Annual Environmental Report 2010

CARLOW COUNTY COUNCIL

Powerstown Landfill Waste Licence Reg. No. W0025-03

Prepared by: Mary Walsh Reviewed by: Pat Connolly Approved by: Mary Mulholland

Issued: 25th May 2011

Signed: Mary Wedsh Signed: P.P. Pat Connothy Signed: Maryf Ululhalad

Annual Environmental Report 2010 Waste Licence: W0025-03 May 2011

Table-of-Gontents

1.0	Introduction
2.0	Facility Description and Waste Activities
2.1	Facility Description
2.2	Waste Activities at the Facility
2.3	Quantity and Composition of Waste Disposed and Recovered
2.4	Capacity of Landfill
2.5	Methodology of Material Disposal and Recovery10
2.6	Waste Acceptance Procedure
2.7	Enforcement Category
3.0	Environmental Monitoring
3.1	Dust Monitoring
3.2	Surface Water Monitoring
3.3	Groundwater Monitoring
3.4	Leachate Monitoring
3.5	Noise Monitoring
3.6	Meteorological Monitoring
3.7	Landfill Gas
3.8	Landfill Gas Plant Flarc Monitoring
3.9	Odour Monitoring
3.10	Topographical Site Survey
3.11	Slope Stability Assessment
3.12	Other Testing
4.0	Generation and Emission of Landfill Products
4.1	Landfill Gas and Emissions to Air
4.2	Leachate Generation
4.3	Emissions to Groundwater
4.4	Pollutant Release and Transfer Report
5.0	Energy and Resource Consumption

e9

ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNE		
5.1	Diesel	
5.2	Electricity / Water	
5.3	Resource consumption	
6.0	Site Development Activities & Plans	34
6.1	Development Works	34
6.2	Environmental Objectives and Targets for 2010 and 2011	34
6.3	Restoration	36
6.4	Procedures	36
7.0	Environmental Nuisances	
7.1	Litter	37
7.2	Noise	
7.3	Dust	
7.4	Bird and Pest Control	
7.5	Landfill Gas Management and Odour Control	
8.0	Incidents and Complaints for the Reporting Period 2010	
8.1	Reported Incidents	
8.2	Complaints	
9.0	Financial Provisions, Staffing, Training, Public Information	40
9.1	Financial ProvisionsCom	40
9.2	Community Fund	40
9.3	Staffing / Training	40
9.4	Public Information	41

Annual Environmental Report 2010 Waste Licence: W0025-03

May 2011

TABLES

- Table 2.1: Waste Received and Disposed to Landfill (2006 to 2010)
- Table 2.2: Waste Recovery at Powerstown CAS (2006 to 2010)
- Table 3.0: Monitoring Locations
- Table 3.1: Summary of Dust Monitoring Data 2010
- Table 3.2: Habitat Assessment 2010
- Table 3.3: Biological Water Quality Assessment
- Table 3.4: Position of Groundwater Monitoring Locations Relative to Phase 2 and Phase 3 Landfills
- Table 3.5: Results of Leachate monitoring at Leachate Lagoon (LG)
- Table 3.6: Noise Monitoring Results 2010 (& 2009)
- Table 3.7: Meteorological Data 2010
- outly any other use. Table 3.8: Annual Emissions Monitoring Results at LFGF1 (2008 to 2010)
- Table 3.9: Annual Monitoring Results at LECEP (Inlet) 2010

Table 4.1: Summary of emissions to air 2010

Table 4.2: Leachate Collected and Transferred Off-Site

- Table 5.1: Resource Consumption for Landfill Maintenance
- Table 6.1: Summary of Site Development plans and Objectives for 2010
- Table 6.2: Summary of Targets and Objectives for 2011

DRAWINGS

Drawing No 1: Development of 3 phases of Powerstown Landfill

Drawing No 2: Site Layout

APPENDICES

- Appendix 1: Map of Monitoring Locations
- Results of Surface Water Monitoring 2010 Appendix 2:
- Results of Groundwater Monitoring 2010 Appendix 3: Groundwater Contour Map
- Appendix 4: PRTR
- Appendix 5: **Topographical Survey**
- Appendix 6: **Bund Integrity Testing**
- Consent for inspection purpose only any other use. Water Balance Calculation Appendix 7:

1.0 Introduction

This report comprises an Annual Environmental Report (AER) for the Powerstown Landfill Facility, Powerstown, Co. Carlow. The report has been compiled in accordance with Condition 11.5 and Schedule G of the Waste Licence for the facility (Register Number W0025-03) and in accordance with the Environmental Protection Agency's (EPA) Guidance Notes on the preparation of AERs. The report covers the period of 1st January 2010 to 31st December 2010.

The following information is required to be contained in the AER:

Activity	Report Section
Reporting Period	1.0
Waste activities carried out at the facility.	2.2
Quantity and Composition of waste received, disposed of and recovered during the reporting period and each previous year.	2.3
Calculated remaining capacity of the facility and year in which final capacity is expected to be reached.	2.4
Methods of deposition of waste.	2.5
Summary report on emissions (PRTR)	4.4
Summary of results and interpretation of environmental monitoring.	3.0
Resource and energy consumption summary	5.0
Proposed development of the facility and timescale of such development.	6.0
Volume of leachate produced and volume of leachate transporter discharged off-site.	4.2
Report on development works undertaken during the reporting period, and a timescale for those proposed during the coming year.	6.0
Report on restoration of completed cells/ phases.	6.3
Site survey showing existing levels of the facility at the end of the reporting period.	3.10
Estimated annual and cumulative quantities of land a gas emitted from the facility.	4.1
Estimated annual and cumulative quantity of indirect emissions to groundwater.	4.3
Annual water balance calculation and interpretation	4.2
Report on the progress towards achievement of the Environmental Objectives and Targets contained in previous year's report.	6.2
Schedule of Environmental Objectives and Targets for the forthcoming year.	6.2
Full title and a written summary of any procedures developed by the licensee in the year which relates to the facility operation.	6.4
Tank, pipeline and bund testing and inspection report.	3.12
Reported incidents and Complaints summaries.	8.0
Review of Nuisance Controls.	7.0
Report on the use of a portion of the waste charges for appropriate local environmental improvement projects during the year and details of plans for forthcoming yeas.	9.2
Reports on financial provision made under this licence, management and staffing structure of the facility, and a programme for public information.	9.3 / 9.4
Report on training of staff.	9,3
Statement of compliance of facility with any updates of the relevant Waste Management Plan	2
Statement on the achievement of the waste acceptance and treatment obligations.	2.3
Undates/Amendments to the Odour Management Plan.	6.4
Waste Recovery Report.	4.4

May 2011

2.1 Facility Description

Powerstown Landfill is located on the N9, approximately 8 kilometres south east of Carlow Town. The facility is located in a rural setting and is bounded to the north and east by farm land, to the west by the N9 road to Carlow/Kilkenny and to the south by a quarry and a third class road. **Drawing No. 1**, illustrates the landfill areas (Phase 1, 2 and 3) and **Drawing 2** shows the layout of the facility. The facility is in compliance with the South-East Waste Management Plan as adopted in 2006.

Phase 1: Old Landfill

Phase 1 of the landfill commenced in 1975 and finished in 1990. The old landfill is located within the southern portion of the site. It is an unlined, capped landfill, located in a spent sand and gravel quarry. It comprises approximately 3.5 hectares (8.6 acres) and contains approximately 130,000 tonnes of municipal waste material. Additional capping works were carried out on the old landfill in 2006.

Phase 2: Former Landfill

Phase 2 of the landfill is located within the northern portion of the site. This area first opened in 1991 and is reputed to be one of the first landfill sites in Ireland that incorporated engineered cells to contain waste that were lined to containment status. This part of the landfill covers approximately 5.7 hereares and has 13 engineered cells and ceased operations in 2006. Cell Capping and flare upgrade works commenced in 2008 and and were completed by October 2008.

Phase 3: Extension – Operating Landfills

The extension to the landfill included the construction of four lined cells, a surface water settlement pond, leachate tank farm, Civic Amenity Site (CAS), a green waste composting area and the conversion of an existing dwelling to a site office. In addition to the above works, a new facility entrance has been provided from a minor road off the N9. Operations commenced in August 2006 and the capacity of the Phase 3 extension will be $240,000 \text{ m}^3$.

2.2 Waste Activities at the Facility

Powerstown Landfill was granted Waste Licence No. W0025-03 by the EPA in December 2009.

The landfill is licensed to carry out the following waste disposal activities in accordance with the Third Schedule of the Waste Management Acts 1996 to 2010:

Class 1: Deposit on, in or under land (including landfill): The activity is limited to the disposal of non-hazardous waste at the facility.

Annual Environmental Report 2010 Waste Licence W0025-03 May 2011

Class 4:	Surface-impoundment, including-placement_of_liquid_or_sludge_discards_
	into pits, ponds or lagoons: This activity is limited to the storage of
	leachate/ collected surface water in lagoon(s)/ retention ponds.
Class 5:	Specially engineered landfill, including placement into lined discrete cells
	which are capped and isolated from one another and the environment: This
	activity is limited to the disposal of non-hazardous waste into lined cells.
Class 6:	Biological treatment not referred to elsewhere in this Schedule which
	results in final compounds or mixtures which are disposed of by means of
	any activity referred to in paragraphs 1 to 10 of this Schedule: <i>This activity</i>
	is limited to the biological treatment of wastewater generated on site.
Class 7	Physico-chemical treatments not referred to elsewhere in this Schedule
010337	(including evanoration drains and calcination) which results in final
	compounds or mixtures which are disposed of by means of any activity
	referred to in paragraphs 1 to 10 of this Schedule: The activity is limited to
	the new our of anit from loophate in the loophate loopare(a)
	the removal of grit from leachate in the leachate tagoon(s).
Class 13:	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
	collection, on the premises where the waste concerned is produced: This
	activity is limited to the storage of waste in receptucles and designated
	areus prior to disposal on or off site.
	Ø1*

In addition to the disposal activities, the landfill is licensed to carry out the following waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Acts 1996 to 2010:

- Class 2: Recycling or reclamation of organic substances which are not used as solvents (including compositing and other biological transformation processes): This activity is similar to the composting of green waste from households and the collegion of wastes at the civic waste facility.
- Class 3 Recycling or reclamation of metals and metal compounds: This activity is limited to the collegion of wastes at the civic waste facility.
- Class 4: Recycling or reelamation of other inorganic materials: This activity is limited to the collection of waste at the civic waste facility and re-use of construction and demolition waste at the facility as capping or on site road material.
- Class 9: Use of any waste principally as a fuel or other means to generate energy: This activity is limited to the use of landfill gas for the generation of electricity/ energy.
- Class 11: Use of waste obtained from any activity referred to in a preceding paragraph of this Schedule. *This activity is limited to the use of compost generated on site in restoration works.*
- Class 13: Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced. This activity is limited to the storage of waste in receptacles and designated areas prior to recovery on or off site.

2.3 Quantity and Composition of Waste Disposed and Recovered

Disposal

The waste received for disposal during 2010 included household and commercial waste, local authority clean ups, street cleaning waste, fly tipping, screenings, filter sand and treated sludge. The type and quantity of waste received and disposed to landfill are summarised in Table 2.1. A total of 13,697 tonnes of material was disposed to landfill during 2010.

Table 2.1: Waste	Received an	d Disposed	to]	Landfill	(2006 to	2010)
------------------	-------------	------------	------	----------	----------	-------

Waste type	2006	2007	2008	2009	2010
	(10nnes)	(Tonnes)	(lonnes)	(Tonnes)	(Tonnes)
Household Waste	29,990	35,075	28.397	13,839	4.378
Commercial Waste	1,927	2,991	3,956	1,622	339
Street Cleaning Note 1	1,038	l,007	1,101	1.091	2.338
Sludge/					
Screenings/filter	629	675	400	377	545
sand					
Garden Park Waste	74	364	661	596	444
Community Clean	2.072	2.010	1.665		
Up	2,003	3,018	1,662	2,934	5,040
Other	-			ک 635	613
Total	38,091	43,130	36,177	21.684	13.697

Note 1: Total includes street cleaning residues. fly tipping, litter bins road sweeper and drain cleaning Purposes ed

Recovery

The site also incorporates a Civic Amenite Site (CAS) serving the general public. The CAS offers a wide range of recovery facilities. Table 2.2 overleaf details the waste types accepted at Powerstown CAS and the quantities accepted from 2006 to 2010. A total of 1725.55 tonnes of recyclable materials were received at the CAS during 2010. The total number of customers to the CAS during 2010 was approx 19,000.

A total of 10.62 tonnes of biodegradable waste was re-directed from Powerstown landfill to further treatment during 2010.

The BMW reports submitted to the agency during 2010 reported the following results

Q3	2010	%	BMW	55.5%
Q4	2010	%	BMW	56.4%

Matarial Trees	2006	2007	2008	2009	2010
Material Type	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Batteries	19.5	23.07	18.02***	16***	14.70***
Paper	71.8	52.87	80.54	76	118.40
Fluorescent Lights	3.5	3.5	1.34	3.1	1.07
Cardboard	89.1	62.94	51.46	55	79.24
Textiles	7.4	14.77	15.84	10	12.74
Timber	148.6	155.76	213.2	280	281.91
Oil	1.7	6	4.5	6	
Oil filters	I	0.62	0.86	0.58	0.64
Scrap metal	357.3	292.16	272.12	268	222.66
WEEE	131.6	182.28	172.18	177	231.24
Glass					
 Bottle Bank* 	24.8 *	29.06 *	44.90 *	51	74.92
 Flat Glass 	25.9	12.14	17.16	23	31.54
TOTAL	49.6	41.20	62.06	74	106.46
Plastic Bottles	7.7	6.26	21.18	36	77.38
Plastic Film	9.3	7.02	5.1	in above	14.78
Tyres Note 1	NR	2.74	1.62	8.42	6.12
Tetra Pac	NR	3.06	3.24 3	1	14.52
Polystyrene	NR	0.98	1.08	1.48	1.76
Paint Cans	NA	NA 💰	NA	NA	10.52
Green waste	NR	184.66	285.5	365	500.55
Waste Engine Oil	1.7	10P ILITE	4.5	6	8.98
Waste Cooking Oil	-	ion press	-		0.44
Gypsum	NA	STANA	5.10	29	21.44
Biodegradable Food	- 1113	dit -	-	-	10.62
Waste	Fordy				
Clay**	11,189	15,366.5	3,101	8,140	7,038
Rubble**	SNR	727.02	71.8	1.233	320 Note
Total	12 085	17 133 43	4 387 74	10 781	0.094

1 able 2.2; vyaste Recovery at the Towerstown-CAS-from-2000-to-20	Table 2:2:	aste Recovery at t	he Powerstown-C	FAS from	-2006-to-201
---	------------	--------------------	-----------------	---------------------	--------------

Note 1: The figure for tyres in the above table represents the amount of tyres removed from waste loads at the landfill active face.

Note 2: Figure includes total amount for rubble & soil and stones

NR - None reported

NA - Not Accepted

*Aluminium cans are included in the bottle bank.

**Clay and Rubble were used for site upgrade work

*** Figure represents total amount for lead acid and primary batteries

2.4 Capacity of Landfill

A licence was granted by the EPA on 11th April 2005 for an extension to the landfill that includes a further four cells with a capacity of 240,000 m³. The remaining capacity of Phase 3 is estimated at 135,524 m³ (April 2011).

2.5 Methodology of Material Disposal and Recovery

Disposal of Waste

Vehicles such as trucks, tractors with trailers, or cars with trailers containing waste, are initially checked in at the weighbridge and inspected. The weight and description of the waste is recorded. These vehicles then proceed to the tipping area and the waste is tipped under the supervision of site personnel.

Cars and vans are weighed at the weighbridge and these proceed to the waste collection area where the public skips are located. The waste is disposed of into the public skips.

Following tipping of the waste skips within the active area, the waste is levelled and compacted to a layer of no greater than 2 metres in depth on a daily basis. Individual compaction layers are no greater than 600 mm in depth. Compaction of waste is carried out by a purpose built compactor machine weighing approximately 38 tonnes.

At the end of each day the compacted waste is covered with a layer of clay. At the end of each week, the compacted waste is covered with an additional 150 mm of clay.

A number of brown bins are present at the public skips area into which customers can dispose of their biodegradable / food waste. The waste from these bins is collected by an approved contractor and removed off-site for further treatment.

Recovery Recyclable materials are brought directly to the service amenity area by the general public where the waste is segregated into groups Each waste recovery stream has its own designated skip. When the skip is full is weighed before removal to an appropriate ofcop recycling facility.

2.6 Waste Acceptance Procedure

In early 2010 a new Waste Acceptance Procedure was developed in order to comply with the requirements of the revised waste licence. A copy of the procedure was forwarded to the Agency on 11-6-10.

2.7 Enforcement Category

On the basis of international best practices, an Environment-Based Assessment Tool was developed by the Environmental Protection Agency to assist with prioritising enforcement activities. The methodology allocates an enforcement category to licensed facilities on the basis of five environment-based attributes:

- 1. Complexity;
- 2. Emissions:
- 3. Location:
- Operator Management; and

May 2011

5. Enforcement Record.

The enforcement category of each IPPC and Waste licensed facility is assessed under each of the above headings, and an overall enforcement category is obtained. This overall enforcement category will then be reviewed by the OEE and either confirmed (in the majority of cases) or adjusted as appropriate. Enforcement categories vary from A1 (extremely high enforcement category) to C2 (very low enforcement category). In line with their enforcement policy, the EPA will use the overall category obtained in developing their annual inspection programme and in guiding the allocation of resources for enforcement activities.

