Subject: Attachments: FW: Historic Landfill at Moate Certificatation 2018.pdf; Post Remedial Monitoring Programme 2018.pdf; S Moran 2017\_IGI register.pdf; Tier 3 Assessment Moate 2018.pdf

From: Leo Buckley [mailto:Leo.Buckley@westmeathcoco.ie] Sent: 31 August 2018 14:34 To: Magnus Amajirionwu Cc: Ciaran Jordan Subject: FW: Historic Landfill at Moate

Magnus,

Please find the following documentation attached relating to the Certification of Authorisation application for the former Moate Landfill site:

- 1. Revised Tier 3 Risk Assessment
- 2. Post remedial Monitoring Programme
- 3. Credential of the Qualified Person (Sean Moran)

If you require any further details please do not hesitate to contact the Notice Regards,

Leo Buckley, Assistant Engineer | Environment | Westmeath County Council On the County Council of the County C

From: Magnus Amajirionwu [mailto:M.Amajirionwu@epa.ie] Sent: 28 June 2018 15:53 To: Ciaran Jordan Cc: Mary Murray Subject: Historic Landfill at Moate

Dear Ciaran,

I refer to the letter received by the Agency from Mr Martin Murray, Director of Services, in relation to the historic landfill at Moate. The letter conveyed amendments to the original Tier 3 risk assessment for the site.

The Agency requires an updated Tier 3 risk assessment accompanied by a letter from a qualified person in line with the Code of Practice, to be submitted for assessment.

### Thanks and kind regards

Magnus

Dr. Magnus U. Amajirionwu Scientific Officer Office of Environmental Sustainability Environmental Protection Agency, Johnstown Castle, Wexford, Ireland

T. +353 539160600 | E. <u>a.magnus@epa.ie</u> <u>www.epa.ie</u>



This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the EPA postmaster - <u>postmaster@epa.ie</u> The opinions contained within are personal to the sender and do not necessarily reflect the policy of the Environmental Protection, owner the formation of the form

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit <u>http://www.symanteccloud.com</u>

The contents of this e-mail (including attachments) are private and confidential and may also be subject to legal privilege. It is intended only for the use of the addressee. If you are not the addressee, or the person responsible for delivering it to the addressee, you may not copy or deliver this e-mail or any attachments to anyone else or make any use of its contents; you should not read any part of this e-mail or any attachments. Unauthorised disclosure or communication or other use of the contents of this e-mail or any part thereof may be prohibited by law and may constitute a criminal offence.

Unit 15 Melbourne Business Park Model Farm Road Cork



T: 021 434 5366 E:info@ocallaghanmoran.com www.ocallaghanmoran.com

Director of Services, Environment Section. Westmeath County **County Buildings** Mullingar, **County Westmeath** 

20<sup>th</sup> August 2018

Re:<u>Risk Assessment on an historic landfill (Moate) in support of an application for a</u> Certificate of Authorisation in accordance with Regulation 7 of the Waste Management (Certification of Historic Unlicensed Waste Disposal and Recovery Activity) Regulations 2008.

Dear Director, As a person who is qualified, trained and experienced to the standard set out in section 2.3 of Code of Practice: Environmental Risk Assessment for Unregulated Waste Disposal Sites (EPA, 2007), it is my opinion that the risk assessment carried out on the closed landfill at Moate is adequate and complete.

The risk assessment complies with all of the requirements of the Code of Practice. The local authority and O'Callaghan Moran & Associates in carrying out the risk assessment, has followed and completed the steps set out in the Code of Practice and associated guidance (Matrix 1 and Matrix 2 – as published).

The following items:

- - the risk assessment,
- the findings and conclusions of the risk assessment,
- the remedial measures proposed
- the monitoring proposed to be carried out to demonstrate the effectiveness of the ٠ remedial measures.

In my opinion, are, appropriate and adequate to:-

• identify the instances and risks of environmental pollution arising from the closed landfill to which this application refers,

- proportionately address any and all such instances and risks of environmental pollution, and
- Ensures that any future instances of environmental pollution will be detected in a timely manner.

I have advised the local authority on the following aspects of this project or have carried out or managed the following aspects of the project on behalf of the local authority:

- - Tier 1 and 2 risk assessment (Yes)
- - Tier 3 risk assessment including GQRA (Yes). The additional investigations (groundwater, surface water and landfill gas monitoring) were carried out by Westmeath County Council. OCM completed the Tier 3 assessment based on the results.
- Remedial Measures (Yes). OCM made recommendations for such works. However a detailed design has not been prepared as the works would only be required if it is decided to construct residential dwellings on land to the north of the site, or if approval is granted for the recreational use of the site.
- - Post-Remediation Monitoring Programme (Yes) OCM prepared a monitoring programme to establish the effectiveness of the remediation works once they have been completed.

Signed:

Name

Sean Moran (P.Geol., Eur. Geol, MSc.)> O'Callaghan Moran & Associates Granary House, Rutland Street, Cork

Cont'd

Unit 15 Melbourne Business Park Model Farm Road Cork



# Post Remedial Monitoring Programme Moate Landfill.

The Tier 3 Risk Assessment Report includes recommendations for remedial works and on-going monitoring. Remedial works will only be required if it is decided to construct new dwellings on lands adjacent to the waste deposition area or if planning permission is granted for the recreational use of the site. The scope and design of the works will be based on the results of the on-going leachate and landfill gas monitoring, but may include:

- The layout of any proposed residential area should be such that the houses are the maximum practical distance from the edge of the fill area. If possible, the rear gardens should be 10 m from the edge of the fill.
- Incorporating appropriate gas protection we asures, as specified in the DOE Guidance, into the building design.
- The installation of a landfill gas migration barrier north of the northern edge of the waste between it and the proposed residential area. The barrier should extend the full length of northern edge and may comprise a trench excavated to approximately 3m below ground level, with a flexible membrane liner (e.g. High Density Polyethylene) placed against the northern face and the trench backfilled with granular material.
- No buildings or enclosed spaces be constructed or provided at either the playground or civic amenity area.
- Should the planning application for use of the site as a sports pitch be considered appropriate landfill gas control measures, as specified in the DOE Guidance, must be incorporated into the design of the Dressing Rooms. These may include either active or passive systems and the decision must be based on the results of the landfill gas monitoring in new landfill gas monitoring wells installed between the edge of the waste and the building footprint and using a Risk Assessment based on CIRIA 665.

• Under no circumstances should the thickness of the existing cover layer be reduced. If the application for the development of the soccer pitch is approved the cover layer should be increased to a minimum thickness of 1m across the both the pitch and the warm up area. The surface water drains must not extend into the waste and there must be a minimum of 500mm of subsoils between the invert level of the drains and the waste to ensure that there is no connection between the drains and the waste and to minimise the infiltration of water into the waste.

To establish the effectiveness of the remedial works, landfill gas monitoring (methane, carbon dioxide and oxygen levels and flow rate) should be carried out in wells that are between any gas migration barriers that may be installed and the new residential area. If the existing monitoring wells are damaged during the remedial works, replacement wells should be installed.

The monitoring should be carried out at quarterly intervals for one year and should include Gas Flow Rate. If the monitoring identifies the presence of landfill gas at levels that present a risk to the residential areas, additional remedial works will be required. The scope of such works will depend on the monitoring results.

If the monitoring does not detected the presence of landfill gas, the frequency may be reduced to six monthly after year 1 and subsequently to annually after year 2.

Surface water monitoring should be carried out in the stream annually to confirm that the waste is not affecting water quality. The parameters should include pH, electrical conductivity, ammonia and BOD.



To: Sean Moran O'Callaghan Moran

Date 14<sup>th</sup> July 2017

### Re: Credentials in accordance with section 2.3 of Code of Practice: Environmental Risk Assessment for Unregulated Waste Disposal Sites (EPA, 2007)

Dear Sean,

The Institute of Geologists of Ireland is satisfied to state that you are a person who is qualified, trained and experienced to the standard set out in section 2.3 of Code of Practice: Environmental Risk Assessment for Unregulated Waste Disposal Sites (EPA, 2007) and have achieved chartered status with this professional regulatory body. Your specialisms are:

 Environmental Geology
 Hydrogeology
 I can confirm that your place on the IGI's Register of Professionally Qualified Geoscientists / Competent Persons (in respect of environmental risk assessment for regulated and unregulated waste disposal and contaminated land has been renewed. Please see www.igi.ie for current Register.

This letter of accreditation is valid until 31 December 2018.

Yours sincerely Institute of Geologists of Ireland

Othis Indle

**EurGeol Catherine Buckley PGeo** President, IGI Catherine.buckley@arup.com

Company number 314400. Directors: C. Buckley, H. Moe, C. Clifford, C. O'Hora

Unit 15 Melbourne Business Park Model Farm Road Cork



T: 021 434 5366 E:info@ocallaghanmoran.com www.ocallaghanmoran.com

### **UPDATED TIER 3 ENVIRONMENTAL RISK ASSESSMENT**

### FORMER MUNICIPAL LANDFILL

### MOATE,

COUNTY WESTMEATH

# For inspection purposes only inspection purposes only inspection purposes only in any offer

Westmeath County Council, County Buildings, Mullingar, County Westmeath

### Prepared By: -

O' Callaghan Moran & Associates, Granary House, Rutland Street, Cork

August 2018 O'Callaghan Moran & Associates Registration/VAT Number: 8272844U

August 2018 (SM)

# **TABLE OF CONTENTS**

### PAGE

| 1.                                                                    | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .1                                                                                                                                                                     |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.                                                                    | TIER 1 ASSESSMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .3                                                                                                                                                                     |
| 2                                                                     | 2.1 SITE LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .3                                                                                                                                                                     |
| 2                                                                     | 2.2 Site Layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .3                                                                                                                                                                     |
| 2                                                                     | 2.3 Site History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 3                                                                                                                                                                    |
| 2                                                                     | 2.4 SURROUNDING LAND USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .4                                                                                                                                                                     |
| 2                                                                     | 2.5 Hydrology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                        |
|                                                                       | C.6 GEOLOGY & HYDROGEOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .4                                                                                                                                                                     |
| 2                                                                     | 2.7 POTENTIAL RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .7                                                                                                                                                                     |
| 3.                                                                    | PRELIMINARY & DETAILED SITE INVESTIGATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                     |
| 3                                                                     | OBJECTIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                     |
| 3                                                                     | S.2 SITE INVESTIGATION SCOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                     |
| 3                                                                     | PRELIMINARY INVESTIGATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                     |
| 3                                                                     | 5.4 DETAILED INVESTIGATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                     |
| 3                                                                     | 5.5 LEACHATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                                                                                                                                     |
| 3                                                                     | 6.6 GROUNDWATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                     |
| -                                                                     | 5.7 SURFACE WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                                                                                     |
| 3                                                                     | <ul> <li>PRELIMINARY INVESTIGATION.</li> <li>DETAILED INVESTIGATION.</li> <li>LEACHATE.</li> <li>GROUNDWATER.</li> <li>SURFACE WATER</li> <li>LANDFILL GAS.</li> </ul>                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                     |
| 4.                                                                    | CONCEPTUAL SITE MODEL & RISK ASSESSMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28                                                                                                                                                                     |
|                                                                       | $\mathcal{N}$ $\mathcal{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                        |
| 4                                                                     | .1 CONCEPTUAL SITE MODEL 20 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                                                                                                                                                                     |
| 4<br>4                                                                | 1 CONCEPTUAL SITE MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28<br>30                                                                                                                                                               |
| 4<br>4<br>S                                                           | 1 CONCEPTUAL SITE MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28<br>30<br>30                                                                                                                                                         |
| 4<br>4<br>S<br>4                                                      | 1 CONCEPTUAL SITE MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28<br>30<br>30<br>31                                                                                                                                                   |
| 4                                                                     | .4 RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32                                                                                                                                                                     |
| 4<br>4                                                                | .4 RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32<br>32                                                                                                                                                               |
| 4<br>4                                                                | .4 RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32<br>32                                                                                                                                                               |
| 4<br>4                                                                | .4 RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32<br>32<br>33                                                                                                                                                         |
| 4<br>4<br>4<br>5.                                                     | A RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32<br>32<br>33                                                                                                                                                         |
| 4<br>4<br>5.<br>5                                                     | A RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32<br>32<br>33<br><b>40</b><br>40                                                                                                                                      |
| 4<br>4<br>5.<br>5<br>5                                                | .4       RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>32</li> <li>32</li> <li>33</li> <li>40</li> <li>40</li> <li>41</li> </ul>                                                                                     |
| 4<br>4<br>5.<br>5<br>5<br>5                                           | .4       RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>32</li> <li>32</li> <li>33</li> <li>40</li> <li>40</li> <li>41</li> <li>42</li> </ul>                                                                         |
| 4<br>4<br>5.<br>5<br>5<br>5                                           | .4       RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32<br>32<br>33<br><b>40</b><br>40<br>41<br>42<br>43                                                                                                                    |
| 4<br>4<br>5.<br>5<br>5<br>5<br>5<br>5<br>6.                           | .4       RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>32</li> <li>32</li> <li>33</li> <li>40</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>48</li> </ul>                                                 |
| 4<br>4<br>5.<br>5<br>5<br>5<br>5<br>6.<br>6                           | .4       RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>32</li> <li>32</li> <li>32</li> <li>33</li> <li>40</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>48</li> <li>48</li> </ul>                         |
| 4<br>4<br>5.<br>5<br>5<br>5<br>5<br>6.<br>6                           | .4       RECEPTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>32</li> <li>32</li> <li>33</li> <li>40</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>48</li> <li>50</li> </ul>                                     |
| 4<br>4<br>5.<br>5<br>5<br>5<br>5<br>6.<br>6                           | .4       RECEPTORS         .5       LANDFILL GAS RECEPTORS         .6       RISK ASSESSMENT         .7       LEACHATE SAMPLING         .7       GROUNDWATER SAMPLING         .7       SURFACE WATER         .4       LANDFILL GAS         .4       LANDFILL GAS         .4       LANDFILL GAS         .4       SITE LAYOUT         .5       REVISED CSM         .3       REVISED RISK ASSESSMENT | <ul> <li>32</li> <li>32</li> <li>33</li> <li>40</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>48</li> <li>50</li> <li>53</li> </ul>                         |
| 4<br>4<br>5.<br>5<br>5<br>5<br>6.<br>6<br>6<br>7.                     | .4       RECEPTORS         .5       LANDFILL GAS RECEPTORS         .6       RISK ASSESSMENT.         ADDITIONAL INVESTIGATIONS                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>32</li> <li>32</li> <li>33</li> <li>40</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>48</li> <li>50</li> <li>53</li> <li>56</li> </ul>             |
| 4<br>4<br>5.<br>5<br>5<br>5<br>5<br>5<br>6.<br>6<br>6<br>6<br>7.<br>7 | .4       RECEPTORS         .5       LANDFILL GAS RECEPTORS         .6       RISK ASSESSMENT         .6       REVISED RISK ASSESSMENT                                                                                                                                                                                                                            | <ul> <li>32</li> <li>32</li> <li>33</li> <li>40</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>48</li> <li>50</li> <li>53</li> <li>56</li> <li>56</li> </ul> |

Consent of copyright owner required for any other use.

# LIST OF APPENDICES

| APPENDIX 1 | - | Background Information                    |
|------------|---|-------------------------------------------|
| APPENDIX 2 | - | Site Investigation Logs                   |
| APPENDIX 3 | - | OCM Sampling Protocols/Laboratory Results |

Consent of copyright on the required for any other type.

# 1. INTRODUCTION

In 2007, Westmeath County Council (Council) appointed O' Callaghan Moran & Associates (OCM) to undertake an environmental assessment of a former Council operated landfill in Moate. At the time, the Council was considering development options on part of the site to the north of and outside the waste deposition area.

The objective of the assessment was to establish the nature and extent of the wastes; identify and quantify any environmental impacts associated with waste deposition; evaluate the risk presented to the proposed development, and if necessary, identify appropriate remediation measures.

OCM carried out the assessment using the guidance contained in the Code of Practice – Environmental Risk Assessment for Unregulated Waste Disposal Facilities issued by the Environmental Protection Agency in 2007. The scope, included a background information review and site walkover (Tier 1), followed by a detailed site investigation (Tier 2).

Tier 1 involved a review of the available information to establish the site history, determine the local and regional hydrological and hydrogeological conditions and identify potential receptors. OCM subsequently conducted a walkover survey to gain an understanding of the site conditions, confirm the presence of potential receptors, develop a preliminary conceptual site model, and identify suitable locations for intrusive investigations.

The Tier 2 Investigation included:-

- Excavation of exploratory trial pits,
- Collection and analyses of waste and sub-soil samples,
- Installation of permanent leachate monitoring wells,
- Installation of permanent landfill gas and groundwater monitoring wells,
- Collection and analyses of leachate and groundwater samples,
- Landfill gas monitoring, and
- A topographic survey

The investigation was conducted in accordance with BS 10175:2001 Investigation of Potentially Contaminated Sites-Code of Practice. The works were supervised by an experienced OCM geologist, who was also responsible for all field monitoring and the collection of the waste, soil, leachate, surface water and groundwater samples. The laboratory methodologies were all ISO approved or equivalent.

The assessment concluded that the waste did not present a significant risk to either surface water or groundwater; however landfill gas did present a risk to any future development adjacent to the site.

In 2011, the Council, commissioned OCM to complete a Tier 3 Assessment based on the findings of the 2007 Tier 1 and Tier 2 assessments and additional groundwater, leachate, landfill gas and surface water monitoring conducted by Council staff between November and December 2011. In May 2012 Moate Celtic Football Club submitted a planning application to construct dressing rooms, a soccer pitch and perimeter fencing on the site.

The report described the Tier 1 and 2 investigations completed in 2007 and the additional monitoring carried out in 2011 and presents the Tier 3 Assessment, which includes for the proposed development of the site as a soccer pitch.

In 2018 the Council requested OCM to update the risk assessment and proposed remedial measures following discussions with the EPA regarding the proposed remedial measures for the site. The Moate Cletic planning permission expired in 2017 and no development proceeded on the site. However, the Council would consider future applications for the development of the site for sport/recreational use.

Consent of copyright owned required for any other use.

### 2.1 Site Location

The site is located in the townland of Killeenyboylegan, on the southern outskirts of Moate, as shown on Figure 2.1. The National Grid Reference is 219161: 238151. It is accessed of the N80 Moate to Clara National Secondary Road.

### 2.2 Site Layout

The site occupies an area of 3.4 ha, as shown on Figure 2.2. It is bordered to the north by a stone wall, to the east by a roadway and to the west and south by hedgerows. A stream runs along the southern site boundary, with a tributary drain running along the western boundary. The original topography of the site sloped from north to south but this has been altered by the waste deposition. There is a high point near the south central part of the fill will shallow falls in all direction.

The restored areas appear to be free draming, with the exception of an area in the centre of the site where rushes were observed in the 2007 investigation. At that time there was no evidence of either any waste at the ground surface, or of vegetation die back.

# 2.3 Site History

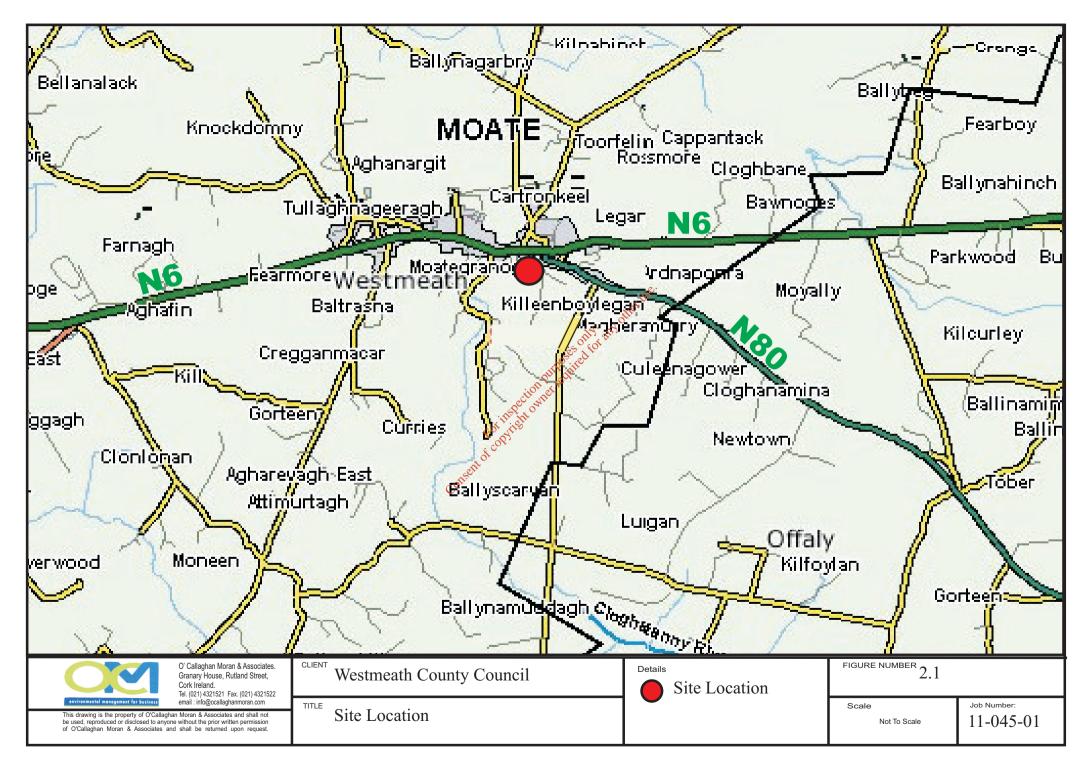
It is understood that the use of the site as a landfill started sometime ca 1970 and continued up to ca 1990. It is understood that the lands were low lying and that no excavation or quarrying was carried out prior to the start of the waste deposition. An aerial photograph from 1973 (Appendix 1) shows waste deposition in a small area in the south east of the site, with the remainder of the site undisturbed. An aerial photograph from 1987 (Appendix 1) shows waste deposition in the south western section of the site, with the previously filled section reinstated to grassland.

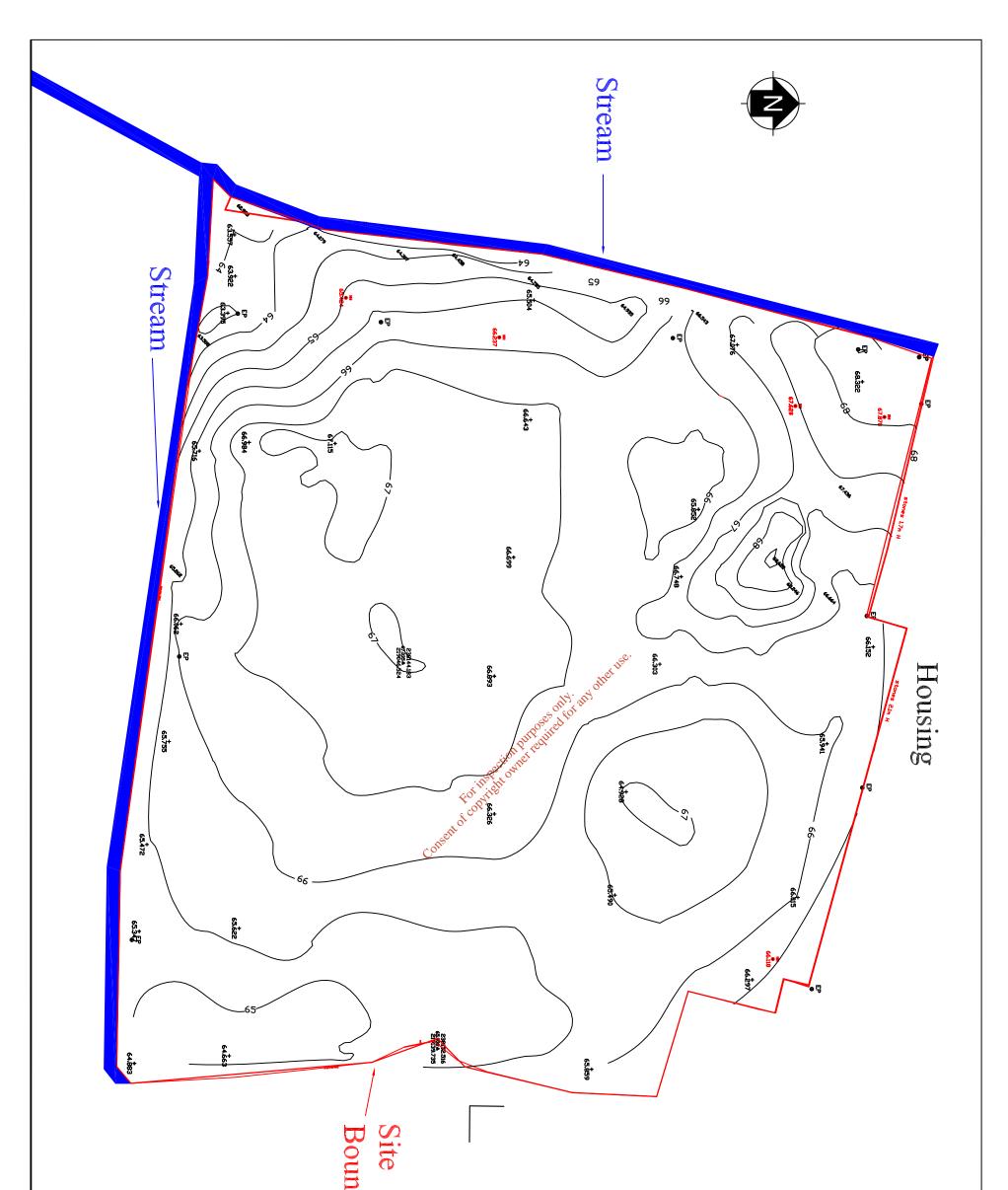
It is understood that the site was used to dispose of household waste collected by the Council in Moate and its environs, however there is no precise information on the nature and volume of waste deposited at the site, the method of waste placement or they type of cover applied. Given the historic landuses in the area, it is likely that the majority of the waste comprised municipal household waste.

Waste deposition stopped in ca 1990, following the opening of the Ballydonagh Landfill. It is understood that the deposited waste was covered with soils. In the mid 1990's, during improvement works at the nearby Council owned wastewater treatment plant (WWTP) subsoils excavated during the construction works was placed over the waste.

In 2002, the Council conducted a preliminary intrusive site investigation to establish the northern edge of the waste deposition area. The investigation involved the excavation of trial pits and the installation of soil probes in the waste and in the adjoining northern area. The investigation identified the northern boundary of the fill area, but did not establish either the nature or depth of the waste. A copy of the report on the investigation is in Appendix 1. A playground and civic amenity area were provided on the site in 2009.

# 2.4 Surrounding Land use


There are houses immediately to the north and within 10 metres of the site boundary, and a farm building to the east. The lands to the south, east and west of the site are agricultural. The Council's WWTP is approximately 500m to the south.


The Council's WWTP is approximately 500m to the south. **2.5 Hydrology**The fill area is domed and slopes from the control of the site to the north, east, west and south.
There is a stream along the coutherm interview dome. An Ordennes Survey (OS) was for the southerm in the control of the site to the north, east, west and south. There is a stream along the southern site boundary. An Ordnance Survey (OS) map from 1912 (Appendix 1), shows a spring at the south eastern boundary of the site, which appears to be the source of the stream. It is probable, based on site observations, that the flow in the stream is affected by seasonal conditions.

The water level in the stream is approximately 2m below the ground level at the southern site boundary. There is an open drain running along the western site boundary, which is a tributary of the stream. The stream flows to the south and is a tributary of the Cloghatanny River, which flows to the south east to join the River Brosna.

# 2.6 Geology & Hydrogeology

OCM established the local geological and hydrogeological conditions from a review of databases maintained by the Geological Survey of Ireland (GSI), Teagasc and the site investigation findings. The latter are discussed in more detail in Section 3.



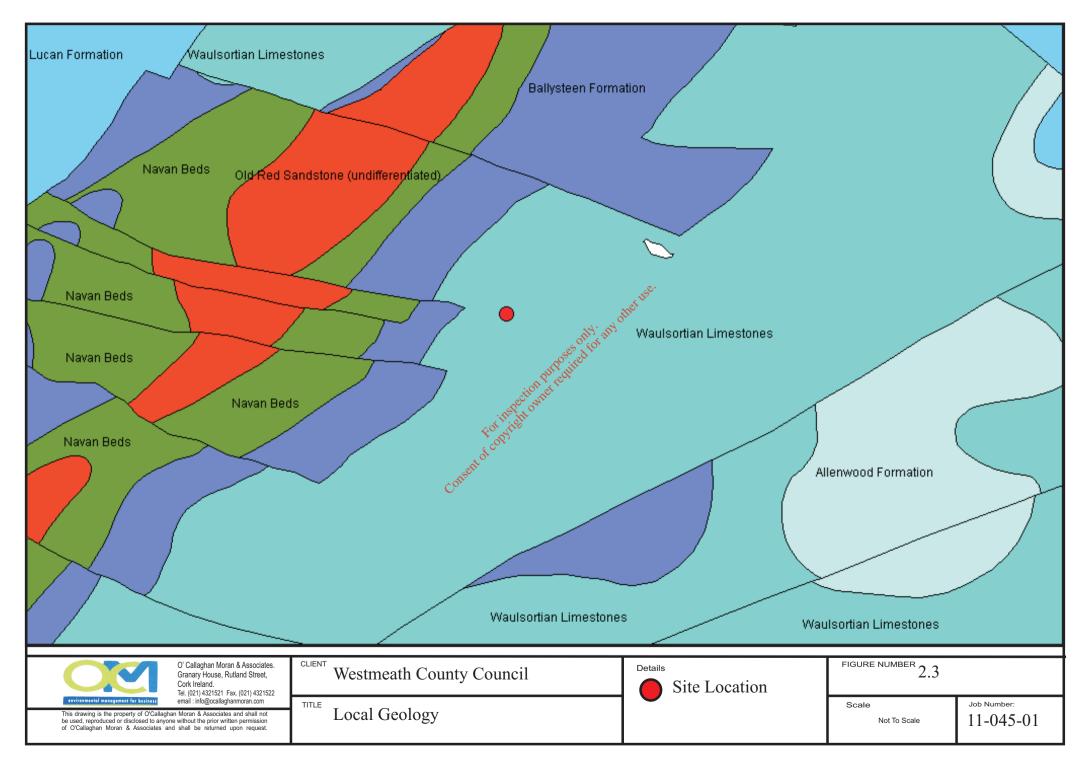


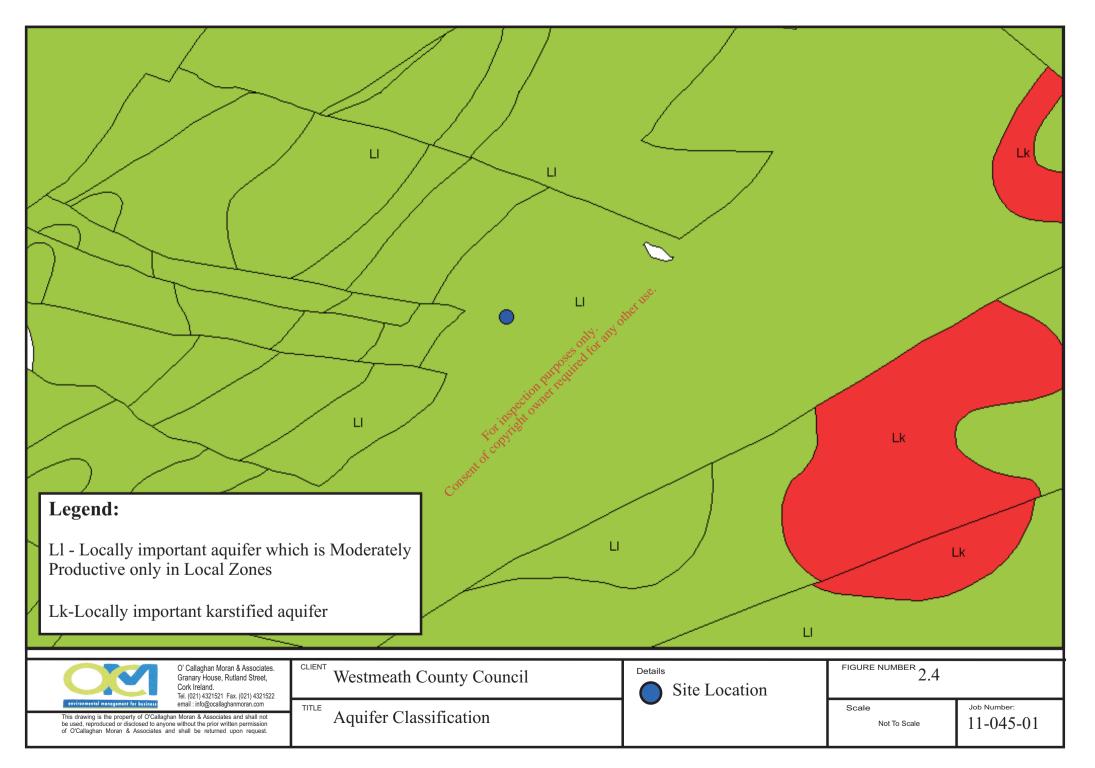
|                        |                    |                                                                                                                                                                                                              |                                                                                |                                                                                                                                                               | ndary |       |
|------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| SCALE DRAWING No. REV. | πιε<br>Site Layout | The draving in the property of C'Callgara Moran & Associations and the foreign of the classical is annown without the photor written permission of C'Callgara Moran & Associate and is retired upon reserve. | O' Calloghan Mora<br>Grancy House, Rut<br>Cork, Ireland.<br>Tel. (021) 4221521 | REV         DATE         DESCRIPTION         DRN         CHKD         APP           REV         DATE         DESCRIPTION         DRN         CHKD         APP |       | NOTES |

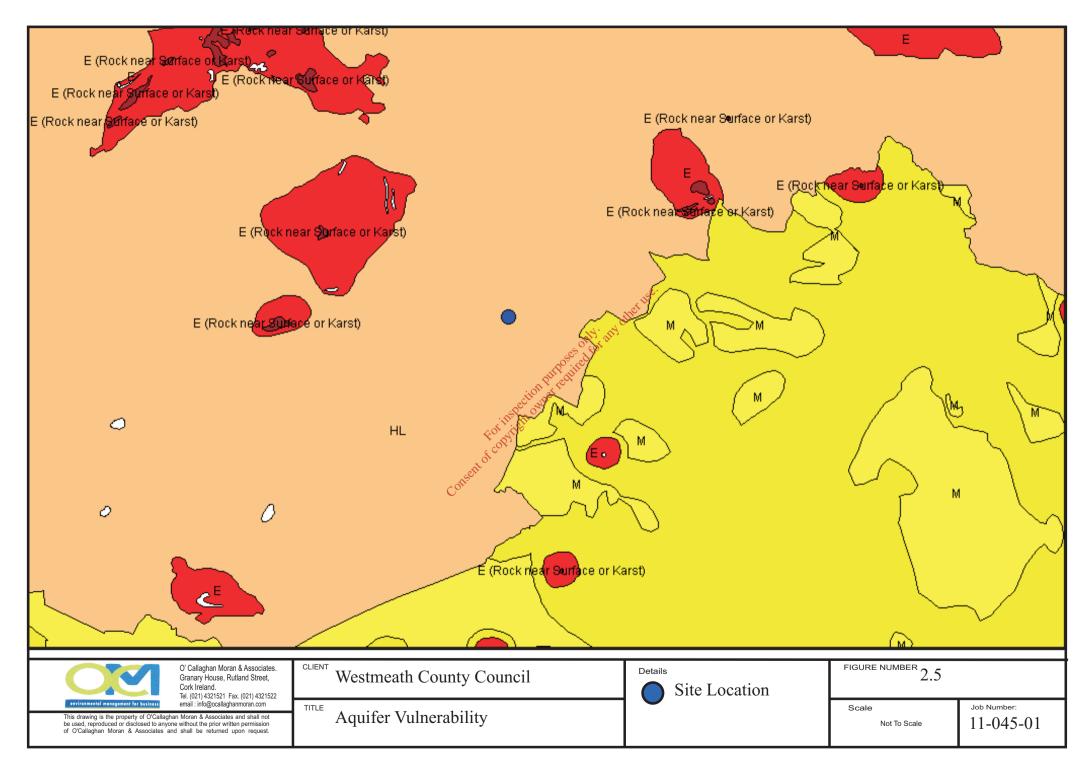
### 2.6.1 Soils and Subsoils

The GSI and Teagasc data bases indicate that the subsoils at the site comprise well drained limestone tills. The Teagasc maps indicate that the subsoils to the south of the site comprise gravels, overlain by cut peat.

The trial pits and boreholes installed in the 2007 investigation and which is described in Section 3 revealed that the natural subsoils over most of the site comprise dense grey gravely sand, with a proven minimum thickness of 5m. A peat layer which was encountered in the south east of the site, ranging from 0.2 to 0.4m thick, appears to be original ground.


Water was not encountered in the subsoils underlying the waste. Groundwater was encountered in the subsoils to the north of the waste, with the depth ranging from 2.7m to 4.0m below ground level (mbgl). As discussed above, the 1912 OS map shows a spring at the south eastern site boundary. This means that the water table is close to the surface in this area, which is probably the reason for the formation of the peat in this part of the site.


2.6.2 Bedrock The regional geology is shown on Figure 273 required for an other is underlain by the Waulsortian Limestone Formation, which is described as a massive pale grey limestone. The formation is classified by the GSI as a locally important aquifer (LI), being moderately productive only in local zones (Figure 2.4) In 2007, the bedrock aquifer vulnerability was classified by the GSI as ranging High to Low (**HL**) (Figure 25). Based on the topographic gradient it is estimated that groundwater flow is from north to south. C<sup>9</sup>


# 2.7 Potential Receptors

The site is located on the southern outskirts of the town. The houses approximately 10m to the north of the northern site boundary are the closest domestic residences to the site. There is a civic amenity area and children's playground inside the site boundary.

The stream on the southern site boundary, which arises from a spring and is a tributary of the Cloghatanny River, which itself is a tributary of the River Brosna. The underlying bedrock is categorised a locally important aquifer. There are no public water supplies and no record of any private wells within 1 kilometre of the site. There are no Natura 2000 sites within 1 km of the site.







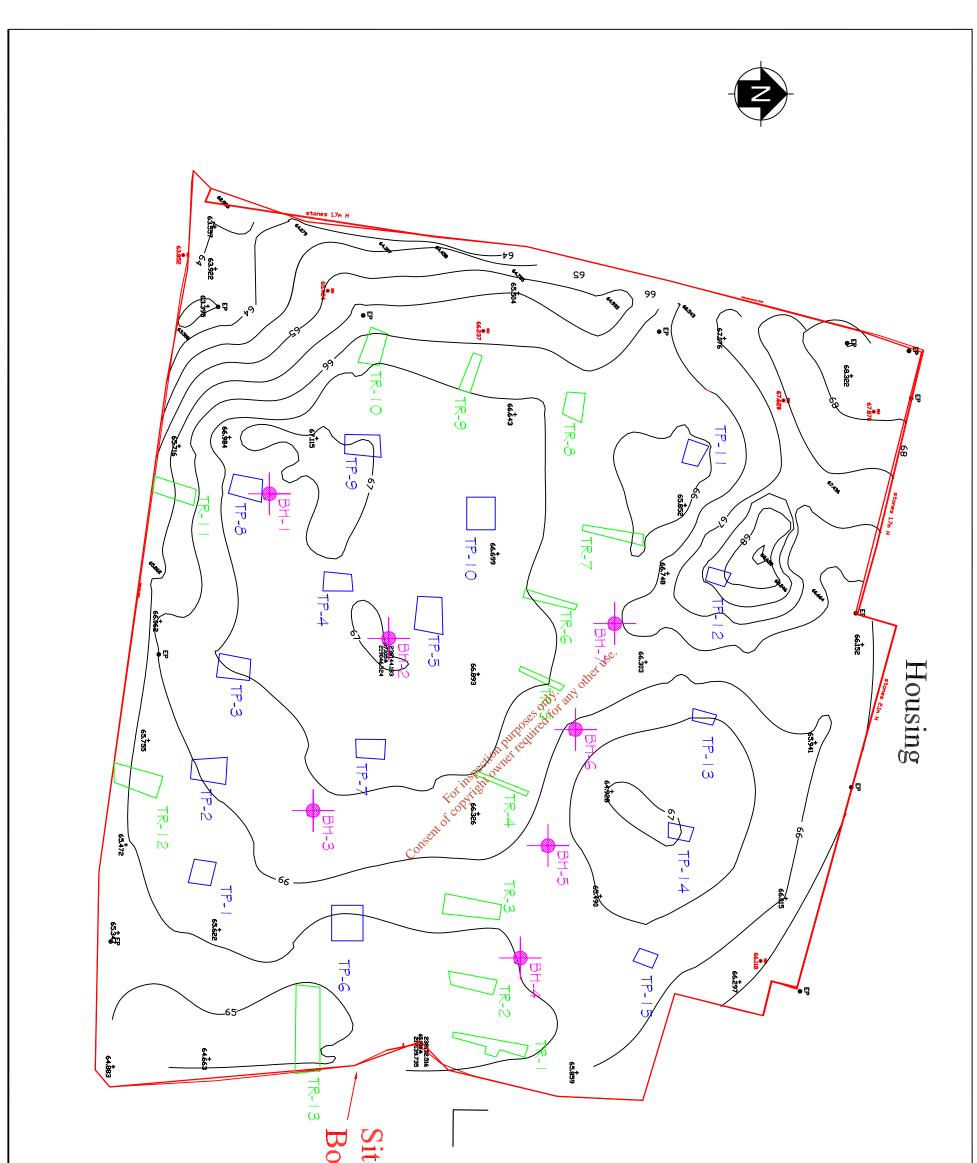
# 3. PRELIMINARY & DETAILED SITE INVESTIGATION

### 3.1 Objectives

The objectives of the investigations were:-

- to delineate the lateral and vertical extent of the wastes,
- to characterise the waste,
- to assess the risk of pollution to soils, surface water and groundwater, and
- to assess the risk presented by landfill gas.

### 3.2 Site Investigation Scope


The site investigations were carried out in two stages. The Preliminary stage involved the excavation of trial pits and trenches, and the collection and testing of waste samples to establish the nature and extent of the waste. The Detailed stage comprised the installation of leachate; landfill gas and groundwater monitoring wells, the collection and analysis of leachate, groundwater and surface water samples and landfill gas monitoring.

For inspectic

### 3.3 Preliminary Investigation

The trial pit and trench excavations were carried out on the 9<sup>th</sup> and 10<sup>th</sup> May 2007 using a track mounted excavator, capable of travelling on variable terrain and with a reach of 5–7m below ground level (bgl). The locations are shown on Figure 3.1 and the works was supervised by an experienced OCM geologist.

Initially thirteen (13 No) shallow trial trenches were excavated to delineate the lateral extent of the waste. Following this, ten (10 No) pits were excavated within the waste body to determine the depth of the waste and to collect representative samples for laboratory analyses. Five (5 No) pits were excavated in the undisturbed ground north of the deposition area to establish natural ground conditions.



