to 1.0 metres but is typically just 0.3 metres – refer to Table 14 for details.

Table 14: Composition of Existing Capping Layer

Trial Hole / Slit Trench	Depth of Capping Layer	Composition of Capping Layer
	(m)	
TH01	0.6	0.1 metres of topsoil overlying 0.5 metres of coarse gravel.
TH02	0.9	0.3 metres of topsoil overlying 0.6 metres of fractured shale stone.
TH03	0.1	Topsoil
TH04	1.8	0.1 metres of topsoil overlying 1.7 metres of fractured stone backfill.
TH05	0.3	Topsoil Other List
TH06	0.8	Construction and Demolition material
TH07	0.2	Topsoilure in the street in th
TH08	0.2	Topsoil
TH09	0.3	Popsoil
TH10	0.3 Conset	Topsoil
TH11	0.7	Construction and Demolition material
SL01	0.2	Coarse gravel
SL02	0.4	0.3 metres of topsoil overlying 0.1 metres of coarse gravel.
SL03	1.0	0.3 metres of topsoil overlying 0.7 metres of fracture stone backfill.
SL04	0.4	Topsoil
SL05	0.4	Coarse gravel.

Trial Hole / Slit Trench	Depth of Capping Layer	Composition of Capping Layer
	(m)	
SL06	0.5	Topsoil
SL07	0.7	Topsoil
SL08	0.5	Topsoil
SL10	0.3	Topsoil
SL11	0.3	0.2 metres of Topsoil overlying 0.1 metres of coarse gravel.
SL12	0.2	0.4 metres of topsoil overlying 0.2 metres of gravel.

BHP Laboratories Ltd. carried out a particle size distribution analysis on the stone capping material in the eastern section of the site which shows that the material complies with 6F1/6F2 capping material as defined in the Specification for Road Works. This material is free draining and will permit surface water to penetrate into the waste body. It will also provide a flow path for LFG to vent to the atmosphere.

The capping layer in the western part of the site consists of a shallow layer of topsoil which sits directly on the waste body. There is also an extensive area capped with C&D material in the vicinity of Trial Hole - TH06. The shallow top soil layer does not provide a permeable barrier to prevent the ingress of surface water.

6 Appropriate Assessment

Limerick Co Council carried out a screening report in accordance with the requirements of Article 6(3) of the EU Habitats Directive (92/43/EEC) to determine if a full Appropriate Assessment was required at the site.

The report is contained in **Volume 2 Appendix 12** and should be consulted for full details of the site.

The key findings of the report are that a full Appropriate Assessment is not required for the site.

Signed:

Barry Murphy EE
Environment Section
Limerick County Council

Consent of copyright owner required for any other use.

Comhairle Chontae Luimnigh

Tier 2 –Site Investigation Reports VOLUME 2

For

Churchtown Landfill Site

Newcastle West

Co. Limerick

EPA Ref: S22-02465

19 October 2013

Prepared by:

Barry Murphy EE

Environment Section

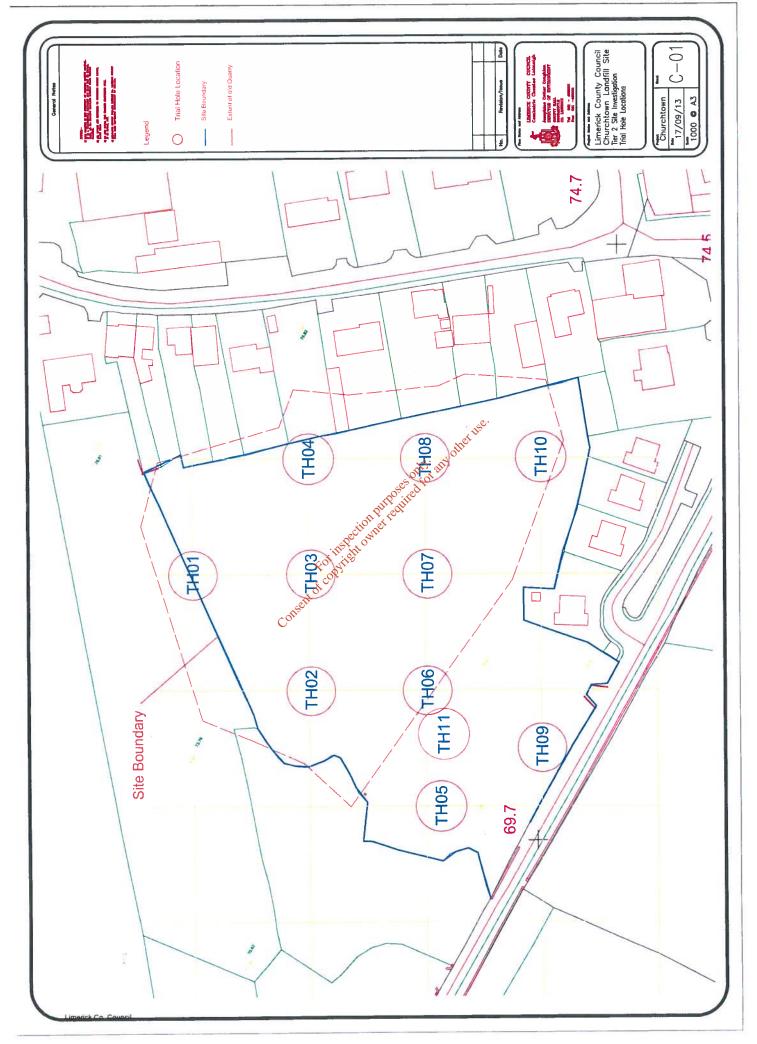

Limerick County Council

Table of Contents

Appendix 1	Trial Hole Report
Appendix 2	Slit Trench Report
Appendix 3	Geophysical Survey
Appendix 4	Tobin Pump Test
Appendix 5	Gas Monitoring Boreholes
Appendix 6	VOC Surface Emissions and Flux Box Survey
Appendix 7	VOC monitoring adjacent to Old Landfill Site
Appendix 8	Environmental Assessment of Receiving Waters
	DUD D
Appendix 9	вни керогі
Appendix 10	Historic Sampling Analysis from Pump House
Appendix 10	Historic Sampling Analysis from Pump House
Appendix 10	Historic Sampling Analysis from Pump House

Appendix 1 Trial Hole Report

Consent of copyright owner required for any other use.

Summary of Trail Holes taken at Churchtown Historic Landfill Site

Trial Hole	Trial Hole Excavated	Depth of	Depth of Base of Trial	Comment
		Trial	Hole	
T-1	17/02/2012	4.7	72.222	Domestic waste, highly decomposed mixed with stone/clay backfill.
2	14/02/2012	5.2	70.067	Domestic and commercial waste, highly decomposed mixed with stone/clay backfill.
m	14/02/2012	5.2	71.629	Domestic waste, upper 0.8 metre not decomposed, mixed with stone/clay backfill. Mainly clay backfill below 3.5 metres.
4	14/02/2012	5.0	71.980	Domestic waste, highly decomposed mixed with stone/clay backfill.
5	16/02/2012	5.0	65.113	Domestic waste with high metal content, upper 1.5 metres of waste is not decomposed. Wowaste below 4.0 metres.
9	16/02/2012	6.5	68.145	Domestic and commercial waste with high metal content, highly decomposed, mixed with steps / clay backfill.
7	13/02/2012	6.2	69.942	Domestic waste, highly decomposed mixed with stone/clay backfill down to 4.8 metres. Clay backfill with very low waste content below
∞	16/02/2012	5.6	71.237	Commercial and domestic waste, hmgly decomposed, mixed with stone/clay backfill.
6	16/02/2012	0.9	65.046	Domestic waste, completely decomposed to form uniform granular soil matrix.
10	17/02/2012	5.0	70.160	Domestic and commercial waste down to 2 metres overlying clay layer with no waste.
11	15/04/2013	5.0	68.700	Domestic and commercial waste with a very high content of metal in the top meter.

Limeric	c Co. Cou	ncil				TRIAL PIT NO.
						TP01
Location:		Co-ordinates:	E127460	N134660		Date:
Churchtov	vn, NCW	Level:	76.922		17/02/2012	
Dimensions		Method:				Logged by:
5 x 1 x 4.7		20 T excavator			B. Murphy LCC	
Depth (M)	Sample	Field Record	Reduced Level	Depth (m) Thickness	Legend	Stratum Description
0.0			76.92		Ur inte	Top Soil, very gravelly.
1 1		no odours			in a sa	MADE GROUND comprising very fine
		lio Gagara		(0.6)	15 6 6 6 6	granular gravel with no waste
1.0		no organic waste in this layer		(0.7)		MADE GROUND comprising coarse angular backfill with a high concentration of commercial waste. The waste contains small plastic filters and small offcuts.
2.0		no odours very dry Paper dated 17 July 1983		(1.0)	200	MADE GROUND comprising domestic waste mixed through coarse granular backfill with occassional small amounts of clay. Waste contains plastic bags, bottles, metal frame, happies and paper. The waste is largely
			40	(0.5) Put (0.5)	ostiled equited	MADE GROUND comprising coarse angular stone layer with no waste.
3.0		Very dry throughout	Onsent of co	S.		MADE GROUND comprising domestic waste mixed through with course angular stone backfill. Waste is largely decomposed with no odours.
4.0				(2.0)		
4.7		End	72.22	4.7		

General Remarks:

This trial is located on the northern boundary of the site. The waste body extends beyond the perimeter fence into the adjoining field.

This trial hole contains both commercial and domestic waste. The commerical waste consists of plastic objects and dates from post 1984.

The exposed waste was very dry throughout and contains a very highpercentage of stone backfill.

The waste is largely decomposed with no odours or gas detected.

Photo 1: Commercial Waste at 1 metre

Photo 2: Plastic objects - small dimater pipes, filters and mesh
Limerick Co. Council

Photo 3: Spoil Heap adjacent to site boundary

Photo 4: Spoil Heap

Photo 5: Metal frame

Photo 6: Domestic waste below 1.2 metres

Photo 7: Trial Hole 01 Limerick: Go. Gouncil

Limerick	Co. Cou	ncil				TRIAL PIT NO.
		_				TP02
Location:		Co-ordinates:		N134620		Date:
Churchtown, NCW		Level:	75.267		14/02/2012	
Dimensions		Method:			Logged by:	
5 x 1 x 5.2	- 1	20 T excavator	5 1 1	B - 11 (- 1		B. Murphy LCC
Depth (M)	Sample	Field Record	Reduced Level	Depth (m) Thickness	Legend	Stratum Description
0.0		No odour or gas	75.26	(0.3)		topsoil, brown, friable
		Sample taken PSD	74.36	(0.6)		MADE GROUND compirsing coarse angular stone backfill with very occassional plastic bags. Material complies with 6F1/6F2 of Specification for Road Works
2.0		no odour or gas	77.30	(1.1)		MADE GROUND comprising low fraction of domestic waste mixed with angular stone backfill. Waste contains mainly bottles and plastic. There is some clay interspersed with the stone. The waste is highly decomposed. The waste appears slighly wet at 2.0 metres and is black in colour. Newspaper dated June 1983 found.
	141		73.06	2.2	200	
3.0	Waste sample taken.		72.06%	(0.5) (i.i.grech		MADE GROUND with increase in waste fraction with large amounts of plastic sheeting and some cardboard. Waste is slightly wet throught out this layer.
4.0	leachate sample	leachate at 4.0 metres.	Con	(3.0)		MADE GROUND comprising low fraction of waste mixed with coarse granular stone with appreciable amount of clay. Waste continues below trial hole Waste is largely decomposed and consists of plastic and glass. Car tyre and exhaust at 3.6 metres Leachate at base of trial hole
		End	70.06	1		
5.2 General F) a un a ul a u	End	70.06	5.2		•

General Remarks:

This trial is located in the western section of the site which was largely overgrown. The top soil is marginally deeper at this location. The granular backfill in the upper metre is very porous.

The backfill below 3 metres contains more clay than any other of the trial holes. Leachte flowed into the excavation at 4.0 metres below ground level. The flow reduced gradually over a 20 minute period. The waste in the bottom metre was wetter that any where else on the site.

Tier 2 Report



Photo 1: granular backful with very little waste

Churchtown Landfill

Tier 2 Report

Churchtown Landfill

Limerick Co. Photo 4: High plastic content with waste becomming wetter with depth

Limerick Co. Council

Photo 7: Trial Hole 2 with leachate at base

Limeric	k Co. Coun	cil				TRIAL PIT NO.
						TP03
Location:	**	Co-ordinates:	E127460	N134620		Date:
Churchtown, NCW		Level:	76.83		14/02/2012	
Dimension		Method:				Logged by:
5 x 1 x 5.2		20 T excavator				B. Murphy LCC
Depth (M)	Sample	Field Record	Reduced Level	Depth (m) Thickness	Legend	Stratum Description
0.0			76.73	0.1		Top soil
1.0		Offensive, rancid odour which dissipated after 20 minutes. Methane at 0.5%		(1.4)		MADE GROUND comprising very high waste content mixed with coarse angular stone backfill. The waste is contained in black plastic bags which are largely intact. The waste is domestic in nature and contains plastic, bottles, cardboard and organic waste. The waste has not decomposed. Newspaper dated January 1986
			75.33	1.5		Ø1*
		no odour	75.03	(0.3)	. A. A	MADE GROUND comprising coarse granular backfill with no waste
2.0	Compostite waste	Inflow of leachate from the south at 2.5 metres.	74.33 <u>«</u>	(0,74) poi	Sign of the	MADE GROUND comprising domestic waste mixed with granular stone backfill. The waste is largely decomposed. Waste contains plastic, bottles, tin cans. Ingress of leachate at 2.5 metres.
	sample		at of copy	(0.5)		MADE GROUND comprising coarse granular backfill with no waste
4.0		no odour ingress of leachate at 4.0 metres.	73.83	(1.7)		MADE GROUND comprising domestic waste mixed with granular stone backfill. The waste is largely decomposed with no odours detected. The waste contains small amounts of timber, plastic, bottles, tin cans. The clay content of the backfill increases with depth below 3.5 metres and is red in colour.
:	leachate sample		72.13	4.7		Waste continues below the base of the trial hole.

General Remarks:

The capping layer is non existant at this location. The top 1.5 metres of the trial hole contains a high concentration of domestic waste which has not fully decomposed. This waste is likley to be the final waste placed at the landfill site in 1986.

This waste produced an offensive odour which lasted for approximaltey 20 minutes. However, elevated gas levels of methane and hydrogen sulphide were not detected.

The trial hole indicates that unusually large volumes of stone backfill were used to form cover layers.

Photo 1: No capping layer, minimal topsoft with

Photo 2: Waste in plastic bags, not fully decomposed

Churchtown Landfill Tier 2 Report

Photo 3: orange peel not decomposed

Photo 4: red coloured saw dust at 3.2 metres

Photo 6: Spoil heap with large volume of stone backfill

Limeric	k Co. Counc	il				TRIAL PIT NO.
						TP04
Location:		Co-ordinates:	E127500	N134620		Date:
Churchtown, NCW		Level:	76.98		14/02/2012	
Dimension		Method:				Logged by:
5 x 1 x 5.0		20 T excavator				B. Murphy LCC
Depth (M)	Sample	Field Record	Reduced Level	Depth (m) Thickness	Legend	Stratum Description
0.0			76.88	0.1	GARAGAS	Top soil
1.0	Sample taken of stone backfill	No odour		(1.7)		MADE GROUND comprising angular stone backfill with very occassional fragments of plastic.
2.0			75.18	1.8 Rection purpos		MADE GROUND comprising domestic waste mixed with angular stone backfill and small amount of clay. The waste is highly decomposed. The waste consists of plastic, bottles, metal cans, cardboard and some paper.
3.0		Con	Ent of copy			The waste is very dry throughout. The was some seepage of leachate into the excavation at 3.8 metres. Newspaper dated 26 May 1984 recovered at 2.3 metres.
		no odour		(3.2)		
4.0		ingress of leachate at 3.8 metres.				
	leachate sample					
5.0			71.98	5.0		

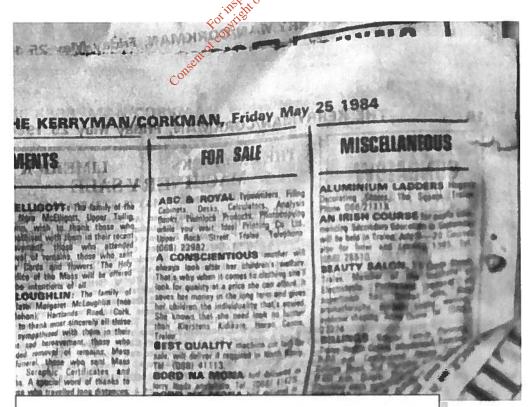
General Remarks:

This trial hole is located close to the eastern boundary of the site. The waste is highly decomposed with no odours or gas detected during the excavation. The upper 1.8 metres consists of free draining angular stone which contains very small amounts of waste.

The waste body from 1.8 to 5.0 metres is very consistent and consists of plastic, metal cans, and some paper. The waste fraction is low and mixed evenly through the stone backfill layer. The waste is very dry down to 3.8 metres. There was an inflow of leachate at 3.8 metres.

Trial Hole 04

Tier 2 Report Churchtown Landfill


Photo 1: Minimal depth of topsoil

Limerick Co. Council

Photo 3: Newspaper dated 26th May 1984

Limerick Co. Photo 4: Newspaper dated 25 May 1984 retrieved at 5 metres below ground level

Tier 2 Report

Photo 5: Ingress of leachate at 3.8 metres

Photo 6: Spoil heap from TH 04

Limeric	k Co. Counci					TRIAL PIT NO.
						TP05
Location:		Co-ordinates:	E127380	N134575		Date:
Churchtown, NCW		Level:	70.11		16/02/2012	
Dimension		Method:				Logged by:
5 x 1 x 5.0		20 T excavator				B. Murphy LCC
Depth (M)	Sample	Field Record	Reduced Level	Depth (m) Thickness	Legend	Stratum Description
0.0			69.81	(0.3)		topsoil
1.0	Waste sample	transient odour, no gas detected		(1.2)		MADE GROUND with very high waste fraction. The waste consists of plastic, paper, nappies, metal cans. There were some animal bones at 0.4 metres. The waste is very wet and black in colour. There was a very slight and transient burnt odour. There was a strong flow of leachate into the excavation from the east. The flow rate was approximatley 100 litres per minute and
	Leachate sample	!	68.61	1.5		continued for approximately 40 minutes.
2.0		transient odour, no gas detected	FOT S	Rection Durch		MADE GROUND. The waste below 1.5 metres is largely decomposed but very wet. The waste contains plastic, bottles and timber planks and partially decomposed metal sheets. Newspaper dated September 1977 at 1.8 metres. There was large plastic sheeting at 2.8 metres, sheets of partially decomposed metal sheets at 3.4 and a car exhaust at 3.6 metres.
3.0		Cas	Sent			
4.0			66.11	1 4.0		
	Subsoil sample LL 40 PL 19 PI 21					Light brown firm CLAY with massive structure and intermediate plasticity. There is no waste in this layer and this may
	MC 22					be the native subsoils.
5.0			65.11			

General Remarks:

This trial hole is located in the south-west corner of the site. This is the lowest part of the site. The site is very wet and partially water logged. Surface water run off and leachate from across the entire site is likely to flow towards this trial hole.

The upper 1.5 metres of waste is largely undecomposed and contains very little backfill. This waste may have been placed shortly before the site closed in 1988. The waste below 1.5 metres appears to be commerical with a high fraction of metal sheets and large plastic wrapping.

The trial hole is located within 20 metres of the borehle LW03.

This trial hole extended below the waste body into a CLAY subsoil. This subsoil may be an imported backfill dating back to

Tier 2 Report

Churchtown Landfill

Photo 1: Top soil

Photo 2: domestic waste with animal jaw bone

Photo 3: large concentration of domestic waster

Photo 4: Spoil heap for TH05

Photo 5: ingress of leachate at 1.5 metres

Photo 6: excavated waste very wet

Photo 7: large white plastic at 2.8 metres

Photo 8: soil beneath waste

Limerick	Co. Counc	:il	TRIAL PIT NO.			
			TP06			
Location:		Co-ordinates:	E127420	N134580		Date:
Churchtow	n, NCW	Level:	74.65			16/02/2012
Dimensions		Method:			Logged by:	
6.5 x 1 x 5.0	0	20 T excavator				B. Murphy LCC
Depth (M)	Sample	Field Record	Reduced Level	Depth (m) Thickness	Legend	Stratum Description
0.0		no odour	74.65	(0.8)		MADE GROUND comprising C&D waste consisting of broken bricks, concrete, crushed stone. Very little waste in this layer.
1.0		no odour	73.85	0.8		MADE GROUND comprising highly decomposed waste consisting mainly of plastic, glass bottles, occassional textiles and paper. The waste is very dry and mixed with a stone granular / clay backfill. The waste
3.0				no ^s .		fraction is low throughout the trial hole. The clay content of the backfill is low down to 3.7 metres and increases slightly below this but the stratum appears to be free draining. There was a small amount of seepage at 3.5 metres.
4.0		small amount of seepage at 3.5	for its	citof purpose tion where the		Newpaper dated May 1986 at 1.8 metres A largely intact milk churn was found at 1.8 metres.
5.0		very faint and transient odour at 4.7				Washing machine was found at 3.0 metres.
6.0			68.15	6.5		Waste continues below base of trial hole

General Remarks:

This trial hole is located in an overgrown area towards the centre of the site. The capping layer consists of 0.8 metres of C&D type material. The waste material is very decomposed at this location with no organic material present. The waste material is also very uniform with depth.

The waste material is very dry through out the trial hole.

Tier 2 Report

Photo 1: C&D layer on surface

Photo 2: waste very dry and decomposed

Limerick Co. Council

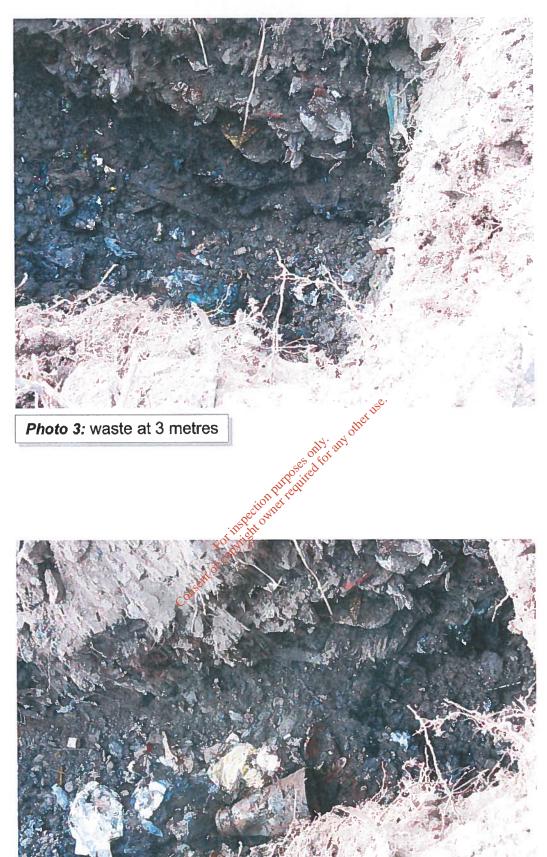


Photo 4: milk churn at 1.8 metres

Photo 5: TH 06 Spoil Heap

Photo 6: Milk churn, washing machine and paper dated May 1986

Limerick Co. Council

Limerick Co. Council

Limeric	k Co. Counc	:il	-			TRIAL PIT NO.		
						TP07		
Location:		Co-ordinates:	E127460	N134580		Date:		
Churchtown, NCW		Level:	76.142		16/02/2012			
Dimension	S	Method:				Logged by:		
6.2 x 1 x 5		20 T excavator				B. Murphy LCC		
Depth (M)	Sample	Field Record	Reduced Level	Depth (m) Thickness	Legend	Stratum Description		
0.0				0.2		Top soil with some waste - 2 small corroded batteries.		
					8000000	MADE GROUND comprising high waste		
						content with very high plastic content.		
		no odour		/1 2\		Waste is largely decomposed and consists of		
			1	(1.2)		plastic bags, glass bottles, textile fragments, samll amount of paper, metal tins.		
1.0						Samil amount of paper, metal tins.		
			74.64	1.5				
		1				MADE GROUND comprising decomposed waste mixed with angular stone backfill and		
						soil. Waste consists of plastic, glass and a		
2.0						small amount of paper.		
						The clay fraction in the backfill increases		
						below 3.0 metres.		
		no odour			Colinia di			
3.0				100	100	Magazine dated October 1984 at 1.8 metres		
3.0				(2.3), es				
				pection net				
			in	ght				
ì			FOR					
		small amount of seepage	x of co					
4.0		seehage	a ent					
1		Co						
1								
1								
			71.34	4.8				
5.0				0		MADE GROUND comprising clay backfill containing very small amounts of waste.		
						containing very small amounts of waste.		
			1					
					FREE			
6,0					H.			
			69.94	6.2		<u> </u>		

General Remarks:

The capping layer consists of 0.2 metres of topsoil.

The waste body is largely decomposed at this location. The waste is combined with an angular stone backfill down to 4.8 metres. The backfill below 4.8 metres is predominately clay and contains very little waste.

The waste in the trial hole is very dry.

Photo 1: sandy topsoil with 2 batteries

Photo 2: Waste at 0.2 metres

Limerick Co., Council

Photo 3: decomposed waste mixed with stone backfill

Photo 4: waste at 2 metres

Photo 5: large fraction of plastic in waste

Photo 6: magazine dated October 1984

Photo 7: Spoil heap

Photo 8: Spoil Heap

Photo 9: Trial Hole 07

Limerick Co. Council

Limeric	k Co. Cou	ncil	TRIAL PIT NO.			
1			TP08			
Location:		Co-ordinates:	E127500	N134580		Date:
Churchtown, NCW		Level:	76.837		16/02/2012	
Dimensions		Method:			Logged by:	
5.6 x 1 x 5	.2	20 T excavator				B. Murphy LCC
Depth (M)	Sample	Field Record	Reduced	Depth (m)	Legend	Stratum Description
			Level	Thickness		
0.0						Topsoil
			76.637	0.2	F; 5 F; 15; 1	MADE GROUND comprising decomposed
1						waste with a very high metal content - 50
		No odour or gas				gallon drum, metal frame and small diamter
		140 ododi oi gas				metal pipes mixed with stone backfill.
1				(1.5)		
				(=.07		
1.0					:·:·:·:	
1.0						
			75.137	1.7		
1		no odour or gas		(0.3)		Layer of domestic waste, burning evident,
			74.837	2.0		nappies, paper, plastic.
						MADE GROUND comprising commerical and
2.0						domestic waste mixed with stone and clay backfill. The clay content of the backfill
					200	increased below 3.0 metres.
1					Dillogi	The waste is largely decomposed with no gas
l .		Seepage at 2.5		خ	OFFER	or odours detected.
		metres	1	insper	O ²⁴	The waste is very dry.
				For its perfective (3.6)		Large amont of white plastic packaging
				Scol.		between 1.8 and 2.0 metres.
3.0			.05	(3.6)		Newspaper dated August 1984 at 2.4
1			Conse	` '		metres
1						
1			1			
1						
1						
4.0	22					
			1		• • • •	
1						
1						
						•
1						
5.0						
1						
5.6	Pomarks	End	71.237	5.6		4

General Remarks:

The capping layer consists of 0.2 metres of topsoil.

The waste is largely decomposed throughout the trial holes with no odours or gas detected. There is a mixture of commercial and domestic waste in the trial hole.

Photo 1: 0.2 metres of topsoil

Photo 2: 50 gallon drum

Limerick Co. Council

Tier 2 Report

Churchtown Landfill

Photo 3: domestic waste with evidence of burning

Photo 4: small amount of seepage at 2.5 metres

Photo 5: waste in trial hole

Photo 6: white plastic material

Photo 7: Trial Hole 08

Limerick Co. Council

Churchtown Landfill

Limerick	Co. Coun	il	TRIAL PIT NO.					
dai ja			TP09					
Location: «		Co-ordinates:	E127405	N134580	Date:			
Churchtow	n, New	Level:	71.046			16/02/2012		
Dimensions	•	Method:				Logged by:		
6.0 x 1 x 5.0)	20 T excavator	_			B. Murphy LCC		
Depth (M)	Sample	Field Record	Reduced Level	Depth (m) Thickness	Legend	Stratum Description		
0.0			71.05	(0.3)		Topsoil		
1.0		15 ya.		. %	¶Ì:	Waste which is completely decomposed. The waste consists of glass bottles embedded in a clinker, granular material. There is no plastic, textiles, timber or		
2.0						organic waste throuhgout the trial holes. The waste is very dry.		
3.0				- 50°5°	13 m	het tise.		
4.0			For its	(548) ose (548) ose (549)				
5.0		Car						
3.0			65.65	5 54				
			03.03	5.4	•	Light brown firm CLAY with massive		
						structure. There is no waste in this strata.		
6.0			65.0	6.0				


General Remarks:

Tier 2 Report

This trial hole is located at the southern perimeter of the site adjacent to the site entrance. The waste at this location is considerable older that any other location on site. The 1840 historic map suggests that an older quarry located to the south of the public road encroached onto this part of the site.

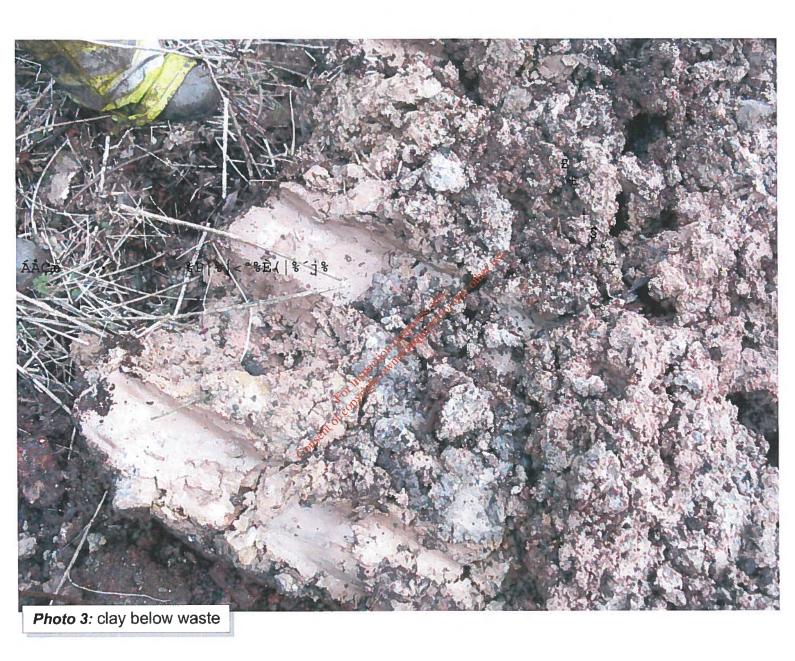


Photo 1: Topsoil

Limerick Co. Council

Photo 2: spoil heap

Churchtown Landfill Tier 2 Report

Photo 4: Trial Hole 09 Limerick Co. Council

புள்ளு	c Co. Coun	cil . C				TRIAL PIT NO.
« «						TP10
ocation:		Co-ordinates: «D	[5]27590	N134540	Date:	
Churchtov	vn, NCW	Level:	75.16		17/02/2012	
Dimension	5	Method:				Logged by:
7.5 x 1 x 5.		20 T excavator			B. Murphy LCC	
Depth (M)	Sample	Field Record	Reduced Level	Depth (m) Thickness	Legend	Stratum Description
0.0			74.86	(0.3)		topsoil
			74.36	(0.5)		MADE GROUND comprising commercial waste with long strips of plastic,
1.0		transient rancid odour, no gas	74.30	(1.7)		MADE GROUND comprising domestic and commercial waste mixed with stone/clay backfil The layer contains partially decomposed domestic waste with a transient rancid odour. Partially corroded metal sheeting and car tyre at 1.3 metres, white plastic packaging at 1.6 metres. Newspaper dated December 1983 at 1.5 metre lingress of Jeachate at 1.8 metres.
2.0		Seepage of leachate from north	73.16	2.0	. O.Y.	with excavator.
3.0			Fo Cansent of co	degetion pi		Light brown firm CLAY with massive structure. No waste in this strata.
4.0				(3.0)		
5.0			70.16	5.0		

General Remarks:

This trial hole is located in the south-east corner of the site to the rear of the houses in Evergreen Close.

The trial hole contains a mixture of commercial and domestic waste. The domestic waste is not fully decomposed.

The waste is just 2.0 metres deep at this location and overlies a firm light brown sany CLAY. There is no waste throuhg the 3 metre CLAY stratum. The clay may be the natural subsoil which overlies the bedrock in the area. The clay is similar to that found at the base of TH05 and TH09.

Photo 1:Topsoil and waste

Photo 2: domestic waste at 1.3 metres

Limerick Co., Council

Churchtown Landfill Tier 2 Report

Photo 3: Spoil heap

Limerick Co. Council Photo 4: ingress of leachate at 1.6 metres

Photo 5: Large concrete pillar at 1.8 metres

Photo 6: concrete pillar removed

Photo 8: Clay beneath waste

Churchtown Landfill

Tier 2 Report

Limerick	Co. Coun	cil	TRIAL PIT NO.			
						TP11
Location:		Co-ordinates:	E127406, N134575			Date:
Churchtow	n, NCW	Level:	73.5		03/12/2012	
Dimensions		Method:			Logged by:	
4.0x1.0 x 5	.0	13.5 T			B. Murphy LCC	
Depth (M)	Sample	Field Record	Reduced Level	Depth (m) Thickness	Legend	Stratum Description
0.0			73.3	(0.2)		No topsoil, C&D material consisting of crushed rock and subsoil
		strong offensive odour detected at 0.7 metres, persisted as trial hole was excavated.		(0.8)		MADE GROUND comprising commercial waste with very high metal content including metal frame and wire mesh. No organics, textiles or paper Fridge recovered 1 metre below ground
1.0			72.5	1.0		MADE CROUND inting inting
			. 5	(0.9)		MADE GROUND consisting mainly of granular stone backfill with a small fraction of waste. Small fraction of white organic material
2.0			71.6	1.9	0,00	
			71.3	(0.3R ⁰⁵)	8	High content of industrial type waste, plastic offcuts and washers, some organic material
			For inst	(0.300) CHO 2 CENT (1.4)		MADE GROUND highly decomposed domestic waste mixed with granular stone backfill. Some evidence of burning throughout this layer.
3.0		Cor	69.9	3.6		
4.0						MADE GROUND small fraction of highly domestic waste mixed with grey granular backfill and clay.
4.0				(1.2)		Large sheets of plastic towards the bottom of this layer. Bedrock not encountered
		Seepage of black				
4.8		liquid at 4.5 metres	68.7	4.8		

General Remarks:

This trial was excavated to investigate the very high magnestic response found during the geophysical survey carried out in March 2012.

The trial hole indicates that the upper sections of the waste contain a high fraction of metal.

TH 11 03 December 2012

Tier 2 Report

Churchtown Landfill

Limerick Co. Council

Photo 2: Waste with high metal and plastic content

Photo 3: metal frame

Photo 4: wire meshing

Limerick Co. Council

N), ((($\langle \rangle 22$)D(\ddot{u})>))2+

Tier 2 Report Churchtown Landfill

Photo 5: Spoil heap

Photo 6: Intact buried fridge

Limerick Co., Council

Consent of confright owner required for any other use.

Appendix 2 Slit Trench Report

Consent of copyright owner required for any other use.

Tier 2 Investigation Churchtown Landfill NCW

Slit Trench 1 to 12 15th February 2012 Slit Trench 13 to 15 20th April 2013

Slit Trench No. 1:

GPS Co-Ordinates: E -127 422 & N -134 641

Location: Adjacent to bare batch in adjoining field – 0.3m from boundary fence

Start Time: 09.15 Finish Time: 09.40

Findings:

Depth (m)	Findings
0-0.2	Loose gravel
0.2	Black bag of waste visible
0.4	Off-white fatty substance visible. Strong 'fatty' type odour
	A lot of plastics visible
	Some cardboard

Note:

- Waste was visible adjacent to the boundary ditch at 0.4m

- Times on photographs are incorrect.

Picture 1: Slit Trench 01

Slit Trench No. 2: GPS Co-Ordinates: E -127 413 & N -134 635

Location: Started trench adjacent to dry surface water drain

Start Time: 09.45 Finish Time: 09.55

Findings:

Depth (m)	Findings
0-0.3	Loose well drained clay soil
0.3-0.4	Layer of gravel
0.55	Small quantities of textiles & plastic visible
0.8	Plastics visible with some glass inter-dispersed

Note:

- Waste was visible at approx. 1.6m from the surface water drain

- Times on photographs are incorrect up to 11.09 correct time of 09.50 then entered.

Picture 2: Slit trench 2

GPS Co-Ordinates: E -127 404 & N -134 626

Location: Started trench approx 0.5m from dry surface water drain

Start Time: 10.00 Finish Time: 10.15

Findings:

Depth (m)	Findings
0-0.3	Loose well drained clay soil with gravel inter-dispersed
0.3	Broken shale
1.0	Waste visible mostly plastic with some glass.
	Black decayed waste inter-dispersed with the clay – no odour
	Large concrete boulder (approx. 1m ²)

Note:

- Waste was visible at face of the silt trench

Picture 3: Slit trench 3

GPS Co-Ordinates: E -127 395 & N -134 606

Location: Started trench approx 0.5m from dry surface water drain – on a steep incline

just to N of the field gate.

Start Time: 10.45 Finish Time: 11.00

Findings:

Depth (m)	Findings
0-0.4	Loose well drained clay soil
0.5	Plastics & glass visible

Note:

- Waste was visible approx. 1.5m from dry surface water drain

Picture 4: Slit trench 4

GPS Co-Ordinates: E -127 440 & N -134 650

Location: To the E of slit trench No. 1 & W of TH1. Started trench approx 0.5m from

boundary ditch Start Time: 11.20 Finish Time: 11.30

Findings:

Depth (m)	Findings
0.1	Gravel layer
0.4	Waste visible – mostly plastics with some textiles

Note:

- Waste was visible at face of the silt trench

Picture 5: Slit trench 5

GPS Co-Ordinates: E -127 479 N -134 668

Location: To the E of TH1. Started trench approx 0.6 from boundary ditch

Start Time: 11.40 Finish Time: 11.55

Findings:

Depth (m)	Findings
0-0.5	Loose well drained clay soil
0.5	Waste visible – mostly plastics with some glass. No odour

Note:

- Waste was visible at face of the silt trench

Picture 6: Slit trench 6

GPS Co-Ordinates: E -127 392 N-134 543

Location: Along the southern boundary of site, W of entrance gate. Started trench approx

5.6m from boundary ditch due to overhead wire.

Start Time: 12.05 Finish Time: 12.30

Findings:

D (1 ()	T. 1.
Depth (m)	Findings
0-0.7	Loose well drained clay soil
0.7	Small quantities of waste mostly glass. No plastic
1	Small quantities of plastic. Cover of milk churn & spring of
	mattress.
1.3 -1.7	Glass visible. Fine sandy reddish ashy material present with
	pieces of broken glass mixed through it

Note:

- Waste was visible approx. 0.7m from face of the silt trench.
- Beer bottle removed from trench inscribed with 'O'Consor & Son Kanturk Castle'
- Free draining soil throughout the 1.7m trial hole.

Picture 7: Slit trench 7

GPS Co-Ordinates: E -127 404 N-134 532

Location: Just to the W of entrance gate. Started trench approx 2.1m from boundary

ditch.

Start Time: 12.45 Finish Time: 13.00

Findings:

Depth (m)	Findings
0-0.5	Loose well drained clay soil
0.5	Small quantities of waste mostly glass and small quantities
	of plastic
0.7	Glass evident (older type bottles)
1.1	A lot of broken glass evident at base of slit trench

Note:

- Glass was visible at face of the silt trench.
- Free draining soil throughout the 1.1m trial hole.

Picture 8: Slit trench 8

GPS Co-Ordinates: E -127 442 N-134 550

Location: Just to the E of entrance gate to the rear of House No1 Evergreen Crescent.

Started trench approx 1.1m from boundary ditch.

Start Time: 14.00 Finish Time: 14.35

Findings:

Up to a distance of 7.4m from boundary fence

Depth (m)	Findings
0.2	Poorly draining clay soil
0.9	Heavy wet clay soil – small quantity of water evident
	6" black open-ended plastic pipe evident approx. 3.8m from
	boundary
2.1	No evidence of waste

Note: Slit trench adjacent to concret slab (2.5m*1.5m) overlying a fine gravel base

From 7.4m from boundary fence

Depth (m)	Findings
0-0.15	Gravel layer
0.15	Waste visible – plastics, glass & some textiles & metal – no
	odour ose diff
0.6	Seepage evident purification

Picture 9: Slit trench 9

GPS Co-Ordinates: E -127 473 N-134 548

Location: Adjacent to container between House No1 & No2 Evergreen Crescent. Started

trench approx 15m from boundary ditch (unable to get closer due to trees).

Start Time: 14.55 Finish Time: 15.10

Findings:

Depth (m)	Findings
0-0.3	Freely draining sandy clay
0.3	Waste visible – plastics, glass & woven bags

Picture 10: Slit trench 10

GPS Co-Ordinates: E -127 485 N-134 541

Location: Between House No2 & No3. Started trench approx 4m from boundary ditch

Start Time: 15.20 Finish Time: 15.35

Findings:

Depth (m)	Findings
0-0.2	Loose well drained clay
0.2	Gravel layer
0.3	Small quantities of waste visible
0.5	Waste visible – alot of plastics, glass & textiles. Healtlogs
	25kg plastic bag which when opened appeared to have
	decayed household waste – no odour

Picture 11: Slit trench 11

Slit Trench No.12
GPS Co-Ordinates: E -127 515 N-134 538

Location: Rear of House No4. Started trench approx 4m from boundary ditch

Start Time: 15.45 Finish Time: 16.00

Findings:

Depth (m)	Findings
0-0.4	Loose well drained clay
0.4	Gravel layer
0.5-0.7	Waste visible - plastics, glass, metal, paint brush

Slit Trench No. 13:

GPS Co-Ordinates: 127510E, 134526.8N

Location: Adjacent to southern boundary of site adjacent to Evergreen Close

Start Time: 11:10 Finish Time: 11:30

Findings:

Depth (m)	Findings
0-0.2	Loose friable topsoil.
0.2 -0.8	Domestic waste, no organics, highly decomposed, predominately plastic and glass with some metal High Concentration of coarse angular stone. The waste is very dry.

Note:

The southern extent of the waste was not established due to the presence of large conifer trees on the boundary.

Slit Trench No. 14:

GPS Co-Ordinates: E -127485 & N -134530

Location: southern boundary adjacent to Evergreen Close

Start Time: 11:45 Finish Time: 12:00

Findings:

Depth (m)	Findings
0-0.2	loose top soil
0.2-0.6	Domestic waste, highly decomposed, no organics, mainly plastic with some glass.

Picture 13: Southern boundary

Note:

The southern end of the waste was not reached due to the line of mature tress adjacent to the southern boundary.

Slit Trench No. 15:

GPS Co-Ordinates:127447E, 134553N

Location: Southern boundary adjacent to Evergreen Close

Start Time: 12:30 Finish Time: 12:45

Findings:

Depth (m)	Findings
0-0.2	loose friable topsoil
0.2 to 0.4	granular subsoil with no waste.
0.4 to 0.8	brown stiff clay

Note:

Appendix 3 Geophysical Survey

Consent of copyright owner required for any other use.

Churchtown Landfill Site Newcastle West

Geophysical Survey

Report Status: Draft MGX Project Number:5711 MGX File Ref: 5711f-005.doc 3rd October 2013

Confidential Report To:

Report submitted by:
Minerex Geophysics Limited
Consent of Maynooth Business
Maynooth, Co. Kildare

Ireland

Tel.: 01-6510030 Fax.: 01-6510033 Email: info@mgx.ie

Hartmut Krahn (Senior Geophysicist)

Subsurface Geophysical Investigations

EXECUTIVE SUMMARY

- 1. Minerex Geophysics Ltd. (MGX) carried out a geophysical survey in 2012 consisting of EM31 Ground Conductivity, 2D-Resistivity and seismic refraction for the Tier 2 preliminary Site investigation of the historic Churchtown Landfill Site in Newcastle West, Co. Limerick.
- 2. The main objectives of the survey were to determine ground conditions in general, the extent, depth, volume and nature of the waste, information on the capping and possible leachate from the site.
- 3. In June 2013 a seismic survey consisting of 8 short profiles was added in the east of the landfill area in some residential gardens. The aim was to define the landfill boundary as precisely as possible.
- 4. This report also includes the data from four 2D-Resistivity Profiles that were done in 2007 by BRG Ltd.
- 5. The draft report in 2012 made some recommendations that were carried out by the client and the results are included in this final report.
- 6. The boundary of the landfill is well defined when taking all the previous GI, geophysics and historical maps into account. The area within the boundary (Black and magenta line on Map 3) is 1.86 ha.
- 7. The base of the landfill and floor of the former quarry are at a level of 63 65 mOD. Given the ground elevations of 68 78 m on the landfill the thickness of the waste body is 5 15m. Using the area of 1.86 ha and an average thickness of 10 m there would be a volume of 186000 m³.
- 8. There is no evidence of an engineered capping layer though a general trend of higher resistivities at the surface indicates more granular gravelly material and stone or rock fill at the surface. This may provide some capping function.
- 9. Resistivity data shows that it is likely that some leachate occurs into the rock below the landfill.

CONTENTS

1.	INTRODUCTION3
1.1	Background3
1.2	2 Objectives
1.3	3 Site Description3
1.4	4 Geology3
1.5	5 Report
2.	GEOPHYSICAL SURVEY5
2.1	Methodology5
2.2	EM31 Ground Conductivity5
2.3	3 2D-Resistivity5
2.4	Seismic Refraction6
2.5	5 Site Work 2012
2.6	6 Site Work 20136
3.	Site Work 2012
3.1	EM31 Ground Conductivity7
3.2	2 2D-Resistivity Profiles
3.3	Seismic Refraction Data 2012 8
3.4	Seismic Refraction Data 20128 Interpretation9
3.5	Seismic Refraction Interpretation 201310
3.6	5 2D-Resistivity Interpretation 200710
4.	CONCLUSIONS11
5.	REFERENCES13

List of Tables, Maps and Figures:

Title	Pages	Document Reference
Table 1: Data Acquisition Parameters for Geophysical Profiles	In text	In text
Table 2: Summary of Results and Interpretation	In text	In text
Map 1: Geophysical Survey Location Map	1 x A3	5711f_Maps.dwg
Map 2: EM31 Ground Conductivity Contour Map	1 x A3	5711f_Maps.dwg
Map 3: Interpretation Map	1 x A3	5711f_Maps.dwg
Map 4: Boundaries Map	1 x A3	5711f_Maps.dwg
Figure 1a: Results of Geophysical Survey	1 x A3	5711f_Figs.dwg
Figure 1b: Results of Geophysical Survey	1 x A3	5711f_Figs.dwg
	1 x A3	5711f_Figs.dwg
Figure 2a: Interpretation of Geophysical Survey	1 x A3	5711f_Figs.dwg
Figure 2b: Interpretation of Geophysical Survey	1 x A3	5711f_Figs.dwg
Figure 2c: Interpretation of Geophysical Survey 2007	1 x A3	5711f_Figs.dwg
Figure 3: Results of Geophysical Survey 2013	1 x A3	5711f_Figs.dwg
Figure 1c: Results of Geophysical Survey 2007 Figure 2a: Interpretation of Geophysical Survey Figure 2b: Interpretation of Geophysical Survey Figure 2c: Interpretation of Geophysical Survey 2007 Figure 3: Results of Geophysical Survey 2013 Consent of Consent		
Cor		

1. INTRODUCTION

1.1 Background

Minerex Geophysics Ltd. (MGX) carried out a geophysical survey for the Tier 2 preliminary site investigation for the historic Churchtown Landfill Site in Newcastle West, Co. Limerick. The survey consisted of EM31 Ground Conductivity, 2D-Resistivity and seismic refraction (p-wave). The survey is part of the ground investigation for the landfill. The survey was commissioned by Limerick County Council. Other work items like trial pits, slit trenches and sampling were done by Limerick Co. Co. in February 2012 at the same time as the geophysical survey. In June 2013 a seismic refraction survey was added to determine the landfill boundary in the residential gardens to the east of the site. Four 2D-Resistivity Profiles done in 2007 were also added to this report.

1.2 Objectives

The main objectives of the first geophysical survey in 2012 were set out by the client in the tender:

- Identify the extent of the former landfill site and quarry
- Provide information on the depth and nature of the wasterbody
- Quantify the volume of the waste
- Provide information on the depth and extent of the capping layer
- Look for evidence for leachate migration from the site

The detailed objective of the seismic survey in June 2013 was:

Identify the landfill boundary precisely in the gardens to the east

1.3 Site Description

The landfill site is situated in a former limestone quarry and has a size of approx. 2 ha. A topographical survey was carried out in 2007 and is used as a background map in the maps of this report. The elevations on the site range from 68 to 78 mOD. The site slopes from NE to SW. The surrounding topography generally slopes from East to West. Some parts of the site are overgrown. The site is described in detail in the Tier 1 – Landfill Risk Assessment report.

1.4 Geology

The bedrock geological map of the Shannon Estuary (GSI, 1999) indicates that the survey area is underlain by the Waulsortian limestone formation, described as massive unbedded lime-mudstone. These limestones are typically very clean and liable to karstification.

The Tier 1 and Tier 2 reports detail the site investigations carried out at the Churchtown Landfill Site.

1.5 Report

This report includes the results and interpretation of the geophysical survey. Maps, figures and tables are included to illustrate the results of the survey. More detailed descriptions of geophysical methods and measurements can be found in GSEG (2002), Milsom (1989) and Reynolds (1997).

The client provided maps of the site and the digital version was used as the background map in this report. Elevations were surveyed on site and were incorporated into the data for the vertical sections. The system used in this report is Irish transverse Mercator (ITM).

The interpretative nature and the non-invasive survey methods must be taken into account when considering the results of this survey and Minerex Geophysics Limited, while using appropriate practice to execute, interpret and present the data, give no guarantees in relation to the existing subsurface.

2. **GEOPHYSICAL SURVEY**

2.1 Methodology

The methodology for the geophysical survey consisted of EM31 Ground Conductivity, 2D-Resistivity and Seismic Refraction Profiles. The survey locations are indicated on Map 1. There are four 2D-Resistivity profiles and eight seismic refraction profiles. The geophysical survey parameters for the profile are listed in Table 1.

All geophysical surveys are acquired, processed and reported in accordance with British Standards BS 5930:1999 + A2:2010 'Code of Practice for Site Investigations'.

Table 1: Data Acquisition Parameters for Geophysical Profiles

Profile Name	Electrode/Geophone Interval/m	Number of Electrodes/Geophones	Profile Length/m
R1 - R4	3	64	189
S1 – S8	3	24 net 15°.	69
2.2 EM31 Gr	ound Conductivity	observation and or	

2.2 EM31 Ground Conductivity

The EM31 ground conductivity survey was carried out on lines over the landfill and the surrounding area to the west and north where clearance was made of previously available. Along each line a reading of ground conductivity was taken every second while walking along. The locations (small crosses on Map 2) were measured with a sub-meter accuracy SERES DGPS system attached to the EM31 and all data was jointly stored in a data logger. The conductivity meter was a GEONICS EM31 with Allegro data logger and NAV31 data acquisition software. The instrument was checked at a base station, the readings were stable and no drift occurred.

EM31 ground conductivity determines the bulk conductivity of the subsurface over a typical depth between 0 and 6 m bgl. and over a radius of approx. 5m around the instrument. Landfill waste and leachate have higher conductivities than most geological materials and can be located within the depth range of the meter. When looking for clay, silt and water infill within rock occurring at relatively shallow depth the EM31 can find anomalous rock zones with a vertical extent of approx. 3m. The measurements are disturbed by metal and other conductive objects within the range of the instrument and therefore no geological interpretations can be made in the vicinity of such man-made objects. Either readings were not taken near sources of interference in the first place or notes were taken by the operator in order to account for these in the interpretation.

2.3 2D-Resistivity

During 2D-Resistivity surveying data is acquired in the form of linear profiles using a suite of metal electrodes. A current is injected into the ground via a pair of electrodes while a potential difference is measured across a second pair of electrodes. This allows for the recording of the apparent resistivity in a two-dimensional

arrangement below the profile. The data is inverted after the survey to obtain a model of subsurface resistivities. The generated model resistivity values and their spatial distribution can then be related to typical values for different geological materials.

2D-Resistivity profiles with electrode spacing of 3m were surveyed at the locations shown on Map 1. The readings were taken with a Tigre Resistivity Meter and Imager Cables.

2.4 Seismic Refraction

In the seismic refraction survey method a p-wave is generated by a source at the surface resulting in energy travelling through surface layers directly and along boundaries between layers of differing seismic wave velocities. Processing of the seismic data allows geological layer thicknesses and boundaries to be established.

The seismic survey consisted of p-wave seismic refraction profiling. Each of the profiles consisted of 24 geophones with 3 m spacing, resulting in lengths of up to 69m per profile. The recording equipment consisted of a 24 Channel DMT Summit engineering seismograph with 4.5 Hz vertical geophones. The seismic energy source consisted of a hammer and plate. A zero delay trigger was used to start the recording.

Seismic Refraction generally determines the depth to horizontal or near horizontal layers where the compaction/strength/rock quality changes with an accuracy of 10 - 20% of depth to that layer. Where low velocity layers are present or where layers dip with more than 20 degrees angle the accuracy becomes much less. In loose and soft ground like a landfill the seismic energy gets heavily attenuated and usually on 3 - 6 m depth penetration is possible.

2.5 Site Work 2012

The data acquisition was carried out on the 13th and 14th of February 2012. The weather conditions were variable throughout the acquisition period. Health and safety standards were adhered to at all times.

The locations and elevations were surveyed with a TRIMBLE RTK-GPS to accuracy < 0.02m.

2.6 Site Work 2013

The data acquisition for the 2013 seismic refraction survey was carried out on the 25th June 2013. The geophone spacing used was 1 m in order to resolve the seismic velocity of the shallow subsurface with high resolution. Otherwise the seismic refraction method was done as described above. There were 8 seismic refraction profiles done named S11 – S18 and they are indicated on the location maps.

3. RESULTS AND INTERPRETATION

The interpretation of geophysical data was carried out utilising the known response of geophysical measurements, typical physical parameters for subsurface features that may underlay the site, and the experience of the authors.

3.1 EM31 Ground Conductivity

The EM31 ground conductivity values were merged into one data file and contoured and gridded with the SURFER contouring package. The contours are created by gridding and interpolation and care must be taken when using the data. The contour map is overlaid over the location and base map (Map 2) and the values in milliSiemens/metre (mS/m) are indicated on the colour scale bar.

Low conductivities would indicate either shallow bedrock or dry sandy and gravelly overburden while higher conductivities would indicate deeper bedrock and clay-rich overburden. Very high or very low conductivities indicate interference from manmade metal objects or occur over the waste body.

Middle range values (15 - 25 mS/m) indicate gravelly clay outside the landfill in the field to the west or areas where the waste is relatively thin close to that field boundary in the west (and inside the landfill area).

The high values (> 25 mS/m) are concentrated over the highest part of the landfill where they indicate the largest thickness of the waste and leachate within the waste. The transition from high to low values can be seen on the property without a building between the R521 and the landfill. The gradient in the readings indicates the landfill boundary.

A line of high readings occurs in the field to the west close to the road. There is no visible obvious reason for these high readings that must be caused by subsurface metal. The subsequent site investigation showed that this is a buried power cable.

3.2 2D-Resistivity Profiles

The 2D-Resistivity data was positioned and inverted with the RES2DINV inversion package. The programme uses a smoothness constrained least-squares inversion method to produce a 2D model of the subsurface model resistivities from the recorded apparent resistivity values. Three variations of the least squares method are available and for this project the Jacobian Matrix was recalculated for the first three iterations, then a Quasi-Newton approximation was used for subsequent iterations. Each dataset was inverted using seven iterations resulting in a typical RMS error of < 2.1%. The resulting models were colour contoured with the same scale for all profiles and they are displayed as cross sections (Figure 1a and 1b).

The resistivities cover a wide range of values. The high values at depth indicate clean limestone bedrock while low values indicate the presence of the landfill waste body. The lowest values within the landfill are most likely caused by a combination of waste material and water within the landfill body.

The resistivities at depth are generally quite high which is consistent with the clean (non-argillaceous) limestone rock type. It confirms that the undisturbed rock is a clean limestone, which means it has no or very low shale or mud content. The high resistivities indicate that the limestone is liable to karstification but does not have to be karstified.

3.3 Seismic Refraction Data 2012

The seismic refraction data was positioned and processed with the SEISIMAGER software package to give a layered model of the subsurface. The numbers of layers has been determined by analysing the seismic traces and up to 5 layers were used in the individual models. All seismic profiles were subject to a standardised processing sequence which consisted of a topographic correction which was based on integrated elevation data, first break picking, tomographic inversion, travel-time computation via ray-tracing and velocity modelling. Following each processing stage QC procedures were adhered to. The resulting layer boundaries are shown as thick lines overlaid on the 2D-Resistivity cross sections (Figure 1a and 1b). The seismic velocities obtained within the layers are annotated on the sections.

S1 and S8 were done outside the landfill to model the normal geological ground conditions in a down gradient direction. S2, S6 and S7 were done to cross the boundary of the waste body and determine the edge of the former rock quarry. S4 and S5 are over the lower part of the landfill to see if the bottom can be reached. S3 is entirely within the landfill waste body.

S1 and S8 indicate that the succession of ground layers is quite normal going from soft topsoil over firm to stiff gravelly clay and weathered bedrock to strong rock. The layer 4 (Figures 1a and 1b) is a typical transition layer between overburden and strong bedrock and can contain weathered rock but also very consolidated overburden. Notable is a thickening of the overburden and weathered rock layer on S8 (at 60-100m on R8) which is also the lowest point of the ground across the road from the westernmost point of the landfill.

S2, S6 and S7 show the lateral change between landfill waste body and the natural geology quite well and the modelling could prove the edge of the former rock quarry well. The large difference of seismic velocities across the boundary causes a good contrast and the first breaks in the seismic shot records allow an excellent locating of the former quarry edge.

S3 is at the thickest part of the landfill and it is not possible to make any deduction about the depth of the landfill. This was to be expected because of the strong attenuation of the seismic signal in the loose waste body. Some variations of the seismic velocity within the waste body could be modelled and improved the model accuracy. This shows that the waste has a quite narrow band of seismic velocities (0.25 to 0.5 km/s).

S4 and S5 still do not show the base of the landfill although it is thinner than at S3. S5 allows some estimation about the depth to the limestone which is significant close to the site entrance. It shows that the former quarry floor was located deeper than the current site entrance (also found in the slit trenches). S4 shows a curious change from normal condition in the waste body as there is an area with high seismic velocities (modelled with 3 km/s). This is likely an area of backfilled very compact and hard stones or rocks though it could be also

an area of rock that was not excavated in the former quarry. It is noted that the highest resistivities within the landfill occur at this location.

3.4 Interpretation

Abbreviated trial pit and well logs are shown on the sections where ground investigation points are close to the geophysical profiles. For a full description of the logs the report should be used.

Table 2 summarises the interpretation. The interpretation follows the seismic layers and then is extrapolated along the resistivity sections. The interpretation has been made from all available information including the well logs and trial pits. The base of the landfill which is the old quarry floor has been interpreted from the boreholes and the resistivities as no seismic profile has reached the base.

The interpretations are drawn on Figures 2a and 2b. Layers are indicated by the hatch pattern. The magenta dashed line on R 2 and R3 indicates the water table within the landfill as indicated by the sudden increase in resistivities around this level.

Table 2: Summary of Results and Interpretation

Layer	General Seismic Velocity Range (km/sec)	General Resistivity Range (Ohmm)	Compaction/Stren gth/Rock Quality	Interpretation
1	0.25 – 0.3	< 160 decopying < 320 constant	Soft/Loose	Overburden (Soil or Topsoil)
2	0.25 – 0.5	< 320°	Loose/soft	Waste - Landfill
3	0.7 – 1.5	< 240	Firm to stiff	Overburden (Clay)
4	2.1	< 480	Weathered or hard	Weathered Rock or Overburden (Clay)
5	3.5 – 4.3	> 240	Strong	Strong Limestone
-	-	< 60	-	Possible Leachate outside Landfill Waste Body
On S4	3.0	> 320	-	Solid Object/Layer within Landfill

Map 3 summarises some of the interpretations made in this report.

3.5 Seismic Refraction Interpretation 2013

The seismic modelling with ray tracing and interpretation was aimed at defining the landfill boundary as precisely as possible. The layers and velocity ranges used previously on this project were used as far as possible, with some modifications visible on the legend of Figure 3. The results and interpretation of profiles S11 – S18 are displayed on Figure 3.

The 8 seismic profiles (S11 - S18) show quite varying results in term of ground model and background geology. The boundary between waste body natural ground is not always sharp and seismic velocities are quote similar at a shallow depth inside and outside the fill.

Profile 18 shows a 'normal' ground layering with rock at depth and no indication for waste and landfill material. There is no landfill material in this back garden.

Profiles 15 - 17 show the boundary by the drop in the faster velocity layers to the west where they are replaced by lower velocity layers representing the landfill. Profile 11 shows the same pattern where the landfill occurs just at the western profile end.

Profiles 12 – 14 show an opposed pattern where the ground gets less compacted and possibly more gas-rich towards the east. Therefore the boundary was placed at the eastern zone where the velocity get less. On Profile 14 the landfill boundary is outside the profile and taken from the previous survey.

Overall confidence about the landfill boundary location is good at profiles 11 and 15 – 17. On profiles 12 and 13 the confidence is less. There is no landfill ender profile 18, and along profile 14 and the old profile S2 the boundary is most eastward.

The boundary may not always be 'sharp' with some mixing of landfill and overburden material likely. The boundaries as displayed here show a 'best fit' solution and are useful for the estimation of size and extent of the landfill.

3.6 2D-Resistivity Interpretation 2007

The resistivity profiles carried out in 2007 have been re-processed with elevations and the same inversion and display parameters as in the 2012 survey. The results are similar as in the 2012 survey. The older profiles have been displayed in Figure 1c and are interpreted in Figure 2c.

4. CONCLUSIONS

This chapter summarises the conclusion based on the objectives and topics investigated.

Lateral extent of waste and boundary

The boundary of the landfill is well defined when taking all the previous GI, geophysics and historical maps into account. The edge of the former quarry has been found at S2, S6, and S7 and twice on R1. R1 runs over the edge of the landfill at an oblique angel therefore the boundary appears less focuses than elsewhere. The boundary has been also modelled on S11 - S17 while S18 is outside the landfill. It also shows on the northern end of R3-2007.

The boundary has been drawn on Map 3 as a black line and for S11 - S17 as a magenta line. The area within the boundary is 1.86 ha.

Volume of waste

The base of the landfill and floor of the former quarry are at a level of 63 - 65 mOD. Given the ground elevations of 68 - 78 m on the landfill the thickness of the waste body is 5 - 15m. Towards the field in the west it is likely that the thickness will decrease to 0m as the EM31 values approach the background values. Using the area of 1.86 ha and an average thickness of 10 mothers would be a volume of 186000 m³.

Nature of waste

In this report the whole landfill body was addressed as waste though it is known from the trial pits and slit trenches that there are significant volumes of made ground consisting of clay and sand/gravel with little or no waste material within the landfill. There is no indication in the resistivities or other physical parameters that allow a distinction between these materials. The waste body as described throughout this report is determined by the low resistivities of the waste that is spreading through solution as leachate and therefore equalises the resistivities.

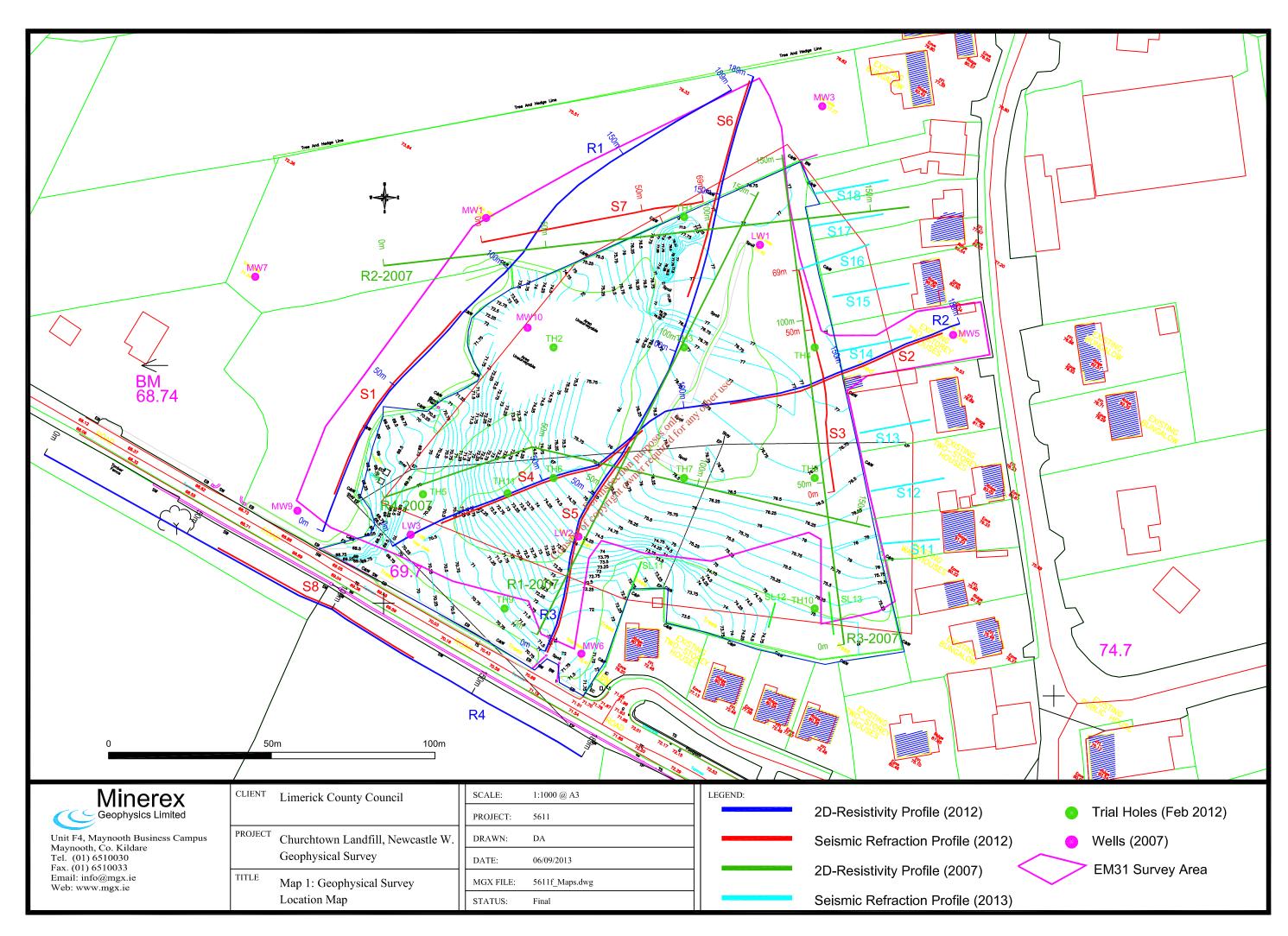
Capping layer

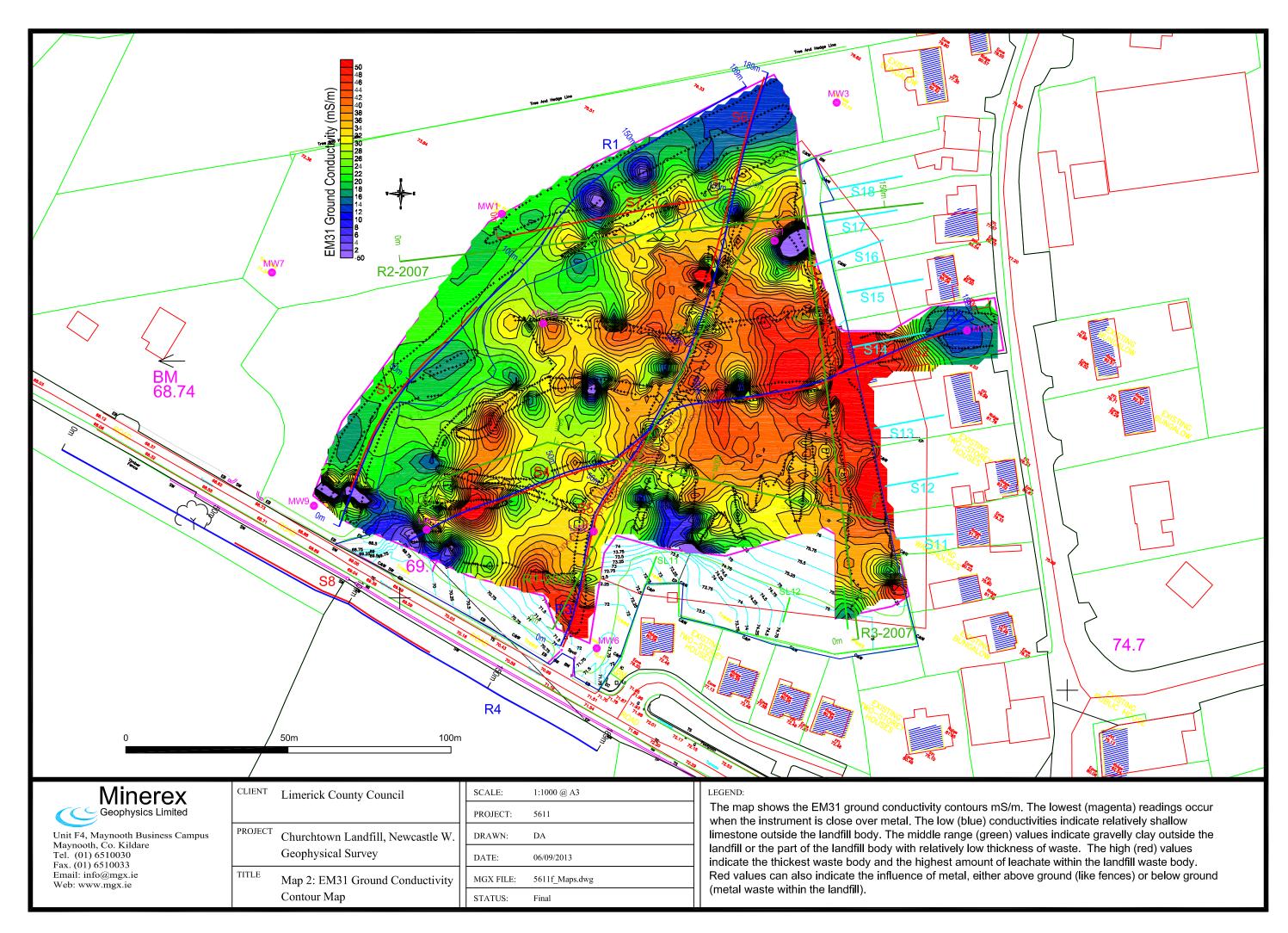
There is a general trend of higher resistivities at the surface (dry waste) with lower resistivities (saturated waste) near the top. At the very top resistivities change mainly between > 80 Ohmm (green) to < 80 Ohmm (yellow – brown). Higher values indicate more granular gravelly material and stone or rock fill while lower values represent clay and waste material.