The enforcement category for the landfill has been assigned as A2 (High), as calculated by the Environmental Protection Agency on-line tool.

Consent of copyright owner required for any other use.

3.0 Environmental Monitoring

Mr. Fergus Mulhare Landfill Manager and Ms. Mary Walsh, Environmental Technician for the facility, oversee all matters of an environmental nature including compliance monitoring. Some of the monitoring requirements are completed by Carlow County Council, and some are out-sourced to third parties on behalf of Carlow County Council.

Following consultation with the EPA during 2008 monitoring locations at Powerstown Landfill were revised.

Table 3.0 below, details the revised monitoring locations at Powerstown Landfill, in accordance with Waste Licence W0025-03. A map of the monitoring locations is presented in Appendix 1.

Landfill Gas	Dust Deposition	Noise	Surface Water	Ground Water	Leachate	Odour
G1 - G46	D2	SL	ST1	RCAI	LG	OD1
Note 1	D4	S2	ST2	RCA2	LT	OD2
	D5	N4	SWLO	GWI	L7	OD3
	D6	N5	SWLI	GW2	Note 2	
	D7	N6		GW3		
	D8			GW6 NSC		
ŀ				GW7 Mer		
i				GW8		
TP11 -			<u> </u>	Private Wells	L1, L2, L3,	Nolan
TP17			0500	as per	£4, L10,	residence
			nection purper requir	Condition 8.8.1 of Licence	L11, L12, L13 ^{Note 3} Cell 15	McDonalds Residence
	1 1	FOIL	tiett C		Cell 16 Cell 17 Cell 18 ^{Note 4}	M9 Roundabout
		Consent of				NE site boundary Note 5

Table 3.0 Monitoring Locations

Note 1: G42 not included

Note 2: Cells to be monitored for Leachate composition (quarterly / annually)

Note 3: Cells to be monitored for leachate levels (weekly)

Note 4: Cells 15-18 levels monitored continuously on SCADA

Note 5: Daily Odour Monitoring Locations

3.1 Dust Monitoring

Dust monitoring was carried out at the facility in compliance with the requirements outlined in Schedule D and Table D.3.1 of the Waste Licence. A total of six monitoring locations as listed in Table 3.0 were monitored during the 2010 monitoring period. The Waste Licence stipulates a dust deposition limit of 350 mg/m²/day for the facility. A summary of dust deposition monitoring results is presented in Table 3.1 All monitoring results were within the licence limits.

Monitoring Location	Dust Deposition Limit mg/m ² /day	May/June 2010 (mg/m²/day)	July/Aug 2010 (mg/m²/day)	Sept/Oct 2010 (mg/m²/day)
D2		195	23	22
D4		69	57	41
D5	250	76	31	44
D6	320	169	66	75
D7		86	37	62
D8		27	51	27

Table 3.1: Summary of Dust Monitoring Data during 2010

3.2 Surface Water Monitoring

A chemical water quality assessment of the Powerstown Stream was carried out by EPA and a biological water quality assessment was undertaken by Conservation Services Ltd. at two sampling locations, ST1 and ST2 in accordance with Schedule D.6 (Table D.6.1) of the Waste Licence. ST2 is situated upstream of the facility and ST1 is located downstream of the facility. The results of surface water monitoring carried out during 2010 are presented in Appendix 2 of this report.

Chemical Assessment

Samples were collected from ST1 (downstream) and ST2 (upstream) SWL1 (inlet to surface water pond) and SWLO (Outlet from surface water pond) on a quarterly basis. Field measurements were recorded and laboratory analysis completed in compliance with Table D.5.1 of the Waste Licence. As water quality limits for surface water are not set out in the Licence; the results for ST1 and ST2 were compared with the surface water trigger levels for the site and with S.1. No. 278 of 2007: European Communities (Drinking Water) (No. 2) Regulations 2007.

Site specific trigger levels have been set for conductivity $(1000\mu$ S/cm), chloride (50mg/l) and ammoniacal nitrogen (0.5mg/l) for locations upstream (ST2) and downstream (ST1) of the landfill. Results obtained during the 2010 monitoring event show all results recorded at ST1 were below the trigger levels for these three parameters. The ammonia level recorded during Q4 at ST2 (0.53mg/l) exceeded the trigger level but all other results were below the stipulated limits. The results of monitoring at each location, the relevant trigger levels and the limits set out in S.I. No 278 of 2007 are presented in Appendix 2.

Monitoring results indicate that there is no significant difference in water quality between upstream and downstream monitoring locations. It is considered that operations at Powerstown Landfill do not have an adverse impact on the Powerstown Stream. All results recorded downstream of the landfill are below the stipulated trigger levels set for the site.

The inlet (SWLI) and outlet (SWLO) at the surface water pond are also monitored on a quarterly basis. These locations are not compared to trigger levels or Water Quality Standards. Schedule C.4 of the licence stipulates a limit of 35mg/l suspended solids measured at the outlet from the surface water pond. This limit was exceeded during Q1 2010 but was compliant for all other samples obtained.

Continuous monitoring of pH, conductivity and TOC at the inlet to the surface water pond

is carried out as per Condition 6.5.3 of the waste licence. Results of this monitoring are available on-site.

Biological Assessment

A biological assessment was completed in accordance with Schedule D (Table D.5.1) of the Waste Licence. The biological assessment contained two facets; habitat assessment and biological water quality assessment.

A habitat assessment was carried out at ST1 and ST2. These monitoring locations were assessed in terms of characteristics of the habitat and rated as a habitat for trout in the adult, nursery and spawning stages. The results of the habitat assessment are shown in Table 3.2.

Table 3.2: Habitat Assessment 2010

	ST1	ST2
Trout Adult Habitat	Fair	Poor
Trout Nursery Habitat	Fair	Poor
Trout Spawning Habitat	Fair - Poor	Poor

A biological water quality assessment was also completed at locations ST1 and ST2. Based on the relative abundance of indicator species, a highlic index (Q-rating) was determined for each location in accordance with the biological assessment procedure used by the EPA (McGarrigle, M.L. *et al.*; 1998). Table 3.3 presents the results of the biological water quality assessment. Results are compared to previous annual monitoring events dating back to 2006. A full copy of the report for this survey was submitted to the agency.

Table 3.3:	Biological	Water Quality	Assessment
		x corr	

Location	Sept. 2006	ent Sept. 2007	2008	Aug. 2009	Sept 2010
ST1	Q3 C	Q3-4	Q3-4	Q3-4	Q3-4
(Downstream)	Moderately	Slightly	Slightly	Slightly	Slightly
	Polluted	Polluted	Polluted	Polluted	Polluted
ST2	Q3	Q3-4	Q3-4	Q3-4	Q3-4
(Upstream)	Moderately	Slightly	Slightly	Slightly	Slightly
	Polluted	Polluted	Polluted	Polluted	Polluted

The biological assessment shows that the water quality remains the same relative to the 2007 assessment. Historically the biological water quality of the stream has fluctuated between moderately and slightly polluted. The cause of historical deteriorations and recovery of biological water quality is unlikely to result from activities at the site as the assessment shows as similar conditions both upstream and downstream.

3.3 Groundwater Monitoring

Groundwater monitoring for 2010 was completed by the EPA at the facility in compliance with Schedule D.4 (Table D.5.1) of the Waste Licence. In addition Condition 8.7 Licence stipulated a requirement to include private wells (e.g. domestic, agriculture etc) within 500m of the facility to be included in the monitoring programme, subject to agreement with the owner. 2 private wells were sampled during the 2010 monitoring period. The quarterly analytical results for each well are summarized and included in Appendix 2. A groundwater contour map is also presented in Appendix 2.

Water quality limits are not stipulated in the licence; however specific Groundwater Trigger Levels (GTLs) have been set for individual monitoring wells for indicator parameters electrical conductivity (EC), chloride and ammoniacal nitrogen. In addition groundwater monitoring data for monitoring wells at the facility were assessed relative to EPA Interim Guideline values (IGV's) (EPA 2003).

The results of groundwater level monitoring indicate that the local groundwater flow direction is generally to the north-west, a groundwater flow direction map is presented in Attachment 2. The locations of groundwater monitoring locations relative to Phase 2 and Phase 3 landfills are summarised in Table 3.4 below.

Table 3.4: Position of Ground	water Monitoring	g Locations	Relative to	Phase 2	and
Phase 3 Landfills		only any			
	چ	\$ x \$0			

Location	Comment	Position Relative to Phase 2 and Phase 3
GW1	As Existing	Down gradient
GW2	As Existing	Down gradient
GW3	New Borehole Installed	Background
GW6	New Borehole Installed	Background
GW7	New Borehole Installed	Down gradient
GW8	As Existing Const	Down gradient
RCAI	As Existing	Up gradient
RCA2	As Existing	Up gradient

Monitoring data for 2010 indicate that samples collected from down gradient monitoring wells GW1, GW2 and GW8 exceeded the groundwater trigger levels for the following parameters: GW1; Ammonia, Conductivity, GW2: Conductivity, Chloride, GW8: Ammonia. Annual analysis for the presence of metals indicated that ortho-phosphate was detected at levels in excess of the IGV at all groundwater monitoring locations during 2010. Potassium was detected at levels in excess of the IGV at GW1, GW2 and GW8. Iron and Nickel levels detected at GW2 exceeded their respective IGV's and Calcium at GW8 also exceeded the IGV. Uranium was detected at GW8 in excess of the IGV. Uranium is naturally present in soils and due to the bedrock in certain areas of Carlow, Uranium is present in groundwater due to the types of rock it passes through. All other metals detected were below the IGV's.

Boron, Calcium and Magnesium were detected at all groundwater monitoring wells. Sodium was also detected at all wells with the exception of GW7. Aluminium was detected at GW6, GW7, RCA1 and RCA2. For the purpose of this AER groundwater monitoring data was also compared to S.I. No 9 of 2010 European Communities Environmental Objectives (Groundwater) Regulations 2010. Ammonia Levels at GW1. GW2 and GW8 exceed the upper threshold values set out in S.I. No. 9 and Nickel at GW2 also exceeds the upper threshold value. All other results reported are within the relevant threshold values.

Groundwater monitoring data indicates that the quality of groundwater downgradient of the facility has been impacted. It is considered that leachate percolating from the unlined landfill may be contributing to the deterioration of groundwater quality. In January 2011 Carlow County Council commissioned Malone O' Regan to prepare a Tier 1 Qualitative Risk Assessment of the Powerstown Landfill, including an investigation into the groundwater quality of the local aquifer, the Powerstown Stream and the River Barrow.

3.4 Leachate Monitoring

Leachate monitoring is required for compliance with Schedule D.5 of the Waste Licence. Leachate Monitoring locations were revised during 2008 / 2009 and the locations are presented in Table 3.0 (pg. 12 of this report). It was agreed with the Agency during 2009 that the following locations would be used for leachate quality reporting purposes:

- L7: this collects leachate from Cells 7 and 8.
- LG: the Leachate Lagoon which collects leachate from Cclos 1-6 and 8-13.
- LT: the Leachate Tank which collects leachate from Cells 15 and 16.

Annual leachate monitoring was conducted by the EPA on 19^{th} October 2010 at Powerstown Landfill. Samples were not obtained from LT and L7 listed above. Samples were obtained from LG and also from L2, L3 and L4. The results of the sample obtained from LG are presented overleaf in table 3.5%. The results are compared to previous results received during 2009, 2008 and 2007.

801

The Phase 2 and Phase 3 landfills have been constructed to an engineered specification which includes a leachate collection system. The levels are monitored to ensure that a leachate level of less than 1m is maintained by the pumping and collection system.

The quality of municipal landfill leachate changes with time as the degradation of waste progresses inside the landfill as a result of internal bio-reactions within the landfill that leads to the formation of leachate. The process of leachate generation occurs in a series of stages and the quality of the leachate in any given generation stage has particular characteristics. The stages of decomposition and leachate characteristics include:

- Stage I Aerobic Processes (degradation)
- Stage II Anacrobic Acid Formation
 - (hydrolysis and fermentation)
- Stage III Unstable Anaerobic Methane Formation/Acetogenesis
 - (low pH, BOD;COD >0.4)
- Stage IV Stable Anaerobic Methane Formation/Methanogenesis
 - (higher pH, BOD;COD <0.25)
- Stage V Air Penetration (Oxidation)

In addition to annual chemical testing, quarterly leachate monitoring is carried out for temperature, odour and a visual description. This data is reported to the Agency in the form of Leachate Quarterly Reports.

Leachate levels are monitored on a continuous basis for Cells 15 and 16. Leachate levels are monitored weekly for Cells 1-13 to ensure that levels remain less than one metre above the liner level. These results are submitted to the agency on a quarterly basis.

Consent of copyright owner required for any other use.

Table 3.5: Results of leachate monitoring at Leachate Lagoon (LG)

Parameter/ Date	Aug-07	21/07/2008	13/05/2009	19/10/2010
Visual	Amber brown colour	-	-	Brown
Ammonia mg/l N	620	1100	1300	1200
Conductivity µS/cm	10580	15200	17900	17900
pH	7.9	7.8	7.7	7.8
Temperature °c	20	23	13.2	12.2
Orthophosphate mg/I P	1.5	4.4	6.3	5.7
Total Oxidised Nitrogen mg/l N	2.2	0.1	nın	142.11
BOD mg/I O ₂	30.8	65	104	nm
COD mg/I O ₂	1337	1336	1375	1480
Chloride mg/l Cl	1248	1928	2338	2282
Fluoride mg/l F	0.6	2.9	2.5	nm
Sulphate mg/ISO4	39.9	57.4	110	nm
Aluminium ug/l	102	<250	<250	170
Antimonv ug/l	<5	<10	<5	<5
Arsenic ug/l	139	152	20.3	110
Barium ug/l	280	121	46.70	160
Bervllium ug/l	<5	<10	we's	<5
Boron ug/l	2950	4350	\$ 510	3500
Cadmium ug/l	<5	<10 012	<5	<5
Calcium mg/l	62.7	80.6.	10.9	54
Chromium ug/i	81.5	Del Quit	23.4	69
Cobalt ug/l	25.4	dio 32.6	7.04	41
Copper ug/l	31.5	<10	<30	35
Iron ug/l	5330 0 1	5320	1020	5100
Lead ue/l	9.06 00	<10	<5	<5
Magnesium mg/l	80.4	116	14.6	76
Manganese ug/l	337	721	<250	360
Mercury ug/l	<5	<5	<5	<5
Molybdenun ug/l	<5	<10	<5	5.7
Nickel ug/l	142	70.5	31.6	220
Potassium mg/l	<5	728	102	690
Selenium ug/l	17.4	23	<5	35
Sodium mg/l	<5	1450	190	1400
Thallium ug/l	<5	<10	<5	<5
Tin ug/l	[3.1	22	<10	<10
Total Cyanide mg/l	< 0.05	< 0.05	< 0.05	0.211
Uranium ug/l	<5	<10	<5	<5
Vanadium ug/l	49.5	74.5	12.2	61
Zinc ug/l	136	<60	<100	10
1				

nm = not measured

May 2011

3.5 Noise Monitoring

Noise monitoring was conducted in accordance with Schedule D of Waste Licence W0025-02 at five locations on 22nd of December 2010. Night-time monitoring was not carried out as the facility only operates during daylight hours. The revised noise monitoring locations for Powerstown Landfill are presented in Table 3.0 (pg. 12).

Noise limits stipulated in Schedule C.1 of the Licence are as follows: Daytime noise limit; (55 dB (A) $L_{Aeq}(15 \text{ min})$ and night-time (45 Db (A) $L_{Aeq}(15 \text{ min})$ for the facility. The noise monitoring results for 2010 are summarised in Table 3.6 overleaf.

The L_{Aeq} levels recorded at locations outside the boundary of Powerstown Landfill ranged from 49dB(A) to 68dB(A). The levels recorded at locations S1 (68dB(A)) and S2 (61dB(A)) exceed the stipulated daytime noise emission value of 55dB(A). However, observations recorded at the time of the survey indicate that landfill operations were not audible during the survey at locations S1 and S2. Passing traffic was the dominant noise source at these locations and it is therefore considered that operations at Powerstown Landfill did not contribute to the exceedances recorded at S1 and S2.

Landfill operations were audible intermittently at locations N5 and N6. The L_{Aeq} recorded at N5 was 53dB(A) and N6 was 49dB(A). Both results are below the stipulated daytime noise emission limit.

Monitoring Location N4 is the only location that is situated inside the boundary of Powerstown Landfill. The L_{Aeq} recorded at this location was 50dB(A)and is below the noise emission limit value of 55dB(A) set output Waste Licence W0025-03.

In summary operations at Powerstown and fill were audible at two locations; N5 and N6. The L_{Acq} recorded at these locations did not exceed the stipulated daytime noise emission limit value of 55dB(A). The limit was exceeded at locations S1 and S2 and it is considered that the exceedances were due to high levels of passing traffic at both locations. It is therefore considered that, based on the local ambient noise environment in the vicinity of Powerstown Landfill and the results recorder during the noise survey, activities at the facility do not have an adverse effect on the receiving environment.

