COMHAIRLE CHONDAE AN CABHÁIN

Cavan County Council

Annual Environmental Report 2017

Ballyjamesduff Landfill WL0093-1

Document Title	Annual Environmental Report 2017 Ballyjamesduff Landfill WL0093-1					
Document ID	CCC-03-02-2017					
Revision	Status	Issue Date				
0	Draft	SK/GOB	23/03/18			
1	Final	GOB	10/03/18			

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to prepare the following Annual Environmental Report.

CONTENTS

1		Intro	oduction	. 5
2		Repo	orting Period	.5
3		Was	te Activities Carried out at the Facility	.5
4		Qua	ntity and Composition of the Waste	.5
5		Sum	mary Report on Emissions	.5
	5.2	1	Surface Water	.6
	5.2	2	Groundwater	.9
	5.3	3	Leachate Monitoring1	۱4
	5.4	4	Gas Emissions1	16
6		Sum	mary of Results and Interpretation of Environmental Monitoring1	19
7		Resc	ources and Energy Consumption Summary1	۱9
8		Repo	ort on Restoration of Facility1	19
9		Estir	nated Annual and Cumulative Quantities of Landfill Gas Emitted from the Facility1	19
10 Re	lat		Title and Written Summary of Any Procedures Developed by the Licensee in the Year whice the Facility Operation	
11		Repo	orted Incidents and Complaints Summary2	20
12		Revi	ew of Nuisance Controls2	20
13		Repo	ort on Training of Staff2	20
14		Any	Other Items Specified by the Agency2	21

List of Tables

Table 5.1	Surface Water Summary Results	6
Table 5.2	Groundwater Summary Results	9
Table 5.3	Leachate Summary Results	15
Table 5.4	Gas Emissions Summary Results	17
Table 13.1	Management Structure	20

List of Graphs

Graph 5.1	Surface Water – Biological oxygen Demand	7
Graph 5.2	Surface Water – Ammonia	7
Graph 5.3	Surface Water – COD	8
Graph 5.4	Surface Water – Suspended Solids	8
Graph 5.5	Groundwater – E.coli	10
Graph 5.6	Groundwater – Total-Coliforms	10
Graph 5.7	Groundwater – Ammonia	11
Graph 5.8	Groundwater – Chloride	11
Graph 5.9	Groundwater – Iron	12
Graph 5.10	Groundwater – Potassium	12
Graph 5.11	Groundwater – Conductivity	13
Graph 5.12	Leachate – Ammonia	15
Graph 5.13	Leachate – Conductivity	16
Graph 5.14	Gas – Methane	18
Graph 5.15	Gas – Carbon Dioxide	18

List of Appendices

Appendix A	PRTR Emissions Report, Gas Survey
Appendix B	Site Monitoring Locations Map
Appendix C	Quarter 4 Monitoring Report

1 INTRODUCTION

Ballyjamesduff Landfill has been operated as waste disposal facility by Cavan County Council since the late 1960s. It is located off the Derrylurgan road, approximately 600m north of Ballyjamesduff town on the eastern side of the Derrylurgan road. The site is predominantly bog and comprises 1.62 hectares. The site was operated as a traditional landfill constructed on peat and relies on the properties of the peat bog for attenuation, dilution and dispersal.

A Waste Licence for the facility was issued by the EPA on 7th March 2002, Ref WL 93-1. Condition 11.4 of Waste Licence Ref. 93-1 requires the submission of an Annual Environmental Report (AER) for Ballyjamesduff Landfill facility. This document is produced in order to comply with requirements of Condition 11.4. The reporting period for the purposes of this AER is 1st January 2017 to 31st December 2017.

The site at Ballyjamesduff was closed in early March 2002. Prior to closing the site a temporary cap was placed on site.

The requirements for reporting of Annual Environmental Information arise under individual EPA licences issued under the EPA Acts 1992 – 2008, the Waste Management Acts 1996 – 2008 and other legislation.

This AER will provide information as outlined in Schedule F of the Licence "Content of the Annual Environmental Report".

2 REPORTING PERIOD

The reporting period for the purposes of this AER is 1st January 2017 to 31st December 2017.

3 WASTE ACTIVITIES CARRIED OUT AT THE FACILITY

There were no waste activities carried out at the facility.

4 QUANTITY AND COMPOSITION OF THE WASTE

There is no longer any waste being accepted at the site. The quantity of waste accepted is zero tonnes.

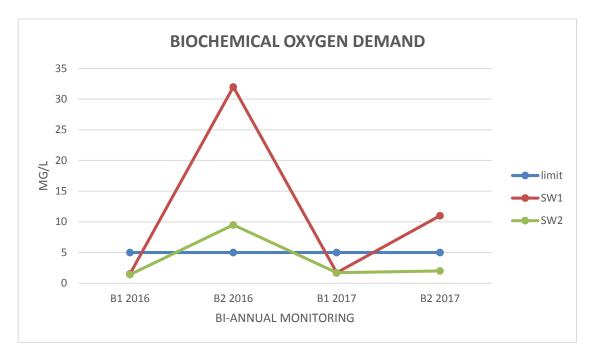
5 SUMMARY REPORT ON EMISSIONS

The PRTR Regulations are the European Communities (European Pollutant Release and Transfer Register) Regulation 2007, S.I. No. 123 of 2007), which signed into Irish Law on 22 March 2007 the E-PRTR Regulation, (EC) No 166/2006, concerning the establishment of a European Pollutant Release and Transfer Register. The summary of emissions is detailed in the (PRTR) Report which appears in Appendix

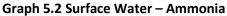
A of this report. The PRTR has been uploaded onto the EPA website in accordance with our responsibility as Licensee.

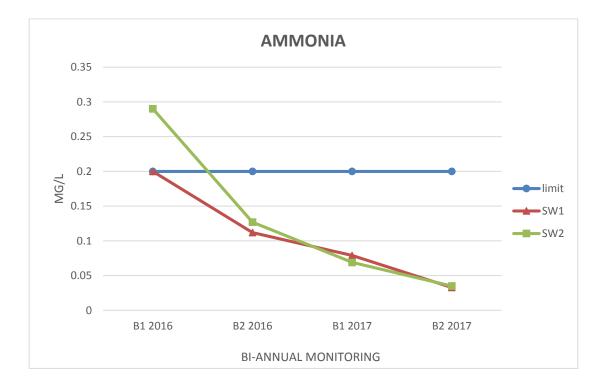
A register of Environmental Monitoring is now established and shall be maintained. Cavan County Council now carries out the full scope of sampling as required by the Licence.

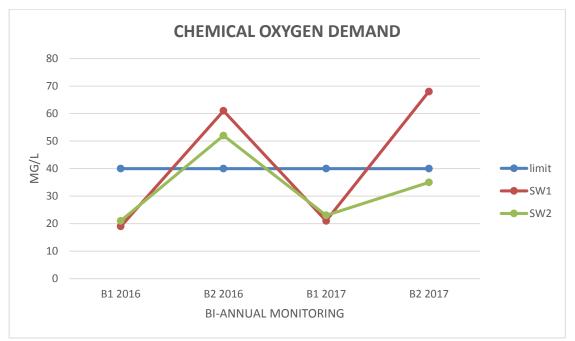
5.1 Surface Water

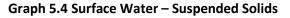

Surface water monitoring is undertaken at 3 locations on a bi-annual basis. SW1 is located upstream of the landfill, SW2 is located downstream while the Discharge Cap from the landfill is also sampled. All monitoring locations are detailed in the site map which is presented in Appendix B.

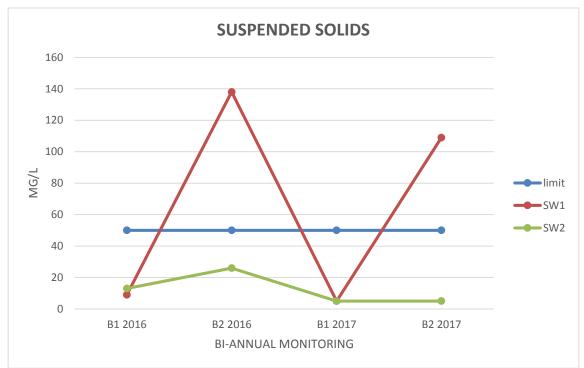
All parameters have been assessed against water limits as outlined in the European Communities (Quality of Surface Water Intended for the Abstraction of Drinking Water) Regulations, 1989. Results in Bold Italics indicate where the assessment criteria has been exceeded.


As detailed in Table 5.1 below, there were slight exceedances in the surface water analysis for parameters COD, Ammonia and BOD.


			Surface Water Results 2017							
	Parameter	Ammonia	рН	Cond	BOD	COD	Total Suspended Solids	Cl	DO	
	Units	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	mg/l	mg/l	
SW1	Second biannual 2017	0.033	7.2	205	11	68	109	16	6	
	First biannual 2017	0.079	7.3	284	1.7	21	<5	17	7	
	Second biannual 2016	0.112	7	239	32	61	138	12	<1	
	First biannual 2016	0.2	7.5	191	1.5	19	9	12	10	
	Second biannual 2017	0.035	7.1	205	<2.0	35	<5	16	5	
SW2	First biannual 2017	0.069	7.2	286	1.7	23	<5	17	6	
	Second biannual 2016	0.127	7.1	244	9.5	52	26	13	<1	
	First biannual 2016	0.29	7.6	198	1.4	21	13	12	10	
	Second biannual 2017	1.047	7	438	<2.0	46	13	17	5	
Discharge Cap	First biannual 2017	0.538	7.8	318	1.7	14	<5	6.8	9	
	Second biannual 2016	0.353	7.1	540	<2	19	11	3.5	7	
	First biannual 2016	1.2	7.5	191	<1	19	<5	7.6	6	
S.I No. 294/1989 A1		0.2	≥5.5 and ≤8.5	1000	5	40 (A3)	50	250	>60%	


Table 5.1 Surface water summary results


Graph 5.1 Surface Water – Biochemical Oxygen Demand (BOD)



Graph 5.3 Surface Water – Chemical Oxygen Demand (COD)

All surface water locations were found to be within limits specified in the above regulations with the exception of BOD, COD, ammonia and suspended solids. Elevations from these parameters cannot be definitively associated to the landfill due to the presence of increased decaying organic matter in the form of decaying vegetation due to the winter season.

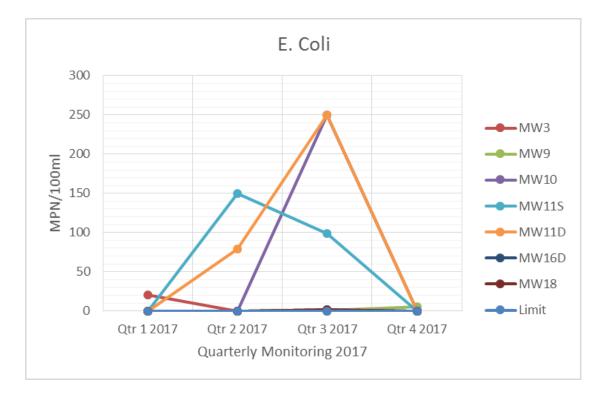
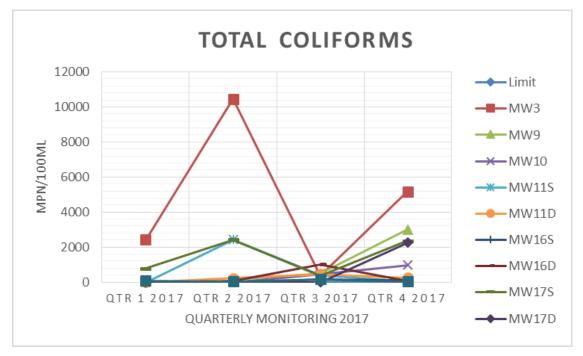
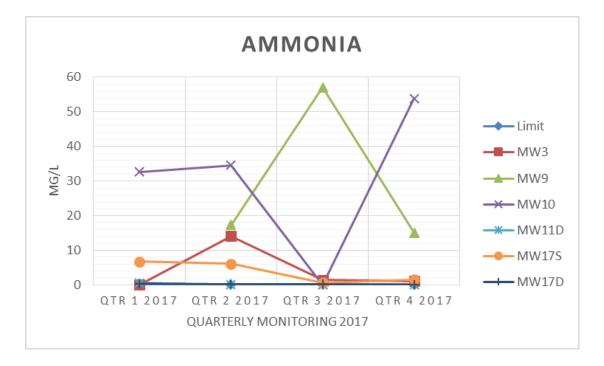
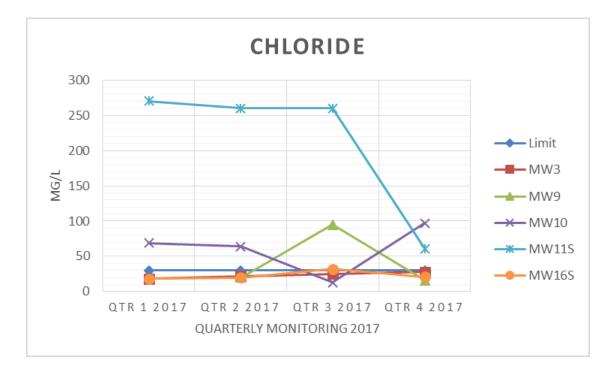

5.2 Groundwater

Table 5.2 summaries the groundwater monitoring results from 2017. The results where the Interim Guideline Values (IGVs) has been exceeded are identified in italic bold. The exceedances are illustrated in Graphs 5.5 – 5.11. It should be noted that MW4 was not accessible for sampling during 2017.

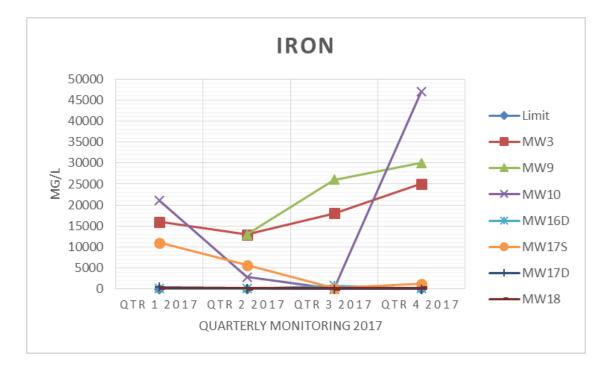

	Parameter	тос	E.Coli	Ammonia	TON	Tot Coliform	рН	Cond	CI	DO	Total Phenols	Fe	к	Na
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l
MW3	Qtr 4 2017	17.51	0	1.078	0.28	5172	7.2	801	28	2	<0.10	25000	8.8	32.9
	Qtr 3 2017	24.94	0	1.421	<0.15	372	7.1	819	25	3	<.10	18000	8.6	27
	Qtr 2 2017	25.24	0	14.147	0.69	10460	7	733	22	<1	<0.10	13000	7.6	21.5
	Qtr 1 2017	65.87	20	0.089	<0.138	2420	7.1	641	18	<1	<0.1	16000	5.2	20.7
MW9	Qtr 4 2017	8.47	5	15.109	<0.15	2987	7	1047	16	9	<0.10	30000	13.9	19.5
	Qtr 3 2017	29.29	1	57.005	<0.15	479	6.9	1585	<i>9</i> 5	<1	<0.10	26000	34.6	65.8
	Qtr 2 2017	33.75	0	17.288	<0.15	160	7.5	1035	20	7	<0.10	13000	14.3	17.8
	Qtr 1 2017	-	-	-	-	-	-	-	-	-	-	-	-	-
MW10	Qtr 4 2017	44	0	53.86	<0.15	970	6.9	1522	97	2	<0.10	47000	40.2	78.1
	Qtr 3 2017	8.56	250	< 0.005	<0.15	454	7.5	417	13	7	<0.10	34	1.5	16.6
	Qtr 2 2017	31.72	0	34.561	<0.15	0	6.8	1271	64	4	<0.10	2800	22.6	34.9
	Qtr 1 2017	39.3	0	32.676	<0.138	20	6.8	1271	69	5	<0.1	21000	15.5	33.2
MW11S	Qtr 4 2017	11.95	0	0.01	0.41	6	6.8	535	61	9	<0.10	<20	1.6	27.5
	Qtr 3 2017	3.55	<i>9</i> 9	<0.005	0.76	400	7.2	1250	260	5	<0.10	<20	1.6	19.3
	Qtr 2 2017	7.94	150	<0.005	0.85	2420	7.2	1302	260	4	<0.10	<20	1.4	40.7
	Qtr 1 2017	2.71	0	0.032	0.963	0	7.2	1256	270	7	<0.1	71	1.4	41.8
MW11D	Qtr 4 2017	46.16	0	0.01	<0.15	251	7.6	429	14	5	<0.10	<20	1.3	22.7
	Qtr 3 2017	8.56	250	< 0.005	<0.15	454	7.5	417	13	7	<0.10	35	1.5	43.5
	Qtr 2 2017	18.14	79	0.013	<0.15	236	7.5	409	11	3	<0.10	<20	1.2	18.1
	Qtr 1 2017	2.71	0	0.581	<0.138	0	7.4	427	8.5	7	<0.1	32	1.2	17.7
MW16S	Qtr 4 2017	24.75	0	0.007	0.19	91	7.6	483	21	10	<0.10	<20	1.7	24.4
	Qtr 3 2017	6.59	0	0.124	<0.15	167	7.7	511	32	7	<0.10	81	1.8	15.9
	Qtr 2 2017	23.09	0	0.015	<0.15	0	7.5	462	20	2	<0.10	<20	1.6	17.3
	Qtr 1 2017	4.58	0	0.073	0.252	30	7.5	503	18	5	<0.1	<20	1.4	19.4
MW16D	Qtr 4 2017	10.91	0	0.052	<0.15	78	7.6	505	24	5	<0.10	90	1.5	21.9
	Qtr 3 2017	5.74	2	0.052	<0.15	1011	7.7	489	23	5	<0.10	830	2.6	29.1
	Qtr 2 2017	38.45	0	0.05	<0.15	56	7.5	493	23	3	<0.10	60	1.2	16.8
	Qtr 1 2017	9.05	0	0.078	<0.138	0	7.5	501	20	5	<0.1	110	1.2	16.2
MW17S	Qtr 4 2017	19.7	0	1.552	2.3	2359	7.1	419	17	4	<0.10	1200	5.5	22.4
	Qtr 3 2017	10.13	0	0.672	<0.15	358	7.1	490	18	1	<0.10	180	2.1	27.8
	Qtr 2 2017	6.53	0	6.065	<0.15	2420	6.9	492	17	2	<0.10	5700	2	18.5
	Qtr 1 2017	4.67	0	6.737	<0.138	790	6.9	518	15	4	<0.1	11000	1.7	18.5
MW17D	Qtr 4 2017	32.7	0	0.007	0.25	2247	7.4	431	16	6	<0.10	<20	2.3	29.5
	Qtr 3 2017	2.19	0	0.24	<0.15	1	7.7	490	17	4	<0.10	<20	2.3	29.5
	Qtr 2 2017	18.32	0	0.261	<0.15	29	7.5	475	17	4	<0.10	210	1.6	23.7
	Qtr 1 2017	5.49	0	0.319	<0.138	0	7.4	509	15	6	<0.1	460	1.8	23
MW18	Qtr 4 2017	7.85	0	0.022	<0.15	41	7.4	489	18	7	<0.10	300	2.4	30.8
	Qtr 3 2017	7.68	2	0.02	<0.15	159	7.5	482	16	6	<0.10	150	2.1	27.3
	Qtr 2 2017	3.74	0	0.026	0.27	40	7.4	484	17	2	<0.10	190	1.5	22.6
	Qtr 1 2017	3.53	0	0.044	<0.138	74	7.3	489	14	6	<0.1	300	1.7	22.6
MW19	Qtr 4 2017	7.93	30	0.035	<0.15	500	7.5	711	30	7	<0.10	<20	2.5	32.4
MW20	Qtr 4 2017	21.17	0	0.011	<0.15	0	7.6	408	16	6	<0.10	<20	2	20.7
IGV		NAC	0	0.15	NAC	0	≥6.5 &≤9.5	1000	30	NAC	0.0005	200	5	150

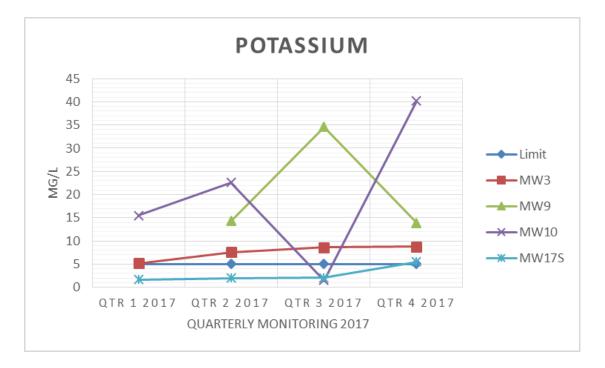

Table 5.2 Groundwater Summary Results

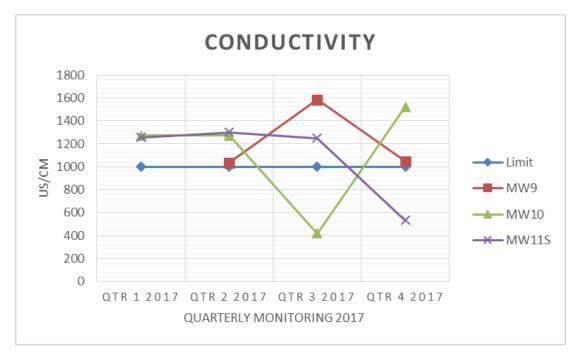
Graph 5.5 Groundwater - E Coli



Graph 5.6 Groundwater – Total Coliforms




Graph 5.8 Groundwater - Chloride



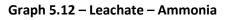
Graph 5.9 Groundwater – Iron

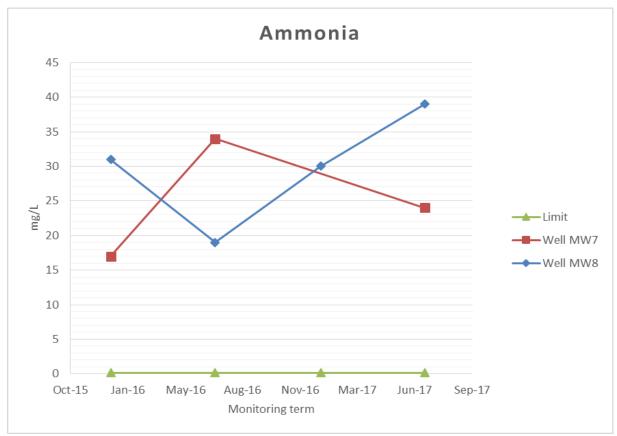
Graph 5.10 Groundwater – Potassium

As detailed in the above graphs, there were numerous groundwater exceedances at this landfill during 2017.

