Annual Environmental Report 2017

Licence Registration No.: W0198-01

Licencee: Bord na Móna Plc.

Location of Activity: Kilberry, Athy, Co. Kildare.

Attention: Office of Environmental Enforcement

Environmental Protection Agency

P.O. Box 3000 Johnstown Castle

Co. Wexford

CONTENTS

SECTION 1: INTRODUCTION

- 1.1 Introduction
 - 1.1.2 Policy
- 1.2 Site Description
 - 1.2.1 General
 - 1.2.2 Method of Working
 - 1.2.2.1 Composting Process

SECTION 2: DATA

- 2.1 Summary Data
 - 2.1.1 Waste Recovery Data
 - 2.1.2 Summary Reports on Emissions
 - 2.1.3 Summary reports on Environmental Monitoring
 - 2.1.3 (A) Surface Water Analysis Results
 - 2.1.3 (B) Ground Water Analysis Results
 - 2.1.3 (C) Dust Analysis Results
 - 2.1.3 (D) Odour Analysis Results
 - 2.3.1 (E) Noise Emissions
 - 2.1.4 Environmental Incidents and Complaints
 - 2.1.5 Environmental Spending
 - 2.1.6 Resource and Energy Consumption

SECTION 3: ENVIRONMENTAL MANAGEMENT SYSTEM

Objectives and Targets 2018

- 3.1 Environmental Management Programme Review 2017
- 3.2 Environmental Management Programme Description 2018

SECTION 4: OTHER REPORTS

Appendix 1 – Odour Monitoring Location Maps

Appendix 2 – Monthly Analysis of Windrows

Appendix 3 - PRTR Scan

SECTION 1

Introduction

1.1 <u>INTRODUCTION</u>

The following document represents the Annual Environmental Report (AER) for Bord na Móna Kilberry Compost facility for the period January 2017 - December 2017. Detailed within this report is a summary of all monitoring, and any activities and on-going improvements at the facility during this period that has had an influence on the environmental performance of the company.

Through the continued compliance with the conditions of their Waste licence register No. W0198-01, Bord na Móna continues to express their commitment of environmental improvement through out the site.

An Environmental and Quality Management System is established at the facility, which incorporates procedures of operational activities on site, emergency preparedness and response, reporting, dealing with unacceptable wastes and a public access to the site and site's environmental performance. Through the on-going achievement and reviewing of the objectives and targets, Bord na Móna facilitate on-going environmental improvements.

Bord na Móna's commitment is expressed in the company's Environmental Management policy, as given overleaf.

1.1.2 – Environmental Policy

Environmental Policy

Introduction

A licence from the Environmental Protection Agency (W0198-1) was granted on the 16th of December 2004. This licence is for the construction and operation of a Composting Facility at Kilberry, Athy, Co. Kildare. The quantity of waste to be accepted shall not exceed 96,000 tonnes per annum. Non-hazardous biodegradable wastes as agreed with the EPA will be accepted at this facility. A full list is available from the compost manager.

The process leading to the production of usable, composted material will require the completion of a series of stages as follows, acceptance procedures and tipping, mixing and formulation of windrows, turning / composting, screening of stabilised material and shredding and re-use of oversize material. The wastes are combined together to form windrows for composting. The average composting period will be 14-18 weeks during which time the composting process will stabilise a range of organic waste materials / by-products which will then be incorporated into horticultural growing media produced on the adjoining site.

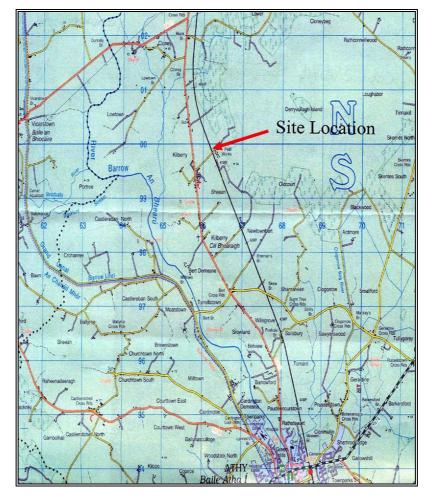
Policy

Environmental care is a Bord na Móna core value. BnM seeks to be recognised in the compost supply business as a leader in terms of environmental care. Bord na Móna's environmental programmes shall be an integrated approach focused on continuous improvement. The environmental programmes in Bord na Móna will seek to achieve the following:

- Ensure compliance with the requirements of the EPA Waste Licence and National/European legislation.
- Review Environmental performance and establish environmental objectives and targets on an annual basis to improve the environmental performance of our composting facility
- Minimise potential negative environmental impacts through activities that are designed for the prevention of pollution
- Encourage the involvement of employees through training and awareness programmes to promote and ensure an environmentally friendly workplace.
- · Audit practices and programmes to help ensure continuous improvement

The company values and promotes environmental leadership, responsibility and innovation in the management of all company facilities and operations. Management team are expected to provide sound environmental leadership, to maintain appropriate records and demonstrate compliance with programmes and practices.

Authorised as of February 26th 2018


Michael Delaney General Manager

Attachment# 1 to EMSKIL-001 / rev 1

1.2 <u>SITE DESCRIPTION</u>

1.2.1 Site Location

The proposed development is located on the eastern portion of Kilberry townland, approximately 4 km north of Athy, Co. Kildare. It is located along the R417 between Athy and Monasterevin.

Regional Location of Bord na Mona Kilberry Compost Site

The total area the site occupies is ca. 2.5 hectares. The topography of the area is flat peat land and agricultural land with a gradual rise to the north. The land on the site is relatively level with a fall of 1:200 over the total site from south to north. The surrounding land is a mixture of agricultural, forestry and peat land with the southern boundary adjoining the Bord na Móna Moss Peat production site.