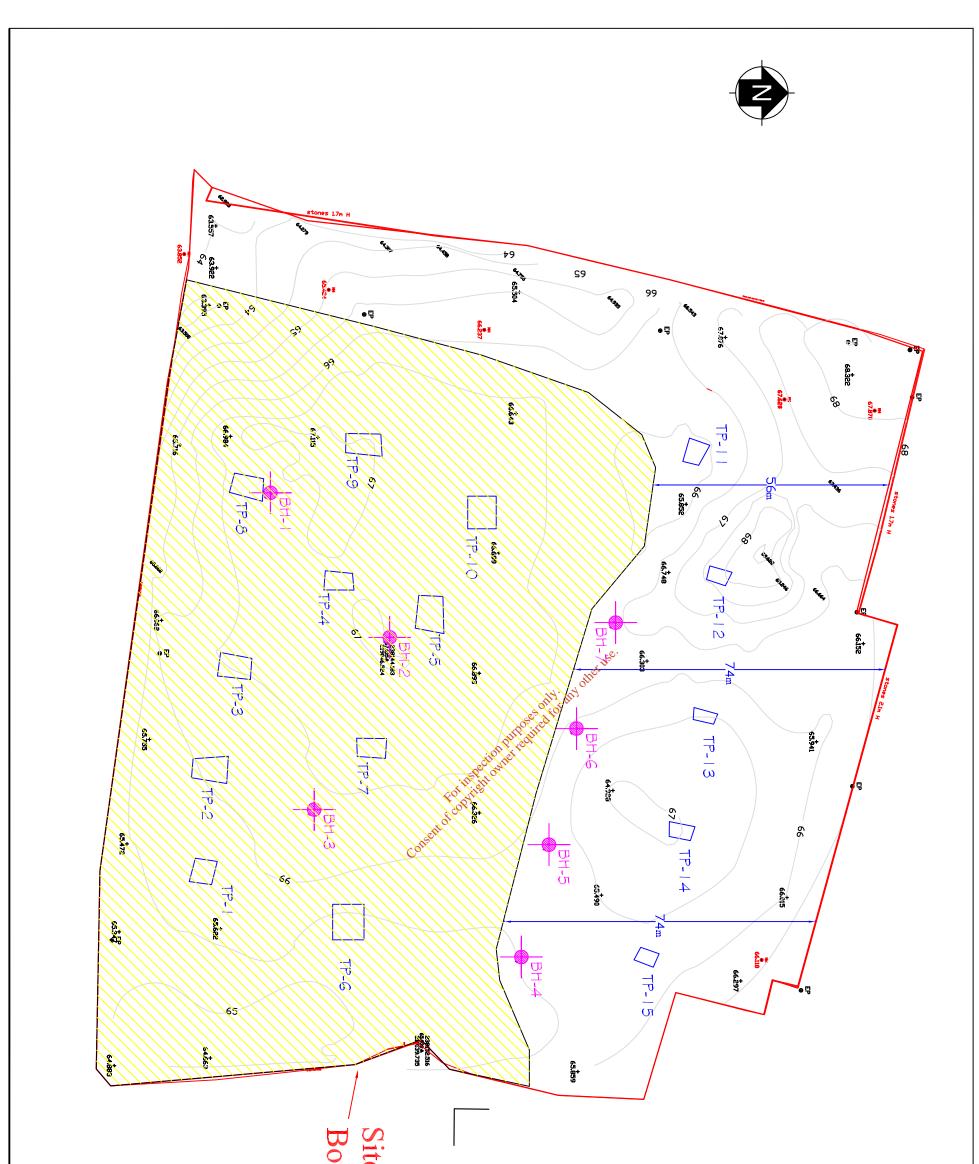
|          | oundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                         |           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|-----------|
| rial Pit | REV     DATE     DESCRIPTION     IDNI     OHIO       General Home     Collighton     Moran & Associates     General Homes, Ruited Street, IDNI       Collighton     Feldoral Homes, Ruited Street, IDNI     Tat. (021) 432152     Ten. (021) 432152       The drafting The property of Orollaghton Noran & Associates and and Intermediation or maintering the property of Torollaghton Noran & Associates and and Intermediation or maintering the main the mainte | TR-1 Trial Trench Location | TP-1 Trial Pit Location | <br>NOTES |

# 3.3.1 Lateral Extent of the Waste

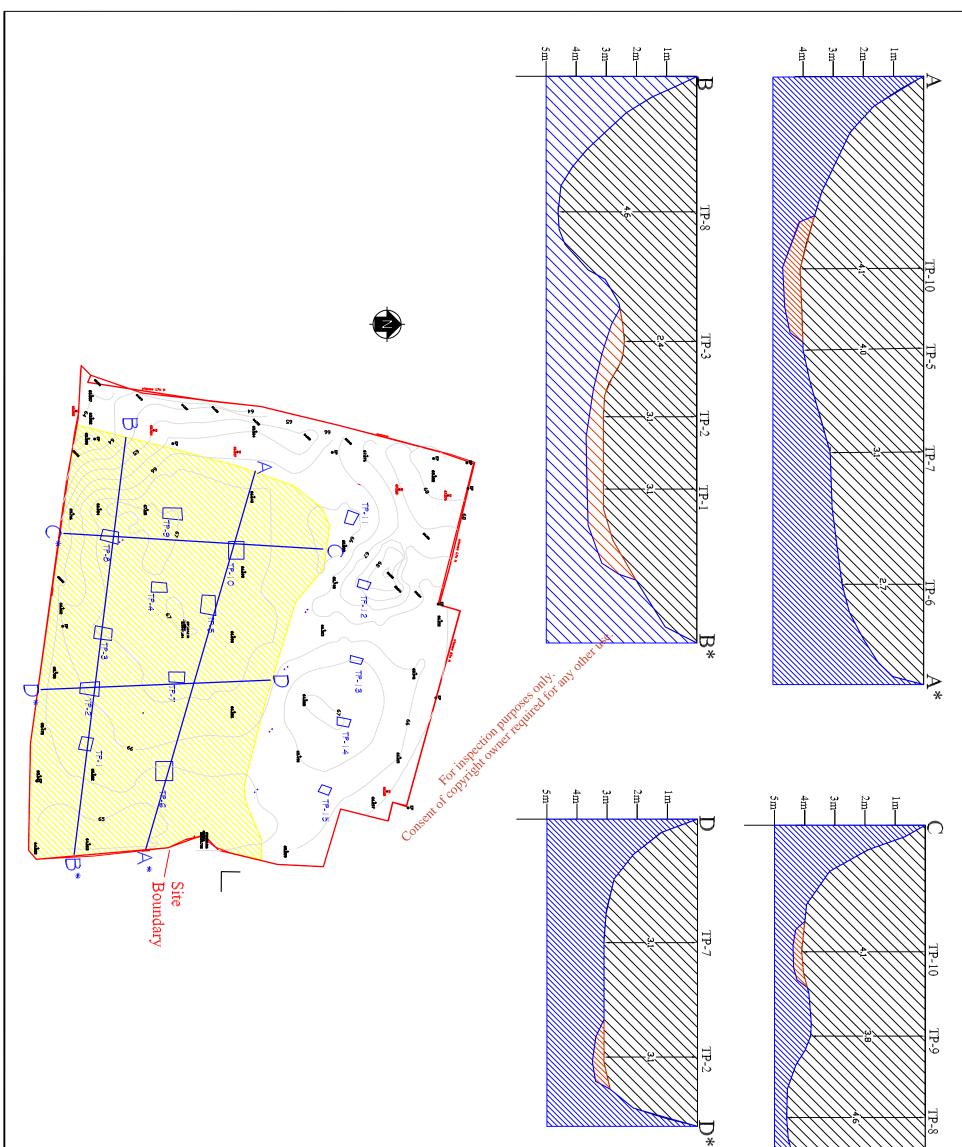
The first trench was positioned at the edge of the fill, as established by the Council in its 2002 investigation. The trench was opened to 0.8-1.2m mbgl. Once waste was encountered, the trench was extended north at a consistent depth until natural ground was encountered. The boundary between the waste and the undisturbed area was then marked with a wooden stake. Similar trenches were excavated along the northern, southern, eastern and western borders of the site.

The trenches confirmed that waste had been deposited up to the southern and eastern borders, but did not extend to the western or northern site boundaries. The lateral extent of the waste, which is shown on Figure 3.2, covers an area of ca 18,500m<sup>2</sup>.

# *3.3.2 Vertical Extent of Waste*


Ten (10) trial pits were excavated within the waste body (TP<sup>2</sup>I to TP-10). The locations are shown on Figure 3.1 and the logs, which were recorded by the OCM Geologist in accordance with BS5930, are in Appendix 2.

The waste was covered by a thin layer of topsoil, which was underlain by a gravely clay, ranging from 0.2 to 1.2m across the site, being thickest in the central area. The underlying waste ranged from 2.5m in TP-4 to 4 km in TP-8, with an average thickness of 3.3m. In the southern part of the site in the trial pits TP-1, TP-2 and TP-3 and the central section in TP-10 the waste is underlain by peat. Reat was not encountered in the rest of the site, where the waste is underlain by compact sandy gravels. Minor inflows of water were encountered in only two of the trial pits TP-1 and TP-2. Cross-sections through the waste are shown on Figure 3.3.


### *3.3.3 Waste Characterisation*

The waste was not water saturated and comprised a mix plastic bags, glass bottles, concrete blocks, bricks, cardboard, car parts, fragments of steel, newspapers, food packaging, all of which were intermixed with a sandy clay. Photographs of the wastes are presented below.

It is assumed that the sandy clay was used as cover material when the site was operational, but no discrete layers were noted. A newspaper dated 1970 was found in TP-4 and food packaging dated 1990 was found in TP-5. There was no evidence of any significant amounts of potentially hazardous waste (e.g. oils, solvents).



|                                | Je<br>oundary                                                                                                                                                      |                         |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| scale DRAMING No.<br>scale 3.2 | DESCRIPTION<br>DESCRIPTION<br>DESCRIPTION<br>DESCRIPTION<br>DESCRIPTION<br>Cont. Irelan<br>Idea of disclosed to an<br>Mora & Associate and<br>Mora & Associate and | TP-1 Trial Pit Location |



|                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                               | *<br> |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------|
| SCALE DRAMING NO.<br>SCALE 3.3 | running is the property of O'callaghen Moren i<br>to and of O'Callaghen Moren is Associate and the<br>IT<br>Westmeath County C | REV     DATE     DESCRIPTION     DRN     OHO     APP       REV     DATE     DESCRIPTION     DRN     OHO     APP       REV     DATE     DESCRIPTION     DRN     OHN     OHN     APP       CV     DATE     DESCRIPTION     DRN     OHN     OHN     OHN     APP       CV     DATE     DESCRIPTION     DRN     OHN     OHN     OHN     APP       CV     DESCRIPTION     DRN     ON     DRN     OHN     OHN     OHN     OHN       CV     DESCRIPTION     DRN     DRN     OHN     DRN     OHN     OHN       CV     DESCRIPTION     DRN     DRN     OHN     DRN     OHN     OHN       T     DESCRIPTION     DRN     Matter     Street, USA     Street, USA     Street, USA       T     T     Street, USA     Street, USA     Street, USA     Street, USA | Legend:<br>Waste Material<br>Peat Material<br>Sands and Gravels | NOTES |



Photograph No 1 Waste material encountered in TP-5



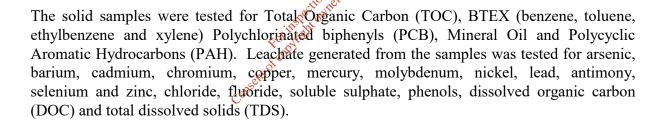
Photograph No 2 Waste material encountered in TP-6



Photograph No.3 Waste material encountered in TP-7



Photograph No 4 Waste material encountered in TP-9


### 3.3.4 Samples

Samples of the waste, as well as the underlying natural ground, were collected in all of the trial pits in accordance with OCM's sampling protocol, a copy of which is included in Appendix 3. The samples were field screened for the presence of volatile organic compounds (VOC) using a photo ionisation detector (PID). The PID readings are recorded in the trial pit logs. The samples were placed in laboratory prepared containers and stored in coolers prior to shipment to ALcontrol Geochem Laboratories in Blanchardstown, County Dublin.

# 3.3.5 Laboratory Analysis

Based on the field observations and field screening, which indicated that waste was generally consistent across the site, it was decided to analyse a total of 7 waste samples and 4 samples of the underlying subsoils. Depending on the results, additional samples would be tested.

The samples were analysed for the full suite of parameters specified in the Annex to EU Council Decision establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. The Annex, which is commonly known as the Landfill Waste Acceptance Criteria (WAC), sets threshold limits for a range of inorganic and organic parameters that characterise a waste as suitable for disposal to an inert, non-hazardous or hazardous waste landfill.



The analytical methodologies were all ISO/CEN approved or equivalent and the method detection limits were all below the relevant WAC values.

# 3.3.6 Results

The complete laboratory test report is included in Appendix 3 and the results are presented in Table 3.1. The Table includes the WAC values for Inert and Non-Hazardous wastes. The Decision does not specify limits for PAH, as this is left to the individual member states. The Agency has set a limit of 100mg/kg in a Waste Licence for an inert landfill, and this has been used as a guideline.

With the exception of antimony, fluoride, sulphate, Total Dissolved Solids (TDS) and Total Organic Carbon (TOC) all of the parameters were below the Inert WAC values. All of the parameters were significantly below the Non-Hazardous WAC values.

### **Table 3.1 Soil Results**

| Location                 | TP-2     | TP-2     | TP-3     | TP-3     | TP-4       | TP-4                  | TP-6     | TP-8      | TP-8     | TP-9     | TP-10    | INERT<br>LANDFILL    | NON-HAZ<br>LANDFILL |
|--------------------------|----------|----------|----------|----------|------------|-----------------------|----------|-----------|----------|----------|----------|----------------------|---------------------|
| Depth                    | 1.5-2.0m | 3.2-3.5m | 0.5-1.0m | 2.4-2.6m | 1.0-1.5m   | 2.6-2.8m              | 1.0-1.5m | 1.0-1.58m | 4.7-4.9  | 0.8-1.3m | 1.0-1.5m | L/S = 10l/kg         | L/S = 10l/kg        |
| Units                    | mg/kg    | mg/kg    | mg/kg    | mg/kg    | mg/kg      | mg/kg                 | mg/kg    | mg/kg     | mg/kg    | mg/kg    | mg/kg    | mg/kg                | mg/kg               |
| Arsenic                  | < 0.01   | < 0.01   | 0.02     | < 0.01   | 0.02       | < 0.01                | 0.02     | 0.02      | 0.01     | 0.03     | 0.02     | 0.5                  | 2                   |
| Barium                   | 2.41     | 4.74     | 2.86     | 1.89     | 3.36       | < 0.01                | 2.31     | 3.5       | 2.6      | 2.47     | 3        | 20                   | 100                 |
| Cadmium                  | < 0.004  | < 0.004  | < 0.004  | < 0.004  | < 0.004    | < 0.004               | < 0.004  | < 0.004   | < 0.004  | < 0.004  | < 0.004  | 0.04                 | 1                   |
| Chromium                 | 0.02     | < 0.01   | 0.02     | < 0.01   | 0.03       | < 0.01                | 0.02     | 0.03      | 0.02     | 0.03     | 0.02     | 0.5                  | 10                  |
| Copper                   | 0.08     | 0.05     | 0.06     | 0.09     | 0.17       | < 0.01                | 0.15     | 0.14      | 0.06     | 0.24     | 0.09     | 2                    | 50                  |
| Mercury                  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005   | < 0.0005              | <0.0005  | e.00005   | < 0.0005 | < 0.0005 | < 0.0005 | 0.01                 | 0.2                 |
| Molybdenum               | 0.07     | 0.01     | 0.14     | 0.02     | 0.29       | 0.02                  | 0.04 net | 0.18      | 0.13     | 0.21     | 0.13     | 0.5                  | 10                  |
| Nickel                   | 0.06     | 0.03     | 0.03     | < 0.01   | 0.05       | < 0.01                | · 0.02   | 0.07      | 0.03     | 0.06     | 0.04     | 0.4                  | 10                  |
| Lead                     | < 0.01   | < 0.01   | < 0.01   | < 0.01   | 0.01       | <0.01                 | 0.01     | 0.01      | < 0.01   | 0.01     | < 0.01   | 0.5                  | 10                  |
| Antimony                 | 0.03     | 0.02     | 0.07     | 0.04     | 0.08       | <0.00                 | 0.01     | 0.03      | 0.05     | 0.02     | 0.02     | 0.06                 | 0.7                 |
| Selenium                 | 0.01     | < 0.01   | 0.03     | < 0.01   | < 0.01     | 50.0 kal              | < 0.01   | 0.01      | < 0.01   | < 0.01   | < 0.01   | 0.1                  | 0.5                 |
| Zinc                     | 0.69     | 3.26     | 0.98     | 0.32     | 1.16       | c <sup>110</sup> 0.31 | 0.42     | 1.67      | 0.94     | 0.56     | 0.4      | 4                    | 50                  |
| Chloride                 | 20       | 58       | 32       | 22       | 72 ms      | 1 25                  | 23       | 31        | 99       | 36       | 32       | 800                  | 15,00               |
| Fluoride                 | <1       | <1       | <1       | 2        | Aot M      | 3                     | 2        | <1        | 3        | 2        | <1       | 2                    | 150                 |
| Sulphate                 | 8,446    | 4,644    | 1,486    | 158      | 1,438      | 64                    | 299      | 3,747     | 849      | 306      | 494      | 1,000                | 20,000              |
| Phenols                  | < 0.1    | < 0.1    | < 0.1    | < 0.1    | <b>0.1</b> | < 0.1                 | < 0.1    | < 0.1     | < 0.1    | < 0.1    | < 0.1    | 1                    | NE                  |
| Dissolved Organic Carbon | 30       | 153      | 48       | <20 (    | off 134    | <20                   | 75       | 97        | 70       | 155      | 38       | 500                  | 800                 |
| Total Dissolved Solids   | 12,511   | 5,361    | 3,377    | 520      | 3,725      | 350                   | 2,000    | 6,146     | 2,312    | 1,750    | 1,684    | 4,000                | 60,000              |
| Total Organic Carbon*    | 1.8      | 27.1     | 3.7      | 0.4      | 3.3        | < 0.2                 | 1.5      | 3.1       | 0.6      | 1.3      | 1.2      | 0.03                 | NE                  |
| BTEX                     | < 0.01   | < 0.01   | < 0.01   | < 0.01   | < 0.01     | < 0.01                | < 0.01   | < 0.01    | < 0.01   | 0.033    | < 0.01   | 6                    | NE                  |
| PCBs                     | <1       | <1       | <1       | <1       | <1         | <1                    | <1       | <1        | <1       | <1       | <1       | 1                    | NE                  |
| Mineral Oil              | <1       | <1       | <1       | <1       | <1         | <1                    | <1       | <1        | <1       | 125      | <1       | 500                  | NE                  |
| PAH (6)                  | <1.6     | <1.6     | <1.6     | <1.6     | 3.8        | <1.6                  | <1.6     | <1.6      | <1.6     | <1.6     | 6.2      | -                    | NE                  |
| PAH (16)                 | 1.231    | <1       | 0.453    | <1       | 6.488      | <1                    | 0.415    | 2.891     | 1.036    | 1.63     | 10.19    | -                    | NE                  |
| PAH (17).                | 1.265    | <1       | 0.467    | <1       | 6.547      | <1                    | 0.427    | 2.982     | 1.049    | 1.667    | 10.452   | Murphy's<br>100mg/kg | NE                  |

Five (5) pits (TP-11 to TP-15) were excavated in natural ground the area to the north of the waste. Waste was not uncovered in any of the pits and the subsoils comprised natural sands and gravels with occasional cobbles. A moderate groundwater inflow was encountered in one trial pit (TP-14), at a depth of 1.6 mbgl.

# 3.4 Detailed Investigation

The second stage involved the installation of three combined leachate and landfill gas monitoring wells inside the body of the waste, four combined groundwater and landfill gas wells outside the waste, the collection and analysis of groundwater, surface water and leachate samples and landfill gas monitoring.

The wells were installed between 28<sup>th</sup> May and 1<sup>st</sup> June 2007 at the locations shown on Figure 3.1, using a rotary percussive drilling rig. The wells are labelled as BH-1 to BH-7 on the drawing. The drilling and well construction was supervised by an OCM geologist. The drilling logs and well construction details are in Appendix 25

3.4.1 Leachate/Landfill Gas Wells Three (No.3) wells MW-1 to MW-3 were installed in the waste body to monitor leachate and landfill gas. Based on the findings of the trial pits, which did not identify either the presence of significant volumes of leachate of a significant low permeability layer beneath the waste, the borings were extended through the waste. The objective was to confirm the thickness of the waste and to establish if there was an underlying unsaturated zone. Groundwater/leachate was not encountered during the drilling.

### 3.4.2 Landfill Gas/Groundwater Wells

Based on the topography and the local surface water drainage pattern, the direction of groundwater flow was expected to be from the north to the south. As the waste extended up to the southern site boundary, it was not possible to install a groundwater monitoring well within the site and immediately down gradient of the waste. Based on the findings of the Preliminary Investigation and the installation of the wells within the waste body which found no evidence of the presence of a significant amount of leachate, it was decided that the installation of side gradient wells to the east and west of the site was not required.

The wells (MW4 to MW-7), were positioned to the north of the fill area and were intended to primarily allow the monitoring of landfill gas and also establish upgradient groundwater quality. The wells extended to a depth of 5m bgl, which is below the base of the waste. Groundwater was encountered in all the borings at between 2.6 and 4m below ground level.

### 3.4.3 Well Construction

The monitoring wells were constructed using uPVC 50 mm diameter standpipes, which were slotted from the base of the hole to 1.0m bgl. A gravel filter pack was inserted in the annular space between the boring and the standpipe to a level of 0.5 m above the slotted section of the standpipe. As the waste extended up to the southern site boundary, it was not possible to install a groundwater monitoring well within the site and immediately down gradient of the waste.

The annular space above the gravel filter was filled with a bentonite seal. The solid section of the well pipe was brought above the ground level and all fitted with landfill gas caps and valves to allow landfill gas monitoring. A steel protective well casing, set in a concrete base, was placed around the standpipe.

### 3.5 Leachate

3.5 Leachate No significant inflow of leachate was noted during the drilling of the boreholes and installation of the well pipes. Following installation, the wells were monitored on three occasions (1<sup>st</sup>, 15<sup>th</sup> and 28<sup>th</sup> June 2007) to establish if leachate was present. MW-1 and MW-2 were dry on all three occasions, but liquid was present in MW-3. The total depth of leachate ins' measured in the MW-3 was 1.1m.

ofcop Leachate samples were collected from MW-3 on the 15<sup>th</sup> June 2007 using a disposable polyethylene baler. During sampling there was a noticeable drop in the leachate level in the well. The sample was placed in laboratory prepared containers and stored in a cooler and consigned to the ALcontrol laboratory.

### 3.5.1 Laboratory Analysis

The sample was analysed for leachate indicators and a range of organic and inorganic parameters, including a number of List I and II substances referred to in the EU Directives on Dangerous Substances (76/464/EEC) and Groundwater (80/68/EC) as amended, which comprised pH, electrical conductivity, dissolved oxygen, alkalinity, ammonia, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total oxidised nitrogen (TON), orthophosphate, chloride, fluoride and metals (arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, antimony, selenium and zinc). The analytical methodologies were all ISO/CEN approved or equivalent and the method detection limits were all below the relevant thresholds.

# 3.5.2 Laboratory Results

The full laboratory test report is in Appendix 3 and the results are presented in Table 3.2. For comparative purposes the tables include the ranges (weak to strong) for the individual substances typically found in leachate, which are derived from the EPA's Landfill Design Manual.

| Parameter                                    | MW-3                 | EPA Landfill<br>Design Manual<br>Range |
|----------------------------------------------|----------------------|----------------------------------------|
| рН                                           | 7.33                 | 6.8 - 8.2                              |
| Conductivity (mS/cm)                         | 1.584                | 5,990 - 19,300                         |
| COD                                          | 4,063                | 622 - 8,000                            |
| Dissolved Oxygen (mg/l)                      | 4                    | -                                      |
| Total Alkalinity as CaCO <sub>3</sub> (mg/l) | 614                  | 3,000 - 9,130                          |
| Ammoniacal Nitrogen as N (mg/l)              | 4                    | 283 - 2,040                            |
| Biological Oxygen Demand (mg/l)              | 11 11 <sup>50</sup>  | 110 - 1,900                            |
| Orthophosphate as PO <sub>4</sub> (mg/l)     | $0.03^{\circ}$       | -                                      |
| Chloride (mg/l)                              | only: a122           | 570 - 4,710                            |
| Fluoride (mg/l)                              | 2 <sup>40</sup> <0.1 | -                                      |
| Total Oxidised Nitrogen as N (mg/)           | < 0.3                | -                                      |
| Arsenic (mg/l)                               | < 0.001              | <0.001 - 6.7                           |
| Dissolved Boron (mg/1)                       | 0.501                | -                                      |
| Dissolved Cadmium (mg/l)                     | < 0.0004             | <0.010 -0.08                           |
| Dissolved Chromium (mg/l)                    | 0.007                | -                                      |
| Dissolved Copper (mg/l)                      | < 0.001              | 0.020 - 0.620                          |
| Mercury (mg/l)                               | < 0.00005            | <0.0001 - 0.0008                       |
| Nickel (mg/l)                                | 0.008                | <0.030 - 0.6                           |
| Zinc (mg/l)                                  | 0.017                | <0.030 - 6.7                           |
| Selenium (mg/l)                              | 0.002                | -                                      |
| Lead (mg/l)                                  | < 0.001              | <0.040 - 1.9                           |
| Cyanide (mg/l)                               | < 0.00005            | -                                      |

# **Table 3.2**Leachate Results June 2077

The results indicate a very low strength leachate. All of the parameters, with the exception of COD, were either close to or below the lower end of the EPA range. This is consistent with an aged, predominantly non-hazardous waste mass that has undergone significant biodegradation.

# 3.6 Groundwater

A sample of the groundwater was collected from MW-6 on the 15<sup>th</sup> June 2007 to establish the upgradient groundwater quality. The sample was collected in accordance with OCM's sampling protocol, which is included in Appendix 3.

After completion of groundwater level measurements, the well was purged to remove the stagnant water in the well and surrounding gravel pack. Purging is required to ensure that the groundwater sample collected is representative of the formation and not the stagnant water in the monitoring well or surrounding gravel filter. The samples were placed in laboratory prepared containers, stored in a cooler, and sent for analyses to ALcontrol.

### 3.6.1 Laboratory Analysis

The sample was analysed for a range of organic and inorganic parameters that included indicators of general water quality and leachate contamination: electrical conductivity, dissolved oxygen, pH, ammonia, chemical oxygen demand (COD), cyanide and alkalinity, total hardness, BOD, total suspended solids, chloride, fluoride, nitrate, orthophosphate, TON, and metals (arsenic, boron, cadmium, chromium, copper, lead, nickel, selenium, zinc and mercury).

The analytical methodologies were all ISO/CEN approved or equivalent and, with the on pupposes only any other with a lim exception of ammoniacal nitrogen the method detection limits were all below the relevant comparative values.

### 3.6.2 Laboratory Results

The full laboratory test report is in Appendix 3 and the results are presented in Table 3.3.

| Parameter                                    | MW-6      | IGV values         | GTV         |
|----------------------------------------------|-----------|--------------------|-------------|
| рН                                           | 7.63      | <6.5 and <9.5      | -           |
| Conductivity (mS/cm)                         | 0.757     | 1                  | 800-1,875   |
| COD                                          | 437       | -                  | -           |
| Dissolved Oxygen (mg/l)                      | 4.8       | No abnormal change | -           |
| Total Alkalinity as CaCO <sub>3</sub> (mg/l) | 260       | No abnormal change | -           |
| Ammoniacal Nitrogen as N (mg/l)              | <0.2      | 0.15               | 0.065-0.175 |
| BOD (mg/l)                                   | 3         | -                  | -           |
| Orthophosphate as PO <sub>4</sub> (mg/l)     | 0.05      | 0.03               | -           |
| Chloride (mg/l)                              | 29        | 30                 | 24-187.5    |
| Fluoride (mg/l)                              | 0.2       | 1                  | -           |
| Total Oxidised Nitrogen as N (mg/l)          | 3.9       | No abnormal change | -           |
| Arsenic (mg/l)                               | < 0.001   | 0.01               | 0.0075      |
| Dissolved Boron (mg/l)                       | 0.05      | 1                  | 0.075       |
| Dissolved Cadmium (mg/l)                     | < 0.0004  | 0.005              | 0.00375     |
| Dissolved Chromium (mg/l)                    | 0.003     | 0.03               | 0.0375      |
| Dissolved Copper (mg/l)                      | < 0.001   | 0.03               | 1.5         |
| Mercury (mg/l)                               | < 0.00005 | 0.001              | 0.00075     |
| Nickel (mg/l)                                | 0.005     | 0.02               | 0.015       |
| Zinc (mg/l)                                  | 0.01      | 0.1                | -           |

| Table 3.3 | Groundwater Results June 2007 |
|-----------|-------------------------------|
|           | 25 cm                         |

April 2013 (JOC/BS)

| Selenium (mg/l) | 0.002     | -    | -       |
|-----------------|-----------|------|---------|
| Lead (mg/l)     | < 0.001   | 0.01 | 0.01875 |
| Cyanide (mg/l)  | < 0.00005 | 0.1  | 0.0375  |

The tables include, for comparative purposes, the Interim Guideline Values (IGV) published by the EPA and the Groundwater Threshold Values (GTV) set out in the European Communities Environmental Objectives (Groundwater) Regulations (S.I. 9 of 2010). GTVs have only been established for core indicator parameters. With the exception of orthophosphate, all of the parameters were below the relevant IGVs and GTV. A GTV has not been specified for phosphate.

# 3.7 Surface Water

The stream at the southern site boundary is approximately 2 m below the southern edge of the waste. OCM did not observe any drains from the site entering either the stream or its tributary along the western boundary.

Given the assumed direction of groundwater flow from north to south and the fact that the source of the stream is a spring at the south-eastern site boundary, there is the potential for leachate to enter the stream either via contaminated groundwater, or seepage through the stream banks.

The flow in the stream is from east to west. Surface water samples were taken in the stream at two locations (SW-1 and SW-2) on the 15<sup>th</sup> June 2007. The locations are shown on Figure 3.1. SW-1 was at the south eastern site boundary and is upstream of the fill area. SW-2 was at the south western site boundary, downstream of the fill area and the confluence with the tributary drain.

The samples were collected in accordance with OCM sampling protocols, a copy of which is in Appendix 3 and were placed in laboratory prepared containers and stored in a cooler. The samples were sent for analyses to ALcontrol

# 3.7.1 Laboratory Analysis

The samples were analysed for a range of organic and inorganic parameters that included indicators of general water quality and leachate contamination: pH, electrical conductivity, dissolved oxygen, ammonia, hardness, COD, BOD, orthophosphate, nitrate, total suspended solids and chloride. The analytical methodologies were all ISO/CEN approved or equivalent and with the exception of ammoniacal nitrogen the method detection limits were all below the relevant comparative values.

### 3.7.2 Laboratory Results

The laboratory test report is in Appendix 3 and the results are summarised in Table 3.4. The Table includes, for comparative purposes, the environmental quality standards (EQS) set out in the Surface Water Environmental Objectives (Surface Water) Regulations 2009 (SI 272 of 2009).

| Parameter                                                       | SW-1   | SW-2  | EQS            |  |
|-----------------------------------------------------------------|--------|-------|----------------|--|
| рН                                                              | 7.59   | 8.19  | -              |  |
| Conductivity (mS/cm)                                            | 0.847  | 0.711 | -              |  |
| COD                                                             | 46     | 17    | -              |  |
| Dissolved Oxygen (mg/l)                                         | 6.2    | 6.1   | -              |  |
| Ammoniacal Nitrogen as N (mg/l)                                 | < 0.2  | < 0.2 | 0.065 - 0.14   |  |
| Total Hardness (mg/l)                                           | 394    | 374   | -              |  |
| Total Suspended Solids (mg/l)                                   | 60     | <10   | -              |  |
| Biochemical Oxygen Demand (mg/l)                                | 4      | 5     | 1.5-2.6        |  |
| Nitrate as NO <sub>3</sub> (mg/l)                               | 19.2   | 8.9   | -              |  |
| Orthophosphate as PO <sub>4</sub> (mg/l)                        | < 0.03 | 0.06  | 0.035 - 0.075* |  |
| Chloride (mg/l)                                                 | 29     | 17    | -              |  |
| Chloride (mg/l)     29     17     -       *Limit for phosphorus |        |       |                |  |

| ,         |         |       |          |           |
|-----------|---------|-------|----------|-----------|
| Table 3.4 | Surface | Water | Results. | June 2007 |

All of the parameters, with the exception of the BQD, were below the relevant EQS. There was a decrease in the COD, nitrate, chloride and suspended solids levels between the upstream and down stream sites. The water quality at SW-2 was good, with no evidence of leachate contamination. Forinspec

### 3.8 Landfill Gas

Landfill gas monitoring was conducted in all seven monitoring wells on 1st June, 15th June and 28<sup>th</sup> June 2007. The monitoring included the measurement of methane, carbon dioxide, oxygen and atmospheric pressure using a Gas Data LSMx gas analyser. The meter was calibrated before use. The detection limit was 0.1% for methane, carbon dioxide and oxygen.

The monitoring results are presented in Table 3.5. The table includes guideline limits from the Department of the Environment (DOE) publication on the 'Protection of New Buildings and Occupants from Landfill Gas' (1994). The guidelines stipulate that, where carbon dioxide or methane are present in a landfill at 0.5% v/v and 1% v/v respectively, then housing should not be erected within 50 m of the landfill and private gardens should not be allowed within 10 m.

### 3.8.1 Wells in the Waste

Persistent elevated methane (7.9%) and carbon dioxide (10%) were detected in MW-1 in all three monitoring events. Methane was also detected above in MW-2 on one occasion, but was not detected in MW-3. The carbon dioxide levels in both MW-2 and MW-3 persistently exceeded the DOE limit.

### *3.8.2 Wells Outside the Waste*

Methane was not detected in MW-4 to MW-7. Carbon dioxide was detected on all three monitoring occasions. In two instances the levels exceeded the DOE limit. The variation in the carbon dioxide levels may have been due to atmospheric pressure differences over the monitoring period.

Consent of copyright owner required for any other tree.

Table 3.5 Landfill Gas Monitoring Data: June 2007

| Location    | Methane (%)      |                   | Carbon Dioxide (%) |                  | Oxygen2 (%)       |                      | Barometric Pressure (mb) |                   |                   |                  |                   |                   |
|-------------|------------------|-------------------|--------------------|------------------|-------------------|----------------------|--------------------------|-------------------|-------------------|------------------|-------------------|-------------------|
|             | 1st June<br>2007 | 15th June<br>2007 | 28th June<br>2007  | 1st June<br>2007 | 15th June<br>2007 | 28th June<br>2007    | 1st June<br>2007         | 15th June<br>2007 | 28th June<br>2007 | 1st June<br>2007 | 15th June<br>2007 | 28th June<br>2007 |
|             | 2007             | 2007              | 2007               | 2007             | 2007              | 2007                 | 2007                     | 2007              | 2007              | 2007             | 2007              | 2007              |
| <b>MW-1</b> | 2.7              | 7.9               | 7.6                | 4.9              | 8.1               | 10.0                 | 1.4                      | 0.9               | 0.8               | 1012             | 999               | 1001              |
| MW-2        | 0.4              | 0.0               | 1.3                | 6.6              | 4.4               | 9.8                  | 2.4                      | 10.1              | 2.1               | 1012             | 999               | 1001              |
| MW-3        | 0.0              | 0.0               | 0.0                | 2.3              | 6.4               | 6.7                  | 18.3 1150                | 14.0              | 13.2              | 1012             | 999               | 1001              |
| <b>MW-4</b> | *                | 0.0               | 0.0                | *                | 4.2               | 4.5                  | only any                 | 9.5               | 8.0               | *                | 999               | 1001              |
| MW-5        | 0.0              | 0.0               | 0.0                | 0.6              | 2.3               | 4.4 Honorie          | 20.3                     | 8.9               | 7.8               | 1012             | 999               | 1001              |
| <b>MW-6</b> | 0.0              | 0.0               | 0.0                | 0.7              | 3.1 FOT           | aspect of the second | 20.3                     | 8.8               | 9.7               | 1012             | 999               | 1001              |
| MW-7        | 0.0              | 0.0               | 0.0                | 1.0              | 3.6 of cor        | 2.4                  | 20.3                     | 12.3              | 16.1              | 1012             | 999               | 1001              |
| DOE limits  | 0.5              | 0.5               | 0.5                | 1.0              | Const<br>1.0      | 1.0                  | -                        | -                 | -                 | -                | -                 | -                 |

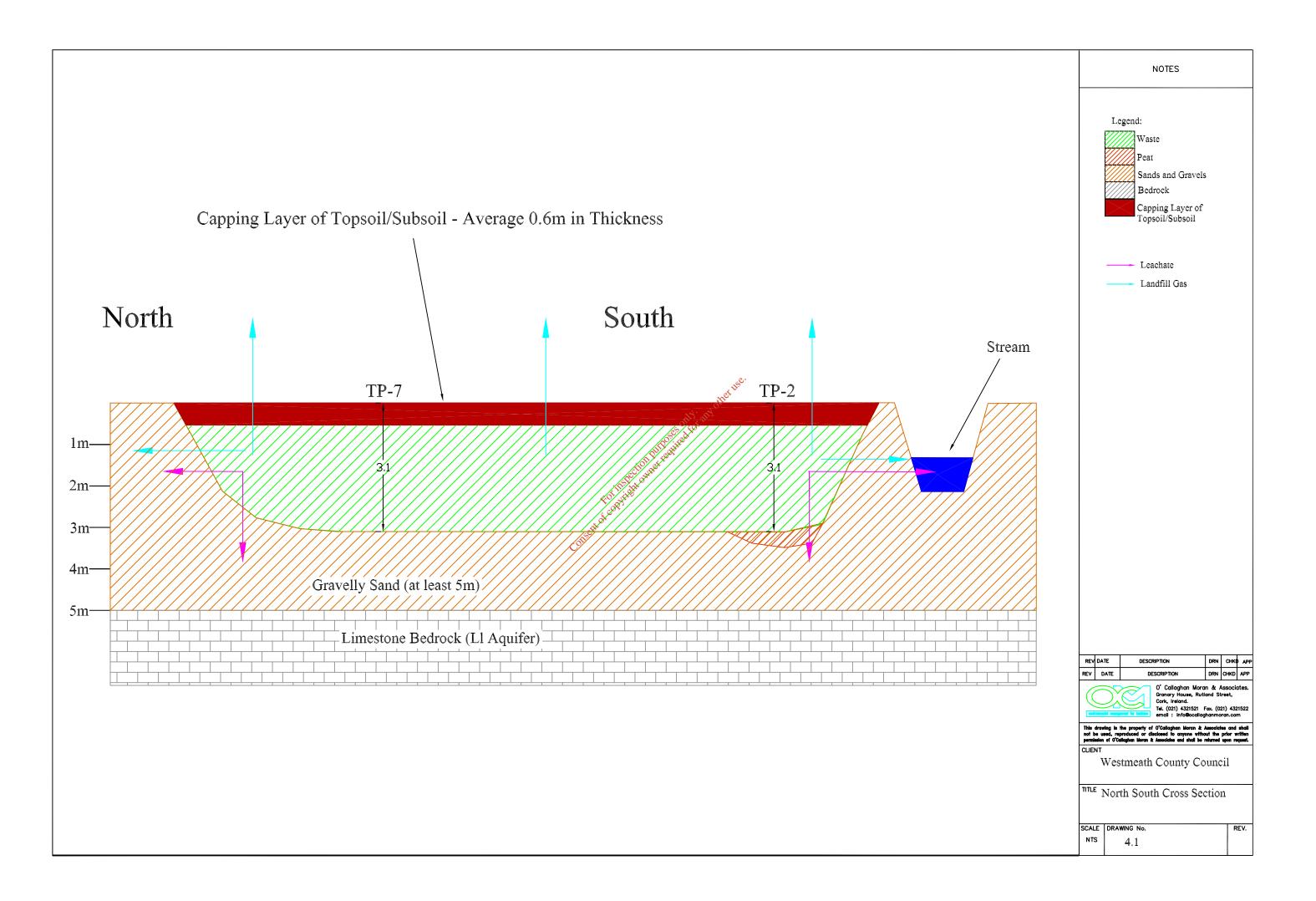
- DOE limit not established

 $\ast$  Measurement not taken due to a gas cap fault

# 4. CONCEPTUAL SITE MODEL & RISK ASSESSMENT

### 4.1 Conceptual Site Model

A conceptual site model (CSM) was developed using the guidance presented in the EPA Code of Practice and based on the findings of the Stage 1 and 2 investigations. The CSM, which is depicted in Figure 4.1, formed the basis for the completion of the risk assessment.


It appears that the original ground comprised peat overlying gravels. At some time peat and possibly part of underlying gravel were excavated from across the most of the waste deposition area. In the northern and central areas, it appears that the waste was placed directly on the gravels, while in the south the waste was placed on the peat. The average thickness of the waste is 3.3m. It is likely that the level of the fill in the south of the site is approximately 1m higher than the original ground level.

The waste has been covered with thin layer of topsoil, which is underlain by a gravely clay, ranging from 0.2 to 1.2m across the site, being thickest in the central area

The gravels underlying the waste are water bearing but are not considered to be a significant aquifer. The depth to the underlying bedrock aquifer, which is Waulsortian Limestone Formation, is not known but the GIS vulnerability classification is (H/L). Based on the precautionary principle, it is assumed that the vulnerability across the entire site is H. The bedrock aquifer is classed as a local important aquifer (L/l)

The source of the stream along the southern site boundary appears to be a spring that rises to the east of the site and flows to the west. A field drain along the western boundary confluences with the stream to the south west of the site. There were no drains within the site that connect to either the boundary stream or drain.

There are occupied residences approximately 80m from the northern edge of the waste area. In 2007, it was proposed to construct new residential dwellings within 50 m of the edge of the waste.



#### 4.2 Risk Assessment

#### Source/Hazards

#### Waste Types

The waste encountered comprised plastic bags, glass bottles, concrete blocks, bricks, cardboard, car parts, fragments of steel, newspapers, food packaging all of which were supported by a sandy clay matrix. There was no evidence of food or putrescible waste. The nature of waste observed is typical of household waste that has been buried for more than 15 years and which has undergone considerable biodegradation.

The testing of representative samples recovered from trial pits TP-2, TP-3, TP-4 and TP-8 established that a number of parameters exceeded the Inert WAC (sulphates and total dissolved solids). These levels are probably associated with the deposition of Construction & Demolition Waste (e.g. gypsum plasterboard). The testing confirmed the field observations that the waste comprises well degraded municipal waste, the bulk of which can be classified as inert.

<u>Waste Area</u> The southern and eastern extent of the waste is defined by the site boundaries. The western edge is approximately 28m from the western site boundary. The northern edge is approximately 65m from the northern site boundary. The investigation proved the thickness of the waste ranged from 2.5 to 4.6m, with an average thickness of 3.3m. It is estimated, based on the proven lateral and vertical extent of the waste, that there is approximately ofcopy 61,000m<sup>3</sup> of waste at the site.

Consent

#### Leachate

Leachate was encountered in two of the trial pits and one of the monitoring wells installed in the waste body. Only small inflows were noted in the two trial pits (TP-1 and TP-2) and small volumes recorded in the monitoring well (MW-3). The trial pits are located in the southern area of the site, where the waste is underlain by peat. It is considered that the peat inhibits the downward percolation of any infiltrating rainwater; while in other areas, where the peat is absent, it can percolate freely to the underlying subsoils.

The analytical results indicate that that the leachate is very low strength with the exception of COD. This is consistent with both the field observations and the analyses of the waste samples.

#### Landfill Gas

The landfill gas monitoring has established that the waste is a source of landfill gas. The gas levels measured indicate that the waste is in the final stages of landfill gas generation, with relatively low methane and carbon dioxide concentrations. This is consistent with the type of waste observed, its age and relatively shallow thickness.

The site investigation did not identify the presence of discrete layers of daily cover material placed over the waste, with the exception of the final cover. It is probable that when the site was operational daily cover was not regularly applied. This would have encouraged the aerobic breakdown of the organic content and, where anaerobic conditions occurred it would have allowed landfill gas to vent freely to atmosphere.

The subsoils placed over the waste following closure comprise a gravely clay that has a relatively low permeability and will inhibit vertical gas movement, particularly in the central area of the site where the cover is >1m. This gives rise to the potential for lateral landfill gas migration from the waste body. Elevated carbon dioxide was detected in the wells outside the waste body indicating the likely lateral movement of landfill gas to the north.

### 4.3 Pathways

#### 4.3.1 Leachate Migration Pathways

#### Groundwater Vulnerability

only any other use. The GSI maps indicate that the aquifer vulnerability of the area occupied by the site ranges from High to Low. The subsoils beneath the waste range from peat in the south to sand and gravel in the central and northern areas 0.4m thickness of peat and 1m unsaturated thickness of sandy gravels was proven by the boreholes installed in the waste. The boreholes to the north of the fill proved a thickness of 5 m of sands and gravels. In the absence of a confirmed depth to bedrock, a High wilnerability has been assumed. Conser

The waste is not water saturated and water/leachate was only encountered in those areas where that waste is underlain by peat. It appears that the placement of the low permeability subsoil cover, which is graded to fall away from the central area of the site, has significantly reduced infiltration of rain water to the waste.

When the site was operational it is probable that incident rainfall infiltrated the waste to generate a leachate, which then percolated down into the underlying unsaturated zone where the peat layer was absent. Here, it would have been subject to attenuation before entering the groundwater.

The sample of the underlying peat in TP-2 has concentrations of sulphate, TDS and TOC that exceed the Inert WAC values. The sulphates and TDS are likely associated with the high levels of sulphate detected in the overlying waste at this location and which most probably leached out before the waste was covered. The elevated TOC is probably associated with the peat and not the waste. The peat itself, given its compressed nature, is likely to inhibit the downward movement of the leachate into the underlying subsoils.

C:\11045\_WestmeathCountyCouncil\01\_Moate\0450101.Doc

The samples from the natural ground in the other trial pits did not identify any impacts on the subsoils, indicating that any contaminants have probably already migrated downwards. It is probable that the majority of the soluble/mobile substances in the waste have already leached out. This is supported by the results of the leach testing of the waste samples, which indicates that the majority of the waste is essentially inert.

#### Groundwater Flow Regime

In the southern areas of the site, where peat is present, there is the potential for lateral downgradient movement of leachate towards the southern site boundary.

#### 4.3.2 Landfill Gas Pathways

The unsaturated sands and gravels beneath the waste in the central and northern areas and in the adjoining unfilled areas of the site are gas permeable and are a potential pathway for the migration of landfill gas.

#### 4.4 Receptors

### 4.4.1

#### Human Presence

Leachate Migration Receptors in other required for any other required for any other required for any other required to any group meeting to the second of any group meeting to the second contribution of the second There is no record of any groundwater wells in the vicinity of the site. However, given the proximity of houses the precautionary principle was applied and, for the purposes of risk scoring, it is assumed that there is a private well within 250m of the waste.

#### Aquifer Category

The bedrock aquifer is classified as locally important (LI).

#### Surface Water Bodies

There is a stream along the southern site boundary and a tributary drain on the western boundary. There is no apparent direct connection (e.g. drains from the waste body) for leachate to enter the surrounding surface water system. Monitoring conducted in the stream did not identify any impacts associated with the landfill.

## 4.5 Landfill Gas Receptors

#### Human Presence

There are occupied residences approximately 80m from the northern edge of the waste area. In 2007, it was the intention to construct new residential dwellings within 50 m of the edge of the waste and this was factored into the risk assessment.

#### 4.6 Risk Assessment

The Code of Practice provides a scoring matrix where points are assigned, based on a sourcepathway-receptor (SPR) model, to assess risk. The points for the individual parameters are derived from tables in the Code of Practice. The scores are normalised to 1 -100.

High risk sites are those with a score greater than or equal to 70 for any one SPR. Moderate risk are sites scoring between 40 -70. Low risk sites, which are considered not to pose a significant risk to the environment or human health, are those with a score less than or equal to 40.