Exceedances occurred in the following parameters:

- E. Coli (*Escherichia coli*): Elevated levels of this parameter were found in samples MW3, MW9, MW10, MW11S, 11D, MW16D and MW18. It is not uncommon for wells in the vicinity of a landfill to be contaminated with *E. coli*. It is also attributed to influx of contamination from other sources such as septic tanks, slurry spreading and animal fecal contaminations. It should be noted that there were numerous horses present on the landfill for the most part of 2017 and as such the E.Coli contamination cannot be solely attributed to the landfill itself.
- Ammonia: Elevated levels of this parameter were prevalent during 2017. Elevated levels of ammonia are strongly associated with pollution from waste water treatment systems and agricultural practices (e.g. farmyard runoff, landspreading etc.) and therefore contamination of these wells by the landfill cannot be definitively concluded.
- Total Coliforms: Elevated levels of this parameter was detected at numerous locations during 2017. Exceedances can be attributed to contamination from organic matter and from agricultural practices (e.g. farmyard runoff, landspreading etc.) and therefore exceedances in this parameter may not be directly linked to the landfill.


- Iron: Although increased iron levels can be attributed to contamination from landfills, it is also strongly associated with the native soils of the Cavan area and therefore cannot be directly linked to the landfill.
- **Chloride:** Results from the 2017 monitoring returned elevated concentrations for chloride at MW3, MW9 MW11S and MW16S when compared to the IGV for groundwater. It should be noted that contamination of MW11S cannot be attributed to the landfill due to MW11S being located up gradient of the landfill and therefore an alternative source of chloride contamination should be investigated in this instance.
- **Potassium:** Elevated levels of potassium can be associated with landfill contamination but it can also be associated with contamination from agricultural sources such as fertilizers. Therefore direct contamination from the landfill cannot be concluded.
- **Conductivity:** Electrical conductivity measures the number of dissolved ions in the sample and can be used as a general measure to assess the presence of contamination.


5.3 Leachate Monitoring

Leachate monitoring is carried out biannually in accordance with the licence. Re-occurring exceedances are displayed in Table 5.3 below. Results in bold italic indicate where the EPA's Interim Guideline Value (IGV) have been exceeded, while the elevated concentrations are presented in Graph 5.12 – 5.13.

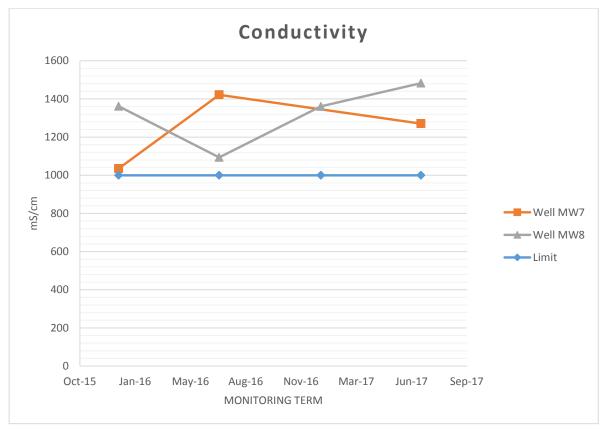
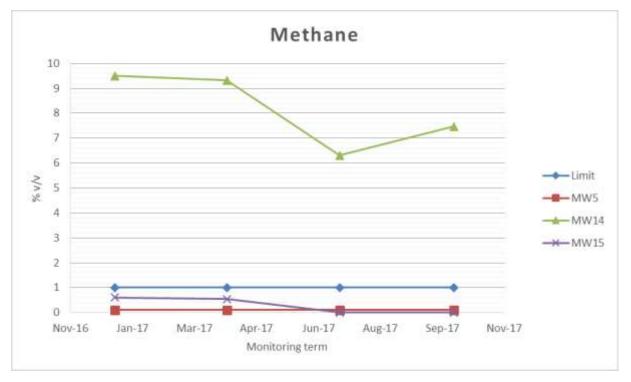

	Lechate Monitoring Results 2017							
	Parameter	Ammonia	TON	рН	Cond	BOD	COD	Cl
	Units	mg/l N	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l
WELL MW 7	Second biannual 2017	24	<0.69	7.1	1271	35	347	23
	First Biannual 2017	-	-	-	-	-	-	-
	Second biannual 2016	34	0.83	7.3	1422	27	30	43
	First Biannual 2016	17	<0.69	7	1035	21.9	65	15
	Second biannual 2015	16	<0.69	6.9	1044	<10	69	13
	Second biannual 2016	39	<0.69	7.1	1483	47	249	35
WELL MW 8	First Biannual 2017	30	<0.69	7.1	1361	29	42	42
	Second biannual 2016	19	<0.69	6.7	1094		30	21
	First Biannual 2016	31	<0.69	7.5	1362	18.9	46	37
	Second biannual 2015	33	1.1	7.4	1447	57	89	37
Interim Guideline	0.15	NAC	≥6.5&≤9.5	1000			30	

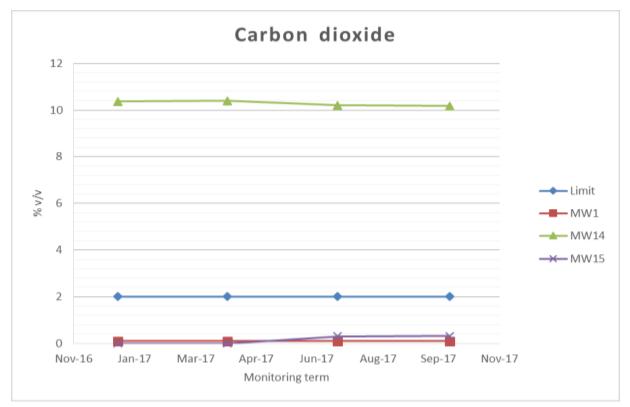
Table 5.3 Leachate Summary Results

5.4 Gas Emissions

Landfill gas was monitored at seven locations both within and outside the landfill mass. Table 5.4 details all results during 2017, while the methane and carbon dioxide concentrations are illustrated in Graphs 5.14 and 5.15.


Table 5.4 Gas Emissions Summary Results

I	Method	GA 2000	GA 2000	GA 2000	GA 2000	GA 2000		
Parameter			60			Barometric		
		CH ₄	CO ₂	02	H ₂ S	Pressure		
	Units	% v/v	% v/v	%	PPM	mb		
Client								
Ref	Qtr	-	-	-	-	-		
MW 1	Qtr 4 2017	0	0.1	19.78	0	29.62		
	Qtr 3 2017	0	0.1	20.72	0	29.62		
	Qtr 2 2017	0	0.1	19.76	0	996		
	Qtr 1 2017	0	0.1	19.7	0	996		
MW 2	Qtr 4 2017	0	0.1	20.76	0	29.62		
	Qtr 3 2017	0	0.2	20.5	0	29.62		
	Qtr 2 2017	0	0.1	19.58	0	996		
	Qtr 1 2017	0	0.1	19.54	0	996		
MW 5	Qtr 4 2017	0.1	0.1	19.6	0	29.62		
	Qtr 3 2017	0.1	0.1	20.7	0	29.62		
	Qtr 2 2017	0.1	0.1	20.28	0	999		
	Qtr 1 2017	0.1	0.1	20.16	0	999		
MW 12	Qtr 4 2017	0.0	0.1	20.7	0	29.6		
	Qtr 3 2017	0.0	0.1	20.7	0	29.6		
	Qtr 2 2017	0.0	0.1	20.9	0	994.0		
	Qtr 1 2017	0.0	0.1	20.8	0	994.0		
MW 13	Qtr 4 2017	0	0.1	20.3	0	29.62		
	Qtr 3 2017	0	0.1	20.32	0	29.62		
	Qtr 2 2017	0	0.1	21.5	0	996		
	Qtr 1 2017	0	0.1	21.28	0	996		
MW 14	Qtr 4 2017	7.46	10.18	38.16	0	29.62		
	Qtr 3 2017	6.3	10.2	13.3	0	29.62		
	Qtr 2 2017	9.32	10.4	13.24	0	995		
	Qtr 1 2017	9.5	10.36	13.06	0	995		
MW 15	Qtr 4 2017	0	0.32	20.42	0	29.62		
	Qtr 3 2017	0	0.3	20.38	0	29.62		
	Qtr 2 2017	0.54	0	18.14	0	994		
	Qtr 1 2017	0.6	0	17.56	0	994		
	Limit	1	2					
Exceedance of waste licence								


NOTES

- 1 Instrument Serial No: GA 07721
- 2 Limit: Schedule C2, Licence

Graph 5.14 Gas – Methane

Graph 5.15 Gas – Carbon Dioxide

Gas monitoring on the site generally revealed typical low levels of methane and carbon dioxide and higher levels of Oxygen. MW14 returned elevated concentrations for methane and carbon dioxide, however, given that this location is located within the waste mass these results would be expected.

CCC-03-02-2017 Rev.: 1 There were no exceedances in licence limits for wells located outside the waste mass. These results are typical of a closed landfill.

6 SUMMARY OF RESULTS AND INTERPRETATION OF ENVIRONMENTAL MONITORING

As reported in Section 4 there were a number of elevations recorded in 2017. It should also be noted that there are no limits specified by the waste licence and so results are compared only to indicator limits from sources such as the Interim Guideline Values (IGVs) for groundwater and the Environmental Quality Standards (EQS) for surface waters.

Included in Appendix C is a copy of the Quarter 4 monitoring results as reported by Boylan Engineering who were commissioned by Cavan County Council to undertaken the environmental monitoring for the landfill. We are satisfied that we are carrying out the environmental monitoring as specified in the Waste Licence. We are also satisfied that there are no major environmental impacts associated with this facility. We will continue to monitor and report as per the licence requirement.

7 RESOURCES AND ENERGY CONSUMPTION SUMMARY

As there is in-sufficient gas produced to run a gas flare or engine there is no use for the gas resource on site. There is no energy consumed on site.

8 REPORT ON RESTORATION OF FACILITY

The site is fully restored and the cap intact. There were horses grazing on the site during 2017.

9 ESTIMATED ANNUAL AND CUMULATIVE QUANTITIES OF LANDFILL GAS EMITTED FROM THE FACILITY

This information is reported in the PRTR Report attached in Appendix A. The estimated quantity of Methane released is 28,100kgs/yr. Page one from the Annual Gas Survey is also presented in Appendix A.

10 FULL TITLE AND WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY THE LICENSEE IN THE YEAR WHICH RELATES TO THE FACILITY OPERATION

There was no change to or development of any procedures undertaken by the licensee or monitoring contractor in 2017.

11 REPORTED INCIDENTS AND COMPLAINTS SUMMARY

There were no incidences in the reporting period 2017. There were no complaints received by the EPA or the Local Authority regarding this facility in the reporting period 2017.

12 REVIEW OF NUISANCE CONTROLS

As there are no known nuisances associated with this site there are no nuisance controls in place for parameters such as noise or vermin. There is no odour detectable from the site and as these are the main nuisances associated with landfills the licensee has not reviewed the controls. This is backed up by the absence of any complaints regarding the facility. However if any nuisances arise at the facility the licensee will deal with them using appropriate measures and procedures.

13 REPORT ON TRAINING OF STAFF

Executive Engineer Brona Keating from Cavan County Council deals with in full with any issues identified by the Agency Inspectors or any other party. Brona is a Chartered Waste Manager with many years' experience managing the compliance of landfill and waste sites. Brona carries a Safe Pass and has been trained in Landfill Gas Management.

Table 13.1 Management Structure 2017

Position	Name	Duties
Director of Services, Environment	Paddy Connaughton	Oversee and assign responsibilities to staff regarding landfill
Acting Senior Engineer	Colm O'Callaghan	Oversee general supervision, monitoring and reporting of the site.
Executive Engineer / Landfill Operations Manager	Brona Keating	Responsible for general supervision, monitoring and reporting of the site.

Contact Person for Sanitary Authority for 2017 / 2018:

Brona Keating

Executive Engineer

Waste Management Section

Cavan County Council

Farnham Street, Cavan

CCC-03-02-2017 Rev.: 1

14 ANY OTHER ITEMS SPECIFIED BY THE AGENCY

As per the licence we have included in Appendix B a copy of the most recent Map of the site showing all Monitoring locations. New boreholes were installed in 2017 on-site as per risk assessments carried out on site. It is proposed that they will be included in the monitoring schedule going forward.

Appendix A

PRTR Emissions Report and Gas Survey

| PRTR# : W0093 | Facility Name : Ballyjamesduff Landfill | Filename : W0093_2017.xls | Return Year : 2017 |

Guidance to completing the PRTR workbook

PRTR Returns Workbook

REFERENCE YEAR 2017

Version 1.1.19

Parent Company Name	Cavan County Council
Facility Name	Ballyjamesduff Landfill
PRTR Identification Number	W0093
Licence Number	W0093-01

Classes of Activity

No. class_name - Refer to PRTR class activities below

	Derrylurgan
	Ballyjamesduff
Address 3	
Address 4	
	Cavan
Country	Ireland
Coordinates of Location	-7.20884 53.8687
River Basin District	IEGBNISH
NACE Code	3821
Main Economic Activity	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	Gareth O'Brien
AER Returns Contact Email Address	g.obrien@boylanengineering.ie
AER Returns Contact Position	Senior Environmental Consultant
AER Returns Contact Telephone Number	046-9286000
AER Returns Contact Mobile Phone Number	087-1045333
AER Returns Contact Fax Number	
Production Volume	0.0
Production Volume Units	0
Number of Installations	0
Number of Operating Hours in Year	0
Number of Employees	
User Feedback/Comments	No comment
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
5(c)	Installations for the disposal of non-hazardous waste
	General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

Is it applicat	ble? No
Have you been granted an exemptic	on ? No
If applicable which activity class applies (as	per
Schedule 2 of the regulation	s) ? NA
Is the reduction scheme compliance route be	eing
use	ed ? NA

4. WASTE IMPORTED/ACCEPTED ONTO SITE

Guidance on waste imported/accepted onto site

4.1 RELEASES TO AIR Link to previous years emissions data

| PRTR# : W0093 | Facility Name : Ballyjamesduff Landfill | Filename : W0093_2017.xls | Return Year : 2017 |

10/04/2018 17:36

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

	Please enter all quantities in this section in KGs							
POLLUTANT			M	IETHOD		QUANTITY		
			Method Used					
No. Annex II	Name	M/C/E	Method Code Designation or Description		Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
)3	Carbon dioxide (CO2)	С	OTH	GASSIM	0.0	73100.0	0.0	73100.0
)1	Methane (CH4)	С	OTH	GASSIM	0.0	28100.0	0.0	28100.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

RELEASES TO AIR					Please enter all quantities	in this section in KGs		
POLLUTANT			METHOD QUAN			QUANTITY		
		Method Used						
No. Annex II	Name	M/C/E	I/C/E Method Code Designation or Description		Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0		0.0 0.	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

POLLUTANT METHOD CUANTITY Pollutant No. Name MC/E Method Used and the period of	RELEASES TO AIR Pleas					in this section in KG	S	
Pollutant No. Name M/C/E Method Code Designation or Description Emission Point 1 T (Total) KG/Year A (Accidental) KG/Year F (Fugitive) KG/Year		POLLUTANT	MET	HOD	QUANTITY			
			N	lethod Used				
	Pollutant No.	Name		Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0	1	0.0 0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Iditional Data Requested from Landfill operators									
r the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flarec utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the vironment under T(total) KG/yr for Section A: Sector specific PRTR pollutants above. Please complete the table below:									
Landfill:	Ballyjamesduff Landfill				_				
Please enter summary data on the									
quantities of methane flared and / or utilised			Meth	od Used					
	T (T-1-1) I 0/	M/C/E	Mathead Oada	Designation or	Facility Total Capacity m3				
Total estimated methane generation (as per	T (Total) kg/Year	M/C/E	Method Code	Description	per hour				
site model)	28100.0	С	OTH		N/A				
Methane flared	0.0				0.0	(Total Flaring Capacity)			
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)			
Net methane emission (as reported in Section									
A above)	0.0				N/A				

A survey of landfill sites to determine the quantity of methane flared and or recovered in utilisation plants for 2017

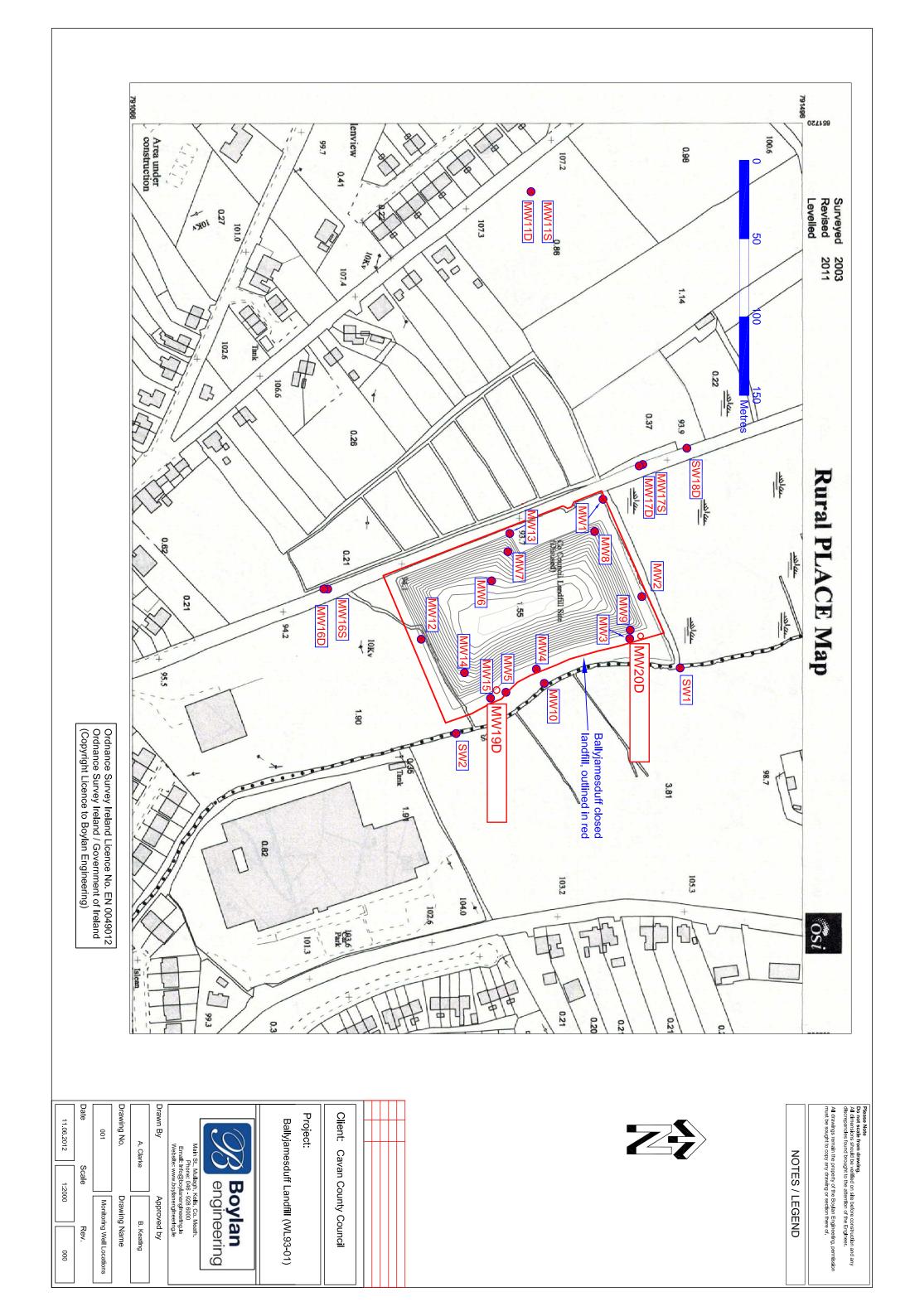
Please choose from the drop down menu the license number for your site	W0093
Please choose from the drop down menu the name of the landfill site	Ballyjamesduff Landfill
Please enter the number of flares operational at your site in 2017	0 💌
Please enter the number of engines operational at your site in 2017	a 💌
Total methane flared	0 kg/year
Total methane utilised in engines	0 kg/year

Please note that the closing date for reciept of completed surveys is 31/03/2018

Introduction

The Office of Environmental Sustainability (OES) of the Environmental Protection Agency acts as the inventory agency in Ireland with responsibility for compiling and reporting national greenhouse gas inventories to the European Commission and the United Nations Framework Convention on Climate Change. In addition to meeting international commitments Ireland's national greenhouse gas inventory informs national agencies and Government departments as they face the challenge to curb emissions and meet Ireland's emission reduction targets under the Effort Sharing Decision (No. 406/2009/EC). The national inventory also informs data suppliers, making them aware of the importance of their contributions to the inventory process and a means of identifying areas where input data may be improved.

It is on this basis that the Environmental Protection Agency is asking landfill operators to partake in this survey so that the most uptodate information on methane flaring and recovery in utilisation plants at landfills sites is used in calculating the contribution of the landfill sector to national greenhouse gas emissions


The Environmental Protection Agency wishes to thank you for partaking in this survey. If you have any questions about the survey and how to complete it please view the "Help sheet" worksheet. If however, your query is not answered by viewing the "Help sheet" worksheet please contact: LFGProject@epa.ie

Once completed please send the completed file as an attachment clearly stating the name and or license number of the landfill site (e.g. W000 Xanadu landfill_2017) to: LFGProject@epa.ie

Do you import/accept waste onto your site for on-	
site treatment (either recovery or disposal	
activities)?	No

Appendix B

Monitoring Location Plan

Appendix C

Quarter 4 Monitoring Report

GROUNDWATER MONITORING REPORT BALLYJAMESDUFF LANDFILL W0093-01 Quarter 3 and 4 2017

Document No.: CCC-03-01-07-03-Rev 1

Project No.: CCC-03-01

Client: Cavan County Council

Project Name: Ballyjamesduff Landfill Derrylurgan Ballyjamesduff Co. Cavan

Summary of Document Revisions					
Rev No.	Date Revised	Revision Description			

Prepared by	Terry Keating	23/01/18
Approved by	Gareth O'Brien	24/01/18

COPYRIGHT © BOYLAN ENGINEERING (2018)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

CONTENTS

1	sun	nmary	3
2	Intr	oduction	3
3	Me	thodology	3
	3.1	Environmental Monitoring and Sampling	3
	3.2	Laboratory Analysis	4
	3.3	Weather Report	5
	3.4	Monitoring Locations	6
4	Sun	nmary of Results	7
5	Dis	cussion of Results	9
	5.1	Discussion of Results	9
	5.2	Q3 Analysis	9
	5.3	Q4 Analysis	9
6	Cor	nclusion	10

LIST OF TABLES

Table 1 - Weather Report Q3	5
Table 2 - Weather Report Q4	5
Table 3 - Weather Report Q4	5
Table 4 – Q3 and Q4 Groundwater monitoring locations	6
Table 5 - Q3 Summary of Groundwater Monitoring Analytical Results	7
Table 6 - Q4 Summary of Groundwater Monitoring Analytical Results	8

1 SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out environmental monitoring at Ballyjamesduff Landfill (W0093-01), Derrylurgan, Ballyjamesduff, Co Cavan for Quarter 3 and Quarter 4 2017. This report documents the finding from the groundwater monitoring and sampling undertaken at Ballyjamesduff Landfill on 17th August (Q3) 2017 and 01st / 28th November (Q4) 2017.