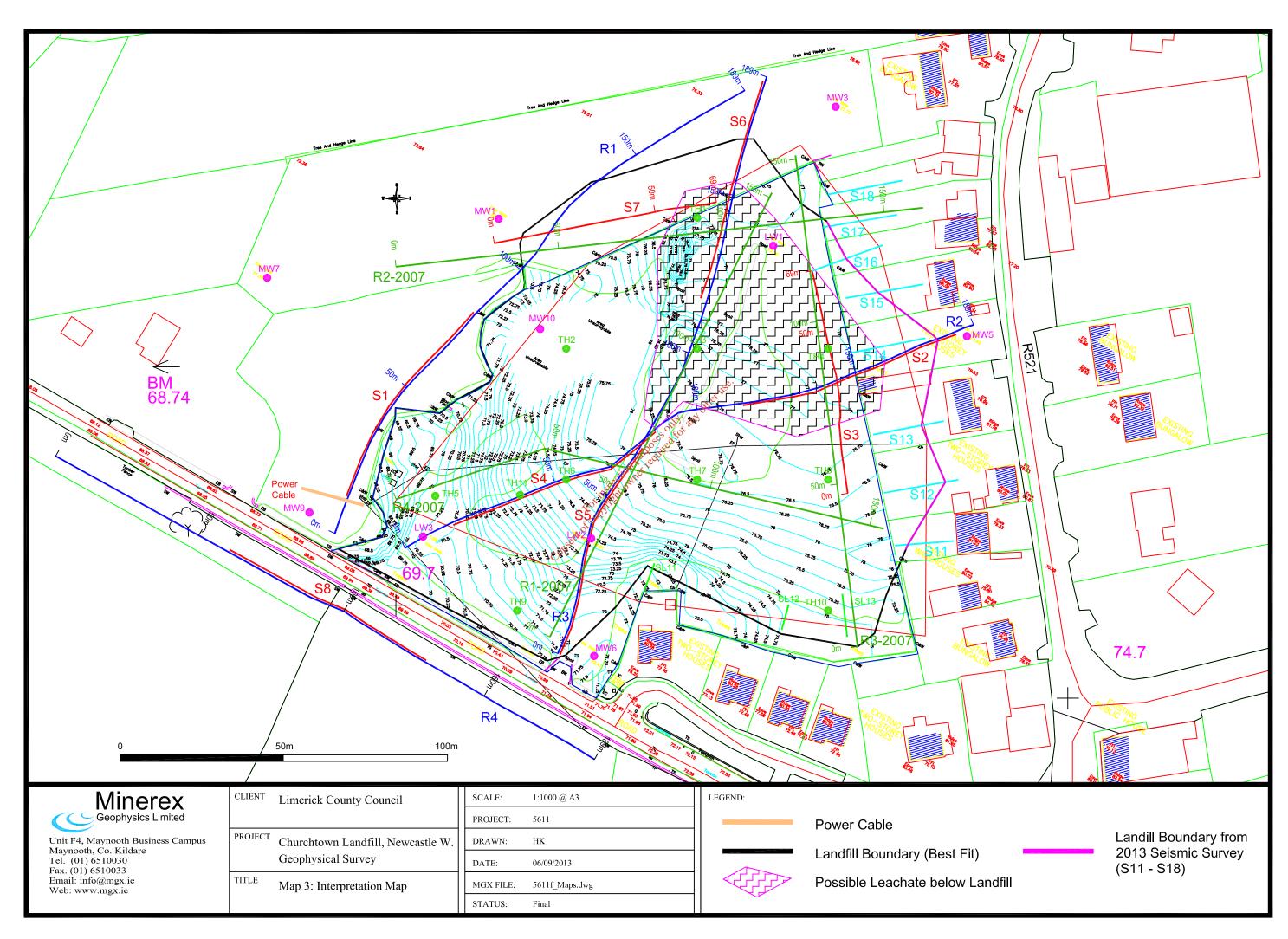
Deepest part of landfill and possible leachate vertical below landfill

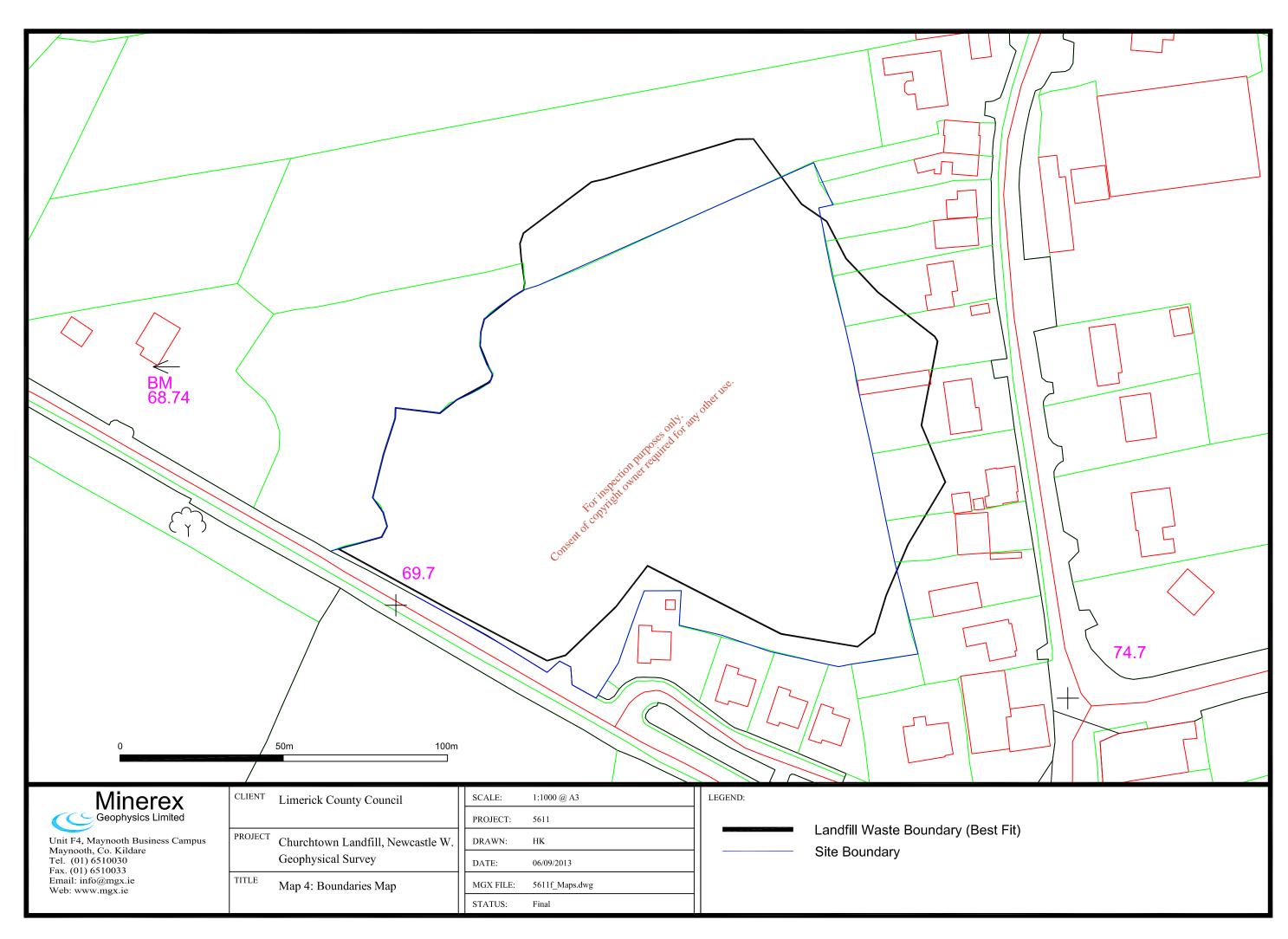
New and old resistivity profiles for the site indicate lower resistivities stretching deeper than the expected final depth of the landfill (as defined from previous boreholes). This area is centred on the highest part of the landfill and mapped on Map 3. The reason is most likely that there is leachate into the subsurface vertically downwards into the rock below the landfill.

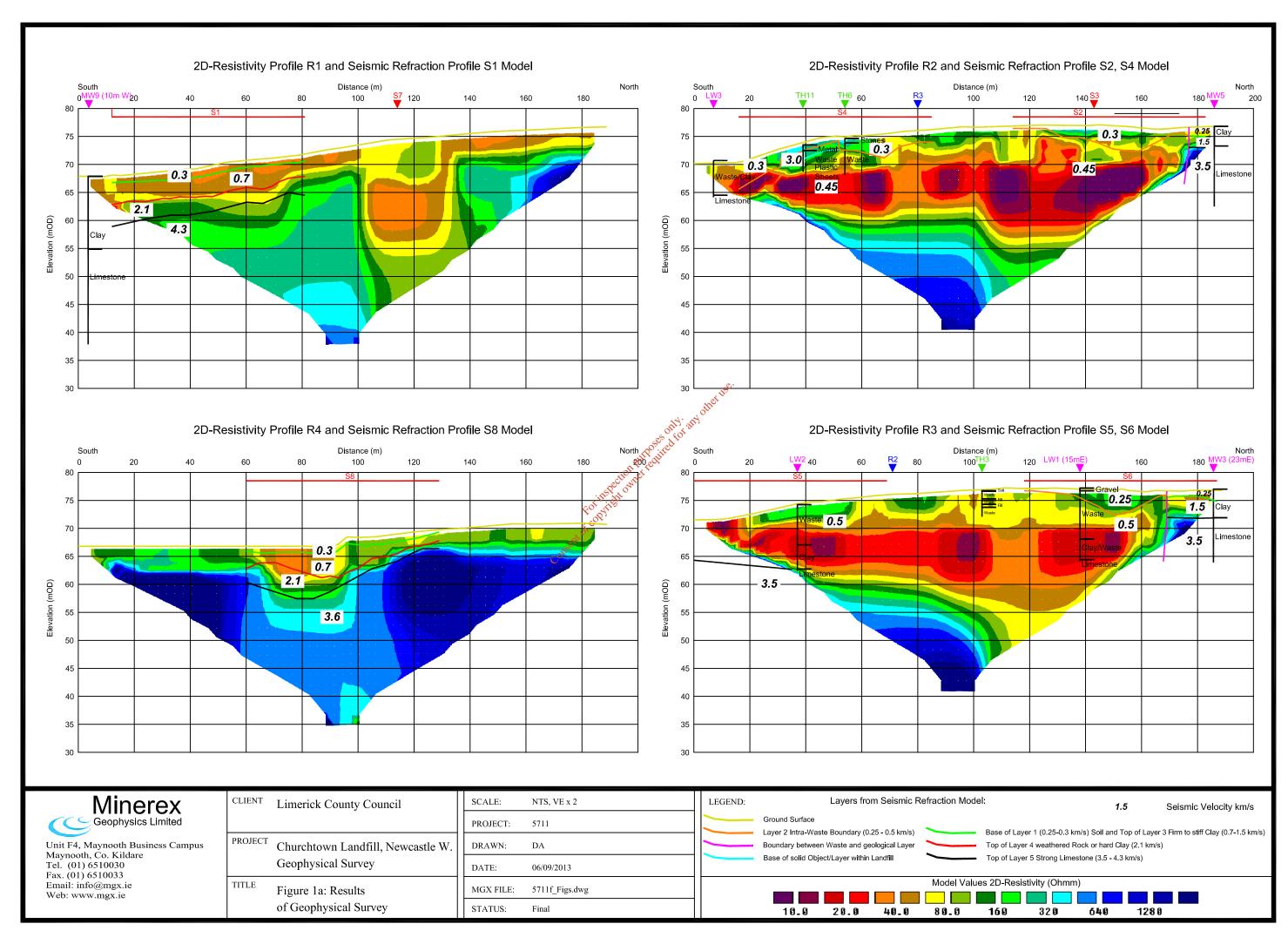
Underground Power Cable

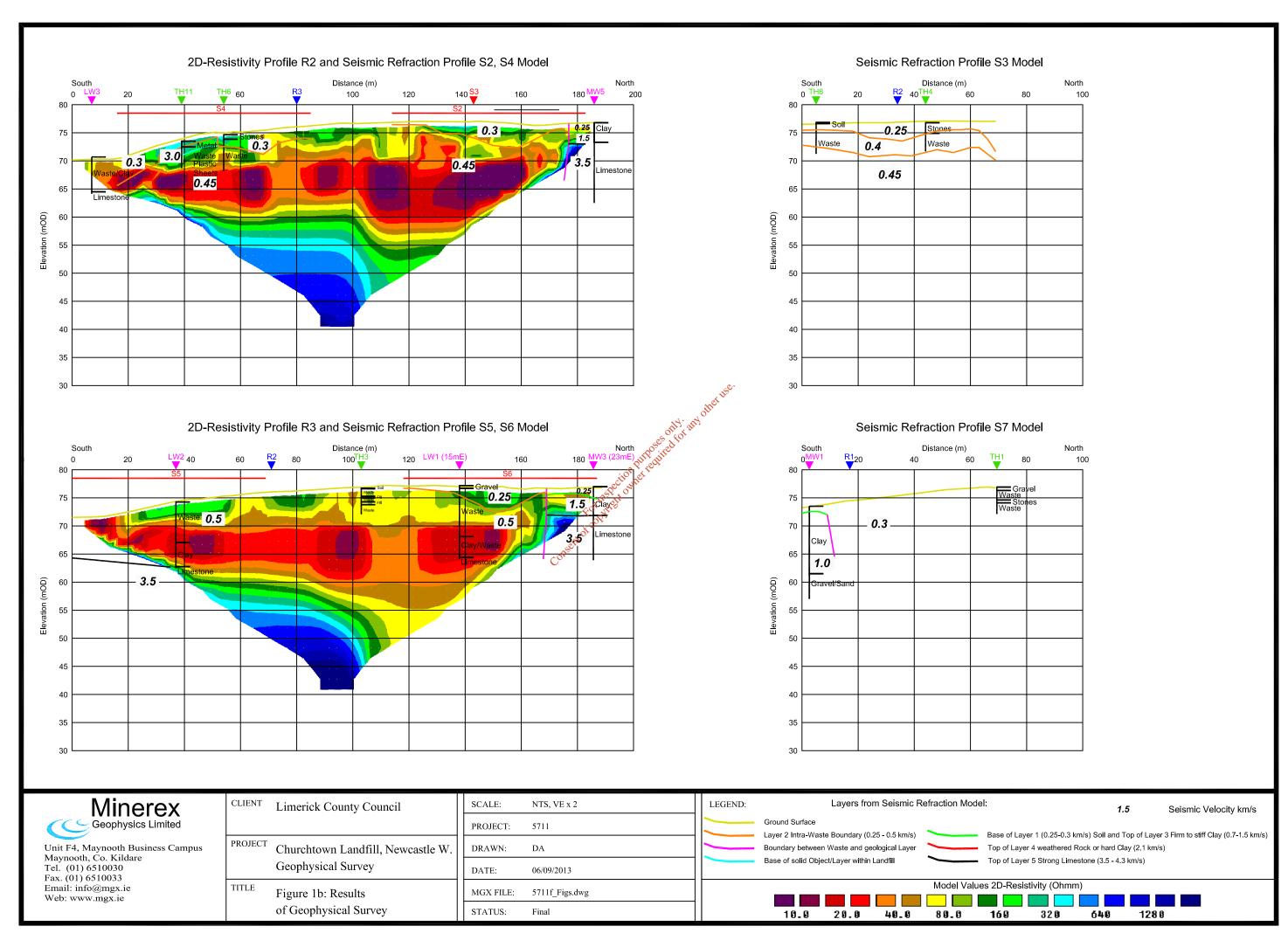

An anomaly found by EM31 in the field to the west was identified as an underground power cable coming from the overhead power line and running west to a residential property.

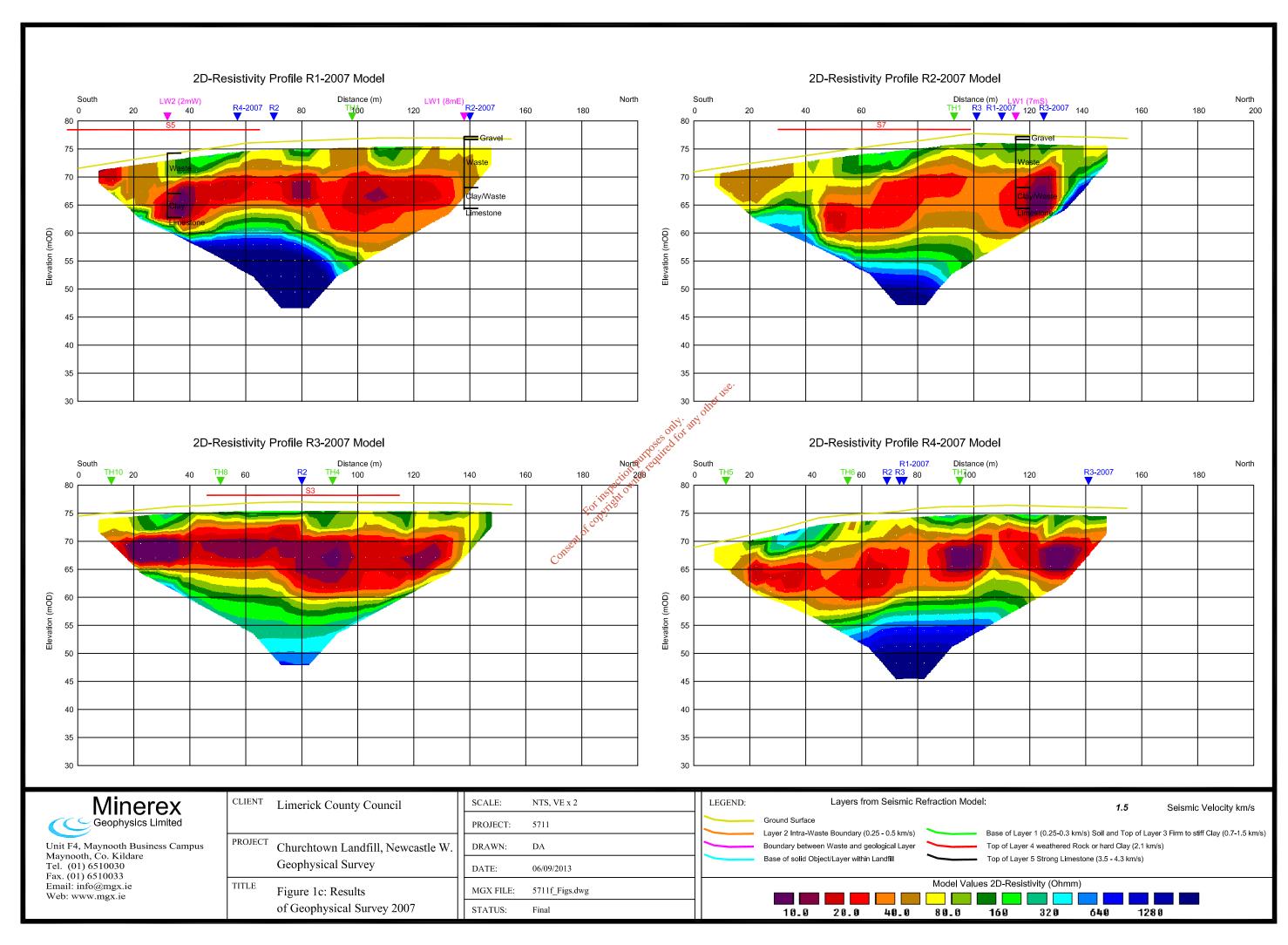


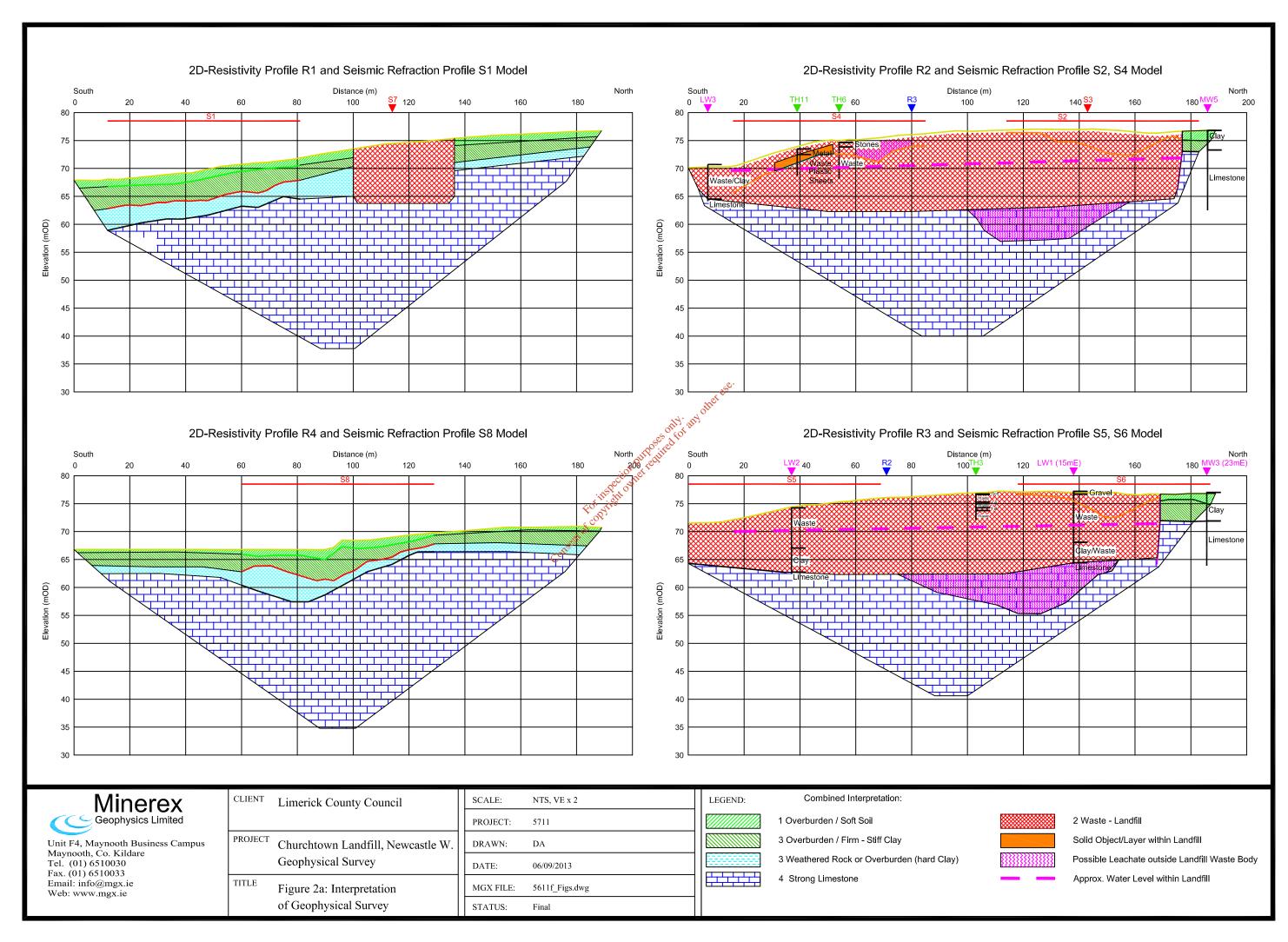

5. REFERENCES

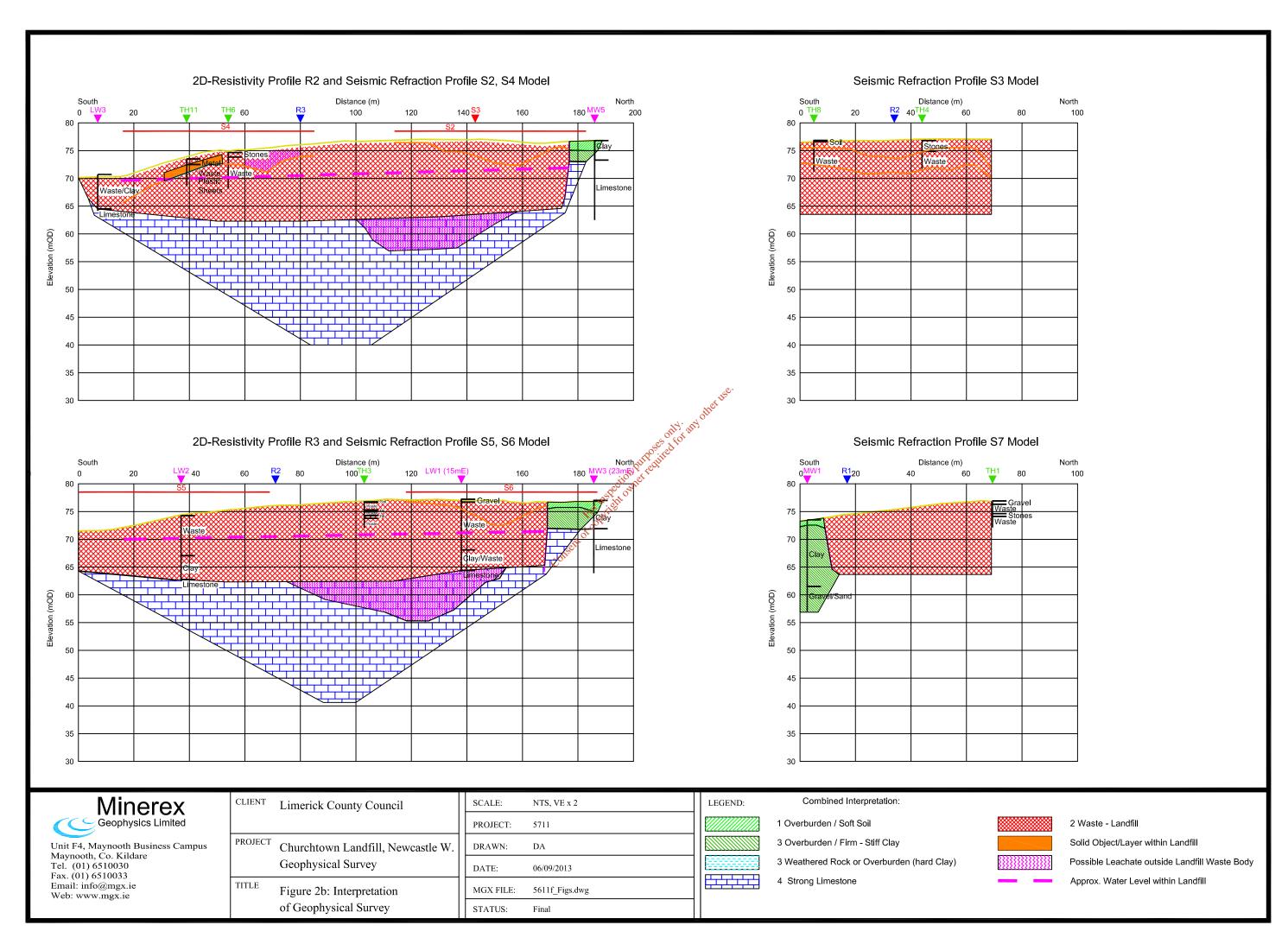

- GSEG 2002. Geophysics in Engineering Investigations. Geological Society Engineering Geology Special Publication 19, London, 2002.
- 2. **GSI, 1996.** Geology of Tipperary. Geological Survey of Ireland 1996.
- 3. Milsom, 1989. Field Geophysics. John Wiley and Sons.
- 4. **Reynolds**, **1997.** An Introduction to Applied and Environmental Geophysics. John Wiley and Son.

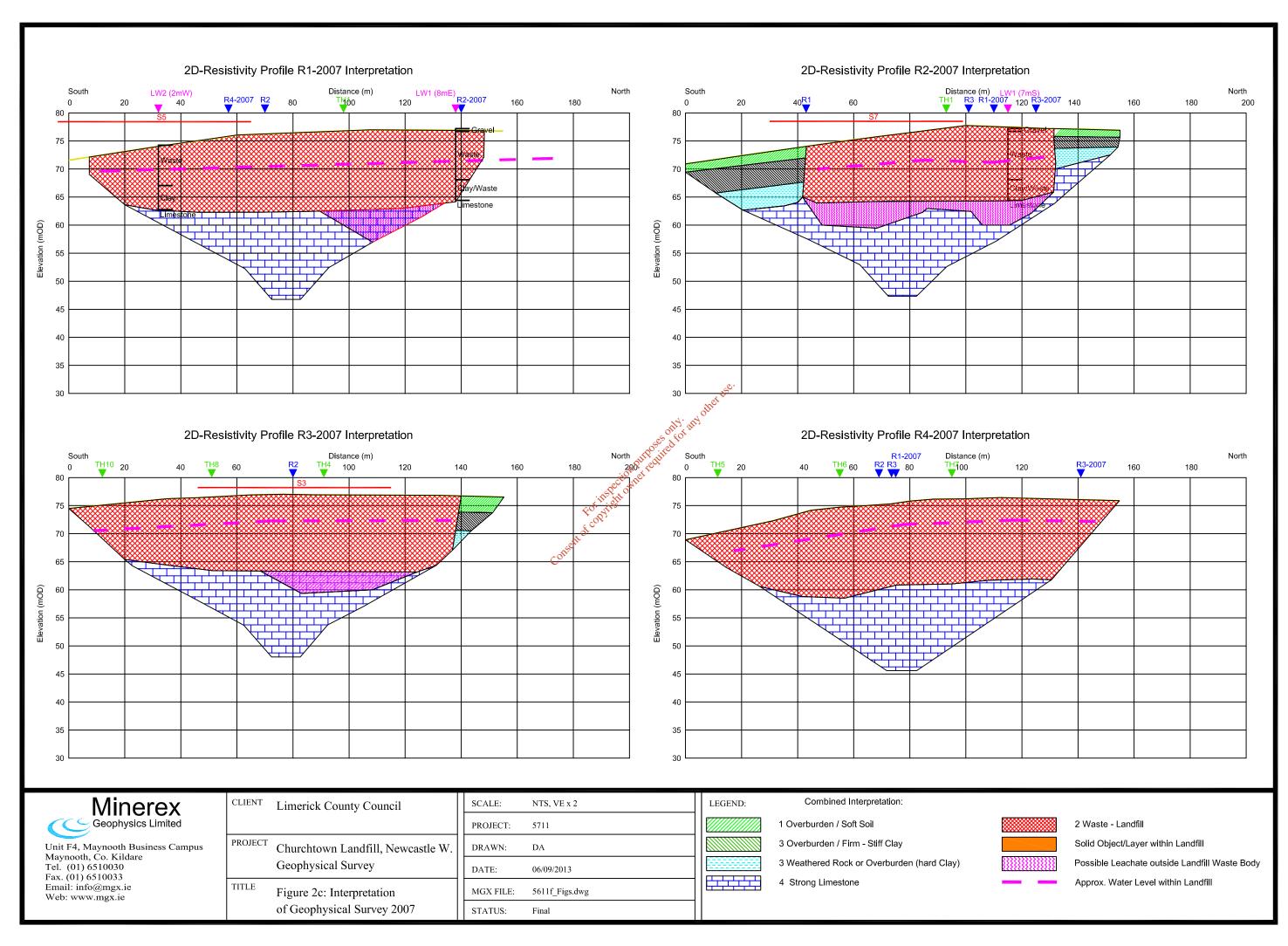


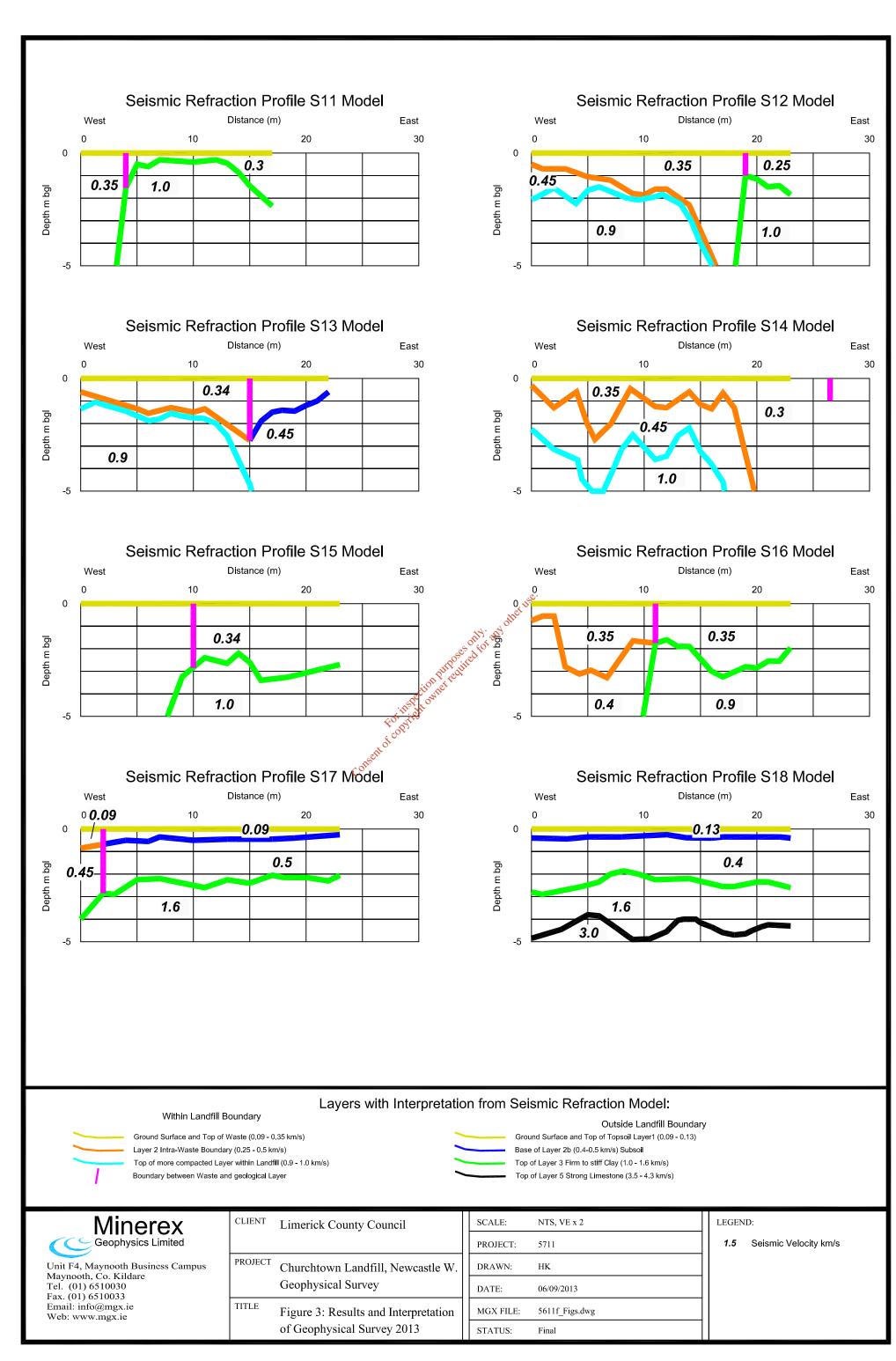












Appendix 4 Pump Test and Boreholes

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

Phone: Fax:

(091) 841 274 (091) 880861

email:

info@irishdrilling.ie

PROPOSED LANDFILL RESTORATION AT NEWCASTLE WEST

SITE TIVESTIGATION FACTUAL REPORT

Limerick County Council, County Hall, Dooradoyle, Co. Limerick.

January 2013

Tobin Environmental Services Ltd.,
Consulting Engineers,
Block 10-4,
Blanchardstown Corporate Park,
Blanchardstown,
Dublin 15.

FOREWORD

The borehole records have been compiled from an examination of the samples by a Geotechnical Engineer and from the Drillers' descriptions. The work was carried out in accordance with BS5930 (1999) and BS1377 (1990).

The report presents an opinion on the configuration of the strata within the site based on the borehole results. The assumptions, though reasonable, are given for guidance only and no liability can be accepted for changes in conditions not revealed by the boreholes.

Contents:

1.0 Introduction2.0 The Site & Geology3.0 Fieldwork

Appendix 1 Borehole Records
Appendix 2 Pump Test Records
Appendix 3 Gas & Groundwater Readings

1.0 Introduction.

Irish Drilling Ltd. (IDL) was instructed by Tobin Consulting Engineers., on behalf of Limerick County Council, to carry out a site investigation on the site of the proposed Newcastle West Landfill Restoration.

This site investigation was carried out to allow for the installation of gas and groundwater monitoring standpipes at the disused landfill site.

The fieldwork commenced on November 29th 2012 and was completed on December 4th 2012.

2.0 Site & Geology

The site is located at Churchtown, Newcastle West, County Limerick.

Geological Survey maps of the area indicate that the site is underlain by Carboniferous Limestone Rock Formations.

A Site Plan, prepared by the client's representatives and showing 'as-built' fieldwork locations, is included with this report.

3.0 Fieldwork.

The following plant was mobilised to site to carry out fieldwork operations:

A BBS37 GoTract Rotary Core Drilling Rig.

Fieldwork carried out to date has included the following:

Three rotary boreholes, using openhole drifting techniques, were carried to a depth of 6.00m below ground level.

A 50mm diameter gas standpipe was installed in the boreholes to allow for the monitoring of gas levels over a prolonged period of time.

Two rotary core boreholes were carried out to establish overburden conditions and rockhead and to establish the nature and integrity of the underlying rock.

Wireline drilling techniques, using GeoboreS size drill strings, were carried out to recover 100mm diameter soil and rock core samples at location BH 09.

PQ size (84mm diameter core samples) rotary core drilling was carried out at borehole BH 10.

The samples were stored in wooden boxes and returned to the laboratory where there were logged and photographed by a Geotechnical Engineer.

A 50mm diameter standpipe was installed in borehole BH 10 to allow for the monitoring of groundwater levels over a prolonged period of time.

The rotary core boreholes were carried out using a BBS37 GoTract Rotary Core Drilling Rig to depths ranging from 20.00m to 30.00m below ground level.

Borehole BH 09 was carried out using GeoboreS size drill strings to allow for the completion of a Pump Test using a 100mm diameter submersible pump.

Data loggers were installed in a number of boreholes to act as observation wells during the pump test operations.

A 72-hour Pump Test was carried out on December 10th 2012 by Hydro-Environmental Services Limited and the results of this Pump Test are presented as a 'stand-alone' report and are included in the appendices.

On completion of the Pump Test operations the temporary steel casing was removed from the borehole BH 09 and a 50mm diameter standpipe was installed to allow for the monitoring of groundwater levels over a prolonged period of time.

Reference should be made to the engineering logs for a detailed description of the ground conditions encountered.

The borehole locations were set out on site using a GPS Surveying Unit and the co-ordinates are included on the logs presented in the appendices.

The fieldwork was carried out in accordance with BS5930 (1999), Code of Practice for Site Investigations.

Consent of copyright owner required for any other use.

Ronan Killeen Chartered Engineers Irish Drilling Limited January 7th 2013.

APPENDIX 1

BOREHOLE RECORDS (ROTARY CORE)

Project	Newc	octle We	st Landfil	1 Dest	ration			Local					T D	RILLH	OLE	No
	Newc	astic we	St Lanum	ı Kesu	oration	l			vcastle Wes	t , Co Li	merick					110
Job No			Date 30	-11-12		Groun	d Level (n		Co-Ordina					BH	11	
			30-	-11-12			77.22		E 12	7,497.8	N 13	4,642.5				
Engine													Sh	eet	1 of	1
	Tobin												Re	ev.		
RU		ΓAILS						S	TRATA							ent/
Depth	TCR (SCR)	(SPT) Fracture	Red'cd	Legend	Dept (Thick	th			DES	CRIPT	TON				Geology	K fill
Date	RQD	Spacing	Level	Legend	ness)	Disc	continuitie	es	Deta			Main rilling - no re			ğ	Bac
Service of Louis, or a long of the legislature of t			71.22				W	In Pairposes	nd any off	BI	I termina truction.	ted at 6.00m		RE's		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
<u> </u>			gress and		r Obs	ervatione Dial	ons Wat	ter		Rotary		D-+ (0/2)		GENE REMA		
Date	Tir	ne De	pth Dept	Casing h T	Dia C	ore Dia	Strike	ter Standing	From (m)	To (m)	Type	Return (%)	50			
Date Date													6m d	n standpip epth. nonitoring		
All dim	ensions etres e 1:62.5	in Client	Limerick Council	Count	У	Method Plant U	l/ Hyd Ised	req	-		Bit C DesignS	eobore Dril	ler	Logged	By EA	Т

	Project	Newc	astle We	st Landfil	l Rest	oration		Locat	ion				DI	RILLH	OLE	No
								New	castle West		merick			BH	1 2	
	Job No			Date 30-	·11-12 ·11-12		Ground Level (m)		Co-Ordina					וט	1 4	
	Danier			30-	11-12		76.90		E 12'	7,508.3	N 13	4,584.5	1	 		
	Enginee	er Fobin											She		1 of	1
]			гап с						TD ATLA		·		Rev			>
			(SPT)			Deptl	h	S	TRATA	CRIPT	TION				gy	men(
	Depth Date	TCR (SCR) RQD	(SPT) Fracture Spacing	Red'cd Level	Legend	(Thick-	Discontinuities		Des		ION	Main			Geology	ackf
		עעט	Spacing			ness)	Discontinuities		Deta	- 1	en hole d	rilling - no re	ecovery.		9	M K
JK DH NEWCASTLE WEST LANDFILL BHS 9 AND 10 DEC 21 2012 GPJ 1DL IP LEMPLATE. GDT 7/17/13				70.90		6.00)	Rot inspection of	uroses care	any other	BHins	I termina truction.	ted at 6.00m	bgl on F	Œ's		
ii L		Dri	lling Pro	gress and	Wate	er Obse	ervations		F	Rotary	Flush			GENE	RAL	
AND	Date	Tir		pth Dept	Casing h I	Dia Co	re Dia Water mm Strike St	anding	From (m)	To (m	_	Return (%)		REMA		
UK DH NEWCASTLE WEST L													6m der	standpip pth. onitoring		
JL AGS3	All dime	ensions etres		Limerick	Coun	ty	Method/ Hydred Plant Used	q			Bit G DesignS	eobore Dril		Logged	d By EA	Т

Project	News	actle W	est Landfil	Il Pest	ration			Local		-			D	RILLH	OLE	No
	TACMC	asuc W	est Lanuil	11 1762[(חטווגוכ	L			vcastle West	, Co Li	imerick					•
Job No			Date 29	-11-12		Groun	d Level (r	n)	Co-Ordinate	es ()				BH	13	
			29	-11-12			75.50	1	E 127	,515.	7 N 13	4,542.5				
Engine													She	eet	1 of	1
	Tobin												Re	v		
RU		TAILS				. 1		S	TRATA						<u>};</u>	nent/
Depth Date		(SPT) Fractu	Red'cd Level	Legend	Dept (Thick-	h			DESC		rion				Geology	strun
Date	RQD	Spacin	g Level		ness)	Disc	continuitie	es	Detai		en hole d	Main rilling - no re	COVERV		Ğ	Instrument/
Date	Dri	lling D	69.50					on purposes	and any other any other and any other and any other and any other any other and any other and any other and any other any other and any other and any other any other and any other and any other and any other any other and any other any other and any other any other any other and any other and any other any other and any other any other and any other and any other any other any other and any other and any other any other and any other any other any other any other and any other and any other any othe		su dellon.	ted at 6.00m	bgl on		DAT	
<u> </u>			ogress an		er Obs	ervation	ons We	ater	I		Flush	Data::: (0()		GENE REMA		
Date	Ti	me D	epth Dep	Casing th I	Dia C	ore Dia mm	Strike	ater Standing	From (m)	To (m	n) Type	Return (%)	6m de	n standpir	e inst	alled to
All dim	ensions etres	in Clier	t Limerick	Coun	ty	Method	d/ Hyo	dreq			Bit C DesignS	Geobore Dril	ler	Logge	i By	т

Project	Newc	astle We	est Landfi	ll Resto	ration			Loca						I	RILL	HOLE	No
Job No			Date 04	-12-12			d Level ((m)	Co-Ordina	tes ()					В	H 9	
Engine	er		04	-12-12			67.97		E 12	7,350.:	5 N 13	4,567.	.6	Si	neet	1 of	1
-	Tobin													Re		1 01	4
RU	N DE	TAILS		-				S	TRATA					1 - 1			nt/
Depth	TCR (SCR)	(SPT) Fracture	Red'cd Level	Legend	Dept	h			DES	CRIP7	TION					Geology	Instrument
0.00	RQD	Spacing	Level	Legend	ness)	Disc	continuiti	ies .90m: overl	Deta	- 1	en hole o		ain			Geo	Inst
	0 (-)	NA						on purposes	nd for any other								White the second
Date	Tir		gress and	Casing D		re Dia	Wi	ater Standing	From (m)	To (m)	Flush Type	Return	(%)			ERAL ARKS	
Date	111	ne De	pui <u>Dept</u>	h SD	ia	mm	Strike	Standing	0	30.00	-	100	_	30m	n standp depth. nonitori	ipe insta	allec
ıll dime	ensions	in Client	Limerick	County	y	Method Plant U	l/ Hyo	dreq			Bit C	eobore	Dril NV		Logg	ed By	

Project	Newc	astle We	st Landfil	l Rest	oration			Locat	ion				DRILI	HOLE	E No
									castle Wes		merick			8H 9	
Job No			Date 04	-12-12	,	Groun	d Level (m)	Co-Ordina				_	,,,,	
Enginee			04-	-12-12			67.97		E 12	7,350.:	5 N 13	4,567.6	Sheet	0 (. ,
_	Tobin													2 of	4
		TAILS						C'	TDATA				Rev.	$\overline{}$	4
		(SPT)	D - 41 - 4		Dept	h		<u> </u>	TRATA DES	CRIP	LION			- E	Instrument/
Depth Date	TCR (SCR) RQD	Fracture Spacing	Red'cd Level	Legend	(Thick- ness)	.	continuities		Deta		1014	Main		Geology	nstru
	KŲS	NA				Dist	Continuences			Or	en hole d ontinued)	rilling - no re	ecovery.		Instrum
13.00	40	NA	54.97		13.0				ndy any oth	o No	recovery	v. eathered rock			
	(22) 0		54.07		13.9		90 m to 14.	50m. Non			a oth and d	LIMESTONI	7		_ :
14.50		NI			}	wea	thered rock	Sour Edition		Re	covered arse grav	as angular me el and cobble orange and or	edium to sized clasts		
17.50	67 (44) 21	NR/NI			(3.80)	wea faile \$	90 m to 14. thered rock	No reco	very as tubo ling.	14	y and ora	7.50m; core	n and smear. loss due to		
19.00	100 (93) 43	NI 1 1 15	50.27		17.7	17.' dippirre smo	ping 36 to 3 gular, local ooth, with a nge iron sta 90 m to 18., undulating	38°, undulated interlocations in the grey and smittle grey ain and smittle grey in and smittle grey from the grey smooth,	clay and	y gr an LI W	ey 'marblo d mediun MESTO! eathered tht grey a	ed' light grey n grained spa	change to	e	
	100 (98) 92	1				18.3 dip.		.85m: Join g, smooth,	t: subvertic with orang tain, open.						
			gress and						1		Flush			IERAI	
Date	Tiı	me De	pth Dept	Casing h I	Dia Co	ore Dia mm	Watt Strike	er Standing	From (m)	To (m) Туре	Return (%)		IARK pipe ins	S talled t
All dime	ensions etres	in Client	Limerick Council	Coun	ty	Method		eq.			Bit C DesignS	Geobore Dril		ged By	AT

Project	Newca	astle We	st Landfil	l Resto	oration		Locat	ion					D	RILL	HOLE	No
Job No			Data			C111()		castle West,		merick				В	H 9	
JOD INO			Date 04-	-12 - 12		Ground Level (m) 67.97		Co-Ordinates	•	N 134	1 567	6				
Engine	er			-12-12		07.37		E 127,	330.3	19 15	+,507.	0	She	eet	3 of	4
	Tobin												Re	v.	5 01	4
RU	N DET	TAILS					S	ΓRATA						-	T	nt/
Depth	TCR (SCR)	(SPT)	Red'cd		Deptl	1		DESC	RIPT	ION					Geology	ume
Date	RQD	Fracture Spacing	Lovet	Legend	(Thick- ness)	Discontinuities		Detail			M				Geo	Instrume
20.50	100	2	_			20.80 m to 20.95 dip, undulating,			gre and LIN We ligh	remely st y 'marble l medium ÆSTON athered v at grey alo	d' light grained E. vith a co ong disc	grey : d spar olour contir	and wh ry change nuities	ite fine to		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
22.00	(95) 77	4				orange brown iro 21.10 m to 21.20 60°, undulating, smooth, with ora brown iron stain	on stain, Om: Joint interlock ange and	open. : dipping ing,	per	etrating 1	lmm to	2mm	ı. (conti	nued)		
	100 (94) 61	2				22.75 m to 22.90 dip, undulating,	Om: Joint	: subvertical	<u>.</u> و۰							
23.50		7			(12.30	orange brown iro 23.10 m to 23.50 dip, undulating, and orange brow 23.70 m to 24.05	on stain, Om: Joint rough, w vn iron 5m: Joint	open. : subvertical ith orange ain, open. subvertical								
25.00	100 (93) 63	3				dip, undulating, and orange brown and or		ith orange ain, open.							:	
	100 (91) 62	3				1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	om: Joini	: subvertical							:	
26.50		11			Codi	dip, undulating, dark orange brown 26.10 m to 27.90 dip, undulating, with a little oran some orange and	wn iron s 0m: Joint locally p ige brow	tain, open. : subvertical lanar, rough, n clay and								
28.00	100 (96) 8	7			-	stain and smear,	open.	orown non								
	100 (82) 59	3				TX.										
29.50	100 (98)	4	37.97		30.0	0										
1			gress and					,		Flush					ERAL	
28.00 29.50 30.00 Date All dim mo Scale	Tin	ne Dep	oth Dept	Casing h D	Dia Co	re Dia Water mm Strike St	anding	From (m)	To (m)	Type	Return	ı (%)	30m c	standplepth.	ARKS	alled to
All dim	ensions i etres e 1:62.5	1 0	Limerick Council	Count	у	Method/ Hydre Plant Used	q			Bit Go DesignS	eobore	Dril NV	ler	Logg	ed By EA	Т

Project	Newc	astle We	st Landfil	l Resto	oration	1		Locat	tion					D	RILLH	OLE	No
									vcastle Wes		merick				ВН	10	
Job No			Date 03	-12-12		Groun	nd Level (1	·	Co-Ordina		NT 10	4 620	2		ווט	10	
Engine	er		04-	-12-12			75.10	, <u> </u>	E 12	7,421.9	N 13	4,630.	ن.	Sh	eet	1 of	3
-	Tobin													Re		1 01	J
		TAILS						S	TRATA					ICC	٠.		ΣĘ
Depth	TCD	(SPT)	Red'cd		Dep	th				CRIPT	ION					ogy	≤ Instrument/
Date	RQD	Fracture Spacing	Tarret	Legend	(Thick ness)	Dis	continuiti	es	Deta			M	ain			Geology	Instrume Backfill
Date All dim Scale	0 (-)	NA			(13.2			20m: overb	only and off		en hole d	mining -		covery			
			gress and		er Obs	ervati		-4	1	Rotary					GENE		
Date	Ti	me De	pth Dept	Casing h L	Dia C	ore Dia mm	Strike	ater Standing	From (m)	To (m)	-	Return		50-	REMA		
									0	20.00	;	100		Gas n	n standpij depth. nonitorin	g tap fi	itted.
All dim	ensions etres e 1:62.5	in Client	Limerick Council	Count	y	Metho Plant U	d/ Hyd Used	dreq			Bit P Design	Q	Dril NV	ler	Logge	d By EA	т.
	1.02.3		Countin														_

Projec	t Nev	vcast	le West	Landfil	l Resto	oration			Locat	ion					D	RILL	HOLE	No
T-1-NT	_						-	17 17		castle Wes		merick				BH	H 10	
Job No	0				-12-12 -12-12		Groun	d Level (1 75.10	-	Co-Ordina		N 13	4 620	2				
Engin	eer			04-	-12-12			/3.10	' <u> </u>	E 12	7,421.5	7 IN 13	4,030.	3	Sh	eet	2 of	3
	Tobi	n													Re		2 01	5
RI	UN D	ETA	ILS			-			S	ΓRATA					1		T	nt/
Dept	TCI	R	(SPT)	Red'cd		Depti	h				CRIPT	TION					Geology	rume Kfill
Date	(SCI RQI	D S	Fracture Spacing	Level	Legend	(Thick- ness)	Dis	continuiti	es	Deta			Ma				Geo	Instr Bacl
												en hole d intinued)		no re	covery			NATIONAL INSTRUMENTAL INSTRUMENT
13.2	20			61.90		- 13.2	7 13 2	20 m to 20	0.00m: Med	ium space	Ex	tremely s	trong ar	pare	ntly ma	ssive		
	92		2			[dip _l inte	ping 18 to	20°, irregu rough, with	lar, locally	lig	ht grey 'n e and me	narbled' dium gr	brow	nish w	hite		
	(88 66) -				<u> </u>	ora:	nge brown wn and or	n clay and fi ange iron st	iuch orange ain and		MESTON eathered	Æ. ¯		•			
14.5	50					ļ.	sme	ear.	ange iron si ange iron si		lig	ht grey al netrating	ong dis	conti	nuities			
			2			[cit	on let to									
	100					<u>†</u> †		insperi	54									
	(96 70)				1	Ŷ	OFTIE										
16.0	00		5			[al							
GDT 7/1/13	100 (95 56)	5			(6.80)	rou and 16. dip rou	gh, with a minor or 15 m to 10 , undulatingh, with a	ng, locally in little orang ange iron st 6.80m: Join ng, locally in little orang ange iron st	e brown cla ain, open. t: subvertic rregular, e brown cla	al							
집 17.5	50	_	5			}			7.80m: Join		al							
1			3			<u> </u>	rou	gh, with a	ng, locally i little orang	e brown cla	ay 17	.80 to 20	00m: h	ecom	ing hro	wnish		
3	67 (32 14]		ŧ			ange and or ear and pov		gre	ey vuggy	weakly	dolo	nitised	•		
2012.0	14	-	5			}	18.	50 m to 2	0.00m: Non	-intact as	18	.50m: no:	n-intact	as an	gular f	ine to		
19.0	00					<u>{</u>	wea pos	athered ro	ck. No reco	very as s during	co	arse grav th much (el and c	obble	sized	clasts		
9 0 0 0	90	,	NR/NI			<u> </u>		ling.		J	mι	ich orang lear.						
AND	(0))				<u>}</u>												
원 20.0				55.10		<u>F 20.0</u>				T -								<u>」::目:</u>
			ng Progr				ervatione Dia		iter		Rotary		Dotum	(9/)			ERAL ARKS	
17.53 UK DH NEWCASTLE WEST LANDFILL BHS 9 AND 10 DEC 21 2012 GPJ 10L TP TEMPLATE. 19.00 Date 19.00 Date 19.00 Date	e	Time	Depth	1 Dept	Casing h I	Dia	mm	Strike	ater Standing	From (m)	To (m)	Туре	Return	1 (%)	20m	n standp depth. nonitori	ipe inst	alled to
6.3									L									

D									-,-			
Project Newcastle We	est Landfill Resto	ration	Locat							RILLH	OLE	No
Job No				castle Wes		merick				ВН	10	
J00 N0	Date 03-12-12 04-12-12	Ground Le		Co-Ordina			4 600	_		D 11	10	
Engineer	04-12-12	/.	5.10	E 12	7,421.9	N 13	4,630.	.3	Ch	eet	2 -5	2
Tobin											3 of	3
RUN DETAILS			O'	TD A TA					Re	ev.		7
	7. 11. 1	Depth	3.	TRATA	CRIPT	TON					gy	Instrument/ Backfill
Depth TCR (SPT) Fracture RQD Spacing	Red'cd Legend	(Thick- ness) Disconti	inuities	Deta		1011		ain			Geology	nstru ackf
TQD opuonig		liess) Discoill	indicites		BH	I termina truction.			bgl or	n RE's	9	1 B
All dimensions in metres Scale 1:62.5	ogress and Water				Rotary					GENE	RAL	
Date Time De			Water ike Standing	From (m)	To (m)	1	Return	1 (%)		REMA		
	Бериі Ді	a mm Str	ike Stanting		()				20m	n standpip depth. nonitoring	e insta	
All dimensions in metres Scale 1:62.5	Limerick County Council	Method/ Plant Used	Hydreq	-		Bit Pont Design	Q	Drill NV	er	Logged	By EA	 Г

APPENDIX 2 PUMP TEST RECORDS

22 Lower Main St Dungarvan Co.Waterford Ireland tel: +353 (0)58 44122 fax: +353 (0)58 44244

email: info@hydroenvironmental.ie web: www.hydroenvironmental.ie

PUMPING TEST FACTUAL REPORT NEWCASTLEWEST, CO. LIMERICK

Prepared by: HYDRO-ENVIRONMENTAL SERVICES

REPORT NO.: P1211
REPORT DATE: 4th January 2013

DOCUMENT INFORMATION

DOCUMENT TITLE:	PUMPING TEST FACTUAL REPORT – NEWCASTLEWEST, CO. LIMERICK
ISSUE DATE:	04 TH JANUARY 2013
PROJECT NUMBER:	P1211
PROJECT REPORTING HISTORY:	NONE
CURRNET REVISION NO:	P1211
AUTHOR(S):	MICHAEL GILL DAVID BRODERICK
SIGNED:	Michael Gill
	Michael Gill B.A., B.A.I., M.Sc., MIEI
	Managing Director – Hydro-Environmental Services

Disclaimer:
This report has been prepared by HES With all reasonable skill, care and diligence within the terms of the contract with the client incorporating our terms and conditions and taking account of the resources devotes to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

TABLE OF CONTENTS

1.0 PUMPING TEST RI	ESULTS1
	TON
	PING TEST METHODOLOGY1
	PUMPING TEST
1.4 PW1 - PUMI	PING TEST RESULTS2
1.5 HYDROCHE	MISTRY3
	4
	FIGURES
FIGURE 1	WELL LOCATION MAP
FIGURE 2	DRAWDOWN & RECOVERY IN PWI
FIGURE 3	DRAWDOWN & RECOVERY IN OBSERVATION WELLS
	TABLES IN TEXT
TABLE A	GROUNDWATER MONITORING FREQUENCIES
TABLE B	STARTING WATER LEVELS RECORDED PRIOR TO INITIATION OF PUMPING TEST
TABLE C	MAXIMUM DRAWDOWN RECORDED DURING PUMPING TEST
TABLE D	UNSTABLE GROUNDWATER HYDROCHEMISTRY
	atter
	APPENDICES HOT AND THE PORT OF
	ADDENDICES
	AFFENDICES (
APPENDIX I	PWI DISCHARGE DATA ATTICON
APPENDIX II	ALL PUMPING TEST WATER LEVEL
	as Que o and a second as a sec
	cot it ida
	L'agy.
	, & C
	age ^{tri}
	ALL PUMPING TEST WATERLEVEL For the print of copyright or the print of the print o

REPORT NO.: P1211 REPORT DATE: 4th January 2013

1.0 PUMPING TEST RESULTS

1.1 INTRODUCTION

Hydro-Environmental Services (HES) were commissioned to complete a 72 hour pumping test at an old restored landfill site near Newcastlewest, Co. Limerick.

Along with the pumping well (PW1) a total of 5 no. observation wells were monitored during the pumping test. These were MW03, MW06, MW07, MW08, MW10. The layout of the pumping well and the monitoring wells are shown on Figure 1.

This report provides recorded water level data from the pumping test and subsequent recovery period. Field chemistry data and flow data, which were recorded regularly throughout the test, are also presented.

1.2 PW1 - PUMPING TEST METHODOLOGY

A 4" electrical submersible pump was installed in the pumping well PW1 on 10th December 2012. A 2" discharge line (40m of 2" layflat discharge hose) was laid out and directed away from the pumping well with the final outfall to a County Council owned stormwater culvert located on the public road to the south of the site. A 2" mag meter (electrical water meter) was connected along the discharge line and a gate valve was also included (in-line) to allow regulation/variation of the discharge rate (flow), if required. The pump was connected to a 6 KV diesel generator, A photograph of the flowmeter and discharge line is shown below.

"Diver" water level dataloggers were installed in the pumping well (PW1) and the five observation wells (MW3, MW6, MW7, MW8 and MW10) to allow continuous monitoring of water levels during the pumping test and subsequent recovery test. Groundwater levels were recorded in the pumping well at 1 minute intervals and in the observation wells at 5 or 15 minute intervals for the duration of the test.

Report Date: 04th January 2013

¹ Water level pressure transducers with inbuilt datalogger. (http://www.slb.com/content/services/additional/water/monitoring/dataloggers/index.asp).

The pumping test was completed in accordance with BS5930: 1999 – Code of practice for site investigations, and with BS6316: 1992 Code of practice for test pumping of water wells. Additional guidance on pumping test methodology was taken from Wright, 1985.

Manual groundwater level monitoring in the pumping well was completed when possible at the intervals shown in Table A. Discharge (flow) from the pumping well was also recorded regularly throughout the test. Manual water level monitoring was also completed regularly in the observation wells during the test.

Table A. Groundwater level monitoring frequencies.

Time Interval	Monitoring Frequency
0-2 mins	Every 30 seconds
2-5 mins	Every 1 minute
5-20 mins	Every 2 minutes 30 seconds
20-40 mins	Every 5 minutes
40-60 mins	Every 10 minutes
60-75 mins	Every 15 minutes
75-100 mins	Every 25 minutes
100-120 mins	Every 20 minutes
2-8 hours	Every 30 minutes

1.3 PW1 – PRE-PUMPING TEST

A standard step test was initially attempted on the pumping well on 10th December 2012, however due to the relatively low discharge rate (due to the low yield of the pumping well) of the well this was abandoned. Instead a short pre-pumping test lasting approximately 45 minutes was undertaken. Initially PW3 was pumped at a discharge rate of 0.5L/s (43.2m³/day); however by the end of the pre-pumping test the discharge rate was regulated down to 0.3L/s (25.9m³/day) which is the estimated long-term sustainable yield of the well.

1.4 PW1 - PUMPING TEST RESULTS

The 72 hour pumping test in well PW1 was initiated at 09:00 on 11th December 2012. Starting water levels recorded in the pumping well and observation wells prior to the initiation of the pumping test are summarised in Table B below. The water levels for the observation wells and PW1 shown in Table B are not static water levels as the production well was developed for a period of 1 to 2 hours on 10th December 2012. In addition the 45 minute pre-pumping test was also completed on this date. The well development and pre-pumping test appear to have lowered the water levels in the observation wells prior to the initiation of the 72 hour pumping test on 11th December 2012. This was indicated by the excess recovery noted in a number of the monitoring wells.

Table B. Starting Water levels recorded prior to initiation of pumping test.

Well ID	Water Level (mAOD)*	Water Level (mbdl)
PW1	To be updated	4.0
MW03	To be updated	6.97
MW06	To be updated	5.52
MW07	To be updated	5.09
MW08	To be updated	7.58
MW10	To be updated	8.80

mAOD - meters above Ordnance Datum Malin Head

mbdl – meters below datum level

The pumping rate remained relatively constant throughout the 72 hour test, but did show some decline falling from an initial rate of 0.3L/s (25.92m³/day) to a rate of 0.26L/s (22.44m³/day) towards the end of the test. Discharge measurement recordings are shown in Appendix I.

HES Report No.: P1211 2 Report Date: 04th January 2013

The water level recovery in the pumping well was only monitored for a period of 2 hours after the pumping test due to a requirement that the submersible pump had to be removed on completion of the pumping test. The water level recovery in the observation wells (i.e. by means of data loggers only) was monitored for a period of 72 hours after the pumping test.

A drawdown and recovery plot for PW1 is shown as Figure 2 and a combined plot of drawdown and recovery for observations wells MW03, MW06, MW07, MW08 and MW10 is shown as Figure 3. Water level data recorded during the pumping test are presented in Appendix II. The corrected data have been compared and adjusted to manual dip data to ensure that the data provided in the appendices are correct and internally and externally consistent. Maximum drawdown data recorded during the pumping test are summarised in Table C.

The recovery plots show that some of the observation wells (i.e. MW03 and MW07) recovered to a higher level than the starting water level shown in Table B. This is likely due to the effect of the production well development lowering the water table prior to the initiation of the pumping test. Also, rainfall recharge prior to and during the pumping test may also be a factor. The recovery plots also indicate that there might be an external influence, such as a pumping well, in the vicinity of the site that is affecting the water levels in the observation wells.

Table C: Maximum drawdown recorded during pumping test.

Well ID	Drawdown (m)	Water Level (mbdl)	Distance from pumping well (m)
PW1	13.699	17.699	Sometimes of the second
MW03	0.614	7.584	To be updated
MW06	0.173	5.693	To be updated
MW07	0.319	5.409	To be updated
80WM	0.653	8.2330 100	To be updated
MW10	0.287	9.087	To be updated

1.5 HYDROCHEMISTRY

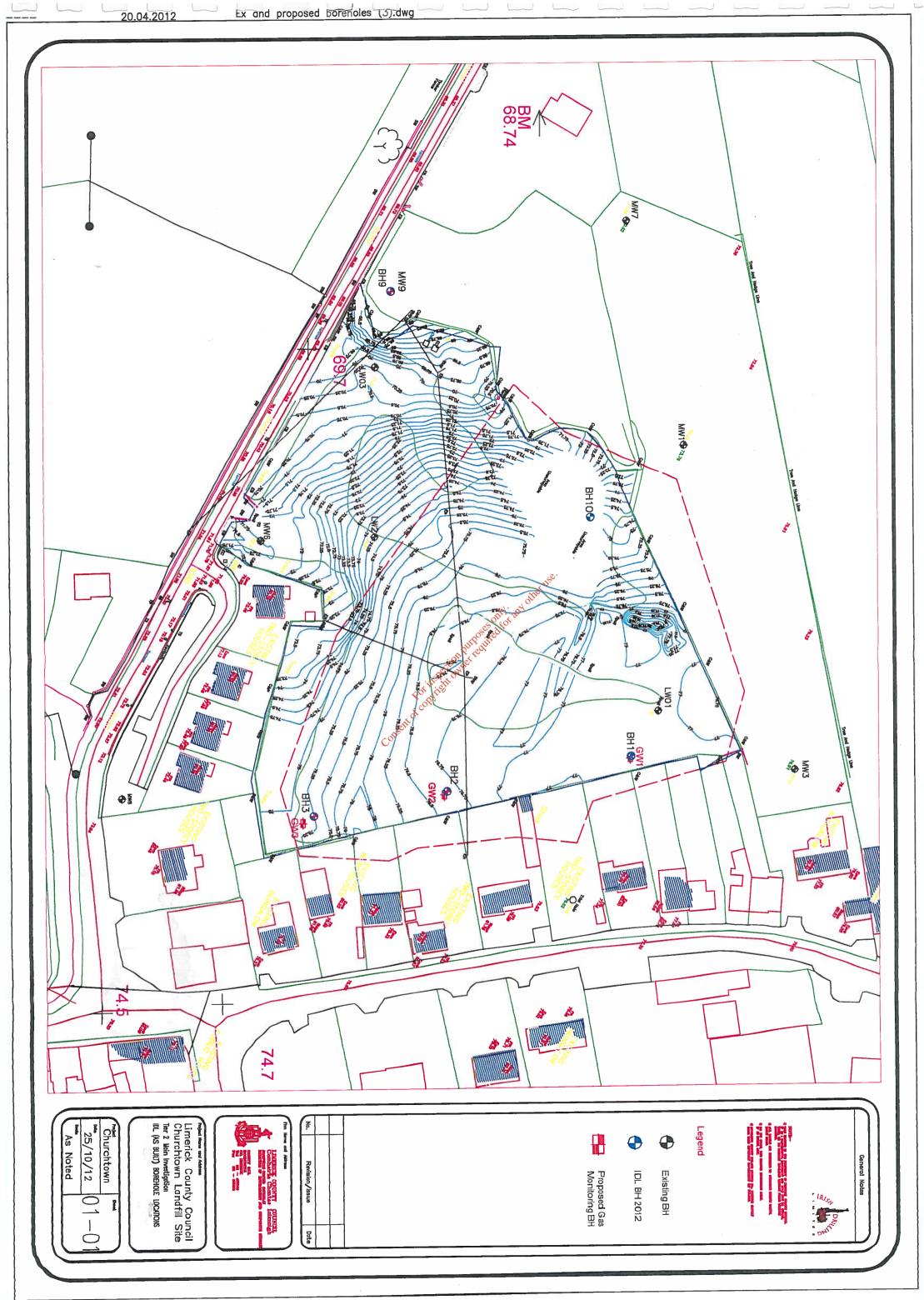
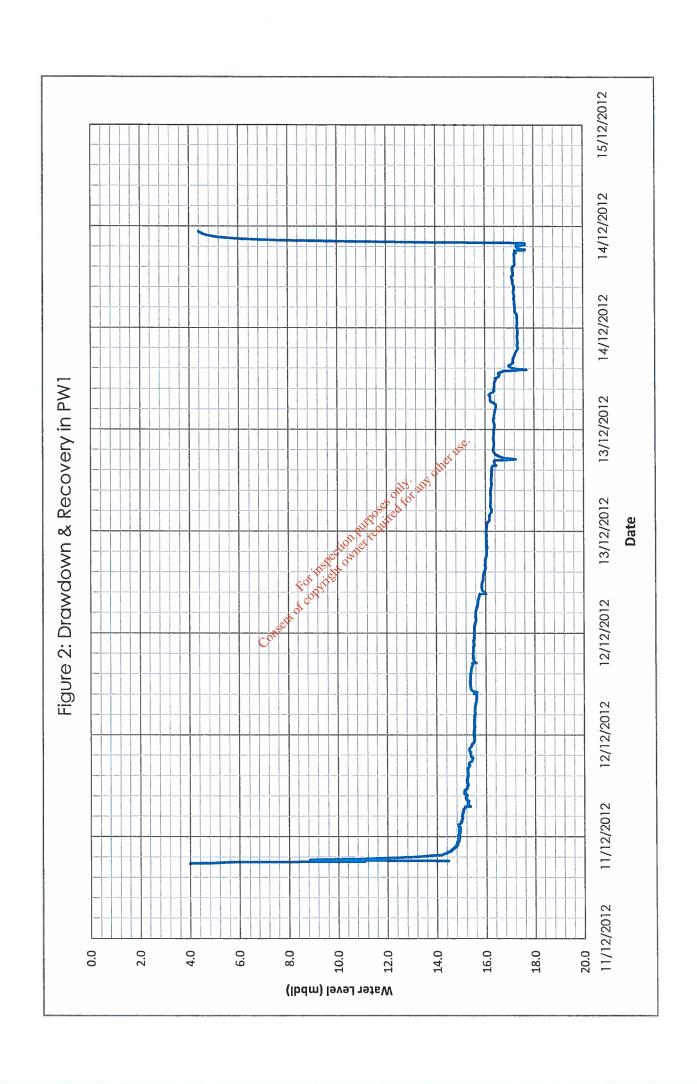

Field hydrochemistry (i.e. Temperature, Electrical Conductivity and pH) of the discharge water were recorded at the well head using a calibrated YSI 556 multi-meter probe and flow through cell. These data are shown in Table D below.