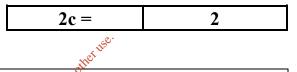
The maximum score for any single SPR is 70, and is associated with the Landfill Gas to onsite and off site receptors and Surface Water SPR. It should be noted that there are no on-site receptors.

| Table 1a LEACHATE: Source/hazard Scoring Matrix |                      |        |      |  |  |
|-------------------------------------------------|----------------------|--------|------|--|--|
| Waste Type                                      | Waste Footprint (ha) |        |      |  |  |
|                                                 | ≤lha                 | >1≤5ha | >5ha |  |  |
| C&D                                             | 0.5                  | 1      | 1.5  |  |  |
| Municipal                                       | 5                    | 7      | 10   |  |  |
| Industrial                                      | 5                    | 7      | 10   |  |  |
| Pre 1977 sites                                  | 1                    | 2      | 3    |  |  |

| 1    |   |
|------|---|
| 1a = | 7 |

e.

| Table 1b LANDFILL GAS: Source/hazard Scoring Matrix |                      |        |      |  |  |
|-----------------------------------------------------|----------------------|--------|------|--|--|
| Waste Type                                          | Waste Footprint (ha) | 1      |      |  |  |
|                                                     | ≤1ha                 | >1≤5ha | >5ha |  |  |
| C&D                                                 | 0.5                  | 0.75   | 1    |  |  |
| Municipal                                           | 5                    | 7      | 10   |  |  |
| Industrial                                          | 3                    | 5      | 7    |  |  |
| Pre 1977 sites                                      | 0.5                  | 0.75   | 1    |  |  |


| -                                          |                 |        |
|--------------------------------------------|-----------------|--------|
|                                            | 1b <sup>≠</sup> | 7      |
|                                            | ose offor any   |        |
| Table 2a LEACHATE MIGRATION: Pa            | thways          |        |
| Groundwater Vulnerability (Vertical Pathwa | ty)             | Points |
| Extreme Vulnerability                      |                 | 3      |
| High Vulnerability                         |                 | 2      |
| Moderate Vulnerability                     |                 | 1      |
| Low Vulnerability                          |                 | 0.5    |
| High – Low Vulnerability                   |                 | 2      |
|                                            |                 |        |

|--|

| Table 2b LEACHATE MIGRATION: Pathways                     |        |  |  |  |
|-----------------------------------------------------------|--------|--|--|--|
| Groundwater Flow Regime (Horizontal Pathway)              | Points |  |  |  |
| Karstified Groundwater Bodies (Rk)                        | 5      |  |  |  |
| Productive Fissured Bedrock Groundwater Bodies (Rf & Lm)  | 3      |  |  |  |
| Gravel Groundwater Bodies (Rg & Lg)                       | 2      |  |  |  |
| Poorly Productive Bedrock Groundwater Bodies (Ll, Pl, Pu) | 1      |  |  |  |

| 2h - | 1 |
|------|---|
| 20 = | 1 |

| Table 2cLEACHATE MIGRATION: Pathways                           |        |  |  |  |
|----------------------------------------------------------------|--------|--|--|--|
| Surface Water Drainage (Surface Water Pathway)                 | Points |  |  |  |
| Is there direct connection between drainage ditches associated | 2      |  |  |  |
| with the waste body and adjacent surface water body? Yes       |        |  |  |  |
| If no direct connection.                                       | 0      |  |  |  |

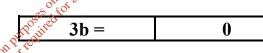


| Table 2d LANDFILL GAS: Pathways (assuming receptor wit         | hin 250m of source) |
|----------------------------------------------------------------|---------------------|
| Landfill Gas Lateral Migration Potential                       | Points              |
| Sand and Gravel, Made ground, urban, karstoric                 | 3                   |
| Bedrock                                                        | 2                   |
| All other Tills (including limestone, sandstone etc – moderate | 1.5                 |
| permeability)                                                  |                     |
| All Namurian or Irish Sea Tills (low permeability)             | 1                   |
| Clay, Alluvium, Peat                                           | 1                   |
| Cons                                                           |                     |

Γ

| 2d = | 3 |
|------|---|
|      | • |

| Table 2e LANDFILL GAS: Pathways (assuming receptor above source) |  |  |  |  |
|------------------------------------------------------------------|--|--|--|--|
| Points                                                           |  |  |  |  |
| 5                                                                |  |  |  |  |
| 3                                                                |  |  |  |  |
| 2                                                                |  |  |  |  |
|                                                                  |  |  |  |  |
| 1                                                                |  |  |  |  |
| 1                                                                |  |  |  |  |
|                                                                  |  |  |  |  |


\*No receptor above waste body

2e = 5

| Table 3a LEACHATE MIGRATION: Receptors                                 |        |  |
|------------------------------------------------------------------------|--------|--|
| Human Presence (presence of a house indicates potential private wells) | Points |  |
| 1                                                                      | 2      |  |
| On or within 50m of the waste body                                     | 3      |  |
| Greater than 50m but less than 250m                                    | 2      |  |
| Greater than 250m but less than 1km                                    | 1      |  |
| Greater than 1km of the waste body                                     | 0      |  |

ſ

| Table 3b LEACHATE MIGRATION: Receptors                       |        |  |
|--------------------------------------------------------------|--------|--|
| Protected Areas (SWDTE & GWDTE)                              | Points |  |
| Within 50m of the waste body                                 | 3      |  |
| Greater than 50m but less than 250m of the waste body        | 2      |  |
| Greater than 250m but less than 1km of the waste body        | 1      |  |
| Greater than 1km of the waste body                           | 0      |  |
| Undesignated sites within 50m of the waste body              | 1      |  |
| Undesignated sites greater than 50m but less than250m of the | 0.5    |  |
| waste body                                                   |        |  |
| Undesignated sites greater than 250m of the waste body       | 0      |  |



| Table 3c LEACHATE MIGRATION: Receptors     |        |  |
|--------------------------------------------|--------|--|
| Aquifer Category (resource potential)      | Points |  |
| Regionally Important Aquifers (Rk, Rf, Rg) | 5      |  |
| Locally Important Aquifers (LLLm, Lg)      | 3      |  |
| Poor Aquifer (Pl, Pu)                      | 1      |  |

|--|

| Table 3d LEACHATE MIGRATION: Receptors                      |        |  |
|-------------------------------------------------------------|--------|--|
| Public Water Supplies (other than private wells)            | Points |  |
| Within 100m of the site boundary                            | 7      |  |
| Greater than 100m but less than 300m or within the in inner | 5      |  |
| SPA for GW supplies                                         |        |  |
| Greater than 300m but less than 1km or within outer SPA for | 3      |  |
| GW supplies                                                 |        |  |
| Greater than 1km (karst aquifer)                            | 3      |  |
| Greater than 1km (no karst)                                 | 0      |  |

| Table 3e LEACHATE MIGRATION: Receptors                  |        |  |
|---------------------------------------------------------|--------|--|
| Surface Water Bodies                                    | Points |  |
| Within 50 of the site boundary                          | 3      |  |
| Greater than 50m but les than 250m of the site boundary | 2      |  |
| Greater than 250m but less than 1km                     | 1      |  |
| Greater than 1km                                        | 0      |  |

| 3e = | 3 |
|------|---|

| Table 3f LANDFILL GAS: Receptors                 |        |  |
|--------------------------------------------------|--------|--|
| Human Presence                                   | Points |  |
| On site or within 50m of site boundary           | 5      |  |
| Greater than 50 but less than 150m of site       | 3      |  |
| Greater than 150m but less than 250m of the site | 1      |  |
| Greater than 250m of the site                    | 0.5    |  |

| 3f = | 5 |
|------|---|
| 51 - | 3 |



| <b>Risk Equation</b>                  | SPR<br>Values | Maximum<br>Score   | Linkages                               | Normalised<br>Scores |
|---------------------------------------|---------------|--------------------|----------------------------------------|----------------------|
| SPR 1 = $1a x (2a + 2b + 2c) x$<br>3e | 105           | 300                | Leachate<br>→Surface<br>Water          | 35.00%               |
| SPR 2 = 1a x (2a + 2b + 2c) x $3b$    | 0             | 300                | Leachate<br>→SWDTE                     | 0.00%                |
| SPR $3 = 1a x (2a + 2b) x 3a$         | 42            | 240                | Leachate<br>→ human<br>presence        | 17.50%               |
| SPR $4 = 1a x (2a + 2b) x 3b$         | 0             | 240                | Leachate<br>→<br>GWDTE                 | 0.00%                |
| SPR $5 = 1a x (2a + 2b) x 3c$         | 63            | 400                | Leachate $\rightarrow$ aquifer         | 15.75%               |
| SPR $6 = 1a x (2a + 2b) x 3d$         | 0             | 560                | Leachate<br>→ surface<br>water         | 0.00%                |
| SPR $7 = 1a x (2a + 2b) x 3e$         | 63            | 240                | Leachate<br>→<br>SWDTE                 | 26.25%               |
| SPR 8 = 1a x 2c x 3e                  | 42            | outhin and the use | Leachate<br>→ surface<br>water         | 70.00%               |
| SPR 9 = 1a x 2c x 3b                  | 0 pupper      | 60                 | Leachate<br>→<br>SWDTE                 | 0.00%                |
| SPR 10 = 1b x 2d x 3f                 | Forth 105     | 150                | Landfill<br>Gas →<br>human<br>presence | 70.00%               |
| SPR 11 = 1b x 2e x 3f $c^{66}$        | 175           | 250                | Landfill<br>Gas →<br>human<br>presence | 70.00%               |

| <b>Risk Classification</b> | Score Range                                                 |
|----------------------------|-------------------------------------------------------------|
| High Risk (Class A)        | Greater than or equal to 70% for any individual SPR linkage |
| Moderate Risk (Class B)    | Between 40% and 70% for any individual SPR linkage          |
| Low Risk (Class C)         | Less than or equal to 40% for any individual SPR linkage    |

| <b>Overall Score</b> | 70%                 |
|----------------------|---------------------|
| Overall Risk         | High Risk (Class A) |

| Groundwater &<br>Surface Water                                         | Groundwater only         | Surface water only    | Lateral & Vertical  |                  |
|------------------------------------------------------------------------|--------------------------|-----------------------|---------------------|------------------|
| Ca                                                                     | alculator                | SPR Values            | Maximum Score       | Normalised Score |
| SPR1                                                                   | 1a x (2a + 2b + 2c) x 3e | 105                   | 300                 | 35.00%           |
| SPR2                                                                   | 1a x (2a + 2b + 2c) x 3b | 0                     | 300                 | 0.00%            |
| SPR3                                                                   | 1a x (2a + 2b) x 3a      | 42                    | 240                 | 17.50%           |
| SPR4                                                                   | 1a x (2a + 2b) x 3b      | 0                     | 240                 | 0.00%            |
| SPR5                                                                   | 1a x (2a + 2b) x 3c      | 63                    | ي <sup>ي.</sup> 400 | 15.75%           |
| SPR6                                                                   | 1a x (2a + 2b) x 3d      | 0                     | ther 560            | 0.00%            |
| SPR7                                                                   | 1a x (2a + 2b) x 3e      | 63                    | × 240               | 26.25%           |
| SPR8                                                                   | 1a x 2c x 3e             | 42 42                 | 60                  | 70.00%           |
| SPR9                                                                   | 1a x 2c x 3b             | 0 automited           | 60                  | 0.00%            |
| SPR10*                                                                 | 1b x 2d x 3f             | 105 ton Erect         | 150                 | 70.00%           |
| SPR11                                                                  | 1b x 2e x 3f             | 175° o <sup>411</sup> | 250                 | 70.00%           |
| Overa                                                                  | ll Risk Score            | ~200 <sup>11</sup>    |                     | 70.00%           |
| *SPR 10 is not<br>pplicable as there is no<br>eceptor above the source |                          | Consent of conserver  |                     | А                |

Note: The table presents the Tier 2 risk rating for this site. SPR1-9 relate to Leachate Risk. SPR10 & 11 relate to Landfill Gas. The migration pathways are colour coded as follows:

| Risk Classification     | Range of Risk Scores                                      |
|-------------------------|-----------------------------------------------------------|
| Highest Risk (Class A)  | Greater than or equal to70 for any individual SPR linkage |
| Moderate Risk (Class B) | 40-70 for any individual SPR linkage                      |
| Lowest Risk (Class C)   | Less than 40 for any individual SPR linkage               |

#### 5. ADDITIONAL INVESTIGATIONS

The additional investigations completed by the Council in 2011 included the collection of groundwater, surface water and leachate samples and the monitoring of landfill gas within the on site landfill gas wells.

### 5.1 Leachate Sampling

Leachate samples were collected from MW-1 and MW-2 on the 1<sup>st</sup> December 2011 using a disposable polyethylene baler. There was insufficient liquid in MW-3, which was the well sampled in the 2007 investigation, to collect a sample. During sampling there was a noticeable drop in the leachate level in the wells. The samples were placed in laboratory prepared containers, stored in a cooler and consigned to the ALcontrol laboratory.

5.1.1 Laboratory Analysis The samples was analysed for leachate indicators and a range of organic referred to in the EU Directives on Dangerous Substances (76/464/EEC) and Groundwater (80/68/EC) as amended. The analyses included total suspended solids, alkalinity, BOD, ammoniacal nitrogen, COD, electrical conductivity, pH, chloride and total hardness. The analytical methodologies were all ISO/CEN approved or equivalent and the method detection limits were all below the relevant thresholds.

#### 5.1.2 Laboratory Results

The full laboratory test report is in Appendix 3 and the results are summarised in Tables 5.1. Included in the Table, for comparative purposes, are the ranges (weak to strong) for the individual substances typically found in leachate, which are derived from the EPA's Landfill Design Manual.

| Parameter                                    | MW-1  | MW-2  | EPA Landfill Design<br>Manual Range |  |
|----------------------------------------------|-------|-------|-------------------------------------|--|
| pH                                           | 7.79  | 7.15  | 6.8 - 8.2                           |  |
| Conductivity (mS/cm)                         | 2.92  | 0.902 | 5.990 - 19.3                        |  |
| COD                                          | 169   | 49.7  | 622 - 8,000                         |  |
| Total Suspended Solids (mg/l)                | 54    | 422   | -                                   |  |
| Total Alkalinity as CaCO <sub>3</sub> (mg/l) | 1,470 | 635   | 3,000 - 9,130                       |  |
| Ammoniacal Nitrogen as N (mg/l)              | 84    | 3.03  | 283 - 2,040                         |  |
| Biological Oxygen Demand (mg/l)              | <4    | <2    | 110 - 1,900                         |  |
| Hardness (mg/l)                              | 932   | 546   | -                                   |  |
| Chloride (mg/l)                              | 233   | 10.2  | 570 - 4,710                         |  |

#### Table 5.1 Leachate Results December 2011

The results indicate a low strength leachate, with all parameters either at the lower end or less than the EPA range. The COD was significantly lower than that recorded in 2007.

### 5.2 Groundwater Sampling

A groundwater sample was collected from MW-7, on the 1<sup>st</sup> December 2011 using a disposable polyethylene baler. The sample was placed in laboratory prepared containers, stored in a cooler and consigned to the ALcontroblaboratory. For inspection putter

#### 5.2.1 Laboratory Analysis

The sample was analysed for total suspended solids, alkalinity, BOD, ammoniacal nitrogen COD, electrical conductivity, pr, chloride and total hardness. The analytical methodologies were all ISO/CEN approved or equivalent and with the exception of ammonium the method detection limits were all below the relevant thresholds.

#### 5.2.2 Laboratory Results

The full laboratory test report is in Appendix 3 and the results are summarised in Table 5.2. The tables include for comparative purposes the relevant IGV and GTVs.

| Parameter                                    | MW-7  | IGV values         | GTV         |
|----------------------------------------------|-------|--------------------|-------------|
| pH                                           | 7.48  | <6.5 and <9.5      | -           |
| Conductivity (mS/cm)                         | 0.715 | 1                  | 800-1,875   |
| COD                                          | 14.7  | -                  | -           |
| Total Hardness (mg/l)                        | 402   | 200                | -           |
| Total Alkalinity as CaCO <sub>3</sub> (mg/l) | 375   | No abnormal change | -           |
| Ammoniacal Nitrogen as N (mg/l)              | < 0.2 | 0.15               | 0.065-0.175 |

#### Table 5.1 Groundwater Results December 2011

| BOD (mg/l)                    | <2   | -  | -        |
|-------------------------------|------|----|----------|
| Total Suspended Solids (mg/l) | 72.5 | -  | -        |
| Chloride (mg/l)               | 28.5 | 30 | 24-187.5 |
| Fluoride (mg/l)               |      | 1  | -        |

With the exception of hardness, all of the parameters were below the relevant IGV and GTV and the water is generally of good quality. The hardness is likely to be naturally occurring.

### 5.3 Surface Water

Surface water samples were taken in the stream at SW-1 and SW-2 on the 1<sup>st</sup> December 2011. SW-1. The samples were collected and placed in laboratory prepared containers and stored in a cooler and sent to the ALcontrol Laboratory.

#### 5.3.1 Laboratory Analysis

The samples were analysed for total suspended solids, alkalinity, BOD, ammoniacal nitrogen COD, electrical conductivity, pH, chloride and total hardness. The analytical methodologies were all ISO/CEN approved or equivalent and with the exception of ammonium the method detection limits were all below the relevant thresholds. For inspection net

#### 5.3.2 Laboratory Results

The laboratory test report is in Appendix 3 and the results are summarised in Table 5.3. The Table includes, for comparative purposes, the relevant EQS

| <b>Table 5.3</b> Surface Water Results Decem | 100 nber 2011 |
|----------------------------------------------|---------------|
|----------------------------------------------|---------------|

| Parameter                        | SW-1  | SW-2  | EQS          |
|----------------------------------|-------|-------|--------------|
| pH                               | 7.8   | 8.14  | -            |
| Conductivity (mS/cm)             | 0.712 | 0.793 | -            |
| COD                              | 10.2  | 7.71  | -            |
| Alkalinity (mg/l)                | 365   | 405   | -            |
| Ammoniacal Nitrogen as N (mg/l)  | < 0.2 | < 0.2 | 0.065 - 0.14 |
| Total Hardness (mg/l)            | 409   | 442   | -            |
| Total Suspended Solids (mg/l)    | 2     | <2    | -            |
| Biochemical Oxygen Demand (mg/l) | <2    | <2    | 1.5-2.6      |
| Chloride (mg/l)                  | 30.3  | 33    | -            |

\*Limit for phosphorus

There was a slight increase in pH, conductivity, alkalinity, hardness and chloride between the upstream and downstream locations. The water quality is good and there is no evidence of leachate contamination.

### 5.4 Landfill Gas

Landfill gas monitoring was conducted in all seven monitoring wells on the 15<sup>th</sup> November, 1<sup>st</sup> December and the 16<sup>th</sup> December 2011. Monitoring was undertaken in six of the seven wells in 2018. MW-4 was inaccessible in 2018. The programme included the measurement of methane, carbon dioxide, oxygen and atmospheric pressure using a Gas Data LSMx gas analyser. The meter was calibrated before use. The detection limit is 0.1% for methane, carbon dioxide and oxygen. The monitoring results are presented in Table 5.4 and 5.5. The tables cludes the DOE guideline limits

#### 5.4.1 Wells in the Waste

In 2011 elevated methane levels were detected in MW-1 in all three events, on two occasions in MW-2 and once at Mw-3. Elevated carbon dioxide levels were recorded in MW-1 in all three events and on two occasions in MW-2 and MW-3

Carbon dioxide levels exceeded the DOE limit in all of the wells.

In 2018 the methane was only detected in MW-16 and 2 and the levels in these wells are gradually declining.

Carbon dioxide levels have also declined significantly but remains above the DOE limit in all of the wells.

# 5.4.2 Wells Outside the Waste

In 2011 Methane was recorded at 0.1% in MW-4, and MW-7 on one occasion; however this was at the instrument detection level. Elevated carbon dioxide levels were recorded in MW-6 and MW-7 on all three occasions and once in MW-5.

In 2018 No methane was detected in any of the wells outside the waste body. Carbon dioxide levels continue to decline compared to 2011 but remain above the DOE limits in these wells.

|            | Methane (%)              |                         |                          | Carbon Dioxide (%)       |                         |                          | Oxygen (%)               |                         |                          |
|------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|
|            | 15th<br>November<br>2011 | 1st<br>December<br>2011 | 16th<br>December<br>2011 | 15th<br>November<br>2011 | 1st<br>December<br>2011 | 16th<br>December<br>2011 | 15th<br>November<br>2011 | 1st<br>December<br>2011 | 16th<br>December<br>2011 |
| MW-1       | 10.6                     | 10.7                    | 3.3                      | 14.8                     | 14.2                    | 3.5                      | 0.0                      | 0.0                     | 15.4                     |
| MW-2       | 8.3                      | 6.6                     | 0.3                      | 12.6                     | 9.2                     | st 15 <sup>2</sup> 0.4   | 0.6                      | 6.4                     | 19.5                     |
| MW-3       | 0                        | 0                       | 0.1                      | 3.8                      | 218 201                 | 0.1                      | 18.2                     | 18.0                    | 19.7                     |
| MW-4       | 0                        | 0                       | 0.1                      | 0.0 pu                   | Poses ato<br>required.1 | 0.1                      | 20.8                     | 20.1                    | 19.4                     |
| MW-5       | 0                        | 0                       | 0                        | 8.04 OM                  | 0.4                     | 0.6                      | 9.6                      | 19.6                    | 17.9                     |
| MW-6       | 0                        | 0                       |                          | 51 <sup>c0</sup> 95.2    | 8.1                     | 2.3                      | 12.2                     | 7.3                     | 14.3                     |
| MW-7       | 0.1                      | 0                       | 0Conset                  | 5.3                      | 2.8                     | 3.2                      | 12.1                     | 16.9                    | 14.1                     |
| DOE limits | 0.5                      | 0.5                     | 0.5                      | 1.0                      | 1.0                     | 1.0                      | -                        | -                       | -                        |

- DOE limit not established

\* Measurement not taken due to a gas cap fault

|            | Methane (%)              |                         |                          | Carbon Dioxide (%)       |                         |                          | Oxygen (%)               |                         |                          |
|------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|
|            | 15th<br>November<br>2011 | 1st<br>December<br>2011 | 16th<br>December<br>2011 | 15th<br>November<br>2011 | 1st<br>December<br>2011 | 16th<br>December<br>2011 | 15th<br>November<br>2011 | 1st<br>December<br>2011 | 16th<br>December<br>2011 |
| MW-1       | 10.6                     | 10.7                    | 3.3                      | 14.8                     | 14.2                    | 3.5                      | 0.0                      | 0.0                     | 15.4                     |
| MW-2       | 8.3                      | 6.6                     | 0.3                      | 12.6                     | 9.2 other               | 0.4                      | 0.6                      | 6.4                     | 19.5                     |
| MW-3       | 0                        | 0                       | 0.1                      | 3.8                      | PO5052.8                | 0.1                      | 18.2                     | 18.0                    | 19.7                     |
| MW-4       | 0                        | 0                       | 0.1                      | 0.0tionp                 | 0.1                     | 0.1                      | 20.8                     | 20.1                    | 19.4                     |
| MW-5       | 0                        | 0                       | 0                        | For B.O                  | 0.4                     | 0.6                      | 9.6                      | 19.6                    | 17.9                     |
| MW-6       | 0                        | 0                       | 0 consent                | 5.2                      | 8.1                     | 2.3                      | 12.2                     | 7.3                     | 14.3                     |
| MW-7       | 0.1                      | 0                       | 0                        | 5.3                      | 2.8                     | 3.2                      | 12.1                     | 16.9                    | 14.1                     |
| DOE limits | 0.5                      | 0.5                     | 0.5                      | 1.0                      | 1.0                     | 1.0                      | -                        | -                       | -                        |

 Table 5.4
 Landfill Gas Monitoring Data: November - December 2011

- DOE limit not established

\* Measurement not taken due to a gas cap fault

# Table 5.5 Landfill Gas Monitoring Results 2018

| Methane        |     |     |     | Carbon Dioxide |     |     |     | Oxygen |       |       |     |       |     |     |      |      |      |     |      |      |      |
|----------------|-----|-----|-----|----------------|-----|-----|-----|--------|-------|-------|-----|-------|-----|-----|------|------|------|-----|------|------|------|
|                | MW- | MW- | MW- | MW-            | MW- | MW- | MW- | MW-    | MW-   | MW-   | MW- | MW-   | MW- | MW- | MW-  | MW-  | MW-  | MW- | MW-  | MW-  | MW-  |
| Date           | 1   | 2   | 3   | 4              | 5   | 6   | 7   | 1      | 2     | 3     | 4   | 5     | 6   | 7   | 1    | 2    | 3    | 4   | 5    | 6    | 7    |
| 20/02/2018     | 0   | 1.2 | 0   | NA             | 0   | 0   | 0   | 0      | 4.5   | 0.2   | NA  | 2.9   | 2.8 | 0   | 21.9 | 5    | 21.7 | NA  | 15.4 | 14.4 | 21   |
| 05/04/2018     | 3.5 | 1.4 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 10.3   | 7.3   | 7.3   | NA  | 3.8   | 3.4 | 2.8 | 0.1  | 1.1  | 11.1 | NA  | 13.9 | 14.9 | 14.3 |
| 12/04/2018     | 3.8 | 1.7 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 9.4    | 5.8   | 0.1   | NA  | 3.9   | 3.4 | 3.0 | 1.2  | 4.0  | 20.8 | NA  | 12.8 | 14.4 | 13.6 |
| 16/04/2018     | 3.8 | 2.2 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 10.5   | 7.5   | 7.4   | NA  | 4.2   | 3.6 | 2.7 | 0.1  | 0.4  | 10.1 | NA  | 12.3 | 14.0 | 15.8 |
| 26/04/2018     | 2.6 | 2.2 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 7.6    | 6.5   | 0.9   | NA  | 4.6   | 3.6 | 3.0 | 6.1  | 2.6  | 19.3 | NA  | 12.5 | 14.0 | 15.5 |
| 01/05/2018     | 3.5 | 2.4 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 0.0    | 7.7   | 4.8   | NA  | 4.9   | 3.0 | 3.1 | 1.5  | 0.5  | 13.8 | NA  | 12.3 | 14.9 | 15.1 |
| 10/05/2018     | 3.1 | 2.3 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 8.0    | 7.3   | 7.8   | NA  | 0.0   | 3.3 | 3.1 | 4.8  | 0.5  | 6.7  | NA  | 20.7 | 14.4 | 15.0 |
| 17/05/2018     | 3.1 | 1.3 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 7.6    | 4.7   | 2.0   | NA  | 4,615 | 3.5 | 3.3 | 5.0  | 7.2  | 16.8 | NA  | 13.0 | 14.1 | 14.6 |
| 24/05/2018     | 3.2 | 0.0 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 7.4    | 1.1   | 0.0   | NA  | 4.5   | 3.6 | 3.3 | 5.6  | 16.9 | 20.3 | NA  | 12.9 | 13.3 | 14.7 |
| 30/05/2018     | 3.2 | 0.6 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 7.5    | 2.5   | 4.9   | NAN | 4.6   | 3.7 | 3.7 | 5.3  | 13.6 | 12.9 | NA  | 11.8 | 11.5 | 13.2 |
| 06/06/2018     | 2.8 | 1.1 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 7.3    | 4.6   | 0.0   | NA  | 4.3   | 3.9 | 3.6 | 5.5  | 8.0  | 19.7 | NA  | 11.3 | 10.0 | 13.2 |
| 14/06/2018     | 1.9 | 0.0 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 7.5    | 0.0   | 830   | NA  | 2.7   | 4.5 | 3.6 | 7.1  | 20.7 | 11.1 | NA  | 15.8 | 11.8 | 15.5 |
| 21/06/2018     | 1.5 | 0.8 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 7.6    | 5.7   | 0.0.3 | NA  | 4.6   | 3.9 | 3.5 | 5.7  | 6.0  | 20.0 | NA  | 14.1 | 14.6 | 14.7 |
| 28/06/2018     | 0.0 | 0.0 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 2.7    | 0.0   | 0 40  | NA  | 4.3   | 4.7 | 3.9 | 13.9 | 19.9 | 19.9 | NA  | 14.3 | 11.9 | 12.6 |
| 05/07/2018     | 0   | 0   | 0   | NA             | 0   | 0   | 0   | 2.4    | 00.6° | 1.6   | NA  | 5.6   | 3.2 | 4.2 | 15.9 | 18.9 | 19.3 | NA  | 9.4  | 14.8 | 12.2 |
| 12/07/2018     | 0.4 | 0.0 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 5.7    | 0.5   | 5.8   | NA  | 6.1   | 3.2 | 0.4 | 8.7  | 19.0 | 16.1 | NA  | 8.7  | 15.3 | 20.1 |
| 19/07/2018     | 0.0 | 0.0 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 3.5    | 5.8   | 5.9   | NA  | 5.5   | 3.3 | 0.1 | 12.0 | 9.0  | 14.3 | NA  | 9.7  | 15.3 | 20.0 |
| 26/07/2018     | 0.0 | 0.0 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 4.8    | 0.1   | 7.1   | NA  | 2.9   | 5.4 | 3.6 | 8.8  | 20.3 | 11.1 | NA  | 15.5 | 11.7 | 15.9 |
| 02/08/2018     | 0.2 | 0.1 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 3.5    | 2.2   | 3.8   | NA  | 3.2   | 4.1 | 4.1 | 13.1 | 15.5 | 13.3 | NA  | 10.3 | 12.1 | 12.8 |
| 09/08/2018     | 0.4 | 0.1 | 0.0 | NA             | 0.0 | 0.0 | 0.0 | 4.8    | 4.9   | 2.5   | NA  | 3.7   | 4.8 | 4.8 | 9.1  | 10.3 | 16.0 | NA  | 12.4 | 11.3 | 10.3 |
| 14/08/2018     | 0.0 | 0.1 | 0.1 | NA             | 0.0 | 0.0 | 0.0 | 2.5    | 3.2   | 1.8   | NA  | 4.3   | 5.5 | 5.6 | 14.8 | 12.0 | 15.8 | NA  | 13.0 | 10.5 | 9.5  |
| DOE Limit<br>% | 0.5 | 0.5 | 0.5 | 0.5            | 0.5 | 0.5 | 0.5 | 1.0    | 1.0   | 1.0   | 1.0 | 1.0   | 1.0 | 1.0 | -    | -    | -    | -   | -    | -    | -    |

Denotes - DOE limit not established

NA denotes Not Accessible

Consent of copyright owner contraction any other use.

# 6. TIER 3 ASSESSMENT

#### 6.1 Site Layout

There has been a change in the landuse since the completion of the Tier 2 Assessment in 2007, with the provision of a playground and civic amenity area in 2009 and the use of a portion of the site to store road planings.

The construction of the playground involved the placement of 600mm of Clause 804 aggregate on a geotextile layer which was then covered with approximately  $324m^2$  of soft asphalt. The hard core extends beyond the asphalted area. The playground is surrounded by a 1.2m high railing. (Photograph No 5). Drainage from the play area is directed to the stream along the southern boundary.



Photograph No 5 Looking South: Playground in eastern part of the site

The area to the south of the playground is used to temporarily store road planings (Photograph No 6).



Photograph No 6 Looking North Road Planings

The civic amenity bring centre is to the north of the playground and contains bottle, aluminium cans and clothes banks (Photograph No.7). The proposed location of the Moate Football Club Dressing Rooms is immediately to the south west of the bring centre, with the pitch further to the south.



Photograph No 7 Looking South West: Bring Centre & Southern Part of the Site

The remainder of the site, is covered in grass and used for animal grazing (Photograph No 8).



**Photograph No 8** Livestock in the Northern Unfilled Area.

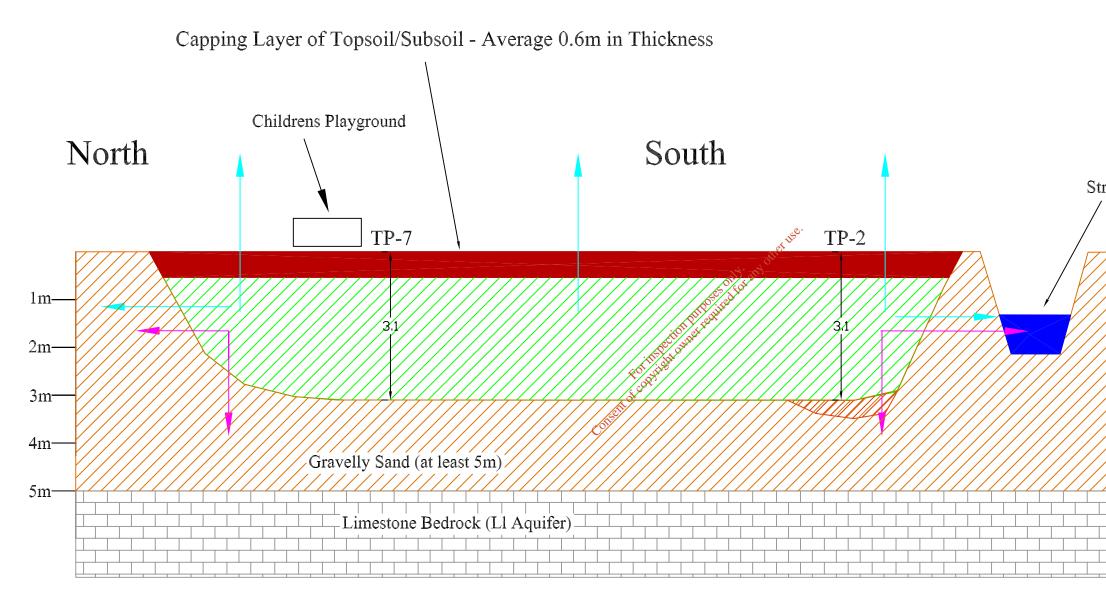
of copyright

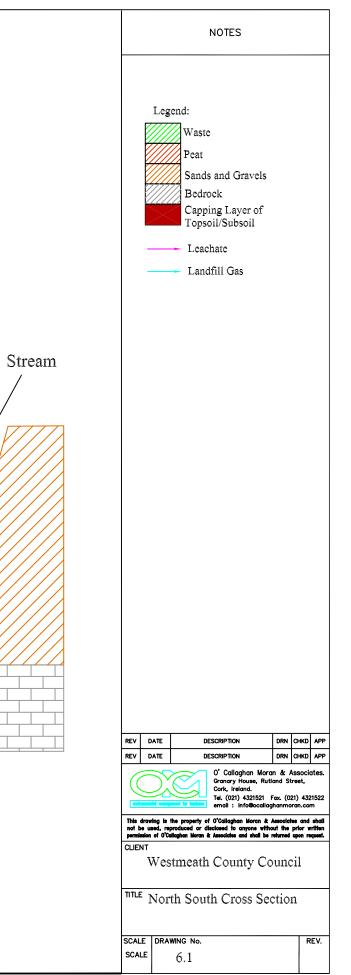
### 6.2 Revised CSM

The data obtained from the additional investigations and the changes to the landuse at the site were used to refine the Tier 2 CSM.

It appears that the original ground comprised peat overlying gravels. At some time peat and possibly part of the underlying gravels were excavated from across the most of the waste deposition area. In the northern and central areas, it appears that the waste was placed directly on the gravels, while in the south the waste was placed on the peat. The average thickness of the waste is 3.3m. It is likely that the level of the fill in the south of the site is approximately 1m higher than the original ground level.

The waste has been covered with thin layer of topsoil, which is underlain by a gravely clay, ranging from 0.2 to 1.2m across the site, being thickest in the central area


The gravels underlying the waste are water bearing but do not constitute a significant aquifer. Since 2007, the aquifer vulnerability rating has been revised from H/L to M by the GSI. The bedrock aquifer (Waulsortian Limestone Formation) is classed as a local important aquifer (Ll).


The source of the stream along the southern site boundary appears to be a spring that rises to the east of the site and flows to the west. A field drain along the western boundary confluences with the stream to the south west of the site. Surface water run off from the play ground is piped to the stream along the southern site boundary. It is understood that the drainage pipes are not laid in the waste. However, although there is no evidence of any direct drainage link between the waste deposition area and the stream along the southern site boundary, it is prudent to assume that this is the case.

There are occupied residences approximately 80m from the northern edge of the waste area. In 2007, it had been proposed to construct new residential dwellings within 50 m of the edge of the waste, but this development has not occurred. There is a children's playground and civic amenity area in the eastern part of the waste deposition area. Although there are no enclosed areas in either the playground or the civic amenity area, these are considered to be on-site receptors for landfill gas.

The planning application by Moate Football Club included the construction of a Dressing Room in an area immediately adjoining the north eastern edge of the fill area and the development of a pitch and warm up area on the southern and central parts of the waste deposition area. The planning permission for the site expired in 2017 and the site remains undeveloped.

The revised CSM is depicted in Figure of the VI does not take into consideration the proposed soccer pitch and Dressing Rooms as the planning application has expired. However the Council remains open to proposals for reuse of the site for Sport or recreational purposes and as such this type of use is included in the revised risk assessment.





# 6.3 Revised Risk Assessment

The revised risk scores are presented below

| Table 1a LEACHATE: Source/hazard Scoring Matrix |                      |        |      |  |  |  |
|-------------------------------------------------|----------------------|--------|------|--|--|--|
| Waste Type                                      | Waste Footprint (ha) |        |      |  |  |  |
|                                                 | ≤lha                 | >1≤5ha | >5ha |  |  |  |
| C&D                                             | 0.5                  | 1      | 1.5  |  |  |  |
| Municipal                                       | 5                    | 7      | 10   |  |  |  |
| Industrial                                      | 5                    | 7      | 10   |  |  |  |
| Pre 1977 sites                                  | 1                    | 2      | 3    |  |  |  |

| 1a = | 7 |
|------|---|
|      |   |

| Table 1b LANDFILL GAS: Source/hazard Scoring Matrix |                      |             |      |  |  |  |  |
|-----------------------------------------------------|----------------------|-------------|------|--|--|--|--|
| Waste Type                                          | Waste Footprint (ha) |             |      |  |  |  |  |
|                                                     | ≤lha                 | >1≤5ha      | >5ha |  |  |  |  |
| C&D                                                 | 0.5                  | 0.75        | 1    |  |  |  |  |
| Municipal                                           | 5                    | 7           | 10   |  |  |  |  |
| Industrial                                          | 3                    | 5           | 7    |  |  |  |  |
| Pre 1977 sites                                      | 0.5                  | 0.75 net 12 | 1    |  |  |  |  |

ð

so 1b=

| ALL CALL                                     |        |  |  |  |  |
|----------------------------------------------|--------|--|--|--|--|
| Table 2a LEACHATE MIGRATION: Pathways        |        |  |  |  |  |
| Groundwater Vulnerability (Vertical Pathway) | Points |  |  |  |  |
| Extreme Vulnerability                        | 3      |  |  |  |  |
| High Vulnerability                           | 2      |  |  |  |  |
| Moderate Vulnerability                       | 1      |  |  |  |  |
| Low Vulnerability                            | 0.5    |  |  |  |  |
| High – Low Vulnerability                     | 2      |  |  |  |  |

|  | 2a= | 1 |
|--|-----|---|
|--|-----|---|

7

| Table 2b LEACHATE MIGRATION: Pathways                     |        |
|-----------------------------------------------------------|--------|
| Groundwater Flow Regime (Horizontal Pathway)              | Points |
| Karstified Groundwater Bodies (Rk)                        | 5      |
| Productive Fissured Bedrock Groundwater Bodies (Rf & Lm)  | 3      |
| Gravel Groundwater Bodies (Rg & Lg)                       | 2      |
| Poorly Productive Bedrock Groundwater Bodies (Ll, Pl, Pu) | 1      |

| 2b = | 1 |
|------|---|
|      |   |

| Table 2cLEACHATE MIGRATION: Pathways                           |        |
|----------------------------------------------------------------|--------|
| Surface Water Drainage (Surface Water Pathway)                 | Points |
| Is there direct connection between drainage ditches associated | 2      |
| with the waste body and adjacent surface water body? Yes       |        |
| If no direct connection.                                       | 0      |

August 2018 (SM)

| 2c = | 2 |
|------|---|
|      | — |

5

| Table 2d LANDFILL GAS: Pathways (assuming receptor within 250m of source) |                    |        |  |  |  |  |
|---------------------------------------------------------------------------|--------------------|--------|--|--|--|--|
| Landfill Gas Lateral Migration Potential                                  |                    | Points |  |  |  |  |
| Sand and Gravel, Made ground, urban, karst                                |                    | 3      |  |  |  |  |
| Bedrock                                                                   |                    | 2      |  |  |  |  |
| All other Tills (including limestone, sandsto                             | one etc – moderate | 1.5    |  |  |  |  |
| permeability)                                                             |                    |        |  |  |  |  |
| All Namurian or Irish Sea Tills (low permeab                              | oility)            | 1      |  |  |  |  |
| Clay, Alluvium, Peat                                                      | 1                  |        |  |  |  |  |
| *No receptor within 250m                                                  |                    |        |  |  |  |  |
|                                                                           | 2d =               | 3      |  |  |  |  |

| Table 2e LANDFILL GAS: Pathways (assuming receptor above source) |        |  |  |  |  |  |
|------------------------------------------------------------------|--------|--|--|--|--|--|
| Landfill Gas Lateral Migration Potential                         | Points |  |  |  |  |  |
| Sand and Gravel, Made ground, urban, karst                       | 5      |  |  |  |  |  |
| Bedrock                                                          | 3      |  |  |  |  |  |
| All other Tills (including limestone, sandstone etc – moderate   | 2      |  |  |  |  |  |
| permeability)                                                    |        |  |  |  |  |  |
| All Namurian or Irish Sea Tills (low permeability)               | 1      |  |  |  |  |  |
| Clay, Alluvium, Peat                                             | 1      |  |  |  |  |  |

| Table 3a LEACHATE MIGRATION: Receptors                          |        |  |  |
|-----------------------------------------------------------------|--------|--|--|
| Human Presence (presence of a house indicates potential private | Points |  |  |
| wells)                                                          |        |  |  |
| On or within 50m of the waster body                             | 3      |  |  |
| Greater than 50m but less than 250m                             | 2      |  |  |
| Greater than 250m but less than 1km                             | 1      |  |  |
| Greater than 1km of the waste body                              | 0      |  |  |

2e =

| 3a = | 2 |
|------|---|
|      |   |

| Table 3b LEACHATE MIGRATION: Receptors                       |        |  |
|--------------------------------------------------------------|--------|--|
| Protected Areas (SWDTE & GWDTE)                              | Points |  |
| Within 50m of the waste body                                 | 3      |  |
| Greater than 50m but less than250m of the waste body         | 2      |  |
| Greater than 250m but less than 1km of the waste body        | 1      |  |
| Greater than 1km of the waste body                           | 0      |  |
| Undesignated sites within 50m of the waste body              | 1      |  |
| Undesignated sites greater than 50m but less than250m of the | 0.5    |  |
| waste body                                                   |        |  |
| Undesignated sites greater than 250m of the waste body       | 0      |  |

|--|

| Table 3c LEACHATE MIGRATION: Receptors     |        |  |
|--------------------------------------------|--------|--|
| Aquifer Category (resource potential)      | Points |  |
| Regionally Important Aquifers (Rk, Rf, Rg) | 5      |  |
| Locally Important Aquifers (Ll, Lm, Lg)    | 3      |  |
| Poor Aquifer (Pl, Pu)                      | 1      |  |

| 2    | • |
|------|---|
| 3c = | 3 |

| Table 3d LEACHATE MIGRATION: Receptors                      |        |  |  |
|-------------------------------------------------------------|--------|--|--|
| Public Water Supplies (other than private wells)            | Points |  |  |
| Within 100m of the site boundary                            | 7      |  |  |
| Greater than 100m but less than 300m or within the in inner | 5      |  |  |
| SPA for GW supplies                                         |        |  |  |
| Greater than 300m but less than 1km or within outer SPA for | 3      |  |  |
| GW supplies                                                 |        |  |  |
| Greater than 1km (karst aquifer)                            | 3      |  |  |
| Greater than 1km (no karst)                                 | 0      |  |  |
|                                                             |        |  |  |

| Table 3e LEACHATE MIGRATION: Receptors                  |        |  |  |
|---------------------------------------------------------|--------|--|--|
| Surface Water Bodies                                    | Points |  |  |
| Within 50 of the site boundary                          | 3      |  |  |
| Greater than 50m but les than 250m of the site boundary | 2      |  |  |
| Greater than 250m but less than 1km                     | 1      |  |  |
| Greater than 1km                                        | 0      |  |  |

 $\sqrt[6]{3}d =$ 

|--|

0

| Table 3f LANDFILL GAS: Receptors                 |        |  |
|--------------------------------------------------|--------|--|
| Human Presence                                   | Points |  |
| On site or within 50m of site boundary           | 5      |  |
| Greater than 50 but less than 150m of site       | 3      |  |
| Greater than 150m but less than 250m of the site | 1      |  |
| Greater than 250m of the site                    | 0.5    |  |

| 51 - 5 |
|--------|
|--------|

| <b>Risk Equation</b>               | SPR Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum<br>Score | Linkages                               | Normalised<br>Scores |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------|----------------------|
| SPR $1 = 1a x (2a + 2b + 2c) x 3e$ | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 300              | Leachate<br>→Surface<br>Water          | 28.00%               |
| SPR $2 = 1a x (2a + 2b + 2c) x 3b$ | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300              | Leachate<br>→SWDTE                     | 0.00%                |
| SPR $3 = 1a x (2a + 2b) x 3a$      | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 240              | Leachate<br>→ human<br>presence        | 11.66%               |
| SPR $4 = 1a x (2a + 2b) x 3b$      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 240              | Leachate<br>→<br>GWDTE                 | 0.00%                |
| SPR $5 = 1a x (2a + 2b) x 3c$      | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 400              | Leachate<br>→ aquifer                  | 10.50%               |
| SPR $6 = 1a x (2a + 2b) x 3d$      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 560              | Leachate<br>→ surface<br>water         | 0.00%                |
| SPR $7 = 1a x (2a + 2b) x 3e$      | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2401et 113       | Leachate<br>→<br>SWDTE                 | 17.5%                |
| $SPR 8 = 1a \times 2c \times 3e$   | 42 HPUPOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | red for 60       | Leachate<br>→ surface<br>water         | 70.00%               |
| SPR 9 = 1a x 2c x 3b               | EQTINSPECTION NET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60               | Leachate<br>→<br>SWDTE                 | 0.00%                |
| SPR 10 = 1b x 2d x 3f              | 0<br>42<br>42<br>42<br>topposetion purpose<br>topposetion purposet<br>topposetion purposetion purposetion purposetion<br>topposetion purposetion purposetion purposetion<br>topposetion purposetion purposetion purposetion<br>topposetion purposetion purposetion purposetion purposetion<br>topposetion purposetion purposetion purposetion<br>topposetion purposetion purposetion purposetion<br>topposetion purposetion purposetion purposetion purposetion<br>topposetion purposetion purposetion purposetion purposetion<br>topposetion purposetion purpo | 150              | Landfill<br>Gas →<br>human<br>presence | 70.00%               |
| SPR 11 = 1b x 2e x 3f              | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 250              | Landfill<br>Gas →<br>human<br>presence | 70.00%               |

| <b>Risk Classification</b> | Score Range                                                 |
|----------------------------|-------------------------------------------------------------|
| High Risk (Class A)        | Greater than or equal to 70% for any individual SPR linkage |
| Moderate Risk (Class B)    | Between 40% and 70% for any individual SPR linkage          |
| Low Risk (Class C)         | Less than or equal to 40% for any individual SPR linkage    |

| <b>Overall Score</b> | 70%                 |
|----------------------|---------------------|
| Overall Risk         | High Risk (Class A) |

August 2018 (SM)

Conserved copyright owner required for any other use.

| Groundwater &<br>Surface Water | Groundwater only                     | Surface water only                               | Lateral & Vertical                                        |                  |  |
|--------------------------------|--------------------------------------|--------------------------------------------------|-----------------------------------------------------------|------------------|--|
| C                              | alculator                            | SPR Values                                       | Maximum Score                                             | Normalised Score |  |
| SPR1                           | $1a \ge (2a + 2b + 2c) \ge 3e$       | 105                                              | 300                                                       | 35.00%           |  |
| SPR2                           | $1a \times (2a + 2b + 2c) \times 3b$ | 0                                                | 300                                                       | 0.00%            |  |
| SPR3                           | 1a x (2a + 2b) x 3a                  | 42                                               | 240                                                       | 17.50%           |  |
| SPR4                           | 1a x (2a + 2b) x 3b                  | 0                                                | 240                                                       | 0.00%            |  |
| SPR5                           | 1a x (2a + 2b) x 3c                  | 63                                               | <sub></sub>                                               | 15.75%           |  |
| SPR6                           | 1a x (2a + 2b) x 3d                  | 0                                                | ther 560                                                  | 0.00%            |  |
| SPR7                           | 1a x (2a + 2b) x 3e                  | 63                                               | s <sup>3</sup> 240                                        | 26.25%           |  |
| SPR8                           | 1a x 2c x 3e                         | 42 65 0 101                                      | 60                                                        | 70.00%           |  |
| SPR9                           | 1a x 2c x 3b                         | 0 outposition                                    | 60                                                        | 0.00%            |  |
| SPR10                          | 1b x 2d x 3f                         | 105 101 2 100 1 10 10 10 10 10 10 10 10 10 10 10 | 150                                                       | 70.00%           |  |
| SPR11                          | 1b x 2e x 3f                         | 175° o <sup>411</sup>                            | 250                                                       | 70.00%           |  |
| Overall Risk Score             |                                      | ~200 <sup>5</sup>                                |                                                           | 70.00%           |  |
|                                |                                      | S COR                                            |                                                           | Α                |  |
| D'14                           | 31                                   | Concent                                          |                                                           |                  |  |
|                                |                                      |                                                  | Range of Risk Scores<br>an or equal to70 for any individu | ual SPR linkage  |  |
| Moderate Risk (Class B)        |                                      |                                                  | 40-70 for any individual SPR linkage                      |                  |  |

Less than 40 for any individual SPR linkage

Note: The table presents the Tier 3 risk rating for this site. SPR1- 9 relate to Leachate Risk. SPR10 & 11 relate to Landfill Gas Risk. The migration pathways are colour coded as follows:

Lowest Risk (Class C)

# 7. CONCLUSIONS AND RECOMMENDATIONS

### 7.1 Conclusions

#### Leachate

The leachate risk to surface water is based on the precautionary assumption, given the proximity of the waste to the stream and the presence of surface water drains in the children's play area, that there is a direct pathway between the waste and the stream along the southern boundary. It must be emphasised that there is no evidence that such a direct pathway exists and the surface water monitoring carried out in 2007 and 2011 did not identify any impact on water quality in the stream.