Location	Description	Monitoring Event	LAcq, 30min	L _{A10, 30min}	L _{A90, 30min}	Pre-dominant Noise Sources 2010
N4	Inside Western Site Boundary, at old entrance to landfill	2010 2009	50 54	53 57	44 45	Traffic along N9 roadway
N5	NSL outside southern site boundary	2010 2009	53 53	50 48	42 37	Passing and distant traffic, passing train, intermittent noise form landfill
N6	NSL approx 310m to the cast of the facility	2010 2009	49 47	49 <i>45</i>	43 36	Distant traffic noise
SI	NSL outside north western boundary of facility	2010 2009	68 65	73 68	49 54	Passing traffic
S2	NSL outside south western boundary of facility	2010 2009	61 63	61 61 15 ⁸ .	37 53	Passing traffic

Consent for inspection purposes of for any of

May 2011

3.6 Meteorological Monitoring

Waste Licence W0025-03 for Powerstown Landfill requires meteorological monitoring at the facility. Schedule D (Table D.6) sets out the meteorological parameters and monitoring frequency requirements. During 2010 Carlow County Council were in the process of re-instating the Met. Station on-site at Powerstown Landfill. The met data reported for 2010 was obtained from Meteorological Stations at Ashford, Co. Wicklow and Casement Aerodrome. Table 3.7 overleaf presents the results for 2010 meteorological data.

Consent for inspection purposes only any other use.

cport 2010	Ĵ
nental R	V0025-0
Environn	licence V
/mma/	Vaste I

Table 3.7 Meteorological Data 2010

Atmospheric	(%) Pressure (liPa)	1016	IANA		1015	1019	1019	1018	6101	7101	1015	1013	1011	1005	1016	
Belativ	Humidity	92	2	16	80	76	11	78		50	83	85	87	16	95	
Evapo-	transpiration (mm)	0.21	1 7 2	0.42	1.15	1 93	2 46		NU.C.	2.54	2.19	1 50	0.89	0.36	0.14	
Wind Direction	(Degrees from	(IN INVI	507	176	195	661	771	104	182	220	566	000	180	105	2018	201
	Windspeed (Knots)		8.44	651	0.02	0.00	80.1	6.20	6.36	10.02	CU.UI	10.8	198.8 0 XIV	I ON	and the	0.20 0.20
	Temperature Min (°C)		0.3	F V	4.0	<u>د ا</u>	3.6	6.3	<u>6</u>	5055	17:0	10.3	9.9	6.7	2.7	-0.6
	Temperature	IVIAA (U)	6.9	0	8./	10.2	13.3	15.5	18.8	0.111	20.5	19.5	18.0	14.8	9.9	5.7
	Precipitation	Volume (mm)	3 00		2.06	2.66	1.12	2.15	1 37	1.27	2.89	1.19	3.73	2.62	5.48	0.00
				January	February	March	April	Mav		June	July	August	September	October	November	

The total annual rainfall during 2010 was approximately 978mm. This resolutindicates a decrease of approximately 167 mm in comparison to rainfall figures reported in 2009.

May 2011

3.7 Landfill Gas

Landfill gas monitoring was completed by Carlow County Council personnel at the facility in compliance with the requirements outlined in Schedule D (Table D.2.1) of the Waste Licence. Landfill gas monitoring must be completed monthly at all gas borcholes/vents/wells and weekly at the site office. Landfill gas emission limit values (ELVs) are stipulated in the Licence for landfill gas measured in any building on or adjacent to the landfill. The ELVs are 20% LEL (1% v/v) for methane, and 1.5% v/v carbon dioxide. In the absence of ELVs for gas boreholes/vents/wells the ELVs for buildings are used for evaluation purposes. Landfill gas monitoring locations are illustrated on the map contained in Appendix 1.

Gas monitoring locations are detailed in table 3.0 (pg 12) and are also outlined below:

- Main office area and weighbridge
- Perimeter boreholes G1-G46 (with the exception of G42)
- Landfill Gas boreholes TP11-TP17

Landfill Gas Monitoring in Buildings on or Adjacent to the Landfill

Landfill gas monitoring was carried out within the main office area and within the weighbridge office at Powerstown landfill during 2010. All reported monitoring results for carbon dioxide and methane were below the relevant ELVs and in compliance with the Licence requirements throughout 2010.

Gas Borehole Monitoring Quarter 1 50 100

Monitoring was carried out at the above locations with the exception of TP14, TP15. TP16, G9 and G10. There were no exceedances in relation to methane concentrations detected during Q1 2010. Elevated CO_2 levels were detected at 5 locations during Q1 2010 (TP17, G31, G32, G29, G33).

Gas Borehole Monitoring Quarter 2

Monitoring was carried out at the above locations with the exception of TP14, TP15, TP16, G9 and G10. There were no exceedances in relation to methane concentrations detected during Q2 2010. Elevated CO_2 levels were detected at 11 locations during Q2 2010 (G5, G6, G7, G8, G12, G14, G27, G28, G29, G43, G44).

Gas Borehole Monitoring Quarter 3

Monitoring was carried out at the above locations with the exception of G9, G10. There were no exceedances in relation to methane concentrations detected during Q3 2010. Elevated CO_2 levels were detected at 11 locations during Q3 2010 (G5, G6, G7, G8, G14, G17, G27, G28, G29, G43, G44).

Gas Borehole Monitoring Quarter 4

Monitoring was carried out at the above locations with the exception of G9 and G10. Methane concentrations in excess of the ELV were detected at G41 during October, November and December 2010. Elevated CO₂ levels were detected at 11 locations during Q3 2010 (TP13, TP15, TP16, TP17, G5, G8, G27, G28, G29, G41, G44).

3.8 Landfill Gas Plant Flare Monitoring

Compliance with Schedule D7 of the Waste Licence requires annual monitoring of the landfill gas plant flare (LFGF1). Continuous monitoring of methane, carbon monoxide, carbon dioxide, oxygen, temperature, flow and pressure is recorded at the flare.

Annual analysis of the composition of gas emissions from the flare at Powerstown Landfill was carried out on the 30th of September 2010 by Odour Monitoring Ireland on behalf of Carlow County Council. The parameters analysed were those listed in table D.7.1 of Waste Licence W0025-03 at the inlet and outlet from the flare.

These results are presented below in tables 3.8 and 3.9. Results for the emissions from the flare are compared with results recorded during 2008, 2009 and are also compared to ELVs stipulated in the table C.5 of the licence. There are no stipulated limits for gas concentrations at the inlet to the flare.

All reported landfill gas flare measurements were in full compliance with the Licence requirements and methane removal efficiency was calculated to be >99%.

Parameter	Units	Flare (enclosed) Emission Limit*	March 2008	March 2009	September 2010
Temperature	°C	_	Sontor and	1023	1021
Oxygen	%		quite 10.19	9.12	7 .17
Oxides of Nitrogen (as NO ₂)	mg/Nm ³	150 spectromet	64	71.65	69.61
Carbon Monoxide	mg/Nm ³	5000	35	5.70	3.26
Sulphur Dioxide (SO ₂)	mg/Nm ³	Consett-	85	21.65	115
Hydrogen Chloride	mg/Nm ³	50 (at mass flows > 0.3 kg/h)	29.27	6.48	5.09
Hydrogen Fluoride	mg/Nm ³	5 (at mass flows > 0.05 kg/h)	0.08	1.14	0.45
Total organic carbon (TOC)	mg/Nm ³	10	9.96	6.32	2.19

Table 5.6. Annual Enussions wountering results at LFGF1 (2000 to 201	Table 3.8:	Annual Emissions	Monitoring	Results at	LFGF1	(2008 to	2010
--	------------	-------------------------	------------	-------------------	-------	----------	------

NOTES:

- Denotes no ELV for that parameter

*Dry gas referenced to 5% oxygen by volume for utilization plants and 3% oxygen volume for flares.

** Normalised gas results, oxygen corrected to 3% O2.

May 2011

Parameter	Units	September 2010
CH4	%	36.50
CO ₂	%	35.21
O2	⁰∕₀	1.50
Total Sulphur	mg/Nm ³	21.56
Total Chlorine	mg/Nm ³	1.94
Total Fluorine	mg/Nm ³	<0.65
Total Landfill gas volumetric airflow rate	m ³ /hr	240

Annual Monitoring Results at LFGF1 (Inlet) 2010 Table 3.9:

In addition to annual flare monitoring, servicing of the flare is carried out at quarterly intervals by Automatic Flare Systems Ltd.

3.9 **Odour Monitoring**

- Open surfaces: <100ppmv
- Vertical wells/collection sumpsetc: <500ppmv

Monitoring carried out on 17/06/10

Seven zones of surface emissions were identified during this survey. Five of these areas were at sloped / flanked areas within the active area of the landfill. One area was due to insufficient sealing around a well head while another was a diffuse source in an open area.

Monitoring carried out on 30/09/10

Eight zones of surface emissions were identified during this survey. Seven of these were as a result of landfill gas surface emissions from flanked areas within the landfill. One source was due to insufficient sealing around a vertical well head.

Mitigation measures carried out as a result of these surveys included:

- Additional capping material as required
- Extension of the temporary capping on some flanks.
- Maintenance of vertical extraction wells and pipe-work.

3.10 **Topographical Site Survey**

A topographical survey of the Phase 3 landfill was completed in March 2010. A copy of the survey drawing is included in Appendix 5.

3.11 **Slope Stability Assessment**

An assessment of the stability of the waste sideslopes was carried out in October 2010 at three critical slopes:

- The southern slope of phase II •
- The northern slope of phase III ø
- The eastern slope of phase III 0

The slope stability test of Powerstown Landfill concluded that based on visual inspection and appropriate analysis carried out, landfill slopes have an acceptable factor of safety with respect to slope stability. The factor of safety for the critical slopes analysed was in 3.12 Other Testing
Bund Integrity Testing was completed during 2010 and other the following locations:
Leachate Tank (LT)
Leachate Lagoon (LG)

 Leachate Tank (LT)
 Leachate Lagoon (LG)
 A copy of these reports is presented in Appendix 6. Consent

4:0-Generation-and Emission-of-Landfill-Products-

This summary of emissions from the facility is based on a review of monitoring data, disposal and recovery records and emissions calculation, modeling and estimation. The discussed emissions from the facility include both estimated and calculated emissions of landfill gas, emissions to groundwater and volumes of leachate produced and transported off-site.

Releases and off-site transfers of landfill products, contaminants from all deliberate. accidental, routine and non-routine activities at the facility must be reported to the EPA. The pollutant release and transfer report (PRTR) for Powerstown Landfill facility have been compiled and submitted to the EPA in electronic form as part of the AER submission for 2010 and the results are summarized in Section 4.4.

4.1 Landfill Gas and Emissions to Air

Landfill gas is produced by the breakdown of organic material by micro-organisms under anaerobic conditions. Typically, the major constituents of landfill gas are methane (CH₄) and carbon dioxide (CO₂), and lower concentrations of other components, for example mercaptans, organic acids, aldehydes, ketones and alcohols, give landfill gas its typical characteristic odour.

Methane makes up 60% volume/volume (v/v) of dapatill gas and is flammable (at concentrations in the range 5-15%) and can be an applyxiant. Carbon dioxide makes up 40% v/v and is also asphyxiating in enclosed areas (at concentrations greater than 1.5% v/v). Over time, the concentrations of both gases change, depending on the type and age of waste, method of fill and moisture contents. Methane and carbon dioxide generation and emissions are discussed below.

Landfill Gas Generation

Landfill gas generation at the site was predicted using LandGEM (Landfill Gas Emissions Model) based on site specific data, relative assumptions and standard calculations applicable to landfill sites.

ofcop

The estimated methane generation for the entire site, as per the site model was predicted to be $1,898,561 \text{ m}^3$ for 2010. The amount of methane flared in 2010 is considered to be 583,518 kg.

Landfill Gas Emissions

Landfill gas is emitted from the landfill through two areas: through direct emissions of uncaptured landfill gas from the waste body to atmosphere and through the capture of gas in the landfill gas collection system which is directed to the landfill gas flare.

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills.

The software provides a relatively simple approach to estimating landfill gas emissions. The model allows users to provide landfill characteristics, determine model parameters, select up to four gases/pollutants (total landfill gas, methane, carbon dioxide, NMOC, and 46 air pollutants), and enter waste acceptance rates. The model then calculates methane emission estimates using the first-order decomposition rate equation

The threshold value for methane emitted or released to air, as outlined in E-PRTR Regulations (2006) is 100,000 kg/year and that for carbon dioxide is 100,000,000 kg/year. The predicted volume of methane released to atmosphere in 2010 at Powerstown Landfill is 777,750 kg/ycar. This exceeds the specified threshold limit value. The following table summarises the emissions to air in 2010

Emission Type	Kg/year
Carbon Monoxide	17
Nitrogen Oxides	356
Sulphur Oxides	588
Methane	777,750
Flourine and Inorganic Compounds (as Fl)	2.3
Chlorine and Inorganic Compounds (as HCI)	26
Total Organic Carbon (as C)	المربح المراجع
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table 4.1	Summary	of	Emissions	to	Air	in	2010
THOIP IFT	COMMERCIAL OF L	U.L	TOTITIOOIO 10110		L.F.W.W.		- MALEO

Figures have been rounded off, refer to the electronic PRTR for the original figures. required for at

#### 4.2 Leachate Generation

Leachate generation occurs within the landfill waste body as a result of rainfall infiltration through the capping layers. The Phase 2 and Phase 3 landfills contain engineered landfill cells. The cell design incorporates a landfill capping layer and a cell liner comprising a geotextile and clay liner overlain by a leachate collection system. Landfill cells 1 - 13have been permanently capped therefore water infiltration to these cells is minimised. Leaks in landfill liners and collection systems can occur. Therefore, the water balance calculation is conducted to determine the predicted volume of leachate generated which can be compared with the measured volume of leachate collected (i.e. volume generated).

#### Water Balance

The water balance is calculated using the following formula (EPA, 2000):

Lo = [ER (A) + LW + IRCA + ER (I)] - [aW]

Lo = leachate produced (m³) ER = effective rainfall (m) A = area of cell  $(m^2)$ LW = liquid industrial waste (also includes excess water from sludges)  $(m^3)$ IRCA = infiltration through restored and capped areas (m) = surface area of lagoon  $(m^2)$ 1 = absorptive capacity of waste  $(m^3/t)$ a W = weight of waste deposited (t/a)

Data used for the water balance calculation includes site specific data (e.g. landfill design, quantity of waste landfilled), regional data (e.g. published rainfall data, potential evapotranspiration) and empirical data (waste absorptive capacity). The empirical data used was selected based on known landfill and waste characteristics.

Infiltration figures are generally taken at mid range for those given in the EPA Landfill Design Manual.

No liquid industrial waste was landfilled.

Lagoon areas are not applicable at Powerstown landfill as the lagoon at the old reception area has a sealed floating cover and leachate from the Phase 3 area is stored in a sealed storage tank.

The waste bearing areas at Powerstown Landfill are presented in zones as follows:

- Unlined cell
- Cells 1-5
- Cells 6-13
- Cells 15 & 16
- Cell 17 (does not contain waste but did contain rungoff from cells 15/16 which was treated as leachate.)
- There are 'dirty' paved areas at Powerstown landfill also draining to the leachate collection system. These are also included in the water balance calculation at a run-off coefficient of 0.95.

The estimated volume of leachate generated for 2010 based on the water balance calculation is 16,073 m³. The actual quantity of leachate tankered off site was 25,194 m³ (at a conversion rate of  $1m^3 = 1$  tonne). The difference between the theoretical quantity and the measured quantity is thus 9,121 m³. It is considered that this large difference is due to the amount of surface water run-off captured at cell 17. Surface water / leachate run-off was held in cell 17 for a period of time to allow for analysis of samples in order to determine a suitable treatment process for this run-off. Rainfall / run-off collected following heavy rain during late 2009 and early 2010 was held for a period within Cell 17. Therefore, due to the large amount of captured run-off it took a significant period of time to empty cell 17. The figures presented in the water balance calculation calculate a much smaller amount of leachate from April to August 2010 in comparison to what was actually removed off-site. This run-off would previously have been directed to the surface water retention pond and it is considered that this is the cause of the significant increase in leachate volumes at Powerstown Landfill during 2010.

The water balance calculation is contained in Appendix 7 of this report.

### Leachate Abstraction and Removal

Leachate generated within the landfill cells is directed to a leachate collection system and pumped to either the leachate storage tank at the east of the facility or the leachate storage lagoon to the west of the facility. Leachate is transferred off-site by tanker. Given that the operating landfill is lined with no leaks, it is assumed that the quantity of leachate tankered off site is the same as the quantity of leachate produced within the landfill. The leachate is tankered off-site for treatment at either the Mortarstown, Tullow or Muine Beag waste water treatment plants (WWTP). The leachate tankered off-site is measured; total volume of leachate tankered off-site in 2010 was 25,194 m³. The monthly and annual volumes of leachate tankered off-site in 2010 and preceding years are summarised in Table 4.2 below.

Month	Leachate 2006 (m ³ )	Leachate 2007 (m ³ )	Leachate 2008 (m ³ )	Leachaie 2009 (m ³ )	Leachate 2010 (m ³ )
January	817	3018.26	1722.2	969	2320.04
February	587	1434.56	1261.72	1,069	4374.92
March	770	2425	1136.56	1,201	2836.90
April	869	1068.82	435.02110	822	2213.44
May	751	663.92	81 3,052	1,141	2110.88
June	619	831.36	్ర <b>్యో</b> \$1.7	762	1802.54
July	566	1430.74	2055.94	1.214	2143.52
August	522	1539.46	1304.4	528	1990.52
September	473	864.32 ¹¹ MIC	1406.26	910	1958.50
Octoher	973	722598	1570.10	923	727.10
November	2193	<355 88	1493.70	782	1822.70
December	2327	\$95.76	1041.18	2,953	892.96
Total	11,467	15,251	14,754.3	13,274	25,194
		0112			

#### Table 4.2: Leachate Collected and Transferred Off-Site

The volume of leachate generated within the landfill decreased from 2007 to 2009. A significant increase in the volume of leachate produced was noted during 2010. It is considered that this increase was due to leachate percolating from active cells 15 and 16 into two unused cells (17 & 18). Rainwater previously captured in cells 17 & 18 was uncontaminated and treated as surface water run off at the site. However, as the height of cells 15/16 increased during 2010, leachate migrated down side slopes from the active area into cells 17 & 18 thus contaminating the water contained within. This resulted in additional leachate to be tankered off site for treatment at WWTP. This problem has since been alleviated by the installation of a new barrier along the southern slope of cells 15 and 16.