2 INTRODUCTION

Ballyjamesduff Landfill is situated approximately 600 m north of Ballyjamesduff town centre in the townland of Derrylurgan. The site was in operation from the 1960's and comprises some 1.62 hectares. The site was originally peat land which was stripped for commercial purposes and was then operated as a traditional landfill until its closure in March 2002. A waste licence (W0093-01) was issued by the Environmental Protection Agency (EPA) after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the groundwater, sampling programme conducted on site and also summarises findings and analytical results for Quarter 3 and Quarter 4 of 2017. The Monitoring undertaken during Q4 also included the annual suite of analysis for new monitoring wells, 19D and 20D at the landfill.

- The purpose of environmental monitoring at closed landfills is to:
- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behaviour with expected/modelled behaviour
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Ballyjamesduff landfill is situated in the R21 Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R21 Zones are acceptable subject to guidance in the EPA Landfill Design Manual or conditions of a waste license - (EPA, Groundwater Protection Responses for Landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of Leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

3 METHODOLOGY

3.1 Environmental Monitoring and Sampling

The following procedures were conducted by Boylan Engineering to ensure accurate groundwater monitoring:

• ISO 5667: Guidance on sampling of groundwaters was adhered to.

Groundwater Monitoring Q3 & Q4 2017: Ballyjamesduff

- Prior to sampling, the depth of water in groundwater wells was measured by dipping. Dipping the wells before sampling allows for calculation of the volume of water in the well. This data was recorded on the field sheet for volume calculation which is presented in Appendix 3.
- Once the volume was calculated the boreholes were purged three times their volume before sampling.
- Sampling was conducted using a Waterra inertial lift pump and associated tubing, pumping water directly from the borehole to the appropriate sampling bottles.
- Designated tubing was used at each location.
- Having obtained a representative sample the following parameters were also measured on-site using a Hanna HI 98129 combination waterproof high accuracy probe.
 - o Conductivity
 - o Temperature
 - o pH

3.2 Laboratory Analysis

- Samples were sent to Environmental Laboratory Service (ELS) (Ireland) for analysis of the required parameters in designated cool boxes with ice packs. These boxes ensure that samples are maintained at a consistent temperature between 0 oC and 4oC on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0° C and 4° C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 2.

3.3 Weather Report

The weather report from Q3 and Q4 of 2017 are presented in Table 1 - 3 below.

Table 1 - Weather Report Q3

REPORTS FROM BALLYHAISE (A)											
Date	Rainfall Max N		Min		Mean Wind Speed	Maximum Gust	Sunshine				
	(mm) Temp		Temp	(°C)	(knots)	(if >= 34 knots)	(hours)				
		(°C)	(°C)			141010)					
17/08/2017	2.7	19.9	11.6	10.4	8.2						

Table 2 - Weather Report Q4

REPORTS FROM BALLYHAISE (A)										
Date	Rainfall	Max	Min	Grass Mean Min Wind Temp Speed		Maximum Gust	Sunshine			
	(mm)	Temp	Temp	(°C)	(knots)	(if >= 34 knots)	(hours)			
		(°C)	(°C)							
01/11/2017	0.3	13.9	9.2	6.4	5.3					

Table 3 - Weather Report Q4

REPORTS FROM BALLYHAISE (A)										
Date	Rainfall	Max	Min			Maximum Gust	Sunshine			
	(mm)	Temp	Temp	(°C)	(knots)	(if >= 34 knots)	(hours)			
		(°C)	(°C)							
28/11/2017	0.1	6.3	1.8	-1.7	6.4					

3.4 Monitoring Locations

The groundwater monitoring locations from Q3 and Q4 of 2017 are presented in Tables 4 below, with the monitoring plan presented in Appendix 1.

Table 4 – Q3 and Q4 Groundwater monitoring locations

Q4 2017											
		Cover Level M	Water Level M	Water Depth M							
Monitoring Well	Sample Type	(OD Malin Head)	(OD Malin Head)	(Top of Casing)	National Grid Co-Ordinates						
MW1	Gas	94.92	94.92		N291352.31 E252020.68						
MW2	Gas	92.92	92.92		N291377.38 E252082.84						
MW3	GW	94.39	93.79	0.6	N291369.28 E252109.44						
MW4	GW	93.65	93.7		N291309.78 E252129.14						
MW5	Gas	92.84	-	n/a	ТВС						
MW6	Leachate	100.71	-	n/a	ТВС						
MW 7	Leachate	97.54	-	n/a	ТВС						
MW8	Leachate	96.56	-	4.15	N291346.99 E252041.22						
MW9	GW	95.69	94.79	0.9	N291369.67 E252103.93						
MW10	GW	93.95	92.55	1.4	N291314.86 E252138.12						
MW11S	GW	TBC	-	2.6	TBC						
MW11D	GW	TBC	-	12.9	ТВС						
MW12	Gas	94.38	-	n/a	N291236.30 E252110.10						
MW13	Gas	94.69	-	n/a	ТВС						
MW14	Gas	98.77	-	n/a	N291263.92 E252131.54						
MW15	Gas	93.11	-	n/a	ТВС						
MW16S	GW	94.02	93.22	0.80	N252076.89 E291174.65						
MW16D	GW	94.16	93.46	0.70	N252077.36 E291173.27						
MW17S	GW	93.59	92.28	1.31	N251997.04 E291377.19						
MW17D	GW	93.63	92.03	1.60	N251997.80 E291376.00						
MW18	GW	93.5	93.5	0.0	N251986.57 E291425.39						
SW1	SW	n/a	-	n/a	TBC						
SW2	SW	n/a	-	n/a	TBC						
Сар	SW	n/a	-	-	TBC						
MW19	GW	n/a	TBC	0	TBC						
MW20	GW	n/a	TBC	0	ТВС						

4 SUMMARY OF RESULTS

A summary of the groundwater monitoring results from Q3 and Q4 2017 are presented in Table 5 and Table 6 below, with the laboratory certificates presented in Appendix 4. As noted, monitoring was undertaken on two occasions in Q4 to incorporate the additional groundwater wells MW19 and MW20.

Table 5 - Q3 Summary of Groundwater Monitoring Analytical Results

Report Num	nber	115717															
Monitoring	Date:	17/08/2017															
Method		Site Tests	Site Tests	(TOC)	Coliforms	AQ2		Coliforms	Titralab		AQ2-UP2	Dissolved Oxygen	Total Cyanide High	PhenolsTotal -Index (Sub1)	Me	Metals-Dissolved	
Method Number		Site Tests	Site Tests	EW123	MIC133	EW003	EW051	MIC133	EW138	EW139	EW015	EW043	ug/L	Sub-Con		EM130	
Para	meter	Sample temperature (onsite)	Cond	тос	E.Coli	Ammonia	TON	Total Coliforms	рН	Cond	CI	DO	Total Cyanide High (Sub)	Total Phenols	Fe K Na		Na
U	nits	Deg C	us/cm	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l		mg/I	ug/l	mg/l	mg/l
Limit of	Detection	-	-	0.250	0.000	0.007	0.138	0.000	0.300	25.000	2.600	1.000		0.15	5.0	0.2	0.5
Date Testi	ing Initiated	17.8.1	7				-			18.8.17							
ELS Ref	Client Ref																
115717	MW3	14.4	885	24.94	0	1.421	<0.15	372	7.1	819	25	3	<9	<.10	18000	8.6	27
115717	MW10	13.7	1265	29.29	1	57.005	<0.15	479	6.9	1585	<i>9</i> 5	<1	<9	<0.10	26000	34.6	65.8
115717	11S	13.8	905	8.56	250	<0.005	<0.15	454	7.5	417	13	7	<9	<0.10	34	1.5	16.6
115717	11D	14.2	420	3.55	99	<0.005	0.76	400	7.2	1250	260	5	<9	<0.10	35	1.5	43.5
115717	MW 16S	13	481	6.59	0	0.124	<0.15	167	7.7	511	32	7	<9	<0.10	<20	1.6	19.3
115717	MW 16D	10.7	488	5.74	2	0.052	<0.15	1011	7.7	489	23	5	<9	<0.10	81	1.8	15.9
115717	MW 17S	13.8	514	10.13	0	0.672	<0.15	358	7.1	490	18	1	<9	<0.10	830	2.6	29.1
115717	MW 17D	11.5	471	2.19	0	0.24	<0.15	1	7.7	490	17	4	<9	<0.10	180	2.1	27.8
115717	MW18	11.9	482	7.68	2	0.02	<0.15	159	7.5	482	16	6	<9	<0.10	150	2.1	27.3
l	GV			NAC	0	0.15	NAC	0	≥6.5 &≤9.5	1000	30	NAC		0.0005	200	5	150
Evcer	edance																
NOTES																	
1	1 Sub-contract analysis denoted by *		, *														
2			tion														
3	-	normal Change															-
4 IGV - Interim Guide Value																	

As there are no limits set in the waste licence for groundwater, results are compared to the Interim Guide Values (IGVs) for the protection of Groundwater.

Groundwater Monitoring Q3 & Q4 2017: Ballyjamesduff

Table 6 - Q4 Summary of Groundwater Monitoring Analytical Results

Report Num	ber	119264/120286															
Monitoring [Date:	01.11.2017/28.11.2017															
Met	thod	Site Tests	Site Tests	(TOC)	Coliforms	AQ2		Coliforms	Titralab		AQ2-UP2	Dissolved Oxygen	Total Cyanide High	PhenolsTotal -Index (Sub1)	Me	tals-Dissolved	
Method	Number	Site Tests	Site Tests	EW123	MIC133	EW003	EW051	MIC133	EW138	EW139	EW015	EW043	ug/L	Sub-Con		EM130	
Parar	meter	Sample temperature (onsite)	Cond	тос	E.Coli	Ammonia	TON	Total Coliforms	рН	Cond	Cl	DO	Total Cyanide High (Sub)	Total Phenols	Fe	К	Na
Un	nits	Deg C	us/cm	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l		mg/l	ug/l	mg/l	mg/l
Limit of D	Detection	-	-	0.250	0.000	0.007	0.138	0.000	0.300	25.000	2.600	1.000		0.15	5.0	0.2	0.5
Date Testir	ng Initiated	1.11.17								2.11.17							
ELS Ref	Client Ref																
119264	MW3	10.1	865	17.51	0	1.078	0.28	5172	7.2	801	28	2	<9	<0.10	25000	8.8	32.9
119264	MW9	10.2	986	8.47	5	15.109	<0.15	2987	7	1047	16	9	<9	<0.10	30000	13.9	19.5
119264	MW10	10.4	1201	44	0	53.86	<0.15	970	6.9	1522	97	2	<9	<0.10	47000	40.2	78.1
119264	11S	10.3	889	11.95	0	0.01	0.41	6	6.8	535	61	9	<9	<0.10	<20	1.6	27.5
119264	11D	10.3	401	46.16	0	0.01	<0.15	251	7.6	429	14	5	<9	<0.10	<20	1.3	22.7
119264	MW 16S	10.4	452	24.75	0	0.007	0.19	91	7.6	483	21	10	<9	<0.10	<20	1.7	24.4
119264	MW 16D	10.2	472	10.91	0	0.052	<0.15	78	7.6	505	24	5	<9	<0.10	90	1.5	21.9
119264	MW 17S	10.5	508	19.7	0	1.552	2.3	2359	7.1	419	17	4	<9	<0.10	1200	5.5	22.4
119264	MW 17D	10.4	471	32.7	0	0.007	0.25	2247	7.4	431	16	6	<9	<0.10	<20	2.3	29.5
119264	MW18	10.2	479	7.85	0	0.022	<0.15	41	7.4	489	18	7	<9	<0.10	300	2.4	30.8
120286	MW19	9.8	218	7.93	30	0.035	<0.15	500	7.5	711	30	7	<9	<0.10	<20	2.5	32.4
120286	MW20	9.9	245	21.17	0	0.011	<0.15	0	7.6	408	16	6	<9	<0.10	<20	2	20.7
IG	6V			NAC	0	0.15	NAC	0	≥6.5 &≤9.5	1000	30	NAC		0.0005	200	5	150
Excee	dance																
NOTES																	
1	Sub-contract	analysis denoted by *															
		tration was below the limi	t of detection														
3 NAC- No Abnormal Change																	
4	IGV - Interim	Guide Value															

As there are no limits set in the waste licence for groundwater, results are compared to the Interim Guide Values (IGVs) for the protection of Groundwater.

5 DISCUSSION OF RESULTS

5.1 Discussion of Results

Monitoring of groundwater is a common and necessary event at landfill sites both during their active life and post closure. The significance of such monitoring is so the facilities can demonstrate that there is no potential for the migration of hazardous contaminants from the unit into the groundwater systems.

Monitoring for Q3 was conducted on the 17th of August 2017, while Q4 monitoring was undertaken on the 01st and 28th of November 2017 respectively. The results from these monitoring rounds are presented in Table 6 and 7 in Section 4 above with any parameters that exceeded the Interim Guideline Values (IGVs) highlighted in bold italic.

5.2 Q3 Analysis

The Results from Q3 2017 returned elevated concentrations at various monitoring locations for Iron, ammonia, total coliforms, e-coli, potassium, chloride, and conductivity. E-coli was recorded at MW10, MW11S and MW11D, MW16D and MW18 during the Q3 monitoring. Significant exceedances for e-coli were noted at MW11D and MW11S, however, these wells are situated up gradient of the landfill and therefore these exceedances cannot be attributed to the landfill. The elevated readings for e-coli was likely to have been a result of agricultural activities such as spreading of manure / slurry. Marginal exceedances for E-coli were noted at MW10, MW16D and MW18 and theses wells are situated below ground level and are susceptible to filtration of slurry during spreading.

Elevated concentrations of chloride were detected at MW10, MW11D and MW16S. As noted, MW11D is situated up gradient of the landfill and the land use is predominately agricultural and therefore this is the most likely source of contamination. MW10 are located in close proximity to a local watercourse, which flows in southern direction through existing farmland prior to the landfill. This elevated concentration of chloride may therefore be attributed to local agricultural practices.

Exceedances were also noted for ammonia in the samples retrieved from MW3, MW10, MW17S and MW17D located to the north and northeast of the landfill. Elevated concentrations of ammonia can also be attributed to the surrounding agricultural land-use and associated activities such as spreading of manure / slurry.

Elevated concentrations of iron were noted at MW3, MW9, MW10, MW17S and MW18. While iron can be an indication of contamination, the hypothesis proposed is that the source of this Iron is not the landfill leachate, but the native soils beneath the landfill. Iron can become mobilised due to changing pH and/or redox conditions in the environment underneath the landfill. Alternatively, the leachate from the non-hazardous waste may produce reducing conditions beneath the landfill, allowing the solution of Iron from the underlying deposits. Elevated Iron may also be attributed to the natural composition of this area.

5.3 Q4 Analysis

As noted, two additional wells, (MW19D and MW20D) were monitored during Q4 2017, while no sample was retrieved from MW4 during Q4 as the well was dry.

The results from Q4 2017 returned elevated concentrations at various monitoring locations for iron, ammonia, total coliforms, e-coli, potassium, chloride, and conductivity. There were exceedances for e-coli at MW9 and MW19D during Q4 2017 monitoring. The location of the two wells are in close proximity to a local water course, which runs along an existing farm. These may be susceptible to land spreading activities such as manure/slurry.

Groundwater Monitoring Q3 & Q4 2017: Ballyjamesduff

Elevated concentrations of chloride were detected at MW10 and MW11S. MW11S is situated up gradient of the landfill and the land use is predominately agricultural and therefore this is the most likely source of contamination. MW10 is located in close proximity to a local watercourse, which flows in a southern direction through existing farmland prior to the landfill. This elevated concentration of chloride may therefore be attributed to local agricultural practices.

Exceedances were noted for ammonia in the samples retrieved from MW3, MW9, MW10 and MW17S located to the north and northeast of the landfill. Elevated concentrations of ammonia can also be attributed to the surrounding agricultural land-use and associated activities such as spreading of manure / slurry.

When compared to recent historical data, exceedances noted during the Q3 and Q4 2017 revealed similar results to that of previous monitoring events. Information relating to previous results can be seen in the historical data tables in Appendix 5.

6 CONCLUSION

The groundwater results obtained were generally consistent with previous monitoring events and do not show any signs of dramatic exceedances. The next monitoring event will be carried out in Q1 in 2018.

Appendix 2

Laboratory Analysis Methods

ELS LTD INAB ACCREDITATION SCHEDULE SUMMARY SHEET

Miscellaneous (P,G,W,S) Other VOC's EO025 (P,G,S,W) Ammonia/Ammonium 0.007-1mg/l N EW154 Bromomethane 0.5 - 35 µg/l Chloride 2.6-250 mg/l EW154 Ethyl Ether/Diethyl Ether 0.5 - 35 µg/l Flouride 0.1 - 2 mg/l EW137 11 Dichloroethene 0.5 - 35 µg/l COD 8-1500 mg/l EW094 Iodomethane/Mehyl Iodide 0.5 - 35 µg/l Carbon Disulphide 0.5 - 35 µg/l Nitrate 0.12-50 mg/l N EW154 Nitrite 0.013-1 mg/l N EW154 Allyl Chloride 0.5 - 35 µg/l pH 4 - 10 pH Units EW153 Methylene Chloride/DCM 5.0 - 35 µg/l Phosphate 0.009-1 mg/l P EW154 2-Propenenitrile/Acrylonitrile 2.0 - 35 µg/l Alkalinity 10-1000mg/l EW153 Chlormethyl Cyanide 0.5 - 35 µg/l TOC 0.25-100mg/l EW123 Hexachlorobutadiene 0.5 - 35 µg/l BOD 1-1300mg/l EW001 Trans-1,2 Dichloroethene 0.5 - 35 µg/l Total Nitrogen 1-100mg/l N EW140 MtBE 0.5 - 35 µg/l Total Phosphorous 0.01-40 mg/l P EW143 11 Dichloroethane 0.5 - 35 µg/l Suspended Solids 5-1000mg/l EW013 Cis-12 Dichloroethene 0.5 - 35 µg/l Dissolved Oxygen 1 to 10 mg/l EW043 Methyl Acrylate 5.0 - 35 µg/l Conductivity 25-6000 us/cm EW154 Bromochloromethane 0.5 - 35 µg/l Tetrahydrofuran 5.0 - 35 µg/l Miscellaneous (P,G,S) Bromate 1 to 50ug/l BRO3 EW137 111 Trichloroethane 0.5 - 35 µg/l 1-Chlorobutane 0.5 - 35 µg/l Colour 2.5-50mg/l PtCCo EW154 Sulphate 1-250mg/l SO4 EW154 Carbon Tetrachloride 0.5 - 35 µg/l Total Dissolved Solids 15-1000mg/l EW046 11 Dichloropropene 0.5 - 35 µg/l Total Hardness 3-330mg/l CaCO3 EM099 12 Dichloropropane 0.5 - 35 µg/l Dibromomethane 0.5 - 35 µg/l Total Oxidised Nitrogen 0.138-51mg/l N EW051 Methyl Methacrylate 0.5 - 35 µg/l Turbidity 0.11-150 NTU EW136 TKN Calculation 1-49 mg/l EW010 13 Dichloropropene, cis 2.0 - 35 µg/l Metals EM130 (P,G,S) MIBK/4 Methyl 2 Pentanone 2.0 - 35 µg/l Aluminium 5.0 - 500 µg/l Toluene 0.5 - 35 µg/l Antimony 0.1 - 10µg/l 13 Dichloropropene,trans 2.0 - 35 µg/l Arsenic 0.2 - 20µg/l Ethyl Methacrylate 2.0 - 35 µg/l Barium 1.0 - 100µg/l 112 Trichloroethane 0.5 - 35 µg/l Boron 0.02 - 2mg/l 13 Dichloropropane 0.5 - 35 µg/l Cadmium 0.1 - 10µg/l 2 Hexanone 1.0 - 35 µg/l 12 Dibromoethane 0.5 - 35 µg/l Calcium 1.0 - 100mg/l Chromium 1.0 - 100µg/l Chlorobenzene 0.5 - 35 µg/l Cobalt 1.0 - 100µg/l 1112 Tetrachloroethane 2.0 - 35 µg/l Copper 3 - 4000µg/l Ethyl Benzene 0.5 - 35 µg/l Iron 20.0 - 500µg/l m & p Xylene 0.5 - 35 μg/l Lead 0.3 - 30µg/l O Xylene 0.5 - 35 μg/l Magnesium 0.3 - 20mg/l Stryene 2.0 - 35 µg/l Manganese 1.0 - 100µg/l Isopropyl Benzene 0.5 - 35 µg/l Mercury 0.02 - 2µg/l Bromobenzene 0.5 - 35 µg/l Molybdenum 1.0 - 100µg/l 1122 Tetrachloroethane 0.5 - 35 µg/l Nickel 0.5 - 50µg/l 123 Trichloropropane 2.0 - 35 µg/l Potassium 0.2 - 20mg/l Propyl Benzene 0.5 - 35 µg/l Selenium 0.2 - 20µg/l 2-Chlorotoluene 0.5 - 35 µg/l Sodium 0.5 - 50mg/l 4 Chlorotoluene 0.5 - 35 µg/l Strontium 1.0 - 100µg/l 135 Trimenthylbenzene 0.5 - 35 µg/l Tin 1.0 - 100µg/l Tert Butyl Benzene 0.5 - 35 µg/l Vanadium 1.0 - 100µg/l 124 Trimethlbenzene 0.5 - 35 µg/l Zinc 1.0 - 100µg/l Sec Butyl Benzene 0.5 - 35 µg/l SI439 Potable Water VOCs & THM 13 Dichlorobenzene 0.5 - 35 µg/l EO025 (P,G,S,W) P Isopropyltoluene 0.5 - 35 µg/l Benzene 0.1-35 µg/l 14 Dichlorobenzene 0.5 - 35 µg/l 1.2-Dichloroethane 0.1-35 µg/l 12 Dichlorobenzene 0.5 - 35 µg/l Tetrachloroethene 0.1-35 µg/l N Butyl Benzene 0.5 - 35 µg/l Trichloroethene 0.1-35 µg/l Hexachloroethane 5.0 - 35 µg/l Chloroform 1.0-150 µg/l 12 Dibromo 3Chloropropane 2.0 - 35 µg/l Bromoform 1.0-35 µg/l 124 Trichlorobenzene 0.5 - 35 µg/l Dibromochloromethane 1.0-35 µg/l 123 Trichlorobenzene 0.5 - 35 µg/l Bromodichloromethane 2.0-35 µg/l