1.2.1 General

A licence from the Environmental Protection Agency (W0198-01) was granted on the 16th of December 2004. This licence was for the construction and operation of a Composting Facility at Kilberry, Athy, Co. Kildare. The quantity of waste to be accepted was 50,000 tonnes in the first year rising to 96,000 tonnes by the 5th year. Non-hazardous biodegradable wastes (Shredded Green waste, Brewery By-Product, Sawdust, Bark and Cocoa Husk) were the initial waste types accepted at this facility. In the intervening years a number of additional waste streams have been identified and added to the waste licence with agreement from the EPA. The current waste list is as follows:

Shredded / Unshredded Green Waste

Brewery By-Product

Sawdust

Bark

Cocoa Husk

Spent Mushroom Compost

Christmas Trees

Wood Pulp Sludge

Fruit and Vegetables

Dairy Products Sludge

1.2.2 Method of Working

1.2.2.1 Composting Process

The process leading to the production of usable, composted material requires the completion of a series of stages as follows:

- 1. Acceptance procedures and tipping
- 2. Mixing and formulation of windrows Shredding
- 3. Turning / Composting
- 4. Screening of stabilised material

1. Acceptance Procedures:

All vehicles entering the site firstly report to compost coordinator. A delivery note will accompany each vehicle detailing:

- Vehicle registration number
- Driver / Company
- Material type and origin
- Quantity of waste

These details will be entered on to the Bord na Móna MRP system along with the recorded weight of the vehicle. A hard copy of this information will be issued to the driver as a POD (Proof of Delivery).

2. Discharge/Mixing and formation of windrows.

On completion of acceptance procedures vehicles will be directed to a specific tipping area in the composting facility, where they will tip the feedstock in such a fashion as to provide a linier strip of material. If required material can also be directed to phase 2 for temporary storage and for shredding if required.

3. Turning / Composting

The current average composting period is 16 weeks, during which time the piles are turned approximately twice weekly (this can vary depending on weather conditions and results of testing)

A series of parameters are monitored during the composting cycle as follows:

- Temperature (using deep probes)
- CO₂ evolution (an index of microbial activity)
- Moisture content

The results of ongoing monitoring can trigger a number of interactions such as:

- Increased turning frequency
- Addition of water. Lagoon water is used as the source of this water.

4. Screening

Following the completion of composting the material is transported from the stockpile to the screening area, which is located in Phase 2 using the Volvo loader. The composted material is screened following confirmation that it has passed the standard for compost quality. The three grades of compost are:

- 1. 0 12 mm
- 2. 12-24 mm
- 3. >25mm (Known as Oversize)

Working Hours

Composting activities (Turning / Screening) will normally be undertaken during the hours of 08:00 and 18:00; Monday to Friday inclusive.

Delivery hours are confined to the hours of 08:00 to 18:00; Monday to Friday inclusive.

Reduced site activities such as maintenance and cleaning proceed until 22:00 Monday to Friday inclusive.

.

SECTION 2

DATA

2.1 SUMMARY DATA

2.1.1 Waste Recovery Data:

Waste Type	EWC Code	Annual Intake (Tonnes)
Greenwaste	20 02 01	20680
Bark	03 03 01	479
Brewery by-Product	02 07 01	19327
Dairy Sludge	02 05 02	910

2.1.2 Wastes produced on site

Waste Type	EWC Code	Annual Output (Tonnes)	
Uncomposted Fraction – Plastics etc	19 05 01	30	

2.1.3 Summary Report on Emissions:

There are no emission points within the facility.

2.1.3 Summary Reports on Environmental Monitoring:

2.1.3 (A) <u>Surface Water Analysis Results</u> – Tables A.1 – A.4 below show results of 2017 Surface water analysis. The 2017 results are consistent with previous years.

Table A.1 - Surface Water Q1 2017								
Parameter	SW1	SW2	SW3	SW4	SW5			
рН	7.4	7.4	7.4	7.4	7.9			
Suspended Solids (mg/l)	6	<5	<5	<5	<5			
BOD (mg/l)	<2	<2	<2	<2	<2			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

Table A.1 - Surface Water Q2 2017								
Parameter	SW1	SW2	SW3	SW4	SW5			
рН	7.4	7.4	7.4	7.5	8.0			
Suspended Solids (mg/l)	<5	<5	<5	<5	<5			
BOD (mg/l)	<2	<2	<2	<2	<2			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

Table A.3 - Surface Water Q3 2017								
Parameter	SW1	SW2	SW3	SW4	SW5			
рН	7.5	7.6	7.6	7.6	7.9			
Suspended Solids (mg/l)	11	56	54	24	<5			
BOD (mg/l)	<2	3	3	2	<2			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

Table A.4 - Surface Water Q4 2017								
Parameter	SW1	SW2	SW3	SW4	SW5			
рН	7.2	7.1	7.2	7.2	7.8			
Suspended Solids (mg/l)	<5	<5	<5	<5	<5			
BOD (mg/l)	<2	<2	<2	<2	<2			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

2.1.3 (B) Ground Water Analysis Results

Groundwater results are elevated for a number of parameters most notably Ammonia – these results are consistent with previous years and MW 1,2,3 are in line with results from the EIS. MW 4,5 are both hydraulically up gradient of the site. The trends with regards to the elevated parameters will continue to be assessed during 2018.

Groundwater Results Q1 2017							
Laboratory ID.	MW1	MW2	MW3	MW4	MW5		
pН	7.7	7.4	7.2	6.9	7.3		
Conductivity µS/cm	546	684	783	1832	855.5		
Ammonia as N mg/l	1.7	5.3	5.9	18	7.2		
Chloride mg/l	25	22	20	39	20		
Sulphate mg/l	8.6	40	0.74	2.7	0.69		
Nickel ug/l	4.62	1.22	0.985	31.4	15.4		
Manganese ug/l	321	166	288	1000	189		
Total Coliforms cfu/ml	<1	<1	<1	<1	<1		
E.Coli cfu/ml	<1	<1	<1	<1	<1		

Groundwater Results Q2 2017								
Laboratory ID.	MW1	MW2	MW3	MW4	MW5			
pH	7.5	7.2	7.0	6.5	6.7			
Conductivity µS/cm 1	482	650	717	1850	920			
Ammonia as N mg/l	1.5	3.7	5.7	15	6.3			
Chloride mg/l	25	22	19	51	21			
Sulphate mg/l	6.2	41	3.3	1	<0.5			
Nickel ug/l	3.11	1.13	<2	32.4	13.7			
Manganese ug/l	443	387	249	1270	226			
Total Coliforms cfu/ml	<1	<1	2	<1	<1			
E.Coli cfu/ml	<1	<1	1	<1	<1			