#### 4.3 Emissions to Groundwater

Monitoring data for 2010 indicate that samples collected from down gradient monitoring wells GW1, GW2 and GW8 exceeded the groundwater trigger levels for the following parameters: GW1; Ammonia, Conductivity, GW2: Conductivity, Chloride, GW8: Ammonia. The quarterly analytical results for each well are summarized in Appendix 2.

Groundwater monitoring data indicates that the quality of groundwater downgradient of the facility, and in particular downgradient of the Phase 1 landfill, has been impacted. Elevated levels of chloride, ammoniacal nitrogen, barium, boron, calcium, iron, manganese, nickel, potassium, sodium and uranium have historically been detected at monitoring wells downgradient of the facility. It is considered that leachate percolating from the unlined landfill may be contributing to the deterioration of groundwater quality.

It has been estimated that  $1,469 \text{ m}^3$  of recharge passes through the waste in Phase 1 every year and that a leachate plume is present beneath this area (Geotechnical and Environmental Services Ltd. (GESL), 2001). As this landfill area is unlined and without a leachate collection system a conservative assumption is that the majority of recharge discharges from the waste to groundwater as leachate.

Previous assessment (GESL, 2001) concluded that significant attenuation of any contaminants leaving the landfill structure, this attenuation is attributed to an estimated annual through flow of 4000m³ in the bedrock aquifer beneath the landfill. An ELRA is currently being compiled by Malone O Regare for Carlow County Council which will investigate this matter further.

### 4.4 Pollutant Release and Transfer Report

The PRTR for Powerstown Landfill was electronically submitted to the EPA on the 6th May 2011. The report was prepared in accordance with AER/PRTR Reporting requirements and EPA Guidance Note No. 4. The results of the "Landfill Gas Survey 2010" were also incorporated into the PRTR. A copy of the submitted report is contained in Appendix 3 of this report.

#### Releases to Air

The threshold value for methane emitted or released to air, as outlined in E-PRTR Regulations (2006) is 100,000 kg/year and that for carbon dioxide is 100,000,000 kg/year. The predicted volume of methane released to atmosphere in 2010 at Powerstown Landfill is 1,361,268 kg/year. This exceeds the specified threshold limit value.

#### **Releases to Waters**

Surface water run-off at Powerstown landfill is collected by a series of engineered channels and drains. All surface water run off is directed to a surface water retention pond, whereby suspended solids present in the water are allowed to settle before the water is discharged to the nearby Powerstown Stream. Approximately 432,000 litres of water per day was discharged to the Powerstown Stream during 2010.

#### **Releases to Wastewater or Sewer**

There are no releases to wastewater to report for the 2010 survey.

#### **Releases to Land**

There are no releases to land to report for Powerstown Landfill during 2010.

#### **Treatment and Transfer of Waste**

The Powerstown facility is permitted to accept waste for disposal to landfill and recovery, recoverable materials are transferred off-site for recycling or re-use. In 2010 a total of 1, 736 tonnes of material was transferred off-site for recovery.

Consent for inspection purposes only any other use.

### 5.0 Energy and Resource Consumption

The following section summarises energy and resource usage at the facility in 2010.

#### 5.1 Diesel

Overall, diesel usage at the landfill for 2010 was approximately 45,533 litres. This information was supplied by the machinery contractors invoice records.

#### 5.2 Electricity / Water

The Energy Suppliers to the site are ESB Independent Energy. Records were obtained for energy usage at the site for the period January – December 2010. The total amount of energy used was 91,932kWh.

A water meter is installed at the site. Water usage at the site between 11/11/09 to 12/11/10 was  $172m^3$ .

#### 5.3 Resource consumption

Table 5.1 contains quantities of material used for landfill maintenance from 2006 to 2010.

- The covering material used at the landfill during 2010 was a combination of clay, compost and Hessian material
- Road making material is used for the road network in the landfill and for access to the active area in cells 15 / 16.
- The hessian void saver is the brodegradable material used to cover the waste.

A HOID DIAL INCOLO	CC COND	amp non	TOT TOMITO	ATTA TATAL	BERTHERE P.
Material soft	2006	2007	2008	2009	2010
Covering material / class	12,389	6642.3	8489.61	8,402	7,408
broken stone / rubble (tonnes)					
Hessian cover void saver (1n ² )	36,000	NR	17.828	4,500	9,288
Woodchip (tonnes)	NR	108.74	41.78	23	24.06
Compost (tonnes)	NR	2,276.9	5727.62	1,419	27.46

# Table 5.1: Resource Consumption for Landfill Maintenance

May 2011

### 6.0 Development Activities & Plans

#### 6.1 Development Works

In addition to meeting the targets and objectives set out for the 2010 period, further development works conducted at Powerstown Landfill during 2010 included the following:

- Landscaping of green areas and provision of new shrubbery (December 2010)
- Planting of trees along northern site boundary to improve aesthetics and provide shelter (December 2010)
- Re-location of toilet facilities for public use (November 2010)
- Re-wiring of weighbridge to improve the efficiency of the system (September 2010).
- Installation of additional litter nets to minimise effects of wind blown litter (December 2010)
- Installation of new gates at waste quarantine area and scrap metal storage area for health and safety reasons and to improve aesthetics (July 2010)
- Provision of a gale breaker at the domestic waste intake area to provide shelter to staff and customers (November 2010)

### 6.2 Environmental Objectives and Targets for 20,30 and 2011

The Environmental Objectives and Targets (EOTS) for 2010 were included in the AER that was submitted in 2010. These are outlined in Table 6.1 below along with a progress summary.

Schedule G of the Waste Licence requires the inclusion of a Schedule of Environmental Objectives and Targets for the forthcoming year. The Schedules for Environmental Objectives and Targets for 2011 are listed below in table 6.2. The information presented includes EOTs for promoting continual environmental improvement, maximising the amount of material accepted at the site and site development plans for 2011.

Table 6.1 Summary of Site Development Plans and Objectives for 2010				
	Item	Target / Objective	Progress	
I	Capping	Ongoing as required	Additional temporary capping completed during 2010 Note:	
2	Monitoring	Complete the re-location of the weather station	Completed Feb 2011 Note 2	
3	Staff Training	Continue training in the gas collection system	Completed (March 2010)	
4	Civic Amenity Site	Revise arrangements for timber acceptance	Completed; new timber bay constructed for temporary storage of timber in August 2010	
5	Gas collection	Extend gas collection system within active area	Completed and on-going	
6	Site Procedures	Revise Odour Control and Waste Acceptance procedures	Completed	
7	Site Infrastructure	Extend waste quarantine area	Completed July 2010	
8	Surface Water Monitoring	Repair / replace continuous monitoring equipment at surface water pond	Completed and on-going	
9	Waste Acceptance	Make arrangements for the new pre- treatment requirements	Completed	

2010 . * e.

Note 1: Cell 15: 30% temporary capped at final finished contour level, cell 16 temporary cap below final

Contour level. Note 2: The weather station was acquired during 2010. The final location of the weather station was under review at the end of 2010 as there were issues with the line of sight from the weather station to the interfacing p.c. Table 6.2 Summary of Targets and Onice tives for 2011

Table 6.2 S	Summary (	of Targets	and <b>QBjectives</b>	for 2011
-------------	-----------	------------	-----------------------	----------

	Item	Dectorine Target / Objective
1	Capping	cot in the Provide temporary capping as required
2	Monitoring	Complete the re-location of the weather station
3	Staff Training	Continue to provide training to staff in relevant fields
4	Site Infrastructure	Inspect all gas collection well heads and seal as required
5	Site Infrastructure	Extend liner at surface water pond overflow discharge & anchor in place above overflow pipes
6	Gas collection	Extend gas collection system within active area, Install new pipe-work
7	Monitoring	Install suitable sampling pump at GW3 to enable sampling
8	Waste Activities	Contact Waste Operators with a view to increasing the amount of waste currently accepted at the landfill
9	Provision of Services	Review tender for bird control
10	Provision of Services	Review tender for pest control
11	Monitoring	Complete all monitoring as required as per W0025-03
12	Site Infrastructure	Re-grading of side slopes to prevent leachate run-off to clean cells
# 6.3 Restoration

There was no final capping or restoration works carried out in 2010. Intermediate temporary capping was carried out at cells 15 and 16 as detailed in table 6.1. It is not expected that any final capping works will take place in 2011.

# 6.4 **Procedures**

New procedures put in place since 1-1-2010 are as follows:

- Odour Management Plan: this was submitted to the Agency in early 2010.
- Waste Acceptance Procedures: this was submitted to the Agency in early 2010 and takes account of the new pre-treatment requirements contained in the revised waste licence W0025-03, which apply from 1-7-10.

Consent of copyright owner required for any other use.

# 7.0 Environmental Nuisances

# 7.1 Litter

Litter netting is erected on site along the perimeter of the active cells and is located in such a manner so as to capture the maximum amount of wind blown litter. The placement of daily cover material also helps in controlling litter. In addition, litter patrols/ inspections are carried out on a weekly basis to establish if any incidents are arising. Powerstown Landfill is closed to the public on Tuesdays of every week however staff are present on-site to carry out maintenance etc as required. At least 1 staff member is assigned to litter picking duties every Tuesday at Powerstown Landfill.

# 7.2 Noise

Site roads are constructed between the fill areas, so that the completed cells provide shelter against noise from site plant and equipment, thereby minimising the risk of noise nuisance to nearby noise sensitive receptors.

# 7.3 Dust

Dust generated on site is kept to a minimum by use of a wheel wash system and the procedure of water sprinkling as necessary. Dust is monitored at least 3 times per to assess whether or dust is causing a nuisance at the side, or

## 7.4 **Bird and Pest Control**

ion purposes The bird species that scavenge at Powerstown facility are mainly the crow family, which include rooks and occasionally hooded grows and jackdaws. Bird Control Ireland Ltd. is contracted to visit the site twice per week at varying times both during and outside operating hours. Only trained birds of prey are used which include the Harris hawk and peregrine falcon. There are also visual & acoustic deterrents used on site such as an automated bird scarer, use of a hand pistol and the use of kites.

In general, scavenger birds numbers in the area are low and do not present many problems. This is due to the success of the falconry method of control, operational practices and restricting the size of the tipping area.

Pest control contractors, Pestguard Ltd, are employed to control rodent and flying insect infestations. The site is visited on a monthly basis. There are approximately 50 rodent bait stations located around the site, all clearly identifiable. Each box is monitored and rebaited during monthly site inspections. The risk of fly infestations are kept to a minimum by good operating practices which include efficient compaction of waste, restricting the size of the tipping area and covering of waste at the end of each day. As an additional precautionary measure, the tipping area, plant, machinery and landfill are sprayed as required with appropriate insect repellent.

# 7.5 Landfill Gas Management and Odour Control

Improvements in this area during 2010 include the following:

- Extra wells have been installed in active area.
- Flare in operation continuously.
- Odour patrols carried out twice a day at three off-site locations and daily at two on site locations.
- Temporary capping works carried out at the active cells.
- Implementation of odour management plan

Consent for inspection purposes only any other use.

# 8.0 Incidents and Complaints for the Reporting Period-2010

# 8.1 Reported Incidents

There were 15 incidents reported to the EPA during 2010. Of these, 10 incidents were in relation to the flare shutting down due to power failures, extreme cold weather, problems with the gas sampling line, compressor and thermocouples.

There were 2 incidents reported for breakdown of the TOC analyser at the surface water pond.

3 notifications were in relation to landfill gas exceedances of CH4 and CO2 in boundary gas monitoring wells.

# 8.2 Complaints

A file is maintained at the Powerstown Landfill which records all complaints either by telephone, letter, e-mail, in person or via the EPA. The file also contains a record of the responses to these complaints. In total 4 complaints were received between January to December 2010. The complaints can be summarised as follows.

# Odour

A total of 3 complaints were received during 2010 in relation to odour. This is a significant decrease in comparison to those received during 2009 (19 complaints). The number of odour related complaints has decreased steadily over recent years.

The completed final capping of cells 6-13, the metallation of a new gas collection system and the continuous operation of the new F000m³ capacity flare have led to improved odour control and reduced odours emanating from the landfill. Upgrading of the gas collection system in the active area of the landfill has also helped to eliminate odour related complaints.

# Litter

l complaint was received in relation to litter during 2010. However, it was noted that this complaint was not directly in relation to litter at Powerstown Landfill but was in relation to illegal fly tipping in the environs and surrounding areas. The issue was forwarded to the Environment section of Carlow County Council and the fly tipped material was removed.

No other complaints were received at Powerstown Landfill during 2010. The 4 complaints outlined above were received during January – March 2010 with no further complaints received throughout the remainder of the year.

# 9.0 Financial Provisions, Staffing, Training and Programme for Public Information

# 9.1 **Financial Provisions**

The gate fee changed a number of times during 2010 due to increases in the landfill levy. The changes in pricing are detailed below:

Date	Landfill Levy/tonne	Gate fee (incl. levy)/tonne
31/12/2009	€20	€125
01/01/2010	€25	€130
01/02/2010	630	€135

Gate fees, including the levy, for 2010 amounted to: €579,643

The landfill levy paid for 2010 was: €166,104.81

The budget allocated to Powerstown Landfill for 2010 was:

- Landfill: €810,000
- Civic Amenity Site: €168,000

Condition 12.2 of the waste licence requires that the ligensee shall maintain a fund, or provide a written guarantee, that is adequate to assure the Agency that it is, at all times, financially capable of implementing the Restoration and Aftercare Plan. The above budget does not include financial provision for future capping works and aftercare programs. This is incorporated into a separate fund. INSP

150

9.2 Community Fund rot instead of the waste licence requires that a Community Fund be set up, consisting of one euro for every tonne of waste accepted for disposal. The current fund stands at £130,000. Carlow County Council in conjunction with local residents and elected members are currently attempting to establish a community fund committee to manage and discharge this fund for the benefit of the social and physical environment of the local community.

# 9.3 Staffing

The landfill has a total of 7 employees in addition to outside contractors.

- Landfill Manager Fergus Mulhare. Ó
- Deputy Manager / Environmental Technician Mary Walsh.
- Site Foreman John Nolan, Pat Doyle e.
- Weighbridge Operators 2
- Ground staff -1

40

# Training Completed during 2010

Training completed by Carlow County Council landfill staff members during 2010 includes the following:

- Landfill Gas Balancing (2 staff members)
- Manual Handling (2 staff members)
- FAS Safe Pass (2 staff members)
- Fire Warden training (1 staff member)

# 9.4 Public Information

Carlow County Council subscribe to a full page advertisement in the Carlow Nationalist on a fortnightly basis or more often if required. All relevant public notices in relation to Powerstown Landfill are included in this advertisement. The information pack on Carlow County Council's website was updated during 2010 to include more recent relevant information in relation to the site. Information leaflets are available at the weighbridge office, civic amenity site and skip area detailing types of waste accepted, current charges and opening hours. An electronic notice board is in operation at the site detailing opening hours and charges.

A meeting with local residents was held on 19-5-10. Following a number of requests from Carlow County Council, the local residents group declined to form an official committee. Following this meeting, there were no complaints received from the general public and no further meetings were arranged. It is anticipated that a committee might be formed during 2011 which will incorporate the tocal residents and the community fund group.

i.

DRAWINGS only any other use. DRAWINGS on the any other use.





Annual Environmental Report 2010 Waste Licence: W0025-03 May 2011

APPENDO See only any other use. APPENDO See only any other use. MAP OF MONTORING LOCATIONS For institution of Locations Consend convisit



Annual Environmental Report 2010 Waste Licence: W0025-03 May 2011

APPENDIA Steal for any other use. APPENDIA Steal for any other use. Results of Surface Water Monitoring During 2010 For institution of the second control of the second control

# Monitoring Results at ST1 - Downstream

Test Parameter	Q1 2010	Q2 2010	Q3 2010	Q4 / Annual 2010	Drinking Water Regulations (S.I 278 2007)	Trigger Levels
Visual	Brown colour (in flood)	Clear	Clear	Clear	-	
Ammonia mg/l N	0.29	0.26	0.1	0.34	0.23	0.5
Dissolved Oxygen % Sat	86.0	120	87	74	-	-
Conductivity µS/cm	716	769	803	820	2.500	1000
COD mg/l O ₂	21	<20	34	<20	-	-
Chloride mg/l Cl	27	26	22	24	250	50
рН	7.6	7.8	7.6	7.6	6.5 - 9.5	-
Suspended Solids mg/l	35	<5	<5	ther the.	-	-
Temperature °c	5.8	12.7	15.1	11.5	25	-
Orthophosphate mg/l P	NR	NR	NR offor	0.04	-	-
Total Oxidised Nitrogen mg/l N	NR	NR	on put out	4.62	-	+
BOD mg/O ₂	1,4	0,81,118	0.5	NM	-	, <del>4</del>
NM = Not N NR = Not R	Aeasured equired	Consent of cord				

May 2011

# Monitoring Results at ST2 - Upstream

Test Parameter	Q1 2010	Q2 2010	Q3 2010	Q4 / Annual 2010	Drinking Water Regulations (S.I 278 2007)	Trigger Levels
Visual	Muddy brown colour	Clear	Clear	Clear	-	-
Ammonia mg/l N	0.11	0.03	0.02	0.53	0.23	0.5
Dissolved Oxygen % Sat	89.0	114	86.3	83.0	-	-
Conductivity µS/cm	704	757	818	826	2,500	1000
COD mg/l O ₂	<20	<20	<20	<20	-	· 7
Chloride mg/l Cl	25	22	21	23	250	50
рН	7.7	7.9	7.9	7.9	6.5 - 9.5	-
Suspended Solids mg/1	33	11	<5	Met VE.	-	-
Temperature °c	5.8	12.1	15.4	3 ^{ot} 12.1	25	1. T
Orthophosphate mg/i P	NR	NR	NAP OFFOT	0.05	•	
Total Oxidised Nitrogen mg/l N	NR	NR	ton pulledui owner NR	2.84	65	-
BOD mg/O ₂	0.8	0.601 1108	0.5	NM	•	
NM = No NR = No	nt Measured t Required	Consent of cop?				