Other VOC's EO025 (P,G,S) 22 Dichloropropane 0.5 - 35 µg/l PAH EO129 (P,G,S) Range 0.01 - 0.2 µg/l Acenaphthene Benzo (a) Anthracene Benzo (a) Pyrene Benzo (b) Fluoranthene Benzo (ghi) Perylene Benzo (k) Fluoranthene Chrysene Dibenzo (ah) Anthracene Fluoranthene Fluorene Indeno (123-cd) Pyrene Phenanthrene Pyrene Acid Herbicides (P,G,S) Range 0.01 - 0.2 µg/l 2,4,5-Т Н 24-DH 2,4-DB H Organophosphorus Pesticides(P,G,S) Range 0.01 - 0.2 µg/l Famphur OP Methyl Parathion OP Parathion OP Organochlorine Pesticides (P,G,S) Range 0.01 - 0.2 µg/l Aldrin BHC Alpha isomer OC BHC Beta isomer OC BHC Delta isomer OC Dieldrin OC Endosulphan Alpha isomer OC Endosulphan Beta isomer OC Endosulphan Sulphate OC Endrin OC Heptachlor Epoxide OC Heptachlor OC Lindane OC P,P' DDE OC P.P'-DDD OC

P,P'-DDT OC

Notes

1.Sample Matrix:P=Potable Water (Drinking), G=Ground Water, S=Surface Water, W=Waste Water

Appendix 3

Field Monitoring Sheets

3.0 APPENDIX-FIELD SHEETS

Facility Name: Ballyjamesduff Waste Licence No: W0093-01 Report To: Sample Type (GW, SW, Leachate) All Personnel: Terry Keating Weather: Dry Other Remarks: GPS: Sample Ref No Sample Type Time DO Level Elec Cond (us) PH units °c Visual 3 GW - - 885 7.1 14.4 Lacky 4 GW - - - - - - 9 GW - - 1265 6.7 13.7 Lacky 11D GW - - 905 7.0 13.8 Brownish 11D GW - - 481 7.2 13 Straw 16D GW - - 488 7.0 10.7 Straw 175 GW - - 488 7.0 10.7 Straw	ON SITE SAMPLING FORM									
Sample Type (GW, SW, Leachate) All Weather: Dry Other Remarks: GPS: Sample Type Ref PH Temp Visual Sample Type Time DO Level DO Level PH Temp Visual 3 GW - PH units o'C Visual 3 GW - PH Temp Visual 3 GW - - 3 GW - PH Temp Visual 3 GW - - 3 GW - - 3 GW - - 3 GW - - - - -	Facility Name	: Ballyjamesdu	ıff	Wast	te Licence No: W	0093-01				
Personnel: Terry Keating GPS: Other Remarks: GPS: Sample Ref No Sample Type Time Do Level Elec pH units °c Visual 3 GW - 600 (us) °l Visual 3 GW - 885 7.1 14.4 Lacky 4 GW - 6 - - 9 GW - - - - 10 GW - 1265 6.7 13.7 Lacky 11D GW - 905 7.0 13.8 Brownish 11D GW - 420 7.4 14.2 Brownish 11D GW - 481 7.2 13 Straw 16D GW - - 488 7.0 10.7 Straw	Report To:									
Other Remarks:GPS:Sample Ref NoSample TypeTimeDO LevelElec Cond (us)pH unitsTemp oCVisual3GW8857.114.4Lacky4GW9GW10GW12656.713.7Lacky115GW9057.013.8Brownish11DGW4207.414.2Brownish16SGW4817.213Straw16DGW4887.010.7Straw17SGW5146.813.8Straw	Sampling Dat	e: 17.08.17					GW, SW,	Leachate)		
Sample Ref NoSample TypeTimeDO LevelElec Cond (us)PH unitsTemp oCVisual3GW8857.114.4Lacky4GW9GW10GW12656.713.7Lacky11SGW9057.013.8Brownish11DGW4207.414.2Brownish16SGW4817.213Straw16DGW4887.010.7Straw17SGW5146.813.8Straw	Personnel: Te	erry Keating				Weather: Dry				
Sample Ref NoSample TypeTimeDO LevelCond (us)PH units°CVisual3GW8857.114.4Lacky4GW9GW10GW12656.713.7Lacky115GW9057.013.8Brownish11DGW4207.414.2Brownish16SGW4817.213Straw16DGW5146.813.8Straw	Other Remar	ks:		GPS:						
No Sample Type Ime DO Level Cond (us) pH units °C Visual 3 GW - - 885 7.1 14.4 Lacky 4 GW - - - - - - 9 GW - - - - - - 10 GW - - 1265 6.7 13.7 Lacky 115 GW - - 905 7.0 13.8 Brownish 11D GW - - 420 7.4 14.2 Brownish 165 GW - - 481 7.2 13 Straw 16D GW - - 514 6.8 13.8 Straw	Elec				Elec	pН				
4 GW -		Sample Type	Time	DO Level	Cond (us)	рН	units	°c	Visual	
9 GW - - - - - - - - - - - - - - - - 10 GW - - 1265 6.7 13.7 Lacky 11S GW - - 905 7.0 13.8 Brownish 11D GW - - 420 7.4 14.2 Brownish 16S GW - - 481 7.2 13 Straw 16D GW - - 488 7.0 10.7 Straw 17S GW - - 514 6.8 13.8 Straw	3	GW	-	-	885		7.1	14.4	Lacky	
10 GW - - 1265 6.7 13.7 Lacky 11S GW - - 905 7.0 13.8 Brownish 11D GW - - 420 7.4 14.2 Brownish 16S GW - - 481 7.2 13 Straw 16D GW - - 488 7.0 10.7 Straw 17S GW - - 514 6.8 13.8 Straw	4	GW	-	-		-		-	-	
11S GW - - 905 7.0 13.8 Brownish 11D GW - - 420 7.4 14.2 Brownish 16S GW - - 481 7.2 13 Straw 16D GW - - 488 7.0 10.7 Straw 17S GW - - 514 6.8 13.8 Straw	9	GW	-	-		-	-	-	-	
11D GW - 420 7.4 14.2 Brownish 16S GW - - 481 7.2 13 Straw 16D GW - - 488 7.0 10.7 Straw 17S GW - - 514 6.8 13.8 Straw	10	GW	-	-	12	265	6.7	13.7	Lacky	
16S GW - 481 7.2 13 Straw 16D GW - - 488 7.0 10.7 Straw 17S GW - - 514 6.8 13.8 Straw	115	GW	-	-	9	05	7.0	13.8	Brownish	
16D GW - - 488 7.0 10.7 Straw 17S GW - - 514 6.8 13.8 Straw	11D	GW	-	-	4	20	7.4	14.2	Brownish	
17S GW 514 6.8 13.8 Straw	16S	GW	-	-	4	81	7.2	13	Straw	
	16D	GW	-	-	4	88	7.0	10.7	Straw	
	17S	GW	-	-	5	14	6.8	13.8	Straw	
1/D GW 4/1 0.9 11.5 Stlaw	17D	GW	-	-	4	71	6.9	11.5	Straw	
18 GW 482 7.5 11.9 Clear	18	GW	-	-	4	82	7.5	11.9	Clear	

ON SITE SAMPLING FORM										
Facility Name	: Ballyjamesdu	ff	Was	te Licence No: W009	3-01					
Report To:										
Sampling Date	e: 01.11.17			Sar All	Sample Type (GW, SW, Leachate) All					
Personnel: Te	erry Keating			We	eather: wet					
Other Remark	(S:		GPS:							
Sample Ref No	Sample Type	Time	DO Level	Elec Cond (us)	рН pH units	Temp ^o C	Visual			
3	GW	-	-	865	7.1	10.1	Lacky			
4	GW	-	-				-			
9	GW	-	-	986	7.3	10.2	-			
10	GW	-	-	1201	7.4	10.4	Lacky			
11S	GW	-	-	889	7.3	10.3	Brownish			
11D	GW	-	-	401	7.6	10.3	Brownish			
16S	GW	-	-	452	7.5	10.4	Straw			
16D	GW	-	-	472	7.6	10.2	Straw			
17S	GW	-	-	508	7.3	10.5	Straw			
17D	GW	-	-	471	7.1	10.4	Straw			
18	GW	-	-	479	7.4	10.2	Clear			
19D	GW	-	-	218	7.7	9.8	Clear			
20D	GW	-	-	245	7.5	9.9	Clear			

COMMENTS: Two additional boreholes (MW19D and MW20D) were monitored in Quarter 4 2017

		Cav	van County	Council G	roundwat	er Samplin	g ref.			3.14
Site Reference:		Ballyjamesdut	ff	Permit No.	W	0093	Date: 17	7.08.2017	Personnel: Te	rry Keating
Sample Ref	Depth of Well	Depth of water below Ground Level	Depth of water column	Diameter of well	Radius of well	Radius squared	Volume of water in well	Volume of water in well	Volume of water to purge	Time to purge
	(m)	(m) B	A-B=h	(m)	(m)	(m²)	(m3) π r2h	litres	(litres x 3)	(mins)
(Shallow/Deep)	Α	В		с	(C/2) = r	r ²		(m ³ x 1000)		
MW3	2.9	1	1.90	0.05	0.025	0.00063	0.00373	3.72875	11.1863	2
MW4	2.2	0	2.20	0.05	0.025	0.00063	0.00432	4.3175	12.9525	2
MW9	4.5	0.7	3.80	0.05	0.025	0.00063	0.00746	7.4575	22.3725	4
MW10	3.4	1.2	2.20	0.05	0.025	0.00063	0.00432	4.3175	12.9525	2
MW11S	5	1.25	3.75	0.05	0.025	0.00063	0.00736	7.359375	22.0781	4
MW11D	30	12.7	17.30	0.05	0.025	0.00063	0.03395	33.95125	101.854	17
MW16S	5	1.3	3.70	0.05	0.025	0.00063	0.00726	7.26125	21.7838	4
MW16D	10	2.1	7.90	0.05	0.025	0.00063	0.0155	15.50375	46.5113	8
MW17S	5	2.7	2.30	0.05	0.025	0.00063	0.00451	4.51375	13.5413	2
MW17D	15	1.3	13.70	0.05	0.025	0.00063	0.02689	26.88625	80.6588	13
MW18	21	0	21.00	0.05	0.025	0.00063	0.04121	41.2125	123.638	21

		Cav	van County	Council G	roundwat	er Samplin	g ref.			3.14
Site Reference:		Ballyjamesduf	ff	Permit No.	W	0093	Date: 01	L.11.2017	Personnel: Te	rry Keating
Sample Ref	Depth of Well	Depth of water below Ground Level	Depth of water column	Diameter of well	Radius of well	Radius squared	Volume of water in well	Volume of water in well	Volume of water to purge	Time to purge
(Shallow/Deep)	(m) A	(m) B B	A-B=h	(m) C	(m) (C/2) = r	(m²) r²	(m3) π r2h	litres (m ³ x 1000)	(litres x 3)	(mins)
MW3	2.9	0.6	2.30	0.05	0.025	0.00063	0.00451	4.51375	13.5413	2
MW4	2.2	0	2.20	0.05	0.025	0.00063	0.00432	4.3175	12.9525	2
MW9	4.5	0.9	3.60	0.05	0.025	0.00063	0.00707	7.065	21.195	4
MW10	3.4	1.4	2.00	0.05	0.025	0.00063	0.00393	3.925	11.775	2
MW11S	5	2.6	2.40	0.05	0.025	0.00063	0.00471	4.71	14.13	2
MW11D	30	12.9	17.10	0.05	0.025	0.00063	0.03356	33.55875	100.676	17
MW16S	5	0.8	4.20	0.05	0.025	0.00063	0.00824	8.2425	24.7275	4
MW16D	10	0.7	9.30	0.05	0.025	0.00063	0.01825	18.25125	54.7538	9
MW17S	5	1.31	3.69	0.05	0.025	0.00063	0.00724	7.241625	21.7249	4
MW17D	15	1.6	13.40	0.05	0.025	0.00063	0.0263	26.2975	78.8925	13
MW18	21	0	21.00	0.05	0.025	0.00063	0.04121	41.2125	123.638	21

Appendix 4

Laboratory Results

4.0 APPENDIX -LAB RESULTS

ENVIRONMENTAL LABORATORY SERVICES

EXCELLENCE THROUGH ACCREDITATION

Contact Name Address	Brona Keating Boylan Engineering & Environmental Ltd. Main Street,
Tel No	046 9286000
Customer PO	Per Batch
Quotation No	QN006417
Customer Ref	MW3

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name	Brona Keating	Report Number	115532 - 1
Address	Boylan Engineering & Environmental	Sample Number	115532/001
	Ltd.	Date of Receipt	18/08/2017
	Main Street,	Date Started	18/08/2017
Tel No	046 9286000	Received or Collected	Courier
Customer PO	Per Batch	Date of Report	30/08/2017
Quotation No	QN006417	Sample Type	Ground Waters
Constant Daf	N/N/2		

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	OOS
Coliforms								
Total Coliforms		MIC133	0		372	MPN/100ml	INAB	
E. Coli		MIC133	0		0	MPN/100ml	INAB	
Dissolved Oxygen								
Dissolved Oxygen		EW043	1		3	mg/L	INAB	
Gallery Plus-Suite A								
Ammonia as N		EW175	0.005		1.421	mg/l N		
Total Oxidised Nitrogen (TON) as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrate as N		EW175	0.15		<0.15	mg/l N	INAB	
Nitrite as N		EW175	0.005		< 0.005	mg/l N	INAB	
Chloride mg/L		EW175	1.0		25	mg/L	INAB	
Metals-Dissolved								
Iron-Dissolved		EM130	20		18000	ug/L		
Potassium-Dissolved		EM130	0.2		8.6	mg/L	INAB	
Sodium-Dissolved		EM130	0.5		27.0	mg/L	INAB	
PhenolsTotal -Index (Sub1)								
Phenols-Total	*	Default	0.10		< 0.10	mg/L	YES	
Temperature (Site)								
Temperature (Site)		Default	0.0		Not Analyzed	Deg C		
Titralab								
рН		EW153	0.0		7.1	pH Units	INAB	
Conductivity @20 DegC		EW153	25		819	uscm-1@20	INAB	
Total Cyanide High (Sub)								
Total Cyanide High	*	Default	10		<9	ug/L	YES	
Total Organic Carbon (TOC)								
Total Organic Carbon (TOC)		EW123	0.25		24.94	mg/L	INAB	
						2		

Signed :

flibert. Shen Co

30/08/2017

Brendan Murray-Deputy Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

EXCELLENCE THROUGH ACCREDITATION

Mahon Industrial Park,
Blackrock,
Cork
Ireland
Tel: +353 21 453 6141
Fax: +353 21 453 6149
Web: www.elsltd.com
email: info@elsltd.com

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus

Contact Name Address	Brona Keating Boylan Engineering & Environmental Ltd. Main Street,	Report Number Sample Number Date of Receipt Date Started	115532 - 1 115532/002 18/08/2017 18/08/2017	
Tel No	046 9286000	Received or Collected	Courier	
Customer PO	Per Batch	Date of Report	30/08/2017	
Quotation No	QN006417	Sample Type	Ground Waters	
Customer Ref	MW10			

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Coliforms								
Total Coliforms		MIC133	0		479	MPN/100ml	INAB	
E. Coli		MIC133	0		1	MPN/100ml	INAB	
Dissolved Oxygen								
Dissolved Oxygen		EW043	1		<1	mg/L	INAB	
Gallery Plus-Suite A								
Ammonia as N		EW175	0.005		57.005	mg/l N		
Total Oxidised Nitrogen (TON) as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrate as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrite as N		EW175	0.005		< 0.005	mg/l N	INAB	
Chloride mg/L		EW175	1.0		95	mg/L	INAB	
Metals-Dissolved								
Iron-Dissolved		EM130	20		26000	ug/L		
Potassium-Dissolved		EM130	0.2		34.6	mg/L		
Sodium-Dissolved		EM130	0.5		65.8	mg/L		
PhenolsTotal -Index (Sub1)								
Phenols-Total	*	Default	0.10		< 0.10	mg/L	YES	
Temperature (Site)								
Temperature (Site)		Default	0.0		Not Analyzed	Deg C		
Titralab								
pH		EW153	0.0		6.9	pH Units	INAB	
Conductivity @20 DegC		EW153	25		1585	uscm-1@20	INAB	
Total Cyanide High (Sub)								
Total Cyanide High	*	Default	10		<9	ug/L	YES	
Total Organic Carbon (TOC)								
Total Organic Carbon (TOC)		EW123	0.25		29.29	mg/L	INAB	

Signed :

Brendan Murray-Deputy Technical Manager

Duen Co

flibert.

30/08/2017

NOTES

1.This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

ENVIRONMENTAL LABORAT

EXCELLENCE THROUGH AC

TAL LABORATORY SERVICES	Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: <u>www.elsltd.com</u> email: <u>info@elsltd.com</u>
Brona Keating Boylan Engineering & Environmental Ltd. Main Street,	Report Number Sample Number Date of Receipt Date Started

Tel No 046 9286000 **Customer PO** Per Batch QN006417 **Ouotation No Customer Ref** MW16D

Contact Name Address

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park,

> Blackrock, Cork Ireland

Received or Collected Date of Report Sample Type

0 17025 TESTING DETAILED IN SCOPE REG NO. 1117

115532 - 1 115532/003 18/08/2017 18/08/2017

Courier 30/08/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Coliforms								
Total Coliforms		MIC133	0		1011	MPN/100ml	INAB	
E. Coli		MIC133	0		2	MPN/100ml	INAB	
Dissolved Oxygen								
Dissolved Oxygen		EW043	1		5	mg/L	INAB	
Gallery Plus-Suite A								
Ammonia as N		EW175	0.005		0.052	mg/l N	INAB	
Total Oxidised Nitrogen (TON) as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrate as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrite as N		EW175	0.005		< 0.005	mg/l N	INAB	
Chloride mg/L		EW175	1.0		23	mg/L	INAB	
Metals-Dissolved								
Iron-Dissolved		EM130	20		81	ug/L	INAB	
Potassium-Dissolved		EM130	0.2		1.8	mg/L	INAB	
Sodium-Dissolved		EM130	0.5		15.9	mg/L	INAB	
PhenolsTotal -Index (Sub1)								
Phenols-Total	*	Default	0.10		< 0.10	mg/L	YES	
Temperature (Site)								
Temperature (Site)		Default	0.0		Not Analyzed	Deg C		
Titralab								
pH		EW153	0.0		7.7	pH Units	INAB	
Conductivity @20 DegC		EW153	25		489	uscm-1@20	INAB	
Total Cyanide High (Sub)								
Total Cyanide High	*	Default	10		<9	ug/L	YES	
Total Organic Carbon (TOC)								
Total Organic Carbon (TOC)		EW123	0.25		5.74	mg/L	INAB	

Signed :

Brendan Murray-Deputy Technical Manager

Shen Co

flibert.

30/08/2017

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

ENVIRONMENTAL LAB

EXCELLENCE THROUG

QN006417

MW16S

Contact Name Address

Customer PO

Ouotation No

Customer Ref

Tel No

TAL LABORATORY SERVICES	Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: <u>www.elsltd.com</u> email: <u>info@elsltd.com</u>
Brona Keating Boylan Engineering & Environmental Ltd. Main Street,	Report Number Sample Number Date of Receipt Date Started
046 9286000	Received or Collected
Per Batch	Date of Report

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

115532 - 1 115532/004 18/08/2017 18/08/2017

30/08/2017 Ground Waters

Courier

CERTIFICATE OF ANALYSIS

Sample Type

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Coliforms								
Total Coliforms		MIC133	0		167	MPN/100ml	INAB	
E. Coli		MIC133	0		0	MPN/100ml	INAB	
Dissolved Oxygen								
Dissolved Oxygen		EW043	1		7	mg/L	INAB	
Gallery Plus-Suite A								
Ammonia as N		EW175	0.005		0.124	mg/l N	INAB	
Total Oxidised Nitrogen (TON) as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrate as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrite as N		EW175	0.005		0.009	mg/l N	INAB	
Chloride mg/L		EW175	1.0		32	mg/L	INAB	
Metals-Dissolved								
Iron-Dissolved		EM130	20		<20	ug/L	INAB	
Potassium-Dissolved		EM130	0.2		1.6	mg/L	INAB	
Sodium-Dissolved		EM130	0.5		19.3	mg/L	INAB	
PhenolsTotal -Index (Sub1)								
Phenols-Total	*	Default	0.10		< 0.10	mg/L	YES	
Temperature (Site)								
Temperature (Site)		Default	0.0		Not Analyzed	Deg C		
Titralab								
pH		EW153	0.0		7.7	pH Units	INAB	
Conductivity @20 DegC		EW153	25		511	uscm-1@20	INAB	
Total Cyanide High (Sub)								
Total Cyanide High	*	Default	10		<9	ug/L	YES	
Total Organic Carbon (TOC)								
Total Organic Carbon (TOC)		EW123	0.25		6.59	mg/L	INAB	

Signed :

flibert. Shen Co

30/08/2017

Brendan Murray-Deputy Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

EXCELLENCE THROUGH ACCREDITATION

EXCELLENCE	THROUGH ACCREDITATION
Contact Name Address	Brona Keating Boylan Engineering & Environmental Ltd. Main Street,
Tel No Customer PO Quotation No Customer Ref	046 9286000 Per Batch QN006417 MW17D

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email:info@elsltd.com

Report Number

Sample Number

Date of Receipt

Date of Report

Sample Type

Received or Collected

Date Started

115532 - 1 115532/005 18/08/2017 18/08/2017

Courier 30/08/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	OOS
Coliforms								
Total Coliforms		MIC133	0		1	MPN/100ml	INAB	
E. Coli		MIC133	0		0	MPN/100ml	INAB	
Dissolved Oxygen								
Dissolved Oxygen		EW043	1		4	mg/L	INAB	
Gallery Plus-Suite A								
Ammonia as N		EW175	0.005		0.240	mg/l N	INAB	
Total Oxidised Nitrogen (TON) as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrate as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrite as N		EW175	0.005		< 0.005	mg/l N	INAB	
Chloride mg/L		EW175	1.0		17	mg/L	INAB	
Metals-Dissolved								
Iron-Dissolved		EM130	20		180	ug/L	INAB	
Potassium-Dissolved		EM130	0.2		2.1	mg/L	INAB	
Sodium-Dissolved		EM130	0.5		27.8	mg/L	INAB	
PhenolsTotal -Index (Sub1)								
Phenols-Total	*	Default	0.10		< 0.10	mg/L	YES	
Temperature (Site)								
Temperature (Site)		Default	0.0		Not Analyzed	Deg C		
Titralab								
рН		EW153	0.0		7.7	pH Units	INAB	
Conductivity @20 DegC		EW153	25		490	uscm-1@20	INAB	
Total Cyanide High (Sub)								
Total Cyanide High	*	Default	10		<9	ug/L	YES	
Total Organic Carbon (TOC)								
Total Organic Carbon (TOC)		EW123	0.25		2.19	mg/L	INAB	

Signed :

flibert. mento

30/08/2017

Brendan Murray-Deputy Technical Manager

NOTES

1.This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

EXCELLENCE THROUGH ACCREDITAT

Main Street,

046 9286000

Per Batch

QN006417

MW17S

Ltd.