Groundwater Results Q3 2017								
Laboratory ID.	MW1	MW2	MW3	MW4	MW5			
pН	7.6	7.4	7.3	6.8	7.2			
Conductivity µS/cm l	504	67	62	1680	840			
Ammonia as N mg/l	1.8	6.9	5.7	23	9.1			
Chloride mg/l	24	22	17	48	18			
Sulphate mg/l	1.3	50	<0.5	1.7	<0.5			
Nickel ug/l	3.32	1.15	1.07	31.1	26.1			
Manganese ug/l	209	162	188	828	124			
Total Coliforms cfu/ml	2	40	8	310	610			
E.Coli cfu/ml	2	40	<1	310	<1			

(Groundwat	ter Q4 201	7		
Parameter	MW-01	MW-02	MW-03	MW-04	MW-05
<u>pH</u>	7.7	7.4	7.2	7.0	7.2
Conductivity uS/cm	456.5	607	568	1461	1178
Ammonia as N mg/l	1.9	6.4	5.7	17	12
Chloride mg/l	24	21	17	40	30
Sulphate mg/l	0.86	54	<0.5	16	73
Nitrate mg/l	< 0.05	< 0.05	< 0.05	< 0.05	6.5
Phosphorus mg/l	0.07	0.08	0.07	0.06	0.07
Magnesium mg/l	16.6	6.64	5.34	38.8	14.3
Boron ug/l	7.25	9.6	<5	13	15.6
Antimony <u>ug/l</u>	<2	<2	<2	<2	<2
Arsenic <u>ug/l</u>	12.8	10.4	4.65	<2	4.99
Aluminium <u>ug/l</u>	<2	<2	<2	<2	<2
Berylium <u>ug/l</u>	<2	<2	<2	<2	<2
Barium <u>ug/l</u>	479	368	392	101	421
Chromium µg/l	<2	<2	<2	<2	<2
Cadmium µg/l	<2	<2	<2	<2	<2
Cobalt <u>ug/l</u>	<2	<2	<2	<2	2.34
Copper µg/l	<2	<2	<2	<2	<2
Iron mg/l	<0.1	0.1	<0.1	0.264	<0.1
Potassium mg/l	1.68	1.75	1.57	47.1	58.1
Sodium mg/l	11.1	8.86	9.59	17.3	16.4
Calcium mg/l	64.3	109	130	231	197
Manganese µg/l	302	173	247	831	241
Silver µg/l	<2	<2	<2	<2	<2
Nickel µg/l	5.22	<2	<2	17.1	18.5
Lead μg/l	<2	<2	<2	<2	<2
Selenium <u>ug/l</u>	<2	<2	<2	<2	<2
Tin μg/l	<2	<2	<2	<2	<2
Zinc µg/l	<2	<2	<2	<2	4.01
Mercury μg/l	<1	<1	<1	<1	<1

Groundwater Q4 2017 – SVOC Analysis						
SVOC's (μg/l)	MW-01	MW-02	MW-03	MW-04	MW-05	
Phenol	<1	<1	<1	<1	<1	
2-Chlorophenol	<1	<1	<1	<1	<1	
2-Methylphenol	<1	<1	<1	<1	<1	
4-Methylphenol	<1	<1	<1	<1	<1	
2-Nitrophenol	<1	<1	<1	<1	<1	
4-Nitrophenol	<1	<1	<1	<1	<1	
2,4-Dichlorophenol	<1	<1	<1	<1	<1	
2,4-Dimethylphenol	<1	<1	<1	<1	<1	
4-Chloro-3-methylphenol	<1	<1	<1	<1	<1	
2,4,6-Trichlorophenol	<1	<1	<1	<1	<1	
2,4,5-Trichlorophenol	<1	<1	<1	<1	<1	
Pentachlorophenol	<1	<1	<1	<1	<1	
1,3-Dichlorobenzene	<1	<1	<1	<1	<1	
1,4-Dichlorobenzene	<1	<1	<1	<1	<1	
1,2-Dichlorobenzene	<1	<1	<1	<1	<1	
1,2,4-Trichlorobenzene	<1	<1	<1	<1	<1	
Nitrobenzene	<1	<1	<1	<1	<1	
Azobenzene	<1	<1	<1	<1	<1	
Hexachlorobenzene	<1	<1	<1	<1	<1	
Naphthalene	<1	<1	<1	<1	<1	
Acenaphthalene	<1	<1	<1	<1	<1	
Acenaphthene	<1	<1	<1	<1	<1	
Flourene	<1	<1	<1	<1	<1	
Phenanthrene	<1	<1	<1	<1	<1	
Anthracene	<1	<1	<1	<1	<1	
Fluoranthrene	<1	<1	<1	<1	<1	
Pyrene	<1	<1	<1	<1	<1	
Benzo(a)anthracene	<1	<1	<1	<1	<1	
Chrysene	<1	<1	<1	<1	<1	
Benzo(b)fluoranthrene	<1	<1	<1	<1	<1	
Benzo(k)fluoranthrene	<1	<1	<1	<1	<1	

