Facility Information Summary

AER Reporting Year

Licence Register Number Name of site Site Location NACE Code Class/Classes of Activity National Grid Reference (6E, 6 N)

A description of the activities/processes at the site for the reporting year. This should include information such as production increases or decreases on site, any infrastructural changes, environmental

2017 W0184-02 Enva Ireland Limited Clonminan Industrial Estate, Portlaoise, Co. Loias 3832 Fourth Schedule - Class 6, Class 7, Class 12, Class 13. 2461 E, 1978 N

Site Performance: The processing activities onsite include waste oil re-processing, treatment of contaminated soil, repacking of oily contaminated wastes, and paint wastes. The site also stores wastes in packages (barrels, ASPs, IBCs, etc.) prior to transfer off site for recovery or disposal. The company continues to demonstrate its commitment towards HSE management standards - the site maintains ISO14001 and OHSAS 18001. This ensures a standard approach is taking to managing activities from an environmental and safety aspect. There were no issues raised during the reporting period regarding maintenance to the standard.

EMP progress: The site completed a licence review on 15.06.2017. Revised monitoring ELVs were introduced. As a result, these will be recorded seperately in this report to demonstrate compliance to

performance which was measured during the reporting year **and an overview of compliance with your licence** <u>listing all</u> <u>exceedances of licence limits (where</u> <u>applicable) and what they relate to e.g. air,</u> <u>water, noise.</u> the limits of the new and old licence. Yard integrity is monitored regularly and repaired as required. The EMP has been updated to include programme of works devised for reduction of odour generation from the site. Complaints received by Enva during the reporting period. Compliance Investigation (Cl001037) remains open. Control measures have been implemented as per correspondance uploaded to EDEN and as set out in the EMP attached. Fluctuations in waste quantities accepted onsite was subject to availability from customers rather than an intentional increase/decrease in waste volumes.

Declaration:

All the data and information presented in this report has been checked and certified as being accurate. The quality of the information is assured to meet licence requirements.

Donal Conroy	31.03.16
Signature Group/Facility manager	Date
(or nominated, suitably qualified and experienced deputy)	

	AIR-summary template	Lic No:	W0184-02
	Answer all questions and complete all tables where relevant		Additional inform
1	Does your site have licensed air emissions? If yes please complete table A1 and A2 below for the current reporting year and answer further questions. If you do not have licenced emissions and do not complete a solvent management plan (table A4 and A5) you <u>do not</u> need to complete the tables	Yes	Dust monitoring results are detailed however they are not emission point points have been added as they are p W0184-02 that was implemented on
	Periodic/Non-Continuous Monitoring		

2	Are there any results in breach of licence requirements? If yes ple TableA1 below	ase provide brief details in the co	mment section of	No	
3	Was all monitoring carried out in accordance with EPA guidance note AG2 and using the basic air monitoring checklist?	Basic air monitoring checklist	AGN2	Yes	

Table A1: Licensed Mass Emissions/Ambient data-periodic monitoring (non-continuous)

										_
Emission reference no:	Parameter/ Substance	Frequency of Monitoring	ELV in licence or any revision therof	Licence Compliance criteria	Measured value	Unit of measurement	Compliant with licence limit	Method of analysis	Annual mass load (kg)	Comments - reason for change in % mass load from previous yea if applicable
	Nitrogon ovides			No 20min mean can exceed the	129.5	5				
A-01	(NOx/NO2)	Annually	N/A	ELV		mg/Nm3	SELECT	EN 14792:2005	526.77	7 N/A
	(01007	Part of the
	Total Organic Carbon (as									licence
A3-52	C)	Monthly	20 mg/Nm ³	Monitoring to occur monthly	0.1	kg/hour	yes	ОТН	1431.384	W0184-02
	Total Organic Carbon (as				0.011					Part of the
A3-53	C)	Monthly	20 mg/Nm ³	Monitoring to occur monthly		kg/hour	ves	отн	253.164	W0184-02
			0,		0.021					Part of the
	Total Organic Carbon (as									licence
A3-55	C)	Monthly	20 mg/Nm ³	Monitoring to occur monthly		kg/hour	yes	ОТН	431.868	3 W0184-02
					0.001					Part of the
	Total Organic Carbon (as		20 (1) 3						17.53	licence
A3-57		IVIONTNIY	20 mg/Nm ²	Monitoring to occur monthly	30.05	kg/hour	yes		17.52	2 W0184-02
DP1		Quarter 1	Ves - 350 mg/m2	vear	50.00	mg/m2/day	Ves	Standard Method	N/A	N/A
			103 330 mg/m2	Monitoring to occur 4 times a	24.04					
DP2	LICENCED	Quarter 1	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	N/A	N/A
				Monitoring to occur 4 times a	42.08	3				
DP3	LICENCED	Quarter 1	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	N/A	N/A
				Monitoring to occur 4 times a	71.12	2				
DP1	LICENCED	Quarter 2	Yes - 350 mg/m2	year	04.40	mg/m2/day	yes	Standard Method	N/A	N/A
		Quarter 2	$V_{00} = 2E0 mg/m^2$	Monitoring to occur 4 times a	24.43	mg/m2/day	Was	Standard Mathad		NI / A
DPZ		Quarter 2	res - 350 mg/m2	Monitoring to occur 4 times a	51.03	ilig/iliz/uay	yes		N/A	N/A
DP3	LICENCED	Quarter 2	Yes - 350 mg/m2	vear	01100	mg/m2/dav	ves	Standard Method	N/A	N/A
				Monitoring to occur 4 times a	28.81	<u> </u>	1		, ,	,
DP1	LICENCED	Quarter 3	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	N/A	N/A
				Monitoring to occur 4 times a	147.13	3				
DP2	LICENCED	Quarter 3	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	N/A	N/A
		Quarter 2	No. 250	Monitoring to occur 4 times a	41.26				N1 (A	N1 / A
DP3	LICENCED	Quarter 3	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	N/A	N/A

2017

rmation

ed on the table below ints. Carbon filter emission e part of the licence on 15/06/2017

AIR-summary template						W0184-02		Year	2017	
				Monitoring to occur 4 times a	40.72	2				
DP1	LICENCED	Quarter 4	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	N/A	N/A
				Monitoring to occur 4 times a	63.96	ò				
DP2	LICENCED	Quareter 4	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	N/A	N/A
				Monitoring to occur 4 times a	51.58	3				
DP3	LICENCED	Quareter 4	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	N/A	N/A

Note 1: Volumetric flow shall be included as a reportable parameter

	AIR-summary template	Lic No:	W0184-02
	Continuous Monitoring		
4	Does your site carry out continuous air emissions monitoring?	No	
	If yes please review your continuous monitoring data and report the required fields below in Table A2 and compare it to its relevant Emission Limit Value (ELV)		
5	Did continuous monitoring equipment experience downtime? If yes please record downtime in table A2 below	No	
6	Do you have a proactive service agreement for each piece of continuous monitoring equipment?	No	
7	Did your site experience any abatement system bypasses? If yes please detail them in table A3 below	No	
	Table A2: Summary of average emissions -continuous monitoring		

	-									
Emission	Parameter/ Substance		Averaging Period	Compliance Criteria	Units of	Annual Emission	Annual maximum	Monitoring	Number of ELV	Comments
reference no:					measurement			Equipment	exceedences in	
								downtime (hours)	current	
		ELV in licence or any							reporting year	
		revision therof								
	SELECT			SELECT	SELECT					
	SELECT				SELECT					
	SELECT				SELECT					
	SELECT				SELECT					
	SELECT				SELECT					

note 1: Volumetric flow shall be included as a reportable parameter.

Table A3: Abatement system bypass reporting tableBypass protocol

Date* Duration** (hours) Location Reason for bypass Impact magnitude Impact magnitude

* this should include all dates that an abatement system bypass occurred

** an accurate record of time bypass beginning and end should be logged on site and maintained for future Agency inspections please refer to bypass protocol link

Year	2017	
	7	
]	

Corrective action

	AIR-summary	template				Lic No:	W0184-02	
	Solvent	use and manageme	nt on site					
8	Do you have a tota	l Emission Limit Value of d	irect and fugitive emis	sions on site? if ye	s please fill out tables A4 and A5			SELECT
	Table A4: Solve Total VOC Emi	ent Management Pla ssion limit value	n Summary	<u>Solvent</u> <u>regulations</u>	Please refer to linked solver complete table 5	nt regulations to and 6		
	Reporting year	Total solvent input on site (kg)	Total VOC emissions to Air from entire site (direct and fugitive)	Total VOC emissions as %of solvent input	Total Emission Limit Value (ELV) in licence or any revision therof	Compliance		
						SELECT	_	
						SELECT		
	Table A5:	Solvent Mass Balan	ce summary					
		(I) Inputs (kg)			(O)	Outputs (kg)		
	Solvent	(I) Inputs (kg)	Organic solvent emission in waste	Solvents lost in water (kg)	Collected waste solvent (kg)	Fugitive Organic Solvent (kg)	Solvent released in other ways e.g. by-	Solvents destro onsite through

	Year	2017	
troyed	Total emission of		
gh .	Solvent to air (kg)		
Total			

AER Monitoring returns summary template-WATER/WASTEWATER(SEWER)		Lic No:	W0184-02	Year	2017
		I	Additional information		
Does your site have licensed emissions direct to surface water or direct to sewer? If yes please complete table W2 and W3 below for the current reporting year and answer further questions. If you do not have licenced emissions you <u>only</u> need to complete table W1 and or W2 for storm water analysis and visual inspections	Yes				
Was it a requirement of your licence to carry out visual inspections on any surface water discharges or watercourses on or near your site? If yes please complete table W2 below summarising <u>only any evidence of contamination noted during visual inspections</u>	No				

Table W1 Storm water monitoring W0184-01

Location reference	Location relative to site activities	PRTR Parameter	Licenced Parameter	Monitoring date	ELV or trigger level in licence or any revision thereof*	Licence Compliance criteria	Measured value	Unit of measurement	Compliant with licence	Comments
SW01	onsite	not applicable	Fats, Oils and Greases	13/04/2017	15 mg/L	All values < ELV	0.01	mg/L	yes	The highest result for the reporting year is recorded in this table.
SW01	onsite	not applicable	рН	15/06/2017	N/A	All values < ELV	8.11	pH units	yes	The highest result for the reporting year is recorded in this table.
SW01	onsite	not applicable	COD	20/06/2017	250 mg/L	All values < ELV	220	mg/L	yes	The highest result for the reporting year is recorded in this table.
SW01	onsite	not applicable	Suspended Solids	02/03/2017	60 mg/L	All values < ELV	54	mg/L	yes	The highest result for the reporting year is recorded in this table.
SW01	onsite	not applicable	Mineral oils	17/05/2017 07/06/2017	5 mg/L	All values < ELV	0.01	mg/L	yes	The highest result for the reporting year is recorded in this table.
SW02	onsite	not applicable	Fats, Oils and Greases	N/A	N/A	All values < ELV	N/A	N/A	N/A	The highest result for the reporting year is recorded in this table.
SW02	onsite	not applicable	рН	08/03/2017	N/A	All values < ELV	8.1	pH units	yes	The highest result for the reporting year is recorded in this table.
SW02	onsite	not applicable	COD	24/02/2017	250 mg/L	All values < ELV	174	mg/L	yes	The highest result for the reporting year is recorded in this table.
SW02	onsite	not applicable	Suspended Solids	09/01/2017	60 mg/L	All values < ELV	72	mg/L	yes	The highest result for the reporting year is recorded in this table.
SW02	onsite	not applicable	Mineral oils	17/05/2017	5 mg/L	All values < ELV	0.1	mg/L	yes	The highest result for the reporting year is recorded in this table.

Table W1.1 Storm water monitoring W0184-02

Location reference	Location relative to site activities	PRTR Parameter	Licenced Parameter	Monitoring date	ELV or trigger level in licence or any revision thereof*	Licence Compliance criteria	Measured value	Unit of measurement	Compliant with licence	Comments
SW01	onsite	not applicable	Fats, Oils and Greases	N/A	N/A	All values < ELV	N/A	mg/L	yes	The highest result for the reporting year is recorded in this table.
SW01	onsite	not applicable	рН	06/11/2017	8.35	All values < ELV	8.22	pH units	yes	The highest result for the reporting year is recorded in this table.
SW01	onsite	not applicable	COD	06/11/2017	111 mg/L	All values < ELV	92	mg/L	yes	The highest result for the reporting year is recorded in this table.
SW01	onsite	not applicable	Suspended Solids	20/11/2017	34 mg/L	All values < ELV	37	mg/L	yes	The highest result for the reporting year is recorded in this table.
SW01	onsite	not applicable	Mineral oils	13/7/2017 10/08/2017 08/09/2017	0.2 mg/L	All values < ELV	0.01	mg/L	yes	The highest result for the reporting year is recorded in this table.
SW02	onsite	not applicable	Fats, Oils and Greases	N/A	N/A	All values < ELV	N/A	N/A	N/A	The highest result for the reporting year is recorded in this table.
SW02	onsite	not applicable	рН	08/09/2017	8.35	All values < ELV	8.32	pH units	yes	The highest result for the reporting year is recorded in this table.
SW02	onsite	not applicable	COD	20/11/2017	78 mg/L	All values < ELV	93	mg/L	yes	The highest result for the reporting year is recorded in this table.
S\W/02				18/07/2017	34 mg/l		90			The highest result for the reporting year is recorded in this

SVV02	onsite	not applicable	Suspended Solids	18/07/2017	34 mg/L	All values < ELV	90	mg/L	yes	table.
SW02	onsite	not applicable	Mineral oils	13/07/2017 10/08/2017 08/09/2017	0.2 mg/L	All values < ELV	0.01	mg/L	yes	The highest result for the reporting year is recorded in this table.

*trigger values may be agreed by the Agency outside of licence conditions

Table W2 Visual inspections-Please only enter details where contamination was observed.

Location Reference	Date of inspection	Description of contamination	Source of contamination	Corrective action	Comments
		not applicable	SELECT		
			SELECT		

Licensed Emissions to water and /or wastewater(sewer)-periodic monitoring (non-continuous)

Was there any result in breach of licence requirements? If yes please provide brief details in the		Table 3 illustrates the period January to June 14th (W0184-01). Table 3.1
comment section of Table W3 below	No	illustrates the period June 15th to December (W0184-02)
Was all monitoring carried out in accordance with EPA		
guidance and checklists for Quality of Aqueous Monitoring External /Internal		
Data Reported to the EPA? If no please detail what areas Lab Quality Assessment of		
require improvement in additional information box <u>checklist</u> <u>results checklist</u>	Yes	

Table W3: Licensed Emissions to water and /or wastewater (sewer)-periodic monitoring (non-continuous) (W0184-01)

Emission	Emission	Deventer				ELV or trigger values in licence or any revision			Unit of		Nothed of		Procedural reference		
reference no:	released to	Parameter/ SubstanceNote 1	Type of sample	Frequency of monitoring	Averaging period	therof ^{Note 2}	Licence Compliance criteria	Measured value	measurement	Compliant with licence	analysis	Procedural reference source	number	Annual mass load (kg)	Comments
FS1	Vastewater/Sewe	рН	composite	Daily	24 hour	6 - 8.5	8 from ten results must be < ELV	9.26	pH units	no (if no please enter details in comments box)	(Electrode)	As per manufacturers guide	SOP 1134		
FS1	Vastewater/Sewe	e Temperature	composite	Daily	24 hour	43	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	39.54	degrees C	yes	Temperature Probe	SCADA	SCADA		
															This was the maximum
FS1	Vastewater/Sewe	e Suspended Solids	composite	Daily	24 hour	400 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	244	mg/L	yes	Gravimetric analysis	APHA / AWWA "Standard Methods"			release. This release was compliant
															according to licence condition
													SOP 1291	316.28	6.10 This was the
							All results < 1.2 times ELV, plus		6		Spectrophotomet	APHA / AWWA "Standard			release. This release was
+51	Vastewater/Sewe	Ammonia (as N)	composite	Weekly	24 hour	80 mg/L	8 from ten results must be < ELV	135	mg/L	yes	ry (Colorimetry)	Methods"		195.99	compliant according to
													SOP 1245		6.10
FS1	Vastewater/Sewe	e Chlorides (as Cl)	composite	Weekly	24 hour	6000 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	4030	mg/L	yes	Titration	APHA / AWWA "Standard Methods"	SOP 1028	9094.93	
		Copper and compounds					All results < 1.2 times FLV, plus					TM30 - Determination of Trace Metal elements by ICP-OES			
FS1	Vastewater/Sewe	(as Cu)	composite	Weekly	24 hour	1 mg/L	8 from ten results must be < ELV	0.04	mg/L	yes	ICP	(Inductively Coupled Plasma - Optical Emission Spectrometry).		0.0670	
												TM30 - Determination of Trace	TM30/PM14		
FS1	Vastewater/Sewe	Lead and compounds (as Pb)	composite	Weekly	24 hour	0.5 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	0.01	mg/L	yes	ICP	Metal elements by ICP-OES (Inductively Coupled Plasma -		0.0190	
												Modified US EPA Method 200.8	TM30/PM14		
		Zinc and compounds (as					All results < 1.2 times ELV. plus					TM30 - Determination of Trace Metal elements by ICP-OES			
FS1	Vastewater/Sewe	Zn)	composite	Weekly	24 hour	1 mg/L	8 from ten results must be < ELV	0.45	mg/L	yes	ICP	(Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9		0.30	
												TM30 - Determination of Trace	TM30/PM14		
FS1	Vastewater/Sewe	Cadmium and compounds (as Cd)	composite	Weekly	24 hour	0.15 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	0	mg/L	yes	ICP	Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry).		0.00	
												Modified US EPA Method 200.10	TM30/PM14		
FS1	Vastewater/Sewe	COD	composite	Daily	24 hour	280Kg/day	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	175.6	mg/L	yes	Spectrophotomet ry (Colorimetry)	APHA / AWWA "Standard Methods"	SOP 1241	8551.25	
FS1	Vastewater/Sewe	Phenols (as total C)	composite	Weekly	24 hour	50 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	31	mg/L	yes	Spectrophotomet ry (Colorimetry)	APHA / AWWA "Standard Methods"	COD 1290	34.41	
FS1	Vastewater/Sewe	sulphate	composite	Weekly	24 hour	1000 mg/L	All results < 1.2 times ELV, plus	34	mg/L	yes	Spectrophotomet	APHA / AWWA "Standard	SUP 1289	20.96	
							8 from ten results must be < ELV				ry (Colorimetry)	Methods" Modified USEPA 8015B method	SOP 1032		
FS1	Vastewater/Sewe	Fats, Oils and Greases	composite	Weekly	24 hour	100 mg/L	All results < 1.2 times ELV, plus	19.72	mg/L	ves	EPH with GC-FID	for the determination of solvent Extractable Petroleum		12.69	
				,			8 from ten results must be < ELV					Hydrocarbons (EPH) with carbon banding within the range C8- C40 GC-FID.			
ES1	Vastewater/Sewe	Total phosphorus	composite	Weekly	24 hour	150 mg/L	All results < 1.2 times ELV, plus	132	mg/L	Ves	Spectrophotomet	APHA / AWWA "Standard	TM5/PM30	279.35	
				,			8 from ten results must be < ELV			,	ry (Colorimetry)	Methods"	SOP 1246		
FS1	Vastewater/Sewe	e volumetric flow	composite	Daily	24 hour	50 m3/day	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	48.14	m3/day	yes	SCADA	SCADA		3899220	
													SCADA		
Table W3.1	L: Licensed Emis	sions to water and /	or wastewater	(sewer)-perio	odic monitoring	g (non-continuou	us) (W0184-02)						SCADA		
Table W3.1	L: Licensed Emis	sions to water and /	or wastewater	· (sewer)-perio	odic monitoring	g (non-continuou ELV or trigger values in licence or	us) (W0184-02)						SCADA Procedural reference		
Table W3.1 Emission reference no:	Emission released to	Parameter/ SubstanceNote 1	or wastewater	Frequency of monitoring	odic monitoring Averaging period	g (non-continuou ELV or trigger values in licence or any revision therof ^{Note 2}	IS) (W0184-02)	Measured value	Unit of measurement	Compliant with licence	Method of analysis	Procedural reference source	SCADA Procedural reference standard number	Annual mass load (kg)	Comments
Table W3.1 Emission reference no: FS1	Emission released to Vastewater/Sewe	Parameter/ SubstanceNote 1	or wastewater Type of sample composite	Frequency of monitoring Daily	Averaging period	g (non-continuou ELV or trigger values in licence or any revision therof ^{Note 2} 6-9pH	IS) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus 8 from ten results must be < ELV	Measured value 8.29	Unit of measurement pH units	Compliant with licence no (if no please enter details in comments box)	Method of analysis pH Meter (Electrode)	Procedural reference source As per manufacturers guide	SCADA Procedural reference standard number SOP 1134	Annual mass load (kg)	Comments
Table W3.1 Emission reference no: FS1 FS1	Emission released to Vastewater/Sewee	Parameter/ SubstanceNote 1 pH Temperature	or wastewater Type of sample composite composite	• (sewer)-perio • Frequency of monitoring Daily Daily	Averaging period 24 hour 24 hour	g (non-continuou ELV or trigger values in licence or any revision therof ^{Note 2} 6-9pH 43	IS) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus 8 from ten results must be < ELV All results < 1.2 times ELV, plus 8 from ten results must be < ELV	Measured value 8.29 43.3	Unit of measurement pH units degrees C	Compliant with licence no (if no please enter details in comments box) yes	Method of analysis pH Meter (Electrode) Temperature Probe	Procedural reference source As per manufacturers guide SCADA	SCADA Procedural reference standard number SOP 1134 SCADA	Annual mass load (kg)	Comments
Table W3.1 Emission reference no: FS1 FS1	L: Licensed Emis Emission released to Vastewater/Sewee Vastewater/Sewee	Parameter/ SubstanceNote 1 pH Temperature	or wastewater Type of sample composite composite	• (sewer)-perio • Frequency of monitoring Daily Daily	Averaging period 24 hour 24 hour	g (non-continuou ELV or trigger values in licence or any revision therof ^{Note 2} 6-9pH 43	IS) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus 8 from ten results must be < ELV All results < 1.2 times ELV, plus 8 from ten results must be < ELV	Measured value 8.29 43.3	Unit of measurement pH units degrees C	Compliant with licence no (if no please enter details in comments box) yes	Method of analysis pH Meter (Electrode) Temperature Probe	Procedural reference source As per manufacturers guide SCADA	SCADA Procedural reference standard number SOP 1134 SCADA	Annual mass load (kg)	Comments Comments This was the maximum
Table W3.1 Emission reference no: FS1 FS1	L: Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids	or wastewater Type of sample composite composite	• (sewer)-perio • Frequency of monitoring Daily Daily Daily Daily	Averaging period 24 hour 24 hour 24 hour	g (non-continuou ELV or trigger values in licence or any revision therof ^{Note 2} 6-9pH 43 400 mg/L	IS) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus 8 from ten results must be < ELV All results < 1.2 times ELV, plus 8 from ten results must be < ELV All results < 1.2 times ELV, plus 8 from ten results must be < ELV	Measured value 8.29 43.3 303	Unit of measurement pH units degrees C mg/L	Compliant with licence no (if no please enter details in comments box) yes yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA	Annual mass load (kg)	Comments This was the maximum release. This release was compliant
Table W3.1 Emission reference no: FS1 FS1	Emission released to Vastewater/Sewee Vastewater/Sewee	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids	or wastewater Type of sample composite composite	Image: sewer)-period Frequency of monitoring Daily Daily Daily	Averaging period 24 hour 24 hour 24 hour	g (non-continuou ELV or trigger values in licence or any revision therof ^{Note 2} 6-9pH 43 400 mg/L	IS) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus 8 from ten results must be < ELV All results < 1.2 times ELV, plus 8 from ten results must be < ELV All results < 1.2 times ELV, plus 8 from ten results must be < ELV	Measured value 8.29 43.3 303	Unit of measurement pH units degrees C mg/L	Compliant with licence no (if no please enter details in comments box) yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA	Annual mass load (kg)	Comments Comments This was the maximum release. This release was compliant according to licence condition
Table W3.1 Emission reference no: FS1 FS1 FS1	L: Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids	or wastewater Type of sample composite composite	Image: Constraint of the second se	Averaging period 24 hour 24 hour 24 hour	g (non-continuou ELV or trigger values in licence or any revision therof ^{Note 2} 6-9pH 43 400 mg/L	IS) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus 8 from ten results must be < ELV All results < 1.2 times ELV, plus 8 from ten results must be < ELV All results < 1.2 times ELV, plus 8 from ten results must be < ELV	Measured value 8.29 43.3 303	Unit of measurement pH units degrees C mg/L	Compliant with licence no (if no please enter details in comments box) yes yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SCADA	Annual mass load (kg)	Comments Comments . This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum
Table W3.1 Emission reference no: FS1 FS1 FS1	L: Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids	or wastewater Type of sample composite composite composite	• (sewer)-perio • Frequency of monitoring Daily Daily Daily Weekly	Averaging period 24 hour 24 hour 24 hour 24 hour 24 hour	g (non-continuou ELV or trigger values in licence or any revision therof ^{Note 2} 6-9pH 43 400 mg/L 80 mg/l	IS) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus	Measured value 8.29 43.3 303	Unit of measurement pH units degrees C mg/L	Compliant with licence no (if no please enter details in comments box) yes yes yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SCADA	Annual mass load (kg) 397.8	Comments Comments This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release this release was
Table W3.1 Emission reference no: FS1 FS1 FS1 FS1 FS1	Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids	or wastewater Type of sample composite composite composite	Image: sewer)-period Frequency of monitoring Daily Daily Daily Weekly	Averaging period 24 hour 24 hour 24 hour 24 hour 24 hour 24 hour	g (non-continuou ELV or trigger values in licence or any revision therof ^{Note 2} 6-9pH 43 400 mg/L 80 mg/L	IS) (W0184-02) Is) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus	Measured value 8.29 43.3 303 96.8	Unit of measurement pH units degrees C mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry)	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SCADA	Annual mass load (kg) 397.8 241.95	Comments Compliant Comments Comments Compliant Comments Compliant Comments Compliant Comments Compliant Comments Comm
Table W3.1 Emission reference no: FS1 FS1 FS1 FS1 FS1	L: Licensed Emis L: Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids	or wastewater Type of sample composite composite composite	Image: Constraint of the second se	Averaging period 24 hour 24 hour 24 hour 24 hour 24 hour	g (non-continuou ELV or trigger values in licence or any revision therof ^{Note 2} 6-9pH 43 400 mg/L 80 mg/L	IS) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus	Measured value 8.29 43.3 303 96.8	Unit of measurement pH units degrees C mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry)	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SOP 1291 SOP 1291	Annual mass load (kg) 397.8 241.95	Comments Comments This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10
Table W3.1 Emission reference no: FS1	L: Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids	or wastewater Type of sample composite composite composite	isewer)-perio Frequency of monitoring Daily Daily Daily Weekly Weekly	Averaging period 24 hour	g (non-continuou ELV or trigger values in licence or any revision therof ^{Note 2} 6-9pH 43 400 mg/L 80 mg/L 6000 mg/L	Is) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus	Measured value 8.29 43.3 303 96.8 96.8	Unit of measurement pH units degrees C mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes yes yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry)	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SOP 1291 SOP 1291 SOP 1291	Annual mass load (kg) 397.8 241.95 215916.60	Comments Comments Image: Imag
Table W3.1 Emission reference no: FS1 FS1 FS1 FS1 FS1	Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids	or wastewater Type of sample composite composite composite composite composite	Image: Sewer)-period Frequency of monitoring Daily Daily Daily Weekly Weekly Weekly	Averaging period 24 hour	Image: construction of the construc	IS) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus	Measured value 8.29 43.3 303 96.8 96.8	Unit of measurement pH units degrees C mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes yes yes yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) Titration	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Council Placeman	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1028	Annual mass load (kg) 397.8 241.95 215916.60	Comments Comments . This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 Image: This was the maximum release. This release was compliant according to licence condition 6.10 Image: This was the maximum release. This release was compliant according to licence condition 6.10
Table W3.1 Emission reference no: FS1	L: Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Suspended Solids Ammonia (as N) Chlorides (as Cl)	or wastewater Type of sample composite composite composite composite	Sewer)-perio Frequency of monitoring Daily Daily Daily Weekly Weekly	Averaging period 24 hour	Image: constrained in the constraint of the constrain	Image: Signal state of the	Measured value 8.29 43.3 303 96.8 96.8 2310	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes yes yes yes yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) Titration	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	SCADA Procedural reference standard number SOP 1134 SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1245 SOP 1028	Annual mass load (kg) 397.8 241.95 215916.60	Comments Com
Table W3.1 Emission reference no: FS1	L: Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Ammonia (as N) Chlorides (as Cl)	or wastewater Type of sample composite composite composite composite	isewer)-perio Frequency of monitoring Daily Daily Daily Weekly Weekly	Averaging period 24 hour	Image: constant of the constant of	Is) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus	Measured value 8.29 43.3 303 96.8 96.8 2310	Unit of measurement pH units degrees C mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes yes yes yes yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1028	Annual mass load (kg) 397.8 241.95 215916.60	Comments Com
Table W3.1 Emission reference no: FS1	L: Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Suspended Solids Ammonia (as N) Chlorides (as Cl) Copper and compounds (as Cu)	or wastewater Type of sample composite composite composite composite composite	isewer)-perio Frequency of monitoring Daily Daily Daily Weekly Weekly Weekly	Averaging period 24 hour	Image: constant of the of	Image: Signal system Image: Signal system Image: Signal	Measured value 8.29 43.3 303 96.8 2310 0.01	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes yes yes yes yes yes	Method of Method of analysis PH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) Titration ICP ICP	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1028 TM30/PM14	Annual mass Annual mass Ioad (kg) 397.8 397.8 241.95 215916.60 0.9700 0.9700	Comments Comments . This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 Image: Compliant compliant compliant according to licence condition 6.10 Image: Compliant complian
Table W3.1 Emission reference no: FS1	Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	Suspended Solids Chlorides (as Cl) Copper and compounds (as Pb)	or wastewater Type of sample composite composite composite composite composite	Sewer)-perio Frequency of monitoring Daily Daily Daily Weekly Weekly Weekly	Averaging period 24 hour	Image: constant of the constant of	Is) (W0184-02) Licence Compliance criteria All results < 1.2 times ELV, plus	Measured value 8.29 43.3 303 96.8 2310 0.01 0.01	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes yes yes yes yes yes yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1245 SOP 1028 TM30/PM14	Annual mass load (kg) 397.8 397.8 241.95 241.95 215916.60	Comments Com
Table W3.1 Emission reference no: FS1	Li Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Suspended Solids Chlorides (as N) Chlorides (as CI) Copper and compounds (as Cu) Lead and compounds (as Pb)	or wastewater Type of sample composite composite composite composite composite composite composite	Sewer)-perio Frequency of monitoring Daily Daily Daily Weekly Weekly Weekly Weekly	Averaging period 24 hour	Image: constant of the constant of	Image: Second system Image: Second system Image: Second	Measured value 8.29 43.3 303 303 96.8 2310 0.01 0.01	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes yes yes yes yes yes yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" TM30 - Determination of Trace (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1245 SOP 1028 TM30/PM14	Annual mass load (kg) 397.8 397.8 241.95 215916.60 0.9700	Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Compliant Comments Comm
Table W3.1Emission reference no:FS1FS1FS1FS1FS1FS1FS1FS1	Li Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	SubstanceNote 1 Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Ammonia (as N) Chlorides (as Cl) Copper and compounds (as Cu) Lead and compounds (as Pb)	or wastewater Type of sample composite composite	isewer)-perio Frequency of monitoring Daily Daily Daily Weekly Weekly Weekly Weekly	Averaging period 24 hour	<pre>c (non-continuou c (non-continuou c values in licence or any revision therof^{Note 2}</pre>	Image: Second system of the second system	Measured value 8.29 43.3 303 303 96.8 2310 0.01 0.01 0.5	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1245 SOP 1028 TM30/PM14	Annual mass load (kg) 397.8 397.8 241.95 215916.60 0.9700	Comments . . This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 Image: Compliant compliant compliant according to licence condition 6.10 Image: Compliant compl
Table W3.1 Emission reference no: FS1	Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	Suspended Solids Chlorides (as Cl) Copper and compounds (as Pb)	or wastewater Type of sample composite composite composite composite composite composite	Sewer)-perio Frequency of monitoring Daily Daily Daily Weekly Weekly Weekly Weekly	Averaging period 24 hour	<pre>c (non-continuou c (non-continuou c values in licence or any revision therof^{Note 2}</pre>	Image: system in the second system is system is a system is the second system is	Measured value 8.29 43.3 303 303 96.8 2310 0.01 0.01	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1028 TM30/PM14 TM30/PM14	Image: Control of the second state	Comments Comments This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10
Table W3.1Emission reference no:FS1FS1FS1FS1FS1FS1FS1FS1FS1	Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	SubstanceNote 1 Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Ammonia (as N) Chlorides (as Cl) Copper and compounds (as Cu) Lead and compounds (as Pb) Zinc and compounds (as Pb)	or wastewater Type of sample composite composite composite composite composite composite	Sewer)-perio Frequency of monitoring Daily Daily Daily Daily Weekly Weekly Weekly Weekly Weekly	Averaging period 24 hour	Image: constrained in the constraint of the constrated of the constraint of the constraint of the constrain	Image: system is a straight of the second straight of the se	Measured value 8.29 43.3 303 96.8 96.8 0.01 0.01 0.5 0	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes	 Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) Titration ICP ICP ICP 	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry).	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1245 SOP 1028 TM30/PM14	Annual mass load (kg) 397.8 397.8 241.95 215916.60 0.9700 0.6917 9.30	Comments Comments . This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 Icence condition 6.10 Icence condition 6.10
Table W3.1Emission reference no:FS1FS1FS1FS1FS1FS1FS1FS1FS1	I: Licensed Emis I: Licensed Emis I: Emission released to Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Suspended Solids Ammonia (as N) Chlorides (as Cl) Copper and compounds (as Cu) Lead and compounds (as Pb) Cinc and compounds (as Zn)	or wastewater Type of sample composite	isewer)-perio Frequency of monitoring Daily Daily Daily Weekly Weekly Weekly Weekly Weekly	Averaging period 24 hour	Image: constrained in the constraint of the constrated of the constraint of the constraint of the constrain	Image: Second system	Measured value 8.29 43.3 303 96.8 96.8 0.01 0.01 0.01 0.01	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes	Method of PH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP ICP ICP	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.10 APHA / AWW/A "Standard	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1028 TM30/PM14 TM30/PM14	Image: Control of the second state	Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Compliant according to Licence condition 6.10 This was the maximum release. This release was compliant according to Licence condition 6.10
Table W3.1 Emission FS1	Image: Licensed Emis Vastewater/Sewe	Sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Ammonia (as N) Chlorides (as Cl) Copper and compounds (as Cu) Lead and compounds (as Cu) Lead and compounds (as Cu) Zinc and compounds (as Pb) Cadmium and compounds (as Cd) Copper Copper and compounds (as Cu)	or wastewater Type of sample composite composite composite composite composite composite composite	Sewer)-perior Frequency of monitoring Daily Daily Daily Weekly Weekly Weekly Weekly Weekly Weekly Daily	Join monitoring Averaging period 24 hour	Image: constrained of the constrained o	Image: space state stat	Measured value 8.29 43.3 303 96.8 96.8 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes	 Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) Titration ICP ICP Spectrophotomet ry (Colorimetry) 	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.10 APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1245 SOP 1028 SOP 1028 TM30/PM14 TM30/PM14	Annual mass load (kg) Annual mass load (kg) 397.8 397.8 241.95 215916.60 0.9700 0.6917 9.30 0.6917 0.07 352809.00	Comments Comments . . This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 Icence condition 6.10 Icence condition 6.10
Table W3.1 Emission FS1	Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	SubstanceNote 1 Parameter/ SubstanceNote 1 PH Temperature Suspended Solids Ammonia (as N) Chlorides (as Cl) Copper and compounds (as Cu) Copper and compounds (as Cu) Copper and compounds (as Cu) Copper and compounds (as Cu) Copper and compounds (as Cu) Phenols (as total C)	or wastewater Type of sample composite composite composite composite composite composite composite composite	Sewer)-perio Frequency of Daily Daily Daily Daily Weekly	Just and its monitoring Averaging period 24 hour	(non-continuou values in licence or any revision therof ^{Note 2} 6-9pH 43 400 mg/L 80 mg/L 6000 mg/L 0.5 mg/L 0.5 mg/L 0.5 mg/L 0.5 mg/L 0.5 mg/L 30 mg/L	Image: Signal system Image: Signal system Image: Signal	Measured value 8.29 43.3 303 303 96.8 96.8 0.01 0.01 0.01 0.01 0.01 13.9	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes <	Image: Net of analysis PH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP ICP ICP Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry)	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.10 APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1245 SOP 1028 TM30/PM14 TM30/PM14 TM30/PM14	Annual mass load (kg)	Comments . This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 Image: Compliant compl
Table W3.1 Emission FS1 FS1	Li Censed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Suspended Solids Ammonia (as N) Chlorides (as Cl) Chlorides (as Cl) Copper and compounds (as Cu) Lead and compounds (as Pb) Lead and compounds (as Cadmium and compounds (as Cd) Copper and compounds (as Chlorides (as Cl)	or wastewater Type of sample composite composite composite composite composite composite composite composite composite	Sewer)-perio Frequency of monitoring Daily Daily Daily Weekly	Image: Constraint of the constraint	Image: constrained of the constraint of the constrated of the constraint of the constraint of the constrain	Image: system in the second system is the second system in the second system in the second system is the second system in the second system is the second system in the second system is the	Measured value 8.29 43.3 303 303 96.8 96.8 0.01 0.01 0.01 0.01 0.01 13.9 9	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes <	Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP ICP	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.10 APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1028 TM30/PM14 TM30/PM14 SOP 1241 SOP 1289	Image: Control of the second state	Comments Image: Comments
Table W3.1 Emission FS1	I: Licensed Emis Vastewater/Sewe	Sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Chlorides (as N) Chlorides (as Cl) Copper and compounds (as Cu) Lead and compounds (as Cu) Lead and compounds (as Cadmium and compounds (as Cd) Cadmium and compounds (as Cd) COD	or wastewater Type of sample composite composite composite composite composite composite composite composite composite	(sewer)-perio (sewer)-perio Frequency of monitoring Daily Daily Daily Weekly	dic monitoring dic monitoring dic monitoring 24 hour	Continue Continue C	Image: second system is an example of the system is and the system is a	Measured value 8.29 43.3 303 96.8 96.8 0.01 0.01 0.01 0.5 0 13.9 9	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes	Method of analysis PH Meter (Electrode) Temperature Probe Gravimetric analysis Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP ICP ICP ICP Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry)	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" APHA / AWWA "Standard APHA / AWWA "Standard APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.10 APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1028 SOP 1028 TM30/PM14 TM30/PM14 SOP 1241 SOP 1241	Image: Control of the system of the syste	Comments Comments This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 Image: Compliant complian
Table W3.1 Emission FS1 FS1	I: Licensed Emis Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Suspended Solids Chlorides (as N) Chlorides (as CI) Copper and compounds (as Cu) Lead and compounds (as Pb) Lead and compounds (as Cadmium and compounds (as Cd) Codmium and compounds (as Cd) Fats, Oils and Greases	or wastewater Type of sample composite composite composite composite composite composite composite composite composite composite	isewer)-perio Frequency of monitoring Daily Daily Daily Weekly	Averaging period 24 hour	Image: Contained of the co	Image: Second System 1 Image: Second System 2 Image: Second System	меазигеd value 8.29 43.3 303 303 96.8 96.8 96.8 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes	 Method of analysis PH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP ICP ICP Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) 	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.10 APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1245 SOP 1028 TM30/PM14 TM30/PM14 SOP 1241 SOP 1241	Annual mass Annual mass Image: Image	Comments Image: Comments
Table W3.1 Emission FS1	Li Licensed Emis Emission released to Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Ammonia (as N) Chlorides (as Cl) Copper and compounds (as Cu) Lead and compounds (as Pb) Lead and compounds (as Pb) Zinc and compounds (as Zn) Cadmium and compounds (as Cd) COD	or wastewater Type of sample composite composite composite composite composite composite composite composite composite composite	Sewer)-perio Frequency of Daily Daily Daily Weekly	Juic monitoring Averaging period 24 hour	Image: constrained of a strain of the of Note 2 Image: constraint of the of Note 2 Image: constrate constrate constraint of the of Note 2	Image: system in the second system is the second system is the second system in the second system is the	Measured value 8.29 43.3 303 303 96.8 96.8 0.01 0.01 0.01 0.5 0 13.9 9 25.13	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Compliant with licence no (if no please enter details in comments box) yes yes <	 Method of analysis pH Meter (Electrode) Temperature Probe Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP ICP ICP Spectrophotomet ry (Colorimetry) 	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.10 APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods"	SCADA Procedural reference standard Number SOP 1134 SCADA SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1028 TM30/PM14 TM30/PM14 SOP 1241 SOP 1241 SOP 1241 SOP 1241 SOP 1241	Annual mass load (kg) Annual mass agent ag	Comments Image: Comments Image: Comments Image: This was the maximum release. This release was compliant according to licence condition 6.10 Image: This release was compliant according to licence condition 6.10 Image: Compliant according to licence condition 6.10
Table W3.1 Emission FS1	Image: Licensed Emis Image: Vastewater/Sewe Image: Licensed Emis Image: Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Chlorides (as N) Chlorides (as Cl) Copper and compounds (as Cu) Copper and compounds (as Pb) Lead and compounds (as Pb) Compounds (as Cd) Copper and compounds (as Cadmium and compounds (as Cd) COD	or wastewater Type of sample composite composite composite composite composite composite composite composite composite composite composite	(sewer)-perio Frequency of Daily Daily Daily Daily Weekly	Image: Construction of the construc	Image: constrained of the constraned of the constrained of the constrained of	Image: Solution of the second seco	меазигеd value 8.29 43.3 303 303 96.8 96.8 96.8 96.8 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Compliant with licence Ino (If no please enter details in comments box) yes	Method of PH Meter (Electrode) Temperature Probe Gravimetric analysis Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP ICP ICP ICP Spectrophotomet ICP Spectrophotomet Y (Colorimetry) Spectrophotomet Y (Colorimetry)	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.10 APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1028 TM30/PM14 SOP 1241 SOP 1241 SOP 1243 TM30/PM14 SOP 1241 SOP 1241 SOP 1241	Image: Control of the system is a s	Comments . This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 Intervention 100 This was the maximum release. This release was compliant according to licence condition 6.10 Intervention 100 This was the maximum release. This release was compliant according to licence condition 6.10 Intervention 100
Table W3.1 Emission FS1	Image: Licensed Emis Image: Vastewater/Sewe Image: Licensed Emis Image: Vastewater/Sewe Image: Vastewater/Sewe	sions to water and / Parameter/ SubstanceNote 1 pH Temperature Suspended Solids Suspended Solids Chlorides (as N) Chlorides (as CI) Copper and compounds (as Cu) Lead and compounds (as Cu) Lead and compounds (as Cadmium and compounds (as Cd) COD Phenols (as total C) Phenols (as total C) Sulphate Fats, Oils and Greases Total phosphorus volumetric flow	or wastewater Type of sample composite composite composite composite composite composite composite composite composite composite composite	i i <td>Image: Constraint of the second state of the second sta</td> <td>Image: constrained in the constraned in the constrained in the constrained in</td> <td>Image: Signam of the second second</td> <td>Measured value 8.29 43.3 303 303 96.8 96.8 0.01 0.01 0.5 0 13.9 9 25.13 116 49.31</td> <td>Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L</td> <td>Compliant with licence Compliant with licence I no (if no please enter details in comments box) yes yes yes yes yes yes yes yes yes ye</td> <td>Method of analysis PH Meter (Electrode) Temperature Probe Gravimetric analysis Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP ICP ICP ICP Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry)</td> <td>Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.10 APHA / AWWA "Standard Methods" APHA / AWWA "Standard Methods"</td> <td>SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1245 SOP 1028 TM30/PM14 TM30/PM14 SOP 1241 SOP 1241 SOP 1241 SOP 1241 SOP 1241 SOP 1241</td> <td>Annual mass Annual mass Ioad (kg) Ioad (kg) <t< td=""><td>Comments Comments This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 Icence condition 6.10</td></t<></td>	Image: Constraint of the second state of the second sta	Image: constrained in the constraned in the constrained in the constrained in	Image: Signam of the second	Measured value 8.29 43.3 303 303 96.8 96.8 0.01 0.01 0.5 0 13.9 9 25.13 116 49.31	Unit of measurement pH units degrees C mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Compliant with licence Compliant with licence I no (if no please enter details in comments box) yes yes yes yes yes yes yes yes yes ye	Method of analysis PH Meter (Electrode) Temperature Probe Gravimetric analysis Gravimetric analysis Spectrophotomet ry (Colorimetry) ICP ICP ICP ICP Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry) Spectrophotomet ry (Colorimetry)	Procedural reference source As per manufacturers guide SCADA APHA / AWWA "Standard Methods" TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.8 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.9 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.10 APHA / AWWA "Standard Methods"	SCADA Procedural reference standard number SOP 1134 SCADA SCADA SOP 1291 SOP 1291 SOP 1245 SOP 1245 SOP 1028 TM30/PM14 TM30/PM14 SOP 1241 SOP 1241 SOP 1241 SOP 1241 SOP 1241 SOP 1241	Annual mass Annual mass Ioad (kg) Ioad (kg) <t< td=""><td>Comments Comments This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 Icence condition 6.10</td></t<>	Comments Comments This was the maximum release. This release was compliant according to licence condition 6.10 This was the maximum release. This release was compliant according to licence condition 6.10 Icence condition 6.10

Note 1: Volumetric flow shall be included as a reportable parameter Note 2: Where Emission Limit Values (ELV) do not apply to your licence

Note 2: Where Emission Limit Values (ELV) do not apply to your licence please compare results a	gainst EQS for Surfa	ace water or relevant receptor quality standards	
Continuous monitoring		Additional Information	
Does your site carry out continuous emissions to water/sewer monitoring?	No		
If yes please summarise your continuous monitoring data below in Table W4 and compare it to its relevant Emission Limit Value (ELV)			
Did continuous monitoring equipment experience downtime? If yes please record downtime in			
table W4 below	No	We do not have continuous monitoring equipment	
Do you have a proactive service contract for each piece of continuous monitoring equipment on			
site?	No	We do not have continuous monitoring equipment	
Did abatement system bypass occur during the reporting year? If yes please complete table W5			
below	No		
		-	

Table W4: Summary of average emissions -continuous monitoring

Emission	Emission		ELV or trigger values in licence or any revision	Averaging	Compliance	Units of	Annual Emission for current	% change +/- from previous reporting year	Monitoring Equipment		
reference no:	released to	Parameter/ Substance	thereof	Period	Criteria	measurement	reporting year (kg)		downtime (hours)	Number of ELV exceedences in reporting year	Comments
	SELECT	SELECT		SELECT	SELECT	SELECT					
	SELECT	SELECT		SELECT	SELECT	SELECT					

note 1: Volumetric flow shall be included as a reportable parameter.