Contact Name

Customer PO

Ouotation No

Customer Ref

Address

Tel No

TAL LABORATORY SERVICES	Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: <u>www.elsltd.com</u> email: <u>info@elsltd.com</u>
Brona Keating	Report Number
Boylan Engineering & Environmental	Sample Number

Date of Receipt Date Started Received or Collected Date of Report

Sample Type

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park,

115532 - 1 115532/006 18/08/2017 18/08/2017

Courier 30/08/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	OOS
Coliforms								
Total Coliforms		MIC133	0		358	MPN/100ml	INAB	
E. Coli		MIC133	0		0	MPN/100ml	INAB	
Dissolved Oxygen								
Dissolved Oxygen		EW043	1		1	mg/L	INAB	
Gallery Plus-Suite A								
Ammonia as N		EW175	0.005		0.672	mg/l N		
Total Oxidised Nitrogen (TON) as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrate as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrite as N		EW175	0.005		0.012	mg/l N	INAB	
Chloride mg/L		EW175	1.0		18	mg/L	INAB	
Metals-Dissolved								
Iron-Dissolved		EM130	20		830	ug/L		
Potassium-Dissolved		EM130	0.2		2.6	mg/L	INAB	
Sodium-Dissolved		EM130	0.5		29.1	mg/L	INAB	
PhenolsTotal -Index (Sub1)								
Phenols-Total	*	Default	0.10		< 0.10	mg/L	YES	
Temperature (Site)								
Temperature (Site)		Default	0.0		Not Analyzed	Deg C		
Titralab								
pH		EW153	0.0		7.1	pH Units	INAB	
Conductivity @20 DegC		EW153	25		490	uscm-1@20	INAB	
Total Cyanide High (Sub)								
Total Cyanide High	*	Default	10		<9	ug/L	YES	
Total Organic Carbon (TOC)								
Total Organic Carbon (TOC)		EW123	0.25		10.13	mg/L	INAB	

Signed :

Brendan Murray-Deputy Technical Manager

Shen Co

flibert.

30/08/2017

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

EXCELLENCE THROUGH ACCREDITATION

	Blackrock,
	Cork
	Ireland
RVICES	Tel: +353 21 453 6141
	Fax: +353 21 453 6149
ATION	Web: www.elsltd.com
	email: info@elsltd.com
	Report Number
ironmental	Sample Number
	Data of Dessint
	Data of Passint

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park,

ISO 17025 ISO 17025 ACCREDITED TESTING

Brona Keating 115532 - 1 **Contact Name** er Address Boylan Engineering & Envi 115532/007 er Ltd. 18/08/2017 **Date of Receipt** Main Street, 18/08/2017 **Date Started Tel No** 046 9286000 **Received or Collected** Courier **Customer PO** Per Batch **Date of Report** 30/08/2017 QN006417 **Ouotation No Sample Type** Ground Waters **Customer Ref** MW18

CERTIFICATE OF ANALYSIS

	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	OOS
oliforms								
Total Coliforms		MIC133	0		159	MPN/100ml	INAB	
E. Coli		MIC133	0		2	MPN/100ml	INAB	
issolved Oxygen								
Dissolved Oxygen		EW043	1		6	mg/L	INAB	
allery Plus-Suite A								
Ammonia as N		EW175	0.005		0.020	mg/l N	INAB	
Total Oxidised Nitrogen (TON) as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrate as N		EW175	0.15		<0.15	mg/l N	INAB	
Nitrite as N		EW175	0.005		< 0.005	mg/l N	INAB	
Chloride mg/L		EW175	1.0		16	mg/L	INAB	
letals-Dissolved								
Iron-Dissolved		EM130	20		150	ug/L	INAB	
Potassium-Dissolved		EM130	0.2		2.1	mg/L	INAB	
Sodium-Dissolved		EM130	0.5		27.3	mg/L	INAB	
henolsTotal -Index (Sub1)								
Phenols-Total	*	Default	0.10		< 0.10	mg/L	YES	
emperature (Site)								
Temperature (Site)		Default	0.0		Not Analyzed	Deg C		
itralab								
pH		EW153	0.0		7.5	pH Units	INAB	
Conductivity @20 DegC		EW153	25		482	uscm-1@20	INAB	
otal Cyanide High (Sub)								
Total Cyanide High	*	Default	10		<9	ug/L	YES	
otal Organic Carbon (TOC)								
Total Organic Carbon (TOC)		EW123	0.25		7.68	mg/L	INAB	

Signed :

Brendan Murray-Deputy Technical Manager

mento

flibert.

30/08/2017

NOTES

1.This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

DETAILED IN SCOPE REG NO. 1117

Contact Name Address	Gareth O Brien Boylan Engineering & Environmental Ltd. Main Street,	Report Number Sample Number Date of Receipt Date Started	115717 - 1 115717/002 23/08/2017 23/08/2017
Tel No Customer PO Quotation No Customer Ref	046 9286000 Per Batch QN006417 11S	Received or Collected Date of Report Sample Type	Courier 21/02/2018 Ground Waters
LRN Station Laboratory SampleReason	Category 2017-0 Template Analyst SampleDate SampleNotes	08-22 Entity SampleTime	SampleMethod

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	008
Coliforms									
Total Co	liforms		MIC133	0		400	MPN/100ml	INAB	
E. Coli			MIC133	0		99	MPN/100ml	INAB	
Dissolved	Oxygen								
Dissolve	d Oxygen		EW043	1		5	mg/L	INAB	
Gallery Pl	us-Suite A								
Ammoni	a as N		EW175	0.005		< 0.005	mg/l N	INAB	
Total Ox	idised Nitrogen (TON) as N		EW175	0.15		0.76	mg/l N	INAB	
Nitrate as	3 N		EW175	0.15		0.76	mg/l N	INAB	
Nitrite as	Ν		EW175	0.005		< 0.005	mg/l N	INAB	
Chloride	mg/L		EW175	1.0		260	mg/L	INAB	
Metals-Di	ssolved								
Iron-Diss	solved		EM130	20		35	ug/L	INAB	
Potassiur	n-Dissolved		EM130	0.2		1.5	mg/L	INAB	
Sodium-l	Dissolved		EM130	0.5		43.5	mg/L	INAB	
PhenolsTo	otal -Index (Sub1)								
Phenols-	Total	*	Default	0.10		< 0.10	mg/L	YES	
Temperat	ure (Site)								
	ture (Site)		Default	0.0		Not Analyzed	Deg C		
Titralab									
pН			EW153	0.0		7.2	pH Units	INAB	
Conducti	vity @20 DegC		EW153	25		1250	uscm-1@20	INAB	
Total Cva	nide High (Sub)								
	anide High	*	Default	10		<9	ug/L	YES	
Total Org	anic Carbon (TOC)								
	ganic Carbon (TOC)		EW123	0.25		3.55	mg/L	INAB	
							-		

Signed :

nento

filibert.

indicates not accredited

6."*" Indicates sub-contract test

4.LOQ=Limit of Quantification or lowest value that can be reported

5.ACCRED=Indicates matrix accreditation for the test,a blank field

21/02/2018

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested.

2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email:info@elsltd.com

Gareth O Brien **Report Number** 115717 - 1 **Contact Name** Boylan Engineering & Environmental 115717/001 Address Sample Number Ltd. **Date of Receipt** 23/08/2017 Main Street, **Date Started** 23/08/2017 Tel No 046 9286000 **Received or Collected** Courier **Customer PO** Per Batch **Date of Report** 21/02/2018 QN006417 Ground Waters **Quotation No Sample Type** 11D **Customer Ref** 2017-08-22 LRN Category Entity Station Template SampleTime Laboratory SampleDate Analyst SampleMethod SampleReason SampleNotes

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Coliforms								
Total Coliforms		MIC133	0		454	MPN/100ml	INAB	
Analyst Micro Comment: The start date for	this micro test is	s 23/08/17						
E. Coli		MIC133	0		250	MPN/100ml	INAB	
Dissolved Oxygen								
Dissolved Oxygen		EW043	1		7	mg/L	INAB	
Gallery Plus-Suite A								
Ammonia as N		EW175	0.005		< 0.005	mg/l N	INAB	
Total Oxidised Nitrogen (TON) as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrate as N		EW175	0.15		< 0.15	mg/l N	INAB	
Nitrite as N		EW175	0.005		< 0.005	mg/l N	INAB	
Chloride mg/L		EW175	1.0		13	mg/L	INAB	
Metals-Dissolved								
Iron-Dissolved		EM130	20		34	ug/L	INAB	
Potassium-Dissolved		EM130	0.2		1.5	mg/L	INAB	
Sodium-Dissolved		EM130	0.5		16.6	mg/L	INAB	
PhenolsTotal -Index (Sub1)								
Phenols-Total	*	Default	0.10		< 0.10	mg/L	YES	
Temperature (Site)								
Temperature (Site)		Default	0.0		Not Analyzed	Deg C		
Titralab								
рН		EW153	0.0		7.5	pH Units	INAB	
Conductivity @20 DegC		EW153	25		417	uscm-1@20	INAB	
Total Cyanide High (Sub)								
Total Cyanide High	*	Default	10		<9	ug/L	YES	
Total Organic Carbon (TOC)								
Total Organic Carbon (TOC)		EW123	0.25		8.56	mg/L	INAB	

Signed :

Shen Co

flibert.

21/02/2018

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested.

2 SPEC - Allowable limit or parametric value

2.SPEC= Allowable limit or parametric value

3.00S=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported

5.ACCRED=Indicates matrix accreditation for the test,a blank field

Appendix 5

Historical Results

						_								
	Parameter	TOC	E.Coli	Ammonia	TON	Tot Coliforms	pН	Cond	Cl	DO	Total Phenols	Fe	K	Na
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l
MW3	Qtr 4 2017	17.51	0	1.078	0.28	5172	7.2	801	28	2	<0.10	25000	8.8	32.9
	Qtr 3 2017	24.94	0	1.421	<0.15	372	7.1	819	25	3	<.10	18000	8.6	27
	Qtr 2 2017	25.24	0	14.147	0.69	10460	7	733	22	<1	<0.10	13000	7.6	21.5
	Qtr 1 2017	65.87	20	0.089	<0.138	2420	7.1	641	18	<1	<0.1	16000	5.2	20.7
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l
MW4	Qtr 4 2017	-	-	-	-	-	-	-	-	-	-	-	-	-
	Qtr 3 2017	-	-	-	-	-	-	-	-	-	-	-	-	-
	Qtr 2 2017	-	-	-	-	-	-	-	-	-	-	-	-	-
	Qtr 1 2017	-	-	-	-	-	-	-	-	-	-	-	-	-
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l
MW9	Qtr 4 2017	8.47	5	15.109	<0.15	2987	7	1047	16	9	<0.10	30000	13.9	19.5
	Qtr 3 2017	29.29	1	57.005	<0.15	479	6.9	1585	95	<1	<0.10	26000	34.6	65.8
	Qtr 2 2017	33.75	0	17.288	<0.15	160	7.5	1035	20	7	<0.10	13000	14.3	17.8
	Qtr 1 2017	-	-	-	-	-	-	-	-	-	-	-	-	-
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l
MW10	Qtr 4 2017	44	0	53.86	<0.15	970	6.9	1522	97	2	<0.10	47000	40.2	78.1
	Qtr 3 2017	8.56	250	< 0.005	<0.15	454	7.5	417	13	7	<0.10	34	1.5	16.6
	Qtr 2 2017 Qtr 1 2017	31.72 39.3	0	34.561 32.676	<0.15 <0.138	0 20	6.8 6.8	1271 1271	64 69	4 5	<0.10 <0.1	2800 21000	22.6 15.5	34.9 33.2
		mg/l	MPN/	mg/l N	<0.138	MPN/	pH Units	us/cm	mg/l	mg/l	vo.1 mg/l	ug/l	mg/l	mg/l
	Units		100ml	_		100ml	*				_			
MW11S	Qtr 4 2017 Qtr 3 2017	11.95 3.55	0 99	0.01 <0.005	0.41	6 400	6.8 7.2	535 1250	61 260	9 5	<0.10 <0.10	<20 <20	1.6 1.6	27.5 19.3
	Qtr 2 2017	7.94	99 150	< 0.005	0.76	2420	7.2	1250	260	4	<0.10	<20	1.6	40.7
	Qtr 1 2017	2.71	0	0.032	0.963	0	7.2	1256	270	7	<0.10	71	1.4	41.8
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l
MW11D	Qtr 4 2017	46.16	0	0.01	<0.15	251	7.6	429	14	5	<0.10	<20	1.3	22.7
	Qtr 3 2017	8.56	250	<0.005	<0.15	454	7.5	417	13	7	<0.10	35	1.5	43.5
	Qtr 2 2017	18.14	79	0.013	<0.15	236	7.5	409	11	3	<0.10	<20	1.2	18.1
	Qtr 1 2017	2.71	0	0.581	<0.138	0	7.4	427	8.5	7	<0.1	32	1.2	17.7
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l
MW16S	Qtr 4 2017	24.75	0	0.007	0.19	91	7.6	483	21	10	<0.10	<20	1.7	24.4
	Qtr 3 2017	6.59	0	0.124	<0.15	167	7.7	511	32	7	<0.10	81	1.8	15.9
	Qtr 2 2017	23.09	0	0.015	<0.15	0	7.5	462	20	2	<0.10	<20	1.6	17.3
	Qtr 1 2017	4.58	0	0.073	0.252	30	7.5	503	18	5	<0.1	<20	1.4	19.4
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l
MW16D	Qtr 4 2017	10.91	0	0.052	<0.15	78	7.6	505	24	5	<0.10	90	1.5	21.9
	Qtr 3 2017	5.74	2	0.052	<0.15	1011	7.7	489	23	5	<0.10	830	2.6	29.1
	Qtr 2 2017 Qtr 1 2017	38.45 9.05	0	0.05	<0.15 <0.138	56	7.5 7.5	493 501	23 20	3 5	<0.10 <0.1	60 110	1.2 1.2	16.8 16.2
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l
MW17S	Qtr 4 2017	19.7	0	1.552	2.3	2359	7.1	419	17	4	<0.10	1200	5.5	22.4
	Qtr 3 2017	10.13	0	0.672	<0.15	358	7.1	490	18	1	<0.10	1200	2.1	27.8
	Qtr 2 2017	6.53	0	6.065	<0.15	2420	6.9	492	17	2	<0.10	5700	2	18.5
	Qtr 1 2017	4.67	0 MPN/	6.737	<0.138	790 MPN/	6.9	518	15	4	<0.1	11000	1.7	18.5
MW17D	Units	mg/l 32.7	100ml	mg/l N	mg/l N	100ml	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l
	Qtr 4 2017 Qtr 3 2017	2.19	0	0.007 0.24	0.25 <0.15	2247 1	7.4	431 490	16 17	6 4	<0.10 <0.10	<20 <20	2.3 2.3	29.5 29.5
	Qtr 2 2017	18.32	0	0.24	<0.15	29	7.5	490	17	4	<0.10	210	1.6	23.7
	Qtr 1 2017	5.49	0 MPN/	0.319	<0.138	0 MPN/	7.4	509	15	6	<0.1	460	1.8	23
	Units	mg/l	100ml	mg/l N	mg/l N	100ml	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	mg/l	mg/l
MW18	Qtr 4 2017	7.85	0	0.022	<0.15	41	7.4	489	18	7	<0.10	300	2.4	30.8
	Qtr 3 2017 Qtr 2 2017	7.68	2 0	0.02	<0.15 0.27	159 40	7.5 7.4	482 484	16 17	6 2	<0.10 <0.10	150 190	2.1 1.5	27.3 22.6
	Qtr 1 2017	3.74	0	0.028	<0.138	40 74	7.4	484	17	6	<0.10	300	1.5	22.6
	Qtr 4 2017	7.93	30	0.035	<0.15	500	7.5	711	30	7	<0.10	<20	2.5	32.4
MW19										-				
MW19 MW20	Qtr 4 2017	21.17	0	0.011	<0.15	0	7.6	408	16	6	<0.10	<20	2	20.7

SURFACE WATER MONITORING REPORT BALLYJAMESDUFF LANDFILL W0093-01 BI-ANNUAL 2 OF 2 2017

Document No.: CCC-03-01-07-03-Rev 1

Project No.: CCC-03-01

Client: Cavan County Council

Project Name: Ballyjamesduff Landfill Derrylurgan Ballyjamesduff Co. Cavan

Summary o	of Document Revi	sions
Rev No.	Date Revised	Revision Description

Prepared by	Terry Keating	22/01/18
Approved by	Gareth O'Brien	24/01/18

COPYRIGHT © BOYLAN ENGINEERING (2018)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

CONTENTS

1	Sun	nmary	3
2	Intr	oduction	3
3	Me	thodology	3
	3.1	Environmental Monitoring and Sampling	3
	3.2	Laboratory Analysis	4
	3.3	Weather Report	4
	3.4	Monitoring Locations	4
4	Sun	nmary of Results	5
5	Disc	cussion of Results	6
	5.1	Discussion of Results	6
6	Cor	nclusion	6

LIST OF TABLES

Table 1 Weather Report Bi -annual 2 of 2 2017	4
Table 2 Monitoring Locations Surface water Bi-annual 2 of 2 2017	4
Table 3 Bi -annual 2 of 2 2017 Surface water Monitoring Analytical Results	5

1 SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out environmental monitoring at Ballyjamesduff Landfill (W0093-01), Derrylurgan, Ballyjamesduff, Co Cavan for Bi-annual 2 of 2 2017. This report documents the finding from the surface water sampling and monitoring undertaken at Ballyjamesduff Landfill on 01st November 2017.

2 INTRODUCTION

Ballyjamesduff landfill is situated approximately 600 m north of Ballyjamesduff town centre in the townland of Derrylurgan. The site was in operation from the 1960's and comprises some 1.62 hectares. The site was originally peat land which was stripped for commercial purposes and was then operated as a traditional landfill until its closure in March 2002. A waste licence (W0093-01) was issued by the Environmental Protection Agency (EPA) after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the surface water, sampling programme conducted on site and also summarises findings and analytical results for Bi-annual 2 of 2 2017. The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behaviour with expected/modelled behaviour
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Ballyjamesduff landfill is situated in the R21 Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R21 Zones are acceptable subject to guidance in the EPA Landfill Design Manual or conditions of a waste license - (EPA, Groundwater Protection Responses for Landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of Leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

3 METHODOLOGY

3.1 Environmental Monitoring and Sampling

The following procedure was conducted by Boylan Engineering to ensure accurate surface water monitoring:

- Surface water samples was taken by grab sample using a Telescoup and Pendulum beaker.
- Having obtained a representative sample the following parameters were measured on-site using a Hanna HI 98129 combination waterproof high accuracy.
 - Conductivity

o Temperature

о рН

• Boylan Engineering operate a Sample Submission/Chain of Custody form, which accompanies the samples at all times.

3.2 Laboratory Analysis

- Samples were sent to Environmental Laboratory Service (ELS) (Ireland) for analysis of the required parameters in designated cool boxes with ice packs. These boxes ensure that samples are maintained at a consistent temperature between 0° C and 4° C on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0° C and 4° C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 2.

3.3 Weather Report

The weather report for Bi-annual 2 of 2 2017 is presented in Table 1 below.

Table 1 Weather Report Bi -annual 2 of 2 2017

REPORTS FROM BAL	LYHAISE	(A)					
Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind Speed	Maximum Gust	Sunshine
	(mm)	Temp	Temp	(°C)		(if >= 34 knots)	(hours)
		(°C)	(°C)				
01/11/2017	0.3	13.9	9.2	6.4	5.3		

3.4 Monitoring Locations

The surface water monitoring locations for Bi-annual 2 of 2 2017 are presented in Table 2 below and illustrated in the monitoring plan in Appendix 1.

Table 2 Monitoring Locations Surface water Bi-annual 2 of 2 2017

Monitoring		Cover Level M	Water Level M	
Location	Sample Type	(OD Malin Head)	(OD Malin Head)	Locaiton
SW1	SW	n/a	-	Monitoring at south-flowing stream to northeast of landfill
SW2	SW	n/a	-	Monitoring at south-flowing stream to southeast of landfill
Сар	SW	n/a	-	Surface water disharge point to southeast of site

4 SUMMARY OF RESULTS

. . . .