Groundwater	Groundwater Q4 2017 - Cont'd SVOC Analysis						
SVOC's (μg/l)	MW1	MW2	MW3	MW4	MW-05		
Benzo(a)pyrene	<1	<1	<1	<1	<1		
Indenol(1,2,3-cd)pyrene	<1	<1	<1	<1	<1		
Dibenzo(a,h)anthracene	<1	<1	<1	<1	<1		
Benzo(ghi)perylene	<1	<1	<1	<1	<1		
2-Chloronaphthalene	<1	<1	<1	<1	<1		
Carbazole	<1	<1	<1	<1	<1		
2-Methylnaphthalene	<1	<1	<1	<1	<1		
Isophorone	<1	<1	<1	<1	<1		
Dibenzofuran	<1	<1	<1	<1	<1		
Dimethyl phthalate	<1	<1	<1	<1	<1		
Diethyl phthalate	<1	<1	<1	<1	<1		
Di-butylphthalete	<1	<1	<1	<1	<1		
Di-octylphthalate	<1	<1	<1	<1	<1		
Bis(2-ethylhexyl)phthalate	<1	<1	<1	<1	<1		
Butylbenzylphthalate	<1	<1	<1	<1	<1		
4-Chloroaniline	<1	<1	<1	<1	<1		
2-Nitroaniline	<1	<1	<1	<1	<1		
3-Nitroaniline	<1	<1	<1	<1	<1		
4-Nitroaniline	<1	<1	<1	<1	<1		
2,4-Dinitroaniline	<1	<1	<1	<1	<1		
2,6-Dinitroaniline	<1	<1	<1	<1	<1		
Bis(2-Chloroethyl)ether	<1	<1	<1	<1	<1		
4-Bromophenylphenylether	<1	<1	<1	<1	<1		
4-Chlorophenylphenylether	<1	<1	<1	<1	<1		
Hexachloroethane	<1	<1	<1	<1	<1		
Hexachlorobutadiene	<1	<1	<1	<1	<1		
Hexachlorocyclopentadiene	<1	<1	<1	<1	<1		
Bis(2-chloroethoxy)methane	<1	<1	<1	<1	<1		
N-nitrosodi-n-propylamine	<1	<1	<1	<1	<1		

Groundwater Q4 2017 – Pesticide Suite						
Pesticides (μg/l)	MW-01	MW-02	MW-03	MW-04	MW-05	
Dichlorvos	<0.01	< 0.01	< 0.01	< 0.01	<0.01	
Mevinphos	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Alpha - BHC	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Gamma - BHC	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Diazinon	<0.01	< 0.01	< 0.01	< 0.01	<0.01	
Delta - BHC	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Ethyl Parathion	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Heptachlor	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Fenitrothion	<0.01	<0.01	<0.01	<0.01	<0.01	
Aldrin	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Malathion	<0.01	< 0.01	< 0.01	< 0.01	<0.01	
Heptachlor Epoxide	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Endosulphan I	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Dieldrin	<0.01	<0.01	< 0.01	< 0.01	<0.01	
4, 4' - DDE	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Endosulphan II	<0.01	<0.01	< 0.01	< 0.01	<0.01	
4, 4' - DDD	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Ethion	<0.01	< 0.01	< 0.01	< 0.01	<0.01	
Endrin	<0.01	<0.01	< 0.01	< 0.01	<0.01	
Endosulfan Sulphate	<0.01	<0.01	<0.01	<0.01	<0.01	
4, 4' - DDT	<0.01	<0.01	<0.01	<0.01	<0.01	
Methoxychlor	<0.01	<0.01	<0.01	<0.01	<0.01	
Azinphos Methyl	<0.01	<0.01	<0.01	<0.01	<0.01	

Microbiological Analysis						
Cfu/100mls MW-01 MW-02 MW-03 MW-04 MW-05						
Total Coliforms	<1	2	<1	120	8	
E.Coli cfu/ml	<1	<1	<1	<1	5	

2.1.3 (C) <u>Dust Analysis Results</u>

2017 Dust Results						
Location	Q1 Dust (mg/m²/day)	Q2 Dust (mg/m²/day)	Q3 Dust (mg/m²/day)	Q4 Dust (mg/m²/day)		
AM-01	182	182	1028 **	300		
AM-02	240	317	105	76		
AM-03	129	270	323	N/A *		
AM-04	323	481	487	53		

^{*} Dust sampling container had been removed.

^{**} Significant contamination from bird droppings.

2.1.3 (D) Odour Analysis Results 2017 – See Appendix 1 for Sample location maps

The Odour results for 2017 are typical of an open windrow compost facility.

METEOROLOGICAL CONDITIONS Q1 – 22 ND MAR 2017					
Parameter Parameter					
Weather Dry, Cloudy and Cool		Wind speed 1.7 m/se (average)			
Temp	8°C	Wind Direction	NW		
General Air Quality	Good	Bar Pressure	1008		

Odour Sampling Results Q1 - 22 ND MAR 2017					
Locations	On site observations	Results			
OD 1 (Crosswind Sensitive Receptor)	Faint typical odour associated with composting - intermittent	<12 ou _E /m ³			
OD 2 (Upwind)	Faint vegetation odour detected typical to proximity to vegetation at the boundary	<12 ou _E /m ³			
OD 3 (Downwind)	Faint typical odour associated with composting process.	$<12 \text{ ou}_{\text{E}}/\text{m}^3$			

METEOROLOGICAL CONDITIONS Q2 – 18 TH MAY 2017						
	Parameter Parameter					
Weather	Dry, Cool and Cloudy	Wind speed	0.4 m/sec (average)			
Temp	12°C	Wind Direction	W			
General Air Quality	Good	Bar Pressure	1008			

Odour Sampling Results Q2 – 18 TH MAY 2017					
Locations	On site observations	Results			
OD 1	Faint intermittent peat odour of low				
(Crosswind	intensity and low persistence. Very faint,	$24 \text{ ou}_{\text{F}}/\text{m}^3$			
Sensitive	intermittent woody odour typical of	24 Ou _E /III			
Receptor)	composting facility				
OD 2	Very faint smoke odour of low intensity				
	and low persistence. Faint peat odour,	$<12 \text{ ou}_{\text{E}}/\text{m}^3$			
(Upwind)	intermittent and low intensity				
	Medium intensity must peat odour.				
OD 3	Intermittent sweet citrus odour of	$12 \text{ ou}_{\text{F}}/\text{m}^3$			
(Downwind)	medium intensity low persistence. Faint	12 OUE/III			
	exhaust fume odour				

METEOROLOGICAL CONDITIONS Q3 – 27 TH JUL 2017						
	Parameter Parameter					
Weather	Damp, Bright and Cool	Wind speed	0.7 m/sec (average)			
Temp	15°C	Wind Direction	E			
General Air Quality	Good	Bar Pressure	1012			

Odour Sampling Results Q3 – 27 TH JUL 2017					
Locations	On site observations	Results			
OD 1					
(Crosswind	Faint peat odour detected typical to that	$<12 \text{ ou}_{\text{F}}/\text{m}^3$			
Sensitive	of composting facility	<12 Ou _E /III			
Receptor)					
OD 2	Faint and intermittent vegetation odour				
(Upwind)	detected. Occasional faint exhaust fume	<12 ou _E /m ³			
. 1	odour – passing trucks				
OD 3	Faint and musty citrus odour typical of	$17 \text{ ou}_{\text{F}}/\text{m}^3$			
(Downwind)	facility. Odour is of moderate intensity.	1 / OdE/III			