The planning application by Moate Football Club has expired .ec

### Landfill Gas

Given the distance to the existing residences from the edge of the fill area (>80m) and the measured gas concentrations, it is considered that landfill gas generated by the waste does not present a risk to these dwellings. However, the gas does present a risk to future residential development in the undisturbed northern part of the site. It also presents a risk to the children's playground and civic amenity area although, at present, the risk to users of both the playground and civic amenity area is negligible, given the absence of enclosed spaces in which landfill gases can accumulate.

The gas levels measured in the waste and in the external monitoring wells exceed the limits set in the DOE Guidance on the Protection of Buildings and Occupants from Landfill Gas. Although the volumes of gas being generated will decline over time, as the residual organic matter is depleted, the levels currently being generated require the implementation of remedial measures if the proposed residential development within 50m of the site proceeds or if the site is developed in the future for sport or recreational uses.

#### Human Health

The monitoring data indicates that the waste does not present a significant environmental risk to either surface water, or groundwater. At present there is direct pathway by which the waste could impact on human health. The construction of the playground involved the placement of 600mm of aggregate at the ground surface both inside and adjoining the playground and asphalting the play area. This minimises the exposure to the waste for example by children digging.

### 7.2 Recommendations

### Leachate

Surface water monitoring should be carried out in the stream annually to confirm that the waste is not affecting water quality. The parameters should include pH, electrical conductivity, ammonia and BOD

For any future development use on the landfill under no circumstances should the thickness of the existing cover layer be reduced. If an application for sports pitch development is approved OCM recommends that the following conditions should be applied;

- The cover layer should be increased to a minimum thickness of 1m across the both the pitch and the warm up area. Details of the type of cover materials and the method of placement must be submitted to and approved by Council in advance of the works being carried out.
- No surface water drainage should be permitted into the waste and there must be a minimum of 500mm of subsoils between the invert level of the drains and the waste to ensure that there is no connection between the drains and the waste and to minimise the infiltration of water into the waste. WWN Port POLITS

#### Landfill Gas

It is recommended that the landfill gas monitoring wells be maintained and used for long term monitoring purposes. Monitoring should be carried out at 6 monthly intervals to confirm that the gas levels within the waste body remain at levels that do not present a risk to the existing dwellings.

It is recommended that no buildings or enclosed spaces be either constructed, or provided at the playground or civic amenity area.

Should a planning application for use of the site as a sports pitch be approved OCM considers that it should be a condition of such permission that appropriate landfill gas control measures, as specified in the DOE Guidance, be incorporated into the design of the Dressing Rooms

Any future assessment of development risk from landfill gas should be based on CIRIA 665 Ground Gas Risk Assessment.

Should it be decided to proceed with the development of residential areas to the north of the waste deposition area, gas control measures should be provided. Subject to the results of the landfill gas monitoring, these may include;

- The layout of any proposed residential area should be such that the houses are the maximum practical distance from the edge of the fill area. If possible, the rear gardens should be 10 m from the edge of the fill.
- Incorporating appropriate gas protection measures, as specified in the DOE Guidance, into the building design.
- The installation of a landfill gas migration barrier north of the northern edge of the waste between it and the proposed residential area. The barrier should extend the full length of northern edge and may comprise a trench excavated to approximately 3m below ground level, with a flexible membrane liner (e.g. High Density Polyethylene) placed against the northern face and the trench backfilled with granular material.

## Human Health


Should an application to develop a sports pitch be considered in the future, OCM considers that it should be a condition of the permission that a minimum depth of 1m of cover material be provided beneath those parts of the pitch and warm up area that are above the waste. The objective is to minimise the risk of future exposure of the waste.

Consent of constitution of constitution of consent of constitution of constitu

ECONORMAL CONSIGNATION CONSIGNA

April 2013 (JOC/BS





14t Cirtran Jordan S.E.E.

Housing Section.

Lo Fuldings.

Rufi originice to file 3/99 copy to Darvid Amildoon - prepare Rough layout for houses on the uncontamingted alea of this site tor divensions parpres.

WESTMEATH COUNTY COUNCIL MA 7NN 02

tor any other

GEOTECHNICAL UNIT

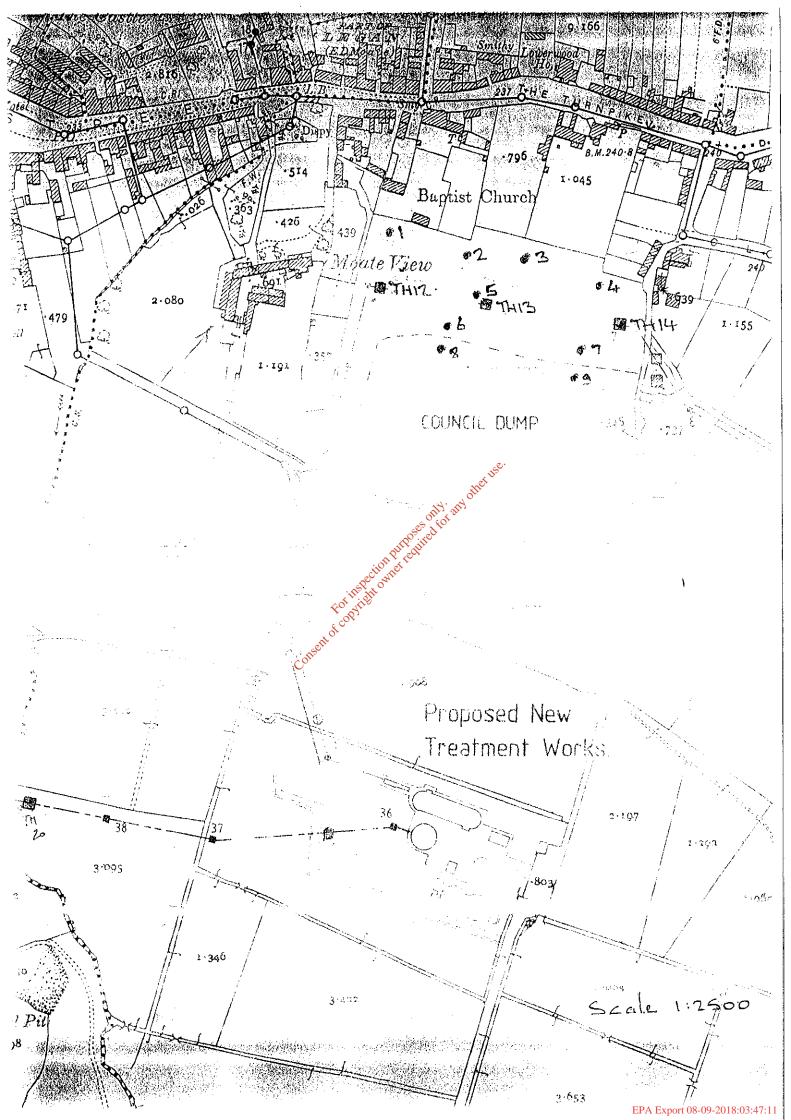
(Tel. (044) 49937 & Fax 944 - 45763)

2 3 AUS 2002

10/03/02

i-nuinger.

Net 114 Lands Nilleon Boylegan Moate..


Erear Claran,

Please find enclosed results for above work as requested. 9 no Probes were carried out across the site. Enclosed also 3 no Trial Pit logs carried in 1991. The boundary of the old dump is shown on attached location map see probes 8 and 9 The results show that the uncontaminited area of the site is suitable for housing. A main sewer runs along the the western and northern boundary of the site.

If you have any queries regarding this matter please contact me at the above number.

Yours Sincerely,

Denis Cronin, Sen Executive Technician. Soils Laboratory.



| RI            | <b>EC</b> | ;OF                   |                                       |                                              |                    |          |                       | <b>.</b> P   |                                       | 12                                                 | Apprediz<br>Juk Me.<br>Rade By D. Crani | n                       |
|---------------|-----------|-----------------------|---------------------------------------|----------------------------------------------|--------------------|----------|-----------------------|--------------|---------------------------------------|----------------------------------------------------|-----------------------------------------|-------------------------|
| DAILY<br>PROG |           | DEPTH<br>TO<br>WATER  | MOA                                   | 1                                            | E- 94              | WERA     | GE                    | SCH<br>Geptn | EME<br>REDUCED<br>LEVEL               | BESCRIPTION OF                                     | Dete Hate 6.2.91<br>STRATA              |                         |
|               |           | •                     |                                       |                                              |                    | 111-     | ┼╧                    | •            |                                       | Grezod                                             | Leret                                   |                         |
| JA            | 19        |                       |                                       |                                              | <u> </u>           | 1.1      |                       | 0.20         |                                       | TOPSOIL                                            | ······································  |                         |
|               |           |                       |                                       |                                              | i –                |          | ┢╌                    | 0.40         |                                       | Brown grav                                         |                                         |                         |
|               |           |                       |                                       | ļ                                            |                    | ļ        | ļ                     | ļ            |                                       |                                                    | arse GRAVEL and                         |                         |
|               |           |                       |                                       |                                              | <del> </del>       | <u> </u> | ┝──                   | <u> </u>     | <u> </u>                              | COBBLES                                            |                                         |                         |
|               |           |                       |                                       | ļ                                            | <u> </u>           | 1        |                       |              | (                                     |                                                    |                                         |                         |
| <u> </u>      |           |                       | <u> </u>                              | <b>.</b>                                     | <b></b>            | +        |                       | <u> </u>     |                                       |                                                    |                                         |                         |
|               |           |                       |                                       | <u>†                                    </u> | ļ                  | 1        |                       | <u> </u>     |                                       |                                                    |                                         |                         |
|               |           | والمحافظة فعاديني وسف | <u> </u>                              | 1                                            |                    | <u> </u> |                       | <u> </u>     |                                       | l<br>S                                             |                                         |                         |
|               |           |                       |                                       |                                              |                    | <u></u>  |                       | }            |                                       |                                                    |                                         |                         |
|               |           |                       |                                       | <b> </b>                                     | <br>               |          |                       | 2,80         |                                       | TRIAL PIT                                          | COMPLETE                                |                         |
|               |           |                       |                                       |                                              |                    | 1        |                       |              |                                       | TRIAL PIT                                          | COMPLETE.                               |                         |
| Francis       |           |                       |                                       |                                              |                    | ļ        |                       | <u> </u>     |                                       | ther th                                            |                                         |                         |
| ARTIN         | *         |                       |                                       |                                              |                    |          |                       |              | 20.007 W.W.M. 11.05.00 AN             | aly any                                            |                                         |                         |
| 1             | 1         |                       |                                       | <u> </u>                                     | 1<br>              |          | <br>                  | 1            |                                       | ses d for                                          |                                         |                         |
| ļ             |           | 12 10 . Core and a    | <b>B</b> ( <b>1 1 1 1 1 1 1 1 1 1</b> |                                              |                    |          |                       |              | PUL                                   | quite                                              |                                         | -                       |
|               |           |                       |                                       | <br>                                         |                    |          |                       |              | pection pure                          |                                                    |                                         | 100 - Tale and a second |
|               | Ť         |                       |                                       |                                              | ~~ • • • • • • • • |          |                       |              | offi Or                               |                                                    |                                         |                         |
|               |           |                       |                                       |                                              |                    |          | - 100 - 1000          | Ford         | 1. 4 1. 100 A 11 CAL                  |                                                    |                                         | (                       |
|               | <b>.</b>  |                       |                                       | <br>                                         |                    |          |                       |              | 1. p = 6. v y com p = 4.5 Mp dat      |                                                    |                                         |                         |
|               |           |                       |                                       |                                              | /-area mare        |          | olse                  |              | · · · · · · · · · · · · · · · · · · · |                                                    |                                         |                         |
|               | •••••     |                       |                                       |                                              |                    |          |                       |              |                                       |                                                    |                                         |                         |
|               |           |                       |                                       |                                              |                    |          |                       |              |                                       |                                                    |                                         |                         |
|               |           |                       |                                       |                                              |                    |          |                       |              |                                       |                                                    |                                         |                         |
| [             |           | ····                  |                                       |                                              |                    |          |                       |              |                                       |                                                    |                                         |                         |
|               |           | [                     |                                       |                                              |                    |          |                       |              |                                       |                                                    |                                         |                         |
|               |           |                       |                                       |                                              |                    |          |                       |              |                                       |                                                    |                                         | · · · ·                 |
| <b> </b>      |           |                       |                                       |                                              | <u></u>            |          |                       |              |                                       |                                                    |                                         |                         |
|               |           |                       |                                       |                                              |                    |          |                       |              |                                       |                                                    |                                         |                         |
| <u> </u>      |           |                       |                                       |                                              |                    |          |                       |              |                                       |                                                    |                                         | <b> </b>                |
|               |           |                       |                                       |                                              |                    |          |                       |              |                                       | •                                                  |                                         |                         |
| <b> </b>      | -+        |                       |                                       |                                              |                    |          |                       |              |                                       |                                                    |                                         | <b> </b>                |
|               |           |                       |                                       |                                              |                    |          | a a . A in a da a a a |              |                                       |                                                    |                                         |                         |
|               |           |                       |                                       |                                              |                    | 1        |                       |              |                                       |                                                    |                                         | <u>↓</u>                |
|               |           |                       |                                       |                                              |                    |          |                       |              |                                       |                                                    |                                         |                         |
| REDA          | 849       | 10 M                  | at                                    |                                              |                    | nter     |                       |              |                                       | ₩2₩₩2₩₩2₩₩ <sup>₩</sup> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ | METHOD OF EIGAVATIOP                    |                         |
|               |           |                       |                                       |                                              |                    |          | еđ                    |              |                                       |                                                    | Cot 50                                  |                         |
|               |           | 1                     | renc                                  | n ŝ                                          | ταb                | те       |                       |              |                                       |                                                    |                                         |                         |

а,

EPA Export 08-09-2018:03:47:11

| RĘ                       | WESTMEATH COUNTY COUNCIL<br>RECORD OF TRIAL |          |           |               |              | Al         | <b>- Р</b><br>sch | <b>ET</b>                                                                                                                                    |                       | Appendix<br>Job He.<br>Nade By D.Cron<br>Date Hace 6.2.9 | in<br>1 |
|--------------------------|---------------------------------------------|----------|-----------|---------------|--------------|------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------|---------|
| DAILY<br>PROGRE          |                                             |          |           | LE- 08 .TESTS |              | Iffilm     | OEPTN             | ACOUCES<br>LEVEL                                                                                                                             | BESCRIPTION OF STRATA |                                                          |         |
|                          | •                                           |          | •         | •             |              |            |                   |                                                                                                                                              | Crocod Ler            | əf                                                       |         |
| 30 JAN                   | 9                                           |          |           | <u> </u>      |              | <u>  ~</u> | 0.20              |                                                                                                                                              | TOPSOIL               |                                                          | •       |
|                          |                                             | 1        |           |               |              | 1          |                   |                                                                                                                                              | Brown gravelly        |                                                          |         |
|                          |                                             |          |           |               |              | ╂───       |                   |                                                                                                                                              | Fine to coorse        | GRAVEL and                                               |         |
|                          |                                             | 1        | ļ         |               | <u> </u>     | <b></b>    |                   |                                                                                                                                              | COBBLES               |                                                          |         |
|                          |                                             | ┼╴╼╸     | +         | <u>+-</u>     |              |            | <del> </del>      | ¦                                                                                                                                            |                       |                                                          |         |
|                          |                                             | ļ        | <b>[</b>  |               | <u> </u>     | <u> </u>   | [                 |                                                                                                                                              |                       |                                                          |         |
|                          |                                             | <u> </u> |           | <u> </u>      | <u></u>      | <u> </u>   | <u> </u>          |                                                                                                                                              |                       |                                                          |         |
|                          |                                             |          |           |               | ļ            | <u> </u>   |                   | ļ                                                                                                                                            |                       |                                                          |         |
|                          |                                             |          | <u> -</u> |               |              |            | 2.70              |                                                                                                                                              |                       |                                                          |         |
| [                        |                                             |          |           |               | [<br>        |            |                   |                                                                                                                                              | TRIAL PIT COMP        | LETE                                                     |         |
|                          |                                             |          |           |               |              |            |                   |                                                                                                                                              | et 15°.               |                                                          |         |
|                          |                                             |          |           |               |              | <u> </u>   |                   |                                                                                                                                              | W. Nothe              |                                                          |         |
| 1                        |                                             |          |           |               |              |            | -                 | 1<br>                                                                                                                                        | es afor art           |                                                          | ,       |
| e<br>Stease an anna<br>1 |                                             |          |           |               | <br>         |            | <b>_</b>          |                                                                                                                                              | TRIAL PIT COMP        |                                                          |         |
| and a market             |                                             |          |           |               |              |            |                   | ection or r                                                                                                                                  |                       |                                                          |         |
|                          | ······································      |          |           |               | <br>         |            | in                | and and                                                                                                                                      |                       |                                                          |         |
| 1014-128.024-4-2         |                                             |          |           |               |              |            | FOR               |                                                                                                                                              |                       |                                                          |         |
|                          |                                             |          |           |               |              |            |                   |                                                                                                                                              |                       |                                                          |         |
|                          |                                             |          |           |               |              | OUS        |                   | 1993 - 1997 - 20 Mai Andrea<br>1993 - 1998 - 20 Mai 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 |                       |                                                          |         |
|                          |                                             |          | ·         |               |              |            |                   |                                                                                                                                              |                       |                                                          |         |
|                          |                                             |          |           |               |              |            |                   |                                                                                                                                              |                       |                                                          |         |
|                          |                                             |          |           |               |              |            |                   |                                                                                                                                              |                       |                                                          |         |
|                          |                                             |          |           |               |              |            |                   |                                                                                                                                              |                       |                                                          |         |
| <u> </u>                 | -                                           |          |           |               |              |            |                   |                                                                                                                                              |                       |                                                          |         |
|                          |                                             |          |           |               |              |            |                   |                                                                                                                                              |                       |                                                          |         |
|                          |                                             |          |           |               |              |            |                   |                                                                                                                                              |                       |                                                          |         |
| <u> </u>                 | +                                           |          |           |               |              |            |                   |                                                                                                                                              |                       |                                                          |         |
|                          |                                             |          |           |               |              |            |                   |                                                                                                                                              |                       |                                                          |         |
| <b></b>                  | -                                           |          |           |               | <sup>:</sup> |            |                   |                                                                                                                                              |                       |                                                          |         |
|                          |                                             |          |           |               |              |            |                   |                                                                                                                                              |                       |                                                          |         |
|                          |                                             |          |           |               |              |            |                   |                                                                                                                                              |                       |                                                          | -       |
|                          |                                             |          |           |               |              |            | -                 |                                                                                                                                              |                       |                                                          |         |
|                          | . <u></u>                                   | <u> </u> |           | l             |              | l          |                   |                                                                                                                                              |                       | ETRES OF CICAVATION                                      |         |
|                          | <b>\$</b> No W                              |          |           |               |              | ed         |                   |                                                                                                                                              |                       |                                                          |         |
|                          |                                             | renc     |           |               |              |            |                   |                                                                                                                                              |                       | Cat 50<br>Tracked<br>RIAL PIT                            | -       |

| REC               | COF                  | ٩D            | OF              |                      | <b>FRI</b>           | Al       | <u> </u> | IT                               |                                        |                                                         |                |
|-------------------|----------------------|---------------|-----------------|----------------------|----------------------|----------|----------|----------------------------------|----------------------------------------|---------------------------------------------------------|----------------|
| SKEP -            | 物制度合                 | MOA           | ΤE              | SEV                  | VERA                 | GE       | SCH      | EME                              | هه                                     | Bate Wate 6.2.9                                         | <u>1 n </u>    |
| QAILT<br>PROGRESS | DEPTH<br>TO<br>WATER |               | SAMPLI<br>DEPTI |                      | TISTS                | LEGEND - | OEPTH    | REBUCED<br>LEVEL                 | BESCRIPTION OF                         | STRATA                                                  |                |
|                   | •                    |               |                 |                      |                      |          |          |                                  | Greend                                 | Levet                                                   |                |
| JAN 9             |                      |               |                 | ļ                    |                      | <u> </u> | 0.20     |                                  | TOPSOIL                                |                                                         |                |
|                   |                      |               |                 | İ                    |                      |          |          |                                  | Brown grave                            | elly CLAY                                               |                |
|                   | <b>_</b>             |               | <u> </u>        | <u> </u>             |                      |          |          |                                  |                                        |                                                         |                |
|                   | 1, 20                |               |                 |                      |                      |          | 1.10     |                                  |                                        |                                                         |                |
|                   | •                    |               | ┢               | <u> -:</u>           |                      |          | 1        |                                  | Fine to coo                            | arse GRAVEL and                                         |                |
|                   |                      |               |                 |                      | <u> </u>             | <u> </u> | <u></u>  |                                  | COBBLES                                |                                                         |                |
|                   |                      |               |                 |                      | · !                  | <u> </u> |          |                                  |                                        |                                                         |                |
|                   |                      |               |                 | <u> </u>             |                      |          | <u> </u> |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      |          | 2.30     |                                  | TRIAL PIT (                            |                                                         |                |
|                   |                      |               | <u>t</u> i      |                      |                      |          |          |                                  |                                        | , (///β) − L, L, L, T, L,                               |                |
|                   |                      |               |                 |                      |                      |          |          |                                  | poses only any other use.              |                                                         |                |
|                   |                      |               |                 |                      |                      |          |          |                                  | other                                  |                                                         |                |
|                   |                      |               |                 |                      |                      |          |          |                                  | only any                               |                                                         |                |
|                   |                      |               |                 |                      |                      | a        |          | <b>4444</b> • 20-20 • 12-10 • 20 | ose dic                                |                                                         | 1              |
|                   |                      |               |                 |                      |                      |          |          | and the first                    | requir                                 |                                                         |                |
| No                |                      |               |                 |                      | ·•· ·· ·-            |          | 5<br>    | per owner                        |                                        |                                                         | 1 1            |
|                   |                      |               |                 |                      |                      |          | FOR      |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      |          |          |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      |          | at o     |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      | Col      | P        |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      |          |          |                                  |                                        |                                                         |                |
|                   |                      |               | 1               |                      |                      |          |          |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      |          |          |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      |          |          |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      |          |          |                                  |                                        |                                                         |                |
| • •===            |                      |               |                 |                      |                      |          |          |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      | !        |          |                                  |                                        |                                                         |                |
|                   | {                    |               |                 |                      |                      |          |          |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      |          |          |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      |          |          |                                  |                                        |                                                         |                |
|                   |                      |               |                 |                      |                      |          |          |                                  |                                        |                                                         | <b> </b>       |
|                   |                      |               |                 |                      | - <u>+</u>           |          |          |                                  |                                        |                                                         | <b>├</b> ────┤ |
|                   |                      |               |                 |                      |                      |          |          |                                  |                                        |                                                         |                |
| <u> </u>          |                      |               |                 |                      | !!                   |          |          |                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                         |                |
| REMARAS           | T i<br>Ro            | renc<br>se to | h ur<br>5 1.2   | urin<br>nsta<br>2 be | g in<br>ble<br>low ( | Grog     | 1.1.1    |                                  | 45 mins                                | HETNED OF CICATATIOF<br>Cat 100<br>Tracked<br>TRIAL PIT |                |

W.

**x**1. ;

SOILS LABORATORY

Mechanical Probe.

Cobra 30mm

Westmeath Co. Council <u>Client:</u> Project: Moate Housing ( Old Dump ) Probe No. 1 19/08/02 Date: Description of Strata Sample Water Depth of Depth (m) Depth (m) Strata (m) G.L. Topsoil 0.30 Brown Gravelly Silty **CLAY & Cobbles** olly any other use. Consent of copyright owned required 1.50 Sand & Gravel **Cobbles & Boulders** 3.00 **Probe Complete** Remarks: Made By: N. Egerton **Clients Initials:** 

SOILS LABORATORY

, 

Mechanical Probe. Cobra 30mm

| Date:     19/08/02       Sample<br>Depth (m)     Water<br>Depth (m)       Strata (m)       G.L.       G.L.       Topsoll       0.20   Topsoll       0.20   Completion of Strata Topsoll          0.20   Topsoll          0.20   Completion of Strata Topsoll           0.20         0.20   Completion of Strata Topsoll           0.20         0.20   Completion of Strata Topsoll           0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20         0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        | h Co. Cour<br>using ( Old |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------------------------|---------|
| Sample<br>Depth (m)     Water<br>Depth (m)     Depth of<br>Strata (m)     Description of Strata       G.L.     G.L.     Topsoil       O.20     O.20     Topsoil       O.20     O.20     Strata (m)       O.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |                           |         |
| Topsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample | Water  | Depth of<br>Strata (m)    |         |
| Communication of the second se |        |        |                           | Topsoil |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |                           |         |
| Clients Initials: Made By: N. Egerton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | tials: |                           |         |

#### WESTMEATH COUNTY COUNCIL. SOILS LABORATORY

Mechanical Probe.

| <u>Client:</u><br>Project: |           | th Co. Cour<br>using ( Old |                       |
|----------------------------|-----------|----------------------------|-----------------------|
| <u>Date:</u>               | 19/08/02  |                            | Probe No. 3           |
| Sample                     | Water     | Depth of                   | Description of Strata |
| Depth (m)                  | Depth (m) | Strata (m)                 |                       |
|                            |           | G.L.                       |                       |
|                            |           |                            |                       |
|                            |           |                            | Topsoil               |
|                            |           | 0.30                       |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            | Brown Gravelly Silty  |
|                            |           |                            | CLAY & Cobbles        |
|                            |           |                            |                       |
|                            |           |                            | چ <sup>و.</sup>       |
|                            |           |                            | met                   |
|                            |           |                            | 14. at 0              |
| · · ·                      |           |                            | 2501101               |
|                            |           |                            | MO <sup>SUED</sup>    |
|                            |           |                            | an Parte of           |
| <u> </u>                   |           |                            | CLAY & Cobbles        |
|                            |           |                            | rins the              |
|                            |           |                            | for price             |
|                            |           |                            | 18 C                  |
|                            |           |                            | nsent                 |
|                            |           |                            | Cov                   |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           |                            |                       |
|                            |           | 2.20                       |                       |
|                            |           |                            | Probe Complete        |
| Remarks:                   |           |                            |                       |
| Clients Ini                | itials:   |                            | Made By: N. Egerton   |

SOILS LABORATORY

Mechanical Probe.

|                     |                    | th Co. Cour<br>using ( Old |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------|--------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Date:</u>        | 19/08/02           |                            | Probe No. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sample<br>Depth (m) | Water<br>Depth (m) | Depth of<br>Strata (m)     | Description of Strata                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                    | G.L.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            | Topooli                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                    | 0.30                       | Topsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                    | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ·                   |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            | Brown Gravelly Silty<br>CLAY & Cobbles                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     |                    |                            | CLAT & CODDies                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            | other                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                    | 1.30                       | OR ANY                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     |                    |                            | AND IF CARE                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |                    |                            | CLAY & Cobbles                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                    |                            | section Boulder                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            | FOLINIE                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                    |                            | A DECEMBER OF CONTRACT  |
| ·····               |                    |                            | C SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | -                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    | 1.30                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Remarks:            | ]                  |                            | Probe Complete                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ntemarks:           |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Clients Ini         | tialay             | <u> </u>                   | Made By: N. Egerton                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Unents in           | uais:              |                            | Made by. N. Lyenton                                                                                                                                                                                                                                                                                                                                                                                                                                         |

. .

•

SOILS LABORATORY

Mechanical Probe.

|                                       |                                        | h Co. Cour<br>using ( Old             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|---------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date:                                 | 19/08/02                               |                                       | Probe No. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Sample<br>Depth (m)                   | Water<br>Depth (m)                     | Depth of<br>Strata (m)                | Description of Strata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                       |                                        | G.L.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        | 0.40                                  | Topsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                       |                                        | 0.40                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       | ······································ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| <b>.</b>                              |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       | Silty Sandy GRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                       |                                        |                                       | Cobbles & Boulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       | 50 <sup>0</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                       |                                        |                                       | other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                       |                                        | 2.20                                  | 0117.814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                       |                                        | 2.20                                  | Consent of constraint of the training of the t |  |
|                                       |                                        |                                       | an Puttent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                       |                                        |                                       | Boulder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                       |                                        |                                       | CO INSTITUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                       |                                        |                                       | E COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                       |                                        |                                       | sent O'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                       |                                        |                                       | Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        | -                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| · · · · · · · · · · · · · · · · · · · |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        | 2.20                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       | Probe Complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Remarks:                              |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                       |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Clients Ini                           | itials:                                | · · · · · · · · · · · · · · · · · · · | Made By: N. Egerton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

÷

SOILS LABORATORY Mechanical Probe.

Probe. Cobra 30mm

Client: Westmeath Co. Council Project: Moate Housing (Old Dump) Probe No. 6 19/08/02 Date: Sample Water Depth of **Description of Strata** Strata (m) Depth (m) Depth (m) G.L. Topsoil 0.30 Brown Gravelly Silty **CLAY & Cobbles** seen for inspection purpose only any other use. 2.00 co Sand & Gravel **Cobbles & Boulders** 3.00 **Probe Complete** Remarks: Made By: N. Egerton **Clients Initials:** 

-. .

i •;

SOILS LABORATORY

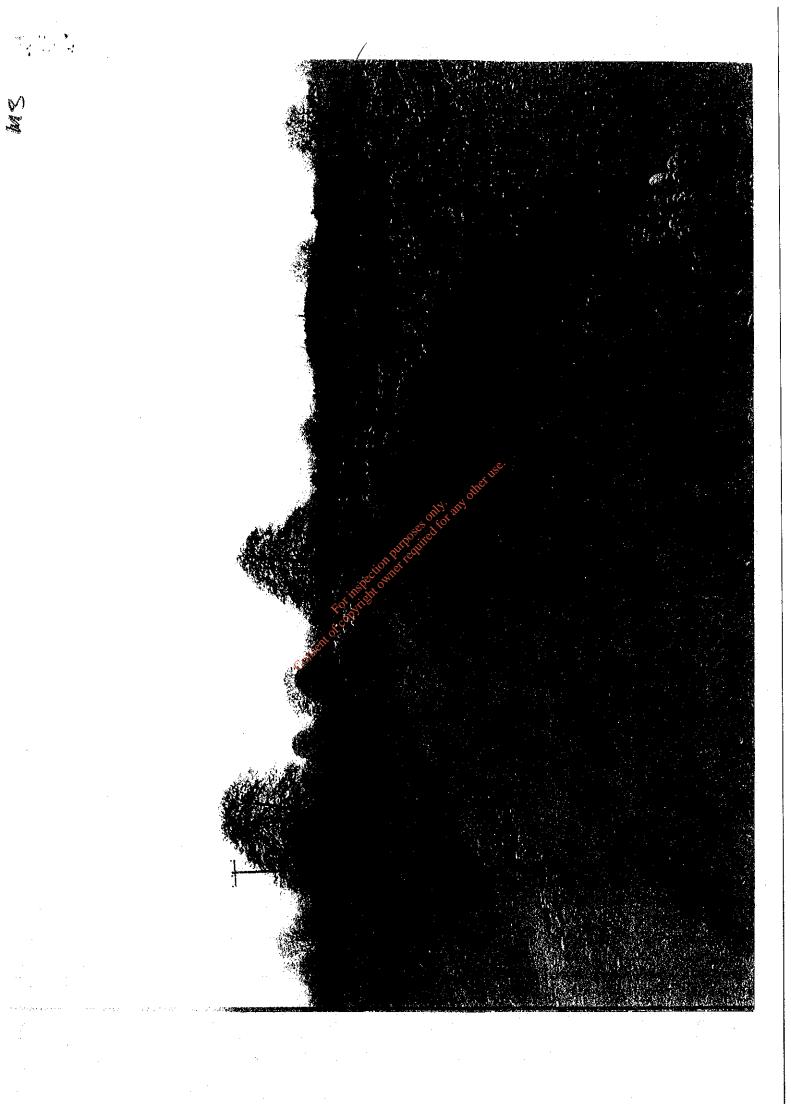
Mechanical Probe.

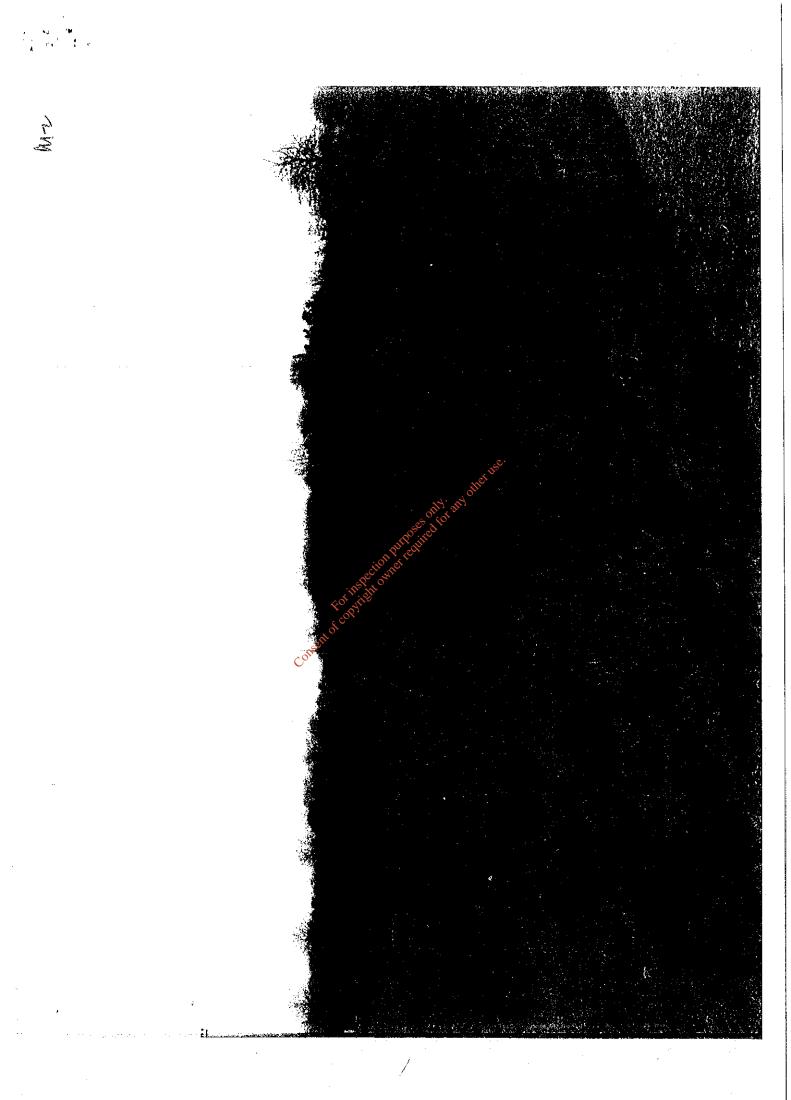
| <u>Client:</u>  |           | h Co. Cour                              |                                                        |
|-----------------|-----------|-----------------------------------------|--------------------------------------------------------|
| <u>Project:</u> |           | using ( Old                             |                                                        |
| <u>Date:</u>    | 19/08/02  |                                         | Probe No. 7                                            |
| Sample          | Water     | Depth of                                | Description of Strata                                  |
| Depth (m)       | Depth (m) | Strata (m)<br>G.L.                      |                                                        |
|                 |           | <u> </u>                                |                                                        |
|                 |           |                                         | Topsoil                                                |
| <del></del>     |           | 0.30                                    |                                                        |
|                 |           |                                         |                                                        |
|                 |           |                                         |                                                        |
|                 |           |                                         |                                                        |
| , <u> </u>      |           |                                         | Brown Gravelly Silty                                   |
|                 |           |                                         | CLAY & Cobbles                                         |
|                 |           |                                         |                                                        |
|                 |           |                                         |                                                        |
|                 |           |                                         |                                                        |
|                 |           |                                         | ت.                                                     |
|                 |           |                                         | netus                                                  |
|                 |           |                                         | 14. A 08                                               |
|                 |           |                                         | es official                                            |
|                 | ļ         |                                         | auposties or                                           |
|                 |           |                                         | ion of test                                            |
|                 |           |                                         | Concent of copyright owner required for any other use. |
|                 |           |                                         | For integru                                            |
|                 |           |                                         | S COP                                                  |
|                 | 1         | 1.50                                    | cett <sup>0</sup>                                      |
|                 |           |                                         | Corr                                                   |
|                 |           |                                         |                                                        |
|                 |           |                                         | Grey Gravelly Silty CLAY                               |
| ·               |           | _                                       | Cobbles & Boulders                                     |
|                 |           |                                         |                                                        |
|                 |           |                                         |                                                        |
| · · · · · ·     |           |                                         |                                                        |
|                 |           | -                                       |                                                        |
|                 |           |                                         |                                                        |
|                 |           | 2.20                                    |                                                        |
|                 |           |                                         | Probe Complete                                         |
| Remarks:        |           |                                         |                                                        |
|                 |           |                                         |                                                        |
|                 |           |                                         |                                                        |
|                 |           |                                         |                                                        |
| Clients Ini     | itials:   | • · · · · · · · · · · · · · · · · · · · | Made By: N. Egerton                                    |
|                 |           |                                         |                                                        |

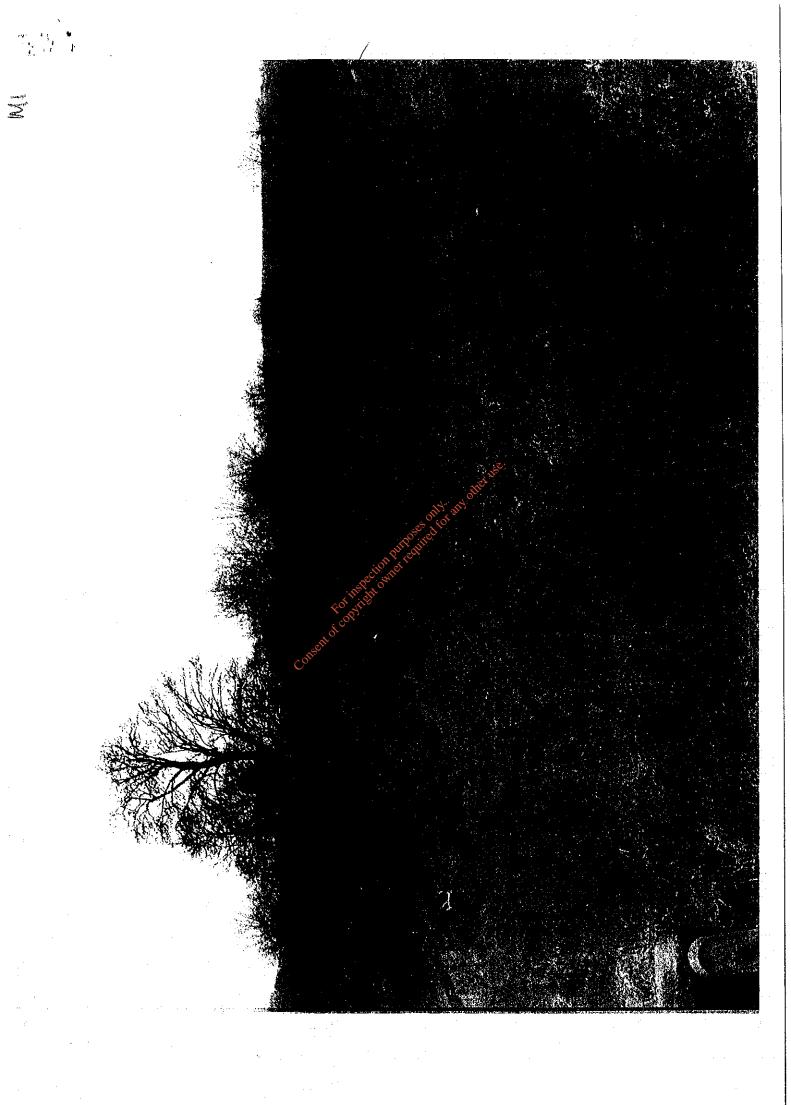
SOILS LABORATORY

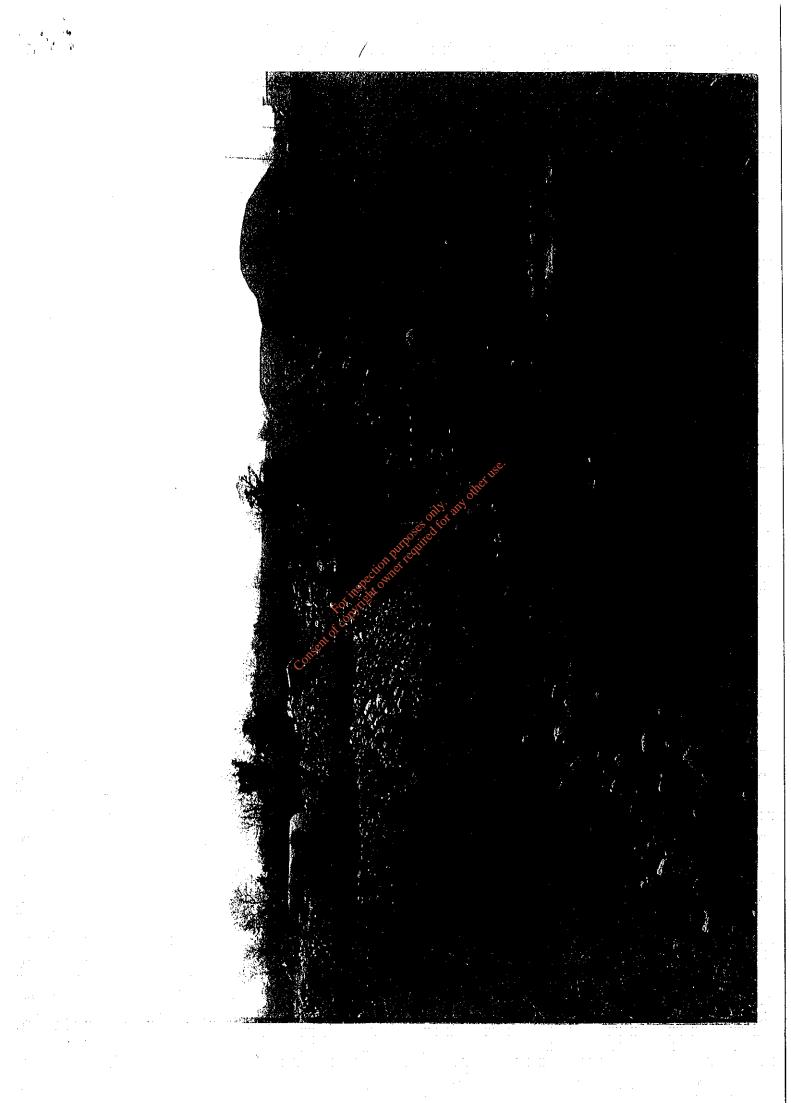
Mechanical Probe. Cobra 30mm

| <u>Client:</u><br>Proiect: |           | th Co. Cour<br>using ( Old |                                                   |
|----------------------------|-----------|----------------------------|---------------------------------------------------|
| Date:                      | 19/08/02  |                            | Probe No. 8                                       |
| Sample                     | Water     | Depth of                   | Description of Strata                             |
| Depth (m)                  | Depth (m) | Strata (m)<br>G.L.         |                                                   |
|                            |           |                            |                                                   |
|                            |           |                            | Clay(Fill)                                        |
|                            |           | 0.40                       |                                                   |
|                            |           | _                          |                                                   |
|                            |           |                            |                                                   |
|                            |           |                            | Rubbish Tip                                       |
|                            |           |                            |                                                   |
|                            |           |                            |                                                   |
|                            |           |                            |                                                   |
|                            |           |                            |                                                   |
|                            |           |                            | et use.                                           |
|                            |           |                            | W. NO                                             |
|                            |           |                            | es afor a                                         |
|                            |           |                            | Dupo <sup>2</sup> uirec                           |
|                            |           |                            | ection weiter                                     |
|                            |           |                            | at it is the o                                    |
|                            |           |                            | FO. STU                                           |
| <u> </u>                   |           | 1.50                       | Concent for insterior purpose only any other use. |
|                            |           |                            | Co.                                               |
|                            |           |                            |                                                   |
|                            |           |                            | Obstruction                                       |
|                            |           |                            |                                                   |
|                            |           |                            | 4                                                 |
|                            |           |                            |                                                   |
|                            |           |                            |                                                   |
|                            |           |                            |                                                   |
|                            |           | 1.50                       | Probe Complete                                    |
| Remarks:                   |           |                            |                                                   |
|                            |           |                            |                                                   |
|                            |           |                            |                                                   |
|                            |           |                            |                                                   |
| Clients In                 | itials:   |                            | Made By: N. Egerton                               |
|                            |           |                            |                                                   |