A summary of the Surface water monitoring results for Bi annual 2 of 2 2017 is presented in Table 3 below with the laboratory data presented in Appendix 1. Table 3 Bi -annual 2 of 2 2017 Surface water Monitoring Analytical Results

Report Num	iber	119265													
Monitoring	Date	01/11/2017													
	Method	Site Tests	Site Tests	Site Tests	Site Tests	Ammonia	Titralab	Titralab	BOD	COD	Suspended Solids	AQ2-UP2	Dissolved Oxygen	Total Phosphorus- TP	AQ2-UP1
Me	ethod Number	Site Tests	Site Tests	Site Tests	Site Tests	EW003	EW138	EW139	EW001	EW094	EW013	EW015	EW043	EW146	EW154M
	Parameter	Sample temperature (to be done onsite)	Cond	рН	Visual Inspection	Ammonia	рН	Cond	BOD	COD	Suspended Solids	CI	DO	Total Phosphorus- TP	TON (as N)(Calc)
	Units	Deg C	us/cm	pH units	-	mg/l N	pH Units	uscm-1@20	mg/L	mg/L	mg/L	mg/L	mg/L	mg/l P	mg/l N
Lim	nit of Detection	-	-	-	-	0.007	0.3	25	1	8	5	2.6	1.0	0.01	0.138
Date	Testing Initiated		1.11	l.17						02.11.	17				
ELS Ref	Client Ref														
119265	BJD SW 1	10.4	335	7.5	Straw	0.033	7.2	205	11	68	109	16	6	0.45	0.36
119265	BJD SW 2	10.1	321	7.6	Clear	0.035	7.1	205	<2.0	35	<5	16	5	0.1	0.38
119265	BJD Discharge Cap	9.8	687	7.6	Straw	1.047	7	438	<2.0	46	13	17	5	0.11	<0.15
S.I	No. 294/2009					0.2	≥5.5 and ≤8.5	1000	5	40	50	250			NAC

	Method	Titralab	AQ2-UP2	Total Metals					Meta	ls-Dissolved					
М	ethod Number	EW153	EW154M-1	EM130											
	Parameter	Alkalinity Total (R2 pH4.5)	Sulphate	Chromium- Total	lron- Dissolved	Manganese- Dissolved	Potassium- Dissolved	Sodium- Dissolved	Cadmium- Dissolved	Calcium- Dissolved	Copper- Dissolved	Lead- Dissolved	Magnesium- Dissolved	Mercury- Dissolved	Zinc- Dissolved
	Units	mg/L CaCO3	mg/L	ug/L	ug/L	ug/L	mg/L	mg/L	ug/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L
Lin	nit of Detection	10	1	1	20	1	0.2	0.5	0.1	1	0.003	0.3	0.3	0.02	1
Date	Testing Initiated							02.11.17	1						
ELS Ref	Client Ref														
119265	BJD SW 1	74	11	4.1	950	270	4.9	9.2	<0.1	26.5	< 0.003	<0.3	5	<0.02	0.36
119265	BJD SW 2	75	10	<3.0	850	240	4.9	9.5	<0.1	26.9	< 0.003	<0.3	5.2	<0.02	2.5
119265	BJD Discharge Cap	201	13	<3.0	5200	2600	5.2	11.2	0.1	72	0.004	0.6	8.6	0.05	7.1
S.	l No. 294/2009	NAC	200	30	1000	300		150	5		0.03	10		1	100

Exceedance

NOTES

1 Sub-contract analysis denoted by *

2 ND - Concentration was below the limit of detection

3 NAC- No Abnormal Change

As there are no limits set in the waste licence for surface water, results are compared to S.I. No. 294/1989 — European Communities (Quality of Surface Water Intended for the Abstraction of Drinking Water) Regulations, 1989.

5 DISCUSSION OF RESULTS

5.1 Discussion of Results

Surface water samples were taken at SW1 and at SW2 located along the south-flowing Pound River and at the discharge cap during the 2 of 2 bi-annual monitoring.

As there are no limits set in the waste license for surface water, results are compared to the S.I. No. 294/1989 — European Communities (Quality of Surface Water Intended for the Abstraction of Drinking Water) Regulations, 1989 where available.

Several exceedances were detected in the sample retrieved from the discharge cap with particular reference to ammonia, COD, iron and manganese. These exceedances can be attributed to stagnation as a result of low flows in the cap discharge chamber at the time of monitoring.

There were also marginal exceedances for BOD and COD in the sample retrieved from SW1. As noted, SW1 is located to the northeast of the landfill along the south-flowing Pound River. This watercourse flows through existing farmland prior to passing the landfill and these elevated concentrations may be attributed to local agricultural practices. Furthermore, given that there were no exceedances for BOD or COD in the sample retrieved from SW2, which is located downstream of SW1 and the landfill, it is likely that the marginal exceedances at SW1 is due to agricultural influences and not the landfill.

An exceedances for suspended solids was also noted in the sample retrieved from SW1 returning a concentration of 109 mg/l and is likely due to heavy rainfall during this time of year which can increase the level of total suspended solids through runoff. Similar suspended solids concentrations were noted at SW1 in the results from bi-annual 2 of 2 2016.

All remaining results were within the limits specified by S.I No. 294/1989.

6 CONCLUSION

The surface water results obtained were generally consistent with previous monitoring events and do not show any signs of dramatic exceedances. The next monitoring event will be carried out in Bi-annual 1 in 2018. Information relating to previous results can be seen in the historical data tables in Appendix 1.

ELS LTD INAB ACCREDITATION SCHEDULE SUMMARY SHEET

Miscellaneous (P,G,W,S) Other VOC's EO025 (P,G,S,W) Ammonia/Ammonium 0.007-1mg/l N EW154 Bromomethane 0.5 - 35 µg/l Chloride 2.6-250 mg/l EW154 Ethyl Ether/Diethyl Ether 0.5 - 35 µg/l Flouride 0.1 - 2 mg/l EW137 11 Dichloroethene 0.5 - 35 µg/l COD 8-1500 mg/l EW094 Iodomethane/Mehyl Iodide 0.5 - 35 µg/l Carbon Disulphide 0.5 - 35 µg/l Nitrate 0.12-50 mg/l N EW154 Nitrite 0.013-1 mg/l N EW154 Allyl Chloride 0.5 - 35 µg/l pH 4 - 10 pH Units EW153 Methylene Chloride/DCM 5.0 - 35 µg/l Phosphate 0.009-1 mg/l P EW154 2-Propenenitrile/Acrylonitrile 2.0 - 35 µg/l Alkalinity 10-1000mg/l EW153 Chlormethyl Cyanide 0.5 - 35 µg/l TOC 0.25-100mg/l EW123 Hexachlorobutadiene 0.5 - 35 µg/l BOD 1-1300mg/l EW001 Trans-1,2 Dichloroethene 0.5 - 35 µg/l Total Nitrogen 1-100mg/l N EW140 MtBE 0.5 - 35 µg/l Total Phosphorous 0.01-40 mg/l P EW143 11 Dichloroethane 0.5 - 35 µg/l Suspended Solids 5-1000mg/l EW013 Cis-12 Dichloroethene 0.5 - 35 µg/l Dissolved Oxygen 1 to 10 mg/l EW043 Methyl Acrylate 5.0 - 35 µg/l Conductivity 25-6000 us/cm EW154 Bromochloromethane 0.5 - 35 µg/l Tetrahydrofuran 5.0 - 35 µg/l Miscellaneous (P,G,S) Bromate 1 to 50ug/l BRO3 EW137 111 Trichloroethane 0.5 - 35 µg/l 1-Chlorobutane 0.5 - 35 µg/l Colour 2.5-50mg/l PtCCo EW154 Sulphate 1-250mg/l SO4 EW154 Carbon Tetrachloride 0.5 - 35 µg/l Total Dissolved Solids 15-1000mg/l EW046 11 Dichloropropene 0.5 - 35 µg/l Total Hardness 3-330mg/l CaCO3 EM099 12 Dichloropropane 0.5 - 35 µg/l Dibromomethane 0.5 - 35 µg/l Total Oxidised Nitrogen 0.138-51mg/l N EW051 Methyl Methacrylate 0.5 - 35 µg/l Turbidity 0.11-150 NTU EW136 TKN Calculation 1-49 mg/l EW010 13 Dichloropropene, cis 2.0 - 35 µg/l Metals EM130 (P,G,S) MIBK/4 Methyl 2 Pentanone 2.0 - 35 µg/l Aluminium 5.0 - 500 µg/l Toluene 0.5 - 35 µg/l Antimony 0.1 - 10µg/l 13 Dichloropropene,trans 2.0 - 35 µg/l Arsenic 0.2 - 20µg/l Ethyl Methacrylate 2.0 - 35 µg/l Barium 1.0 - 100µg/l 112 Trichloroethane 0.5 - 35 µg/l Boron 0.02 - 2mg/l 13 Dichloropropane 0.5 - 35 µg/l Cadmium 0.1 - 10µg/l 2 Hexanone 1.0 - 35 µg/l 12 Dibromoethane 0.5 - 35 µg/l Calcium 1.0 - 100mg/l Chromium 1.0 - 100µg/l Chlorobenzene 0.5 - 35 µg/l Cobalt 1.0 - 100µg/l 1112 Tetrachloroethane 2.0 - 35 µg/l Copper 3 - 4000µg/l Ethyl Benzene 0.5 - 35 µg/l Iron 20.0 - 500µg/l m & p Xylene 0.5 - 35 μg/l Lead 0.3 - 30µg/l O Xylene 0.5 - 35 μg/l Magnesium 0.3 - 20mg/l Stryene 2.0 - 35 µg/l Manganese 1.0 - 100µg/l Isopropyl Benzene 0.5 - 35 µg/l Mercury 0.02 - 2µg/l Bromobenzene 0.5 - 35 µg/l Molybdenum 1.0 - 100µg/l 1122 Tetrachloroethane 0.5 - 35 µg/l Nickel 0.5 - 50µg/l 123 Trichloropropane 2.0 - 35 µg/l Potassium 0.2 - 20mg/l Propyl Benzene 0.5 - 35 µg/l Selenium 0.2 - 20µg/l 2-Chlorotoluene 0.5 - 35 µg/l Sodium 0.5 - 50mg/l 4 Chlorotoluene 0.5 - 35 µg/l Strontium 1.0 - 100µg/l 135 Trimenthylbenzene 0.5 - 35 µg/l Tin 1.0 - 100µg/l Tert Butyl Benzene 0.5 - 35 µg/l Vanadium 1.0 - 100µg/l 124 Trimethlbenzene 0.5 - 35 µg/l Zinc 1.0 - 100µg/l Sec Butyl Benzene 0.5 - 35 µg/l SI439 Potable Water VOCs & THM 13 Dichlorobenzene 0.5 - 35 µg/l EO025 (P,G,S,W) P Isopropyltoluene 0.5 - 35 µg/l Benzene 0.1-35 µg/l 14 Dichlorobenzene 0.5 - 35 µg/l 1.2-Dichloroethane 0.1-35 µg/l 12 Dichlorobenzene 0.5 - 35 µg/l Tetrachloroethene 0.1-35 µg/l N Butyl Benzene 0.5 - 35 µg/l Trichloroethene 0.1-35 µg/l Hexachloroethane 5.0 - 35 µg/l Chloroform 1.0-150 µg/l 12 Dibromo 3Chloropropane 2.0 - 35 µg/l Bromoform 1.0-35 µg/l 124 Trichlorobenzene 0.5 - 35 µg/l Dibromochloromethane 1.0-35 µg/l 123 Trichlorobenzene 0.5 - 35 µg/l Bromodichloromethane 2.0-35 µg/l

Other VOC's EO025 (P,G,S) 22 Dichloropropane 0.5 - 35 µg/l PAH EO129 (P,G,S) Range 0.01 - 0.2 µg/l Acenaphthene Benzo (a) Anthracene Benzo (a) Pyrene Benzo (b) Fluoranthene Benzo (ghi) Perylene Benzo (k) Fluoranthene Chrysene Dibenzo (ah) Anthracene Fluoranthene Fluorene Indeno (123-cd) Pyrene Phenanthrene Pyrene Acid Herbicides (P,G,S) Range 0.01 - 0.2 µg/l 2,4,5-Т Н 24-DH 2,4-DB H Organophosphorus Pesticides(P,G,S) Range 0.01 - 0.2 µg/l Famphur OP Methyl Parathion OP Parathion OP Organochlorine Pesticides (P,G,S) Range 0.01 - 0.2 µg/l Aldrin BHC Alpha isomer OC BHC Beta isomer OC BHC Delta isomer OC Dieldrin OC Endosulphan Alpha isomer OC Endosulphan Beta isomer OC Endosulphan Sulphate OC Endrin OC Heptachlor Epoxide OC Heptachlor OC Lindane OC P,P' DDE OC P.P'-DDD OC

P,P'-DDT OC

Notes

1.Sample Matrix:P=Potable Water (Drinking), G=Ground Water, S=Surface Water, W=Waste Water

3.0 APPENDIX -FILED SHEETS

				ON SITE SAMPLII	NG FORM		
Facility Name:	Ballyjames	duff	Was	te Licence No: W009	93-01		
Report To:							
Sampling Date:	01.11.17			Saı All	mple Type (GW, SW, Lea	ichate)	
Personnel: Ter	ry Keating			We	eather: wet		
Other Remarks			GPS:				
Sample Ref No	Sample Type	Time	DO Level	Elec Cond (us)	pH pH units	Temp ^o C	Visual
SW1	SW			335	7.50	10.4	Straw
SW2	SW			321	7.6	10.1	Clear
Discharge cap	SW			687	7.60	9.8	Straw
COMMENTS:							

4.0 APPENDIX -ANALYSIS RESULTS

ENVIRONMENTAL LABORATORY SERVICES

EXCELLENCE THROUGH ACCREDITATION

Contact Name Address	Gareth O Brien Boylan Engineering & Environmental Ltd. Main Street,
Tel No	046 9286000
Customer PO	Per Batch
Quotation No	QN006417
Customer Ref	BJD Discharge Cap

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6141 Web: www.elsltd.com email:info@elsltd.com

Report Number

Sample Number

Date of Receipt

Date of Report Sample Type

Received or Collected

Date Started

119265 - 1 119265/001 02/11/2017 02/11/2017

Courier 13/11/2017 Surface Waters

CERTIFICATE OF ANALYSIS

EW001 EW094 EW043 EW175 EW175 EW175 EW175 EW175 EW175 EW175 EW175 EW188 EW188 EW188 EW188 EW188 EW188	1.0 8 1 0.005 0.15 0.005 1.0 1.0 1.0 0.1 1.0 0.003 20 0.3		<2.0 46 5 1.047 <0.15 <0.15 <0.005 17 13 0.1 72.0 0.004 5200	mg/L mg/L mg/l N mg/l N mg/l N mg/l N mg/L mg/L ug/L ug/L mg/L mg/L	INAB INAB INAB INAB INAB INAB INAB INAB	
EW094 EW043 EW175 EW175 EW175 EW175 EW175 EW175 EW175 EW188 EW188 EW188 EW188 EW188	8 1 0.005 0.15 0.005 1.0 1.0 1.0 0.1 1.0 0.003 20		46 5 1.047 <0.15 <0.15 <0.005 17 13 0.1 72.0 0.004	mg/L mg/l N mg/l N mg/l N mg/l N mg/L mg/L ug/L mg/L mg/L mg/L	INAB INAB INAB INAB INAB INAB INAB INAB	
EW043 EW175 EW175 EW175 EW175 EW175 EW175 EW188 EW188 EW188 EW188 EW188	1 0.005 0.15 0.005 1.0 1.0 1.0 0.1 1.0 0.003 20		5 1.047 < 0.15 < 0.005 17 13 0.1 72.0 0.004	mg/L mg/l N mg/l N mg/l N mg/L mg/L ug/L mg/L mg/L mg/L	INAB INAB INAB INAB INAB INAB INAB	
EW043 EW175 EW175 EW175 EW175 EW175 EW175 EW188 EW188 EW188 EW188 EW188	1 0.005 0.15 0.005 1.0 1.0 1.0 0.1 1.0 0.003 20		5 1.047 < 0.15 < 0.005 17 13 0.1 72.0 0.004	mg/L mg/l N mg/l N mg/l N mg/L mg/L ug/L mg/L mg/L mg/L	INAB INAB INAB INAB INAB INAB INAB	
EW175 EW175 EW175 EW175 EW175 EW175 EW188 EW188 EW188 EW188 EW188 EW188	0.005 0.15 0.005 1.0 1.0 1.0 0.1 1.0 0.003 20		$ \begin{array}{c} 1.047 \\ < 0.15 \\ < 0.005 \\ 17 \\ 13 \\ 0.1 \\ 72.0 \\ 0.004 \\ \end{array} $	mg/l N mg/l N mg/l N mg/l N mg/L mg/L ug/L mg/L mg/L	INAB INAB INAB INAB INAB INAB	
EW175 EW175 EW175 EW175 EW175 EW175 EW188 EW188 EW188 EW188 EW188 EW188	0.005 0.15 0.005 1.0 1.0 1.0 0.1 1.0 0.003 20		$ \begin{array}{c} 1.047 \\ < 0.15 \\ < 0.005 \\ 17 \\ 13 \\ 0.1 \\ 72.0 \\ 0.004 \\ \end{array} $	mg/l N mg/l N mg/l N mg/l N mg/L mg/L ug/L mg/L mg/L	INAB INAB INAB INAB INAB INAB	
EW175 EW175 EW175 EW175 EW175 EW175 EW188 EW188 EW188 EW188 EW188	0.15 0.005 1.0 1.0 0.1 1.0 0.1 1.0 0.003 20		<0.15 <0.15 <0.005 17 13 0.1 72.0 0.004	mg/l N mg/l N mg/l N mg/L mg/L ug/L mg/L mg/L	INAB INAB INAB INAB INAB INAB	
EW175 EW175 EW175 EW175 EW175 EW175 EW188 EW188 EW188 EW188 EW188	0.15 0.005 1.0 1.0 0.1 1.0 0.1 1.0 0.003 20		<0.15 <0.15 <0.005 17 13 0.1 72.0 0.004	mg/l N mg/l N mg/l N mg/L mg/L ug/L mg/L mg/L	INAB INAB INAB INAB INAB INAB	
EW175 EW175 EW175 EW175 EW175 EW175 EW188 EW188 EW188 EW188 EW188	0.15 0.005 1.0 1.0 0.1 1.0 0.1 1.0 0.003 20		<0.15 <0.15 <0.005 17 13 0.1 72.0 0.004	mg/l N mg/l N mg/l N mg/L mg/L ug/L mg/L mg/L	INAB INAB INAB INAB INAB INAB	
EW175 EW175 EW175 EW188 EW188 EW188 EW188 EW188 EW188	0.005 1.0 1.0 0.1 1.0 0.003 20		<0.15 <0.005 17 13 0.1 72.0 0.004	mg/l N mg/l N mg/L mg/L ug/L mg/L mg/L	INAB INAB INAB INAB INAB	
EW175 EW175 EW188 EW188 EW188 EW188 EW188 EW188	1.0 1.0 0.1 1.0 0.003 20		17 13 0.1 72.0 0.004	mg/L mg/L ug/L mg/L mg/L	INAB INAB INAB INAB	
EW175 EW188 EW188 EW188 EW188 EW188 EW188	1.0 0.1 1.0 0.003 20		13 0.1 72.0 0.004	mg/L ug/L mg/L mg/L	INAB INAB INAB	
EW188 EW188 EW188 EW188 EW188 EW188	0.1 1.0 0.003 20		0.1 72.0 0.004	ug/L mg/L mg/L	INAB INAB	
EW188 EW188 EW188 EW188	1.0 0.003 20		72.0 0.004	mg/L mg/L	INAB	
EW188 EW188 EW188 EW188	1.0 0.003 20		72.0 0.004	mg/L mg/L	INAB	
EW188 EW188 EW188	0.003 20		0.004	mg/L		
EW188 EW188	20			-	INAB	
EW188			5200	/*		
	0.3		0200	ug/L		
EW188			0.6	ug/L	INAB	
	0.3		8.6	mg/L	INAB	
EW188	1.0		2600	ug/L		
EW188	0.02		0.05	ug/L	INAB	
EW188	0.2		5.2	mg/L	INAB	
EW188	0.5		11.2	mg/L	INAB	
EW188	1.0		7.1	ug/L	INAB	
EW187	3.0		<3.0	ug/L	INAB	
EW013	5		13	mg/L	INAB	
Default	0.0		Not Analyzed	Deg C		
				-		
EW153	0.0		7.0	pH Units	INAB	
EW153	25		438	uscm-1@20	INAB	
EW152	10		201	0	INAB	
	Default EW153 EW153	Default 0.0 EW153 0.0 EW153 25	Default 0.0 EW153 0.0 EW153 25	Default 0.0 Not Analyzed EW153 0.0 7.0 EW153 25 438	Default 0.0 Not Analyzed Deg C EW153 0.0 7.0 pH Units	Default 0.0 Not Analyzed Deg C EW153 0.0 7.0 pH Units INAB EW153 25 438 uscm-1@20 INAB

flibert.

Signed :

Domenico Giliberti-Technical Manager

Duento

13/11/2017

NOTES

1.This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test, a blank field indicates not accredited

6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email:info@elsltd.com

Contact Name Address	Gareth O Brien Boylan Engineering & Environmental Ltd. Main Street,	Report Number Sample Number Date of Receipt Date Started	119265 - 1 119265/001 02/11/2017 02/11/2017	
Tel No Customer PO Quotation No Customer Ref	046 9286000 Per Batch QN006417 BJD Discharge Cap	Received or Collected Date of Report Sample Type	Courier 13/11/2017 Surface Waters	

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Titralab									
Total Phos	phorus-TP								
Total Phos	sphorus-TP		EW146	0.01		0.11	mg/l P	INAB	

Signed :

flibert. Shen Co

13/11/2017

Domenico Giliberti-Technical Manager

NOTES

1.This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

EXCELLENCE THROUGH ACCREDITATION

Contact Name Address	Gareth O Brien Boylan Engineering & Environmental Ltd. Main Street,
Tel No	046 9286000
Customer PO	Per Batch
Quotation No	QN006417
Customer Ref	BJD SW 2

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email:info@elsltd.com

Report Number

Sample Number

Date of Receipt

Date of Report

Sample Type

Received or Collected

Date Started

119265 - 1 119265/002 02/11/2017 02/11/2017

Courier 13/11/2017 Surface Waters

CERTIFICATE OF ANALYSIS

	0110			0000		***		0.05
TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	008
BOD								
BOD		EW001	1.0		<2.0	mg/L	INAB	
COD								
COD		EW094	8		35	mg/L	INAB	
Dissolved Oxygen								
Dissolved Oxygen		EW043	1		5	mg/L	INAB	
Gallery Plus-Suite A								
Ammonia as N		EW175	0.005		0.035	mg/l N	INAB	
Total Oxidised Nitrogen (TON) as N		EW175	0.15		0.38	mg/l N	INAB	
Nitrate as N		EW175	0.15		0.38	mg/l N	INAB	
Nitrite as N		EW175	0.005		< 0.005	mg/l N	INAB	
Chloride mg/L		EW175	1.0		16	mg/L	INAB	
Sulphate mg/L		EW175	1.0		10	mg/L	INAB	
Metals-Dissolved								
Cadmium-Dissolved		EW188	0.1		< 0.1	ug/L	INAB	
Calcium-Dissolved		EW188	1.0		26.9	mg/L	INAB	
Copper-Dissolved		EW188	0.003		< 0.003	mg/L	INAB	
Iron-Dissolved		EW188	20		850	ug/L		
Lead-Dissolved		EW188	0.3		<0.3	ug/L	INAB	
Magnesium-Dissolved		EW188	0.3		5.2	mg/L	INAB	
Manganese-Dissolved		EW188	1.0		240	ug/L		
Mercury-Dissolved		EW188	0.02		< 0.02	ug/L	INAB	
Potassium-Dissolved		EW188	0.2		4.9	mg/L	INAB	
Sodium-Dissolved		EW188	0.5		9.5	mg/L	INAB	
Zinc-Dissolved		EW188	1.0		2.5	ug/L	INAB	
Metals-Total								
Chromium-Total		EW187	3.0		<3.0	ug/L	INAB	
Suspended Solids								
Suspended Solids		EW013	5		<5	mg/L	INAB	
Temperature (Site)								
Temperature (Site)		Default	0.0		Not Analyzed	Deg C		
Titralab								
pH		EW153	0.0		7.1	pH Units	INAB	
Conductivity @20 DegC		EW153	25		205	uscm-1@20	INAB	
Alkalinity Total (R2 pH4.5)		EW153	10		75	mg/L CaCO3	INAB	

Signed :

flibert.