METEOROLOGICAL CONDITIONS Q4 – 21 ST NOV 2017					
Parameter Parameter					
Weather Damp, Bright and Cool		Wind speed 2.1 m/sec (average)			
Temp	14 °C	Wind Direction	W		
General Air Quality	Good	Bar Pressure	1002 mbar		

Odour Sampling Results Q4 – 21 ST NOV 2017					
Locations	On site observations	Results			
OD 1					
(Upwind /	Chimney smoke odour from private	24 ou _F /m ³			
Sensitive	dwelling.	∠4 Ou _E /III			
Receptor)					
OD 2		14 ou _F /m ³			
(Downwind)	Intermittent composting odour detected.	14 Ou _E /III			
OD 3	Musty citrus odour typical of the	16 ou _F /m ³			
(Downwind)	composting facility.	10 ou _E /III			

2.1.4 (E) <u>Air Emissions Results</u>

Air Analysis Q1 2017					
Location	Amines	Ammonia	Hydrogen	Mercaptens	
Location	(ppm)	(ppm)	Sulphide (ppm)	(ppm)	
Downwind – south east corner phase 1	<4.00	<5	<0.2	<0.5	

Air Analysis Q2 2017						
Location Amines Ammonia Hydrogen Mercaptens (ppm) (ppm) Sulphide (ppm) (ppm)						
Downwind - eastern corner phase 1	<4.00	<5	<0.2	<0.5		

Air Analysis Q3 2017						
Location	Amines	Ammonia	Hydrogen	Mercaptens		
Location	(ppm)	(ppm)	Sulphide (ppm)	(ppm)		
Downwind – west of						
phase 1 and 2	<4.00	<5	< 0.2	< 0.5		

Air Analysis Q4 2017						
Location	Amines (ppm)	Ammonia (ppm)	Hydrogen Sulphide (ppm)	Mercaptens (ppm)		
Downwind – east of phase 1 and 2	<4.23	<5	<0.2	<0.5		

2.3.1 (E) <u>Noise Emissions</u>

Noise:

The annual noise-monitoring programme was carried out on the 21st and 24th April 2017. The results of same are presented in Table E.1.

Т	TABLE E.1: NOISE MEASUREMENT RESULTS (DAYTIME)						
Location No.	Duration	Date	Start	L_{eq}	L_{10}	L ₉₀	L _{AFMax}
Location No.	(minutes)	Date	Time	dB(A)	dB(A)	dB(A)	dB(A)
	30	21/04/17	07:36	64	67	56	82
N1	30	21/04/17	11:52	75	79	61	91
	30	24/04/17	09:24	78	82	61	87
	30	21/04/17	08:15	45	46	40	70
N2	30	21/04/17	12:22	49	43	34	89
	30	24/04/17	14:30	48	48	37	81
	30	21/04/17	08:48	69	72	48	89
N3	30	21/04/17	12:54	59	62	42	85
	30	21/04/17	13:57	65	68	45	94
	30	21/04/17	09:17	48	51	40	61
N4	30	21/04/17	13:23	53	51	35	82
	30	24/04/17	09:57	52	51	36	77
NSL 1	30	21/04/17	10:01	57	61	48	72
	30	21/04/17	07:03	57	61	47	74
	30	21/04/17	11:21	61	64	52	80

2.1.4 Environmental Complaints

All environmental incidents and complaints are recorded and actioned upon in accordance with the specific procedures as outlined in the Bord na Móna Kilberry Compost facility documented environmental management system.

Environmental Complaints	Number of complaints
Complaints received	None
Complaints requiring corrective action	None
Categories of complaint	
Odour	
Noise	
Water	
Air	
Procedural	
Miscellaneous	

2.1.5 Environmental Spending

The itemised approximate spend on environmental issues at Bord na Móna Kilberry are listed below.

January 2017 to December 2017				
	€			
EPA Fees	8000			
Consultancy & Monitoring	30,000			
Training	5,000			
ר	Γotal Cost 43,000			

2.1.6 Resource and Energy Consumption

Fuel Usage 2017 – See table below

Machine Type	Engine Type	Total (L)
Komptech Topturn X67 Turner	Cat C9	
Komptech Crambo 6000 Shredder	Cat C16	
Komptech L3 Multistar Screen	Dieselelectric 44KVA	88775
L110E Volvo Front Loader	Volvo D7D LB E2	
L110E Volvo Front Loader 2	Volvo D7D LB E2	

Electricity Usage 2017 – recorded at compost site metre.

80180 KwHr

SECTION 3

ENVIRONMENTAL MANAGEMENT

BORD NA MÓNA KILBERRY COMPOST FACILITY ENVIRONMENTAL OBJECTIVES AND TARGETS 2018

Item No	Objective	Target	Responsible Function
1	Environmental Compliance / EMS	 Carry out full review of all sites EMS procedures Carry out sump, bund and pipeline testing. Lagoon and retaining wall structure reports due. 	Environmental (Kilberry)
2	Energy / Training	 ISO50001 achieved in 2017 – continue to implement any energy saving initiatives All staff members to receive refresher EMS training Compost site operators to receive spill drill training 	Environmental / Quality (Kilberry)
3	Once off Projects	 Install new barrier system at entrance to P1 and P2 Carry out repairs to surface of compost working areas. New signs for all monitoring locations 	Environmental / Engineering (Kilberry)
4	Carry out monitoring as per Licence 198-1	 Noise – Once per annum Bioaerosols – Once per annum Dust – four times per annum SW - Quarterly GW – Quarterly 	Environmental (Newbridge / Kilberry)

3.1 Environmental Management Programme for 2018.

Review of Objectives and Targets for the period January to December 2017

Tables EMP 1.1 to 1.5 reviews the Objectives and Targets set for 2017. A number of the listed Objectives and their subsequent targets are cyclical as the company attempts to achieve continuous environmental improvement.