к. -


SOILS LABORATORY


Mechanical Probe.


| <u>Client:</u><br>Breiset: |            | th Co. Cour<br>uning ( Old |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Project:</u><br>Dato:   | 19/08/02   | using ( Old                | Probe No. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <i>Date:</i><br>Sample     | Water      | Depth of                   | Description of Strata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Depth (m)                  | Depth (m)  | Strata (m)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>                   | <u> </u>   | G.L.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            | Clay(Fill)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                            |            | 0.30                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            | Rubbish Tip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            | meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |            |                            | 22. 12 0L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -                          |            |                            | CS NEOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            |            | 1.00                       | STON STOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u> </u>                   | <u> </u>   |                            | Consent of constrainty of the second second constrainty of the second constrainty of the second secon |
|                            |            |                            | Cobbles & Boulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            |            |                            | For right Comples & Doulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            |            |                            | sco <sup>®</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u> </u>                   |            | <u></u>                    | otho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |            |                            | Cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            |            |                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>.</u>                   |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| + -<br>                    |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>                   |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            | 2.00                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                            | _ <u>_</u> | 2.00                       | Probe Complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Remarks:                   |            | <u></u>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clients In                 | itials:    |                            | Made By: N. Egerton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |













EPA Export 08-09-2018:03:47:12



<u>Consend conversion not intervent consend conversion not intervent of the conversion not intervent of the consend conversion not intervent of the conversion n</u>

April 2013 (JOC/BS

| TRIAL                                                                                                                                                 | PIT LOG                                                     |                                                    |                 |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-----------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                                    |                                                             | LOCATION                                           | <b>NO.</b> TP-1 |                             |
| LOCATION: Moate                                                                                                                                       | DATE: 09/05/                                                | 2007                                               |                 |                             |
| GRID REFERENCE:                                                                                                                                       | _                                                           |                                                    |                 |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted Ex                                                                                                        | xcavator                                                    |                                                    |                 |                             |
| DESCRIPTION                                                                                                                                           | ткіль ріт<br>Тертн (m)                                      | SYMBOLIC                                           | SAMPLE TYPE     | DEPTH (m)/<br>Reading (ppm) |
| Sandy gravelly Clay                                                                                                                                   | Metres (m)_                                                 |                                                    |                 |                             |
| Waste material comprising plastic bags, rigid plastics<br>fragments of steel, concrete blocks, glass bottles,<br>paper, cardboard, detergent bottles. | <br><br>1m_<br><br>                                         |                                                    | PID<br>Soil     | 0ppm<br>1-1.5m              |
| Slight inflow of water at 3.1mgl.                                                                                                                     | 2m_<br><br>                                                 | <i>,</i>                                           |                 |                             |
| Brown peaty material. Material dry.                                                                                                                   | -<br>puposes ed 3m_<br>puposes ed 3m_<br>net require _<br>_ | 96 96 96 96 9<br>96 96 96 96 9<br>96 96 96 96 96 9 | Soil<br>PID     | 3.2-3.6m<br>0ppm            |
| Consolid Convitation                                                                                                                                  | 4m_<br>                                                     |                                                    |                 |                             |
|                                                                                                                                                       | 5m_<br>                                                     |                                                    |                 |                             |
|                                                                                                                                                       | 6m_<br>-                                                    |                                                    |                 |                             |
|                                                                                                                                                       | _<br><br>7m_<br>_                                           |                                                    |                 |                             |
| <u>Comments:</u>                                                                                                                                      | -                                                           |                                                    |                 |                             |

| TRIAL                                                                                                                                                 | PIT LOG                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                                    |                                                                              | LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO. TP-2    |                             |
| LOCATION: Moate                                                                                                                                       | DATE: 09/05/                                                                 | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                             |
| GRID REFERENCE:                                                                                                                                       |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted Ex                                                                                                        | xcavator                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                             |
| DESCRIPTION                                                                                                                                           | (ш)<br>ТКІАL РІТ<br>DEPTH (m)                                                | SVMBOLIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLE TYPE | DEPTH (m)/<br>Reading (ppm) |
| Sandy gravelly Clay                                                                                                                                   | Metres (m)_                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                             |
| Waste material comprising plastic bags, rigid plastics<br>fragments of steel, concrete blocks, glass bottles,<br>paper, cardboard, detergent bottles. | <br>-<br>1m_<br>                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PID         | 0ppm                        |
|                                                                                                                                                       |                                                                              | and the second se | Soil        | 1.5-2m                      |
| Slight inflow of water at 3.1mgl.<br>Brown peaty material. Material dry.                                                                              | -<br>puposes of <b>3m</b><br>puposes of <b>3m</b><br>-<br>net require -<br>- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Soil<br>PID | 3.2-3.5m<br>0ppm            |
| Consolt of copyright of                                                                                                                               | 4m_<br>                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                             |
|                                                                                                                                                       | 5m_<br>-<br>-                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                             |
|                                                                                                                                                       | 6m_<br>                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                             |
| <u>Comments:</u>                                                                                                                                      | 7m_<br><br>                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                             |
|                                                                                                                                                       |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                             |

| TRIAL PIT LOG                                                                                                                                                                        |                                                             |                 |                 |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------|-----------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                                                                   |                                                             | LOCATION        | <b>NO.</b> TP-3 |                             |
| LOCATION: Moate                                                                                                                                                                      | DATE: 09/05/                                                | 2007            |                 |                             |
|                                                                                                                                                                                      |                                                             |                 |                 |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted E                                                                                                                                        | xcavator                                                    |                 | 111             |                             |
| DESCRIPTION                                                                                                                                                                          | TRIAL PIT<br>DEPTH (m)                                      | SYMBOLIC<br>LOG | SAMPLE TYPE     | DEPTH (m)/<br>Reading (ppm) |
| Sandy gravelly Clay                                                                                                                                                                  | Metres (m)_                                                 | · ·<br>· ·      |                 |                             |
| Waste material comprising plastic bags, rigid plastics<br>fragments of steel, concrete blocks, glass bottles,<br>paper, cardboard, detergent bottles, fragments of<br>a car chassis. | <br><br>1m_<br>                                             |                 | Soil<br>PID     | 0.5-1m<br>0ppm              |
| Brown peat                                                                                                                                                                           | 2m_<br>                                                     |                 | Soil            | 2.4-2.6m                    |
| Brown peat<br>Grey Gravelly Sand                                                                                                                                                     | Purposes on Star<br>Purposes d Sm_<br>-<br>-<br>-<br>-<br>- | 8               | PID             | 0ppm                        |
| For institut                                                                                                                                                                         | 4m_<br>                                                     |                 |                 |                             |
| Co.                                                                                                                                                                                  | 5m_<br>                                                     |                 |                 |                             |
|                                                                                                                                                                                      | 6m<br>                                                      |                 |                 |                             |
|                                                                                                                                                                                      | <br><br>7m_<br>                                             |                 |                 |                             |
| <u>Comments:</u><br>No groundwater encountered.                                                                                                                                      | -                                                           |                 |                 |                             |

| TRIAL PIT LOG                                                                                                                        |                                                                                                                                                     |          |                 |                             |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                   |                                                                                                                                                     | LOCATION | <b>NO.</b> TP-4 |                             |
| LOCATION: Moate                                                                                                                      | DATE: 09/05/                                                                                                                                        | 2007     |                 |                             |
| GRID REFERENCE:                                                                                                                      |                                                                                                                                                     |          |                 |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted E                                                                                        | xcavator                                                                                                                                            |          | ш               |                             |
| DESCRIPTION                                                                                                                          | ТКІАL РІТ<br>DEPTH (m)                                                                                                                              | SYMBOLIC | SAMPLE TYPE     | DEPTH (m)/<br>Reading (ppm) |
| Sandy gravelly Clay<br>Waste material comprising plastic bags, rigid plastics<br>fragments of steel, concrete blocks, glass bottles, | Metres (m)_<br>_<br>_<br>_<br>1m_                                                                                                                   |          |                 |                             |
| paper, cardboard, detergent bottles.<br>Newspaper dated 1970 encountered.                                                            | _<br>_<br>_<br>2m_<br>_<br>_                                                                                                                        |          | Soil<br>PID     | 1-1.5m<br>0ppm              |
| Grey Sand and Gravel.                                                                                                                |                                                                                                                                                     |          | PID<br>Soil     | 0ppm<br>2.6-2.8m            |
|                                                                                                                                      | -<br>5m_<br>-<br>-<br>-<br>6m_<br>-<br>-<br>-<br>7m_<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |          |                 |                             |
| <u>Comments:</u><br>No groundwater encountered.                                                                                      | _                                                                                                                                                   |          |                 |                             |

| TRIAL PIT LOG                                                                                                                                                                        |                                        |                                          |                 |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                                                                   |                                        | LOCATION                                 | <b>NO.</b> TP-5 |                             |
| LOCATION: Moate                                                                                                                                                                      | DATE: 09/05/                           | 2007                                     |                 |                             |
| GRID REFERENCE:<br>METHOD OF EXCAVATION: 21tonne Track Mounted E:                                                                                                                    | xcavator                               |                                          |                 |                             |
| DESCRIPTION                                                                                                                                                                          | TRIAL PIT<br>DEPTH (m)                 | SYMBOLIC                                 | SAMPLE TYPE     | DEPTH (m)/<br>Reading (ppm) |
| Sandy gravelly Clay                                                                                                                                                                  | Metres (m)_<br>_<br>_<br>_<br>1m_<br>_ | () () () () () () () () () () () () () ( |                 |                             |
| Waste material comprising plastic bags, rigid plastics<br>fragments of steel, concrete blocks, glass bottles,<br>paper, cardboard, detergent bottles, anti freeze<br>canister noted. | <br>2m_<br><br>                        | Sector Line                              | Soil            | 1.5-2m                      |
| in other                                                                                                                                                                             | Appropriet Sm_<br>                     |                                          | PID             | 0ppm                        |
| Grey Sand and Gravel.                                                                                                                                                                |                                        |                                          |                 |                             |
|                                                                                                                                                                                      |                                        |                                          |                 |                             |
| <u>Comments:</u><br>No groundwater encountered.                                                                                                                                      |                                        |                                          |                 |                             |

| TRIAL PIT LOG                                                                                                                                         |                                  |                 |                 |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|-----------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                                    |                                  | LOCATION        | <b>NO.</b> TP-6 |                             |
| LOCATION: Moate                                                                                                                                       | DATE: 10/05/                     | 2007            |                 |                             |
| GRID REFERENCE:                                                                                                                                       |                                  |                 |                 |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted E                                                                                                         | xcavalor                         |                 | ш               | Ê                           |
| DESCRIPTION                                                                                                                                           | ΤΒΙΑΙ ΡΙΤ<br>ΣΕΡΤΗ (m)           | SYMBOLIC<br>LOG | SAMPLE TYPE     | DEPTH (m)/<br>Reading (ppm) |
| Sandy gravelly Clay                                                                                                                                   | Metres (m)_                      | <u> </u>        |                 |                             |
| Waste material comprising plastic bags, rigid plastics<br>fragments of steel, concrete blocks, glass bottles,<br>paper, cardboard, detergent bottles. |                                  |                 | Soil<br>PID     | 1-1.5m<br>0ppm              |
| Grey Sand and Gravel.                                                                                                                                 | -<br>pupose of 3m_<br>steeline - |                 | PID<br>Soil     | 0ppm<br>2.5-2.6m            |
| For inspecto                                                                                                                                          | یں۔<br><br>                      |                 |                 |                             |
|                                                                                                                                                       | 5m_<br>                          |                 |                 |                             |
|                                                                                                                                                       | -<br>_<br>6m_<br>_               |                 |                 |                             |
|                                                                                                                                                       | -<br>-<br>7m_<br>-               |                 |                 |                             |
| <u>Comments:</u><br>No groundwater encountered.                                                                                                       | -                                |                 |                 |                             |

| TRIAL PIT LOG                                                                                                                                         |                                                                                |                                                                                                                  |             |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                                    |                                                                                | LOCATION                                                                                                         | NO. TP-7    |                             |
| LOCATION: Moate                                                                                                                                       | DATE: 10/05/                                                                   | 2007                                                                                                             |             |                             |
| GRID REFERENCE:                                                                                                                                       |                                                                                |                                                                                                                  |             |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted E                                                                                                         | xcavator                                                                       |                                                                                                                  | ш           |                             |
| DESCRIPTION                                                                                                                                           | ТКІАL РІТ<br>ТВАТА (m)                                                         | SYMBOLIC                                                                                                         | SAMPLE TYPE | DEPTH (m)/<br>Reading (ppm) |
| Sandy gravelly Clay                                                                                                                                   | Metres (m)_                                                                    | · · · · · ·                                                                                                      |             |                             |
|                                                                                                                                                       | -<br>-<br>1m_<br>-                                                             |                                                                                                                  | Soil<br>PID | 1.5-2m<br>0ppm              |
| Waste material comprising plastic bags, rigid plastics<br>fragments of steel, concrete blocks, glass bottles,<br>paper, cardboard, detergent bottles. | -<br>2m_<br>-<br>-<br>-                                                        | and the second |             |                             |
| Grey Sand and Gravel.                                                                                                                                 | -<br>puposes of \$m_<br>spiposes of \$m_<br>-<br>metropicon =<br>-<br>4m_<br>- |                                                                                                                  | Soil<br>PID | 3.1-3.3<br>Oppm             |
| Conse                                                                                                                                                 | 5m                                                                             |                                                                                                                  |             |                             |
|                                                                                                                                                       | -<br>6m_<br>-<br>-                                                             |                                                                                                                  |             |                             |
| <u>Comments:</u>                                                                                                                                      |                                                                                |                                                                                                                  |             |                             |
| No groundwater encountered.                                                                                                                           | _                                                                              |                                                                                                                  |             |                             |

| TRIAL PIT LOG                                                                                                                                         |                                                                                                    |                 |             |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------|-------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                                    |                                                                                                    | LOCATION        | NO. TP-8    |                             |
| LOCATION: Moate                                                                                                                                       | DATE: 10/05/                                                                                       | 2007            |             |                             |
| GRID REFERENCE:                                                                                                                                       | (any otor                                                                                          |                 |             |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted Ex                                                                                                        | cavator                                                                                            |                 | ш           | Â                           |
| DESCRIPTION                                                                                                                                           | Т <b>RIAL Р</b> ІТ<br>DEPTH (m)                                                                    | SYMBOLIC<br>LOG | SAMPLE TYPE | DEPTH (m)/<br>Reading (ppm) |
| Sandy gravelly Clay                                                                                                                                   | Metres (m)_<br>_                                                                                   |                 |             |                             |
| Waste material comprising plastic bags, rigid plastics<br>fragments of steel, concrete blocks, glass bottles,<br>paper, cardboard, detergent bottles. | -<br>-<br>1m_<br>-<br>-                                                                            |                 | Soil<br>PID | 1-1.5m<br>0ppm              |
|                                                                                                                                                       | 2m_<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                 |             |                             |
| Grey Sand and Gravel.                                                                                                                                 |                                                                                                    |                 |             |                             |
| Grey Sand and Gravel.                                                                                                                                 | 5m                                                                                                 |                 | Soil<br>PID | 4.7-4.9<br>0ppm             |
|                                                                                                                                                       | <br><br>6m_<br><br>                                                                                |                 |             |                             |
|                                                                                                                                                       |                                                                                                    |                 |             |                             |
| <u>Comments:</u><br>No groundwater encountered.                                                                                                       |                                                                                                    |                 |             |                             |

| TRIAL PIT LOG                                                                                                                                                                                                                          |                                                                                                    |                 |             |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------|-------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                                                                                                                     |                                                                                                    | LOCATION        | NO. TP-9    |                             |
| LOCATION: Moate                                                                                                                                                                                                                        | DATE: 10/05/                                                                                       | 2007            |             |                             |
|                                                                                                                                                                                                                                        |                                                                                                    |                 |             |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted E                                                                                                                                                                                          | xcavalor                                                                                           |                 | ш           | 2                           |
| DESCRIPTION                                                                                                                                                                                                                            | (ш) ПЕРТН (ш)<br>ТРГАН РІТ                                                                         | SYMBOLIC<br>LOG | SAMPLE TYPE | DEPTH (m)/<br>Reading (ppm) |
| Sandy gravelly Clay                                                                                                                                                                                                                    | Metres (m)                                                                                         | · · · · · ·     |             |                             |
| Waste material comprising plastic bags, rigid plastics<br>fragments of steel, concrete blocks, glass bottles,<br>paper, cardboard, detergent bottles.<br>Fragments of concrete bonded asbestos roof sheeting<br>between 0.7m and 1.5m. | -<br>-<br>1m_<br>-<br>-                                                                            |                 | Soil<br>PID | 0.8-1.3m<br>0ppm            |
| * inspection                                                                                                                                                                                                                           | 2m_<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                 |             |                             |
| Grey Sand and Gravel.                                                                                                                                                                                                                  | 4m_<br><br><br>5m_<br>                                                                             |                 | PID<br>Soil | 0ppm<br>4-4.2m              |
|                                                                                                                                                                                                                                        | 6m_<br><br><br>                                                                                    |                 |             |                             |
| <u>Comments:</u><br>No groundwater encountered.                                                                                                                                                                                        | 7m_<br><br><br>-                                                                                   |                 |             |                             |

| TRIAL PIT LOG                                                                                                                                         |                                                |                      |             |                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------|-------------|-----------------------------|--|
| CONTRACT: Westmeath County Council                                                                                                                    | stmeath County Council LOCATION NO. TP-10      |                      |             |                             |  |
| LOCATION: Moate                                                                                                                                       | DATE: 10/05/                                   | 2007                 |             |                             |  |
| GRID REFERENCE:<br>METHOD OF EXCAVATION: 21tonne Track Mounted Ex                                                                                     | veavator                                       |                      |             |                             |  |
|                                                                                                                                                       | xcavalui                                       |                      | Щ           | Ê                           |  |
| DESCRIPTION                                                                                                                                           | ТВІАL РІТ<br>DEPTH (m)                         | SVMBOLIC<br>LOG      | SAMPLE TYPE | DEPTH (m)/<br>Reading (ppm) |  |
| Sandy gravelly Clay                                                                                                                                   | Metres (m)_                                    |                      |             |                             |  |
| Waste material comprising plastic bags, rigid plastics<br>fragments of steel, concrete blocks, glass bottles,<br>paper, cardboard, detergent bottles. | -<br>-<br>1m_<br>-                             |                      | Soil<br>PID | 1-1.5<br>0ppm               |  |
|                                                                                                                                                       | 2m_<br>                                        |                      |             |                             |  |
| Slight inflow of water at 4.1m.                                                                                                                       | nerequired 5m_<br>merequired 5m_<br>4m_<br>4m_ |                      | PID         | 0.000                       |  |
| Brown Peat.                                                                                                                                           | <br><br>5m_                                    | <u>an an an an a</u> | Soil        | 0ppm<br>4.1-4.3m            |  |
|                                                                                                                                                       | <br><br>6m_                                    |                      |             |                             |  |
|                                                                                                                                                       | -<br>-<br>7m_                                  |                      |             |                             |  |
| <u>Comments:</u>                                                                                                                                      | _<br>_<br>_<br>_                               |                      |             |                             |  |

| TRIAL PIT LOG                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                  |                             |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-----------------------------|
| CONTRACT: Westmeath County Council              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOCATION | <b>NO.</b> TP-11 |                             |
| LOCATION: Moate                                 | DATE: 10/05/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2007     |                  |                             |
| GRID REFERENCE:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                  |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted Ex  | xcavator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                  |                             |
| DESCRIPTION                                     | ТКІАL РІТ<br>DEPTH (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SYMBOLIC | SAMPLE TYPE      | DEPTH (m)/<br>Reading (ppm) |
| Topsoil.                                        | Metres (m)_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                  |                             |
| Firm brown sandy gravelly Clay.                 | -<br>-<br>1m_<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                  |                             |
| Firm grey Sand and Gravel.                      | _<br><br>2m_<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ote      |                  |                             |
| Consent of copyright o                          | nut contraction of the second |          |                  |                             |
| Consent of Copyrise                             | 4m_<br><br><br>5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                  |                             |
|                                                 | <br>6m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                  |                             |
|                                                 | _<br>_<br>_<br>7m_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                  |                             |
| <u>Comments:</u><br>No groundwater encountered. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                  |                             |

| TRIAL PIT LOG                                   |                        |          |                  |                             |
|-------------------------------------------------|------------------------|----------|------------------|-----------------------------|
| CONTRACT: Westmeath County Council              |                        | LOCATION | <b>NO.</b> TP-12 |                             |
| LOCATION: Moate                                 | DATE: 10/05/           | 2007     |                  |                             |
| GRID REFERENCE:                                 |                        |          |                  |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted B   | xcavator               |          |                  |                             |
| DESCRIPTION                                     | TRIAL PIT<br>DEPTH (m) | SYMBOLIC | SAMPLE TYPE      | DEPTH (m)/<br>Reading (ppm) |
| Topsoil.                                        | Metres (m)_            | <u> </u> |                  |                             |
| Sand and Gravels with minor amounts of clay.    | <br>                   |          |                  |                             |
| Comments:                                       |                        |          |                  |                             |
| <u>Comments:</u><br>No groundwater encountered. | -                      |          |                  |                             |
| rio groundwater encountered.                    |                        |          |                  |                             |

| TRIAL                                                                              | PIT LOG                                                                                            |          |                  |                             |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------|------------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                 |                                                                                                    | LOCATION | <b>NO.</b> TP-13 |                             |
| LOCATION: Moate                                                                    | DATE: 10/05/                                                                                       | 2007     |                  |                             |
| GRID REFERENCE:                                                                    |                                                                                                    |          |                  |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted E                                      | xcavator                                                                                           |          |                  |                             |
| DESCRIPTION                                                                        | ТRIAL PIT<br>DEPTH (m)                                                                             | SYMBOLIC | SAMPLE TYPE      | DEPTH (m)/<br>Reading (ppm) |
| Topsoil.                                                                           | Metres (m)_                                                                                        | <u> </u> |                  |                             |
| Firm slightly sandy gravelly Clay.<br>Brown sandy Gravels with occasional cobbles. | <br><br>1m_<br><br>                                                                                |          |                  |                             |
|                                                                                    | 2m_<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | otheruse |                  |                             |
| Consent of copyright of                                                            | m <sup>er –</sup><br>4m_<br>-<br>-<br>5m                                                           |          |                  |                             |
|                                                                                    |                                                                                                    |          |                  |                             |
| <u>Comments:</u><br>No groundwater encountered.                                    |                                                                                                    |          |                  |                             |

| TRIAL                                                   | PIT LOG                         |                 |                  |                             |
|---------------------------------------------------------|---------------------------------|-----------------|------------------|-----------------------------|
| CONTRACT: Westmeath County Council                      |                                 | LOCATION        | <b>NO.</b> TP-14 |                             |
| LOCATION: Moate                                         | DATE: 10/05/                    | 2007            |                  |                             |
| GRID REFERENCE:                                         |                                 |                 |                  |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted E           | xcavator                        |                 | ш                | 2                           |
| DESCRIPTION                                             | Т <b>RIAL Р</b> ІТ<br>DEPTH (m) | SYMBOLIC<br>LOG | SAMPLE TYPE      | DEPTH (m)/<br>Reading (ppm) |
| Topsoil.                                                | Metres (m)_                     | <u> </u>        |                  |                             |
| Firm sandy gravelly Clay.                               | -                               |                 |                  |                             |
| Clayey Sand and Gravel with cobbles and small boulders. | -<br>_<br>1m_                   |                 |                  |                             |
| Groundwater inflow at 1.6m.                             | _<br>_<br>2m                    |                 |                  |                             |
| Consent of copyright o                                  | _                               | ollectuse       |                  |                             |
| Consent of constraints                                  | م <sup>رید</sup><br><br>        |                 |                  |                             |
|                                                         | 5m                              |                 |                  |                             |
|                                                         | 5m_                             |                 |                  |                             |
|                                                         |                                 |                 |                  |                             |
|                                                         | -                               |                 |                  |                             |
|                                                         | 6m_<br>_                        |                 |                  |                             |
|                                                         |                                 |                 |                  |                             |
|                                                         | 7m                              |                 |                  |                             |
|                                                         |                                 |                 |                  |                             |
| Comments:                                               |                                 |                 |                  |                             |
| oonmenta.                                               | -                               |                 |                  |                             |
|                                                         |                                 |                 |                  |                             |

| TRIAL                                         | PIT LOG                            |                 |                  |                             |
|-----------------------------------------------|------------------------------------|-----------------|------------------|-----------------------------|
| CONTRACT: Westmeath County Council            |                                    | LOCATION        | <b>NO.</b> TP-15 |                             |
| LOCATION: Moate                               | DATE: 10/05/                       | 2007            |                  |                             |
|                                               |                                    |                 |                  |                             |
| METHOD OF EXCAVATION: 21tonne Track Mounted E | xcavator                           |                 |                  |                             |
| DESCRIPTION                                   | (ш)<br>ТКІАL РІТ<br>DEPTH (m)      | LOG<br>SYMBOLIC | SAMPLE TYPE      | DEPTH (m)/<br>Reading (ppm) |
| Topsoil.                                      | Metres (m)_                        |                 |                  |                             |
| Firm sandy gravelly Clay.                     | -<br>-<br>1m_<br>-                 |                 |                  |                             |
| Sand and Gravels with cobbles.                | _<br>_<br>2m_                      |                 |                  |                             |
| Consont of copyright of                       | -<br>                              | offeruse        |                  |                             |
| Consett of cor                                | -<br>-<br>5m_<br>-<br>-            |                 |                  |                             |
|                                               | 6m_<br><br><br><br>7m <sup>-</sup> |                 |                  |                             |
| <u>Comments:</u>                              | 7m_<br>-<br>-<br>-                 |                 |                  |                             |

| BORE                                                                                                                                                            | HOLE LOG                                                                     |                 |             |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|-------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                                              |                                                                              | LOCATION        | NO. BH-1    |                             |
| LOCATION: Moate                                                                                                                                                 | DATE: 28/05/                                                                 | 2007            |             |                             |
| GRID REFERENCE:                                                                                                                                                 |                                                                              |                 |             |                             |
| DRILLING METHOD: Rotary Percussion                                                                                                                              |                                                                              |                 |             | _                           |
| DESCRIPTION                                                                                                                                                     | BOREHOLE<br>DEPTH (m)                                                        | SYMBOLIC<br>LOG | SAMPLE TYPE | DEPTH (m)/<br>Reading (ppm) |
| Sandy gravelly Clay<br>Waste material<br>Grey limestone gravel                                                                                                  | Metres (m)_<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                 |             |                             |
| Grey limestone gravel                                                                                                                                           | 4m<br>                                                                       |                 |             |                             |
| Borehole terminated at 5m                                                                                                                                       |                                                                              |                 |             |                             |
| <u>Construction Details</u><br>50mm Slotted Standpipe: 1-5mbgl<br>Solid Standpipe: 0mbgl - 1mbgl<br>Gravel filter pack: 0.5 - 5mbgl<br>Bentonite: 0mbgl-0.5mbgl |                                                                              |                 | _           |                             |

| BOREH                                                                                                                                                           | OLE LOG                                                                                            |                                        |             |                             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|-------------|-----------------------------|--|--|--|
| CONTRACT: Westmeath County Council                                                                                                                              | LOCATION NO. BH-2                                                                                  |                                        |             |                             |  |  |  |
| LOCATION: Moate                                                                                                                                                 | DATE: 29/05/                                                                                       | 2007                                   |             |                             |  |  |  |
| GRID REFERENCE:                                                                                                                                                 |                                                                                                    |                                        |             |                             |  |  |  |
| DRILLING METHOD: Rotary Percussion                                                                                                                              |                                                                                                    |                                        |             |                             |  |  |  |
| DESCRIPTION                                                                                                                                                     | BOREHOLE<br>DEPTH (m)                                                                              | SYMBOLIC                               | SAMPLE TYPE | DEPTH (m)/<br>Reading (ppm) |  |  |  |
| Sandy gravelly Clay                                                                                                                                             | Metres (m)_<br><br><br>1m_<br><br><br>                                                             |                                        |             |                             |  |  |  |
| Waste material                                                                                                                                                  | 2m_<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | and a set                              |             |                             |  |  |  |
| Grey gravel                                                                                                                                                     | 4m_<br>-<br>-<br>-<br>5m <sup>-</sup>                                                              |                                        |             |                             |  |  |  |
| Borehole terminated at 5m                                                                                                                                       |                                                                                                    | ° <u>°</u> , • • • • • • • • • • • • • |             |                             |  |  |  |
| <u>Construction Details</u><br>50mm Slotted Standpipe: 1-5mbgl<br>Solid Standpipe: 0mbgl - 1mbgl<br>Gravel filter pack: 0.5 - 5mbgl<br>Bentonite: 0mbgl-0.5mbgl |                                                                                                    |                                        |             |                             |  |  |  |

| BOREH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OLE LOG                                                                                                                            |                 |             |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    | LOCATION        | NO. BH-3    |                             |
| LOCATION: Moate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DATE: 29/05/                                                                                                                       | 2007            |             |                             |
| GRID REFERENCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                  |                 |             |                             |
| DRILLING METHOD: Rotary Percussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                  |                 |             |                             |
| DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BOREHOLE<br>DEPTH (m)                                                                                                              | SYMBOLIC<br>LOG | SAMPLE TYPE | DEPTH (m)/<br>Reading (ppm) |
| Sandy gravelly Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metres (m)_                                                                                                                        | <u> </u>        |             |                             |
| Waste material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>1m_<br>-<br>-<br>-<br>2m_<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                 |             |                             |
| Peat For price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4m_                                                                                                                                | <u> </u>        |             |                             |
| Peat Fol provident of the second state of the | _                                                                                                                                  |                 |             |                             |
| Termionation of hole at 4.5m bgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |                 |             |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6m<br>                                                                                                                             |                 |             |                             |
| <u>Construction Details</u><br>50mm Slotted Standpipe: 1-4.55mbgl<br>Solid Standpipe: 0mbgl - 1mbgl<br>Gravel filter pack: 0.5 - 5mbgl<br>Bentonite: 0mbgl-0.5mbgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                 |             |                             |

| BOREH                                                                                                                    | OLE LOG               |                                                |                 |                             |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------|-----------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                       |                       | LOCATION                                       | <b>NO.</b> BH-4 |                             |
| LOCATION: Moate                                                                                                          | DATE: 30/05/          | 2007                                           |                 |                             |
| GRID REFERENCE:                                                                                                          |                       |                                                |                 |                             |
| DRILLING METHOD: Rotary Percussion                                                                                       |                       |                                                |                 |                             |
| DESCRIPTION                                                                                                              | BOREHOLE<br>DEPTH (m) | SYMBOLIC<br>LOG                                | SAMPLE TYPE     | DEPTH (m)/<br>Reading (ppm) |
| Topsoil                                                                                                                  | Metres (m)            | <u>an an an an an</u><br><u>an an an an an</u> |                 |                             |
| Brown gravelly clay                                                                                                      |                       |                                                |                 |                             |
| Grey gravel<br>Dense grey gravel and water strike at 3.8m Fotogravel                                                     | -                     |                                                |                 |                             |
| Dense grey gravel and water strike at 3.8m For prise                                                                     | 4m_<br><br><br>5m     |                                                |                 |                             |
| Borehole terminated at 5m                                                                                                |                       |                                                |                 |                             |
| Water strike at 3.6m<br><u>Construction Details</u><br>50mm Slotted Standpipe: 1-5mbgl<br>Solid Standpipe: 0mbgl - 1mbgl |                       |                                                |                 |                             |
| Gravel filter pack: 0.5 - 5mbgl<br>Bentonite: 0mbgl-0.5mbgl                                                              |                       |                                                |                 |                             |

| BOREH                                                                                                                                                           | OLE LOG                                               |                                                |             |                             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|-------------|-----------------------------|--|--|--|
| CONTRACT: Westmeath County Council                                                                                                                              | LOCATION NO. BH-5                                     |                                                |             |                             |  |  |  |
| LOCATION: Moate                                                                                                                                                 | DATE: 30/05/                                          | 2007                                           |             |                             |  |  |  |
| GRID REFERENCE:                                                                                                                                                 |                                                       |                                                |             |                             |  |  |  |
| DRILLING METHOD: Rotary Percussion                                                                                                                              |                                                       |                                                |             |                             |  |  |  |
| DESCRIPTION                                                                                                                                                     | BOREHOLE<br>DEPTH (m)                                 | SVMBOLIC                                       | SAMPLE TYPE | DEPTH (m)/<br>Reading (ppm) |  |  |  |
| Topsoil                                                                                                                                                         | Metres (m)_                                           | <u>ah ah ah ah ah ah</u><br>ah ah <u>ah ah</u> |             |                             |  |  |  |
| Brown clayey sand and gravel                                                                                                                                    | -<br>-<br>1m_<br>-                                    |                                                |             |                             |  |  |  |
| Brown slightly sandy clay                                                                                                                                       | <br>2m                                                |                                                |             |                             |  |  |  |
| Grey gravel                                                                                                                                                     |                                                       | J.                                             |             |                             |  |  |  |
| Water Strike at 2.6m<br>Dense grey gravel and water strike                                                                                                      | Putpost of Sm_<br>Putpost of Sm_<br>netrouting _<br>- |                                                |             |                             |  |  |  |
| Dense grey gravel and water strike For sites                                                                                                                    | 4m_<br>                                               |                                                |             |                             |  |  |  |
| Borehole terminated at 5m                                                                                                                                       |                                                       |                                                |             |                             |  |  |  |
| <u>Construction Details</u><br>50mm Slotted Standpipe: 1-5mbgl<br>Solid Standpipe: 0mbgl - 1mbgl<br>Gravel filter pack: 0.5 - 5mbgl<br>Bentonite: 0mbgl-0.5mbgl |                                                       |                                                |             |                             |  |  |  |

| BOREH                                                                                                                                                                                                                                                                             | OLE LOG               |                 |                 |                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|-----------------|-----------------------------|
| CONTRACT: Westmeath County Council                                                                                                                                                                                                                                                |                       | LOCATION        | <b>NO.</b> BH-6 |                             |
| LOCATION: Moate                                                                                                                                                                                                                                                                   | DATE: 31/05/          | 2007            |                 |                             |
| GRID REFERENCE:                                                                                                                                                                                                                                                                   |                       |                 |                 |                             |
| DRILLING METHOD: Rotary Percussion                                                                                                                                                                                                                                                |                       |                 |                 |                             |
| DESCRIPTION                                                                                                                                                                                                                                                                       | BOREHOLE<br>DEPTH (m) | SYMBOLIC<br>LOG | SAMPLE TYPE     | DEPTH (m)/<br>Reading (ppm) |
| Gravel fill material<br>Brown sandy clay<br>Sandy gravel<br>Water strike at 3m                                                                                                                                                                                                    | Metres (m)            |                 |                 |                             |
| Borehole terminated at 5m<br>Conserved convictor<br>Conserved convictor<br>Conserved convictor<br>Conserved convictor<br>Construction Details<br>50mm Slotted Standpipe: 1-5mbgl<br>Solid Standpipe: 0mbgl - 1mbgl<br>Gravel filter pack: 0.5 - 5mbgl<br>Bentonite: 0mbgl-0.5mbgl | 4m_<br>               |                 |                 |                             |

| BOREH                                                                                                                                                           | OLE LOG                                                                 |                                            |             |                             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|-------------|-----------------------------|--|--|--|
| CONTRACT: Westmeath County Council                                                                                                                              | LOCATION NO. BH-7                                                       |                                            |             |                             |  |  |  |
| LOCATION: Moate                                                                                                                                                 | DATE: 01/06/                                                            | 2007                                       |             |                             |  |  |  |
| GRID REFERENCE:                                                                                                                                                 | -                                                                       |                                            |             |                             |  |  |  |
| DRILLING METHOD: Rotary Percussion                                                                                                                              |                                                                         |                                            |             |                             |  |  |  |
| DESCRIPTION                                                                                                                                                     | BOREHOLE<br>DEPTH (m)                                                   | SVMBOLIC                                   | SAMPLE TYPE | DEPTH (m)/<br>Reading (ppm) |  |  |  |
| Topsoil                                                                                                                                                         | Metres (m)_                                                             | <u>ah ah ah ah ah ah</u><br>ah ah ah ah ah |             |                             |  |  |  |
| Brown clayey sand and gravel<br>Grey gravel                                                                                                                     | -<br>-<br>1m_<br>-                                                      |                                            |             |                             |  |  |  |
| Brown sandy gravel                                                                                                                                              | <br>2m                                                                  |                                            |             |                             |  |  |  |
| Grey gravel                                                                                                                                                     | -                                                                       | atte to                                    |             |                             |  |  |  |
| Water strike at 2.8m                                                                                                                                            | Putoses of Sm_<br>Putoses of Sm_<br>Metrophic 49m_<br>4m_<br>5m_<br>5m_ |                                            |             |                             |  |  |  |
| Borehole terminated at 5m                                                                                                                                       | _<br>_<br>_<br>6m_<br>_<br>_<br>_                                       |                                            |             |                             |  |  |  |
| <u>Construction Details</u><br>50mm Slotted Standpipe: 1-5mbgl<br>Solid Standpipe: 0mbgl - 1mbgl<br>Gravel filter pack: 0.5 - 5mbgl<br>Bentonite: 0mbgl-0.5mbgl |                                                                         |                                            |             |                             |  |  |  |

## **APPENDIX 3**

Sampling Protocols & Laboratory Results

April 2013 (JOC/BS



18a Rosemount Business Park, Ballycoolin, Dublin 11 Ireland Tel: +353 (0) 1 8829893 Fax: +353 (0) 1 8829895

## **CERTIFICATE OF ANALYSIS**

**Client:** O'Callaghan Moran Associates (Cork)

> **Granary House Rutland Street** Cork Ireland

Attention: **Barry Sexton** 

Date: 31 May, 2007

**Our Reference:** 07-B03175/01

**Your Reference:** 07-045-01

Location: Moate

Spection purpose only any other use. A total of 19 samples was received for analysis on Friday, 11 May 2007 and authorised on Thursday, 31 May 2007. Accredited laboratory tests are defined in the log sheet, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation. We are pleased to enclose our final report, it was a pleasure to be of service to you, and we look forward to our continuing association.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Signed

Ken Scally

horaine als Novery

Lorraine McNamara Laboratory Technical Manager

rah O'Comor

Compiled By

Printed at 10:08 on 05/06/2007

General Manager, Ireland

ALcontrol Geochem Ireland is a trading division of ALcontrol UK Limited.