Table D: Field Hydrochemistry Data.


Date	Time	Electrical Conductivity (µS/cm)	Temperature (° C)	pH[H+ ion]	Visual
11/12/2012	09:45	970	11.4	8.5	Cloudy/silty
11/12/2012	15:20	980	11.3	7.6	Cloudy/silty
11/12/2012	16:45	977	10.9	7.3	Cloudy/silty
12/12/2012	08:15	984	11.3	7.5	Cloudy/silty
12/12/2012	16:34	991	11.9	7.6	Cloudy/silty
13/12/2012	08:15	988	11.7	7.7	Cloudy/silty
13/12/2012	18:40	992	11.8	7.7	Cloudy/silty
14/12/2012	09:02	994	12.0	7.7	Clearing


2.0 REFERENCES

British Standards Institution	1992	BS6316 - Code of Practice for Test Pumping of Water Wells.
British Standards Institution	1999	BS5930 - Code of Practice for Site Investigations.
British Standards Institution	2003	BS ISO14686:2003 - Hydrometric determinations — Pumping tests for water wells — Considerations and guidelines for design, performance and use.
Wright, G.R Geological Survey of Ireland Information Circular 85/2,	1985	Pumping Tests: A guide to the testing of water wells for public, industrial, and farm supplies.

FIGURES

APPENDIX I PW1 DISCHARGE DATA

Consent of copyright owner required for any other use.

Date / Time	m3/day	
11/12/2012 09:10	25.920	
11/12/2012 09:12	25.920	
11/12/2012 09:15	21.600	
11/12/2012 09:20	22.464	
11/12/2012 09:21	23.328	
11/12/2012 09:22	24.192	
11/12/2012 09:50	24.192	
11/12/2012 10:19	23.328	
11/12/2012 10:30	23.328	
11/12/2012 10:40	23.328	
11/12/2012 10:50	24.192	
11/12/2012 11:00	24.192	
11/12/2012 11:10	23.328	
11/12/2012 11:20	23.328	
11/12/2012 11:30	24.192	
11/12/2012 11:40	24.192	
11/12/2012 11:50	24.192	
11/12/2012 12:00	24.192	
11/12/2012 12:10	24.192	
11/12/2012 12:20	24.192	
11/12/2012 12:32	24.192	0,1
11/12/2012 12:40	24.192	1150
11/12/2012 12:50	24.192 24.192 24.192 24.192 24.192	,
11/12/2012 13:00	24.182 2	
11/12/2012 13:10	24 192 (24 192 23.328 23.328	
11/12/2012 13:20	24,192	
11/12/2012 13:30	23.328	
11/12/2012 14:10	23.328 23.328	
11/12/2012 15:20	23.328	ĺ
11/12/2012 16:40	24.192	1
11/12/2012 20:30	23.328	
12/12/2012 08:15	24.192	
12/12/2012 16:29	23.328]
13/12/2012 07:36	24.192]
13/12/2012 18:37	23.328]
14/12/2012 08:56	23.328	
14/12/2012 09:55	22.464	
		-

APPENDIX II ALL PUMPING TEST WATER LEVEL DATA

Consent of copyright owner required for any other use.

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
11/12/2012 08:45	4.000	11/12/2012 13:25	14.868	11/12/2012 18:00	15.243
11/12/2012 08:50	3.994	11/12/2012 13:30	14.920	11/12/2012 18:05	15.271
11/12/2012 08:55	5.089	11/12/2012 13:35	14.941	11/12/2012 18:10	15.253
11/12/2012 09:00	5.565	11/12/2012 13:40	14.978	11/12/2012 18:15	15.227
11/12/2012 09:10	13.430	11/12/2012 13:45	15.001	11/12/2012 18:20	15.219
11/12/2012 09:15	9.807	11/12/2012 13:50	14.971	11/12/2012 18:25	15.228
11/12/2012 09:20	10.296	11/12/2012 13:55	14.980	11/12/2012 18:30	15.235
11/12/2012 09:25	11.464	11/12/2012 14:00	15.013	11/12/2012 18:35	15,216
11/12/2012 09:30	12.070	11/12/2012 14:05	15.004	11/12/2012 18:40	15.223
11/12/2012 09:35	12.798	11/12/2012 14:10	15.039	11/12/2012 18:45	15.215
11/12/2012 09:40	13.347	11/12/2012 14:15	15.021	11/12/2012 18:50	15.235
11/12/2012 09:45	13.686	11/12/2012 14:20	15.030	11/12/2012 18:55	15.215
11/12/2012 09:50	14.175	11/12/2012 14:25	15.021	11/12/2012 19:00	15.232
11/12/2012 09:55	14.223	11/12/2012 14:30	15.010	11/12/2012 19:05	15.250
11/12/2012 10:00	14.291	11/12/2012 14:35	15.017	11/12/2012 19:10	15.260
11/12/2012 10:05	14.399	11/12/2012 14:40	15.036	11/12/2012 19:15	15.262
11/12/2012 10:10	14.425	11/12/2012 14:45	15.055	11/12/2012 19:20	15.271
11/12/2012 10:15	14,480	11/12/2012 14:50	15.041	11/12/2012 19:25	15.239
11/12/2012 10:20	14.576	11/12/2012 14:55	15.050	11/12/2012 19:30	15.251
11/12/2012 10:25	14.587	11/12/2012 15:00	15.067	11/12/2012 19:35	15.261
11/12/2012 10:30	14.618	11/12/2012 15:05	15.074	11/12/2012 19:40	15.257
11/12/2012 10:35	14.662	11/12/2012 15:10	15.087	11/12/2012 19:45	15.248
11/12/2012 10:40	14.651	11/12/2012 15:15	15.075	1,912/2012 19:50	15.244
11/12/2012 10:45	14.723	11/12/2012 15:20		1/12/2012 19:55	15.236
11/12/2012 10:50	14.752	11/12/2012 15:25	15.127	11/12/2012 20:00	15.244
11/12/2012 10:55	14.743	11/12/2012 15:30	152 400	11/12/2012 20:05	15.267
11/12/2012 11:00	14.820	11/12/2012 15:35	15,349	11/12/2012 20:10	15.278
11/12/2012 11:05	14.815	11/12/2012 15:40	15.263	11/12/2012 20:15	15.285
11/12/2012 11:10	14.808	11/12/2012 15:45	15.241	11/12/2012 20:20	15.303
11/12/2012 11:15	14.797	11/12/2012 13:50	15.266	11/12/2012 20:25	15.330
11/12/2012 11:20	14.827	11/12/2012(15:55	15.250	11/12/2012 20:30	15.323
11/12/2012 11:25	14.813	11/12/2002 16:00	15.244	11/12/2012 20:35	15.284
11/12/2012 11:30	14.821	11/12/2012 16:05	15.250	11/12/2012 20:40	15.291
11/12/2012 11:35	14.846	11/12/2012 16:10	15.271	11/12/2012 20:45	15.308
11/12/2012 11:40	14.898	11/12/2012 16:15	15.285	11/12/2012 20:50	15.372
11/12/2012 11:45	14.893	11/12/2012 16:20	15.219	11/12/2012 20:55	15.389
11/12/2012 11:50	14.885	11/12/2012 16:25	15.192	11/12/2012 21:00	15.425
11/12/2012 11:55	14.907	11/12/2012 16:30	15.199	11/12/2012 21:05	15.425
11/12/2012 12:00	14.857	11/12/2012 16:35	15.167	11/12/2012 21:10	15.452
11/12/2012 12:05	14.899	11/12/2012 16:40	15.177	11/12/2012 21:15	15.446
11/12/2012 12:10	14.898	11/12/2012 16:45	15.163	11/12/2012 21:20	15.441
11/12/2012 12:15	14.880	11/12/2012 16:50	15.180	11/12/2012 21:25	15.407
11/12/2012 12:20	14.900	11/12/2012 16:55	15.211	11/12/2012 21:30	15.388
11/12/2012 12:25	14.927	11/12/2012 17:00	15.151	11/12/2012 21:35	15.388
11/12/2012 12:30	14.943	11/12/2012 17:05	15.097	11/12/2012 21:40	15.368
11/12/2012 12:35	14.903	11/12/2012 17:10	15.131	11/12/2012 21:45	15.361
11/12/2012 12:40	14.893	11/12/2012 17:15	15.125	11/12/2012 21:50	15.349
11/12/2012 12:45	14.927	11/12/2012 17:20	15.115	11/12/2012 21:55	15.367
11/12/2012 12:50	14.933	11/12/2012 17:25	15.139	11/12/2012 22:00	15.369
11/12/2012 12:55	14.948	11/12/2012 17:30	15.134	11/12/2012 22:05	15.337
11/12/2012 13:00	14.896	11/12/2012 17:35	15.159	11/12/2012 22:10	15.307
11/12/2012 13:05	14.952	11/12/2012 17:40	15.191	11/12/2012 22:15	15.306
11/12/2012 13:10	14.917	11/12/2012 17:45	15.224	11/12/2012 22:20	15.301
11/12/2012 13:15	14.913	11/12/2012 17:50	15.229	11/12/2012 22:25	15.311
11/12/2012 13:20	14.902	11/12/2012 17:55	15.221	11/12/2012 22:30	15.351

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
11/12/2012 22:35	15.381	12/12/2012 03:10	15.566	12/12/2012 07:45	15.415
11/12/2012 22:40	15,406	12/12/2012 03:15	15.556	12/12/2012 07:50	15.415
11/12/2012 22:45	15,415	12/12/2012 03:20	15.547	12/12/2012 07:55	15.415
11/12/2012 22:50	15.408	12/12/2012 03:25	15.564	12/12/2012 08:00	15.420
11/12/2012 22:55	15,438	12/12/2012 03:30	15.579	12/12/2012 08:05	15.448
11/12/2012 23:00	15.456	12/12/2012 03:35	15.581	12/12/2012 08:10	15.440
11/12/2012 23:05	15.476	12/12/2012 03:40	15.574	12/12/2012 08:15	15.452
11/12/2012 23:10	15.496	12/12/2012 03:45	15.570	12/12/2012 08:20	15.452
11/12/2012 23:15	15.497	12/12/2012 03:50	15.605	12/12/2012 08:25	15.451
11/12/2012 23:20	15.514	12/12/2012 03:55	15.610	12/12/2012 08:30	15.619
11/12/2012 23:25	15.527	12/12/2012 04:00	15.609	12/12/2012 08:35	15.553
11/12/2012 23:30	15.532	12/12/2012 04:05	15.616	12/12/2012 08:40	15.527
11/12/2012 23:35	15.532	12/12/2012 04:10	15.618	12/12/2012 08:45	15.525
11/12/2012 23:40	15.526	12/12/2012 04:15	15.606	12/12/2012 08:50	15.512
11/12/2012 23:45	15.514	12/12/2012 04:10	15.617	12/12/2012 08:55	15.505
11/12/2012 23:50	15.510	12/12/2012 04:25	15.632	12/12/2012 09:00	15.502
11/12/2012 23:55	15.517	12/12/2012 04:30	15.627	12/12/2012 09:05	15.480
12/12/2012 23:33	15.505	12/12/2012 04:35	15.608	12/12/2012 09:10	15.494
12/12/2012 00:05	15.505	12/12/2012 04:40	15.610	12/12/2012 09:15	15.491
12/12/2012 00:03	15.503	12/12/2012 04:45	15.612		
12/12/2012 00:15				12/12/2012 09:20	15.491
	15.498	12/12/2012 04:50	15.542	12/12/2012 09:25	15.494
12/12/2012 00:20	15.507	12/12/2012 04:55	15.511	12/12/2012 09:30	15.493
12/12/2012 00:25	15.515	12/12/2012 05:00	15.547	12/2012 09:35	15.497
12/12/2012 00:30	15.514	12/12/2012 05:05		12/12/2012 09:40	15.499
12/12/2012 00:35	15.520	12/12/2012 05:10	15.4887	12/12/2012 09:45	15.494
12/12/2012 00:40	15.523	12/12/2012 05:15	313.440	12/12/2012 09:50	15.502
12/12/2012 00:45	15.525	12/12/2012 05:20	15.414	12/12/2012 09:55	15.496
12/12/2012 00:50	15.526	12/12/2012 05:25	1 ()	12/12/2012 10:00	15.501
12/12/2012 00:55	15.523	12/12/2012 05:30	<u>y</u>	12/12/2012 10:05	15.490
12/12/2012 01:00	15.535	12/12/2012 05:35	15.379	12/12/2012 10:10	15.505
12/12/2012 01:05	15.534	12/12/2012/05:40	15.378	12/12/2012 10:15	15.495
12/12/2012 01:10	15.530	12/12/2002 05:45	15.367	12/12/2012 10:20	15.495
12/12/2012 01:15	15.513	12/12/2012 05:50	15.354	12/12/2012 10:25	15.515
12/12/2012 01:20	15.525	12/12/2012 05:55	15.374	12/12/2012 10:30	15.518
12/12/2012 01:25	15.516	12/12/2012 06:00	15.365	12/12/2012 10:35	15.513
12/12/2012 01:30	15.526	12/12/2012 06:05	15.353	12/12/2012 10:40	15.523
12/12/2012 01:35	15.522	12/12/2012 06:10	15.384	12/12/2012 10:45	15.516
12/12/2012 01:40	15.521	12/12/2012 06:15	15.365	12/12/2012 10:50	15.522
12/12/2012 01:45	15.521	12/12/2012 06:20	15.365	12/12/2012 10:55	15.523
12/12/2012 01:50	15.517	12/12/2012 06:25	15.355	12/12/2012 11:00	15.512
12/12/2012 01:55	15.539	12/12/2012 06:30	15.354	12/12/2012 11:05	15.500
12/12/2012 02:00	15.542	12/12/2012 06:35	15.377	12/12/2012 11:10	15.517
12/12/2012 02:05	15.531	12/12/2012 06:40	15.366	12/12/2012 11:15	15.519
12/12/2012 02:10	15.530	12/12/2012 06:45	15.371	12/12/2012 11:20	15.522
12/12/2012 02:15	15.533	12/12/2012 06:50	15.372	12/12/2012 11:25	15.527
12/12/2012 02:20	15.529	12/12/2012 06:55	15.372	12/12/2012 11:30	15.539
12/12/2012 02:25	15.548	12/12/2012 07:00	15.364	12/12/2012 11:35	15.541
12/12/2012 02:30	15.566	12/12/2012 07:05	15.365	12/12/2012 11:40	15.541
12/12/2012 02:35	15.558	12/12/2012 07:10	15.379	12/12/2012 11:45	15.539
12/12/2012 02:40	15.567	12/12/2012 07:15	15.386	12/12/2012 11:50	15.539
12/12/2012 02:45	15.550	12/12/2012 07:20	15.392	12/12/2012 11:55	15.529
12/12/2012 02:50	15.559	12/12/2012 07:25	15.396	12/12/2012 12:00	15.542
12/12/2012 02:55	15.541	12/12/2012 07:30	15.397	12/12/2012 12:05	15.544
12/12/2012 03:00	15,552	12/12/2012 07:35	15.401	12/12/2012 12:10	15.533
12/12/2012 03:05	15.549	12/12/2012 07:40	15.391	12/12/2012 12:15	15.551
		1	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

12/12/2012 12:20	Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
12/12/2012 12:30	12/12/2012 12:20	15.543	12/12/2012 16:55	15.916	12/12/2012 21:30	16.047
12/12/2012 12:45 15.538 12/12/2012 17:15 15.861 12/12/2012 21:45 16.048 12/12/2012 12:55 15.534 12/12/2012 17:25 15.855 12/12/2012 21:55 16.048 12/12/2012 12:55 15.534 12/12/2012 17:25 15.855 12/12/2012 12:55 16.051 12/12/2012 12:55 15.554 12/12/2012 17:25 15.845 12/12/2012 22:00 16.069 12/12/2012 12:55 15.555 12/12/2012 17:30 15.845 12/12/2012 22:10 16.058 12/12/2012 13:00 15.557 12/12/2012 17:35 15.847 12/12/2012 22:10 16.058 12/12/2012 13:10 15.573 12/12/2012 17:45 15.845 12/12/2012 22:15 16.061 12/12/2012 13:10 15.573 12/12/2012 17:45 15.842 12/12/2012 22:25 16.042 12/12/2012 13:15 15.557 12/12/2012 17:45 15.842 12/12/2012 22:25 16.042 12/12/2012 13:25 15.596 12/12/2012 17:55 15.847 12/12/2012 22:25 16.042 12/12/2012 13:25 15.596 12/12/2012 13:00 15.874 12/12/2012 22:25 16.042 12/12/2012 13:25 15.596 12/12/2012 18:00 15.894 12/12/2012 22:25 16.042 12/12/2012 13:35 15.605 12/12/2012 18:05 15.880 12/12/2012 22:25 16.038 12/12/2012 13:35 15.605 12/12/2012 18:15 15.893 12/12/2012 22:25 16.038 12/12/2012 13:35 15.605 12/12/2012 18:15 15.893 12/12/2012 22:25 16.038 12/12/2012 13:45 15.597 12/12/2012 18:25 15.991 12/12/2012 22:25 16.033 12/12/2012 13:55 15.598 12/12/2012 18:25 15.991 12/12/2012 23:35 16.033 12/12/2012 14:05 15.598 12/12/2012 18:25 15.991 12/12/2012 23:35 16.033 12/12/2012 14:05 15.598 12/12/2012 18:25 15.991 12/12/2012 23:35 16.033 12/12/2012 14:05 15.691 12/12/2012 18:55 15.994 12/12/2012 23:35 16.033 12/12/2012 14:05 15.691 12/12/2012 18:55 15.994 12/12/2012 23:35 16.033 12/12/2012 14:05 15.691 12/12/2012 18:55 15.994 12/12/2012 23:35 16.033 12/12/2012 14:55 15.697 12/12/2012 19:55 15.994 12/1	12/12/2012 12:25	15.540	12/12/2012 17:00	15.893	12/12/2012 21:35	16.052
12/12/2012 12:40	12/12/2012 12:30	15.527	12/12/2012 17:05	15.870	12/12/2012 21:40	16.044
12/12/2012 12:45 15.594 12/12/2012 17:20 15.856 12/12/2012 12:55 16.051 12/12/2012 12:55 15.543 12/12/2012 17:20 15.847 12/12/2012 22:00 16.069 12/12/2012 13:00 15.555 12/12/2012 17:30 15.847 12/12/2012 22:00 16.058 12/12/2012 13:00 15.557 12/12/2012 17:40 15.845 12/12/2012 22:10 16.058 12/12/2012 13:10 15.573 12/12/2012 17:40 15.845 12/12/2012 22:10 16.051 12/12/2012 13:10 15.573 12/12/2012 17:40 15.845 12/12/2012 22:20 16.052 12/12/2012 13:15 15.567 12/12/2012 17:45 15.847 12/12/2012 22:20 16.052 12/12/2012 13:15 15.567 12/12/2012 17:55 15.847 12/12/2012 22:25 16.046 12/12/2012 13:25 15.596 12/12/2012 17:55 15.854 12/12/2012 22:35 16.046 12/12/2012 13:25 15.596 12/12/2012 18:05 15.884 12/12/2012 22:35 16.046 12/12/2012 13:30 15.000 12/12/2012 18:05 15.880 12/12/2012 22:35 16.046 12/12/2012 13:35 15.605 12/12/2012 18:05 15.880 12/12/2012 22:35 16.034 12/12/2012 13:35 15.605 12/12/2012 18:15 15.883 12/12/2012 22:35 16.036 12/12/2012 13:45 15.597 12/12/2012 18:15 15.893 12/12/2012 22:55 16.036 12/12/2012 13:55 15.592 12/12/2012 18:30 15.990 12/12/2012 22:55 16.033 12/12/2012 13:55 15.589 12/12/2012 18:35 15.991 12/12/2012 22:55 16.034 12/12/2012 13:55 15.589 12/12/2012 18:35 15.895 12/12/2012 22:50 16.038 12/12/2012 14:00 15.589 12/12/2012 18:35 15.895 12/12/2012 23:05 16.034 12/12/2012 14:35 15.591 12/12/2012 18:35 15.894 12/12/2012 23:35 16.034 12/12/2012 14:35 15.591 12/12/2012 23:35 16.034 12/12/2012 14:35 15.591 12/12/2012 18:35 15.894 12/12/2012 23:35 16.034 12/12/2012 14:35 15.591 12/12/2012 18:35 15.994 12/12/2012 23:35 16.035 12/12/2012 14:35 15.641 12/12/2012 18:35 15.994 13/12/2012 23:35 16.034 12/12/2012 14:35 15.641 12/12/2012 19:35 15.994 13/12/2012 23:35 16.034 12/12/2012 13:35 15.689 12/12/2012 19:35 15.994	12/12/2012 12:35	15.533	12/12/2012 17:10	15.861	12/12/2012 21:45	16.049
12/12/2012 12:50	12/12/2012 12:40	15.525	12/12/2012 17:15	15.851	12/12/2012 21:50	16.048
12/12/2012 12:55	12/12/2012 12:45	15.534	12/12/2012 17:20	15.856	12/12/2012 21:55	16.051
12/12/2012 13:00 15.557 12/12/2012 17:35 15.847 12/12/2012 22:10 16.058 12/12/2012 13:10 15.573 12/12/2012 17:40 15.855 12/12/2012 22:15 16.061 12/12/2012 13:10 15.573 12/12/2012 17:40 15.845 12/12/2012 22:25 16.052 12/12/2012 13:15 15.567 12/12/2012 17:50 15.847 12/12/2012 22:25 16.042 12/12/2012 13:20 15.596 12/12/2012 17:50 15.847 12/12/2012 22:25 16.042 12/12/2012 13:20 15.596 12/12/2012 18:05 15.847 12/12/2012 22:25 16.044 12/12/2012 13:30 15.600 12/12/2012 18:05 15.874 12/12/2012 22:35 16.044 12/12/2012 13:30 15.600 12/12/2012 18:05 15.880 12/12/2012 22:40 16.039 12/12/2012 13:40 15.594 12/12/2012 18:10 15.883 12/12/2012 22:40 16.039 12/12/2012 13:40 15.597 12/12/2012 18:20 15.901 12/12/2012 22:55 16.038 12/12/2012 13:45 15.597 12/12/2012 18:20 15.901 12/12/2012 23:05 16.032 12/12/2012 13:55 15.885 12/12/2012 18:35 15.894 12/12/2012 23:05 16.032 12/12/2012 14:00 15.589 12/12/2012 18:35 15.894 12/12/2012 23:05 16.032 12/12/2012 14:05 15.585 12/12/2012 18:40 15.910 15.910 12/12/2012 23:05 16.042 12/12/2012 14:05 15.598 12/12/2012 18:55 15.910 12/12/2012 23:05 16.042 12/12/2012 14:35 15.599 12/12/2012 18:55 15.910 12/12/2012 23:35 16.042 12/12/2012 14:35 15.599 12/12/2012 18:55 15.923 12/12/2012 23:35 16.043 12/12/2012 14:35 15.599 12/12/2012 18:55 15.940 15.940 12/12/2012 23:35 16.034 12/12/2012 14:35 15.599 12/12/2012 19:05 15.944 12/12/2012 23:35 16.035 12/12/2012 14:45 15.617 12/12/2012 19:05 15.944 12/12/2012 23:35 16.035 12/12/2012 15:05 15.644 12/12/2012 19:05 15.994 13/12/2012 23:35 16.034 12/12/2012 15:05 15.644 12/12/2012 19:05 15.995 13/12/2012 00:05 16.044 12/12/2012 15:05 15.644 12/12/2012 19:	12/12/2012 12:50	15.543	12/12/2012 17:25	15.845	12/12/2012 22:00	16.069
12/12/2012 13:05 15.554 12/12/2012 17:40 15.855 12/12/2012 22:15 16.061 12/12/2012 13:15 15.573 12/12/2012 17:45 15.842 12/12/2012 22:20 16.052 12/12/2012 13:15 15.567 12/12/2012 17:55 15.854 12/12/2012 22:30 16.046 12/12/2012 13:20 15.596 12/12/2012 17:55 15.854 12/12/2012 22:30 16.046 12/12/2012 13:20 15.596 12/12/2012 18:00 15.874 12/12/2012 22:30 16.046 12/12/2012 13:30 15.600 12/12/2012 18:00 15.874 12/12/2012 22:45 16.049 12/12/2012 13:30 15.605 12/12/2012 18:10 15.883 12/12/2012 22:45 16.039 12/12/2012 13:30 15.605 12/12/2012 18:10 15.883 12/12/2012 22:45 16.046 12/12/2012 13:30 15.594 12/12/2012 18:15 15.893 12/12/2012 22:45 16.038 12/12/2012 13:45 15.597 12/12/2012 18:25 15.910 12/12/2012 22:45 16.033 12/12/2012 13:30 15.592 12/12/2012 18:25 15.910 12/12/2012 23:30 16.037 12/12/2012 13:35 15.582 12/12/2012 18:30 15.895 12/12/2012 13:35 15.892 12/12/2012 18:35 15.895 12/12/2012 13:30 16.043 12/12/2012 14:10 15.589 12/12/2012 18:35 15.894 12/12/2012 23:15 16.034 12/12/2012 14:10 15.589 12/12/2012 18:40 15.912 12/12/2012 23:20 16.042 12/12/2012 14:10 15.593 12/12/2012 18:55 15.923 12/12/2012 18:50 15.923 12/12/2012 23:35 16.034 12/12/2012 14:25 15.593 12/12/2012 18:55 15.933 12/12/2012 13:35 16.035 12/12/2012 14:25 15.601 12/12/2012 18:55 15.933 12/12/2012 13:35 16.035 12/12/2012 14:35 15.614 12/12/2012 19:30 15.944 12/12/2012 23:35 16.035 12/12/2012 14:35 15.614 12/12/2012 19:35 15.944 12/12/2012 23:35 16.035 12/12/2012 14:35 15.614 12/12/2012 19:35 15.944 12/12/2012 23:35 16.035 12/12/2012 14:35 15.614 12/12/2012 19:35 15.944 12/12/2012 23:35 16.035 12/12/2012 14:35 15.614 12/12/2012 19:35 15.945 12/12/2012 23:35 16.035 12/12/2012 14:35 15.647 12/12/2012 19:35 15.945 12/12/2012 23:35 16.036 12/12/2012 15:55 15.633	12/12/2012 12:55	15.555	12/12/2012 17:30	15.847	12/12/2012 22:05	16.073
12/12/2012 13:05 15.554 12/12/2012 17:40 15.855 12/12/2012 22:15 16.061 12/12/2012 13:15 15.573 12/12/2012 17:45 15.842 12/12/2012 22:20 16.052 12/12/2012 13:15 15.567 12/12/2012 17:55 15.854 12/12/2012 22:30 16.046 12/12/2012 13:20 15.596 12/12/2012 17:55 15.854 12/12/2012 22:30 16.046 12/12/2012 13:20 15.596 12/12/2012 18:00 15.874 12/12/2012 22:30 16.046 12/12/2012 13:30 15.600 12/12/2012 18:00 15.874 12/12/2012 22:45 16.049 12/12/2012 13:30 15.605 12/12/2012 18:10 15.883 12/12/2012 22:45 16.039 12/12/2012 13:30 15.605 12/12/2012 18:10 15.883 12/12/2012 22:45 16.046 12/12/2012 13:30 15.594 12/12/2012 18:15 15.893 12/12/2012 22:45 16.038 12/12/2012 13:45 15.597 12/12/2012 18:25 15.910 12/12/2012 22:45 16.033 12/12/2012 13:30 15.592 12/12/2012 18:25 15.910 12/12/2012 23:30 16.037 12/12/2012 13:35 15.582 12/12/2012 18:30 15.895 12/12/2012 13:35 15.892 12/12/2012 18:35 15.895 12/12/2012 13:30 16.043 12/12/2012 14:10 15.589 12/12/2012 18:35 15.894 12/12/2012 23:15 16.034 12/12/2012 14:10 15.589 12/12/2012 18:40 15.912 12/12/2012 23:20 16.042 12/12/2012 14:10 15.593 12/12/2012 18:55 15.923 12/12/2012 18:50 15.923 12/12/2012 23:35 16.034 12/12/2012 14:25 15.593 12/12/2012 18:55 15.933 12/12/2012 13:35 16.035 12/12/2012 14:25 15.601 12/12/2012 18:55 15.933 12/12/2012 13:35 16.035 12/12/2012 14:35 15.614 12/12/2012 19:30 15.944 12/12/2012 23:35 16.035 12/12/2012 14:35 15.614 12/12/2012 19:35 15.944 12/12/2012 23:35 16.035 12/12/2012 14:35 15.614 12/12/2012 19:35 15.944 12/12/2012 23:35 16.035 12/12/2012 14:35 15.614 12/12/2012 19:35 15.944 12/12/2012 23:35 16.035 12/12/2012 14:35 15.614 12/12/2012 19:35 15.945 12/12/2012 23:35 16.035 12/12/2012 14:35 15.647 12/12/2012 19:35 15.945 12/12/2012 23:35 16.036 12/12/2012 15:55 15.633	12/12/2012 13:00	15.557	12/12/2012 17:35	15.847	12/12/2012 22:10	16.058
12/12/2012 13:10 15.573 12/12/2012 17:45 15.842 12/12/2012 22:20 16.052 12/12/2012 13:30 15.596 12/12/2012 17:50 15.847 12/12/2012 22:35 16.044 12/12/2012 13:25 15.596 12/12/2012 18:00 15.874 12/12/2012 22:35 16.044 12/12/2012 13:25 15.596 12/12/2012 18:00 15.874 12/12/2012 22:35 16.044 12/12/2012 13:25 15.596 12/12/2012 18:00 15.874 12/12/2012 22:35 16.044 12/12/2012 13:35 15.600 12/12/2012 18:05 15.880 12/12/2012 22:40 16.039 12/12/2012 13:35 15.605 12/12/2012 18:15 15.883 12/12/2012 22:40 16.046 12/12/2012 13:40 15.594 12/12/2012 18:15 15.893 12/12/2012 22:50 16.038 12/12/2012 13:35 15.595 12/12/2012 18:00 15.591 12/12/2012 22:50 16.038 12/12/2012 13:50 15.592 12/12/2012 18:20 15.590 12/12/2012 23:00 16.037 12/12/2012 13:50 15.592 12/12/2012 18:30 15.895 12/12/2012 23:00 16.037 12/12/2012 14:50 15.589 12/12/2012 18:35 15.894 12/12/2012 23:05 16.032 12/12/2012 14:00 15.589 12/12/2012 18:45 15.910 12/12/2012 23:15 16.034 12/12/2012 14:15 15.593 12/12/2012 18:45 15.910 13/12/2012 23:15 16.042 12/12/2012 14:15 15.593 12/12/2012 18:55 15.593 12/12/2012 18:55 15.593 12/12/2012 18:55 15.593 12/12/2012 18:55 15.593 12/12/2012 18:55 15.593 12/12/2012 18:55 15.593 12/12/2012 18:55 15.593 12/12/2012 18:55 15.593 12/12/2012 18:55 15.594 12/12/2012 23:35 16.035 12/12/2012 14:35 15.597 12/12/2012 19:05 15.694 12/12/2012 23:35 16.035 12/12/2012 14:45 15.617 12/12/2012 19:05 15.944 12/12/2012 23:45 16.039 12/12/2012 14:45 15.617 12/12/2012 19:05 15.944 12/12/2012 23:45 16.039 12/12/2012 14:45 15.617 12/12/2012 19:35 15.994 13/12/2012 00:00 16.044 12/12/2012 15:05 15.634 12/12/2012 19:35 15.994 13/12/2012 00:00 16.044 12/12/2012 15:55 15.680 12/12/2012 19:55 15.999 13/12/2012 00:05 16.044 12/12/2012 15:35 15.681 12/12/2012 19:05 15.999					12/12/2012 22:15	16.061
12/12/2012 13:15 15.567 12/12/2012 17:50 15.847 12/12/2012 22:25 16.042 12/12/2012 13:25 15.596 12/12/2012 13:25 15.854 12/12/2012 22:35 16.044 12/12/2012 13:25 15.596 12/12/2012 13:05 15.860 12/12/2012 13:05 15.860 12/12/2012 13:05 15.860 12/12/2012 13:05 15.860 12/12/2012 13:05 15.860 12/12/2012 13:05 15.860 12/12/2012 13:35 15.605 12/12/2012 13:05 15.883 12/12/2012 22:40 16.038 12/12/2012 13:40 15.594 12/12/2012 13:15 15.893 12/12/2012 22:45 16.044 12/12/2012 13:45 15.597 12/12/2012 13:20 15.591 12/12/2012 22:55 16.038 12/12/2012 13:45 15.597 12/12/2012 13:25 15.910 12/12/2012 23:00 16.037 12/12/2012 13:35 15.882 12/12/2012 13:35 15.882 12/12/2012 13:35 15.882 12/12/2012 13:35 15.885 12/12/2012 13:35 15.885 12/12/2012 13:35 15.885 12/12/2012 13:35 15.885 12/12/2012 13:35 15.885 12/12/2012 13:35 15.885 12/12/2012 13:35 15.894 12/12/2012 13:30 15.595 12/12/2012 13:35 15.895 12/12/2012 13:35 16.034 12/12/2012 14:10 15.589 12/12/2012 18:45 15.910 12/12/2012 23:15 16.034 12/12/2012 14:10 15.599 12/12/2012 18:45 15.910 12/12/2012 23:25 16.043 12/12/2012 14:25 15.593 12/12/2012 18:55 15.893 12/12/2012 23:30 16.056 12/12/2012 14:25 15.593 12/12/2012 18:55 15.893 12/12/2012 23:35 16.035 12/12/2012 14:35 15.591 12/12/2012 19:10 15.594 12/12/2012 23:45 16.034 12/12/2012 14:35 15.617 12/12/2012 19:10 15.594 12/12/2012 23:45 16.034 12/12/2012 14:35 15.617 12/12/2012 19:10 15.646 12/12/2012 13:55 16.031 12/12/2012 14:55 15.641 12/12/2012 19:55 15.994 13/12/2012 00:00 16.042 12/12/2012 14:55 15.641 12/12/2012 19:45 15.995 13/12/2012 00:00 16.042 12/12/2012 15:55 15.641 12/12/2012 19:55 15.995 13/12/2012 00:00 16.042 12/12/2012 15:55 15.641 12/12/2012 19:55 15.999 13/12/2012 00:05 16.043 12/12/2012 15:55 15.680 12/12/2012 19:55 15.999	12/12/2012 13:10			15.842	12/12/2012 22:20	16.052
12/12/2012 13:20 15.596 12/12/2012 17:55 15.854 12/12/2012 22:30 16.046 12/12/2012 13:30 15.696 12/12/2012 18:00 15.874 12/12/2012 22:35 16.044 12/12/2012 13:30 15.600 12/12/2012 18:00 15.883 12/12/2012 22:45 16.039 12/12/2012 13:35 15.605 12/12/2012 18:10 15.883 12/12/2012 22:45 16.046 12/12/2012 13:30 15.695 12/12/2012 18:15 15.883 12/12/2012 22:45 16.038 12/12/2012 13:40 15.594 12/12/2012 18:15 15.893 12/12/2012 22:50 16.033 12/12/2012 13:50 15.592 12/12/2012 18:20 15.901 12/12/2012 23:00 16.037 12/12/2012 13:35 15.582 12/12/2012 18:35 15.910 12/12/2012 23:05 16.033 12/12/2012 13:55 15.582 12/12/2012 18:35 15.894 12/12/2012 23:15 16.034 12/12/2012 14:05 15.585 12/12/2012 18:45 15.910 12/12/2012 23:15 16.034 12/12/2012 14:15 15.589 12/12/2012 18:45 15.910 12/12/2012 23:15 16.034 12/12/2012 14:15 15.593 12/12/2012 18:45 15.910 12/12/2012 23:20 16.042 12/12/2012 14:15 15.593 12/12/2012 18:55 15.933 12/12/2012 13:30 16.056 12/12/2012 14:35 15.591 12/12/2012 19:05 15.933 12/12/2012 23:35 16.035 12/12/2012 14:35 15.591 12/12/2012 19:05 15.942 12/12/2012 23:45 16.035 12/12/2012 14:35 15.617 12/12/2012 19:05 15.942 12/12/2012 23:45 16.035 12/12/2012 14:55 15.633 12/12/2012 19:05 15.944 12/12/2012 23:55 16.031 12/12/2012 15:50 15.641 12/12/2012 19:35 15.994 13/12/2012 00:00 16.042 12/12/2012 15:55 15.633 12/12/2012 19:35 15.994 13/12/2012 00:00 16.042 12/12/2012 15:55 15.641 12/12/2012 19:55 15.994 13/12/2012 00:05 16.044 12/12/2012 15:55 15.684 12/12/2012 19:55 15.994 13/12/2012 00:05 16.043 12/12/2012 15:55 15.686 12/12/2012 19:55 15.999 13/12/2012 00:05 16.043 12/12/2012 15:55 15.686 12/12/2012 19:55 15.999 13/12/2012 00:05 16.043 12/12/2012 15:55 15.686 12/12/2012 10:05 15.990 13/12/2012 00:05 16.043 12/12/2012 15:55 15.686		ļ		15.847	12/12/2012 22:25	16.042
12/12/2012 13:25 15.596 12/12/2012 18:00 15.874 12/12/2012 23:35 16.044 12/12/2012 13:30 15.600 12/12/2012 18:00 15.880 12/12/2012 23:40 16.039 12/12/2012 13:35 15.605 12/12/2012 18:10 15.883 12/12/2012 22:45 16.046 12/12/2012 13:40 15.594 12/12/2012 18:10 15.883 12/12/2012 22:45 16.046 12/12/2012 13:40 15.597 12/12/2012 18:10 15.893 12/12/2012 22:50 16.038 12/12/2012 13:45 15.597 12/12/2012 18:20 15.901 12/12/2012 23:50 16.037 12/12/2012 13:45 15.592 12/12/2012 18:20 15.901 12/12/2012 23:00 16.037 12/12/2012 13:55 15.582 12/12/2012 18:30 15.895 12/12/2012 23:00 16.032 12/12/2012 14:00 15.589 12/12/2012 18:30 15.895 12/12/2012 23:10 16.043 12/12/2012 14:00 15.589 12/12/2012 18:45 15.910 12/12/2012 23:20 16.042 12/12/2012 14:10 15.589 12/12/2012 18:45 15.910 12/12/2012 23:20 16.042 12/12/2012 14:15 15.593 12/12/2012 18:50 15.923 12/12/2012 23:20 16.043 12/12/2012 14:20 15.601 12/12/2012 18:50 15.923 12/12/2012 23:30 16.035 12/12/2012 14:33 15.597 12/12/2012 19:00 15.593 12/12/2012 23:30 16.035 12/12/2012 14:35 15.633 12/12/2012 19:00 15.594 12/12/2012 23:40 16.025 12/12/2012 14:45 15.617 12/12/2012 19:00 15.944 12/12/2012 23:50 16.035 12/12/2012 14:50 15.641 12/12/2012 19:30 15.983 13/12/2012 00:00 16.042 12/12/2012 14:50 15.633 12/12/2012 19:30 15.984 13/12/2012 00:00 16.042 12/12/2012 15:00 15.664 12/12/2012 19:45 15.994 13/12/2012 00:00 16.042 12/12/2012 15:00 15.664 12/12/2012 19:30 15.994 13/12/2012 00:00 16.042 12/12/2012 15:00 15.684 12/12/2012 19:30 15.994 13/12/2012 00:00 16.043 12/12/2012 15:00 15.689 12/12/2012 10:00 15.999 13/12/2012 00:05 16.036 12/12/2012 15:45	*					
12/12/2012 13:30					-	
12/12/2012 13:35						
12/12/2012 13:40						
12/12/2012 13:45 15.597						
12/12/2012 13:55						
12/12/2012 13:55						2000
12/12/2012 14:00						
12/12/2012 14:05						
12/12/2012 14:10					20	
12/12/2012 14:15			_		()	
12/12/2012 14:20						
12/12/2012 14:25 15.593 12/12/2012 19:00 15.995 12/12/2012 23:35 16.035 12/12/2012 14:30 15.597 12/12/2012 19:10 15.933 12/12/2012 23:40 16.026 12/12/2012 14:35 15.597 12/12/2012 19:10 15.942 12/12/2012 23:45 16.039 12/12/2012 14:40 15.614 12/12/2012 19:35 15.944 12/12/2012 23:55 16.031 12/12/2012 14:45 15.617 12/12/2012 19:35 15.944 12/12/2012 23:55 16.031 12/12/2012 14:55 15.617 12/12/2012 19:35 15.947 13/12/2012 00:00 16.042 12/12/2012 14:55 15.633 12/12/2012 19:35 15.947 13/12/2012 00:00 16.044 12/12/2012 15:00 15.634 12/12/2012 19:35 15.995 13/12/2012 00:00 16.043 12/12/2012 15:00 15.641 12/12/2012 19:35 15.995 13/12/2012 00:10 16.035 12/12/2012 15:10 15.676 12/12/2012 19:45 16.007 13/12/2012 00:15 16.039 12/12/2012 15:10 15.676 12/12/2012 19:50 16.001 13/12/2012 00:20 16.047 12/12/2012 15:20 15.684 12/12/2012 19:50 16.001 13/12/2012 00:20 16.047 12/12/2012 15:20 15.684 12/12/2012 19:55 15.994 13/12/2012 00:30 16.052 12/12/2012 15:30 15.672 12/12/2012 20:00 15.993 13/12/2012 00:35 16.056 12/12/2012 15:30 15.672 12/12/2012 20:05 15.994 13/12/2012 00:35 16.056 12/12/2012 15:30 15.672 12/12/2012 20:05 15.990 13/12/2012 00:45 16.060 12/12/2012 15:40 15.692 12/12/2012 20:15 15.990 13/12/2012 00:45 16.060 12/12/2012 15:45 15.681 12/12/2012 20:15 15.990 13/12/2012 00:50 16.064 12/12/2012 15:45 15.681 12/12/2012 20:35 15.990 13/12/2012 00:55 16.068 12/12/2012 15:55 15.686 12/12/2012 20:35 15.990 13/12/2012 00:55 16.068 12/12/2012 15:55 15.686 12/12/2012 20:35 15.990 13/12/2012 00:55 16.068 12/12/2012 15:55 15.691 12/12/2012 20:35 15.986 13/12/2012 01:50 16.083 12/12/2012 16:50 15.746 12/12/2012 20:55 16.008 13/12/2012 01:50 16.166 12/12/2012 16:50 15.746 12/12/2012 20:55 16.005 13/12/2012 01:30 16.165 12/12/2012 16:55 15.737				15.725		
12/12/2012 14:30				19.207		
12/12/2012 14:35			<u> </u>	17	+	
12/12/2012 14:40						
12/12/2012 14:45 15.617 12/12/2012 13:35 15.961 12/12/2012 23:55 16.031 12/12/2012 14:50 15.619 12/12/2012 19:25 15.967 13/12/2012 00:00 16.042 12/12/2012 14:55 15.633 12/12/202 19:30 15.983 13/12/2012 00:05 16.044 12/12/2012 15:00 15.634 12/12/2012 19:35 15.995 13/12/2012 00:10 16.035 12/12/2012 15:05 15.641 12/12/2012 19:40 15.994 13/12/2012 00:15 16.039 12/12/2012 15:10 15.676 12/12/2012 19:45 16.007 13/12/2012 00:20 16.047 12/12/2012 15:25 15.684 12/12/2012 19:50 16.001 13/12/2012 00:25 16.043 12/12/2012 15:20 15.684 12/12/2012 19:50 16.001 13/12/2012 00:30 16.052 12/12/2012 15:20 15.680 12/12/2012 20:00 15.994 13/12/2012 00:30 16.052 12/12/2012 15:35 15.680 12/12/2012 20:00 15.993 13/12/2012 00:35 16.056 12/12/2012 15:35 15.681 12/12/2012 20:05 15						
12/12/2012 14:50 15.619 12/12/2012 15:55 15.967 13/12/2012 00:00 16.042 12/12/2012 14:55 15.633 12/12/2012 19:30 15.983 13/12/2012 00:05 16.044 12/12/2012 15:00 15.634 12/12/2012 19:35 15.995 13/12/2012 00:10 16.035 12/12/2012 15:05 15.641 12/12/2012 19:40 15.994 13/12/2012 00:20 16.039 12/12/2012 15:10 15.676 12/12/2012 19:45 16.007 13/12/2012 00:20 16.047 12/12/2012 15:15 15.672 12/12/2012 19:50 16.001 13/12/2012 00:25 16.043 12/12/2012 15:20 15.684 12/12/2012 19:55 15.994 13/12/2012 00:30 16.052 12/12/2012 15:30 15.672 12/12/2012 20:00 15.993 13/12/2012 00:30 16.052 12/12/2012 15:30 15.672 12/12/2012 20:00 15.993 13/12/2012 00:35 16.056 12/12/2012 15:30 15.672 12/12/2012 20:05 15.982 13/12/2012 00:35 16.049 12/12/2012 15:45 15.689 12/12/2012 20:05 1			A Y	·		
12/12/2012 14:55 15.633 12/12/2012 19:30 15.983 13/12/2012 00:05 16.044 12/12/2012 15:00 15.634 12/12/2012 19:35 15.995 13/12/2012 00:10 16.035 12/12/2012 15:05 15.641 12/12/2012 19:40 15.994 13/12/2012 00:15 16.039 12/12/2012 15:10 15.676 12/12/2012 19:45 16.007 13/12/2012 00:20 16.047 12/12/2012 15:15 15.672 12/12/2012 19:50 16.001 13/12/2012 00:25 16.043 12/12/2012 15:20 15.684 12/12/2012 19:55 15.994 13/12/2012 00:30 16.052 12/12/2012 15:30 15.680 12/12/2012 20:00 15.994 13/12/2012 00:35 16.056 12/12/2012 15:30 15.672 12/12/2012 20:00 15.993 13/12/2012 00:35 16.056 12/12/2012 15:30 15.672 12/12/2012 20:05 15.982 13/12/2012 00:35 16.049 12/12/2012 15:35 15.689 12/12/2012 20:05 15.980 13/12/2012 00:40 16.049 12/12/2012 15:45 15.681 12/12/2012 20:05 1			OX			
12/12/2012 15:00 15.634 12/12/2012 19:35 15.995 13/12/2012 00:10 16.035 12/12/2012 15:05 15.641 12/12/2012 19:40 15.994 13/12/2012 00:15 16.039 12/12/2012 15:10 15.676 12/12/2012 19:45 16.007 13/12/2012 00:20 16.047 12/12/2012 15:15 15.672 12/12/2012 19:50 16.001 13/12/2012 00:25 16.043 12/12/2012 15:20 15.684 12/12/2012 19:55 15.994 13/12/2012 00:30 16.052 12/12/2012 15:25 15.680 12/12/2012 20:00 15.993 13/12/2012 00:35 16.056 12/12/2012 15:30 15.672 12/12/2012 20:05 15.982 13/12/2012 00:40 16.049 12/12/2012 15:35 15.689 12/12/2012 20:10 15.990 13/12/2012 00:45 16.060 12/12/2012 15:45 15.681 12/12/2012 20:15 15.999 13/12/2012 00:50 16.064 12/12/2012 15:45 15.686 12/12/2012 20:25 15.989 13/12/2012 00:55 16.068 12/12/2012 15:50 15.686 12/12/2012 20:35 1						
12/12/2012 15:05 15.641 12/12/2012 19:40 15.994 13/12/2012 00:15 16.039 12/12/2012 15:10 15.676 12/12/2012 19:45 16.007 13/12/2012 00:20 16.047 12/12/2012 15:15 15.672 12/12/2012 19:50 16.001 13/12/2012 00:25 16.043 12/12/2012 15:20 15.684 12/12/2012 19:55 15.994 13/12/2012 00:30 16.052 12/12/2012 15:25 15.680 12/12/2012 20:00 15.993 13/12/2012 00:35 16.056 12/12/2012 15:30 15.672 12/12/2012 20:05 15.982 13/12/2012 00:40 16.049 12/12/2012 15:35 15.689 12/12/2012 20:05 15.990 13/12/2012 00:45 16.060 12/12/2012 15:40 15.692 12/12/2012 20:15 15.999 13/12/2012 00:50 16.064 12/12/2012 15:45 15.681 12/12/2012 20:20 15.990 13/12/2012 00:55 16.068 12/12/2012 15:50 15.686 12/12/2012 20:25 15.989 13/12/2012 01:00 16.083 12/12/2012 16:00 15.711 12/12/2012 20:35 1						
12/12/2012 15:10 15.676 12/12/2012 19:45 16.007 13/12/2012 00:20 16.047 12/12/2012 15:15 15.672 12/12/2012 19:50 16.001 13/12/2012 00:25 16.043 12/12/2012 15:20 15.684 12/12/2012 19:55 15.994 13/12/2012 00:30 16.052 12/12/2012 15:25 15.680 12/12/2012 20:00 15.993 13/12/2012 00:35 16.056 12/12/2012 15:30 15.672 12/12/2012 20:05 15.982 13/12/2012 00:40 16.049 12/12/2012 15:35 15.689 12/12/2012 20:10 15.990 13/12/2012 00:45 16.060 12/12/2012 15:40 15.692 12/12/2012 20:15 15.999 13/12/2012 00:50 16.064 12/12/2012 15:45 15.681 12/12/2012 20:20 15.990 13/12/2012 00:55 16.068 12/12/2012 15:50 15.686 12/12/2012 20:25 15.989 13/12/2012 01:00 16.083 12/12/2012 16:00 15.711 12/12/2012 20:35 15.986 13/12/2012 01:05 16.095 12/12/2012 16:05 15.700 12/12/2012 20:35 1						
12/12/2012 15:15 15.672 12/12/2012 19:50 16.001 13/12/2012 00:25 16.043 12/12/2012 15:20 15.684 12/12/2012 19:55 15.994 13/12/2012 00:30 16.052 12/12/2012 15:25 15.680 12/12/2012 20:00 15.993 13/12/2012 00:35 16.056 12/12/2012 15:30 15.672 12/12/2012 20:05 15.982 13/12/2012 00:40 16.049 12/12/2012 15:35 15.689 12/12/2012 20:10 15.990 13/12/2012 00:45 16.060 12/12/2012 15:40 15.692 12/12/2012 20:15 15.999 13/12/2012 00:50 16.064 12/12/2012 15:45 15.681 12/12/2012 20:20 15.990 13/12/2012 00:55 16.068 12/12/2012 15:50 15.686 12/12/2012 20:20 15.990 13/12/2012 00:05 16.088 12/12/2012 15:55 15.691 12/12/2012 20:35 15.989 13/12/2012 01:00 16.083 12/12/2012 16:00 15.711 12/12/2012 20:35 15.991 13/12/2012 01:05 16.095 12/12/2012 16:05 15.700 12/12/2012 20:40 1	<u> </u>					
12/12/2012 15:20 15.684 12/12/2012 19:55 15.994 13/12/2012 00:30 16.052 12/12/2012 15:25 15.680 12/12/2012 20:00 15.993 13/12/2012 00:35 16.056 12/12/2012 15:30 15.672 12/12/2012 20:05 15.982 13/12/2012 00:40 16.049 12/12/2012 15:35 15.689 12/12/2012 20:10 15.990 13/12/2012 00:45 16.060 12/12/2012 15:40 15.692 12/12/2012 20:15 15.999 13/12/2012 00:50 16.064 12/12/2012 15:45 15.681 12/12/2012 20:20 15.990 13/12/2012 00:55 16.068 12/12/2012 15:50 15.686 12/12/2012 20:25 15.989 13/12/2012 01:00 16.083 12/12/2012 15:55 15.691 12/12/2012 20:30 15.986 13/12/2012 01:05 16.095 12/12/2012 16:00 15.711 12/12/2012 20:35 15.991 13/12/2012 01:10 16.130 12/12/2012 16:05 15.700 12/12/2012 20:40 15.991 13/12/2012 01:15 16.156 12/12/2012 16:05 15.733 12/12/2012 20:45 1						
12/12/2012 15:25 15.680 12/12/2012 20:00 15.993 13/12/2012 00:35 16.056 12/12/2012 15:30 15.672 12/12/2012 20:05 15.982 13/12/2012 00:40 16.049 12/12/2012 15:35 15.689 12/12/2012 20:10 15.990 13/12/2012 00:45 16.060 12/12/2012 15:40 15.692 12/12/2012 20:15 15.999 13/12/2012 00:50 16.064 12/12/2012 15:45 15.681 12/12/2012 20:20 15.990 13/12/2012 00:55 16.068 12/12/2012 15:50 15.686 12/12/2012 20:25 15.989 13/12/2012 01:00 16.083 12/12/2012 15:55 15.691 12/12/2012 20:30 15.986 13/12/2012 01:05 16.095 12/12/2012 16:00 15.711 12/12/2012 20:35 15.991 13/12/2012 01:10 16.130 12/12/2012 16:05 15.700 12/12/2012 20:40 15.991 13/12/2012 01:15 16.156 12/12/2012 16:10 15.722 12/12/2012 20:45 15.986 13/12/2012 01:15 16.177 12/12/2012 16:25 15.746 12/12/2012 20:55 1						
12/12/2012 15:30 15.672 12/12/2012 20:05 15.982 13/12/2012 00:40 16.049 12/12/2012 15:35 15.689 12/12/2012 20:10 15.990 13/12/2012 00:45 16.060 12/12/2012 15:40 15.692 12/12/2012 20:15 15.999 13/12/2012 00:50 16.064 12/12/2012 15:45 15.681 12/12/2012 20:20 15.990 13/12/2012 00:55 16.068 12/12/2012 15:50 15.686 12/12/2012 20:25 15.989 13/12/2012 01:00 16.083 12/12/2012 15:55 15.691 12/12/2012 20:30 15.986 13/12/2012 01:05 16.095 12/12/2012 16:00 15.711 12/12/2012 20:35 15.991 13/12/2012 01:10 16.130 12/12/2012 16:05 15.700 12/12/2012 20:40 15.991 13/12/2012 01:15 16.156 12/12/2012 16:10 15.722 12/12/2012 20:45 15.986 13/12/2012 01:20 16.177 12/12/2012 16:15 15.733 12/12/2012 20:55 16.008 13/12/2012 01:25 16.173 12/12/2012 16:25 15.737 12/12/2012 20:55 1						
12/12/2012 15:35 15.689 12/12/2012 20:10 15.990 13/12/2012 00:45 16.060 12/12/2012 15:40 15.692 12/12/2012 20:15 15.999 13/12/2012 00:50 16.064 12/12/2012 15:45 15.681 12/12/2012 20:20 15.990 13/12/2012 00:55 16.068 12/12/2012 15:50 15.686 12/12/2012 20:25 15.989 13/12/2012 01:00 16.083 12/12/2012 15:55 15.691 12/12/2012 20:30 15.986 13/12/2012 01:05 16.095 12/12/2012 16:00 15.711 12/12/2012 20:35 15.991 13/12/2012 01:10 16.130 12/12/2012 16:05 15.700 12/12/2012 20:40 15.991 13/12/2012 01:15 16.156 12/12/2012 16:10 15.722 12/12/2012 20:45 15.986 13/12/2012 01:20 16.177 12/12/2012 16:15 15.733 12/12/2012 20:45 15.986 13/12/2012 01:20 16.173 12/12/2012 16:25 15.746 12/12/2012 20:55 16.008 13/12/2012 01:35 16.173 12/12/2012 16:30 15.748 12/12/2012 21:05 1					1 1	
12/12/2012 15:40 15.692 12/12/2012 20:15 15.999 13/12/2012 00:50 16.064 12/12/2012 15:45 15.681 12/12/2012 20:20 15.990 13/12/2012 00:55 16.068 12/12/2012 15:50 15.686 12/12/2012 20:25 15.989 13/12/2012 01:00 16.083 12/12/2012 15:55 15.691 12/12/2012 20:30 15.986 13/12/2012 01:05 16.095 12/12/2012 16:00 15.711 12/12/2012 20:35 15.991 13/12/2012 01:10 16.130 12/12/2012 16:05 15.700 12/12/2012 20:40 15.991 13/12/2012 01:15 16.156 12/12/2012 16:10 15.722 12/12/2012 20:45 15.986 13/12/2012 01:20 16.177 12/12/2012 16:15 15.733 12/12/2012 20:50 16.008 13/12/2012 01:25 16.173 12/12/2012 16:20 15.746 12/12/2012 20:55 16.025 13/12/2012 01:30 16.166 12/12/2012 16:30 15.748 12/12/2012 21:00 16.033 13/12/2012 01:40 16.161 12/12/2012 16:35 15.762 12/12/2012 21:05 1						
12/12/2012 15:45 15.681 12/12/2012 20:20 15.990 13/12/2012 00:55 16.068 12/12/2012 15:50 15.686 12/12/2012 20:25 15.989 13/12/2012 01:00 16.083 12/12/2012 15:55 15.691 12/12/2012 20:30 15.986 13/12/2012 01:05 16.095 12/12/2012 16:00 15.711 12/12/2012 20:35 15.991 13/12/2012 01:10 16.130 12/12/2012 16:05 15.700 12/12/2012 20:40 15.991 13/12/2012 01:15 16.156 12/12/2012 16:10 15.722 12/12/2012 20:45 15.986 13/12/2012 01:20 16.177 12/12/2012 16:15 15.733 12/12/2012 20:50 16.008 13/12/2012 01:25 16.173 12/12/2012 16:20 15.746 12/12/2012 20:55 16.025 13/12/2012 01:30 16.166 12/12/2012 16:25 15.737 12/12/2012 21:00 16.024 13/12/2012 01:35 16.165 12/12/2012 16:35 15.762 12/12/2012 21:05 16.033 13/12/2012 01:40 16.161 12/12/2012 16:45 15.992 12/12/2012 21:15 1			1		 	
12/12/2012 15:50 15.686 12/12/2012 20:25 15.989 13/12/2012 01:00 16.083 12/12/2012 15:55 15.691 12/12/2012 20:30 15.986 13/12/2012 01:05 16.095 12/12/2012 16:00 15.711 12/12/2012 20:35 15.991 13/12/2012 01:10 16.130 12/12/2012 16:05 15.700 12/12/2012 20:40 15.991 13/12/2012 01:15 16.156 12/12/2012 16:10 15.722 12/12/2012 20:45 15.986 13/12/2012 01:20 16.177 12/12/2012 16:15 15.733 12/12/2012 20:50 16.008 13/12/2012 01:25 16.173 12/12/2012 16:20 15.746 12/12/2012 20:55 16.025 13/12/2012 01:30 16.166 12/12/2012 16:25 15.737 12/12/2012 21:00 16.024 13/12/2012 01:35 16.165 12/12/2012 16:30 15.748 12/12/2012 21:05 16.033 13/12/2012 01:40 16.161 12/12/2012 16:40 15.992 12/12/2012 21:15 16.048 13/12/2012 01:50 16.160 12/12/2012 16:45 15.979 12/12/2012 21:20 1	<u> </u>					
12/12/2012 15:55 15.691 12/12/2012 20:30 15.986 13/12/2012 01:05 16.095 12/12/2012 16:00 15.711 12/12/2012 20:35 15.991 13/12/2012 01:10 16.130 12/12/2012 16:05 15.700 12/12/2012 20:40 15.991 13/12/2012 01:15 16.156 12/12/2012 16:10 15.722 12/12/2012 20:45 15.986 13/12/2012 01:20 16.177 12/12/2012 16:15 15.733 12/12/2012 20:50 16.008 13/12/2012 01:25 16.173 12/12/2012 16:20 15.746 12/12/2012 20:55 16.025 13/12/2012 01:30 16.166 12/12/2012 16:25 15.737 12/12/2012 21:00 16.024 13/12/2012 01:35 16.165 12/12/2012 16:30 15.748 12/12/2012 21:05 16.033 13/12/2012 01:40 16.161 12/12/2012 16:35 15.762 12/12/2012 21:10 16.041 13/12/2012 01:45 16.173 12/12/2012 16:45 15.979 12/12/2012 21:20 16.047 13/12/2012 01:55 16.176						
12/12/2012 16:00 15.711 12/12/2012 20:35 15.991 13/12/2012 01:10 16.130 12/12/2012 16:05 15.700 12/12/2012 20:40 15.991 13/12/2012 01:15 16.156 12/12/2012 16:10 15.722 12/12/2012 20:45 15.986 13/12/2012 01:20 16.177 12/12/2012 16:15 15.733 12/12/2012 20:50 16.008 13/12/2012 01:25 16.173 12/12/2012 16:20 15.746 12/12/2012 20:55 16.025 13/12/2012 01:30 16.166 12/12/2012 16:25 15.737 12/12/2012 21:00 16.024 13/12/2012 01:35 16.165 12/12/2012 16:30 15.748 12/12/2012 21:05 16.033 13/12/2012 01:40 16.161 12/12/2012 16:35 15.762 12/12/2012 21:10 16.041 13/12/2012 01:45 16.173 12/12/2012 16:45 15.979 12/12/2012 21:15 16.048 13/12/2012 01:50 16.160 12/12/2012 16:45 15.979 12/12/2012 21:20 16.047 13/12/2012 01:55 16.176		_				
12/12/2012 16:05 15.700 12/12/2012 20:40 15.991 13/12/2012 01:15 16.156 12/12/2012 16:10 15.722 12/12/2012 20:45 15.986 13/12/2012 01:20 16.177 12/12/2012 16:15 15.733 12/12/2012 20:50 16.008 13/12/2012 01:25 16.173 12/12/2012 16:20 15.746 12/12/2012 20:55 16.025 13/12/2012 01:30 16.166 12/12/2012 16:25 15.737 12/12/2012 21:00 16.024 13/12/2012 01:35 16.165 12/12/2012 16:30 15.748 12/12/2012 21:05 16.033 13/12/2012 01:40 16.161 12/12/2012 16:35 15.762 12/12/2012 21:10 16.041 13/12/2012 01:45 16.173 12/12/2012 16:40 15.992 12/12/2012 21:15 16.048 13/12/2012 01:50 16.160 12/12/2012 16:45 15.979 12/12/2012 21:20 16.047 13/12/2012 01:55 16.176			_			
12/12/2012 16:10 15.722 12/12/2012 20:45 15.986 13/12/2012 01:20 16.177 12/12/2012 16:15 15.733 12/12/2012 20:50 16.008 13/12/2012 01:25 16.173 12/12/2012 16:20 15.746 12/12/2012 20:55 16.025 13/12/2012 01:30 16.166 12/12/2012 16:25 15.737 12/12/2012 21:00 16.024 13/12/2012 01:35 16.165 12/12/2012 16:30 15.748 12/12/2012 21:05 16.033 13/12/2012 01:40 16.161 12/12/2012 16:35 15.762 12/12/2012 21:10 16.041 13/12/2012 01:45 16.173 12/12/2012 16:40 15.992 12/12/2012 21:15 16.048 13/12/2012 01:50 16.160 12/12/2012 16:45 15.979 12/12/2012 21:20 16.047 13/12/2012 01:55 16.176						
12/12/2012 16:15 15.733 12/12/2012 20:50 16.008 13/12/2012 01:25 16.173 12/12/2012 16:20 15.746 12/12/2012 20:55 16.025 13/12/2012 01:30 16.166 12/12/2012 16:25 15.737 12/12/2012 21:00 16.024 13/12/2012 01:35 16.165 12/12/2012 16:30 15.748 12/12/2012 21:05 16.033 13/12/2012 01:40 16.161 12/12/2012 16:35 15.762 12/12/2012 21:10 16.041 13/12/2012 01:45 16.173 12/12/2012 16:40 15.992 12/12/2012 21:15 16.048 13/12/2012 01:50 16.160 12/12/2012 16:45 15.979 12/12/2012 21:20 16.047 13/12/2012 01:55 16.176	·					
12/12/2012 16:20 15.746 12/12/2012 20:55 16.025 13/12/2012 01:30 16.166 12/12/2012 16:25 15.737 12/12/2012 21:00 16.024 13/12/2012 01:35 16.165 12/12/2012 16:30 15.748 12/12/2012 21:05 16.033 13/12/2012 01:40 16.161 12/12/2012 16:35 15.762 12/12/2012 21:10 16.041 13/12/2012 01:45 16.173 12/12/2012 16:40 15.992 12/12/2012 21:15 16.048 13/12/2012 01:50 16.160 12/12/2012 16:45 15.979 12/12/2012 21:20 16.047 13/12/2012 01:55 16.176						
12/12/2012 16:25 15.737 12/12/2012 21:00 16.024 13/12/2012 01:35 16.165 12/12/2012 16:30 15.748 12/12/2012 21:05 16.033 13/12/2012 01:40 16.161 12/12/2012 16:35 15.762 12/12/2012 21:10 16.041 13/12/2012 01:45 16.173 12/12/2012 16:40 15.992 12/12/2012 21:15 16.048 13/12/2012 01:50 16.160 12/12/2012 16:45 15.979 12/12/2012 21:20 16.047 13/12/2012 01:55 16.176				 		
12/12/2012 16:30 15.748 12/12/2012 21:05 16.033 13/12/2012 01:40 16.161 12/12/2012 16:35 15.762 12/12/2012 21:10 16.041 13/12/2012 01:45 16.173 12/12/2012 16:40 15.992 12/12/2012 21:15 16.048 13/12/2012 01:50 16.160 12/12/2012 16:45 15.979 12/12/2012 21:20 16.047 13/12/2012 01:55 16.176						
12/12/2012 16:35 15.762 12/12/2012 21:10 16.041 13/12/2012 01:45 16.173 12/12/2012 16:40 15.992 12/12/2012 21:15 16.048 13/12/2012 01:50 16.160 12/12/2012 16:45 15.979 12/12/2012 21:20 16.047 13/12/2012 01:55 16.176						
12/12/2012 16:40 15.992 12/12/2012 21:15 16.048 13/12/2012 01:50 16.160 12/12/2012 16:45 15.979 12/12/2012 21:20 16.047 13/12/2012 01:55 16.176						
12/12/2012 16:45 15.979 12/12/2012 21:20 16.047 13/12/2012 01:55 16.176						
					-	
12/12/2012 16:50 15.935 12/12/2012 21:25 16.058 13/12/2012 02:00 16.186	12/12/2012 16:45		12/12/2012 21:20			
	12/12/2012 16:50	15.935	12/12/2012 21:25	16.058	13/12/2012 02:00	16.186