Tables EMP 2.1 to 2.5 set out the Objectives and Targets for 2018. A number of the listed Objectives and their subsequent targets are cyclical as the company attempts to achieve continuous environmental improvement.

Site Infrastructure EOT 1.1

Objective	Target	Target Date	2017 Review	Dept Responsible
Env Compliance / EMS	Prepare new environmental compliance procedure and compliance matrix – will detail all compliance reports required annually	Q1 2017	Complete EMSKIL019	Kilberry (Environmental)
Env Compliance / EMS	Carry out review of all EMS procedures	Q2 2017	Complete Q2 2017	Kilberry (Environmental)

Energy Management EOT 1.2

Objective	Target	Target Date	2017 Review	Dept Responsible
	ISO50001 set up and implementation – liaise with quality to ensure the compost site meets the requirements of the standard.	2017	Complete	Environmental / Quality (Kilberry)
Energy management	All staff members to receive Energy management training.	Q3 2017	Complete	Environmental / Quality (Kilberry)

Once off Projects EOT 1.3

Objective	Target	Target Date	2017 Review	Dept Responsible
Once off Projects	Prepare safe start procedures and checklists for all loaders	Q2 2017	Complete	Kilberry (Environmental)
	Prepare a noise management plan for the site.	Q3 2017	Complete.	Kilberry (Environmental)

Licence Compliance EOT 1.4

Objective	Target	Target Date	2017 Review	Person Responsible
	Noise – Once per annum	2017	Complete	Newbridge (Environmental)
	Bioaerosols – Annually	2017	Complete	Newbridge (Environmental)
Carry out monitoring as per Licence W0198-1	Dust - Quarterly	2017	Complete	Kilberry (Environmental)
	Groundwater – Quarterly	2017	Complete	Kilberry (Environmental)
	Surface Water - Quarterly	2017	Complete	Kilberry (Environmental)

Compliance EOT 2.1

Objective	Target	Target Date	Person Responsible
Env Compliance / EMS	Carry out full review of all sites EMS procedures	Q1 2018	Environmental (Kilberry)
	Carry out sump, bund and pipeline testing	Q2/Q3 2018	Environmental (Kilberry)
	Undertake assessment of lagoon structure and retaining wall.	Q2 2018	Engineering (Newbridge)

Energy Management / Training

EOT 2.2

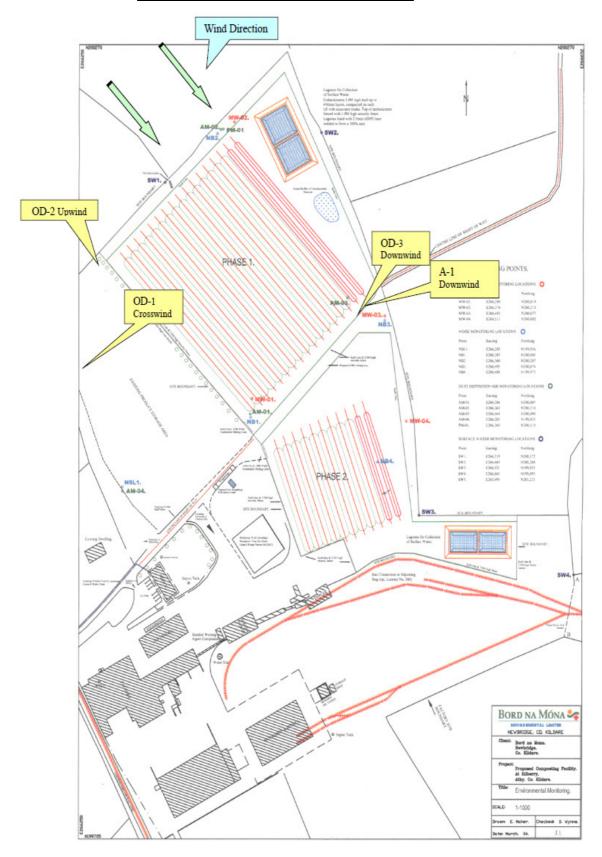
Objective	Target	Target Date	Person Responsible
Energy management / Training	ISO50001 achieved in 2017 – continue to implement any energy saving initiatives	2018	Environmental / Quality (Kilberry)
	All staff members to receive refresher EMS training.	Q3 2018	Environmental (Kilberry)
	Compost site operators to receive spill drill training	Q3 2018	Environmental (Kilberry)

Once Off Projects EOT 2.3

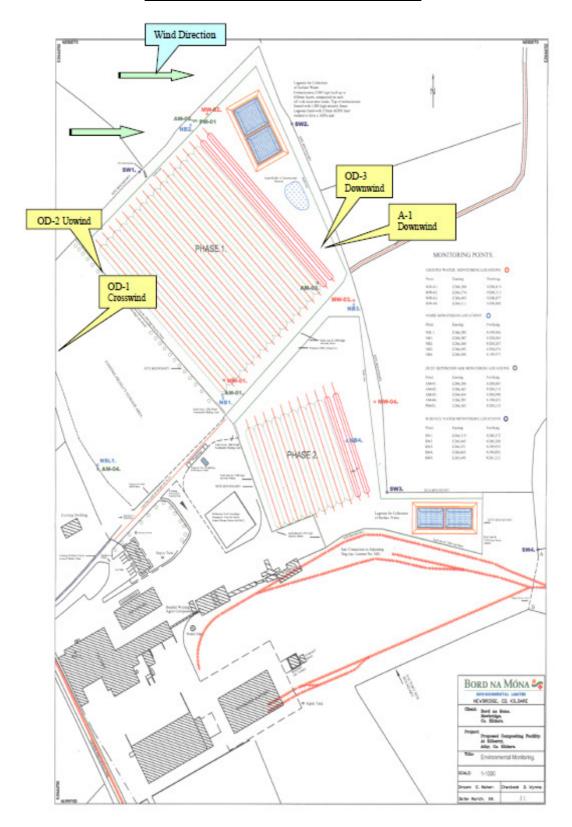
Objective	Target	Target Date	Person Responsible
Once off Projects	Install new barrier system at entrance to P1 and P2	Q2 2018	Kilberry (Environmental) Kilberry (Engineering)
	Carry out repairs to surface of compost working areas.	Q1 2018	Kilberry (Environmental) Kilberry (Engineering)
	New signs for all monitoring locations.	Q4 2018	Kilberry (Environmental)