Domenico Giliberti-Technical Manager

Shen Co

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test, a blank field indicates not accredited

6."*" Indicates sub-contract test

13/11/2017

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email:info@elsltd.com

Contact Name	Gareth O Brien	Report Number	119265 - 1	
Address	Boylan Engineering & Environmental	Sample Number	119265/002	
	Ltd.	Date of Receipt	02/11/2017	
	Main Street,	Date Started	02/11/2017	
Tel No	046 9286000	Received or Collected	Courier	
Customer PO	Per Batch	Date of Report	13/11/2017	
Quotation No	QN006417	Sample Type	Surface Waters	
Customer Ref	BJD SW 2			

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	OOS
Total Pho	sphorus-TP								
Total Pho	osphorus-TP		EW146	0.01		0.10	mg/l P	INAB	

Signed :

flibert. Shen Co

13/11/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test, a blank field indicates not accredited 6."*" Indicates sub-contract test

Page 4 of 6

EXCELLENCE THROUGH ACCREDITATION

Contact Name Address	Gareth O Brien Boylan Engineering & Environmental Ltd. Main Street,
Tel No	046 9286000
Customer PO	Per Batch
Quotation No	QN006417
Customer Ref	BJD SW1

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email:info@elsltd.com

Report Number

Sample Number

Date of Receipt

Date of Report

Sample Type

Received or Collected

Date Started

119265 - 1 119265/003 02/11/2017 02/11/2017

Courier 13/11/2017 Surface Waters

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	OOS
BOD								
BOD		EW001	1.0		11	mg/L	INAB	
COD								
COD		EW094	8		68	mg/L	INAB	
Dissolved Oxygen						U		
Dissolved Oxygen		EW043	1		6	mg/L	INAB	
Gallery Plus-Suite A						_		
Ammonia as N		EW175	0.005		0.033	mg/l N	INAB	
Total Oxidised Nitrogen (TON) as N		EW175	0.15		0.36	mg/l N	INAB	
Nitrate as N		EW175	0.15		0.36	mg/l N	INAB	
Nitrite as N		EW175	0.005		< 0.005	mg/l N	INAB	
Chloride mg/L		EW175	1.0		16	mg/L	INAB	
Sulphate mg/L		EW175	1.0		11	mg/L	INAB	
Metals-Dissolved								
Cadmium-Dissolved		EW188	0.1		<0.1	ug/L	INAB	
Calcium-Dissolved		EW188	1.0		26.5	mg/L	INAB	
Copper-Dissolved		EW188	0.003		< 0.003	mg/L	INAB	
Iron-Dissolved		EW188	20		950	ug/L		
Lead-Dissolved		EW188	0.3		<0.3	ug/L	INAB	
Magnesium-Dissolved		EW188	0.3		5.0	mg/L	INAB	
Manganese-Dissolved		EW188	1.0		270	ug/L		
Mercury-Dissolved		EW188	0.02		< 0.02	ug/L	INAB	
Potassium-Dissolved		EW188	0.2		4.9	mg/L	INAB	
Sodium-Dissolved		EW188	0.5		9.2	mg/L	INAB	
Zinc-Dissolved		EW188	1.0		2.8	ug/L	INAB	
Metals-Total								
Chromium-Total		EW187	3.0		4.1	ug/L	INAB	
Suspended Solids								
Suspended Solids		EW013	5		109	mg/L	INAB	
Temperature (Site)								
Temperature (Site)		Default	0.0		Not Analyzed	Deg C		
Titralab					-	-		
pH		EW153	0.0		7.2	pH Units	INAB	
Conductivity @20 DegC		EW153	25		205	uscm-1@20	INAB	
Alkalinity Total (R2 pH4.5)		EW153	10		74	mg/L CaCO3	INAB	

Signed :

13/11/2017

Domenico Giliberti-Technical Manager

mento

NOTES

 This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested.
 SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test, a blank field indicates not accredited

6."*" Indicates sub-contract test

flibert.

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email:info@elsltd.com

Contact Name	Gareth O Brien	Report Number	119265 - 1	
Address	Boylan Engineering & Environmental	Sample Number	119265/003	
	Ltd.	Date of Receipt	02/11/2017	
	Main Street,	Date Started	02/11/2017	
Tel No	046 9286000	Received or Collected	Courier	
Customer PO	Per Batch	Date of Report	13/11/2017	
Quotation No	QN006417	Sample Type	Surface Waters	
Customer Ref	BJD SW 1			

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	OOS
Total Pho	sphorus-TP								
Total Pho	osphorus-TP		EW146	0.01		0.45	mg/l P	INAB	

Signed :

1. This Report shall not be Reproduced except in full, without the

permission of the laboratory and only relates to the items tested.

3.OOS=Result which is outside specification highlighted as OOS-A

2.SPEC= Allowable limit or parametric value

flibert. Duento

13/11/2017

NOTES

Domenico Giliberti-Technical Manager

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test, a blank field indicates not accredited

6."*" Indicates sub-contract test

5.0 APPENDIX -HISTORICAL RESULTS

				Surface Wa	ater Histori	cal Results			
	Parameter	Ammonia	рН	Cond	BOD	COD	Total Suspended Solids	Cl	DO
	Units	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	mg/l	mg/l
SW1	Second biannual 2017	0.033	7.2	205	11	68	109	16	6
	First biannual 2017	0.079	7.3	284	1.7	21	<5	17	7
	Second biannual 2016	0.112	7	239	32	61	138	12	<1
	First biannual 2016	0.2	7.5	191	1.5	19	9	12	10
	Second biannual 2015	0.071	7.5	304	<1	19	<5	15	9
	Second biannual 2017	0.035	7.1	205	<2.0	35	<5	16	5
SW2	First biannual 2017	0.069	7.2	286	1.7	23	<5	17	6
W2	Second biannual 2016	0.127	7.1	244	9.5	52	26	13	<1
	First biannual 2016	0.29	7.6	198	1.4	21	13	12	10
	Second biannual 2015	0.077	7.3	300	2.7	21	34	16	8
	Second biannual 2017	1.047	7	438	<2.0	46	13	17	5
Discharge Cap	First biannual 2017	0.538	7.8	318	1.7	14	<5	6.8	9
	Second biannual 2016	0.353	7.1	540	<2	19	11	3.5	7
	First biannual 2016	1.2	7.5	191	<1	19	<5	7.6	6
	Second biannual 2015	7.9	7.3	708	<2.6	19	8	20	4
S.I No. 294/1989 A1		0.2	≥5.5 and ≤8.5	1000	5		50	250	>60%

WASTE WATER MONITORING REPORT BALLYJAMESDUFF LANDFILL W0093-01 BI-ANNUAL 2 OF 2 2017

Document No.: CCC-03-01-07-03-Rev 1

Project No.: CCC-03-01

Client: Cavan County Council

Project Name: Ballyjamesduff Landfill Derrylurgan Ballyjamesduff Co. Cavan

Summary o	Summary of Document Revisions									
Rev No.	Date Revised	Revision Description								

Prepared by	Terry Keating	23/01/18
Approved by	Gareth O'Brien	24/01/18

COPYRIGHT © BOYLAN ENGINEERING (2018)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

CONTENTS

1	sur	nmary	.3
2	Int	roduction	.3
3	Me	thodology	.3
	3.1	Environmental Monitoring and Sampling	.3
	3.2	Laboratory Analysis	.4
	3.3	Weather Report	.4
	3.4	Monitoring Locations	.4
4	Sur	nmary of Results	. 5
5	Dis	cussion of Results	.6
	5.1	Discussion of Results	.6
6	Со	nclusion	.6

LIST OF TABLES

Table 1 Weather Report Bi -annual 2 of 2 2017	4
Table 2 Monitoring Locations Waste water Bi-annual 2 of 2 2017	4
Table 3 Bi -annual 2 of 2 2017 Waste Water Monitoring Analytical Results	5

1 SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out environmental monitoring at Ballyjamesduff Landfill (W0093-01), Derrylurgan, Ballyjamesduff, Co Cavan on a bi-annual basis 2017. This report documents the finding from the waste water (leachate) sampling and monitoring undertaken at Ballyjamesduff Landfill on 01st November 2017 (bi-annual 2 of 2).

2 INTRODUCTION

Ballyjamesduff landfill is situated approximately 600 m north of Ballyjamesduff town centre in the townland of Derrylurgan. The site was in operation from the 1960's and comprises some 1.62 hectares. The site was originally peat land which was stripped for commercial purposes and was then operated as a traditional landfill until its closure in March 2002. A waste licence (W0093-01) was issued by the Environmental Protection Agency (EPA) after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the surface water, sampling programme conducted on site and also summarises findings and analytical results for Bi-annual 2 of 2 2017. The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behaviour with expected/modelled behaviour
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Ballyjamesduff landfill is situated in the R21 Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R21 Zones are acceptable subject to guidance in the EPA Landfill Design Manual or conditions of a waste license - (EPA, Groundwater Protection Responses for Landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

3 METHODOLOGY

3.1 Environmental Monitoring and Sampling

The following procedure was conducted by Boylan Engineering to ensure accurate leachate monitoring:

- ISO 5667: Guidance on sampling of groundwater is adhered to.
- Prior to sampling, the depth of water in wells was measured by dipping.
- Sampling was conducted using a Waterra inertial lift pump and associated tubing, pumping water directly from the borehole to the appropriate sampling bottles.
- Designated tubing was used at each location.

Wastewater Monitoring Report: Ballyjamesduff

- Having obtained a representative sample the following parameters are measured on-site using a Hanna HI 98129 combination waterproof high accuracy analyser and a Hanna 9164
 - meter, respectively.
 - Conductivity
 - o Temperature
 - о рН

3.2 Laboratory Analysis

- Samples were sent to Environmental Laboratory Service (ELS) (Ireland) for analysis of the required parameters in designated cool boxes with ice packs. These boxes ensure that samples are maintained at a consistent temperature between 0° C and 4° C on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0° C and 4° C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 2.

3.3 Weather Report

The weather report for Bi-annual 2 of 2 2017 are presented in the tables below.

Table 1 Weather Report Bi -annual 2 of 2 2017

REPORTS FROM BALLYHAISE (A)										
Date	Rainfall	Max	Min		Mean Wind Speed	Maximum Gust	Sunshine			
	(mm)	Temp	Temp	(°C)	· /	(if >= 34 knots)	(hours)			
		(°C)	(°C)							
01/11/2017	0.3	13.9	9.2	6.4	5.3					

3.4 Monitoring Locations

Waste water (leachate) samples were retrieved from MW7 and MW8 during the Bi-annual 2 of 2 monitoring round. MW6 was unable to be accessed during the monitoring round due to a blockage. The monitoring locations presented in Table 2 below.

Table 2 Monitoring Locations Waste water Bi-annual 2 of 2 2017

Bi-annual 2 of 2 2017										
	Cover Level M Water Level M Water Depth M									
Monitoring Well	Sample Type	(OD Malin Head)	(OD Malin Head)	(Top of Casing)	National Grid Co-Ordinates					
MW6	Leachate	100.71	-	n/a	TBC					
MW7	Leachate	97.54	-	4.1	TBC					
MW8	Leachate	96.56	-	3.42	N291346.99 E252041.22					

4 SUMMARY OF RESULTS

A summary of the waste water (leachate) monitoring results for Bi annual 2 of 2 2017 are presented in Table 3 below and Appendix 1.

Table 3 Bi -annual 2 of 2 2017 Waste Water Monitoring Analytical Results

Report Nu	umber	119226													
Monitorin	ng Date:	01/11/2017													
Method Number			EW154M	EW154M	EW153	EW153	EW001	EW096	EW15	4M-1	MIC	2133	EW137	DEFAULT	EW146
Para	meter	Visual Inspection	Ammonia (as N)	TON (as N)(Calc)	рН	Conductivity @20 DegC	BOD	COD	Chloride	Sulphate	E. Coli	Total Coliforms	Fluoride	Total Cyanide High	Total Phosphorus- TP
Ur	nits		mg/l N	mg/l N	pH Units	uscm-1@20	mg/L	mg/L	mg/L	mg/L	MPN/100ml	MPN/100ml	mg/L	ug/L	mg/l P
Limit of I	Detection	-	0.007	0.138	0.3	25	1	8	2.6	1	0	0	0.1	10	0.01
Date 1	Festing	1.11.17							2.11.17						
ELS Ref	Client Ref														
119226	MW7	Straw	24	<0.69	7.1	1271	35	347	23	<5.0	<10	51	< 0.10	<9	1
119226	MW8	Straw	39	<0.69	7.1	1483	47	249	35	5.7	<10	1198	<0.10	<9	1.1
Inerim Gu	uide Value		0.15	-	≥6.5&≤9.5	1000	-	-	30	200	0	0	1	0.01	-

Method	Number		EM130											
Parameter		Chromium-	Iron-	Manganese-	Potassium-	Sodium-	Cadmium-	Calcium-	Copper-	Lead-	Magnesium-	Mercury-	Zinc-	Boron-
	neter	Total	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved
Ur	nits	ug/L	ug/L	ug/L	mg/L	mg/L	ug/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	mg/L
Limit of I	Detection	1	20	1	0.2	0.5	0.1	1	0.003	0.3	0.3	0.02	1	0.02
Date 1	Testing						2.	11.17						
ELS Ref	Client													
ELS KEI	Ref													
119226	MW7	28.9	61000	4000	20.3	21.6	<0.1	206.8	< 0.003	<0.3	40.7	<0.02	2.2	0.00034
119226	MW8	14.3	29000	1600	39.8	36.8	<0.1	210.5	< 0.003	<0.3	43.2	0.02	2.5	0.4
Inerim Guide Value		30	200	50	5	150	5	200	0.03	10	50	1	100	1

Exceedance

NOTES

1 Sub-contract analysis denoted by *

2 ND = Concentration was below the limit of detection

As there are no limits set in the waste licence for leachate, results are compared to the Interim Guideline Values (IGVs) for the protection of Groundwater in Ireland, where availab

Form No.: CCC-03-01-07-03 Rev.:1

5 DISCUSSION OF RESULTS

5.1 Discussion of Results

Leachate consists of water that has become contaminated as it passes through a waste disposal site. It contains insoluble waste constituents which have not degraded chemically or biochemically. This leachate can cause a threat to surrounding surface and groundwater. The composition of leachate will vary depending on the age of the landfill. As there are no limits set in the waste licence for leachate, results are compared to the Interim Guideline Values (IGVs) for the protection of Groundwater in Ireland, where available. Results in bold italics indicate where the IGVs has been exceeded.

Leachate samples were retrieved from MW7 and MW8 during monitoring. As previously noted, MW6 was unable to be accessed due to a blockage and remedial work is required. Results show that the IGVs were exceeded on this occasion at both monitoring wells for the ammonia, conductivity, total coliforms, iron, manganese and potassium, calcium. Additionally, chloride marginally exceeded the IGV at leachate monitoring well MW8. When compared to historical data, these results are consistent with those obtained in previous monitoring events. Historical leachate results are presented in Appendix 2.

6 CONCLUSION

The leachate results obtained are relatively consistent with previous monitoring events and do not show any signs of dramatic exceedances. Therefore there is no evidence of any major negative environmental impact associated with this landfill. Information relating to previous results can be seen in the historical data tables in Appendix 2.

ELS LTD INAB ACCREDITATION SCHEDULE SUMMARY SHEET

Miscellaneous (P,G,W,S) Other VOC's EO025 (P,G,S,W) Ammonia/Ammonium 0.007-1mg/l N EW154 Bromomethane 0.5 - 35 µg/l Chloride 2.6-250 mg/l EW154 Ethyl Ether/Diethyl Ether 0.5 - 35 µg/l Flouride 0.1 - 2 mg/l EW137 11 Dichloroethene 0.5 - 35 µg/l COD 8-1500 mg/l EW094 Iodomethane/Mehyl Iodide 0.5 - 35 µg/l Carbon Disulphide 0.5 - 35 µg/l Nitrate 0.12-50 mg/l N EW154 Nitrite 0.013-1 mg/l N EW154 Allyl Chloride 0.5 - 35 µg/l pH 4 - 10 pH Units EW153 Methylene Chloride/DCM 5.0 - 35 µg/l Phosphate 0.009-1 mg/l P EW154 2-Propenenitrile/Acrylonitrile 2.0 - 35 µg/l Alkalinity 10-1000mg/l EW153 Chlormethyl Cyanide 0.5 - 35 µg/l TOC 0.25-100mg/l EW123 Hexachlorobutadiene 0.5 - 35 µg/l BOD 1-1300mg/l EW001 Trans-1,2 Dichloroethene 0.5 - 35 µg/l Total Nitrogen 1-100mg/l N EW140 MtBE 0.5 - 35 µg/l Total Phosphorous 0.01-40 mg/l P EW143 11 Dichloroethane 0.5 - 35 µg/l Suspended Solids 5-1000mg/l EW013 Cis-12 Dichloroethene 0.5 - 35 µg/l Dissolved Oxygen 1 to 10 mg/l EW043 Methyl Acrylate 5.0 - 35 µg/l Conductivity 25-6000 us/cm EW154 Bromochloromethane 0.5 - 35 µg/l Tetrahydrofuran 5.0 - 35 µg/l Miscellaneous (P,G,S) Bromate 1 to 50ug/l BRO3 EW137 111 Trichloroethane 0.5 - 35 µg/l 1-Chlorobutane 0.5 - 35 µg/l Colour 2.5-50mg/l PtCCo EW154 Sulphate 1-250mg/l SO4 EW154 Carbon Tetrachloride 0.5 - 35 µg/l Total Dissolved Solids 15-1000mg/l EW046 11 Dichloropropene 0.5 - 35 µg/l Total Hardness 3-330mg/l CaCO3 EM099 12 Dichloropropane 0.5 - 35 µg/l Dibromomethane 0.5 - 35 µg/l Total Oxidised Nitrogen 0.138-51mg/l N EW051 Methyl Methacrylate 0.5 - 35 µg/l Turbidity 0.11-150 NTU EW136 TKN Calculation 1-49 mg/l EW010 13 Dichloropropene, cis 2.0 - 35 µg/l Metals EM130 (P,G,S) MIBK/4 Methyl 2 Pentanone 2.0 - 35 µg/l Aluminium 5.0 - 500 µg/l Toluene 0.5 - 35 µg/l Antimony 0.1 - 10µg/l 13 Dichloropropene,trans 2.0 - 35 µg/l Arsenic 0.2 - 20µg/l Ethyl Methacrylate 2.0 - 35 µg/l Barium 1.0 - 100µg/l 112 Trichloroethane 0.5 - 35 µg/l Boron 0.02 - 2mg/l 13 Dichloropropane 0.5 - 35 µg/l Cadmium 0.1 - 10µg/l 2 Hexanone 1.0 - 35 µg/l 12 Dibromoethane 0.5 - 35 µg/l Calcium 1.0 - 100mg/l Chromium 1.0 - 100µg/l Chlorobenzene 0.5 - 35 µg/l Cobalt 1.0 - 100µg/l 1112 Tetrachloroethane 2.0 - 35 µg/l Copper 3 - 4000µg/l Ethyl Benzene 0.5 - 35 µg/l Iron 20.0 - 500µg/l m & p Xylene 0.5 - 35 μg/l Lead 0.3 - 30µg/l O Xylene 0.5 - 35 μg/l Magnesium 0.3 - 20mg/l Stryene 2.0 - 35 µg/l Manganese 1.0 - 100µg/l Isopropyl Benzene 0.5 - 35 µg/l Mercury 0.02 - 2µg/l Bromobenzene 0.5 - 35 µg/l Molybdenum 1.0 - 100µg/l 1122 Tetrachloroethane 0.5 - 35 µg/l Nickel 0.5 - 50µg/l 123 Trichloropropane 2.0 - 35 µg/l Potassium 0.2 - 20mg/l Propyl Benzene 0.5 - 35 µg/l Selenium 0.2 - 20µg/l 2-Chlorotoluene 0.5 - 35 µg/l Sodium 0.5 - 50mg/l 4 Chlorotoluene 0.5 - 35 µg/l Strontium 1.0 - 100µg/l 135 Trimenthylbenzene 0.5 - 35 µg/l Tin 1.0 - 100µg/l Tert Butyl Benzene 0.5 - 35 µg/l Vanadium 1.0 - 100µg/l 124 Trimethlbenzene 0.5 - 35 µg/l Zinc 1.0 - 100µg/l Sec Butyl Benzene 0.5 - 35 µg/l SI439 Potable Water VOCs & THM 13 Dichlorobenzene 0.5 - 35 µg/l EO025 (P,G,S,W) P Isopropyltoluene 0.5 - 35 µg/l Benzene 0.1-35 µg/l 14 Dichlorobenzene 0.5 - 35 µg/l 1.2-Dichloroethane 0.1-35 µg/l 12 Dichlorobenzene 0.5 - 35 µg/l Tetrachloroethene 0.1-35 µg/l N Butyl Benzene 0.5 - 35 µg/l Trichloroethene 0.1-35 µg/l Hexachloroethane 5.0 - 35 µg/l Chloroform 1.0-150 µg/l 12 Dibromo 3Chloropropane 2.0 - 35 µg/l Bromoform 1.0-35 µg/l 124 Trichlorobenzene 0.5 - 35 µg/l Dibromochloromethane 1.0-35 µg/l 123 Trichlorobenzene 0.5 - 35 µg/l Bromodichloromethane 2.0-35 µg/l