Appendix II PW1 Water Level Data

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
13/12/2012 02:05	16.204	13/12/2012 06:40	16.263	13/12/2012 11:15	16.338
13/12/2012 02:10	16.219	13/12/2012 06:45	16.260	13/12/2012 11:20	16.356
13/12/2012 02:15	16.241	13/12/2012 06:50	16.259	13/12/2012 11:25	16.346
13/12/2012 02:20	16.257	13/12/2012 06:55	16.265	13/12/2012 11:30	16.357
13/12/2012 02:25	16.256	13/12/2012 07:00	16.274	13/12/2012 11:35	16.363
13/12/2012 02:30	16.241	13/12/2012 07:05	16.256	13/12/2012 11:40	16.351
13/12/2012 02:35	16.256	13/12/2012 07:10	16.258	13/12/2012 11:45	16,359
13/12/2012 02:40	16.243	13/12/2012 07:15	16.267	13/12/2012 11:50	16.361
13/12/2012 02:45	16.224	13/12/2012 07:20	16.269	13/12/2012 11:55	16.355
13/12/2012 02:50	16.216	13/12/2012 07:25	16.273	13/12/2012 12:00	16.360
13/12/2012 02:55	16.208	13/12/2012 07:30	16.270	13/12/2012 12:05	16.358
13/12/2012 03:00	16.218	13/12/2012 07:35	16.281	13/12/2012 12:10	16.359
13/12/2012 03:05	16.215	13/12/2012 07:40	16.294	13/12/2012 12:15	16.372
13/12/2012 03:10	16.198	13/12/2012 07:45	16.301	13/12/2012 12:20	16.378
13/12/2012 03:15	16.205	13/12/2012 07:50	16.431	13/12/2012 12:25	16.389
13/12/2012 03:19	16.206	13/12/2012 07:55	16.394	13/12/2012 12:30	16.390
13/12/2012 03:25	16.219	13/12/2012 07:33	16.374	13/12/2012 12:35	16.381
13/12/2012 03:30				13/12/2012 12:33	16.380
13/12/2012 03:30	16.230	13/12/2012 08:05 13/12/2012 08:10	16.384 16.371	13/12/2012 12:45	16.380
13/12/2012 03:40				13/12/2012 12:45	
	16.221	13/12/2012 08:15	16.359	., .	16.349
13/12/2012 03:45	16.216	13/12/2012 08:20	16.389	13/12/2012 12:55	16.341
13/12/2012 03:50	16.222	13/12/2012 08:25	16.728		16.345
13/12/2012 03:55	16.220	13/12/2012 08:30	17.187	13712/2012 13:05	16.345
13/12/2012 04:00	16.218	13/12/2012 08:35		3/12/2012 13:10	16.337
13/12/2012 04:05	16.219	13/12/2012 08:40	16.7%	13/12/2012 13:15	16.336
13/12/2012 04:10	16.216	13/12/2012 08:45	160,862	13/12/2012 13:20	16.356
13/12/2012 04:15	16.221	13/12/2012 08:50	1,6,579	13/12/2012 13:25	16.376
13/12/2012 04:20	16.217	13/12/2012 08:55	ction 16.532	13/12/2012 13:30	16.365
13/12/2012 04:25	16.208	13/12/2012 09:00	16.478	13/12/2012 13:35	16.364
13/12/2012 04:30	16.210	13/12/201209:05	16.434	13/12/2012 13:40	16.370
13/12/2012 04:35	16.208	13/12/2012/09:10	16.402	13/12/2012 13:45	16.381
13/12/2012 04:40	16.214	13/12/2002 09:15	16.379	13/12/2012 13:50	16.383
13/12/2012 04:45	16.216	13/12/2012 09:20	16.363	13/12/2012 13:55	16.385
13/12/2012 04:50	16.221	13/12/2012 09:25	16.345	13/12/2012 14:00	16.392
13/12/2012 04:55	16.219	13/12/2012 09:30	16.336	13/12/2012 14:05	16.385
13/12/2012 05:00	16.228	13/12/2012 09:35	16.317	13/12/2012 14:10	16.403
13/12/2012 05:05	16.236	13/12/2012 09:40	16.335	13/12/2012 14:15	16.401
13/12/2012 05:10	16.234	13/12/2012 09:45	16.328	13/12/2012 14:20	16.413
13/12/2012 05:15	16.241	13/12/2012 09:50	16.339	13/12/2012 14:25	16.421
13/12/2012 05:20	16.244	13/12/2012 09:55	16.348	13/12/2012 14:30	16.432
13/12/2012 05:25	16.246	13/12/2012 10:00	16.352	13/12/2012 14:35	16.436
13/12/2012 05:30	16.252	13/12/2012 10:05	16.362	13/12/2012 14:40	16.450
13/12/2012 05:35	16.251	13/12/2012 10:10	16.366	13/12/2012 14:45	16.448
13/12/2012 05:40	16.253	13/12/2012 10:15	16.367	13/12/2012 14:50	16.448
13/12/2012 05:45	16.248	13/12/2012 10:20	16.367	13/12/2012 14:55	16.452
13/12/2012 05:50	16.246	13/12/2012 10:25	16.367	13/12/2012 15:00	16.404
13/12/2012 05:55	16.246	13/12/2012 10:30	16.353	13/12/2012 15:05	16.369
13/12/2012 06:00	16.249	13/12/2012 10:35	16.359	13/12/2012 15:10	16.335
13/12/2012 06:05	16.249	13/12/2012 10:40	16.345	13/12/2012 15:15	16.266
13/12/2012 06:10	16.234	13/12/2012 10:45	16.350	13/12/2012 15:20	16.227
13/12/2012 06:15	16.250	13/12/2012 10:50	16.343	13/12/2012 15:25	16.210
13/12/2012 06:20	16.252	13/12/2012 10:55	16.328	13/12/2012 15:30	16.199
13/12/2012 06:25	16.254	13/12/2012 11:00	16.328	13/12/2012 15:35	16.205
13/12/2012 06:30	16.261	13/12/2012 11:05	16.335	13/12/2012 15:40	16.212
13/12/2012 06:35	16.258	13/12/2012 11:10	16.333	13/12/2012 15:45	16.207
		1	1	1	

Appendix II PW1 Water Level Data

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
13/12/2012 15:50	16.210	13/12/2012 20:25	17.162	14/12/2012 01:00	17.328
13/12/2012 15:55	16.194	13/12/2012 20:30	17.176	14/12/2012 01:05	17.325
13/12/2012 16:00	16.183	13/12/2012 20:35	17.189	14/12/2012 01:10	17.320
13/12/2012 16:05	16.157	13/12/2012 20:40	17,206	14/12/2012 01:15	17.318
13/12/2012 16:10	16.187	13/12/2012 20:45	17.212	14/12/2012 01:20	17.317
13/12/2012 16:15	16.203	13/12/2012 20:50	17.219	14/12/2012 01:25	17.320
13/12/2012 16:20	16.268	13/12/2012 20:55	17.237	14/12/2012 01:30	17.314
13/12/2012 16:25	16.321	13/12/2012 21:00	17,250	14/12/2012 01:35	17.306
13/12/2012 16:30	16.356	13/12/2012 21:05	17,260	14/12/2012 01:40	17.289
13/12/2012 16:35	16.382	13/12/2012 21:10	17.271	14/12/2012 01:45	17.265
13/12/2012 16:40	16.382	13/12/2012 21:15	17.288	14/12/2012 01:50	17.241
13/12/2012 16:45	16.349	13/12/2012 21:20	17.305	14/12/2012 01:55	17.234
13/12/2012 16:50	16.356	13/12/2012 21:25	17.336	14/12/2012 02:00	17.230
13/12/2012 16:55	16.380	13/12/2012 21:30	17.349	14/12/2012 02:05	17.232
13/12/2012 17:00	16.376	13/12/2012 21:35	17.357	14/12/2012 02:10	17.239
13/12/2012 17:05	16.377	13/12/2012 21:40	17.367	14/12/2012 02:15	17.229
13/12/2012 17:10	16.382	13/12/2012 21:45	17.359	14/12/2012 02:10	17.237
13/12/2012 17:15	16.385	13/12/2012 21:50	17.336	14/12/2012 02:25	17.230
13/12/2012 17:20	16.381	13/12/2012 21:55	17.323	14/12/2012 02:30	17.217
13/12/2012 17:25	16.368	13/12/2012 22:00	17.325	14/12/2012 02:35	17.228
13/12/2012 17:30	16.384	13/12/2012 22:05	17.335	14/12/2012 02:40	17.220
13/12/2012 17:35	16.400	13/12/2012 22:10	17.347	14/12/2012 02:45	17.214
13/12/2012 17:40	16.403	13/12/2012 22:15	17.352	12/2012 02:50	17.213
13/12/2012 17:45	16.422	13/12/2012 22:20		4/12/2012 02:55	17.203
13/12/2012 17:50	16.431	13/12/2012 22:25	17.343 10	14/12/2012 03:00	17.211
13/12/2012 17:55	16.457	13/12/2012 22:30	147,334	14/12/2012 03:05	17.207
13/12/2012 18:00	16.406	13/12/2012 22:35	1 7 7 7 339	14/12/2012 03:10	17.213
13/12/2012 18:05	16.435	13/12/2012 22:40	CT 1117.339	14/12/2012 03:15	17.210
13/12/2012 18:10	16.522	13/12/2012 22:45	17.333	14/12/2012 03:20	17.203
13/12/2012 18:15	16.551	13/12/2012 22:50	17.324	14/12/2012 03:25	17.182
13/12/2012 18:20	16.574	13/12/2012 22:55	17.331	14/12/2012 03:30	17.189
13/12/2012 18:25	16.589	13/12/2002 23:00	17.326	14/12/2012 03:35	17,195
13/12/2012 18:30	16.572	13/12/2012 23:05	17.333	14/12/2012 03:40	17.198
13/12/2012 18:35	16.583	13/12/2012 23:10	17.330	14/12/2012 03:45	17.214
13/12/2012 18:40	16.566	13/12/2012 23:15	17.351	14/12/2012 03:50	17.206
13/12/2012 18:45	16.628	13/12/2012 23:20	17.345	14/12/2012 03:55	17.203
13/12/2012 18:50	16.724	13/12/2012 23:25	17.342	14/12/2012 04:00	17.188
13/12/2012 18:55	16.766	13/12/2012 23:30	17.345	14/12/2012 04:05	17.184
13/12/2012 19:00	17.265	13/12/2012 23:35	17.335	14/12/2012 04:10	17.176
13/12/2012 19:05	17.545	13/12/2012 23:40	17.342	14/12/2012 04:15	17.170
13/12/2012 19:10	17.242	13/12/2012 23:45	17.339	14/12/2012 04:20	17.165
13/12/2012 19:15	17.136	13/12/2012 23:50	17.337	14/12/2012 04:25	17.177
13/12/2012 19:20	17.064	13/12/2012 23:55	17.333	14/12/2012 04:30	17.181
13/12/2012 19:25	17.016	14/12/2012 00:00	17.318	14/12/2012 04:35	17.195
13/12/2012 19:30	16.973	14/12/2012 00:05	17.307	14/12/2012 04:40	17.198
13/12/2012 19:35	17.010	14/12/2012 00:10	17.311	14/12/2012 04:45	17.194
13/12/2012 19:40	17.049	14/12/2012 00:15	17.316	14/12/2012 04:50	17.199
13/12/2012 19:45	17.091	14/12/2012 00:20	17.322	14/12/2012 04:55	17.195
13/12/2012 19:50	17.121	14/12/2012 00:25	17.322	14/12/2012 05:00	17.185
13/12/2012 19:55	17.132	14/12/2012 00:30	17.325	14/12/2012 05:05	17.173
13/12/2012 20:00	17.157	14/12/2012 00:35	17.329	14/12/2012 05:10	17.148
13/12/2012 20:05	17.143	14/12/2012 00:40	17.334	14/12/2012 05:15	17.145
13/12/2012 20:10	17.142	14/12/2012 00:45	17.331	14/12/2012 05:20	17.142
1011010101010		14/12/2012 00:50	17.331	14/12/2012 05:25	17.139
13/12/2012 20:15	17.146	14/12/2012/00.30	17.331	14/12/2012 00.20	17.107

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
14/12/2012 05:35	17.136	14/12/2012 10:10	11.602		
14/12/2012 05:40	17.131	14/12/2012 10:15	9.367		
14/12/2012 05:45	17.123	14/12/2012 10:20	7.885		
14/12/2012 05:50	17.115	14/12/2012 10:25	6.881		
14/12/2012 05:55	17.111	14/12/2012 10:30	6.181		
14/12/2012 06:00	17.104	14/12/2012 10:35	5.685	<u> </u>	
14/12/2012 06:05	17.104	14/12/2012 10:33	5.335		
14/12/2012 06:10	17.104	14/12/2012 10:45	5.079		
14/12/2012 06:15	17.121		4.900		
14/12/2012 06:13		14/12/2012 10:50	4.766		
	17.158	14/12/2012 10:55			
14/12/2012 06:25	17.158	14/12/2012 11:00	4.660		
14/12/2012 06:30	17.156	14/12/2012 11:05	4.572		
14/12/2012 06:35	17.149	14/12/2012 11:10	4.510		
14/12/2012 06:40	17.143	14/12/2012 11:15	4.456		
14/12/2012 06:45	17.141	14/12/2012 11:20	4.407		
14/12/2012 06:50	17.132				
14/12/2012 06:55	17.131				
14/12/2012 07:00	17.137				
14/12/2012 07:05	17.126				
14/12/2012 07:10	17.133				
14/12/2012 07:15	17.145			0,-	
14/12/2012 07:20	17.187			at list	
14/12/2012 07:25	17.206			ANY OHIEL TES.	
14/12/2012 07:30	17.228	Consent of copyride	My.	MY	
14/12/2012 07:35	17.233		es a for		
14/12/2012 07:40	17.228		170 life		
14/12/2012 07:45	17.222		on Priced		
14/12/2012 07:50	17.220	_0	citonne		
14/12/2012 07:55	17.218	insp	do	-	
14/12/2012 08:00	17.226	Foryit			
14/12/2012 08:05	17.223	600			
14/12/2012 08:10	17.217	2711.01			
14/12/2012 08:15	17.220	CONS			
14/12/2012 08:20	17.217				
14/12/2012 08:25	17.221				
14/12/2012 08:30	17.216				
14/12/2012 08:35	17.210				
14/12/2012 08:40	17.210				
	1	1		1	1
14/12/2012 08:45	17.209				
14/12/2012 08:45	17.209 17.205				
14/12/2012 08:50	17.205				
14/12/2012 08:50 14/12/2012 08:55	17.205 17.253				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00	17.205 17.253 17.235				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05	17.205 17.253 17.235 17.231				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05 14/12/2012 09:10	17.205 17.253 17.235 17.231 17.384				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05 14/12/2012 09:10 14/12/2012 09:15	17.205 17.253 17.235 17.231 17.384 17.641				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05 14/12/2012 09:10 14/12/2012 09:15 14/12/2012 09:20	17.205 17.253 17.235 17.231 17.384 17.641 17.462				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05 14/12/2012 09:10 14/12/2012 09:15 14/12/2012 09:20 14/12/2012 09:25	17.205 17.253 17.235 17.231 17.384 17.641 17.462 17.380				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05 14/12/2012 09:10 14/12/2012 09:15 14/12/2012 09:20 14/12/2012 09:25 14/12/2012 09:30	17.205 17.253 17.235 17.231 17.384 17.641 17.462 17.380 17.328				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05 14/12/2012 09:10 14/12/2012 09:15 14/12/2012 09:20 14/12/2012 09:25 14/12/2012 09:30 14/12/2012 09:35	17.205 17.253 17.235 17.231 17.384 17.641 17.462 17.380 17.328				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05 14/12/2012 09:10 14/12/2012 09:15 14/12/2012 09:20 14/12/2012 09:25 14/12/2012 09:30 14/12/2012 09:35 14/12/2012 09:40	17.205 17.253 17.235 17.231 17.384 17.641 17.462 17.380 17.328 17.311				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05 14/12/2012 09:10 14/12/2012 09:15 14/12/2012 09:20 14/12/2012 09:25 14/12/2012 09:30 14/12/2012 09:35 14/12/2012 09:45	17.205 17.253 17.235 17.231 17.384 17.641 17.462 17.380 17.328 17.311 17.284 17.492				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05 14/12/2012 09:10 14/12/2012 09:15 14/12/2012 09:20 14/12/2012 09:25 14/12/2012 09:30 14/12/2012 09:35 14/12/2012 09:40 14/12/2012 09:45 14/12/2012 09:50	17.205 17.253 17.235 17.231 17.384 17.641 17.462 17.380 17.328 17.311 17.284 17.492 17.642				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05 14/12/2012 09:10 14/12/2012 09:15 14/12/2012 09:20 14/12/2012 09:25 14/12/2012 09:30 14/12/2012 09:35 14/12/2012 09:40 14/12/2012 09:45 14/12/2012 09:55	17.205 17.253 17.235 17.231 17.384 17.641 17.462 17.380 17.328 17.311 17.284 17.492 17.642 17.547				
14/12/2012 08:50 14/12/2012 08:55 14/12/2012 09:00 14/12/2012 09:05 14/12/2012 09:10 14/12/2012 09:15 14/12/2012 09:20 14/12/2012 09:25 14/12/2012 09:30 14/12/2012 09:35 14/12/2012 09:40 14/12/2012 09:45 14/12/2012 09:50	17.205 17.253 17.235 17.231 17.384 17.641 17.462 17.380 17.328 17.311 17.284 17.492 17.642				

Appendix II PW1 Water Level Data

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
11/12/2012 08:20	6.975	11/12/2012 22:05	7.11	12/12/2012 11:50	7.236
11/12/2012 08:35	6.978	11/12/2012 22:20	7.115	12/12/2012 12:05	7.239
11/12/2012 08:50	6.979	11/12/2012 22:35	7.119	12/12/2012 12:20	7.24
11/12/2012 09:05	6.985	11/12/2012 22:50	7.122	12/12/2012 12:35	7.243
11/12/2012 09:20	6.989	11/12/2012 23:05	7.121	12/12/2012 12:50	7.241
11/12/2012 09:35	6.988	11/12/2012 23:20	7.126	12/12/2012 13:05	7.245
11/12/2012 09:50	6.993	11/12/2012 23:35	7.127	12/12/2012 13:20	7.246
11/12/2012 10:05	6.996	11/12/2012 23:50	7.131	12/12/2012 13:35	7.248
11/12/2012 10:20	6.999	12/12/2012 00:05	7.128	12/12/2012 13:50	7.249
11/12/2012 10:35	7.003	12/12/2012 00:20	7.133	12/12/2012 14:05	7.252
11/12/2012 10:50	7.008	12/12/2012 00:35	7.135	12/12/2012 14:20	7.26
11/12/2012 11:05	7.007	12/12/2012 00:50	7.136	12/12/2012 14:35	7.254
11/12/2012 11:20	7.014	12/12/2012 01:05	7.144	12/12/2012 14:50	7.26
11/12/2012 11:35	7.015	12/12/2012 01:20	7.145	12/12/2012 15:05	7.26
11/12/2012 11:50	7.022	12/12/2012 01:35	7.141	12/12/2012 15:20	7.265
11/12/2012 12:05	7.021	12/12/2012 01:50	7.144	12/12/2012 15:35	7.264
11/12/2012 12:20	7.03	12/12/2012 02:05	7.147	12/12/2012 15:50	7.266
11/12/2012 12:35	7.028	12/12/2012 02:20	7.152	12/12/2012 16:05	7.274
11/12/2012 12:50	7.032	12/12/2012 02:35	7.159	12/12/2012 16:20	7.272
11/12/2012 13:05	7.036	12/12/2012 02:50	7.155	12/12/2012 16:35	7.276
11/12/2012 13:20	7.04	12/12/2012 03:05	7.155	12/12/2012 16:50	7.276
11/12/2012 13:35	7.041	12/12/2012 03:20	7.159	12/12/2012 17:05	7.278
11/12/2012 13:50	7.042	12/12/2012 03:35	7.159	12/12/2012 17:20	7.28
11/12/2012 14:05	7.053	12/12/2012 03:50	7.164	\$\frac{12}{12}/2012 17:35	7.283
11/12/2012 14:20	7.047	12/12/2012 04:05	7.164	12/12/2012 17:50	7.284
11/12/2012 14:35	7.054	12/12/2012 04:00	7.1000	12/12/2012 17:36	7.286
11/12/2012 14:50	7.053	10/10/0010 04:05	7.1695 dire	12/12/2012 18:20	7.289
11/12/2012 15:05	7.053	12/12/2012 04:50	2 17 174	12/12/2012 18:35	7.297
11/12/2012 15:20	7.056	12/12/2012 04:30	et 417.174 7.177	12/12/2012 18:50	7.298
11/12/2012 15:35	7.063	12/12/2012 05:26	7.179	12/12/2012 19:05	7.302
11/12/2012 15:50	7.057	12/12/2012 05:35	7.177	12/12/2012 19:20	7.302
11/12/2012 16:05	7.064	12/12/2012 85:50	7.177	12/12/2012 17:20	7.304
11/12/2012 16:20	7.055	12/12/2012 06:05	7.182	12/12/2012 17:50	7.304
11/12/2012 16:35	7.033	12/12/2012 06:20	7.187	12/12/2012 19:30	7.306
	-		7.189		
11/12/2012 16:50	7.066	12/12/2012 06:35		12/12/2012 20:20	7.312
11/12/2012 17:05	7.064	12/12/2012 06:50	7.189	12/12/2012 20:35	7.315
	7.068	12/12/2012 07:05	7.188	12/12/2012 20:50	7.316
11/12/2012 17:35			7.194		7.318
	7.075	12/12/2012 07:35	7.195	12/12/2012 21:20	7.324
11/12/2012 18:05	7.072	12/12/2012 07:50	7.2	12/12/2012 21:35	7.322
11/12/2012 18:20	7.077	12/12/2012 08:05	7.205	12/12/2012 21:50	7.329
11/12/2012 18:35	7.08	12/12/2012 08:20	7.201	12/12/2012 22:05	7.33
11/12/2012 18:50	7.077	12/12/2012 08:35	7.208	12/12/2012 22:20	7.336
11/12/2012 19:05	7.086	12/12/2012 08:50	7.241	12/12/2012 22:35	7.335
11/12/2012 19:20	7.085	12/12/2012 09:05	7.211	12/12/2012 22:50	7.34
11/12/2012 19:35	7.089	12/12/2012 09:20	7.202	12/12/2012 23:05	7.342
11/12/2012 19:50	7.09	12/12/2012 09:35	7.212	12/12/2012 23:20	7.343
11/12/2012 20:05	7.095	12/12/2012 09:50	7.21	12/12/2012 23:35	7.348
11/12/2012 20:20	7.093	12/12/2012 10:05	7.214	12/12/2012 23:50	7.354
11/12/2012 20:35	7.097	12/12/2012 10:20	7.221	13/12/2012 00:05	7.353
11/12/2012 20:50	7.101	12/12/2012 10:35	7.219	13/12/2012 00:20	7.352
11/12/2012 21:05	7.101	12/12/2012 10:50	7.226	13/12/2012 00:35	7.354
11/12/2012 21:20	7.103	12/12/2012 11:05	7.226	13/12/2012 00:50	7.362
11/12/2012 21:35	7.109	12/12/2012 11:20	7.228	13/12/2012 01:05	7.362
11/12/2012 21:50	7.108	12/12/2012 11:35	7.23	13/12/2012 01:20	7.365

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
13/12/2012 01:35	7.363	13/12/2012 15:20	7.504	14/12/2012 05:05	7.492
13/12/2012 01:50	7.368	13/12/2012 15:35	7.508	14/12/2012 05:20	7.488
13/12/2012 02:05	7.372	13/12/2012 15:50	7.512	14/12/2012 05:35	7.488
13/12/2012 02:20	7.376	13/12/2012 16:05	7.506	14/12/2012 05:50	7.485
13/12/2012 02:35	7.376	13/12/2012 16:20	7.507	14/12/2012 06:05	7.481
13/12/2012 02:50	7.378	13/12/2012 16:35	7.513	14/12/2012 06:20	7.477
13/12/2012 03:05	7.382	13/12/2012 16:50	7.517	14/12/2012 06:35	7.475
13/12/2012 03:20	7.38	13/12/2012 17:05	7.517	14/12/2012 06:50	7.471
13/12/2012 03:35	7.383	13/12/2012 17:20	7.516	14/12/2012 07:05	7.464
13/12/2012 03:50	7.388	13/12/2012 17:35	7.521	14/12/2012 07:20	7.459
13/12/2012 04:05	7.39	13/12/2012 17:50	7.515	14/12/2012 07:35	
13/12/2012 04:20	7.397	13/12/2012 17:50	7.522		7.448
13/12/2012 04:35	7.371	13/12/2012 18:20		14/12/2012 07:50	7.446
13/12/2012 04:50			7.526	14/12/2012 08:05	7.438
	7.4	13/12/2012 18:35	7.529	14/12/2012 08:20	7.438
13/12/2012 05:05	7.4	13/12/2012 18:50	7.532	14/12/2012 08:35	7.426
13/12/2012 05:20	7.406	13/12/2012 19:05	7.533	14/12/2012 08:50	7.424
13/12/2012 05:35	7.406	13/12/2012 19:20	7.536	14/12/2012 09:05	7.421
13/12/2012 05:50	7.408	13/12/2012 19:35	7.541	14/12/2012 09:20	7.416
13/12/2012 06:05	7.414	13/12/2012 19:50	7.538	14/12/2012 09:35	7.412
13/12/2012 06:20	7.413	13/12/2012 20:05	7.546	14/12/2012 09:50	7.406
13/12/2012 06:35	7.414	13/12/2012 20:20	7.549	14/12/2012 10:05	7.404
13/12/2012 06:50	7.418	13/12/2012 20:35	7.548	14/12/3012 10:20	7.397
13/12/2012 07:05	7.424	13/12/2012 20:50	7.546	14/12/2012 10:35	7.39
13/12/2012 07:20	7.426	13/12/2012 21:05	7.55	14/12/2012 10:50	7.382
13/12/2012 07:35	7.427	13/12/2012 21:20	7.552	14/12/2012 11:05	7.378
13/12/2012 07:50	7.43	13/12/2012 21:35	7,588,1120	14/12/2012 11:20	7.372
13/12/2012 08:05	7.434	13/12/2012 21:50	₹.554	14/12/2012 11:35	7.37
13/12/2012 08:20	7.438	13/12/2012 22:05	citotta 558	14/12/2012 11:50	7.362
13/12/2012 08:35	7.44	13/12/2012 22:20	7.558	14/12/2012 12:05	7.349
13/12/2012 08:50	7.44	13/12/2012 22:85	7.562	14/12/2012 12:20	7.369
13/12/2012 09:05	7.44	13/12/2012 22:50	7.559	14/12/2012 12:35	7.312
13/12/2012 09:20	7.445	13/12/2012 23:05	7.567	14/12/2012 12:50	7.306
13/12/2012 09:35	7.452	13/12/2012 23:20	7.566	14/12/2012 13:05	7.308
13/12/2012 09:50	7.446	13/12/2012 23:35	7.565	14/12/2012 13:20	7.298
13/12/2012 10:05	7.452	13/12/2012 23:50	7.567	14/12/2012 13:35	7.288
13/12/2012 10:20	7.456	14/12/2012 00:05	7.571	14/12/2012 13:50	7.272
13/12/2012 10:35	7.456	14/12/2012 00:20	7.572	14/12/2012 14:05	7.353
13/12/2012 10:50	7.46	14/12/2012 00:35	7.575	14/12/2012 14:20	7.326
13/12/2012 11:05	7.467	14/12/2012 00:50	7.575	14/12/2012 14:35	7.304
13/12/2012 11:20	7.466	14/12/2012 01:05	7.577	14/12/2012 14:50	7.304
13/12/2012 11:35	7.466	14/12/2012 01:20	7.578	14/12/2012 15:05	7.303
13/12/2012 11:50	7.474	14/12/2012 01:35	7.584	14/12/2012 15:20	7.299
13/12/2012 12:05	7.474	14/12/2012 01:50	7.577	14/12/2012 15:35	7.301
13/12/2012 12:20	7.476	14/12/2012 02:05	7.576	14/12/2012 15:50	7.299
13/12/2012 12:35	7.478	14/12/2012 02:30	7.572	14/12/2012 16:05	7.299
13/12/2012 12:50	7.479	14/12/2012 02:35	7.564	14/12/2012 16:20	7.277
13/12/2012 13:05	7.484	14/12/2012 02:50	7.551	14/12/2012 16:35	7.277
13/12/2012 13:20	7.484	14/12/2012 03:05	7.544	14/12/2012 16:50	7.277
13/12/2012 13:35	7.49	14/12/2012 03:20	7.535	14/12/2012 17:05	7.294
13/12/2012 13:50	7.486		-		
		14/12/2012 03:35	7.525	14/12/2012 17:20	7.293
13/12/2012 14:05	7.494	14/12/2012 03:50	7.515	14/12/2012 17:35	7.291
13/12/2012 14:20	7.497	14/12/2012 04:05	7.51	14/12/2012 17:50	7.292
13/12/2012 14:35	7.496	14/12/2012 04:20	7.504	14/12/2012 18:05	7.297
13/12/2012 14:50	7.499	14/12/2012 04:35	7.496	14/12/2012 18:20	7.293
13/12/2012 15:05	7.504	14/12/2012 04:50	7.498	14/12/2012 18:35	7.296

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
14/12/2012 18:50	7.291	15/12/2012 08:35	7.285	15/12/2012 22:20	7.101
14/12/2012 19:05	7.295	15/12/2012 08:50	7.281	15/12/2012 22:35	7.093
14/12/2012 19:20	7.294	15/12/2012 09:05	7.281	15/12/2012 22:50	7.095
14/12/2012 19:35	7.295	15/12/2012 09:20	7.275	15/12/2012 23:05	7.093
14/12/2012 19:50	7.294	15/12/2012 09:35	7.275	15/12/2012 23:20	7.097
14/12/2012 20:05	7.289	15/12/2012 09:50	7.271	15/12/2012 23:35	7.093
14/12/2012 20:20	7.291	15/12/2012 10:05	7.269	15/12/2012 23:50	7.094
14/12/2012 20:35	7.293	15/12/2012 10:20	7.259	16/12/2012 00:05	7.089
14/12/2012 20:50	7.291	15/12/2012 10:35	7.257	16/12/2012 00:20	7.089
14/12/2012 21:05	7.292	15/12/2012 10:50	7.253	16/12/2012 00:35	7.087
14/12/2012 21:20	7.29	15/12/2012 11:05	7.247	16/12/2012 00:50	7.084
14/12/2012 21:35	7.29	15/12/2012 11:20	7.248	16/12/2012 01:05	7.084
14/12/2012 21:50	7.293	15/12/2012 11:35	7.245	16/12/2012 01:20	7.086
14/12/2012 22:05	7.294	15/12/2012 11:50	7.24	16/12/2012 01:35	7.083
14/12/2012 22:20	7.294	15/12/2012 12:05	7.237	16/12/2012 01:50	7.081
14/12/2012 22:35	7.291	15/12/2012 12:20	7.237	16/12/2012 02:05	7.083
14/12/2012 22:50	7.291	15/12/2012 12:35	7.232	16/12/2012 02:20	7.079
14/12/2012 23:05	7.294	15/12/2012 12:50	7.232	16/12/2012 02:35	7.078
14/12/2012 23:20	7.296	15/12/2012 13:05	7.231	16/12/2012 02:50	7.08
14/12/2012 23:35	7.296	15/12/2012 13:20	7.222	16/12/2012 03:05	7.081
14/12/2012 23:50	7.298	15/12/2012 13:35	7.22	16/12/2012 03:20	7.08
15/12/2012 00:05	7.294	15/12/2012 13:50	7.209	16/12/2012 03:35	7.075
15/12/2012 00:20	7.293	15/12/2012 14:05	7.207	16/12/2012 03:50	7.081
15/12/2012 00:35	7.292	15/12/2012 14:20	7.201	86/12/2012 04:05	7.073
15/12/2012 00:50	7.272	15/12/2012 14:35			7.079
15/12/2012 01:05	7.296		7.1985 d 1	16/12/2012 04:35	7.077
15/12/2012 01:20	7.294	15/12/2012 14:30	2518 311 1017,187 201 47.181	16/12/2012 04:50	7.073
15/12/2012 01:35	7.274	15/12/2012 15:20	50° 37.181	16/12/2012 04:30	7.073
15/12/2012 01:50	7.278	15/12/2012 15:35	7.177	16/12/2012 05:20	7.075
15/12/2012 01:00	7.274	15/12/2012 15:50	7.17	16/12/2012 05:35	7.073
15/12/2012 02:20	7.293	15/12/2012 19:38	7.165	16/12/2012 05:50	7.077
15/12/2012 02:35	7.278	15/12/2012 (8.03	7.163	16/12/2012 06:05	7.081
15/12/2012 02:50	7.278	15/12/2012 16:35	7.156	16/12/2012 06:20	7.079
		15/12/2012 16:50	7.156	16/12/2012 06:35	
15/12/2012 03:05	7.302		 		7.079
15/12/2012 03:20	7.296	15/12/2012 17:05	7.151	16/12/2012 06:50	7.075
15/12/2012 03:35	7.3	15/12/2012 17:20	7.147	16/12/2012 07:05	7.077
15/12/2012 03:50	7.296	15/12/2012 17:35	7.149	16/12/2012 07:20	7.071
15/12/2012 04:05	7.299	15/12/2012 17:50	7.145	16/12/2012 07:35	7.077
15/12/2012 04:20	7.301	15/12/2012 18:05	7.139	16/12/2012 07:50	7.075
15/12/2012 04:35	7.301	15/12/2012 18:20	7.135	16/12/2012 08:05	7.075
15/12/2012 04:50	7.301	15/12/2012 18:35	7.136	16/12/2012 08:20	7.075
15/12/2012 05:05	7.301	15/12/2012 18:50	7.135	16/12/2012 08:35	7.07
15/12/2012 05:20	7.3	15/12/2012 19:05	7.131	16/12/2012 08:50	7.071
15/12/2012 05:35	7.303	15/12/2012 19:20	7.125	16/12/2012 09:05	7.064
15/12/2012 05:50	7.3	15/12/2012 19:35	7.121	16/12/2012 09:20	7.068
15/12/2012 06:05	7.303	15/12/2012 19:50	7.121	16/12/2012 09:35	7.067
15/12/2012 06:20	7.294	15/12/2012 20:05	7.115	16/12/2012 09:50	7.073
15/12/2012 06:35	7.297	15/12/2012 20:20	7.121	16/12/2012 10:05	7.07
15/12/2012 06:50	7.29	15/12/2012 20:35	7.115	16/12/2012 10:20	7.07
15/12/2012 07:05	7.292	15/12/2012 20:50	7.116	16/12/2012 10:35	7.07
15/12/2012 07:20	7.296	15/12/2012 21:05	7.113	16/12/2012 10:50	7.074
15/12/2012 07:35	7.291	15/12/2012 21:20	7.109	16/12/2012 11:05	7.074
15/12/2012 07:50	7.289	15/12/2012 21:35	7.105	16/12/2012 11:20	7.07
15/12/2012 08:05	7.285	15/12/2012 21:50	7.105	16/12/2012 11:35	7.066
15/12/2012 08:20	7.29	15/12/2012 22:05	7.101	16/12/2012 11:50	7.063

Appendix II MW03 Water Level Data

16/12/2012 12:05 7:058 16/12/2012 12:05 7:048 16/12/2012 12:05 7:048 16/12/2012 12:05 7:044 16/12/2012 13:05 7:026 16/12/2012 13:05 7:026 16/12/2012 13:05 7:008 16/12/2012 13:05 7:008 16/12/2012 13:05 7:008 16/12/2012 13:05 7:008 16/12/2012 14:05 6:987 16/12/2012 14:05 6:987 16/12/2012 14:05 6:988 16/12/2012 15:05 6:941 16/12/2012 15:05 6:941 16/12/2012 15:05 6:941 16/12/2012 15:05 6:941 16/12/2012 15:05 6:941 16/12/2012 15:05 6:941 16/12/2012 15:05 6:941 16/12/2012 15:05 6:941 16/12/2012 15:05 6:941 16/12/2012 15:05 6:923 16/12/2012 15:05 6:923 16/12/2012 16:05 6:923 16/12/2012 16:05 6:923 16/12/2012 16:05 6:923 16/12/2012 16:05 6:941 16/12/2012 16:05 6:940 16/12/2012 16:05 6:940 16/12/2012 16:05 6:940 16/12/2012 16:05 6:940 16/12/2012 16:05 6:940 16/12/2012 16:05 6:940 16/12/2012 16:05 6:940 16/12/2012 16:05 6:899 16/12/2012 16:05 6:884 16/12/2012 17:35 6:888 16/12/2012 17:35 6:888 16/12/2012 17:35 6:888 16/12/2012 18:05 6:835 16/12/2012 18:05 6:835 16/12/2012 18:05 6:835 16/12/2012 18:05 6:832 16/12/2012 18:05 6:832 16/12/2012 18:05 6:834 16/12/2012 18:05 6:795 16/12/2012 18:05 6:795 16/12/2012 18:05 6:795 16/12/2012 20:05 6:795	Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
16/12/2012 12:20 7.048 16/12/2012 12:35 7.046 16/12/2012 13:35 7.046 16/12/2012 13:35 7.026 16/12/2012 13:35 7.028 16/12/2012 13:35 7.008 16/12/2012 13:35 7.008 16/12/2012 13:35 7.008 16/12/2012 13:35 7.004 16/12/2012 14:35 6.995 16/12/2012 14:35 6.987 16/12/2012 14:35 6.988 16/12/2012 14:35 6.989 16/12/2012 15:35 6.941 16/12/2012 15:35 6.941 16/12/2012 15:35 6.941 16/12/2012 15:35 6.941 16/12/2012 15:35 6.941 16/12/2012 15:35 6.941 16/12/2012 15:35 6.941 16/12/2012 15:35 6.924 16/12/2012 15:35 6.924 16/12/2012 16:35 6.924 16/12/2012 16:35 6.924 16/12/2012 16:35 6.924 16/12/2012 16:35 6.924 16/12/2012 16:35 6.884 16/12/2012 17:35 6.884 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.886 16/12/2012 17:35 6.887 16/12/2012 17:35 6.887 16/12/2012 17:35 6.887 16/12/2012 17:35 6.887 16/12/2012 17:35 6.897 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.892 16/12/2012 17:35 6.893 16/12/2012 21:35 6.792 16/12/2012 21:35 6.792 16/12/2012 21:35 6.792 16/12/2012 21:35 6.793 16/12/2012 22:35 6.793 16/12/2012 22:35 6.793 16/12/2012 23:35 6.893					20107 11110	*** (*********************************
16/12/2012 12:35		7.048				
16/12/2012 12:50			1			
16/12/2012 13:05			*			
16/12/2012 13:35	16/12/2012 13:05					
16/12/2012 14:50	16/12/2012 13:20	7.018				
16/12/2012 14:05	16/12/2012 13:35	7.008			,	· · · · · · · · · · · · · · · · · · ·
16/12/2012 14:20	16/12/2012 13:50	7.004				
16/12/2012 14:35	16/12/2012 14:05	6.995				
16/12/2012 14:50	16/12/2012 14:20	6.987				
16/12/2012 15:05	16/12/2012 14:35	6.98	<u> </u>			
16/12/2012 15:20 6.951 16/12/2012 15:50 6.926 16/12/2012 16:05 6.923 16/12/2012 16:05 6.923 16/12/2012 16:05 6.923 16/12/2012 16:05 6.923 16/12/2012 16:05 6.994 16/12/2012 16:05 6.89 16/12/2012 17:05 6.884 16/12/2012 17:05 6.884 16/12/2012 17:05 6.868 16/12/2012 17:50 6.86 16/12/2012 17:50 6.86 16/12/2012 18:05 6.855 16/12/2012 18:05 6.855 16/12/2012 18:05 6.848 16/12/2012 18:05 6.848 16/12/2012 18:05 6.848 16/12/2012 18:05 6.832 16/12/2012 18:05 6.832 16/12/2012 19:05 6.81 16/12/2012 19:05 6.824 16/12/2012 19:05 6.81 16/12/2012 19:50 6.792 16/12/2012 20:05 6.781 16/12/2012 20:05 6.781 16/12/2012 20:05 6.781 16/12/2012 20:05 6.781 16/12/2012 20:05 6.781 16/12/2012 20:05 6.753 16/12/2012 20:05 6.743 16/12/2012 20:05 6.753 16/12/2012 20:05 6.713 16/12/2012 21:05 6.725 16/12/2012 21:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.707 16/12/2012 22:05 6.707 16/12/2012 22:05 6.707 16/12/2012 22:05 6.707 16/12/2012 22:05 6.707 16/12/2012 22:05 6.707 16/12/2012 22:05 6.707 16/12/2012 22:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699	16/12/2012 14:50	6.969				
16/12/2012 15:35 6.941 16/12/2012 15:50 6.926 16/12/2012 16:05 6.923 16/12/2012 16:05 6.923 16/12/2012 16:05 6.904 16/12/2012 16:05 6.89 16/12/2012 17:05 6.884 16/12/2012 17:05 6.884 16/12/2012 17:50 6.866 16/12/2012 17:50 6.866 16/12/2012 18:05 6.855 16/12/2012 18:05 6.855 16/12/2012 18:05 6.848 16/12/2012 18:05 6.848 16/12/2012 18:05 6.848 16/12/2012 18:05 6.832 16/12/2012 18:05 6.824 16/12/2012 19:05 6.802 16/12/2012 19:05 6.802 16/12/2012 19:05 6.792 16/12/2012 20:05 6.781 16/12/2012 20:05 6.781 16/12/2012 20:05 6.783 16/12/2012 20:05 6.783 16/12/2012 20:05 6.733 16/12/2012 21:05 6.743 16/12/2012 21:05 6.731 16/12/2012 21:05 6.713 16/12/2012 21:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.797 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.707 16/12/2012 22:05 6.799 16/12/2012 22:05 6.799 16/12/2012 22:05 6.799 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.707 16/12/2012 22:05 6.707 16/12/2012 22:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.695	16/12/2012 15:05	6.961				
16/12/2012 15:50	16/12/2012 15:20	6.951	·			
16/12/2012 16:05	16/12/2012 15:35	6.941	-		· · · · · · · · · · · · · · · · · · ·	
16/12/2012 16:20 6.911 16/12/2012 16:35 6.904 16/12/2012 16:35 6.904 16/12/2012 17:05 6.884 16/12/2012 17:20 6.876 16/12/2012 17:35 6.868 16/12/2012 17:35 6.868 16/12/2012 18:05 6.855 16/12/2012 18:05 6.855 16/12/2012 18:06 6.832 16/12/2012 18:06 6.832 16/12/2012 18:06 6.832 16/12/2012 19:05 6.824 16/12/2012 19:05 6.81 16/12/2012 19:35 6.802 16/12/2012 19:35 6.802 16/12/2012 19:35 6.802 16/12/2012 19:35 6.802 16/12/2012 19:35 6.802 16/12/2012 19:50 6.792 16/12/2012 20:20 6.775 16/12/2012 20:20 6.775 16/12/2012 20:25 6.759 16/12/2012 21:05 6.743 16/12/2012 21:05 6.743 16/12/2012 21:05 6.743 16/12/2012 21:35 6.725 16/12/2012 22:20 6.713 16/12/2012 22:20 6.713 16/12/2012 22:20 6.713 16/12/2012 22:20 6.713 16/12/2012 22:20 6.793 16/12/2012 22:20 6.793 16/12/2012 22:20 6.793 16/12/2012 22:20 6.793 16/12/2012 22:20 6.793 16/12/2012 22:20 6.793 16/12/2012 22:20 6.793 16/12/2012 22:20 6.793 16/12/2012 22:20 6.793 16/12/2012 22:20 6.793 16/12/2012 22:30 6.699 16/12/2012 23:30 6.699 16/12/2012 23:35 6.689 16/12/2012 23:35 6.689 16/12/2012 23:35 6.689	16/12/2012 15:50	6.926		-		
16/12/2012 16:35	16/12/2012 16:05	6.923		-		
16/12/2012 16:50	16/12/2012 16:20	6.911				
16/12/2012 17:05	16/12/2012 16:35	6.904				
16/12/2012 17:20	16/12/2012 16:50	6.89				
16/12/2012 17:35 6.868 16/12/2012 18:05 6.86 16/12/2012 18:05 6.855 16/12/2012 18:35 6.84 16/12/2012 18:35 6.84 16/12/2012 18:50 6.832 16/12/2012 19:05 6.824 16/12/2012 19:05 6.802 16/12/2012 19:05 6.802 16/12/2012 19:05 6.792 16/12/2012 20:05 6.781 16/12/2012 20:05 6.759 16/12/2012 20:05 6.759 16/12/2012 21:05 6.759 16/12/2012 21:05 6.759 16/12/2012 21:05 6.759 16/12/2012 21:05 6.759 16/12/2012 20:05 6.753 16/12/2012 21:05 6.743 16/12/2012 21:05 6.713 16/12/2012 21:05 6.719 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.707 16/12/2012 22:05 6.699 16/12/2012 23:05 6.699	16/12/2012 17:05	6.884	×			-
16/12/2012 18:05 6.855 16/12/2012 18:05 6.855 16/12/2012 18:20 6.848 16/12/2012 18:50 6.832 16/12/2012 19:05 6.824 16/12/2012 19:05 6.824 16/12/2012 19:35 6.802 16/12/2012 19:50 6.792 16/12/2012 20:05 6.781 16/12/2012 20:05 6.755 16/12/2012 20:05 6.759 16/12/2012 20:05 6.753 16/12/2012 21:05 6.743 16/12/2012 21:05 6.743 16/12/2012 21:05 6.731 16/12/2012 21:05 6.719 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.707 16/12/2012 22:05 6.707 16/12/2012 22:05 6.707 16/12/2012 22:05 6.707 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699	16/12/2012 17:20	6.876			, 15°	****
16/12/2012 18:05 6.855 16/12/2012 18:05 6.855 16/12/2012 18:20 6.848 16/12/2012 18:50 6.832 16/12/2012 19:05 6.824 16/12/2012 19:05 6.824 16/12/2012 19:35 6.802 16/12/2012 19:50 6.792 16/12/2012 20:05 6.781 16/12/2012 20:05 6.755 16/12/2012 20:05 6.759 16/12/2012 20:05 6.753 16/12/2012 20:05 6.743 16/12/2012 21:05 6.743 16/12/2012 21:05 6.731 16/12/2012 21:05 6.719 16/12/2012 21:05 6.719 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.713 16/12/2012 22:05 6.707 16/12/2012 22:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:05 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699 16/12/2012 23:35 6.699	16/12/2012 17:35	6.868			ather	
16/12/2012 20:50 6.753 16/12/2012 21:05 6.743 16/12/2012 21:20 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:20 6.693 16/12/2012 23:50 6.689 16/12/2012 23:50 6.695	16/12/2012 17:50	6.86		.66	alti	-
16/12/2012 20:50 6.753 16/12/2012 21:05 6.743 16/12/2012 21:30 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:20 6.693 16/12/2012 23:50 6.689 16/12/2012 23:50 6.695	16/12/2012 18:05	6.855		25 0 KO	-	
16/12/2012 20:50 6.753 16/12/2012 21:05 6.743 16/12/2012 21:35 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 18:20	6.848		170° ited		
16/12/2012 20:50 6.753 16/12/2012 21:05 6.743 16/12/2012 21:35 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 18:35	6.84		n Piredi		
16/12/2012 20:50 6.753 16/12/2012 21:05 6.743 16/12/2012 21:35 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 18:50	6.832		citornet		
16/12/2012 20:50 6.753 16/12/2012 21:05 6.743 16/12/2012 21:35 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 19:05	6.824	inst	MO		
16/12/2012 20:50 6.753 16/12/2012 21:05 6.743 16/12/2012 21:20 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 19:20	6.81	FOTATI	V		
16/12/2012 20:50 6.753 16/12/2012 21:05 6.743 16/12/2012 21:20 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 19:35	6.802	E CON.			
16/12/2012 20:50 6.753 16/12/2012 21:05 6.743 16/12/2012 21:20 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 19:50	6.792	ant or			
16/12/2012 20:50 6.753 16/12/2012 21:05 6.743 16/12/2012 21:20 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 20:05	6.781	COTISE			
16/12/2012 20:50 6.753 16/12/2012 21:05 6.743 16/12/2012 21:20 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 20:20	6.775				
16/12/2012 21:20 6.743 16/12/2012 21:20 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:35 6.689 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 20:35	6.759				
16/12/2012 21:20 6.731 16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:20 6.693 16/12/2012 23:50 6.689 16/12/2012 23:50 6.695	16/12/2012 20:50	6.753		12.7.2		
16/12/2012 21:35 6.725 16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:20 6.693 16/12/2012 23:50 6.689 16/12/2012 23:50 6.695	16/12/2012 21:05	6.743	·			
16/12/2012 21:50 6.719 16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:20 6.693 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 21:20	6.731				
16/12/2012 22:05 6.713 16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:20 6.693 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 21:35	6.725				
16/12/2012 22:20 6.713 16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:20 6.693 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 21:50	6.719				
16/12/2012 22:35 6.707 16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:20 6.693 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 22:05	6.713			-	
16/12/2012 22:50 6.699 16/12/2012 23:05 6.697 16/12/2012 23:20 6.693 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 22:20	6.713				
16/12/2012 23:05 6.697 16/12/2012 23:20 6.693 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 22:35	6.707				
16/12/2012 23:20 6.693 16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 22:50	6.699				
16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 23:05	6.697	·			
16/12/2012 23:35 6.689 16/12/2012 23:50 6.695	16/12/2012 23:20	6.693	· · · · · · · · · · · · · · · · · · ·			1
	16/12/2012 23:35					1
17/12/2012 00:05 6.693	16/12/2012 23:50	6.695	g-vc			
	17/12/2012 00:05	6.693		<u> </u>	-	
						1
	-					
			100000		7	

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
11/12/2012 08:00	5.520	11/12/2012 21:45	5.551	12/12/2012 11:30	5.590
11/12/2012 08:15	5.521	11/12/2012 22:00	5.553	12/12/2012 11:45	5.592
11/12/2012 08:30	5.522	11/12/2012 22:15	5.552	12/12/2012 12:00	5.590
11/12/2012 08:45	5.524	11/12/2012 22:30	5.553	12/12/2012 12:15	5.590
11/12/2012 09:00	5.525	11/12/2012 22:45	5.554	12/12/2012 12:30	5.593
11/12/2012 09:15	5.526	11/12/2012 23:00	5.555	12/12/2012 12:45	5.592
11/12/2012 09:30	5.527	11/12/2012 23:15	5.555	12/12/2012 13:00	5.592
11/12/2012 09:45	5.527	11/12/2012 23:30	5.555	12/12/2012 13:15	5.592
11/12/2012 10:00	5.528	11/12/2012 23:45	5.557	12/12/2012 13:30	5.592
11/12/2012 10:15	5.530	12/12/2012 00:00	5.559	12/12/2012 13:45	5.592
11/12/2012 10:30	5.530	12/12/2012 00:15	5.560	12/12/2012 14:00	5.594
11/12/2012 10:45	5.532	12/12/2012 00:30	5.560	12/12/2012 14:15	5.593
11/12/2012 11:00	5.532	12/12/2012 00:45	5.561	12/12/2012 14:30	5.593
			5,561		
11/12/2012 11:15	5.533	12/12/2012 01:00	1	12/12/2012 14:45	5.594
11/12/2012 11:30	5.532	12/12/2012 01:15	5.562	12/12/2012 15:00	5.595
11/12/2012 11:45	5.534	12/12/2012 01:30	5.562	12/12/2012 15:15	5.595
11/12/2012 12:00	5.531	12/12/2012 01:45	5.563	12/12/2012 15:30	5.598
11/12/2012 12:15	5.531	12/12/2012 02:00	5.563	12/12/2012 15:45	5.600
11/12/2012 12:30	5.531	12/12/2012 02:15	5.563	12/12/2012 16:00	5.600
11/12/2012 12:45	5.530	12/12/2012 02:30	5.565	12/12/2012 16:15	5.602
11/12/2012 13:00	5.530	12/12/2012 02:45	5.564	J2/12/2012 16:30	5.604
11/12/2012 13:15	5.530	12/12/2012 03:00	5.566	12/12/2012 16:45	5.606
11/12/2012 13:30	5.531	12/12/2012 03:15	5.566	12/12/2012 17:00	5.606
11/12/2012 13:45	5.529	12/12/2012 03:30	\$15670	12/12/2012 17:15	5.609
11/12/2012 14:00	5.530	12/12/2012 03:45	& 5. 5. 5 6 7	12/12/2012 17:30	5.608
11/12/2012 14:15	5.529	12/12/2012 04:00		12/12/2012 17:45	5.610
11/12/2012 14:30	5.529	12/12/2012 04:55	200	12/12/2012 18:00	5.610
11/12/2012 14:45	5.528	12/12/2012/04:30	5.568	12/12/2012 18:15	5.612
11/12/2012 15:00	5.531	12/12/2012/04:45	5.567	12/12/2012 18:30	5.614
11/12/2012 15:15	5.531	12/12/2612 05:00	5.567	12/12/2012 18:45	5.613
11/12/2012 15:30	5.532	12/13/2012 05:15	5.568	12/12/2012 19:00	5.615
11/12/2012 15:45	5.533	12/2012 05:30	5.569	12/12/2012 17:35	5.618
11/12/2012 16:00	5.533	12/12/2012 05:45	5.569	12/12/2012 17:10	5.619
11/12/2012 16:15	5.536	12/12/2012 05:45	5.569	12/12/2012 17:35	5.620
11/12/2012 16:30	5.535	12/12/2012 06:15		12/12/2012 20:00	5.621
11/12/2012 16:45	5.535	12/12/2012 06:30	5.572	12/12/2012 20:15	5.623
11/12/2012 17:00	5.537	12/12/2012 06:45		12/12/2012 20:30	5.624
11/12/2012 17:15	5.538	12/12/2012 07:00	5.573	12/12/2012 20:45	5.625
11/12/2012 17:30	5.538	12/12/2012 07:15	5.574	12/12/2012 21:00	5.626
11/12/2012 17:45	5.538	12/12/2012 07:30	5.575	12/12/2012 21:15	5.627
11/12/2012 18:00	5.540	12/12/2012 07:45		12/12/2012 21:30	5.628
11/12/2012 18:15	5.541	12/12/2012 08:00		12/12/2012 21:45	5.630
11/12/2012 18:30	5.541	12/12/2012 08:15	5.578	12/12/2012 22:00	5.632
11/12/2012 18:45	5.542	12/12/2012 08:30	5.580	12/12/2012 22:15	5.633
11/12/2012 19:00	5.543	12/12/2012 08:45	5,581	12/12/2012 22:30	5.634
11/12/2012 19:15	5.543	12/12/2012 09:00	5.581	12/12/2012 22:45	5.637
11/12/2012 19:30	5.544	12/12/2012 09:15	5.582	12/12/2012 23:00	5.637
	5.546	12/12/2012 09:30	5.583	12/12/2012 23:15	5.639
11/12/2012 19:45				12/12/2012 23:30	5.640
	5.545	12/12/2012 09:45	3,304	12/12/2012 20:001	
11/12/2012 20:00	5.545 5.546			12/12/2012 23:45	5.642
11/12/2012 20:00 11/12/2012 20:15	5.546	12/12/2012 10:00	5.584	12/12/2012 23:45	
11/12/2012 20:00 11/12/2012 20:15 11/12/2012 20:30	5.546 5.545	12/12/2012 10:00 12/12/2012 10:15	5.584 5.587	12/12/2012 23:45 13/12/2012 00:00	5.645
11/12/2012 20:00 11/12/2012 20:15 11/12/2012 20:30 11/12/2012 20:45	5.546 5.545 5.547	12/12/2012 10:00 12/12/2012 10:15 12/12/2012 10:30	5.584 5.587 5.588	12/12/2012 23:45 13/12/2012 00:00 13/12/2012 00:15	5.645 5.645
11/12/2012 20:00 11/12/2012 20:15 11/12/2012 20:30	5.546 5.545	12/12/2012 10:00 12/12/2012 10:15	5.584 5.587 5.588 5.588	12/12/2012 23:45 13/12/2012 00:00	5.645

Appendix II MW06 Water Level Data

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
13/12/2012 01:15	5.650	13/12/2012 15:00	5.692	14/12/2012 04:45	5.680
13/12/2012 01:30	5.651	13/12/2012 15:15	5.692	14/12/2012 05:00	5.679
13/12/2012 01:45	5.652	13/12/2012 15:30	5.691	14/12/2012 05:15	5.680
13/12/2012 02:00	5.654	13/12/2012 15:45	5.693	14/12/2012 05:30	5.678
13/12/2012 02:15	5.654	13/12/2012 16:00	5.692	14/12/2012 05:45	5.677
13/12/2012 02:30	5.656	13/12/2012 16:15	5.691	14/12/2012 06:00	5.677
13/12/2012 02:45	5.657	13/12/2012 16:30	5.689	14/12/2012 06:15	5.676
13/12/2012 03:00	5.659	13/12/2012 16:45	5.689	14/12/2012 06:30	5.676
13/12/2012 03:15	5.659	13/12/2012 17:00	5.688	14/12/2012 06:45	5.675
13/12/2012 03:30	5.661	13/12/2012 17:00	5.685		
13/12/2012 03:45	5.659	13/12/2012 17:30	5.684	14/12/2012 07:00	5.675
13/12/2012 04:00	5.660			14/12/2012 07:15	5.676
		13/12/2012 17:45	5.684	14/12/2012 07:30	5.675
13/12/2012 04:15	5.662	13/12/2012 18:00	5.687	14/12/2012 07:45	5.676
13/12/2012 04:30	5.662	13/12/2012 18:15	5.688	14/12/2012 08:00	5.677
13/12/2012 04:45	5.662	13/12/2012 18:30	5.689	14/12/2012 08:15	5.679
13/12/2012 05:00	5.664	13/12/2012 18:45	5.691	14/12/2012 08:30	5.679
13/12/2012 05:15	5.664	13/12/2012 19:00		14/12/2012 08:45	5.681
13/12/2012 05:30	5.665	13/12/2012 19:15	5.691	14/12/2012 09:00	5.682
13/12/2012 05:45	5.663	13/12/2012 19:30	5.691	14/12/2012 09:15	5.683
13/12/2012 06:00	5.667	13/12/2012 19:45	5.692	14/12/2012 09:30	5.683
13/12/2012 06:15	5.669	13/12/2012 20:00	5,692	1,4/12/2012 09:45	5.685
13/12/2012 06:30	5.669	13/12/2012 20:15	5.691	[№] 14/12/2012 10:00	5.686
13/12/2012 06:45	5.670	13/12/2012 20:30	5.692 othe	14/12/2012 10:15	5.686
13/12/2012 07:00	5.671	13/12/2012 20:45		14/12/2012 10:30	5.686
13/12/2012 07:15	5.673	13/12/2012 21:00		14/12/2012 10:45	5.684
13/12/2012 07:30	5.673	13/12/2012 21:15		14/12/2012 11:00	5.684
13/12/2012 07:45	5.674	13/12/2012 21:30		14/12/2012 11:15	5.686
13/12/2012 08:00	5.674	13/12/2012@1:45	7.9	14/12/2012 11:30	5.721
13/12/2012 08:15	5.676	13/12/2002 200	5.688	14/12/2012 11:45	5.713
13/12/2012 08:30	5.677	13/12/2012 22:15		14/12/2012 12:00	5.718
13/12/2012 08:45	5.678	13/12/2012 22:30		14/12/2012 12:15	5.736
13/12/2012 09:00	5.681	13 12/2012 22:45	1	14/12/2012 12:30	5.669
13/12/2012 09:15	5.682	3/12/2012 23:00		14/12/2012 12:45	5.681
13/12/2012 09:30	5.684	13/12/2012 23:15		14/12/2012 13:00	5.682
13/12/2012 09:45	5.685	13/12/2012 23:30		14/12/2012 13:15	5.688
13/12/2012 10:00	5.685	13/12/2012 23:45		14/12/2012 13:30	5.687
13/12/2012 10:15	5.686	14/12/2012 00:00		14/12/2012 13:45	5.670
13/12/2012 10:30	5.686	14/12/2012 00:00		14/12/2012 13:43	5.753
13/12/2012 10:30	5.686	14/12/2012 00:13		14/12/2012 14:15	5.716
13/12/2012 10:43	5.686	14/12/2012 00:30			
13/12/2012 11:15		14/12/2012 00:45		14/12/2012 14:30	5.724
13/12/2012 11:13	5.685			14/12/2012 14:45	5.722
	5.685	14/12/2012 01:15		14/12/2012 15:00	5.723
13/12/2012 11:45	5.684	14/12/2012 01:30		14/12/2012 15:15	5.723
13/12/2012 12:00	5.685	14/12/2012 01:45	-	14/12/2012 15:30	5.725
13/12/2012 12:15	5.685	14/12/2012 02:00		14/12/2012 15:45	5.725
13/12/2012 12:30	5.685	14/12/2012 02:15		14/12/2012 16:00	5.727
13/12/2012 12:45	5.686	14/12/2012 02:30		14/12/2012 16:15	5.728
13/12/2012 13:00	5.688	14/12/2012 02:45	 	14/12/2012 16:30	5.728
13/12/2012 13:15	5.689	14/12/2012 03:00		14/12/2012 16:45	5.728
13/12/2012 13:30	5.690	14/12/2012 03:15	5.680	14/12/2012 17:00	5.731
13/12/2012 13:45	5.691	14/12/2012 03:30	5.680	14/12/2012 17:15	5.732
13/12/2012 14:00	5.692	14/12/2012 03:45	5.680	14/12/2012 17:30	5.733
13/12/2012 14:15	5.691	14/12/2012 04:00	5.681	14/12/2012 17:45	5.735
13/12/2012 14:30	5.692	14/12/2012 04:15	5.681	14/12/2012 18:00	5.735
13/12/2012 14:45	5.690	14/12/2012 04:30	5.680	14/12/2012 18:15	5.736

	Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
	14/12/2012 18:30	5.737	15/12/2012 08:15	5.806	15/12/2012 22:00	5.863
	14/12/2012 18:45	5.738	15/12/2012 08:30	5.809	15/12/2012 22:15	5.863
	14/12/2012 19:00	5.740	15/12/2012 08:45	5.809	15/12/2012 22:30	5.864
	14/12/2012 19:15	5.741	15/12/2012 09:00	5.811	15/12/2012 22:45	5.865
	14/12/2012 19:30	5.741	15/12/2012 09:15	5.813	15/12/2012 23:00	5.866
	14/12/2012 19:45	5.743	15/12/2012 09:30	5.815	15/12/2012 23:15	5.866
	14/12/2012 20:00	5.744	15/12/2012 09:45	5.817	15/12/2012 23:30	5.868
	14/12/2012 20:15	5.746	15/12/2012 10:00	5.818	15/12/2012 23:45	5.868
	14/12/2012 20:30	5.747	15/12/2012 10:15	5.819	16/12/2012 00:00	5.869
	14/12/2012 20:45	5.746	15/12/2012 10:30	5.821	16/12/2012 00:15	5.871
	14/12/2012 21:00	5.748	15/12/2012 10:45	5.824	16/12/2012 00:30	5.870
	14/12/2012 21:15	5.750	15/12/2012 11:00	5.826	16/12/2012 00:45	5.870
	14/12/2012 21:30	5.750	15/12/2012 11:15	5.826	16/12/2012 01:00	5.871
	14/12/2012 21:45	5.751	15/12/2012 11:30	5.830	16/12/2012 01:15	5.871
	14/12/2012 22:00	5.753	15/12/2012 11:45	5.830	16/12/2012 01:30	5.871
	14/12/2012 22:15	5.754	15/12/2012 12:00	5.830	16/12/2012 01:45	5.872
 -	14/12/2012 22:30	5.756	15/12/2012 12:15	5.831	16/12/2012 01:43	5.873
	14/12/2012 22:45	5.757	15/12/2012 12:30	5.833	16/12/2012 02:15	5.873
<u> </u>	14/12/2012 23:00	5.758	15/12/2012 12:45	5.833	16/12/2012 02:13	5.873
<u> </u>	14/12/2012 23:15	5.758	15/12/2012 12:45	5.833	16/12/2012 02:30	
<u> </u>	14/12/2012 23:30	5.759	15/12/2012 13:00			5.873
	14/12/2012 23:45	5.761	15/12/2012 13:15	5.833 5.834	J6/12/2012 03:00 16/12/2012 03:15	5.873
<u> </u>						5.873
	15/12/2012 00:00	5.762	15/12/2012 13:45	5.835	16/12/2012 03:30	5.872
	15/12/2012 00:15 15/12/2012 00:30	5.762	15/12/2012 14:00	5,83,517	16/12/2012 03:45	5.872
		5.763	15/12/2012 14:15	5.835	16/12/2012 04:00	5.872
<u> </u>	15/12/2012 00:45	5.764	15/12/2012 14:30		16/12/2012 04:15	5.871
<u> </u>	15/12/2012 01:00	5.763	15/12/2012 14:45	<u> </u>	16/12/2012 04:30	5.870
	15/12/2012 01:15	5.765	15/12/2012 5:00	5.838	16/12/2012 04:45	5.870
	15/12/2012 01:30	5.765	15/12/2012 5:15	5.839	16/12/2012 05:00	5.869
	15/12/2012 01:45	5.767	15/12/2012 15:30	5.839	16/12/2012 05:15	5.870
<u> </u>	15/12/2012 02:00	5.767	15/18/2012 15:45	5.840	16/12/2012 05:30	5.873
	15/12/2012 02:15	5.769	15/12/2012 16:00	5.842	16/12/2012 05:45	5.871
	15/12/2012 02:30	5.769	015/12/2012 16:15	5.841	16/12/2012 06:00	5.869
<u> </u>	15/12/2012 02:45	5.770	15/12/2012 16:30	5.843	16/12/2012 06:15	5.870
	15/12/2012 03:00		15/12/2012 16:45	5.844	16/12/2012 06:30	5.870
ļ	15/12/2012 03:15		15/12/2012 17:00	5.845	16/12/2012 06:45	5.869
<u> </u>	15/12/2012 03:30		15/12/2012 17:15	5.847	16/12/2012 07:00	5.869
	15/12/2012 03:45		15/12/2012 17:30		16/12/2012 07:15	5.869
	15/12/2012 04:00		15/12/2012 17:45		16/12/2012 07:30	5.870
	15/12/2012 04:15		15/12/2012 18:00	5.849	16/12/2012 07:45	5.869
	15/12/2012 04:30		15/12/2012 18:15	5.851	16/12/2012 08:00	5.868
	15/12/2012 04:45		15/12/2012 18:30	5.851	16/12/2012 08:15	5.868
	15/12/2012 05:00	5.784	15/12/2012 18:45		16/12/2012 08:30	5.867
	15/12/2012 05:15		15/12/2012 19:00	5.853	16/12/2012 08:45	5.866
	15/12/2012 05:30		15/12/2012 19:15	5.854	16/12/2012 09:00	5.865
<u></u>	15/12/2012 05:45		15/12/2012 19:30	5.856	16/12/2012 09:15	5.864
	15/12/2012 06:00		15/12/2012 19:45		16/12/2012 09:30	5.863
	15/12/2012 06:15		15/12/2012 20:00	5.857	16/12/2012 09:45	5.863
	15/12/2012 06:30	5.794	15/12/2012 20:15	5.858	16/12/2012 10:00	5.863
	10, 12, 2012 00:00					F 0 (0
	15/12/2012 06:45		15/12/2012 20:30	5.859	16/12/2012 10:15	5.862
			15/12/2012 20:30 15/12/2012 20:45		16/12/2012 10:15	5.862
	15/12/2012 06:45	5.795 5.796	· · · · · · · · · · · · · · · · · · ·	5,860		
	15/12/2012 06:45 15/12/2012 07:00	5.795 5.796	15/12/2012 20:45	5.860 5.860	16/12/2012 10:30	5.862
	15/12/2012 06:45 15/12/2012 07:00 15/12/2012 07:15	5.795 5.796 5.798 5.801	15/12/2012 20:45 15/12/2012 21:00	5.860 5.860 5.861	16/12/2012 10:30 16/12/2012 10:45	5.862 5.862

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
16/12/2012 11:45	5.860				
16/12/2012 12:00	5.860				-
16/12/2012 12:15	5.859				
16/12/2012 12:30	5.860				
16/12/2012 12:45	5.859				
16/12/2012 13:00	5.857				
16/12/2012 13:15	5.858				
16/12/2012 13:30	5.858	-			
16/12/2012 13:45	5.858				
16/12/2012 14:00	5.858				
16/12/2012 14:15	5.857				
16/12/2012 14:30	5.859				
16/12/2012 14:45	5.858				
16/12/2012 15:00	5.858				
16/12/2012 15:15	5.859				
16/12/2012 15:30	5.860				
16/12/2012 15:45	5.859			•	
16/12/2012 15:45	5.861				
16/12/2012 16:15 16/12/2012 16:30	5.860 5.861				
16/12/2012 16:45				12 ₆ .	
16/12/2012 17:00			A Leding I Lot of the A	N .	
16/12/2012 17:15			131. 24 Off.		
16/12/2012 17:30			out au,		
16/12/2012 17:45			ses of		
16/12/2012 18:00	5.868		arpequite		
16/12/2012 18:15	5.866	ion'			
16/12/2012 18:30	5.868	Decitaria			
16/12/2012 18:45	5.867	Consett of copyright out			_
16/12/2012 19:00	5.868	the oblin			-15-15
16/12/2012 19:15	5.869	8°°			
16/12/2012 19:30	5.869	eent			
16/12/2012 19:45	5.870	Cotte			
16/12/2012 20:00	0.07				
16/12/2012 20:15	5.871				
16/12/2012 20:30	5.872				
16/12/2012 20:45	5.873				
16/12/2012 21:00	5.872				
16/12/2012 21:15	5.874				
16/12/2012 21:30	5.874				
16/12/2012 21:45	5.874				
16/12/2012 22:00	5.874				
16/12/2012 22:15	5.875				
16/12/2012 22:30	5.876				
16/12/2012 22:45	5.877				
16/12/2012 23:00	5.878				
16/12/2012 23:15	5.878				
16/12/2012 23:30					
16/12/2012 23:45		1			
17/12/2012 00:00					
,					
					