Norah O'Connor



| ALcontrol    |  |
|--------------|--|
| Laboratories |  |
| es Ireland   |  |

Ref Number: 07-B03175/01

Client: O'Callaghan Moran Associates (Cork)

Date of Receipt: 11/05/2007

Sample Type: SOIL Location: Moate

Client Contact: Barry Sexton

| 07-B03175-S0010-A03 | 07-B03175-S0010-A01 | 07-B03175-S0009-A03 | 07-B03175-S0009-A02 | 07-B03175-S0009-A01 | 07-B03175-S0008-A17 | 07-B03175-S0008-A03 | 07-B03175-S0008-A01 | 07-B03175-S0007-A03 | 07-B03175-S0007-A02 | 07-B03175-S0007-A01 | 07-B03175-S0006-A17 | 07-B03175-S0006-A03 | 07-B03175-S0006-A01 | 07-B03175-S0005-A03 | 07-B03175-S0005-A02 | 07-B03175-S0005-A01 | 07-B03175-S0004-A03 | 07-B03175-S0004-A02 | 07-B03175-S0004-A01 | əɔnərəfəЯ lortrooJA                                                          | UKAS Accredited          |                         | _                     |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------------------------------------------------------------------------|--------------------------|-------------------------|-----------------------|
| TP-4                | TP-4                | TP-3                | TP-3                | TP-3                | TP-3                | TP-3                | TP-3                | TP-2                | TP-2                | TP-2                | TP-2                | TP-2                | TP-2                | TP-1                | TP-1                | TP-1                | TP-1                | TP-1                | TP-1                |                                                                              |                          | Detect                  |                       |
| 1-1.5M              | 1-1.5M              | 2.4-2.6M            | 2.4-2.6M            | 2.4-2.6M            | 0.5-1M              | 0.5-1M              | 0.5-1M              | 3.2-3.5M            | 3.2-3.5M            | 3.2-3.5M            | 1.5-2M              | 1.5-2M              | 1.5-2M              | 3.2-3.6M            | 3.2-3.6M            | 3.2-3.6M            | 1-1.5M              | 1-1.5M              | 1-1.5M              | Other ID                                                                     | [Testing Laboratory] No. | <b>Detection Method</b> |                       |
| Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | γ\q                                                                          | lo. 1291                 |                         |                       |
| ×                   | ı                   | On Hold             | On Hold             | On Hold             | I                   | ×                   | ı                   | On Hold             | On Hold             | On Hold             | 1                   | ×                   | ı                   | On Hold             | CEN 10:1 Leachate Test                                                       |                          | CEN 10:1 Leach          |                       |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     |                     |                     |                     | Dissolved Mercury Low<br>Dissolved Mercury Low<br>Level in CEN 10:1 Leachate |                          | CV AA                   |                       |
| ,                   | Х                   |                     |                     |                     | ı                   | ı                   | ×                   |                     |                     |                     | 1                   | ı                   | ×                   |                     |                     |                     |                     |                     | ŝ                   | Total Organic Carbon                                                         | Ý                        | ELTRA                   |                       |
| ı                   |                     |                     |                     |                     | ×                   |                     | ı                   |                     |                     |                     | ×                   |                     |                     |                     | .č                  |                     | opur                | 100<br>00           | in                  | ХЭТВ & ОЯЧ                                                                   | Ý                        | GC                      |                       |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | 1                   |                     |                     |                     | 1                   | ×                   | 101<br>00           | ns<br>pyr           | 02 (92)<br>201 (92) | 04                  |                     |                     |                     | Mineral Oil by GC                                                            | Ý                        | GC FID/CALC             |                       |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | 1                   |                     |                     | cđ                  | A.S.                | X                   | •                   |                     |                     |                     |                     |                     |                     | Coronene                                                                     |                          | GCMS                    |                       |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | 1                   |                     |                     |                     | 1                   | ×                   |                     |                     |                     |                     |                     |                     |                     | (31) A93 HA9                                                                 | Ý                        | GCMS                    |                       |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | 1                   |                     |                     |                     | 1                   | ×                   | ı                   |                     |                     |                     |                     |                     |                     | PAH Total (۲۲) وCMS<br>(Solid)                                               |                          | GCMS                    | Clie                  |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | 1                   |                     |                     |                     | 1                   | ×                   | ı                   |                     |                     |                     |                     |                     |                     | PAH Total (6) GCMS<br>۲> Colid) وSM) (5) CMS) (5)                            | く                        | GCMS                    | Client Ref: 07-045-01 |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | 1                   |                     |                     |                     | 1                   | ×                   | 1                   |                     |                     |                     |                     |                     |                     | PCB 7 Congeners                                                              |                          | GCMS                    | 07-045                |
| ×                   |                     |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     |                     | ×                   |                     |                     |                     |                     |                     |                     |                     | tnətroC əntəri Moisture Content                                              |                          | GRAVIMETRIC             | -01                   |
| ×                   |                     |                     |                     |                     |                     | ×                   |                     |                     |                     |                     |                     | ×                   |                     |                     |                     |                     |                     |                     |                     | Total Dissolved Solids<br>Gravimetric CEN 10:1                               |                          | GRAVIMETRIC             |                       |
| 2                   | -                   |                     |                     |                     | I                   | 2                   | ı                   |                     |                     |                     | 1                   | 2                   | I                   |                     |                     |                     |                     |                     |                     | Total Phenols by HPLC in<br>CEN 10:1 Leachate                                |                          | HPLC                    |                       |
| ×                   |                     |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     | ı                   | ×                   |                     |                     |                     |                     |                     |                     |                     | Dissolved Antimony Low<br>CEN 10:1 Leach                                     |                          | ICP MS                  |                       |

Notes: NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 10:08 on 05/06/2007

 $\ast$  SUBCONTRACTED TO OTHER LABORATORY /  $\ast$  SAMPLES ANALYSED AT THE CHESTER LABORATORY

page2 / 14

| <b>ALcontrol</b> |  |
|------------------|--|
| Laboratories     |  |
| s Ireland        |  |

## Ref Number: 07-B03175/01

Client: O'Callaghan Moran Associates (Cork)

Date of Receipt: 11/05/2007

Sample Type: SOIL Location: Moate

Client Contact: Barry Sexton

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 1                       |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|-----------------------|
| 02-B03122-2018-701<br>10-2012-2012-2012-2012-2012-2012-2012-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UKAS Accredited |                         |                       |
| 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [Testing        | Detect                  |                       |
| 1-1.5M<br>1-1.5M<br>1.5-2M<br>1-1.5M<br>1.5-2M<br>1-1.5<br>5<br>6M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laboratory] No. | <b>Detection Method</b> |                       |
| ۸/ط<br>Volatile Vial<br>Plastic tub<br>Amber Jar<br>Volatile Vial<br>Plastic tub<br>Amber Jar<br>Volatile Vial<br>Plastic tub<br>Amber Jar<br>Volatile Vial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lo. 1291        |                         |                       |
| CEN 10:1 Leachate Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | CEN 10:1 Leach          |                       |
| Dissolved Mercury Low<br>Dissolved Mercury Low<br>evel in CEN 10:1 Leachate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | CV AA                   |                       |
| <ul> <li>. ×</li> <li>. ×</li> <li>. <sup>1</sup> × /li></ul> | <               | ELTRA                   |                       |
| PRO & BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۲               | GC                      |                       |
| Mineral Oil by GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ٩               | GC FID/CALC             |                       |
| Coronene ' enoro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | GCMS                    |                       |
| · × · (31) A93 HA9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۲               | GCMS                    |                       |
| PAH Total (۲۱) اهدها (۲۱) اهدها (۲۱) اهدها (۲۱) اهدها (۲۱) ا<br>(bilo2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | GCMS                    | Clie                  |
| ' × ' 2MDG (3) IstoT HA9<br>(bilo2) gy/gm3.t>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ۲               | GCMS                    | Client Ref: 07-045-01 |
| PCB 7 Congeners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | GCMS                    | 07-045-               |
| Natural Moisture Content <sup>↓</sup> tratac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | GRAVIMETRIC GRAVIMETRIC | 01                    |
| Total Dissolved Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | GRAVIMETRIC             |                       |
| Total Phenols by HPLC in CEN 10:1 Leachate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | HPLC                    |                       |
| Dissolved Antimony Low ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | ICP MS                  |                       |

Notes: NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 10:08 on 05/06/2007

\* SUBCONTRACTED TO OTHER LABORATORY / \*\* SAMPLES ANALYSED AT THE CHESTER LABORATORY

page3 / 14

| ALCONTROL    |  |
|--------------|--|
| Laboratories |  |
| Ireland      |  |

Ref Number: 07-B03175/01

Client: O'Callaghan Moran Associates (Cork)

Date of Receipt: 11/05/2007

Sample Type: SOIL Location: Moate

Client Contact: Barry Sexton

|  | 07-B03175-S0022-A03 | 07-B03175-S0022-A02 | 07-B03175-S0022-A01 | 07-B03175-S0021-A17 | 07-B03175-S0021-A03 | 07-B03175-S0021-A01 | 07-B03175-S0020-A03 | 07-B03175-S0020-A02 | 07-B03175-S0020-A01 | 07-B03175-S0019-A17 | 07-B03175-S0019-A03 | 07-B03175-S0019-A01 | 07-B03175-S0018-A03 | 07-B03175-S0018-A02 | 07-B03175-S0018-A01 | 07-B03175-S0017-A17 | 07-B03175-S0017-A03 | əɔnərəfəЯ lortrooJA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>UKAS</b> Accredited   |                         |                       |
|--|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|-----------------------|
|  | TP-10               | TP-10               | TP-10               | TP-10               | TP-10               | TP-10               | TP-9                | TP-9                | TP-9                | TP-9                | TP-9                | TP-9                | TP-8                | TP-8                | TP-8                | TP-8                | TP-8                | Sample Identity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Detect                  |                       |
|  | 4.1-4.3M            | 4.1-4.3M            | 4.1-4.3M            | 1-1.5M              | 1-1.5M              | 1-1.5M              | 4-4.2M              | 4-4.2M              | 4-4.2M              | 0.8-1.3M            | 0.8-1.3M            | 0.8-1.3M            | 4.7-4.9M            | 4.7-4.9M            | 4.7-4.9M            | 1-1.5M              | 1-1.5M              | Other ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [Testing Laboratory] No. | Detection Method        |                       |
|  | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Λ/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lo. 1291                 |                         |                       |
|  | On Hold             | On Hold             | On Hold             | ı                   | ×                   | ı                   | On Hold             | On Hold             | On Hold             | I                   | ×                   | ı                   | On Hold             | On Hold             | On Hold             | ı                   | ×                   | CEN 10:1 Leachate Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | CEN 10:1 Leach          |                       |
|  |                     |                     |                     |                     | ×                   |                     |                     |                     |                     | ı                   | ×                   |                     |                     |                     |                     | ı                   | Х                   | کر<br>Dissolved Mercury Low<br>Level in CEN 10:1 Leachate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | CV AA                   |                       |
|  |                     |                     |                     | ı                   | •                   | ×                   |                     |                     |                     | ı                   | ı                   | Х                   |                     |                     |                     | ı                   | Ъ -                 | Development of the second seco | ۲                        | ELTRA                   |                       |
|  |                     |                     |                     | Х                   |                     |                     |                     |                     |                     | ×                   | ı                   | -                   | č                   | ION                 | QUÍ                 | 200                 | dine<br>1           | ХЭТВ & ОЯЧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ۲                        | GC                      |                       |
|  |                     |                     |                     | •                   | ×                   |                     |                     |                     |                     | ' <b>~</b>          | 8                   | 11. CAN             |                     | ~                   |                     |                     | Х                   | Mineral Oil by GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | く                        | GC FID/CALC             |                       |
|  |                     |                     |                     | -                   | ×                   |                     |                     | مى                  | Ber                 | 10°                 | ×                   | -                   |                     |                     |                     | ı                   | Х                   | Coronene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | GCMS                    |                       |
|  |                     |                     |                     | -                   | ×                   | ı                   |                     |                     |                     | ı                   | ×                   | -                   |                     |                     |                     | I                   | Х                   | (31) A93 HA9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ý                        | GCMS                    |                       |
|  |                     |                     |                     | ı                   | ×                   | •                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     | ı                   | Х                   | PAH Total (11) GCMS<br>(Solid)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | GCMS                    | Clie                  |
|  |                     |                     |                     |                     | ×                   |                     |                     |                     |                     | ı                   | ×                   |                     |                     |                     |                     | ı                   | Х                   | PAH Total (6) احدها<br>(bilo2) و۶۹/۵۳۵.۲>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | く                        | GCMS                    | Client Ref: 07-045-01 |
|  |                     |                     |                     | ı                   | ×                   | •                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     | ı                   | Х                   | PCB 7 Congeners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | GCMS                    | 07-045                |
|  |                     |                     |                     | •                   | ×                   | •                   |                     |                     |                     | ı                   | ×                   |                     |                     |                     |                     | ı                   | Х                   | tnətroO ənuteioM lature Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | GRAVIMETRIC             | -01                   |
|  |                     |                     |                     |                     | ×                   |                     |                     |                     |                     |                     | ×                   |                     |                     |                     |                     | 1                   | Х                   | Total Dissolved Solids<br>Gravimetric CEN 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | GRAVIMETRIC GRAVIMETRIC |                       |
|  |                     |                     |                     |                     | 2                   |                     |                     |                     |                     |                     | 2                   |                     |                     |                     |                     |                     | 2                   | Total Phenols by HPLC in<br>CEN 10:1 Leachate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | HPLC                    |                       |
|  |                     |                     |                     | I                   | ×                   | I                   |                     |                     |                     | I                   | ×                   | I                   |                     |                     |                     | I                   | ×                   | Dissolved Antimony Low<br>CEN 10:1 Leach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | ICP MS                  |                       |

Notes: NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 10:08 on 05/06/2007

| ALcontrol    |  |
|--------------|--|
| Laboratories |  |
| Ireland      |  |

Ref Number: 07-B03175/01

Client: O'Callaghan Moran Associates (Cork)

Date of Receipt: 11/05/2007

Location: Moate

Sample Type: SOIL

Client Contact: Barry Sexton

| 07-B03175-S0010-A03 | 07-B03175-S0010-A01 | 07-B03175-S0009-A03 | 07-B03175-S0009-A02 | 07-B03175-S0009-A01 | 07-B03175-S0008-A17 | 07-B03175-S0008-A03 | 07-B03175-S0008-A01 | 07-B03175-S0007-A03 | 07-B03175-S0007-A02 | 07-B03175-S0007-A01 | 07-B03175-S0006-A17 | 07-B03175-S0006-A03 | 07-B03175-S0006-A01 | 07-B03175-S0005-A03 | 07-B03175-S0005-A02 | 07-B03175-S0005-A01 | 07-B03175-S0004-A03 | 07-B03175-S0004-A02 | 07-B03175-S0004-A01 | aonarafaЯ lortrooJA                                              | UKAS Accredited |                         |                       |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------------------------------------------------------------|-----------------|-------------------------|-----------------------|
| TP-4                | TP-4                | TP-3                | TP-3                | TP-3                | TP-3                | TP-3                | TP-3                | TP-2                | TP-2                | TP-2                | TP-2                | TP-2                | TP-2                | TP-1                | TP-1                | TP-1                | TP-1                | TP-1                | TP-1                | γiitn∋bl əlqms2                                                  | [Testing        | Detect                  |                       |
| 1-1.5M              | 1-1.5M              | 2.4-2.6M            | 2.4-2.6M            | 2.4-2.6M            | 0.5-1M              | 0.5-1M              | 0.5-1M              | 3.2-3.5M            | 3.2-3.5M            | 3.2-3.5M            | 1.5-2M              | 1.5-2M              | 1.5-2M              | 3.2-3.6M            | 3.2-3.6M            | 3.2-3.6M            | 1-1.5M              | 1-1.5M              | 1-1.5M              | Other ID                                                         | Laboratory] No. | <b>Detection Method</b> |                       |
| Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | ۸/d                                                              | lo. 1291        |                         |                       |
| ×                   | -                   | On Hold             | On Hold             | On Hold             | ı                   | ×                   | ı                   | On Hold             | On Hold             | On Hold             | ı                   | ×                   |                     | On Hold             | Dissolved Arsenic Low<br>CEN 10:1 Leach                          | く               | ICP MS                  |                       |
| ×                   | -                   |                     |                     |                     | I                   | ×                   | ı                   |                     |                     |                     | I                   | ×                   | ı                   |                     |                     |                     |                     |                     |                     | Dissolved Barium Low                                             |                 | ICP MS                  |                       |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     |                     | ×                   | 1                   |                     |                     |                     |                     |                     | 5                   | Dissolved Cadmium Low<br>Dissolved Cadmium Low<br>CEN 10:1 Leach |                 | ICP MS                  |                       |
| ×                   | -                   |                     |                     |                     | 1                   | ×                   | 1                   |                     |                     |                     |                     | ×                   | •                   |                     | يخ                  | ION                 | Der                 | 100<br>200          | in                  | Dissolved Chromium Low<br>CEN 10:1 Leach                         |                 | ICP MS                  |                       |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     | 1                   | ×                   |                     | ns<br>pyr           | 02 (02)<br>02 (02)  | 04                  |                     |                     |                     | Dissolved Copper Low<br>CEN 10:1 Leach                           |                 | ICP MS                  |                       |
| ×                   | •                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     | cđ                  | 1.º                 | ×                   | •                   |                     |                     |                     |                     |                     |                     | Dissolved Lead Low CEN<br>ז0:1 Leach                             |                 | ICP MS                  |                       |
| ×                   | •                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     |                     | ×                   | •                   |                     |                     |                     |                     |                     |                     | Dissolved Molybdenum<br>Dissolved Molybdenum                     |                 | ICP MS                  |                       |
| ×                   | •                   |                     |                     |                     | ı                   | ×                   | 1                   |                     |                     |                     | 1                   | ×                   | •                   |                     |                     |                     |                     |                     |                     | Dissolved Nickel Low CEN<br>10:1 Leach                           |                 | ICP MS                  | Clie                  |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     |                     | ×                   |                     |                     |                     |                     |                     |                     |                     | Dissolved Selenium Low<br>CEN 10:1 Leach                         |                 | ICP MS                  | Client Ref: 07-045-01 |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     |                     | ×                   |                     |                     |                     |                     |                     |                     |                     | Dissolved Zinc Low CEN<br>1:01 Leach                             |                 | ICP MS                  | 07-045                |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     |                     |                     |                     | Dissolved Organic Carbon<br>in CEN 10:1 Leachate                 |                 | IR                      | -01                   |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     |                     | ×                   |                     |                     |                     |                     |                     |                     |                     | Chloride in CEN 10:1<br>Leachate                                 |                 | KONE                    |                       |
| ×                   | -                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     |                     | ×                   | •                   |                     |                     |                     |                     |                     |                     | Fluoride in CEN 10:1<br>Leachate                                 |                 | KONE                    |                       |
| ×                   | T                   |                     |                     |                     | т                   | ×                   | ı                   |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     |                     |                     |                     | Sulphate in CEN 10:1<br>Leachate                                 |                 | KONE                    |                       |

Notes: NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 10:08 on 05/06/2007

| AT control   |  |
|--------------|--|
| Lahoratories |  |
| Ireland      |  |

| 고        |
|----------|
| 6        |
| ¥.       |
|          |
| ~        |
| <b>_</b> |
| ₹        |
| ¥        |
| ×        |
| 4        |
| •••      |
| 0        |
| 1        |
| _ ^ `    |
| Π        |
| ö        |
| ယ်       |
| Š        |
| ~        |
| රා       |
| Š        |
| Ó        |
| _        |
|          |

Client: O'Callaghan Moran Associates (Cork)

Date of Receipt: 11/05/2007

Location: Moate

Sample Type: SOIL

Client Contact: Barry Sexton

| 07-B03175-S0017-A01 | 07-B03175-S0016-A03 | 07-B03175-S0016-A02 | 07-B03175-S0016-A01 | 07-B03175-S0015-A03 | 07-B03175-S0015-A02 | 07-B03175-S0015-A01 | 07-B03175-S0014-A03 | 07-B03175-S0014-A02 | 07-B03175-S0014-A01 | 07-B03175-S0013-A17 | 07-B03175-S0013-A03 | 07-B03175-S0013-A01 | 07-B03175-S0012-A03 | 07-B03175-S0012-A02 | 07-B03175-S0012-A01 | 07-B03175-S0011-A03 | 07-B03175-S0011-A02 | 07-B03175-S0011-A01 | 07-B03175-S0010-A17 | əɔnəาəîəЯ loาinoɔ⅃A                              | UKAS Accredited |                         |                       |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------------------------------------|-----------------|-------------------------|-----------------------|
| TP-8                | TP-7                | TP-7                | TP-7                | TP-7                | TP-7                | TP-7                | TP-6                | TP-6                | TP-6                | TP-6                | TP-6                | TP-6                | TP-5                | TP-5                | TP-5                | TP-4                | TP-4                | TP-4                | TP-4                | γiitn∋bl əlqms2                                  | [Testing        | Detect                  |                       |
| 1-1.5M              | 3.1-3.3M            | 3.1-3.3M            | 3.1-3.3M            | 1.5-2M              | 1.5-2M              | 1.5-2M              | 2.5-2.6M            | 2.5-2.6M            | 2.5-2.6M            | 1-1.5M              | 1-1.5M              | 1-1.5M              | 1.5-2M              | 1.5-2M              | 1.5-2M              | 2.6-2.8M            | 2.6-2.8M            | 2.6-2.8M            | 1-1.5M              | Other ID                                         | Laboratory] No. | <b>Detection Method</b> |                       |
| Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Λ/d                                              | ło. 1291        |                         |                       |
| ı                   | On Hold             |                     | ×                   |                     | On Hold             |                     | Dissolved Arsenic Low<br>CEN 10:1 Leach          | く               | ICP MS                  |                       |
| ı                   |                     |                     |                     |                     |                     |                     |                     |                     |                     | 1                   | ×                   | ı                   |                     |                     |                     |                     |                     |                     | 1                   | Dissolved Barium Low                             |                 | ICP MS                  |                       |
| ,                   |                     |                     |                     |                     |                     |                     |                     |                     |                     | 1                   | ×                   | ı                   |                     |                     |                     |                     |                     |                     | ،<br>ج              | Dissolved Cadmium Kowy<br>Dissolved Cadmium Kowy |                 | ICP MS                  |                       |
| 1                   |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | ×                   |                     |                     |                     | Ř                   | on                  | QUÍ                 | 100<br>200          | ine<br>i            |                                                  |                 | ICP MS                  |                       |
| ı                   |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | ×                   | '<                  |                     | PN'S                |                     | 070                 |                     |                     |                     | Dissolved Copper Low                             |                 | ICP MS                  |                       |
| ı                   |                     |                     |                     |                     |                     |                     |                     |                     |                     | c'ơ                 | se?                 | 1.0°                |                     |                     |                     |                     |                     |                     |                     | Dissolved Lead Low CEN<br>10:1 Leach             |                 | ICP MS                  |                       |
| ,                   |                     |                     |                     |                     |                     |                     |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     |                     |                     |                     |                     | Dissolved Molybdenum<br>Dissolved Molybdenum     |                 | ICP MS                  |                       |
| ,                   |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | ×                   | ı                   |                     |                     |                     |                     |                     |                     | 1                   | Dissolved Nickel Low CEN<br>10:1 Leach           |                 | ICP MS                  | Clie                  |
| ,                   |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | ×                   | ı                   |                     |                     |                     |                     |                     |                     | 1                   | Dissolved Selenium Low<br>CEN 10:1 Leach         |                 | ICP MS                  | Client Ref: 07-045-01 |
| ,                   |                     |                     |                     |                     |                     |                     |                     |                     |                     | 1                   | ×                   | ı                   |                     |                     |                     |                     |                     |                     | 1                   | Dissolved Zinc Low CEN<br>10:1 Leach             |                 | ICP MS                  | 07-045                |
| 1                   |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | ×                   |                     |                     |                     |                     |                     |                     |                     |                     | Dissolved Organic Carbon<br>in CEN 10:1 Leachate |                 | IR                      | -01                   |
| ,                   |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | ×                   |                     |                     |                     |                     |                     |                     |                     |                     | Chloride in CEN 10:1<br>Leachate                 |                 | KONE                    |                       |
| 1                   |                     |                     |                     |                     |                     |                     |                     |                     |                     |                     | ×                   |                     |                     |                     |                     |                     |                     |                     |                     | Fluoride in CEN 10:1<br>Leachate                 |                 | KONE                    |                       |
| ı                   |                     |                     |                     |                     |                     |                     |                     |                     |                     | I                   | ×                   | I                   |                     |                     |                     |                     |                     |                     | I                   | Sulphate in CEN 10:1<br>Leachate                 |                 | KONE                    |                       |

Notes : NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 10:08 on 05/06/2007

| LCOILL'OI    | Toomtmo        |
|--------------|----------------|
| Laboratories | T a houstoning |
| Inergind     |                |

Ref Number: 07-B03175/01

Client: O'Callaghan Moran Associates (Cork)

Date of Receipt: 11/05/2007

Location: Moate

Sample Type: SOIL

Client Contact: Barry Sexton

|          | 07-B03175-S0022-A03 | 07-B03175-S0022-A02 | 07-B03175-S0022-A01 | 07-B03175-S0021-A17 | 07-B03175-S0021-A03 | 07-B03175-S0021-A01 | 07-B03175-S0020-A03 | 07-B03175-S0020-A02 | 07-B03175-S0020-A01 | 07-B03175-S0019-A17 | 07-B03175-S0019-A03 | 07-B03175-S0019-A01 | 07-B03175-S0018-A03 | 07-B03175-S0018-A02 | 07-B03175-S0018-A01 | 07-B03175-S0017-A17 | 07-B03175-S0017-A03 | əənə1əЯ lo11noɔJA                                | UKAS Accr                                     |                         |                       |
|----------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------------------------------------|-----------------------------------------------|-------------------------|-----------------------|
|          | TP-10               | TP-10               | TP-10               | TP-10               | TP-10               | TP-10               | TP-9                | TP-9                | TP-9                | TP-9                | TP-9                | TP-9                | TP-8                | TP-8                | TP-8                | TP-8                | TP-8                | Sample Identity                                  | UKAS Accredited [Testing Laboratory] No. 1291 | Detect                  |                       |
|          | 4.1-4.3M            | 4.1-4.3M            | 4.1-4.3M            | 1-1.5M              | 1-1.5M              | 1-1.5M              | 4-4.2M              | 4-4.2M              | 4-4.2M              | 0.8-1.3M            | 0.8-1.3M            | 0.8-1.3M            | 4.7-4.9M            | 4.7-4.9M            | 4.7-4.9M            | 1-1.5M              | 1-1.5M              | Other ID                                         | boratory] N                                   | <b>Detection Method</b> |                       |
|          | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | Plastic tub         | Volatile Vial       | Amber Jar           | γ\q                                              | lo. 1291                                      |                         |                       |
| 01111010 | On Hold             | On Hold             | On Hold             | •                   | Х                   | ı                   | On Hold             | On Hold             | On Hold             | ı                   | Х                   | ı                   | On Hold             | On Hold             | On Hold             | ı                   | Х                   | Dissolved Arsenic Low<br>CEN 10:1 Leach          | く                                             | ICP MS                  |                       |
|          |                     |                     |                     |                     | ×                   |                     |                     |                     |                     |                     | X                   |                     |                     |                     |                     |                     | ×                   | Dissolved Barium Low                             |                                               | ICP MS                  |                       |
|          |                     |                     |                     | I                   | Х                   | •                   |                     |                     |                     | ı                   | Х                   | ı                   |                     |                     |                     |                     | <del></del> У Х     | Dissolved Cadmium Kow<br>Dissolved Cadmium Kow   |                                               | ICP MS                  |                       |
|          |                     |                     |                     | ı                   | Х                   |                     |                     |                     |                     | ı                   | Х                   | ı                   | _خ                  | 101                 | QUI                 | 100<br>200          | in X                | Dissolved Chromium Low<br>CEN 10:1 Leach         |                                               | ICP MS                  |                       |
|          |                     |                     |                     | -                   | Х                   |                     |                     |                     |                     | -~                  | 0° %                | ans.                |                     | and and             |                     |                     | Х                   | Dissolved Copper Low<br>CEN 10:1 Leach           |                                               | ICP MS                  |                       |
|          |                     |                     |                     | ı                   | Х                   |                     | (                   | co                  | Ber                 | - 40<br>0           | X                   | ı                   |                     |                     |                     | 1                   | Х                   | Dissolved Lead Low CEN<br>1:01 Leach             |                                               | ICP MS                  |                       |
|          |                     |                     |                     | -                   | Х                   | ı                   |                     |                     |                     | -                   | Х                   | ı                   |                     |                     |                     | ı                   | Х                   | Dissolved Molybdenum<br>Low CEN 10:1 Leach       |                                               | ICP MS                  |                       |
|          |                     |                     |                     | ·                   | Х                   |                     |                     |                     |                     |                     | Х                   | ı                   |                     |                     |                     | ı                   | Х                   | Dissolved Nickel Low CEN<br>10:1 Leach           |                                               | ICP MS                  | Clie                  |
|          |                     |                     |                     | -                   | Х                   | ·                   |                     |                     |                     | -                   | Х                   | ı                   |                     |                     |                     | ·                   | Х                   | Dissolved Selenium Low<br>CEN 10:1 Leach         |                                               | ICP MS                  | Client Ref: 07-045-01 |
|          |                     |                     |                     | -                   | Х                   | ·                   |                     |                     |                     | -                   | Х                   | ı                   |                     |                     |                     | ·                   | Х                   | Dissolved Zinc Low CEN<br>1:01 Leach             |                                               | ICP MS                  | 07-045                |
|          |                     |                     |                     | ·                   | Х                   |                     |                     |                     |                     |                     | Х                   | ı                   |                     |                     |                     | ı                   | Х                   | Dissolved Organic Carbon<br>in CEN 10:1 Leachate |                                               | IR                      | -01                   |
|          |                     |                     |                     | ·                   | Х                   |                     |                     |                     |                     |                     | Х                   | ı                   |                     |                     |                     | ı                   | Х                   | Chloride in CEN 10:1<br>Leachate                 |                                               | KONE                    |                       |
|          |                     |                     |                     | •                   | Х                   | ı                   |                     |                     |                     |                     | Х                   | ı                   |                     |                     |                     | ı                   | Х                   | Fluoride in CEN 10:1<br>Leachate                 |                                               | KONE                    |                       |
|          |                     |                     |                     | ı                   | ×                   | ı                   |                     |                     |                     | I                   | ×                   | ı                   |                     |                     |                     | ı                   | ×                   | Sulphate in CEN 10:1<br>Leachate                 |                                               | KONE                    |                       |

Notes: NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 10:08 on 05/06/2007

## **ALcontrol Laboratories Ireland**

Test Schedule Summary

### Ref Number: 07-B03175/01

## Sample Type: SOIL

Client: O'Callaghan Moran Associates (Cork) Location: Moate Date of Receipt: 11/05/2007 Client Contact: Barry Sexton Client Ref: 07-045-01

| SCHEDULE | METHOD         | TEST NAME                                        | TOTAL |
|----------|----------------|--------------------------------------------------|-------|
|          |                |                                                  |       |
| Х        | CEN 10:1 Leach | CEN 10:1 Leachate Test                           | 7     |
| Х        | CV AA          | Dissolved Mercury Low Level in CEN 10:1 Leachate | 7     |
| Х        | ELTRA          | Total Organic Carbon**                           | 7     |
| Х        | GC             | PRO & BTEX                                       | 7     |
| Х        | GC FID/CALC    | Mineral Oil by GC                                | 7     |
| Х        | GCMS           | Coronene                                         | 7     |
| Х        | GCMS           | PAH EPA (16)                                     | 7     |
| Х        | GCMS           | PAH Total (17) GCMS (Solid)                      | 7     |
| Х        | GCMS           | PAH Total (6) GCMS <1.6mg/kg (Solid)             | 7     |
| Х        | GCMS           | PCB 7 Congeners                                  | 7     |
| Х        | GRAVIMETRIC    | Natural Moisture Content                         | 7     |
| Х        | GRAVIMETRIC    | Total Dissolved Solids Gravimetric CEN 10:1      | 7     |
| Х        | ICP MS         | Dissolved Antimony Low CEN 10:1 Leach            | 7     |
| Х        | ICP MS         | Dissolved Arsenic Low CEN 10:1 Leach             | 7     |
| Х        | ICP MS         | Dissolved Barium Low CEN 10:1 Leach              | 7     |
| Х        | ICP MS         | Dissolved Cadmun Low CEN 10:1 Leach              | 7     |
| Х        | ICP MS         | Dissolved Chromium Low CEN 10:1 Leach            | 7     |
| Х        | ICP MS         | Dissolved Copper Low CEN 10:1 Leach              | 7     |
| Х        | ICP MS         | Dissolved Sead Low CEN 10:1 Leach                | 7     |
| Х        | ICP MS         | Dissolved Molybdenum Low CEN 10:1 Leach          | 7     |
| Х        | ICP MS         | Dissolved Nickel Low CEN 10:1 Leach              | 7     |
| Х        | ICP MS         | Dissolved Selenium Low CEN 10:1 Leach            | 7     |
| Х        | ICP MS         | Dissolved Zinc Low CEN 10:1 Leach                | 7     |
| Х        | IR             | Dissolved Organic Carbon in CEN 10:1 Leachate    | 7     |
| Х        | KONE           | Chloride in CEN 10:1 Leachate                    | 7     |
| Х        | KONE           | Fluoride in CEN 10:1 Leachate                    | 7     |
| Х        | KONE           | Sulphate in CEN 10:1 Leachate                    | 7     |
| 2        | HPLC           | Total Phenols by HPLC in CEN 10:1 Leachate       | 7     |

| Notes :                                                                             | 07-B03175-S0022 | 07-B03175-S0021 | 07-B03175-S0020 | 07-B03175-S0019 | 07-B03175-S0018 | 07-B03175-S0017 | 07-B03175-S0016 | 07-B03175-S0015 | 07-B03175-S0014 | 07-B03175-S0013 | 07-B03175-S0012 | 07-B03175-S0011 | 07-B03175-S0010 | 07-B03175-S0009 | 07-B03175-S0008      | 07-B03175-S0007 | 07-B03175-S0006 | 07-B03175-S0005 | 0/-B031/5-S0004 |                           |       | əonərəfəЯ lonfrooJA                        | <b>UKAS</b> Accredited          |                 |                  |                       |                              |                                             |                          |                  |
|-------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|-----------------|-----------------|---------------------------|-------|--------------------------------------------|---------------------------------|-----------------|------------------|-----------------------|------------------------------|---------------------------------------------|--------------------------|------------------|
| METHOD DETECTION LIMITS ARE NOT ALWAYS ACHIEVABLE DUE TO VARIOUS CIRCUMSTANCES BEYO | TP-10           | TP-10           | TP-9            | TP-9            | TP-8            | TP-8            | TP-7            | TP-7            | TP-6            | TP-6            | TP-5            | TP-4            | TP-4            | TP-3            | TP-3                 | TP-2            | TP-2            | TP-1            |                 | 5                         |       | γiitn∋bl əlqms∂                            | d [Testing Laboratory] No. 1291 | Method          | Detection Method |                       |                              |                                             |                          | Validated        |
| LIMITS ARE NO                                                                       | 4.1-4.3M        | 1-1.5M          | 4-4.2M          | 0.8-1.3M        | 4.7-4.9M        | 1-1.5M          | 3.1-3.3M        | 1.5-2M          | 2.5-2.6M        | 1-1.5M          | 1.5-2M          | 2.6-2.8M        | 1-1.5M          | 2.4-2.6M        | 0.5-1M               | 3.2-3.5M        | 1.5-2M          | 3.2-3.6M        | 1-1.5M          | 1<br>1                    |       | Other ID                                   | ory] No. 1291                   | Detection Limit | lethod           | (of fir               | Date of Receipt: 11/05/2007  |                                             | Ref Nu                   |                  |
| T ALWAYS                                                                            | ı               | <0.0005         | ı               | <0.0005         | ı               | <0.0005         |                 | I               | I               | <0.0005         |                 |                 | <0.0005         | ı               | <0.0005              | I               | <0.0005         |                 |                 | 641/6111                  | ma/ka | Dissolved Mercury Low<br>CEN 10:1 Leachate |                                 | <0.0005mg/kg    | CV AA            | (of first sample)     | Receipt:                     | Client:                                     | Ref Number: 07-B03175/01 |                  |
| ACHIEVAB                                                                            | I               | 1.2             | I               | 1.3             | ı               | 3.1             |                 | I               | I               | 1.5             |                 | I               | ω.<br>ω         | I               | 3.7                  | I               | 1.8             | 1               |                 | ò                         | %     | **nodasi Organic Carbon                    | ٢                               | <0.2%           | ELTRA            |                       | 11/05/2                      | O'Calla                                     | 07-B03                   |                  |
| LE DUE TO                                                                           | ı               | <10             | I               | 55              | ı               | <10             | ,               | ı               | ı               | <10             | ,               | ı               | <10             | ı               | <10                  | ı               | <10             |                 | ,               | 61160                     | ua/ka | Petrol Range Organics<br>C5-C9             | <                               | <10ug/kg        | GC               |                       | 007                          | Client: O'Callaghan Moran Associates (Cork) | 3175/01                  |                  |
| VARIOUS                                                                             | ı               | <10             | I               | <10             | ı               | <10             | ,               | ı               | ı               | <10             | ,               | ı               | <10             | ı               | <10                  | ı               | <10             |                 | ,               | 61160                     | ua/ka | Benzene Struction                          | <                               | <10ug/kg        | GC               |                       |                              | oran Ass                                    |                          |                  |
| CIRCUMST,                                                                           | ı               | <10             | ı               | <10             | ı               | <10             |                 |                 |                 | <10             |                 | ı               | <10             |                 | <10                  |                 | <10             | -V              | Put             | Contraction of the second | Barka | o <sup>r</sup> tort<br>edu əuəzuəg         | <b>ح</b>                        | <10ug/kg        | GC               |                       |                              | ociates                                     |                          | Table            |
| ANCES BEY                                                                           | ı               | <10             | ı               | <10             | 1               | <10             | ,               |                 | ,               | <10             | ,               | ı               | <10             | ۰<br>ا          | <100                 | ast<br>Ni       | · ~ ~ 10        | 0-70-           | de, i           | 641/6m                    | ua/ka | ənəuloT                                    | ۲                               | <10ug/kg        | GC               |                       |                              | (Cork)                                      |                          | Table Of Results |
|                                                                                     | I               | <10             | I               | 11              |                 | <10             | ,               |                 |                 | <10             |                 | ,<br>OR         | ~10             | 05<br> -        | 9 <mark>5</mark> <10 |                 | <10             |                 | ,               | 6.1 / Em                  | ua/ka | Ethylbenzene                               | <                               | <10ug/kg        | GC               |                       |                              |                                             |                          | esults           |
| ND OUR CONTROL.                                                                     | ı               | <10             | ı               | 22              | 1               | <10             | ,               | 1               |                 | <10             | ,               |                 | <10             |                 | <10                  | 1               | <10             |                 | ,               | 64,165                    | ua/ka | ənəlyX lstoT                               | <                               | <10ug/kg        | G                |                       |                              |                                             | 4.5                      |                  |
|                                                                                     | ı               | ^1              | ı               | 125             | ı               | <u>^</u>        | ,               | 1               |                 | 4               | ,               | ı               | 4               | ı               | <u>^</u>             | 1               | ^1              |                 | ,               | 641/611                   | ma/ka | Mineral Oil by GC                          | <                               | <1mg/kg         | GC FID/CALC      | Cli                   | Client (                     | F                                           | Sample                   |                  |
|                                                                                     | I               | 27              | ı               | 67              |                 | 30              |                 |                 |                 | თ               |                 |                 | 68              |                 | 8                    |                 | 6               |                 |                 | 64 16.2                   | ua/ka | ənəlsritiqsM                               | ٢                               | <1ug/kg         | GCMS             | Client Ref: 07-045-01 | Client Contact: Barry Sexton | Location: Moate                             | Sample Type: SOIL        |                  |
| NDP = N                                                                             | ı               | 37              | ı               | 23              |                 | 31              |                 |                 |                 | 7               |                 |                 | 32              |                 | 6                    |                 | 10              |                 | ,               | 6.160                     | ua/ka | ənəlydirdsnəɔA                             | ٢                               | <1ug/kg         | GCMS             | 07-045                | Barry S                      | Moate                                       | SOIL                     |                  |
| O DETERM                                                                            | ı               | 44              | ı               | 73              |                 | 36              | ,               |                 |                 | 20              | ,               |                 | 43              |                 | 26                   |                 | 17              |                 | ,               | 61, /En                   | ua/ka | AcenahthqsnacA                             | ٢                               | <1ug/kg         | GCMS             | -01                   | <i>iexton</i>                |                                             |                          |                  |
| = NO DETERMINATION POSSIBLE                                                         | ı               | 50              | ı               | 73              |                 | 25              |                 | ı               | ı               | ω               |                 |                 | 77              | ı               | 9                    | ı               | ω               |                 | ,               | 6.160                     | ua/ka | Fluorene                                   | ٢                               | <1ug/kg         | GCMS             |                       |                              |                                             |                          |                  |
| OSSIBLE                                                                             | ı               | 212             | ı               | 137             | 1               | 85              |                 | ı               | ı               | 11              | 1               | 1               | 127             | ı               | 13                   | ı               | 18              | 1               |                 | 64,165                    | ua/ka | Phenanthrene                               | ٢                               | <1ug/kg         | GCMS             |                       |                              |                                             |                          |                  |
|                                                                                     | I               | 109             | ı               | 34              | ı               | 32              | 1               | I               | ı               | 4               | ,               |                 | 47              | I               | 4                    | I               | 8               |                 | '               | 61160                     | ua/ka | ənəɔsıdînA                                 | <                               | <1ug/kg         | GCMS             |                       |                              |                                             | ,                        | bage9 /          |

\* SUBCONTRACTED TO OTHER LABORATORY / \*\* SAMPLES ANALYSED AT THE CHESTER LABORATORY

Checked By :

Norah O'Connor

Printed at 10:08 on 05/06/2007

14

Interim

**ALcontrol Laboratories Ireland** 

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | ALco               | ontro                                                                                                                                                           | l Lab                                                                                                                                                           | orate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Irela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                    |                                                                                                                                                                 | Table                                                                                                                                                           | Of Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ref Nu         | mber:                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07-B03   | 175/01             |                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | àmple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                | O'Callaç | yhan Mc            | oran Ass                                                                                                                                                        | ociates                                                                                                                                                         | (Cork)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ۲<br>۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ocation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Moate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Date of F      | leceipt:                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11/05/20 | 007                |                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Client C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ontact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Barry S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | exton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (of firs       | st sample)                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                    |                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Clie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt Ref:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07-045-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Method         | GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GCMS     | GCMS               | GCMS                                                                                                                                                            | GCMS                                                                                                                                                            | GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GCMS                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ction Limit    | <1ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1ug/kg  | <1ug/kg            | <1ug/kg                                                                                                                                                         | <1ug/kg                                                                                                                                                         | <1ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1.6mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <1ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1ug/kg                                                 | <1 ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.6.     | 0.16.1             | 6 16                                                                                                                                                            | 6.16                                                                                                                                                            | 6 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \ <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u></u>                                                 | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| :ory] No. 1291 | <                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <        | <                  | ۲                                                                                                                                                               | <                                                                                                                                                               | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>۲</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Other ID       | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pyrene   | Benzo(a)anthracene | Chrysene                                                                                                                                                        | (א)oznaB+(d)oznaB                                                                                                                                               | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Indeno(123cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dibenzo(ah)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzo(ghi)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Coronene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sHA9 ð IstoT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2HA9 A93 81 IstoT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2HA9 71 IstoT                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ug/kg    | ug/kg              | ug/kg                                                                                                                                                           | Bg/Kg                                                                                                                                                           | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/kg                                                   | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1-1.5M         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •        |                    |                                                                                                                                                                 | ant.                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.2-3.6M       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,        | ·                  |                                                                                                                                                                 |                                                                                                                                                                 | 5419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.5-2M         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73       | 369                | 93                                                                                                                                                              | 252                                                                                                                                                             | $2_{0.127_{\odot}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1265                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.2-3.5M       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                      | '        | ı                  |                                                                                                                                                                 |                                                                                                                                                                 | AN AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.5-1M         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26       | 47                 | 48                                                                                                                                                              | 100                                                                                                                                                             | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 467                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.4-2.6M       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,        | ı                  | ,                                                                                                                                                               | ı                                                                                                                                                               | - <b>&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ı                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1-1.5M         | 506                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 445      | 878                | 667                                                                                                                                                             | 1616                                                                                                                                                            | 824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6547                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.6-2.8M       |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                    | -                                                                                                                                                               |                                                                                                                                                                 | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 00°-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.5-2M         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •        | ·                  | •                                                                                                                                                               | •                                                                                                                                                               | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ،<br>د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1-1.5M         | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31       | 56                 | 43                                                                                                                                                              | 94                                                                                                                                                              | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>ж</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 427                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.5-2.6M       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        | ı                  | ı                                                                                                                                                               | ı                                                                                                                                                               | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ı                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.5-2M         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                    |                                                                                                                                                                 | 1                                                                                                                                                               | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ı                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.1-3.3M       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •        | •                  | •                                                                                                                                                               | •                                                                                                                                                               | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1-1.5M         | 242                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 203      | 396                | 290                                                                                                                                                             | 727                                                                                                                                                             | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2982                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.7-4.9M       |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                    | -                                                                                                                                                               |                                                                                                                                                                 | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.8-1.3M       | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71       | 333                | 111                                                                                                                                                             | 294                                                                                                                                                             | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1667                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4-4.2M         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •        | -                  | -                                                                                                                                                               |                                                                                                                                                                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1-1.5M         | 845                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 808      | 1241               | 956                                                                                                                                                             | 2687                                                                                                                                                            | 1436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10452                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.1-4.3M       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        | 1                  | ı                                                                                                                                                               | T                                                                                                                                                               | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ı                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | Interim       Ref Nu         Validated       Ref Nu         Detection Method       Date of R         Method Detection Limit       (of first of R         TP-1       1.1.5M         TP-2       3.2-3.6M         TP-3       0.5-1M         TP-4       1.5-2M         TP-5       1.5-2M         TP-6       2.4-2.6M         TP-7       3.1-3.3M         TP-8       1-1.5M         TP-8       1.5-2M         TP-8       1.1.5M         TP-9       0.8-1.3M |          |                    | Limber: 07-B03<br>Client: O'Callag<br>Receipt: 11/05/20<br>st sample)<br>st sample)<br>st sample)<br>st sample)<br>ug/kg ug/kg <1ug/kg<br>ug/kg ug/kg ug/kg<br> | Limber: 07-B03<br>Client: O'Callag<br>Receipt: 11/05/20<br>st sample)<br>st sample)<br>st sample)<br>st sample)<br>ug/kg ug/kg <1ug/kg<br>ug/kg ug/kg ug/kg<br> | ALcontrol         Client: O'Callaghan Moran Asso         Receipt: 11/05/2007         st sample)         auaytue.onlj.         auaytu | ALcontrol         Client: O'Callaghan Moran Asso         Receipt: 11/05/2007         st sample)         auaytue.onlj.         auaytu | ALcontrol Laboratories<br>Table Of Results         Table Of Results         Table Of Results         Client: O'Callaghan Moran Associates (Cork)         Seceipt: 11/05/2007         st sample)         GCMS       GCMS | ALcontrol Laboratories IrelaTable Of ResultsTable of Results< | ALCONTROL Laboratories Irelation of the second of the se | ALCONTROL Laboratories Irelation of the second of the se | ALcontrol Laboratorics Irelation of the sults         Table Of Results         Client: 07-B03175/01       Solution for the subscription of the subscriptic of the subscription of the subscription of the sub | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | ALcontrol Laboratories Ireland<br>Table Of Results           Client: Or-B03175/01<br>Client: Or-B03175/01<br>Client: Or-B03175/01         Client: Or-B03175/01<br>Client: Or-B03175/01           Client: Or-B03175/01<br>Client: Or-B03175/01         Social display Moran Associates (Cork)<br>Client: Or-B03175/01         Social display Moran Associates (Cork)<br>Client: Or-B03175/01         Client: Or-B03175/01         Social display Moran Associates (Cork)<br>Client: Or-B03175/01           Client: Or-B03175/01<br>Client Corlading an Moran Associates (Cork)<br>Client Corlading display Moran Associates (Cork)<br>Client Corlading display Moran Associates (Cork)<br>Client Corlading display Moran Associates (Cork)<br>Client Ref: 07-045-01         Client Contact: Barry Sexton<br>Client Ref: 07-045-01           Social display Moran Associates (Cork)<br>Client Carladia display Moran Associates (Cork)<br>Client Ref: 07-045-01         Client Ref: 07-045-01           Social display Moran Associates (Cork)<br>Sign display |

\* SUBCONTRACTED TO OTHER LABORATORY / \*\* SAMPLES ANALYSED AT THE CHESTER LABORATORY

Checked By :