Table W5: Abatement system bypass reporting table

Date	Duration (hours)	Location	Resultant	Reason for	Corrective	Was a report	When was this report
			emissions	bypass	action*	submitted to the	submitted?
						EPA?	
						SELECT	
*Measures tak	en or proposed to r	educe or limit hypass freq	LIADCV				

*Measures taken or proposed to reduce or limit bypass frequency

Bund/Pipeline testing template

Bund testing

dropdown menu click to see options

Are you required by your licence to undertake integrity testing on bunds and containment structures ? if yes please fill out table B1 below listing all **new bunds** and containment structures on site, in addition to all bunds which failed the integrity test-all bunding structures which failed including mobile bunds must be listed in the table below, please include all bunds outside the licenced testing period (mobile bunds and chemstore included)

2 Please provide integrity testing frequency period

Does the site maintain a register of bunds, underground pipelines (including stormwater and foul), Tanks, sumps and containers? (containers refers to 3 "Chemstore" type units and mobile bunds)

- 4 How many bunds are on site?
- 5 How many of these bunds have been tested within the required test schedule?
- 6 How many mobile bunds are on site?

7 Are the mobile bunds included in the bund test schedule?

8 How many of these mobile bunds have been tested within the required test schedule?

9 How many sumps on site are included in the integrity test schedule?

- 10 How many of these sumps are integrity tested within the test schedule?
- Please list any sump integrity failures in table B1
- 11 Do all sumps and chambers have high level liquid alarms?

12 If yes to Q11 are these failsafe systems included in a maintenance and testing programme? 13 Is the Fire Water Retention Pond included in your integrity test programme?

Tal	ble B1: Summary deta	ails of bund /containment structure	integrity test										
Bund/Containment structure ID	Туре	Specify Other type	Product containment	Actual capacity	Capacity required*	Type of integrity test	Other test type	Test date	Integrity reports maintained on site?	Results of test	Integrity test failure explanation <50 words	Corrective action taken	Scheduled date for retest
	SELECT					SELECT			SELECT	SELECT		SELECT	
* Capacity required should com Has integrity testing b	oply with 25% or 110% contain Deen carried out in ac	ment rule as detailed in your licence cordance with licence requirement	s and are all structures tested				Commentary	7					
5 in line with BS8007/E	PA Guidance?			bunding and storage guide	lines	Yes							
6 Are channels/transfer	systems to remote c	ontainment systems tested?				No	N/A]					
7 Are channels/transfe	r systems compliant i	n both integrity and available volur	ne?			SELECT	N/A]					

1

Lic No:

Pipeline/underground structure testing

Are you required by your licence to undertake integrity testing* on underground structures e.g. pipelines or sumps etc? if yes please fill out table 2 below listing 1 all underground structures and pipelines on site which failed the integrity test and all which have not been tested withing the integrity test period as specified 2 Please provide integrity testing frequency period

*please note integrity testing means water tightness testing for process and foul pipelines (as required under your licence)

Table	B2: Summary details of pi	ipeline/underground structures ir	ntegrity test								
Structure ID	Type system	Material of construction:	Does this structure have Secondary containment?	Type of secondary containment	Type integrity testing	Integrity reports maintained on site?	Results of test	Integrity test failure explanation <50 words	Corrective action taken	Scheduled date for retest	Results of retest(if in current reporting year)
	SELECT	SELECT	SELECT	SELECT	SELECT	SELECT	SELECT				SELECT

Please use commentary for additional details not answered by tables/ questions above

/0184-02		Year	2017	
	Additional information			
Yes				
3 years				
Yes				
10				
10 T	hey are due in be tested in 2018			
18				
Yes				
18 T	wo new added to list from 2015.			
12				
12				
No				
SELECT				
No				

Yes	Due in 2017
3 years	

I	Environmental Liabilities template	Lic No:	W0184-02
	Click here to access EPA guidance on Environmental Liabilities and Financial		
	provision		
			Commentary
1	ELRA initial agreement status		
		Submitted and agreed by EDA	
2	ELBA review status	Beview required and completed	
2			
2	Amount of Financial Dravisian cover required as determined by the latest FLDA	4 122 242	
3	Amount of Financial Provision cover required as determined by the latest ELRA	4,133,343	
4	Financial Provision for ELRA status	Submitted and agreed by EPA	
_			
5	Financial Provision for ELRA - amount of cover	4,133,343	
6	Financial Provision for ELRA - type	Other please specify	Insurance and Bond
7	Financial provision for ELRA expiry date	Insurance (11.10.17) & Bond (11.10.19)	
8	Closure plan initial agreement status	Closure plan submitted and agreed by EPA	
9	Closure plan review status	Review required and completed	
10	Financial Provision for Closure status	Submitted and agreed by EPA	
11	Financial Provision for Closure - amount of cover	2,255,641.34	
12	Financial Provision for Closure - type	bond	
13	Financial provision for Closure expiry date	01/05/2019	

Environmental Management Programme/Continuous Improvement Programmed	Environmental Management Programme/Continuous Improvement Programme template					
Highlighted cells contain dropdown menu click to view		Additional Information				
Do you maintain an Environmental Mangement System (EMS) for the site. If yes, please detail in additional information	Yes			_		
2 Does the EMS reference the most significant environmental aspects and associated impacts on-site Does the EMS maintain an Environmental Management Programme (EMP) as required in	Yes			-		
3 accordance with the licence requirements	Yes					
Do you maintain an environmental documentation/communication system to inform the public on environmental performance of the facility, as required by the licence	Yes	EHS management system in p	blace (ISO 14001 & OHSAS 18001)			

Environmental Management Programme	e (EMP) report			Description	
	Target	Status (% completed)	All Enva tanks are fitted with high level controls linked back to the	Responsibility	Intermediate outcomes
			scada system which close off the valves and pumps on the		
	Reduction in risk of		activation of an alarm. Additional controls are being installed to		Increase safety to prevent
Overspill protection	overspill from tanks	85%	protect against overfill due to gravity feed.	Facility and Production	damage and loss of containment.
			Leak inspections on flanges and valves are recorded on a weekly		Increase safety to prevent
	Catchment of leaks	On-going	basis	Production	damage and loss of containment.
			Bund register is maintained onsite. All bunds, sumps and trays are		
	Maintain a register of		emptied if required. No water to be discharged to storm unless		Increase safety to prevent
	bunds, sumps and trays	On-Going	tested	Facility and Production	damage and loss of containment.
	Replace damaged concrete to upgrade yard integrity and reseal expansion gaps joints as required.	On-going	All yard surface integrities, seals and expansion gaps will be monitored on a regular and prescheduled basis. A log is in place to document any repairs that have taken place. A site map will be updated to include all crack/expansion repairs. A monitoring programme is in place to ensure checks are undertaken in a prescheduled and routine manner where faults can be identified and repaired on an ongoing basis. This is a system that will be rolling each year. Minor repairs were done in 2017	HSE & Facilities	Remediation of contamination on site
	Review the site with regards to tanks and pipelines, in order to draft a register of current bunds, sumps, mobile bunds and pipelines, with their inclusion/exclusion (if required) in the three yearly bund integrity assessment. Label all pipe lines in process	95%	Tank and pipeline assesssment for the entire facility is 95 % completed. There is one remaining oil line and a programme is in place to replace the remaining line that requires testing. All oil lines, steam lines, condensate lines, water line have been labeled.	Production	Remediation of contamination on site Remediation of contamination on site
	labelling of bunds	100%	A register is in place for listing all bunds, mobile bunds, trays and storm water gullies. These are checked on a weekly to ensure they are empty of contaminents and are fit for purpose. All mobile bunds and trays have an identification label. All surface drains are identified with metal triangle.	Facility and Production	Remediation of contamination on site
	Review the assessment of				
Improve tank, pipeline, bund integrity, yard	bunds to meet standard				Remediation of contamination on
and expansion gap assessments.	reporting requirements.	50%	All sumps were tested in 2017	Facilities	site
	Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	On-going	Bulbs which have come to their end of life have been replaced with Low wattage LED lights both inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life.	HSE & Facilities	Improved Environmental Management Practices
Energy Efficiency/Utility conservation	Energy Audit	10%	Carry out energy audit. This will include assessment of use of raw materials and water consumption. Enva are currently reviewing proposal submitted from an external contractors with a view to implementing an energy management system.	Facility and Production	
			Peview and determine suitable adour abatement equipment for		
		100%	drying tanks and submit for approval to the Agency. Drying operations for oil processing have ceased pending installation of RTO	HSE & Operations	Increased compliance with licence conditions
		On-going	Increase odour assessments frequency. External contractors remain engaged by Enva to ensure regular independent monitoring of local area. Enva have also recruited a dedicated environmental supervisor to manage and help ensure environmental compliance as per the EPA Waste Licence A carbon filter is in place within the oil filter and centrifuge rooms. The filter area has also been enclosed and sealed to further control	HSE	Increased compliance with licence conditions
		Complete	fugitive emissions from this process.	Production	licence conditions
Control of Fugitive emissions & Odour Reduction Programme	Reduce odour emissions from site	Complete	An odour abatement system to be installed in the paint processing machine. A carbon filter has been installed to mitigate and minimise odours deriving from the process of paint	Facilities	Increased compliance with
		complete	minimise outours deriving from the process of paint		
		95% Complete	Cladding of soil bay to reduce fugitive emissions from the site. The back (adjacent to CIE) and side (adjacent to Rockview) are closed off. The front of the soil bay will be enclosed with panels and cladding with two roller doors. This will also reduce noise and dust levels from the soil operation. Implementation of odour abatement mobile unit with odour abatement chemical during soil operations. Develop an odour management plan. Identify all odour sources,	Facilities Facilities	Increased compliance with licence conditions Increased compliance with licence conditions
		Complete	pathways and receptors. Implement interim controls to minimise	Facilities HSE Production	
		complete	Develop programme to monitor negative air pressure in certain	Pacifices, HSE, Production	
	1		waste processing areas. Additional sealing of process areas is		
	1	40%	underway. Carry a programme of tank testing to domonstrate air tightness of	Facilities	Increased compliance with
		100%	process tanks. Complete.	Production	licence conditions
Communication and Public Awareness Programme	Implement a public awareness programme	NEW	Ongoing regular communications to local businesses and residents regarding plant activities and ongoing development	Director	Increased compliance with licence conditions
	Implement a by-pass		In the event that the PTO is not operational, the PTO will be bu		Increased compliance with
RTO	failure	Pending RTO installation.	passed and emissons will be diverted to a carbon filter system	Operations	licence conditions

Noise monitoring summary report 2017 W0184-02 Lic No: Year 1 Was noise monitoring a licence requirement for the AER period? Yes If yes please fill in table N1 noise summary below <u>Noise</u> Guidance 2 Was noise monitoring carried out using the EPA Guidance note, including completion of the Yes note NG4 "Checklist for noise measurement report" included in the guidance note as table 6? 3 Does your site have a noise reduction plan No 4 When was the noise reduction plan last updated? Enter date Have there been changes relevant to site noise emissions (e.g. plant or operational changes) since the last noise No survey?

Table N1: Nois	se monitoring su	ummary		•	•]				1	1
Date of monitoring	Time period	Noise location (on site)	Noise sensitive location -NSL (if applicable)	LA _{eq}	LA ₉₀	LA ₁₀	LA _{max}	Tonal or Impulsive noise* (Y/N)	If tonal /impulsive noise was identified was 5dB penalty applied?	Comments (ex. main noise sources on site, & extraneous noise ex. road traffic)	Is <u>site</u> compliant with noise limits (day/evening/night)?
14 12 17	17 25	Ν1	No	57	52	59	66	No		Enva activity included: vehicle movement. Offsite Noise: 2 trains and cars in/out of adjacent carpark, distant traffic noise	Yes
14.12.17	17.25	N1	No	54	50	55	62	No		Enva activity included: vehicle movement. Offsite Noise: 3 trains and cars in/out of adjacent carpark, distant traffic poise	Yes
14.12.17	18.25	N1	No	55		56	66	No		Enva activity: No audible noise from site. Offsite Noise: 2 trains, cars in/out of adjacent carpark, distant traffic	Yes
14.12.17	18.25	N1 N1	No	55	48	56	56	No		Enva activity: no audible noise from site. Offsite Noise: 1 train passes, distant traffic noise, industrial noise.	Yes
14.12.17	0.02	N1	No	45	43	48	53	No		Enva activity: no audible noise from the site. Offsite Noise: distant traffic, local industrial noise.	Yes
14.12.17	0.17	N1	No	45	42	48	52	No		Enva activity: no audible noise from the site. Offsite Noise: distant traffic, local industrial noise.	Yes
14.10.17	12.40mm					-7		No		industrial noise, distant traffic. Onsite noise: boiler, filter room, motor at tank farm. Offsite noise: industrial noise, distant traffic, HGV movement in neighbouring facility. Onsite Noise: forklift, vehicle movement, boiler Offsite Noise: vehicle movement next door, distant traffic noise,	Yes
14.12.17	13.40pm	N2	No	55	51	57	62	No		Construction noise from Dominant Noise: HGV on idle next door. Onsite noise: boiler, filter room, motor at tank farm. Offsite noise: Industrial noise, distant traffic, HGV on idle in neighbouring facility. Onsite Noise: forklift, vehicle movement, boiler Offsite Noise: vehicle movement next door, distant traffic noise	Yes
14.12.17	14.45	N2	No	56	53	57	64	No		on idle next door. Onsite noise: boiler, filter room, motor at tank farm. Offsite noise: industrial noise, distant traffic, HGV on idle in neighbouring facility. Onsite Noise: No noise audible from Enva Offsite Noise: fan noise in neighbouring facility, distant traffic.	Yes
14.12.17	21.05	N2	No	53	50	54	56	No		Dominant Noise: industrial noise, distant traffic. Onsite noise: boiler on/off (just audible). Offsite noise: industrial noise, distant traffic. Onsite Noise: No noise audible from Enva Offsite Noise: fan noise in neighbouring facility, distant traffic, distant train	Yes
								No		Dominant Noise: industrial noise, distant traffic. Onsite noise: boiler on/off (just audible). Offsite noise: industrial noise, distant traffic. Onsite Noise: No noise audible from Enva Offsite Noise: fan noise in neighbouring facility, distant traffic. distant	Yes
<u>14.12.17</u> <u>14.1</u> 2.17	23.09	N2	No No	49	47	50	52	No		train Dominant Noise: industrial noise, distant traffic. Onsite noise: boiler on/off (just audible). Offsite noise: industrial noise, distant traffic. Onsite Noise: No noise	Yes
14.12.17	14.55	N3	No	51	47	52	58	No		Construction work, industrial noise, distant traffic, soil shed. Onsite noise: soil shed excavator. Offsite Noise: Construction work, industrial noise.	Yes

									DOUIDAUL OVICE	
								No	Construction work, industrial noise, distant traffic, soil shed. Onsite noise: soil shed excavator. Offsite Noise: 2 trains, Construction work,	Yes
14.12.17	15.25	N3	No	55	47	51	60	No	industrial noise, distant traffic. Construction work, industrial noise, distant traffic, soil shed. Onsite noise: soil shed excavator. Offsite Noise: 2 trains, Construction work,	Yes
14.12.17	16.24	N3	No	53		53	62	No	Industrial noise, distant Dominat Noise: Distant traffic noise, train when passing. Onsite noise: no noise audible from Enva. Offsite noise: 1 train, distant traffic.	Yes
14.12.17	21.15	N3	No	50	46	52	54	No	Dominat Noise: Distant traffic noise, train when passing. Onsite noise: no noise audible from Enva. Offsite noise: 1 train, distant traffic.	Yes
14.12.17	23.02	N3	No	47	43	50	54	No	Dominat Noise: Distant traffic noise, train when passing. Onsite noise: no noise audible from Enva. Offsite noise: 1 train, distant traffic.	Yes
14.12.17 14.12.17	23.19	N3 N4	No	49 56	43	<u>50</u> 60	63	No	Dominant noise: passing traffic, distant traffic. Onsite Noise: No noise audible from Enva. Offsite Noise: approximately 35 cars pass, distant traffic.	Yes
14.12.17	16.02	N4	No	56	47	58	65	No	Dominant noise: passing traffic, distant traffic. Onsite Noise: No noise audible from Enva. Offsite Noise: approximately 40 cars pass, distant traffic.	Yes
14 12 17	16.24	NA	No	56	18	60	65	No	Dominant noise: passing traffic, distant traffic. Onsite Noise: No noise audible from Enva. Offsite Noise: approximately 45 cars pass, distant traffic.	Yes
14.12.17	10.54	NA	No	51	45	53	62	No	Dominant Noise: Industrial noise, distant traffic. Onsite Noise: No noise audible from Enva. Offsite Noise: Approximately 20 cars pass, distant traffic.	Yes
14.12.17	0.46	N4	No	42	39	44	49	Yes	Dominant Noise: Industrial noise, distant traffic. Onsite Noise: No noise audible from Enva. Offsite Noise: Approximately 2 cars pass, distant traffic.	Yes
14.12.17	1.01	N4	No	41	39	43	49	No	Dominant Noise: Industrial noise, distant traffic. Onsite Noise: No noise audible from Enva. Offsite Noise: Approximately 1 car pass, distant traffic. Dominant Noise:	Yes
14.12.17	17.05	N5	No	54	47	56	60	No	distant traffic, vehicle movement onsite, train and cars leaving carpark. Onsite Noise: forklift, 1 HGV. Offsite Noise: 2 trains pass, Dominant Noise:	Yes
14.12.17	17.37	N5	No	54	46	56	63	No	movement onsite, train and cars leaving carpark. Onsite Noise: forklift, 1 HGV. Offsite Noise: 3 trains pass, Dominant Noise: distant traffic. train and	Yes
14.12.17	18.08	N5	No	53	44	54	62	No	cars leaving carpark. Onsite Noise: no noise audible from Enva. Offsite Noise: 2 trains pass, cars in/out of Dominant Noise:	Yes
14.12.17	19.1	N5	No	49	46	51	55	No	Onsite Noise: no noise audible from Enva. Offsite Noise: 1 train passes, distant traffic noise, industrial noise. Dominant Noise:	Yes
14.12.17	0.01	N5	No	46	43	49	53	No	distant traffic, local industrial noise. Onsite Noise: no noise audible from Enva. Offsite Noise: distant traffic noise, local industrial Dominant Noise:	Yes
14.12.17	0.17	N5	No	46	43	48	52	No	distant traffic, local industrial noise. Onsite Noise: no noise audible from Enva. Offsite Noise: distant traffic noise, local industrial	Yes

*Please ensure that a tonal analysis has been carried out as per guidance note NG4. These records must be maintained onsite for future inspection

If noise limits exceeded as a result of noise attributed to site activities, please choose the corrective action from the following options?

SELECT

** please explain the reason for not taking action/resolution of noise issues?

Any additional comments? (less than 200 words)

```
Lic No:
```

Jan-07

1 When did the site carry out the most recent energy efficiency audit? Please list the recommendations in table SEAL ·

Is the site a member of any accredited programmes for reducing energy usage/water conservation 2 such as the SEAI programme linked to the right? If yes please list them in additional information

Where Fuel Oil is used in boilers on site is the sulphur content compliant with licence conditions? Please state pe 3 in additional information

Table R1 Energy usag	e on site			
Energy Use	Previous vear	Current vear	Production +/- % compared to previous reporting year**	Energy Consumption +/- % vs overall site production*
Total Energy Used (MWHrs)	3903.408	4992.844	27.90986748	
Total Energy Generated (MWHrs)				
Total Renewable Energy Generated (MWHrs)			
Electricity Consumption (MWHrs)	368.569	377.81	2.507264583	
Fossil Fuels Consumption:				
Heavy Fuel Oil (m3)				
Light Fuel Oil (m3)		0		
Natural gas (m3)	334843.046	437443.98	30.64150062	
Coal/Solid fuel (metric tonnes)				
Peat (metric tonnes)				
Renewable Biomass				
Renewable energy generated on site				

* where consumption of energy can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year. ** where site production information is available please enter percentage increase or decrease compared to previous year

Table R2 Water usage on site					Water Emissions	Water Consumption	
						Volume used i.e not	
			Production +/- %	Energy		discharged to	
			compared to	Consumption +/- %	Volume Discharged	environment e.g.	
	Water extracted	Water extracted	previous	vs overall site	back to	released as steam	
Water use	Previous year m3/yr.	Current year m3/yr.	reporting year**	production*	environment(m ³ yr):	m3/yr	Unaccounted for Water:
Groundwater							
Surface water							
Public supply	16185	19180	18.50478838				
Recycled water							
Total							

* where consumption of water can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year.

** where site production information is available please enter percentage increase or decrease compared to previous year

Table R3 Waste Stream					
	Total	Landfill	Incineration	Recycled	Other
Hazardous (Tonnes)					
Non-Hazardous (Tonnes)					

in table 3 below	
<u>SEAI - Large</u> Industry Energy	
Network (LIEN)	No
state percentage	

Yes

W0184-02

|--|

Additional information

e Usage/Energy efficiency su	Immary			Lic No:	W0184-02		Year	201
Table R4: Energy A	udit finding recommend	lations						
Date of audit	Recommendations	Description of Measures proposed	Origin of measures	Predicted energy savings %	Implementation date	Responsibility	Completion date	Status and comments
able R5: Power Generation: Where	nower is generated on	site (e.g. nower generat	ion facilities /food a	nd drink industry)nle	ase complete the follow	ving information		
Table N.S. Fower Generation. Where	Unit ID	Unit ID	Unit ID	Unit ID	Station Total			
echnology						1		
Primary Fuel						1		
hermal Efficiency								
Jnit Date of Commission								
otal Starts for year								
otal Running Time								
Total Electricity Generated (GWH)								
House Load (GWH)]		
WH per Litre of Process Water						1		
WH per Litre of Total Water used o	on Site]		

Complaints and Incidents summary template		Lic No:
Complaints		
		Additional information
Have you received any environmental complaints in the current reporting year? If yes please complete		
summary details of complaints received on site in table 1 below	Yes	
summary details of complaints received on site in table 1 below	Yes	

Table	1 Complaints summary						
			Brief description of				
			complaint (Free txt <20				Further
Date	Category	Other type (please specify)	words)	Corrective action< 20 words	Resolution status	Resolution date	information
				The Agency opened			
				Compliance Investigation			
				CI001037 in relation to			
				odours emitting from Enva			
				Ireland Portlaoise. Enva have			
				indentified odour sources on			
				site and have implemented			
				controls to mitigate odour			
				nuisances. Information in			
				relation to corrective actions			
23.01.17 to			Odour complaints	have been uploaded to EDEN			
05.12.17	Odour		received.	under Cl001037	Ongoing	Ongoing	
	SELECT				SELECT		
	SELECT				SELECT		
	SELECT				SELECT		
	SELECT				SELECT		
Total complaints							
open at start of							
reporting year	28	3					
Total new							
complaints							
received during							
reporting year	11	L					
Total complaints							
closed during	All complaints remain open as						
reporting year	part of CI001037						
Balance of							
complaints end of	All complaints remain open as						
reporting year	part of CI001037						

	Incide]										
				Additional information	_								
Have any incidents occurred on site in the current reporting	g year? Please list all incide	ents for current reporting		For details on Non conformances please									
year in Table 2 below			Yes	refer to Eden.									
*For information on how to report and what constitutes an incident <u>What</u> Table 2 Incidents summary	nat is an incident												
					Other	Activity in				Preventative			
		Incident category*please			cause(please	progress at time			Corrective action<20	action <20		Resolution	Likelihood of
Date of occurrence Incident nature Loca	cation of occurrence	refer to guidance	Receptor	Cause of incident	specify)	of incident	Communication	Occurrence	words	words	Resolution status	date	reoccurence

W0184-02	Year	2017

Complaints and Incidents summary templateLic No:W0184-02Year2017														
	Breach of ELV	Licenced discharge point (type)	1. Minor	Water	Operational controls		Normal activities	EPA	New	New maintenance pro	ew maintena	Complete	28.02.18	Low
	Other(please specify)	Licenced discharge point (ty	1. Minor	Water	Operational controls		Normal activities	EPA	New	Staf to ensure all requi St	taf to ensure a	Complete		Low
	Other(oil stains on concrete)	Other location (please specif	1. Minor	Water	Operational controls		Normal activities	EPA	New	Concrete cleaned and I Co	oncrete clean	Complete	02.07.17	Low
	Other(Waste not in bunded area)	Other location (please specif	1. Minor	Water	Operational controls		Normal activities	EPA	Recurring	Waste placed in bunde O	peratives inst	Complete	02.06.17	Low
	Odour	Other location (please specif	1. Minor	Air	Operational controls		Normal activities	EPA	Recurring	Odour abatement impl O	dour abatem	Complete	31.01.18	Low
	Other(Waste not stored in a bunde	Other location (please specif	1. Minor	Water	Operational controls		Normal activities	EPA	Recurring	Waste placed in bunde O	peratives inst	Complete	13.04.17	Low
Total number of incidents current														
year	6													
Total number of														
incidents previous														
year	3													
% reduction/														
increase	100													

- 2[

WASTE SUMMA	RY				Lic No:	W0184-02		Year	2017		
SECTION A-PRTR	R ON SITE WASTE TREATMENT AND	WASTE TRANSFERS TAB	- TO BE COMPLETED	BY ALL IPPC AND W	ASTE FACILITIES	PRTR facility logor	<u>ı</u>	dropdown l	ist click to see options		
SECTION B- WAS	STE ACCEPTED ONTO SITE-TO BE CO	OMPLETED BY ALL IPPC A	ND WASTE FACILITIE	S							
							Additional Informatio	n 			
Were any wastes <u>acce</u> 1 is to be captured thro	<u>epted onto</u> your site for recovery or disposal o ough PRTR reporting)	or treatment prior to recovery or	disposal within the bound	aries of your facility ?; (wa	iste generated within your boundaries	Yes					
If yes please enter de	tails in table 1 below										
2 Did your site have any	y rejected consignments of waste in the curre	ent reporting year? If yes please g	ive a brief explanation in th	he additional information		No					
3 Wa	as waste accepted onto your site that was ger	nerated outside the Republic of Ir	eland? If yes please state t	he quantity in tonnes in a	dditional information	Yes					
Table 1 Details	s of waste accepted onto your	site for recovery, disp	osal or treatment	(do not include w	astes generated at your si	te, as these w	ill have been re	eported in your P	RIR workbook)		
tonnage limit for you site (total tonnes/annum)	ur	Source of waste accepted	Description of waste accepted Please enter an accurate and detailed description - which	Quantity of waste accepted in current reporting year (tonnes)	Quantity of waste accepted in previous reporting year (tonnes)	Reduction/ Increase over previous year +/ - %	reduction/ increase from previous reporting year	only applies if the waste has a packaging component	bisposal/Recovery or treatment operation carried out at your site and the description of this operation	Quantity of waste remaining on site at the end of reporting	Comments -
	European Waste Catalogue EWC codes		applies to relevant EWC code European Waste Catalogue EWC codes							year (connes)	
110,000 tons	13 02 08	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Waste oil	9145.337	14269.865	· <u>-35.91154704</u>	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	<u>N/A</u>	R9-Oil re-refining or other reuses	30	Enva Ireland does not currently record the packaging content of waste as it arrives on- site
	13 07 01	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05. 12 and 19)	Diesel and Fuel oil	399.57	214.11	86.6190276	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R9-Oil re-refining or other reuses	of oil	Enva Ireland does not currently record the packaging content of waste as it arrives on- site

WASTE SUMMARY					Lic No:	W0184-02		Year	2017		
	13 05 03	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Interceptor sludaes	225.94	335.05	-32.56596963	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R9-Oil re-refining or other reuses	of oil	Enva Ireland does not currently record the packaging content of waste as it arrives on- site
	13 08 02	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Other emulsions	668.78	434.70	53.84863124	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R9-Oil re-refining or other reuses	37	Enva Ireland does not currently record the packaging content of waste as it arrives on-
	13 05 01	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Solids from grit chambers and oil/water separators	51.96	258.98	-79.93667465	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R5-Recycling/reclamation or othe	r inorganic mater	Enva Ireland does not currently record the packaging content of waste as it arrives on- isite

WASTE SUMMARY			Lic No:	W0184-02		Year	2017		
13 08 99	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	22.01 Waste not oherwise specified	13.27	65.86799277	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any	of the operation	Enva Ireland does not currently record the packaging content of waste as it arrives on-
13 08 33	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	0.00 Other hydraulic oils	0.00	#DIV/0!	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R9-Oil re-refining or other reuses o	f oil	Enva Ireland does not currently record the packaging content of waste as it arrives on- site
13 05 08	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	210.80 Mixtures of waste from grit chambers and oil / water separators	279.03	-24.45310932	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R9-Oil re-refining or other reuses o	foil	Enva Ireland does not currently record the packaging content of waste as it arrives on- site

WASTE SUMMARY					Lic No:
	13 02 05	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Mineral based non- chlorinated engine, gear and lubricating oils	0	
	08 01 13	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	Sludges from paint or varnish containing organic solvents or other dangerous substances	18.584	
	08 04 13	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	Aqueous sludges containing adhesive or sealants containing organic solvents or other dangerous substances	0	

	W0184-02		Year	2017		
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		instances some				
		wastes were				Enva Ireland does
		excepted onsite that				not currently
		were not accepted				record the
		in previous years.				packaging
		, ,				content of waste
0			N/A	PO Oil to refining or other rouses	ofoil	as it arrives on-
0	#DIV/0!		N/A	R9-On re-rejining of other reuses (טן טוו	sne
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		in provious vears				packaging
		in previous years.				content of waste
11.00	26 76674244		N//A	D42 Channes of which and the second		as it arrives on-
14.66	26.76671214		N/A	R13-Storage of waste penaing any	of the operations of the operations	site
		Increase /decrease in				
		the tonnages of				
		waste accented in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		in previous vears				packaging
		previous years.				content of waste
			A1/A	D12 Charges of which it		as it arrives on-
0	#DIV/0!		N/A	K13-Storage of waste pending any	of the operations (site

WASTE SUMMARY				Lic No:		W0184-02		Year	2017		
		20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES)					Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.				Enva Ireland does not currently record the packaging content of waste
	20 01 21	COLLECTED FRACTIONS	Fluorescent tubes	2.887	2.685	7.523277467	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	0.25	site Enva Ireland does not currently record the packaging content of waste as it arrives on-
	16 01 07	SPECIFIED IN THE LIST 17- CONSTRUCTION AND DEMOLITION WASTES (INCLUDING EXCAVATED SOIL FROM CONTAMINATED SITES)	Oil filters Soil and stone containng dangerous substances	13,106.31	5745.003	1.514984283	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	.5804	site Enva Ireland does not currently record the packaging content of waste as it arrives on- site

WASTE SUMMARY					Lic No:	W0184-02	Year	2017	
	16.06.01	16- WASTES NOT OTHERWISE		572.43	726.41	21 10071022	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.		Enva Ireland does not currently record the packaging content of waste as it arrives on-
	15 02 02	15- WASTE PACKAGING; ABSORBENTS, WIPING CLOTHS, FILTER MATERIALS AND PROTECTIVE CLOTHING NOT OTHERWISE SPECIFIED	Absorbents, filter materials (including oil filters not otherwise specified), wiping cloths, protective clothing contaminated by dangerous substances	467.574	437.618	6.845239455	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	R13-Storage of waste pending an	Enva Ireland does not currently record the packaging content of waste as it arrives on- 55.3 site
	16 07 08	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	Waste containing oil	34.887	32.311	7.972517099	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	R13-Storage of waste pendina an	Enva Ireland does not currently record the packaging content of waste as it arrives on- y of the operation site

WASTE SUMMARY			Lic No:	W0184-02	Year	2017		
16.01.13	16- WASTES NOT OTHERWISE	13.30	9.69	Increase/de the tonnag waste acce 2016 comp 2017, was s the quantit waste mad available to Ireland. In s instances s wastes wer excepted o were not ac in previous	ecrease in es of oted in ared to ubject to y of e Enva ome ome e nsite that ccepted years.	B13-Storage of waste pending on	y of the operation	Enva Ireland does not currently record the packaging content of waste as it arrives on-
13 07 03	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Other fuels (including mixtures)	233.66	Increase/de the tonnag waste acce 2016 comp 2017, was s the quantit waste mad available to Ireland. In s instances s wastes wer excepted o were not ac in previous 26.52714472	ecrease in es of oted in ared to ubject to y of e Enva ome e nsite that ccepted years.	R13-Storage of waste pending an	26.75	Enva Ireland does not currently record the packaging content of waste as it arrives on- site
13 07 02	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Petrol	10.22	Increase/de the tonnag waste acce 2016 comp 2017, was s the quantit waste mad available to Ireland. In s instances s wastes wer excepted o were not ac in previous	ecrease in es of bted in ared to ubject to y of e Enva ome bme e hsite that ccepted years.	R13-Storage of waste pending an	6	Enva Ireland does not currently record the packaging content of waste as it arrives on- site

WASTE SUMMARY					Lic No:	W0184-02	Year	2017		
		16- WASTES NOT OTHERWISE 16- WASTES NOT OTHERWISE	pressure rs (including ontaining	42.53	44.55		Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives on-
	08 01 11	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS dangerous	int and varnish g organic or other is substances	1,463.85	1,006.47	45.44413103	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	R13-Storage of waste pending an R5-Recycling/reclamation or othe	150.7	site Enva Ireland does not currently record the packaging content of waste as it arrives on- site
	09 01 02	09- WASTES FROM THE PHOTOGRAPHIC INDUSTRY plate deve	ased offset veloper solutions	0.00	8.41	-100	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	D15-Storage pending any of the o	perations number	Enva Ireland does not currently record the packaging content of waste as it arrives on-

WASTE SUMMARY					Lic No:	W0184-02		Year	2017	
	15 01 10	15- WASTE PACKAGING; ABSORBENTS, WIPING CLOTHS, FILTER MATERIALS AND PROTECTIVE CLOTHING NOT OTHERWISE SPECIFIED	Packaging containing residues of or containing dangerous substances	164.95	182.67	-9.698363169	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	Enva Ireland does not currently record the packaging content of waste as it arrives on- 43 site
	20 01 27	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	Paint, inks, adhesives and resins containing dangerous substances	1.53	18.42	-91.70646982	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	Enva Ireland does not currently record the packaging content of waste as it arrives on- 4 site
	08 04 09	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	Waste adhesives and sealants containing organic solvents or other dangerous substances	0.4	0.21	90.47619048	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	Enva Ireland does not currently record the packaging content of waste as it arrives on-

WA	STE SUMMARY				Lic No:		W0184-02		Year	2017	
		16 05 06	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	Laboratory chemicals, consisting of or containing dangerous substances, including mixtures of dangerous chemicals	24.32	21.96	10.75381462	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	Enva Ireland does not currently record the packaging content of waste as it arrives on- 6.5 site
		16 05 08	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	Discarded organic chemicals consisting of or containing dangerous substances	16.94	10.22	65.70450098	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	Enva Ireland does not currently record the packaging content of waste as it arrives on- 6 site
		17 02 04	17- CONSTRUCTION AND DEMOLITION WASTES (INCLUDING EXCAVATED SOIL FROM CONTAMINATED SITES)	Glass, plastic and wood containing or contaminated with dangerous substances	0.16		0 #DIV/0!	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	Enva Ireland does not currently record the packaging content of waste as it arrives on- v of the operation site