	L		<u> </u>	I	

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
11/12/2012 08:20	5.090	11/12/2012 22:05	5.169	12/12/2012 11:50	5.242
11/12/2012 08:35	5.089	11/12/2012 22:20	5.178	12/12/2012 12:05	5.241
11/12/2012 08:50	5.088	11/12/2012 22:35	5.177	12/12/2012 12:20	5.242
11/12/2012 09:05	5.094	11/12/2012 22:50	5.179	12/12/2012 12:35	5.246
11/12/2012 09:20	5.097	11/12/2012 23:05	5.179	12/12/2012 12:50	5.239
11/12/2012 09:35	5.098	11/12/2012 23:20	5.181	12/12/2012 13:05	5.243
11/12/2012 09:50	5.103	11/12/2012 23:35	5.184	12/12/2012 13:20	5.242
11/12/2012 10:05	5.106	11/12/2012 23:50	5.187	12/12/2012 13:35	5.245
11/12/2012 10:20	5.109	12/12/2012 00:05	5.186	12/12/2012 13:50	5.247
11/12/2012 10:35	5.113	12/12/2012 00:20	5.188	12/12/2012 14:05	5.246
11/12/2012 10:50	5.116	12/12/2012 00:35	5.189	12/12/2012 14:20	5.246
11/12/2012 11:05	5.116	12/12/2012 00:50	5.191	12/12/2012 14:35	5.245
11/12/2012 11:20	5.119	12/12/2012 01:05	5.193	12/12/2012 14:50	5.247
11/12/2012 11:35	5.121	12/12/2012 01:20	5.194	12/12/2012 15:05	5.248
11/12/2012 11:50	5.123	12/12/2012 01:35	5.194	12/12/2012 15:20	5.253
11/12/2012 12:05	5.120	12/12/2012 01:50	5.195	12/12/2012 15:35	5.251
11/12/2012 12:20	5.124	12/12/2012 02:05	5.199	12/12/2012 15:50	5.257
11/12/2012 12:35	5.120	12/12/2012 02:20	5.196	12/12/2012 16:05	5.260
11/12/2012 12:50	5.121	12/12/2012 02:20	5.201	12/12/2012 16:20	5.259
	_	1 1	5.199	12/12/2012 16:35	5.264
11/12/2012 13:05	5.123	12/12/2012 02:50			
11/12/2012 13:20	5.126	12/12/2012 03:05	5.199	12/12/2012 16:50	5.264
11/12/2012 13:35	5.128	12/12/2012 03:20	5.201	2/12/2012 17:05	5.265
11/12/2012 13:50	5.124	12/12/2012 03:35	5.202	12/12/2012 17:20	5.264
11/12/2012 14:05	5.126	12/12/2012 03:50	5,2040	12/12/2012 17:35	5.268
11/12/2012 14:20	5.123	12/12/2012 04:05	5,201	12/12/2012 17:50	5.270
11/12/2012 14:35	5.128	12/12/2012 04:20	5.199	12/12/2012 18:05	5.271
11/12/2012 14:50	5.127	12/12/2012 04:35	5.201	12/12/2012 18:20	5.272
11/12/2012 15:05	5.130	12/12/2012 04:50	5.203	12/12/2012 18:35	5.272
11/12/2012 15:20	5.131	12/12/2012 05:05	5.205	12/12/2012 18:50	5.273
11/12/2012 15:35	5.133	12/12/2012 05:20	5.204	12/12/2012 19:05	5.276
11/12/2012 15:50	5.132	12/12/2012 05:35	5.204	12/12/2012 19:20	5.276
11/12/2012 16:05	5.141	12/12/2012 05:50	5.205	12/12/2012 19:35	5.276
11/12/2012 16:20	5.138	2/12/2012 06:05	5.207	12/12/2012 19:50	5.281
11/12/2012 16:35	5.137	12/12/2012 06:20	5.210	12/12/2012 20:05	5.284
11/12/2012 16:50	5.134	12/12/2012 06:35	5.211	12/12/2012 20:20	5.284
11/12/2012 17:05	5.140	12/12/2012 06:50	5.213	12/12/2012 20:35	5.288
11/12/2012 17:20	5.143	12/12/2012 07:05	5.213	12/12/2012 20:50	5.289
11/12/2012 17:35	5.143	12/12/2012 07:20	5.218	12/12/2012 21:05	5.289
11/12/2012 17:50	5.144	12/12/2012 07:35	5.219	12/12/2012 21:20	5.295
11/12/2012 18:05	5.147	12/12/2012 07:50	5.218	12/12/2012 21:35	5.297
11/12/2012 18:20	5.148	12/12/2012 08:05	5.218	12/12/2012 21:50	5.298
11/12/2012 18:35	5.148	12/12/2012 08:20	5.217	12/12/2012 22:05	5.303
11/12/2012 18:50	5.149	12/12/2012 08:35	5.223	12/12/2012 22:20	5.304
11/12/2012 19:05	5.156	12/12/2012 08:50	5.227	12/12/2012 22:35	5.305
11/12/2012 17:33	5.155	12/12/2012 09:05	5.231	12/12/2012 22:50	5.312
11/12/2012 17:20	5.155	12/12/2012 07:33	5.226	12/12/2012 23:05	5.312
11/12/2012 19:50	5.155	12/12/2012 09:35	5.228	12/12/2012 23:20	5.310
11/12/2012 17:30	5.158	12/12/2012 09:50	5.230	12/12/2012 23:35	5.315
		· · ·		12/12/2012 23:50	5.320
11/12/2012 20:20	5.158	12/12/2012 10:05	5.233	-	
11/12/2012 20:35	5.161	12/12/2012 10:20	5.235	13/12/2012 00:05	5.323
11/12/2012 20:50	5.165	12/12/2012 10:35	5.237	13/12/2012 00:20	5.321
11/12/2012 21:05	5.165	12/12/2012 10:50	5.238	13/12/2012 00:35	5.322
11/12/2012 21:20	5.165	12/12/2012 11:05	5.240	13/12/2012 00:50	5.327
11/12/2012 21:35	5.172	12/12/2012 11:20	5.239	13/12/2012 01:05	5.324
11/12/2012 21:50	5.171	12/12/2012 11:35	5.240	13/12/2012 01:20	5.327

Appendix II MW07 Water level Data

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
13/12/2012 01:35	5.330	13/12/2012 15:20	5.400	14/12/2012 05:05	5.295
13/12/2012 01:50	5.334	13/12/2012 15:35	5.404	14/12/2012 05:20	5.291
13/12/2012 02:05	5.336	13/12/2012 15:50	5.407	14/12/2012 05:35	5.289
13/12/2012 02:20	5.340	13/12/2012 16:05	5.401	14/12/2012 05:50	5.284
13/12/2012 02:35	5.344	13/12/2012 16:20	5.391	14/12/2012 06:05	5.280
13/12/2012 02:50	5.346	13/12/2012 16:35	5.394	14/12/2012 06:20	5.278
13/12/2012 03:05	5.345	13/12/2012 16:50	5.396	14/12/2012 06:35	5.273
13/12/2012 03:20	5.346	13/12/2012 17:05	5.390	14/12/2012 06:50	5.267
13/12/2012 03:35	5.345	13/12/2012 17:20	5.385	14/12/2012 07:05	5.264
13/12/2012 03:50	5.346	13/12/2012 17:35	5.384	14/12/2012 07:20	5.259
13/12/2012 04:05	5.351	13/12/2012 17:50	5.385	14/12/2012 07:35	5.253
13/12/2012 04:20	5.351	13/12/2012 17:30	5.390	14/12/2012 07:50	5.246
13/12/2012 04:35	5.348				
		13/12/2012 18:20	5.395	14/12/2012 08:05	5.246
13/12/2012 04:50	5.354	13/12/2012 18:35	5.393	14/12/2012 08:20	5.243
13/12/2012 05:05	5.355	13/12/2012 18:50	5.397	14/12/2012 08:35	5.234
13/12/2012 05:20	5.356	13/12/2012 19:05	5.398	14/12/2012 08:50	5.234
13/12/2012 05:35	5.360	13/12/2012 19:20	5.393	14/12/2012 09:05	5.224
13/12/2012 05:50	5.359	13/12/2012 19:35	5.398	14/12/2012 09:20	5.218
13/12/2012 06:05	5.363	13/12/2012 19:50	5.394	14/12/2012 09:35	5.214
13/12/2012 06:20	5.361	13/12/2012 20:05	5.393	14/12/2012 09:50	5.208
13/12/2012 06:35	5.363	13/12/2012 20:20	5.394	14/.12/2012 10:05	5.197
13/12/2012 06:50	5.365	13/12/2012 20:35	5.393	×14/12/2012 10:20	5.181
13/12/2012 07:05	5.369	13/12/2012 20:50	5.390	14/12/2012 10:35	5.166
13/12/2012 07:20	5.371	13/12/2012 21:05	\$1.388	14/12/2012 10:50	5.148
13/12/2012 07:35	5.371	13/12/2012 21:20	<u>ي</u> ي الم	14/12/2012 11:05	5.134
13/12/2012 07:50	5.374	13/12/2012 21:35	N°	14/12/2012 11:20	5.118
13/12/2012 08:05	5.377	13/12/2012 2150	5.382	14/12/2012 11:35	5.093
13/12/2012 08:20	5.379	13/12/2012/22/95	5.386	14/12/2012 11:50	5.064
13/12/2012 08:35	5.382	13/12/2012/202:20	5.382	14/12/2012 12:05	5.035
13/12/2012 08:50	5.384	13/12/2012 22:35	5.381	14/12/2012 12:20	5.021
13/12/2012 09:05	5.384	13/12/2012 22:50	5.375	14/12/2012 12:35	4.920
13/12/2012 07:03					
<u> </u>	5.387	3712/2012 23:05	5.370	14/12/2012 12:50	4.895
13/12/2012 09:35	5.388	13/12/2012 23:20	5.371	14/12/2012 13:05	4.883
13/12/2012 09:50	5.387	13/12/2012 23:35	5.366	14/12/2012 13:20	4.862
13/12/2012 10:05	5.394	13/12/2012 23:50	5.372	14/12/2012 13:35	4.838
13/12/2012 10:20	5.395	14/12/2012 00:05	5.367	14/12/2012 13:50	4.812
13/12/2012 10:35	5.391	14/12/2012 00:20	5.370	14/12/2012 14:05	4.942
13/12/2012 10:50	5.392	14/12/2012 00:35	5.367	14/12/2012 14:20	4.879
13/12/2012 11:05	5.396	14/12/2012 00:50	5.363	14/12/2012 14:35	4.861
13/12/2012 11:20	5.394	14/12/2012 01:05	5.361	14/12/2012 14:50	4.854
13/12/2012 11:35	5.390	14/12/2012 01:20	5.359	14/12/2012 15:05	4.850
13/12/2012 11:50	5.394	14/12/2012 01:35	5.361	14/12/2012 15:20	4.844
13/12/2012 12:05	5.392	14/12/2012 01:50	5.354	14/12/2012 15:35	4.842
13/12/2012 12:20	5.395	14/12/2012 02:05	5.348	14/12/2012 15:50	4.838
13/12/2012 12:35	5.396	14/12/2012 02:20	5.350	14/12/2012 16:05	4.832
13/12/2012 12:50	5.401	14/12/2012 02:35	5.339	14/12/2012 16:20	4.828
13/12/2012 13:05	5.403	14/12/2012 02:50	5.336	14/12/2012 16:35	4.826
13/12/2012 13:20	5.403	14/12/2012 03:05	5.327	14/12/2012 16:50	4.823
13/12/2012 13:35	5.407	14/12/2012 03:20	5.328	14/12/2012 17:05	4.821
13/12/2012 13:50	5.406	14/12/2012 03:35	5.322	14/12/2012 17:20	4.822
13/12/2012 14:05	5,406	14/12/2012 03:50	5.316	14/12/2012 17:35	4.817
13/12/2012 14:20	5.404	14/12/2012 04:05	5.313	14/12/2012 17:50	4.823
13/12/2012 14:35	5,403	14/12/2012 04:20	5.306	14/12/2012 18:05	4.824
13/12/2012 14:50	5.404	14/12/2012 04:35	5.303	14/12/2012 18:20	4.827
13/12/2012 15:05	5.403	14/12/2012 04:50	5.301	14/12/2012 18:35	4.828

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
14/12/2012 18:50	4.830	15/12/2012 08:35	4.923	15/12/2012 22:20	4.609
14/12/2012 19:05	4.836	15/12/2012 08:50	4.917	15/12/2012 22:35	4.610
14/12/2012 19:20	4.839	15/12/2012 09:05	4.916	15/12/2012 22:50	4.608
14/12/2012 19:35	4.842	15/12/2012 09:20	4.912	15/12/2012 23:05	4.611
14/12/2012 19:50	4.845	15/12/2012 09:35	4.907	15/12/2012 23:20	4.608
14/12/2012 20:05	4.841	15/12/2012 09:50	4.905	15/12/2012 23:35	4.609
14/12/2012 20:20	4.844	15/12/2012 10:05	4.898	15/12/2012 23:50	4.609
14/12/2012 20:35	4.848	15/12/2012 10:20	4.885	16/12/2012 00:05	4.614
14/12/2012 20:50	4.845	15/12/2012 10:35	4.875	16/12/2012 00:20	4.612
14/12/2012 21:05	4.851	15/12/2012 10:50	4.874	16/12/2012 00:35	4.608
14/12/2012 21:20	4.850	15/12/2012 11:05	4.861	16/12/2012 00:50	4.607
14/12/2012 21:35	4.852	15/12/2012 11:20	4.861	16/12/2012 01:05	4.606
14/12/2012 21:50	4.855	15/12/2012 11:35	4.857	16/12/2012 01:30	4.611
14/12/2012 22:05	4.861	15/12/2012 11:50	4.846	16/12/2012 01:35	4.607
14/12/2012 22:20	4.860	15/12/2012 11:05	4.838	16/12/2012 01:50	4.605
14/12/2012 22:35	4.863	15/12/2012 12:20		16/12/2012 01:30	
14/12/2012 22:50			4.830		4.613
	4.862	15/12/2012 12:35	4.827	16/12/2012 02:20	4.612
14/12/2012 23:05	4.865	15/12/2012 12:50	4.819	16/12/2012 02:35	4.615
14/12/2012 23:20	4.867	15/12/2012 13:05	4.817	16/12/2012 02:50	4.621
14/12/2012 23:35	4.865	15/12/2012 13:20	4.805	16/12/2012 03:05	4.616
14/12/2012 23:50	4.868	15/12/2012 13:35	4.795	16/12/2012 03:20	4.618
15/12/2012 00:05	4.872	15/12/2012 13:50	4.793	₹6/12/2012 03:35	4.615
15/12/2012 00:20	4.872	15/12/2012 14:05	4.791	16/12/2012 03:50	4.617
15/12/2012 00:35	4.871	15/12/2012 14:20	A.7800	16/12/2012 04:05	4.612
15/12/2012 00:50	4.874	15/12/2012 14:35	& ₹ ₹777	16/12/2012 04:20	4.613
15/12/2012 01:05	4.878	15/12/2012 14:50	1111°4.767	16/12/2012 04:35	4.612
15/12/2012 01:20	4.876	15/12/2012 15:05	4.753	16/12/2012 04:50	4.611
15/12/2012 01:35	4.879	15/12/20129530	4.742	16/12/2012 05:05	4.613
15/12/2012 01:50	4.879	15/12/2012/35:35	4.731	16/12/2012 05:20	4.615
15/12/2012 02:05	4.886	15/12/2012 15:50	4.721	16/12/2012 05:35	4.612
15/12/2012 02:20	4.885	15/12/2012 16:05	4.712	16/12/2012 05:50	4.607
15/12/2012 02:35	4.887	15/12/2012 16:20	4.705	16/12/2012 06:05	4.608
15/12/2012 02:50	4.891	0515/12/2012 16:35	4.692	16/12/2012 06:20	4.613
15/12/2012 03:05	4.896	15/12/2012 16:50	4.685	16/12/2012 06:35	4.611
15/12/2012 03:20	4.896	15/12/2012 17:05	4.676	16/12/2012 06:50	4.607
15/12/2012 03:35	4.899	15/12/2012 17:20	4.670	16/12/2012 07:05	4.608
15/12/2012 03:50	4.899	15/12/2012 17:35	4.666	16/12/2012 07:20	4.606
15/12/2012 03:30	4.907	15/12/2012 17:50	4.660	16/12/2012 07:35	4.608
15/12/2012 04:20	4.909	15/12/2012 17:30	4.652	16/12/2012 07:50	4.600
15/12/2012 04:20	4.909	15/12/2012 18:20	4.652		
	<u> </u>			16/12/2012 08:05	4.602
15/12/2012 04:50	4.910	15/12/2012 18:35	4.649	16/12/2012 08:20	4.597
15/12/2012 05:05	4.912	15/12/2012 18:50	4.647	16/12/2012 08:35	4.593
15/12/2012 05:20	4.914	15/12/2012 19:05	4.640	16/12/2012 08:50	4.591
15/12/2012 05:35	4.914	15/12/2012 19:20	4.637	16/12/2012 09:05	4.585
15/12/2012 05:50	4.922	15/12/2012 19:35	4.632	16/12/2012 09:20	4.587
15/12/2012 06:05	4.925	15/12/2012 19:50	4.630	16/12/2012 09:35	4.584
15/12/2012 06:20	4.922	15/12/2012 20:05	4.626	16/12/2012 09:50	4.584
15/12/2012 06:35	4.927	15/12/2012 20:20	4.628	16/12/2012 10:05	4.581
15/12/2012 06:50	4.925	15/12/2012 20:35	4.622	16/12/2012 10:20	4.584
15/12/2012 07:05	4.925	15/12/2012 20:50	4.624	16/12/2012 10:35	4.579
15/12/2012 07:20	4.927	15/12/2012 21:05	4.619	16/12/2012 10:50	4.581
15/12/2012 07:35	4.926	15/12/2012 21:20	4.614	16/12/2012 11:05	4.581
15/12/2012 07:50	4.926	15/12/2012 21:35	4.612	16/12/2012 11:20	4.579
15/12/2012 08:05	4.926	15/12/2012 21:50	4.610	16/12/2012 11:35	4.574
15/12/2012 08:20	4.927	15/12/2012 22:05	4.611	16/12/2012 11:50	4.568

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl
16/12/2012 12:05	4.561				
16/12/2012 12:20	4.558				
16/12/2012 12:35	4.550				
16/12/2012 12:50	4.541				
16/12/2012 13:05	4.527				-
16/12/2012 13:20	4.516				
16/12/2012 13:35	4.503				
16/12/2012 13:50	4.473				
16/12/2012 14:05	4.444				
16/12/2012 14:20	4.412				
16/12/2012 14:35	4.364				
16/12/2012 14:50	4.333				
16/12/2012 15:05	4.308				
16/12/2012 15:20	4.284				1
16/12/2012 15:35	4.268	****			
16/12/2012 15:50	4.250				
16/12/2012 16:05	4.238		-		
16/12/2012 16:20	4.221				
16/12/2012 16:35	4.212		 	-	- 12
16/12/2012 16:50	4.198				
16/12/2012 17:05					
16/12/2012 17:20	4.185	Consent of coopingh of the Consent of coopingh of coopingh of coopingh of coopingh of the coopingh of		et lise.	
16/12/2012 17:35	4.189		3	<u>e</u>	
16/12/2012 17:50	4.183		414.616		
16/12/2012 18:05	4.173		25 150 to		
16/12/2012 18:20	4.167		0 :10 ·		
16/12/2012 18:35	4.154	7.70	₹ ₩	1	1
16/12/2012 18:50	4.137	- citored		<u> </u>	
16/12/2012 19:05	4.124	12000			-
16/12/2012 19:20	4.104	FOTALIST			
16/12/2012 19:35	4.087	, 603,			
16/12/2012 19:50	4.073	NO.			
16/12/2012 20:05	4.057	OTTE			
16/12/2012 20:20	4.048	<u> </u>	-		
16/12/2012 20:35	4.035				
16/12/2012 20:50	4.029				
16/12/2012 20:05	4.022				
16/12/2012 21:03	4.022		-		
16/12/2012 21:35	4.014				<u> </u>
16/12/2012 21:50	4.008				
16/12/2012 22:05	4.006				
16/12/2012 22:20	4.006			-	
16/12/2012 22:35	4.010		-		
16/12/2012 22:50	4.012		-		
16/12/2012 23:05	4,016				
16/12/2012 23:20	4.025				
16/12/2012 23:35	4.029				
16/12/2012 23:50	4.039				
17/12/2012 00:05	4.044				
					1
		1			
	1	i	1	i .	1

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
11/12/2012 08:00	7.580	11/12/2012 21:45	7.735	12/12/2012 11:30	7.849
11/12/2012 08:15	7.585	11/12/2012 22:00	7.737	12/12/2012 11:45	7.853
11/12/2012 08:30	7.588	11/12/2012 22:15	7.739	12/12/2012 12:00	7.857
11/12/2012 08:45	7.591	11/12/2012 22:30	7.741	12/12/2012 12:15	7.862
11/12/2012 09:00	7.595	11/12/2012 22:45	7.742	12/12/2012 12:30	7.867
11/12/2012 09:15	7.599	11/12/2012 23:00	7.744	12/12/2012 12:45	7.872
11/12/2012 09:30	7.603	11/12/2012 23:15	7.745	12/12/2012 13:00	7.875
11/12/2012 09:45	7.608	11/12/2012 23:30	7.748	12/12/2012 13:15	7.878
11/12/2012 10:00	7.612	11/12/2012 23:45	7.751	12/12/2012 13:30	7.883
11/12/2012 10:15	7.617	12/12/2012 00:00	7.753	12/12/2012 13:45	7.887
11/12/2012 10:30	7.619	12/12/2012 00:15	7.753	12/12/2012 14:00	7.890
11/12/2012 10:45	7.623	12/12/2012 00:30	7.755	12/12/2012 14:15	7.892
11/12/2012 11:00	7.625	12/12/2012 00:45	7.758	12/12/2012 14:30	7.892
11/12/2012 11:15	7.629	12/12/2012 01:00	7.759	12/12/2012 14:45	7.894
11/12/2012 11:30	7.632	12/12/2012 01:15	7.762	12/12/2012 15:00	7.898
11/12/2012 11:45	7.637	12/12/2012 01:30	7.765	12/12/2012 15:15	7.901
11/12/2012 12:00	7.640	12/12/2012 01:45	7.768	12/12/2012 15:30	7.904
11/12/2012 12:15	7.644	12/12/2012 02:00	7.770	12/12/2012 15:45	7.704
11/12/2012 12:30	7.646	12/12/2012 02:05	7.771	12/12/2012 16:00	7.907
11/12/2012 12:45	7.648	12/12/2012 02:30	7.772	12/12/2012 16:00	7.910
11/12/2012 13:00	7.650	12/12/2012 02:45	7.773	12/12/2012 16:30	7.913
11/12/2012 13:15	7.651	12/12/2012 03:00	7.774	12/12/2012 16:45	7.713
11/12/2012 13:30	7.654	12/12/2012 03:15	7.776	12/12/2012 17:00	7.718
11/12/2012 13:45	7.655	12/12/2012 03:30		12/12/2012 17:15	
11/12/2012 13:43	7.656	12/12/2012 03:45	- C' - A		7.921
11/12/2012 14:15	7.657		7.775	12/12/2012 17:30	7.922
	7.658	12/12/2012 04:00		12/12/2012 17:45	7.921
11/12/2012 14:30	7.658	12/12/2012 04:15	.01 ¹ 7,778	12/12/2012 18:00	7.924
11/12/2012 14:45	7.658	12/12/2012 04:30	7.779	12/12/2012 18:15	7.925
		12/12/2012/05:90		12/12/2012 18:30	7.928
11/12/2012 15:15	7.661		7.780	12/12/2012 18:45	7.931
11/12/2012 15:30	7.665	12/12/2012 05:15	7.781	12/12/2012 19:00	7.935
11/12/2012 15:45	7.669	12/12/2012 05:30	7.782	12/12/2012 19:15	7.939
11/12/2012 16:00	7.672	12/12/2012 05:45	7.783	12/12/2012 19:30	7.942
11/12/2012 16:15	7.676	12/12/2012 06:00	7.784	12/12/2012 19:45	7.944
11/12/2012 16:30	7.679	12/12/2012 06:15	7.787	12/12/2012 20:00	7.947
11/12/2012 16:45	7.684	12/12/2012 06:30	7.788	12/12/2012 20:15	7.950
11/12/2012 17:00	7.688	12/12/2012 06:45	7.789	12/12/2012 20:30	7.954
11/12/2012 17:15	7.692	12/12/2012 07:00	7.791	12/12/2012 20:45	7.954
11/12/2012 17:30	7.695	12/12/2012 07:15	7.793	12/12/2012 21:00	7.958
11/12/2012 17:45	7.697	12/12/2012 07:30	7.795	12/12/2012 21:15	7.961
11/12/2012 18:00	7.699	12/12/2012 07:45	7.797	12/12/2012 21:30	7.963
11/12/2012 18:15	7.701	12/12/2012 08:00	7.801	12/12/2012 21:45	7.967
11/12/2012 18:30	7.703	12/12/2012 08:15	7.802	12/12/2012 22:00	7.970
11/12/2012 18:45	7.704	12/12/2012 08:30	7.806	12/12/2012 22:15	7.972
11/12/2012 19:00	7.706	12/12/2012 08:45	7.809	12/12/2012 22:30	7.975
11/12/2012 19:15	7.706	12/12/2012 09:00	7.811	12/12/2012 22:45	7.976
11/12/2012 19:30	7.708	12/12/2012 09:15	7.812	12/12/2012 23:00	7.979
11/12/2012 19:45	7.711	12/12/2012 09:30	7.816	12/12/2012 23:15	7.983
11/12/2012 20:00	7.716	12/12/2012 09:45	7.819	12/12/2012 23:30	7.985
11/12/2012 20:15	7.718	12/12/2012 10:00	7.822	12/12/2012 23:45	7.989
11/12/2012 20:30	7.721	12/12/2012 10:15	7.827	13/12/2012 00:00	7.991
11/12/2012 20:45	7.727	12/12/2012 10:30	7.832	13/12/2012 00:15	7.995
11/12/2012 21:00	7.728	12/12/2012 10:45	7.838	13/12/2012 00:30	7.997
11/12/2012 21:15	7.731	12/12/2012 11:00	7.841	13/12/2012 00:45	7.999
11/12/2012 21:30	7.732	12/12/2012 11:15	7.845	13/12/2012 01:00	8.002

Appendix II

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
13/12/2012 01:15	8.004	13/12/2012 15:00	8.168	14/12/2012 04:45	8.166
13/12/2012 01:30	8.007	13/12/2012 15:15	8.171	14/12/2012 05:00	8.163
13/12/2012 01:45	8.010	13/12/2012 15:30	8.173	14/12/2012 05:15	8.159
13/12/2012 02:00	8.012	13/12/2012 15:45	8.176	14/12/2012 05:30	8.156
13/12/2012 02:15	8.015	13/12/2012 16:00	8.179	14/12/2012 05:45	8.152
13/12/2012 02:30	8.016	13/12/2012 16:15	8.181	14/12/2012 06:00	8.148
13/12/2012 02:45	8.018	13/12/2012 16:30	8.183	14/12/2012 06:15	8.144
13/12/2012 03:00	8.021	13/12/2012 16:45	8.186	14/12/2012 06:30	8.138
13/12/2012 03:15	8.023	13/12/2012 17:00	8.187	14/12/2012 06:45	8.131
13/12/2012 03:30	8.024	13/12/2012 17:15	8.190	14/12/2012 07:00	8.125
13/12/2012 03:45	8.026	13/12/2012 17:30	8.191	14/12/2012 07:15	8.121
13/12/2012 04:00	8.028	13/12/2012 17:45	8.192	14/12/2012 07:30	8.118
13/12/2012 04:15	8.028	13/12/2012 18:00	8.194	14/12/2012 07:45	8.114
13/12/2012 04:30	8.030	13/12/2012 18:15	8.195	14/12/2012 08:00	8.111
13/12/2012 04:45	8.032	13/12/2012 18:30	8.194	14/12/2012 08:15	8.108
13/12/2012 05:00	8.032	13/12/2012 18:45	8.194	14/12/2012 08:30	8.106
13/12/2012 05:15	8.034	13/12/2012 19:00	8.193	14/12/2012 08:45	8.104
13/12/2012 05:30	8.035	13/12/2012 19:15	8.193	14/12/2012 09:00	8.103
13/12/2012 05:45	8.037	13/12/2012 17:13	8.195	14/12/2012 07:00	8.100
13/12/2012 06:00	8.039	13/12/2012 17:30	8.195	14/12/2012 09:30	8.099
13/12/2012 06:05	8.040	13/12/2012 17:43	8.196	14/12/2012 09:45	8.098
13/12/2012 06:30	8.041	13/12/2012 20:00	8.197	14/12/2012 10:00	8.097
13/12/2012 06:45	8.044	13/12/2012 20:30	8.198	147 12/2012 10:00	8.095
13/12/2012 07:00				14/12/2012 10:30	
13/12/2012 07:15	8.046 8.047	13/12/2012 20:45		14/12/2012 10:45	8.094 8.090
	8.049		8.200		
13/12/2012 07:30		13/12/2012 21:15		14/12/2012 11:00	8.094
13/12/2012 07:45 13/12/2012 08:00	8.051 8.054	13/12/2012 21:30	10 10 8 203	14/12/2012 11:15	8.093
		13/12/2012 21:45		14/12/2012 11:30	8.095
13/12/2012 08:15	8.053	13/12/2012 22:00	8.208	14/12/2012 11:45	8.089
13/12/2012 08:30	8.056		8.209	14/12/2012 12:00	8.092
13/12/2012 08:45	8.060	13/12/2012 22:30	8.211	14/12/2012 12:15	8.112
13/12/2012 09:00	8.063	13/12/2012 22:45	8.213	14/12/2012 12:30	8.044
13/12/2012 09:15	8.065	13/18/2012 23:00	8.214	14/12/2012 12:45	8.057
13/12/2012 09:30	8.070	13/12/2012 23:15	8,217	14/12/2012 13:00	8.059
13/12/2012 09:45	8.077	13/12/2012 23:30	8.219	14/12/2012 13:15	8.068
13/12/2012 10:00	8.083	13/12/2012 23:45	8.221	14/12/2012 13:30	8.070
13/12/2012 10:15	8.090	14/12/2012 00:00	8.224	14/12/2012 13:45	8.054
13/12/2012 10:30	8.095	14/12/2012 00:15	8.228	14/12/2012 14:00	8.138
13/12/2012 10:45	8.099	14/12/2012 00:30	8.229	14/12/2012 14:15	8.103
13/12/2012 11:00	8.104	14/12/2012 00:45	8.231	14/12/2012 14:30	8.111
13/12/2012 11:15	8.108	14/12/2012 01:00	8.233	14/12/2012 14:45	8.111
13/12/2012 11:30	8.111	14/12/2012 01:15	8.233	14/12/2012 15:00	8.111
13/12/2012 11:45	8.116	14/12/2012 01:30	8.233	14/12/2012 15:15	8.112
13/12/2012 12:00	8.120	14/12/2012 01:45	8.230	14/12/2012 15:30	8.112
13/12/2012 12:15	8.124	14/12/2012 02:00	8.225	14/12/2012 15:45	8.113
13/12/2012 12:30	8.129	14/12/2012 02:15	8.219	14/12/2012 16:00	8.115
13/12/2012 12:45	8.133	14/12/2012 02:30	8.210	14/12/2012 16:15	8.116
13/12/2012 13:00	8.138	14/12/2012 02:45	8.199	14/12/2012 16:30	8.118
13/12/2012 13:15	8.142	14/12/2012 03:00	8.191	14/12/2012 16:45	8.120
13/12/2012 13:30	8.145	14/12/2012 03:15	8.186	14/12/2012 17:00	8.123
13/12/2012 13:45	8.150	14/12/2012 03:30	8.182	14/12/2012 17:15	8.126
13/12/2012 14:00	8.153	14/12/2012 03:45	8.179	14/12/2012 17:30	8.126
13/12/2012 14:15	8.156	14/12/2012 04:00	8.177	14/12/2012 17:45	8.125
13/12/2012 14:30	8.159	14/12/2012 04:15	8.173	14/12/2012 18:00	8.123
13/12/2012 14:45	8.165	14/12/2012 04:30	8.169	14/12/2012 18:15	8.124

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
14/12/2012 18:30	8.124	15/12/2012 08:15	8.147	15/12/2012 22:00	8.132
14/12/2012 18:45	8.123	15/12/2012 08:30	8.146	15/12/2012 22:15	8.131
14/12/2012 19:00	8.123	15/12/2012 08:45	8.143	15/12/2012 22:30	8.129
14/12/2012 19:15	8.123	15/12/2012 09:00	8.142	15/12/2012 22:45	8.130
14/12/2012 19:30	8.123	15/12/2012 09:15	8.142	15/12/2012 23:00	8.129
14/12/2012 19:45	8.124	15/12/2012 09:30	8.141	15/12/2012 23:15	8.128
14/12/2012 20:00	8.125	15/12/2012 09:45	8.139	15/12/2012 23:30	8.127
14/12/2012 20:15	8.125	15/12/2012 10:00	8.139	15/12/2012 23:45	8.129
14/12/2012 20:30	8.127	15/12/2012 10:15	8.140	16/12/2012 00:00	8.129
14/12/2012 20:45	8.128	15/12/2012 10:30	8.142	16/12/2012 00:15	8.130
14/12/2012 21:00	8.130	15/12/2012 10:45	8.145	16/12/2012 00:30	8.130
14/12/2012 21:15	8.131	15/12/2012 11:00	8.148	16/12/2012 00:45	8.130
14/12/2012 21:30	8.132	15/12/2012 11:15	8.151	16/12/2012 01:00	8.130
14/12/2012 21:45	8.132	15/12/2012 11:30	8.154	16/12/2012 01:15	8.131
14/12/2012 22:00	8.133	15/12/2012 11:45	8.153	16/12/2012 01:30	8.131
14/12/2012 22:15	8.134	15/12/2012 12:00	8.155	16/12/2012 01:45	8.132
14/12/2012 22:30	8.135	15/12/2012 12:15	8.156	16/12/2012 02:00	8.132
14/12/2012 22:45	8.135	15/12/2012 12:30	8.159	16/12/2012 02:15	8.133
14/12/2012 23:00	8.137	15/12/2012 12:45	8.161	16/12/2012 02:30	8.134
14/12/2012 23:15	8.139	15/12/2012 13:00	8.163	16/12/2012 02:45	8.133
14/12/2012 23:30	8.140	15/12/2012 13:15	8.164	16/12/2012 03:00	8.133
14/12/2012 23:45	8.142	15/12/2012 13:30	8.164	16/12/2012 03:15	8.133
15/12/2012 00:00	8.143	15/12/2012 13:45	8.162	18712/2012 03:30	8.133
15/12/2012 00:15	8.146	15/12/2012 14:00	8.160 👏	6/12/2012 03:45	8.133
15/12/2012 00:30	8.147	15/12/2012 14:15	8.168 (10°	16/12/2012 04:00	8.134
15/12/2012 00:45	8.149	15/12/2012 14:30	80,630	16/12/2012 04:15	8.133
15/12/2012 01:00	8.151	15/12/2012 14:45	01 7 8 P80	16/12/2012 04:30	8.133
15/12/2012 01:15	8.153	15/12/2012 15:00 0	11 8.162	16/12/2012 04:45	8.133
15/12/2012 01:30	8.158	15/12/2012 15:18	8.163	16/12/2012 05:00	8.134
15/12/2012 01:45	8.161	15/12/2012/13:30	8.164	16/12/2012 05:15	8.133
15/12/2012 02:00	8.162	15/12/2012 15:45	8.165	16/12/2012 05:30	8.133
15/12/2012 02:15	8.162	15/12/2012 16:00	8.165	16/12/2012 05:45	8.131
15/12/2012 02:30	8.164	15/12/2012 16:15	8.166	16/12/2012 06:00	8.128
15/12/2012 02:45	8.164	15/12/2012 16:30	8.166	16/12/2012 06:15	8.128
15/12/2012 03:00	8.165	15/12/2012 16:45	8.165	16/12/2012 06:30	8.126
15/12/2012 03:15	8.167	15/12/2012 17:00	8.165	16/12/2012 06:45	8.125
15/12/2012 03:30	8.168	15/12/2012 17:15	8.165	16/12/2012 07:00	8.125
15/12/2012 03:45	8.169	15/12/2012 17:30	8.164	16/12/2012 07:15	8.124
15/12/2012 04:00	8.169	15/12/2012 17:45	8.162	16/12/2012 07:30	8.123
15/12/2012 04:15	8.168	15/12/2012 18:00	8.160	16/12/2012 07:45	8.121
15/12/2012 04:30	8.168	15/12/2012 18:15	8.156	16/12/2012 08:00	8.118
15/12/2012 04:45	8.169	15/12/2012 18:30	8.155	16/12/2012 08:15	8.117
15/12/2012 05:00	8.168	15/12/2012 18:45	8.154	16/12/2012 08:30	8.116
15/12/2012 05:15	8.169	15/12/2012 19:00	8.152	16/12/2012 08:45	8.114
15/12/2012 05:30	8.167	15/12/2012 19:15	8.150	16/12/2012 09:00	8.112
15/12/2012 05:45	8.167	15/12/2012 19:30	8.147	16/12/2012 09:15	8.111
15/12/2012 06:00	8.164	15/12/2012 19:45	8.142	16/12/2012 09:30	8.111
15/12/2012 06:15	8.160	15/12/2012 20:00	8.140	16/12/2012 09:45	8.113
15/12/2012 06:30	8.158	15/12/2012 20:15	8.138	16/12/2012 10:00	8.112
15/12/2012 06:45	8.156	15/12/2012 20:30	8.136	16/12/2012 10:15	8.112
15/12/2012 07:00	8.155	15/12/2012 20:45	8.135	16/12/2012 10:30	8.111
15/12/2012 07:15	8.153	15/12/2012 21:00	8.135	16/12/2012 10:45	8.110
15/12/2012 07:30	8.152	15/12/2012 21:15	8.134	16/12/2012 11:00	8.111
15/12/2012 07:45	8.150	15/12/2012 21:30	8.134	16/12/2012 11:15	8.110
15/12/2012 08:00	8.150	15/12/2012 21:45	8.132	16/12/2012 11:30	8.106

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
16/12/2012 11:45	8.101				
16/12/2012 12:00	8.097			-	
16/12/2012 12:15	8.097				
16/12/2012 12:30	8.097	1			
16/12/2012 12:45	8.093				
16/12/2012 13:00	8.089				
16/12/2012 13:15	8.086	-			
16/12/2012 13:30	8.085	·			
16/12/2012 13:45	8.083				
16/12/2012 14:00	8.081				
16/12/2012 14:15	8.078				
16/12/2012 14:30	8.076				
16/12/2012 14:45	8.075				
16/12/2012 15:00	8.073				-
16/12/2012 15:15	8.069				
16/12/2012 15:30	8.068				
16/12/2012 15:45	8.064				
16/12/2012 16:00	8.063				
16/12/2012 16:15	8.062				-
16/12/2012 16:13	1				
16/12/2012 16:30	8.061	Contend cooping			
	8.061			<u> </u>	
16/12/2012 17:00	8.059			net il	
16/12/2012 17:15	8.058		1.	otti	
16/12/2012 17:30	8.058		odis,	90.2	
16/12/2012 17:45	8.057		se dia		
16/12/2012 18:00	8.050		atro diffe		
16/12/2012 18:15	8.040		on Viet		
16/12/2012 18:30	8.031		A WITC		
16/12/2012 18:45	8.027	inst			
16/12/2012 19:00	8.021	FO DYTE			
16/12/2012 19:15	8.016				
16/12/2012 19:30	8.010	cent			
16/12/2012 19:45	8.006	Cons			
16/12/2012 20:00	8.002				
16/12/2012 20:15	7.997				
16/12/2012 20:30	7.993				
16/12/2012 20:45	7.992				
16/12/2012 21:00	7.987				
16/12/2012 21:15	7.983				
16/12/2012 21:30	7.978				
16/12/2012 21:45	7.975		1		
16/12/2012 22:00	7.970				
16/12/2012 22:15	7.968				
16/12/2012 22:30	7.964				
16/12/2012 22:45	7.962				
16/12/2012 23:00	7.958				
16/12/2012 23:15	7.956		+		
-,,					
16/12/2012 23:30	/ 9.5.4			1	
16/12/2012 23:30	7.953				
16/12/2012 23:45	7.951				-
				_	
16/12/2012 23:45	7.951				
16/12/2012 23:45	7.951				
16/12/2012 23:45	7.951				
16/12/2012 23:45	7.951				

Date / time	WL (mbdl)	Date / time	WL (mbdl)	Date / time	WL (mbdl)
13/12/2012 01:15	8.946	13/12/2012 15:00	9.001	14/12/2012 04:45	9.051
13/12/2012 01:30	8.946	13/12/2012 15:15	9.001	14/12/2012 05:00	9.056
13/12/2012 01:45	8.951	13/12/2012 15:30	9.006	14/12/2012 05:15	9.055
13/12/2012 02:00	8.949	13/12/2012 15:45	9.009	14/12/2012 05:30	9.057
13/12/2012 02:15	8.950	13/12/2012 16:00	9.010	14/12/2012 05:45	9.058
13/12/2012 02:30	8.950	13/12/2012 16:15	9.007	14/12/2012 06:00	9.055
13/12/2012 02:45	8.955	13/12/2012 16:30	9.007	14/12/2012 06:15	9.061
13/12/2012 03:00	8.957	13/12/2012 16:45	9.006	14/12/2012 06:30	9.058
13/12/2012 03:15	8.955	13/12/2012 17:00	9.007	14/12/2012 06:45	9.062
13/12/2012 03:30	8.958	13/12/2012 17:15	9.006	14/12/2012 07:00	9.063
13/12/2012 03:45	8.958	13/12/2012 17:30	9.007	14/12/2012 07:15	9.066
13/12/2012 04:00	8.956	13/12/2012 17:45	9.004	14/12/2012 07:30	9.067
13/12/2012 04:15	8.961	13/12/2012 18:00	9.010	14/12/2012 07:45	9.067
13/12/2012 04:30	8.956	13/12/2012 18:15	9.017	14/12/2012 08:00	9.072
13/12/2012 04:45	8.960	13/12/2012 18:30	9.019	14/12/2012 08:15	9.076
13/12/2012 05:00	8.960	13/12/2012 18:45	9.022	14/12/2012 08:30	9.079
13/12/2012 05:15	8.959	13/12/2012 19:00	9.025	14/12/2012 08:45	9.081
13/12/2012 05:30	8.963	13/12/2012 19:15	9.024	14/12/2012 09:00	9.083
13/12/2012 05:45	8.968	13/12/2012 19:30	9.030	14/12/2012 09:15	9.087
13/12/2012 06:00	8.969	13/12/2012 19:45	9.031	14/12/2012 09:30	9.086
13/12/2012 06:15	8.969	13/12/2012 20:00	9.030	14/12/2012 09:45	9.092
13/12/2012 06:30	8.969	13/12/2012 20:15	9.033	14/12/2012 10:00	9.094
13/12/2012 06:45	8.972	13/12/2012 20:30	9.034	12/2012 10:15	9.094
13/12/2012 07:00	8.977	13/12/2012 20:45	9.030	0	9.094
13/12/2012 07:15	8.979	13/12/2012 21:00	2.0201	14/12/2012 10:45	9.093
13/12/2012 07:30	8.977	13/12/2012 21:15	30 3029	14/12/2012 11:00	9.093
13/12/2012 07:45	8.980	13/12/2012 21:30	9.029	14/12/2012 11:15	9.099
13/12/2012 08:00	8,978	13/12/2012 21:45	9.035	14/12/2012 11:30	9.099
13/12/2012 08:15	8,980	13/12/2012 22:00	9.036	14/12/2012 11:45	9.101
13/12/2012 08:30	8.983	13/12/2012 22:13	9.037	14/12/2012 12:00	9.091
13/12/2012 08:45	8.987	13/12/2012 22:30	9.036	14/12/2012 12:15	9.097
13/12/2012 09:00	8.988	13/12/2012 22:45	9.035	14/12/2012 12:30	9.090
13/12/2012 09:15	8,990	13/12/2012 23:00	9.038	14/12/2012 12:45	9.075
13/12/2012 09:30	8.994	13/12/2012 23:15	9.038	14/12/2012 13:00	9.075
13/12/2012 09:45	8.993	13/12/2012 23:30	9.039	14/12/2012 13:15	9.073
13/12/2012 10:00	8.992	13/12/2012 23:45	9.042	14/12/2012 13:30	9.076
13/12/2012 10:15	8.995	14/12/2012 00:00	9.041	14/12/2012 13:45	9.070
13/12/2012 10:30	8.997	14/12/2012 00:15	9.044	14/12/2012 14:00	9.127
13/12/2012 10:45	8.998	14/12/2012 00:30	9.044	14/12/2012 14:15	9.150
13/12/2012 11:00	8.999	14/12/2012 00:45	9.046	14/12/2012 14:30	9.113
13/12/2012 11:15	9.005	14/12/2012 01:00	9.046	14/12/2012 14:45	9.112
13/12/2012 11:30	9.000	14/12/2012 01:15	9.044	14/12/2012 15:00	9.118
13/12/2012 11:45	9.002	14/12/2012 01:30	9.048	14/12/2012 15:15	9.109
13/12/2012 12:00	9.002	14/12/2012 01:45	9.044	14/12/2012 15:30	9.115
13/12/2012 12:15	8.994	14/12/2012 01:43	9.044	14/12/2012 15:45	9.119
13/12/2012 12:30	8.994	14/12/2012 02:05	9.044	14/12/2012 16:00	9.116
13/12/2012 12:45	8.999	14/12/2012 02:30	9.043	14/12/2012 16:15	9.118
13/12/2012 13:00	8.997	14/12/2012 02:45	9.047	14/12/2012 16:30	9.120
13/12/2012 13:15	8.999	14/12/2012 03:00	9.047	14/12/2012 16:45	9.122
13/12/2012 13:13	9.000	14/12/2012 03:15	9.050	14/12/2012 17:00	9.122
13/12/2012 13:45	9.004	14/12/2012 03:30	9.050	14/12/2012 17:15	9.122
13/12/2012 13:43		14/12/2012 03:45		14/12/2012 17:30	
13/12/2012 14:00	9.003	14/12/2012 04:00	9.052	14/12/2012 17:45	9.131
13/12/2012 14:13	9.003	14/12/2012 04:00	9.053	14/12/2012 17:45	9.134
	9.002		9.055		9.135
13/12/2012 14:45	9.004	14/12/2012 04:30	9.050	14/12/2012 18:15	9.135

Appendix II MW10 Water Level Data

Gas monitoring re	esuits			
Contract:	Landfill Restoration	Test carried out by:	Irish Drilling Ltd.	
Location:	Newcastle West	Operators:	DF	
Client:	Limerick Co. Council	Date installed:		
Engineer:	Tobin	Date:	07/01/2013	

\\ \(\) \(DULA	DILO	DILLO	DILLO	511.40		
Well/borehole	BH 1	BH 2	BH 3	BH 9	BH 10	BH 10	
Date:	03/12/2012	03/12/2012	03/12/2012		04/12/2012	06/12/2012	
Methane (CH4), %	58.8	40.6	38.5				
Carbon dioxide (C02), %	33.10	24.00	12.70				
Oxygen (O2), %	0.0	0.3	1.7				
Atmospheric pressure, mb	1000	1000	1001				
Hex, %	0.66	0.54	0.52				
HydrogenSulphide(H2S),ppm	-10.00	0.00	-10.00				
CarbonMonoxide(CO),ppm	0.00	-1.00	11.00				
Water Level (m)					7.60	7.80	
Well/borehole	BH 1	BH 2	BH 3	BH 9	BH 10		
Date:	04/12/2012	04/12/2012	04/12/2012				
Methane (CH4), %	59.7	56.6	40.7				
Carbon dioxide (C02), %	33.50	28.20	12.60				
Oxygen (O2), %	0.0	0.5	1.0				
Atmospheric pressure, mb	999	999	998				
Hex, %	0.66	0.65	0.53				
HydrogenSulphide(H2S),ppm	-10.00	-10.00	-10.00		2.1		
CarbonMonoxide(CO),ppm	1.00	-1.00	8.00		* 1150°		
Water Level (m)					ather		
•				14.	M		
Well/borehole	BH 1	BH 2	BH 3* 05/12/2012 N/A N/A N/A N/A N/A N/A N/A N/	BH9 o	BH 10		
Date:	05/12/2012	05/12/2012	05/12/2012	2005 red			•
Methane (CH4), %	58.7	62.9	N/A	Drift Chir			
Carbon dioxide (C02), %	34.70	29.60	N/A jos	eti			
Oxygen (O2), %	-0.7	-0.6	NASC. CA.	V			
Atmospheric pressure, mb	1011	1010	NAN				
Hex, %	0.65	0.67	₹° NYA				
HydrogenSulphide(H2S),ppm	-10.00	-10.00	K CONNA				
CarbonMonoxide(CO),ppm	0.00	0.00 👌	N/A				
Water Level (m)		Courser	N/A N/A N/A				

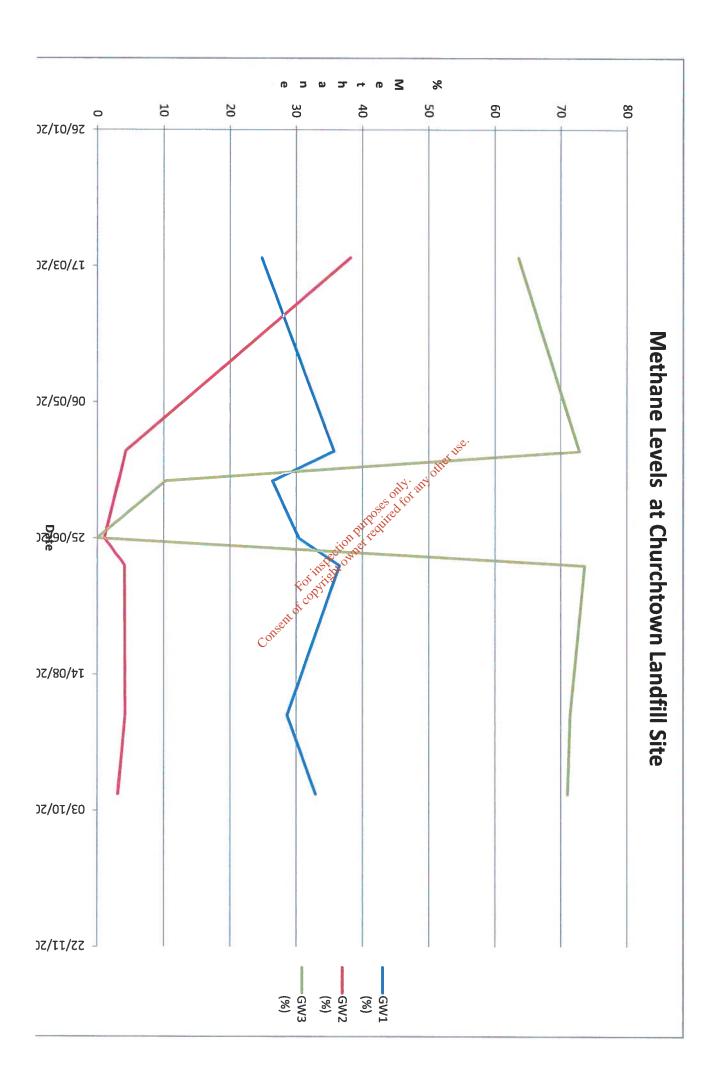
^{*} Remarks: Gas tap open on inspection.

Well/borehole	BH 1	BH 2	BH 3	BH 9	BH 10
Date:	06/12/2012	06/12/2012	06/12/2012		
Methane (CH4), %	55.7	63.6	11.1		
Carbon dioxide (C02), %	34.10	29.50	11.40		
Oxygen (O2), %	0.0	0.0	7.8		
Atmospheric pressure, mb	999	998	998		
Hex, %	0.64	0.69	0.28		
HydrogenSulphide(H2S),ppm	0.00	0.00	0.00		
CarbonMonoxide(CO),ppm	-1.00	1.00	77.00		
Water Level (m)					

Well/borehole	BH 1	BH 2	BH 3	BH 9	BH 10	
Date:	07/12/2012	07/12/2012	07/12/2012			
Methane (CH4), %	55.9	56.4	16.7			
Carbon dioxide (C02), %	31.80	26.20	12.40			
Oxygen (O2), %	0.0	1.3	5.3			
Atmospheric pressure, mb	1008	1008	1009			
Hex, %	0.64	0.64	0.34			
HydrogenSulphide(H2S),ppm	-10.00	-10.00	0.00			
CarbonMonoxide(CO),ppm	0.00	0.00	72.00			
Water Level (m)						
Well/borehole	BH 1	BH 2	BH 3	BH 9	BH 10	
Date:	10/12/2012	10/12/2012	10/12/2012			
Methane (CH4), %	52.6	60.4	26.8			
Carbon dioxide (C02), %	30.60	31.20	12.30			
Oxygen (O2), %	0.0	0.2	1.7			
Atmospheric pressure, mb	1019	1019	1019			
Hex, % '	0.53	0.67	0.43			
HydrogenSulphide(H2S),ppm	-10.00	-10.00	-10.00			
CarbonMonoxide(CO),ppm	0.00	-1.00	36.00			
Water Level (m)						
Well/borehole	BH 1	BH 2	BH 3	BH 9	BH 10	
Well/borehole Date:	BH 1 11/12/2012	BH 2 11/12/2012	BH 3 11/12/2012	BH 9	BH 10	
			11/12/2012			
Date:	11/12/2012	11/12/2012	11/12/2012			
Date: Methane (CH4), %	11/12/2012 49.8	11/12/2012 61.5	11/12/2012			
Date: Methane (CH4), % Carbon dioxide (C02), %	11/12/2012 49.8 32.80	11/12/2012 61.5 30.70	11/12/2012			
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), %	11/12/2012 49.8 32.80 0.0	11/12/2012 61.5 · 30.70 0.0	11/12/2012			
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb	11/12/2012 49.8 32.80 0.0 1019	11/12/2012 61.5 · 30.70 0.0 1019	11/12/2012			
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, %	11/12/2012 49.8 32.80 0.0 1019 0.60	11/12/2012 61.5 · 30.70 0.0 1019 0.67	11/12/2012			
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, % HydrogenSulphide(H2S),ppm	11/12/2012 49.8 32.80 0.0 1019 0.60 -10.00	11/12/2012 61.5 · 30.70 0.0 1019 0.67 -10.00	11/12/2012			
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, % HydrogenSulphide(H2S),ppm CarbonMonoxide(CO),ppm	11/12/2012 49.8 32.80 0.0 1019 0.60 -10.00	11/12/2012 61.5 · 30.70 0.0 1019 0.67 -10.00	11/12/2012			
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, % HydrogenSulphide(H2S),ppm CarbonMonoxide(CO),ppm Water Level (m)	11/12/2012 49.8 32.80 0.0 1019 0.60 -10.00 0.00	11/12/2012 61.5 · 30.70 0.0 1019 0.67 -10.00 -1.00	11/12/2012			
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, % HydrogenSulphide(H2S),ppm CarbonMonoxide(CO),ppm Water Level (m) Well/borehole	11/12/2012 49.8 32.80 0.0 1019 0.60 -10.00 0.00	11/12/2012 61.5 . 30.70 0.0 1019 0.67 -10.00 -1.00 BH 2	11/12/2012 29.7 12.70 0.7 1019 0.45 -10.00 29.00 BH 3101			
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, % HydrogenSulphide(H2S),ppm CarbonMonoxide(CO),ppm Water Level (m) Well/borehole Date:	11/12/2012 49.8 32.80 0.0 1019 0.60 -10.00 0.00 BH 1*	11/12/2012 61.5 . 30.70 0.0 1019 0.67 -10.00 -1.00 BH 2	11/12/2012 29.7 12.70 0.7 1019 0.45 -10.00 29.00 BH 3101	difference of the second of th		
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, % HydrogenSulphide(H2S),ppm CarbonMonoxide(CO),ppm Water Level (m) Well/borehole Date: Methane (CH4), %	11/12/2012 49.8 32.80 0.0 1019 0.60 -10.00 0.00 BH 1*	11/12/2012 61.5 · 30.70 0.0 1019 0.67 -10.00 -1.00 BH 2 17/12/2012 60.8 27.90	11/12/2012 29.7 12.70 0.7 1019 0.45 -10.00 29.00 BH 3101 17/15/2012	Duffer BH 9 17/12/2012 0.0		
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, % HydrogenSulphide(H2S),ppm CarbonMonoxide(CO),ppm Water Level (m) Well/borehole Date: Methane (CH4), % Carbon dioxide (C02), %	11/12/2012 49.8 32.80 0.0 1019 0.60 -10.00 0.00 BH 1* 17/12/2012 N/A N/A	11/12/2012 61.5 30.70 0.0 1019 0.67 -10.00 -1.00 BH 2 17/12/2012 60.8 27.90 0.0	11/12/2012 29.7 12.70 0.7 1019 0.45 -10.00 29.00 BH 3101 17/15/2012	puttoses only of a puttoses on the one of th		
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, % HydrogenSulphide(H2S),ppm CarbonMonoxide(CO),ppm Water Level (m) Well/borehole Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), %	11/12/2012 49.8 32.80 0.0 1019 0.60 -10.00 0.00 BH 1* 17/12/2012 N/A N/A	11/12/2012 61.5 . 30.70 0.0 1019 0.67 -10.00 -1.00 BH 2 17/12/2012 60.8 27.90	11/12/2012 29.7 12.70 0.7 1019 0.45 -10.00 29.00 BH 3101 17/15/2012	Duffer on Market of the State o		
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, % HydrogenSulphide(H2S),ppm CarbonMonoxide(CO),ppm Water Level (m) Well/borehole Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb	11/12/2012 49.8 32.80 0.0 1019 0.60 -10.00 0.00 BH 1* 17/12/2012 N/A N/A N/A	11/12/2012 61.5 30.70 0.0 1019 0.67 -10.00 -1.00 BH 2 17/12/2012 60.8 27.90 0.0	11/12/2012 29.7 12.70 0.7 1019 0.45 -10.00 29.00 BH 3101 17/15/2012 10 15.1	Dutte BH 9 17/12/2012 0.0 2.00 14.8 990		
Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, % HydrogenSulphide(H2S),ppm CarbonMonoxide(CO),ppm Water Level (m) Well/borehole Date: Methane (CH4), % Carbon dioxide (C02), % Oxygen (O2), % Atmospheric pressure, mb Hex, %	11/12/2012 49.8 32.80 0.0 1019 0.60 -10.00 0.00 BH 1* 17/12/2012 N/A N/A N/A N/A	11/12/2012 61.5 . 30.70 0.0 1019 0.67 -10.00 -1.00 BH 2 17/12/2012 60.8 27.90 0.0	11/12/2012 29.7 12.70 0.7 1019 0.45 -10.00 29.00 BH 3101 17/12/2012 17/12/2012 10/18/2012	the BH 9 17/12/2012 0.0 2.00 14.8 990 0.01		

^{*} Remarks: Gas tap open on inspection.

Notes:


Gas levels are % gas and have $\ \underline{not}$ been converted to % L.E.L.

Tests carried out with G435 - Infra-red Gas Analyser

Water levels are recorded as depth to top of water from ground level.

Appendix 5 Gas Monitoring Boreholes

Consent of copyright owner reduced for any other use.

				0	
Facility Ad	dress:				
Churchtow					
Newcastie	West				
Date of Sar	npling: 14,	/03/13			Time of Sampling: 12:45
Date next f	ull calibara	ation: 28/	03/14		
Last Field c	alibration:	19/04/13	<u>س</u>		
Weather: 0)vercast ar	nd dry eas	sterly bree	ze	Barometric Pressure
		othe	3		1011 steady
			of all		Moss Tomporature
			gired f		9 deg
			Results	Wilet	
CH ₄	CO ₂	02	Diff. P (mbar)	of VIII	Comments
24.8	18.2	7.9	Nii	Nil	Nil nowhern borehole
38.2	26.2	0.2	Nil	Nil	ර්
63.6	17.0	0.6	Nil	Nil	Nil southern borehole
sure betwe	en atmosp	heric and	borehole I	oressure w	as measured as nil at all three borehole locations.
	Facility Add. Churchtow Newcastle Date of Sal Date next 1 Last Field c CH ₄ CH ₄ 38.2 38.2 63.6 63.6 sure betwe	Facility Address: Churchtown Newcastle West Date of Sampling: 14, Date next full calibaration: Last Field calibration: Weather: Overcast ar CH4 CO2 CH4 CO2 38.2 26.2 38.2 26.2 38.2 26.2 38.6 17.0 63.6 17.0 ssure between atmosp	Churchtown Newcastle West Date of Sampling: 14/03/13 Date next full calibaration: 19/04/13 Last Field calibration: 19/04/13 Weather: Overcast and dry, early and an arrow and arrow arrow and arrow and arrow arrow and arrow and arrow and arrow arrow and arrow and arrow and arrow and arrow arrow arrow arrow arrow arrow and arrow	Churchtown Newcastle West Date of Sampling: 14/03/13 Date next full calibaration: 28/03/14 Last Field calibration: 19/04/13 Weather: Overcast and dray easterly bree Results (mbar) CH ₄ CO ₂ O ₂ Diff. P (mbar) 38.2 26.2 O.2 Nil 63.6 17.0 O.6 Nil Sure between atmospheric and borehole	terly breeze terly breeze Results in the property of the pro

		The second distriction in	
Date of Sampling: 24/05/13			Time of Sampling: 14:00
tion:28/0)3/14		
Last Field calibration:19/04/13			
ny&			Barometric Pressure
other			1014 steady
.1	r and		Mean Temperature
	ited f		12 deg
	Results	iner,	
02	Diff. P (mbar)	Row hr	Comments
1.3	Nil	N:	NO NO
15.9	Nil	IIN	Colli
16.4	Nil	Nil	Nil southern borehole
	Facility Address: Churchtown Newcastle West Date of Sampling: 24/05/13 Date next full calibaration:19/04/13 Last Field calibration:19/04/13 Weather: dry and sunny	Facility Address: Churchtown Newcastle West Date of Sampling: 24/05/13 Date next full calibaration:19/04/13 Last Field calibration:19/04/13 Weather: dry and sunnyr the	28/03/14 28/03/14 1/13 Resultstructure (mbar) 1.3 Nil 1.3 Nil 1.3 Nil 6.4 Nil 6.4 Nil

	Facility Address:	dress:		7:		
Facility Name: Churchtown	Churchtown	'n				
EPA REF: SS-02465	Newcastle West	West				
	Date of Sa	Date of Sampling: 25/06/13	5/06/13	:		Time of Sampling: 14:30
Instrument Used:	Date next	Date next full calibaration:	ration: 28	28/03/14		
	Last Field	Last Field calibration: 19/04/13	1: 19/04/1	13		
Monitoring Personnel:	Weather: Dry, SW wind the	Dry, SW w	other use.			Barometric Pressure 1030 rising
			۷٠ ৯	otal		Moon Tomporature
Limerick Co Council	-			oses on a supplied		15 deg
				Results	Owner	
Sample Station Number	CH ₄	CO ₂	02	Diff. P	Flow of Whight	Comments
GW1	30.4	22.9	2.1	N:	Nil	Nil porthern borehole
GW2	1.1	2.5	18.2	Ni	N:	Con
GW3	0.0	19.6	1.6	Z	N:I	Nil southern borehole

		Histo	oric Land	fill Gas M	Historic Landfill Gas Monitoring Form	Form
Facility Name: Churchtown	Facility Address:	Idress:				
EPA REF: SS-02465	Newcastle West	West				
	Date of Sa	Date of Sampling: 05/07/13	5/07/13	ļ		Time of Sampling: 12:00
Instrument Used:	Date next	Date next full calibaration: 28/03/14	ration: 28	/03/14		
GFM Series	Last Field	Last Field calibration: 19/04/13	19/04/1	ω		
Monitoring Personnel: Barry Murphy	Weather:	Weather: Warm dry and overcast	and over	cast		Barometric Pressure 1028 falling
Exec Engineer				oth		Mean Temperature
Limerick Co Council				id, sa	, '	19 deg
				Results	osere equire	
Sample Station Number	CH ₄	CO ₂	02	Diff. P	Flow Put	O ₂ Diff. P Flower to Comments
GW1	36.5	23.6	0.0	Ni Ni	I N	northern borehole
GW2	4.1	5.7	14.6	Nii	Nil	र्व इ.ट.
GW3	73.6	16.9	0.6	Nil	l Nii	Nil southern orehole
						Co
			ļ			
General Comment: The differnetial pressure between atmospheric and borehole pressure was measured	essure betwo	en atmosp	heric and	horehole	Procelle W	
					בו משמו כי איי	as measured as ini at all tillee polenole locations.

Facility Name: Churchtown
Nawcastle West
Date of Sampling: 29/08/13 Time of Sampling: 16:00
Date next full calibaration:
GFM Series Last Field calibration:
ersonnel: Weather: Warm dr
Limerick CO Council 17 deg
Results
Sample Station Number CH_4 CO_2 O_2 (Pa) $(II/hrbit)$ Comments
GW1 27.6 20.9 3.5 Nil Nil Nil porthern borehole
GW2 2.8 4.7 15.5 Nil Nil Vii
GW3 71.4 23.3 0.0 10 2.8 southern byrehole

Facility Ac Churchtov Newcastle	ddress: wn West				
Date of Sa	ampling: 2	7/09/13			Time of Sampling: 14:15
Date next	full caliba	ration:28,	/03/14		
Last Field	calibration	1:19/04/1	ω	15	
Weather:	Warm dry	and sunn	ther tisk		Barometric Pressure 1004
			any of		Mean Temperature
			Results	reditive s	
CH ₄	CO ₂	02	Diff. P (Pa)	(I/hr) of where	comments
32.9	23.0	2.0	0	0	0 Korthern borehole
3.1	5.2	15.0		0) You
71.0	23.0	0.0			3.5 southern börehole
	Churchtov Newcastle Date of Si Date next Last Field Weather: CH4 32.9 3.1 71.0	Facility Address: Churchtown Newcastle West Date of Sampling: 2 Date next full caliba Last Field calibration Weather: Warm dry CH ₄ CO ₂ 32.9 23.0 3.1 5.2 71.0 23.0	Facility Address: Churchtown Newcastle West Date of Sampling: 27/09/13 Date next full calibaration:28, Last Field calibration:19/04/1 Weather: Warm dry and sunn CH ₄ CO ₂ O ₂ 32.9 33.1 5.2 15.0 71.0 23.0 0.0	Facility Address: Churchtown Newcastle West Date of Sampling: 27/09/13 Date next full calibaration:28/03/14 Last Field calibration:19/04/13 Weather: Warm dry and sunny Results CH ₄ CO ₂ O ₂ Diff. P CH ₄ CO ₂ O ₂ Diff. P CH ₄ 32.9 23.0 CH ₄ CO ₂ O ₂ CH ₄ CO ₂ O ₃ CH ₄ CO ₂ CH ₄	### ##################################

	חואני	JIIC Fallul	IIII COS INI	Suitoring	
acility Ac	ddress:				
Churchtov	Νn				
Vewcastle	West				
Date of Sa	mpling: 05	9/08/13	·	:	Time of Sampling: 15:00
ate next	full caliba	ration: 28	/03/14		
ast Field.	calibration	າ: 19/04/1	ß		
		·•			
Weather:	Warm dry	and over	cast		Barometric Pressure
		othe	3		1015 steady
			or ar		Mean Temperature
			guited of		18 deg
			Results	SWITC	
CH ₄	CO ₂	02	Diff. P	Flow High	Comments
28.6	21.2	3.3	Z	Ŷ	Nil borthern borehole
4.2	5.7	14.8	Nil	Nil	Cons
4.0	2.0	19.1	Nil	Nil	Nil southern borehole
sure betw	een atmos	spheric and	d borehole	pressure v	was measured as nil at all three borehole locations.
	Churchtov Newcastle Date of Sa Date next Last Field CH4 28.6 4.2 4.0 Ssure betw	Churchtown Newcastle West Date of Sampling: 0: Date next full caliba Last Field calibration CH4 CO2 28.6 21.2 4.2 5.7 4.0 2.0 Sure between atmos	Churchtown Newcastle West Date of Sampling: 09/08/13 Date next full calibaration: 28 Last Field calibration: 19/04/1 CH4 CO2 O2 28.6 21.2 3.3 28.6 21.2 3.3 4.2 5.7 14.8 4.0 2.0 19.1 sure between atmospheric an	Churchtown Newcastle West Date of Sampling: 09/08/13 Last Field calibration: 19/04/13 Weather: Warm dry and overcast Results Results A.2 S.7 14.8 Nil 4.0 2.0 19.1 Nil 9.1	lity Address: rchtown vcastle West e of Sampling: 09/08/13 e next full calibaration: 19/04/13 Field calibration: 19/04/13 ather: Warm dry and overcast Results Res

Appendix 6 VOC Surface Emissions and Flux Box Survey Boreholes

Consent of copyright owner required for any other use.

ODOUR & ENVIRONMENTAL CONSULTANTS

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Mobile: +353 86 8550401 E-mail: info@odourireland.com www.odourireland.com

TOTAL VOLATILE ORGANIC COMPOUND SURFACE EMISSIONS AND FLUX BOX SURVEY FROM CHURCHTOWN LANDFILL SITE, NEWCASTLE WEST, CO. LIMERICK

PERFORMED BY ODOUR MONITORING TRELAND ON BEHALF OF TES

PREPARED BY: Dr. John Casey & Dr. Brian Sheridan

 ATTENTION:
 Mr. John Dillon

 DATE:
 10/06/2013

 REPORT NUMBER:
 2013759

 DOCUMENT VERSION:
 Document Ver. 001

REVIEWERS:

TABLE OF CONTENTS

Section	on	Page number
	E OF CONTENTS	i ii
	ORD SHEET UTIVE SUMMARY	iii iv
1.	Introduction	1
1.1.	Background to work	1
1.2.	Tasks completed during inspection	1
2.	Techniques used	2
2.1	"Odour hog" monitoring within the landfill	2
2.2	Flux chamber survey and sample location selection	2
2.3	Meteorological conditions	3
3.	Results	4
3.1.	Volatile organic compound surface emissions locations identified	l
	within Churchtown landfill site	4
3.2.	Flux chamber survey results	7
3.3.	Close out meeting with landfill manager	9
4.	Close out meeting with landfill manager Conclusions References Appendix I-Volatile organic compound surface emission	10
5.	References	11
6.	Appendix I-Volatile organic compound surface emission	S
	contour maps.	12
7.	Appendix II – Flux chamber monitoring locations	13
	Consent	

DOCUMENT AMENDMENT RECORD

Client: TES

<u>Title:</u> Total volatile organic compound surface emissions and flux box survey from Churchtown Landfill Site, Newcastle West, Co. Limerick

Document for review	11.4.4		Document Reference:		
Doddinont for forfictr	JWC	BAS	JWC	10/06/2013	
Purposo/Description	Originated	Chackad	Authorised	Date	
_	Purpose/Description	Purpose/Description Originated	Purpose/Description Originated Checked	Purpose/Description Originated Checked Authorised	

Executive Summary

Tobin Consulting engineers commissioned Odour Monitoring Ireland to perform a survey of landfill gas surface emissions and a flux box survey at Churchtown Landfill Site, Newcastle West, Co. Limerick.

During the surface emissions survey, the following tasks were performed on site:

- Identify geographically on a site map, the locations of landfill gas surface emissions,
- Perform a landfill gas flux box survey at the site.
- Provide a close out meeting with the management and to notify verbally of the main conclusions of the survey.

Four zones of surface emissions were identified within the landfill site that exceeded recommended levels. These zones are identified geographically on a site map contained in *Appendix I* of this report.

Flux chamber monitoring was carried out at eight distinct locations within the landfill footprint. The survey suggested that locations 1, 2 and 8 were in excess of the recommended guideline surface emission flux levels for such locations.

Gas flow measurements were attempted on GW1, GW2 and GW3. However no adequate measurement was recorded due to absence of sufficient differential pressure.

absence of sufficient differential appropriate of sufficient differential appropriate of the control of the con

1. Introduction

1.1. Background to work

Odour Monitoring Ireland were commissioned by the Tobin Consulting Engineers to perform an Volatile organic compound (VOC) walkover surface emissions survey at Churchtown Landfill Site in order to ascertain location of significant VOC emission points located within the site. In addition a flux box survey was carried out at the site. This report presents a summary of the findings of the site visit to Churchtown Landfill Site, Newcastle West, Co. Limerick. The report is based on the scientific measurements and observations made during a site visit conducted on the 08th May 2013.