Norah O'Connor

Printed at 10:08 on 05/06/2007

**ALcontrol Laboratories Ireland** 

| Notes :                                                                                     | 07-B03175-S0022 | 07-B03175-S0021 | 07-B03175-S0020 | 07-B03175-S0019 | 07-B03175-S0018 | 07-B03175-S0017 | 07-B03175-S0016 | 07-B03175-S0015 | 07-B03175-S0014 | 07-B03175-S0013 | 07-B03175-S0012 | 07-B03175-S0011 | 07-B03175-S0010 | 07-B03175-S0009                        | 07-B03175-S0008 | 07-B03175-S0007 | 07-B03175-S0006 | 07-B03175-S0005 | 07-B03175-S0004 |        | ALcontrol Reference                            | UKAS Accredite                                |                        |                         | -                     |                              |                                             |                          |             |
|---------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|------------------------------------------------|-----------------------------------------------|------------------------|-------------------------|-----------------------|------------------------------|---------------------------------------------|--------------------------|-------------|
| Notes : METHOD DETECTION LIMITS ARE NOT ALWAYS ACHIEVABLE DUE TO VARIOUS CIRCUMSTANCES BEYO | <br>TP-10       | TP-10           | TP-9            | TP-9            | TP-8            | TP-8            | TP-7            | TP-7            | TP-6            | TP-6            | TP-5            | TP-4            | TP-4            | TP-3                                   | TP-3            | TP-2            | TP-2            | TP-1            | TP-1            |        | γiitnəbl əlqms2                                | UKAS Accredited [Testing Laboratory] No. 1291 | Method Detection Limit | <b>Detection Method</b> |                       |                              |                                             |                          | Validated   |
| LIMITS ARE NO                                                                               | <br>4.1-4.3M    | 1-1.5M          | 4-4.2M          | 0.8-1.3M        | 4.7-4.9M        | 1-1.5M          | 3.1-3.3M        | 1.5-2M          | 2.5-2.6M        | 1-1.5M          | 1.5-2M          | 2.6-2.8M        | 1-1.5M          | 2.4-2.6M                               | 0.5-1M          | 3.2-3.5M        | 1.5-2M          | 3.2-3.6M        | 1-1.5M          |        | Other ID                                       | ory] No. 1291                                 | cion Limit             | lethod                  | (of fir               | Date of Receipt: 11/05/2007  |                                             | Ref Nu                   |             |
| T ALWAYS                                                                                    | ļ               | <1              | I               | 4               |                 | 4               | •               |                 |                 | 4               | ı               |                 | 4               | •                                      | 4               |                 | 4               |                 |                 | ид/кд  | PCB Congener 101                               |                                               | <1ug/kg                | GCMS                    | (of first sample)     | Receipt:                     | Client:                                     | umber:                   |             |
| ACHIEVAB                                                                                    | ļ               | <1              | -               | <u>۵</u>        |                 | 4               |                 |                 |                 | 4               | 1               | 1               | 4               | -                                      | 4               | 1               | 4               |                 |                 | ug/kg  | PCB Congener 118                               |                                               | <1ug/kg                | GCMS                    |                       | 11/05/2                      | Client: O'Callaghan Moran Associates (Cork) | Ref Number: 07-B03175/01 |             |
| LE DUE TO                                                                                   | I               | 4               | -               | <u>۵</u>        | ,               | 4               |                 |                 |                 | 4               | ı               | ı               | 4               | -                                      | 4               | ı               | <u>۵</u>        |                 | 1               | ид/кд  |                                                |                                               | <1ug/kg                | GCMS                    |                       | 2007                         | ghan M                                      | 3175/01                  |             |
| VARIOUS                                                                                     | I               | ^1              | I               | <u>۵</u>        |                 | 4               |                 |                 |                 | -1              | ı               | ı               | 4               | I                                      | 4               | ı               | <u>۵</u>        |                 |                 | ид/кд  |                                                |                                               | <1ug/kg                | GCMS                    |                       |                              | oran As:                                    | -                        |             |
| CIRCUMST                                                                                    | ļ               | ^1              | I               | 4               |                 | 4               |                 |                 |                 | 4               | ı               |                 | 4               | -                                      | 4               |                 | <u>۵</u>        | ~               | pur             | ug/kg  | 0. 2                                           |                                               | <1ug/kg                | GCMS                    |                       |                              | sociates                                    |                          | Table       |
| ANCES BE                                                                                    | I               | ^1              | I               | <u>۵</u>        |                 | 4               |                 |                 |                 | <u>^</u>        |                 |                 | 4               | - 🞸                                    | ^ <u>1</u>      | ASP<br>NI       |                 | 040-            | 1 <sup>01</sup> | ug/kg  | PCB Total of 7<br>Congeners                    |                                               | <1ug/kg                | GCMS                    |                       |                              | (Cork)                                      |                          | Table Of Re |
| YOND OUR                                                                                    | I               | 20.4            |                 | 33.9            | ,               | 65.7            |                 |                 |                 | 25.3            |                 | ,<br>or         | 27/4            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 5<br>31.3       |                 | 20.5            |                 |                 | 0/0    | Vatural Moisture Content                       |                                               | <0.1%                  | GRAVIMETRIC             |                       |                              |                                             |                          | esults      |
| ND OUR CONTROL.                                                                             | ı               | 1684            | ı               | 1750            |                 | 6146            |                 |                 |                 | 2000            |                 |                 | 3725            | -                                      | 3377            |                 | 12511           |                 |                 | під/кд | Total Dissolved Solids in<br>CEN 10:1 Leachate |                                               | <350mg/kg              | C GRAVIMETRIC           |                       |                              |                                             |                          |             |
|                                                                                             | ı               | <0.1            | 1               | <0.1            |                 | <0.1            |                 |                 |                 | <0.1            | 1               |                 | <0.1            |                                        | <0.1            | 1               | <0.1            |                 |                 | під/кд | Total Phenols in CEN<br>1011 Leachate          |                                               |                        | HPLC                    | <u>C</u>              | Client                       | -                                           | Sample                   |             |
|                                                                                             | ļ               | 0.02            | 1               | 0.02            |                 | 0.03            |                 |                 |                 | 0.01            | 1               |                 | 0.08            | ı                                      | 0.07            |                 | 0.03            |                 |                 | під/кд | Dissolved Antimony Low<br>CEN ۱۵:۱ Leach       |                                               | <0.1mg/kg <0.01mg/kg   | ICP MS                  | Client Ref: 07-045-01 | Client Contact: Barry Sexton | Location: Moate                             | Sample Type: SOIL        |             |
| NDP = N                                                                                     | I               | 0.02            | I               | 0.03            | ,               | 0.02            |                 |                 |                 | 0.02            |                 |                 | 0.02            |                                        | 0.02            |                 | <0.01           |                 | 1               | під/кд | Dissolved Arsenic Low<br>CEN 10:1 Leach        | <                                             | g <0.01mg/kg           | ICP MS                  | 07-045                | Barry S                      | Moate                                       | SOIL                     |             |
| IO DETERM                                                                                   | I               | 3.00            |                 | 2.47            | ,               | 3.50            |                 | ,               |                 | 2.31            | 1               |                 | 3.36            |                                        | 2.86            |                 | 2.41            |                 |                 | rng/kg | Dissolved Barium Low                           |                                               | g <0.01mg/kg           | ICP MS                  | -01                   | Sexton                       |                                             |                          |             |
| NO DETERMINATION POSSIBLE                                                                   | I               | <0.004          | I               | <0.004          | ,               | <0.004          |                 |                 |                 | <0.004          | 1               | 1               | <0.004          | •                                      | <0.004          | 1               | <0.004          |                 |                 | під/кд | Dissolved Cadmium Low<br>CEN 10:1 Leach        |                                               | g <0.004mg/kg          | ICP MS                  |                       |                              |                                             |                          |             |
| 'OSSIBLE                                                                                    | 1               | 0.02            |                 | 0.03            |                 | 0.03            |                 |                 |                 | 0.02            | 1               |                 | 0.03            | 1                                      | 0.02            | 1               | 0.02            | 1               |                 | пу/ку  | Dissolved Chromium                             |                                               | g <0.01mg/kg           | ICP MS                  |                       |                              |                                             |                          |             |
|                                                                                             |                 | 0.09            | 1               | 0.24            | 1               | 0.14            |                 | ,               |                 | 0.15            |                 |                 | 0.17            | -                                      | 0.06            | 1               | 0.08            | 1               |                 | тпу/ку | Dissolved Copper Low                           |                                               | g <0.01mg/kg           | ICP MS                  |                       |                              |                                             | nr                       | age11 /     |

\* SUBCONTRACTED TO OTHER LABORATORY / \*\* SAMPLES ANALYSED AT THE CHESTER LABORATORY

14

**ALcontrol Laboratories Ireland** 

Interim

Printed at 10:08 on 05/06/2007

Norah O'Connor

Checked By :

|                     |                                               |                  |                                                      |                                            |                                        |                                            | Tahle                                       | Tahle Of Red                                        | enlte                            | enlte                            |                                  |                              |
|---------------------|-----------------------------------------------|------------------|------------------------------------------------------|--------------------------------------------|----------------------------------------|--------------------------------------------|---------------------------------------------|-----------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|
|                     | ✓ Validated                                   |                  |                                                      |                                            |                                        |                                            | Table                                       | Table Of Re                                         | esults                           |                                  |                                  |                              |
|                     |                                               | Ref Nu           | mber:                                                | 07-B03                                     | Ref Number: 07-B03175/01               |                                            |                                             |                                                     |                                  | 6                                | Sample Type:                     | Type: SOIL                   |
|                     |                                               |                  | Client:                                              | O'Calla                                    | ghan Mu                                | oran As:                                   | Client: O'Callaghan Moran Associates (Cork) | (Cork)                                              |                                  |                                  | Ľ                                | Location: Moate              |
|                     |                                               | Date of Receipt: | teceipt:                                             | 11/05/2007                                 | 007                                    |                                            |                                             |                                                     |                                  |                                  | Client C                         | Client Contact: Barry Sexton |
|                     |                                               | (of firs         | (of first sample)                                    |                                            |                                        |                                            |                                             |                                                     |                                  |                                  | Clie                             | Client Ref: 07-045-01        |
|                     | Detection Method                              | lethod           | ICP MS                                               | ICP MS                                     | ICP MS                                 | ICP MS                                     | ICP MS                                      | IR                                                  | KONE                             | KONE                             | KONE                             |                              |
|                     | Method Detection Limit                        | ion Limit        | ۵ L                                                  |                                            | <0.01                                  |                                            | <0.01mg/kg <0.01mg/kg                       | 20                                                  | <10mg/kg                         | ٥                                | <30mg/kg                         |                              |
| KAS Accredited      | UKAS Accredited [Testing Laboratory] No. 1291 | ry] No. 1291     |                                                      | U.                                         | U.                                     |                                            |                                             |                                                     |                                  |                                  | 66                               |                              |
|                     | - L                                           |                  | ٥                                                    | ]                                          |                                        | a                                          | a                                           |                                                     |                                  |                                  |                                  |                              |
| ALcontrol Reference | γiitnəbl əlqms2                               | Other ID         | סאכטועפַל בפאַל בסא כבא<br>זיז בפאַכא ניז 1:01 ניז ג | Dissolved Molybdenum<br>Low CEN 10:1 Leach | Dissolved Nickel Low<br>CEN 10:1 Leach | روب کو | VED WoL Zinc Low CEN<br>Stor to t:01        | Dissolved Organic<br>Carbon in CEN 10:1<br>Leachate | Chloride in CEN 10:1<br>Leachate | Fluoride in CEN 10:1<br>Leachate | Sulphate in CEN 10:1<br>Leachate |                              |
| 07-B03175-S0004     | TP-1                                          | 1-1.5M           | mg/kg<br>-                                           | mg/kg<br>-                                 | mg/kg<br>-                             | mg/kg<br>-                                 | Mg/Kg                                       | mg/kg                                               | mg/kg<br>-                       | mg/kg<br>-                       | mg/kg<br>-                       |                              |
| 07-B03175-S0005     | TP-1                                          | 3.2-3.6M         | I                                                    | ı                                          |                                        | Ţ                                          | -                                           | 0.40                                                | •                                | ı                                | ı                                |                              |
| 07-B03175-S0006     | TP-2                                          | 1.5-2M           | <0.01                                                | 0.07                                       | 0.06                                   | 0.01                                       | 0.69                                        | 00<br>300                                           | 20                               | <u></u>                          | 8446                             |                              |
| 07-B03175-S0007     | TP-2                                          | 3.2-3.5M         | ı                                                    |                                            |                                        | -                                          |                                             | A. C.           | •                                |                                  |                                  |                              |
| 07-B03175-S0008     | TP-3                                          | 0.5-1M           | <0.01                                                | 0.14                                       | 0.03                                   | 0.03                                       | 0.98                                        | 48                                                  | 32<br>32                         | 4                                | 1486                             |                              |
| 07-B03175-S0009     | TP-3                                          | 2.4-2.6M         | ı                                                    |                                            |                                        | ı                                          | 1                                           | ۰<br>ج                                              | 8<br>'                           | ı                                | •                                |                              |
| 07-B03175-S0010     | TP-4                                          | 1-1.5M           | 0.01                                                 | 0.29                                       | 0.05                                   | <0.01                                      | 1.16                                        | 134                                                 | No.                              | 4                                | 1438                             |                              |
| 07-B03175-S0011     | TP-4                                          | 2.6-2.8M         | ı                                                    | ,                                          |                                        | ı                                          | ı                                           | ,                                                   | -<br>-<br>-                      | 1                                | ı                                |                              |
| 07-B03175-S0012     | TP-5                                          | 1.5-2M           |                                                      |                                            |                                        |                                            |                                             |                                                     |                                  |                                  |                                  |                              |
| 07-B03175-S0013     | TP-6                                          | 1-1.5M           | <0.01                                                | 0.04                                       | 0.02                                   | <0.01                                      | 0.42                                        | 75                                                  | 23                               | 2                                | 299                              |                              |
| 07-B03175-S0014     | TP-6                                          | 2.5-2.6M         | ı                                                    |                                            |                                        | ı                                          | 1                                           |                                                     | •                                | ı                                |                                  |                              |
| 07-B03175-S0015     | TP-7                                          | 1.5-2M           | ı                                                    |                                            |                                        | I                                          | ı                                           | I                                                   | ı                                | I                                | ı                                |                              |
| 07-B03175-S0016     | TP-7                                          | 3.1-3.3M         | 1                                                    |                                            |                                        | 1                                          | 1                                           |                                                     |                                  |                                  |                                  |                              |
| 07-B03175-S0017     | TP-8                                          | 1-1.5M           | 0.01                                                 | 0.18                                       | 0.07                                   | 0.01                                       | 1.67                                        | 97                                                  | 31                               | <1                               | 3747                             |                              |
| 07-B03175-S0018     | TP-8                                          | 4.7-4.9M         |                                                      |                                            |                                        |                                            |                                             |                                                     |                                  |                                  |                                  |                              |
| 07-B03175-S0019     | TP-9                                          | 0.8-1.3M         | 0.01                                                 | 0.21                                       | 0.06                                   | <0.01                                      | 0.56                                        | 155                                                 | 36                               | 2                                | 306                              |                              |
| 07-B03175-S0020     | TP-9                                          | 4-4.2M           | 1                                                    |                                            |                                        | 1                                          |                                             |                                                     |                                  | 1                                |                                  |                              |
| 07-B03175-S0021     | TP-10                                         | 1-1.5M           | <0.01                                                | 0.13                                       | 0.04                                   | <0.01                                      | 0.40                                        | 38                                                  | 32                               | -                                | 494                              |                              |
| 07-B03175-S0022     | TP-10                                         | 4.1-4.3M         | 1                                                    | 1                                          |                                        | I                                          | 1                                           | 1                                                   |                                  | 1                                |                                  |                              |

Checked By :

Norah O'Connor



## APPENDIX

- 1. Results are expressed as mg/kg dry weight (dried at 30°C) on all soil analyses except for the following: NRA Leach tests, flash point, and ammoniacal N<sub>2</sub> by the BRE method, VOC, PRO, Cyanide, Acid Soluble Sulphide, SVOC, DRO, PAH, PCB, TPH CWG, TPH by IR, OFGs and SEM.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. A sub sample of all samples received will be retained free of charge for one month for soils and one month for waters (sample size permitting), but may then be discarded unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, an asbestos screen is done in-house on soils and if no fibres are found will be reported as NFD<sup>-</sup> no fibres detected. If fibres are detected, then identification and quantification is carried out by ALcontrol Technichem or Alcontrol Shutlers in the UK off a sample is suspected of containing asbestos, then drying and crushing will be suspended on that sample until the asbestos results are known. If asbestos is present, then no analysis requiring dry sample are undertaken.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace is present in the volatile sample.
- 8. NDP No Determination Possible due to insufficient/unsuitable sample.
- 9. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 10. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

Last updated February 2005



18a Rosemount Business Park, Ballycoolin, Dublin 11 Ireland Tel: +353 (0) 1 8829893 Fax: +353 (0) 1 8829895

## **CERTIFICATE OF ANALYSIS**

**Client:** O'Callaghan Moran Associates (Cork)

> **Granary House Rutland Street** Cork Ireland

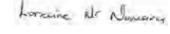
Attention: Michael Watson

Date: 29 June, 2007

**Our Reference:** 07-B04004/01

**Your Reference:** 7045

Location:


pspection purposes on N' any other use. A total of 7 samples was received for analysis on Friday, 15 June 2007 and authorised on Friday, 29 June 2007. Accredited laboratory tests are defined in the log sheet, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation. We are pleased to enclose our final report, it was a pleasure to be of service to you, and we look forward to our continuing association.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Amac Lace

Signed

Ken Scally General Manager, Ireland



**Lorraine McNamara** Laboratory Technical Manager



Compiled By

Cormac Lacey

Printed at 11:59 on 02/07/2007 ALcontrol Geochem Ireland is a trading division of ALcontrol UK Limited. Registered Office: Templeborough House, Mill Close, Rotherham, S60 1BZ. Registered in England and Wales No. 4057291

page1 / 10

| ALcontro        |  |
|-----------------|--|
|                 |  |
| Laboratories Ir |  |
| eland           |  |

## Ref Number: 07-B04004/01

Client: O'Callaghan Moran Associates (Cork)

Date of Receipt: 15/06/2007

Sample Type: WATER Location:

Client Contact: Michael Watson

| 07-B04004-S0005-A14        | 07-B04004-S0005-A12    | 07-B04004-S0005-A02 | 07-B04004-S0005-A01 | 07-B04004-S0004-A18    | 07-B04004-S0004-A12        | 07-B04004-S0004-A02 | 07-B04004-S0004-A01 | 07-B04004-S0003-A14        | 07-B04004-S0003-A12    | 07-B04004-S0003-A02 | 07-B04004-S0003-A01 | 07-B04004-S0002-A14    | 07-B04004-S0002-A10        | 07-B04004-S0002-A02   | 07-B04004-S0002-A01 | 07-B04004-S0001-A14    | 07-B04004-S0001-A10        | 07-B04004-S0001-A02 | 07-B04004-S0001-A01 |    | ALcontrol Reference                      | UKAS Accredited          |                  |                  |
|----------------------------|------------------------|---------------------|---------------------|------------------------|----------------------------|---------------------|---------------------|----------------------------|------------------------|---------------------|---------------------|------------------------|----------------------------|-----------------------|---------------------|------------------------|----------------------------|---------------------|---------------------|----|------------------------------------------|--------------------------|------------------|------------------|
| MW 5                       | MM 2                   | MW 5                | MM 2                | MW 4                   | MW 4                       | MW 4                | MW 4                | MM 3                       | MM 3                   | MM 3                | MM 3                | SW Down                | SW Down                    | SW Down               | SW Down             | AD MS                  | SM Nb                      | SM Nb               | AD MS               | 2  |                                          |                          | Detect           |                  |
| UNKNOWN                    | UNKNOWN                | UNKNOWN             | UNKNOWN             | UNKNOWN                | UNKNOWN                    | UNKNOWN             | UNKNOWN             | UNKNOWN                    | UNKNOWN                | UNKNOWN             | UNKNOWN             | UNKNOWN                | UNKNOWN                    | UNKNOWN               | UNKNOWN             | UNKNOWN                | UNKNOWN                    | UNKNOWN             | UNKNOWN             |    | Other ID                                 | [Testing Laboratory] No. | Detection Method |                  |
| 100ml Plastic Anion Bottle | Plastic Bottle + H2SO4 | Plastic Bottle      | Glass Bottle        | Plastic Bottle + H2SO4 | 100ml Plastic Anion Bottle | Plastic Bottle      | Glass Bottle        | 100ml Plastic Anion Bottle | Plastic Bottle + H2SO4 | Plastic Bottle      | Glass Bottle        | Plastic Bottle + H2SO4 | 100ml Plastic Anion Bottle | <b>Plastic Bottle</b> | <b>Glass Bottle</b> | Plastic Bottle + H2SO4 | 100ml Plastic Anion Bottle | Plastic Bottle      | Glass Bottle        | )  |                                          | lo. 1291                 |                  |                  |
| ,                          | •                      | •                   | On Hold             | 1                      |                            | 1                   | On Hold             | 1                          | 1                      | ×                   | On Hold             |                        | 1                          | ×                     | On Hold             | 1                      | ,                          | ×                   | On Hold             |    | BOD Unfiltered                           | <b>۲</b>                 | 5 DAY ATU        |                  |
| ı                          | •                      | •                   |                     | ı                      | ı                          | ı                   |                     | 1                          | 1                      | ×                   |                     | •                      | ı                          | ı                     |                     | ı                      |                            |                     |                     |    | کی<br>Dissolved Mercury Low<br>Level     |                          | CV AA            |                  |
| ,                          | ı                      | -                   |                     | ı                      | 1                          | ı                   |                     | ı                          | ı                      | ı                   |                     | ı                      | ı                          | ×                     |                     | ı                      | ı                          | ×                   | ŝ                   |    | sbilds bebneque lstoT                    | ۲                        | GRAVIMETRIC      |                  |
| ,                          |                        |                     |                     | ı                      |                            | ı                   |                     | 1                          | 1                      | ı                   |                     |                        |                            | ×                     | _č                  | Nº.                    | QUI<br>QUI                 | 0000                | iir                 |    | Total Hardness (ICP MS)                  |                          | ICP MS           |                  |
|                            |                        | •                   |                     | ı                      |                            | 1                   |                     |                            | 1                      | ×                   |                     | ' <b>‹</b>             |                            | ns<br>pyr             | ejti                | чо<br>-                |                            |                     |                     |    | Wolved Arsenic Low<br>Level              | ٢                        | ICP MS           |                  |
|                            |                        | -                   |                     | ı                      |                            | 1                   |                     |                            |                        | X                   | A-Set               | 10°                    |                            | ı                     |                     | 1                      |                            | ı                   |                     | le | Dissolved Boron Low Leve                 | ٢                        | ICP MS           |                  |
| ,                          |                        | -                   |                     | ı                      |                            | 1                   |                     | ı                          | ı                      | ×                   |                     |                        | ı                          | ı                     |                     | 1                      |                            | ,                   |                     |    | wol muimbsO bəvlossiQ<br>LəvəL           | ٢                        | ICP MS           |                  |
|                            |                        | •                   |                     | ı                      |                            | 1                   |                     |                            | 1                      | ×                   |                     |                        | ı                          | ı                     |                     | 1                      |                            |                     |                     | ,  | wol muimordD bəvləssiD<br>Level          | ۲                        | ICP MS           | Clie             |
| ,                          |                        | -                   |                     | ı                      |                            | 1                   |                     | ŗ                          | ı                      | ×                   |                     |                        | ı                          | ı                     |                     | 1                      |                            | ,                   |                     |    | Dissolved Copper Low<br>Level            | ۲                        | ICP MS           | Client Ref: 7045 |
| ,                          |                        | -                   |                     | ı                      |                            | 1                   |                     | ŗ                          | ı                      | ×                   |                     |                        | ı                          | ı                     |                     | 1                      |                            | ,                   |                     | ŀ  | əvə <b>d wod bead bevlos</b> si <b>D</b> | ۲                        | ICP MS           | 7045             |
| ,                          |                        |                     |                     | ı                      |                            | 1                   |                     | 1                          |                        | ×                   |                     | ı                      | ı                          | ı                     |                     | 1                      | ,                          | 1                   |                     | le | Dissolved Nickel Low Leve                | <b>、</b>                 | ICP MS           |                  |
| ,                          |                        | •                   |                     |                        |                            |                     |                     |                            |                        | ×                   |                     | 1                      | ı                          |                       |                     |                        | 1                          | 1                   |                     |    | woʻl muinələS bəvlossiQ<br>Level         | ۲                        | ICP MS           |                  |
| ,                          |                        | -                   |                     | 1                      |                            | 1                   |                     | ı                          | 1                      | ×                   |                     |                        | ı                          | 1                     |                     | 1                      | ı                          | 1                   |                     | 1  | ləvəJ woJ ɔniZ bəvlossiQ                 | ۲                        | ICP MS           |                  |
| 1                          | ı                      | -                   |                     | ı                      |                            | ı                   |                     | ×                          | ı                      | ı                   |                     | ı                      | ×                          | ı                     |                     | ı                      | ×                          | I                   |                     |    | Chloride                                 | ٢                        | KONE             |                  |

Notes: NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 11:59 on 02/07/2007

\* SUBCONTRACTED TO OTHER LABORATORY / \*\* SAMPLES ANALYSED AT THE CHESTER LABORATORY

page2 / 10

# **ALcontrol Laboratories Ireland**

**Test Schedule** 

## Ref Number: 07-B04004/01

Client: O'Callaghan Moran Associates (Cork)

Date of Receipt: 15/06/2007

Sample Type: WATER Location:

Client Contact: Michael Watson

|  |   |  |  |  |    |     | 07-B04004-S0007-A14        | 07-B04004-S0007-A12    | 07-B04004-S0007-A02 | 07-B04004-S0007-A01 | 07-B04004-S0006-A18    | 07-B04004-S0006-A12        | 07-B04004-S0006-A04 | 07-B04004-S0006-A01 | əənərəfəЯ lortrooJA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UKAS Accredited          |                         |                  |
|--|---|--|--|--|----|-----|----------------------------|------------------------|---------------------|---------------------|------------------------|----------------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|------------------|
|  |   |  |  |  |    |     | MM 2                       | MM 2                   | MM 2                | MM 2                | MM 6                   | MW 6                       | MM 6                | 9 MM                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | Detect                  |                  |
|  |   |  |  |  |    |     | UNKNOWN                    | UNKNOWN                | UNKNOWN             | UNKNOWN             | UNKNOWN                | UNKNOWN                    | UNKNOWN             | UNKNOWN             | Other ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [Testing Laboratory] No. | <b>Detection Method</b> |                  |
|  |   |  |  |  |    |     | 100ml Plastic Anion Bottle | Plastic Bottle + H2SO4 | Plastic Bottle      | Glass Bottle        | Plastic Bottle + H2SO4 | 100ml Plastic Anion Bottle | Plastic Bottle      | <b>Glass Bottle</b> | ۸/ط                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lo. 1291                 |                         |                  |
|  |   |  |  |  |    |     | •                          | •                      | 1                   | On Hold             |                        | I                          | ×                   | •                   | BOD Unfiltered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ٩                        | 5 DAY ATU               |                  |
|  |   |  |  |  |    |     | •                          | •                      | 1                   |                     | •                      | 1                          |                     | ×                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | CV AA                   |                  |
|  |   |  |  |  |    |     | ı                          | ı                      | ı                   |                     | ı                      |                            | 1                   | ۔<br>س              | Protection of the second secon | ۲                        | GRAVIMETRIC             |                  |
|  |   |  |  |  |    |     |                            |                        | 1                   | ہے۔<br>نام          | <u> </u>               | QUÍ<br>QUÍ                 | 100<br>200          | ine<br>i            | Total Hardness (ICP MS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | ICP MS                  |                  |
|  |   |  |  |  |    |     | ' <b>〈</b>                 | کې<br>کې               | ns<br>pyr           | egi<br>P            | 07                     |                            | ×                   | 1                   | Dissolved Arsenic Low<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ٩                        | ICP MS                  |                  |
|  |   |  |  |  | có | Set | 10<br>1                    | 1                      | ı                   |                     | ı                      |                            | ×                   |                     | ləvəl wol noroß bəvlozsiQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٩                        | ICP MS                  |                  |
|  |   |  |  |  |    |     | ı                          | ı                      | ı                   |                     | ı                      |                            | ×                   |                     | wol muimbsƏ bəvloszid<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ٩                        | ICP MS                  |                  |
|  |   |  |  |  |    |     | •                          | •                      | ı                   |                     | ı                      |                            | ×                   | 1                   | woJ muimorid bevlossiD<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٩                        | ICP MS                  | Clie             |
|  |   |  |  |  |    |     | ı                          | ı                      | ı                   |                     | ı                      | •                          | ×                   |                     | Dissolved Copper Low<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ٩                        | ICP MS                  | Client Ref: 7045 |
|  |   |  |  |  |    |     |                            |                        | ı                   |                     | 1                      | •                          | ×                   |                     | ləvəl wol bsəl bəvlossiQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٩                        | ICP MS                  | 7045             |
|  |   |  |  |  |    |     | ı                          | ı                      | ı                   |                     | ı                      | -                          | ×                   |                     | Dissolved Nickel Low Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ٢                        | ICP MS                  |                  |
|  |   |  |  |  |    |     | ı                          | ı                      | ı                   |                     | ı                      | I                          | ×                   |                     | woJ muinələS bəvlossi<br>ləvəJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ٩                        | ICP MS                  |                  |
|  |   |  |  |  |    |     | ı                          | ı                      | ı                   |                     | ı                      | I                          | ×                   |                     | ləvəJ woJ ɔniZ bəvlossiQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٩                        | ICP MS                  |                  |
|  | _ |  |  |  |    |     |                            | ı                      | I                   |                     | I                      | ×                          | I                   | •                   | Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٩                        | KONE                    |                  |

Notes: NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 11:59 on 02/07/2007

| ALcontrol    |  |
|--------------|--|
| Laboratories |  |
| s Ireland    |  |

## Ref Number: 07-B04004/01

Client: O'Callaghan Moran Associates (Cork)

Date of Receipt: 15/06/2007

Sample Type: WATER Location:

Client Contact: Michael Watson

| 07-B040                    | 07-B040                | 07-B040             | 07-B040             | 07-B040                | 07-B040                    | 07-B040             | 07-B040             | 07-B040                    | 07-B040                | 07-B040             | 07-B040             | 07-B040                | 07-B040                    | 07-B040             | 07-B040             | 07-B040                | 07-B040                    | 07-B040             | 07-B040             |                         | Ē                               |                         |                  |
|----------------------------|------------------------|---------------------|---------------------|------------------------|----------------------------|---------------------|---------------------|----------------------------|------------------------|---------------------|---------------------|------------------------|----------------------------|---------------------|---------------------|------------------------|----------------------------|---------------------|---------------------|-------------------------|---------------------------------|-------------------------|------------------|
| 07-B04004-S0005-A14        | 07-B04004-S0005-A12    | 07-B04004-S0005-A02 | 07-B04004-S0005-A01 | 07-B04004-S0004-A18    | 07-B04004-S0004-A12        | 07-B04004-S0004-A02 | 07-B04004-S0004-A01 | 07-B04004-S0003-A14        | 07-B04004-S0003-A12    | 07-B04004-S0003-A02 | 07-B04004-S0003-A01 | 07-B04004-S0002-A14    | 07-B04004-S0002-A10        | 07-B04004-S0002-A02 | 07-B04004-S0002-A01 | 07-B04004-S0001-A14    | 07-B04004-S0001-A10        | 07-B04004-S0001-A02 | 07-B04004-S0001-A01 | ALcontrol Reference     | <b>UKAS</b> Accredited          |                         |                  |
| MW 5                       | MM 2                   | MM 2                | MW 5                | MW 4                   | MW 4                       | MW 4                | MW 4                | MM 3                       | MM 3                   | MM 3                | MM 3                | SW Down                | SW Down                    | SW Down             | SW Down             | SM Nb                  | SM Nb                      | SM Nb               | SM UP               | Sample اdentity         | edited [Testing Laboratory] No. | Detecti                 |                  |
| UNKNOWN                    | UNKNOWN                | UNKNOWN             | UNKNOWN             | UNKNOWN                | UNKNOWN                    | UNKNOWN             | UNKNOWN             | UNKNOWN                    | UNKNOWN                | UNKNOWN             | UNKNOWN             | UNKNOWN                | UNKNOWN                    | UNKNOWN             | UNKNOWN             | UNKNOWN                | UNKNOWN                    | UNKNOWN             | UNKNOWN             | Other ID                | boratory] N                     | <b>Detection Method</b> |                  |
| 100ml Plastic Anion Bottle | Plastic Bottle + H2SO4 | Plastic Bottle      | Glass Bottle        | Plastic Bottle + H2SO4 | 100ml Plastic Anion Bottle | Plastic Bottle      | Glass Bottle        | 100ml Plastic Anion Bottle | Plastic Bottle + H2SO4 | Plastic Bottle      | Glass Bottle        | Plastic Bottle + H2SO4 | 100ml Plastic Anion Bottle | Plastic Bottle      | <b>Glass Bottle</b> | Plastic Bottle + H2SO4 | 100ml Plastic Anion Bottle | Plastic Bottle      | Glass Bottle        | Λ/d                     | 0. 1291                         |                         |                  |
| ·                          |                        |                     | On Hold             | ı                      | ı                          | ı                   | On Hold             | ×                          | ı                      | ı                   | On Hold             | ı                      | ı                          | ı                   | On Hold             | ļ                      | ļ                          | I                   | On Hold             | Fluoride                |                                 | KONE                    |                  |
| 1                          | ı                      | ı                   |                     | ı                      | ı                          | ı                   |                     | ı                          | 1                      | ı                   |                     | ı                      | ×                          | ı                   |                     | 1                      | ×                          | 1                   |                     | vitrate as NO3          | く                               | KONE                    |                  |
| •                          |                        | •                   |                     | ı                      | ı                          | ı                   |                     | ×                          | 1                      | ı                   |                     |                        | ×                          | ı                   |                     |                        | ×                          | 1                   | e,                  | ortho Phosphateas NO3   | <b>۲</b>                        | KONE                    |                  |
| •                          |                        | ı                   |                     | ı                      | ı                          | ı                   |                     | ×                          | ı                      | ı                   |                     | ı                      | ı                          | ı                   | حظٰ                 | 100                    | QUÍ<br>QUÍ                 | 100<br>200          | ir                  | ₽ŧshqlu2                | <b>&lt;</b>                     | KONE                    |                  |
|                            | ı                      | ı                   |                     | ı                      | ı                          | ı                   |                     | Х                          | ı                      | ı                   |                     | ' <b>~</b>             | ئەر<br>ئى                  | ns<br>pyr           |                     | чо<br>-                | 1                          | 1                   |                     | nəgoriiN bəsibixO lstoT | く                               | KONE                    |                  |
|                            | 1                      | ı                   |                     | ı                      | ı                          | ı                   |                     | ı                          |                        | X                   | Ser                 | 10°                    | •                          | ×                   |                     |                        |                            | ×                   |                     | Conductivity            | く                               | METER                   |                  |
| •                          | •                      | •                   |                     | ı                      | ı                          | ı                   |                     | ı                          | 1                      | Х                   |                     | ı                      | ı                          | ×                   |                     |                        |                            | X                   |                     | nəgyxO bəvlosziQ        |                                 | METER                   |                  |
| •                          |                        |                     |                     | ı                      | ı                          | ı                   |                     | ı                          | 1                      | ×                   |                     | 1                      | 1                          | ×                   |                     | 1                      | 1                          | ×                   |                     | (biupiJ) Hq             | <b>۲</b>                        | METER                   | Clie             |
|                            |                        |                     |                     | ı                      | ı                          |                     |                     | 1                          | ×                      | 1                   |                     | ×                      |                            | ı                   |                     | ×                      |                            |                     |                     | nəporiacal Nitrogen     | く                               | SPECTRO                 | Client Ref: 7045 |
| ı                          | ı                      | ı                   |                     | ı                      | ı                          | ı                   |                     | ı                          | ı                      | Х                   |                     | ı                      | ı                          | Х                   |                     | ı                      | ı                          | Х                   |                     | COD Unfiltered          | <b>~</b>                        | SPECTRO SPECTRO SPECTRO | 7045             |
|                            |                        |                     |                     | ı                      | ı                          | 1                   |                     |                            | 1                      | ×                   |                     |                        |                            | ı                   |                     |                        |                            |                     |                     | əbinsy3 IstoT           |                                 | SPECTRO                 |                  |
| 1                          | ı                      | ı                   |                     | I                      | I                          | ı                   |                     | ı                          | ı                      | ×                   |                     | ı                      | ı                          | I                   |                     | ı                      | ı                          | I                   |                     | γjinils≯IA              | <b>۲</b>                        | TITRATION               |                  |
|                            |                        |                     |                     |                        |                            |                     |                     |                            |                        |                     |                     |                        |                            |                     |                     |                        |                            |                     |                     |                         |                                 | _                       |                  |
|                            |                        |                     |                     |                        |                            |                     |                     |                            |                        |                     |                     |                        |                            |                     |                     |                        |                            |                     |                     |                         |                                 |                         |                  |

Notes: NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 11:59 on 02/07/2007

# **ALcontrol Laboratories Ireland**

**Test Schedule** 

Ref Number: 07-B04004/01

Client: O'Callaghan Moran Associates (Cork)

Date of Receipt: 15/06/2007

Sample Type: WATER Location:

Client Contact: Michael Watson

|  |  |  |  |  |    |     | 07-B04004-S0007-A14        | 07-B04004-S0007-A12    | 07-B04004-S0007-A02 | 07-B04004-S0007-A01 | 07-B04004-S0006-A18    | 07-B04004-S0006-A12        | 07-B04004-S0006-A04 | 07-B04004-S0006-A01 | ALcontrol Reference     | UKAS Accr                                     |                                   | _                |
|--|--|--|--|--|----|-----|----------------------------|------------------------|---------------------|---------------------|------------------------|----------------------------|---------------------|---------------------|-------------------------|-----------------------------------------------|-----------------------------------|------------------|
|  |  |  |  |  |    |     | MM 2                       | MM 2                   | MM 2                | MM 2                | MW 6                   | MW 6                       | MW 6                | 9 MM                | ۲itnəbl əlqms2          | UKAS Accredited [Testing Laboratory] No. 1291 | Detect                            |                  |
|  |  |  |  |  |    |     | UNKNOWN                    | UNKNOWN                | UNKNOWN             | UNKNOWN             | UNKNOWN                | UNKNOWN                    | UNKNOWN             | UNKNOWN             | Other ID                | boratory] l                                   | <b>Detection Method</b>           |                  |
|  |  |  |  |  |    |     | 100ml Plastic Anion Bottle | Plastic Bottle + H2SO4 | Plastic Bottle      | Glass Bottle        | Plastic Bottle + H2SO4 | 100ml Plastic Anion Bottle | Plastic Bottle      | Glass Bottle        | ۸/d                     | Vo. 1291                                      |                                   |                  |
|  |  |  |  |  |    |     | I                          | 1                      | 1                   | On Hold             | 1                      | ×                          | ı                   |                     | Fluoride                |                                               | KONE                              |                  |
|  |  |  |  |  |    |     |                            |                        | ı                   |                     | •                      | •                          | ı                   |                     | Nitrate as NO3          | ۲                                             | KONE                              |                  |
|  |  |  |  |  |    |     | •                          | •                      | •                   |                     | •                      | ×                          | 1                   | ہے -<br>م           | N. Handling Prospheres  | <b>۲</b>                                      | KONE                              |                  |
|  |  |  |  |  |    |     | •                          | •                      | 1                   | eč                  | 101                    | der<br>Auf                 | 100<br>200          | in                  | ətshqlu2                | <b>۲</b>                                      | KONE                              |                  |
|  |  |  |  |  |    |     | ' <b>~</b>                 | م<br>م                 | ang<br>Ng           | ec)<br>gjil         | -<br>10<br>-           | ×                          |                     |                     | Total Oxidised Nitrogen | <b>۲</b>                                      | KONE                              |                  |
|  |  |  |  |  | cđ | Ber | ×0                         | •                      | •                   |                     | •                      | •                          | ×                   |                     | Conductivity            | <b>۲</b>                                      | METER                             |                  |
|  |  |  |  |  |    |     | ı                          | •                      | ı                   |                     | •                      | •                          | ×                   | 1                   | nəgyxO bəvlossiO        |                                               | METER                             |                  |
|  |  |  |  |  |    |     | •                          | •                      | ı                   |                     | •                      | •                          | ×                   |                     | (biupiJ) Hq             | <b>۲</b>                                      | METER                             | Clie             |
|  |  |  |  |  |    |     | •                          | •                      | ı                   |                     | ×                      | •                          | 1                   |                     | nəponiscal Nitrogen     | <b>۲</b>                                      | SPECTRO SPECTRO SPECTRO TITRATION | Client Ref: 7045 |
|  |  |  |  |  |    |     | •                          | •                      | ı                   |                     | •                      | •                          | ×                   |                     | COD Unfiltered          | <b>۲</b>                                      | SPECTRO                           | 7045             |
|  |  |  |  |  |    |     | •                          | •                      | ı                   |                     | •                      | •                          | 1                   | ×                   | Total Cyanide           |                                               | SPECTRO                           |                  |
|  |  |  |  |  |    |     | •                          | •                      | ı                   |                     | •                      | •                          | ×                   | 1                   | ۲inilsאlA کالا          | <b>۲</b>                                      | TITRATION                         |                  |
|  |  |  |  |  |    |     |                            |                        |                     |                     |                        |                            |                     |                     |                         |                                               |                                   |                  |
|  |  |  |  |  |    |     |                            |                        |                     |                     |                        |                            |                     |                     |                         |                                               |                                   |                  |

Notes: NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

Printed at 11:59 on 02/07/2007

## **ALcontrol Laboratories Ireland**

Test Schedule Summary

### Ref Number: 07-B04004/01

## Sample Type: WATER

Client: O'Callaghan Moran Associates (Cork) Location: Date of Receipt: 15/06/2007 Client Contact: Michael Watson Client Ref: 7045

| SCHEDULE | METHOD      | TEST NAME                                                                                                   | TOTAL |
|----------|-------------|-------------------------------------------------------------------------------------------------------------|-------|
| Х        | 5 DAY ATU   | BOD Unfiltered                                                                                              | 4     |
| x        | CV AA       |                                                                                                             |       |
| X        |             | Dissolved Mercury Low Level                                                                                 | 2     |
|          | GRAVIMETRIC | Total Suspended Solids                                                                                      | 2     |
| X        | ICP MS      | Total Hardness (ICP MS)                                                                                     | 2     |
| X        | ICP MS      | Dissolved Arsenic Low Level                                                                                 | 2     |
| Х        | ICP MS      | Dissolved Boron Low Level                                                                                   | 2     |
| Х        | ICP MS      | Dissolved Cadmium Low Level                                                                                 | 2     |
| Х        | ICP MS      | Dissolved Chromium Low Level                                                                                | 2     |
| Х        | ICP MS      | Dissolved Copper Low Level                                                                                  | 2     |
| Х        | ICP MS      | Dissolved Lead Low Level                                                                                    | 2     |
| Х        | ICP MS      | Dissolved Nickel Low Level                                                                                  | 2     |
| Х        | ICP MS      | Dissolved Selenium Low Level                                                                                | 2     |
| Х        | ICP MS      | Dissolved Zinc Low Leven Trans<br>Chloride<br>Fluoride<br>Nitrate as NO3 ion perfective<br>ortho Phosphates | 2     |
| Х        | KONE        | Chloride                                                                                                    | 4     |
| Х        | KONE        | Fluoride out duit                                                                                           | 2     |
| Х        | KONE        | Nitrate as NO3 of the                                                                                       | 2     |
| Х        | KONE        | ortho Phosphate                                                                                             | 4     |
| Х        | KONE        | Sulphate                                                                                                    | 2     |
| Х        | KONE        | Total Oxidised Nitrogen                                                                                     | 2     |
| Х        | METER       | Conductivity                                                                                                | 4     |
| Х        | METER       | Dissofved Oxygen                                                                                            | 4     |
| Х        | METER       | p₩(Liquid)                                                                                                  | 4     |
| Х        | SPECTRO     | Ammoniacal Nitrogen                                                                                         | 4     |
| Х        | SPECTRO     | COD Unfiltered                                                                                              | 4     |
| Х        | SPECTRO     | Total Cyanide                                                                                               | 2     |
| Х        | TITRATION   | Alkalinity                                                                                                  | 2     |

| 07-B04004-S0007 | 07-B04004-S0006 | 07-B04004-S0005    | 07-B04004-S0004 | 07-B04004-S0003 | 07-B04004-S0002 | 07-B04004-S0001 |       | əonərəfə lorfrool A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UKAS Accredite                                |                        |                  | _                 |                                |                                             |                          |              |
|-----------------|-----------------|--------------------|-----------------|-----------------|-----------------|-----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------|------------------|-------------------|--------------------------------|---------------------------------------------|--------------------------|--------------|
| MW 7            | 9 MM            | MM 2               | MW 4            | 5 MM            | SW Down         | AD MS           |       | γiin∋bl ∍lqms2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UKAS Accredited [Testing Laboratory] No. 1291 | Method Detection Limit | Detection Method |                   |                                |                                             |                          | ✓ Validated  |
| UNKNOWN         | UNKNOWN         | UNKNOWN            | UNKNOWN         | UNKNOWN         | UNKNOWN         | UNKNOWN         |       | Other ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ory] No. 1291                                 | tion Limit             | lethod           | (of fir           | Date of Receipt: 15/06/2007    |                                             | Ref Nu                   |              |
| I               | ω               | I                  | I               | 11              | ы               | 4               | mg/l  | BOD Unfiltered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>۲</b>                                      | <2mg/l                 | 5 DAY ATU        | (of first sample) | Receipt:                       | Client:                                     | Ref Number: 07-B04004/01 |              |
| ı               | <0.05           | ı                  |                 | <0.05           |                 |                 | l/bn  | Dissolved Mercury Low<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | <0.05ug/1              | CV AA            |                   | 15/06/2                        | 0'Calla                                     | 07-B0                    |              |
| ŗ               |                 | ı                  | ı               |                 | <10             | 60              | mg/l  | sbiloS bəbnəqsuS lstoT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>ح</b>                                      | <10mg/l                | GRAVIMETRIC      |                   | 007                            | ghan M                                      | 4004/0                   |              |
|                 |                 | 1                  |                 |                 | 374             | 394             | mg/l  | 222 Construction of the second |                                               | <1mg/l                 | ICP MS           |                   |                                | Client: O'Callaghan Moran Associates (Cork) | -                        |              |
| 1               | 4               | ı                  | 1               | <u>^</u>        | -               | QUIT            | 000/K | wol SinestA bevlossid<br>Stop<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>ح</b>                                      | <1ug/1                 | ICP MS           |                   |                                | sociates                                    |                          | Table        |
|                 | 50<br>�         | 5                  | ASC<br>NI       | 3050A           | 04              | ter<br>'        | l/gn  | Wol Roron Low<br>Lêvel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>ح</b>                                      | <3ug/l                 | ICP MS           |                   |                                | (Cork)                                      |                          | Table Of Res |
| tonser          | × 0.4           | <del>کن</del><br>' | ,               | <0.4            | ,               |                 | l/gn  | woʻl muimbsʻð bəvlossið<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>ح</b>                                      | <0.4ug/l               | ICP MS           |                   |                                |                                             |                          | esults       |
|                 | ω               | 1                  |                 | 7               |                 |                 | l/gn  | muimord Chromium<br>Low Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>ح</b>                                      | <1ug/l                 | ICP MS           |                   |                                |                                             |                          |              |
|                 | 4               | 1                  |                 | 4               |                 |                 | l/gn  | Dissolved Copper Low<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>ح</b>                                      | <1ug/l                 | ICP MS           | C                 | Client                         | _                                           | Sample                   |              |
|                 | 4               | 1                  | 1               | 4               | ı               |                 | l/gn  | woʻl bsə'l bəvloszi<br>Ləvəl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>ح</u>                                      | <1ug/l                 | ICP MS           | Client Ref: 7045  | Client Contact: Michael Watson | Location:                                   | Sample Type: WATER       |              |
|                 | 2               |                    |                 | 8               |                 |                 | l/gn  | Dissolved Nickel Low<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>ح</b>                                      | <1ug/l                 | ICP MS           | 7045              | Michae                         |                                             | WATE                     |              |
|                 | 2               | 1                  |                 | 2               |                 |                 | l/gn  | woʻl muinələS bəvlozsiQ<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>ح</u>                                      | <1ug/l                 | ICP MS           |                   | l Watso                        |                                             | R                        |              |
|                 | 10              | ,                  |                 | 17              |                 |                 | l/gn  | woʻl oni Z bəvlossi<br>Ləvə L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>۲</b>                                      | <1ug/l                 | ICP MS           |                   | Ď                              |                                             |                          |              |
|                 | 29              |                    | ı               | 22              | 17              | 29              | mg/l  | Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>ح</u>                                      | <1mg/l                 | KONE             |                   |                                |                                             |                          |              |
|                 | 0.2             | ,                  | 1               | <0.1            | ,               |                 | mg/l  | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               | <0.1mg/                | KONE             |                   |                                |                                             |                          | 0age7 / 1    |