MAACTE CLINANAADV					11. NI.
WASTE SUIVIIVIARY					LIC NO:
	08 03 12	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	Waste ink containing dangerous substances	21.485	
	0	06- WASTES FROM INORGANIC CHEMICAL PROCESSES	Sodium and potassium hydroxide	0	
	20 01 19	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	Pesticides	0	

W0184-02			Year	2017				
		Increase/decrease in						
		the tonnages of						
		waste accepted in						
		2016 compared to						
		2017, was subject to						
		the quantity of						
		waste made						
		available to Enva						
		Ireland. In some						
		instances some				Enva Ireland does		
		wastes were				not currently		
		excepted onsite that				record the		
		were not accepted				packaging		
		in previous years.				content of waste		
						as it arrives on-		
16.595	29.46670684		N/A	R13-Storage of waste pending any	of the operation	site		
		Increase/decrease in						
		the tonnages of						
		waste accepted in						
		2016 compared to						
		2017, was subject to						
		the quantity of						
		waste made						
		available to Enva						
		Ireland. In some						
		instances some				Enva Ireland does		
		wastes were				not currently		
		excepted onsite that				record the		
		were not accepted				packaging		
		in previous years.				content of waste		
						as it arrives on-		
0	#DIV/0!		N/A	D15-Storage pending any of the o	perations number	site		
		Increase/decrease in						
		the tonnages of						
		waste accepted in						
		2016 compared to						
		2017, was subject to						
		the quantity of						
		waste made						
		available to Enva						
		inetano. In some						
		mistances some				Enva Ireland does		
		wastes were				not currently		
		were not accented				record the		
		in previous vears				packaging		
		previous years.				content of waste		
						as it arrives on- 		
0.914	-100		N/A	K13-Storage of waste pending any	of the operation (site		

					11. 11.
WASTE SUIVIIVIART					LIC NO:
		10- WASTES FROM THERMAL			
	10 01 04	PROCESSES	Oil fly ash and boiler dust	0	
	00.00.15	06- WASTES FROM INORGANIC	Metal oxides containing	0	
	06 03 15	CHEMICAL PROCESSES	neavy metal	0	
			Antifração fluido		
		16- WASTES NOT OTHEDWISE	containing dangerous		
	16.01.14		fluids	۵ ۲	
	10 01 11		U	5.2	

	W0184-02		Year	2017		
		Increase/decrease in the tonnages of waste accepted in 2016 compared to				
		2017, was subject to the quantity of waste made available to Enva				
		Ireland. In some instances some wastes were excepted onsite that				Enva Ireland does not currently record the
0	#DIV/0!	were not accepted in previous years.	N/A	R5-Recvclina/reclamation or othe	r inoraanic materi	packaging content of waste as it arrives on- site
		Increase/decrease in the tonnages of waste accepted in				
		2016 compared to 2017, was subject to the quantity of				
		waste made available to Enva Ireland. In some instances some				
		wastes were excepted onsite that were not accepted				Enva Ireland does not currently record the packaging
		in previous years.				content of waste as it arrives on-
0	#DIV/0!		N/A	R13-Storage of waste pending any	of the operation of the vertion of the vertice of t	site
		Increase/decrease in the tonnages of				
		waste accepted in 2016 compared to 2017, was subject to				
		the quantity of waste made available to Enva				
		Ireland. In some instances some wastes were				Enva Ireland does not currently
		were not accepted in previous years.				record the packaging content of waste
10.26	-10.33138402		N/A	R13-Storage of waste pending an	20	as it arrives on- site

MAACTE CLINANAADY	,				11. 11.
WASTE SUIVIIVIART			1		LIC NO:
		20- MUNICIPAL WASTES			
		(HOUSEHOLD WASTE AND			
		SIMILAR COMMERCIAL,			
		INDUSTRIAL AND			
		INSTITUTIONAL WASTES)			
		INCLUDING SEPARATELY			
	20 01 14	COLLECTED FRACTIONS	Acids	0	
		13- OIL WASTES AND WASTES			
		OF LIQUID FUELS (except			
		edible oils, and those in	Mineral based non-		
	13 01 10	chapters 05, 12 and 19)	chlorinated hydraulic oils	2.04	
			·		
		19- WASTES FROM WASTE			
		MANAGEMENT FACILITIES,			
		OFF-SITE WASTE WATER			
		TREATMENT PLANTS AND THE			
		PREPARATION OF WATER	Sludges from onsite		
		INTENDED FOR HUMAN	effluent treatment		
		CONSUMPTION AND WATER	containing dangerous		
	19 11 05	FOR INDUSTRIAL USE	substances	3.32	

	W0184-02		Year	2017		
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Eriva				
		instances some				
		wastes were				Enva Ireland does
		excepted onsite that				not currently
		were not accepted				record the
		in previous years.				puckuying content of waste
						as it arrives on-
6.61	-100		N/A	R13-Storage of waste pending any	of the operation	site
			,			
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		ireland. In some				
		wastes were				Enva Ireland does
		excepted onsite that				not currently
		were not accepted				record the
		in previous years.				packaging
						as it arrives on-
9.2	-77.82608696		N/A	R9-Oil re-refining or other reuses o	f oil	site
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to ENVa				
		instances some				
		wastes were				Enva Ireland does
		excepted onsite that				not currently
		were not accepted				recora the packaging
		in previous years.				content of waste
						as it arrives on-
0	#DIV/0!		N/A	R13-Storage of waste pending any	of the operation	site

WASTE SUMM	ARY			Lic No:	W0184-02	Year	2017	
	08 03 13	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	22.91 Waste ink other than those mentioned in 08.03.12	19.36	Increase/decreas the tonnages of waste accepted i 2016 compared 2017, was subject the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite were not accept in previous years	e in bo to to hat d	R13-Storage of waste pending any of the operati	Enva Ireland does not currently record the packaging content of waste as it arrives on- on site
	08 03 08	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	0.00 Aqueous liquid waste containing ink	19.57	Increase/decreas the tonnages of waste accepted i 2016 compared 2017, was subject the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite were not accept in previous years	e in b c to hat d	R13-Storage of waste pending any of the operati	Enva Ireland does not currently record the packaging content of waste as it arrives on- on site
	16 01 12	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	Brake pads other than those mentioned in 16.01.11 0	4.895	Increase/decreas the tonnages of waste accepted 2016 compared 2017, was subject the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite were not accept in previous years	e in b to to hat d	R13-Storage of waste pending any of the operati	Enva Ireland does not currently record the packaging content of waste as it arrives on-

WASTE SUMMARY					Lic No:	W0184-02		Year	2017		
	20 01 25	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	edible oil and fat	0	13.795	-100	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any	v of the operation	Enva Ireland does not currently record the packaging content of waste as it arrives on- site
	16 10 02	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	aqueous liquid wastes other than those mentioned in 16 10 01	3.82	27.14	-85.92275943	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any	v of the operation	Enva Ireland does not currently record the packaging content of waste as it arrives on-
	08 01 12	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	waste paint and varnish other than those mentioned in 08 01 11	0.00	12.41	-100	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pendina any	y of the operation	Enva Ireland does not currently record the packaging content of waste as it arrives on-

WASTE SUMMARY			Lic No:	W0184-02		Year	2017		
16 01 15	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	antifreeze fluids other than those mentioned in 16 01 14	185.68	-25.20250329	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any	of the operation	Enva Ireland does not currently record the packaging content of waste as it arrives on-
16 05 05	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	gases in pressure containers other than those mentioned in 16 05 04 0	0	#DIV/0!	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any	of the operation	Enva Ireland does not currently record the packaging content of waste as it arrives on-
16 06 05	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	other batteries and accumulators 0.43	1.2	-64.16666667	Increase/decrease in the tonnages of waste accepted in 2016 compared to 2017, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any	of the operation	Enva Ireland does not currently record the packaging content of waste as it arrives on-

WASTE SUMMARY	,				Lic No:
			discarded chemicals		
			other than those		
	0	16- WASTES NOT OTHERWISE	mentioned in 16 05 06,	0	
	0	SPECIFIED IN THE LIST		0	
		20- MUNICIPAL WASTES			
		(HOUSEHOLD WASTE AND			
		SIMILAR COMMERCIAL,			
		INDUSTRIAL AND			
		INSTITUTIONAL WASTES)			
	20.01.40	INCLUDING SEPARATELY	Matals	160 5	
	20 01 40	COLLECTED FRACTIONS	wietuis	100.5	
		17- CONSTRUCTION AND			
		DEMOLITION WASTES	soil and stones other		
	170504	(INCLUDING EXCAVATED SOIL	than those mentioned in	20201 00	
	17 05 04	TROW CONTAININATED SITES)	20 20 20 21	28091.08	

	W0184-02		Year	2017		
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		Instances some				Enva Ireland does
		wastes were				not currently
		were not accented				record the
		in previous years				packaging
		in previous years.				content of waste
					C	as it arrives on-
0	#DIV/0!		N/A	R13-Storage of waste pending any	of the operations of the operations	site
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		waste made				
		available to Enva				
		Ireland In some				
		instances some				
		wastes were				Enva Ireland does
		excepted onsite that				not currently
		were not accepted				record the
		in previous years.				content of waste
						as it arrives on-
157.622	1.825887249		N/A	R13-Storgae of waste pending an	321	site
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		were not accepted				packaging
		in previous years.				content of waste
						as it arrives on-
63.94	44771.87989		N/A	R5-Recycling/reclamation or other	r inorganic materi	site

WASTE SUMMARY					Lic No:
	16 01 22	<i>16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST</i>	components not otherwise specified	0.276	
		19- WASTES FROM WASTE MANAGEMENT FACILITIES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE PREPARATION OF WATER INTENDED FOR HUMAN			
	19 09 04	CONSUMPTION AND WATER FOR INDUSTRIAL USE	spent activated carbon	2.8	
		13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils. and those in	other insulatina and		
	13 03 10	chapters 05, 12 and 19)	heat transmission oils	0	

	W0184-02		Year	2017		
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		were not accepted				packaging
		in previous years.				content of waste
						as it arrives on-
0.285	-3.157894737		N/A	R13-Storage of waste pending any	of the operation	site
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		in provious voors				packaging
		in previous years.				content of waste
						as it arrives on-
10.26	-72.70955166		N/A	R13-Storage of waste pending any	of the operation of the vertice of t	site
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to ENVa				
		instances some				
		wastes were				Enva Ireland does
		excepted onsite that				not currently
		were not accepted				record the
		in previous years.				packaging
		,,				content of waste
			N/A	PQ_Oil re-refining or other revises	ofail	us il urrives on-
0	#DIV/U!		iv/A	no-on re-reginning or other reases (ווט	SILC

MACTE CLINANAADV					Lie Net
WASTE SUIVIIVIART					LIC NO:
		13- OIL WASTES AND WASTES			
		OF LIOUID FUELS (except			
		edible oils, and those in	sludaes from oil/water		
	13 05 02	chanters 05, 12 and 19)	separators	29.4	
	10 00 02			2011	
		13- OIL WASTES AND WASTES			
		OF LIQUID FUELS (except			
		edible oils, and those in	oily water from		
	13 05 07	chapters 05, 12 and 19)	oil/water separators	1408.281	
		13- OIL WASTES AND WASTES			
		OF LIQUID EVELS (avent	mineral-based non		
		edible oils and those in	chloringted insulating		
	12 02 07	chanters 05, 12 and 10)	and heat transmission oil	105 0	
	10.00 61			105.5	

	W0184-02		Year	2017		
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		were not accepted				packaging
		in previous years.				content of waste
						as it arrives on-
24.86	18.2622687		N/A	R5-Recycling/reclamation or other in	inorganic materi	site
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		were not accepted				packaging
		in previous years.				content of waste
						as it arrives on-
506.0733	178.2760916		N/A	R9-Oil re-refining or other reuses of	^c oil	site
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		were not accepted				packaging
		in previous years.				content of waste
						as it arrives on-
49.414	274.9949407		N/A	R9-Oil re-refining or other reuses of	^r oil	site

WASTE SUMMARY	·				Lic No:
	13 01 11	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	synthetic hydraulic oils	0	
	0	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	waste from paint or varnish removal containing organic solvents or other dangerous substances	0	
	0	07- WASTES FROM ORGANIC CHEMICAL PROCESSES	sludges from onsite effluent treatment containing dangerous substances	0	

	W0184-02		Year	2017		
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		were not accepted				packaging
		in previous years.				content of waste
						as it arrives on-
0.955	-100		N/A	R13-Storage of waste pending any	of the operations	site
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		were not accepted				packaging
		in previous years.				content of waste
						as it arrives on-
0	#DIV/0!		N/A	R13-Storage of waste pending any	of the operations	site
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		were not accepted				packaging
		in previous years.				content of waste
						as it arrives on-
0	#DIV/0!		N/A	R13-Storage of waste pending any	of the operations	site
MAACTE CLINANAADV					11. 11.	
-------------------	----------	---	---	-------	---------	
WASTE SUIVIIVIARY					LIC NO:	
	16.06.04	16- WASTES NOT OTHERWISE	alkaline batteries	0.217		
	18 01 09	18- WASTES FROM HUMAN OR ANIMAL HEALTH CARE AND/OR RELATED RESEARCH (except kitchen and restaurant wastes not arising from immediate RESEARCH (except kitchen and restaurant wastes not arising from immediate health care)	medicines other than those mentioned in 18 01 08	0		
	0	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	paint, inks, adhesives and resins other than those mentioned in 20 01 27	0		

	W0184-02		Year	2017		
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		wore not acconted				record the
		in previous vears				packaging
		in previous years.				content of waste
					6 .4	as it arrives on-
0.294	-26.19047619		N/A	R13-Storage of waste pending any	of the operations	site
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		waste made				
		available to Enva				
		Ireland In some				
		instances some				
		wastes were				Enva Ireland does
		excepted onsite that				not currently
		were not accepted				record the
		in previous years.				puckuying content of waste
						as it arrives on-
0.342	-100		N/A	R13-Storage of waste pending any	of the operation	site
			,			
		Increase/decrease in				
		the tonnages of				
		waste accepted in				
		2016 compared to				
		2017, was subject to				
		the quantity of				
		waste made				
		available to Enva				
		Ireland. In some				
		instances some				Enva Ireland does
		wastes were				not currently
		excepted onsite that				record the
		were not accepted				packaging
		in previous years.				content of waste
						as it arrives on-
0	#DIV/0!		N/A	R13-Storage of waste pending any	of the operations	site

WASTE SUMMARY				Lic No:	W0184-02	Year	2017	
						Increase/decrease in		
						the toppages of		
						waste accented in		
						2016 compared to		
						2017 was subject to		
						the guartity of		
						une qualitity of		
						waste made		
						iretanas some		
		20- MUNICIPAL WASTES				instances some		Enva Ireland does
		(HOUSEHOLD WASTE AND				wastes were		not currently
		SIMILAR COMMERCIAL,				excepted onsite that		record the
		INDUSTRIAL AND				were not accepted		packaging
		INSTITUTIONAL WASTES)				in previous years.		content of waste
		INCLUDING SEPARATELY						as it arrives on-
	0	COLLECTED FRACTIONS	Streat cleaning residues 0	0	#DIV/0!	N/A	R5-Recycling/reclamation or other	inorganic materiesite
						Increase/decrease in		
						the tonnages of		
		02-WASTES FROM				waste accepted in		Enva Ireland does
		AGRICULTURE,				2016 compared to		not currently
		HORTICULTURE,				2017, was subject to		record the
		AQUACULTURE, FORESTRY,				the quantity of		packaging
		HUNTING AND FISHING, FOOD				waste made		content of waste
		PREPARATION AND	Agrochemical containing			available to Enva		as it arrives on-
	02 01 08	PROCESSING	dangerous substanvces C	0.04	-100	Ireland. In some N/A	R13-Storage of waste pending any	of the operation site
						Increase/decrease in		
						the tonnages of		Frank had and do an
						waste accepted in		Enva Ireland does
						2016 compared to		not currently
						2017, was subject to		record the
						the quantity of		раскадіпд
						waste made		content of waste
	07.00.04	07- WASTES FROM ORGANIC			150	available to Enva		as it arrives on-
	07 02 01	CHEMICAL PROCESSES	Aqueous washing liquids 2	0.8	150	/ Ireland. In some ///A	R13-Storage of waste pending any	of the operations site
						the tennages of		
						unacto accontod in		Enva Ireland does
						2016 compared to		not currently
						2017 was subject to		record the
						2017, was subject to		nackaging
						the quantity of		content of waste
		07- WASTES EPOM OPCANIC	Waste not other wise			waste made		as it arrives on-
	07 05 99		specified	0.04	400		P12-Storage of waste pending any	of the operation site
	07 03 33	CITEIWICAL FILOCESSES		0.04	400	Increase/decrease in	hts-storage of waste penality any	
						the tonnages of		
						waste accepted in		Enva Ireland does
						2016 compared to		not currently
		03- WASTES FROM WOOD				2017, was subject to		record the
		PROCESSING AND THE				the quantity of		packaging
		PRODUCTION OF PANELS AND				waste made		content of waste
		FURNITURE, PULP. PAPER AND	Waste from coolina			available to Enva		as it arrives on-
	10 01 26	CARDBOARD	water treatment 4.66	3	55.33333333	Bireland. In some	R13-Storage of waste pending any	of the operation site

	WASTE SUMMARY				Lic No:	W0184-02		Year	2017		
							Increase/decrease in				
							the tonnages of				
							waste accepted in				enva ireiana aoes
							2010 compared to				record the
		13- OIL WASTES AND WASTES					the quantity of				packaging
		OF LIQUID FUELS (except					waste made				content of waste
		edible oils, and those in					available to Enva				as it arrives on-
	13 04 03	chapters 05, 12 and 19)	Bilge oil	7118.905	3858.531	84.49780499	Ireland. In some	N/A	R9-Oil re-refining or other reuses	of oil	site
							the tonnages of				
							waste accepted in				Enva Ireland does
							2016 compared to				not currently
		15- WASTE PACKAGING;					2017, was subject to				record the
		ABSORBENTS, WIPING					the quantity of				packaging
		CLOTHS, FILTER MATERIALS					waste made				content of waste
	15 01 06	NOT OTHERWISE SPECIFIED	Mixed Packaging	1 203	0.935	38 28877005	available to Enva	N/A	R12-Storage of waste pending an	v of the operation	as it arrives on-
F	15 01 00	NOT OTTIERWISE SPECIFIED	Winked Fuckdying	1.255	0.555	38.28877003	Increase/decrease in		N13-Storuge of waste penaling an	y of the operation	
		19- WASTES FROM WASTE					the tonnages of				
		MANAGEMENT FACILITIES,					waste accepted in				Enva Ireland does
		OFF-SITE WASTE WATER					2016 compared to				not currently
		IREAIMENT PLANTS AND THE					2017, was subject to				record the
		INTENDED FOR HUMAN					the quantity of				content of waste
		CONSUMPTION AND WATER	Sludaes from treatmet				available to Enva				as it arrives on-
	19 08 05	FOR INDUSTRIAL USE	of urban wastewater	37.64	6.2	507.0967742	Ireland. In some	N/A	R13-Storage of waste pending an	5	site
ſ							Increase/decrease in				
							the tonnages of				
							waste accepted in				
		19- WASTES FROM WASTE					2016 compared to				
		MANAGEMENT FACILITIES,					2017, was subject to				Enva ireiana aoes
		TREATMENT PLANTS AND THE					waste made				record the
		PREPARATION OF WATER					available to Enva				packaging
		INTENDED FOR HUMAN					Ireland. In some				content of waste
		CONSUMPTION AND WATER	Sludges from treatmet				instances some				as it arrives on-
ļ	19 09 02	FOR INDUSTRIAL USE	of urban wastewater	1.34	16.08	-91.66666667	wastes were	N/A	R13-Storage of waste pending an	y of the operation	site
		02-WASTES FROM					Increase/decrease in				
		AGRICULTURE,					waste accepted in				
		AOUACULTURE, FORESTRY.					2016 compared to				
		HUNTING AND FISHING, FOOD					2017, was subject to				Enva Ireland does
		PREPARATION AND					the quantity of				not currently
		PROCESSING					waste made				record the
							available to Enva				packaging
			Wastefrom spirits				instances some				as it arrives on-
	02 07 02		distillation	5.94	0	#DIV/0!	wastes were	N/A	R13-Storage of waste pending an	y of the operation	site
ſ		06- WASTES FROM INORGANIC					Increase/decrease in				
		CHEMICAL PROCESSES					the tonnages of				
							waste accepted in				
							2016 compared to				Enva Ireland door
							the quantity of				not currently
							waste made				record the
							available to Enva				packaging
							Ireland. In some				content of waste
							instances some				as it arrives on-
ŀ	06 01 01		Sulphuric acid	0.125	0	#DIV/0!	wastes were	N/A	R13-Storage of waste pending an	y of the operation	site
		CHEMICAL DROCESSES					the toppages of				
		CHEWICAL PROCESSES					waste accented in				
							2016 compared to				
							2017, was subject to				Enva Ireland does
							the quantity of				not currently
							waste made				record the
							available to Enva				packaging
							instances some				content of waste
	06 01 06		Acids	0.065	0	#DIV/0!	wastes were	N/A	R13-Storage of waste pending an	y of the operation	site
L							-	• •			

WASTE SUMMARY					Lic No:	W0184-02		Year	2017	
		06- WASTES FROM INORGANIC					Increase/decrease in			
		CHEMICAL PROCESSES					the tonnages of			
							waste accepted in			
							2016 compared to			
							2017, was subject to			Enva Ireland does
							the quantity of			not currently
							waste made			record the
							available to Enva			packaging
							Ireland. In some			content of waste
							instances some			as it arrives on-
	06 13 02		spent activated carbon	6.78	0	0 #DIV/0!	wastes were	N/A	R13-Storage of waste pending an	y of the operation site
		07- WASTES FROM ORGANIC					Increase/decrease in			
		CHEMICAL PROCESSES					the tonnages of			
							waste accepted in			
							2016 compared to			
							2017, was subject to			Enva Ireland does
							the quantity of			not currently
							waste made			record the
							available to Enva			packaging
							Ireland. In some			content of waste
	07.05.40		Solid contaminated	225.05			instances some			as it arrives on-
	07 05 13		waste	236.06	0) #DIV/0!	wastes were	N/A	R13-Storage of waste pending an	y of the operation site
							Increase/decrease in			
							the tonnages of			
							waste accepted in			
		08- WASTES FORM THE					2016 compared to			Enva Iroland door
							2017, Was subject to			Enva ireland does
							the quantity of			not currently
		USE (IVIFSU) OF COATINGS					waste made			record the
		(PAINTS, VARINISHES AND					available to Eriva			puckuging
		VITREOUS ENAIVIELS,)					instances some			content of waste
	08 01 12	DRINTING INKS	Paint related waste	Q 1Q1	0		wastes were	N/A	P12 Storage of waste pending an	us it unives on-
	08 01 12	PRINTING INKS		0.101	0		Increase/decrease in	N/A	K13-Storage of waste penaling an	y of the operationsite
							the tonnages of			
							waste accented in			
		08- WASTES FORM THE					2016 compared to			
		MANUFACTURE.					2017. was subject to			Enva Ireland does
		FORMULATION. SUPPLY AND					the quantity of			not currently
		USE (MFSU) OF COATINGS					waste made			record the
		(PAINTS, VARNISHES AND					available to Enva			packaging
		VITREOUS ENAMELS,)					Ireland. In some			content of waste
		ADHESIVES, SEALANTS AND					instances some			as it arrives on-
	08 01 17	PRINTING INKS	Paint related waste	2.585	0) #DIV/0!	wastes were	N/A	R13-Storage of waste pending an	y of the operation site
							Increase/decrease in			
							the tonnages of			
							waste accepted in			
		08- WASTES FORM THE					2016 compared to			
		MANUFACTURE,					2017, was subject to			Enva Ireland does
		FORMULATION, SUPPLY AND					the quantity of			not currently
		USE (MFSU) OF COATINGS					waste made			record the
		(PAINTS, VARNISHES AND					available to Enva			packaging
		VITREOUS ENAMELS,)					Ireland. In some			content of waste
		ADHESIVES, SEALANTS AND					instances some			as it arrives on-
	08 04 10	PRINTING INKS	Adhesive	16.829	0	0 #DIV/0!	wastes were	N/A	R13-Storage of waste pending an	y of the operation site
							Increase/decrease in			
							the tonnages of			
							waste accepted in			
							2016 compared to			
							2017, was subject to			Enva Ireland does
							the quantity of			not currently
							waste made			record the
							available to Enva			packaging
							ireland. In some			content of waste
		16- WASTES NOT OTHERWISE		_ · · -	-		instances some			as it arrives on-
	16 05 09	SPECIFIED IN THE LIST	uscaraea cnemicals	u U.16	ı ()	/I #DIV/0!	iwastes were	IN/A	1K13-Storage of Waste bending an	v or the operationssite

WASTE SUMMARY				Lic No:	W0184-02		Year	2017	
						Increase/decrease in			
						the tonnages of			
						waste accepted in			
						2016 compared to			
						2017, was subject to			Enva Ireland does
						the quantity of			not currently
						waste made			record the
		17- CONSTRUCTION AND				available to Enva			packaging
		DEMOLITION WASTES				Ireland. In some			content of waste
		(INCLUDING EXCAVATED SOIL				instances some			as it arrives on-
	17 01 01	FROM CONTAMINATED SITES)	Concrete	797.54	0 #DIV/0!	wastes were	N/A	R5-Recycling/reclamation or othe	r inorganic materiesite
						Increase/decrease in			
						the tonnages of			
						waste accepted in			
						2016 compared to			
						2017, was subject to			Enva Ireland does
						the quantity of			not currently
						waste made			record the
						available to Enva			packaging
						Ireland. In some			content of waste
		16- WASTES NOT OTHERWISE				instances some			as it arrives on-
	16 06 05	SPECIFIED IN THE LIST	Batteries	0.43	0 #DIV/0!	wastes were	N/A	R13-Storage of waste pending an	y of the operation site
						Increase/decrease in	,		
						the tonnages of			
						waste accepted in			
						2016 compared to			
						2017, was subject to			Enva Ireland does
						the quantity of			not currently
						waste made			record the
		17- CONSTRUCTION AND				available to Enva			nackaaina
						Ireland In some			content of waste
						instances some			as it arrives on-
	17.02.01	(INCLODING EXCAVATED SOIL	Tar	07.96		wastos woro	N/A	P12 Storage of waste pending an	u of the operation site
	17 03 01	FROM CONTAININATED SITES	TUI	57.60		Increase/decrease in	N/A	K13-Storuge of waste penaling an	y of the operationslice
						the tonnages of			
						waste accented in			
						2016 compared to			
						2010 compared to			Enva Ireland does
						the quantity of			not currently
						waste made			record the
		17 CONSTRUCTION AND				waste made			nackaging
						Iroland In some			puckuging contant of waste
						instances some			as it arrives on
	17.02.02	(INCLUDING EXCAVATED SUIL	Tar	284.66		mistances some	N/A	P12 Storage of waste pending an	us it unives on-
	17 03 02	TROW CONTAININATED SITES	101	204.00		Increase/decrease in	N/A	his-storage of waste penaling an	y of the operationslice
						the toppages of			
						waste accented in			
		19- WASTES EDONA WASTE				2016 compared to			
		19- WASTES FRONT VASTE				2010 compared to			Enva Iroland doos
		WANAGEWENT FACILITIES,				2017, was subject to			Enva ireiana ades
		UFF-SITE WASTE WATER				the quantity of			not currently
						waste made			
		PREPARATION OF WATER				available to Enva			packaging
						ireland. In some			content of waste
	10.02.05	CONSUMPTION AND WATER	Churchene	170.00	401	instances some	A1/A		as it arrives on-
<u> </u>	19 02 05	FOR INDUSTRIAL USE	Sluuye	170.08	0 #טוע/ט!	wastes were	N/A	אז waste penaing an	
						the tennesses of			
						une connages of			
						waste accepted in			
		19- WASTES FROM WASTE				2016 compared to			
		MANAGEMENT FACILITIES,				2017, was subject to			Enva Ireland does
		UFF-SITE WASTE WATER				the quantity of			not currently
		TREATIVIENT PLANTS AND THE				waste made			record the
		PREPARATION OF WATER				available to Enva			packaging
						ireiand. In some			content of waste
		CONSUMPTION AND WATER				instances some			as it arrives on-
1	19 07 03	FOR INDUSTRIAL USE	Leachate	34.12	0 #DIV/0!	wastes were	N/A	R13-Storage of waste pending an	y of the operations site

WASTE SUMMARY					Lic No:	W0184-02		Year	2017		
							Increase/decrease in				
							the tonnages of				
							waste accepted in				
							2016 compared to				
		20- MUNICIPAL WASTES					2017, was subject to				Enva Ireland does
		(HOUSEHOLD WASTE AND					the quantity of				not currently
		SIMILAR COMMERCIAL,					waste made				record the
		INDUSTRIAL AND					available to Enva				packaging
		INSTITUTIONAL WASTES)					Ireland. In some				content of waste
		INCLUDING SEPARATELY					instances some				as it arrives on-
	20 03 06	COLLECTED FRACTIONS	Sewage waste	14		0 #DIV/0!	wastes were	N/A	R13-Storage of waste pending any	of the operations	site

SECTION C-TO BE COMPLETED BY ALL WASTE FACILITIES (waste transfer stations, Composters, Material recovery facilities etc) EXCEPT LANDFILL SITES

4 Is all waste processing infrastructure as required by your licence and approved by the Agency in place? If no please list waste processing infrastructure required onsite

5 Is all waste storage infrastructure as required by your licence and approved by the Agency in place? If no please list waste storage infrastructure required on site

6 Does your facility have relevant nuisance controls in place?

7 Do you have an odour management system in place for your facility? If no why?

8 Do you maintain a sludge register on site?

SECTION D-TO BE COMPLETED BY LANDFILL SITES ONLY

Table 2 Waste type	able 2 Waste type and tonnage-landfill only												
Waste types permitted for disposal	Authorised/licenced annual intake for disposal (tpa)	Actual intake for disposal in reporting year (tpa)	Remaining licensed capacity at end of reporting year (m3)	Comments									

Table 3 General information-Landfill only

Area ID	Date landfilling commenced	Date landfilling ceased	Currently landfilling	Private or Public Operated	Inert or non-hazardous	Predicted date to cease landfilling	Licence permits asbestos	Is there a separate cell for asbestos?	Accepted asbestos in reporting year	Total disposal area occupied by waste	Lined disposal area occupied by waste	Unlined area
										SELECT UNIT	SELECT UNIT	SELECT UNIT
Cell 8												

Yes	
Yes	
Yes	
Yes	
No	

WASTE SUMMARY				Lic No:	W0184-02		Year
Table 4 Environmental monitoring-landfill only	Landfill Manual-Monitoring Star	<u>ndards</u>					-
Was meterological							
monitoring in						Has the statement	
compliance with		Was SW monitored in			Was topography	under S53(A)(5) of	
Landfill Directive (LD)	Was Landfill Gas monitored in	compliance with LD			of the site	WMA been	
standard in reporting Was leachate monitored in compliance	compliance with LD standard in	standard in reporting	Have GW trigger levels	Were emission limit values agreed with	surveyed in	submitted in	
year + with LD standard in reporting year	reporting year	year	been established	the Agency (ELVs)	reporting year	reporting year	Comments

.+ please refer to Landfill Manual linked above for relevant Landfill Directive monitoring standards

Table 5 Capping-Landfill only

	,					
				Area with waste that		
Area uncapped*	Area with temporary cap			should be permanently		
SELECT UNIT	SELECT UNIT	Area with final cap to LD		capped to date under		
SELECT UNIT	SELECT UNIT	Standard m2 ha, a	Area capped other	licence	What materials are used in the cap	Comments

*please note this includes daily cover area

Table 6 Leachate-Landfill only

9 Is leachate from your site treated in a Waste Water Treatment Plant? O Is leachate released to surface water? If yes please complete leachate mass load information below SELECT								
	Volume of leachate in reporting year(m3)	Leachate (BOD) mass load (kg/annum)	Leachate (COD) mass load (kg/annum)	Leachate (NH4) mass load (kg/annum)	Leachate (Chloride) mass load kg/annum	Leachate treatment on-site	Specify type of leachate treatment	Comments

	Please ensure that all information repo	orted in the landfill gas section is o	consistent with the Landfill	Gas Survey submitted in
Table 7 Landfill Gas	s-Landfill only			
			Was surface emissions	
			monitoring performed	
Gas Captured&Treated			during the reporting	
by LFG System m3	Power generated (MW / KWh)	Used on-site or to national grid	year?	Comments
			SELECT	

th PRTR returns

Comments on liner type

Appendix 1

| PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : W0184_2017.xls | Return Year : 2017 |

30/03/2018 13:02

Guidance to completing the PRTR workbook

PRTR Returns Workbook

Version 1.1.19

REFERENCE YEAR 2017

1. FACILITY IDENTIFICATION

	Enva Ireland Limited
Facility Name E	Enva Ireland Limited (Portlaoise)
PRTR Identification Number V	W0184
Licence Number V	W0184-02

Classes of Activity

No. class_name - Refer to PRTR class activities below

Address 1	Clonminam Industrial Estate
Address 2	Portlaoise
Address 3	
Address 4	
	Laois
Country	Ireland
Coordinates of Location	-7.31391 53.0294
River Basin District	IESE
NACE Code	3832
Main Economic Activity	Recovery of sorted materials
AER Returns Contact Name	David McKelvey
AER Returns Contact Email Address	David.McKelvey@Enva.com
AER Returns Contact Position	Environmental Administrator
AER Returns Contact Telephone Number	0578678600
AER Returns Contact Mobile Phone Number	0578678600
AER Returns Contact Fax Number	
Production Volume	0.0
Production Volume Units	
Number of Installations	0
Number of Operating Hours in Year	0
Number of Employees	101
User Feedback/Comments	
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name		
5(a)	Installations for the recovery or disposal of hazardous waste		
5(c)	Installations for the disposal of non-hazardous waste		
50.1	General		
3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)			
Is it applicable?	No		
Have you been granted an exemption ?			
If applicable which activity class applies (as per			
Schedule 2 of the regulations) ?			
Is the reduction scheme compliance route being			
used ?			

4. WASTE IMPORTED/ACCEPTED ONTO SITE Guidance on waste imported/accepted onto site Do you import/accept waste onto your site for onsite treatment (either recovery or disposal activities) ? Yes Yes

This question is only applicable if you are an IPPC or Quarry site
4.1 RELEASES TO AIR

08

Link to previous years emissions data

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

	RELEASES TO AIR				Please enter all quantities i	n this section in KGs		
POLLUTANT		METHOD				QUANTITY		
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
	Nitrogen oxides (NOx/NO2)	M	OTH		542.0	54	2.0 0.0) 0.0
	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button							

SECTION B : REMAINING PRTR POLLUTANTS

	·						_			
	RELEASES TO AIR				Please e	enter all quantities i	in this section in KGs			
POLLUTANT				METHOD					QUANTITY	
				Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Em	nission Point 1	T (Total) KG/Year		A (Accidental) KG/Year	F (Fugitive) KG/Year
						0.0		0.0	0.0	0
						0.0		0.0	0.0	0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

RELEASES TO AIR					Please enter all quantities	in this section in KGs			
POLLUTANT				METHOD				QUANTITY	
				Methoo	d Used				
Pollutant No.	Name	M/C/E	Method Code	De	esignation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
						0.0		0.0 0.0	0.0
	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button								

Additional Data Req	uested from	Landfill operators
---------------------	-------------	--------------------

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KG/yr for Section A: Sector specific PRTR pollutants above. Please complete the table below:

Landfill:	Enva Ireland Limited (Portlaoise)			
Please enter summary data on the quantities of methane flared and / or utilised			Meth	nod Use
	T (Total) kg/Year	M/C/E	Method Code	[
Total estimated methane generation (as per				
site model)	0.0			
Methane flared	0.0			
Methane utilised in engine/s	0.0			
Net methane emission (as reported in Section				
A above)	0.0			

sed		
Designation or	Facility Total Capacity	
Description	m3 per hour	
	N/A	
	N/A 0.0	(Total Flaring Capacity)
	N/A 0.0 0.0	(Total Flaring Capacity) (Total Utilising Capacity)
	N/A 0.0 0.0	(Total Flaring Capacity) (Total Utilising Capacity)
	N/A 0.0 0.0 N/A	(Total Flaring Capacity) (Total Utilising Capacity)

8

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

SECTION A · PRTR POLI UTANTS

	OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR W	ASTE-WATER TREATMENT O	R SEWER		Please enter all quantities in this section in KGs				
	POLLUTANT		MET	HOD			QUANTITY		
No. Annex II	Name	M/C/E	Method Code	Nethod Used	Emission Point 1	T (Total) KG/Vear	A (Accidental) KG/Vear	F (Fugitive) KG/Vear	
06	Ammonia (NH3)	C	OTH	APHA /AWWA Standard Me TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical	416.87	416.87	0.0	0.0	
				Emission Spectrometry). Modified US EPA Method					
18	Cadmium and compounds (as Cd)	C	OTH	200.10	0.00455	0.00455	0.0	0.0	
79	Chlorides (as Cl)	C	ОТН	APHA /AWWA Standard Me TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method	9 17300.166	17300.166	0.0	0.0	
20	Copper and compounds (as Cu)	С	ОТН	200.7 TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method	0.0835	0.0835	0.0	0.0	
23	Lead and compounds (as Pb)	C	ОТН	200.8 APHA /AWWA Standard	0.0451	0.0451	0.0	0.0	
71	Phenols (as total C)	С	ОТН	Methods TM30 - Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method	74.139	74.139	0.0	0.0	
24	Zinc and compounds (as Zn)	С	ОТН	200.9 APHA /AWWA Standard	0.653	0.653	0.0	0.0	
13	Total phosphorus	С	OTH	Methods	613.052	613.052	0.0	0.0	
12	Total nitrogen	M	EN 12260:2003		342.5	342.5	0.0	0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

SECTION B. REMAINING	OLEOTANT EMISSIONS (as required in your Licence)								
	OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR	WASTE-WATER TREATMENT OR	SEWER		Please enter all quantities in t	his section in KGs			
	POLLUTANT		MI	ETHOD	QUANTITY				
				Method Used					
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1 T	Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
				Modified USEPA 8015B					
				method for the					
				determination of solvent					
				Extractable Petroleum					
				Hydrocarbons (EPH) with					
				carbon banding within the					
314	Fats, Oils and Greases	C	OTH	range C8-C40 GC-FID.	25.36	25.36	0.0	0.0	
				APHA /AWWA Standard					
240	Suspended Solids	C	OTH	Methods	714.075	714.075	0.0	0.0	
				APHA /AWWA Standard					
343	Sulphate	C	OTH	Methods	30.198	30.198	0.0	0.0	
				APHA /AWWA Standard					
306	COD	C	OTH	Methods	22033.794	22033.794	0.0	0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