Results of sampli	ng at miet to sur	face water pond	(SWLI)	
Test Parameter	Q1 2010	Q2 2010	Q3 2010	Q4 / Annual 2010
Visual	Clear Sample	Clear Sample	Clear Sample	Clear
Odour	Strong odour	Strong odour	-	-
Ammonia mg/l N	0.11	<0.01	0.02	0.33
Dissolved Oxygen % Sat	90.0	93	90	96.0
Conductivity µS/cm	733	724	733	342
COD mg/l O ₂	<20	<20	<20	<20
Chloride	21	18	17	7
рН	7.5	7.6	7.5	7.9
Suspended Solids mg/l	97	<5	<5	<5
Temperature °c	10.4	11.1	11.7	11.3
BOD mg/O2	<0.5	<0.5	<0.5	NM
<u></u>			150	

-

Results of sampling at outlet from surface water pond (SWLO).

Test Parameter	Q1 2010	Q2 2010 ed for	Q3 2010	Q4 / Annual 2010
Visual	Clear Sample	S Clear Sample	Clear Sample	Clear
Ammonia mg/l N	<0.06 801	VILE <0.01	<0.01	0.4
Dissolved Oxygen % Sat	91.0ento ^{co}	93	84	95.0
Conductivity µS/cm	747	726	722	712
COD mg/I O ₂	<20	<20	<20	<20
Chloride	21	19	17	16
pН	7.4	7.3	7.3	7.6
Suspended Solids mg/l Note 1	96	<5	<5	<5
Temperature °c	10.5	11	11.5	11.4
BOD mg/O2	<0.5	<0.5	<0.5	NM

Note 1: Discharge Limit of 35mg/l suspended solids set out in Schedule C.4 of Waste Licence W0025-03 for outlet from pond NM = Not Measured

# Results of analysis of Surface Water for the presence of Heavy Metals

Test Parameter	ST1 Downstream	ST2 Upstream	Inlet SWL1	Outlet SWLO
Sulphate mg/I SO4	NM	NM	NM	NM
Alkalinity mg/I CaCO3	284	264	144	324
Aluminium mg/l	<250	<250	<250	<250
Antimony mg/l	<5	<5	<5	<5
Arsenic ug/l	<5	<5	<5	<5
Barium ug/l	<30	<30	<30	<30
Beryilium ug/l	<5	<5	<5	<5
Boron ug/l	<50	<50	<50	<50
Cadmium ug/l	<5	<5	<5	<5
Calcium mg/l	87	83	42	97
Chromium ug/l	<5	<5	<5	<5
Cobalt ug/i	<5	<5	<5	<5
Copper ug/l	<5	<5	<5	<5
lron ug/l	<250	<250	<250	<250
Lead ug/l	<5	<5	<5,150	<5
Magnesium mg/l	22	24	<b>3</b> 84	12
Manganese ug/l	<250	<250	19 211 250	<250
Mercury ug/l	<0.5	<0.5 ్రా	for <0.5	<0.5
Molybdenum ug/l	<5	<5 mponite	<5	<5
Nickel ug/l	<5	The real	<5	<5
Potassium mg/l	<5	ectione	8.8	<5
Selenium mg/l	<5	instit <5	<5	<5
Sodium mg/l	8.8 🔶	NTE 7.4	6.2	7.3
Thallium ug/l	<5 &	<5	<5	<5
Tin ug/l	<10 01	<10	<10	<10
Uranium ug/I	6000	7.3	<5	<5
Vanadium ug/1	<5	<5	<5	<5
Zinc ug/l	<30	<30	<30	<30

APPENDIX 3 ON ON OTHER MORE ON OTHER MORE OF GROUND WATER MORE OF TORING DURING 2010 GROUNDWATER CONTOUR MAP

# Annual Environmental Report 2010 Waste Licence: W0025-03

M	ay	20	1	E
	· •			

Parameter	Monitoring Location: GW1							
		S.I. No 9 of						
	Units	IGVs/GTLs	2010	Jan-10	May-10	<u></u>	Oct-10	
Visual Inspection	_			Clear	Clear	Clear	Clear	
Water Level	mAOD	-	-	10.2	10.2	10.1	10	
Temperature		75		11.5	11:8	12.1	12.2	
Dissolved Oxygen	184	NAC	-	74	28	25	37	
nll	off mains	>6.5<9.5		7	7.1	7	7.1	
	P10.0 00110-0	1,000 /						
Conductivity	μS/cm	1.000	800-1875	1167	995	1073	879	
Ammonia	mg/l N	0.12/1.56	0.065-0.175	9.3	7.1	11	2.5	
Chloride	mg/l Cl	30/50	24-187.5	47	34	45	36	
Ortho-Phosphate	mg/l P	0.01		NR	NR	NR	0.04	
Total Oxidised Nitrogen	mg/I N	NAC	-	NR	NR	NR	12.53	
Fluoride	mg/l F	1	-	NR	NR	NR	* NM _	
Sulphate	mg/I SO4	200	187.5	NR	NR	NR	NM	
Alkalinity	mg/l CaCO;	NAC		NR	NR	NR	338	
Total Organic Carbon	mg/IC	NAC	-	1.3	NM	NM	NM	
Aluminium	uz/l	200	150	NR	NR	NR	<250	
Antimony	uu/l	-	-	NR	NR	NR	<5	
Arsenic	uc/l	10	7.5	NR	NR	NR	.<5	
Barium	ug/l	100		NR	NR	NR	<30	
Beryllium	ur/1		-	NR	a. NR	NR	<5	
Boran	ug/l	1000	750	NR .	NR	NR	31	
Cadmium	uc/l	5	3.75	NRNO	NR	NR	<5	
Calcium		200		· NR	NR	NR	120	
Chromium	ug/l	30	375 00	NR	'NR	NR	<5	
Cobali	ug/[		<u> 2</u> 00 N	NR	NR	NR	<5	
Copper	ug/[	30	NPODILE	NR	NR	NR	<5	
lrop	пед Пан	200	N 100	NR	NR	NR	<250	
t and	μ <u>μ</u> μη/	10	18 75	NR	NR	NR	<5	
Magnerium	mall	SD-SY x	0	NR	NR	NR	16	
Manganase				NR	NR	NR	<250	
Mangarese	hert hart		0.75	NR	NR	NR	<0.5	
Molubdamun	A	A COV	000	NR	NR	NR	<5	
Nickel	ug/l	20	15	NR	NR	NR	<5	
Bolaccium		5		NR	NR	NR	6.8	
Selenium	1100			NR	NR	NR	<5	
Sodium	mell	150	150	NR	NR	NR	18	
Thatlium	nell	100		NR	NR	NR	<5	
Tim	In the second se		-	NR	NR	NR	<10	
llranhum	1.00/	9		NR	NR	NR	<5	
Vanadium		<u></u>	-	NR	NR	NR	<5	
710/	10/1	100		NR	NR	NR	<30	
Total Cuanida	tra/l	0.01		NR	NR	NR	<0.05	
VOC's	ug/i	0.01		NR	NR	NR	0.00	
m p sulono	unt	10	-	NR	NR	NR	0.8	
Tabure	hint.	10		NP	NR	NR	1.8	
Toluene	μ <u>μ</u> γ1	10	1	1 010	1 100	1 1115	1 1.0	

mbpl = metres below pipe level

NM = Not Measured NR = Not Required

ND = None Detected

NAC = No Abnormal Change

Parameter	Monitoring Location: GW2						
	1		S.1. No 9 of		1		
	Units	IGVs/GTLs	2010	Jan-10	May-10	<u>Jul-10</u>	Oct-10
						Rusty	
				Brown		Brown	Slightly
Visual Inspection		<u>,</u> 1	<u></u>	colour		Colour	Brown
Water Level	mAOD	-	·	2	1.6	1.5	1.5
Temperature	<u>0C</u>	25	-	8.3	11	14.5	13.6
Dissolved Oxygen	0.1	NAC	<u></u>	32	28	19	24
pH	pH units	≥6.5≤9.5	,141	7,1	7.1	7	7
Conductivity	u5/cm	1,000/	800-1875	1025	(1444)	1170	(1340)
Aminonia	mg/l N	0.12/0.78	0.065-0.175	0,06	0.1	0.02	0.26
Chloride	mg/ICI	30/60	24-187.5	45	105	57	112
Nitrite	mg/l N			NR	NR	NR	
Ortho-Phosphate	me/IP	0.01		NR	NR	NR	0.03
Total Oxidised Nitrogen	mg/IN	NAC		NR	NR	NR	40 37
Fluoride	me/LF	1		NR	NR	NR	NM
Sulphate	mg/1 SO4	200	187.5	NR	NR	NR	NM
Alkalinity	mg/i CaCOi	ΝΑΓ	2 <b>-</b> 21	NR	NR	NR	356
Total Organic Carbon	mg/IC	NAC	1 <b>-</b> 1	-4,8	NM	NM	NM
Aluminium	дeЛ	200	150	NR	NR	NR	<250
Antimeny	це/І	-		NR	NR	NR	<5
Arsenic	μg/l	10	7.5	NR	NR	NR	<5
Barium	μ <u>c</u> /l	100	-	NR	15 NR	NR	47
Beryllium	це/І	-		NR 🔊	NR	NR	<5
Boron	ug/l	1000	750	A. NR	NR	NR	110
Cadmium	μg/]	5	3.75 5	NR	NR	NR	<5
Calcium	mg/I	200	- 50%	NR	NR	NR	160
Chromium	ц <u>р/</u> ]	30	XB in	NR	NR	NR	<5
Cobalt	με/1	-	nP. teor	NR	NR	NR	<5
Copper	ug/1	30 6	P500	NR	NR	NR	23
Iran	ug/l	200 2	0 -	NR	NR	NR	270
Lcad	u@/1	10 1.00	18.75	NR	NR	NR	<5
Magnesium	mg/l	5003	-	NR	NR	NR	22
Manganese	µg/l	\$50	-	NR	NR	NR	<250
Mercury	μg/l	ant I	0.75	NR	NR	NR	<0.5
Molvbdenum	ие/1 🔊	-	-	NR	NR	NR	<5
Nickel	με/]	20	15	NR	NR	NR	50
Potassium	mg/l	5	1.0	NR	NR	NR	18
Selenium	ut/l			NR	NR	NR	<5
Sodium	mg/l	150	150	NR	NR	NR	60
Thallium	μg/l	<u></u>	12	NR	NR	NR	<5
Tin	μ <u>р</u> /Ι		C.,	NR	NR	NR	<10
Uranium	<u>µр/</u> ]	9	-	NR	NR	NR	8.2
Vanadium	μр/1	-	-	NR	NR	NR	<5
Zinc	με/Ι	100		NR	NR	NR	<30
Total Cyanide	mg/l	10	-	NR	NR	NR	< 0.05
VOC's	µg/]	4		NR	NR	NR	ND
	Transfer of the local division of the local						

.

mbpl = metres below pipe level

NM = Not Measured

NR = Not Required

ND = None Detected

NAC - No Abnormal Change

Parameter	Monitoring Location: GW3						
		IGV#CTLe	S.I. No 9 of				
	Units	1043/01123	2010	May-10	<u>Jul-10</u>	Oct-10	
Visual Inspection	-	-	-	Clear	Borehole	Borehole	
Water Level	mAOD	-		26.2	Not	Not	
Temperature	0C	25	+	11.6	Sampled	Sampled	
Dissolved Oxygen	%	NAC	-	66			
pH	pH units	<u>≥6.5≤9.5</u>	-	7.6	<u> </u>		
Conductivity	μS/cm	1,000 / 1,000	800-1875	724	-		
Ammonia	mg/1 N	0:12/1.56	0.065-0.175	0.02			
Chloride	mg/I Cl	30/40	24-187.5	23			
Total Organic Carbon	mg/I C	NAC	*	NM			
Ortho-Phosphate	mg/IP	0.01	-	NR			
Total Oxidised Nitrogen	mg/i N	NAC	-	NR			
Fluoride	mg/1 F	1	-	- NR			
		200	-				
Sulphate	mg/1 SO4		187,5	I NR			
Alkalinity	$\frac{mg}{C_{2}CO_{2}}$	NAC	-	NR			
Aluminium		200	150	NR			
Antimany	μ <u>μ</u> η/	-	-	NR		1	
America	<u> </u>	10	7.5	I NR			
Destine	<u>ирі</u>	100	*	NR NR			
Danun	<u>με/</u>		- 205	NR	<u> </u>		
Derymum	<u>µ</u> µµ	1000	350 4	NR			
Boron	<u>µy</u> /	5	0137	NR		1	
Cadmum	1 <u>µµ/</u>	200	Se of	NR			
Calcium	ng/	30 00	37.5	NR			
Caromium	<u>µ</u> <u>µ</u> <u>µ</u>	ion of		NR	-		
Coball	μμ/ι	Chi and	1500	NR	<u> </u>		
Copper	<u>με</u> /Ι	N. 100	1200	NID			
iron	μ <u>μ</u> μ <u>μ</u>	× × 10	18.75	ND		<u> </u>	
Lead	με/ι	50	1000	NIP			
Magnesium	mg/l	50 50		NID			
Manganese			0.75	NID	1		
Mercury	<u> </u>	· · · · · · · · · · · · · · · · · · ·	0.75	IN IS			
Molybdenum	με/Ι	20	-	NR			
Nickel	<u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ	20	1				
Potassium	mg/l	3		NR	+		
Selenium	μg/l		-	NK			
Sodium	mg/l	150	150	NR			
Thallium	цд/1	-	-	NR			
Tin	μg/l	+	*	NR			
Uranium	ue/l	9	-	NR			
Vanadium	μg/l	•		NR			
Zinc	µழ/	100	-	NR			
Total Cyanide	mg/l	10		NR			
VOC's	μg/1	-	-	NR			

mbpl = metres below pipe level

NM - Not Measured

NR = Not Required

ND = None Detected

NAC = No Abnormal Change

May 2011

Parameter		Monitor	ing Location: G	W6	
		ICV//CTL	S.I. No 9 of		
	Units	1042/GTLS	2010	Jul-10	Oct-10
Visual Inspection		-	-	Brown Colour	-
Water Level	mAOD	-	-	12.2	12.1
Temperature	oC	25	-	11.8	10.8
Dissolved Oxygen	- %	NAC	-	62	70
pH	pH units	≥6.5≤9.5	-	7.3	7.4
Conductivity	μS/cm	1,000/.900	800-1875	730	718
Ammonia	mg/I N	0.12/0.12	0.065-0.175	< 0.01	0.02
Chloride	mg/l Cl	30/30	24-187.5	23	22
Total Organic Carbon	mg/I C	NAC	-	NM	NM
Ortho-Phosphale	me/l P	0.01	-	NR	0.04
Total Oxidised Nitrogen	mg/l N	NAC	-	NR	8 53
Fluoride	me/l F	1	-	NR	NM
	14120 1 1	300	-		14141
Sulphate	mg/I SO4	200	187.5	NR	NM
Alkalinity	mg/l CaCO ₁	NAC	-	NR	306
Aluminium	μg/]	200	150	NR	69
Antimony	μք/l	+	-	NR	<5
Arsenic	μք/Ι	10	7.5	NR	<5
Barium	μg/t	100	÷.	Se'NR	<30
Beryllium	μg/]	-		e NR	<5
Boron	μg/I	1000	750 ~	NR	27
Cadmium	uc/l	5	A Sta	NR	<5
Calcium	mg/l	200	Seo dit	NR	120
Chromium	ug/l	30	R 111 37.5	NR	<5
Cobalt	ur/l	- :010	Terr	NR	<5
Conner	 	3.00 Che wite	1500	NR	<5
iron	<u>µg/</u>			NR	<750
Lead	110/1	Ro All	18:75	NR	
Magnesium	me/l	\$ 50	1	NP	14
Manganese	<u>ug/</u>	50		NIP	14
Mercury	und all	1.	0.75	ND	-250
Malybdanum	und!		0.75		-0.5
Nietal	1/2/1	20	15	ND	< 3
Paraceluni	μ <u>μ</u> μη	-0	1.5	NR	<5
Fotassium	1111/1		-	NR	<>
Selenium	<u>ц</u> ш	150	160	NK	<5
Sodium	mg/	150	150	NR	7.3
I halitum	μ <u>ρ/Ι</u>	-	-	NR	<5
Tin	μg/l	-	-	NR	<10
Uranium	μg/}	9		NR	<5
Vanadium	µg/l	-	-	NR	1.3
Zinc	μg/l	100	-	NR	<30
Total Cyanide	<u>mg/I</u>	10	-	NR	< 0.05
VOC's	μ <u>c</u> /	-		NR	ND