Checked By : Cormac Lacey

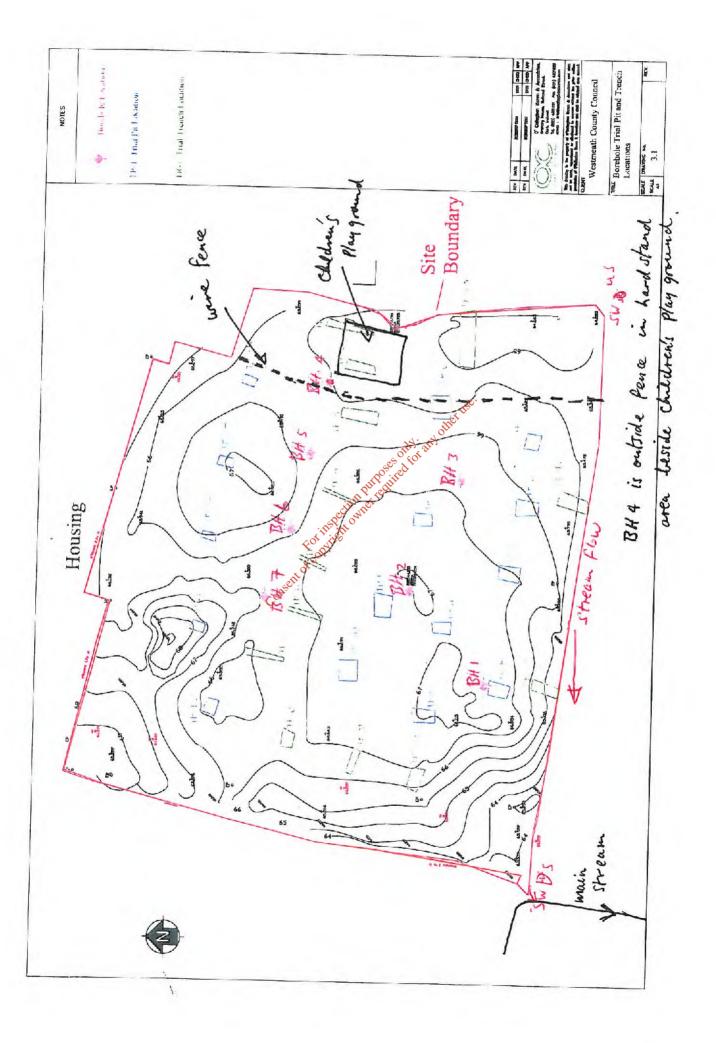
page7 / 10

Interim

**ALcontrol Laboratories Ireland** 

| 07-204004-20007 | 07-B04004-S0006 | 07-B04004-S0005 | 07-B04004-S0004 | 07-B04004-S0003 | 07-B04004-S0002 | 07-B04004-S0001 |          | əonərəfəЯ lorirooJA                                                             | <b>UKAS Accredit</b>                          |                        |                               |                   |                                |                                             |                          |                  |                     |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|---------------------------------------------------------------------------------|-----------------------------------------------|------------------------|-------------------------------|-------------------|--------------------------------|---------------------------------------------|--------------------------|------------------|---------------------|
| MM /            | 0 MM            | MW 5            | MW 4            | MW 3            | SW Down         | SM Nb           |          | Viitnəbl əlqmsZ                                                                 | UKAS Accredited [Testing Laboratory] No. 1291 | Method Detection Limit | Detection Method              |                   |                                |                                             |                          | ✓ Validated      | Interim             |
|                 | UNKNOWN         | UNKNOWN         | UNKNOWN         | UNKNOWN         | UNKNOWN         | UNKNOWN         |          | Other ID                                                                        | ory] No. 1291                                 | tion Limit             | <b>1ethod</b>                 | (of fir           | Date of Receipt: 15/06/2007    |                                             | Ref Nu                   |                  |                     |
| 1               | 17              | 3 '             |                 | 164             |                 |                 | mg/l     | ətsdin2                                                                         | <b>۲</b>                                      | <3mg/l                 | KONE                          | (of first sample) | Receipt:                       | Client:                                     | umber:                   |                  |                     |
| 1               | 0.05            | )<br>) '        |                 | 0.03            | 0.06            | <0.03           | mg/l     | ortho Phosphate as PO4                                                          | ٩                                             | <0.03mg/l              | KONE                          |                   | 15/06/2                        | Client: O'Callaghan Moran Associates (Cork) | Ref Number: 07-B04004/01 |                  |                     |
|                 |                 | ,               |                 | ı               | 8.9             | 19.2            | mg/l     | Vitrate as NO3                                                                  | <                                             | <0.3mg/l               | KONE                          |                   | 2007                           | ghan M                                      | 4004/01                  |                  | ALc                 |
|                 | و.د             | ,<br>,          |                 | <0.3            |                 |                 | mg/l     | C)<br>C)<br>C)<br>C)<br>C)<br>C)<br>C)<br>C)<br>C)<br>C)<br>C)<br>C)<br>C)<br>C | <                                             | <0.3mg/l               | KONE                          |                   |                                | oran As:                                    |                          |                  | ontro               |
| ,               | 0./5/           | ,<br>,<br>,     | ı               | 1.584           | 0.711 ¢         |                 | ms/cm    | Conductivity (at 25 deg.                                                        | ٩                                             | <0.014mS/cm            | METER                         |                   |                                | sociates                                    |                          | Table            | l Lat               |
| ,               | 4.8 🗸           | 202             | AST<br>VI       | ·V. 4.0         | 0 HO.1          | 6.2             | mg/l     | nəgyxO bəvlozsiQ                                                                |                                               | <0.1mg/l               | METER                         |                   |                                | (Cork)                                      |                          | Table Of Results | ALcontrol Laborator |
| ONSE            | 0.0J            |                 |                 | 7.33            | 8.19            | 7.59            | pH Units | Hq                                                                              | <b>۲</b>                                      | napH Units             | METER                         |                   |                                |                                             |                          | esults           | ies                 |
|                 | ^               | ,<br>,<br>,     |                 | <0.05           |                 |                 | mg/l     | €Dinsγጋ IstoT                                                                   |                                               | <0.05mg/l              | SPECTRO                       |                   |                                |                                             |                          |                  | Ireland             |
|                 | <0.2            | о ,<br>)        |                 | 3.7             | <0.2            | <0.2            | mg/l     | ss nəporix listroqma<br>N                                                       | <                                             | <0.2mg/l               | SPECTRO                       | Cli               | Client (                       | F                                           | Sample                   |                  | nd                  |
| ,               | 43/             |                 |                 | 4063            | 17              | 46              | mg/l     | COD Unfiltered                                                                  | <                                             | <15mg/l                | SPECTRO                       | Client Ref: 7045  | Client Contact: Michael Watson | Location:                                   | Sample Type: WATER       |                  |                     |
|                 | 790             | )<br>)<br>)     |                 | 614             |                 |                 | mg/l     | Bicarbonate Alk. as<br>CaCO3                                                    | ٩                                             | <1mg/l                 | TITRATION                     | 7045              | Michae                         |                                             | WATE                     |                  |                     |
| 1               | -1              | . '             | ı               | ^1              |                 | ı               | mg/l     | Carbonate Alk. as CaCO3                                                         | <b>۲</b>                                      | <1mg/l                 |                               |                   | l Watsor                       |                                             | ਸ                        |                  |                     |
| ,               | <1              | . '             | ı               | ^1              |                 |                 | mg/l     | Hydroxide Alkalinity as<br>CaCO3                                                | <b>۲</b>                                      | <1mg/l                 | TITRATION TITRATION TITRATION |                   | ر                              |                                             |                          |                  |                     |
| 1               | 200             | )<br>)<br>)     | ı               | 614             |                 | ı               | mg/l     | Total Alkalinity as CaCO3                                                       | <b>۲</b>                                      | <1mg/l                 | TITRATION                     |                   |                                |                                             |                          |                  |                     |
| •               | 260             |                 | •               | 614             |                 | •               | mg/l     | Total Alkalinity as CaCO3                                                       | <b>۲</b>                                      | <1mg/l                 | <b>TTRATION</b>               |                   |                                |                                             |                          | bage8 /          | 10                  |

Checked By : Cormac Lacey


page8 / 10



## APPENDIX

- 1. Results are expressed as mg/kg dry weight (dried at 30°C) on all soil analyses except for the following: NRA Leach tests, flash point, and ammoniacal N<sub>2</sub> by the BRE method, VOC, PRO, Cyanide, Acid Soluble Sulphide, SVOC, DRO, PAH, PCB, TPH CWG, TPH by IR, OFGs and SEM.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. A sub sample of all samples received will be retained free of charge for one month for soils and one month for waters (sample size permitting), but may then be discarded unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, an asbestos screen is done in-house on soils and if no fibres are found will be reported as NFD<sup>-</sup> no fibres detected. If fibres are detected, then identification and quantification is carried out by ALcontrol Technichem or Alcontrol Shutlers in the UK off a sample is suspected of containing asbestos, then drying and crushing will be suspended on that sample until the asbestos results are known. If asbestos is present, then no analysis requiring dry sample are undertaken.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace is present in the volatile sample.
- 8. NDP No Determination Possible due to insufficient/unsuitable sample.
- 9. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 10. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

Last updated February 2005





Unit 18A Rosemount Business Park Ballycoolin Dublin 11 Tel : (0035) 3188 29893

Westmeath County Council Environment Section County Buildings Mullingar Westmeath Co. Westmeath

Attention: Darran Killian

# **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 12 December 2011 D\_WESTMCC\_WMT 111203-38

Moate Landfill 163286

We received 5 samples on Friday December 02, 2011 and 5 of these samples were scheduled for analysis which was completed on Monday December 12, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager



Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No.

#### **CERTIFICATE OF ANALYSIS**

111203-38 Location: Moate Landfill 400213971 SDG: Order Number: D\_WESTMCC\_WMT-31 163286 Job: Customer: Westmeath County Council Report Number: **Client Reference:** Attention: Darran Killian Superseded Report:

# **Received Sample Overview**

| Lab Sample No(s) | Customer Sample Ref. | AGS Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|----------|-----------|--------------|
| 4812734          | 1                    |          |           | 01/12/2011   |
| 4812736          | 2                    |          |           | 01/12/2011   |
| 4812737          | 7                    |          |           | 01/12/2011   |
| 4812740          | SW D/S               |          |           | 01/12/2011   |
| 4812739          | SW U/S               |          |           | 01/12/2011   |

Only received samples which have had analysis scheduled will be shown on the following pages.

Consent of copyright owner required for any other use.

Validated

| ALcontrol Labora                               | tories                 | CE                                 | ERT                                      | ΊF                 | IC                | TE OF ANALYSIS                       |                                                       |                    | Validate |
|------------------------------------------------|------------------------|------------------------------------|------------------------------------------|--------------------|-------------------|--------------------------------------|-------------------------------------------------------|--------------------|----------|
| SDG: 111203<br>Job: D_WES<br>Client Reference: | -38<br>STMCC_WMT-31    | Location:<br>Customer<br>Attention | : N<br>r: V                              | Лоа<br>Ves         | te L<br>stme      | ndfill<br>th County Council<br>Ilian | Order Number:<br>Report Number:<br>Superseded Report: | 40021397<br>163286 | 1        |
| LIQUID<br>Results Legend<br>X Test             | Lab Sample             | No(s)                              | 4812739<br>4812740                       | 4012734            | 4812737           |                                      |                                                       |                    |          |
| No Determination<br>Possible                   | Custome<br>Sample Refe | er<br>rence                        | SW U/S<br>SW D/S                         | - <u>)</u> v       | 7                 |                                      |                                                       |                    |          |
|                                                | AGS Refere             | ence                               |                                          |                    |                   |                                      |                                                       |                    |          |
|                                                | Depth (n               |                                    |                                          |                    |                   |                                      |                                                       |                    |          |
|                                                | Containe               | ər                                 | 1lplastic (ALE221)<br>1lplastic (ALE221) | 11plastic (ALE221) | 1plastic (ALE221) |                                      |                                                       |                    |          |
| Alkalinity as CaCO3                            | All                    | NDPs: 0<br>Tests: 5                | x x                                      | x >                | ( X               | e V <sup>SC.</sup>                   |                                                       |                    |          |
| Ammoniacal Nitrogen                            | All                    | NDPs: 0<br>Tests: 5                | x x                                      | x >                | ( X               | only any other                       |                                                       |                    |          |
| Anions by Kone (w)                             | All                    | NDPs: 0<br>Tests: 5                | x x                                      | x >                | ( X               | on purposes and the                  |                                                       |                    |          |
| BOD True Total                                 | All                    | NDPs: 0<br>Tests: 5                | x x                                      | x)                 | CX.               | tion puppes only any other use.      |                                                       |                    |          |
| COD Unfiltered                                 | All                    |                                    | <u>s</u> r                               | ۍ<br>کې<br>۲ ۲     | ¢ک<br>د x         |                                      |                                                       |                    |          |
| Conductivity (at 20 deg.C)                     | All                    | NDPs: 0<br>Tests                   | x x                                      | x >                | ( X               |                                      |                                                       |                    |          |
| Metals by iCap-OES Dissolved (W)               | All                    | NDPs: 0<br>Tests: 5                | <mark>x</mark> x                         | x >                | ( X               |                                      |                                                       |                    |          |
| pH Value                                       | All                    | NDPs: 0<br>Tests: 5                | x x                                      | x >                | <mark>(</mark> X  |                                      |                                                       |                    |          |
| Suspended Solids                               | All                    | NDPs: 0<br>Tests: 5                | x x                                      | x >                | ( X               |                                      |                                                       |                    |          |

(

### **CERTIFICATE OF ANALYSIS**

| Results Legend # ISO17025 accredited.                                                                                                                                                                                                                                                                                                                                                                                                 | Cu                          | stomer Sample R                                                                                           | 1                                                                | 2                                                                | 7                                                                | SW D/S                                                           | SW U/S                                                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--|
| M mCERTS accredited.     M mCERTS accredited.     S Deviating sample.     aq Aqueous / settled sample.     diss.filt Dissolved / filtered sample.     tot.unfilt Total / unfiltered sample.     * Subcontracted test.     * % recovery of the surrogate standar         check the efficiency of the method.         results of individual compounds wit         samples aren't corrected for the rec     (F) Trigger breach confirmed | The Li<br>thin Li<br>covery | Depth (m)<br>Sample Type<br>Date Sampled<br>Date Received<br>SDG Ref<br>ab Sample No.(s)<br>AGS Reference | Water(GW/SW)<br>01/12/2011<br>02/12/2011<br>111203-38<br>4812734 | Water(GW/SW)<br>01/12/2011<br>02/12/2011<br>111203-38<br>4812736 | Water(GW/SW)<br>01/12/2011<br>02/12/2011<br>111203-38<br>4812737 | Water(GW/SW)<br>01/12/2011<br>02/12/2011<br>111203-38<br>4812740 | Water(GW/SW)<br>01/12/2011<br>02/12/2011<br>111203-38<br>4812739 |  |
| Component                                                                                                                                                                                                                                                                                                                                                                                                                             | LOD/Units                   | Method                                                                                                    |                                                                  | 100                                                              | 70.5                                                             |                                                                  |                                                                  |  |
| Suspended solids, Total                                                                                                                                                                                                                                                                                                                                                                                                               | <2 mg/l                     | TM022                                                                                                     | 54<br>#                                                          | 422<br>#                                                         | 72.5<br>#                                                        | <2<br>#                                                          | 2 #                                                              |  |
| Alkalinity, Total as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                            | <2 mg/l                     | TM043                                                                                                     | 1470<br>#                                                        | 635<br>#                                                         | 375<br>#                                                         | 405<br>#                                                         | 365<br>#                                                         |  |
| BOD, unfiltered                                                                                                                                                                                                                                                                                                                                                                                                                       | <1 mg/l                     | TM045                                                                                                     | <4<br>#                                                          | <2<br>#                                                          | <2<br>#                                                          | <2<br>#                                                          | <2<br>#                                                          |  |
| Ammoniacal Nitrogen as NH3                                                                                                                                                                                                                                                                                                                                                                                                            | <0.2 mg/l                   | TM099                                                                                                     | 84<br>#                                                          | 3.03<br>#                                                        | <0.2<br>#                                                        | <0.2<br>#                                                        | <0.2<br>#                                                        |  |
| COD, unfiltered                                                                                                                                                                                                                                                                                                                                                                                                                       | <7 mg/l                     | TM107                                                                                                     | 169<br>#                                                         | 49.7<br>#                                                        | 14.7<br>#                                                        | 7.71<br>#                                                        | 10.2<br>#                                                        |  |
| Conductivity @ 20 deg.C                                                                                                                                                                                                                                                                                                                                                                                                               | <0.005<br>mS/cm             | TM120                                                                                                     | 2.92<br>#                                                        | 0.902<br>#                                                       | 0.715<br>#                                                       | 0.793<br>#                                                       | 0.712<br>#                                                       |  |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                              | <2 mg/l                     | TM184                                                                                                     | 233 #                                                            | 10.2<br>#                                                        |                                                                  |                                                                  | 30.3<br>#                                                        |  |
| Hardness, Total as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                              | <1 mg/l                     | TM228                                                                                                     | 932                                                              | 546                                                              | 402                                                              | 442                                                              | 409                                                              |  |
| рН                                                                                                                                                                                                                                                                                                                                                                                                                                    | <1 pH                       | TM256                                                                                                     | #<br>7.79                                                        | #<br>7.15                                                        | #<br>7.48                                                        | #<br>8.14                                                        | #<br>7.8                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       | Units                       |                                                                                                           | #                                                                | #                                                                | #                                                                | #                                                                | #                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  | inspection purposes                                              | (115 <sup>8</sup>                                                |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  | other                                                            |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  | all'ally                                                         |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  | 120 <sup>505</sup>                                               | 8 <sup>7</sup>                                                   |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  | in pur jody                                                      |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  | spectrowne and                                                   |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           | ŶĆ                                                               | in the fit                                                       |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  | ox.                                                              |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           | Conseitor                                                        |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           | Co                                                               |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                     | !                           |                                                                                                           |                                                                  |                                                                  |                                                                  |                                                                  |                                                                  |  |

Validated

#### **CERTIFICATE OF ANALYSIS**

Validated

111203-38 400213971 SDG: Location: Moate Landfill Order Number: D\_WESTMCC\_WMT-31 163286 Job: Customer: Westmeath County Council Report Number: **Client Reference:** Attention: Darran Killian Superseded Report:

# **Table of Results - Appendix**

| ibres Detected              |                                                                                                                                                                                           | PFD                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Possible Fibres Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | »                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result previously reported<br>(Incremental reports only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Equivalent Carbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ection limits are not alway | s achievable dı                                                                                                                                                                           | ue to vario                                                                                                                                                                                                                                                                                                                                                                                                                                           | us circumstances beyond our c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ontrol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (incremental reporte only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Aromatics C8-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| d No                        |                                                                                                                                                                                           | Refe                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wet/Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Surrogat<br>Correcte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | Method 2540D, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part120 1981;BS EN 872                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ation of to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | otal suspended solids in waters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Correcte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IA, 20th Ed., 1999 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Determin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ikalinity in aqueous samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5210B, /                    | MEWAM BOD5 2nd Ed.HMSO 1988 / Method 5210B, AWWA/APHA, 20th Ed., 1999; SCA                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ation of B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OD5 (ATU) Filtered by Oxygen I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Meter on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 99 BS 2690                  | ): Part 7:196                                                                                                                                                                             | 8 / BS (                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6068: Part2.11:1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Determin<br>Analyser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation of A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mmonium in Water Samples usi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng the Kone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 07 ISO 606                  | ISO 6060-1989                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hemical Oxygen Demand using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COD Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IA, 20th Ed., 1999 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Determin<br>Meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ation of E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lectrical Conductivity using a Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 84 EPA Me                   | EPA Methods 325.1 & 325.2,                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The Determination of Anions in Aqueous Matrices using the<br>Kone Spectrophotometric Analysers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 28 US EPA                   | US EPA Method 6010B                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Determination of Major Cations in Water by iCap 6500 Duo<br>ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| the Labo<br>Natural,        | The measurement of Electrical Conductivity and<br>the Laboratory determination of pH Value of<br>Natural, Treated and Wastewaters. HMSO,<br>1978, ISBN 011 754284                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | he GLpH pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oles have been dried at 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35°C. NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s = not ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | plicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ¢¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inspection f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | unposes est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | consent of c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             | d No 22 Method BS 2690 43 Method BS 2690 443 Method BS 2690 45 MEWAN 5210B, / Blue Bod 99 BS 2690 07 ISO 606 20 Method BS 2690 84 EPA Me 28 US EPA 556 The mea the Labo Natural, 1978. IS | ection limits are not always achievable de<br>d No<br>122 Method 2540D, AW<br>BS 2690: Part120 1<br>143 Method 2320B, AW<br>BS 2690: Part109 1<br>145 MEWAM BOD5 2nd<br>5210B, AWWA/APH<br>Blue Book 130<br>199 BS 2690: Part 7:196<br>07 ISO 6060-1989<br>20 Method 2510B, AW<br>BS 2690: Part 9:197<br>84 EPA Methods 325.1<br>128 US EPA Method 60<br>156 The measurement of<br>the Laboratory deter<br>Natural, Treated and<br>1978. ISBN 011 751 | ection limits are not always achievable due to vario         d No       Refer         122       Method 2540D, AWWA/APH<br>BS 2690: Part120 1981;BS         143       Method 2320B, AWWA/APH<br>BS 2690: Part109 1984         145       MEWAM BOD5 2nd Ed.HM<br>5210B, AWWA/APHA, 20th<br>Blue Book 130         199       BS 2690: Part 7:1968 / BS 6         07       ISO 6060-1989         20       Method 2510B, AWWA/APH<br>BS 2690: Part 9:1970         84       EPA Methods 325.1 & 325.2         128       US EPA Method 6010B         126       The measurement of Electrin<br>the Laboratory determinatio<br>Natural, Treated and Waste<br>1978. ISBN 011 751428 4. | ection limits are not always achievable due to various circumstances beyond our of d No         Reference         122       Method 2540D, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part120 1981;BS EN 872         143       Method 2320B, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part109 1984         145       MEWAM BOD5 2nd Ed.HMSO 1988 / Method<br>5210B, AWWA/APHA, 20th Ed., 1999; SCA<br>Blue Book 130         199       BS 2690: Part 7:1968 / BS 6068: Part2.11:1984         07       ISO 6060-1989         20       Method 2510B, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part 9:1970         84       EPA Methods 325.1 & 325.2,         128       US EPA Method 6010B         126       The measurement of Electrical Conductivity and<br>the Laboratory determination of pH Value of | IT B         ection limits are not always achievable due to various circumstances beyond our control         d No         Reference         122       Method 2540D, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part120 1981;BS EN 872       Determin         143       Method 2320B, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part109 1984       Determin         145       MEWAM BOD5 2nd Ed.HMSO 1988 / Method<br>5210B, AWWA/APHA, 20th Ed., 1999; SCA<br>Blue Book 130       Iiquids         199       BS 2690: Part 7:1968 / BS 6068: Part2.11:1984       Determin<br>Analyser         07       ISO 6060-1989       Determin<br>Lange Ki         20       Method 2510B, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part 9:1970       Determin<br>Kone Spic         84       EPA Methods 325.1 & 325.2,       The Dete<br>Kone Spic         128       US EPA Method 6010B       Determin<br>ICP-OES         128       US EPA Method 6010B       Determin<br>ICP-OES | ITD         action limits are not always achievable due to various circumstances beyond our control         d No         Reference         122       Method 2540D, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part120 1981;BS EN 872       Determination of to<br>BS 2690: Part109 1984         143       Method 2320B, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part109 1984       Determination of B<br>5210B, AWWA/APHA, 20th Ed., 1999; SCA<br>Blue Book 130       Determination of A<br>Analyser         199       BS 2690: Part 7:1968 / BS 6068: Part2.11:1984       Determination of C<br>Lange Kit         20       Method 2510B, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part 9:1970       Determination of E<br>C<br>Lange Kit         20       Method 2510B, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part 9:1970       Determination of E<br>C<br>Lange Kit         20       Method 2510B, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part 9:1970       Determination of E         84       EPA Methods 325.1 & 325.2,<br>The Determination of N<br>(CP-OES       Determination of N<br>(CP-OES         256       The measurement of Electrical Conductivity and<br>the Laboratory determination of pH Value of       Determination of p | Notes betected         >         (Incremental reports only)           ection limits are not always achievable due to various circumstances beyond our control         >         Description           dNo         Reference         Description           122         Method 2540D, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part120 1981;BS EN 872         Determination of total suspended solids in waters           143         Method 2320B, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part109 1984         Determination of alkalinity in aqueous samples           145         MEWAM BOD5 2nd Ed.HMSO 1988 / Method<br>5210B, AWWA/APHA, 20th Ed., 1999; SCA<br>Blue Book 130         Determination of BOD5 (ATU) Filtered by Oxygen I<br>liquids           199         BS 2690: Part 7:1968 / BS 6068: Part2.11:1984         Determination of Ammonium in Water Samples usi<br>Analyser           07         ISO 6060-1989         Determination of Chemical Oxygen Demand using<br>Lange Kit           20         Method 2510B, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part 9:1970         Determination of Anions in Aqueous Matrices Kone Spectrophotometric Analyser           84         EPA Methods 325.1 & 325.2,         The Determination of Major Cations in Water by iCap 6<br>ICP-OES           28         US EPA Method 6010B         Determination of PH in Water and Leachate using the Laboratory determination of pH Value of | Numes Detected         PFD         Pedeation Hindles Detected         > (Incremental reports only)         EC           dNo         Reference         Description           22         Method 2540D, AWWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part120 1981;BS EN 872         Determination of total suspended solids in waters           43         Method 2320B, AWWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part109 1984         Determination of alkalinity in aqueous samples           443         MEWAM BOD5 2nd Ed.HMSO 1988 / Method<br>5210B, AWWA/APHA, 20th Ed., 1999; SCA<br>Blue Book 130         Determination of BOD5 (ATU) Filtered by Oxygen Meter on<br>liquids           999         BS 2690: Part 7:1968 / BS 6068: Part2.11:1984         Determination of Ammonium in Water Samples using the Kone<br>Analyser           07         ISO 6060-1989         Determination of Chemical Oxygen Demand using COD Dr<br>Lange Kit           20         Method 2510B, AWWA/APHA, 20th Ed., 1999 /<br>BS 2690: Part 9:1970         Determination of Electrical Conductivity using a Conductivity<br>Meter           84         EPA Methods 325.1 & 325.2,         The Determination of Anions in Aqueous Matrices using the<br>Kone Spectrophotometric Analysers           28         US EPA Method 6010B         Determination of PH in Water and Leachate using the GLpH pH<br>Meter           26         The measurement of Electrical Conductivity and<br>the Laboratory determination of pH Value of<br>Natural, Treated and Wastewaters. HMSO,<br>1978. ISBN 011 751428 4.         Determination of PH in Water and Leachate using th | Norse Detected       Prod       Possible Price Detected       *       (Incremental reports only)       EC       Determination Carbonic |

12:25:31 12/12/2011

111203-38

D\_WESTMCC\_WMT-31

(

SDG:

Job:

**Client Reference:** 

### **CERTIFICATE OF ANALYSIS**

Location: Moate Landfill Customer: Westmeath County Council Attention: Darran Killian

Order Number: Report Number: Superseded Report:

400213971 163286

# **Test Completion Dates**

| Lab Sample No(s)                 | 4812734     | 4812736     | 4812737     | 4812740     | 4812739     |
|----------------------------------|-------------|-------------|-------------|-------------|-------------|
| Customer Sample Ref.             | 1           | 2           | 7           | SW D/S      | SW U/S      |
| AGS Ref.                         |             |             |             |             |             |
| Depth                            |             |             |             |             |             |
|                                  |             |             |             |             |             |
| Туре                             | LIQUID      | LIQUID      | LIQUID      | LIQUID      | LIQUID      |
| Alkalinity as CaCO3              | 05-Dec-2011 | 05-Dec-2011 | 05-Dec-2011 | 05-Dec-2011 | 05-Dec-2011 |
| Ammoniacal Nitrogen              | 06-Dec-2011 | 06-Dec-2011 | 06-Dec-2011 | 10-Dec-2011 | 10-Dec-2011 |
| Anions by Kone (w)               | 10-Dec-2011 | 12-Dec-2011 | 10-Dec-2011 | 12-Dec-2011 | 12-Dec-2011 |
| BOD True Total                   | 08-Dec-2011 | 08-Dec-2011 | 08-Dec-2011 | 08-Dec-2011 | 08-Dec-2011 |
| COD Unfiltered                   | 04-Dec-2011 | 04-Dec-2011 | 04-Dec-2011 | 04-Dec-2011 | 04-Dec-2011 |
| Conductivity (at 20 deg.C)       | 06-Dec-2011 | 06-Dec-2011 | 06-Dec-2011 | 05-Dec-2011 | 05-Dec-2011 |
| Metals by iCap-OES Dissolved (W) | 07-Dec-2011 | 07-Dec-2011 | 07-Dec-2011 | 06-Dec-2011 | 06-Dec-2011 |
| pH Value                         | 07-Dec-2011 | 07-Dec-2011 | 07-Dec-2011 | 06-Dec-2011 | 09-Dec-2011 |
| Suspended Solids                 | 05-Dec-2011 | 06-Dec-2011 | 05-Dec-2011 | 06-Dec-2011 | 06-Dec-2011 |

Consent of copyright owner required for any other use.

#### **CERTIFICATE OF ANALYSIS**

| SDG:              | 111203-38        | Location:  | Moate Landfill           | Order Numbe  |
|-------------------|------------------|------------|--------------------------|--------------|
| Job:              | D_WESTMCC_WMT-31 | Customer:  | Westmeath County Council | Report Numb  |
| Client Reference: |                  | Attention: | Darran Killian           | Superseded I |

# Appendix

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2 Samples will be run in duplicate upon request, but an additional charge may be incurred

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be screened in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. Is an asbestos fibre type is found it will be reported as detected (for each fibre type found). If asbestos is present either as asbestos containing material or loose fibres no further analysis will be undertaken. The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately

11 Results relate only to the items tested

12, LODs for wet tests reported on a dry weight basis are not corrected for moisture content.

and the section purposes unit port colling 13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, Nile FOL but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors ð employed

Phenols monohydric by HPLC include phenol, cresols (2-Methylphonol 3-Methylphenol and and Xylenois (2,3 Dimethylphenol, 2,4 Dimethylphenol) 4-Methylphenol) 2,5 Dimethylphenol, 2.6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15)

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised

er: ber: Report: 400213971 163286

#### SOLID MATRICES EXTRACTION SUMMARY

| ANALYSIS                                 | d.C<br>Or<br>Wet | EXTRACTION<br>SOLVENT | EXTRACTION<br>METHOD | analysis    |
|------------------------------------------|------------------|-----------------------|----------------------|-------------|
| SOLVENTEXTRACTABLE<br>MATTER             | D&C              | DOM                   | SOXTHERM             | GRAVIMETRIC |
| CYCLOHEXANE EXT.<br>MATTER               | D&C              | CYCLOHEXANE           | SOXTHERM             | GRAVIMETRIC |
| ELEMENTALSULPHUR                         | D&C              | DOM                   | SOXTHERM             | HPLC        |
| PHENOLS BY GOMS                          | WET              | DOM                   | SOXTHERM             | GC-MS       |
| HERBICIDES                               | D&C              | HEXANEACETONE         | SOXTHERM             | GC-MS       |
| PESTICIDES                               | D&C              | HEXANEACETONE         | SOXTHERM             | GC-MS       |
| EPH (DRO)                                | D&C              | HEXANEACETONE         | ENDOWEREND           | GC-FD       |
| EPH (MIN OL)                             | D&C              | HEXANEACETONE         | ENDOWEREND           | GC-FD       |
| EPH (CLEANED UP)                         | D&C              | HEXANEACETONE         | ENDOWEREND           | GC-FD       |
| EPH CWGBY GC                             | D&C              | HEXANEACETONE         | ENDOWEREND           | GC-FD       |
| PCBTOT/POBCON                            | D&C              | HEXANEACETONE         | ENDOWEREND           | GC-MS       |
| POLYAROMATIC<br>HYDROCARBONS (MS)        | WET              | HEXANEACETONE         | MICROWAVE<br>TM218.  | GC-MS       |
| 08-040 (06-040) EZ<br>FLASH              | WET              | HEXANEACETONE         | SHAKER               | GC-EZ       |
| POLYAROMATIC<br>HYDROCARBONS RAPID<br>GC | WET              | HEXANEACETONE         | SHAKER               | Сс-ЕZ       |
| SEM VOLATILEORGANIC                      | WET              | DOMACETONE            | SONICATE             | SM-39       |

#### LIQUID MATRICES EXTRACTION SUMMARY

| ANALYSIS             | EXTRACTION<br>SOLVENT | EXTRACTION<br>METHOD        | ANALYSIS |
|----------------------|-----------------------|-----------------------------|----------|
| PAHMS                | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCMS     |
| BH                   | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCFID    |
| EPH CMG              | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCFID    |
| MINERALOIL           | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCFID    |
| POB 700NGENERS       | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCMS     |
| POB TOTAL            | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCMS     |
| SVOC                 | DOM                   | LIQUID/LIQUID SHAKE         | GCMS     |
| FREESULPHUR          | DOM                   | SOLID PHASE EXTRACTION      | HPLC     |
| PEST COP/OPP         | DOM                   | LIQUID/LIQUID SHAKE         | GCMS     |
| TRIAZINE HERES       | DOM                   | LIQUID/LIQUID SHAKE         | GCMS     |
| PHENOLSMS            | DOM                   | SOLID PHASE EXTRACTION      | GCMS     |
| TFH by INFRARED (IR) | TCE                   | LIQUID/LIQUID SHAKE         | HPLC     |
| MINERALOIL by R      | TCE                   | LIQUID/LIQUID SHAKE         | HPLC     |
| GLYCOLS              | NONE                  | DIRECT NJECTION             | GCMS     |

#### Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk The results for identification of asbestos in bulk materials are obtained from supplied bulk materials or those identified as potentially asbestos containing during sample description which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

#### Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

| Asbestos Type        | Common Name   |
|----------------------|---------------|
| Chrysofile           | WhiteAsbestos |
| Amoste               | BrownAsbestos |
| Orodolite            | Blue Asbestos |
| Fibrous Adinaite     | -             |
| Florous Anthophylite | -             |
| Fibrous Trendile     | -             |



# STANDARD OPERATING PROCEDURE

# SOIL SAMPLING

The soil sampling technique described below will be followed to ensure that soil samples are representative of the environment which they are intended to characterise.

### 1.0 SAMPLING

- (A) Locate the soil sampling station in accordance with the workplan which will specify the number and type of samples to be taken. Place a wooden stake into the ground one metre from the sample location and record sample location on the stake.
- (B) Record the location in the field logbook and, if possible, photograph the location.
- (C) Collect soil samples from the depth specified in the workplan and record the depth in the field notebook. Describe the colour and texture of each sample and record in notebook.
- (D) Wear appropriate level of protection when taking samples (gloves, safety glasses, hard hat etc.) as specified in the workplan. Collect soil samples as specified in the workplan using decontaminated stainless steel trowel, soil corer, or similar device. Collect discrete soil samples from each station.
- (E) If required by the workplan, composite discreet soil samples by placing equal volumes of soil into the container and mixing thoroughly to a homogenous mixture. Samples may be hand picked, if necessary, to remove larger materials, such as leaves, sticks, gravel, rocks etc., if specified in the workplan. Record in notebook the nature of any materials removed from soil samples.
- (F) Deposit each soil sampled into a (clean, pre-washed) container. At the time of collection, the sample bottle will be filled to the top with soil sample.
- (G) Fill out labels with waterproof ink and attach to the sample container. The following information will be recorded on each sample label: -

Client/Site Name Date Collected Time Collected Analysis Preservative Sample Identification Number



# STANDARD OPERATING PROCEDURE

## **GROUNDWATER SAMPLING**

The primary objective of groundwater sampling is to evaluate whether the potential contaminant sources at a site have impacted the quality of the groundwater in the underlying aquifer. The additional objective is to measure hydraulic gradient, or slope, of the water table in the shallow aquifer in an effort to evaluate the direction of groundwater flow.

The purpose of this procedure is to ensure that representative samples of groundwater are collected and documented using consistent methods to ensure sample integrity.

## 1.0

## 1.1

Well Operating and Purging Procedures of the any other use. All groundwater sampling will be conducted after the installed and developed wells have been allowed to equilibrate for at least 2 to 3 days. A Field Data Sheet for Well Sampling will be int of completed for each well.

Groundwater sampling teams will use to following procedure for approaching, opening, purging and sampling all wells unless directed otherwise by the workplan.

- Prior to placing any equipment into the well, decontaminate the sampling equipment 1) according to standard decontamination protocol.
- 2) Approach the well with a working FID/PID, a well key, and a depth-to-water meter.
- 3) Unlock and open the well cap just enough to insert the probe of the OVA or HNu. Take and record a reading. A decision to upgrade PPE may be necessary based on the FID/PID readings in the breathing zone.
- 4) Where practical, the surface water column will be visually examined for the presence of hydrocarbons, if present or suspected, the thickness of the hydrocarbon layer will be measured using an oil/water interface probe prior to taking the depth-to-water measurement.
- Insert the water level probe into the well and measure and record the static water level 5) to the nearest 0.01 m with respect to the established survey point on top of the well casing.

C:\SOP\Gwater.Doc

- 6) Decontaminate the water level probe with DDI water (Do not rinse with any solvents unless product was encountered).
- 7) Calculate and record the minimum volume of water to be purged according to the following conversion factors: -

| 1 well volume | = | water column in metres x litres/linear metre |
|---------------|---|----------------------------------------------|
| 2 inch casing | = | 2.0 LPM                                      |
| 4 inch casing | = | 8.1 LPM                                      |
| 6 inch casing | = | 18.2 LPM                                     |
| 8 inch casing | = | 32.4 LPM                                     |

- 8) Purge the well of at least 3 casing volumes by pumping or bailing with a decontaminated submersible pump or PVC bailer equipped with a bottom filling check valve (if the purge volume is low, generally less than 100 litres, the sampling team might find it more efficient to purge with a bailer than a pump). Use a graduated bucket to track the amount of water removed from the well. Periodically determine the pH, temperature and specific conductance of the purged water. Continue purging until the well has been completely evacuated or until the pH and specific conductance measurements have stabilised for at least one well. Volume. Wells that become dewatered prior to producing three casing volumes will be sampled as soon as practical once they recover sufficiently.
- 9) Dispose of purge water collected in the graduated bucket by dumping onto the ground at a distance of 50 to 60 metres from the vicinity of the well. If the water is known or suspected to be significantly contaminated, it may be necessary to store the purge water in a secure container, such as a drum, pending proper disposal.
- 10) Be aware and record any unusual occurrence during purging such as cascading (a shallow water entry zone that trickles into the borehole).

### 1.2 Field Parameter Measurement

\_

Measurements of field parameters of pH, temperature and electrical conductivity are collected and organic vapour screening is conducted while the well is purged. To facilitate the collection of basic field parameters, the field team needs to: -

- Purge three well volumes of water from the well and measure field parameters for each well volume removed.
- Collection of water samples should take place after stabilisation of the following parameters: -
  - Temperature <sup>+</sup>/- 1°C
  - pH (meter or paper)  $^+/$  0.2 units
  - Specific conductivity <sup>+</sup>/- 5%

- If the aforementioned parameters do not stabilise within three purge volumes, the well will be purged up to a maximum of six borehole volumes unless two consecutive sets of stabilised parameters are obtained.
- Note any observations in the field logbook.

## 1.3 <u>Collection of Water Samples</u>

All samples or chemical analysis will be placed in laboratory prepared bottles. The types of sample containers and preservative required for each type of analysis are described in the workplan. If required, preservatives will be placed in the sample containers prior to collecting the samples.

The following procedure will be used to sample a well: -

- 1) After the well has been purged and allowed to recover, sample the well using a properly decontaminated or dedicated disposable bailer. Gently lower the bailer into the water column. Allow the bailer to sink and fill with a minimum of surface disturbance.
- 2) Slowly raise the bailer out of the well. Do not allow the bailer line to contact the ground, either by coiling it on a clean plastic sheet of by looping it from arm to arm as the line is extracted from the well.
- 3) Samples will be collected for VOCs analysis immediately after purging is complete and before other samples are collected. Pour the samples slowly into the laboratory prepared 40 ml glass vial. Overfill each vial slightly to eliminate air bubbles, a convex meniscus should be present at the top of the vial. Ensure that the Teflon liner of the septum cap is facing inward and that no bubbles are entrapped. After capping securely, turn bottle upside-down, tap it against your other hand, and observe sample water for bubbles. If bubbles are observed, remove the cap, overfill the vial and reseal. Repeat this step for each vial until the samples with no bubbles are obtained.
- 4) Place a label on the container and enter the following information: -
  - Client/Site Name Date Collected Time Collected Analysis Preservative Sample Identification Number
- 5) Record pertinent information in the field logbook and on the Field Data Sheet for Well Sampling. Complete chain-of-custody form.
- 6) Place custody seals on the container caps. As soon as possible, place sample containers in a cooler with bagged ice and maintain at 4°C until extraction. Surround the bottles with vermiculite.

- Obtain the semi-volatile compound/pesticides/PCBs sample(s) by transferring the water 7) to a laboratory prepared 1000 ml amber glass bottle with Teflon-lined cap. Fill the bottle to the bottom of the neck and follow steps 4, 5 and 6 above.
- 8) Dissolved metals (if necessary) requires the team to filter the sample water through a .45 micron filter. The water is collected in a 1 litre, unpreserved, plastic or glass bottle Filtering must be done within 15 minutes of sample with HNO<sub>3</sub> preservative. collection.
- 9) Obtain the total metals sample by directly transferring the water from the bailer into a laboratory prepared 1000 ml plastic or glass bottle with HNO<sub>3</sub> preservative.
- 10) Be sure the pH of the metals sampled is less than 2 by pouring off an aliquot in a clean jar and testing for pH using litmus paper. Dispose of this water and rinse the jar.
- 11) Collect and prepare Field QA/QC samples in accordance with separate SOP.
- 12) Be sure to record all data required on the Field Data Sheet or Well Sampling and appropriate entries into the field logbook.
- 13) Secure the well cap and replace the locking cover.
- other use. Decontaminate all sampling equipment according to procedure. 14)
- 15) Decontaminate submersible pumps as follows:

Scrub pump and cord in a tab of Liquinox and potable water Pump at least 80 litres of soapy water through pump Rinse with potable water Pump at least 80 litres of rinse water through the pump Rinse with D1 water before lowering pump into the next well. Ċ

END.

- Decontaminate sampling equipment as described below unless otherwise specified in (H) the site workplan. When using stainless steel sampling equipment:
  - wash with non-phosphate detergent in potable water, •
  - rinse sequentially in potable water, methanol, acetone, methanol and D1 water • and:
  - allow to air dry in a containment free area. .
- **(I)** Wrap the decontaminated sampling equipment in aluminium foil which has been decontaminated in accordance with Section H.

#### 2.0 **FIELD DOCUMENTATION**

Record sample information in the field notebook. Provide a complete description of the sample location, and a photograph, if necessary. Describe the soil appearance, especially if the presence of oil or an odour is noted. Document the sample bottle lot numbers in the field notebook. Record weather conditions at the time of sampling. The Field Team Leader will initial the logbook entries for correctness.

#### 3.0 **FIELD QA/QC SAMPLES**

only, any other See the separate SOP on Field QA/QC samples for appropriateness and preparation of D1 Water Field Blanks, Cross-contamination Field Blanks, Trip Blanks and Field Duplicate owner Samples.

#### PACKAGING AND TRANSPORT **4.0**

Check to be sure that all necessary information is on the sample container label. Complete the chain-of custody form. Package, label and transport the samples to the testing laboratory in accordance with requirements for packing, shipping and labelling environmental samples.

END.



# STANDARD OPERATING PROCEDURE

## LANDFILL GAS MONITORING

The primary objective of landfill gas monitoring is to assess if gas generation would be likely to give rise to a risk to human health or to the environment. It also helps determine trends in gas generation and migration and evaluates the effectiveness of any in-situ gas control measures. The purpose of this procedure is to ensure that representative measurements of landfill gas are collected using appropriate safety procedures.

## **1.0 SAMPLING PROCEDURES**

All landfill gas monitoring equipment used will be certified intrinsically safe. All landfill gas monitoring equipment shall be regularly calibrated, and serviced according to the manufacturer's specification.

The following procedure will be used for monitoring of landfill gas levels in all monitoring boreholes, unless directed otherwise.

- 1) On arrival at the site, test the equipment in accordance with manufacturer's recommendations and record the ambient gas concentrations, atmospheric pressure and temperature in a field notebook. This ensures the gas analyser chamber is purged prior to monitoring. Record the wind speed and direction and other weather conditions.
- 2) Unlock the borehole cover. Examine the appearance of the standpipe, cap and gas valve and note any damage or changes since previous recordings. Record any visible (steam), audible or olfactory signs of gas migration. Record the ground conditions (e.g. dry, wet, frozen, compacted, loose etc). If signs of gas migration are noted, measurement of gas concentrations should be made around the standpipe to ensure there are no dangerous accumulations of gas.
- 3) If the standpipe is fitted with a gas valve, switch on the gas analyser and securely connect the gas analyser inlet port to the gas sample valve via the inlet tube. Open the gas valve and switch on the analyser pump. Run the pump for sufficient time to remove a representative sample from the borehole. Turn the pump off.
- 4) Record methane  $(CH_4)$ , carbon dioxide  $(CO_2)$  and oxygen  $(O_2)$  peaks and steady concentrations.
- 5) Record atmospheric pressure (mb) and temperature (°C).

C:\SOP\Gas.Doc

- 6) When measurements are completed, the gas sample valve must be closed and the analyser disconnected.
- 7) A measurement of the depth to water in the borehole should be undertaken after completion of all gas measurements. Insert the water level probe into the well and measure and record the static water level to the nearest 0.01 m with respect to the established survey point on top of the well casing.
- 8) Be sure to record all data required in the field log book.
- 9) Secure the well cap and replace the locking cover.
- 10) Briefly run the pump on the gas analyser to purge the analyser chamber with ambient air before proceeding to the next monitoring location.

END.