Bord na Móna 37

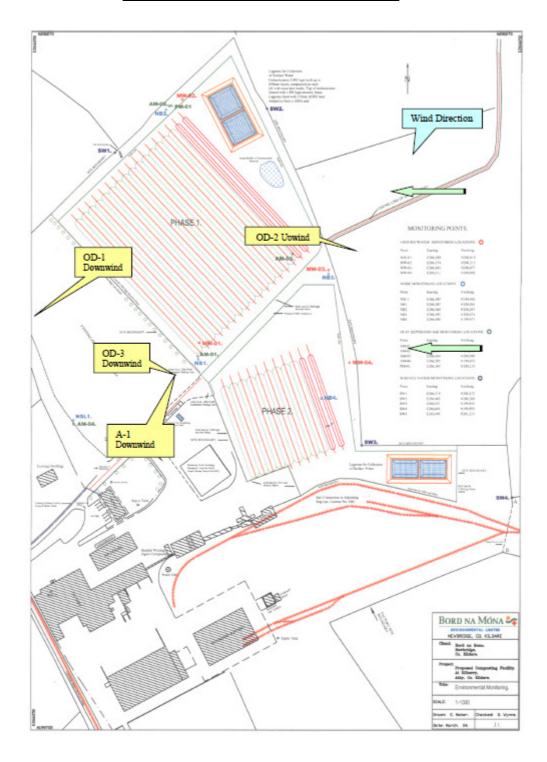
Licence Compliance

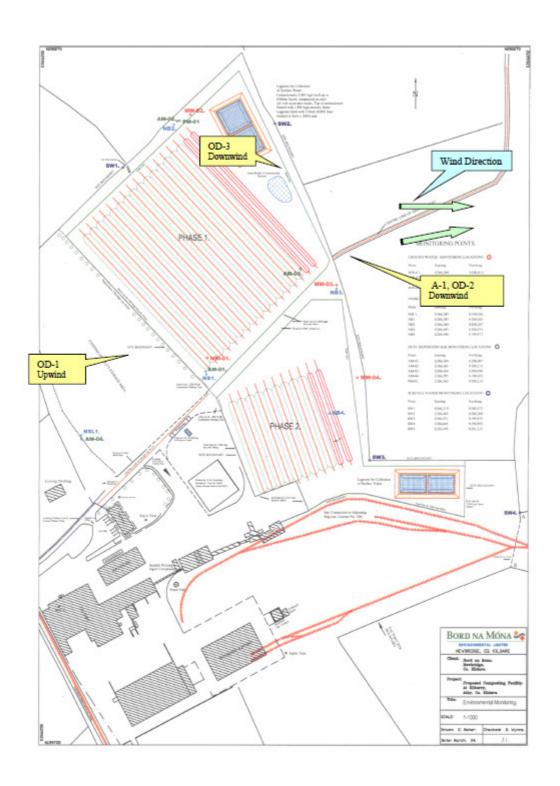

EOT 2.4

Objective	Target	Target Date	Person Responsible
Carry out monitoring as per Licence 198-1	Noise – Once per annum	2018	Environmental (Newbridge)
	Bioaerosols – Once per annum	2018	Environmental (Newbridge)
	Dust - Quarterly	2018	Kilberry (Environmental)
	Groundwater – Quarterly	2018	Kilberry (Environmental)
	Surface Water - Quarterly	2018	Kilberry (Environmental)


Bord na Móna 38

APPENDIX 1 Odour Monitoring Location Maps Quarter 1-4


Quarter 1 Odour Monitoring Map


Quarter 2 Odour Monitoring Map

Quarter 3 Odour Monitoring Map

Quarter 4 Odour Monitoring Map

APPENDIX 2 Compost Analysis Report

Bord na Móna 🛰				
BORD NA MÓNA HORTICULTURE LIMITED				
Note: - No piles passed in Dec 2017				
Final Compost Results IS441				
QM-GC-01K				
1				

Compost Testing and Analysis Service

Report ref: KC17

Results

Sample matrix: Composted greenwaste and spent grain/Sludges

PLANT Nutrient , CAT Soluble Nutrients, and Physical Analysis

TEST Method	I.S. EN13037	I.S.EN13038	I.S.EN13651	I.S.EN13651	I.S.EN13651	I.S.EN13651	I.S.EN13040
2017	pН	EC	NH ₄ -N	NO ₃ -N	PO ₄ -P	K	M/C %
		$\mu S.cm^{-1}$	$mg.L^{-1}$	$mg.L^{-1}$	$mg.L^{-1}$	mg.L ⁻¹	
Jan	7.38	239	8	0	51	486	65.1
Feb	6.70	1056	18	0	351	295	66.7
Mar	7.00	1064	5	0	96	871	55.2
Apr	7.50	1487	5	0	201	548	54.5
May	7.50	863	11	1	40	799	51.1
Jun	7.40	1049	305	6	153	624	54.4
July	6.80	1041	246	26	158	415	59.3
Aug	6.90	1309	38	0	132	1147	46.2
Sep	6.80	1687	18	0	25	1081	56.8
Oct	7.60	1972	37	0	46	1058	74
Nov	7.50	2100	19	0	189	956	74.1
Dec							

Maturity Germination of Cress

Method IS EN 16086-2 2011	% AGR	RI %
Jan	100	106
Feb	100	98
Mar	100	99
Apr	100	94
May	100	92
June	100	92
July	100	105
Aug	100	115
Sept	100	120
Oct	100	102
Nov	100	104
Dec		
% AGR %Average Germin Rate	nation	
RI % Root Index %		

C:N Ratio

Test Method Sample no (month)	% Organic Matter	I.S.EN13039 C:N Ratio
Jan	72	13
Feb	74	14
Mar	91	16
Apr	89	19
May	82	19
Jun	88	24
July	91	25
Aug	79	20
Sep	91	20
Oct	94	20
Nov	94	20
Dec		