NAC ¹ No Abnormal Change

NM = No: Measured

NR = Not Required

ND None detected

Parameter	Monitoring Location: GW7				
		IGVs/GTLs	S.I. No 9 of	test ±0	Oat 10
	Units		2010	Brown	<u>Oct-10</u>
Visual Inspection	-	-	-	Colour	-
Water Level	mAOD	-	-	11	7.8
Temperature	οC	25	-	11.9	10.8
Dissolved Oxygen	%	NAC		30	25
pH	pH units	<u>≥6.5≤9.5</u>	-	7.3	7.2
Conductivity	uS/cm	1,000 / 1,000	800-1875	710	720
Ammonia	mg/IN	0.12/0.62	0.065-0.175	< 0.01	0.01
Chloride	mg/l Cl	30/50	24-187.5	21	21
Total Organic Carbon	mg/I C	NAC	-	NM	NM
Ortho-Phosphate	mg/I P	0.01	-	NR	0.04
Total Oxidised Nitrogen	me/l N	NAC	-	NR	9.35
Fluoride	mg/l F	1	-	NR	NM
		200	-		NIK I
Sulphate	mg/1 SO4		187.5	NR	NM
Alkalinity		NAC	-	NR	285
Aluminium	uall	200	150	NR	87
Antimony	μ <u>μ</u> η			NR	<5
Arsenic	no/l	10	7.5	"e NR	<5
Barium	µp/i	100	é	NR	<30
Beryllium	ue/l	-	- NOT	NR	<5
Boron	/i	1000	01175011	NR	38
Cadmium	11.8/1	5	S 3.75	NR	<5
Calcium	me/l	200	nille -	NR	93
Chromium	ug/	30,01 9,1	37.5	NR	<5
Cobalt	ug/l	occuew the	÷ .	NR	<5
Copper	uu/]	113 34	1500	NR	<5
lron	це/1	¥ 31200	-	NR	<250
Lead	με/]	10	18.75	NR	<5
Magnesium	mg/l at	50	-	NR	11
Manganese	HEORS	50	÷	NR	<250
Mercury	ng/i	1	0.75	NR	< 0.5
Molvbdenum		-	-	NR	<5
Nickel	με/Ι	20	15	NR	<5
Potassium	mg/l	5	-	NR	<5
Selenium	μք/]	-	-	NR	<5
Sodium	mg/l	150	150	NR	<5
Tballium	нд/	•	-	NR	<5
Tin	με/Ι	-		NR	<10
Uranium	μgЛ	9	-	NR	<5
Vanadium	неЛ	-	-	NR	<5
Zinc	με/1	100	+	NR	<30
Total Cvanide	m¤/l	10	-	NR	< 0.05
VOC's	ue/l	-	-	NR	ND

NAC + No Abnormal Change

NM - Not Measured

NR = Not Required

 $ND \stackrel{\scriptscriptstyle \circ}{\approx} None detected$ 

May 2011

Parameter			Monitoring	Location:	GW8		
		ICV#CTL	S.I. No 9			1	1
	Units		of 2010	Jan-10	May-10	Ju)-10	Oct-10
Visual Inspection		•	+	Clear	-	Clear	
Water Level	mAOD			8.7	8.2	8.1	6.1
Temperature	00	- 25		6.4	11.8	- 12.1	11.1
Dissolved Oxygen	8. 70	NAC	1	21	27	18	23
pH	pH units	≥6.5≤9.5	-	7.2	7.3	7.2	7.2
Conductivity	µS/cm	1,0007 1,000	800-1875	778	748	767	827
Ammonia	ing/I N	0.12/1.56	0.065- 0.175	2	1.1	0.85	0.64
Chloride	mg/l Cl	30 / 50	24-187.5	24	24	24	28
Ortho-Phosphate	mg/i P	0.01	-	NR	NR	NR	0.04
Total Oxidised Nitrogen	mg/I N	NAC	-	NR	NR	NR	10.11
Fluoride	mg/l F	1	-	NR	NR.	NR	NM
Sulphate	mg/I SO4	200	187.5	NR	NR	NR	NM
Alkalinity	mg/l CaCO1	NAC	- 4°	NR	NR	NR	338
Total Organic Carbon	mp/I C	NAC		0.7	NM	NM	NM
Aluminium	ug/1	200	150	NR	NR	NR	<250
Antimony	ug/l			NR	NR	NP	~250
Arsenic	ue/l	10	7.5	NR	NR	ND	
Barium	up/1	100		NR N	NP	NU	100
Bervllium	μο/Ι		-	NNACY	ND	ND	100
Boron	na/1	1000	750		NP	NID	100
Cadmium	με/l	5	3.75	21 NR	ND	MD	180
Calcium	me/l	200	5 × 5	NR	NR	NID	200
Chromium	ue/i	30	17.50	NR	NP	MD	390
Cobalt	uc/l	-	2 Dar Colt	NR	ND	ND	
Conper	11g/]	30 😽	21500	ND	ND	NR	< 2
Iron	ur/I	200.000	22	NR	ND	ND	
Lead	ne/l	170.50	18.75	NP	ND	ND	5230
Magnesium	me/i	FOSOT		NP	ND		50
Manganese	119/1	c \$0		ND	NIN NIN		40
Mercury	1.02/1	×° I	0.75	NR	ND	NIG	<u> </u>
Molybdenum	ue/i	•		NIR	NID	NIL	50.3
Nickel		20	15	NID	NR	NK	<>
Potessium	mad		1	NIN NIN		NR	<>
Selenium	1001			NID	NIC	NK	0.4
Sodium	1 1000	150	150	ND	NK	NK	<5
Thallium	night .	130	1.00	NB	NR	NK	41
Fin	1 <u>1</u> 21			NK	NR	NR	<5
1   1999 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	μμ/	ρ		NR	NR	NR	<10
Vandum	μg/1	7		NR	NR	NR	11
Zine	1 11 <u>2</u> /1	100		NR	NR	NR	<5
Zinc	112/1	10		NR	NR	NR	- 90
rotar c yanide	mg/t	10	-	NR	NR	NR	< 0.05
VOC's	μg/	-	-	NR	NR	NR	ND

NM = Not Measured

NR = Not Required

ND = None Detected

NAC = No Abnormal Change

# Annual Environmental Report 2010 Waste Licence: W0025-03

Parameter		1	Monitoring	Location: F	RCA1		
_		1012	S.I. No 9		-		
	Units	IGVS	of 2010	Jan-10	May-10	Jul-10	Oct-H0
				Brown		Clear	
Visual Inspection				Colour	-	with Mud	-
Water Level	mbpl	-	-	5.6	13	5.2	3.7
Temperature	oC	25	-	10.4	11.3	11.3	10.4
Dissolved Oxygen	%	NAC	-	91	84	75	70
pH	pH units	≥6.5≤9.5	<i>14</i>	7.3	7.3	7.2	7.3
Conductivity	µS/cm	1000	800-1875	731	732	761	780
		0.12	0.065-				
Ammonia	mg/I N	\ <u>0.1</u> ∠	0.175	0.02	0.01	0.01	0.02
Chloride	mg/l Cl	30	24-187:5	19	18	18	18
Ortho-Phosphate	mg/l P	0.01	-	NR	NR	NR	0.05
Total Oxidised Nitrogen	mg/IN	NAC	-	NR	NR	NR	9.52
Fluoride	mg/l F	1	-	NR	NR	NR	NM
Sulphate	mg/I SO4	200	187,5	NR	NR	NR	NM
		NAC					
Alkalinity	mg/I CaCO1	INAC		NR	NR	NR	313
Total Organic Carbon	mg/l C	NAC	-	0.7	NM	NM	NM
Aluminium	μ¢/l	200	150	NR	NR	NR	140
Antimony	μ <u>ε</u> /Ι		-	NR	NR	NR	<5
Arsenic	uc/I	10	7.5	NR	NR	NR	<5
Barium	др/I	100	-	NR	NR	NR	<30
Bervllium	μg/l	-	-	NR 💰	NR NR	NR	<5
Вогол	μα/1	1000	750	NR	NR	NR	63
Cadmium	μg/l	5	3.75	NR	NR	NR	<5
Calcium	mg/l	200	- 3	NR	NR	NR	110
Chromium	μ <u>c</u> /l	30	37.50	NR	NR	NR	<5
Cobalt	μα/1	-	apoire	NR	NR	NR	<5
Copper	μе/I	30	\$1,590	NR	NR	NR	<5
lron	цεЛ	200 🔊	Prot-	NR	NR	NR	<250
Lead	112/1	10,00	18.75	NR	NR	NR	<5
Magnesium	me/l	50. di	-	NR	NR	NR	11
Manganese	μ <u>σ</u> /Ι	F 58	- 1	NR	NR	NR	<250
Mercury	μg/l	s coi	0.75	NR	NR	NR	< 0.5
Molvindenum	ug/l	· ·	-	NR	NR	NR	<5
Nickel	uc/1 5	20	15	NR	NR	NR	<5
Potassium	mpy	5	-	NR	NR	NR	<5
Selettium	ur/l		-	NR	NR	NR	<5
Sodium	me/l	150	150	NR	NR	NR	3.3
Thallium	ue/l	· ***		NR	NR	NR	<5
Tin	ug/1			NR	NR	NR	<30
Limpium	ug/1	0		NR	NR	NR	<5
Vanadium	0.00/1	-	-	NR	NR	NR	<5
Zine	<u>не/</u>	100		NR	NR	NR	<30
Total Cumuida	HE/	10	_	NR	NR	NR	<0.05
TOTAL CYARING	TUE/1			- NU	NID	NID.	ND
VOC's	μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μ <u>μ</u> μμ <u>μ</u> μμμμμμμμμμμμμ		-	I NR.	1 INK	1 INIC	L IAD

mbpl = metres below pipe level NM = Not Measured NR = Not Required ND = None Detected

NAC -No Abnormal Change

May 2011

Parameter			Monitoring	Location	: RCA2		
		IGVs	S.I. No 9				
	<u> </u>		of 2010	Jan-10	May-10	Jul-10	Oct-10
Visual Inspection	5 <u> </u>	4	÷	Muddy brown		Clear with Mud	
Water Level	mbpl	-	1	5.4	4.6	4.8	3.4
Temperature	00	25		10.4	11	11.3	10.4
Dissolved Oxygen	- 9/-	NAC	-	95	84	81	71
pН	pH units	≥6.5≤9.5		7.4	7.3	7.3	7.3
Conductivity	uS/cm	1000	800-1875	733	724	754	776
		0.10	0.065-				
Ammonia	mg/l N	0.12	0:175	0.03	0.01	0,01	0.01
Chloride	mg/l Cl	30	24-187.5	19	17	17	18
Ortho-Phosphate	mg/1 P	D.01	-	NR	NR	NR	0.05
Total Oxidised Nitrogen	mg/l N	NAC	-	NR	NR	NR	9.43
Fluoride	mg/l F	1	-	NR	NR	NR	NM
Sulphate	mg/l SO4	200	187.5	NR	NR	NR	NM
Alkalinity	mail CoCO.	NAC	-	ND	NP	510	710
Total Organic Cathon	ma/I C	NAC	2	0.5	NIM	INK	310
Alumínium		200	150	NIP	NIP	NM	
Antimony	<u> </u>		150	NIC	NIS NID	NK_	37
Arconio	ug()	10	7.5	NIC NIC		NK	<3
Hariuth	4127	100		NR		NK	<5
Bendlium	μμ/ι	100	-				<30
Bomn	<u>1444</u>	1000	750	NR	INIC SUD	NR	<5
Cadmium	μ <u>μ</u> μμη	4	175		NINK NIN	NR	82
Calaium	<u>µ</u> <u>µ</u> <u>µ</u>	200	5.15	INK S	NR NR	NR	1
Chromium	<u> </u>	30	275	D. St.	NR	NR NR	150
Cabalt	<u>1 με/1</u>		37.3	CONTRACT OF A CO	NR	NK	<>
Conner	<u>не/</u>	30	1500 3	NR NR	INR	NR	<5
leon	<u> </u>	2(8)	A LECH	I NR	NIC NIC	NR NR	<5
100	HU/1	10	KIO LOSS		NK	NR.	<250
Martinesium		50 0			NK	I NR	<5
Mannaneco	<u> </u>	50 1.0	<u>k</u> – – – – – – – – – – – – – – – – – – –			NK	10
Manganese	μ <u>μ</u> μη	FOI STE	0.75				<250
Malabdanum	<u></u>	- cox-	0.12			NK	<0.5
Nichel	нр/	20	15			NK	< 3
Potessium	mal	ev	10	NR		NIC	<5
Salanium				NK	NK	NR NR	< 5
Socium	<u> </u>	150	150	NR	NK	NR	< 5
Thalling	10 <u>2/1</u>	150	100	NK		NR	0.6
Tin	μ <u>μ</u> μη			NR	NIC	NK NR	<5
1 im	μ <u>μ</u> μη	0		NR	NIC	INK NID	<10
Vandium				NK	NR	NR	7.2
Vanaukun	<u>µ</u> <u>µ</u> <u>µ</u> <u>µ</u> <u>µ</u>	100	·	NK	NK	NR	<5
Total Camuida	μ <u>μ</u> μμη	10		NR	INK	NR	<30
UIV*-	ing/i	10			INK	NR	<0.05
Taluar	1 µ8/1	10		INK .	NK	NR	
I OILLERE	1 107/	10		e			0.6

mbpl = metres below pipe level NM = Not Measured

NR = Not Required

ND = None Detected

NAC - No Abnormal Change

Parameter	Units	1GVs	S.I. No. 278 of 2007	Doyle	Purcell
Temperature	oC	25		11.2	12,6
Dissolved Oxygen	₽/o	NAC	-	57	69
pH	pH units	-	<u>&gt;6.5&lt;9.5</u>	7.1	7.4
Conductivity	μS/cm	1.000	2,500	853	577
Ammonia	mg/l N	0.12	0.23	0.01	< 0.01
Chloride	mg/l Cl	30	250	25	31
Total Organic Carbon	mg/I C	NAC	NAC	NM	NM
Ortho-Phosphate	mg/l P	0.01		0.04	0.03
Total Oxidised Nitrogen	mg/l N	NAC	-	16.43	2.54
Fluoride	mg/l F	1	0.8	NM	NM
Sulphate	mg/l SO4	200	250	NM	NM
Alkalinity	mg/l CaCO ₃	NAC	-	331	236
Aluminium	μg/l	200	200	<250	<25
Antimony	μg/l	-	5	<5	<0.5
Arsenic	μα/l	10	10	<5	1.4
Barium	<u>це</u> /i	100	-	<3()	<3
Beryllium	µg/]		-	<5	<0.5
Boron	μg/l	1000	1000	34	<5
Cadmium	μg/l	5	= 5	<51 15	<0.5
Calcium	mg/l	200	-	330	66
Chromium	μg/l	30	50 013	2113 <5	0.7
Cobalt	µg/l	÷.	25 240	<5	0.5
Copper	µg/l	30	12000°	<5	< 0.5
Iron	μ <u></u> μ <u>μ</u>	200	\$ \$200	<250	<25
Lead	µg/I	10 000	1 ^{et} 25	.<5	<0.5
Magnesium	mg/l	. the star	•	8.2	16
Manganese	μg/l	FOI 2018	50	<250	<25
Mercury	μg/i	20 ² i	1	<0.5	<0.5
Molybdenum	μ <u>α</u> /Ι	0°	-	<5	0.8
Nickel	με/105	20	20	<5	<0.5
Potassium	mg/l	5	-	<5	< 0.5
Selenium	μք/1	-	10	-<5	1.1
Sodium	mg/l	150	200	5,4	12
Thallium	μը/1	-	7	<5	< 0.5
Tin	μ <u>e</u> /l	-	-	<10	2
Uranium	μ <u>g</u> /l	9	-	<5	<0.5
Vanadium	μg/l	-	-	<5	0.7
Zinc	μg/l	100		<30	<3
Total Cyanide	mg/l	10	0.05	< 0.05	<0.05
Bromoform	μg/l	_	100 Note I	ND	2.6
Dichloromethane	μg/1	10	-	ND	0.9
m.p xylene	<u>µg/l</u>	10	-	0.7	0.6
Toluene	μg/l	10	-	1.4	1,1
Total Coliforms	per 100ml	0	0	0	0
10 m m 11	1.00.1	0	1 0	1 0	0

E-Coli
per 100ml
0
0
0
0

Note 1:
Limit refers to sum of bromoform, chloroform, dibromochloromethane and bromodichloromethane
NAC = No Abnormal Change
Nac = No Abnormal Cha

NM = Not Measured

May 2011

APPENDIX 45 only on the use. PRTRIPORT for any other use. PRTRIPORT control for any other use.