1.2. Tasks completed during inspection

The following tasks were completed during the inspection:

- Capping source monitoring using continuous kinematic VOC/GPS system to detect areas of potential landfill gas release/flux;
- Geo-referencing of detected landfill gas flux areas and plotting upon basemap for visual interpretation and remediation;
- Assessment of landfill gas flux utilising flux chamber method;
- Discussion meeting with management once survey was complete in order to communicate main surface emissions areas.

 The communicate main surface emissions areas.

2. Techniques used

This section describes the techniques used throughout the study.

2.1. "Odour hog" monitoring within the landfill

The "Odour hog" VOC analyser is a portable, intrinsically safe, survey VOC dual monitor, which provides fast and accurate readings of organic and inorganic vapours. A Photo ionisation detector (PID) uses an Ultraviolet (UV) light source (photo) to ionise a gas sample and detect its concentration. Ionisation occurs when a molecule absorbs the high energy UV light, ejecting a negatively charged electron and forming of positively charged molecular ion. The gas becomes electrically charged. These charged particles produce a current that is easily measured at the sensor electrodes. Only a small fraction of the VOC molecules are ionised. A PID does not respond to methane. A FID is similar to a flame thermocouple detector, but measures the ions from the flame instead of the heat generated. The FID detects the methane fraction, which provides greater sensitivity in terms of methane leakage detection but not necessarily odour hence why the PID data is also interpreted. Both sensors were calibrated using NPL gravimetrically filled certified reference material isobutylene and methane.

Using the continuous kinematic "Odour hog" with integrated GPS, the capping of the landfill was surveyed for potential leakage areas. Those areas identified were geo-referenced and highlighted for remediation. This technique is useful for comparison in leakage area within the same landfill site on different surveys but is not for cross comparison of VOC leakage between different landfills due to a number of factors including, mass flow of VOC on the day of measurement, relative odourous nature of the detected compounds within individual facilities, etc.

In terms of surface emissions and based on best international guidance, efforts should be made to attain surface emissions <100 permy from open surfaces and <500 ppmv around features such as vertical wells, leachate collection sumps, leachate slope risers and other protrusions into the waste body (Caseveta), 2008).

2.2 Flux chamber survey and sample location selection

A dynamic surface emissions isolation flux chamber designed and operated in accordance with Environment Agency guidelines (LFTGN07) was utilised to perform flux emission measurements for volatile organic compounds at pre-selected locations within the landfill. A total of 8 locations were chosen. The flux chamber is used to isolate a known surface area for emissions measurement. The flux chamber was operated in accordance LFTGN 07 guidelines. The concentration of the exhaust gas was measured at the chamber outlet for VOCs with a FID.

The number of flux survey locations were chosen by the client Tobin Consulting Engineers. The locations of the flux measurements were chosen by Odour Monitoring Ireland.

2.3. Meteorological conditions

Table 2.1 illustrates the predominant meteorological conditions throughout the monitoring exercise. The meteorological conditions were characterised for the day of monitoring and were as follows:

Table 2.1. Meteorological conditions during surface emissions survey.

08	0/05/2013
Average wind speed 4 m s ⁻¹	Wind direction South Westerly
Dry weather	Start of survey - 1006 mbar Finish of survey – 1006 mbar
Temperature 12 °C	Capping moisture content high

During the surface emissions survey and gas field survey, wind direction deviated from the south. Capping moisture content was high, moisture has the effect of causing retention of landfill gas in the landfill cover material. Water has the effect of increasing the gas retention in the cell because cover material porosity is decreased and therefore the surface emissions of gas are restricted somewhat from the landfill cap.

3. Results

3.1. Volatile organic compound surface emissions locations identified within Churchtown landfill site

Figure 6.1 and Table 3.1 illustrates the results obtained for the capping surface emissions survey. A total of 5 individual surface emissions zones were identified. Each surface emissions zone is discussed separately.

Table 3.1. Capping VOC surface emissions locations results with source identities correlating with *Figure 6.1* (see Appendix I).

Location	Easting (m)	Northing (m)	Max VOC conc. (ppm)	Identification and Mitigation	Recommended limits
C1	127385	134567	62	Discrete Feature: Open area and Vertical Borehole	<500 ppmv (Not over trigger level)
C2	127496	134645	684	Discrete Feature: Vertical Borehole (GW1). Only at the top of the borehole.	<500 ppmv
C3	127535	134618	129	Discrete Location: Area in field beside Sheehan's	<100 ppmv
C4	127534	134583	634	Discrete Location: Area in McCoy's garden.	<100 ppmv
C5	127517	134540	4,406	Discrete Feature: Vertical Borehole (GW3). Only at the top of the borehole.	<500 ppmv

Five sources of landfill gas surface emissions were identified within the landfill (see Figures 6.1 and Table 3.1). The area surveyed is identified on Figure 7.2. Surface emissions locations C1 to C5 are landfill gas surface emissions from open areas within and in the vicinity of the landfill footprint.

Consent of copyright owner required for any other use.

3.2. Flux chamber survey results

The results of the flux chamber monitoring with FID carried out at 8 individual monitoring locations is presented in *Table 3.2*. The visual location of each monitoring location is presented in *Figure 7.1*.

Table 3.2. Flux chamber monitoring results for Churchtown landfill.

Location identity	Source specific surface emissions conc. max (ppmv)	X grid coordinate (m)	Y grid coordinate (m)	Area of flux (m²)	Flux value (mg/m²/s)	Guideline limit values for similar zones (LFTGN 07)	Compliance (Yes/No)
1	34	127534	134576	0.015	0.07	<0.0010	No
2	634	127533	134586	0.015	12.94	<0.0010	No
3	0.5	127486	134574	0,075 itel	0.0006	<0.0010	Yes
4	0.5	127417	134573	100 0015	0.0008	<0.0010	Yes
5	0.4	127416	134630	0.015	0.0008	<0.0010	Yes
6	0.44	127484	134645	0.015	0.0009	<0.0010	Yes
7	0.5	127498	134616	0.015	0.0008	<0.0010	Yes
8	120	127536	134618	0.015	0.13	<0.0010	No

As can be observed in *Table 3.2*, the flux of Total VOC's as methane was monitored at eight locations. The Total VOC's as methane flux from the permanently capped area at locations 3 to 7 were below the recommended flux limit of $0.0010 \text{ mg/m}^2/\text{s}$. Locations 1 ,2 and 8 (See Figure 7.1 and Table 3.2) were in excess of the recommended surface flux limit of $0.0010 \text{ mg/m}^2/\text{s}$.

Gas flow measurements were attempted on GW1, GW2 and GW3. However no adequate measurement was recorded due to absence of sufficient differential pressure.

Consent of copyright owner required for any other tree.

3.3. Close out meeting

Following completion of the surface emissions and flux box survey, the surface emissions team and landfill management team discussed all aspects and general conclusions of the survey.

Consent of copyright owner required for any other use.

4. Conclusions

The surface emissions contour map generated from the kinematic Volatile organic compound (VOC) survey illustrated 5 separate surface areas of landfill gas surface emissions within the site. A number of key issues requiring immediate attention were also identified from the survey of the landfill gas management system.

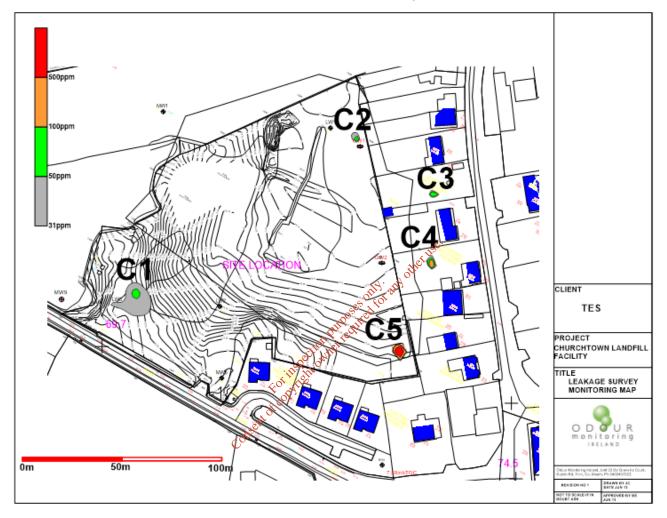
The main conclusions of the survey included the following:

- 1. Five sources of landfill gas surface emissions were identified within the landfill (see Figures 6.1 and Table 3.1). Surface emissions at four of the locations were over the recommended trigger levels.
- 2. Flux chamber monitoring was carried out at 8 distinct locations within the landfill footprint. The survey suggested that locations 1, 2 and 8 were in excess of the recommended guideline surface emission flux levels for such locations.

5. References

1. Casey, J.W., Sheridan, B.A., Henry, M., Reynolds, K., (2008). Effective tools for managing odours from landfill facilities. International Conference on Environmental Odour Monitoring and Control, Rome, Italy, July 6-8, 2008.

2. LFTGN07. "Guidance on Monitoring landfill gas surface emissions" LFTGN 07, Environment Agency 2004.



6. Appendix I - Volatile organic compound surface emissions contour maps.

Figure 6.1. Landfill gas surface emissions monitoring within the landfill site (colour scale area indicating TVOC gas colour scale).

Consent of copyright owner required for any other use.

7. Appendix II – Flux chamber monitoring locations

Figure 7.1. Flux chamber monitoring locations in Churchtown landfill site.

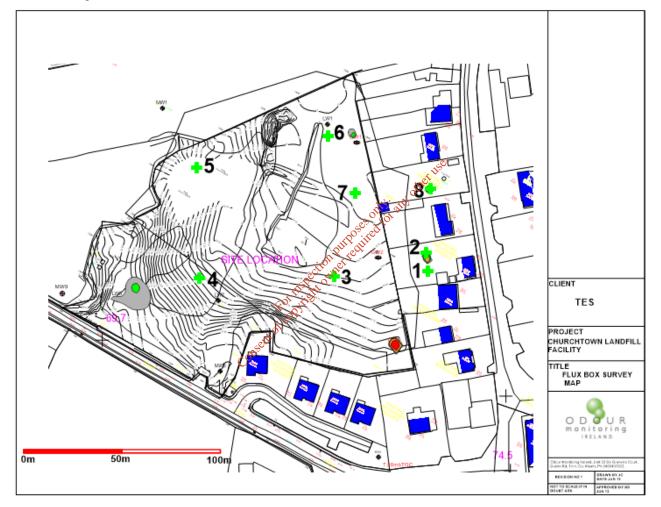
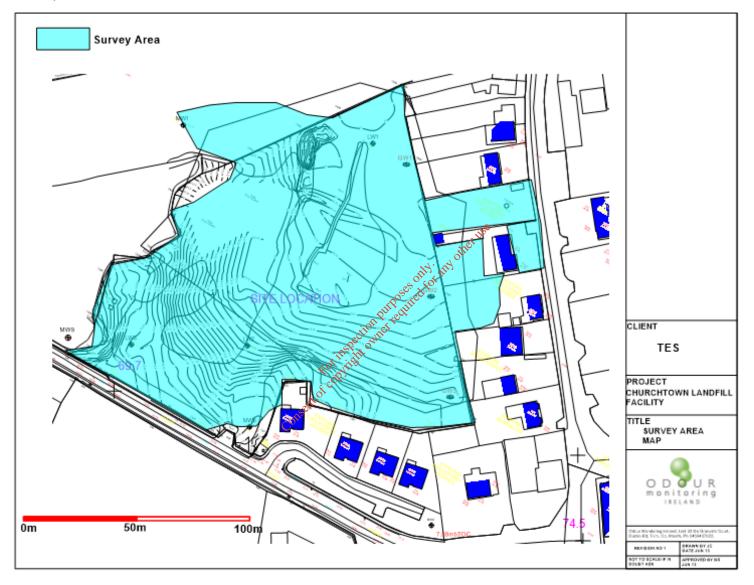



Figure 7.2. Area surveyed at the Churchtown landfill site.

Appendix 7

VOC Monitoring Adjacent to Old Landfill Site

VOC MONITORING ADJACENT TO AN OLD **LANDFILL SITE IN NEWCASTLE WEST, CO. LIMERICK**

The Tecpro Building, Clonshaugh Business & Technology Park, Dublin 17, Ireland.

T: + 353 1 847 4220 F: + 353 1 847 4257 E: info@awnconsulting.com W: www.awnconsulting.com

Technical Report Prepared For

Rection that required for any other use. John Dillon, **Tobin Consulting Engineers,** Block 10-4, Blanchardstown Corporate Park, Dublin 15.

Technical Report Prepared By

Sean McMahon BSc. MSc.

Our Reference

SM/13/6663AR01

Date Of Issue

26 July 2013

Cork Office

Unit 5, ATS Building, Carrigaline Industrial Estate, Carrigaline, Co. Cork.

T: +353 21 438 7400 F: +353 21 483 4606

AWN Consulting Limited Registered in Ireland No. 319812 Directors: F Callaghan, C Dilworth, T Donnelly, E Porter Associate Director: D Kelly

Document History

Document Reference		Original Issue Date		
13_6663AR01		26/07/13		
Revision Level	Revision Date	Description	Sections Affected	

Record of Approval

Details	Written by	Approved by
Signature	Jeun Mahor	of out diseased Vorter
Name	Sean McMahon	Dr. Edward Porter
Title	Environmental Consultant	Director
Date	26/07/13 £ 05 1 11	26/07/13

EXECUTIVE SUMMARY

AWN Consulting was commissioned by John Dillon of Tobin Consulting Engineers to carry out volatile organic compounds (VOCs) monitoring at five locations adjacent to an old landfill in Newcastle West, Co. Limerick. Active monitoring over a 2 hour period was carried out at each location and passive monitoring over a 30 day period was carried out at three of the five locations.

Council Directive 2008/50/EC has set a benzene ambient air quality standard of 5 $\mu g/m^3$ as an annual mean. Benzene concentrations over the 30 day sampling period were found to exceed this annual mean ambient air quality standard at Location 1 and Location 2. The concentration of benzene at Location 1 was 60 $\mu g/m^3$ which is 1200% of the ambient mean air quality standard. The concentration of benzene at Location 2 was 5.9 $\mu g/m^3$ which 118% of the ambient mean air quality standard. Extended monitoring over a longer period would be required in order to determine compliance with the annual mean air quality standard for benzene at both Location 1 and Location 2.

With regards to all other VOCs assessed and all other sampling locations, measured levels of VOCs were below the respective Environmental Assessment Levels over both the short-term and long-term sampling periods.

**The contract of the co

	CONTENTS	Page
	Executive Summary	3
1.0	Introduction	5
2.0	Sampling Details	5
3.0	Monitoring Methodology	6
	3.1 VOCs	6
4.0	Results	7
	4.1 VOCs Passive Monitoring	_{Ji} se. 7
	4.2 VOCs Active Monitoring	y other 9
5.0	Discussion	11
6.0	A.1 VOCs Passive Monitoring 4.2 VOCs Active Monitoring Discussion Conclusions Table 1 Tables 2-5 Appendix 1 Appendix 2 Consent of Conse	11
	Table 1 : the petit of the state of the stat	5
	Tables 2-5	8-9
	Appendix 1	11
	Appendix 2	12
	Appendix 3	16

Ç

1.0 INTRODUCTION

AWN Consulting were commissioned by John Dillon of Tobin Consulting Engineers to carry out VOC monitoring at five locations adjacent to an old landfill site in Newcastle West, Co. Limerick. Active monitoring over a 2 hour period was carried out at each location and passive monitoring over a 30 day period was carried out at three of the locations. Active monitoring was carried out on the 04/06/13 and passive monitoring was conducted between 04/06/13 – 04/07/13.

2.0 SAMPLING DETAILS

A survey for VOCs was carried out over a 30-day period at three locations adjacent to the old landfill site (locations 1-3), each of these locations were on residential property. Active monitoring was conducted over a two-hour period from approximately 1pm to 3pm at locations 1 -3. Passive monitoring was also undertaken at locations 1-3 and at two additional locations (locations 4-5) which were adjacent to two gas wells on the old landfill site. A map of the monitoring locations is shown in Figure 1. Details of the monitoring locations is outlined in Table 1.

Sampling Location	Details
Location 1	Garage on property of Paddy McCoy
Location 2	Garage on property of Gerry Sheehan
Location 3	Foinavon House
Location 4	Gas Well 1 (GW01)
Location 5	Gas Well 2 (GW02)

Table 1 Details of Monitoring Locations

Ç

3.0 MONITORING METHODOLOGY

3.1 VOCs

Monitoring for VOCs was carried out based on NIOSH Method 2549. Active sampling was carried out over a 2-hour period on 04/06/13 using SKC universal sampling pumps onto anasorb CSC coconut charcoal tubes at five static locations (locations 1 - 5). Sampling was undertaken at approximately 50 ml/min for 120 minutes giving a total volume sampled of 6 litrers which is the maximum volume outlined in NIOSH method 2549 in order to avoid overload of the adsorbent. These charcoal tubes were analysed at a UKAS accredited laboratory (ESG Laboratories, Staffordshire) using gas chromatography / mass spectrometry (GCMS). Passive Sampling was carried out over a 30-day period between 04/06/13 – 04/07/13 using ATD tubes at three static locations (locations 1-3).

Council Directive 2008/50/EC has set a benzene ambient air quality standard of 5 $\mu g/m^3$ as an annual mean to be complied with in the ambient environment.

However, no statutory air quality standards for the individual organic compounds exist in Irish legislation (except benzene). In the absence of statutory standards, it is common practice to reference other suitable authorities such as the World Health Organisation (WHO) or derive an ambient air quality guideline from occupational exposure limits (OEL).

Although the WHO has ambient air quality quitelines for a small range of volatile organic compounds, guidance has been seved by the UK Environment Agency entitled "IPPC Environmental Assessment and Appraisal of BAT" (Environment Agency, 2003) for an extensive range of organic compounds. The guidance outlines the approach for deriving both short-term and long-term environmental assessment levels (EAL). In relation to the long-term (annual) EAL, this can be derived by applying a factor of 100 to the 8-hour OEL. The factor of 100 allows for both the greater period of exposure and the greater sensitivity of the general population. For short-term (1-hour) exposure, the EAL is derived by applying a factor of 10 to the short term exposure limit (STEL). In this case, only the sensitivity of the general population needs be taken into account as there is no need for additional safety factors in terms of the period of exposure. Where STELs are not listed then a value of 3 times the 8-hour time weighted average occupational exposure limit may be used. No occupational exposure standards can be identified for certain compounds.

Ç

4.0 RESULTS

4.1 VOCs – Passive Monitoring.

Concentrations of a suite of VOCs measured over a 30-day sampling period at three locations between 04/06/13 – 04/07/13 are shown in Table 2 - 4.

The ESG analytical method used to determine ambient VOC levels in air considered a suite of 62 compounds comprising numerous VOCs, halogenated VOCs, alkanes and alkenes. Appendix 2 contains the ESG Laboratory report presenting the laboratory results for the full suite of VOCs considered during the analytical determination.

The long term environment assessment levels (EALs) for air (for the protection of human health) for each compound detected in the VOC suite, as set by the IPPC Horizontal Guidance Note for Environmental Assessment and Appraisal of BAT, are presented in Tables 2 - 4. The majority of the 62 compounds in the suite were not detected (see Appendix 2). A small number of the detected compounds do not have a corresponding long term EAL and thus have been excluded from the results.

21 of the 62 compounds in the VOC suite were detected at Location 1. 16 of the 21 detected VOCs are presented here as there are no established long term EALs for 5 of the VOCs detected at this location. Excluding benzene, the measured concentrations for these compounds were lower than their associated EALs (as shown in Table 2). Of those compounds detected, individual concentrations reached at most 37% of their limit values (for toulene). However, with regards to benzene, the measured concentration for this compound exceeded the ambient air quality standard for benzene, reaching 1200% of the annual limit value.

16 of the 62 compounds in the VOC suite were detected at Location 2. 13 of the 16 detected VOCs are presented here as there are no established long term EALs for 3 of the VOCs detected at this location. Excluding benzene, the measured concentrations for these compounds were lower than their associated EALs (as shown in Table 3). Of those compounds detected, individual concentrations reached at most 5% of their limit values (for toulene). However, with regards to benzene, the measured concentration for this compound exceeded the ambient air quality standard for benzene, reaching 118% of the annual limit value.

17 of the 62 compounds in the VOC suite were detected at Location 3. 13 of the 17 detected VOCs are presented here as there are no established long term EALs for 4 of the VOCs detected at this location. The measured concentrations for these compounds were lower than their associated EALs (as shown in Table 4). Of those compounds detected, individual concentrations reached at most 1% of their limit values (for toulene).

In summary, the results show that at two locations benzene was measured over a 30 day period at an ambient concentration in excess of the annual mean ambient air quality standard for benzene. This occurred at Location 1 and Location 2 where the levels of benzene reached 1200% and 118% respectively of the ambient air quality standard for benzene. Extended monitoring over a longer period would be required in order to determine compliance with the annual mean air quality standard for benzene at both Location 1 and Location 2.

Parameter	Concentration (μg/m³)	Long Term EAL (μg/m³)	Percentage of EAL (%)
Propan-2-ol	3.4	9,990	0.03%
n-Pentane	23.9	30,000	0.08%
n-Hexane	24.5	720	3.4%
n-Heptane	24.9	20,850	0.12%
n-Octane	11.2	14,500	0.08%
n-Nonane	38.5	10,500	0.37%
Dichloromethane	11.4	700	1.6%
Benzene	60.0	5	1200%
Toulene	703.6	1,910	36.8%
Ethylbenzene	82.4	4,410	1.9%
m and p-Xylene	406.4	4,410	9.2%
Styrene	4.5	800	0.57%
o-Xylene	150.5	4,410	3.4%
1,3,5-Trimethylbenzene	19.1	1,250	1.5%
1,2,4-Trimethylbenzene	65.2	,250	5.2%
Naphthalene	4.4	530	0.84%

Table 2 Results of VOC Monitoring at Location of Compounds above detection threshold only).

Parameter	Concentration (µg/m³)	Long Term EAL (µg/m³)	Percentage of EAL (%)
Propan-2-ol	2.4	9,990	0.02%
n-Hexane Consent	7.1	720	0.99%
n-Heptane	3.8	20,850	0.02%
n-Octane	2.4	14,500	0.02%
n-Nonane	2.8	10,500	0.03%
Dichloromethane	7.5	700	1.07%
Benzene	5.9	5	118%
Toulene	86.9	1,910	4.6%
Ethylbenzene	5.2	4,410	0.12%
m and p-Xylene	27.1	4,410	0.61%
o-Xylene	9.0	4,410	0.2%
1,3,5-Trimethylbenzene	0.8	1,250	0.06%
1,2,4-Trimethylbenzene	2.2	1,250	0.18%

Table 3 Results of VOC Monitoring at Location 2 (Compounds above detection threshold only).

Parameter	Concentration (µg/m³)	Long Term EAL (µg/m³)	Percentage of EAL (%)
Propan-2-ol	1.9	9,990	0.02%
n-Hexane	4.3	720	0.6%
n-Heptane	1.0	20,850	0.005%
n-Nonane	2.8	10,500	0.03%
Dichloromethane	5.7	700	0.82%
Toulene	21.3	1,910	1.1%
Ethylbenzene	2.3	4,410	0.05%
m and p-Xylene	11.4	4,410	0.26%
Styrene	0.9	800	0.11%
o-Xylene	4.5	4,410	0.10%
1,3,5-Trimethylbenzene	0.8	1,250	0.06%
1,2,4-Trimethylbenzene	2.6	1,250	0.21%
Naphthalene	1.1	530	0.21%

Table 4 Results of VOC Monitoring at Location 3 (Compounds above detection threshold only).

4.2 VOCs – Active Monitoring

Concentrations of a suite of VOCs measured over a 2-hour sampling period at five locations on the 04/06/13 are shown in Table 5.

The ESG analytical method used to determine ambient VOC and hydrocarbon levels in air aimed to detect the top 20 most abundant analytes present on the tube. Appendix 3 contains the ESG Laboratory report presenting the laboratory results for detection of the top 20 most abundant VOCs present on the charcoal tubes.

The resulting concentrations from each of the sampled locations were all below the limit of detection.

Analytes	Location 1 <u>Front</u> (µg/m³)	Location 1 <u>Back-up</u> (μg/m³)
VOCs	<1225	<1225
	Location 2 Front (µg/m³)	Location 2 <u>Back-up</u> (µg/m³)
VOCs	<758	<758
	Location 3 <u>Front</u> (µg/m³)	Location 3 Back-up (µg/m³)
VOCs	<801	<801
	Location 4 Front (µg/m³)	Location 4 <u>Back-up</u> (µg/m³)
VOCs	<833	<833
_	Location 5 Front (µg/m³)	Location 5 Back-up (µg/m³)
VOCs	<817	<817

Table 5 Results of Active VOC Monitoring at 5 locations

5.0 DISCUSSION

Council Directive 2008/50/EC has set a benzene ambient air quality standard of 5 μg/m³ as an annual mean. Benzene concentrations over the 30 day sampling period were found to exceed this annual mean ambient air quality standard at Location 1 and Location 2. The concentration of benzene at Location 1 was 60 µg/m³ which is 1200% of the ambient mean air quality standard. The concentration of benzene at Location 2 was 5.9 µg/m³ which 118% of the ambient mean air quality standard. Extended monitoring over a longer period would be required in order to determine compliance with the annual mean air quality standard for benzene at both Location 1 and Location 2.

Environmental Assessment Levels (EALs) values have been set for a range of VOC compounds in order to provide a basis for ensuring the protection of human health in the ambient environment. With reference to Appendix D of the IPPC Environmental Assessment and Appraisal of BAT, the appropriate EAL, where available, has been applied for comparison with measured concentrations.

With regards to all other VOCs assessed and all other sampling locations, measured levels of VOCs were below the respective Environmental Assessment Levels over both the short-term and long-term sampling periods.

6.0

CONCLUSIONS

The concentration of benzene at Locations 1 and 2 was in excess of the annual mean ambient mean air quality standard for benzene. Extended monitoring over a longer period would be required in order to determine compliance with the annual mean air quality standard for benzene at both Location 1 and Location 2.

APPENDIX 1

SAMPLING AND ANALYSIS - METHODS AND DETAILS

A.1.1 Location of Sampling

R521 Churchtown Road,

Newcastle West,

Co. Limerick,

A.1.2 Date of Sampling

4th June 2013 – 4th July 2013

A.1.3 Personnel Present During Sampling

Sean McMahon, AWN Consulting

A.1.4 Personnel Involved in Analysis

Sean McMahon, AWN Consulting

Dr. Edward Porter, AWN Consulting

Environmental Scientifics Group Laboratories, Staffordshire

A.1.5 Instrumentation

SKC Universal Sampling Pumps

Multi-bed Sorbent Tubes

Anasorb CSC Coconut Charcoal Tubes

APPENDIX 2 LABORATORY RESULT SHEET (PASSIVE MONITORING)

ANALYSIS OF ATD TUBES FOR VOCs

Client: Sean McMahon

AWN Consulting The Tecpro Building

IDA Business and Technology Park

Clonshaugh Dublin 17

Testing Facility: Environmental Scientifics Group Limited

Specialist Chemistry

Bretby Business Parket Ashby Rd Ashby Rd

Burton-on-Trent and

DE15 0YZ-

Customer Reference: Newcastle West 13/6663

Samples Received: Suly 2013

Sample Conditions Good

Analysis Completed: 12 July 2013

Approved by:

Date: 17 JUL 13

Approver's name: Marya Hubbard

Job Title: Analyst

Report Date: 17 July 2013

Test Report ASC/10885: Page 1 of 4

Introduction

Three ATD tubes were received for the analysis of VOCs. The samples were received in good condition and stored in a solvent free environment prior to analysis.

Laboratory Reference	Customer Reference	Tube ID	Analysis
ASC/10885.001	Paddy McCoy	Mi013263	VOC Suite
ASC/10885.002	Foinavon	Mi149808	VOC Suite
ASC/10885.003	Shed	Mi001705	VOC Suite

Experimental

Standard preparation and sample measurement was carried out according to UKAS accredited method ASC/SOP/210 Issue 2.

The samples were analysed by thermal desorption-gas chromatography-mass spectrometry on a Markes ATD and an Agilent GC-MS.

Before the samples were ran a calibration was generated for the compounds listed in Table 1. This allowed for positive identification and quantification of these compounds.

Please be aware that values close to the limit of detection (say within an order of magnitude) carry a high uncertainty. The everall uncertainty on those results significantly above the LOD, have been calculated to be $\pm 25\%$.

A Quality Control tube with known analyte loading was run with each sequence of samples.

Results

Table 1 shows the results for the amount of VOCs detected on tube (ng) for the samples.

Please note compounds marked with a ~ are not within the scope of our UKAS accreditation. Results which are over calibration range have been marked with a * and should be considered an estimate only. These results are not within the scope of our UKAS accreditation.

Any opinion and interpretation expressed in the report are outside the scope of UKAS accreditation.

Test Report ASC/10885: Page 2 of 4

Table 1 - Amount of VOCs on tube for samples 001-003 (ng)

Compound	ASC/10885.001	ASC/10885.002	ASC/10885.003
Compound	Mi013263	Mi149808	Mi001705
Ethanol	<10	<10	<10
Acetone	<10	<10	<10
Propan-2-ol	110	61	76
n-Propanol	<10	<10	<10
Ethyl Acetate	<10	<10	<10
n-Butanol	45	44	17
n-Pentane	640	<10	<10
n-Hexane	550	97	160
n-Heptane	480	20	74
n-Octane	190	<10	40
n-Nonane	580	42	43
n-Decane	2000*	54 USE	94
~1,1-Dichloroethene~	<10	54 13°C	<10
Dichloromethane	260	21/130	170
~Cis-1,2-dichloroethene~	<10 260 <10 <10 <10 <10 <10 <10 <10 control <10 contro	25° 50° 10	<10
~1,1-Dichloroethane~	<10	10 x10 <10	<10
Trans-1,2-dichloroethene	<10 .012	<10	<10
~Bromochloromethane~	<10 gette with	<10	<10
Chloroform	₹10°. g/t	<10	<10
~2,2-Dichloropropane~	\$ 5.50 K	<10	<10
1,2-Dichloroethane	0<10	<10	<10
1,1,1-Trichloroethane	75 ^{ETT} <10	<10	<10
~1,1-Dichloropropene~	<10	<10	<10
Benzene	520	<10	51
Carbon Tetrachloride	<10	<10	<10
Dibromomethane	<20	<20	<20
1,2-Dichloropropane	<10	<10	<10
Bromodichloromethane	<10	<10	<10
Trichloroethene	<10	<10	<10
Cis-1,3-dichloropropene	<20	<20	<20
~Trans-1,3-dichloropropene~	<10	<10	<10

[~] Indicates compound results not included within UKAS accreditation.
*Results are over calibration and should be considered an estimate. These results are not included within UKAS accreditation.

Test Report ASC/10885: Page 3 of 4

Table 1 cont. - Amount of VOCs on tube for samples 001-003 (ng)

Compound	ASC/10885.001	ASC/10885.002	ASC/10885.003
Compound	Mi013263	Mi149808	Mi001705
1,1,2-Trichloroethane	<10	<10	<10
Toluene	7600*	230	940
1,3-Dichloropropane	<10	<10	<10
Dibromochloromethane	<10	<10	<10
1,2-Dibromoethane	<20	<20	<20
Tetrachloroethene	<10	<10	<10
1,1,1,2-Tetrachloroethane	<10	<10	<10
Chlorobenzene	<10	<10	<10
Ethylbenzene	1500*	42	95
m and p-Xylene	5400*	151	360
Styrene	84	17	<10
o-Xylene	2000*	60 vec.	120
~1,2,3-Trichloropropane~	2000* <10 <10 <30 <10 220 <10 220 <10 20 10 20 40 310	60 1158.	<10
Isopropylbenzene	<10	35<10	<10
Bromobenzene	<30	es 0 10 30	<30
2-Chlorotoluene	<10	20 ited <10	<10
n-Propylbenzene	220 01 7	رو ⁰⁰ 13	11
4-Chlorotoluene	<10 ctioning	<10	<10
1,3,5-Trimethylbenzene	410 and	17	17
tert-butylbenzene	\$500 TO	<10	<10
1,2,4-Trimethylbenzene	\$1400* \$1400* \$20	56	48
1,3-Dichlorobenzene	75ETT <20	<20	<20
1,4-Dichlorobenzene	<20	<20	<20
~sec-Butylbenzene~	44	<10	<10
p-Isopropyltoluene	44	12	<10
1,2-Dichlorobenzene	<20	<20	<20
n-Butylbenzene	<10	<10	<10
~1,2,4-Trichlorobenzene~	<20	<20	<20
Naphthalene	67	17	<10
~1,2,3-Trichlorobenzene~	<20	<20	<20
~Hexachlorobutadiene~	<20	<20	<20

[~] Indicates compound results not included within UKAS accreditation.
* Results are over calibration and should be considered an estimate. These results are not included within UKAS accreditation.

Test Report ASC/10885: Page 4 of 4

APPENDIX 3 LABORATORY RESULT SHEET (ACTIVE MONITORING)

Analysis of Charcoal Sorbent Tubes for Volatile Organic Compounds

Customer: Sean McMahon

AWN Consulting The Tecpro Building

Clonshaugh Business and Technology Park

Dublin 17 Ireland

Testing Facility: Environmental Scientifics Group Limited

Specialist Chemistry

Etwall House Bretby Business Park Ashby Road of Trent

Staffordshipe DE15.0YZ

Laboratory Reference: XSC/10908

Customer Reference: 13/6663 PO 248

Sample Received: 8th July 2013

Analysis Completed: 14th July 2013

Approved by:

Approver's name: Paul Walker

Job Title: Organic Team Leader

Report Date: 17th July 2013

Test Report: ASC/10908: Page 1 of 3

Introduction

Five charcoal sorbent tubes were received requiring analysis for Volatile Organic Compounds (VOCs).

The tubes were received in good condition and were logged into our system upon receipt.

Samples Received

O/R	Y/R	Sample Description
ASC/10908.001	4504616779	Charcoal Sorbent Tube
ASC/10908.002	4504616776	Charcoal Sorbent Tube
ASC/10908.003	4504616780	Charcoal Sorbent Tube
ASC/10908.004	4504616778	Charcoal Sorbent Tube
ASC/10908.005	4504616774	Charcoal Sorbent Tube

Experimental

The samples were desorbed in Carbon Disulphide (CS₂) and analysed using Gas Chromatography Mass Spectrometry (GC/MS). The top twenty most abundant analytes were tentatively identified by mass spectral data and semi-quantified against the response of the internal standard (Tetradecane). Our detection limit for unknown compounds is in the region of 5ug/ml per analyte.

Results

The results for the samples are detailed in the following tables.

Test Report: ASC/10908: Page 2 of 3

Results

Analytes	ASC/10908.001 4504616779 <u>Front</u> (ug)	ASC/10908.001 4504616779 <u>Back-up</u> (ug)
VOCs	<5	<5

Analytes	ASC/10908.002 4504616776 <u>Front</u> (ug)	ASC/10908.002 4504616776 <u>Back-up</u> (ug)
VOCs	<5	<5

Analytes	ASC/10908.003 4504616780 Front	Back-up
	(ug)	(ug)
VOCs	<5 of 3 d	<5

Analytes	ASC/0908.004 4504616778 Front	ASC/10908.004 4504616778 Back-up
	(ug)	(ug)
VOCs	<5	<5

Analytes	ASC/10908.005 4504616774 <u>Front</u> (ug)	ASC/10908.005 4504616774 <u>Back-up</u> (ug)
VOCs	<5	<5

Test Report: ASC/10908: Page 3 of 3

Appendix 8

Environmental Assessment of Receiving Waters

Environmental Assessment of receiving waters

For

Churchtown Landfill Site
Newcastle West
Co. Limerick

27th May 2013

Prepared by:

Robert Imbusch

Environment Section

Limerick County Council

Introduction

Limerick County Council intends to apply for a Certification of Authorisation for the historic landfill site located at Churchtown, Newcastlewest, County Limerick in accordance with Waste Management (Certification of Historic Unlicensed Waste Disposal and Recovery Activity) Regulations 2008 (S.I. No. 524 of 2008), As part of this process, Limerick Co Council is required to carry out an environmental assessment of the site in accordance with the EPA Code of Practice: Environmental Risk Assessment for Unregulated Waste Disposal Sites.

There are no direct surface water discharges from the landfill site to any surrounding watercourses. However, in December 2012, Tobin Consulting Engineers carried out a hydrogeological assessment at the site which indicated that the direction of groundwater flow at the site is from the north-east to the south-west in the direction of the River Dooally. The report identified a possible hydraulic groundwater linkage between the site and the River Dooally and that contaminated groundwater from under the landfill site could migrate to the Dooally River.

This report details the results of ecological monitoring carried out on the Dooally River in the vicinity of Churchtown landfill.

The Dooally River is the nearest significant watercourse to the Churchtown landfill site - see Figures 1 and 2. The Dooally River is a tributary of the Deel River and flows 0.5 km to the west of the landfill in a southerly direction. The closest surface water feature to the site is a small drainage channel which flows from a point 450 metres south of the landfill site to the Dooally River, a distance of approximately 500 metres.

Methodology

Since 1971, the EPA has used the Quality Rating System (Q-values) to assess water quality in Irish rivers, primarily on the basis of macroinvertebrate communities in riffle areas of rivers and streams. In the presence of pollution, characteristic and well-documented changes are induced in the flora and fauna of rivers and streams. Particularly well documented are the changes brought about by organic pollution in the macroinvertebrate community, i.e. the immature aquatic stages of aerial insects (mayflies, stoneflies etc.) together with Crustacea (e.g. shrimps), Mollusca (e.g. snails and bivalves), Oligochaeta (worms) and Hirudinea

(leeches). For the purposes of the EPA assessment procedure benthic macroinvertebrates have been divided into five Indicator Groups.

Relationships between water quality and macroinvertebrate community structure are usually described by means of a numerical scale of values. The EPA scheme of Biotic Indices or Quality (Q) Values and its relationship to WFD status is set out in the table.

Q-Value	WFD Status
5,4-5	High
4	Good
3-4	Moderate
3, 2-3	Poor
2, 1-2, 1	Bad

Freshwater benthic macroinvertebrates were sampled at four sampling sites. The location of the sampling sites in relation to the landfill is shown in Figure 2 (see also photos 1-4). Standard two-minute kick samples were taken at each sampling site. The macroinvertebrates were identified on site and the taxa or groups present and relative abundance are shown in Table 1. The invertebrates are grouped according to their sensitivity to organic pollution. A Q-rating and SSRS Score was assigned to each sample (see Table 1). These are biotic indices used to assess the level of pollution and water quality status.

<u>Q-sampling</u> provides a reliable and consistent indication of water quality in rivers and small streams but may be less suitable for small drainage channels which have low, intermittent flows.

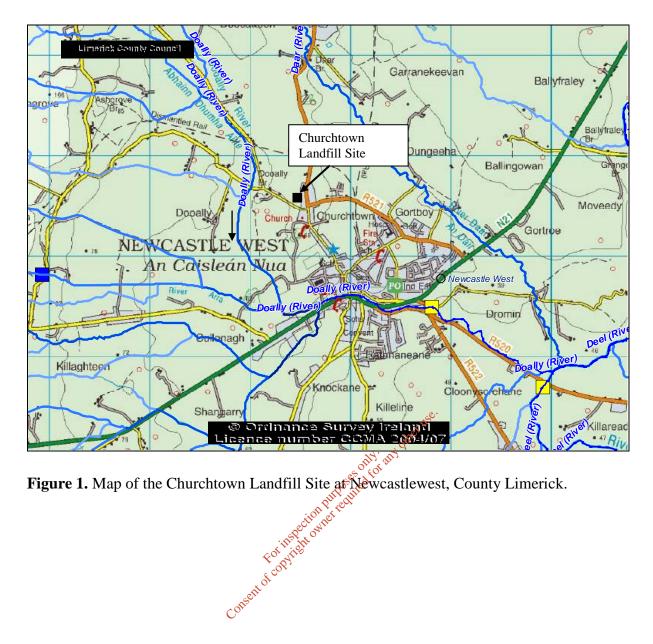
Survey Results

Dooally River Main Channel: The main Dooally River was sampled at three locations-see location map. Site 1 is located upstream of the landfill site, sites 2 and 3 are located upstream and downstream of the confluence of the drainage channel with the main channel. All three samples were indicative of a Q4 or unpolluted status. There was no deterioration in water quality up and downstream of the landfill site.

Drainage Channel The landfill drain was sampled close to its conference with the Dooally River at Site 4 (Photo 4). Only pollution tolerant invertebrates were present in the sample giving a Q1-2 rating (see Table 1). There were no other indications of the presence of organic

pollution, such as algae or sewage fungus which would normally be associated with a sample of invertebrates such as this. Dissolved oxygen here was 75% saturation at the time of sampling but the results of the kick sample suggest that more anoxic conditions are typically prevalent. The drain was sampled in 2012 as part of the Tier 2 Investigation and found not to have elevated parameters of contamination associated with landfill leachate – see Appendix 1 for results.

The drainage channel is not considered a suitable habitat for kick sampling due to its low and intermittent flows.


Recommendations

Further biological and chemical sampling on the drainage channel should be incorporated into the ongoing monitoring programme for Churchtown landfill site.

Conclusion

There is no reduction in biological water quality and the main channel of the Dooally River downstream of Churchtown historic landfill site of

Robert Imbusch **Assistant Scientist Environment Section** Limerick Co Council.

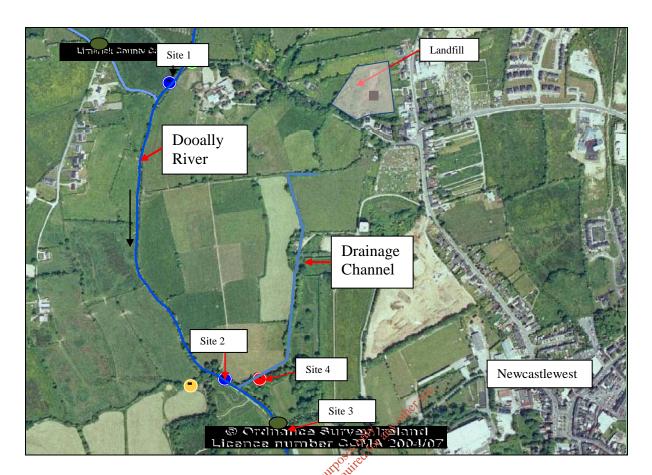


Figure 2. Map of the Churchtown landfill and River Sampling Sites (1-5).

Table 1: Relative Abundance of Macroinvertebrates

	Site 1	Site 2	Site 3	Site 4
	Dooally Bridge	Dooally River, upstream of drainage channel	Dooally River, downstream of drainage channel	Landfill Drain
Grid Coordinates	X 126959 Y 134620	X 127095 Y 133884	X 127234 Y 133739	X 127182 Y 133884
Group A (Sensitive)				
Ecdyonurus	Few	Common	Common	
Rhitrogena	Numerous	Numerous	Numerous	
Taenioptergiidae			Few	
Leuctra	Few	Few	Few	
Isoperla Group B (Less Sensitive)		Few		
Limnephilidae	Common	Few	Few	
Glossosomatidae	Common	1011	1011	
Goeridae	Common	Few	Few	
Sericostoma	Few	Few	Few	
Ephemerellidae	Common	Common	Common	
Group C (Tolerant)		0.0000000000000000000000000000000000000	0.0000000	
Polycentropus	Few	Few	డ.	
Hydracarina	Common	Few set	Common	
Ancylus	Few	Few 100	Few	
Potamopyrgus		Official and		Few
Gammarus	Dominant	Numerous	Numerous	
Baetis	Dominant	Nimerous	Numerous	
Rhyacophila	2	Few Few		
Hydropsyche	Few Few	on Few Few	Few	
Simulidae	ill old	Common	Common	
Chironomidae	to diffe		Common	
Coleoptera	Common	Common	Common	
Limnea	Few			
Group D (Very Tolerant)	Cogn			
Hirudinea	Few	Few		Few
Asellus	Few			
Spheariidae				Few
Group E (Most Tolerant)				
Tubificidae	Few	Few	Few	Few
Chironomus				Common
Others:		-		
Dicranota		Few		
Q-Rating	4 Unpolluted	4 Unpolluted	4 Unpolluted	1-2 Seriously Polluted
SSRS	8.8 (Probably not at risk)	10.4 (Probably not at Risk)	10.4 (Probably not at Risk)	3.2 (At Risk)

Note: Relative abundance of Benthic Macro-invertebrates sampled in the vicinity of Churchtown Landfill site at Newcastlewest, Co. Limerick. (Few 1-5; Common 6-20; Numerous 21-50; Dominant 51-75).

Photo 1. Sampling Site 1 - Doaally Bridge, Dooally River, Newcastlewest, Co. Limerick.

Photo 2. Site 2 – Dooally River, 30 meters upstream of landfill drain.

Photo 3. Site 3 – Dooally River, 150 meters downstream of landfill drain, Newcastlewest, County Limerick.

Photo 4. Site 4 – Landfill Drain at Churchtown, Newcastlewest of County Limerick.

Cor install during the distribution of the county Limerick.

Appendix 9 Tier 2 Sampling Results

- 1. BHP Report
- 2. Alcontrol Laboratories
- 3. City Analysts

BHP/CEM/23/A

TECHNICAL REPORT

Analysing Testing Consulting Calibrating

Client:

Limerick County Council Aras an Chontae Dooradoyle Co. Limerick BHP Ref No.: 102502-503-539(2)

Order No.:

Date Received: 14th & 16th February

2012

Date Completed: 05th March 2012

Test Specification: Nil

внр

New Road
Thomondgate
Limerick
Ireland
Tel +353 61 455399
Fax + 353 61 455447
E Mail bhpcem2@bhp.ie

FAO: Finbarr Murphy

Item: Survey, sampling and analysis of Waste material from Landfill in Churchtown, Newcastle West, Co. Limerick

Consent of copyright owner required for any other use.

LINERICK COUNTY COUNCIL 12 1 APR 2012 HK-BLURCHY Environments

For and on behalf of BHP Ltd.

Joan McCarthy
Date Issued: 05th April 2012

Supplement to report No. N/A

Test results relate only to this item. This test report shall not be duplicated except in full and with the permission of the test laboratory

Content

- 1.0 Executive Summary
- 2.0 Introduction
 - 1.1 Background
 - 1.2 Legislation
- 3.0 Sampling
 - 2.1 Site Survey Observations
 - 2.2 Sampling Location
- 4.0 Analytical Results
- 5.0 Interpretations
- 6.0 Conclusions
- 7.0 Recommendations

Appendix 1: Analytical Results

Appendix 2: Quality Control.

ction buttones and for any other use

LINIERICK
COUNTY COUNCIL
1 1 APR 2012
Environment Section

1.0 EXECUTIVE SUMMARY

An on-site investigation of a historical landfill site located in Churchtown, Newcastle West, Co. Limerick, was conducted on the 14th and 16th February 2012, by BHP Personnel.

This investigation forms part of a Tier 2 Preliminary Investigation carried out carried out in accordance with the EPA Code of Practice: Environmental Risk Assessment for Unregulated Waste Disposal Sites.

A walk over survey revealed that the site was closed and covered in bush and scrub. The intrusive investigation that followed showed varying concentrations of municipal waste (EWC 20 03 01) landfilled. On exposure there was a notable decomposition odour indicating that the waste within the landfill is continuing to undergo anaerobic decomposition. Further investigation would be required to determine risks posed to the neighbouring residential area.

Leachate and landfill gas migration pathways and possible receptors need to be established to quantify risk posed to residents and the environment.

2.0 INTRODUCTION

2.1 Background

At the request of Finbarr Murphy of Limerick County Council, BHP conducted sampling and analysis of waste material from a landfill site located at Churchtown, Newcastle West, Co. Limerick. The purpose of the sampling and analysis program was to classify buried material on site and determine its approximate extent.

The location of the landfill was in the immediate vicinity of a residential area. An aerial photograph of the area under investigation is presented below.

Photograph of the Churchtown site, Newcastle West, showing landfill area under investigation

2.2 Legislation

Arising from the Waste Framework Directive (75/442/EEC), and in particular the European Court of Justice Decision C-494/01, all historic unregulated waste disposal sites need to be identified, and the risks posed to the environment and human health needs to be assessed. The most relevant legislation for historic landfill sites include Waste Management (Certification of Historic Unlicenced Waste Disposal and Recovery Activity) Regulations and the Waste Management Acts 1996 to 2011. Under the Waste Management Acts 1996 to 2011, local authorities were given responsibility for the completion of an inventory and risk assessment of all non-licensed closed landfills. The EPA have produced a Code of Practice to assist Local Authorities in this regard.

Remediation measures chosen for each closed landfill must ensure that there is no significant pollutant linkage remaining after remediation has taken place. Remediation may involve the removal of landfilled material to an appropriate waste disposal facility.

Current legislation governing waste disposal and waste acceptance criteria is set down in Council Decision 2003/33/EC ('on establishing criteria and procedures for the acceptance of waste at Landfill)'. This decision lays down uniform waste classification and acceptance procedures according to Annex II to Directive 1999/31/EC on the landfill of waste (the 'Landfill Directive').

3.0 SAMPLING

3.1 Site Survey Observations

Photographs of the historical landfill investigated are presented below:

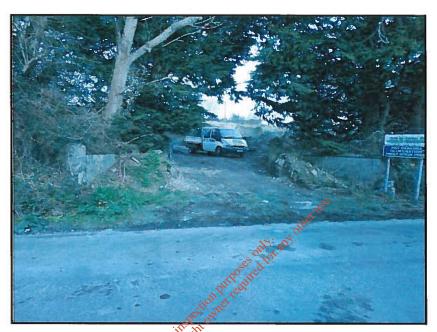
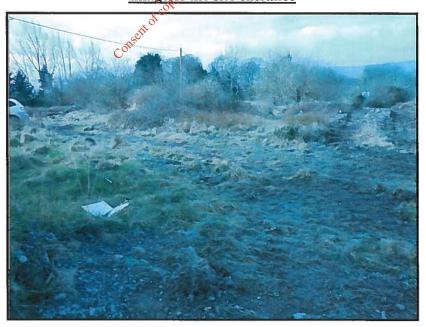



Image of the site entrance

Image A of Site

Image B of Site

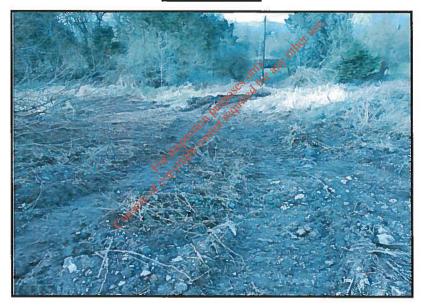


Image C of Site

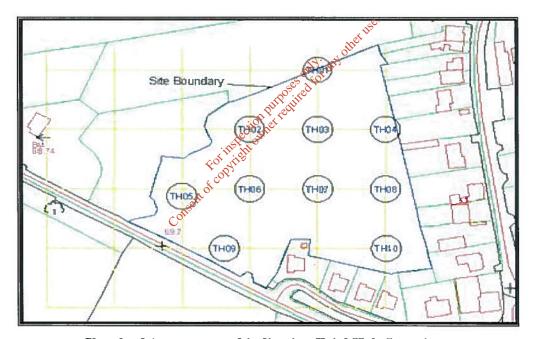
Image D of Site

Trial holes were excavated at 4 locations across the area under investigation, typically down to approximately 6 metres in depth.

	Si .	hole excapitor are given as for its performance in the control of	
Trial Hole	Depth	Description	ÈWC#
TH2	Surface to 0.50m	Clean Aggregate	-
	0.50m to 6m of	Mixed municipal waste	20-03-01
ТН3	Surface to 2.5m	Mixed municipal waste	20-03-01
	2.5m to 3.0m	Aggregate	-
	3.0m to 6.0m	Mixed municipal waste	-
TH4	Surface to 0.3m	Topsoil	-
	0.3m to 0.5m	Aggregate	-
	0.5m to 6m	Mixed municipal waste	20-03-01
TH5	0.3m to 4m	Mixed municipal waste	20-03-01
-	4m to 5m	Clay	_

Photographs of the excavated material are presented on the following page. This is a typical example of what was encountered for each of the trial holes excavated. The evidence of municipal waste (EWC 20 03 01) is clear from these photographs. Further photographs taken during trial pit excavation are presented in Appendix 2.

Photograph of TH2 showing municipal waste from just under the surface to the pottom of the pit.


Photograph of excavated material from TH3

3.2 Sampling and Testing of Material

Sampling was carried out on the 14th and 16th February 2012 by Aidan Daffy of BHP Laboratories with the aid of personnel provided by Limerick County Council. Three soil samples and four water samples were taken from the four trial holes excavated. A water sample was also taken from a nearby stream.

The following map illustrates the approximate location of trial holes excavated on site.

The following soil samples were taken from the trial holes and tested against the acceptance criteria for waste at inert landfills.

Sketch of Area surveyed indicating Trial Hole Locations.

TH2	Composite sample taken from a depths 0.5m-6.0m
TH3	Composite sample taken from a depths 0.5m-6.0m
TH4	Composite sample taken from a depths 0.5m-6.0m
TH5	Soil sample taken at between 4.0m and 5.0m

Water ingress into Trial Hole TH2 was noted at a depth of 4.40m. A water sample was taken from TH2 at this depth.

Water ingress into Trial Hole TH3 was noted at a depth of 2.50m. A water sample was taken from TH3 at this depth.

Water ingress into Trial Hole TH4 was noted at a depth of 3.80m. A water sample was taken from TH4 at this depth.

Water ingress into Trial Hole TH5 was noted at a depth of 1.80m. A water sample was taken from TH5 at this depth.

The soil samples were analysed to determine whether they met acceptance criteria for inert landfills as set down in Council Decision 2003/33/EC.

The water sample was tested to the requirements of SI No. 12/2001 (Water Quality Dangerous Substances Regulations 2001.

Lot inspection the requirements of SI No. 12/2001 (Water Quality Dangerous Substances Regulations 2001.

EPA Export 10-05-2019:03:42:14

4.0 ANALYTICAL RESULTS (SEE APPENDIX 1)

Comprehensive analysis results are presented in Appendix 1. A summary of Analytical Results is presented below.

- Material excavated from all trial holes contains a mixture of soil, aggregate and municipal waste of varying composition.
- The municipal waste is categorised as mixed municipal waste, EWC 20 03 01, according to the European Waste Catalogue and as such is acceptable at landfills for non-hazardous waste according to Council Decision 2003/33/EC Section 2.2.1.
- Leaching limit values for soils taken from all trial holes were within waste acceptance criteria for inert landfills as set down in Council Decision 2003/33/EC (Section 2.1.2.1) due to elevated dissolved organic carbon. Thus was expected due to the presence of paper and cardboard in the samples.
- Total content of organic parameters for soils taken from all trial holes were within waste acceptance criteria for ment landfills as set down in Council Decision 2003/33/EC (Section 2.1.2.2) with the exception of total organic carbon. This was expected due to the presence of paper and cardboard in the samples.
- Dangerous substance concentrations in the water sample meet the standards set down in SI No. 12/2001 'Water Quality (Dangerous Substances) Regulations, 2001.

The material can be classified as non-hazardous in accordance with 2003/33/EU.

5.0 INTERPRETATION

Council Decision of 19 December 2002 'on establishing criteria and procedures for the acceptance of waste at Landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC' sets out criteria for the acceptance of waste at landfills. The Acceptance criteria for Inert Landfills and Non-Hazardous Landfills are outlined in Section 2.1 and 2.2 respectively. All material observed and tested can be classified as either Municipal Waste (EWC 20 03 01) or Soil Stone Waste (EWC 17 05 04). As such the material meets waste acceptance criteria as set down in Council Decision 2003/33/EC for Landfills for Non-Hazardous Waste.

6.0 CONCLUSIONS

Intrusive site investigations revealed the presence of municipal waste at varying concentrations across the landfill area examined. There is no evidence of lining at this site, the capping layer is of very poor quality.

The waste body is largely decomposed with odour detected in two trial holes. No gas was detected using the gas monitor with the same of the control of the c

There is no evidence of measures taken to isolate the effects of landfill material, leachate or landfill gas from the surrounding environment.

7.0 RECOMMENDATIONS

Determine the hydrological flow from the site to identify potential receptors and the risks posed by the leachate run-off. Determine the composition of leachate, ground water and surface water in the vicinity of the landfill to assess leachate impact on the environment. The site has been assessed adequately. Additional monitoring and analysis is at the discretion of the client.

Determine the potential migration pathways for landfill gases and the possible receptors due to these pathways. Regular monitoring of landfill gas levels in the possible receptors, to reduce risk from landfill gas migration.

Consent of copyright owner reduced for any other use.

APPENDIX 1

ANALYTICAL RESULTS

Consent of copyright owner required for any other use.

APPENDIX 2

QUALITY CONTROL

The Chemical and Environmental Monitoring laboratory (CEM) operates a rigorous approach to quality assurance. The central elements of the quality control system are outlined.

1.1 Chain of Custody and Client Instruction

Every sample received at BHP laboratories is inspected by the laboratory manager Pat O'Sullivan or by site manager Paul O' Sullivan.

A client instruction is required to start analysis.

All samples are then given a unique BHP reference number before storage between 0 and 4°C.

1.2

Training and Competence Hull described for inducting work at Drands Carlot Carlot Competence of the Co All analysts conducting work at BHP are fully trained. Training involves demonstration of accuracy and precision of analysis. All analysts are subject to periodic reviews in their training. All training is fully documented and retrievable.

1.3 Validation

BHP procedures are subjected to a rigorous validation which includes the following;

- Evaluation of instrument detection limits and limits of detection.
- Evaluation of operator characteristics including bias, precision and uncertainty of measurement.
- Demonstration of Linearity.
- Evaluation of the standard error on the mean and evaluation of any systematic biases.
- Evaluation of total uncertainty and uncertainty budgets.
- Evaluation of the uncertainty in measurement at a regulatory limit.
- Demonstration of repeatability.
- Evaluation of Matrix effects.

1.4 Quality Control (Skewhart) Charts

Analysis in the CEM laboratory is monitored using control charts. Each analysis will have at least 3 charts monitoring;

- Certified Reference Material recovery
- Precision of analysis
- Accuracy of analysis

Batches of analyses are rejected if any of the control charts indicate a loss in control.

1.5 Inter-laboratory Testing

The CEM laboratory are members of the W.R.C Aquacheck Scheme. The Laboratory also participates in the Environmental Protection Agency's Intercalibration Programme and is listed on the Agency's Register of Quality Approved Testing Laboratories.

Laboratories.

EPA Export 10-05-2019:03:42:15

APPENDIX 1

ANALYTICAL RESULTS

Consent of copyright owner required for any other use.

Client:

Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102502.1

Order No.:

Date Received: 14/02/12 Date Completed: 05/03/12

Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road Thomondgate Limerick Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard Reference
	TH2 (4.4M)			
		1150.		
Water Level	TH2 (4.4M) For inspection purposes of the convergence of the converge	other M	4.40	ISO 5667 - 11
Temperature		My My °C	11	APHA - 2550 - B
pН	o ses	digor -	6.60	APHA - 4500 - H ⁺ - 1
Conductivity	2 Purequi	μScm ⁻¹	1942	APHA - 2510 - B
Ammonia (as NH ₃ -N)	ection wilet.	mg/l	64.6	APHA -4500- NH ₃ -I
Nitrate (as NO ₃)	(itishto)	mg/l	1.55	APHA - 4110 - B
Nitrite (as NO ₂)	FORTITE	mg/l	< 0.1	APHA - 4110 - B
Total Oxidised Nitrogen (as N)	at of C	mg/l	0.35	APHA - 4110 - B
BOD	conser	mg/l	11	APHA - 5210 - B
COD		mg/l	158	APHA - 5220 - D
Calcium		mg/l	48.9	APHA - 3120 - B
Magnesium		mg/l	15.6	APHA - 3120 - B
Sodium		mg/l	34.51	APHA - 3120 - B
Potassium		mg/l	32.05	APHA - 3120 - B
Iron		ug/l	560	APHA - 3120 - B
Manganese	-	ug/l	206	APHA - 3120 - B

Additional information:

All methods are from Standard Methods for the Examination of Water

and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

COLINE GOUNCIL

1 2 Mar 2012

Client: Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102502.1

Order No.:

Date Received: 14/02/12 Date Completed: 05/03/12 Test Specification: Nil

Item :See below

Analysing Testing Consulting Calibrating

BHP

New Road Thomondgate Limerick Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard Reference
X	TH2 (4.4M)			
		offict ug/l		
Cadmium		other ug/l	<0.1	APHA - 3120 - B
Total Chromium		ug/l	<1	APHA - 3120 - B
Copper	0°	ug/l	<1	APHA - 3120 - B
Nickel	Consent of copyright owner teaching	ug/l	<1	APHA - 3120 - B
Lead	ection net	ug/l	2	APHA - 3120 - B
Zinc	Tilison of	ug/l	12	APHA - 3120 - B
Arsenic	FORVITE	ug/l	<0.9	APHA - 3120 - B
Boron	A SEC	ug/l	9	APHA - 3120 - B
Mercury	Conser	ug/l	<0.2	APHA - 3120 - B
Sulphate		mg/l	6.1	APHA - 4110 - B
Chloride	1	mg/l	47.8	APHA - 4110 - B
Molybdate Reactive Phosphoru	as (as P)	mg/l	0.23	APHA - 4500 - P-E
Total Cyanide	l l	mg/l	0.05	APHA - 4500-CN-C
Fluoride		mg/l	0.13	APHA - 4110 - B

Additional information:

All methods are from Standard Methods for the Examination of Water and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date : 07/03/2012

CC: LAMPRICK
1 2 1 2012

Client:

Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102502.1

Order No.:

Date Received: 14/02/12 Date Completed: 05/03/12

Test Specification: Nil

Item :See below

Analysing Testing Consulting Calibrating

BHP

New Road Thomondgate Limerick Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard Reference
Atrazine Dichloromethane Simazine Foluene Fributyltin Fotal Xylenes	TH2 (4.4M) For inspection purposes of the constitution of the con	offer ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<1 <1 <1 <0.001 <1	GC-MS GC-MS GC-MS GC-MS GC-MS

Additional information:

All methods are from Standard Methods for the Examination of Water

and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

Client:

Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102502.2

Order No.:

Date Received: 14/02/12 Date Completed: 05/03/12

Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road Thomondgate Limerick Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard Reference
	TH3 (2.5M) For inspection purposes on the form of convenient contribution contribution of convenient contribution contr	use.		
Water Level		other M	2.50	ISO 5667 - 11
Temperature	onl	%. ⁹ 22 °C	11	APHA - 2550 - B
pH	so se d	-	6.48	APHA - 4500 - H ⁺ - I
Conductivity	2 Spirts diff.	μScm ⁻¹	1667	APHA - 2510 - B
Ammonia (as NH ₃ -N)	ectioner	mg/l	75.28	APHA -4500- NH ₃ -I
Nitrate (as NO ₃)	Tits dit o	mg/l	0.81	APHA - 4110 - B
Nitrite (as NO ₂)	EQ. Altre	mg/l	< 0.1	APHA - 4110 - B
Total Oxidised Nitrogen (as N)	a start and a star	mg/l	0.18	APHA - 4110 - B
BOD	Conser	mg/l	9	APHA - 5210 - B
COD		mg/l	437	APHA - 5220 - D
Calcium		mg/l	75.4	APHA - 3120 - B
Magnesium		mg/l	22.49	APHA - 3120 - B
Sodium		mg/l	34.56	APHA - 3120 - B
Potassium		mg/l	21.99	APHA - 3120 - B
Iron		ug/l	453	APHA - 3120 - B
Manganese		ug/l	11	APHA - 3120 - B

Additional information:

All methods are from Standard Methods for the Examination of Water

and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

Client:

Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102502.2

Order No.:

Date Received: 14/02/12 Date Completed: 05/03/12

Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road Thomondgate Limerick Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard Reference
Cadmium Total Chromium Copper Nickel Lead Zinc Arsenic Boron Mercury	TH3 (2.5M) Consent of copyright owner required for all copyright	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.1 <1 <1 <1 2 12 <0.9 11 <0.2	APHA - 3120 - B APHA - 3120 - B
Sulphate Chloride Molybdate Reactive Phosphorus (as Total Cyanide Fluoride		mg/l mg/l mg/l mg/l mg/l	19.9 71.7 0.24 0.119 <0.05	APHA - 4110 - B APHA - 4110 - B APHA - 4500 - P-E APHA - 4500-CN-C APHA - 4110 - B

Additional information:

All methods are from Standard Methods for the Examination of Water and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

Client: **Limerick County Council**

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102502.2

Order No.:

Date Received: 14/02/12 Date Completed: 05/03/12 Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road Thomondgate Limerick Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard Reference
Atrazine Dichloromethane Simazine Toluene Tributyltin Total Xylenes	TH3 (2.5M) Consent of converge transporter required to the converge transporter required transport	Jige.	<1 <1 <1 <0.001 <1	

Additional information:

All methods are from Standard Methods for the Examination of Water and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

Client:

Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102502.3

Order No.:

Date Received: 14/02/12 Date Completed: 05/03/12

Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road Thomondgate Limerick Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard
				Reference
	TH4 (3.8M)			
		t USE.		
Water Level		offer 115°.	3.80	ISO 5667 - 11
Temperature	- I	A. on oc	12.6	APHA - 2550 - B
рН	Se d'a	-	6.40	APHA - 4500 - H ⁺ - E
Conductivity	Consent of copyright owner required	μScm ⁻¹	1418	APHA - 2510 - B
Ammonia (as NH ₃ -N)	ection wife 1	mg/l	70.73	APHA -4500- NH ₃ -D
Nitrate (as NO ₃)	ilisot of	mg/l	0.9	APHA - 4110 - B
Nitrite (as NO ₂)	FORMING	mg/l	< 0.1	APHA - 4110 - B
Total Oxidised Nitrogen (as N)	200	mg/l	0.2	APHA - 4110 - B
BOD	on Setu	mg/l	25	APHA - 5210 - B
COD		mg/l	659	APHA - 5220 - D
Calcium		mg/l	82.4	APHA - 3120 - B
Magnesium		mg/l	21.16	APHA - 3120 - B
Sodium	8	mg/l	36.54	APHA - 3120 - B
Potassium		mg/l	41.87	APHA - 3120 - B
Iron		ug/l	652	APHA - 3120 - B
Manganese		ug/l	24	APHA - 3120 - B

Additional information:

All methods are from Standard Methods for the Examination of Water

and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

LEMERICK COUNTY COUNCIL 1 2 MAR 2012

Client: **Limerick County Council**

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102502.3

Order No.:

Date Received: 14/02/12 Date Completed: 05/03/12 Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road Thomondgate Limerick Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard
				Reference
	TH4 (3.8M) For its pection purposes of the constitution of the co			
		nge.		
Cadmium		inet ug/l	< 0.1	APHA - 3120 - B
Total Chromium		ug/l	1	APHA - 3120 - B
Copper	Sec. 3	ug/l	<1	APHA - 3120 - B
Nickel	Durgouire	ug/l	<1	APHA - 3120 - B
Lead	action refie	ug/l	2	APHA - 3120 - B
Zinc	insperditor	ug/l	13	APHA - 3120 - B
Arsenic	For yill	ug/l	<0.9	APHA - 3120 - B
Boron	, of cut	ug/l	16	APHA - 3120 - B
Mercury	ansent.	ug/l	<0.2	APHA - 3120 - B
Sulphate		mg/l	5.42	APHA - 4110 - B
Chloride		mg/l	47.5	APHA - 4110 - B
Molybdate Reactive Phosphorus	(as P)	mg/l	0.24	APHA - 4500 - P-E
Total Cyanide		mg/l	0.031	APHA - 4500-CN-C
Fluoride		mg/l	< 0.05	APHA - 4110 - B
	31			

Additional information:

All methods are from Standard Methods for the Examination of Water

and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

COUNTY COURCE.