5. ONSITE TREATM	ENT & OFFSITE TRAM	ISFERS OF	WASTE Please enter a	PRTR# : W0184 Facility Name : Enva Ireland Limited all quantities on this sheet in Tonnes	(Portlaoise) Fil	ename : W	0184_2017.xls Return Ye	ar : 2017			
									<u>Haz Waste</u> : Name and Licence/Permit No of Next Destination Facility	Haz Waste : Address of Next	Na
			Quantity (Tonnes per Year)				Method Lised		<u>Non Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	Destination Facility <u>Non Haz Waste</u> : Address of <u>Recover</u> /Disposer	E
	European Waste		Teary		Waste Treatment			Location of	Recover Disposer	Recover Disposer	
Transfer Destination	Code	Hazardous		Description of Waste	Operation	M/C/E	Method Used	Treatment			Li
		X	- 0	laboratory chemicals, consisting of or containing dangerous substances, including	57			0 % //	E 100444	Smithstown Industrial estate	98 42
Within the Country	16 05 06	Yes	7.8	mixtures of laboratory chemicals waste paint and varnish containing organic	R1	Μ	Weighed	Offsite in Ireland	Enva ,W041-1	""Shannon "Co. Clare, Ireland Mullingar business park, Mullingar, Westmeath, Ire	,G
Within the Country	08 01 11	Yes	9.16	solvents or other dangerous substances	R2	Μ	Weighed	Offsite in Ireland	Soltec Ltd,W0041-01	and Rue de Courriere 49 Zoning	So
									Geocycle	Industrial de Feluy ,.	Ge
To Other Countries	08 01 11	Yes	74.06	waste paint and varnish containing organic solvents or other dangerous substances	R1	М	Weighed	Abroad	,38.152/BP	,B 7181 Seneffe ,Belgium	de ,B
Within the Country	19 11 06	No	56.48	sludges from on-site effluent treatment other than those mentioned in 19 11 05	D9	М	Weighed	Offsite in Ireland	Enva Dublin,W0196-01	JFK Road,Naas Road,Dublin,Dublin12,Ireland	Er Na 12
											Li
To Other Countries	09 01 04	Yes	0.375	fixed solutions	D9	М	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	98 42 ,G
Within the Country	13.05.03	Ves	62 64	intercentor sludges	D۹	М	Weighed	Offsite in Ireland	Enva W0196-1	JFK Road Naas Road,.,Dublin,Dublin	Er Na
To Other Countries	13 07 03	Yes	129.68	other fuels (including mixtures)	R1	M	Weighed	Abroad	KS Recycling ,12 150 13984/01TMS	Raiffeisenstraße 38 ,, D- 47665 Sonsbeck ,Germany	K8 13
				packaging containing residues of or					Recyfuel S.A.,3200/61080/RGPED/200	Noning Industriel d'Ehein.B-	Ne 41 St
To Other Countries	15 01 10	Yes	340.58	contaminated by dangerous substances	R1	Μ	Weighed	Abroad	8/2/AP-PU	4480 Engis,,,,,Belgium	,G
				packaging containing residues of or						Smithstown Industrial estate	98 42
To Other Countries	15 01 10	Yes	5.532	contaminated by dangerous substances	R1	Μ	Weighed	Abroad	Enva ,W041-1	"Shannon ,Co. Clare,Ireland	,G RI
To Other Countries	16 01 07	Yes	687.29	oil filters antifreeze fluids other than those mentioned in	R1	Μ	Weighed	Abroad	approved KS Recycling ,12 150	,,3530,Belgium. Raiffeisenstraße 38 ,, D-	ар ,.,.
To Other Countries	16 01 15	No	116.66	16 01 14	R3	Μ	Weighed	Abroad	13984/01TMS	47665 Sonsbeck ,Germany	91
To Other Countries	16 05 04	Yes	39.12	gases in pressure containers (including halons) containing dangerous substances	R4	М	Weighed	Abroad	SBH ,121296753	Austrabe 5 ,.,.,D74238 Krautheim,Germany	,. Kr
											Lii
To Other Countries	16 05 08	Yes	20.225	discarded organic chemicals consisting of or containing dangerous substances	R13	М	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	42 ,G
										Niljverheidsstraat 2 Belgium B-2340 Beerse	Ca Ni Be
To Other Countries	16 06 01	Yes	624.06	lead batteries	R4	Μ	Weighed	Abroad	Campine, Ovam Approved	Belgium Cappincur Industrial Estate	,В
Within the Country	16 06 04	No	1.06	alkaline batteries (except 16 06 03)	R13	М	Weighed	Offsite in Ireland	KNK Metals Recycling Limited.W0113-04	,Daingean Road,Tullamore,Co. Offalv.Ireland	
					-						Af Mo
To Other Countries	17 05 03	Yes	12495.84	soil and stones containing dangerous substances	R5	М	Weighed	Abroad	Afvalstoffen Terminal Moerdijk BV,NB501809XXHB	Vlasweg 12,4782 PW Moerdijk, , ,Netherlands	sw Mo er
										Straboe	
				soil and stones other than those mentioned in					Hinch Plant hire	,. , Portlaoise ,Co Laois	Hi
Within the Country	17 05 04	No	1070.9	17 05 03	R5	Μ	Weighed	Offsite in Ireland	,WFP-LS-09-0002-01	,Ireland	,W SF
				wastes whose collection and disposal is subject to special requirements in order to					SRCI Eco Safe Systems	Unit 1A ,Allied Industrial Estate Kylemore Road	Sy 1A Es
Within the Country	18 02 02	Yes	1.16	prevent infection	D9	Μ	Weighed	Offsite in Ireland	Limted,W054-02	,Ballyfermot,Dublin 10,Ireland	Ro
				liquid combustible wastes containing					Recyfuel S.A.,3200/61080/RGPED/200	Noning Industriel d'Ehein,B-	98 42
To Other Countries	19 02 08	Yes	954.35	dangerous substances	R1	Μ	Weighed	Abroad	8/2/AP-PU Recyfuel S.A. 3200/61080/RGPED/200	4480 Engis,.,.,Belgium	,G Re
To Other Countries	19 02 09	Yes	79.84	dangerous substances	R1	Μ	Weighed	Abroad	8/2/AP-PU	4480 Engis,,,,,Belgium	8/2
				liquid combustible wastes containing					Lindenschmidt, 04 714	Krombacher Strasse 42-46	98 42
To Other Countries	19 02 08	Yes	21.56	dangerous substances	R1	Μ	Weighed	Abroad	98089	,.,Kreutzal,D57223 ,Germany	,G Mo
				other wastes containing dangerous						Caulside Drive,Greystone Road,Newpark Industrial	de Ro
To Other Countries	19 02 11	Yes	417.0	substances other wastes (including mixtures of materials) from mechanical treatment of waste	D10	Μ	Weighed	Abroad	Mc Quillans,P0187/07A	Estate,Antrim,Ireland	Ki
To Other Countries	19 12 11	Yes	95.62	containing dangerous substances other wastes (including mixtures of materials)	D10	Μ	Weighed	Abroad	KWA,E17012100	Lintfort ,Germany	K١
To Other Countries	19 12 11	Yes	274.0	from mechanical treatment of waste containing dangerous substances	R1	М	Weighed	Abroad	Lindenschmidt, 04 714 98089	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany	Liı 98
Within the Country	20 01 21	Yes	0.58	fluorescent tubes and other mercury- containing waste	R4	М	Weighed	Offsite in Ireland	Irish Lamp Recycling ,WFP- KE-08-0348-01	Woodstock Industrial Estate ,.,Athy ,Co. Kildare. ,Ireland	lris KE
										Ballymount Drive Ballymount	
Within the Country	20 01 25	No	2.03	edible oil and fat	R3	М	Weighed	Offsite in Ireland	Frylite ,WFP-DS-10-0009-01 MSM Recycling,WFP-TN-11-	,Dublin,Dublin 12,Ireland Annagh,.,Birr,Co.	
Within the Country	20 01 40	No	377.88	metals	R4	Μ	Weighed	Offsite in Ireland	0003-02	Tipperary, Ireland Johnstown Castle	
Within the Country	19 02 05	Yes	120.52	containing dangerous substances	R12	Μ	Weighed	Offsite in Ireland	Veolia,W50-01 MSM Recycling,WFP-TN-11-	Wexford,Ireland Annagh,.,Birr,Co.	Ve
Within the Country	19 12 03	No	40.94	non-ferrous metal	R4	Μ	Weighed	Offsite in Ireland	0003-02 United Metals Recycling WEP/L/2016/1474/	Tipperary,Ireland Eastway Business Park Ballysimon	
Within the Country	20 01 40	No	67.14	metals	R4	Μ	Weighed	Offsite in Ireland	R2 United Metals	Limerick, Ireland Eastway Business	
Within the Country	19 12 03	No	138.98	non-ferrous metal	R4	М	Weighed	Offsite in Ireland	Recycling,WFP/L/2016/147A/ R2	Park,Ballysimon,,Co. Limerick,Ireland Cappingur Industrial Estate	
		N		discarded equipment other than those	Dia			0// 11	KMK Metals Recycling	,Daingean Road,Tullamore,Co.	
Within the Country	16 02 14	No	0.94	mentioned in 16 02 09 to 16 02 13	R13	Μ	Weighed	Offsite in Ireland	Limited,W0113-04	Offaly,Ireland Unit 20.Bay Road Business	
Within the Country	19 12 04	No	13.66	plastic and rubber	R12	М	Weighed	Offsite in Ireland	Irish Polymer Extrusion Ltd,WFP-LS-13-0001-01	Park,Mountmellick,Laois,Irelan d	1
Within the Country	16 05 09	No	0.505	discarded chemicals other than those mentioned in 16 05 06, 16 05 07 or 16 05 08	R1	М	Weighed	Offsite in Ireland	Enva ,W041-1	Smithstown Industrial estate	
				,			Ŭ				Lii
Within the Country	20 01 19	Yes	0.98	pesticides	R1	М	Weighed	Offsite in Ireland	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	98 42 ,G
											Lii
Within the Country	06 01 01	Yes	0.1	sulphuric acid and sulphurous acid	R1	М	Weighed	Offsite in Ireland	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	42 ,G
											Lii
Within the Country	06 01 02	Yes	0.2	hydrochloric acid	R1	М	Weighed	Offsite in Ireland	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	42 ,G
Within the Country	13 08 02	Yes	0.09	other emulsions	D9	М	Weighed	Offsite in Ireland		JFK Road,Naas Road,Dublin Dublin12 Iroland	Er Na
Within the Country	17 03 02	No	88.32	bituminous mixtures containing other than those mentioned in 17 03 01	R5	M	Weighed	Offsite in Ireland	Crystalhill Inns Ltd,WFP-KK- 16-0001-01	Grannagh,Kilmacow,,Kilkenn y,Ireland	12
Within the Country	17 03 02	No	34.48	bituminous mixtures containing other than those mentioned in 17 03 01	R5	М	Weighed	Offsite in Ireland	Cullen Excavations Ltd,WFP- WW-17-0003-03	Ballygannon,Kilcoole,,Wicklo w,Ireland	
Within the Country	17 05 04	No	6176.2	soil and stones other than those mentioned in 17 05 03	R5	М	Weighed	Offsite in Ireland	Dowling Quarries Ltd,COR- LS-13-0001-01	Granfallow, Abbeyleix,,Laois, li eland	
Within the Country	17 05 04	No	20210.62	soil and stones other than those mentioned in 17 05 03	R5	М	Weighed	Offsite in Ireland	Cemex Ltd,W0254-01	vin & Bawnoge,Nass Kildare,Ireland	
										Weast Galway Londfill Kills at	
Within the Country	17 05 04	No	10604.98	soil and stones other than those mentioned in 17 05 03	R5	М	Weighed	Offsite in Ireland	Greenstar Holdings Ltd,W0178-02	More,Ballybaun Ballintober Ballinasloe,Galway,Ireland	
		* Select a row	by double-clicking	the Description of Waste then click the delete button							

Link to previous years waste data

Link to previous years waste summary data & percentage change Link to Waste Guidance

30/03/2018 13:02 Haz Waste : Name and Licence/Permit No of Next Destination Facility <u>Haz Waste</u> : Address of Next Name and License / Permit No. and Non Haz Waste: Name and Destination Facility Address of Final Recoverer / Actual Address of Final Destination Licence/Permit No of Recover/Disposer Recover/Recover/Recover/Recover/Recover/Recover/Recover/Recover/Recove Lindenschmidt, 04 714 98089, Krombacher Strasse Smithstown Industrial estate 42-46 ,.,Kreutzal,D57223 Krombacher Strasse 42-46 Enva ,W041-1 ,,,Shannon ,Co. Clare,Ireland ,Germany ,,,Kreutzal,D57223 ,Germany Mullingar business Mullingar business park,Mullingar,.,Westmeath,Irelpark,Mullingar,.,VSoltec Ltd,W0041-01andSoltec Ltd,W0041-01and park, Mullingar,., Westmeath, Irel Rue de Courriere 49 Zoning Industrial de Feluy Geocycle ,38.152/BP, Rue de ,-,-Courriere 49 Zoning Industrial Rue de Courriere 49 Zoning Geocycle ,B 7181 Seneffe de Feluy ,,,,,B 7181 Seneffe Industrial de Feluy ,,,,,B 7181 ,38.152/BP ,Belgium Seneffe ,Belgium ,Belgium Enva,W0196-01,JFK Road JFK Road Naas JFK Road,Naas Naas Road,..,Dublin,Dublin Road,..,Dublin,Dublin Enva Dublin,W0196-01 Road,Dublin,Dublin12,Ireland 12,Ireland 12,Ireland 12,Ireland Lindenschmidt, 04 714 98089, Krombacher Strasse Smithstown Industrial estate 42-46 ,,,Kreutzal,D57223 Krombacher Strasse 42-46 ,.,Shannon ,Co. Clare,Ireland ,Germany ,,Kreutzal,D57223 ,Germany Enva ,W041-1 JFK Road Naas Enva,W0196-01,JFK Road JFK Road Naas Road,.,Dublin,Dublin Naas Road,.,Dublin,Dublin Road,.,Dublin,Dublin Enva,W0196-1 12,Ireland 12,Ireland 12,Ireland KS Recycling ,12 150 Raiffeisenstraße 38 ,,,,, D- KS Recycling ,12 150 Raiffeisenstraße 38 ,,,,, D- 13984/01TMS 47665 Sonsbeck ,Germany 13984/01TMS 47665 Sonsbeck ,Germany Nehlsen GmbH & Co.kg, A-4187 HH,Louis-Krages- Louis-Krages-Strabe Recyfuel S.A., 3200/61080/RGPED/200 Noning Industriel d'Ehein, B- Strabe ,., Bremen., D-28237 ,., Bremen., D-28237 8/2/AP-PU 4480 Engis,...,Belgium ,Germany ,Germany Lindenschmidt, 04 714 98089,Krombacher Strasse Smithstown Industrial estate 42-46 ,.,Kreutzal,D57223 Krombacher Strasse 42-46 Enva ,W041-1 ,.,Shannon ,Co. Clare,Ireland ,Germany ,.,Kreutzal,D57223 ,Germany RD Recycling ,Ovam RD Recycling ,Ovam Centrum Zuid 3017 approved,Centrum Zuid 3017 Centrum Zuid 3017 approved ,,,,,3530,Belgium. ,,,,3530,Belgium. ,,,,3530,Belgium. KS Recycling ,12 150 Raiffeisenstraße 38 ,,,, D-13984/01TMS 47665 Sonsbeck ,Germany SBH ,121296753,Austrabe 5 Austrabe 5 ,,,,,D74238 Austrabe 5 ,,,,,D74238 SBH ,121296753 Krautheim,Germany Krautheim,Germany Krautheim,Germany Lindenschmidt, 04 714 98089, Krombacher Strasse Smithstown Industrial estate 42-46 ,.,Kreutzal,D57223 Krombacher Strasse 42-46 Enva ,W041-1 ,.,Shannon ,Co. Clare,Ireland ,Germany ,,Kreutzal,D57223 ,Germany Campine,Ovam Approved, Niljverheidsstraat 2 Niljverheidsstraat 2 Niljverheidsstraat 2 Belgium.,,,,B- 2340 Beerse Belgium.,,,,B- 2340 Beerse Belgium.,,,,B- 2340 Beerse Campine,Ovam Approved ,Belgium ,Belgium ,Belgium ,Belgium Cappincur Industrial Estate ,Daingean KNK Metals Recycling Road, Tullamore, Co. Limited,W0113-04 Offaly,Ireland Afvalstoffen Terminal Moerdijk,NB501809XXHB,Vla sweg 12,4782 PW Vlasweg 12,4782 PW Afvalstoffen Terminal Moerdijk Vlasweg 12,4782 PW Moerdijk,Holland,Holland,Neth Moerdijk,Holland,Holland,Neth BV,NB501809XXHB Moerdijk, , ,Netherlands erlands erlands Straboe Straboe Hinch Plant hire , Portlaoise Hinch Plant hire , Portlaoise ,Co Laois ,Co Laois ,WFP-LS-09-0002-01 ,Ireland ,WFP-LS-09-0002-01 ,Ireland SRCL Eco Safe Systems,W0154-02,Unit Unit 1A, Allied Industrial 1A, Allied Industrial Unit 1A, Allied Industrial SRCI Eco Safe Systems Estate Kylemore Road Estate,Kylemore Estate,Kylemore Limted,W054-02 ,Ballyfermot,Dublin 10,Ireland Road,Ballyfermot,Ireland Road,Ballyfermot,Ireland Lindenschmidt, 04 714 Recyfuel 98089, Krombacher Strasse S.A., 3200/61080/RGPED/200 Noning Industriel d'Ehein, B- 42-46 ,,,Kreutzal, D57223 Krombacher Strasse 42-46 8/2/AP-PU 4480 Engis,...,Belgium ,Germany ,..,Kreutzal,D57223 ,Germany Recyfuel Recyfuel S.A.,3200/61080/RGPED/200 Noning Industriel d'Ehein,B- S.A.,3200/61080/RGPED/200 Noning Industriel d'Ehein,B-8/2/AP-PU 4480 Engis,..,Belgium 8/2/AP-PU 4480 Engis,..,Belgium Lindenschmidt, 04 714 98089, Krombacher Strasse Lindenschmidt , 04 714 Krombacher Strasse 42-46 42-46 ,,,Kreutzal,D57223 Krombacher Strasse 42-46 98089 ",Kreutzal,D57223 ,Germany ,Germany ,,Kreutzal,D57223 ,Germany Мс Quillans,P0187/07A/V1,Caulsi Caulside Drive, Greystone de Drive, Greystone Caulside Drive, Greystone Road, Newpark Industrial Road, Antrim, Antrim, United Road, Antrim, Antrim, United Mc Quillans, P0187/07A Estate, Antrim, Ireland Kingdom Kingdom Graftstr. 25 ,,,,,47475 Kamp- Graftstr. 25 ,,,,,47475 Kamp-KWA,E17012100Lintfort ,GermanyKWA,E17012100Lintfort ,Germany Lindenschmidt, 04 714 Krombacher Strasse 42-46 Lindenschmidt, 04 714 Krombacher Strasse 42-46 98089 ,.,Kreutzal,D57223 ,Germany 98089 ,.,Kreutzal,D57223 ,Germany Irish Lamp Recycling ,WFP- Woodstock Industrial Estate Irish Lamp Recycling ,WFP- Woodstock Industrial Estate KE-08-0348-01 ,,,Athy ,Co. Kildare. ,Ireland KE-08-0348-01 ,,,Athy ,Co. Kildare. ,Ireland Ballymount Drive Ballymount Industrial Estate, Unit J1 Frvlite ,WFP-DS-10-0009-01 ,Dublin,Dublin 12,Ireland MSM Recycling, WFP-TN-11- Annagh, ,,Birr, Co. 0003-02 Tipperary,Ireland Johnstown Castle Johnstown Castle Estate,.,.,County Estate,,,,,County Veolia,W50-01 Wexford,Ireland Veolia,W50-01 Wexford, Ireland MSM Recycling,WFP-TN-11- Annagh,.,Birr,Co. 0003-02 Tipperary, Ireland United Metals Eastway Business Recycling,WFP/L/2016/147A/ Park,Ballysimon,..,Co. Limerick, Ireland United Metals Eastway Business Recycling,WFP/L/2016/147A/ Park,Ballysimon,..,Co. Limerick, Ireland Cappincur Industrial Estate ,Daingean KMK Metals Recycling Road,Tullamore,Co. Limited,W0113-04 Offaly,Ireland Unit 20, Bay Road Business Irish Polymer Extrusion Park,Mountmellick,Laois,Irelan Ltd,WFP-LS-13-0001-01 d Smithstown Industrial estate Enva ,W041-1 ,.,Shannon ,Co. Clare,Ireland Lindenschmidt, 04 714 98089,Krombacher Strasse Smithstown Industrial estate 42-46 ,,,Kreutzal,D57223 Krombacher Strasse 42-46 Enva ,W041-1 ,,,Shannon ,Co. Clare,Ireland ,Germany ,,Kreutzal,D57223 ,Germany Lindenschmidt, 04 714 98089,Krombacher Strasse Smithstown Industrial estate 42-46 ,,,Kreutzal,D57223 Krombacher Strasse 42-46 Enva ,W041-1 ,,,Shannon ,Co. Clare,Ireland ,Germany ,,,Kreutzal,D57223 ,Germany Lindenschmidt, 04 714 98089, Krombacher Strasse Smithstown Industrial estate 42-46 ,.,Kreutzal,D57223 Krombacher Strasse 42-46 Enva ,W041-1 ,.,Shannon ,Co. Clare,Ireland ,Germany ,,Kreutzal,D57223 ,Germany

Enva,W0196-01,JFK Road JFK Road Naas

JFK Road,Naas Naas Road,.,Dublin,Dublin Road,.,Dublin,Dublin Enva Dublin,W0196-01 Road,Dublin,Dublin12,Ireland 12,Ireland 12,Ireland 12,Ireland

Appendix 2

CONFIDENTIAL REPORT

Client
Enva Ireland Ltd
Clonminam Industrial Estate
Portlaoise
Co. Laois

Title

Annual Environmental Noise Survey - 2017 Enva Ireland Ltd. – Portlaoise EPA Industrial Emissions Licence

Reg. No. WO184-02

Attn. Mr. Kevin Coll

Report Ref:	1755	Survey and Report by:	Frances Wright Jances Orall LFOH, BSc, PgDip Env, Dip SHWW
Date recd:		Approved by:	Paddy Wright Paddy Mug It. BSc, PgDip ChemEng, CertOH
Copies to:		Date:	28 th February 2018

PAGE

1.	INTRODUCTION	3
2.	SUMMARY	4

APPENDIX 1

Methodology

APPENDIX 2 Instrumentation and External Calibration Details

APPENDIX 3 Inverse Square Law Calculations

APPENDIX 4 Site Plan showing Noise Monitoring Positions

1. INTRODUCTION:

Enva Ireland Ltd. (Enva) operate a waste recovery facility at Clonminam Industrial Estate, Portlaoise which is licensed under the EPA Industrial Emissions Licence Reg. No. WO184-02. Section 6.16 of this licence requires that the company carry out a noise survey of the site operations.

At the request of Mr. Kevin Coll of Enva Ireland Ltd., Wright Environmental Services carried out this Noise Survey on the 14th December 2017. The survey was undertaken in accordance with the methodology specified in the 'Guidance Note for Noise: Licence Applications, Surveys and Assessments in Relation to Scheduled Activities (NG4)' as published by the EPA.

This report presents and interprets the results of the survey with reference to the company's EPA Industrial Emissions Licence Reg. No. WO184-02 criteria. The methodology used for the survey is described in Appendix 1. Instrumentation and calibration is described in Appendix 2. Details of the inverse square law calculations are presented in Appendix 3. Monitoring locations are shown in the site map in Appendix 4.

2. SUMMARY

Enva are required by their EPA Industrial Emissions Licence Reg. No. WO184-02 to have an Environmental Noise Survey undertaken. Wright Environmental Services carried out this survey on the 14th December 2017. Table 1 outlines the monitoring plan. Table 2 summarises the noise levels measured at each location and exams the results in relation to the noise criteria set the company's Licence.

The results for each sampling location passed the licence criteria. It is therefore concluded that Enva Ireland Ltd. are in compliance with the noise criteria set out in their EPA Industrial Emissions Licence Reg. No. WO184-02.

Table	1
-------	---

-	N1 boundary location	N2 boundary location	N3 boundary location	N4 noise sensitive location	N5 abandoned noise sensitive location		
Day Time 07:00 – 19:00	3 X 30 minutes sampling periods for each location						
Evening 19:00 - 23:00	1 X 30 minutes sampling periods for each location						
Night Time 23:00 – 07:00		2 X 15 minutes	sampling periods f	or each location			

Table 2: Summary of noise monitoring results

Location	Leq Range Day	Leq Range Evening	Leq Range Night	Dominant Noise Sources	Pass/ Fail	Rational Licence criteria: 55dB(A) Daytime, 50dB(A) evening and 47dB(A) at Noise Sensitive Locations (NSL)
N1	54 - 57	50	45	Distant traffic, vehicle movement (day)	Pass	The effective noise levels to the nearest noise sensitive location were calculated using the inverse square law and found to be well below the limit values.
N2	55 - 56	53	48 - 49	Distant traffic and industrial noise, onsite boiler (day)	Pass	The effective noise levels to the nearest noise sensitive location were calculated using the inverse square law and found to be well below the limit values.
N3	51 - 55	50	47 - 49	distant construction work and traffic, onsite soil shed (day)	Pass	The effective noise levels to the nearest noise sensitive location were calculated using the inverse square law and found to be well below the limit values.
N4	56	51	41 - 42	Passing and distant traffic, industrial noise	Pass	Enva not audible at this location
N5	53 - 54	49	46	Distant traffic, vehicle movement onsite (day)	Pass	The effective noise levels to the nearest noise sensitive location were calculated using the inverse square law and found to be well below the limit values.

3. MONITORING RESULTS AND DISCUSSION:

Wright Environmental Services carried out the day, evening and night Environmental Noise Survey. The monitoring locations are described below and are shown in the site map in Appendix 4.

Location N1:Along the mid western site boundary.
Location N2: In the corner of the site, along the south eastern boundary
Location N3:In the corner of the site, along the north eastern boundary.
Location N4:Nearby residential area, east/south east of Enva, on the corner of Knockmay
Road and Marian Avenue. The railway yard is the main land use between Enva in this monitoring location.

Location N5:North west of Enva site, on the corner with access road for Rowan halting site (currently deserted). Note access to this point is now restricted, therefore monitoring was carried out at the barrier, blocking access to this point (see map in Appendix III).

The following "A-Weighted" data was determined for each discrete sampling period.

L eq	:	The equivalent continuous noise level for the measurement period.					
		(This is defined as the sound level of a steady sound having the same energy					
		as a fluctuating sound over the specified measuring period).					
L_1	:	The noise level exceeded for 1% of the measurement period.					
		(This parameter gives a good indication of typical maximum levels.)					
L 10	:	The noise level exceeded for 10% of the measurement period.					
L 90	:	The noise level exceeded for 90% of the measurement period.					
		(This is taken to represent the background noise level).					

Detailed results are presented in the Tables below along with appropriate comments regarding noise in the monitoring environment.

Start Time	Leq dB(A)	L1 dB(A)	L10 dB(A)	L90 dB(A)	Comments	-
17:25	57	66	59	52	Dominant Noise: distant traffic, vehicle movement onsite, train and cars leaving carpark (when passing) Onsite Noise: forklift, 1 HGV Offsite Noise: 2 trains pass, cars in/out of adjacent car park (local business and Enva employees), distant traffic noise	
17:55	54	62	56	50	Dominant Noise: distant traffic, forklift movement onsite, train and cars leaving carpark (when passing) Onsite Noise: forklift Offsite Noise: 3 trains pass, cars in/out of adjacent car park (local business and Enva employees), distant traffic noise	DAY
18:25	55	66	56	48	Dominant Noise: distant traffic, train and cars leaving carpark (when passing) Onsite Noise: no noise audible from site Offsite Noise: 2 trains pass, cars in/out of adjacent car park (local business and Enva employees), distant traffic noise	
19:07	50	56	52	47	Dominant Noise: distant traffic, train Onsite Noise: no noise audible from Enva Offsite Noise: 1 trains passes, distant traffic noise, industrial noise (S)	
00:02	45	53	48	43	Dominant Noise: distant traffic (particularly from the S/SW), local industrial noise (S) Onsite Noise: no noise audible from Enva Offsite Noise: distant traffic (particularly from the S/SW), local industrial noise (S)	NIGHT
00:17	45	52	48	42	Dominant Noise: distant traffic (particularly from the S/SW), local industrial noise (S) Onsite Noise: no noise audible from Enva Offsite Noise: distant traffic (particularly from the S/SW), local industrial noise (S)	

N1 - Monitoring Location

N2 - Monitoring I	Location
-------------------	----------

Start	Leq	L ₁	L10	L90	Comments	
Time	dB(A)	dB(A)	dB(A)	dB(A)		
13:40	55	62	57	51	Dominant Noise: boiler, industrial noise (S), distant traffic Onsite Noise: boiler, filter room, motor at tank farm Offsite Noise: industrial noise (S), distant traffic, HGV movement in neighbouring facility	
14:13	56	63	57	52	Dominant Noise: HGV on idle next door Onsite Noise: boiler, filter room, motor at tank farm Offsite Noise: industrial noise (S), distant traffic, HGV on idle in neighbouring facility	DAY
14:45	56	64	57	53	Dominant Noise: HGV on idle next door Onsite Noise: boiler, filter room, motor at tank farm Offsite Noise: industrial noise (S), distant traffic, HGV on idle in neighbouring facility	
21:05	53	56	54	50	Dominant Noise: industrial noise (S), distant traffic Onsite Noise: boiler on/off (just audible) Offsite Noise: industrial noise (S), distant traffic	
23:09	49	52	50	47	Dominant Noise: industrial noise (S), distant traffic Onsite Noise: boiler on/off (just audible) Offsite Noise: industrial noise (S), distant traffic	
23:24	48	52	50	47	Dominant Noise: industrial noise (S), distant traffic Onsite Noise: boiler on/off (just audible) Offsite Noise: industrial noise (S), distant traffic	

N3 - Monitoring Lo	cation
--------------------	--------

Start Time	Leq dB(A)	L ₁ dB(A)	L10 dB(A)	L90 dB(A)	Comments	-
14:55	51	58	52	47	Dominant Noise: construction work, industrial noise, distant traffic, soil shed Onsite Noise: soil shed excavator Offsite Noise: construction work (S/E), industrial noise (S), distant traffic	
15:25	55	60	51	47	Dominant Noise: construction work, industrial noise, distant traffic, soil shed Onsite Noise: soil shed excavator Offsite Noise: train 2, construction work (S/E), industrial noise (S), distant traffic	DAY
16:24	53	62	53	47	Dominant Noise: construction work, industrial noise, distant traffic, soil shed Onsite Noise: soil shed excavator Offsite Noise: train 2, construction work (S/E), industrial noise (S), distant traffic	
21:15	50	54	52	46	Dominant noise: Distant traffic noise, train when passes Onsite Noise: no noise audible from Enva. Offsite Noise: Train 1, Distant traffic noise	EVENING
23:02	47	54	50	43	Dominant noise: Distant traffic noise, train when passes Onsite Noise: no noise audible from Enva. Offsite Noise: Train 1, Distant traffic noise	NICUT
23:19	49	63	50	43	Dominant noise: Distant traffic noise, train when passes Onsite Noise: no noise audible from Enva. Offsite Noise: Train 1, Distant traffic noise	NIGH1

N4 - M	Ionitor	ing Lo	cation
--------	---------	--------	--------

Start Time	Leq dB(A)	L1 dB(A)	L10 dB(A)	L90 dB(A)	Comments	-
15:30	56	66	60	46	Dominant Noise: passing traffic and distant traffic Onsite Noise: No noise audible from Enva Offsite Noise: approximately 35 cars pass, distant traffic	
16:02	56	65	58	47	Dominant Noise: passing traffic and distant traffic Onsite Noise: No noise audible from Enva Offsite Noise: approximately 40 cars pass, distant traffic	DAY
16:34	56	65	60	48	Dominant Noise: passing traffic and distant traffic Onsite Noise: No noise audible from Enva Offsite Noise: approximately 45 cars pass, distant traffic	
19:55	51	62	53	45	Dominant Noise: industrial noise to south and distant traffic Onsite Noise: No noise audible from Enva Offsite Noise: approximately 20 cars pass, distant traffic	EVENING
00:46	42	49	44	39	Dominant Noise: industrial noise to south and distant traffic Onsite Noise: No noise audible from Enva Offsite Noise: approximately 2 cars pass, distant traffic	NICHT
01:01	41	49	43	39	Dominant Noise: industrial noise to south and distant traffic Onsite Noise: No noise audible from Enva Offsite Noise: approximately 1 cars pass, distant traffic	NIGHT

N5 -	Monitoring	Location
------	------------	----------

Start Time	L _{eq} dB(A)	L ₁ dB(A)	L ₁₀ dB(A)	L90 dB(A)	Comments	
17:05	54	60	56	47	Dominant Noise: distant traffic, vehicle movement onsite, train and cars leaving carpark (when passing) Onsite Noise: forklift, 1 HGV Offsite Noise: 2 trains pass, cars in/out of adjacent car park (local business and Enva employees), distant traffic noise	
17:37	54	63	56	46	Dominant Noise: distant traffic, vehicle movement onsite, train and cars leaving carpark (when passing) Onsite Noise: forklift, 1 HGV Offsite Noise: 3 trains pass, cars in/out of adjacent car park (local business and Enva employees), distant traffic noise	DAY
18:08	53	62	54	44	Dominant Noise: distant traffic, train and cars leaving carpark (when passing) Onsite Noise: no noise audible from site Offsite Noise: 2 trains pass, cars in/out of adjacent car park (local business and Enva employees), distant traffic noise	
19:10	49	55	51	46	Dominant Noise: distant traffic, train Onsite Noise: no noise audible from Enva Offsite Noise: 1 trains passes, distant traffic noise, industrial noise (S)	EVENING
00:01	46	53	49	43	Dominant Noise: distant traffic (particularly from the S/SW), local industrial noise (S) Onsite Noise: no noise audible from Enva Offsite Noise: distant traffic (particularly from the S/SW), local industrial noise (S)	
00:17	46	52	48	43	Dominant Noise: distant traffic (particularly from the S/SW), local industrial noise (S) Onsite Noise: no noise audible from Enva Offsite Noise: distant traffic (particularly from the S/SW), local industrial noise (S)	NIGHT

In accordance with their EPA Industrial Emissions Licence Reg. No. WO184-02, Enva are required to comply with maximum noise limit values. Section 4.5 of their licence states that "Noise from the installation shall not give rise to sound pressure levels (L_{AeqT},) measured at noise sensitive locations which exceed the limit values." The limit levels for Noise Sensitive Locations are presented in Schedule B.4 of the licence as follows:

Day	55	$dB(A) L_{Ar, T} (30 minutes)$
Evening	50	$dB(A) L_{Ar, T} (30 minutes)$
Night	45	dB(A) LAr, T (15 to 30 minutes)

Where tonal noise is objectively identified, a 5dB(A) should be applied to the measured noise level and compared to the limit. No tonal elements were identified from Enva and therefore no penalty applied.

Noise levels were measured at one Noise Sensitive Location N4. The noise levels were just above the limit values for day and evening at this location. However there is no noise audible from Enva at this location and the dominant noise source is traffic on the adjacent road, distant traffic noise and industrial noise to the south. Therefore the company are in compliance with their licence for this noise sensitive location.

The other monitoring locations were boundary locations. Using the noise results from the boundary locations, noise levels attributable to Enva at the nearest noise sensitive location were calculated. The Inverse Square Law is used to calculate the expected reduction in noise levels as one moves away from a given noise source, which is assumed to radiate uniformly in all directions. The Inverse Square Law states that as one doubles the distance from a source, a reduction of 6 dB is achieved as follows:

$$L_{p2} = L_{p1} - 20 \text{ Log} (^{R2}/_{R1})$$

where:

- L_{p1} is the measured reference Sound Pressure Level (SPL) at a distance of R1 metres from the source.
- L_{p2} is the calculated SPL at a distance of R2 metres from the source.

Using the maximum noise level measured at each location and the estimated distance from the dominant onsite source and the nearest noise sensitive location, the expectant noise level at the nearest noise sensitive locations were calculation. These are presented in Table 8. The results are colour coded **GREEN** for below the limit value and **RED** for above the limit values. All of the expectant noise levels were well below the limit values and therefore in compliance with the licence. Details of these calculations are presented in Appendix 3.

		Effective Noise Level Leq dB(A)				
Noise Monitoring Location	Approximate Distance to nearest NSL(m)					
		Daytime	Evening	Night Time		
N1	130	47	40	35		
N2	200	43	40	36		
N3	255	41	36	35		
N4	n/a	Enva not audible	Enva not audible	Enva not audible		
N5	115	46	41	38		
Limit	t Values dB(A)	55	50	45		

Table 8

Appendix B.4 of their licence also states that there shall be no clearly audible tonal component or impulsive component in the noise emission from the activity at any noise-sensitive location during the night time survey. Enva was not audible at the noise sensitive location (N4) therefore are in compliance with this aspect of the licence.

It is therefore concluded that Enva Ireland Ltd. are in compliance with all the noise criteria set out in their EPA Industrial Emissions Licence Reg. No. WO184-02.

APPENDIX I Methodology

METHODOLOGY

The methodology of the survey was based upon procedures set out in the International Standard, ISO 1996-2:2007 (Acoustics – description, measurement and assessment of environmental noise Part 2: Determination of Environmental Noise Levels.). The survey was carried out in accordance with EPA published document (*NG4*) *Guidance Note for Noise: Licence Applications, Surveys and Assessments in Relation to Scheduled Activities.*

Environmental noise levels were determined by using a Pulsar Model 33, Type 1 Real Time Sound Level Meter, with half inch condenser microphone and B&K Type 2250 Light, Type 1 Real Time Sound Level Meter, with half inch condenser microphone. The instrumentation was calibrated directly before and after the noise measurements. Details of the instrumentation and external calibration are presented in Appendix 2 of this report.

Results reported were determined using the fast response, A-Weighting (ref. 20 μ Pa) and are rounded off to the nearest whole decibel. Monitoring was conducted in relatively calm, dry weather conditions. Throughout the monitoring, the microphone was situated 1.5 m above ground level, away from any reflective surfaces. The monitoring equipment was manned throughout the sampling intervals and comments were recorded in order to aid the interpretation of the results. Details of the weather conditions are presented in the Table below.

Date/Time	Air Temperature °C	Relative Humidity %	Wind Direction	Wind Speed m/s	General Conditions
14 th December 2017 16:30	4	93	west	5.1	Dry – no precipitation.
14 th December 2017 23:00	4	87	WSW	7.7	Dry – no precipitation.