# AER Returns Workbook



Environmental Protection Agency

(200025_2616)1 A.S.) Return Yoar (2010)

Guidance to completing the PRTR workbook

# **AER Returns Workbook**

# REFERENCE YEAR 2010

1. FACILITY IDENTIFICATION	
Parent Company Name	Carlow County Council
Facility Name	Powerstown Landfill Site
PRTR Identification Number	W0025
Licence Number	W0025-03
Waste or IPPC Classes of Activity	
No.	class_name
	Specially engineered landfill, including placement into lined discrete
	cells which are capped and isolated from one another and the
3.5	environment.
3.1	Deposit on, in or under land (including landfill)
	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
3.13	collection, on the premises where the waste concerned is produced.
	Surface impoundment, including placement of liquid or sludge
3.4	discards into pits ponds or lagoons.
	Biological treatment not referred to elsewhere in this Schedule
	which results in final compounds or mixtures which are disposed of
	by means of any activity referred to in paragraphs 1, to 10, of this
3.6	Schedule
3.7	
	Use of waste obtained from any activity referred to in a preceding
	paragraph of this Schedule
	Storage of waste intended for submission to any activity referred to
20 A	in a preceding paragraph of this Schedule, other than temporary
	storage pending collection on the premises where such waste is
Colt A 13	produced
	Recycling or reclamation of organic substances which are not used
	as solvents (including composting and other biological
4.9	transformation processes)
4.2	Peruring or reclamation of metals and metal compounds
4.3	Recycling of reclamation of other inerganic materials
44	Recycling or reclamation of other morganic materials.
	Ose of any waste principally as a fuel of other means to generate
4.5	Interergy.
Address 1	Kilkenny Ka.
Address 2	
Address 3	
Address 4	
	Second
Country	
Coordinates of Location	0.15456 53.5062
River Basin Distric	
NACE Code	3621
Main Economic Activity	I reatment and disposal of non-hazardous waste
AER Returns Contact Name	Mary Walsh
AER Returns Contact Email Address	mwalsh@carlowcoco.ie
AER Returns Contact Position	Environmental Technician
AER Returns Contact Telephone Number	059 9172402
AER Returns Contact Mobile Phone Number	

| PRTR# : W0025 | Facility Name : Powerstown Landfill Site | Filename : W0025_2010(1).xls | Return Year : 2930 + 1 of 2

AER Returns Contact Fax Number	059 91 46356
Production Volume	15433.29
Production Volume Units	tonnes
Number of Installations	1
Number of Operating Hours in Year	1378
Number of Employees	8
	Releases to air results in sections A, B and C were all calculated
	using oxygen corrected results (3%). Discharges
	to surface water were calculated using a flow rate of 5L/sec for
User Feedback/Comments	discharge from the SW pond to receiving waters.
Web Address	

# 2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
5(d)	Landfills
5(c)	Installations for the disposal of non-hazardous waste
5(d)	Landfills
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 20	02)
Is it applicable?	
Have you been granted an exemption ?	
If applicable which activity class applies (as pe Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being used	

Consent of copyright owner required for any other use

| PRTR# : W0025 | Facility Name : Powerstown Landfill Site | Filename : W0025_2010(1).xls | Return Year : 2914ge 2 of 2

Shaef Releases to Air

**AER Returns Workbook** 

9-5/011 8 49

Link In previous rears emissions data 4.1 RELEASES TO AIR

SECTION A : SECTOR SPECKIC PR1	R POLLUTANTS	10.614	216	ase enter all quart. lies u	n this section in KGs	ATINAND	
	Scort ast all t	METHOD		Flace			
Theory of the second of the second	FULLUIAN	Method L	Used	Errission Point 1	r (Total) KGYear	A (Accidental) KG/Year	F (Fug Ive) KG/Yeat
Ho Arnex II	Name	FACTE MARTON CODE	e Gas Analyser, Testo	16 64788	16 65789	0	00
29	Carbon monoxide (CO)	M PER 350	e Gas Analyser, Teslo	11.00 Jan	355 0052	.0	0.0
60	Nitrogen oxides (NOwNO2)	M PER 350	x454 WXL a Gas Anslyser, Testo		547 9773	ō	00 0
H () 2	Suphur exides (SOu5O2)	PER 350	1454 MXL s Sim / Landgem,	80	111750 0	D	117750.0
		C MAB Car	Cutation -				

**NAB** 

υ

Mathane (CH4) * Seerils roots downorms and a Pakaoni Nerve (Caram D) free and de addre butter

E 5

SECTION B REMAINING PRTR POLLUTAL	RS not Eache TO All	State of the second	A DESCRIPTION OF TAXABLE PARTY.	ease enter all quantifies (	A THIS 144 PERMIT NUS	DUANTITY	
And a state of the	RECENCEDIVAN	IMEI	(HOD				
A CARLES AND A CAR	POLLUTANE		Jethod Used	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	(Fugewe) KGYear
ND, ANNALH	COUSE	MULE MEADO COOS	Imparget train containing 0-10 molar sodiam hydroiddi and dolomised				
8	Childrony and Phonyanic compounds (as HCJ)	FOI DUT	water softworm m eccontance EM1911 EN15112 and EPA RATE To rotation B 10 motar softwor	26 02439	28 D2439	0.0	0
3	Plauzina and insrgant compounds (as MF) • • • haved three on the Peddre Lines (Clarm B) free deck the Pedde MEDA	ection put	hydronda and dromsed water sclutom in accondance EN1911. EN15713 and EPA 26A	2 (20078)	2.300781	0	0
SECTION C : REMANING POLLUTANT EM	ussionis (As required in your Liferica) Issionis (As required in your Liferica) Reliceátics flo Alf	SCV 19	20-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	sase entry all quantities fiame	n that section and Add	OUANTITY	r JE
Poèutant No	Name Teal Organic Cathori (as C)	M.C.E. Metod Code M FER	FID in Spation or Deutrytein FID in Spation or Deutrytein FN12615 2802	Emission Point 1 11 19713	T (Tolul) KGYear 11 19713	A (Accordial No 199	0.0
Additional Data Requested from Li	aeros en se un acceso en a		Use.				
ઈ હવા મેળા સુત્ય છ્વનન દાર્થ પ્લાક્ષેણવામાં મેળા દાસેલ્ટાપું હતા છે. આ પણી બના છે અને કે કાર કોર્ડાક છે. સરાવ્યા સાત છે જે વિશ્વ કરે સમ્બાહસ્થાનના પ્રાથમિત દી.(છો.સી.સે.ઉ.પૂર્ણ દાર્ગ કે કાર દેળવા દે. ઉત્તર્ધ	աներ ներում, կոուքոն օրիս էնում ար տեղում եր խուհետ սատուցութ՝ գնեց ու ինուքին ընդ կերեկացի Ուն Առեւ ինեն ուսենետուցուտուտում։ Օրիս մենու ենետնեն շախի որեցում նում են նու նեռնուց Ընդելի չունչեցեր են մ Աւ չերջնեց, թգվեց ընցեցեցեց ենետուց։ Դես ցեջ ենուղեցե են նու նեռնել ներմում։	F a					

00 (Total Flaring Capacity) 00 (Total Uniting Capacity) Facility Total Capacity m3 per hour NUA N/A Calculated hased on result a Method Used Designation of Description Model Calculation Ressured at Flare Gas Sim / Landgem Flare Method Cede Calculation 1361288.24 C MHC/E 0 777750 0 T (Total) kg/Year Powerstown Landlell Sde Total estimated methane generation (as par sue model) Mahane Langued Raved Nei mathare emission (as reported as Scelan Nei mathare emission (as reported as Scelan Landhit: Please enler summary data on the quantities of methune flamd and I or juthised

PRTRE W00251Facing Name Powentown Landril Skelfriename W0005_2010(1) #51Return Vear 20101

Page 1 of 1

Valers	
3	
cleases	
Sheet F	

AER Returns Workbrock

.

9/5/2011 8 54

ie.

# Lark to previous years emissions data 4 2 RELEASES TO WATERS

ac 26			1	Year	0.0
RIPRIR Reporting	の「日本のない」の		Sharen ar	F (Fugitive) KG/	
OT be submitted under AE		UANTITY		(Accidental) KG/Year	00
hoe requirements, should ?	n this section in KGs	0		(Total) KG/Year A	2877.66
ed as part of your hoe	er all quantities (r	of the fighter of the second	SWLO	T 1	2077.66
roundwates, contact	Please entit	Contraction of the local division of the loc		ption Emission P	Attu
DIM'SULACE WALL OF D	A CONTRACTOR OF	「「「「「「」」」	that Uhed.	all jinition or Desci	P.A. Lathonatory Krike
the nt munit of this of site		States and a state of	34	Wethod Code   D	ALC D
Cata on Mr	CONTRACTOR OF	TOTO CONTRACTOR		払い行	24.
	RELEASES TO WATERS	JIANT		ないしたいというないで、「「「「「「「「」」」	
FIC PRTR POLLUTABITS		100			Children as the
ON A SECTOR SPECI		Contraction of the local distance of the loc		No Annual	
10					

* Select aroundy double-cicking on the Policant I kime (Column B) thes club the delete button

		N) KG/Year F (Fugtve) KG/Year
les in this section in MGs	UANTITY GUANTITY	T (Total) KG/Year A (Accident
llease chicr all quantit		SMLO SPACE Emission Point 1
		We not Date Designation or Deter
	A REAL PROPERTY AND A REAL	MCF D
RELEASES TO WATERS		7/478
VIS	POLLUTANY	
- RENAMING PNIR PULLUIAN		1451, (Bro SC I)
ION B	0	

_	
Point	
ston	
<u>ال</u>	
Tion of	
R LOUG	
Q 70	
Sittion	
Han I	
8	
ŧ	
9	
5	
2	
	PLANT I
	detern
	ick the
	E nert
	1914
-	(Colu
191	A likes
	<b>behder</b>
Sec.	a the b
	Chung (
	13-815
	v by do
	ct # 10
BC-II	
a thu	
143	

SECTION C | REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	HELEASES	U WALEKS	「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」		ICAN CLOCK AN QUARTICIC	NA IN CONSISTS SING OF S	Statement of the statem	The second se
	1//2/17924				No. or a particular of the particular of the	The second with the second second	QUANTITY	
		C	Vellor Leed		SML0			
BAUMBURNS,		514	Wethod Dorte Deturnation of	R.Descheron, E	mission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugilve) KG/Year
	Participation of the second se	* 0	ALT TCA Laborati	An Millikeming	181	3 18.1	3	0.000
	「「「「「「「」」」「「「」」」」」」」」」」」」」」」」」」」」」」」」」	-	ALT BPA Laborati	its Richman.	3784 3	3784.3	2	00
		₹ 51	ALT EPALiborat	Anneyse Pr	2	25	0.0	00
- はしきにというにない シンス		■.5×	ALT REAL INDUME	A TABITAN	15234 5	5 15294.51	0.0	0.0
	「「「「「「「「「「「「」」」」」」	an of	ALT SPALaborati	Wind And Wind	1692 1	6 1892.1	9	00
State of the state of the state	「日本」の「日本」のないで、「日本語をいった」	tie	ALT EPAL MOVAN	ay Rendring.	1151.0	6 1151.01	0.0	0.0
		ott	The state from	1444				
	Chine Weiser of Safet And Ide Co.	W	ALT CONTRACTOR	EVAN 5310C	5 601	409.01	0.0	0.0
Contract of the Contract of Street St								
	Select a row by stability is polytom on the Polytom Name (C	where Bi then cirk the delete button	20					
			ie. 60					
			JUN SOL					
			o					
			aly a fo					
			51					
			Ą					
			jth'					
			51					
			158					
			5.					

PRTR# VVCC25 [Facility Name Powerstown Landful Site | Fifename VVD025_2010(1) ats | Return Year 2010 |

11.8.57	Vear 0.0	0.0	ge t of 1
8425	a dUANTITY A (Accidentel) KGYrear 0.0	a quantify A (Accridentel) KCV vear F (Fuglive) KC 0.0	Ë «
	ase onter all quantities in this soution in KG (ssion Point 1 1, (Tolal) KGYear	ase onlie' all quantities in this section in KG ission Point 1 1 (Total) KGYrear	
AER Relums Workbook	ous years emiss ony data TMEAN OR SEVICE METHOD Method Used Method Code Method Code Attention	Altricol Code Altricol Code Altric	
	Left 10. previ Lett Arts DESTRAED FOR WASTE-WATER TREA MVC/E	Autional in your Litence LLUUTANTS DESTINAD FOR WASHEWATTER THEF MUCRE	
Sheet : Releases to Wastewater or Sewer	4.3 RELEASES TO WASTEWATER OR SEWER SECTION A : PRI'R FOLLUTANTS OFFSITE TAANSFER OF FO POLLUTANT No, Ampex 8	SECTION B. REMANING POLLUTANT EMISSIONS (as n Pollutant Polntant Na. . Sakata ront	Link to previous years arrissions data

EPA Export 25-07-2018:04:01:25

Sheel Releases to Land

AER Returns Workbook

9/5/201193

•

4.4 RELEASES TO LAND

SECTION A PRIR FOLLUTANTS

Please enter all quantities in this section in KGs	MEDHOD	R/2 mod Used for the stretch Emission Polnt 1 T (fotel) KGYYear A (	
RELEASES TO LAND	POLLUTANT	Name	
		No. Atmex It	

* Select a row by double-clicking on the Pollutard flame (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	QUANTITY	A (Accidental) KG/Year	0.0 0.0
es in this section in KGs		T (Total) KG/Year	00
Please enter all quantity		Emission Point 1	
	METHOD	Querel Land	
RELEASES TO LAND		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	POLLUTANT	Name	
「「「「「「「「「」」」」」		Pollutarit No	

- Salest a now boulde-clound on the relation () then clots the address transmission of the clots tra

PRIR# W0025 | Facility Mame : Powerstown Landfill Site | Filename : W0025_2010(1) xis | Return Year : 2010 |

20		6	]																	LIN											age t cl 2
		Accul Accrete of Ford Devision 200 14 Fink Records / Deposit Sco put, AMDOUS V7ASTE ON V1							Kanalsirasse 64,40432 Rheine, . Germäfry										\$	Bestie Beigium. , Bet	Serreffe,Belgum	Clormanam Ind. Est. Pontaoise.Co	Luors, Hellino	4	Houthsten, Belgum						
		Address of Frank Permit No. 2012						ann Saminas Gmail à Ca	KG_E56657020,Kanalsikatse 84,48432 Rheine, , ,Gormany										Campine Recycling, MLAV/D	173/GVDA, Beerse, Belgium, Belgium	Geocycle.38.325 BP,SenetleBelgum	Erva Iraland Ltd, W0184- 01, Ctommram Ind. Est. Portlaonse.Co	Laces, Jreland	R.D	Kecycmg.⊃11∠rr How,rive alen	<u>.</u>					
		Hard Adments of Newt 14 Eventmation 6 40455 (1001 HJL2 12/23/11 Additects of Reichertriff:sporer		Ronarstown Waste Weter Leatment Plant, Monarstown	Vaste Water Traatment Nant, Carlow, Steland Tervoart, Ouinagh, Carlow, Jr	stand cvianatisha, Pioritatoise, Latois	reland Kytetabsha Porlanise Laula.	retend Capencur Ind	Estate, Daingean Road, Tultamore, Ca Offeity, Ireland	Unit 20. Ray Road Business	Park Mountmelick.Co Laois, Ireland Ballynarmon, , Co	Carlow, Ireland Toughers Business	Park, Newhall, Naas Co Kildare, keland	Kyleistana, romanna, taora . Ireisnd	Nyespansie, Forenee, Fore	Kykelatsna, ronarov, umor. Ireiand	Batintrane Carlow, Iteland	Balantane, Carlow, Instand	and the second second	Clominiam ind. Est. Portiacise,Co Laois, Instand	Clontman Ind. Est , Pontacise, Co	Connistantin Ind Contantise Ind	Laois, tretand Barntown,Co	Wexford, (retand Closenington Ind	Est Portacise.Co Laois.Litetand	Acragaar (accountemp)	eland Course Proce Malmar Co	7 Cont. Ireland	hysteration of the second second		
	har when when and	Liter set Preme Na cr Nart Deturutor Facility Liter Preme and Liter Form No of Liter Preme			Mortarstown Waste Water V Treatment Plant, D-0028	Lid.WP01/08	AES LId,W0194-02	AE5 LId.W0194-02	KMK Metals Recrubing W0113-03		Laois Tyre Recycling.WFP- LS-10-0202-01	Ray Whelan, W0156-01	Mrs Querts Charity Shop, Mas Quins Chanty Bhop	AES 1:41.W0194-02	AES LId, 140194-02	A 2 4 1 14 W0 194-02	O Toole Compositing	O Toole Compositing		Contraction of the WO184-01		d Ervalreland Lld.Wurlb4-ur	d Enva tretand Ltd.W0184-01	d Pure Oil LId. KW 288/05	d Errva litetand Ltd WD184-01	At Metal Recycling ATFWNIP007D	Danese Recyching	nd Ironaul Lid,WCP/RK412/0	nd AES LId, W0184-02		
1cod			Location of Treatment		Onsite in Instand	Orts-te in fretand	Ons (s in Ireland	Driste in lietand	bushed ni energy		Onsite in Ireland	Onside in Ireland	Cuesto es feeland	Consta in Iteland	South In Ireland	014	Country In Irenand	Onvite In Frederic	Onside in Indept		Onsite in Ireland	Onsite in lifetari	Onsria in Bretary	Cristle in trelan	Constant in Instant	Onsite an Irelan	Onsite in Irelar	Onsite in trefar	Onsie in Irela		
AER Relums War			Method Used	IVERIOR CORR	Wenderd	Wierdheid	Werghed	Viteighed		Viewine J	the second	200	10n r	an in	Section 1	Megnen	Werzhed	Vergnad	Weghed		Wedned	Yieghed	Wedned	Megher		undergeneu Unteretret	(Allowerhard	Weebad	1.0° and 1.0°	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			E		17	2	2	ž		ک کی	to of	2		z :	2	5	M	12	W		¥.	2	2	M	;	3 :	5 3	E 1	5 3	5	
			Waste Treatmer	Operatio	215	2 2 2	510	015	CORSE	015	D15	015		510	510	D15	7 D15	015	7 D15	- 5	015	D15	015	D15		5	10	610	015	610	
	arer all mianlities on this sheet in Tonnes.	thy and the second s	t per l	Description of Waste	landid leadinite other than Brose mentoned	194 02 m 18 07 02	176 composile packaging / polystyrene	14 52 composite packageng a terrupes	60 56 paper and caloroom promonants	1 07 Containing waste	dama da	and am in-Dus 71.0	118.4 paper and caracoard	12 74 textures	14 78 plastic packageng / wrapping	77 36 plastic packaging / bottlas	215 89 wood other than that menkoned in 20 01 32	18 68 paper and cardboard packaging	es or wood other than that mentioned w 20 01 3	batteries and accumulators included in 15 08 01, 18 05 02 or 18 05 03 and unsorted	ballertes and accompators contained way	waste paint and variath chintalmang organi 10 52 achtents or other dangerous substances	and hitselficities many more than of the	8.98 office engines, gear and more than of	0 44 eq:De calara rat vrate	Q-84 art fatters	217 6 metals	5 06 metats / steel cans	74 92 glass Jars	31 54 Rai glass	
	SFERS OF WASTE	Cuan	[Tonne Yea	Hazardous		22 DN	No	Ma	묏	Yes		9%	No	No	Na	140	Nh	and and	2 :	9	Yes	Yes		Yes	No	Yes	Na	Pto	QQ.	ND	
Jers of Waste	T & OFFSITE TRAN			European Waste Code		19 07 03	\$0.10.51	501021	15 01 01	21		16.01.03	20 01 01	20 01 11	15 01 02	15.01.02		DF 10.02	10 10 51	20 01 38	20 01 33	ca 01 11		13 02 08	20 01 25	16 01 07	20 01 40	20 01 40	20 01 02	y 20 01 02	
ieel Treatment Trans	ONSITE TREATMEN			Transfer Destination		Wilhin Ihe Country	Within the Country	Wilhin the Country	Within the Country	and an analysis	factory out LEUMAA	Wrahim the Country	Witten the Country	Withes the Country	vorting the Country		Within the Lound	Welhan the Country	Wilhen the Country	With n the Country	Within the Country	Withm the Country		Withan the Country	Within the Country	Within the Country	Within the Country	Written the Country	Withen Ihe Country	Witten the Country	