Client:

Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102502.3

Order No.:

Date Received: 14/02/12 Date Completed: 05/03/12

Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road Thomondgate Limerick

Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard Reference
Atrazine Dichloromethane Simazine Toluene Tributyltin Total Xylenes	TH4 (3.8M) Consent of confined to the confine	other ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<1 <1 <1 <0.001 <1	GC-MS GC-MS GC-MS GC-MS GC-MS

Additional information:

All methods are from Standard Methods for the Examination of Water and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

COLUMN CO

Client:

Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102539.1

Order No.:

Date Received: 16/02/12 Date Completed: 05/03/12 Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road Thomondgate Limerick

Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard Reference
	TH5 (1.8M) For inspection purposes of too by right owner required copyright owner required consent of copyright owner required			
		Age.		
Water Level		atter M	1.80	ISO 5667 - 11
Temperature		17, 217, °C	12.4	APHA - 2550 - B
pH	Set 3	for -	6.76	APHA - 4500 - H ⁺ -
Conductivity	Durgolijie	μScm ⁻¹	681	APHA - 2510 - B
Ammonia (as NH ₃ -N)	sciton terre	mg/l	63.75	APHA -4500- NH ₃ -1
Nitrate (as NO ₃)	its of or	mg/l	2.66	APHA - 4110 - B
Nitrite (as NO ₂)	Fortyfile	mg/l	< 0.1	APHA - 4110 - B
Total Oxidised Nitrogen (as N)	* of cor	mg/l	0.6	APHA - 4110 - B
BOD	nsent	mg/l	28	APHA - 5210 - B
COD		mg/l	84	APHA - 5220 - D
Calcium		mg/l	65.8	APHA - 3120 - B
Magnesium		mg/l	17.86	APHA - 3120 - B
Sodium		mg/l	39.77	APHA - 3120 - B
Potassium		mg/l	44.68	APHA - 3120 - B
Iron		ug/l	893	APHA - 3120 - B
Manganese		ug/l	406	APHA - 3120 - B

Additional information:

All methods are from Standard Methods for the Examination of Water

and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

Client:

Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102539.1

Order No.:

Date Received: 16/02/12 Date Completed: 05/03/12

Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road

Thomondgate Limerick

Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard
				Reference
	TH5 (1.8M)			2.2
	TH5 (1.8M) For its pection purposes only copyright owner required to copyright owner	use.		
Cadmium		atter ug/l	< 0.1	APHA - 3120 - B
Total Chromium		ug/l	<1	APHA - 3120 - B
Copper	\$ 21	ug/l	<1	APHA - 3120 - B
Nickel	Durponite	ug/l	<1	APHA - 3120 - B
Lead	citon verice	ug/l	3	APHA - 3120 - B
Zinc	inspector	ug/l	14	APHA - 3120 - B
Arsenic	For Wills	ug/l	<0.9	APHA - 3120 - B
Boron	Of cox	ug/l	8	APHA - 3120 - B
Mercury	nsent.	ug/l	<0.2	APHA - 3120 - B
Sulphate	Cor	mg/l	9.63	APHA - 4110 - B
Chloride		mg/l	47.6	APHA - 4110 - B
Molybdate Reactive Phosphorus (as P)	mg/l	0.75	APHA - 4500 - P-I
Total Cyanide	1	mg/l	0.032	APHA - 4500-CN-0
Fluoride		mg/l	0.14	APHA - 4110 - B

Additional information:

All methods are from Standard Methods for the Examination of Water

and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

Client:

Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102539.1

Order No.:

Date Received: 16/02/12 Date Completed: 05/03/12

Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road

Thomondgate

Limerick

Ireland

Tel +353 61 455399 Fax + 353 61 455447

E Mail bhpcem2@bhp.ie

Γest	Client Reference	Units	Results	Standard Reference
	TH5 (1.8M)	officer ne/l		
Atrazine		inet ug/l	<1	GC-MS
Dichloromethane		ug/l	<1	GC-MS
Simazine	e e	ug/l	<1	GC-MS
Toluene	Durgo	ug/l	<1	GC-MS
ributyltin	chonten	ug/l	<0.001	GC-MS
Γotal Xylenes	Consent of copyright owner reaching	ug/l	<1	GC-MS

Additional information:

All methods are from Standard Methods for the Examination of Water and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

COUNTY COUNCIL

1 2 MAR 2012

Environment Section

Client: Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102539.2

Order No.:

Date Received: 16/02/12 Date Completed: 05/03/12

Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road

Thomondgate

Limerick Ireland

Tel +353 61 455399

Fax + 353 61 455447

E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard Reference
	Leonards Stream			
		se.		
Water Level		odie isc. M	n/a	ISO 5667 - 11
Temperature	Consent of copyright owner required for an	°C °C	9.8	APHA - 2550 - B
pH	ses alfor	-	6.68	APHA - 4500 - H ⁺ - 1
Conductivity	our duire	μScm ⁻¹	429	APHA - 2510 - B
Ammonia (as NH ₃ -N)	citofi de fie	mg/l	0.43	APHA -4500- NH ₃ -I
Nitrate (as NO ₃)	insperior	mg/l	0.53	APHA - 4110 - B
Nitrite (as NO ₂)	For Mile	mg/l	< 0.1	APHA - 4110 - B
Total Oxidised Nitrogen (as N)	of cost	mg/l	0.12	APHA - 4110 - B
BOD	nsent .	mg/l	3	APHA - 5210 - B
COD	Cor	mg/l	44	APHA - 5220 - D
Calcium		mg/l	54.2	APHA - 3120 - B
Magnesium		mg/l	16.83	APHA - 3120 - B
Sodium		mg/l	62.11	APHA - 3120 - B
Potassium		mg/l	34.1	APHA - 3120 - B
Iron		ug/l	<1	APHA - 3120 - B
Manganese		ug/l	759	APHA - 3120 - B

Additional information:

All methods are from Standard Methods for the Examination of Water

and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Pat O'Sullivan

Issue Date: 07/03/2012

LIMERICA COUNTY COUNCIL 1 2 MAR 2012 Environment Section

Client:

Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102539.2

Order No.:

Date Received: 16/02/12 Date Completed: 05/03/12

Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road

Thomondgate

Limerick

Ireland

Tel +353 61 455399

Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Copper Nickel Ug/l O.9 APHA - 3120 - Ug/l Ug/l	Test	Client Reference	Units	Results	Standard Reference
Copper		Leonards Stream			
Copper	Cadmium		15°.	<0.1	APHA - 3120 - R
Molybdate Reactive Phosphorus (as P) mg/l 0.15 APHA - 4110 - mg/l 0.15 APHA - 4500 - I Total Cyanide mg/l 0.015 APHA - 4500-Ci			ug/l		APHA - 3120 - B
Molybdate Reactive Phosphorus (as P) mg/l 0.15 APHA - 4110 - mg/l 0.15 APHA - 4500 - I Total Cyanide mg/l 0.015 APHA - 4500-Ci	Copper	ي جور	ug/l	_	APHA - 3120 - B
Molybdate Reactive Phosphorus (as P) mg/l 0.15 APHA - 4110 - mg/l 0.15 APHA - 4500 - I Total Cyanide mg/l 0.015 APHA - 4500-Ci	Nickel	authorite	ug/l	<1	APHA - 3120 - B
Molybdate Reactive Phosphorus (as P) mg/l 0.15 APHA - 4110 - mg/l 0.15 APHA - 4500 - I Total Cyanide mg/l 0.015 APHA - 4500-Ci	Lead	ital of real	ug/l	3	APHA - 3120 - B
Molybdate Reactive Phosphorus (as P) mg/l 0.15 APHA - 4110 - mg/l 0.15 APHA - 4500 - I Total Cyanide mg/l 0.015 APHA - 4500-Ci	Zinc	: OSPEC OWIT	ug/l	7	APHA - 3120 - B
Molybdate Reactive Phosphorus (as P) mg/l 0.15 APHA - 4110 - mg/l 0.15 APHA - 4500 - I Total Cyanide mg/l 0.015 APHA - 4500-Ci	Arsenic	Forthigh	ug/l	<0.9	APHA - 3120 - B
Molybdate Reactive Phosphorus (as P) mg/l 0.15 APHA - 4110 - mg/l 0.15 APHA - 4500 - I Total Cyanide mg/l 0.015 APHA - 4500-Ci	Boron	of con.	ug/l	12	APHA - 3120 - B
Molybdate Reactive Phosphorus (as P) mg/l 0.15 APHA - 4110 - mg/l 0.15 APHA - 4500 - I Total Cyanide mg/l 0.015 APHA - 4500-Ci	Mercury	nsent "	ug/l	<0.2	APHA - 3120 - B
Molybdate Reactive Phosphorus (as P) mg/l 0.15 APHA - 4110 - mg/l 0.15 APHA - 4500 - I Total Cyanide mg/l 0.015 APHA - 4500-Ci	Sulphate	Cor	mg/l	10.43	APHA - 4110 - B
Total Cyanide mg/l 0.015 APHA - 4500-C1	Chloride	Į.	mg/l	51.27	APHA - 4110 - B
	Molybdate Reactive Phosphorus	(as P)	mg/l	0.15	APHA - 4500 - P-E
Fluoride mg/l 0.12 APHA - 4110 -	Total Cyanide	4	mg/l	0.015	APHA - 4500-CN-C
	Fluoride		mg/l	0.12	APHA - 4110 - B

Additional information:

All methods are from Standard Methods for the Examination of Water

and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Issue Date: 07/03/2012

1 2 MAR 2012

CONTRACTOR SOL

Seviroament Section

Client:

Limerick County Council

Aras an Chontae

Dorradoyle Co.Limerick

FTAO: Finbarr Murphy

BHP Ref. No.: 102539.2

Order No.:

Date Received: 16/02/12 Date Completed: 05/03/12

Test Specification: Nil

Item: See below

Analysing Testing Consulting Calibrating

BHP

New Road

Thomondgate

Limerick Ireland

Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

Test	Client Reference	Units	Results	Standard Reference
Atrazine Dichloromethane Simazine Foluene Fributyltin Fotal Xylenes	Leonards Stream torinspection purposes only consent of copyright owner required for	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<1 <1 <1 <0.001 <1	GC-MS GC-MS GC-MS GC-MS GC-MS

Additional information:

All methods are from Standard Methods for the Examination of Water COLLEY COUNCL

and Wastewater 20th Edition.

For and on behalf of BHP laboratories:

Issue Date: 07/03/2012

Test results relate only to this/these items. This test report shall not be duplicated in full without the permission of the test laboratory.

1 2 MAR 9912

0.3

Address:

Churchtown, Adare, Co.Limerick

(Sheet 1 of 4)

L/S = 2 l/kgDescription:_

Sample: TH2

Method M									T transfer over the	Analysis mothod /
tion Waste sample Action Method 0.002 0.002 0.002 0.002 1 Cr 0.012 0.012 0.001 1 Cr 0.012 0.001 0.001 1 Cr 0.049 0.001 0.001 1 Cr 0.049 0.001 0.001 1 Cr 0.012 0.001 0.001 2 Cr 0.0024 0.001 0.001 2 Cr 0.004 0.004 0.001 3 R 0.004 0.004 0.002 4 Cr 0.004 0.004 0.002 1 Rs 0.004 0.004 0.004 1 Solids 0.008 0.001 1 Solids 0.008 0.001 1 Cr 0.001 0.001	Parameter		Results (mg/kg dry sul	s bstance)					L/S = 2 l/kg mg/kg dry substance	technique
tion Waste sample 9 Detection 0.002 0.002 1. Imits 0.002 0.012 0.001 1 Cr 0.044 0.041 0.001 1 Cr 0.049 0.001 0.001 1 Cr 0.012 0.001 0.001 1 Cr 0.024 0.001 0.001 1 Rs 0.004 0.001 0.002 1 Rs 0.004 0.001 0.002 1 Rs 0.004 0.01 0.002 1 Rs 0.004 0.01 0.002 1 Rs 0.004 0.002 0.002 1 Rs 0.004 0.01 0.002 1 Rs 0.008 0.001 0.002 1 Rs 0.008 0.001 0.001 1 Rs 0.001 0.001 0.001	RHP Reference	102503.1						Method		
ription Waste sample Profession Limits 0.002 0.002 0.001 1 <0.012 0.01 1 0.014 0.001 1 0.049 0.001 Mo 0.012 0.001 0 0.018 0.001 0 0.024 0.001 0 0.024 0.001 0 0.024 0.001 0 0.018 0.001 0 0.018 0.001 0 0.018 0.001 0 0.004 0.001 0 0.004 0.001 0 0.01 0.002 0 0.01 0.002 0 0.01 0.01 0 0.01 0.02 0 0.00 0.01 0 0.00 0.01 0 0.00 0.01 0 0.00 0.01 0 0.00 0.01 <th></th> <th></th> <th></th> <th>(</th> <th></th> <th></th> <th></th> <th>Detection</th> <th></th> <th></th>				(Detection		
1	Product Description	Waste sample		OR				Limits		
Color Colo	Arcanic Ac	0000			ent			0.00	0.1	ICP-MS
Control Cont	Rarium Ra	0.012			ÇÓ			0.01	7	ICP-MS
Mo 6004 6001 An	Codminm Cd	\$0.00 100 100 100 100 100 100 100 100 100			PAL	ć.		0.001	0.03	ICP-MS
Mo 0.049 44.41 0.001 Mo 0.012 7.131 0.001 Mo 0.012 0.001 0.001 Mo 0.024 0.001 0.001 0.024 7.2 0.001 0.004 7.2 0.002 18.8 0.074 0.1 ed Solids 378 0.001 0.008 0.008 0.001	Chromium total Cr	0.04			ga	gei ^t		0.001	0.2	ICP-MS
Mo 60.002 60.001 Mo 0.012 0.002 0.024 0.001 0.001 0 0.024 0.001 0 0.004 0.002 0 0.004 0.002 18.8 0.74 0.1 ed Solids 0.008 0.01 ed Solids 0.008 0.001	Conner Cu	0.49				OTI		0.001	6.0	ICP-MS
Mo 0.012 0.002 0.18 0.024 0.001 0.024 0.001 0.001 0.024 0.001 0.001 0.004 0.002 0.002 18.8 0.18 0.1 ganic Carbon 108 0.1 ed Solids 0.008 0.001	Manning III	70000				diff		0.001	0.003	ICP-MS
0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.0008 0.0001 0.0	Melicher Mo	0.012				di di		0.002	0.3	ICP-MS
0.024 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.008 0.001 0.00	Nickel Mi	0.18				20	onli	0.001	0.2	ICP-MS
Control	I and Dh	0.024				O*). 3. 3	0.001	0.2	ICP-MS
0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.01 0.002 0.002 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.006 0.001	Antimony Sh	<0.001					in d	0.001	0.02	ICP-MS
ganic Carbon 10.008 ed Solids 6.002 0.008 0.002 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 4 1 5 1 6 1 6 1 7 1 8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>Colonium Co</td> <td>0 004</td> <td></td> <td></td> <td></td> <td></td> <td>hei</td> <td>0.002</td> <td>90.0</td> <td>ICP-MS</td>	Colonium Co	0 004					hei	0.002	90.0	ICP-MS
ganic Carbon 10.08 ed Solids 0.008 0.008 0.001 0.001 0.001	Zinc Zn	0.21					USE	0.002	2	ICP-MS
ganic Carbon 0.74 0.2 ed Solids 378 1 ed Solids 0.008 0.001	Chloride	18.8						0.1	550	I.C
ganic Carbon 108 0.008 ed Solids 0.001	Fluoride	0.74						0.2	4	J.C
ganic Carbon 108 1 ed Solids 378 1 ed Solids 0.008 0.001	Sulphate	254						0.1	260	I.C
ed Solids 378 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dissolved Organic Carbon	108						-	240	Photometric
0.008	Total Dissolved Solids	378						-	2500	Gravimetric
	Phenol Index	0.008						0.001	0.5	Photometric

Signed for and on behalf of BHP Laboratories Ltd.

Address:

Churchtown, Adare, Co.Limerick

(Sheet 2 of 4)

L/S = 10 l/kgDescription:_

Sample: TH2

(to 7 10016)								
Parameter	Ž	Results					Limit values	Analysis method /
I at afficer	(mg/kg dry	ry substance)	_				L/S = 10 J/kg	technique
)			200	V	0	mg/kg dry substance	
BHP Reference	102503.1					Method		
						Detection		
Product Description	Waste sample	<i>,</i>	or or			Limits		
Arsenic As	<0.001		ent			0.002	0.5	ICP-MS
Barium Ba	0.004		go g			0.01	20	ICP-MS
Cadmium Cd	0.001		BA	4		0.001	0.04	ICP-MS
Chromium total Cr	0.002		of the	Rect.		0.001	0.5	ICP-MS
Connect Cu	7,000	-		ON OWN		0.001	2	ICP-MS
Marie La	0000			di.		0.001	0.01	ICP-MS
Merculy ing	70.002			di	25	0.002	0.5	ICP-MS
Molybdenum Mo	0.001			320	on	0.001	0.4	ICP-MS
Nickel IN	0.004				. or	0.001	0.5	ICP-MS
Lead PD	0.011				e tita	0.001	90.0	ICP-MS
Antimony Sb	<0.001				dh	0.00	100	ICP_MS
Selenium Se	0.001				ere	0.002	0.1	TOD ME
Zinc Zn	0.014				SO SO	0.002	4	ICF-IMIS
Chloride	2.49					0.1	800	1.C
Fluoride	0.16					0.2	10	1.C
Sulphate	24.7					0.1	1000). 1
Dissolved Organic Carbon	120					-	200	Photometric
Total Dissolved Solids	1012					1	4000	Gravimetric
Phenol Index	0.012					0.001	-	Photometric

Signed for and on behalf of BHP Laboratories Ltd.

Address:

Churchtown, Adare, Co.Limerick

(Sheet 3 of 4)

Description: L/S = 0.1 l/kg C0 (Percolation)

Sample: TH2

711

Parameter Results BHP Reference 102503.1 Product Description Waste sample Arsenic As 0.002 Barium Ba 0.012 Cadmium Cd 0.012 Cadmium Intal Cr 0.011 Copper Cu 0.096 Mercury Hg <0.002 Molybdenum Mo 0.002 Nickel Ni 0.032 Antimony Sb <0.001 Selenium Se 0.039 Chloride 0.039 Chloride 0.52 Fluoride 0.52 Sulphate 224.7 Dissolved Organic Carbon 510	<u> </u>			Limit values $I/S = 0.1 I/k\sigma$	technique
Description Description As As A Cd In T Cd	5503.1			mg/l	ork respons
As As Ba A Cd m total Cr Wu Hg num Mo i I Organic Carbon			Method		
As Sa A Cd m total Cr Su Aum Mo i i I Organic Carbon	6		Detection		
As As A Cd m total Cr Su Hg num Mo i i I Organic Carbon			Limits		
Sa n Cd m total Cr Su Hg num Mo i i y Sb t Se	coo.		0.002	90.0	ICP-MS
n Cd m total Cr yu Hg num Mo i i CSe I Organic Carbon			0.01	4	ICP-MS
m total Cr Unum Mo i VSb I Organic Carbon	900	S.C.	0.001	0.02	ICP-MS
Hg num Mo i Se I Organic Carbon		. You	0.001	0.1	ICP-MS
Hg num Mo i i . Se . Organic Carbon		OF	0.001	9.0	ICP-MS
num Mo i y Sb t Se		or s	0.001	0.002	ICP-MS
y Sb Se I Organic Carbon		o sec	0.002	0.2	ICP-MS
y Sb i Se i Organic Carbon		onli	0.001	0.12	ICP-MS
y Sb Se 1 Organic Carbon	032	5. of	0.001	0.15	ICP-MS
. Se I Organic Carbon	1001	N O	0.001	0.1	ICP-MS
1 Organic Carbon	0001	hei	0.002	0.04	ICP-MS
1 Organic Carbon	000	dec	0.002	1.2	ICP-MS
I Organic Carbon	620		0.1	460	I.C
I Organic Carbon	55.0		0.2	2.5	I.C
I Organic Carbon	24.7		0.1	1500	I.C
100	210		1	160	Photometric
Total Dissolved Solids				1	Gravimetric
Phenol Index 0.124	.124		0.001	0.3	Photometric

Signed for and on behalf of BHP Laboratories Ltd.

Address:

Churchtown, Adare, Co.Limerick

Solid analysis

Analysis method/ Photometric GC-FID technique GC-MS GC-MS 30000 500 Limit values mg/kg Method Detection 0.1 0.01 0.001 0.005 Sample: TH2 _Organic Parameters_ Results (mg/kg) Waste sample <0.005 102503.1 <0.01 <0.001 <0.1 Description:_ PCBs (7 cogeners) Mineral Oil (C10 to C40) Total Organic Carbon Product Description **BHP** Reference (Sheet 4 of 4) Parameter PAHs (16)

Signed for and on behalf of BHP Laboratories Ltd.

Address:

Churchtown, Adare, Co.Limerick

Description:_

(Sheet 1 of 4)

L/S = 2 I/kg

Sample: TH3

Parameter		Results		83			Limit values	Analysis method/
	(mg/kg	(mg/kg dry substance)					L/S = 2 l/kg mg/kg dry substance	technique
BHP Reference	102503.2					Method		
						Detection		
Product Description	Waste sample		300			Limits		
Arsenic As	<0.001		ent			0.002	0.1	ICP-MS
Barium Ba	0.024		çoi ji c			0.01	7	ICP-MS
Cadmium Cd	<0.001		N. C. Y.	X.		0.001	0.03	ICP-MS
Chromium total Cr	0.07		ight.	e cit		0.001	0.2	ICP-MS
Copper Ci	0.31			OUL		0.001	6.0	ICP-MS
Mercury Ho	<0.0002			ort?		0.001	0.003	ICP-MS
Molyhdenim Mo	0.008			guir guir		0.002	0.3	ICP-MS
Nickel Ni	0.039			onl	only	0.001	0.2	ICP-MS
I ead Ph	0.024				. 8	0.001	0.2	ICP-MS
Antimony Sh	<0.001				No.	0.001	0.02	ICP-MS
Colonium Co	0 000				her	0.002	90.0	ICP-MS
Scientific Se	0.00				OBE	0.002	2	ICP-MS
ZINC ZII	0.10			i,		0.1	550	I.C
Cilloride	890					0.2	4	I.C
Sulphate	101					0.1	260	I.C
Dissolved Organic Carbon	82					1	240	Photometric
Total Dissolved Solids	458					1	2500	Gravimetric
Phenol Index	0.122					0.001	0.5	Photometric

Signed for and on behalf of BHP Laboratories Ltd.

Address:

Churchtown, Adare, Co.Limerick

(Sheet 2 of 4)

Description:_

L/S = 10 l/kg

Sample: TH3

BHP Reference 102503.2 Method Impris un yatuosantor Product Description Waste sample 2.0 0.5 Arsenic As darium Ba 0.006 0.002 0.01 Barium Ba 0.006 0.001 0.001 Cadmium Cd 0.012 0.001 0.001 Copper Cu 0.18 0.002 0.001 0.0 Mercury Hg <0.002 0.001 0.001 0.0 Molybdenum Mo 0.009 0.001 0.001 0.0 Antimony Sb <0.001 0.009 0.001 0.0 Antimony Sb <0.001 0.009 0.001 0.0 Selenium Se 0.001 0.009 0.001 0.0 Affined M 0.009 0.001 0.001 0.0 Selenium Se 0.001 0.001 0.001 0.0 Cloud del Carbon 0.002 0.001 0.0 0.0 Cloud del Carbon 0.003 0.001 0.002 0.0 0.0	Parameter	Res (mg/kg dry	Results dry substance)					Limit values L/S = 10 l/kg	Analysis method / technique
Waste sample En Limits <0.001 0.002 0.001 0.006 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.009 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.003 0.001 0.001 0.004 0.001 0.001 0.002 0.001 0.001 0.003 0.002 0.001 0.004 0.01 0.01 0.024 0.01 0.01 0.036 0.02 0.02 0.036 0.03 0.01 0.036 0.01 0.01 0.036 0.01 0.01 0.036 0.001 0.01 0.036 0.001 0.01 0.036 0.001 0.001	nin nachana	102503.7					Method	nig/ng ui y substance	
Waste sample Entrople Limits <0.001 0.006 0.001 0.006 0.001 0.001 0.012 0.001 0.001 0.018 0.001 0.001 <0.002 0.001 0.001 0.009 0.001 0.001 <0.001 0.001 0.001 <0.002 0.001 0.001 <0.001 0.002 0.001 <0.002 0.001 0.001 <0.001 0.001 0.001 <0.002 0.001 0.001 <0.003 0.001 0.001 <0.004 0.002 0.001 <0.003 0.002 0.001 <0.004 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.003 0.001 0.003 0.001	Brir Nelerence	2,000,00					Detection		
Continue	Product Description	Waste sample	9	00			Limits		
0.006 20,000 0.001 0.001 0.001 0.001 0.18 0.001 0.001 0.002 0.001 0.001 0.009 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.024 0.02 0.002 0.025 0.02 0.001 0.036 0.03 0.01 0.036 0.036 0.001 0.036 0.001 0.001	Arcenic Ac	<0.001		ent			0.002	0.5	ICP-MS
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.0001 0.	Rarium Ra	9000		çoi oi			0.01	20	ICP-MS
0.012 47 49.1 0.001 0.18 0.018 0.001 0.002 40.002 0.001 0.002 67.41 0.001 0.009 20.001 0.001 0.001 20.001 0.002 0.024 0.02 0.0 0.15 0.15 0.1 bon 270 0.1 880 0.036 1 0.036 0.001 0.001	Cadmium Cd	0.001		ogi Ogi			0.001	0.04	ICP-MS
0.18 0.001 0.001 6.0002 0.002 0.001 0.002 0.001 0.001 0.009 0.001 0.001 <0.001	Chromium total Cr	0.012		SU SU	ند		0.001	0.5	ICP-MS
40,0002 10,002 0,0002 0,002 0,001 0,0001 0,009 0,001 0,001 40,001 0,001 0,001 0,004 0,002 0,002 0,024 0,002 0,002 10,7 0,15 0,02 bon 270 0,1 880 0,001 1 0,036 0,001 0,001	Conper Cu	0.18		OWIT	ons		0.001	2	ICP-MS
0.002 Mil. % 0.002 0.019 0.001 0.001 0.009 0.001 0.001 <0.001	Mercury Ho	<0.0002			ot of		0.001	0.01	ICP-MS
6.019 9.019 0.001 6.009 0.001 0.001 6.001 0.001 0.001 10.7 0.15 0.1 127 0.15 0.1 bon 270 0.1 880 1 0.1 0.036 0.001 0.001	Molybdenum Mo	0.002			gii Gii		0.002	0.5	ICP-MS
6.009 0.001 <0.001	Nickel Ni	0.019			5°51	all'	0.001	0.4	ICP-MS
<0.001	I ead Ph	0.00			9,	ું જ	0.001	0.5	ICP-MS
0.001 6,002 0.024 6,002 10.7 0.1 0.15 0.1 bon 270 880 1 0.036 0.001	Antimony Sh	<0.001				N O	0.001	90.0	ICP-MS
0.024 6.002 10.7 0.1 0.15 0.2 bon 270 880 1 0.036 0.001	Colonium Co	0.001				her	0.002	0.1	ICP-MS
10.7 0.15 0.2 0.15 0.2 bon 270 0.1 880 1 0.036 1 0.036 0.001	Zinc Zn	0.024				JSC.	0.002	4	ICP-MS
bon 0.15 0.2 880 1 0.036 0.001	Chloride	10.7					0.1	008	I.C
bon 127 0.1 880 1 0.036 0.001	Fluoride	0.15					0.2	10	I.C
bon 270 1 880 1 0.036 0.001	Sulphate	127					0.1	1000	I.C
880 1 0.036 0.001	Dissolved Organic Carbon	270					1	200	Photometric
0.036	Total Dissolved Solids	088					1	4000	Gravimetric
	Phenol Index	0.036					0.001	1	Photometric

Signed for and on behalf of BHP Laboratories Ltd.

Address:

Churchtown, Adare, Co.Limerick

L/S = 0.1 l/kg C0 (Percolation)Description:_

(Sheet 3 of 4)

Leachate analysis

Sample: TH3

Parameter	Re (mg/l)	Results				Limit values L/S = 0.1 l/kg mg/l	Analysis method / technique
BHP Reference	102503.2				Method		
					Detection		
Product Description	Waste sample	نمور			Limits		
Areanic As	0.001	ent			0.002	90:0	ICP-MS
Paring Ba	0.036	S.C.	ÇÓ Š. C		0.01	4	ICP-MS
Codminm Cd	9000		10 m		0.001	0.02	ICP-MS
Chromium total Cr	0.018		Dect Sp		0.001	0.1	ICP-MS
Construction Construction	0.049		ON		0.001	9.0	ICP-MS
Marging Ha	20002		dir.		0.001	0.002	ICP-MS
Molyhdanim Ma	0.003		OSC	٥	0.007	0.2	ICP-MS
Nickel Ni	0.054			onli	0.001	0.12	ICP-MS
I had Dh	0.036). of o	0.001	0.15	ICP-MS
Antimony Sh	<0.001			M C	0.001	0.1	ICP-MS
Selenium Se	0.001			her	0.007	0.04	ICP-MS
Zinc Zn	0.00			Jist C	0.002	1.2	ICP-MS
Chloride	231				0.1	460	I.C
Fluoride	0.25				0.2	2.5	I.C
Sulphate	459				0.1	1500	I.C
Dissolved Organic Carbon	029				-	160	Photometric
Total Dissolved Solids						,	Gravimetric
Phenol Index	0.212				0.001	0.3	Photometric

Signed for and on behalf of BHP Laboratories Ltd.

Address: Churchtown, Adare, Co.Limerick

Analysis method/ Solid analysis **Photometric** technique GC-FID GC-MS GC-FID GC-MS 30000 500 Limit values mg/kg Detection Limits 0.005 0.001 0.01 0.1 Sample: TH3 Organic Parameters_ Results (mg/kg) Waste sample 102503.1 < 0.005 <0.001 <0.01 <0.1 Description:_ Mineral Oil (C10 to C40) Total Organic Carbon Product Description PCBs (7 cogeners) **BHP** Reference (Sheet 4 of 4) Parameter PAHs (16)

Signed for and on behalf of BHP Laboratories Ltd.

Churchtown, Adare, Co.Limerick Address:

Description:_

Leachate analysis

(Sheet 1 of 4) Description:		L/S = 2 l/kg	ı	Sample: TH4	4			Leachate analysis
Parameter		Results (mg/kg drv substance)	(6				Limit values $L/S = 2 I/kg$	Analysis method / technique
							mg/kg dry substance	
BHP Reference	102503.3					Method		
			C			Detection		
Product Description	Waste sample		So di			Limits		
Arsenic As	<0.001		ent			0.002	0.1	ICP-MS
Rarium Ra	0.036		çoi K			0.01	7	ICP-MS
Codmins Cd	1000		10 A.	ي د		0.001	0.03	ICP-MS
Chaming total Cr	0.019		egit.	e ci		0.001	0.2	ICP-MS
Cili Olindin total Ci	0.01			OUT		0.001	6.0	ICP-MS
Copper Cu	00000			OUT.		0.001	0.003	ICP-MS
Melculy Ing	00007			gi Jil		0.002	0.3	ICP-MS
Molybdenum Mao	0.012			20	on	0.001	0.2	ICP-MS
Nickel in	0.045				3.0	0.001	0.2	ICP-MS
Lead FD	0.021				N.	0.001	0.02	ICP-MS
Anumony Su	1000				iner	0.002	90:0	ICP-MS
Seienium Se	0.001				ase	0.007	2	ICP-MS
ZIIC ZII	0.11					0.1	550	I.C
Cinolide	690					0.2	4	I.C
Fluorine	20.0					0.1	260	I.C
Sulphiate Description Corbon	360					1	240	Photometric
Dissolved Organic Carbon	0101					1	2500	Gravimetric
De contra de la dece	0.245					0.001	0.5	Photometric
rnenoi index	C+7:0							

Signed for and on behalf of BHP Laboratories Ltd.

Address:

Churchtown, Adare, Co.Limerick

L/S = 10 J/kgDescription:__ (Sheet 2 of 4)

Leachate analysis

Sample: TH4

BHP Reference Product Description	(mg	Area chan ca	(ma/ka dry cubstance)					1.7S = 10.1/kg	technique
tion		'kg ur y a	unstante)					mg/kg dry substance	1
otion	102503.3						Method		
			C				Detection		
	Waste samule		9				Limits		
	70.001			ETI			0.002	0.5	ICP-MS
	0.00			ÇÓ Ç			0.01	20	ICP-MS
	0.011			267	, Sé		0.001	0.04	ICP-MS
	0.000			33	e d'		0.001	0.5	ICP-MS
Iotal Cr	0.000				ON'S		0.001	2	ICP-MS
	0000	+			dir.		0.001	0.01	ICP-MS
	<0.007					26	0.002	0.5	ICP-MS
um Mo	0.001				500	ीं व	0.001	0.4	ICP-MS
Nickel Ni	0.008	1	†			101 13.	1000	50	ICP-MS
Lead Pb	900.0	1				di	0.001	200	ICD MG
Antimony Sb	<0.001					Ö	0.001	0.00	ICI -IMB
	0.001					jer	0.002	0.1	ICF-MS
Zinc Zn	0.036					J.S.	0.002	4	ICP-MS
Chloride	19.1						0.1	800	I.C
Huoride	0.6						0.2	10	I.C
Sulphate	19.1						0.1	1000	I.C
Dissolved Organic Carbon	180						1	200	Photometric
Total Discolved Solids	568						1	4000	Gravimetric
Dhanal Inday	0.048						0.001	1	Photometric
I IICIOI IIICCA									
	+	†							

Signed for and on behalf of BHP Laboratories Ltd.

Churchtown, Adare, Co.Limerick

Address:

(Sheet 3 of 4)

L/S = 0.1 l/kg C0 (Percolation) Description:_

Leachate analysis

Sample: TH4

ī		Dogulto						Limit values	Analysis method /
Parameter 		(mg/l)			7220			L/S = 0.1 l/kg mg/l	technique
BHP Reference	102503.3						Method		
			C				Detection		
Product Description	Waste sample		OP	٠	,		Limits		
Arcanic As	0.002			ent			0.002	90:0	ICP-MS
Rarium Ra	0.041			ÇÓ Š			0.01	4	ICP-MS
Codmin Cd	0.007			DA.	S. C.		0.001	0.02	ICP-MS
Chromium total Cr	0.032			300	eci (0.001	0.1	ICP-MS
Conner Cu	0.049				OTH		0.001	9.0	ICP-MS
Margini, Ha	2000				of S		0.001	0.002	ICP-MS
Melichdenim Mo	0.001				giji Jiji	۽	0.002	0.2	ICP-MS
Nickel Ni	0.054				20	onli	0.001	0.12	ICP-MS
I and Dh	0.031). 01.0	0.001	0.15	ICP-MS
Antimony Ch	2007					ay c	0.001	0.1	ICP-MS
Colonium Co	0001					her	0.002	0.04	ICP-MS
Zing Zin	0000					ase		1.2	ICP-MS
Chlorida	20:0						0.1	460	I.C
Fluoride	0.43						0.2	2.5	I.C
Sulphate	295						0.1	1500	I.C
Dissolved Organic Carbon	610						1	160	Photometric
Total Dissolved Solids								1	Gravimetric
Phenol Index	0.185						0.001	0.3	Photometric
	<u> </u>								
_	_								

Signed for and on behalf of BHP Laboratories Ltd.

Address: Churchtown, Adare, Co.Limerick

Sheet 4 of 4) Description:		Organic Parameters	ters		Sample: TH4	14			Solid analysis
Parameter		Results (mg/kg)						Limit values mg/kg	Analysis method / technique
BHP Reference	102503.3		Q ^c				Method Detection		
Product Description	Waste sample		ir eni	×			0.1	30000	Photometric
I Otal Olganic Carbon	<0.01			ÇÓ			0.01	9	GC-FID
PCBs (7 cogeners)	<0.001			DA			0.001	1	GC-MS
Mineral Oil (C10 to C40)	0>			ghi	ecti		0.1	200	GC-FID
Miletar On (C15 to C15)	<0.005				OTI		0.005	•	GC-MS
(17)					di				
					giji Jiji				
					20	odi			
						5. 8			
						N c			
						her			
						O'SO			
			1						

Signed for and on behalf of BHP Laboratories Ltd.

Form No.: BHP/MTi/1093 1.1 18/06/07

Client: Limerick County Council

County Hall Dooradoyle Co. Limerick

F.T.A.O.: Mr. Finbarr Murphy

Client Reference: Newcastlewest Landfill Site.

Sampling Certificate Provided: Yes

TEST REPORT

BHP Ref. No.:

12/02/199

Order No:

400217322

Date Received:

17/02/2012

Date Tested:

06/03/2012

Test Specification: Customer

Item: Clay Liner material

Analysing Testing Consulting Calibration

New road Thomondgate

Limerick

Ireland

Tel +353 61 455399

Fax +353 61 455447 E Mail

seamusoconnell@bhp.ie

DETERMINATION OF PLASTICITY INDEX TO BS 1377:PART 2:1990

Client Sample Ref.:

Sample No.

Date Sampled Source

Location

% Retained on 425 µm test sieve

Method of Test

Sample Preparation Deviation from Test Method

Base of landfill

Sample 1 1

Not stated

Not stated

BS 1377:Part 2:1990:Cl.4 & 5

Wet Sieving

None

Results:

Liquid Limit

Plastic Limit

Plasticity Index

40 19 21

Remarks:

Nil

Laboratory Technical manager

For and On Behalf of BHP Laboratories

Issue Date: 8th March 2012 Test results relate to the samples, as supplied. This test report shall not be duplicated, except in full and only with the permission of the test laboratory.

Sampling details where supplied are held on file.

Analysing Testing Consulting Calibration

Client:

Limerick County Council

BHP Ref. No.:

12/02/199

County Hall

Order No.:

400217322

Dooradoyle Co. Limerick

Mr. Finbarr Murphy

100

100

100

100

97

97

92

91

64

52

Date Received: 17/02/2012

Date Tested:

27/02/2012

Test Specification: Customer spec

F.T.A.O.:

Item: Clay Liner material

Thomondgate Limerick 1reland

New road

Client Reference:

BS 1377:Part 2:1990

75

63

50

37.5

28

20

600µm

425µm

6µт

 $2\mu m$

Newcastlewest Landfill Site.

Tel +353 61 455399 Fax +353 61 455447

E Mail

hhnoon?@hhn ja

Sampling Certificate Provided:

No

BHP Reference 12/02/199 **CLIENT REFERENCE** Client Reference Sieve Size % Passing % Passing % Passing (mm) Clay liner 125 100 100 100

Customer Ref

Source: Base of Landfill

Consent of copyright owner required for any 14 97 10 96 6.3 95 **5.0** 95 3.35 95 2.00 94 1.18 93

 $300 \mu m$ 90 90 212µm 89 150µm 87 63µm $20 \mu m$ 78

Details of any material not representative of the bulk sample found: None found.

Laboratory Technical Manager

For and On Behalf of BHP Laboratories

Issue Date:

8th March 2012

Test results relate to the samples as supplied. This test report shall not be duplicated in full without the permission of the test laboratory. Sampling details where supplied are held on file.

PARTICLE SIZE DISTRIBUTION

Analysing

Limerick County Council Client Reference:

Newcastlewest Landfill Site. 17/02/12

Date Received:

Location:

Base of landfill

Date Tested: F.T.A.O.:

New Road Thomondgate Testing Consulting Calibrating Mr. Finbarr Murphy Customer spec 27/02/2012 12/02/199 Material Spec: BHP Ref.:

Limerick Ireland

Partcle Size(mm) 200 9 20 9 a FO DALIGHT 9.0 0.2 Cons 90.0 0.02 900.0 0.002 08 % 100 9 70 9 50 40 30 20 10

q

a S S

ine Medium	Coarse	Fine	Medium	Coarse	Copples	Boulders
 Sand			Gravel			

Laboratory Technical Manager

For and On Behalf of BHP Laboratories Ltd

Test results relate to the samples, as supplied. This test report shall not be duplicated in full without the permission of the test laboratory.

Sampling details where supplied are held on file.

Issue Date: 8th March 2012

BHP Ref. No.:

Date Received:

Date Tested:

Test Spec.:

Item:

Order No:

Client:

Limerick County Council

County Hall Dooradoyle

Co. Limerick.

F.T.A.O.:

Mr. Finbarr Murphy

Client Reference:

Newcastlewest Landfill Site.

Sampling Certificate Provided:

No

Analysing Testing Consulting Calibration

New road Thomondgate Limerick

Ireland

Tel +353 61 455399 Fax +353 61 455447

E Mail

seamusoconnell@bhp.ie

DETERMINATION OF MOISTURE CONFENT TO BS 1377:PART 2:1990 Consent of confridit owner required for s

Sample No. Time Sampled Date Sampled Stated Source Location

Method of Test

Results:

Moisture Content

Not stated Not stated Not stated Base of landfill

12/02/199

400217322

17/02/2012

22/02/2011

Customer spec

Clay liner material

Definitive oven drying

22.2%

Remarks:

Nil

Laboratory Technical Manager

For and On Behalf of BHP Laboratories

Issue Date: 8th March 2012

Test results relate to the samples, as supplied. This test report shall not be duplicated, except in full and only with the permission of the test laboratory. Sampling details where supplied are held on file.

Client:

Limerick County Council

County Hall Dooradoyle Co. Limerick

Co. Clare

F.T.A.O.:

Mr. Finbar Murphy

Client Ref:

Newcastlewest Landfill site.

Sampling Certificate Provided: No

BHP Ref. No.: Order No: Date Received: Date Tested:

Test Spec.: Item:

12/02/199 400217322 17/02/2012

05/04/2012 customer spec Clay liner sample

Analysing Testing Consulting Calibration

BHP New Road Thomondgate Limerick

Ireland Tel +353 61 455399 Fax +353 61 455447

E Mail

seamusoconnell@bhp.ie

DETERMINATION OF THE COEFFICIENT OF PERMEABILITY UNDER CONSTANT HEAD CONDITIONS IN A TRIAXIAL CELL IN ACCORDANCE WITH Consent of convingent owner required for a BS 1377:PART 6 :1990: CLAUSE 6

Sample Ref. Method of Test

Clay liner - brown silty clay BS 1377:Part 6:1990

Results:

Sample Condition

Remoulded

Method of Remoulding

2.5kg Rammer

Specimen Details

Dry Density (Mg/m³)

Initial

Final

N/A

Diameter Height

Moisture Content Bulk Density (Mg/m³)

:

:

101mm 99mm 24.0% 2.040

1.640

N/A 24.0% 2.130

1.720

Form No.:BHP/MTI/1012 1.1 27/9/6

BHP Ref. No.:

M12/02/199

Saturation Stage: Performed in accordance with Clause 5.4.3.

Initial pore pressure coeficient, B

0.86

Final pore pressure coeficient, B

0.96

Duration of stage

9 days

Consolidation Stage

Effective pressure

100 kPa

Duration of stage

3 days

Permeability Stage

Pressure difference across specimen (kPa)

Mean effective stress (kPa)

Duration of stage

Consent of copyright own 2 days

Coefficient of Permeability (k_{ν}) at 20°C

 $1.0 \times 10^{-10} \, \text{m/s}$

Remarks:

Laboratory Technical Manager

For and On Behalf of BHP Laboratories

This test was subcontracted to an approved supplier.

Issue Date: 30th April 2012

Test results relate to the samples, as supplied. This test report shall not be duplicated, except in full and only with the permission of the test laboratory. Sampling details where supplied are held on file.

Page 2 of 2

Analysing Testing Consulting Calibration

Client:

Limerick County Council

County Hall

Dooradoyle Co. Limerick BHP Ref. No.: Order No.:

Item:

Date Received:

Date Tested: Test Spec:

Capping material

28/02/2012 **Customer Spec**

12/02/198

400217322

17/02/2012

BHP New road

Thomondgate Limerick Ireland

Tel +353 61 455399 Fax +353 61 455447

E Mail

seamusoconnell@bhp.ie

F.T.A.O.:

Mr. Finbar Murphy

Client Ref:

Newcastlewest Landfill

Sampling Certificate Provided:

IS EN 933-1: 1998 Cl. 7 (Particle Size Distribution)

BHP Reference	12/02/198			SPECIFICATION LIMITS
Client Reference	capping material			
Sieve Size	% Passing	% Passing	% Passing	
(mm)		:		
500	100			
125	100		Į	
80	100			Per.
63	100		1	,ex
45	85		14. 43 or	
40	81		Solitor are	
31.5	67		203.207	
20	49		DIT SHIT	
16	41		tion et ic	
. 14	37	S	CCOMIT	Not Applicable
12.5	35	at ins	ction purposes only any of	
10	29	to Sh	1	
8	25	St. Co.		
6.3	22	cente		
4	18	COUR		
2.80	17			
2	15			
1	13			
500μm	11			
425μm	10	11		
250μm	9			
125µm	8			
63µm	7.0			

Remarks:

Details of any material not representative of the bulk sample found: None found.

The sample, as supplied is finer than a Cl. 505 Filter Drain material but typical of a Cl. 6F1/6F2 capping material as defined in the Specification for Road Works.

Seamus O'Connell

Laboratory Technical Manager

For and On Behalf of BHP Laboratories

Issue Date:

8th March 2012

Test results relate to the samples as supplied. This test report shall not be duplicated, except in full and only with the permission of the test laboratory. Sampling details where supplied are held on file.

Partcle Size(mm) Boulders 08 09 Thomondgate Analysing Testing Consulting Calibrating New Road BHP 30 40 Cobbles 20 Coarse 10 12/02/198 Mr. Finbar Murphy 00 Medium Gravel 28/02/2012 Fine Date Tested: Coarse BHP Ref.: F.T.A.O.: 0.5 Medium Sand 0.2 Fine Limerick County Council 90.0 capping material Coarse 17/02/12 0.02 Medium Silt 900.0 Client Reference: Date Received: Fine Client: 0.002 **CLAY** 001 08 % 20 30 90 40 20 9 20 10 ψ2 = 5.0 œ Ø .-

PARTICLE SIZE DISTRIBUTION

Issue Date: 8th March 2012

Test results relate to the samples, as supplied . This test report shall not be duplicated in full without the permission of the test laboratory.

Laboratory Technical Manager For and On Behalf of BHP Laboratories Ltd

Sampling details where supplied are held on file.

Unit 18A Rosemount Business Park Ballycoolin Dublin 11 Tel: (0035) 3188 29893

Tobin Block 10 - 4 Blanchardstown Corporate Park Dublin

Attention: John Dillon

CERTIFICATE OF ANALYSIS

Date:

08 January 2013

Customer:

D_TOBIN_DUB

Sample Delivery Group (SDG):

121218-40

Your Reference:

2928

Location: Report No: Newcastlewest

207714

We received 4 samples on Monday December 17, 2012 and 4 of these samples were scheduled for analysis which was completed on Tuesday January 08, 2013. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan

Operations Manager

Validated

SDG: Job: Client Reference: 121218-40 D_TOBIN_DUB-86 2928

Location: Customer:

Newcastlewest Tobin John Dillon Order Number: Report Number: Superseded Report:

207714

Client Reference: 2928		Attention	1:	John Dill	on			
LIQUID Results Legend X Test	Lab Sample	No(s)	6683344	COCCO	660000	6683346	6683347	
No Determination Possible	Custome Sample Refe		GW3	G		NV	MW7	
	AGS Refere	ence	A comment					
	Depth (m	n)						
	Containe	er	1 plastic (ALE221)	HNO3 Filtered (ALE H2SO4 (ALE244) 1iplastic (ALE221) 1l green glass bottle	11 green glass bottle	Vial (ALE297) HNO3 Filtered (ALE H2SO4 (ALE244) 1lplastic (ALE221)	Vial (ALE297) HN03 Filtered (ALE H2S04 (ALE244) 1)plastic (ALE221) 11 green glass bottle	
Acid Herbicide Suite 1 (W) *	All	NDPs 0 Tests 3		X M	X	m	x x x x x x x x x	91
Acid Herbicides (W)	All	NDPs: 0 Tests: 3		x	X		X .4. A	ther use
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 4	×	×		X _Q OSE.	Soul X	
Anions by Kone (w)	All	NDPs: 0 Tests: 4	×	x se	ijo	Met tedi	x	
BOD True Total	All	NDPs: 0 Tests: 4	×	For instal	ik	x	x	
COD Unfiltered	All	NDPs: 0 Tests: 4	X	X		x	x	
Conductivity (at 20 deg C)	All	NDPs: 0 Tests: 4	×	×		X	X ,	
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 4	×	×	X		x	
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 4	×	×		x	×	
Dissolved W, Nb and Zr by ICP-MS	All	NDPs 0 Tests: 4	×	×		X	x	
Fluoride	All	NDPs: 0 Tests: 4	×	×		×	×	
Mercury Dissolved	All	NDPs: 1 Tests: 3		X	X		×	
Metals by iCap-OES Dissolved (W)	All	NDPs: 0 Tests: 4	×	x x		×	x	
Mineral Oil C10-40 Aqueous (W)	All	NDPs: 0 Tests: 3		×	4800	x	X	
Nitrite by Kone (w)	All	NDPs: 0 Tests: 4	×	×		X	x	

Validated

SDG: Job:

121218-40 D_TOBIN_DUB-86

Location: **Customer:**

Newcastlewest Tobin

Order Number: Report Number: Superseded Report:

207714

Client Reference:

2928

Attention:

John Dillon

** Subcontracted test. *** Streeovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the results of individual compounds within samples aren't corrected for the results of individual compounds within samples aren't corrected for the results of individual compounds within sample save aren't corrected for the results of individual compounds within sample save aren't corrected for the results of individual compounds within sample available sample sample available sample available sample available sample avai	Client Reference: 2928			Attention: Joh	nn Dillon		ort:	
Part	Results Legend		Sustamas Pamala B		-			
Second Colors Second Property Second Prope	# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.		·	GW3	GW6	MW1	MW7	
Triggory	tot.unfilt Total / unfiltered sample. * Subcontracted test.	rd to	Sample Type Date Sampled					
March Marc	check the efficiency of the method. results of individual compounds wi	The Ithin	Date Received					
Component Comp	(F) Trigger breach confirmed	covery	Lab Sample No.(s)					
23.6 Trinsferobenace 40.02 SUB 40.02 < 40.02 < 40.02 < 40.02 < 40.02	Component	LOD/Units						
Benazisin'	2,3,6-Trichlorobenzoic				<0.02	<0.02	<0.02	
Light Ligh	acid (2,3,6-TBA)*							
		µg/l						
Light Ligh			SUB		<0.02	<0.02	<0.02	
Second S	•	μg/l						
Mary	Flamprop-isopropyl*		SUB		<0.02	<0.02	<0.02	
Ammonical Nirogen as No 2 mg/l Ni/099	BOD, unfiltered	<1 mg/i	TM045					
Flooride	_	<0.2 mg/	/I TM099	<0.2	0.206	<0.2	<0.2	
COD. unfiltered <pre></pre>		<0.5 mg/	/I TM104	<0.5	<0.5	<0.5	<0.5	
Conductivity @ 20 deg C 0.005 7.11120 0.54 1.5 0.847 0.715 Silicon (diss.filt)	COD, unfiltered	<7 mg/l	TM107	139	34.5	13.5	19	
Silicon (diss.fill)	Conductivity @ 20 deg.C	1	TM120	0.54	1.5	0.847	0.715	
Arsenic (diss.filt)	Silicon (diss.filt)	l .	TM129		10.8	3.560		
Arsenic (diss.filt)	Antimony (diss.filt)		TM152	0.68 #	1.98	117 310:779 (01 #		
Cadmium (diss.filt) -0.1 µg/l -0.22 TM152	Arsenic (diss.filt)	1	TM152	0.614 #	1.05 05 118	O.498 #	0.579	
Cadmium (diss.filt) -0.1 µg/l -0.22 TM152	Barium (diss.filt)		TM152	87.5 #	2011,58.8, 10 #	56.9 #		
Cadmium (diss.filt) -0.1 µg/l -0.22 TM152	Beryllium (diss.filt)		TM152	<0.07 .#	10:50 e0.07	<0.07 #	<0.07	
Chromium (diss. filt)	Boron (diss.filt)			17.1	575 #	,		
Chromium (diss. filt)	Cadmium (diss.filt)	<0.1 µg/	/l TM152	<0.1 0 4	0.703 #			į.
Lead (diss.filt)				3 95 #	3.04 #	#		#
Lead (diss.filt) μg/l TM152 0.059 # 0.277 # 0.063 # 0.097 # # Manganese (diss.filt) <0.04 μg/l	Cobalt (diss.filt)		TM152					ŧ
Lead (diss.filt)	Copper (diss.filt)		TM152		1			
Molybdenum (diss.filt)	Lead (diss.filt)		TM152					,
Nickel (diss.filt)	Manganese (diss.filt)		TM152					į
Phosphorus (diss.filt) <6.3 μg/l TM152 46.8 17.7 14.5 18.1 # # # # # # # # #	Molybdenum (diss.filt)		TM152			L		*
Phosphorus (diss.filt) <6.3 μg/l μg/l TM152 H6.8 μg/l 46.8 μg/l 17.7 μg/l 14.5 μg/l 18.1 μg/l # # μg/l Selenium (diss.filt) <0.39 μg/l	Nickel (diss.filt)	<0.15	TM152	2.77	23.5	7.93	8.24	
Selenium (diss.filt)	,	<6.3 µg	/I TM152	46.8	17.7	14.5	18.1	
Tellurium (diss.filt)	Selenium (diss.filt)		TM152	4.3	6.29	1.71	1.82	
μg/l μg/l <t< td=""><td>Tellurium (diss.filt)</td><td></td><td>TM152</td><td></td><td></td><td></td><td></td><td></td></t<>	Tellurium (diss.filt)		TM152					
Tin (diss.filt) <0.36 μg/l TM152 μg/l <0.36 μg/l <0.36 μg/l <0.36 μg/l <0.401 μg/l # # # # # # Uranium (diss.filt) <1.5 μg/l	, ,		TM152	<0.96	<0.96	<0.96	<0.96	
Uranium (diss.filt) <1.5 μg/l	Tin (diss.filt)	<0.36	TM152				l .	#
Vanadium (diss.filt) <0.24 TM152 0.86 0.804 0.467 0.627		<1.5 µg	/I TM152					
				#	#	#		¥
	Vanadium (diss.filt)		TM152				1	¥

Validated

SDG: Job:

121218-40 D_TOBIN_DUB-86

Location: **Customer:**

Newcastlewest Tobin

Order Number: Report Number:

207714

Superseded Report:

Client Reference: 2928 Attention: John Dillon Customer Sample R MW1 GW6 MW7 Depth (m) Water(GW/SW) 17/12/2012 Water(GW/SW) 17/12/2012 Sample Type Water(GW/SW) Water(GW/SW) 17/12/2012 17/12/2012 Sampled Time 17/12/2012 121218-40 17/12/2012 17/12/2012 17/12/2012 SDG Ref 121218-40 121218-40 121218-40 6683344 Lab Sample No.(s) 6683343 6683346 6683347 AGS Reference Component LOD/Units Method Cyanide, Free TM227 <0.05 <0.05 <0.05 <0.05 <0.05 mg/l Calcium (diss.filt) <0.012 TM228 151 361 218 222 mg/l # # # Sodium (diss.filt) <0.076 TM228 7.23 35.5 10.9 11.3 mg/l # # Magnesium (diss.filt) < 0.036 TM228 6.22 38.5 16.9 16.7 mg/l # Potassium (diss.filt) <2.335 TM228 <2.34 23.7 4.49 4.85 mg/l # # Iron (diss.filt) <0.019 TM228 <0.019 <0.019 <0.019 <0.019 mg/l # # # рΗ <1 pH TM256 7.98 7.7 7.71 7.74 Units # Silver (diss.filt) <1.5 µg/l TM283 <1.5 <1.5 <1.5 <1.5 # Dibutyl tin TM328 <5 ng/l <5 <5 <5 Tributyl tin TM328 <1 ng/l <1 <1 <1 Tetrabutyl tin <2 ng/l TM328 <2 <2 < the Triphenyl tin <1 ng/l TM328 <1 ²<1 <1 TM328 Surrogate % 50 67 92 dit Owner roit.

08:49:17 08/01/2013

Validated

SDG: Job:

Client Reference:

121218-40 D_TOBIN_DUB-86

Location: Newcastlewest **Customer:**

Attention:

Tobin John Dilton Order Number:

Report Number: Superseded Report: 207714

OC,	OP	Pesticides	and	Triazine	Herb	
-		December 1		THE RESERVE OF THE PARTY OF THE		=

2928

	Results Legend ISO17825 accredited.	-	ustomer Sample R	GW6	MW1	MW7	14.37	
M aq diss.flit ot.unflit	mCERTS accredited. Aqueous / settled sample. Dissolved / filtered sample. Total / unfiltered sample. Subcontracted test. % recovery of the surrogate stands	ard to	Depth (m) Sample Type Date Sampled	Water(GW/SW) 17/12/2012	Water(GW/SW) 17/12/2012	Water(GW/SW) 17/12/2012		
	check the efficiency of the method results of individual compounds w	. The	Sampled Time Date Received	17/12/2012	17/12/2012	17/12/2012		
	samples aren't corrected for the re	covery	SDG Ref	121218-40 6683343	121218-40 6683346	121218-40 6683347		
	Trigger breach confirmed Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	0003343	0003340	000347		
Compor	nent	LOD/Units			The State of			
Atrazin	е	<1 µg/l	TM231	<1	<1	<1		
Simazi	ne	<1 µg/l	TM231	<1	<1	<1		
Dichlor	vos	<0.01	TM231	<0.01	<0.01	<0.01		
Mevinp	ihos	μg/l <0.01	TM231	<0.01	<0.01	<0.01		
·		μg/l						
	nlorobenzene	<0.1 µg/		<0.1	<0.1	<0.1		
	Hexachlorocyclohex CH / Lindane)	<0.01 µg/l	TM231	<0.01	<0.01	<0.01		
Diazino	n	<0.01 µg/l	TM231	<0.01	<0.01	<0.01		
	a-Hexachlorocycloh (HCH / Lindane)	<0.01 μg/l	TM231	<0.01	<0.01	<0.01		
	amphos	μg/i <0.1 μg/	1 TM231	<0.1	<0.1	<0.1		
Dimeth	oate	<0.1 µg/	1 TM231	<0.1	<0.1	<0.1		
Chloro	thalonil	<0.1 µg/	1 TM231	<0.1	<0.1	<0.1 <0.10		
Heptac	:hlor	<0.01	TM231	<0.01	<0.01	<0.11et		
	hos-methyl	μg/l <0.1 μg/		<0.1	c0.1 25°	10 < 0.1		
	nos-mediyi			70.1	Durgonin	V . 1	 	
Aldrin		<0.01 µg/l	TM231	<0.01	ection ner	<0.01		
Isodrin		<0.1 µg	/I TM231	<0.1	<0.01 <0.1 CO.1 CO.01	<0.1		
	exachlorocyclohexa CH / Lindane)	<0.01 µg/l	TM231		(O.01	<0.01		
Fenthi	on	<0.1 µg	/I TM231	<0.1 of	<0.1	<0.1		
Methyl	parathion	<0.01	TM231	69.01	<0.01	<0.01	 	
Pendir	nethalin	μg/i <0.1 μg	/I TM231	<0.1	<0.1	<0.1		
Chlorfe	envinphos	<0.1 µg	/I TM231	<0.1	<0.1	<0.1		
Malath	ion	<0.01	TM231	<0.01	<0.01	<0.01		
o,p-DD	DE	μg/l <0.1 μg	/I TM231	<0.1	<0.1	<0.1		
Fenitro		<0.01	TM231	<0.01	<0.01	<0.01		
		μg/l						
	chlor epoxide	<0.01 µg/l	TM231	<0.01	<0.01	<0.01		
o,p-TD	E (DDD)	<0.1 µg	/I TM231	<0.1	<0.1	<0.1		
o,p-DE	T	<0.1 µg	/I TM231	<0.1	<0.1	<0.1		
Parath	ion	<0.01 µg/l	TM231	<0.01	<0.01	<0.01		
Endos	ulphan I	<0.01	TM231	<0.01	<0.01	<0.01		
o,p-Me	ethoxychlor	µg/l <0.1 µg	/I TM231	<0.1	<0.1	<0.1		_
Carbo	phenothion	<0.1 µg	/I TM231	<0.1	<0.1	<0.1		
p,p-DE		<0.01	TM231	<0.01	<0.01	<0.01		
Triazo		μg/l <0.1 μg		<0.1	<0.1	<0.1		
111020	prioa	~o. i µg	n 11VIZ31	70.1	~0.1	~U.1		

Validated

SDG: Job: Client Reference: 121218-40 D_TOBIN_DUB-86

Location: **Customer:** Attention: Newcastlewest Tobin John Dillon

Order Number:

Report Number: Superseded Report: 207714

2928

DC, OP Pesticides and Triazine Herb											
Results Legend		ustomer Sample R	GW6	MW1	MW7						
# 18017023 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.nit Dissolved filtered sample. totunfilt Total / unfiltered sample. Subcontracted test. " % recovery of the surrogate stand. check the efficiency of the method results of individual compounds w samples aren't corrected for the re (F) Trigger breach confirmed 1-48-9@ Sample deviation (see appendix) Component	. The Athin covery	Depth (m) Sample Type Date Sampled Time Date Received SDG Ref Lab Sample No.(5) AGS Reference Method	Water(GW/SW) 17/12/2012 17/12/2012 121218-40 6683343	Water(GW/SW) 17/12/2012 17/12/2012 121218-40 6683346	Water(GW/SW) 17/12/2012 17/12/2012 121218-40 6683347						
Methacriphos			-0.1	-0.1	40.4						
ivietnacripnos	<0.1 µg/	TM231	<0.1	<0.1	<0.1						
Tributylphosphate	<0.1 μg/	TM231	<0.1	<0.1	<0.1						
Sulfotep	<0.1 µg/		<0.1	<0.1	<0.1						
Phorate	<0.1 µg/		<0.1	<0.1	<0.1						
Fonofos	<0.1 µg/		<0.1	<0.1	<0.1						
Phosphamidon I	<0.1 µg/		<0.1	<0.1	<0.1						
Disulfoton	<0.1 µg/		<0.1	<0.1	<0.1						
Phosphamidon II	<0.1 µg/		<0.1	<0.1	<0.1						
Chlorpyriphos methyl	<0.1 µg/		<0.1	<0.1	<0.1						
Triphenylphosphate	<0.1 µg/		<0.1	<0.1	<0.1 <0.1						
Phosmet	<0.1 µg/		<0.1	<0.1	<0 INC						
o-ethyl 4-nitrophenyl phosphonothioate (EPN)	<0.1 µg/		<0.1	<0.1	all ar < 0.1						
Coumaphos	<0.1 µg/		<0.1	<0.1 post. if	<0.1						
cis-Heptachlor epoxide	<0.1 µg/	/I TM231	<0.1	Pectico St. It	<0.1						
			Ç0	<0.1 <0.1 po specific de la reconstruction de la r							
			Consent of C	26,							
			c Onsent								
			U								
W											

Validated

SDG: Job: 121218-40 D_TOBIN_DUB-86 Location: Customer: Newcastlewest Tobin

Tobin John Dillon Order Number: Report Number:

mber: 207714

Client Reference: 2928 Attention: Superseded Report: SVOC MS (W) - Aqueous Customer Sample R GW6 MW1 MW7 ISO17025 accredited. mCERTS accredited. Aqueous / settled sampl Dissolved / filtered samp Depth (m) diss.filt Total / unflitered sar Subcontracted test. Sample Type Water(GW/SW) Water(GW/SW) Water(GW/SW) Date Sampled Sampled Time 17/12/2012 17/12/2012 17/12/2012 Subcontracted test.

% recovery of the surrogate standard to check the efficiency of the method. The results of Individual compounds within samples aren't corrected for the recovery Trigger breach confirmed

1-48-9

Sample deviation (see appendix) **Date Received** 17/12/2012 17/12/2012 17/12/2012 121218-40 6683343 SDG Ref 121218-40 121218-40 Lab Sample No.(s) 6683346 6683347 **AGS Reference** Component LOD/Units Method 1,2,4-Trichlorobenzene TM176 <1 <1 µg/l <1 <1 (aq) 1,2-Dichlorobenzene (aq) <1 µg/l TM176 <1 <1 <1 TM176 1,3-Dichlorobenzene (aq) <1 µg/l <1 <1 <1 TM176 1.4-Dichlorobenzene (ag) <1 µg/l <1 <1 <1 TM176 2,4,5-Trichlorophenol (aq) <1 µg/l <1 <1 <1 <1 2,4,6-Trichlorophenol (aq) <1 µg/l TM176 <1 <1 2,4-Dichlorophenol (aq) <1 µg/l TM176 <1 <1 <1 2,4-Dimethylphenol (aq) TM176 <1 µg/l <1 <1 <1 2,4-Dinitrotoluene (aq) TM176 <1 µg/l <1 <1 <1 2,6-Dinitrotoluene (aq) TM176 <1 µg/l <1 <1 <1 Sher 2-Chloronaphthalene (aq) <1 µg/l TM176 <1 <1 2-Chlorophenol (aq) <1 µg/l TM176 <1 <1 1> 2-Methylnaphthalene (aq) <1 µg/l TM176 <1 <1 <1 ·jioR1 2-Methylphenol (aq) TM176 <1 <1 µg/l <1 2-Nitroaniline (aq) TM176 <1 <1 µg/l <1 2-Nitrophenol (aq) <1 µg/l TM176 <1 <1 3-Nitroaniline (aq) <1 µg/l TM176 <1 <1 <1 4-Bromophenylphenylethe TM176 <1 µg/l <1 <1 r (aq) 4-Chloro-3-methylphenol <1 µg/l TM176 <1 <1 <1 (aq) 4-Chloroaniline (aq) TM176 <1 <1 µg/l <1 <1 4-Chlorophenylphenylethe <1 µg/l TM176 <1 <1 <1 r (aq) TM176 4-Methylphenol (aq) <1 µg/l <1 <1 <1 4-Nitrophenol (aq) TM176 <1 µg/l <1 <1 <1 4-Nitroaniline (aq) TM176 <1 µg/l <1 <1 <1 Azobenzene (aq) <1 µg/l TM176 <1 <1 <1 bis(2-Chloroethyl)ether <1 µg/l TM176 <1 <1 <1 (aq) bis(2-Chloroethoxy)metha TM176 <1 µg/l <1 <1 <1 ne (aq)

Dibenzofuran (aq)

Carbazole (aq)

bis(2-Ethylhexyl) phthalate

Butylbenzyl phthalate (aq)

Benzo(k)fluoranthene (aq)

(aq)

TM176

TM176

TM176

TM176

TM176

<2

<1

<1

<1

<1

<2 µg/l

<1 µg/l

<1 µg/l

<1 µg/l

<1 µg/l

<2

<1

<1

<1

<1

<2

<1

<1

<1

<1

Validated

SDG: Job:

121218-40 D_TOBIN_DUB-86

Location: **Customer:** Newcastlewest Tobin

Order Number: Report Number:

207714

VOC MS (W)

Client Reference: 2928

Attention: John Dillon Superseded Report:

VOC MS (W)							
# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.		Customer Sample R Depth (m)	GW3	GW6	MW1	MW7	
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate stands	ard to	Sample Type Date Sampled Sampled Time	Water(GW/SW) 17/12/2012	Water(GW/SW) 17/12/2012	Water(GW/SW) 17/12/2012	Water(GW/SW) 17/12/2012	
check the efficiency of the method results of individual compounds w	. The	Date Received	17/12/2012	17/12/2012	17/12/2012	17/12/2012	
samples aren't corrected for the re (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	121218-40 6683344	121218-40 6683343	121218-40 6683346	121218-40 6683347	
1-4&+§@ Sample deviation (see appendix)		AGS Reference					
Component	LOD/Unit						
Dibromofluoromethane**	%	TM208	110 1	109	107	108	
Toluene-d8**	%	TM208	100 1	100	100	101	
4-Bromofluorobenzene**	%	TM208	99 1	98.6	98.7	99.7	
Dichlorodifluoromethane	<1 µg/l	I TM208	<1 1 #	<1 #	<1 #	<1 #	
Chloromethane	<1 µg/	1 TM208	<1 1#	<1 #	<1 #	<1 #	
Vinyl chloride	<1 µg/	1 TM208	<1 1 #	<1 #	<1 #	<1 #	
Bromomethane	<1 µg/	TM208	<1 1#	<1 #	<1 #	<1 #	
Chloroethane	<1 µg/	1 TM208	<1 1 #	<1	<1 *#	<1 #	
Trichlorofluoromethane	<1 µg/	1 TM208	<1 1#	<1	<1 #	<1 #	
1,1-Dichloroethene	<1 µg/	1 TM208	<1 1#	<1	<1 \$\sigma_{\sigma}^{\color{\colir{\colir{\colir{\colir{\colir{\colir{\colir{\colir{\colir{\cichcolir{\cin{\colir{\colir{\colir{\colir{\colir{\colir{\colir{\colir{\colir{	<1 #	
Carbon disulphide	<1 µg/	1 TM208	<1 1 #	<1 #		<1 #	
Dichloromethane	<3 µg/	TM208	<3 1#	<1 # <3 **	1117, 1117<3	<3 #	
Methyl tertiary butyl ether (MTBE)	<1 µg/	TM208	<1 1 #	<1 05 night	<1 #	<1 #	
trans-1,2-Dichloroethene	<1 µg/	TM208	<1 1#	actional rect	<1 #	<1 #	
1,1-Dichloroethane	<1 µg/	1 TM208	<1 1 #	Inspect of 1	<1 #	<1 #	
cis-1,2-Dichloroethene	<1 µg/		<1 \$\frac{4}{3} #	(S)' <1	<1 #	<1 #	
2,2-Dichloropropane	<1 µg/	/I TM208	<1 0 1 <1 0 1	<1	<1	<1	
Bromochloromethane	<1 µg/	/I TM208	્લે 1#	<1 #	<1 #	<1 #	
Chloroform	<1 µg/	/I TM208	<1 1 #	<1 #	<1 #	<1 #	
1,1,1-Trichloroethane	<1 µg/	/I TM208	<1 1 #	<1 #	<1 #	<1 #	
1,1-Dichloropropene	<1 µg/		<1 1 #	<1 #	<1 #	<1 #	
Carbontetrachloride	<1 µg/		<1 1 #	<1 #	<1 #	<1 #	
1,2-Dichloroethane	<1 µg/		<1 1		<1	<1	
Benzene	<1 µg/		<1 1#			<1 #	
Trichloroethene	<1 µg/		<1 1 #		<1 #	<1 #	
1,2-Dichloropropane	<1 µg/		<1 1 #	<1 #	<1 #	<1 #	
Dibromomethane	<1 µg/		<1 1 #		<1 #	<1 #	
Bromodichloromethane	<1 µg/	/I TM208	<1 1#	<1	<1 #	<1 #	
cis-1,3-Dichloropropene	<1 µg/	/I TM2 08	<1 1#	<1	<1 #	<1 #	
Toluene	<1 µg/	/I TM208	<1 1 #	<1	<1	<1	
trans-1,3-Dichloropropene	<1 µg/	/I TM208	<1 1 #	<1	<1	<1	
1,1,2-Trichloroethane	<1 µg/	/I TM208	<1 1 #	<1 #	<1 #	<1 #	

Validated

SDG: Job:

2928

121218-40 D_TOBIN_DUB-86

Location: **Customer:** Attention: Newcastlewest Tobin John Dillon

Order Number:

Report Number: Superseded Report: 207714

Client Reference:

VOC MS (W)							
Results Legend	10000	Customer Sample R	GW3	GW6	MW1	MW7	
# ISO17025 accredited. M mCERTS accredited.							
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)				2	
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Water(GW/SW) 17/12/2012	Water(GW/SW) 17/12/2012	Water(GW/SW) 17/12/2012	Water(GW/SW) 17/12/2012	
** % recovery of the surrogate stand	ard to	Sampled Time					
check the efficiency of the method results of individual compounds v	Athin	Date Received SDG Ref	17/12/2012 121218-40	17/12/2012 121218-40	17/12/2012 121218-40	17/12/2012 121218-40	
samples aren't corrected for the re (F) Trigger breach confirmed	covery	Lab Sample No.(s)	6683344	6683343	6683346	6683347	
1-48-9@ Sample deviation (see appendix)		AGS Reference		100			
Component	LOD/Uni				A CONTRACT OF THE STATE OF THE		
1,2,3-Trichlorobenzene	<1 µg	/I TM208	<1	<1	<1	<1	
1,3,5-Trichlorobenzene	<1 µg	/I TM208	1 # <1	# <1	# <1	# <1	
1,0,0-111011010501120110	1, 59	1141200	1	-1	-1	71	
						-	
				vegetion purposition of the state of the sta			
					يو.		
			-		010		
					othe		
					ally ally		
				رې	toi		
				2008,100	<u> </u>		
				Oli Call			
				ion er te			
	3			Dect Mit			
			4	in our			
			Ŷº	OF TO			
			ر و	3 ×			
			do				
			a ser				
			60				
·	4						
11.000000000000000000000000000000000000							
	-						
	-						
	•						

Validated

SDG: Job: Client Reference: 121218-40 D_TOBIN_DUB-86 2928

Location: Customer: Attention: Newcastlewest Tobin John Dillon

Order Number: Report Number: Superseded Report:

207714

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample *	Surroga Correcte
SUB	The state of the s	Subcontracted Test	Sample	Correct
TM045	MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA Blue Book 130	Determination of BOD5 (ATU) Filtered by Oxygen Meter on liquids		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit		
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter		
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM172	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	EPH in Waters		
TM176	EPA 8270D Semi-Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Determination of SVOCs in Water by GCMS		
TM178	Modified; US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM186	Determination of Acidic Herbicides in Groundwater and Potable Water by LC/MSD Using Selective Ion Monitoring, Agilent Technologies Inc. Application Note 5988-5882EN.	The Determination of Acid Herbicides in Environmental Water Samples and Leachates by LC/MS QQQ.		
TM191	Standard Methods for the examination of waters and wastewaters 16th Edition, ALPHA, Washington DC, USA. ISBN 0-87553-131-8.	Determination of Unfiltered Metals in Water Matrices by ICP-WS		
TM205	4	Straction, Acetylation, Gas Chromatography and Mass		
TM208	Modified: US EPA Method 8260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters		
TM227	Standard methods for the examination of waters and wastewaters 20th Edition, AWWA/ARMA Method 4500.	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate		
TM228	US EPA Method 6010B	Determination of Major Cations in Water by iCap 6500 Duo ICP-OES		
TM231	Agilent 6890 Gas Chromatograph system using an Agilent 5973 Mass Selective Detector (MSD)	Determination of Organochlorine and Organophosphorus Pesticides and Triazine Herbicides by GCMS		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters, HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		
TM283		Determination of Dissolved Niobium, Tungsten, and Zirconium in Water Matrices by ICP-MS		
TM328		-		

Applies to Solid samples only. DRY indicates samples have been dried at 35°C.