Foreign Matter over 2mm

	Foreign Matter > 2mm	Stones >4mm	% N	%P	% K
Method			Based on I.S EN		
	PAS 100:2005		13654-1	ISEN13650	ISEN13650
Jan	<0.5 %	0	3.19	0.41	0.59
Feb	<0.5 %	0	2.94	0.41	0.59
Mar	<0.5 %	0	3.08	0.04	0.50
Apr	<0.5 %	0	2.66	0.04	0.50
May	<0.5 %	0	2.38	0.03	0.02
Jun	<0.5 %	0	2.06	0.05	0.26
July	<0.5 %	0	2.03	0.04	0.39
Aug	<0.5 %	0	2.22	0.04	0.35
Sep	<0.5 %	0	2.52	0.04	0.48
Oct	<0.5 %	0	2.57	0.04	0.53
Nov	<0.5 %	0	2.57	0.04	0.47
Dec					

^{*}Based on BP PAS100:2005

Heavy Metals (Dry weight basis)

Sample no	Cu mg.kg ⁻¹	Zn mg.kg ⁻¹	Pb mg.kg ⁻¹	Cd	Hg mg.kg ⁻¹	Ni mg.kg ⁻¹	Cr mg.kg ⁻¹
	mg.ng	mg.kg	mg.ng	mg.ng	mg.Kg	mg.ng	mg.ng
Method					ISO167		
used		I.S.EN	13650		72	I.S.EN	13650
Standard	100	350	150	1.5	1	50	100
Jan	27.3	137	28.6	0.55	0.2	35.4	65.8
Feb	14.93	61.5	10.5	<0.5	0.08	3.77	4
Mar	18	82	17	<0.5	0	14.6	24
Apr	22	92	14.3	0.49	0	6.7	7.3
May	13.3	71.6	18.3	< 0.49	0.104	<2.19	<2.05
Jun	6.99	68.1	8.69	< 0.49	0.73	<2	<2
July	20	87	20	<1	0.111	8	8.87
Aug	18	87	44	<1	0.2	7	8
Sep	21	103	33	<1	<0.1	5	5
Oct	27	94	19	<1	<0.1	9	99
Nov	22	96	18	<1	<0.1	20	36
Dec		·			·		·

Microbiological Analysis

Sample no	E Coli CFU/g)	Salmonella (spp/25g)
Method used	Based on ISO 16649-2 (2001)	RayAL ELISA OPTIMA
Standard		
Jan	<10	Absent
Feb	455	Absent
Mar	157	Absent
Apr	540	Absent
May	360	Absent
Jun	150	Absent
July	<10	Absent
Aug	490	Absent
Sep	100	Absent
Oct	170	Absent
Nov	400	Absent
Dec		

• 3

Sample no	Mmol/O ₂ /kg OS/h
Standard	
Jan	9.26
Feb	9.26
Mar	8.9
Apr	9.03
May	9.94
Jun	9.66
July	10.98
Aug	10.08
Sep	9.65
Oct	12.3
Nov	11.45
Dec	

^{*} Repeat of individual piles in brackets

Weed Test

Method BGKe.V2006

Sample no	Weeds/L
Standard	
Jan	<0.5
Feb	<0.5
Mar	<0.5
Apr	<0.5
May	< 0.5
Jun	<0.5
July	<0.5
Aug	<0.5
Sep	<0.5
Oct	<0.5
Nov	<0.5
Dec	

APPENDIX 3 PRTR

PRTR# W0198 | Facility Name | Rord on Mone Plo (Kilherry) | Filename | W0198 | 2017 vie | Return Year | 2017 |

Guidance to completing the PRTR workbook

PRTR Returns Workbook

	Version 1.1.19
REFERENCE YEAR	2017
1. FACILITY IDENTIFICATION	
Parent Company Name	Bord na Mona Public Limited Company
	Bord na Móna Plc (Kilberry)
PRTR Identification Number	
Licence Number	
Elcence Number	140130-01
Classes of Activity	
	class_name
-	Refer to PRTR class activities below
Address 1	Kilberry
Address 2	Athy
Address 3	
Address 4	
Addices 4	
	Kildare
Country	
Coordinates of Location	
River Basin District	
NACE Code	
	Recovery of sorted materials
AER Returns Contact Name	
AER Returns Contact Email Address	craigmallinson@inbox.com
AER Returns Contact Position	Consultant
AER Returns Contact Telephone Number	0872886848
AER Returns Contact Mobile Phone Number	0872886848
AER Returns Contact Fax Number	
Production Volume	0.0
Production Volume Units	6.0
Number of Installations	
Number of Operating Hours in Year	0
Number of Employees	5
User Feedback/Comments	
Web Address	
2. PRTR CLASS ACTIVITIES	
Activity Number	Activity Name .
50.1	General
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 200	(2)
Is it applicable?	
Have you been granted an exemption ?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations)?	
Is the reduction scheme compliance route being	
used ?	
used ?	
4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site
Do you import/accept waste onto your site for on-	
site treatment (either recovery or disposal	
activities) ?	

Sheet: Treatment Transfers of Waste

	Within the Country 19 05 01	Transfer Destination
	19 05 01	European Waste
· Calcal a com	8	Hazardous
	30.1	Quantity (Tonnes per Year)
Office a court by device a place of the December of March the selection delicate by the selection of the sel	non-composted fraction of municipal and 30.0 similar wastes	Description of Waste
	9	Waste Treatment Operation
	m	M/C/E
	Volume Calculation	Waste Treatment Operation MiC/E Method Used
	Offsite in Ireland	Location of Treatment
	Volume Calculation Offsite in Ireland Kyletalesha WTS,W0194-01 .**,Laois,**,Ireland	LicencePermit No of Next LicencePermit No of Next Destination Facility Haz.Waste Name and LicencePermit No of RecoverDisposer
	Kyletalesha .".",Laois,".",Ireland	e: Address of Next nation Facility Maste: Address of werr⊡sposer
		Name and Listney Permit No. and Address of Final Resource / Depose (NAZARDOUS WASTE 1.6 Final Resource / (NAZARDOUS WASTE ONLY) (NAZARDOUS WASTE ONLY)
		THE BY LIGHTS I FAMILY TO AND A CONTROL OF THE CHARLES HAVE A CONTROL OF THE CHARLES HAVE T

29/3/2018 16:4

Page 1 of 1