Summary of Weather Conditions

APPENDIX 2

Instrumentation and External Calibration Details

Instrument Manufacturer Pulsar Instruments ple Instrument Type Model 33 Description Sound Level Meter Serial Number T223417 Calibration Procedure The instrument detailed above has been calibrated to the publish test and calibration data as detailed in the nstrument detailed above has been calibrated to the publish test and calibration data as detailed in the nstrument detailed above has been calibrated to the publish test and calibration data as detailed in the nstrument hand book, using the techniques recommended in the latest revisions of the International Standards IE0 51672-1:2002, IEC 60651:1979, IEC 60804:2001, IEC 61260:1995, IEC 60942:1997, IEC 61252:1993, ANSI S1.4-1983, ANSI S1.11-1986 and ANSI S1.43-1997 where applicable. Sound Level Meters: All Calibration procedures were carried out by substituting the microphone capsule with a uitable electrical signal, apart from the final acoustic calibration. Calibration Traceability The equipment detailed above was calibrated against the calibration laboratory standards held by Cirrus Research slot. These are traceable to International Standards (A.0.6). The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above.	Instrument Manufacturer Pulsar Instruments ple Instrument Type Model 33 Description Sound Level Meter Serial Number T223417 Calibration Procedure The instrument detailed above has been calibrated to the publish test and calibration data as detailed in the instrument hand book, using the techniques recommended in the latest revisions of the International Standards IEC 51672-1:2002, IEC 606051:1979, IEC 61260:1995, IEC 60942:1997, IEC 61252:1993, ANSI S1.4-1983, ANSI S1.11-1986 and ANSI S1.43-1997 where applicable. Sound Level Meters: All Calibration procedures were carried out by subsitituting the microphone capsule with a autable electrical signal, apart from the final acoustic calibration Between the tailed above was calibrated against the calibration laboratory standards held by Cirrus Research s6. These are traceable to International Standard's A.0.6). The standard's meter Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by Calibration Date 1920 Calibration Certificate Number 1920791 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above. Mulsar Instruments ple, The Evron Centre, John Street, Filey, North Yorkshire, Y014 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com			Equipment D	etails		
Instrument Type Model 33 Description Sound Level Meter Serial Number T223417 Calibration Procedure The instrument detailed above has been calibrated to the publish test and calibration data as detailed in the instrument hand book, using the techniques recommended in the latest revisions of the International Standards IEC 61672-1:2002, IEC 60051:1979, IEC 60804:2001,IEC 61260:1995, IEC 60942:1997, IEC 61252:1993, ANSI S1.4-1983, ANSI S1.11-1986 and ANSI S1.43-1997 where applicable. Sound Level Meters: All Calibration procedures were carried out by substituting the microphone capsule with a suitable electrical signal, apart from the final acoustic calibration. Calibration Traceability The equipment detailed above was calibrated against the calibration laboratory standards held by Cirrus Research plc. These are traceable to International Standards {A.0.6}. The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above.	Instrument Type Model 33 Description Sound Level Meter Serial Number T223417 Calibration Procedure The instrument detailed above has been calibrated to the publish test and calibration data as detailed in the instrument hand book, using the techniques recommended in the latest revisions of the International Standards IEC 61672-1:2002, IEC 60651:1979, IEC 60804:2001, IEC 61260:1995, IEC 60942:1997, IEC 61252:1993, ANSI S1.4-1983, ANSI S1.11-1986 and ANSI S1.43-1997 where applicable. Sound Level Meters: All Calibration procedures were carried out by substituting the microphone capsule with a suitable electrical signal, apart from the final acoustic calibration laboratory standards held by Cirrus Research sol. These are traceable to International Standards (A.0.6). The standards are: Microphone Type B&K 4192 Strial Number 1920791 Calibration Ref. S6388 Calibrated by Calibration Date B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibration Date Is an artificate is valid for 12 months from the date above. Microphone Crificate Number 245308 This Calibration Certificate is valid for 12 months from the date above. Musar Instruments plc, The Evron Centre, John Street, Filey, North Yorkshire, YO149DW Calepine: +44 (0) 1723 518011 Fax: +44 (0) 1723 518042 Email: sales@pulsarinstruments.com	Instrument Manufactu	irer Pulsar Instrume	ents plc	cumo		
Description Sound Level Meter Serial Number T223417 Calibration Procedure The instrument detailed above has been calibrated to the publish test and calibration data as detailed in the instrument hand book, using the techniques recommended in the latest revisions of the International Standards IP4 61672-1:2002, IEC 60651:1979, IEC 60804:2001,IEC 61260:1995, IEC 60942:1997, IEC 61252:1993, ANSI S1.4-1983, ANSI S1.11-1986 and ANSI S1.43-1997 where applicable. Sound Level Meters: All Calibration procedures were carried out by substituting the microphone capsule with a suitable electrical signal, apart from the final acoustic calibration here equipment detailed above was calibrated against the calibration laboratory standards held by Cirrus Research ple. These are traceable to International Standards {A.0.6}. The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by Calibration Date I6 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above.	Description Sound Level Meter Serial Number T223417 Calibration Procedure The instrument detailed above has been calibrated to the publish test and calibration data as detailed in the instrument hand book, using the techniques recommended in the latest revisions of the International Standards IECC 60521:1979, IEC 60651:1979, IEC 60804:2001,IEC 61260:1995, IEC 60942:1997, IEC 61252:1993, ANSI S14-1986 and ANSI S14.31997 where applicable. Sound Level Meters: All Calibration procedures were carried out by substituting the microphone capsule with a suitable electrical signal, apart from the final acoustic calibration laboratory standards held by Cirrus Research loc. These are traceable to International Standards {A.0.6}. The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 1920791 Calibration Ref. S6450 Calibrated by Iternational Standards {A.0.6}. The standards are: Microphone Type B&K 4220 Serial Number 1920791 Calibration Ref. S6450 Calibrated by Iternational Standards [A.0.6]. The standards are: Microphone Type B&K 4220 Serial Number 1920791 Calibration Ref. S6450 Calibration Date Iternational Standards [A.0.6]. The standards are: Standards [A.0.6]. The standards [A.0.6]	Instrument Type	Model 33				
Serial Number T223417 Calibration Procedure The instrument detailed above has been calibrated to the publish test and calibration data as detailed in the instrument hand book, using the techniques recommended in the latest revisions of the International Standards IE6 61672-1:2002, IEC 60604:2001,IEC 61260:1995, IEC 60942:1997, IEC 61252:1993, ANSI SI.41-1986 and ANSI SI.43-1997 where applicable. Sound Level Meters: All Calibration procedures were carried out by substituting the microphone capsule with a suitable electrical signal, apart from the final acoustic calibration. Calibration Traceability The equipment detailed above was calibrated against the calibration laboratory standards held by Cirrus Research ple. These are traceable to International Standards {A.0.6}. The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. \$6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. \$6388 Calibrated by Iternational Certificate Number 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above.	Serial Number T223417 Calibration Procedure The instrument detailed above has been calibrated to the publish test and calibration data as detailed in the instrument hand book, using the techniques recommended in the latest revisions of the International Standards IECC 6072-1:2002, IEC 60051:1979, IEC 60804:2001,IEC 61260:1995, IEC 60942:1997, IEC 61252:1993, ANSI S1.4-1983, ANSI S1.1-1986 and ANSI S1.43:1997 where applicable. Sound Level Meters: All Calibration procedures were carried out by substituting the microphone capsule with a suitable electrical signal, apart from the final acoustic calibration laboratory standards held by Cirrus Research loc. These are traceable to International Standards {A.0.6}. The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6450 Calibrated by If January 2017 Calibration Ref. S6450 Calibration Date If January 2017 S45308 Calibration Date If January 2017 S45308 Calibration Date If January 2017 Stalibration Ref. S6450 It is calibration Certificate is valid for 12 months from the date above. S45308 S45308 Calibration Date If January 2017 S45308 S45308 Miscalibration Ce	Description	Sound Level M	eter			
Calibration Procedure The instrument detailed above has been calibrated to the publish test and calibration data as detailed in the instrument hand book, using the techniques recommended in the latest revisions of the International Standards IE 61672-1:2002, IEC 60651:1979, IEC 60804:2001,IEC 61260:1995, IEC 60942:1997, IEC 61252:1993, ANSI S1.4-1983, ANSI S1.11-1986 and ANSI S1.43-1997 where applicable. Sound Level Meters: All Calibration procedures were carried out by substituting the microphone capsule with a suitable electrical signal, apart from the final acoustic calibration. Calibration Traceability The equipment detailed above was calibrated against the calibration laboratory standards held by Cirrus Research plc. These are traceable to International Standards {A.0.6}. The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by It is Calibration Certificate Number Calibration Date It is calibration Certificate is valid for 12 months from the date above.	Calibration Procedure The instrument detailed above has been calibrated to the publish test and calibration data as detailed in the instrument hand book, using the techniques recommended in the latest revisions of the International Standards IEC 61672-1:2002, IEC 60651:1979, IEC 60842:201.1EC 61260:1995, IEC 60942:1997, IEC 61252:1993, ANSI S1.4-1986 and ANSI S1.43-1997 where applicable. Sound Level (Calibration procedures were carried out by substituting the microphone capsule with a suitable electrical signal, apart from the final acoustic calibration. Calibration Traceability The equipment detailed above was calibrated against the calibration laboratory standards held by Cirrus Research ole. These are traceable to International Standards {A.0.6}. The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. \$6450 Pistonphone Type B&K 4220 Serial Number 1920791 Calibration Ref. \$6388 Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above. Pulsar Instruments ple, The Evron Centre, John Street, Filey, North Yorkshire, YO14 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com	Serial Number	T223417				
The equipment detailed above was calibrated against the calibration laboratory standards held by Cirrus Research ole. These are traceable to International Standards {A.0.6}. The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by Microphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by Microphone Type B&K 4220 Serial Number 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above.	The equipment detailed above was calibrated against the calibration laboratory standards held by Cirrus Research ble. These are traceable to International Standards {A.0.6}. The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by M. B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above. Pulsar Instruments plc, The Evron Centre, John Street, Filey, North Yorkshire, YO14 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com	the instrument detaile nstrument hand book, 51672-1:2002, IEC 60 51.4-1983, ANSI S1.1 Sound Level Meters: A uitable electrical sign	d above has been cr using the technique 651:1979, IEC 608 1-1986 and ANSI S All Calibration proc al, apart from the fi	alibrated to the public es recommended in the 04:2001,IEC 61260: 1 \$1.43-1997 where apped edures were carried of nal acoustic calibration Calibration Tra	sh test and calib ne latest revisior 1995, IEC 60942 plicable. put by subsitituti on.	ration data as detailed in is of the International S 2:1997, IEC 61252:1993 ing the microphone cap	tandards IEC 3, ANSI sule with a
ple. These are traceable to International Standards {A.0.6}. The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by M. BERAY Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above.	ple. These are traceable to International Standards {A.0.6}. The standards are: Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by M. BERNY Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above. Pulsar Instruments plc, The Evron Centre, John Street, Filey, North Yorkshire, YO14 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com	The equipment detaile	d above was calibra	ted against the calib	ation laboratory	standards held by Cirr	us Research
Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6430 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by M. BERAY Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above.	Microphone Type B&K 4192 Serial Number 1920791 Calibration Ref. S6450 Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by M. BERNY Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above. Pulsar Instruments plc, The Evron Centre, John Street, Filey, North Yorkshire, YO14 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com	olc. These are traceabl	e to International S	tandards {A.0.6}. Th	e standards are:		06150
Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. S6388 Calibrated by M. BERAY Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above.	Pistonphone Type B&K 4220 Serial Number 613843 Calibration Ref. 50388 Calibrated by M. BERNY Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above. Pulsar Instruments plc, The Evron Centre, John Street, Filey, North Yorkshire, YO14 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com	Microphone Type	B&K 4192	Serial Number	1920791	Calibration Ref.	56450
Calibrated by M. BERNY Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above.	Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above. Pulsar Instruments plc, The Evron Centre, John Street, Filey, North Yorkshire, YO14 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com						
Calibration Date 16 January 2017 Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above.	Calibration Date16 January 2017Calibration Certificate Number245308This Calibration Certificate is valid for 12 months from the date above.Pulsar Instruments plc, The Evron Centre, John Street, Filey, North Yorkshire, YO14 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com	Calibrated by			M.BE	NNY	
Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above.	Calibration Certificate Number 245308 This Calibration Certificate is valid for 12 months from the date above. Pulsar Instruments plc, The Evron Centre, John Street, Filey, North Yorkshire, YO14 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com	Calibration Date		1	6 January 2017		
This Calibration Certificate is valid for 12 months from the date above.	This Calibration Certificate is valid for 12 months from the date above. Pulsar Instruments plc, The Evron Centre, John Street, Filey, North Yorkshire, YO14 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com	Calibration Certificate	Number	2	45308		
	Pulsar Instruments plc, The Evron Centre, John Street, Filey, North Yorkshire, YO14 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com		This Calibration Ce	ertificate is valid for	12 months from	the date above.	
Pulsar Instruments pic, The Evron Centre, John Street, Filey, North Yorkshire, YO14 9DW Telephone: +44 (0) 1723 518011 Fax: +44 (0) 1723 518043 Email: sales@pulsarinstruments.com		Pulsar Inst	truments plc, The E Telephone: +4 Er	Cvron Centre, John S 44 (0) 1723 518011 1 nail: sales@pulsarin	treet, Filey, Nor Fax: +44 (0) 172 struments.com	th Yorkshire, YO14 9D 23 518043	w

Instrument Manufacto		Equipment D.	ataila		
mou unent manufacti	urer Dulsar Instrumer	Equipment D	etans		
Instrument Type	Model 100B	no pre			
Description	Acoustic Calibra	tor			
Serial Number	42171				
The acoustic calibrato manual. The procedur Sound Calibrators IEC applicable The calibr system, i.e. one hundre	r detailed above has b es and techniques use 60942:2003, IEC 60 ator's main output is edth of a decibel. Nur	Calibration Pro been calibrated to the d to follow the recor 1942:1997, BS EN 6 94.00 dB (1 Pa) and mbers in {parenthesi	cedure published dat nmendations of 0942:1998 and this was set w s} refer to the	a as described in the ope of the IEC standard Elec BS EN 60942:2003 wh ithin the 0.01 dB resolu paragraph in IEC 60942	erating troacoustics - tere tion of the tes
The calibrator above w are traceable to Interna	vas calibrated against ational Standards {A.	Calibration Trac the calibration labor 0.6}. The standards	eability ratory standard are:	ls held by Cirrus Resear	ch plc. These
Microphone Type	B&K 4192	Serial Number	1920791	Calibration Ref.	S6450
Pistonphone Type	B&K 4220	Serial Number	613843	Calibration Ref.	S6388
Static Pressure Ambient Noise Level	{B.3 {B.3 {B.3	.2} Permitt .2} Permitt .3.6} Max pe	ed band 30% t ed band 85 kP crmitted level 6	to 90% RH 7a to 105 kPa 64 dB(Z)	
The figures below are t than those permitted in	he Calibration Labor 1EC 60942.	Measurement F atory test limits for	Results this model cali	ibrator and have a small	ler tolerance
94 dB Output	93.99 dB	Permitted band	i	93.95 to 94.05dB	
104 dB Output	103.98 dB	Permitted band	1	103.80 to 104.30dB	
Frequency	995 Hz	Permitted band	i	990 to 1010Hz	
		Uncertaint	y		
With an uncertainty coe	fficient of k=2, i.e. a	95% confidence le	vel, the uncerta	ainty of each measure is	S
94 dB Output	± 0.13 dB	104 dE	Output	± 0.14 dl	В
Frequency	± 0.1 Hz	Level S	Stability	± 0.04 dl	В
Calibrated by			M.BE	NNY	
Calibration Date		16	January 2017		
Calibration Certificate 1	Number	24	5309		

The Calibration Laboratory Skodsborgvej 307, DK-2850 Nærum, Denmark

CERTIFICATE OF CALIBRATION

CALIBRATION OF

No: CDK1609408

Page 1 of 10

Conditional Mater	D-1-1 0 Kim T 2250	No. 2(51(/2	14. 2004002
Sound Level Meter:	Bruel & Kjær Type 2250	No: 2654662	Id: - 2654662
Microphone:	Brüel & Kjær Type 4950	No: 2737145	
Preamplifier:	Brüel & Kjær Type ZC-0032	No: 6822	
Supplied Calibrator:	Brüel & Kjær Type 4231	No: 2460008	
Software version:	BZ7222 Version 2.1	Pattern Approval:	PTB1.63-4046158
Instruction manual:	BE1712-18		

CUSTOMER

Enfonic Ltd Tecpro House IDA Business & Technology Park Dublin D17 NX50 Ireland

CALIBRATION CONDITIONS

 Preconditioning:
 4 hours at 23°C ± 3°C

 Environment conditions:
 See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Brüel & Kjær Type 2250 has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SI.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 4.9 - DB: 4.90) by using procedure 2250-4189.

RESULTS

Calibration Mode: Calibration as received.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2017-02-13

Date of issue: 2017-02-13

ondes Mikail Önder

Calibration Technician

mrc) user

Susanne Jørgensen Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.

APPENDIX 3

Inverse Square Law Calculations

Noico	Noise Measured at Boundary Location (max)				distance -	Annuarimata	Effective Noise leve		vel
Monitoring	ng Leq dB(A)		main onsite noise source	monitoring location	Distance to nearest	Leq dB(A)			
Location	Daytime	Evening	Night Time	1.1	to source (m)	NSL(m)	Daytime	Evening	Night Time
N1	57	50	45	vehicle movement onsite	40	130	47	40	35
N2	56	53	49	boiler	45	200	43	40	36
N3	55	50	49	soil shed	50	255	41	36	35
N4	56	51	42	n/a	n/a	n/a	Enva not audible	Enva not audible	Enva not audible
N5	54	49	46	vehicle movement onsite	40	115	46	41	38
			Limit Va	alues dB(A)			55	50	45

The Inverse Square Law can be used to calculate the expected reduction in noise levels as one moves away from a given noise source, which is assumed to radiate uniformly in all directions. The Inverse Square Law states that as one doubles the distance from a source, a reduction of 6 dB is achieved as follows:

$$L_{p2} = L_{p1} - 20 \text{ Log} (^{R2}/_{R1})$$

where:

- L_{p1} is the measured reference Sound Pressure Level (SPL) at a distance of R1 metres from the source.
- L_{p2} is the calculated SPL at a distance of R2 metres from the source.

APPENDIX III

Site Plan showing Noise Monitoring Positions

Appendix 3

Report Title	Air Emissions Compliance Monitoring Emissions Report
Company address	Air Scientific Ltd., Unit 5, Caherdavin Business Centre, Caherdavin, Park, Ennis Road, Limerick V94 NT63.
Stack Emissions Testing Report Commissioned by	Enva Portlaoise
Facility Name	Enva Ireland Ltd
Contact Person	Donal Conroy
EPA Licence Number	W0184-02
Licence Holder	Enva Ireland Limited
Stack Reference Number	A1-1, A3-52, A3-53, A3-55 & A3-57
Dates of the Monitoring Campaign	13-12-2017
Job Reference Number	ENPOTL6131217
Report Written By	Mr. Daniel Mullins
Report Approved by	Mr. David Noonan
Stack Testing Team	Mr. Daniel Mullins & Mr. Jer Moore
Report Date	09-01-2018
Report Type	Test Report Compliance Monitoring
Version	1
Signature of Approver	

Opinions and interpretations expresses herein will be outside the scope of Air Scientific Limited INAB accreditation. This test report shall not be reproduced, without the written approval of Air Scientific Limited. All sampling and reporting is completed in accordance with Environmental Protection Agency Air Guidance Note 2 requirements.

Monitoring Objectives

Overall Aim of the monitoring Campaign

The aim of the monitoring campaign was to demonstrate compliance with a set of emission limit values as specified in the site licence.

Special Requirements

There were no special requirements.

Target Parameters

Oxides of Nitrogen (NOx) as NO ₂

Emission Limit Values

A1-1	mg.m⁻³
Oxides of Nitrogen (NOx) as NO ₂	200
Combustion Efficiency	-

Reference Conditions

Reference Conditions	Value
Oxygen Reference %	3
Temperature K	273.15
Total Pressure kPa	101.3
Moisture %	-

	_
Overall	Results
O for all	1.couito

Stack Name	Concentration				
Parameter	Units	Result	MU +/-	Limit	Compliant
Oxides of Nitrogen (NOx) as NO ₂	mg.m ⁻³	129.5	7.8	200	Yes
Combustion Efficiency	%	92.6	-	-	n/a

Accreditation details			
INAB Number: 319T			
•			

Process details

Stack Name	A1-1
Process status	Boiler only runs for a few minutes at a time.
Capacity (per/hour) (if applicable)	Variable
Continuous or Batch Process	Batch
Feedstock	n/a
Abatement System	None
Abatement Systems Running Status	n/a
Fuel	Natural Gas
Plume Appearance	No
Other information	None

Monitoring, Equipment & Analytical Methods

Parameter	Standard	Technical Procedure	Accredited Testing	Analytical Technique	Equipment / Media	Equipment ID Used on Site
Oxides of Nitrogen (NOx) as NO ₂	EN14792:2006	2002	Yes	Chemiluminescence	Horiba	ASLLK15EQ510 ASLLK16EQ511 ASLLK16EQ512
Oxygen (%)	EN14789	2008	Yes	Paramagnetic/ Zirconia	Horiba	ASLLK17EQ539 ASLLK14EQ513 ASLLK14EQ509 ASLLK16EQ508

Sampling Deviations

A1-1	Deviation
EN14792	None
EN14789	None

Reference Documents

Risk Assessment (RA)	SOP 1011
Site Review (SR)	SOP 1015
Site Specific Protocol (SSP)	SOP 1015

Suitability of Sample Location

General Information	A1-1	
Permanent/Temporary	Permanent	
Inside/ Outside	Inside	

Platform Details				
Irish EPA Technical Guidance Note AG1 / BS EN 15259 Platform Requirements	Value	Comment		
Sufficient Working area to manipulate probe and measuring instruments	Yes	-		
Platform has 2 handrails (approx. 0.5m & 1.0 m high)	n/a	-		
Platform has vertical base boards (approx. 0.25 m high)	n/a	-		
Platform has chains / self-closing gates at top of ladders	n/a	-		
There are no obstructions present which hamper insertion of sampling equipment	Yes	-		
Safe Access Available	Yes	-		
Easy Access Available	Yes	-		

Sampling Location / Platform Improvement Recommendations

None

BSEN 15259 Homogeneity Test Requirements

1.

Select Option :

- 1: There is no requirement to perform a BSEN15259 Homogeneity Test on this stack
- 2: Test results were obtained from previous Homogeneity test carried out by ASL
- 3: Test results were obtained from previous Homogeneity test carried out by Alternative contractor
- 4: Homogeneity Test is required on this stack and the client has been informed of this requirement.

Stack Diagram

1. APPENDICES

Appendix I Monitoring Personnel & Equipment

Stack Emissions Monitoring Personnel

Team Leader	Name	Daniel Mullins
	System approval	ASL Team Leader Approved
Team Leader	Name	Jer Moore
	System approval	ASL Team Leader Approved

Appendix II

Stack Raw Data

Title:	<u>Determinat</u>	ion of (Combu	istion Flue Gases	
Method:	EN 14792 /	EN 147	789 / EN	N 15058 / TGN M21	
Test Date:	13/12/2017				
Stack Name	A1-1			Quality Assurance	
				Probe Material	Stainless Steel
Reference Conditions				Filtration Type/size	Stainless Steel
Measured Oxygen		6.5	%	Heated Filter used	Yes
Reference Oxygen		3	%	No. of sampling lines	1
		-		No. of Sampling points	1
				Sampling point LD s	1
				Camping point i.D.S	I
Parameter				NO	0.
Emission Limit Values	ma m ⁻³ ref			200	0 ₂
Instrument Range	nng.m ici			500	25
Spon Coo Voluo	ppm			300	20.0
Acceptable Cos Dange	ppm			397	20.9
Acceptable Gas Range	-			Tes	i es
Calibration Gas Reference No.	-			ASLLK17ING505	n/a
Calibration Gas Orcertainty	% D			0.6	0.5
Calibration Gas Start Bar	Bar			Aug-18	n/a
Expiry Date	-			50	n/a
Quality Assurance	Units				
Conditioning Unit Temperature	С			2	2
Average Temperature	< C			2	2
Allowable Temperature	-			4	4
Temperature Acceptable	-			Yes	Yes
Pump flow rate	l/min.			0.5	0.5
Zero Drift	Units				
Zero (Ambient air or Nitrogen)				Ambient	Nitrogen
Zero (Pre)	ppm			0.1	0.04
Zero (Post)	ppm			0.3	0.12
Zero drift	ppm			0.2	0.08
Allowable Zero Drift (Less than)	maa			7.94	0.418
Adjustable Zero Drift (Less than)	maa			19.85	1.045
Zero Drift Failure (Greater than)	mag			19.85	1.045
Zero Drift Acceptable	-			Yes	Yes
Span Drift	Units				
Span Down (Pre)	nnm			397.2	20.92
Span Down (Post)	ppm			396.7	20.02
Span Drift	ppm			-0.5	-0.03
Allowable Span Drift (loss than)	ppm			-0.5	-0.03
Adjustable Span Drift (Less than)	ppm			10.85	1.045
Span Drift Eailure (Creater than)	ppm			10.85	1.045
Span Drift Assestable (V(N)	ppm			19.65	1.045
Span Drift Acceptable (17N)	-			res	res
				207	
Span Gas Conc.	ppm			397	20.9
Recorded Conc. down Line	ppm			397.2	20.92
Leak Detected	ppm			0.2	0.02
Leak check acceptable (< 2%)	ppm			7.94	0.418
Pass	(Y/N)			Yes	Yes
Response Time (<200 seconds)				Yes	Yes
Test Conditions	Units				
Run Ambient Temperature Range	С			0	0

Raw Data

Date/Time	Data source	NOx	O ₂
		ppm	vol%
13/12/2017 10:4	5	49.758	5.945
13/12/2017 10:4	6	50.617	5.949
13/12/2017 10:4	7	50.592	6.056
13/12/2017 10:4	8	50.525	6.060
13/12/2017 10:4	9	50.517	6.164
13/12/2017 10:5	54	49.250	5.124
13/12/2017 10:5	5	50.558	6.090
13/12/2017 10:5	56	50.750	6.947
13/12/2017 10:5	57	50.000	7.977
13/12/2017 10:5	58	51.225	7.417
13/12/2017 10:5	59	52.542	6.352
13/12/2017 11:0	06	50.408	6.949
13/12/2017 11:0	7	50.567	6.956
13/12/2017 11:0	8	51.100	6.960
13/12/2017 11:0	99	49.250	6.964

Average	50.5	6.5

Referenced Data

	NOx mg/Nm ³ Poforonoo O
10/10/00/7 10 15	
13/12/2017 10:45	122.3
13/12/2017 10:46	124.4
13/12/2017 10:47	125.2
13/12/2017 10:48	125.1
13/12/2017 10:49	126.0
42/42/2047 40-54	4447
13/12/2017 10:54	114.7
13/12/2017 10:55	125.5
13/12/2017 10:56	133.7
13/12/2017 10:57	142.2
13/12/2017 10:58	139.6
13/12/2017 10:59	132.7

400.0
132.8
133.3
134.7
129.9

Average	129.5
Uncertainty of Measurement	7.8
Uncertainty as % of ELV	3.91
Standard Requirement	<10%

Parameter	Value
FT	177.8
Ambient Temp	9.5
A2 (Fuel Specific Factors)	0.66
Oxygen level in air	20.9
Measured oxygen	6.5

Formula = qA = (FT-AT) x (A2 / 21- O2) + B

FT - AT	168.3
A2 / 20.9- O2	0.045833
plus B fuel specific factors	0.009
Calculation of efficiency qA	7.72
%	92.28

Formula = qA = fx FT-AT/Co2

Appendix 4

Enva Portlaoise

2017 Groundwater Compliance Monitoring Quarter 1 (Jan – Mar 2017)

Document Control Sheet

Client:	Enva Ireland Ltd.			
Project Title:	Enva Portlaoise 2016 Groundwater Compliance Monitoring			
Document Title:	Quarter 4 (Oct – Dec 2016)			
Document No:	MDE0973Rp0031			
Text Pages:	47	Appendices:	-	

Rev.	Status	Date		Author(s)	I	Reviewed By	ļ	Approved By
D01	Draft	9 th March 2017	DC	Dulali	CR	Cabrin Rally	CR	Cabron Rally
A01	Client Approval	24 th March 2017	DC	DonChiles	CR	Cabrin Rolly	CR	Cabun Rally

Copyright RPS Group Limited. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by RPS Group Limited no other party may use, make use of or rely on the contents of this report.

The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS Group Limited for any use of this report, other than the purpose for which it was prepared.

RPS Group Limited accepts no responsibility for any documents or information supplied to RPS Group Limited by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made.

RPS Group Limited has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy. No part of this report may be copied or reproduced, by any means, without the written permission of RPS Group Limited

rpsgroup.com/ireland

TABLE OF CONTENTS

1		INTRODUCTION	1
	1.1	BACKGROUND	1
	1.2	OBJECTIVES & SCOPE OF WORK	1
2		REVIEW OF PREVIOUS DATA	2
	2.1	INFORMATION SOURCES	2
	2.2	SITE SETTING	2
	2.3	REGIONAL SETTING	4
		2.3.1 Geology	4
		2.3.2 Hydrogeology	4
	2.4	SITE GROUND CONDITIONS	4
		2.4.1 Licence Conditions	5
3		METHODOLOGY	6
	3.1	LABORATORY ANALYSIS	6
	3.2	PRESENTATION & INTERPRETATION OF RESULTS	8
4		QUARTER 1 RESULTS FEBRUARY 2017	9
5		DISCUSSION OF QUARTER 1 RESULTS	0
5	5.1	DISCUSSION OF QUARTER 1 RESULTS	0
5	5.1 5.2	DISCUSSION OF QUARTER 1 RESULTS 2 FIELD PARAMETERS 2 RESULTS OF BTEX & MTBE 2	0 0
5	5.1 5.2 5.3	DISCUSSION OF QUARTER 1 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)2	0 0 1
5	5.1 5.2 5.3 5.4	DISCUSSION OF QUARTER 1 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2	0 0 1
5	5.1 5.2 5.3 5.4 5.5	DISCUSSION OF QUARTER 1 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2	0 0 1 1
5	5.1 5.2 5.3 5.4 5.5 5.6	DISCUSSION OF QUARTER 1 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2	0 0 1 1 2
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	DISCUSSION OF QUARTER 1 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2	0 0 1 1 2 2
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	DISCUSSION OF QUARTER 1 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2	0 0 1 1 2 2 5
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1	DISCUSSION OF QUARTER 1 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2GROUNDWATER LEVELS OVER TIME2	0 0 1 1 2 2 5
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2	DISCUSSION OF QUARTER 1 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2GROUNDWATER LEVELS OVER TIME3	0 0 1 1 2 2 5 0
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 1 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2GROUNDWATER LEVELS OVER TIME36.2.1 Phenols3	0 0 1 1 2 5 0 0
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 1 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2GROUNDWATER LEVELS OVER TIME36.2.1 Phenols36.2.2 Polyclyclic Aromatic Hydrocarbons3	0 0 1 1 2 5 0 0 2
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 1 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2GROUNDWATER LEVELS OVER TIME36.2.1 Phenols36.2.2 Polyclyclic Aromatic Hydrocarbons (TPH)4	0 0 1 1 2 5 0 2 4

LIST OF FIGURES

Figure 2.1 – Site Location	3
Figure 3.1 – Site Layout Plan with Groundwater Monitoring Locations	7
Figure 6.1 – Ground Elevation (mAOD) in all Monitoring Wells	26
Figure 6.2 – Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells	27
Figure 6.3 – Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells	28
Figure 6.4 – Phenol Concentrations in all Monitoring Wells	31
Figure 6.5 – PAH (Total) Concentrations in all Monitoring Wells	35
Figure 6.6 – PAH (Total) Concentrations in all Monitoring Wells Since 2010	36
Figure 6.7 – Fluoroanthene Concentrations in all Monitoring Wells	37
Figure 6.8 – Naphthalene Concentrations in all Monitoring Wells	38
Figure 6.9 – Benzo (g,h,i) perylene Concentrations	39
Figure 6.10 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03	40
Figure 6.11 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03 Since 2010	41
Figure 6.12 – Benzo (a) pyrene Concentrations in all Monitoring Wells	42
Figure 6.13 – Benzo (a) pyrene Concentrations in all Monitoring Wells Since 2010	43
Figure 6.14 – TPH (Carbon Range C10-C44) in all Monitoring Wells	45

LIST OF TABLES

Table 2.1 – Ground Conditions	5
Table 2.2 – Licence Parameters	5
Table 3.1 – Analytical Methodologies – ALS Environmental	6
Table 4.1 – Groundwater Levels (Quarter 1, 2017)	10
Table 4.2 – Results of Field Parameters Measured at each Groundwater Monitoring Well (Quart	er 1,
2017)	11
Table 4.3 – Results of BTEX and MTBE	12
Table 4.4 – Results of Speciated PAHs	12
Table 4.5 – Results of Speciated Phenols	14
Table 4.6 – Results of Semi-Volatile Organic Compounds (SVOCs)	15
Table 4.7 – Results of Volatile Organic Compounds (VOCs)	17
Table 4.8 – Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)	19
Table 6.1 – Monthly Rainfall Data for Year 2013 for Oak Park, Carlow	29
Table 6.2 – Monthly Rainfall Data for Year 2014 for Oak Park, Carlow	29
Table 6.3 – Monthly Rainfall Data for Year 2015 for Oak Park, Carlow	29
Table 6.4 – Monthly Rainfall Data for Year 2016 for Oak Park, Carlow	29
Table 6.5 – Monthly Rainfall Data for Year 2017 for Oak Park, Carlow	29

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd (Enva) to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence, Register No. W0184-01.

Enva Ireland has been operating under Waste Licence Register No. W0184-01 since January 2004. The licence was amended by the Environmental Protection Agency in December 2013 to conform to the provisions and requirements of the Council Directive 2010/75/EU (Industrial Emissions Directive) and as such is deemed an Industrial Emissions Licence. Enva is required to submit a report to the EPA on a quarterly basis, outlining the existing groundwater quality underlying the site.

A suitably qualified environmental consultant from RPS, collected groundwater samples from a series of 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) within the site boundary on the 16th of February 2017. The samples underwent laboratory analysis for the suite of parameters specified in Schedule 4(ii) of Industrial Emissions Licence W0184-01. This report outlines the results of the Quarter 1 monitoring for 2017 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 1 2017 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Industrial Emissions Licence W0184-01 and any available EPA documents from the EPA website;
- Quarterly Groundwater Monitoring Reports (Quarter 1 2004 to Quarter 4 2005), URS;
- Quarterly Groundwater Monitoring Reports (Quarter 1 2006 to Quarter 4 2016), RPS;
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007);
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008);
- Hydrogeological Review and Assessment Report, Ref MDE0973Rp0017F01, RPS (2014); and
- Baseline Environment Report, Ref: MDE0973Rp0104.

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1.5 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 2.1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 3.1**. The site is largely covered in hardstanding with some open areas in the far north and northeast of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

Figure 2.1 – Site Location

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoils in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological Survey of Ireland (GSI) as a Locally Important Karstified Aquifer (LI). Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising three groundwater abstraction well fields comprising of two abstraction wells in each well field. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends to within 3.2 km of the Enva site but does not encompass the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk; the accuracy of this location is also 1 km so it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2.1**.

Table 2.1 – Ground Conditions

Strata	Extent	Thickness	Description
Made Ground	BH104	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium, well rounded gravels.
Sand and Gravel	Confined to south east corner of site (BH101, BH104 and MW03)	0-2 m	In general the transition from boulder clay to sand is gradual with changes from gravel, to sandy gravel, to sand.
Limestone Bedrock	Encountered in MW01, MW02 and MW03	Top of limestone ranges from 7.7m to 9m below ground level.	Pale grey, fine-grained bedrock, differentiated from boulders by its un-weathered nature.

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

2.4.1 Licence Conditions

The Industrial Emissions Licence requires the regular monitoring and sampling of boreholes BH101, BH102, BH103, BH104B, MW01, MW02, MW03 and MW04. The parameters requiring measurement or analysis are presented in **Table 2.2**.

Table 2.2 – Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement
	Groundwater Level	Groundwater Level
	рН	рН
Field Parameters	Temperature	Temperature
Field Parameters	Dissolved Oxygen	Dissolved Oxygen
	Electrical Conductivity	Electrical Conductivity
	Visual Inspection	Visual Inspection
	Mineral Oil	Mineral Oil
	BTEX & MTBE	BTEX & MTBE
Organics	PAHs	PAHs
Organics	Phenols	Phenols
	VOCs	VOCs
	SVOCs	SVOCs
Inorganics	-	Total Alkalinity, Calcium, Manganese, Sulphate, Cyanide (Total), Chloride, Sodium,

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) (Figure 3.1) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.

Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, ALS Environmental for the suite of analyses listed in **Table 3.1**. **Table 3.1** also indicates the analytical techniques used by the laboratory.

Table 3.1 – Analytical Methodologies – ALS Environmental

Parameter	Analytical Methodology					
Phenols	GC-MS					
Speciated PAHs	GC-MS					
BTEX & MTBE	Headspace GC-MS					
Petroleum Hydrocarbons	Headspace GC-MS					
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS					
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS					

Shallow Monitoring Well locations Deep Monitoring Well locations

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 1 2017 results are tabulated in **Section 4** and discussed with respect to previous results in **Section 5**. Results are compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

Previous monitoring reports (as listed in **Section 2.1**) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in **Section 6** and include the results of this Quarter 1 2017 monitoring round. As the monitoring continues in accordance with the Industrial Emissions licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 1 RESULTS FEBRUARY 2017

The results of all field measurements and laboratory analysis are presented in this section. Results are primarily compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

The results are discussed in relation to appropriate guideline values in **Section 5**. Results that are shown to be above the relevant threshold or guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Groundwater samples from the 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) were collected within the site boundary on the 16th of February 2017 following the methodology outlined in Section 3. The samples were sent to ALS Environmental for laboratory analysis. ALS noted on receipt of analysis that the SVOC bottle for BH101 and LL phenol bottle for MW03 were empty on arrival. As such, the SVOC analysis for BH101 and phenol analysis for MW03 was unable to be carried out.

An additional sample for these two locations was undertaken on the 16th of February, following the methodology outlined in Section 3. The samples were submitted to the lab for SVOC analysis for BH101 and phenol analysis for MW03.

Monitoring Well	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04
Depth (mbgl)	6.81	6.48	4.39	4.65	22.65	30.85	14.72	6.46
Static Water Level (mbgl)	4.31	3.16	1.81	1.01	2.53	3.49	4.43	4.00
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	98.75	99.39	99.35	100.51	99.57	99.63	98.34	-
Free Phase Oil (mm)	No detection							

mbgl = metres below ground level

Monitoring Well	pH (pH Units)	Temperature (°C)	Conductivity (μS/cm)	Dissolved O ₂ (ppm)	Observations
BH101	7.65	9.5	997	4.63	Light grey cloudy colouron purging, some sandy sediment
BH102	7.47	9.0	765	3.76	Slight brown on purging, clearer after 10L, some large suspended solids
BH103	7.45	8.7	794	3.88	Grey in colour and very little sediment
BH104B	8.57	9.8	699	4.36	Light grey/clear on purging, some sediment and slight oil sheen
MW01	7.57	9.5	743	4.86	Clear/slight grey colour, little suspended solids and sediment
MW02	7.68	8.1	761	3.90	Clear/grey on purging with very little suspended solids
MW03	7.24	9.3	1379	4.23	Grey colour on purging, some large suspended solids and fine sediment, very slight sheen and odour. Samples clear
MW04	6.58	8.2	1311	3.69	Cloudy light brown colour, some sandy sediment and very little suspended solids
Groundwater Threshold Value	-	-	1875	-	-
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25°C	1000	No abnormal change	-

Table 4.2 – Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 1, 2017)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Table 4.3 – Results of BTEX and MTBE

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.75	1.0
Toluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
Ethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
m & p-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10 Note 1
o-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10 ^{Note 1}
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.4	1.2	-	30

Note: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.4 – Results of Speciated PAHs

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Naphthalene	µg/l	0.01	<0.01	<0.01	0.018	<0.01	0.041	<0.01	<0.01	0.12	-	1.0
Acenaphthylene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Acenaphthene	μg/l	0.01	<0.01	<0.01	0.032	<0.01	0.061	<0.01	0.093	0.014	-	-
Fluorene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.018	<0.01	0.103	0.014	-	-
Phenanthrene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	10,000
Fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.021	<0.01	-	1.0
Pyrene	µg/l	0.01	<0.01	0.014	<0.01	0.021	<0.01	<0.01	0.081	<0.01	-	-
Benzo(a)anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.025	<0.01	-	-
Chrysene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.06	<0.01	-	-
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.019	<0.01	-	0.5

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzo(k)fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.05
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.033	<0.01	-	0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.05
Dibenz(a,h)anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Benzo(g,h,i)perylene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.037	<0.01	-	0.05
Total EPA-16 PAHs	μg/l	0.1	<0.01	0.014	0.05	0.021	0.121	<0.01	0.47	0.148	0.075	0.1

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.5 – Results of Speciated Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	μg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	0.5
2,4,6-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.48	<1.0	-	-
2-Nitrophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
3+4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.19	<1.0	-	-

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.6 – Results of Semi-Volatile Organic Compounds (SVOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
2-Chlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
Bis(2-chloroethyl)ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroisopropyl)ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Nitrobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
3&4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Isophorone	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroethoxy)methane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Naphthalene	μg/l	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	1.0
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobutadiene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4,6-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4,5-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylnaphthalene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chloronaphthalene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dimethylphthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
2,6-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dibenzofuran	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Diethylphthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Fluorene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Bromophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.03
Phenanthrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10,000
Pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzyl Butyl Phthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(a)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chrysene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(b)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
Benzo(k)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Benzo(a)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.01
Indeno(1,2,3-c,d)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Dibenz(a,h)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(g,h,i)perylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-ethylhexyl)phthalate	μg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	-

Note: Results above the relevant IGV are highlighted in bold. Note: Results above the GTV are highlighted in bold and shaded.

Table 4.7 – Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Chloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.8	-	-
Bromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Vinyl Chloride	µg/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	0.5	0.375	-
Trichlorofluoromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,1-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	30
1,1-dichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8	2.2	-	-
Cis-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.4	1.2	-	30
2,2-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,1,1-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	500
1,2-dichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.25	-
1,1-Dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trans-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	1.0
1,2-dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	70
Dibromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromodichloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Cis-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trans-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Toluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,1,2-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Dibromochloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Tetrachloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	40
1,2-Dibromoethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	1.0
1,1,1,2-Tetrachloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Ethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
m&p-Xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
Styrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
o-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
Isopropylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
N-Propylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3,5-Trimethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Tert-Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-Trimethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Sec-Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
P-Isopropyltoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
n-Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dibromo-3-chloropropane	μg/l	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	-
1,2,4-Trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Hexachlorobutadiene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
1,2,3-Trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.8 – Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Aliphatic > C10-C12	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aliphatic > C12-C16	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aliphatic > C16-C35	μg/l	10	<10	11	15	<10	23	<10	40	<10	-	-
Aliphatic > C35-C44	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aliphatic > C10-C44	μg/l	10	<10	11	15	<10	23	<10	40	<10	-	10
Aromatic > C10-C12	μg/l	10	<10	<10	<10	<10	<10	<10	<10	11	-	-
Aromatic > C12-C16	μg/l	10	<10	<10	<10	<10	<10	<10	<10	21	-	-
Aromatic > C16-C21	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aromatic > C21-C35	μg/l	10	<10	<10	<10	<10	<10	<10	13	<10	-	-
Aromatic > C35-C44	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aromatic > C10-C44	μg/l	10	<10	<10	<10	<10	<10	<10	13	32	-	10

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

5 DISCUSSION OF QUARTER 1 RESULTS

The results of the Quarter 1 monitoring event for 2017 are presented in **Table 4.1** to **4.9** of this report. For the purpose of this report, the results are compared against the Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations (S.I. No. 9 of 2010) where available. Where GTVs are not available results are compared against the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in Table 4.2. Groundwater samples recorded pH levels ranging between 6.58 and 8.57, all within the EPA Interim guideline range of \geq 6.5 to \leq 9.5. Temperature measurements ranged from 8.1°C to 9.5°C and were below the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 699 μ S/cm and 1379 μ S/cm. Two measurements of Electrical Conductivity were above the IGV of 1000 μ S/cm at MW03 (1379 μ S/cm) and MW04 (1311 μ S/cm), but all however were below the GTV limit of 1875 μ S/cm.

Dissolved oxygen levels ranged between 3.69 and 4.86 ppm. Factors such as climate, nutrients in the water, suspended solids; organic wastes and groundwater inflow can all influence the dissolved oxygen values.

Observations relating to colour and odour varied from well to well as detailed in Table 4.2.

5.2 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in **Table 4.3**. BTEX concentrations are below the associated GTVs and IGVs at all locations. All BTEX concentrations are also all below the laboratory of limit of detection at all locations. MTBE was detected at MW03 (2.4 μ g/l) and MW04 (1.2 μ g/l), however these concentrations below the IGV of 30 μ g/l. MTBE was below the laboratory limit of detection and IGV at all other locations.

The previous detection of MTBE was in the Quarter 4 monitoring event of 2016 and recorded concentrations above the laboratory limit of detection at MW03 (1.5 μ g/l) and MW04 (1.2 μ g/l). MTBE was also above the laboratory limit of detection at MW03 (1.2 μ g/l) during Quarter 3 2016, and at BH103 (1.2 μ g/l), MW03 (1.8 μ g/l) and MW04 (1.7 μ g/) during Quarter 2 2016. These detections are still below the IGV limit however. Prior to this there was a detection of MTBE at BH104B in the Quarter 1 monitoring event of 2012 with a recorded concentration of 280 μ g/l which is above the laboratory limit of detection. This was the only recorded exceedance in Quarter 1 2012.

Monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at BH103 at a concentration of 16 μ g/l. Subsequent monitoring in 2010 recorded concentrations below the laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at BH103 were recorded at 63 μ g/l in December 2009.

5.3 **RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)**

The results of the Speciated PAH analysis during this monitoring period are presented in **Table 4.4**.

The laboratory limit of detection for Total EPA-16 PAHs is 0.1 μ g/l and has been lowered for comparison with the EPA IGV of 0.1 μ g/l; however this is not accredited. This laboratory limit of detection is above the EPA GTV of 0.075 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l.

Total Polyaromatic Hydrocarbons were above the IGV limit of 0.1 μ g/l at MW01 (0.124 μ g/l), MW04 (0.47 μ g/l) and MW03 (0.148 μ g/l). Total PAHs were below the IGV of 0.1 μ g/l and the GTV of 0.075 μ g/l at all other locations.

Total PAHs were previously detected above the IGV at BH102 (0.124 μ g/l) and MW03 (0.596 μ g/l) during the Quarter 4 2016 monitoring event and were also above the IGV at BH103 (0.181 μ g/l), BH104B (0.158 μ g/l), MW03 (0.562 μ g/l) and MW04 (0.151 μ g/l) during the Quarter 3 2016 monitoring event.

The results of the speciated polycyclic aromatic hydrocarbon analysis detected a number of different compounds in BH101, BH102, BH103, BH104B, MW01, MW03 and MW04 above the laboratory limit of detection. However, with the exception of Benzo (a) pyrene at MW03 (0.033 μ g/l), none of these compounds were above their respective IGV limits at any location.

5.4 **RESULTS OF SPECIATED PHENOLS**

During previous quarterly monitoring events and sample analysis, total monohydric phenol was determined and historically has been below the laboratory limit of detection of 10 μ g/l since December 2008. It should be noted that the laboratory limit of detection was however above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in **Table 4.5**. The speciated phenol analysis reduces the laboratory limit of detection to $1.0 \mu g/l$ for individual parameters.

The results of the current Quarter 1 2017 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 1.0 μ g/l at all locations, with the exception of 2-Methylphenol (3.48 μ g/l) and 3+4-Methylphenol (2.19 μ g/l) in MW03. However, there is no IGV or GTV for either of these parameters

4-Chloro-3-methylphenol was detected at BH104B (1.37 μ g/l) above the laboratory limit of detection during the Quarter 1 2015 analysis. With the exception of this, all other results are consistent with results since the 2012 quarterly monitoring events.

5.5 RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.6.

There are no GTVs for individual SVOC parameters. No SVOCs were detected above the relevant IGVs during this monitoring period, consistent with the results from the 2016, 2015 and 2014 monitoring periods. It should be noted that the laboratory limit of detection was however above the IGVs for some SVOCs, for example the result for 1,2,4-Trichlorobenzene was <1.0 μ g/l but the IGV for this parameter is 0.40 μ g/l, but testing at this limit is not accredited.

The Quarter 3 2013 monitoring event detected two SVOC compounds, Acenaphthene (1.1 μ g/l) and Fluorene (1.5 μ g/l) in MW03. Prior to this detection the Quarter 2 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene in MW03 at concentrations of 2.4 μ g/l and 0.12 μ /l respectively.

5.6 **RESULTS OF VOLATILE ORGANIC COMPOUNDS**

The results of the Volatile Organic Compound analysis are presented in **Table 4.7**. Vinyl Chloride at MW03 (0.6 μ g/l) and MW04 (0.5 μ g/l) was detected above the GTV of 0.375 μ g/l.

1,1-dichloroethane at MW03 (1.8 μ g/l) and MW04 (3.9 μ g/l), and MTBE at MW03 (1.6 μ g/l) and MW04 (1.9 μ g/l) were also detected. However, there is no GTV or IGV limit for 1,1-dichloroethane and the results are below the IGV for MTBE (30 μ g/l). All other compounds were below their respective laboratory limits of detection.

Historic groundwater monitoring events detected some parameters above the laboratory limit of detection in November 2009, corresponding to Quarter 4 of 2009. Historically 1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene were detected above the laboratory limits of detection.

The results of the Quarter 3 and Quarter 4 monitoring events of 2009 and all subsequent monitoring events indicate that there were no other exceedances of the GTVs or IGVs for specific parameters.

5.7 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in **Table 4.8**.

The EPA IGV of 10 μ g/l for Total Hydrocarbons is deemed comparable with the results for Total Petroleum Hydrocarbons. Some detections of TPH in both the aliphatic and aromatic range were observed during the current Quarter 1 2017 monitoring event. Detections were found in samples from the following wells; at BH102 detections in the aliphatic range C16-C35 (11 μ g/l), at BH103 detections were in the aliphatic range C16-C35 (15 μ g/l), at MW01 detections were in the aliphatic range C16-C35 (23 μ g/l), at MW03 detections in the aliphatic range C16-C35 (40 μ g/l) and in the aromatic range C21-C35 (13 μ g/l), and at well MW04 detections were in the aromatic ranges C10-C12 (11 μ g/l) and C12-C16 (21 μ g/l).

The previous Quarter 4 monitoring event detected TPH in the wells BH102 in the aliphatic range C16-C35 (13 μ g/l), BH103 in the aliphatic range C16-C35 (160 μ g/l), C35-C44 (14 μ g/l) and in the

aromatic range C21-C35 (47 μ g/l), BH104B in the aromatic range C12-C16 (12 μ g/l), MW03 in the aliphatic range C16-C35 (14 μ g/l), and MW04 in the aromatic ranges C10-C12 (13 μ g/l) and C12-C16 (23 μ g/l)

The Quarter 3 monitoring event detected TPH in the well BH103 in the aliphatic range C16-C35 (35 μ g/l), C35-C44 (10 μ g/l) and in the aromatic range C21-C35 (11 μ g/l), at BH104B detections were in the aromatic range C12-C16 (25 μ g/l), C16-C21 (12 μ g/l) and at well MW04 detections were in the aromatic range C12-C16 (23 μ g/l).

The Quarter 2 monitoring event of 2016 detected TPH in the well BH103 were in the aliphatic range C16-C35 (150 μ g/l) and in the aromatic range C21-C35 (57 μ g/l) and from well MW04 in the aromatic range C12-C16 (20 μ g/l).

The Quarter 1 monitoring event of 2016 detected TPH in the aliphatic range C16-C35 (132 μ g/l) at BH103 and in the aliphatic range C12-C16 (15 μ g/l) at MW04.

The Quarter 4 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (879 μ g/l), C16-C21 (1380 μ g/l) and C21-C35 (694 μ g/l) at BH104B, C21-C35 at BH103 (60 μ g/l) and C10-C12 (13 μ g/l) and C12-C16 (21 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (495 μ g/l), C12-C16 (3080 μ g/l) and C16-C35 (3360 μ g/l) at BH104B and C16-C35 (231 μ g/l) and C35-C44 (14 μ g/l).

The Quarter 3 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l) at BH104B, C21-C35 at BH103 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (13 μ g/l), C12-C16 (40 μ g/l) and C16-C35 (62 μ g/l) at BH104B and C16-C35 at BH103 (72 μ g/l) and MW03 (14 μ g/l).

The Quarter 2 monitoring event of 2015 detected TPH in the aromatic range C21-C35 at BH03 (509 μ g/l). TPH concentrations were detected in the aliphatic ranges C16-C35 at BH103 (1760 μ g/l) and BH104B (337 μ g/l), and C12-C16 at BH104B (225 μ g/l).

The Quarter 1 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 at wells MW03 (14 μ g/l), MW04 (15 μ g/l) and BH104B (27 μ g/l), C16-C21 at BH104B (15 μ g/l), and C21-C35 (14 μ g/l) at BH103. TPH concentrations were detected in the aliphatic ranges C16-C35 and C35-C44 at MW03 (46 μ g/l and 12 μ g/l respectively), BH103 (54 μ g/l) and BH104B (11 μ g/l.

No detections of TPH in the aliphatic or aromatic range were observed in any shallow or deep monitoring well locations during the Quarter 4 monitoring event of 2014.

The Quarter 3 monitoring event of 2014 detected TPH concentrations in the aliphatic range at the shallow groundwater well BH104B. The TPH concentration detected was 410 μ g/l. The speciated TPH ranges that contributed to the value of 410 μ g/l were C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C31-C35 (10 μ g/l).

The Quarter 3, 2013 monitoring event detected TPH in the aliphatic range in one deep groundwater well, MW03. TPH of the range C10-C12 and C12-C16 were detected at concentrations of 200 μ g/l and 190 μ g/l respectively.

The Quarter 1, 2013 monitoring event detected aliphatic TPH of the range C12-C16, C16-C21 and C21-C35. TPH in the mid to high aromatic ranges were detected in BH103, BH104B and MW04 during the previous Quarter 1 2013 monitoring event. Aromatic TPH of the ranges C12-C16, C16-C21 and C21-C35 were detected in BH103, the ranges C10-C12, C12-C16 and C16-C21 were detected in BH104B and aromatic TPH of the ranges C10-C12 and C12-C16 were detected in MW04.

The Quarter 2 monitoring event of 2012 detected elevated TPH of the aliphatic range C12-C16, C16-C21 and C21-C25 in BH103. Hydrocarbons have been detected in borehole MW03 during Quarter 1 2010, in borehole BH104B during the Quarter 2 2010 monitoring event and in borehole BH104B and MW03 during the Quarter 3 2010 monitoring events. Hydrocarbons have also been detected in BH103, BH104B and MW03 in the Quarter 2 2011 monitoring event and in MW03 in the Quarter 3 and Quarter 4 2011. These detections are discussed further in **Section 6.2.3**.

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 1 2017 monitoring round. As the monitoring continues in accordance with the Industrial Emissions Licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

6.1 GROUNDWATER LEVELS OVER TIME

Figure 6.1 to **Figure 6.3** below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 6.2 illustrates groundwater elevations (mAOD) in shallow groundwater wells (BH101 to BH104B) ranging between approximately 98 mAOD and 102 mAOD.

Figure 6.3 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (MW01 to MW03). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 97.5 mAOD to approximately 100 mAOD.

Figure 6.2 – Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; the general direction of flow in the shallow and deeper groundwater bearing unit is in an easterly or north easterly direction however there have been some occasional historic cases of groundwater flowing in a south-easterly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Éireann to examine the relationship between compounds and rainfall events. The data from Oak Park was chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in **Tables 6.1** to **6.5**.

Table 6.1 – Mor	nthly Rainfall Data	a for Year 2013 for	^r Oak Park, Carlow
-----------------	---------------------	---------------------	-------------------------------

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.8	57.6	44.4	35.6	37.5	32.3	85.6	24.4	170.0	27.7	136.6

Table 6.2 – Monthly Rainfall Data for Year 2014 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	147.2	176.7	65.0	52.6	78.6	61.9	24.6	122.1	18.2	138.2	165.6	47.7

Table 6.3 – Monthly Rainfall Data for Year 2015 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
Rainfall (mm)	66.0	36.3	53.5	26.3	89.4	29.7	79.4	83.0	17.9	56.8	110.0	270.9

Table 6.4 – Monthly Rainfall Data for Year 2016 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Rainfall (mm)	110.9	95.7	40.6	64.3	61.6	61.7	29.6	46.0	97.4	32.3	26.3	80.2

Table 6.5 – Monthly Rainfall Data for Year 2017 for Oak Park, Carlow

Month	Jan	Feb	Mar
Rainfall (mm)	36.3	57.8	33.3

Note: Data for the most recent months are provisional.

6.2 GROUNDWATER CONCENTRATIONS OVER TIME

Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.

The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

Phenols have been detected historically in all boreholes with the highest concentrations recorded in BH103. However concentrations in BH103 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

2,4-Dimethylphenol was detected at a concentration of 0.12 μ g/l during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the previous Quarter 4 2016 monitoring event. 2-Methylphenol (3.48 μ g/l) and 3+4-Methylphenol (2.19 μ g/l) were detected in MW03 during the current Quarter 1 2017 monitoring event, however there is no IGV or GTV for either of these parameters.

6.2.2 Polyclyclic Aromatic Hydrocarbons

Figures 6.5 and 6.6 below illustrate that PAHs (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within MW03 and BH104B, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. In addition, a range of PAHs including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Naphthalene have previously been detected in MW03 with **Figures 6.7** to **6.13** illustrating some of the PAH compounds which were detected above their respective IGVs.

Since 2007 concentrations of PAH have shown a marked decrease and since 2010 detections of PAH have been confined to MW03, MW02 and BH104B. Concentrations of Total PAH above the IGV in 2010 were detected during the Quarter 1 monitoring event in MW03 (0.3 μ g/l), Quarter 2 monitoring event in BH104B (1.2 μ g/l) and Quarter 3 monitoring event in MW02 (2.0 μ gl) and BH104B (0.2 μ gl). There were no elevated concentrations of Total PAH during the Quarter 4 2010 monitoring event.

No Total PAH detections were recorded throughout 2011 and in Q1 of 2012. Total PAH was detected above the IGV in MW03 in the Q2 2012 monitoring event. No Total PAH exceedances were detected from Quarter 3 2012 to Quarter 4 2013 inclusive. Total PAHs were detected at a concentration of 2.62 μ g/l in MW03 during the Q3 2013 monitoring event however; no detections above the laboratory limit were noted during the subsequent monitoring events up to and including the Quarter 2 2015 monitoring event.

Total PAHs were also above the GTV at BH103 (0.093 μ g/l), BH104B (0.159 μ g/l) and MW03 (0.586 μ g/l) during Quarter 3 2015, at BH103 (0.21 μ g/l), MW03 (0.986 μ g/l) and MW04 (0.079 μ g/l) during Quarter 4 2015, and at BH103 (0.123 μ g/l), BH104B (0.159 μ g/l) and MW04 (0.153 μ g/l) during the Quarter 1 2016 monitoring event. During the Quarter 3 2016 monitoring event, Total PAHs were detected above the IGV at BH103 (0.181 μ g/l), BH104B (0.158 μ g/l), MW03 (0.562 μ g/l) and MW04 (0.151 μ g/l) during Quarter 3 2016, and similarly above the IGV at BH102 (0.124 μ g/l) and at MW03 (0.596 μ g/l) during the Quarter 4 monitoring event.

During the current Quarter 1 2017 monitoring event, Total Polycyclic Aromatic Hydrocarbons were detected above the IGV limit of 0.1 μ g/l at MW01 (0.121 μ g/l), MW03 (0.47 μ g/l) and MW04 (0.148 μ g/l).

Figure 6.7 illustrates that **Fluoranthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells BH104B (October 2007, 1.33 μ g/l) and MW03 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l. During the Quarter 1 2017 monitoring event Fluoranthene was detected above the limit of detection at MW03 (0.021 μ g/l), however these detections do not exceed the IGV of 1.0 μ g/l.

A similar trend to Fluoroanthene has been noted in **Figure 6.8**, with concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in BH104B and MW03 only. 4 no. exceedances of the IGV were noted in BH104B in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in BH104B have decreased below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in MW03, with the highest concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were

slightly above the laboratory limit of detection of 0.01 μ g/l at BH104B (0.08 μ g/l) and MW03 (0.05 μ g/l); however these levels are deemed low. Concentrations of Naphthalene were below the EPA IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 and 2012 quarterly monitoring events and the Quarter 1 to Quarter 3 2014 monitoring periods, inclusive. No detections of Naphthalene were noted from the Quarter 4 2014 monitoring event to the Quarter 2 2015 monitoring event. Naphthalene was detected at BH101 (0.011 μ g/l) and MW03 (0.031 μ g/l) during Quarter 3 2015, and at BH103 (0.095 μ g/l) and at MW04 (0.067 μ g/l) during Quarter 4 2015.

Naphthalene was detected at BH104B (0.034 μ g/l) and MW04 (0.153 μ g/l) during the Quarter 1 2016 monitoring event, at BH103 (0.13 μ g/l), BH104B (0.039 μ g/l), MW03 (0.028 μ g/l) and MW04 (0.12 μ g/l) during Quarter 3 2016, and MW03 (0.036 μ g/) during the Quarter 4 2016 monitoring event. During the current Quarter 1 2017 monitoring event, Naphthalene was detected above the laboratory limit of detection at BH103 (0.018 μ g/l), MW01 (0.041 μ g/l) and MW04 (0.12 μ g/l). However, these are all still below the IGV of 1.0 μ g/l.

Figure 6.9 illustrates the concentrations of **Benzo(g,h,i)perylene** in all monitoring wells over time. Elevated concentrations above the IGV were recorded at BH104B (0.087 μ g/I) on one occasion in March 2006.

Figures 6.10 and 6.11 illustrate elevated concentrations above the IGV recorded at MW03 on 6 no. occasions with the most recent elevated concentration recorded during the Quarter 4 2015 monitoring event (0.053 µg/l). The previous elevated concentration detected was in Quarter 3 2015 (0.053 µg/l). The results of all monitoring events from 2010 to the Quarter 2 2015 monitoring event recorded concentrations below the laboratory limit of detection of 0.01 µg/l at all locations. Concentrations were also below the laboratory limit of detection at all locations during the Quarter 1 2016 monitoring event. Benzo(g,h,i)perylene was recorded in MW02 (0.011 µg/l) during Quarter 2 2016, in BH103 (0.015 µg/l) and MW03 (0.035 µg/l) during Quarter 3 2016, and in MW03 (0.036 µg/l) during Quarter 4 2016. However, these are below the IGV of 0.05 µg/l. During the current Quarter 1 2017 monitoring event, Benzo(g,h,i)perylene was recorded at MW03 (0.037 µg/l). However, this is still below the IGV of 0.05 µg/l.

Figures 6.12 and 6.13 illustrate the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicates that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 μ g/l. Similarly with the above mentioned trends, the highest concentrations have been detected in MW03 and BH104B. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 μ g/l was detected in MW03, however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in BH101, BH103 and MW01 during this same period.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGVs.

Benzo(a)pyrene was detected above the IGV limit of 0.01 μ g/l at MW03 (0.108 μ g/l) during the Quarter 4 2015 monitoring event. Benzo(a)pyrene was also detected above the IGV at MW03 (0.052 μ g/l) during the Quarter 3 2015 monitoring event. All other results of all monitoring events from

2010 to Quarter 2 2016 monitoring event did not detect other concentrations above the IGV Benzo(a)pyrene was detected at BH103 (0.04 μ g/l) and MW03 (0.037 μ g/l) during the previous Quarter 3 2016 monitoring event, and at MW03 (0.032 μ g/l) during the current Quarter 4 2016 monitoring event. During the current Quarter 1 2017 monitoring event, Benzo(a)pyrene was detected above the limit of detection (0.01 μ g/l) at MW03 (0.033 μ g/l), which is above the IGV of 0.01 μ g/l.

RPS

Figure 6.10 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03

Figure 6.11 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03 Since 2010

6.2.3 Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within BH103, BH104B and MW03. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12-C16, C16-C21 and C21-C35. **Figure 6.14** illustrates the TPH analysis for the total TPH analysis from C10-C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells MW03, BH104B and BH103 respectively.

Previous quarterly monitoring reports have outlined the hydrocarbon trends recorded in each well since 2010. This report outlines the trends from 2013 up to and including the current monitoring report.

During the Quarter 1, 2013 monitoring event aromatic hydrocarbons were detected in BH103, BH104B and MW04. The predominant aromatic carbon range comprised C12-C16 ($30 \mu g/I$), C16-C21 (280 $\mu g/I$) and C21-C35 ($100 \mu g/I$) in BH103, C10-C12 ($30 \mu g/I$), C12-C16 ($110 \mu g/I$) and C16-C21 ($80 \mu g/I$) in BH104B and C10-C12 ($20 \mu g/I$) and C12-C16 ($80 \mu g/I$) in MW04. Aliphatic hydrocarbons were detected in BH103 in the ranges C12-C16 ($70 \mu g/I$), C16-C21 ($100 \mu g/I$) and C21-C35 ($90 \mu g/I$).

During the Quarter 2, 2013 monitoring event no aliphatic or aromatic hydrocarbons were detected at any location.

During the Quarter 3, 2013 monitoring event, hydrocarbons of the aliphatic range were detected in MW03 only. The detected aliphatic carbon range comprised C10-C16 (290 μ g/l) and C12-C16 (190 μ g/l). No detections of aromatic carbons were measured during the Quarter 3 2013 monitoring event.

Total Petroleum Hydrocarbons were not detected at any monitoring location during the Quarter 4, 2014 monitoring event. During the monitoring event for Quarter 3 2014 following ranges of the aliphatic hydrocarbons were recorded for BH104B; C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C21-C35 (10 μ g/l).

During the Quarter 1 2015 monitoring event, hydrocarbons were detected in MW03, MW04, BH103 and BH104B. The predominant aromatic carbon range comprised C21-C35 (14 μ g/l) in BH103, C12-C16 (27 μ g/l) and C16-C21 (15 μ g/l) in BH104B, C12-C16 (14 μ g/l) in MW03 and C12-C16 (15 μ g/l) in MW04. Aliphatic hydrocarbons were detected in the ranges C16-C35 (54 μ g/l) in BH103, C16-C35 (11 μ g/l) in BH104B and C16-C35 (46 μ g/l) and C35-C44 (12 μ g/l) in MW03.

During the Quarter 2 2015 monitoring event, the TPH concentration in the aromatic C21-C35 range was detected at one shallow groundwater wells BH103 (509 μ g/l). The TPH concentration in the aliphatic range was detected at C16-C35 (1760 μ g/l) in BH103 and C12-C16 (225 μ g/l) and C16-C35 (11 μ g/l) in BH104B.

The Quarter 3 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l) at BH104B, C21-C35 at BH103 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (13 μ g/l), C12-C16 (40 μ g/l) and C16-C35 (62 μ g/l) at BH104B and C16-C35 at BH103 (72 μ g/l) and MW03 (14 μ g/l).

The Quarter 4 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (879 μ g/l), C16-C21 (1380 μ g/l) and C21-C35 (694 μ g/l) at BH104B, C21-C35 at BH103 (60 μ g/l) and C10-C12 (13 μ g/l) and C12-C16 (21 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (495 μ g/l), C12-C16 (3080 μ g/l) and C16-C35 (3360 μ g/l) at BH104B and C16-C35 (231 μ g/l) and C35-C44 (14 μ g/l) at BH103.

The Quarter 1 2016 monitoring event detected TPH in samples from the well BH103 were in the aliphatic range C16-C35 (132 μ g/l) and from well MW04 in the aromatic range C12-C16 (15 μ g/l).

The Quarter 2 2016 monitoring event detected TPH in samples from the well BH103 and were in the aliphatic range C16-C35 (150 μ g/l) and in the aromatic range C21-C35 (57 μ g/l) and from well MW04 in the aromatic range C12-C16 (20 μ g/l).

The Quarter 3 2016 monitoring event detected TPH in samples from the well BH103 in the aliphatic ranges C16-C35 (35 μ g/l), C35-C44 (10 μ g/l) and in the aromatic range C21-C35 (11 μ g/l), well BH104B in the aromatic ranges C12-C16 (25 μ g/l) and C16-C21 (12 μ g/l) and from well MW04 in the aromatic range C12-C16 (23 μ g/l).

During the previous Quarter 4 2016 monitoring event, TPH was detected in samples from the well BH102 in the aliphatic range C16-C35 (13 μ g/l), well BH103 in the aliphatic ranges C16-C35 (160 μ g/l), C35-C44 (14 μ g/l) and in the aromatic range C21-C35 (47 μ g/l), well BH104B in the aromatic ranges C12-C16 (12 μ g/l), well MW03 in the aliphatic range C16-C35 (14 μ g/l) and from well MW04 in the aromatic ranges the aromatic ranges C10-C12 (13 μ g/l) and C12-C16 (23 μ g/l).

During the current Quarter 1 2017 monitoring event, TPH was detected in samples from the well BH102 in the aliphatic range C16-C35 (11 μ g/l), well BH103 in the aliphatic range C16-C35 (15 μ g/l), well MW01 in the aliphatic range C16-C35 (23 μ g/l), well MW03 in the aliphatic range C16-C35 (40 μ g/l) and in the aromatic range C21-C35 (13 μ g/l), and well MW04 in the aromatic ranges C10-C12 (11 μ g/l) and C12-C16 (21 μ g/l).

7 CONCLUSIONS

- In accordance with the criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence Register No. W0184-01, groundwater monitoring was carried out at the ENVA Ireland site on the 16th February 2017 corresponding to Quarter 1 of 2017. Samples were collected at 8 groundwater monitoring wells during this event.
- The results presented have been referenced against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. no 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.
- Results of the BTEX and MTBE demonstrate that the levels of Benzene, Toluene, Ethylbenzene, m&p Xylene, o-xylene and MTBE were all below the recommended EPA IGVs.
- The Quarter 1 2017 results of the polycyclic aromatic hydrocarbons indicate that Total PAHs were above the EPA IGV of 0.1 μg/l at three monitoring wells, MW01 (0.124 μg/l), MW03 (0.47 μg/l) and MW04 (0.148 μg/l).
- Vinyl Chloride at MW03 (0.6 μg/l) and MW04 (0.5 μg/l) was detected above the GTV of 0.375 μg/l. 1,1-dichloroethane in MW03 (1.8 μg/l) and MW04 (3.9 μg/l) were also detected. These results are above the laboratory limit of detection, however, there is no GTV or IGV limit for 1,1-dichloroethane. All other VOCs and SVOCs were below their respective laboratory limits of detection.
- Samples were analysed for speciated phenols to include chlorophenols and the results indicate that, with the exception of 2-Methylphenol (3.48 µg/l) and 3+4-Methylphenol (2.19 µg/l) we in MW03, there were no other detections above the laboratory limits of detection.
- For the current Quarter 1 2017 monitoring event, TPH detections in samples from well BH102 in the aliphatic range C16-C35 (11 μ g/l), well BH103 in the aliphatic range C16-C35 (15 μ g/l), well MW01 in the aliphatic range C16-C35 (23 μ g/l), well MW03 in the aliphatic range C16-C35 (40 μ g/l) and in the aromatic range C21-C35 (13 μ g/l), and well MW04 in the aromatic ranges C10-C12 (11 μ g/l) and C12-C16 (21 μ g/l). Each of these is therefore over the limit of detection which is 10 µg/l. For the previous Quarter 4 2016 monitoring event, TPH detections in samples from the well BH102 in the aliphatic range C16-C35 (13 μ g/l), well BH103 in the aliphatic ranges C16-C35 (160 μ g/l), C35-C44 (14 μ g/l) and in the aromatic range C21-C35 (47 μ g/l), well BH104B in the aromatic ranges C12-C16 (12 μ g/l), well MW03 in the aliphatic range C16-C35 (14 μ g/l) and from well MW04 in the aromatic ranges the aromatic ranges C10-C12 (13 μ g/l) and C12-C16 (23 µg/l). Quarter 3 2016, TPH detections in samples from the well BH103 were in the aliphatic range C16-C35 (35 μ g/l) and C35-C44 (10 μ g/l) and in the aromatic range C21-C35 (11 μ g/l), at BH104B were in the aromatic range C12-C16 (25 μ g/l) and C16-C21 (12 μ g/l) and at well MW04 were in the aromatic range C12-C16 (23 μ g/l). Quarter 2 2016, TPH detections in samples from the well BH103 were in the aliphatic range C16-C35 (150 μ g/l) and in the aromatic range C21-C35 (57 μ g/l), and from well MW04 in the aromatic range C12-C16 (20 μ g/l).
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Enva Portlaoise

2017 Groundwater Compliance Monitoring Quarter 2 (Apr – Jun 2017)

Document Control Sheet

Client:	Enva Ireland Ltd.					
Project Title:	Enva Portlaoise 2017 Groundwater Compliance Monitoring					
Document Title:	Quarter 2 (Apr – Jun 2017)					
Document No:	MDE0973Rp0032					
Text Pages:	47	Appendices:	-			

Rev.	Status	Date	Author(s)		I	Reviewed By	Approved By		
D01	Draft	4 th August 2017	DC	Doulahur	CR	Cabrin Rally	CR	Cabun Rolly	
A01	Client Approval	22 nd August 2017	DC	DurCaline	CR	Cabun Rally	CR	Cabron Rally	

Copyright RPS Group Limited. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by RPS Group Limited no other party may use, make use of or rely on the contents of this report.

The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS Group Limited for any use of this report, other than the purpose for which it was prepared.

RPS Group Limited accepts no responsibility for any documents or information supplied to RPS Group Limited by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made.

RPS Group Limited has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy. No part of this report may be copied or reproduced, by any means, without the written permission of RPS Group Limited

rpsgroup.com/ireland

TABLE OF CONTENTS

1		INTRODUCTION1
	1.1	BACKGROUND
	1.2	OBJECTIVES & SCOPE OF WORK
2		REVIEW OF PREVIOUS DATA
	2.1	INFORMATION SOURCES
	2.2	SITE SETTING
	2.3	REGIONAL SETTING
		2.3.1 Geology
		2.3.2 Hydrogeology
	2.4	SITE GROUND CONDITIONS
		2.4.1 Licence Conditions
3		METHODOLOGY
	3.1	LABORATORY ANALYSIS
	3.2	PRESENTATION & INTERPRETATION OF RESULTS
4		QUARTER 2 RESULTS MAY 2017
5		DISCUSSION OF QUARTER 2 RESULTS
5	5.1	DISCUSSION OF QUARTER 2 RESULTS
5	5.1 5.2	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20
5	5.1 5.2 5.3	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21
5	5.1 5.2 5.3 5.4	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21
5	5.1 5.2 5.3 5.4 5.5	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21
5	 5.1 5.2 5.3 5.4 5.5 5.6 	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS25
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS25GROUNDWATER LEVELS OVER TIME25
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS25GROUNDWATER LEVELS OVER TIME30
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS25GROUNDWATER LEVELS OVER TIME306.2.1 Phenols30
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS25GROUNDWATER LEVELS OVER TIME306.2.1 Phenols306.2.2 Polyclyclic Aromatic Hydrocarbons32
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 2 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS25GROUNDWATER LEVELS OVER TIME306.2.1 Phenols306.2.2 Polyclyclic Aromatic Hydrocarbons326.2.3 Petroleum Hydrocarbons (TPH)44

LIST OF FIGURES

Figure 2.1 – Site Location	3
Figure 3.1 – Site Layout Plan with Groundwater Monitoring Locations	7
Figure 6.1 – Ground Elevation (mAOD) in all Monitoring Wells	26
Figure 6.2 – Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells	27
Figure 6.3 – Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells	28
Figure 6.4 – Phenol Concentrations in all Monitoring Wells	31
Figure 6.5 – PAH (Total) Concentrations in all Monitoring Wells	35
Figure 6.6 – PAH (Total) Concentrations in all Monitoring Wells Since 2010	36
Figure 6.7 – Fluoroanthene Concentrations in all Monitoring Wells	37
Figure 6.8 – Naphthalene Concentrations in all Monitoring Wells	38
Figure 6.9 – Benzo (g,h,i) perylene Concentrations	39
Figure 6.10 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03	40
Figure 6.11 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03 Since 2010	41
Figure 6.12 – Benzo (a) pyrene Concentrations in all Monitoring Wells	42
Figure 6.13 – Benzo (a) pyrene Concentrations in all Monitoring Wells Since 2010	43
Figure 6.14 – TPH (Carbon Range C10-C44) in all Monitoring Wells	45

LIST OF TABLES

Table 2.1 – Ground Conditions	5
Table 2.2 – Licence Parameters	5
Table 3.1 – Analytical Methodologies – ALS Environmental	6
Table 4.1 – Groundwater Levels (Quarter 2, 2017)	10
Table 4.2 – Results of Field Parameters Measured at each Groundwater Monitoring Well (Quar	ter 2,
2017)	11
Table 4.3 – Results of BTEX and MTBE	12
Table 4.4 – Results of Speciated PAHs	12
Table 4.5 – Results of Speciated Phenols	14
Table 4.6 – Results of Semi-Volatile Organic Compounds (SVOCs)	15
Table 4.7 – Results of Volatile Organic Compounds (VOCs)	17
Table 4.8 – Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)	19
Table 6.1 – Monthly Rainfall Data for Year 2013 for Oak Park, Carlow	29
Table 6.2 – Monthly Rainfall Data for Year 2014 for Oak Park, Carlow	29
Table 6.3 – Monthly Rainfall Data for Year 2015 for Oak Park, Carlow	29
Table 6.4 – Monthly Rainfall Data for Year 2016 for Oak Park, Carlow	29
Table 6.5 – Monthly Rainfall Data for Year 2017 for Oak Park, Carlow	29

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd (Enva) to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence, Register No. W0184-01.

Enva Ireland has been operating under Waste Licence Register No. W0184-01 since January 2004. The licence was amended by the Environmental Protection Agency in December 2013 to conform to the provisions and requirements of the Council Directive 2010/75/EU (Industrial Emissions Directive) and as such is deemed an Industrial Emissions Licence. Enva is required to submit a report to the EPA on a quarterly basis, outlining the existing groundwater quality underlying the site.

A suitably qualified environmental consultant from RPS, collected groundwater samples from a series of 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) within the site boundary on the 30th of May 2017. The samples underwent laboratory analysis for the suite of parameters specified in Schedule 4(ii) of Industrial Emissions Licence W0184-01. This report outlines the results of the Quarter 2 monitoring for 2017 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 2 2017 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Industrial Emissions Licence W0184-01 and any available EPA documents from the EPA website;
- Quarterly Groundwater Monitoring Reports (Quarter 1 2004 to Quarter 4 2005), URS;
- Quarterly Groundwater Monitoring Reports (Quarter 1 2006 to Quarter 4 2016), RPS;
- Quarterly Groundwater Monitoring Quarter 1 2017 Report, RPS;
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007);
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008);
- Hydrogeological Review and Assessment Report, Ref MDE0973Rp0017F01, RPS (2014); and
- Baseline Environment Report, Ref: MDE0973Rp0104.

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1.5 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 2.1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 3.1**. The site is largely covered in hardstanding with some open areas in the far north and northeast of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

Figure 2.1 – Site Location

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoils in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological Survey of Ireland (GSI) as a Locally Important Karstified Aquifer (LI). Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising three groundwater abstraction well fields comprising of two abstraction wells in each well field. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends to within 3.2 km of the Enva site but does not encompass the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk; the accuracy of this location is also 1 km so it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2.1**.

Table 2.1 – Ground Conditions

Strata	Extent	Thickness	Description
Made Ground	BH104	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium, well rounded gravels.
Sand and Gravel	Confined to south east corner of site (BH101, BH104 and MW03)	0-2 m	In general the transition from boulder clay to sand is gradual with changes from gravel, to sandy gravel, to sand.
Limestone Bedrock	Encountered in MW01, MW02 and MW03	Top of limestone ranges from 7.7m to 9m below ground level.	Pale grey, fine-grained bedrock, differentiated from boulders by its un-weathered nature.

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

2.4.1 Licence Conditions

The Industrial Emissions Licence requires the regular monitoring and sampling of boreholes BH101, BH102, BH103, BH104B, MW01, MW02, MW03 and MW04. The parameters requiring measurement or analysis are presented in **Table 2.2**.

Table 2.2 – Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement
	Groundwater Level	Groundwater Level
	рН	рН
Field Daramaters	Temperature	Temperature
Field Parameters	Dissolved Oxygen	Dissolved Oxygen
	Electrical Conductivity	Electrical Conductivity
	Visual Inspection	Visual Inspection
	Mineral Oil	Mineral Oil
	BTEX & MTBE	BTEX & MTBE
Organics	PAHs	PAHs
Organics	Phenols	Phenols
	VOCs	VOCs
	SVOCs	SVOCs
Inorganics	-	Total Alkalinity, Calcium, Manganese, Sulphate, Cyanide (Total), Chloride, Sodium,

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) (Figure 3.1) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.

Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, ALS Environmental for the suite of analyses listed in **Table 3.1**. **Table 3.1** also indicates the analytical techniques used by the laboratory.

Table 3.1 – Analytical Methodologies – ALS Environmental

Parameter	Analytical Methodology
Phenols	GC-MS
Speciated PAHs	GC-MS
BTEX & MTBE	Headspace GC-MS
Petroleum Hydrocarbons	Headspace GC-MS
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS

Shallow Monitoring Well locations Deep Monitoring Well locations

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 2 2017 results are tabulated in **Section 4** and discussed with respect to previous results in **Section 5**. Results are compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

Previous monitoring reports (as listed in **Section 2.1**) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in **Section 6** and include the results of this Quarter 2 2017 monitoring round. As the monitoring continues in accordance with the Industrial Emissions licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 2 RESULTS MAY 2017

The results of all field measurements and laboratory analysis are presented in this section. Results are primarily compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

The results are discussed in relation to appropriate guideline values in **Section 5**. Results that are shown to be above the relevant threshold or guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Monitoring Well	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04
Depth (mbgl)	6.77	6.49	4.43	4.70	22.65	30.86	9.30	6.47
Static Water Level (mbgl)	4.35	2.94	1.83	0.60	2.53	3.97	4.10	4.34
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	98.71	99.61	99.35	100.56	99.57	99.15	98.67	-
Free Phase Oil (mm)	No detection							

mbgl = metres below ground level

Monitoring Well	pH (pH Units)	Temperature (°C)	Conductivity (μS/cm)	Dissolved O ₂ (ppm)	Observations
BH101	7.87	12.0	980	3.94	Light cloudy brown colour, some sandy sediment
BH102	8.33	12.7	883	4.59	Slight brown colour turning clear, some suspended solids
BH103	7.85	11.6	904	3.48	Light grey colour, little sediment
BH104B	7.08	11.7	737	5.51	Light cloudy grey colour, clearer after 15L, fine white suspended solids, slight oil sheen. Samples slightly cloudy
MW01	7.66	13.0	786	4.35	Slight cloudy grey colour, little suspended solids and sediment
MW02	7.93	13.4	743	3.26	Grey on purging with very little suspended solids
MW03	7.27	13.9	1412 3.77 Clo		Cloudy grey colour on purging, some suspended solids and fine sediment, very slight sheen
MW04	7.24	12.4	1523	4.12	Cloudy light brown colour with some fine sediment
Groundwater Threshold Value	-	-	1875	-	-
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25°C	1000	No abnormal change	-

Table 4.2 – Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 2, 2017)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Table 4.3 – Results of BTEX and MTBE

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzene	μg/l	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.39	0.49	0.75	1.0
Toluene	µg/l	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	10
Ethylbenzene	µg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.15	<0.10	<0.10	-	10
m & p-xylene	µg/l	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.47	<0.20	<0.20	-	10 Note 1
o-xylene	µg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.16	<0.10	<0.10	-	10 Note 1
MTBE (Methyl Tertiary Butyl Ether)	µg/l	0.20	<0.20	<0.20	0.81	<0.20	<0.20	<0.20	1.73	1.73	-	30

Note: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.4 – Results of Speciated PAHs

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Naphthalene	μg/l	0.01	<0.10	<0.01	0.066	<0.04	<0.01	<0.01	0.11	0.157	-	1.0
Acenaphthylene	μg/l	0.01	<0.10	<0.01	<0.01	<0.04	<0.01	<0.01	<0.02	<0.01	-	-
Acenaphthene	μg/l	0.01	<0.10	<0.01	0.051	<0.04	<0.01	<0.01	<0.02	0.019	-	-
Fluorene	μg/l	0.01	<0.10	<0.01	0.01	<0.04	<0.01	<0.01	<0.02	0.019	-	-
Phenanthrene	μg/l	0.01	<0.10	0.01	<0.01	<0.04	<0.01	<0.01	<0.02	<0.01	-	-
Anthracene	μg/l	0.01	<0.10	<0.01	<0.01	<0.04	<0.01	<0.01	<0.02	<0.01	-	10,000
Fluoranthene	μg/l	0.01	<0.10	<0.01	<0.01	<0.04	0.012	<0.01	<0.02	<0.01	-	1.0
Pyrene	μg/l	0.01	<0.10	<0.01	<0.01	0.049	0.012	<0.01	<0.02	<0.01	-	-
Benzo(a)anthracene	µg/l	0.01	<0.10	<0.01	<0.01	<0.04	<0.01	<0.01	<0.02	<0.01	-	-
Chrysene	µg/l	0.01	<0.10	<0.01	<0.01	<0.04	<0.01	<0.01	<0.02	<0.01	-	-
Benzo(b)fluoranthene	µg/l	0.01	<0.10	<0.01	<0.01	<0.04	<0.01	<0.01	<0.02	<0.01	-	0.5
Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
------------------------	-------	----------------------------------	-------	-------	-------	--------	-------	-------	-------	-------	-------	------
Benzo(k)fluoranthene	μg/l	0.01	<0.10	<0.01	<0.01	<0.04	<0.01	<0.01	<0.02	<0.01	-	0.05
Benzo(a)pyrene	μg/l	0.01	<0.10	<0.01	<0.01	<0.04	<0.01	<0.01	<0.02	<0.01	-	0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	<0.10	<0.01	<0.01	<0.04	<0.01	<0.01	<0.02	<0.01	-	0.05
Dibenz(a,h)anthracene	μg/l	0.01	<0.10	<0.01	<0.01	<0.04	<0.01	<0.01	<0.02	<0.01	-	-
Benzo(g,h,i)perylene	µg/l	0.01	<0.10	<0.01	<0.01	<0.04	<0.01	<0.01	<0.02	<0.01	-	0.05
Total EPA-16 PAHs	µg/l	0.1	<0.10	0.01	0.127	0.049	0.024	<0.01	0.11	0.194	0.075	0.1

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.5 – Results of Speciated Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	μg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	0.5
2,4,6-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
3+4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
2-Chlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
Bis(2-chloroethyl)ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroisopropyl)ether	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachloroethane	µg/I	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Nitrobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
3&4-Methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Isophorone	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroethoxy)methane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Naphthalene	µg/l	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	1.0
2,4-Dichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobutadiene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4,6-Trichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4,5-Trichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylnaphthalene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chloronaphthalene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dimethylphthalate	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Table 4.6 – Results of Semi-Volatile Organic Compounds (SVOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
2,6-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dibenzofuran	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Diethylphthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	-	-
Fluorene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Bromophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.03
Phenanthrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10,000
Pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzyl Butyl Phthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(a)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chrysene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(b)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
Benzo(k)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Benzo(a)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.01
Indeno(1,2,3-c,d)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Dibenz(a,h)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(g,h,i)perylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-ethylhexyl)phthalate	μg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	-

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.7 – Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Chloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	6.3	7.4	-	-
Bromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Vinyl Chloride	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.4	0.49	0.375	-
Trichlorofluoromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,1-dichloroethene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	30
1,1-dichloroethane	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	2.8	3.58	-	-
Cis-1,2-dichloroethene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/l	0.20	<0.20	<0.20	0.81	<0.20	<0.20	<0.20	1.73	1.73	-	30
2,2-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,1,1-Trichloroethane	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	500
1,2-dichloroethane	μg/l	1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	2.25	-
1,1-Dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trans-1,2-dichloroethene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-
Benzene	μg/l	1.0	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.39	0.49	-	1.0
1,2-dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trichloroethene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	70
Dibromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromodichloromethane	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-
Cis-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trans-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Toluene	μg/l	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	10
<0.201,1,2-Trichloroethane	μg/l	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	-
1,3-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Dibromochloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Tetrachloroethene	μg/l	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	40
1,2-Dibromoethane	μg/l	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	-
Chlorobenzene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	1.0
1,1,1,2-Tetrachloroethane	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-
Ethylbenzene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.15	<0.10	<0.10	-	10
m&p-Xylene	μg/l	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.47	<0.20	<0.20	-	10
Styrene	μg/l	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	-
o-xylene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.16	<0.10	<0.10	-	10
Isopropylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
N-Propylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3,5-Trimethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Tert-Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-Trimethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Sec-Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-dichlorobenzene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-
P-Isopropyltoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-dichlorobenzene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	10
1,4-dichlorobenzene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-
n-Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dibromo-3-chloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-Trichlorobenzene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	0.40
Hexachlorobutadiene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
1,2,3-Trichlorobenzene	μg/l	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.8 – Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Aliphatic > C10-C12	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aliphatic > C12-C16	μg/l	10	<10	<10	<10	13	<10	<10	<10	<10	-	-
Aliphatic > C16-C35	μg/l	10	<10	<10	50	37	<10	12	<10	<10	-	-
Aliphatic > C35-C44	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aliphatic > C10-C44	μg/l	10	<10	<10	50	50	<10	12	<10	<10	-	10
Aromatic > C10-C12	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aromatic > C12-C16	μg/l	10	<10	<10	<10	15	<10	<10	18	29	-	-
Aromatic > C16-C21	μg/l	10	<10	<10	<10	20	<10	<10	<10	<10	-	-
Aromatic > C21-C35	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aromatic > C35-C44	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aromatic > C10-C44	μg/l	10	<10	<10	<10	35	<10	<10	18	29	-	10

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

5 DISCUSSION OF QUARTER 2 RESULTS

The results of the Quarter 2 monitoring event for 2017 are presented in **Table 4.1** to **4.8** of this report. For the purpose of this report, the results are compared against the Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations (S.I. No. 9 of 2010) where available. Where GTVs are not available results are compared against the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in Table 4.2. Groundwater samples recorded pH levels ranging between 7.08 and 8.33, all within the EPA Interim guideline range of \geq 6.5 to \leq 9.5. Temperature measurements ranged from 11.6°C to 13.9°C and were below the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 737 μ S/cm and 1523 μ S/cm. Two measurements of Electrical Conductivity were above the IGV of 1000 μ S/cm at MW03 (1412 μ S/cm) and MW04 (1523 μ S/cm), but all however were below the GTV limit of 1875 μ S/cm.