Other VOC's EO025 (P,G,S) 22 Dichloropropane 0.5 - 35 µg/l PAH EO129 (P,G,S) Range 0.01 - 0.2 µg/l Acenaphthene Benzo (a) Anthracene Benzo (a) Pyrene Benzo (b) Fluoranthene Benzo (ghi) Perylene Benzo (k) Fluoranthene Chrysene Dibenzo (ah) Anthracene Fluoranthene Fluorene Indeno (123-cd) Pyrene Phenanthrene Pyrene Acid Herbicides (P,G,S) Range 0.01 - 0.2 µg/l 2,4,5-Т Н 24-DH 2,4-DB H Organophosphorus Pesticides(P,G,S) Range 0.01 - 0.2 µg/l Famphur OP Methyl Parathion OP Parathion OP Organochlorine Pesticides (P,G,S) Range 0.01 - 0.2 µg/l Aldrin BHC Alpha isomer OC BHC Beta isomer OC BHC Delta isomer OC Dieldrin OC Endosulphan Alpha isomer OC Endosulphan Beta isomer OC Endosulphan Sulphate OC Endrin OC Heptachlor Epoxide OC Heptachlor OC Lindane OC P,P' DDE OC P.P'-DDD OC

P,P'-DDT OC

Notes

1.Sample Matrix:P=Potable Water (Drinking), G=Ground Water, S=Surface Water, W=Waste Water

3.0 APPENDIX - ANALYSIS RESULTS

ENVIRONMENTAL LABORATORY SERVICES

EXCELLENCE THROUGH ACCREDITATION

Contact Name Address	Gareth O Brien Boylan Engineering & Environmental Ltd. Main Street,
Tel No	046 9286000
Customer PO	Per Batch
Quotation No	QN006417
Customer Ref	MW 7 WW

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name	Gareth O Brien	Report Number	119266 - 1	
Address	Boylan Engineering & Environmental	Sample Number	119266/001	
	Ltd.	Date of Receipt	02/11/2017	
	Main Street,	Date Started	02/11/2017	
Tel No	046 9286000	Received or Collected	Courier	
Customer PO	Per Batch	Date of Report	17/11/2017	
Quotation No	QN006417	Sample Type	Waste Water	
Customer Ref	MW 7 WW			

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Ammonia									
Ammonia	a (as N)		EW154M-1	0.035		24	mg/l N	INAB	
AQ2-UP1									
Nitrate (a	s N)		EW154M-1	0.60		< 0.60	mg/l N	INAB	
Nitrite (a	s N)		EW154M-1	0.065		< 0.065	mg/l N	INAB	
TON (as	N)		EW154M-1	0.69		<0.69	mg/l N		
AQ2-UP2									
Chloride			EW154M-1	13		23	mg/L	INAB	
Sulphate			EW154M-1	5.0		<5.0	mg/L	INAB	
BOD									
BOD			EW001	1		35	mg/L	INAB	
COD									
COD			EW094	8		347	mg/L	INAB	
Coliforms									
Total Col	iforms		MIC133	10		51	MPN/100ml		
E. Coli			MIC133	10		<10	MPN/100ml	INAB	
	natography								
Fluoride			EW137	0.10		< 0.10	mg/L	INAB	
Metals-Dis	ssolved								
Boron-Di			EW188	0.02		0.34	ug/L		
	Dissolved		EW188	1.0		206.8	mg/L		
Iron-Diss	olved		EW188	20		61000	ug/L		
Magnesiu	ım-Dissolved		EW188	0.3		40.7	mg/L		
Mangane	se-Dissolved		EW188	1.0		4000	ug/L		
Potassiun	n-Dissolved		EW188	0.2		20.3	mg/L		
Sodium-I	Dissolved		EW188	0.5		21.6	mg/L		
Cadmium	n-Dissolved		EW188	0.1		<0.1	ug/L		
Copper-E	Dissolved		EW188	0.003		< 0.003	mg/L		
Lead-Dis	solved		EW188	0.3		<0.3	ug/L		
Zinc-Diss	solved		EW188	1.0		2.2	ug/L		
Mercury-	Dissolved		EW188	0.02		< 0.02	ug/L		
Metals-To	tal								
Chromiu	m-Total		EW187	3.0		28.9	ug/L	INAB	
T d	(01)								

Temperature (Site)

filibert.

Signed :

Domenico Giliberti-Technical Manager

Dhento

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

6."*" Indicates sub-contract test

17/11/2017

ENVIRONMENTAL LABORATORY SERVICES

EXCELLENCE THROUGH ACCREDITATION

LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: <u>www.elsltd.com</u> email:<u>info@elsltd.com</u>

ENVIRONMENTAL

Contact Name Address	Gareth O Brien Boylan Engineering & Environmental Ltd. Main Street,	Report Number Sample Number Date of Receipt Date Started	119266 - 1 119266/001 02/11/2017 02/11/2017	
Tel No	046 9286000	Received or Collected	Courier	
Customer PO	Per Batch	Date of Report	17/11/2017	
Quotation No	QN006417	Sample Type	Waste Water	
Customer Ref	MW 7 WW			

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Temperature	e (Site)								
Temperature	e (Site)		Default	0.0		Not Analyzed	Deg C		
Titralab									
pН			EW153			7.1	pH Units	INAB	
Conductivity	/ @20 DegC		EW153	25		1271	uscm-1@20	INAB	
Total Cyanic	le High (Sub)								
Total Cyanic	de High	*	Default	9		<9	ug/L	YES	
Total Phospl	horus-TP								
Total Phospl	horus-TP		EW146	0.1		1.0	mg/l P	INAB	

Signed :

flibert. Shen Co

17/11/2017

Domenico Giliberti-Technical Manager

NOTES

1.This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test, a blank field indicates not accredited 6."*" Indicates sub-contract test

Page 2 of 4

ENVIRONMENTAL LABORATORY SERVICES

EXCELLENCE THROUGH ACCREDITATION

Contact Name Address	Gareth O Brien Boylan Engineering & Environmental Ltd. Main Street,
Tel No	046 9286000
Customer PO	Per Batch
Quotation No	QN006417
Customer Ref	MW 8 WW

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email:info@elsltd.com

Report Number

Sample Number

Date of Receipt

Date of Report

Sample Type

Received or Collected

Date Started

119266 - 1 119266/002 02/11/2017 02/11/2017

Courier 17/11/2017 Waste Water

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	OOS
Ammonia									
Ammonia	(as N)		EW154M-1	0.035		39	mg/l N	INAB	
AQ2-UP1									
Nitrate (as	N)		EW154M-1	0.60		< 0.60	mg/l N	INAB	
Nitrite (as	N)		EW154M-1	0.065		< 0.065	mg/l N	INAB	
TON (as N	[)		EW154M-1	0.69		<0.69	mg/l N		
AQ2-UP2									
Chloride			EW154M-1	13		35	mg/L	INAB	
Sulphate			EW154M-1	5.0		5.7	mg/L	INAB	
BOD									
BOD			EW001	1		47	mg/L	INAB	
COD									
COD			EW094	8		249	mg/L	INAB	
Coliforms							U		
Total Colif	forms		MIC133	10		1198	MPN/100ml		
E. Coli			MIC133	10		<10	MPN/100ml	INAB	
Ion Chrom	atography								
Fluoride	0 I V		EW137	0.10		< 0.10	mg/L	INAB	
Metals-Diss	solved								
Boron-Dis	solved		EW188	0.02		0.40	ug/L		
Calcium-D	Dissolved		EW188	1.0		210.5	mg/L		
Iron-Disso	lved		EW188	20		29000	ug/L		
Magnesiur	n-Dissolved		EW188	0.3		43.2	mg/L		
Manganese	e-Dissolved		EW188	1.0		1600	ug/L		
Potassium	-Dissolved		EW188	0.2		39.8	mg/L		
Sodium-D	issolved		EW188	0.5		36.8	mg/L		
Cadmium-	Dissolved		EW188	0.1		<0.1	ug/L		
Copper-Di	ssolved		EW188	0.003		< 0.003	mg/L		
Lead-Disso	olved		EW188	0.3		<0.3	ug/L		
Zinc-Disso			EW188	1.0		2.5	ug/L		
Mercury-D	Dissolved		EW188	0.02		0.02	ug/L		
Metals-Tot	al								
Chromium	-Total		EW187	3.0		14.3	ug/L	INAB	
Temperatu	re (Site)								
Temperatu			Default	0.0		Not Analyzed	Deg C		

flibert.

Signed :

17/11/2017

Domenico Giliberti-Technical Manager

Duen Co

NOTES

 This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested.
 SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

6."*" Indicates sub-contract test

ENVIRONMENTAL LABORATORY SERVICES

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email:info@elsltd.com

Contact Name	Gareth O Brien	Report Number	119266 - 1	
Address	Boylan Engineering & Environmental	Sample Number	119266/002	
	Ltd.	Date of Receipt	02/11/2017	
	Main Street,	Date Started	02/11/2017	
Tel No	046 9286000	Received or Collected	Courier	
Customer PO	Per Batch	Date of Report	17/11/2017	
Quotation No	QN006417	Sample Type	Waste Water	
Customer Ref	MW 8 WW			

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Titralab									
pН			EW153			7.1	pH Units	INAB	
Conductivi	ty @20 DegC		EW153	25		1483	uscm-1@20	INAB	
Total Cyani	ide High (Sub)								
Total Cyan	ide High	*	Default	9		<9	ug/L	YES	
Total Phosp	ohorus-TP								
Total Phosp	ohorus-TP		EW146	0.1		1.1	mg/l P	INAB	

Signed :

flibert. Duen Co

17/11/2017

Domenico Giliberti-Technical Manager

NOTES

1.This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test, a blank field indicates not accredited 6."*" Indicates sub-contract test

4.0 APPENDIX - HISTORICAL RESULTS

		Lechate historical Results						
	Parameter	Ammonia	TON	рН	Cond	BOD	COD	Cl
	Units	mg/l N	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l
WELL MW 7	Second biannual 2017	24	<0.69	7.1	1271	35	347	23
	First Biannual 2017	-	-	-	-	-	-	-
	Second biannual 2016	34	0.83	7.3	1422	27	30	43
	First Biannual 2016	17	<0.69	7	1035	21.9	65	15
	Second biannual 2015	16	<0.69	6.9	1044	<10	69	13
	Second biannual 2016	39	<0.69	7.1	1483	47	249	35
WELL MW 8	First Biannual 2017	30	<0.69	7.1	1361	29	42	42
	Second biannual 2016	19	<0.69	6.7	1094		30	21
	First Biannual 2016	31	<0.69	7.5	1362	18.9	46	37
	Second biannual 2015	33	1.1	7.4	1447	57	89	37
Interim Guide Values		0.15	NAC	≥6.5&≤9.5	1000			30

GAS MONITORING REPORT BALLYJAMESDUFF LANDFILL W0093-01 Quarter 3 & 4 2017

Document No.: CCC-03-01-07-03-Rev 1

Project No.: CCC-03-01

Client: Cavan County Council

Project Name: Ballyjamesduff Landfill Derrylurgan Ballyjamesduff Co. Cavan

Summary of Document Revisions							
Rev No.	Date Revised	Revision Description					

Prepared by	Terry Keating	23/01/18
Approved by	Gareth O'Brien	24/01/18

COPYRIGHT © BOYLAN ENGINEERING (2018)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

CONTENTS

1	Sur	nmary	3						
2	Int	Introduction							
3	Methodology3								
	3.1								
	3.2	Weather Report	4						
	3.3	Monitoring Locations	5						
4	Sur	nmary of Results	6						
5	Dis	cussion of Results	7						
	5.1	Discussion of Results	7						
6	Co	nclusion	7						

LIST OF TABLES

Table 1 Weather Report Quarter 3 of 4 2017	4
Table 2 Weather Report Quarter 4 of 4 2017	4
Table 3 Gas Monitoring Locations Quarter 3 of 4 of 2017	5
Table 4 Gas Monitoring Locations Quarter 4 of 4 2017	5
Table 5 Quarter 3 of 4 2017 Gas Monitoring Analytical Results	6
Table 6 Quarter 4 of 4 2017 Gas Monitoring Analytical Results	6

1 SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out environmental monitoring at Ballyjamesduff Landfill (W0093-01), Derrylurgan, Ballyjamesduff, Co Cavan for Quarter 3 (Q3) and Quarter 4 (Q4) 2017. This report documents the finding from the gas sampling and monitoring undertaken at Ballyjamesduff Landfill on 29th of August 2017 (Q3) and 14th of December 2017 (Q4).

2 INTRODUCTION

Ballyjamesduff landfill is situated approximately 600m from Ballyjamesduff town centre in the town land of Derrylurgan. The site was in operation from the 1960's and comprises some 1.62 hectares. The site was originally peat land which was stripped for commercial purposes and was then operated as a traditional landfill until its closure in March 2002. A waste licence (W0093-01) was issued by the Environmental Protection Agency (EPA) after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the landfill gas sampling programme conducted on site and also summarises findings and analytical results for Q3 and Q4 of 2017. The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behaviour with expected/modelled behaviour
- Establish a reliable database of information for the landfill throughout its life

Landfill gas is generated by decomposition of organic materials in waste deposited at landfills. Typically, the gas is a mixture of Methane (up to 65% by volume) Carbon Dioxide (up to 35% per volume). It can also contain minor constituents at low concentrations (typically less than 1% volume contains 120-150 trace constituents). The landfill directive requires that appropriate measures are taken in order to control the accumulation and migration of landfill gas.

3 METHODOLOGY

3.1 Environmental Monitoring and Sampling

The following procedure is conducted by Boylan Engineering to ensure accurate gas monitoring:

- EPA, Landfill Manual, landfill monitoring 2nd Edition is adhered to.
- Prior to sampling, a dip meter is used to measure water levels, if present, in the wells.
- GA 2000 landfill gas analyser is used to measure the gas levels.
- The analyser is purged and connected to the sealed well monitoring nozzle.
- The monitoring nozzle is turned to the open position and the analyser measured the gas levels at 60 second intervals for no less than 10 minutes. The analyser is allowed to run for this period of time to allow for a representative average to be obtained.

- All data is recorded on the Gas Analysis field sheet.
- The instrument is removed after 10 minutes and the monitoring nozzle returned to the closed position.
- The GA2000 is switched off between each monitoring location so as to allow the instrument to purge.
- This process is repeated at each monitoring location.
- Data for the GA 2000 was downloaded in the Boylan Engineering office.

3.2 Weather Report

The weather report for Q3 and Q4 gas monitoring are presented in the Table 1 and Table 2 below.

Table 1 Weather Report Quarter 3 of 4 2017

REPORTS FRO	REPORTS FROM BALLYHAISE (A)									
Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind Speed	Maximum Gust	Sunshine			
	(mm)	Temp	Temp	(°C)	(knots)	(if >= 34 knots)	(hours)			
		(°C)	(°C)							
29/08/2017	4.2	13.9	8.6	3.3	4.2					

Table 2 Weather Report Quarter 4 of 4 2017

REPORTS FROM BALLYHAISE (A)									
Date	Rainfall	Max	Min	Min	Mean Wind Speed	Maximum Gust	Sunshine		
	(mm)	Temp	Temp	(°C)	(knots)	(if >= 34 knots)	(hours)		
		(°C)	(°C)						
14/12/2017	10.4	5.6	1	-0.4	9.3				

3.3 Monitoring Locations

The gas monitoring locations for Q3 and Q4 of 2017 are presented in the Tables 3 and Table 4 below.

Table 3 Gas Monitoring Locations Quarter 3 of 4 of 2017

Quarter 3 2017									
Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co-Ordinates				
MW1	Gas	94.92	94.92		N291352.31 E252020.68				
MW2	Gas	92.92	92.92		N291377.38 E252082.84				
MW5	Gas	92.84	-	n/a	ТВС				
MW12	Gas	94.38	-	n/a	N291236.30 E252110.10				
MW13	Gas	94.69	-	n/a	ТВС				
MW14	Gas	98.77	-	n/a	N291263.92 E252131.54				
MW15	Gas	93.11	-	n/a	TBC				

Table 4 Gas Monitoring Locations Quarter 4 of 4 2017

Q4 2017								
Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co-Ordinates			
MW1	Gas	94.92	94.92		N291352.31 E252020.68			
MW2	Gas	92.92	92.92		N291377.38 E252082.84			
MW5	Gas	92.84	-	n/a	ТВС			
MW12	Gas	94.38	-	n/a	N291236.30 E252110.10			
MW13	Gas	94.69	-	n/a	ТВС			
MW14	Gas	98.77	-	n/a	N291263.92 E252131.54			
MW15	Gas	93.11	-	n/a	TBC			

4 SUMMARY OF RESULTS

A summary of the gas monitoring results for Q3 and Q4 of 2017 are presented in Table 5 and Table 6 below.

Method		GA 2000	GA 2000	GA 2000	GA 2000	GA 2000	
Parameter		CH4	CO ₂	0 ₂	H ₂ S	Barometric Pressure	Position to waste mass
Units		% v/v	% v/v	%	PPM	mb	
Date T	esting			29/08/20	17		
GA 2000	Client						
Ref	Ref						
1	MW 1	0	0.1	20.72	0	29.62	Outside
3	MW 2	0	0.2	20.5	0	29.62	Outside
7	MW5	0.1	0.1	20.7	0	29.62	Outside
6	MW 12	0.0	0.1	20.7	0	29.6	Inside
2	MW 13	0	0.1	20.32	0	29.62	Outside
4	MW 14	6.3	10.2	13.3	0	29.62	Inside
5	MW 15	0.0	0.3	20.4	0	29.6	Outside
	Limit	1	1.5				
Exceedance,outside waste mass			mass				
NOTEC							
NOTES							
1				21			
2	Limit: Sch	edule C2,	Licence				

Table 6 Quarter 4 of 4 2017 Gas Monitoring Analytical Results

Method		GA 2000	GA 2000	GA 2000	GA 2000	GA 2000	
Parameter		CH4	CO2	02	H ₂ S	Barometric Pressure	Position to waste mass
Un	Units		% v/v	%	PPM	mb	
Date T	esting			14/12/20	17		
GA 2000	Client						
Ref	Ref						
1	MW 1	0	0.1	19.78	0	29.62	Outside
3	MW 2	0	0.1	20.76	0	29.62	Outside
7	MW5	0.1	0.1	19.6	0	29.62	Outside
6	MW 12	0.0	0.1	20.7	0	29.6	Inside
2	MW 13	0	0.1	20.3	0	29.62	Outside
4	MW 14	7.46	10.18	38.16	0	29.62	Inside
5	MW 15	0.0	0.3	20.4	0	29.6	Outside
	Limit	1	1.5				
Ехсеес	Exceedance,outside waste mass						
NOTES							
1	Instrumer	nt Serial N	o: GA 077	21			
2	Limit: Schedule C2, Licence						

5 DISCUSSION OF RESULTS

5.1 Discussion of Results

The rate of gas generation at a landfill site varies through the life of a landfill and is dependent on several factors such as waste type, depths, moisture content, degree of compaction, landfill pH, temperature and the length of time since the waste was deposited. Landfill gas can move in any direction within the waste body and migrate from a site. The potential for gas migration will depend on the gas quality, volume, the site engineering works, geological characteristics of the surrounding strata and on man-made pathways such as sewers and drains.

Results obtained from monitoring during Q3 and Q4 of 2017 are relatively consistent with previous results and as the well is within the waste mass it is not observed as being an exceedance. It is preferable that the results are within the limits stipulated within the licence.

6 CONCLUSION

The results obtained from landfill gas monitoring are also relatively consistent with previous monitoring events and do not show any signs of dramatic exceedances and therefore there is no evidence of any major negative environmental impact associated with this landfill. However, it is important to monitor the trend in exceedance of methane at this landfill and any dramatic increase in the parameter should be regarded as critical. The methane content of landfill gas is flammable, forming potentially explosive mixtures in certain conditions, which raises concern about its uncontrolled migration and release. The next environmental and landfill gas monitoring will be conducted in the Q1 of 2018.

2.0 APPENDIX-HISTORICAL DATA

Method		GA 2000	GA 2000	GA 2000	GA 2000	GA 2000
Parameter Units		CLI	CO ₂	0	H ₂ S	Barometric
		CH ₄		0 ₂		Pressure
		% v/v	% v/v	%	PPM	mb
Client						
Ref	Qtr	-	-	-	-	-
MW 1	Qtr 4 2017	0	0.1	19.78	0	29.62
	Qtr 3 2017	0	0.1	20.72	0	29.62
	Qtr 2 2017	0	0.1	19.76	0	996
	Qtr 1 2017	0	0.1	19.7	0	996
MW 2	Qtr 4 2017	0	0.1	20.76	0	29.62
	Qtr 3 2017	0	0.2	20.5	0	29.62
	Qtr 2 2017	0	0.1	19.58	0	996
	Qtr 1 2017	0	0.1	19.54	0	996
MW 5	Qtr 4 2017	0.1	0.1	19.6	0	29.62
	Qtr 3 2017	0.1	0.1	20.7	0	29.62
	Qtr 2 2017	0.1	0.1	20.28	0	999
	Qtr 1 2017	0.1	0.1	20.16	0	999
MW 12	Qtr 4 2017	0.0	0.1	20.7	0	29.6
	Qtr 3 2017	0.0	0.1	20.7	0	29.6
	Qtr 2 2017	0.0	0.1	20.9	0	994.0
	Qtr 1 2017	0.0	0.1	20.8	0	994.0
MW 13	Qtr 4 2017	0	0.1	20.3	0	29.62
	Qtr 3 2017	0	0.1	20.32	0	29.62
	Qtr 2 2017	0	0.1	21.5	0	996
	Qtr 1 2017	0	0.1	21.28	0	996
MW 14	Qtr 4 2017	7.46	10.18	38.16	0	29.62
	Qtr 3 2017	6.3	10.2	13.3	0	29.62
	Qtr 2 2017	9.32	10.4	13.24	0	995
	Qtr 1 2017	9.5	10.36	13.06	0	995
MW 15	Qtr 4 2017	0	0.32	20.42	0	29.62
	Qtr 3 2017	0	0.3	20.38	0	29.62
	Qtr 2 2017	0.54	0	18.14	0	994
	Qtr 1 2017	0.6	0	17.56	0	994
	Limit	1	2			
Exceed	ance of waste					

NOTES

- 1 Instrument Serial No: GA 07721
- 2 Limit: Schedule C2, Licence