0.1201198

PRTR# \v00251Fuckiny Nama Proversiown Landtid S4a1Filename vv0025_2010411 uis1Retum Yes

EPA Export 25-07-2018:04:01:25

		5					
Accual Actress of Foul Descradum Accual Actress of Foul Descradum I e Four Respendy J D 50550 516 (HAZARDOUS YAASTE CHALY)		Babystahan, St Margarets, Dubkn, Jretand					
Name and Loome (Permiting and Address of Full Recoverr / Decover (NAJARDUS MASTE Diff.v		Ratchie Recyclarg Lid.WCP. DC-08-1130- 01 Befyslahan Si Mergarets, Dubhn. Ireland					
Heg Vysute Addreut of Next Descrimons Factry Napr Leaf Viraly Addreas of Register Viraly Addreas of		Rahytiahan,Si Margarets,Dubbin "heland	Ballinitane.Carlow, , , lireland	Batintrane, Carlow,, Insland	Monasterbyan,Co Kédare, _ juretand	Bawnogues.Straffen.Co KildareIreland	
Literconferrent frame and Literconferrent frame and Destruction families of Neur Harrisone frame and Literconferrent Ressone Conferrent	-	Ratchile Recycling Lid, WCP- DC-05-1130-01	O Tcole Composing Ltd.WFP-CW-10-003-01	O Toola Composing Lid,WFP-CW-10-003-01	Cleary Compost and Shredding Ltd.228/2006	Gypsum Recycling heland Lid.O Hagan Wasle Disposal	
	Location of Treotment	Ônsite in Ireland	Onside in Ireland	Onside in Ireland	Onsite in Iteland	Onsale in Ireland	only any other as
Method Used	Method Used	Werghed	Wärghed	Weighed	M'englaed	Viterghed	Section Purpose redited for
	MOE	2	N	М	W	2	FOT WIGH
	Waste Treatment Operation	0.50	D15	D15	D15	015	useth of cop,
	Description of Waste	discarded electrocal and electronic equipment other than those mentioned in 2 31 21 and and 20 01 23 containing hazardous components	bodegradable waste / lood waste	oodegradable wasto / green wast <del>o</del>	xodegradabie waste / green waste	33 psum-based construction malerials other han (hose mentioned in 17 06 01	Co.
Quanbly (Tonnes per Year)		231 24	10 62 1	1 28 CO1	226 78 1	21441	
	Hazasdous	Yes	Mo	140	92	No	
	European Waste Codo	20 01 35	20 02 01	20 02 01	20.02.01	17 08 02	
	ramsfer Destimation	Withing the Country	Vithin the Country	(that the Country	Whin the Country	Athin the Country	

I PRTR# VPC025 | FacAhy Rame Pewerstown Landid Sue | Felename MC025_2010(1) 4s | Return Year 2010 |

845/2011 9 6

AER Returns Workbook

Sheel Treatment Transfers of Waste

e

Page 2 of 2

Annual Environmental Report 2010 Waste Licence: W0025-03 May 2011

APPENDISCO ON TOTAL SURVEY






Annual Environmental Report 2010 Waste Licence: W0025-03 May 2011

ŧ

APPENDIA BUND INTECRITY TESTING For instantion in TESTING

#### **REPORT ON**

### LEACHATE TANK BUND INTEGRITY ASSESSMENT

#### FOR POWERSTOWN LANDFILL SITE,



AGEC Ltd The Grainstore Singletons Lane Bagenalstown Co. Carlow Ireland

E-mail: info@agec.ie

#### DOCUMENT APPROVAL FORM

Document title:		Report on Leachate Tank Bund Integrity at Powerstown Landfill Site, County Carlow										
File reference N	lumber:	1056_005	Document Revision No.	0								
Note: Amendments marked with line in right-hand margin												
File Reference Number	Documen Revision N	t Amendment/Comment										

Task	Nominated authority	N' and Approved (signature)
Prepared by	Author: 655 Ian Higgins putosiire	for la Higg =
Checked by	Geotechnical Project Manager Paul Jengings	Poul Jangs
Approved by	Geotechnical Project Director: Turlough Johnston	V. Durt
Quality check	Quality Manager: Marion English	Marion Englich

This document has been prepared for the titled project and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of AGEC being obtained. AGEC accepts no responsibility or liability for the consequences of this document being used for a purpose other than the purposes for which it was commissioned. Any person using or relying on the document for such other purposes agrees, and will by such use or reliance be taken to confirm his agreement to indemnify AGEC for all loss or damage resulting therefrom. AGEC accepts no responsibility or liability for this document to any party other than the person by whom it was commissioned.

5:\2010\1056 Powerstown Landfill Slope Stability Assessment\Reports\Leachate Tank Bund Integrity Assessment (rev 0).doc

agec

#### TABLE OF CONTENTS

Deee	81
Page	NO.

	DOCUMENT APPROVAL FORM	ii
	TABLE OF CONTENTS	iii
1	INTRODUCTION	4
2	SITE DESCRIPTION	4
3	SITE RECONNAISSANCE	4
4	SITE CONDITIONS	5
5	INTEGRITY OF LEACHATE HOLDING TANK BUND	5
6	CONCLUSION AND RECOMMENDATIONS	5
7	REFERENCES	6
	PHOTOGRAPHS PHOTOGRAPHS	

5.\2010\1056 Powerstown Landfill Slope Stability Assessment\Reports\Leachate Tank Bund Integrity Assessment (rev 0) doc

- iii

#### 1 INTRODUCTION

Applied Ground Engineering Consultants Ltd (AGEC) was engaged in October 2010 by Carlow County Council to undertake a slope stability assessment at the Powerstown Landfill in Carlow. In addition to the slope stability assessment a visual inspection was carried out on the Leachate holding tank bund.

#### 2 SITE DESCRIPTION

Powerstown landfill is located in Powerstown townland just to the east of the N9 National Primary Route (Carlow – Waterford), and approximately 6km south of Carlow town.

The Powerstown Landfill site comprises three phases as follows:

- (1) Phase I (1975 1990). Southwest of site No cell numbers. This phase includes the older part of the landfill that is unlined.
- (2) Phase II (1990 2006). Cells & to 13. This is capped but the capping is temporary on some cells. The underside of the landfill is lined.
- (3) Phase III (2006 present). Cells 15 to 18. Currently being filled. The underside of the landfill is lined.

#### 3 SITE RECONNAISSANCE

A site reconnaissance was carried out on Tuesday 19 October 2010. The purpose of the reconnaissance was to visually inspect the landfill site and to identify any signs of ground deformation or movements.

The reconnaissance included a walkover and visual inspection of Phases II and III of the landfill, as well as a visual inspection of the leachate tank bund. At the time of the walkover the weather was overcast with occasional showers.

#### (agec)

#### 4 SITE CONDITIONS

On the north boundary of the site is the Powerstown Stream, which is a tributary of the River Barrow. To the west the site is bounded by the N9. There are agricultural lands and a gravel pit adjoining part of the southern boundary. To the east there are agricultural lands.

The site is essentially underlain by sand and gravel deposits, and part of the site was formerly used for extraction of granular soils. There is currently a working sand and gravel quarry on the southern boundary of the site.

#### 5 INTEGRITY OF LEACHATE HOLDING TANK BUND

A large Leachate tank is located close to the eastern boundary of the landfill site. A reinforced concrete bund surrounds the tank. The tank is 8.53m in diameter and 7.25m in height. The bund is 1.2m in height and 300 min thickness.

In terms of volume, the Tank can hold a total of 400m³ of material, with the bund capable of retaining 420m³ of material.

No obvious structural defects were noted during the inspection. Small cracks were noted at four locations around the wall of the bund, at the location of the induced joints shown on drawing 2005-120-04-601 produced by Fehily Timony. Minor longitudinal cracks were notes in the floor of the bund, again at the locations indicated on the Fehily Timony drawing.

#### 6 CONCLUSION AND RECOMMENDATIONS

The conclusions of the leachate tank bund integrity assessment for the Powerstown Landfill site are as follows:

 A visual inspection of the leachate holding tank bund showed no signs of loss of integrity.

#### (agec)

#### 7 REFERENCES

British Standards Institute (1981). Code of practice for earthworks. BS 6031:1981.

Charles, J.A. & Watts, K.S. (2001). Building on fill: geotechnical aspects 2nd ed. Building Research Establishment, London.

Sarsby, R.W. (2000). Environmental Geotechnics. Thomas Telford Ltd., London.

Consent for inspection purposes only any other use.

agec

ð

Report on Leachate Tank Bund Integrity

Consent of configure to mer to see to the topse

S:\2010\1056 Powerstown Landfill Slope Stability Assessment\Reports\Leachate Tank Bund Integrity Assessment (rev 0).doc

å.



5:\2010\1056 Powerstown Landfill Slope Stability Assessment\Reports\Leachate Tank Bund Integrity Assessment (rev 0).doc



## **Geomembrane Testing Services Limited**

Client: Carlow County Council

## **REPORT ON:**

# COVERED LEACHATE LAGOON

## atos contractor POWERSTOWN LANDFILL DEVELOPMENT KILKENNY ROAD POWERSTOWN

Inspection Date November 2010

Prepared by:

Geomembrane Testing Services Limited Thornback Road, Troyswood, Co Kilkenny, Ireland Tel/Fax: (056) 7770953 Mobile: (086 8323113) Email: gts@o2.ie Annual Environmental Report 2010 Waste Licence: W0025-03 May 2011

à

APPENDIX Second for an other use WATER BALANCE CALCULATION For institution Consent of convingition Water Balance Calculation Powerstown Landfill AER 2010

_			_	_	_	_	_,	_	_			_	_	_
	Tota ^t Leachale	2.884	1,136	1286	100	502	123	454	295	2 409	1 842	4 579	761	16,073
	Cell 17	0	0	0	0	ò	0	0	185	558	404	820	440	2,407
	Paved Areas	3/0	173	242	100	202	123	268	111	335	243	192	284	2.926
	Tetal Attemption by Waste	225	117	63				85		\$1	¢1	57	20	647
	Total Infiltration	2 740	1 080	1 095	0	0	0	251	D	1,587	1.256	3 323	91	11.406
	Cells 15-16 Perits Cap	0	0	0	0	Þ	0	0	0	0	•	0	8	0
	Cells 15-16 Temp Cap	0	0	D	ð	0	0	0	0	D	ò	92	C .	34
	Cells 15-16 Active	2.234	881	634	6	0		206	0	1.276	1.024	2 567	10	151,E
	Cells 6-13 Perm Cap	133	53	52	0		0	12		76	61	175	\$	569
-	Cells 6-13 Temp Cap	11	23	2.0		-	Ģ	Ť~	0	40	32	55	-	301
/OLUMES (m	Cells 6-13 Active	0		0			0	•		0	•			•
LEACHATE	Cells 1-5 Perm	8	22	2	0		6		0	32	25	2		237
	Cells 1-3 Temp Cap	0		•	6	0	0		0	0	0	0	0	0
	Cells 1-5 Active	6		0								0		
	Unlined Cett Perm Cap	247	52	66	0	0	0	2	-	14.5	113	324	6	1.053
	Unfined Cell Temp Cap		0	0		0	0	0	c		0			¢
	Unlined Cell Active		-			-	0	0		0			•	0
2010	ER (mm)	0.211	181	40.8	00	00	00	10.8	00	689	53.6	153.6	42	0.664
	Rainfall (mm)	1236	57.8	82.5	33.5	69.6	41	936	37.1	111.0	119	15.5.4	63.2	917.5
	Manth	2 decrea dative	Ferbrary	Marrie	Area	Vela	luna	lide	A. strat	Sectanter	October	Menterman	Decembres	Totals

																Dec	6	0	42200	0	•	9500	0	2412	22/BB	16/12	2368	0	1405	145	420	1021	160	\$250
																Nov	-		42200		0	3000	0	2412	22768	16/12	23.63	•	1405	145	420	1021	160	5250
selficient	0 95				п ³ Л											0et		c	42200	0	0	8500	0	2412	22788	19100	0	0	14C5	145	420	1021	160	5250
Rum-off Co	Paved Arcos				0.07									ont	γ.	245 247	đ	0	42203	0	0	0056	0	2412	22788	19100	0	0	1405	145	470	1021	160	5250
					te							J.	205	hedf	0	θnγ	e		42200		Þ	9500	÷	2412	22763	19150	a		1405	145	420	1021	160	5250
Coefficient	÷	0,25	0 05		pacity of was			58	بن مک	0 0	20	er.	ion			Jul Areas im ⁵			42250		0	0056	Þ	2412	22788	19100	0	•	1405	145	420	1021	160	4
Inditeration (	Active	Temp Cab	Perm Cap	×	Byacroline Cal	ۍ ک ک	10 10	in s	S.							Jun Zona	0		42200	0	0	0058	0	2412	22/00	19100	0	0	1405	145	420	1021	-160	0 0 1
	(	ġ.	<u>n</u> 5	5D												May	4		42700	0		9500	0	2412	22788	19100	0	a	1405	145	420	1021	16.0	0
																Apr			42200	0	D	9502	0	2412	22785	016	0	0	1405	145	470	1021	100	Ģ
eposition	Tonnes	3 226	1 988	019	914	068	1 638	\$75	726	72.0	672	808	481			Mac			47200	0		9500	.0	2412	22786	13100	0	0	5011	145	420	1201	*6D.	0
Waste 0	I-fant's	Jan-10	Feb-10	Nar-10	Apr.10	01-4464	Jun-10	JL2-10	Aug-10	Sec-10	Oct-10	11:00-10	Dec-10			Feb			12200		•	0055	0	2412	22788	19100	0	0	1405	145	420	1021	160	0
																110F			000477	-	0	9500	0	2412	22705	19100	Þ	0	1405	145	420	1021	160	ø
Effective Rainfall	1170	46.1	46.8	-24.5	-03	-49 0	10.6	÷ 06-	86.0	\$3.6	153.6	840			S Powerstown Landfill	Description		Town of the	Para Can	Active	Temp Cap	Pern Cap	Active	TerroCap	Perm Cap	Active	femp Cap	Pe-m Cao	CA tewer terrel	LT ceivreny bary	LT thursd	bicani waste + drashrutise	Demestic wasto	נאנריזינטענין (באנפיזינטאנין) תאיטל ומדה פרצפ ארפט
Evapotranspliation	18	11 7	15.7	580	78.1	90.0	26.8	090	45.0	275	10.0	4.2			Waste Bearing Zonts a	Total Area (m ¹ )	Late 4	N1277-16		9500			25200			19:00			3151					\$250
Rainfall	\$ E 2 1	57.8	82 5	335	629	41	89 E	1 I E	6116	611	164.4	88.2			Summary of	Zone	1000	Unstee con		Cells 1.5			Cots 6 - 13			Cells 15 - 16			Paved A'68					Ca1 12

<u>Hotess</u> 1 Rantas Gata hom Asnford wayber staton 2 Paterstel Evacotranscroton from Cossiment weather station

÷

10.0 ÷ Consent for inspection purposes only: any other use.