Dissolved oxygen levels ranged between 3.26 and 5.51 ppm. Factors such as climate, nutrients in the water, suspended solids; organic wastes and groundwater inflow can all influence the dissolved oxygen values.

Observations relating to colour and odour varied from well to well as detailed in Table 4.2.

5.2 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in **Table 4.3**. BTEX concentrations are below the associated GTVs and IGVs at all locations. MTBE was detected at BH103 (0.81 μ g/l), MW03 (1.73 μ g/l) and MW04 (1.73 μ g/l), however these concentrations were below the IGV of 30 μ g/l. MTBE was below the laboratory limit of detection and IGV at all other locations.

Previous detections of MTBE was in the Quarter 1 monitoring event of 2017 and recorded concentrations above the laboratory limit of detection at MW03 (2.4 μ g/l) and MW04 (1.2 μ g/l). MTBE was also above the laboratory limit of detection at MW03 (1.5 μ g/l) and MW04 (1.2 μ g/l) during Quarter 4 2016, and at MW03 (1.2 μ g/l) during Quarter 3 2016 and MW04 (1.7 μ g/) during Quarter 2 2016. These detections are still below the IGV limit however. Prior to this there was a detection of MTBE at BH104B in the Quarter 1 monitoring event of 2012 with a recorded concentration of 280 μ g/l which is above the laboratory limit of detection. This was the only recorded exceedance in Quarter 1 2012.

Monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at BH103 at a concentration of 16 μ g/l. Subsequent monitoring in 2010 recorded concentrations below the laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at BH103 were recorded at 63 μ g/l in December 2009.

5.3 **RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)**

The results of the Speciated PAH analysis during this monitoring period are presented in **Table 4.4**.

The laboratory limit of detection for Total EPA-16 PAHs is 0.1 μ g/l and has been lowered for comparison with the EPA IGV of 0.1 μ g/l; however this is not accredited. This laboratory limit of detection is above the EPA GTV of 0.075 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l.

Total Polyaromatic Hydrocarbons were above the IGV limit of 0.1 μ g/l at BH103 (0.127 μ g/l), MW03 (0.11 μ g/l) and MW04 (0.194 μ g/l). Total PAHs were below the IGV of 0.1 μ g/l and the GTV of 0.075 μ g/l at all other locations.

Total PAHs were previously detected above the IGV at MW01 (0.121 μ g/l), MW03 (0.47 μ g/l) and MW04 (0.148 μ g/l) during the Quarter 1 2017 monitoring event, and at BH102 (0.124 μ g/l) and MW03 (0.596 μ g/l) during the Quarter 4 2016 monitoring event.

The results of the speciated polycyclic aromatic hydrocarbon analysis detected a number of different compounds in BH102, BH103, BH104B, MW01, MW03 and MW04 above the laboratory limit of detection. However none of these compounds were above their respective IGV limits at any location.

5.4 **RESULTS OF SPECIATED PHENOLS**

During previous quarterly monitoring events and sample analysis, total monohydric phenol was determined and historically has been below the laboratory limit of detection of 10 μ g/l since December 2008. It should be noted that the laboratory limit of detection was however above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in **Table 4.5**. The speciated phenol analysis reduces the laboratory limit of detection to $1.0 \,\mu$ g/l for individual parameters.

The results of the current Quarter 2 2017 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 1.0 μ g/l at all locations.

2-Methylphenol (3.48 μ g/l) and 3+4-Methylphenol (2.19 μ g/l) in MW03 were detected above the laboratory limit of detection during Quarter 1 2017, and 4-Chloro-3-methylphenol at BH104B (1.37 μ g/l) above the laboratory limit of detection during the Quarter 1 2015 analysis. With the exception of these, all other results are consistent with results since the 2012 quarterly monitoring events.

5.5 **RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS**

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.6.

There are no GTVs for individual SVOC parameters. Diethylphthalate which was detected above the laboratory limit of detection at MW01 (1.3 ug/l). However, there is no IGV for Diethylphthalate. No SVOCs were detected above the relevant IGVs during this monitoring period, consistent with the results from the 2016, 2015 and 2014 and Quarter 1 2017 monitoring periods. It should be noted that the laboratory limit of detection was however above the IGVs for some SVOCs, for example the result for 1,2,4-Trichlorobenzene was <1.0 μ g/l but the IGV for this parameter is 0.40 μ g/l, but testing at this limit is not accredited.

The Quarter 3 2013 monitoring event detected two SVOC compounds, Acenaphthene (1.1 μ g/l) and Fluorene (1.5 μ g/l) in MW03. Prior to this detection the Quarter 2 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene in MW03 at concentrations of 2.4 μ g/l and 0.12 μ /l respectively.

5.6 **RESULTS OF VOLATILE ORGANIC COMPOUNDS**

The results of the Volatile Organic Compound analysis are presented in **Table 4.7**. Vinyl Chloride at MW03 (0.4 μ g/l) and MW04 (0.49 μ g/l) was detected above the GTV of 0.375 μ g/l.

Chloroethane at MW03 (6.3 μ g/l) and MW04 (7.4 μ g/l), 1,1-dichloroethane at MW03 (2.8 μ g/l) and MW04 (3.58 μ g/l), MTBE at MW03 (1.73 μ g/l) and MW04 (1.73 μ g/l), Benzene at MW03 (0.39 μ g/l) and MW04 (0.49 μ g/l), and Ethylbenzene (0.15 μ g/l), m&p-xylene (0.47 μ g/l) and o-xylene (0.16 μ g/l) at MW02 were also detected. However, all of these are below their respective limits. All other compounds were below their respective laboratory limits of detection.

Historic groundwater monitoring events detected some parameters above the laboratory limit of detection in November 2009, corresponding to Quarter 4 of 2009. Historically 1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene were detected above the laboratory limits of detection.

The results of the Quarter 3 and Quarter 4 monitoring events of 2009 and all subsequent monitoring events indicate that there were no other exceedances of the GTVs or IGVs for specific parameters.

5.7 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in **Table 4.8**.

The EPA IGV of 10 μ g/l for Total Hydrocarbons is deemed comparable with the results for Total Petroleum Hydrocarbons. Some detections of TPH in both the aliphatic and aromatic range were observed during the current Quarter 2 2017 monitoring event.

Detections were found in samples from the following wells; at BH103 detections were in the aliphatic range C16-C35 (50 μ g/l), at BH104B detections were in the aliphatic ranges C12-C16 (13 μ g/l) and C16-C35 (37 μ g/l), and in the aromatic ranges C12-C16 (15 μ g/l) and C16-C21 (20 μ g/l), at MW02 detections were in the aliphatic range C16-C35 (12 μ g/l), at MW03 detections were in the

aromatic range C12-C16 (18 μ g/l), and at well MW04 detections were in the aromatic range C12-C16 (29 μ g/l).

The previous Quarter 1 2017 monitoring event detected TPH in the wells BH102 in the aliphatic range C16-C35 (11 μ g/l), BH103 in the aliphatic range C16-C35 (15 μ g/l at MW01 in the aliphatic range C16-C35 (23 μ g/l), at MW03 in the aliphatic range C16-C35 (40 μ g/l) and in the aromatic range C21-C35 (13 μ g/l), and at well MW04 in the aromatic ranges C10-C12 (11 μ g/l) and C12-C16 (21 μ g/l).

The Quarter 4 2016 monitoring event detected TPH in the wells BH102 in the aliphatic range C16-C35 (13 μ g/l), BH103 in the aliphatic range C16-C35 (160 μ g/l), C35-C44 (14 μ g/l) and in the aromatic range C21-C35 (47 μ g/l), BH104B in the aromatic range C12-C16 (12 μ g/l), MW03 in the aliphatic range C16-C35 (14 μ g/l), and MW04 in the aromatic ranges C10-C12 (13 μ g/l) and C12-C16 (23 μ g/l)

The Quarter 3 monitoring event detected TPH in the well BH103 in the aliphatic range C16-C35 (35 $\mu g/I$), C35-C44 (10 $\mu g/I$) and in the aromatic range C21-C35 (11 $\mu g/I$), at BH104B detections were in the aromatic range C12-C16 (25 $\mu g/I$), C16-C21 (12 $\mu g/I$) and at well MW04 detections were in the aromatic range C12-C16 (23 $\mu g/I$).

The Quarter 2 monitoring event of 2016 detected TPH in the well BH103 were in the aliphatic range C16-C35 (150 μ g/l) and in the aromatic range C21-C35 (57 μ g/l) and from well MW04 in the aromatic range C12-C16 (20 μ g/l).

The Quarter 1 monitoring event of 2016 detected TPH in the aliphatic range C16-C35 (132 μ g/l) at BH103 and in the aliphatic range C12-C16 (15 μ g/l) at MW04.

The Quarter 4 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (879 μ g/l), C16-C21 (1380 μ g/l) and C21-C35 (694 μ g/l) at BH104B, C21-C35 at BH103 (60 μ g/l) and C10-C12 (13 μ g/l) and C12-C16 (21 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (495 μ g/l), C12-C16 (3080 μ g/l) and C16-C35 (3360 μ g/l) at BH104B and C16-C35 (231 μ g/l) and C35-C44 (14 μ g/l).

The Quarter 3 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l) at BH104B, C21-C35 at BH103 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (13 μ g/l), C12-C16 (40 μ g/l) and C16-C35 (62 μ g/l) at BH104B and C16-C35 at BH103 (72 μ g/l) and MW03 (14 μ g/l).

The Quarter 2 monitoring event of 2015 detected TPH in the aromatic range C21-C35 at BH03 (509 μ g/l). TPH concentrations were detected in the aliphatic ranges C16-C35 at BH103 (1760 μ g/l) and BH104B (337 μ g/l), and C12-C16 at BH104B (225 μ g/l).

The Quarter 1 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 at wells MW03 (14 μ g/l), MW04 (15 μ g/l) and BH104B (27 μ g/l), C16-C21 at BH104B (15 μ g/l), and C21-C35 (14 μ g/l) at BH103. TPH concentrations were detected in the aliphatic ranges C16-C35 and C35-C44 at MW03 (46 μ g/l and 12 μ g/l respectively), BH103 (54 μ g/l) and BH104B (11 μ g/l.

No detections of TPH in the aliphatic or aromatic range were observed in any shallow or deep monitoring well locations during the Quarter 4 monitoring event of 2014.

The Quarter 3 monitoring event of 2014 detected TPH concentrations in the aliphatic range at the shallow groundwater well BH104B. The TPH concentration detected was 410 μ g/l. The speciated TPH ranges that contributed to the value of 410 μ g/l were C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C31-C35 (10 μ g/l).

The Quarter 3, 2013 monitoring event detected TPH in the aliphatic range in one deep groundwater well, MW03. TPH of the range C10-C12 and C12-C16 were detected at concentrations of 200 μ g/l and 190 μ g/l respectively.

The Quarter 1, 2013 monitoring event detected aliphatic TPH of the range C12-C16, C16-C21 and C21-C35. TPH in the mid to high aromatic ranges were detected in BH103, BH104B and MW04 during the Quarter 1 2013 monitoring event. Aromatic TPH of the ranges C12-C16, C16-C21 and C21-C35 were detected in BH103, the ranges C10-C12, C12-C16 and C16-C21 were detected in BH104B and aromatic TPH of the ranges C10-C12 and C12-C16 were detected in MW04. These detections are discussed further in **Section 6.2.3**.

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 2 2017 monitoring round. As the monitoring continues in accordance with the Industrial Emissions Licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

6.1 GROUNDWATER LEVELS OVER TIME

Figure 6.1 to **Figure 6.3** below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 6.2 illustrates groundwater elevations (mAOD) in shallow groundwater wells (BH101 to BH104B) ranging between approximately 98 mAOD and 102 mAOD.

Figure 6.3 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (MW01 to MW03). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 97.5 mAOD to approximately 100 mAOD.

Figure 6.2 – Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells

Date

Figure 6.3 – Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells

Groundwater Elevation mAOD

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; the general direction of flow in the shallow and deeper groundwater bearing unit is in an easterly or north easterly direction however there have been some occasional historic cases of groundwater flowing in a south-easterly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Éireann to examine the relationship between compounds and rainfall events. The data from Oak Park was chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in **Tables 6.1** to **6.5**.

Table 6.1 – I	Monthly	Rainfall	Data for	Year 201	3 for Oa	ak Park,	Carlow
---------------	---------	----------	----------	----------	----------	----------	--------

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.8	57.6	44.4	35.6	37.5	32.3	85.6	24.4	170.0	27.7	136.6

Table 6.2 – Monthly Rainfall Data for Year 2014 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	147.2	176.7	65.0	52.6	78.6	61.9	24.6	122.1	18.2	138.2	165.6	47.7

Table 6.3 – Monthly Rainfall Data for Year 2015 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
Rainfall (mm)	66.0	36.3	53.5	26.3	89.4	29.7	79.4	83.0	17.9	56.8	110.0	270.9

Table 6.4 – Monthly Rainfall Data for Year 2016 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Rainfall (mm)	110.9	95.7	40.6	64.3	61.6	61.7	29.6	46.0	97.4	32.3	26.3	80.2

Table 6.5 – Monthly Rainfall Data for Year 2017 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	Jun	
Rainfall (mm)	36.3	57.8	66.6	15.8	81.8	91.0	

6.2 GROUNDWATER CONCENTRATIONS OVER TIME

Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.

The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

Phenols have been detected historically in all boreholes with the highest concentrations recorded in BH103. However concentrations in BH103 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

2,4-Dimethylphenol was detected at a concentration of 0.12 μ g/l during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the current Quarter 2 2017 monitoring event, with the exception of 2-Methylphenol (3.48 μ g/l) and 3+4-Methylphenol (2.19 μ g/l) in MW03 during the previous Quarter 1 2017 monitoring event. However, there is no IGV or GTV for either of these parameters.

6.2.2 Polyclyclic Aromatic Hydrocarbons

Figures 6.5 and 6.6 below illustrate that PAHs (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within MW03 and BH104B, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. In addition, a range of PAHs including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Naphthalene have previously been detected in MW03 with **Figures 6.7** to **6.13** illustrating some of the PAH compounds which were detected above their respective IGVs.

Since 2007 concentrations of PAH have shown a marked decrease and since 2010 detections of PAH have been confined to MW03, MW02 and BH104B. Concentrations of Total PAH above the IGV in 2010 were detected during the Quarter 1 monitoring event in MW03 (0.3 μ g/l), Quarter 2 monitoring event in BH104B (1.2 μ g/l) and Quarter 3 monitoring event in MW02 (2.0 μ gl) and BH104B (0.2 μ gl). There were no elevated concentrations of Total PAH during the Quarter 4 2010 monitoring event.

No Total PAH detections were recorded throughout 2011 and in Q1 of 2012. Total PAH was detected above the IGV in MW03 in the Q2 2012 monitoring event. No Total PAH exceedances were detected from Quarter 3 2012 to Quarter 4 2013 inclusive. Total PAHs were detected at a concentration of 2.62 μ g/l in MW03 during the Q3 2013 monitoring event however; no detections above the laboratory limit were noted during the subsequent monitoring events up to and including the Quarter 2 2015 monitoring event.

Total PAHs were also above the GTV at BH103 (0.093 μ g/l), BH104B (0.159 μ g/l) and MW03 (0.586 μ g/l) during Quarter 3 2015, at BH103 (0.21 μ g/l), MW03 (0.986 μ g/l) and MW04 (0.079 μ g/l) during Quarter 4 2015, and at BH103 (0.123 μ g/l), BH104B (0.159 μ g/l) and MW04 (0.153 μ g/l) during the Quarter 1 2016 monitoring event. During the Quarter 2 2016 monitoring event, Total PAHs were detected above the IGV at BH103 (0.181 μ g/l), BH104B (0.158 μ g/l), MW03 (0.562 μ g/l) and MW04 (0.151 μ g/l) during Quarter 3 2016, and similarly above the IGV at BH102 (0.124 μ g/l) and at MW03 (0.596 μ g/l) during the Quarter 4 monitoring event. During the previous Quarter 1 2017 monitoring event, Total PAHs were detected above the IGV at BH102 (0.121 μ g/l) and at MW03 (0.148 μ g/l).

During the current Quarter 2 2017 monitoring event, Total Polycyclic Aromatic Hydrocarbons were detected above the IGV limit of 0.1 μ g/l at BH103 (0.127 μ g/l), MW03 (0.11 μ g/l) and MW04 (0.194 μ g/l).

Figure 6.7 illustrates that **Fluoranthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells BH104B (October 2007, 1.33 μ g/l) and MW03 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l. During the Quarter 2 2017 monitoring event Fluoranthene was detected above the limit of detection at MW01 (0.012 μ g/l), however this detection does not exceed the IGV of 1.0 μ g/l.

A similar trend to Fluoroanthene has been noted in **Figure 6.8**, with concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in BH104B and MW03 only. 4 no. exceedances of the IGV were noted in BH104B in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in BH104B have decreased below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in MW03, with the highest

concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were slightly above the laboratory limit of detection of 0.01 μ g/l at BH104B (0.08 μ g/l) and MW03 (0.05 μ g/l); however these levels are deemed low. Concentrations of Naphthalene were below the EPA IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 and 2012 quarterly monitoring events and the Quarter 1 to Quarter 3 2014 monitoring periods, inclusive. No detections of Naphthalene were noted from the Quarter 4 2014 monitoring event to the Quarter 2 2015 monitoring event. Naphthalene was detected at BH101 (0.011 μ g/l) and MW03 (0.031 μ g/l) during Quarter 3 2015, and at BH103 (0.095 μ g/l) and at MW04 (0.067 μ g/l) during Quarter 4 2015.

Naphthalene was detected at BH104B (0.034 μ g/l) and MW04 (0.153 μ g/l) during the Quarter 1 2016 monitoring event, at BH103 (0.13 μ g/l), BH104B (0.039 μ g/l), MW03 (0.028 μ g/l) and MW04 (0.12 μ g/l) during Quarter 3 2016, MW03 (0.036 μ g/) during Quarter 4 2016, and at BH103 (0.018 μ g/l), MW01 (0.041 μ g/l) and MW04 (0.12 μ g/l) during the Quarter 1 2017 monitoring event. During the current Quarter 2 2017 monitoring event, Naphthalene was detected above the laboratory limit of detection at BH103 (0.066 μ g/l), MW03 (0.11 μ g/l) and MW04 (0.157 μ g/l). However, these are all still below the IGV of 1.0 μ g/l.

Figure 6.9 illustrates the concentrations of **Benzo(g,h,i)perylene** in all monitoring wells over time. Elevated concentrations above the IGV were recorded at BH104B (0.087 μ g/l) on one occasion in March 2006.

Figures 6.10 and 6.11 illustrate elevated concentrations above the IGV recorded at MW03 on 6 no. occasions with the most recent elevated concentration recorded during the Quarter 4 2015 monitoring event (0.053 µg/l). The previous elevated concentration detected was in Quarter 3 2015 (0.053 µg/l). The results of all monitoring events from 2010 to the Quarter 2 2015 monitoring event recorded concentrations below the laboratory limit of detection of 0.01 µg/l at all locations. Concentrations were also below the laboratory limit of detection at all locations during the Quarter 1 2016 monitoring event. Benzo(g,h,i)perylene was recorded in MW02 (0.011 µg/l) during Quarter 2 2016, in BH103 (0.015 µg/l) and MW03 (0.035 µg/l) during Quarter 3 2016, in MW03 (0.036 µg/l) during Quarter 4 2016, and in MW03 (0.037 µg/l) during the previous Quarter 1 2017 monitoring period. However, these are below the IGV of 0.05 µg/l. During the current Quarter 2 2017 monitoring event, Benzo(g,h,i)perylene was below the laboratory limit of detection at all locations are 2 2017 monitoring period. However, these are below the IGV of 0.05 µg/l. During the current Quarter 2 2017 monitoring event, Benzo(g,h,i)perylene was below the laboratory limit of detection at all locations.

Figures 6.12 and 6.13 illustrate the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicates that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 μ g/l. Similarly with the above mentioned trends, the highest concentrations have been detected in MW03 and BH104B. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 μ g/l was detected in MW03, however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in BH101, BH103 and MW01 during this same period.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGVs.

Benzo(a)pyrene was detected above the IGV limit of 0.01 μ g/l at MW03 (0.108 μ g/l) during the Quarter 4 2015 monitoring event. Benzo(a)pyrene was also detected above the IGV at MW03 (0.052 μ g/l) during the Quarter 3 2015 monitoring event. All other results of all monitoring events from 2010 to Quarter 2 2016 monitoring event did not detect other concentrations above the IGV. Benzo(a)pyrene was detected at BH103 (0.04 μ g/l) and MW03 (0.037 μ g/l) during the Quarter 3 2016 monitoring event, at MW03 (0.032 μ g/l) during the Quarter 4 2016 monitoring event, and at MW03 (0.033 μ g/l) during the previous Quarter 1 2017 monitoring event. During the current Quarter 2 2017 monitoring event, Benzo(a)pyrene was below the IGV of 0.01 μ g/l and also below the limit of detection at all locations.

Figure 6.9 – Benzo (g,h,i) perylene Concentrations

Figure 6.10 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03

Figure 6.11 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03 Since 2010

6.2.3 Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within BH103, BH104B and MW03. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12-C16, C16-C21 and C21-C35. **Figure 6.14** illustrates the TPH analysis for the total TPH analysis from C10-C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells MW03, BH104B and BH103 respectively.

Previous quarterly monitoring reports have outlined the hydrocarbon trends recorded in each well since 2010. This report outlines the trends from 2013 up to and including the current monitoring report.

During the Quarter 1, 2013 monitoring event aromatic hydrocarbons were detected in BH103, BH104B and MW04. The predominant aromatic carbon range comprised C12-C16 (30 μ g/l), C16-C21 (280 μ g/l) and C21-C35 (100 μ g/l) in BH103, C10-C12 (30 μ g/l), C12-C16 (110 μ g/l) and C16-C21 (80 μ g/l) in BH104B and C10-C12 (20 μ g/l) and C12-C16 (80 μ g/l) in MW04. Aliphatic hydrocarbons were detected in BH103 in the ranges C12-C16 (70 μ g/l), C16-C21 (100 μ g/l) and C21-C35 (90 μ g/l).

During the Quarter 2, 2013 monitoring event no aliphatic or aromatic hydrocarbons were detected at any location.

During the Quarter 3, 2013 monitoring event, hydrocarbons of the aliphatic range were detected in MW03 only. The detected aliphatic carbon range comprised C10-C16 (290 μ g/l) and C12-C16 (190 μ g/l). No detections of aromatic carbons were measured during the Quarter 3 2013 monitoring event.

Total Petroleum Hydrocarbons were not detected at any monitoring location during the Quarter 4, 2014 monitoring event. During the monitoring event for Quarter 3 2014 following ranges of the aliphatic hydrocarbons were recorded for BH104B; C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C21-C35 (10 μ g/l).

During the Quarter 1 2015 monitoring event, hydrocarbons were detected in MW03, MW04, BH103 and BH104B. The predominant aromatic carbon range comprised C21-C35 (14 μ g/l) in BH103, C12-C16 (27 μ g/l) and C16-C21 (15 μ g/l) in BH104B, C12-C16 (14 μ g/l) in MW03 and C12-C16 (15 μ g/l) in MW04. Aliphatic hydrocarbons were detected in the ranges C16-C35 (54 μ g/l) in BH103, C16-C35 (11 μ g/l) in BH104B and C16-C35 (46 μ g/l) and C35-C44 (12 μ g/l) in MW03.

During the Quarter 2 2015 monitoring event, the TPH concentration in the aromatic C21-C35 range was detected at one shallow groundwater wells BH103 (509 μ g/l). The TPH concentration in the aliphatic range was detected at C16-C35 (1760 μ g/l) in BH103 and C12-C16 (225 μ g/l) and C16-C35 (11 μ g/l) in BH104B.

The Quarter 3 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l) at BH104B, C21-C35 at BH103 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (13 μ g/l), C12-C16 (40 μ g/l) and C16-C35 (62 μ g/l) at BH104B and C16-C35 at BH103 (72 μ g/l) and MW03 (14 μ g/l).

The Quarter 4 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (879 μ g/l), C16-C21 (1380 μ g/l) and C21-C35 (694 μ g/l) at BH104B, C21-C35 at BH103 (60 μ g/l) and C10-C12 (13 μ g/l) and C12-C16 (21 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (495 μ g/l), C12-C16 (3080 μ g/l) and C16-C35 (3360 μ g/l) at BH104B and C16-C35 (231 μ g/l) and C35-C44 (14 μ g/l) at BH103.

The Quarter 1 2016 monitoring event detected TPH in samples from the well BH103 were in the aliphatic range C16-C35 (132 μ g/l) and from well MW04 in the aromatic range C12-C16 (15 μ g/l).

The Quarter 2 2016 monitoring event detected TPH in samples from the well BH103 and were in the aliphatic range C16-C35 (150 μ g/l) and in the aromatic range C21-C35 (57 μ g/l) and from well MW04 in the aromatic range C12-C16 (20 μ g/l).

The Quarter 3 2016 monitoring event detected TPH in samples from the well BH103 in the aliphatic ranges C16-C35 (35 μ g/l), C35-C44 (10 μ g/l) and in the aromatic range C21-C35 (11 μ g/l), well BH104B in the aromatic ranges C12-C16 (25 μ g/l) and C16-C21 (12 μ g/l) and from well MW04 in the aromatic range C12-C16 (23 μ g/l).

The Quarter 4 2016 monitoring event detected TPH in samples from the well BH102 in the aliphatic range C16-C35 (13 μ g/l), well BH103 in the aliphatic ranges C16-C35 (160 μ g/l), C35-C44 (14 μ g/l) and in the aromatic range C21-C35 (47 μ g/l), well BH104B in the aromatic ranges C12-C16 (12 μ g/l), well MW03 in the aliphatic range C16-C35 (14 μ g/l) and from well MW04 in the aromatic ranges the aromatic ranges C10-C12 (13 μ g/l) and C12-C16 (23 μ g/l).

During the previous Quarter 1 2017 monitoring event, TPH was detected in samples from the well BH102 in the aliphatic range C16-C35 (11 μ g/l), well BH103 in the aliphatic range C16-C35 (15 μ g/l), well MW01 in the aliphatic range C16-C35 (23 μ g/l), well MW03 in the aliphatic range C16-C35 (40 μ g/l) and in the aromatic range C21-C35 (13 μ g/l), and well MW04 in the aromatic ranges C10-C12 (11 μ g/l) and C12-C16 (21 μ g/l).

During the current Quarter 2 2017 monitoring event, TPH was detected in samples from the well BH103 in the aliphatic range C16-C35 (50 μ g/l), well BH104B in well the aliphatic ranges C12-C16 (13 μ g/l) and C16-C35 (37 μ g/l), and in the aromatic ranges C12-C16 (15 μ g/l) and C16-C21 (20 μ g/l), well MW02 in the aliphatic range C16-C35 (12 μ g/l), well MW03 in the aromatic range C12-C16 (18 μ g/l), and well MW04 in the aromatic range C12-C16 (29 μ g/l).

7 CONCLUSIONS

- In accordance with the criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence Register No. W0184-01, groundwater monitoring was carried out at the ENVA Ireland site on the 30th of May 2017 corresponding to Quarter 2 of 2017. Samples were collected at 8 groundwater monitoring wells during this event.
- The results presented have been referenced against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. no 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.
- Results of the BTEX and MTBE demonstrate that the levels of Benzene, Toluene, Ethylbenzene, m&p Xylene, o-xylene and MTBE were all below the recommended EPA IGVs.
- The Quarter 2 2017 results of the polycyclic aromatic hydrocarbons indicate that Total PAHs were above the EPA IGV of 0.1 μ g/l at three monitoring wells, BH103 (0.127 μ g/l), MW03 (0.11 μ g/l) and MW04 (0.194 μ g/l).
- Vinyl Chloride at MW03 (0.4 µg/l) and MW04 (0.49 µg/l) was detected above the GTV of 0.375 µg/l. A number of other individual VOCs were also detected above the laboratory limits at MW02, MW03 and MW04. However, all of these were below their respective limits. All other VOCs and SVOCs were below their respective laboratory limits of detection.
- Samples were analysed for speciated phenols to include chlorophenols and the results indicate that there were no detections above the laboratory limits of detection.
- For the current Quarter 2 2017 monitoring event, TPH detections in samples from BH103 in the aliphatic range C16-C35 (50 µg/l), well BH104B in well the aliphatic ranges C12-C16 (13 µg/l) and C16-C35 (37 µg/l), and in the aromatic ranges C12-C16 (15 µg/l) and C16-C21 (20 µg/l), well MW02 in the aliphatic range C16-C35 (12 µg/l), well MW03 in the aromatic range C12-C16 (18 µg/l), and well MW04 in the aromatic range C12-C16 (29 µg/l). Each of these is therefore over the limit of detection which is 10 µg/l. For the previous Quarter 1 2017 monitoring event, TPH detections in samples from the well BH102 in the aliphatic range C16-C35 (11 µg/l), well BH103 in the aliphatic range C16-C35 (15 µg/l), well MW01 in the aliphatic range C16-C35 (23 µg/l), well MW03 in the aliphatic range C16-C35 (15 µg/l), and in the aromatic range C16-C35 (13 µg/l), and well MW03 in the aliphatic range C16-C35 (10 µg/l) and in the aromatic range C11-C35 (13 µg/l), and well MW04 in the aromatic ranges C10-C12 (11 µg/l) and C12-C16 (21 µg/l).
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Enva Portlaoise

2017 Groundwater Compliance Monitoring Quarter 3 (Jul – Sep 2017)

Document Control Sheet

Client: Enva Ireland Ltd.						
Project Title: Enva Portlaoise 2017 Groundwater Compliance Monitoring						
Document Title: Quarter 3 (Jul – Sep 2017)						
Document No: MDE0973Rp0033						
Text Pages:	47	Appendices:	-			

Rev.	Status	Status Date		Author(s)		Reviewed By	Approved By		
D01	Draft	2 nd November 2017	DC	DouChland	CR	Cabron Relly	CR	Cabron Relly	
A01	Client Approval	4 th December 2017	DC	DurCaline	CR	Cabrun Rally	CR	Cabron Rally	

Copyright RPS Group Limited. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by RPS Group Limited no other party may use, make use of or rely on the contents of this report.

The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS Group Limited for any use of this report, other than the purpose for which it was prepared.

RPS Group Limited accepts no responsibility for any documents or information supplied to RPS Group Limited by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made.

RPS Group Limited has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy. No part of this report may be copied or reproduced, by any means, without the written permission of RPS Group Limited

rpsgroup.com/ireland
TABLE OF CONTENTS

1		INTRODUCTION	1
	1.1	BACKGROUND	1
	1.2	OBJECTIVES & SCOPE OF WORK	1
2		REVIEW OF PREVIOUS DATA	2
	2.1	INFORMATION SOURCES	2
	2.2	SITE SETTING	2
	2.3	REGIONAL SETTING	4
		2.3.1 Geology	4
		2.3.2 Hydrogeology	4
	2.4	SITE GROUND CONDITIONS	4
		2.4.1 Licence Conditions	5
3		METHODOLOGY	6
	3.1	LABORATORY ANALYSIS	6
	3.2	PRESENTATION & INTERPRETATION OF RESULTS	3
4		QUARTER 3 RESULTS AUGUST 2017	9
5		DISCUSSION OF QUARTER 3 RESULTS)
5	5.1	DISCUSSION OF QUARTER 3 RESULTS)
5	5.1 5.2	DISCUSSION OF QUARTER 3 RESULTS 20 FIELD PARAMETERS 20 RESULTS OF BTEX & MTBE 20	0 0
5	5.1 5.2 5.3	DISCUSSION OF QUARTER 3 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)22	D D D
5	5.1 5.2 5.3 5.4	DISCUSSION OF QUARTER 3 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)22RESULTS OF SPECIATED PHENOLS22	o 5 1
5	5.1 5.2 5.3 5.4 5.5	DISCUSSION OF QUARTER 3 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)22RESULTS OF SPECIATED PHENOLS22RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS22	D D D D D D 1 1
5	 5.1 5.2 5.3 5.4 5.5 5.6 	DISCUSSION OF QUARTER 3 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)22RESULTS OF SPECIATED PHENOLS22RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS22RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF VOLATILE ORGANIC COMPOUNDS22	D D D D D D D D D D D D D D D D D D D
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	DISCUSSION OF QUARTER 3 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)22RESULTS OF SPECIATED PHENOLS22RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS22RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22	o 1 1 2 2
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	DISCUSSION OF QUARTER 3 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)22RESULTS OF SPECIATED PHENOLS22RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS22RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS25	o 1 1 2 5
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1	DISCUSSION OF QUARTER 3 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)22RESULTS OF SPECIATED PHENOLS22RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS22RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS22GROUNDWATER LEVELS OVER TIME25	D D D D D D D D D D D D D D D D D D D
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 3 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS22RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS22RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22GROUNDWATER LEVELS OVER TIME25GROUNDWATER CONCENTRATIONS OVER TIME30	D D D D D D D D D D D D D D D D D D D
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 3 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)22RESULTS OF SPECIATED PHENOLS22RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS22RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS22GROUNDWATER LEVELS OVER TIME306.2.1 Phenols30	b c c c c c c c c
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 3 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)22RESULTS OF SPECIATED PHENOLS22RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS22RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22GROUNDWATER LEVELS OVER TIME29GROUNDWATER CONCENTRATIONS OVER TIME306.2.1 Phenols306.2.2 Polycyclic Aromatic Hydrocarbons32	b c c c c c c c c
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 3 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS22RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS22GROUNDWATER LEVELS OVER TIME25GROUNDWATER CONCENTRATIONS OVER TIME306.2.1 Phenols306.2.2 Polycyclic Aromatic Hydrocarbons (TPH)44	b b c

LIST OF FIGURES

Figure 2.1 – Site Location	3
Figure 3.1 – Site Layout Plan with Groundwater Monitoring Locations	7
Figure 6.1 – Ground Elevation (mAOD) in all Monitoring Wells	26
Figure 6.2 – Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells	27
Figure 6.3 – Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells	28
Figure 6.4 – Phenol Concentrations in all Monitoring Wells	31
Figure 6.5 – PAH (Total) Concentrations in all Monitoring Wells	35
Figure 6.6 – PAH (Total) Concentrations in all Monitoring Wells Since 2010	36
Figure 6.7 – Fluoroanthene Concentrations in all Monitoring Wells	37
Figure 6.8 – Naphthalene Concentrations in all Monitoring Wells	38
Figure 6.9 – Benzo (g,h,i) perylene Concentrations	39
Figure 6.10 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03	40
Figure 6.11 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03 Since 2010	41
Figure 6.12 – Benzo (a) pyrene Concentrations in all Monitoring Wells	42
Figure 6.13 – Benzo (a) pyrene Concentrations in all Monitoring Wells Since 2010	43
Figure 6.14 – TPH (Carbon Range C10-C44) in all Monitoring Wells	46

LIST OF TABLES

Table 2.1 – Ground Conditions	5
Table 2.2 – Licence Parameters	5
Table 3.1 – Analytical Methodologies – ALS Environmental	6
Table 4.1 – Groundwater Levels (Quarter 3, 2017)	10
Table 4.2 – Results of Field Parameters Measured at each Groundwater Monitoring Well (Quar	rter 3,
2017)	11
Table 4.3 – Results of BTEX and MTBE	12
Table 4.4 – Results of Speciated PAHs	12
Table 4.5 – Results of Speciated Phenols	14
Table 4.6 – Results of Semi-Volatile Organic Compounds (SVOCs)	15
Table 4.7 – Results of Volatile Organic Compounds (VOCs)	17
Table 4.8 – Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)	19
Table 6.1 – Monthly Rainfall Data for Year 2013 for Oak Park, Carlow	29
Table 6.2 – Monthly Rainfall Data for Year 2014 for Oak Park, Carlow	29
Table 6.3 – Monthly Rainfall Data for Year 2015 for Oak Park, Carlow	29
Table 6.4 – Monthly Rainfall Data for Year 2016 for Oak Park, Carlow	29
Table 6.5 – Monthly Rainfall Data for Year 2017 for Oak Park, Carlow	29

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd (Enva) to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence, Register No. W0184-02.

Enva Ireland has been operating under Industrial Emissions Licence Register No. W0184-02 since June 2017, having replaced the previous Waste licence, W0184-01, granted in January 2004. Enva is required to submit a report to the EPA on a quarterly basis, outlining the existing groundwater quality underlying the site.