Validated

SDG: Job:

Client Reference:

121218-40 D_TOBIN_DUB-86

2928

Analysis: Mineral Oil C10-40 Aqueous (W)

Location: **Customer:**

Sample No:

Sample ID:

Newcastlewest

Tobin John Dillon

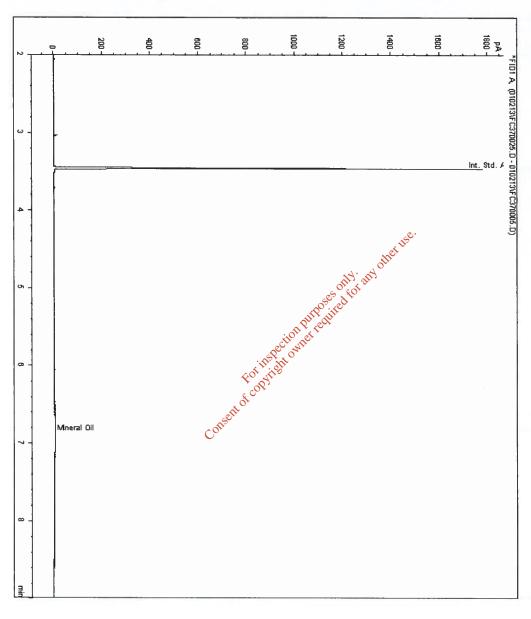
Order Number: Report Number:

Superseded Report:

207714

Attention:

Chromatogram


6685765 MW1

Depth:

Alcontrol Analytical Services Mineral Oil Range Organics (ClO - C40)

Sample Identity:
Date Acquired :
Units :
Sample Volume:
Dilution:

6453679-6685765 03/01/13 02:16:17 PM mg/L 0 ml's

Validated

Job: Client Reference: 121218-40 D_TOBIN_DUB-86 2928

Location: **Customer:** Attention:

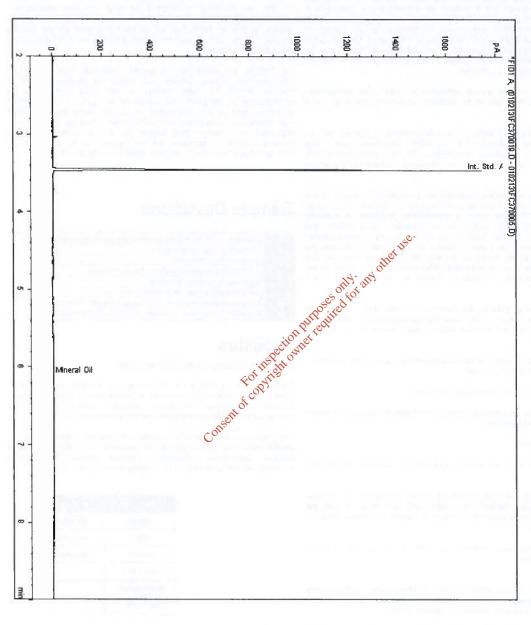
Newcastlewest Tobin John Dillon

Order Number: Report Number: Superseded Report:

Depth:

207714

Chromatogram


Analysis: Mineral Oil C10-40 Aqueous (W)

Sample No : Sample ID : 6686090 GW6

Alcontrol Analytical Services Mineral Oil Range Organics (C10 - C40)

Sample Identity:
Date Acquired :
Units :
Sample Volume:
Dilution:

6453577-6686090 02/01/13 23:57:35 PM mg/L 0 ml's

Pigeon House Road, Ringsend, Dublin 4.

Tel:(01) 613 6003 /6 /9 Fax:(01) 613 6008 Email:info@cityanalysts.ie

www cityanalysts ie

Certificate of Analysis

Customer Contact:

John Dillon

Customer:

Tobin Consulting Engineers,

Customer Address:

Block 10-4.,

Blanchardstown Corporate Park,

Blanchardstown,

Dublin 15

Report Reference:

13-02062-

Report Version:

1

Date Received: 19/04/2013

Page 6 of 6

Sample Description:

BH 9

Sample Type:

Ground Water

Date Sampled:

19/04/2013

Lab Reference Number:

150554

Site/Method Ref-	Anaiysis Start Date	Parameter	Result	Units 150	PV Value	Accreditation Status
D/3000	19/04/2013	Ammonia as N	0.11	ally allymg/l		INAB
SUB C		Dissolved Methane	<0.05	es dist mg/l	-	NON
		Consent	inspectionine.	ges att mg/l		

Note:

NAC & ATC - No abnormal change and acceptable to customers, $\,$

TVC - Total Viable Count

PV Value is the parametric value, taken from European Communities, (Drinking Water) (No. 2) Regulations, 2007. S.I. No. 278 of 2007, and relates only to drinking water samples.

Site D = Analysed at City Analysts Dublin. Site L = Analysed at City Analysts Limerick

Template 1146 Revision 014

Pigeon House Road, Ringsend, Dublin 4.

Tel:(01) 613 6003 /6 /9 Fax:(01) 613 6008 Email:info@cityanalysts.ie

www.cityanalysts.ie

Certificate of Analysis

Customer Contact:

John Dillon

Customer:

Tobin Consulting Engineers,

Customer Address:

Block 10-4.,

Blanchardstown Corporate Park,

Blanchardstown,

Dublin 15

Report Reference:

13-02062-

Report Version:

1

Date Received:

19/04/2013

Page 4 of 6

Sample Description:

SW₃

Sample Type:

Surface Water

Date Sampled:

19/04/2013

Lab Reference Number:

150552

Site/Method Ref.	Anaiysis Start Date	Parameter	Result	Units 150	PV Value	Accreditation Status
D/3000	19/04/2013	Ammonia as N	0.96 For its petion purple bedith	dfot and mg/l	-	INAB
			ospection pur tedu			
			Forth reduced to the control of copyright			
		Cos	rsent.			

Note:

NAC & ATC - No abnormal change and acceptable to customers.

TVC - Total Viable Count

PV Value is the parametric value, taken from European Communities, (Drinking Water) (No. 2) Regulations, 2007, S.L. No. 278 of 2007, and relates only to drinking water samples.

Site D = Analysed at City Analysts Dublin. Site L = Analysed at City Analysts Limerick

Template 1146 Revision 014

Pigeon House Road, Ringsend, Dublin 4.

Tel:(01) 613 6003 /6 /9 Fax:(01) 613 6008 Email:info@cityanalysts.ie

www.cityanalysts.ie

Certificate of Analysis

Customer Contact:

John Dillon

Customer:

Tobin Consulting Engineers,

Customer Address:

Block 10-4.,

Blanchardstown Corporate Park,

Blanchardstown,

Dublin 15

Report Reference:

13-02062-

Report Version:

1

Date Received:

1 19/04/2013

Page 2 of 6

Sample Description:

SW 1

Sample Type:

Surface Water

Date Sampled:

19/04/2013

Lab Reference Number:

150550

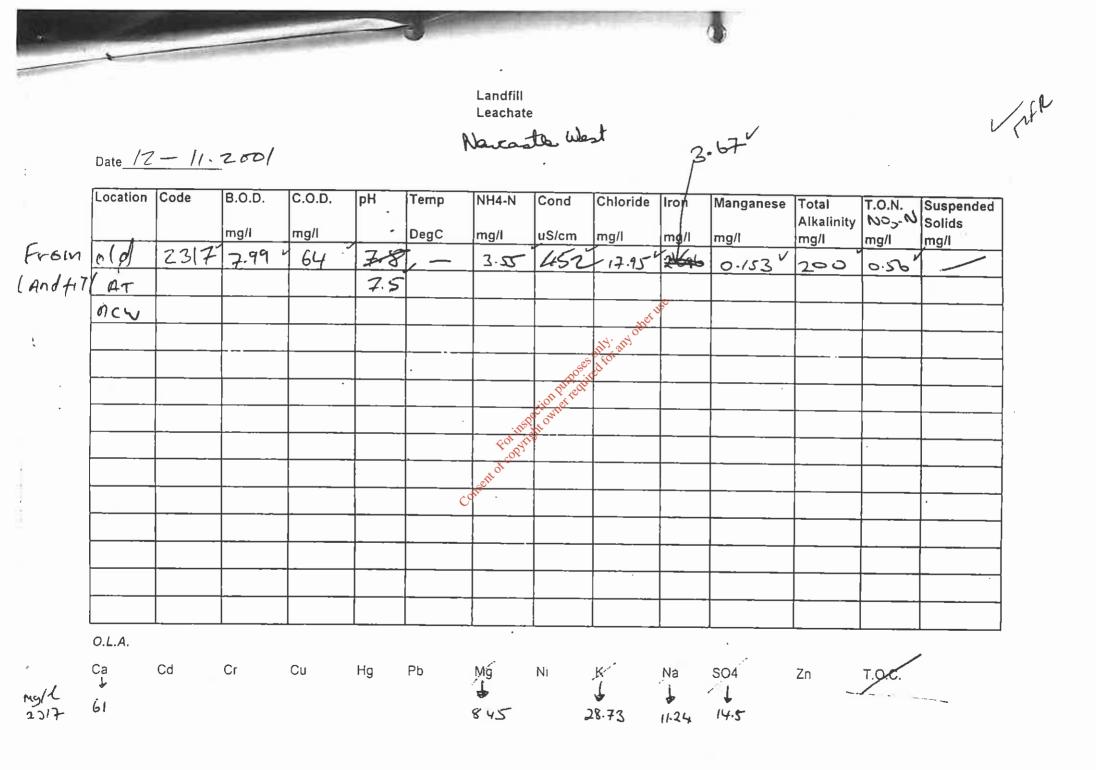
Site/Method Ref.	Analysis Start Date	Parameter	Result	Units USE	PV Value	Accreditation Status
D/3000	19/04/2013	Ammonia as N	0.06	ally allymg/		INAB
			outpo	gifedte		
			spection V owner ico			
			For in ight			
		چي .	for first			
		Con				

Note:

NAC & ATC - No abnormal change and acceptable to customers.

TVC - Total Viable Count

PV Value is the parametric value, taken from European Communities, (Drinking Water) (No. 2) Regulations, 2007, S.I. No. 278 of 2007, and relates only to drinking water samples.


Site D = Analysed at City Analysts Dublin. Site L = Analysed at City Analysts Limerick

Template 1146 Revision 014 Consent of confright owner required for any other use.

Appendix 10

Historic Sampling Analysis from Pump House

1000' SO4 = 2.7 mylh.

Ca = 66.3 mg/L ~

Mg = 25.35 -sll. ~

K = 22.38 mg/L

Na = 26.54 mg W

Date 3/9/--

						/_		500	۴	4	_	_	
Location	Code	B.O.D.	C,O.D.	pН	Temp	NH4-N	Cond	Chloride	Iron	Manganese	Total Alkalinity	T.O.N. NO ₂ -N	Suspended Solids
		mg/l	mg/l	<u> </u>	DegC	mg/l	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
NCUS	2002	20.5	54	7.7	13.3.	8.77	727	29.09	0.58	0.11	mg/1	5.27	71.
-Centalet On Seen-C.									.ق				
			<u>_</u>	<u> </u>					K IIS				
	<u> </u>							Only any					
	·						JITP.	diredit					
			·	ļ			Social Order P						
						, as is	Soft of						
						Fig.		1					
				ļ		nsent of							
						0				<u> </u>			•
								<u></u>					
									<u> </u>				· ·
	T												

Landfill

Leachate

O.L.A.

Cd

Cu

Hg Pb Mg Ni K Na S04

T.O.C.

services

Environmental Science & Management Water, Soil & Air Testing

Southbank House, Southbank Ind. Est., Drogheda. Co Louth.

041 9845440 Fax: 041 9846171 Web: www.euroenv.ie

email: info@euroenv.ie

1880/006/05 Lab Report Ref. No. Cait Gleeson **Customer Name** 05/09/02 **Limerick County Council** Date of Receipt Company **County Council Laboratory Address** Date Testing Commenced 05/09/02 Ballykeeffe Received or Collected Collected Condition on Receipt Acceptable Limerick Date of Report 30/09/02 ireland

CERTIFICATE OF ANALYSIS

LAR.

ClientRef:

02LK 2002

Condfill. (Hew).

Lab Ref:

1880/006/05

Test Parameter	Method of Ana	dysis	Analytical Technique	Result	Units
Cadmium * Chromium Copper Lead * Mercury * Nickel Total Organic Carbon * Zinc	SOP SOP SOP SOP SOP SOP	0 129 128 0 0 132 0 127	I.C.P. Atomic Absorption Atomic Absorption I.C.P. Cold Vapour AA Atomic Absorption IR Atomic Absorption	<0.003 0.02 0.02 <0.049 <0.0005 0.02 17 0.04	mg/L mg/L as Cr mg/L as Cu mg/L mg/L mg/L mg/L as Ni mg/L mg/L as Zn

Signed: Mark Jacob - Technical Quality Manager Date: 30.9.01

Results shall not be reproduced, except in full, without the approval of EURO envoirnmental services Results contained in this report relate only to the samples tested

* Indicates test which has been subcontracted

Page 1 of 1

Landfill Leachate TIM

Date 30 (1/03

Са

Cd

Cr

Cu

Hg

Pb

Mg

<u>へっ。</u> T.O.N. Location Code B.O.D. C.O.D. рН NH4-N Temp Cond Chloride Iron Manganese Total Suspended Alkalinity Solids ന്g/I mg/l DegC uS/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l handfill NCW 250 201 7.2 846 45.41 0.199 O.L.A.

Ni

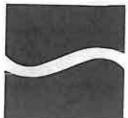
Κ

SO4

Na

T.O.C.

Zn


EPA Export 10-05-2019:03:42:17

Landfill Leachate Monitoring.

Sampling Date: <u>\square</u> \land \land

Sample	Code	Ca	Me	Potassiu K	Na	Sul SO4		T
, , , , , , , , , , , , , , , , , , ,		mg/l	mg/l	mg/l	mg/l	mg/l		
	VI							
Date of analysis			8/21	-3.		6/2/27.		
 -		/ BACS.			,	'		
New learneste	520.	4	27.14	28.08	25.57	Jo.08.		
		99.3						
		M·>						
								<u> </u>
								
				_				
				Sted for any of	et ilse.			
		_			<u> </u>			-
				only and				<u> </u>
			120°	Hed !				
	-		Of the Co.	<u> </u>			-	-
			ection it					
		tor in	dju					
	-	4007						
		entor						
	C ^C	N.S						
			-					
								ļ
								+
						_		<u> </u>
				\		 		
					,			

services

Environmental Science & Management Water, Soil & Air Testing

Southbank House, Southbank Ind. Est., Drogheda, Co Louth. Ireland.

Tel· +353 41 9845440 Fax: +353 41 9846171 Web: www.euroenv.ie email: info@euroenv.ie

MA

Customer Name

Cait Gleeson

Company Address

Limerick County Council County Council Laboratory

Ballykeeffe

Limerick

CustomerPO

400046354

Lab Report Ref. No.

Date of Receipt

Date Testing Commenced

Received or Collected

Condition on Receipt

Date of Report

1880/027/01

31/01/03

31/01/03

Collected

Acceptable

17/02/03

Environmental Laboratory CERTIFICATE OF ANALYSIS

ClientRef:

03LK 250

Lab Ref:

1880/027/01

newcoste west

2 7 MAR 2003

Limerick County Council

Test Parameter Method of Analysis Analytical Technique Result Units MS Juffor of the ICPMS Per Legited For and ICPMS Per Legited For an analysis of the ICPMS Per Legited For an analysis of th Cadmium SOP n <0.1 1 ug/L Chromium SOP 129 <0.001 ~ mg/L as Cr Copper SOP 128 <0.001 / mg/L as Cu Lead SOP 0 <0.1 / ug/L Mercury SOP 0 132 CEMS <0.01 🗸 ug/L Nickel SOP 132 <0.001 ~ mg/L as Ni Total Organic Carbon * SOP 17 / ma/L 127 CICPMS Zinc SOP <0.0012 mg/L as Zn

Signed:

Mark Jacob- Technical Quality Manager

Date: 17 - 2 - 03

Results shall not be reproduced, except in full, without the approval of EURO envoirnmental services Results contained in this report relate only to the samples tested

* Indicates test which has been subcontracted

Page 1 of 1

Landfill Leachate ings.

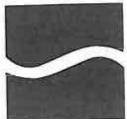
Date <u>'/4/4/03 </u>

ocation	Code	B.O.D. mg/l	C.O.D, mg/l	pH .	Temp DegC	NH4-N mg/l	Cond úS/cm		iron mg/l	Manganese mg/l	Total Alkalinity mg/l	T.O.N. mg/l	Suspended Solids mg/l	
NCU).	918	10.08	/	1		5.24	1 /	40.52	7		343.	ره .09	7 , ,,	refe
Pachete									<u>e</u> .		<u> </u>		,	
ıs andı	sed	ļ						14. 17 other				-		
Bump	•					ļ	outposé	only any			ļ			
			•				citon puri requi							
17/4/	03			 		Tips	N. O.							E# .
51	921					of cold,	ļ							
Down	Stron	White	RIVER		C	Sent							5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
56	988.													2(
4p Street	on Whike	RIVCE											8	
		_		-		ļ			<u> </u>	ļ	ļ		/	
	<u> </u>							<u> </u>						- 2

O.L.A.

Ca Cd Cr Cu Hg Pb Mg Ni K Na SO4 Zn T.O.C.

918->


13

Landfill Leachate Monitoring.

Sampling Date: 14(4/5)

Sample	Code	Ca mg/l	Mg mg/l	K mg/l	Na mg/l	SO ₄ mg/l		
						B		
Date of analysis				(0)		17/4		
	918	81.6		5/	26.49	11.04	ł	
					_			
				<u> </u>			<u> </u>	
		-						
					other use.			
				4. 14	other			
				ses off for di				,
			on Pirp	quite				
			Special pure					
		FOT.	iigli —				-	
		ento						
		OUZ						
			-					
. •							-	
								_
				-				_
F:\Laboratory Forms etc\Re	sults sheets\(Jrban Waste	Waters.doc		<u> </u>			

& Sample was overrage for Mg + U CS

services

Environmental Science & Management Water, Soil & Air Testing

Southbank House, Southbank Ind. Est., Drogheda, Co Louth, Ireland.

+353 41 9845440 Tel: +353 41 9846171 Fax: Web: www.euroenv.ie email: info@euroenv.ie

Customer Name

Cait Gleeson

Company Address

Limerick County Council

CustomerPO

County Council Laboratory

Ballykeeffe

Limerick

400050194

Lab Report Ref. No.

Date of Receipt

Date Testing Commenced

Received or Collected

Condition on Receipt

Date of Report

1880/040/18

17/04/03

17/04/03

Collected

Acceptable

30/04/03

CERTIFICATE OF ANALYSIS

ClientRef:

03 Lk 918

Lab Ref:

1880/040/18

Test Parameter	Method of Analysis	Analytical Technique	Result Units	Entered
Cadmium Chromium Copper Cyanide Lead Mercury Nickei Zinc	SOP 177 SOP 177 SOP 177 SOP 145 SOP 177 SOP 178 of SOP 177 of	ICPMS ICPMS ICPMS Color metry LCPMS	<0.1 - ug/L 0.397 20 - 0g/L 0.078 - ug/L 18 - ug/L <0.1 - ug/L 0.55 - ug/L <0.001 - ug/L <0.001 - ug/L <0.001 - ug/L	

Environmental Laboratory

0 1 MAY 2003

Limerick County Council

Signed:_

Mark Jacob - Technical Quality Manager

Date: 30-4-03

Results shall not be reproduced, except in full, without the approval of EURO envoirnmental services Results contained in this report relate only to the samples tested

* Indicates test which has been subcontracted

Page 1 of 1

Date 15/7/03

Location	Code	B.O.D.	C.O.D.	рН	Temp	NH4-N	Cond	Chloride	Iron	Managara	T-4-1	= 0.11	Ta
	0000	0.0.0.	0.0.5.	Pi'	l emb	141 14-14	Cond	Cilioride	liron	Manganese	Total	T.O.N.	Suspende
		ma/l	m m /1		DC						Alkalinity	いつコ	Solids
		mg/l	mg/l	-	DegC	mg/l	uS/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
			17-07-63										17 -07
non	1852	14.6	75	7.9	13	8.96	710	33.98	1-26	0.29	358	5.05	49
evalit									1			3 -3	
				Ì				15°.		 			
								met	 				
							CORIN	att		 	-		 -
				-			durpos oily		_	 			
-						ction	president			 	 	<u>.</u>	-
					-	cotingetion							
						F COST	_	-	 				
					Consent	<u>0</u> ′							
			-		Cor				 	-	 		
	 -				<u> </u>	<u> </u>				 	_		
						<u> </u>		ļ					
O.L.A.													
Ca	Cd	Cr	Cu	Нд	Pb	Mg	Ni	K	Na	SO4	Zn	T.O.C.	

Landfill Leachate Monitoring.

coffee

Sampling Date: バイテクシ・

Sample	Code	Ca mg/l	Mg mg/l	K mg/l	Na mg/l	SO ₄ mg/l		
Date of analysis		-2	3/7/	a —		ur 12		
	1852	32.5			24.26	1.47		
		For instance						
				<u>\$</u>	er use.			
				only any				
			PHI POSE	ed,				
			ction per 10					
		For in						
		ent of Co	-				· ·	
	Cos					ļ		
					ļ	ļ	ļ	
			ļ					
						_		
			ļ					
F:\Laboratory Forms etc\l								

Landfill Leachate

Date 10-09-03

[Location	Code	B.O.D.	C.O.D.	рН -	Temp	NH4-N	Cond	Chloride	Iron	Manganese	Total	T.O.N.	Suspended
					-							Alkalinity	113.11	Suspended Solids mg/l
			mg/l	mg/l		DegC			mg/l	mg/l	mg/l	mg/l	mg/ſ	mg/l
Nexagl	2 West	2612.	37.5	82	7.8	16-5	4.55	674	27.68	9.05	0.154	326.5	0.95	26.
1										<u>.</u> و.				
									other					
k *								ث	only and other					
							For Head	AILLO SE	e c					
							_	ction Verice,						
							COT ITS	hto						
							of cold							
							ASCIL							
											_			
·														
								}						
ľ														
	O.L.A.						,		•		÷			
,	Са	Cd	Cr	Cu	Hg	Pb	Mg	Ni	К	Na	SO4	Zn	T.O.C.	
					-		-					,		

Appendix 11

LFG Model for Churchtown Landfill Site

1.1 GAS SIM Modeling of LFG Production

In order to look at the LFG production from Churchtown landfill over time, TOBIN were commissioned by Limerick County Council to run a model using GasSim (Version 2.00.0078), for which Tobin have a licence and are appropriately trained. The GasSim software was developed by Golders Associates for the Environment Agency of England and Wales and is the recognised accepted software package for LFG modeling.

This model was run in April 2012, with the model inputs and results discussed below.

1.2 Model Input Data & Assumptions

The full data inputted to the GasSim software for Churchtown landfill is summarised on the GasSim 2.0 Model - Project Details Printout, attached in Appendix 1.

The GasSim 2.00.0078 model studied the landfill as one phase – 'Waste Body'.

The model uses information on waste composition and quantity, landfill engineering, and landfill gas management techniques, to estimate the quantity of landfill gas generated from the landfill.

Table 1 lists the years of waste deposition as sociated with the Waste Body, the quantities of waste deposited per year and the waste breakdown per year, all of which were inputted to the GasSim Model. For insp

Table 1: Waste Deposition 1935 to 1986

MODELLED PHASES	YEARS OF WASTE	QUANTITIES OF	WASTE BREAKDOWN
	DEPOSITION	WASTE DEPOSITED	
Waste Body	1935 - 1969	2,500 tonnes/year	Household – 33.5%
			Commercial – 33.5%
			Inert (including C&D) - 33%
	1970 - 1979	5,000 tonnes/year	Household – 33.5%
			Commercial – 33.5%
			Inert (including C&D) - 33%
	1980 - 1986	10,000 tonnes/year	Household – 33.5%
			Commercial – 33.5%
			Inert (including C&D) - 33%

Table 2 below presents additional information inputted to the GasSim Model for Churchtown Landfill.

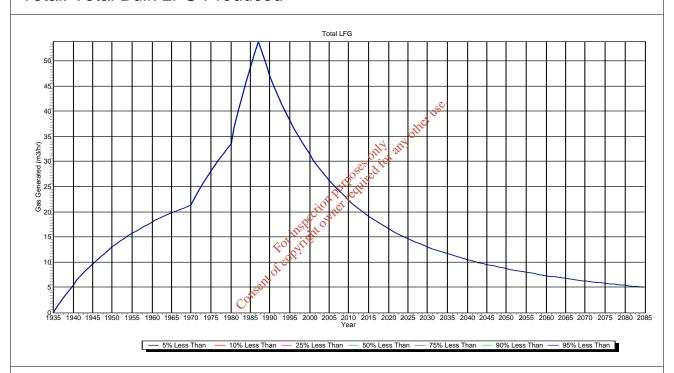
Table 3 Further Information Inputted to the GasSim Model

Operational Period	52 Years
Simulation period	150 Years
Iterations	201
Waste Composition:	England 2000-2010 Waste Streams
1935 – 1986	(Included in Modelling Software)
Uncapped Infiltration	400 – 450mm/yr
Waste Moisture Content	Dry
Waste Density	0.7 t/m3
Leachate Head	1 – 1.5m
Temporary Cap:	
Cap Thickness	0.25 – 0.35m
Cap Hydraulic Conductivity	1e-5m/s
Permanent Cap:	0.25 – 0.35m 1e-5m/s NONE
Liner:	NONE SOLEOTOR
Geosphere Moisture Content	2 - 8% \(\sqrt{\text{in}^2} \)
Geosphere Porosity	15× 49% v/v
Proportion of CH4:CO2	50%:50%
Proportion of CH4:CO2	
Biological Methane Oxidation	10%
a seption of the second of the	(Default)
2 Madel December	

1.3 Model Results

The GasSim model results for Churchtown Landfill are presented on a graph and a table of 'Total Bulk LFG Produced Per Year', which are attached in **Appendix 1**

The results show a peak in LFG production for the landfill facility in 1987 (53.83 m³/hr). A total bulk LFG of 20.93m³/hr was predicted for 2012.


							TOTAL		ONAGH LAI UCED PER Y		Hour)								
							TOTAL	LIGFROD	OCEDIFERI	LAIT (III3/I	loury								
	1935	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950		1952	1953
5% Less Than					4.444245			7.237658		8.88688	9.654982		11.08896					14.16307	
10% Less Than					4.444265		6.351797	7.237689		8.886917				11.75878					
25% Less Than	_	1.198239		3.416802		5.421622		7.237723	8.081945 8.08201				11.08905					14.16318	
50% Less Than 75% Less Than	0		2.335959 2.335982	3.416831 3.416864			6.35188 6.35194	7.237782 7.237849	8.08201	8.887029 8.887109	9.655142 9.655229		11.08914 11.08923						
90% Less Than		1.198202	2.333	3.416889	4.444399		6.351984	7.237849	8.08214	8.88717	9.655294		11.08931		12.39982			14.16349	
95% Less Than		1.198271					6.352011						11.08935						
	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
5% Less Than			16.19661	16.6562	17.09834	17.52396	17.93393	18.32906		19.0778	19.43282	19.77579	20.10731	20.42794	20.73822	21.03864	21.32967	22.80999	24.22123
10% Less Than	15.22113	15.71864	16.19667	16.65626	17.0984	17.52403	17.93399	18.32912	18.71017	19.07787	19.43288	19.77585	20.10738	20.42801	20.73829	21.03871	21.32974	22.81006	24.22131
25% Less Than	15.2212	15.7187	16.19673	16.65633	17.09847	17.5241	17.93406	18.32919	18.71025	19.07794	19.43296	19.77593	20.10745	20.42809	20.73837	21.03879	21.32982	22.81014	24.2214
50% Less Than			16.19685			17.52422			18.71037				20.10758						
75% Less Than						17.52435			18.71051				20.10773			21.03907		22.81045	
90% Less Than	15.22152		16.19707					18.32956		19.07832				20.42848					
95% Less Than	15.22158	15.7191	16.19713	16.656/3	17.09889	17.52452	17.93449	18.32962	18.71068	19.07838	19.4334	19.77638	20.1079	20.42854	20.73883	21.03925	21.33029	22.81065	24.22194
	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
5% Less Than	25.56749	26.85261	28.08017		30.37575		32.47851				43.02154		48.67287		53.8246	51.43809	49.1894	47.06966	
10% Less Than	25.56758	26.8527	28.08026				32.47862				43.02169	45.91364			53.82479	51.43827			
25% Less Than	25.56767	26.8528	28.08037				32.47874	33.46457	36.80643			45.91382			53.825	51.43846		47.06998	
50% Less Than 75% Less Than		26.85298	28.08055 28.08075		30.37616	31.45026 31.45049	32.47894	33.46478		39.98929 39.98959	43.02214 43.02247		48.67356 48.67394	51.30822	53.82536 53.82577	51.4388 51.43918		47.07027 47.07059	45.07118 45.07149
90% Less Than				29.25411			32.47916		36.80715		43.02247		48.67422		53.82608	51.43947		47.07039	
95% Less Than		26.85341	28.08091			31.45077							48.67438					47.07084	
	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
5% Less Than				38.13503			33.87109		31.39571			28.14751		26.24969	25.37158	24.53693	23.74315	22.98784	
10% Less Than	43.18471	41.40448	39.72337	38.13513	36.63392	35.21429	33.87117	32.59981	31.39578			28.14757					23.74319	22.98787	22.26876
25% Less Than	43.18486	41.40462	39.72349	38.13524	36.63402	35.21439	33.87126	32.5999	31.39585	30.255	29.17346	28.14763	27.17413	26.24979	25.37167	24.53702	23.74324	22.98791	22.26879
50% Less Than	43.1851	41.40485	39.72371	38.13544	36.63421	35.21456	33.87142	32.60004	31.39599	30.25512	29.17358	28.14774	27.17423	26.24988	25.37176	24.5371	23.74331	22.98798	22.26886
75% Less Than	43.18538	41.40511	39.72395	38.13566	36.63441	35.21475	33.8716	32.60021	31.39614	30.25527	29.17371	28.14786	27.17434	26.24999	25.37186	24.53719	23.74339	22.98806	22.26893
90% Less Than	43.1856	41.4053	39.72413	38.13583	36.63457	35.2149	33.87173	32.60033					27.17442					22.98812	
95% Less Than	43.185/2	41.40542	39./2424	38.13593	36.63466	35.21498	33.8/181	32.60041	31.39633	30.25544	29.1/38/	28.14801	27.17447	26.25011	25.3/19/	24.53729	23.74349	22.98815	22.26901
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026		2028	2029
5% Less Than	21.58369	20.93076		19.71392								15.81164				14.30573			
10% Less Than		20.93079			19.14666											14.30574 14.30575			
25% Less Than 50% Less Than	21.58382	20.93082 20.93088		19.71402		18.6048	18.0868				0.0					14.30577			
75% Less Than		20.93094			19.14678						, ~	15.81172				14.30579			
90% Less Than	21.58393	20.93099									XXX					14.30581			
95% Less Than		20.93101		19.71413		18.6049		17.59148				15.81175				14.30582			
									2038)	is of for									
	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048
5% Less Than	13.01989	12.72768				11.65903			10.94903	10.72652			10.10637	9.911683	9.722867	9.539662		9.189108	9.021306
10% Less Than								.00	0				10.10637				9.361822		9.021307
25% Less Than			12.44601					- 2.0	7							9.539666			
50% Less Than	13.01992		12.44602					X - 47			10.5145		10.10638					9.189116	
75% Less Than			12.44604					~ 60	10.94966										
90% Less Than 95% Less Than			12.44605 12.44605			11.65907 11.65907								9.911704 9.911707				9.189124	
JJ/6 Less Illali	13.01993	12.72774	12.44003	12.17437	11.9122	11.05507	Conser	11.17021	10.54507	10.72833	10.51452	10.30724	10.1004	3.311707	3.722003	3.333082	9.301039	3.103120	3.021322
	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065	2066	2067
5% Less Than	8.858202					8.106591						7.324286			6.97383			6.646723	
10% Less Than			8.545312									7.324286						6.646723	
25% Less Than		8.699603				8.106593						7.324287						6.646724	
50% Less Than																6.862326			
75% Less Than 90% Less Than	8.858213 8.858215		8.54532 8.545322		8.248978 8.24898	8.106598			7.700821				7.204717			6.862327		6.646726	
95% Less Than																6.862329			
		. ,		3.52.00			32.070					-	3	11.554					
E9/ Loss There	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079	2080	2081	2082	2083	2084	2085	
5% Less Than						5.961626						5.447578							
10% Less Than																5.136358			
25% Less Than 50% Less Than							5.871653 5.871653		5.697021				5.367572					4.989154 4.989154	
75% Less Than	6.440447 6.440448		6.242876						5.697021 5.697022				5.367573 5.367573			5.136359 5.136359			
90% Less Than			6.242877			5.961628			5.697022							5.136359			
95% Less Than			6.242878			5.961629										5.136359			
73/0 L€35 1 ∏ä∏	0.440449	0.340011	U.2428/8	0.14/1/9	0.05345	2.301029	2.0/1055	J./034/1	220/50.2	2.012258	5.529126	J.44/58	5/5/06.د	J.209Ub2	J.Z1ZUU4	J.130359	J.U0ZU88	4.303154	

GasSim Version V 2.00

Project Name: LFG Model for Churchtown Landfill Site

Project Client: Limerick County Council

Total: Total Bulk LFG Produced

CHURCHTOWN LANDFILL.gss

26/04/2012 14:34:58

ProjectDetails

Project Name LFG Model for Churchtown Landfill Site

Limerick County Council Client

Model C:\Program Files\Golder Associates\GasSim2\churchtown landfill\CHURCHTOWN

LANDFILL.gss 26/04/2012 14:34:58

Model Date Comments

Start Year 1935 Operation Period 52 Simulation Period 150 Iterations 201

Confined Migration Pathway

Waste Composition

Year Composition

1935 England 2000-2010 waste streams

Newspapers

Water (%) SINGLE(30.0) Cellulose (%) SINGLE(48.5) Hemi-Cellulose (%) SINGLE(9.0) Decomposition (%) SINGLE(35.0)

Magazines

Water (%) SINGLE(30.0) Cellulose (%) SINGLE(42.3) Hemi-Cellulose (%) SINGLE(9.4) Decomposition (%) SINGLE(46.0)

Other paper

.30.0)
.LE(57.3)
.NGLE(9.9)
SINGLE(64.0)
SINGLE(57.3)
SINGLE(9.9)
'INGLE(9.9)
'INGLE(64.7)
NG' Domestic SINGLE(19.8) Civic Amenity Commercial Industrial Water (%) Cellulose (%) Hemi-Cellulose (%) Decomposition (%) Liquid cartons

Water (%) Cellulose (%) Hemi-Cellulose (%) Decomposition (%)

Card packaging

Water (%) Cellulose (%) Hemi-Cellulose (%) Decomposition (%)

Other card Water (%) Cellulose (%)

Hemi-Cellulose (%) Decomposition (%)

Wood

Domestic SINGLE(3.0) SINGLE(11.2) Civic Amenity Commercial SINGLE(3.3) Industrial SINGLE(5.0) SINGLE(20.0) Water (%) Cellulose (%) SINGLE(21.0) Hemi-Cellulose (%) SINGLE(11.0) Decomposition (%) SINGLE(75.0)

Textiles

Domestic SINGLE(3.3) Civic Amenity SINGLE(2.3) Commercial SINGLE(1.1) Industrial SINGLE(0.3) Water (%) SINGLE(25.0) Cellulose (%) SINGLE(20.0) Hemi-Cellulose (%) SINGLE(20.0) SINGLE(50.0) Decomposition (%)

Disposable nappies

Domestic SINGLE(3.3) SINGLE(2.9) Civic Amenity Water (%) SINGLE(20.0) Cellulose (%) SINGLE(25.0) Hemi-Cellulose (%) SINGLE(25.0) Decomposition (%) SINGLE(50.0)

Other misc. combustibles

Domestic SINGLE(0.3) SINGLE(4.2) Civic Amenity

```
Commercial
                                      SINGLE(10.4)
Industrial
                                      SINGLE(17.7)
Water (%)
                                      SINGLE(20.0)
Cellulose (%)
                                      SINGLE(25.0)
Hemi-Cellulose (%)
                                      SINGLE(25.0)
Decomposition (%)
                                      SINGLE(50.0)
Garden waste
Domestic
                                      SINGLE(16.0)
Civic Amenity
                                      SINGLE(32.1)
Commercial
                                      SINGLE(9.8)
Industrial
                                      SINGLE(4.7)
                                      SINGLE(65.0)
Water (%)
Cellulose (%)
                                      SINGLE(25.7)
Hemi-Cellulose (%)
                                      SINGLE(13.0)
Decomposition (%)
                                      SINGLE(62.0)
Other putrescible
Domestic
                                      SINGLE(25.6)
Civic Amenity
                                      SINGLE(14.8)
Commercial
                                      SINGLE(10.4)
Industrial
                                      SINGLE(6.8)
                                      SINGLE(65.0)
Water (%)
Cellulose (%)
                                      SINGLE(55.4)
Hemi-Cellulose (%)
                                      SINGLE(7.2)
Decomposition (%)
                                      SINGLE(76.0)
10mm fines
Domestic
                                      SINGLE(4.1)
                                      SINGLE(1.2)
Civic Amenity
Commercial
                                      SINGLE(1.9)
                                      SINGLE(0.5)
Industrial
Water (%)
                                      SINGLE(40.0)
Cellulose (%)
                                      SINGLE(25.0)
                                    Hemi-Cellulose (%)
                                      SINGLE(25.0)
Decomposition (%)
Sewage sludge
Sewage Sludge
Water (%)
Cellulose (%)
Hemi-Cellulose (%)
Decomposition (%)
Composted organic material
Composted Organic Material
Water (%)
Cellulose (%)
Hemi-Cellulose (%)
Decomposition (%)
Incinerator ash
Commercial
Industrial
Incinerator Ash
Water (%)
Cellulose (%)
Hemi-Cellulose (%)
Decomposition (%)
Non degradable
Domestic
                                      SINGLE(24.6)
                                      SINGLE(28.0)
Civic Amenity
Commercial
                                      SINGLE(34.1)
Industrial
                                      SINGLE(30.7)
Inert
                                      SINGLE(100.0)
Water (%)
                                      SINGLE(0.0)
                                      SINGLE(0.0)
Cellulose (%)
Hemi-Cellulose (%)
                                      SINGLE(0.0)
Decomposition (%)
                                      SINGLE(0.0)
Calcium Sulphate (%)
                                      TRIANGULAR(0.2, 0.35, 2.3)
Domestic
Civic Amenity
                                      TRIANGULAR(0.2, 0.35, 2.3)
Composted Organic Material
                                      TRIANGULAR(0.2, 0.35, 2.3)
Incinerator Ash
                                      TRIANGULAR(0.2, 0.35, 2.3)
Residues from MRF
                                      TRIANGULAR(0.2, 0.35, 2.3)
Recycling Schemes
                                      TRIANGULAR(0.2, 0.35, 2.3)
                                      TRIANGULAR (0.2, 0.35, 2.3)
Chemical Sludge
Industrial Liquid Waste
                                      TRIANGULAR(0.2, 0.35, 2.3)
Iron (%)
Domestic
                                      TRIANGULAR(0.3, 4.8, 8.2)
Civic Amenity
                                      TRIANGULAR(0.3, 4.8, 8.2)
                                      TRIANGULAR(0.3, 4.8, 8.2)
Commercial
                                      TRIANGULAR(0.3, 4.8, 8.2)
Industrial
                                      TRIANGULAR(0.3, 4.8, 8.2)
Inert
Liquid Inert
                                      TRIANGULAR(0.3, 4.8, 8.2)
Sewage Sludge
                                      TRIANGULAR(0.3, 4.8, 8.2)
Composted Organic Material
                                      TRIANGULAR(0.3, 4.8, 8.2)
```

Incinerator Ash TRIANGULAR(0.3, 4.8, 8.2) TRIANGULAR(0.3, 4.8, 8.2) Residues from MRF Recycling Schemes TRIANGULAR(0.3, 4.8, 8.2) Chemical Sludge TRIANGULAR(0.3, 4.8, 8.2) Industrial Liquid Waste TRIANGULAR(0.3, 4.8, 8.2) User Defined 1 TRIANGULAR(0.3, 4.8, 8.2) User Defined 2 TRIANGULAR(0.3, 4.8, 8.2) User Defined 3 TRIANGULAR(0.3, 4.8, 8.2) 1936 England 2000-2010 waste streams 1937 England 2000-2010 waste streams 1938 England 2000-2010 waste streams 1939 England 2000-2010 waste streams 1940 England 2000-2010 waste streams 1941 England 2000-2010 waste streams 1942 England 2000-2010 waste streams 1943 England 2000-2010 waste streams 1944 England 2000-2010 waste streams 1945 England 2000-2010 waste streams 1946 England 2000-2010 waste streams 1947 England 2000-2010 waste streams 1948 England 2000-2010 waste streams 1949 England 2000-2010 waste streams 1950 England 2000-2010 waste streams England 2000-2010 waste streams 1951 1952 England 2000-2010 waste streams 1953 England 2000-2010 waste streams 1954 England 2000-2010 waste streams 1955 England 2000-2010 waste streams 1956 England 2000-2010 waste streams 1957 England 2000-2010 waste streams 1958 England 2000-2010 waste streams 1959 England 2000-2010 waste streams waste streams

Jo-2010 waste streams

England 2000-2010 waste streams 1960 England 2000-2010 waste streams 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 England 2000-2010 waste streams 1974 England 2000-2010 waste streams 1975 England 2000-2010 waste streams 1976 England 2000-2010 waste streams 1977 England 2000-2010 waste streams England 2000-2010 waste streams 1978 1979 England 2000-2010 waste streams 1980 England 2000-2010 waste streams 1981 England 2000-2010 waste streams 1982 England 2000-2010 waste streams 1983 England 2000-2010 waste streams 1984 England 2000-2010 waste streams 1985 England 2000-2010 waste streams 1986 England 2000-2010 waste streams Justification: [Default] **Default Value Trace Gases** No Combustion Products Selected

Waste Body

1943

1944

1945

Infiltration UNIFORM(400.0, 450.0) Justification: [Changed] Not Justified Waste Input AmountDepositied (t) Year 1935 SINGLE(2.50E+03) SINGLE(2.50E+03) 1936 1937 SINGLE(2.50E+03) 1938 SINGLE(2.50E+03) SINGLE(2.50E+03) 1939 1940 SINGLE(2.50E+03) 1941 SINGLE(2.50E+03) 1942 SINGLE(2.50E+03)

SINGLE(2.50E+03)

SINGLE(2.50E+03)

SINGLE(2.50E+03)

```
1946
                                       SINGLE(2.50E+03)
1947
                                      SINGLE(2.50E+03)
1948
                                      SINGLE(2.50E+03)
1949
                                       SINGLE(2.50E+03)
1950
                                      SINGLE(2.50E+03)
1951
                                      SINGLE(2.50E+03)
1952
                                       SINGLE(2.50E+03)
1953
                                      SINGLE(2.50E+03)
1954
                                      SINGLE(2.50E+03)
1955
                                       SINGLE(2.50E+03)
1956
                                       SINGLE(2.50E+03)
1957
                                      SINGLE(2.50E+03)
1958
                                       SINGLE(2.50E+03)
1959
                                       SINGLE(2.50E+03)
1960
                                      SINGLE(2.50E+03)
                                      SINGLE(2.50E+03)
1961
1962
                                      SINGLE(2.50E+03)
1963
                                       SINGLE(2.50E+03)
                                      SINGLE(2.50E+03)
1964
1965
                                       SINGLE(2.50E+03)
1966
                                       SINGLE(2.50E+03)
1967
                                      SINGLE(2.50E+03)
1968
                                      SINGLE(2.50E+03)
1969
                                      SINGLE(2.50E+03)
1970
                                      SINGLE(5.00E+03)
1971
                                       SINGLE(5.00E+03)
                                       SINGLE(5.00E+03)
1972
1973
                                       SINGLE(5.00E+03)
                                      SINGLE(5.00E+03)
1974
1975
                                      SINGLE(5.00E+03)
1976
                                       SINGLE(5.00E+03)
                                    LE(33.5)

GLE(33.5)

SINGLE(33.5)

SINGLE(33.5)

SINGLE(33.5)

SINGLE(33.5)

SINGLE(33.7)

INGLE(33.7)
                                      SINGLE(5.00E+03)
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
Justification:
                         [Changed]
Waste Breakdown
1935
Domestic
Commercial
Inert
1936
Domestic
Commercial
Inert
1937
Domestic
Commercial
                                      SINGLE(33.5)
Inert
                                       SINGLE(33.0)
1938
                                       SINGLE(33.5)
Domestic
                                      SINGLE(33.5)
Commercial
                                      SINGLE(33.0)
Inert
1939
                                      SINGLE(33.5)
Domestic
Commercial
                                       SINGLE(33.5)
Inert
                                       SINGLE(33.0)
1940
Domestic
                                      SINGLE(33.5)
Commercial
                                      SINGLE(33.5)
Inert
                                      SINGLE(33.0)
1941
Domestic
                                       SINGLE(33.5)
Commercial
                                       SINGLE(33.5)
Inert
                                      SINGLE(33.0)
1942
Domestic
                                       SINGLE(33.5)
Commercial
                                      SINGLE(33.5)
                                      SINGLE(33.0)
Inert
1943
Domestic
                                       SINGLE(33.5)
Commercial
                                      SINGLE(33.5)
Inert
                                       SINGLE(33.0)
1944
                                      SINGLE(33.5)
Domestic
```

Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1945 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert	SINGLE(33.0)
1946 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert	SINGLE(33.0)
1947 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert	SINGLE(33.0)
1948 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert	SINGLE(33.0)
1949 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert	SINGLE(33.0)
1950 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert 1951	SINGLE(33.0)
Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert 1952	SINGLE(33.0)
Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert 1953	SINGLE(33.0)
Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert 1954	SINGLE(33.5)
Domestic	SINGLE(33.5)
Commercial	SINGLE (33.5)
Inert 1955	SINGLE(33.0)
Domestic	SINGLE(33.5)
Commercial	SINGLE (33.5)
Inert 1956	SINGLE(33.0)
Domestic	SINGLE(33.5)
Commercial	SINGLE (33.5)
Inert 1957	SINGLE(33.U)
Domestic	SINGLE(33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1958	SINGLE(33.0)
Domestic	SINGLE(33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1959	011022(00.0)
Domestic	SINGLE(33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1960	011022(00.0)
Domestic	SINGLE(33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1961	,
Domestic Commercial	SINGLE(33.5) SINGLE(33.5)
Inert	SINGLE(33.0)
1962	,
Domestic Commercial	SINGLE(33.5) SINGLE(33.5)
Inert	SINGLE(33.0)
1963	,
Domestic Commercial	SINGLE(33.5) SINGLE(33.5)
Inert	SINGLE(33.0)
1964	,
Domestic Commercial	SINGLE(33.5) SINGLE(33.5)
Commercial	JINOLL(JJ.J)

Inert	SINGLE(33.0)
1965 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert 1966	SINGLE(33.0)
Domestic	SINGLE(33.5) SINGLE(33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1967 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert 1968	SINGLE(33.0)
Domestic	SINGLE(33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1969	. ,
Domestic Commercial	SINGLE(33.5) SINGLE(33.5)
Inert	SINGLE(33.0)
1970 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert 1971	SINGLE(33.0)
Domestic	SINGLE (33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1972	,
Domestic Commercial	SINGLE(33.5) SINGLE(33.5)
Inert 1973	SINGLE(33.0)
Domestic	SINGLE(33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1974	CINCLE (60.0)
Domestic Commercial	SINGLE(33.5) SINGLE(33.5)
Inert	SINGLE(33.0)
1975 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5) : 115 115 115 115 115 115 115 115 115 1
Inert 1976	SINGLE(33.0)
Domestic	SINGLE(33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1977 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert 1978	SINGLE(33.0)
Domestic	SINGLE(33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1979	. ,
Domestic Commercial	SINGLE(33.5) SINGLE(33.5)
Inert	SINGLE(33.0)
1980 Domestic	SINGLE(33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1981	
Domestic Commercial	SINGLE(33.5) SINGLE(33.5)
Inert	SINGLE(33.0)
1982 Domestic	SINGLE(33.5)
Commercial	SINGLE(33.5)
Inert 1983	SINGLE(33.0)
Domestic	SINGLE(33.5)
Commercial Inert	SINGLE(33.5) SINGLE(33.0)
1984	
Domestic Commercial	SINGLE(33.5) SINGLE(33.5)
Inert	SINGLE(33.0)

C:\Program Files\Golder Associates\GasSim2\churchtown landfill\CHURCHTOWN LANDFIL26/04/2012 14:34:58

1985

Domestic SINGLE(33.5) Commercial SINGLE(33.5) Inert SINGLE(33.0)

1986

Domestic SINGLE(33.5) Commercial SINGLE(33.5) Inert SINGLE(33.0) Justification: [Default] Default Value

Trace Gases

No Trace Gases Selected

Default Value

None

Waste Moisture Content

Moisture Content Dry

Justification: [Changed] Not Justified SINGLE(0.7) Waste Density Justification: [Changed] Not Justified Leachate Head UNIFORM(1.0, 1.5)

Justification: [Changed] Not Justified

Hydraulic Conductivity LOGUNIFORM(1.00E-09, 1.00E-05)

Justification: [Default]

Engineered Controls

Cap Justifications

Cap [Changed] Not Justified Cap Thickness [Changed] Not Justified Cap Hydraulic Conductivity [Changed] Not Justified liner None

Justifications

[Default] Default Value Liner Not Justified Liner Thickness [Changed] Liner Hydraulic Conductivit [Changed] Not Justified Justification: [Default] **Default Value** Methane Oxidation % SINGLE(10.0)

[Default] Default Value Justification: Land Raise Depth **#UNDEFINED?**

Geosphere

Ground Surface (mAOD) 70 Water Table (mAOD) 66

UNIFORM(2.0, 8.0) Geosphere Moisture Content Geosphere Porosity UNIFORM(14.0, 49.0)

Site Characteristics

Proportion to CO2 [%] SINGLE(50.0) Justification: [Default] Default Value Proportion to CH4 [%] SINGLE(50.0) Justification: [Default] Default Value

Cellulose Decay Rates

J.0)
Alue
Consent of copyright owner required for any other use.

Consent of copyright owner required for any other use.

13) Wet SINGLE(0.013) SINGLE(0.076) Slow Moderate SINGLE(0.046) SINGLE(0.076) SINGLE(0.116) Fast SINGLE(0.076) SINGLE(0.116) SINGLE(0.694) Justification: [Default] Default Value

Gas Plant

No Flares/Engines in use Engine/Flare Order [Changed] Not Justified

Trace Gas Plant

No Trace Gases Selected

Justification: [Default] **Default Value**

Global Impact

Bulk Gases

Global Warming Potential Carbon Dioxide [t]:

1 Methane [t carbon dioxoide]: 25 Hydrogen [t carbon dioxide]: 0

Justification: **Default Value** [Default]

Ozone Depletion Potential

Carbon Dioxide [t trichlorofluoromethane] 0 Methane [t trichlorofluoromethane]: 0 Hydrogen [t trichlorofluoromethane]:

Justification: **Default Value** [Default]

Lateral Migration

Bulk Gases

Air Diffusion Coefficients

CO₂ Dispersivity SINGLE(0.1613)

CH4 Dispersivity SINGLE(0.2192) H2 Dispersivity **#UNDEFINED?** Justification: [Default] **Default Value**

Geosphere

Cell Waste Body Geosphere Moisture Content Geosphere Porosity Justification: [Changed]

UNIFORM(2.0, 8.0) UNIFORM(14.0, 49.0)

Not Justified

Exposure

Scenario: Residential without Plant Uptake Year: 1935 Distance from boundary [m]: 0

Direction: North East Emissions to model:

1,1,1,2-Tetrafluorochloroethane

Gas Viscosity [N.hr/m2]: 0.00000005 Henry's law constant: 0 Soil Type: Loam

Soil Organic Matter [%]:
Wind speed above ground surface in 5 12 ambient mixing zone [cm/s]:

Depth below ground to contaminated 1

source zone [cm]: **Building Characteristics**

Area of walls in living space [m2]: 186 Area of windows [m2]: 20 Area of floor [m2]: 74.1 Height of Living space [m]: 5.4 Air exchange rate (total exchanges per 1

hour)

Perimeter of building [m]: 34.4 Air pressure inside house [Pa]: 101321.5 Area of house walls in cellar [m2]: 6.88 Height of subfloor void [m]: 0.5 Air pressure inside subfloor void [Pa]: 101325 Temperature inside house [C]: 565 Floor resistance [NH/m3]: 27.8 2

Average height of all openings [m]: Building Materials

Air-filled porosity [cm3/cm3] Total Porosity [cm3/cm3] Thickness [m] Material 0.25 0.25 0.34 0.034 0.27 0.27 Hardcore 0.5 0.1 Blinding Sand 0.05 0.5 Concrete 0.068 0.1 0.05 Insulating layer (floors) 0.9 Brick (external walls) 0.5 0.1 Lightweight block (walls) 0.068 0.1 Insulating layer (walls) 0.055 0.9 Plasterboard (ceiling) 0.068 0.068 0.0125 Insulating layer (roof) 0.9 0.9 0.1 0.068 Screed (over beam/block floor) 0.068 0.05 Suspended timber floor 0.2 0.03 0.2

Justification: [Default] Default Value

Appendix 12

Appropriate Assessment

Limerick County Council

Limerick County Council.

Churchtown Landfill Remediation Works.

Appropriate Assessments Screening Document.

February 2013.

Appropriate Assessment Screening –Churchtown Land Fill

The Appropriate Assessment Screening Document is for the remedial works at the old Churchtown Landfill Newcastlewest Co. Limerick. Included with this screening report is an ecological survey which was carried out in December 2012. Though outside the optimum season for vegetation and wildlife surveys, it was possible to identify plants species vegetatively.

The overall conclusion of the screening is that a full Appropriate Assessment **is not required** due to limited nature of the works involved i.e. only 1 ha. in area and the distance from Natura 2000 sites. In addition as the works are remedial measures designed to deal with leachate from a disused land fill it is expected that local environmental improvements will take place. The works are outlined below.

The screening is in accordance with the requirements of Article 6(3) of the EU Habitats Directive (92/43/EEC). The principal consideration for an Appropriate Assessment would be if the remedial works were likely to have significant effects on a Natura 2000 site – Special Areas of Conservation and Special Protection Areas (SACs and SPAs) are Natura sites. The screening should be read with the Geophysical Survey of March 12th 2012 to hand. The ecological report drawn up following site visits in December 2012 is included in Appendix 1.

The first site in question is the Lower River Shannon Special Area of Conservation Site (002165), the closest part of which is the Galey River which is 7.2km distant. The landfill also lies within 4km of the Mullaghreirks Mountains, West Limerick hills and Mount Eagle SPA (004161) which is composed of a purposer of upland habitats forestry at different stages of growth, open moorland rough grassland and some unplanted peat based habitats. These provide foraging and nesting sites for the hen harrier for which the site has been designated. Due to the very specific and localised works to be carried out to the old landfill site it is considered that the works will have no effects on the Special Protection Area. The works are described in the next section.

Screening Matrix

Brief description of the project:

The proposed works are remedial works on the Churchtown land fill. These works involve the diversion of leachate and run off from the old waste body to a sump on the lowest part of the site. This is then pumped to the Newcastlewest Waste Water Treatment Plant. Additional works involve the arrangement of covering materials over the waste body and the installation of water sampling and monitoring points on site.

Brief description of the Natura 2000 sites:

The water based site closest to the landfill is the Lower River Shannon SAC site, designated for a range of riparian habitats and species. The Galey River is one of the tributaries within the Feale catchment area, which is an important component of the Lower River Shannon site. The overall ecological quality of the site is heavily dependant on good water quality. The site has variety of habitats and is important for spawning salomonids and lamprey.

The site is within 4km of the Mullaghreirks Mountains, West Limerick hills and Mount Eagle SPA (004161)

which is composed of a number of upland habitats, forestry at different stages of growth, open moor land rough grassland and some unplanted peat based habitats. These provide foraging and nesting sites for the hen harrier for which the SPA site has been designated.

Describe the individual elements of the project (either alone or in combination with other plans or projects) likely to give rise to impacts on the Natura 2000 site:

The works are not likely to cause any effects on the Natura 2000 sites due to distance from the sites and the limited nature of the works involved. By dealing with contaminants from the landfill it is expected that local environmental improvements will result.

The main way in which impacts could be created on the SAC site is through the introduction of pollutants or sediments which would have an effect on water quality but as outlined above the works are designed to deal with the issue of leachate from the old waste body.

Describe any likely direct, indirect or secondary impacts of the project (either alone or in combination with other plans or projects) on the Natura 2000 site by virtue of:

Size and scale;

The area taken in by works and machinery traversing and activities on site is expected to be in the region of 1 ha. The site is outside designated sites and is 4km distance from the nearest Natura 2000 site.

Land-take;

No land take implications- see above.

Distance from Natura 2000 site or key features of the site;

The land fill is 4km from the SPA site and 7.2km from the SAC site.

Resource requirements (water abstraction etc);

There are no resource implications. It is not anticipated that any extraction of material –rock etc or soil or abstraction of water would take place from any designated site. Stone may be used in the remedial works but will be taken from quarries that have planning permission or have consent under S261 or S261A. In this case the stones will be from established and licensed quarries. These quarries are governed by planning permissions or conditions laid down under the quarry registration process.

Emission (disposal to land, water or air);

There is the risk of sediment or pollutants being released to ground water. Kiely (1997, p. 221) indicates that ground water pollution events tend to be localised and due to high levels of re-charge (through rainfall) tend to be of short term duration. Given the distance from the landfill to the SAC site the risk is further minimised. Two sets of water sample results, the latest from Jan 2013, indicate that the pollutant levels are not a cause for concern as they are not in concentrations which will have an effect on the Lower River Shannon SAC site. It also seems to be the case that pollutant emissions seem to be particularly dilute as the waste body has been in place for many years- see Geophysical Report. In addition there are no permanent water courses on the site which futher reduces the chances of transmission of pollutants. Inspection of nearby land drains in December 2013, down-slope from the land fill, did not show any indications of leachate escaping from the site.

Excavation requirements;

Any excavation that may take place within the land fill would be at a distance from the SAC site. Most works will consist of the re-arrangement of material to better cap the landfill, rather than excavation of the land fill waste body itself. This will minimise the disturbance to the residual waste thereby lessening any leakage of contaminants. The clearing of channels to divert any leachate to a sump and thence to the Waste Water Treatment Plant has been mentioned above. Sediment traps in these channels would also help to control run off of sediment.

Transportation requirements;

Plant and trucks will be involved in bringing the material to the site and removal of material. With traffic movement confined to the roads there will not be transport effects on the water courses or drainage features nearby.

Duration of construction, operation, decommissioning, etc;

18 months- monitoring will be on going.

Other

Not applicable.

Describe any likely changes to the site arising as a sesult of :

reduction of habitat area:

None- the works are to a previously existing and will not result in any further development outside the existing foot print of the Churchtown landfill.

habitat or species fragmentation;

Given the location of the works-on the old land fill site and 7 km from the Lower River Shannon Sac site and 4.2km from the SPA no effects on these sites are likely.

reduction in species density;

Not applicable in that the landfill is outside and at a distance from Natura 2000 sites and would have any ex-situ effects as the scale of works is limited and measures are in place to reduce run off from the site.

changes in key indicators of conservation value

None-see point above.

• Climate change:

No implications for climate change due to limited scale of the works.

Describe any likely impacts on the Natura 2000 site as a whole in terms of:

• interference with the key relationships that define the structure of the site;

None, the land fill lies outside the SPA and SAC the works are limited in scale. In relation to the SAC site, both the limited scope of the works allied to distance and mitigation measures (diversion and treatment of leachate) are expected to ensure that there will not be any significant effects on the SAC site.

• interference with key relationships that define the function of the site;

See above.

Provide indicators of significance as a result of the identification of effects set out above in terms of:

loss;

Not applicable.

Fragmentation;

Not applicable.

Disruption;

Not applicable.

Disturbance;

Not applicable.

change to key elements of the site (e.g. water quality etc);

Not applicable. The mitigation measures mentioned above treatment of leachate.

Describe from the above those elements of the project or plan, or combination of elements, where the above impacts are likely to be significant or where the scale or magnitude of impacts are not known.

It is not likely that any combination of elements will have effects as the landfill is outside the Special Protection Area and SAC site. The small scale of works is not likely to have any effects on the Lower River Shannon as they are confined to the landfill itself. It is considered that a full Appropriate Assessment is not required. The works are designed to rehabilitate an old land fill which by reducing pollution risk would lessen chances of ecological damage.

Finding of No Significant Effects Matrix

Name of Project:	Remedial works on disused land fill at Churchtown Newcastlewest.			
Name and location of Natura 2000 sites:	Mullaghreirks Mountains, West Limerick hills and Mount Eagle SPA (004161) within 4km.			
	Lower River Shannon SAC site 002165, the bridge is located within the SAC site.			
Description of the Project or Plan	The proposed works are remedial works on the Churchtown land fill. These works involve the diversion of leachate and run off from the old waste body to a sump on the lowest part of the site. This is then pumped to the Newcastlewest Waste Water Treatment Plant. Additional works involve the arrangement of covering materials over the waste body and the installation of water sampling and monitoring points on site.			
Is the Project or Plan directly connected with or necessary to the management of the site (provide details) ?	but the works will lessen the chances of clocal pollution to ground water.			
Are there other projects or plans that together with the project of plan being assessed could affect the site (provide details)?	There are no other projects current on the land fill.			
The Assessment of Significance of Effects				
Describe how the project or plan (alone or in combination) is likely to affect the Natura 2000 sites:	Unlikely to have any effects as the works involve the rehabilitation of an old land fill site, directing run off to the local WWTP and rearrangement of the cover material on the site.			
Explain why these effects are not considered significant:	See report above. Main factors are distance from the Natura 2000 sites and the limited scale of the works, the treatment of the leachate and the lack of surface water drainage features which would carry pollutants to the SAC site.			
List of Agencies Consulted: Provide contact name and telephone or email address:	The Manager, Development Applications Unit DoEHLG Newtown Road, Wexford.			

		(T: 053 9117382)	
Response to consultation		Awaited.	
	Data Collected to Ca	rry out the Assessment	
Who carried out the Assessment?	Sources of Data	Level of assessment Completed	Where can the full results of the assessment be accessed and viewed
Heritage Officer, Forward Planning Section, Limerick County Council.	Existing NPWS Site Synopses Site visits and site surveys	Desktop study, site visits	The conclusions are included in the screening document and the site report is attached in an Appendix to this document.

Appendix One: Site report.

Consent of copyright owner required for any other use.

CHURCHTOWN LAND FILL ECOLOGICAL SURVEY

TO: B MURPHY SEE
FROM: T O NEILL HO
SUBJECT: AS ABOVE
SITE VISIT: 11/12/12.
DATE: 8/2/2013.

Site description and location: the site is a disused land fill which ceased operation in 1986 after operating for approximately 30 years. Prior to this it was limestone quarry which ceased operations about 1930. It is 1.7ha in extent and slopes from the NE to the SW. The on site vegetation has been largely disturbed by machinery which has bored monitoring wells on site. It is located to the north west of Newcastlewest immediately outside the boundary of the LAP.

Figure 1: 1890 25 inch map of the quarry.

Drainage: there are a small number of surface drainage ditches on site. The most important are those to the south west boundary of the site as much of the site drains to this area. There is a sump constructed in this area to which water and leachate can drain which is then pumped to a foul sewer for treatment. Due to the levels in the drainage ditches no liquid was draining off the site at the time of the site visit-see Figure 1 below.

There are locally wet spots in the land fill, these are located for the most part on the western sides of the site and occur where the soil layer does not allow water to percolate down wards. These areas are used by snipe as feeding areas.

One other drain occurs at the rear of the houses to east of the entrance gateway, this is a shallow drain and is partially filled with water. The drains and wet spots are notable in what is an elevated and well drained site. They are seasonal and would be likely to dry up in summer. The drains do not look as if they contained leachate. Examination of nearby farm drains down slope and outside the e Land fill did not show the presence of leachate.

On site vegetation: much of the site has been cleared due to works which include the construction of bore holes to monitor ground water. The remainder of the site has covering of ruderal vegetation with high proportion of nettles (*Urtica dioica*) reflecting the nutrient rich mature of the soil covering. The site has been used for grazing by horses. Thistles (*Cirsium arvense*) and Rosebay Willow Herb (*Chamerion angustifolium*) were also present on the site, with soft rush (*Juncus effuses*) in the wetter locations mentioned above. Some patches of scrub remain composed of mixes of Ash (*Fraxinus excelsior*), Rusty Willow (*Salix cinera* subsp. *Oleifolia*) and Sycamore (*Acer pseudoplatanus*). These remain towards the centre and east of the site.

Grasses had also colonised the site with common species such as Cocksfoot (*Dactylis glomerata*) while in the wetter areas with rushes and smaller amounts of Reed Canary grass (*Phalaris arundinaceae*) present. Photographs of the site prior to works showed it to be fully vegetated with species such as Angelica (*Angelica Sylvestris*) on damper parts of the site with Docks (*Rumex crispus*), Ragworth (*Senecio jacobea*) and Plantains

Figure 2: the outlet from the site is shown in the top centre of the photo. The fall in the drain is back towards the site itself and towards a sump constructed in the western boundary area of the landfill.

Soils: The site has a covering of mineral soil of varying depth of between 4 and 10 cm. Beneath this there is layer of stone which had been used as covering material over the waste body. The underlying geology of the land fill site is described as

On site birds: Birds on site were snipe, blackbird, jackdaw and robin and wood pigeon which overflying the site. No nests were seen in any tree or shrub within the site. Rooks nests were seen on nearby trees outside the site to the south.

Adjacent land: land to the north and west is improved grassland used for grazing by horses. The southern boundary is a roadway, while to the east is housing with gardens backing onto the site.

Ground layer: beneath the tree lined hedges the ground layer was ivy (*Hedera helix*) and Brambles (*Rubus fruticosus*) which formed an impenetrable layer in parts.

Trees/hedgerows: the Southern boundary is a mature tree line with Cypress forming the tree layer with an understory of whitethorn. The road side bank is covered with ivy. Mixed with the Cypress are Ash and Sycamore. To the east of the entrance gate timber panelling provides a boundary which farther east leads to row of Cypress, with sycamore and willow present in side them.

The eastern boundary is a mix of garden fencing and open space, while the northern boundary is an open boundary with limited growth of Whitethorn. The eastern boundary consists of mature cypress tress with a drain on the inside.

On site habitats: presently the predominant habitat is presently disturbed ground (Spoil and Bare Ground ED2) while on the fringes of the site, towards the roadside edge. The cypress from a treeline (WL2). There are isolated patches of Scrub with willow present (Salix Spp.) These would correspond with habitat category WS1. Drainage ditches are also present (FW4).

Local Habitat Importance of the site: none of the on site habitats have any links with annex habitats and are of types that are available in the wider countryside. Despite this the presence of an area which if allowed to regenerate naturally and would have a local seed bank with a low intensity management regime would be beneficial and of local importance particularly on the outskirts of an urban area.

Additional comments: the site has been heavily disturbed with large areas of bare soil caused by machinery traffic. Some of the scrub growth on the site had been cleared way during works. No signs of badgers or other animal dwellings were found on site. The surrounding fields to the north and west were also checked for signs of badgers e.g. tracks or latrines or feeding signs, none were found.

Recommendation: following remedial works that vegetation be allowed to regenerate naturally on site. When the grass land layer has developed it would be possible to allow limited grazing, which prevent regeneration of scrub but would also allow structural ebrate ebrate for its period to me tredited for any other in the format required for any other in the constitution of copyright owner required for any other in the constitution of copyright owner required for any other in the constitution of copyright owner required for any other in the constitution of copyright owner required for any other in the constitution of the copyright owner required for any other in the copyright owner required for the copyright owner required for any diversity in the sward which would be useful for invertebrates and small mammals. .

T O Neill HO.