A suitably qualified environmental consultant from RPS, collected groundwater samples from a series of 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) within the site boundary on the 28th of August 2017. The samples underwent laboratory analysis for the suite of parameters specified in Schedule C.6 of Industrial Emissions Licence W0184-02. This report outlines the results of the Quarter 3 monitoring for 2017 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 3 2017 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Industrial Emissions Licence W0184-02 and any available EPA documents from the EPA website;
- Quarterly Groundwater Monitoring Reports (Quarter 1 2004 to Quarter 4 2005), URS;
- Quarterly Groundwater Monitoring Reports (Quarter 1 2006 to Quarter 2 2017), RPS;
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007);
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008);
- Hydrogeological Review and Assessment Report, Ref MDE0973Rp0017F01, RPS (2014); and
- Baseline Environment Report, Ref: MDE0973Rp0104.

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1.5 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 2.1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 3.1**. The site is largely covered in hardstanding with some open areas in the far north and northeast of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

Figure 2.1 – Site Location

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoils in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological Survey of Ireland (GSI) as a Locally Important Karstified Aquifer (LI). Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising three groundwater abstraction well fields comprising of two abstraction wells in each well field. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends to within 3.2 km of the Enva site but does not encompass the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk; the accuracy of this location is also 1 km so it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2.1**.

Table 2.1 – Ground Conditions

Strata	Extent	Thickness	Description
Made Ground	BH104	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium, well rounded gravels.
Sand and Gravel	Confined to south east corner of site (BH101, BH104 and MW03)	0-2 m	In general the transition from boulder clay to sand is gradual with changes from gravel, to sandy gravel, to sand.
Limestone Bedrock	Encountered in MW01, MW02 and MW03	Top of limestone ranges from 7.7m to 9m below ground level.	Pale grey, fine-grained bedrock, differentiated from boulders by its un-weathered nature.

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

2.4.1 Licence Conditions

The Industrial Emissions Licence requires the regular monitoring and sampling of boreholes BH101, BH102, BH103, BH104B, MW01, MW02, MW03 and MW04. The parameters requiring measurement or analysis are presented in **Table 2.2**.

Table 2.2 – Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement
	Groundwater Level	Groundwater Level
	рН	рН
Field Parameters	Temperature	Temperature
Field Parameters	Dissolved Oxygen	Dissolved Oxygen
	Electrical Conductivity	Electrical Conductivity
	Visual Inspection	Visual Inspection
	Mineral Oil	Mineral Oil
	BTEX & MTBE	BTEX & MTBE
Organics	PAHs	PAHs
Organics	Phenols	Phenols
	VOCs	VOCs
	SVOCs	SVOCs
Inorganics	-	Total Alkalinity, Calcium, Manganese, Sulphate, Cyanide (Total), Chloride, Sodium,

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) (Figure 3.1) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.

Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, ALS Environmental for the suite of analyses listed in **Table 3.1**. **Table 3.1** also indicates the analytical techniques used by the laboratory.

Table 3.1 – Analytical Methodologies – ALS Environmental

Parameter	Analytical Methodology
Phenols	GC-MS
Speciated PAHs	GC-MS
BTEX & MTBE	Headspace GC-MS
Petroleum Hydrocarbons	Headspace GC-MS
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS

Shallow Monitoring Well locations Deep Monitoring Well locations

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 3 2017 results are tabulated in **Section 4** and discussed with respect to previous results in **Section 5**. Results are compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

Previous monitoring reports (as listed in **Section 2.1**) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in **Section 6** and include the results of this Quarter 3 2017 monitoring round. As the monitoring continues in accordance with the Industrial Emissions licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 3 RESULTS AUGUST 2017

The results of all field measurements and laboratory analysis are presented in this section. Satisfactory calibration of the Dissolved Oxygen meter was unable to be achieved on the day of monitoring. This resulted in a lack of field measurements. Results are primarily compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

The results are discussed in relation to appropriate guideline values in **Section 5**. Results that are shown to be above the relevant threshold or guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Table 4.1 – Groundwater	Levels (Quarter 3	3, 2017)	
-------------------------	----------	-----------	----------	--

Monitoring Well	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04
Depth (mbgl)	6.68	6.41	4.40	4.71	22.56	30.84	9.72	6.42
Static Water Level (mbgl)	4.19	3.21	1.75	0.49	2.36	3.62	4.01	3.89
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	98.87	99.34	99.41	101.03	99.74	99.50	98.76	-
Free Phase Oil (mm)	No detection							

mbgl = metres below ground level

Monitoring Well	pH (pH Units)	Temperature (°C)	Conductivity (μS/cm)	Dissolved O ₂ (ppm)	Observations
BH101	7.63	11.1	1011	-	Light cloudy brown colour, some sediment
BH102	8.21	12.0	873	-	Clear but slight sheen, some suspended solids
BH103	8.02	11.9	878	-	Light grey colour, little sediment
BH104B	7.28	11.3	775	-	Light cloudy colour, clearer after 10L, slight oil sheen and initial odour
MW01	7.54	12.4	809	-	Dark cloudy brown colour, some sediment
MW02	7.99	12.7	765	-	Slight cloudy brown colour, clearer after 15L. Very little suspended solids
MW03	7.33	13.1	1352	-	Cloudy grey colour on purging, some suspended solids and fine sediment
MW04	7.41	12.2	1421	-	Cloudy light brown colour with high level of sediment
Groundwater Threshold Value	-	-	1875	-	-
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25°C	1000	No abnormal change	-

Table 4.2 – Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 3, 2017)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Table 4.3 – Results of BTEX and MTBE

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzene	μg/l	1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.75	1.0
Toluene	μg/l	1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-	10
Ethylbenzene	μg/l	1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-	10
m & p-xylene	μg/l	1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-	10 ^{Note 1}
o-xylene	μg/l	1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-	10 ^{Note 1}
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.00	<1.00	<1.00	1.2	<1.00	<1.00	<1.00	2.7	2	-	30

Note: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.4 – Results of Speciated PAHs

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Naphthalene	μg/l	0.01	<0.01	<0.01	0.04	0.024	<0.01	<0.01	<0.10	0.161	-	1.0
Acenaphthylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	-
Acenaphthene	µg/l	0.01	<0.01	<0.01	0.054	0.03	<0.01	<0.01	<0.10	<0.10	-	-
Fluorene	µg/l	0.01	<0.01	<0.01	0.013	0.053	<0.01	<0.01	<0.10	<0.10	-	-
Phenanthrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.017	<0.01	<0.10	<0.10	-	-
Anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	10,000
Fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.052	<0.01	<0.10	<0.10	-	1.0
Pyrene	µg/l	0.01	<0.01	<0.01	<0.01	0.032	0.038	<0.01	<0.10	<0.10	-	-
Benzo(a)anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	-
Chrysene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.014	<0.01	<0.10	<0.10	-	-
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.012	<0.01	<0.10	<0.10	-	0.5

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzo(k)fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	0.05
Benzo(a)pyrene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	0.05
Dibenz(a,h)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	-
Benzo(g,h,i)perylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.013	<0.01	<0.10	<0.10	-	0.05
Total EPA-16 PAHs	µg/l	0.1	<0.01	<0.01	0.108	0.139	0.145	<0.01	<0.10	0.161	0.075	0.1

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.5 – Results of Speciated Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	μg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	0.5
2,4,6-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
3+4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
2-Chlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
Bis(2-chloroethyl)ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroisopropyl)ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Nitrobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
3&4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Isophorone	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroethoxy)methane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Naphthalene	μg/l	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	1.0
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobutadiene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4,6-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4,5-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylnaphthalene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chloronaphthalene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dimethylphthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
2,6-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dibenzofuran	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Diethylphthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	1.4	<1.0	<1.0	<1.0	-	-
Fluorene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Bromophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.03
Phenanthrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10,000
Pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzyl Butyl Phthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(a)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chrysene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(b)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
Benzo(k)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Benzo(a)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.01
Indeno(1,2,3-c,d)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Dibenz(a,h)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(g,h,i)perylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-ethylhexyl)phthalate	μg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	-

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.7 – Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Chloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10	-	-
Bromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Vinyl Chloride	µg/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.375	-
Trichlorofluoromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,1-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	30
1,1-dichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.7	3.3	-	-
Cis-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1.0	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	2.7	2	-	30
2,2-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,1,1-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	500
1,2-dichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.25	-
1,1-Dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trans-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	1.0
1,2-dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	70
Dibromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromodichloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Cis-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trans-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Toluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,1,2-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Dibromochloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Tetrachloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	40
1,2-Dibromoethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	1.0
1,1,1,2-Tetrachloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Ethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
m&p-Xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
Styrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
o-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
Isopropylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
N-Propylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3,5-Trimethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Tert-Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-Trimethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Sec-Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
P-Isopropyltoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
n-Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dibromo-3-chloropropane	μg/l	1.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	-
1,2,4-Trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Hexachlorobutadiene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
1,2,3-Trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.8 – Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Aliphatic > C10-C12	μg/l	10	<40	<10	<40	<10	<40	<10	<40	<10	-	-
Aliphatic > C12-C16	μg/l	10	<40	<10	<40	<10	<40	<10	<40	<10	-	-
Aliphatic > C16-C35	μg/l	10	<40	<10	177	<10	120	<10	61	<10	-	-
Aliphatic > C35-C44	μg/l	10	<40	<10	<40	<10	<40	<10	<40	<10	-	-
Aliphatic > C10-C44	μg/l	10	<40	<10	177	<10	120	<10	61	<10	-	10
Aromatic > C10-C12	μg/l	10	<40	<10	<40	<10	<40	<10	<40	17	-	-
Aromatic > C12-C16	μg/l	10	<40	<10	<40	<10	<40	<10	<40	24	-	-
Aromatic > C16-C21	μg/l	10	<40	<10	<40	<10	<40	<10	<40	<10	-	-
Aromatic > C21-C35	μg/l	10	<40	<10	71	<10	<40	<10	40	<10	-	-
Aromatic > C35-C44	μg/l	10	<40	<10	<40	<10	<40	<10	<40	<10	-	-
Aromatic > C10-C44	μg/l	10	<40	<10	71	<10	<40	<10	40	41	-	10

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

5 DISCUSSION OF QUARTER 3 RESULTS

The results of the Quarter 3 monitoring event for 2017 are presented in **Table 4.1** to **4.8** of this report. For the purpose of this report, the results are compared against the Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations (S.I. No. 9 of 2010) where available. Where GTVs are not available results are compared against the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in Table 4.2. Groundwater samples recorded pH levels ranging between 7.28 and 8.21, all within the EPA Interim guideline range of \geq 6.5 to \leq 9.5. Temperature measurements ranged from 11.1°C to 13.1°C and were below the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 765 μ S/cm and 1421 μ S/cm. Three measurements of Electrical Conductivity were above the IGV of 1000 μ S/cm at BH101 (1011 μ S/cm), MW03 (1352 μ S/cm) and MW04 (1421 μ S/cm), but all however were below the GTV limit of 1875 μ S/cm.

Satisfactory calibration of the Dissolved Oxygen meter was unable to be achieved on the day of monitoring. This resulted in a lack of field measurements.

Observations relating to colour and odour varied from well to well as detailed in Table 4.2.

5.2 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in **Table 4.3**. BTEX concentrations are below the limit of detection at all locations. MTBE was detected at BH103 (1.2 μ g/l), MW03 (2.7 μ g/l) and MW04 (2.0 μ g/l), however these concentrations were below the IGV of 30 μ g/l. MTBE was below the laboratory limit of detection and IGV at all other locations.

Previous detections of MTBE was in the Quarter 2 monitoring event of 2017 and recorded concentrations above the laboratory limit of detection at BH103 (0.81 µg/l), MW03 (1.73 µg/l) and MW04 (1.73 µg/l). MTBE was also above the laboratory limit of detection at MW03 (2.4 µg/l) and MW04 (1.2 µg/l) during Quarter 1 2017, at MW03 (1.5 µg/l) and MW04 (1.2 µg/l) during Quarter 4 2016, and at MW03 (1.2 µg/l) during Quarter 3 2016. These detections are still below the IGV limit however. Prior to this there was a detection of MTBE at BH104B in the Quarter 1 monitoring event of 2012 with a recorded concentration of 280 µg/l which is above the laboratory limit of detection. This was the only recorded exceedance in Quarter 1 2012.

Monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at BH103 at a concentration of 16 μ g/l. Subsequent monitoring in 2010 recorded concentrations below the laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at BH103 were recorded at 63 μ g/l in December 2009.

5.3 RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)

The results of the Speciated PAH analysis during this monitoring period are presented in **Table 4.4**.

The laboratory limit of detection for Total EPA-16 PAHs is 0.1 μ g/l and has been lowered for comparison with the EPA IGV of 0.1 μ g/l; however this is not accredited. This laboratory limit of detection is above the EPA GTV of 0.075 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l.

Total polycyclic aromatic hydrocarbons were above the IGV limit of 0.1 μ g/l at BH103 (0.108 μ g/l), BH104B (0.139 μ g/l), MW01 (0.145 μ g/l), and MW04 (0.161 μ g/l). Total PAHs were below the IGV of 0.1 μ g/l and the GTV of 0.075 μ g/l at all other locations.

Total PAHs were previously detected above the IGV at BH103 (0.127 μ g/l), MW03 (0.11 μ g/l) and MW04 (0.194 μ g/l) during Quarter 2 2017, at MW01 (0.121 μ g/l), MW03 (0.47 μ g/l) and MW04 (0.148 μ g/l) during the Quarter 1 2017, and at BH102 (0.124 μ g/l) and MW03 (0.596 μ g/l) during the Quarter 4 2016 monitoring event.

The results of the speciated polycyclic aromatic hydrocarbon analysis detected a number of different compounds in BH103, BH104B, MW01 and MW04 above the laboratory limit of detection. However none of these compounds were above their respective IGV limits at any location.

5.4 **RESULTS OF SPECIATED PHENOLS**

During previous quarterly monitoring events and sample analysis, total monohydric phenol was determined and historically has been below the laboratory limit of detection of 10 μ g/l since December 2008. It should be noted that the laboratory limit of detection was however above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in **Table 4.5**. The speciated phenol analysis reduces the laboratory limit of detection to $1.0 \mu g/l$ for individual parameters.

The results of the current Quarter 3 2017 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 1.0 μ g/l at all locations.

2-Methylphenol (3.48 μ g/l) and 3+4-Methylphenol (2.19 μ g/l) in MW03 were detected above the laboratory limit of detection during Quarter 1 2017, and 4-Chloro-3-methylphenol at BH104B (1.37 μ g/l) above the laboratory limit of detection during the Quarter 1 2015 analysis. With the exception of these, all other results are consistent with results since the 2012 quarterly monitoring events.

5.5 RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.6.

There are no GTVs for individual SVOC parameters. Diethylphthalate was detected above the laboratory limit of detection at MW01 (1.4 μ g/l). However, there is no IGV for Diethylphthalate. No SVOCs were detected above the relevant IGVs during this monitoring period, consistent with the results from the previous 2017, 2016, 2015 and 2014 monitoring periods. It should be noted that the laboratory limit of detection was however above the IGVs for some SVOCs, for example the result for 1,2,4-Trichlorobenzene was <1.0 μ g/l but the IGV for this parameter is 0.40 μ g/l, but testing at this limit is not accredited.

The Quarter 3 2013 monitoring event detected two SVOC compounds, Acenaphthene (1.1 μ g/l) and Fluorene (1.5 μ g/l) in MW03. Prior to this detection the Quarter 2 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene in MW03 at concentrations of 2.4 μ g/l and 0.12 μ g/l respectively.

5.6 **RESULTS OF VOLATILE ORGANIC COMPOUNDS**

The results of the Volatile Organic Compound analysis are presented in **Table 4.7**.

Chloroethane at MW04 (10 μ g/l), 1,1-dichloroethane at MW03 (1.7 μ g/l) and MW04 (3.3 μ g/l), and MTBE at BH103 (1.2 μ g/l), MW03 (2.7 μ g/l) and MW04 (2.0 μ g/l) were the only compounds detected above the limit of detection during the Quarter 3 2017 monitoring event. However, these are below their respective limits and all other compounds are below their respective laboratory limits of detection.

Historic groundwater monitoring events detected some parameters above the laboratory limit of detection in November 2009, corresponding to Quarter 4 of 2009. Historically 1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene were detected above the laboratory limits of detection, where applicable.

The results of the Quarter 3 and Quarter 4 monitoring events of 2009 and all subsequent monitoring events indicate that there were no other exceedances of the GTVs or IGVs for specific parameters.

5.7 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in **Table 4.8**.

The EPA IGV of 10 μ g/l for Total Hydrocarbons is deemed comparable with the results for Total Petroleum Hydrocarbons. Some detections of TPH in both the aliphatic and aromatic range were observed during the current Quarter 3 2017 monitoring event.

Detections were found in samples from the following wells; at BH103 detections were in the aliphatic range C16-C35 (177 μ g/l) and in the aromatic range C21-C35 (71 μ g/l), at MW01 detections were in the aliphatic range C16-C35 (120 μ g/l), at MW03 detections were in the aliphatic range C16-C35 (61 μ g/l) and in the aromatic range C21-C35 (40 μ g/l), and at well MW04 detections were in the aromatic ranges C10-C12 (17 μ g/l) and C12-C16 (24 μ g/l).

The previous Quarter 2 2017 monitoring event detected TPH in the wells BH103 in the aliphatic range C16-C35 (50 μ g/l), at BH104B in the aliphatic ranges C12-C16 (13 μ g/l) and C16-C35 (37 μ g/l), and in the aromatic ranges C12-C16 (15 μ g/l) and C16-C21 (20 μ g/l), at MW02 in the aliphatic range C16-C35 (12 μ g/l), at MW03 in the aromatic range C12-C16 (18 μ g/l), and at well MW04 in the aromatic range C12-C16 (29 μ g/l).

The Quarter 1 2017 monitoring event detected TPH in the wells BH102 in the aliphatic range C16-C35 (11 μ g/l), BH103 in the aliphatic range C16-C35 (15 μ g/l at MW01 in the aliphatic range C16-C35 (23 μ g/l), at MW03 in the aliphatic range C16-C35 (40 μ g/l) and in the aromatic range C21-C35 (13 μ g/l), and at well MW04 in the aromatic ranges C10-C12 (11 μ g/l) and C12-C16 (21 μ g/l).

The Quarter 4 2016 monitoring event detected TPH in the wells BH102 in the aliphatic range C16-C35 (13 μ g/l), BH103 in the aliphatic range C16-C35 (160 μ g/l), C35-C44 (14 μ g/l) and in the aromatic range C21-C35 (47 μ g/l), BH104B in the aromatic range C12-C16 (12 μ g/l), MW03 in the aliphatic range C16-C35 (14 μ g/l), and MW04 in the aromatic ranges C10-C12 (13 μ g/l) and C12-C16 (23 μ g/l)

The Quarter 3 monitoring event detected TPH in the well BH103 in the aliphatic range C16-C35 (35 $\mu g/I$), C35-C44 (10 $\mu g/I$) and in the aromatic range C21-C35 (11 $\mu g/I$), at BH104B detections were in the aromatic range C12-C16 (25 $\mu g/I$), C16-C21 (12 $\mu g/I$) and at well MW04 detections were in the aromatic range C12-C16 (23 $\mu g/I$).

The Quarter 2 monitoring event of 2016 detected TPH in the well BH103 were in the aliphatic range C16-C35 (150 μ g/l) and in the aromatic range C21-C35 (57 μ g/l) and from well MW04 in the aromatic range C12-C16 (20 μ g/l).

The Quarter 1 monitoring event of 2016 detected TPH in the aliphatic range C16-C35 (132 μ g/l) at BH103 and in the aliphatic range C12-C16 (15 μ g/l) at MW04.

The Quarter 4 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (879 μ g/l), C16-C21 (1380 μ g/l) and C21-C35 (694 μ g/l) at BH104B, C21-C35 at BH103 (60 μ g/l) and C10-C12 (13 μ g/l) and C12-C16 (21 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (495 μ g/l), C12-C16 (3080 μ g/l) and C16-C35 (3360 μ g/l) at BH104B and C16-C35 (231 μ g/l) and C35-C44 (14 μ g/l).

The Quarter 3 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l) at BH104B, C21-C35 at BH103 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (13 μ g/l), C12-C16 (40 μ g/l) and C16-C35 (62 μ g/l) at BH104B and C16-C35 at BH103 (72 μ g/l) and MW03 (14 μ g/l).

The Quarter 2 monitoring event of 2015 detected TPH in the aromatic range C21-C35 at BH03 (509 μ g/l). TPH concentrations were detected in the aliphatic ranges C16-C35 at BH103 (1760 μ g/l) and BH104B (337 μ g/l), and C12-C16 at BH104B (225 μ g/l).

The Quarter 1 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 at wells MW03 (14 μ g/l), MW04 (15 μ g/l) and BH104B (27 μ g/l), C16-C21 at BH104B (15 μ g/l), and C21-C35 (14 μ g/l) at BH103. TPH concentrations were detected in the aliphatic ranges C16-C35 and C35-C44 at MW03 (46 μ g/l and 12 μ g/l respectively), BH103 (54 μ g/l) and BH104B (11 μ g/l.

No detections of TPH in the aliphatic or aromatic range were observed in any shallow or deep monitoring well locations during the Quarter 4 monitoring event of 2014.

The Quarter 3 monitoring event of 2014 detected TPH concentrations in the aliphatic range at the shallow groundwater well BH104B. The TPH concentration detected was 410 μ g/l. The speciated TPH ranges that contributed to the value of 410 μ g/l were C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C31-C35 (10 μ g/l).

The Quarter 3, 2013 monitoring event detected TPH in the aliphatic range in one deep groundwater well, MW03. TPH of the range C10-C12 and C12-C16 were detected at concentrations of 200 μ g/l and 190 μ g/l respectively.

The Quarter 1, 2013 monitoring event detected aliphatic TPH of the range C12-C16, C16-C21 and C21-C35. TPH in the mid to high aromatic ranges were detected in BH103, BH104B and MW04 during the Quarter 1 2013 monitoring event. Aromatic TPH of the ranges C12-C16, C16-C21 and C21-C35 were detected in BH103, the ranges C10-C12, C12-C16 and C16-C21 were detected in BH104B and aromatic TPH of the ranges C10-C12 and C12-C16 were detected in MW04. These detections are discussed further in **Section 6.2.3**.

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 3 2017 monitoring round. As the monitoring continues in accordance with the Industrial Emissions Licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

6.1 GROUNDWATER LEVELS OVER TIME

Figure 6.1 to **Figure 6.3** below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 6.2 illustrates groundwater elevations (mAOD) in shallow groundwater wells (BH101 to BH104B) ranging between approximately 98 mAOD and 102 mAOD.

Figure 6.3 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (MW01 to MW03). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 97.5 mAOD to approximately 100 mAOD.

Figure 6.3 – Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; the general direction of flow in the shallow and deeper groundwater bearing unit is in an easterly or north easterly direction however there have been some occasional historic cases of groundwater flowing in a south-easterly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Éireann to examine the relationship between compounds and rainfall events. The data from Oak Park was chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in **Tables 6.1** to **6.5**.

Table 6.1 – I	Monthly	Rainfall	Data for	Year 201	3 for Oa	ak Park,	Carlow
---------------	---------	----------	----------	----------	----------	----------	--------

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.8	57.6	44.4	35.6	37.5	32.3	85.6	24.4	170.0	27.7	136.6

Table 6.2 – Monthly Rainfall Data for Year 2014 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	147.2	176.7	65.0	52.6	78.6	61.9	24.6	122.1	18.2	138.2	165.6	47.7

Table 6.3 – Monthly Rainfall Data for Year 2015 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
Rainfall (mm)	66.0	36.3	53.5	26.3	89.4	29.7	79.4	83.0	17.9	56.8	110.0	270.9

Table 6.4 – Monthly Rainfall Data for Year 2016 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	Jul	Aug	Sep	Oct	Nov	Dec
Rainfall (mm)	110.9	95.7	40.6	64.3	61.6	61.7	29.6	46.0	97.4	32.3	26.3	80.2

Table 6.5 – Monthly Rainfall Data for Year 2017 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	Jul	Aug	Sep
Rainfall (mm)	36.3	57.8	66.6	15.8	81.8	91.0	52.7	62.3	91.3

6.2 GROUNDWATER CONCENTRATIONS OVER TIME

Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.

The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

Phenols have been detected historically in all boreholes with the highest concentrations recorded in BH103. However concentrations in BH103 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

2,4-Dimethylphenol was detected at a concentration of 0.12 μ g/l during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the current Quarter 3 2017 monitoring event, with the exception of 2-Methylphenol (3.48 μ g/l) and 3+4-Methylphenol (2.19 μ g/l) in MW03 during the Quarter 1 2017 monitoring event. However, there is no IGV or GTV for either of these parameters.

6.2.2 Polycyclic Aromatic Hydrocarbons

Figures 6.5 and 6.6 below illustrate that PAHs (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within MW03 and BH104B, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. In addition, a range of PAHs including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Naphthalene have previously been detected in MW03 with **Figures 6.7** to **6.13** illustrating some of the PAH compounds which were detected above their respective IGVs.

Since 2007 concentrations of PAH have shown a marked decrease and since 2010 detections of PAH have been confined to MW03, MW02 and BH104B. Concentrations of Total PAH above the IGV in 2010 were detected during the Quarter 1 monitoring event in MW03 (0.3 μ g/l), Quarter 2 monitoring event in BH104B (1.2 μ g/l) and Quarter 3 monitoring event in MW02 (2.0 μ g/l) and BH104B (0.2 μ g/l). There were no elevated concentrations of Total PAH during the Quarter 4 2010 monitoring event.

No Total PAH detections were recorded throughout 2011 and in Q1 of 2012. Total PAH was detected above the IGV in MW03 in the Q2 2012 monitoring event. No Total PAH exceedances were detected from Quarter 3 2012 to Quarter 4 2013 inclusive. Total PAHs were detected at a concentration of 2.62 μ g/l in MW03 during the Q3 2013 monitoring event however; no detections above the laboratory limit were noted during the subsequent monitoring events up to and including the Quarter 2 2015 monitoring event.

Total PAHs were also above the GTV at BH103 (0.093 μ g/l), BH104B (0.159 μ g/l) and MW03 (0.586 μ g/l) during Quarter 3 2015, at BH103 (0.21 μ g/l), MW03 (0.986 μ g/l) and MW04 (0.079 μ g/l) during Quarter 4 2015, and at BH103 (0.123 μ g/l), BH104B (0.159 μ g/l) and MW04 (0.153 μ g/l) during the Quarter 1 2016 monitoring event. Total PAHs were detected above the IGV at BH103 (0.181 μ g/l), BH104B (0.158 μ g/l), MW03 (0.562 μ g/l) and MW04 (0.151 μ g/l) during Quarter 3 2016, at BH102 (0.124 μ g/l) and MW03 (0.596 μ g/l) during Quarter 4 2016, and at MW01 (0.121 μ g/l), MW03 (0.47 μ g/l) and MW04 (0.148 μ g/l) during the Quarter 1 2017 monitoring event. During the previous Quarter 2 2017 monitoring event, Total PAHs were detected above the IGV at BH103 (0.127 μ g/l), MW03 (0.11 μ g/l) and MW04 (0.194 μ g/l).

During the current Quarter 3 2017 monitoring event, Total Polycyclic Aromatic Hydrocarbons were detected above the IGV limit of 0.1 μ g/l at BH103 (0.108 μ g/l), BH104B (0.139 μ g/l), MW01 (0.145 μ g/l) and MW04 (0.161 μ g/l).

Figure 6.7 illustrates that **Fluoranthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells BH104B (October 2007, 1.33 μ g/l) and MW03 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l. During the Quarter 3 2017 monitoring event Fluoranthene was detected above the limit of detection at MW01 (0.052 μ g/l), however this detection does not exceed the IGV of 1.0 μ g/l.

A similar trend to Fluoranthene has been noted in **Figure 6.8**, with concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in BH104B and MW03 only. 4 no. exceedances of the IGV were noted in BH104B in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in BH104B have decreased below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in MW03, with the highest

concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were slightly above the laboratory limit of detection of 0.01 μ g/l at BH104B (0.08 μ g/l) and MW03 (0.05 μ g/l); however these levels are deemed low. Concentrations of Naphthalene were below the EPA IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 and 2012 quarterly monitoring events and the Quarter 1 to Quarter 3 2014 monitoring periods, inclusive. No detections of Naphthalene were noted from the Quarter 4 2014 monitoring event to the Quarter 2 2015 monitoring event. Naphthalene was detected at BH101 (0.011 μ g/l) and MW03 (0.031 μ g/l) during Quarter 3 2015, and at BH103 (0.095 μ g/l) and at MW04 (0.067 μ g/l) during Quarter 4 2015.

Naphthalene was detected at BH104B (0.034 μ g/l) and MW04 (0.153 μ g/l) during the Quarter 1 2016 monitoring event, at BH103 (0.13 μ g/l), BH104B (0.039 μ g/l), MW03 (0.028 μ g/l) and MW04 (0.12 μ g/l) during Quarter 3 2016, MW03 (0.036 μ g/) during Quarter 4 2016, at BH103 (0.018 μ g/l), MW01 (0.041 μ g/l) and MW04 (0.12 μ g/l) during Quarter 1 2017, and at BH103 (0.066 μ g/l), MW03 (0.11 μ g/l) and MW04 (0.157 μ g/l) during the Quarter 2 2017 monitoring event. During the current Quarter 3 2017 monitoring event, Naphthalene was detected above the laboratory limit of detection at BH103 (0.04 μ g/l), BH104B (0.024 μ g/l) and MW04 (0.161 μ g/l). However, these are all still below the IGV of 1.0 μ g/l.

Figure 6.9 illustrates the concentrations of **Benzo(g,h,i)perylene** in all monitoring wells over time. Elevated concentrations above the IGV were recorded at BH104B (0.087 μ g/l) on one occasion in March 2006.

Figures 6.10 and 6.11 illustrate elevated concentrations above the IGV recorded at MW03 on 6 no. occasions with the most recent elevated concentration recorded during the Quarter 4 2015 monitoring event (0.053 µg/l). The previous elevated concentration detected was in Quarter 3 2015 (0.053 µg/l). The results of all monitoring events from 2010 to the Quarter 2 2015 monitoring event recorded concentrations below the laboratory limit of detection of 0.01 µg/l at all locations. Concentrations were also below the laboratory limit of detection at all locations during the Quarter 1 2016 monitoring event. Benzo(g,h,i)perylene was recorded in MW02 (0.011 µg/l) during Quarter 2 2016, in BH103 (0.015 µg/l) and MW03 (0.035 µg/l) during Quarter 3 2016, in MW03 (0.036 µg/l) during Quarter 4 2016, and in MW03 (0.037 µg/l) during the Quarter 1 2017 monitoring period. However, these are below the IGV of 0.05 µg/l. During the previous Quarter 2 2017 and current Quarter 3 2017 monitoring events, Benzo(g,h,i)perylene was below the laboratory limit of detection at all locations during the action at all locations (0.036 µg/l) during Quarter 4 2016, and in MW03 (0.037 µg/l) during the Quarter 1 2017 monitoring period. However, these are below the IGV of 0.05 µg/l. During the previous Quarter 2 2017 and current Quarter 3 2017 monitoring events, Benzo(g,h,i)perylene was below the laboratory limit of detection at all locations with the exception of MW01 (0.013 µg/l).

Figures 6.12 and 6.13 illustrate the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicate that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 μ g/l. Similarly with the above mentioned trends, the highest concentrations have been detected in MW03 and BH104B. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 μ g/l was detected in MW03; however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in BH101, BH103 and MW01 during this same period.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGVs.

Benzo(a)pyrene was detected above the IGV limit of 0.01 μ g/l at MW03 (0.108 μ g/l) during the Quarter 4 2015 monitoring event. Benzo(a)pyrene was also detected above the IGV at MW03 (0.052 μ g/l) during the Quarter 3 2015 monitoring event. All other results of all monitoring events from 2010 to Quarter 2 2016 monitoring event did not detect other concentrations above the IGV. Benzo(a)pyrene was detected at BH103 (0.04 μ g/l) and MW03 (0.037 μ g/l) during the Quarter 3 2016 monitoring event, at MW03 (0.032 μ g/l) during the Quarter 4 2016 monitoring event, and at MW03 (0.033 μ g/l) during the Quarter 1 2017 monitoring event. During the previous Quarter 2 2017 and current Quarter 3 2017 monitoring events, Benzo(a)pyrene was below the IGV of 0.01 μ g/l and also below the limit of detection at all locations.

RPS

Figure 6.10 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03

Figure 6.11 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03 Since 2010

6.2.3 Total Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within BH103, BH104B and MW03. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12-C16, C16-C21 and C21-C35. **Figure 6.14** illustrates the TPH analysis for the total TPH analysis from C10-C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells MW03, BH104B and BH103 respectively.

Previous quarterly monitoring reports have outlined the hydrocarbon trends recorded in each well since 2010. This report outlines the trends from 2013 up to and including the current monitoring report.

During the Quarter 1, 2013 monitoring event aromatic hydrocarbons were detected in BH103, BH104B and MW04. The predominant aromatic carbon range comprised C12-C16 (30 μ g/l), C16-C21 (280 μ g/l) and C21-C35 (100 μ g/l) in BH103, C10-C12 (30 μ g/l), C12-C16 (110 μ g/l) and C16-C21 (80 μ g/l) in BH104B and C10-C12 (20 μ g/l) and C12-C16 (80 μ g/l) in MW04. Aliphatic hydrocarbons were detected in BH103 in the ranges C12-C16 (70 μ g/l), C16-C21 (100 μ g/l) and C21-C35 (90 μ g/l).

During the Quarter 2, 2013 monitoring event no aliphatic or aromatic hydrocarbons were detected at any location.

During the Quarter 3, 2013 monitoring event, hydrocarbons of the aliphatic range were detected in MW03 only. The detected aliphatic carbon range comprised C10-C16 (290 μ g/l) and C12-C16 (190 μ g/l). No detections of aromatic carbons were measured during the Quarter 3 2013 monitoring event. Total Petroleum Hydrocarbons were not detected at any monitoring location during the Quarter 4, 2013, and Quarter 1 and Quarter 2, 2014 monitoring events.

During the monitoring event for Quarter 3 2014 following ranges of the aliphatic hydrocarbons were recorded for BH104B; C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C21-C35 (10 μ g/l).Total Petroleum Hydrocarbons were not detected at any monitoring location during the Quarter 4, 2014 monitoring event.

During the Quarter 1 2015 monitoring event, hydrocarbons were detected in MW03, MW04, BH103 and BH104B. The predominant aromatic carbon range comprised C21-C35 (14 μ g/l) in BH103, C12-C16 (27 μ g/l) and C16-C21 (15 μ g/l) in BH104B, C12-C16 (14 μ g/l) in MW03 and C12-C16 (15 μ g/l) in MW04. Aliphatic hydrocarbons were detected in the ranges C16-C35 (54 μ g/l) in BH103, C16-C35 (11 μ g/l) in BH104B and C16-C35 (46 μ g/l) and C35-C44 (12 μ g/l) in MW03.

During the Quarter 2 2015 monitoring event, the TPH concentration in the aromatic C21-C35 range was detected at one shallow groundwater wells BH103 (509 μ g/l). The TPH concentration in the aliphatic range was detected at C16-C35 (1760 μ g/l) in BH103 and C12-C16 (225 μ g/l) and C16-C35 (11 μ g/l) in BH104B.

The Quarter 3 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l) at BH104B, C21-C35 at BH103 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (13 μ g/l), C12-C16 (40 μ g/l) and C16-C35 (62 μ g/l) at BH104B and C16-C35 at BH103 (72 μ g/l) and MW03 (14 μ g/l).

The Quarter 4 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (879 μ g/l), C16-C21 (1380 μ g/l) and C21-C35 (694 μ g/l) at BH104B, C21-C35 at BH103 (60 μ g/l) and C10-C12 (13 μ g/l) and C12-C16 (21 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (495 μ g/l), C12-C16 (3080 μ g/l) and C16-C35 (3360 μ g/l) at BH104B and C16-C35 (231 μ g/l) and C35-C44 (14 μ g/l) at BH103.

The Quarter 1 2016 monitoring event detected TPH in samples from the well BH103 were in the aliphatic range C16-C35 (132 μ g/l) and from well MW04 in the aromatic range C12-C16 (15 μ g/l).

The Quarter 2 2016 monitoring event detected TPH in samples from the well BH103 and were in the aliphatic range C16-C35 (150 μ g/l) and in the aromatic range C21-C35 (57 μ g/l) and from well MW04 in the aromatic range C12-C16 (20 μ g/l).

The Quarter 3 2016 monitoring event detected TPH in samples from the well BH103 in the aliphatic ranges C16-C35 (35 μ g/l), C35-C44 (10 μ g/l) and in the aromatic range C21-C35 (11 μ g/l), well BH104B in the aromatic ranges C12-C16 (25 μ g/l) and C16-C21 (12 μ g/l) and from well MW04 in the aromatic range C12-C16 (23 μ g/l).

The Quarter 4 2016 monitoring event detected TPH in samples from the well BH102 in the aliphatic range C16-C35 (13 μ g/l), well BH103 in the aliphatic ranges C16-C35 (160 μ g/l), C35-C44 (14 μ g/l) and in the aromatic range C21-C35 (47 μ g/l), well BH104B in the aromatic ranges C12-C16 (12 μ g/l), well MW03 in the aliphatic range C16-C35 (14 μ g/l) and from well MW04 in the aromatic ranges the aromatic ranges C10-C12 (13 μ g/l) and C12-C16 (23 μ g/l).

The Quarter 1 2017 monitoring event, TPH was detected in samples from the well BH102 in the aliphatic range C16-C35 (11 μ g/l), well BH103 in the aliphatic range C16-C35 (15 μ g/l), well MW01 in the aliphatic range C16-C35 (23 μ g/l), well MW03 in the aliphatic range C16-C35 (40 μ g/l) and in the aromatic range C21-C35 (13 μ g/l), and well MW04 in the aromatic ranges C10-C12 (11 μ g/l) and C12-C16 (21 μ g/l).

During the previous Quarter 2 2017 monitoring event, TPH was detected in samples from the well BH103 in the aliphatic range C16-C35 (50 μ g/l), well BH104B in well the aliphatic ranges C12-C16 (13 μ g/l) and C16-C35 (37 μ g/l), and in the aromatic ranges C12-C16 (15 μ g/l) and C16-C21 (20 μ g/l), well MW02 in the aliphatic range C16-C35 (12 μ g/l), well MW03 in the aromatic range C12-C16 (18 μ g/l), and well MW04 in the aromatic range C12-C16 (29 μ g/l).

During the current Quarter 3 2017 monitoring event, TPH was detected in samples from the well BH103 in the aliphatic range C16-C35 (177 μ g/l) and in the aromatic range C21-C35 (71 μ g/l), well MW01 in the aliphatic range C16-C35 (120 μ g/l), well MW03 in the aliphatic range C16-C35 (61 μ g/l) and in the aromatic range C21-C35 (40 μ g/l), and well MW04 in the aromatic ranges C10-C12 (17 μ g/l) and C12-C16 (24 μ g/l).

7 CONCLUSIONS

- In accordance with the criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence Register No. W0184-02, groundwater monitoring was carried out at the ENVA Ireland site on the 28th of August 2017 corresponding to Quarter 3 of 2017. Samples were collected at 8 groundwater monitoring wells during this event.
- The results presented have been referenced against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. no 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.
- Results of the BTEX and MTBE demonstrate that the levels of Benzene, Toluene, Ethylbenzene, m&p Xylene, o-xylene and MTBE were all below the recommended EPA IGVs.
- The Quarter 3 2017 results of the polycyclic aromatic hydrocarbons indicate that Total PAHs were above the EPA IGV of 0.1 μg/l at four monitoring wells, BH103 (0.108 μg/l), BH104B (0.139 μg/l), MW01 (0.145 μg/l) and MW04 (0.161 μg/l).
- Diethylphthalate was detected above the laboratory limit of detection at MW01 (1.4 μ g/l). However, there is no IGV for Diethylphthalate.
- 1,1-dichloroethane at MW03 (1.7 μg/l) and MW04 (3.3 μg/l), and MTBE at BH103 (1.2 μg/l), MW03 (2.7 μg/l) and MW04 (2.0 μg/l) were detected above the laboratory limits of detection. All other VOCs and SVOCs were below their respective laboratory limits of detection.
- Samples were analysed for speciated phenols to include chlorophenols and the results indicate that there were no detections above the laboratory limits of detection.
- For the current Quarter 3 2017 monitoring event, TPH detections in samples from BH103 in the aliphatic range C16-C35 (177 μg/l) and in the aromatic range C21-C35 (71 μg/l), well MW01 in the aliphatic range C16-C35 (120 μg/l), well MW03 in the aliphatic range C16-C35 (61 μg/l) and in the aromatic range C16-C35 (40 μg/l), and well MW04 in the aromatic ranges C10-C12 (17 μg/l) and C12-C16 (24 μg/l). Each of these is therefore over the limit of detection which is 10 μg/l. For the previous Quarter 2 2017 monitoring event, TPH detections in samples from the well BH103 in the aliphatic range C16-C35 (50 μg/l), well BH104B in well the aliphatic ranges C12-C16 (13 μg/l) and C16-C35 (37 μg/l), and in the aromatic ranges C12-C16 (15 μg/l) and C16-C21 (20 μg/l), well MW02 in the aliphatic range C16-C35 (12 μg/l), well MW03 in the aromatic range C12-C16 (18 μg/l), and well MW04 in the aromatic range C12-C16 (29 μg/l).
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Enva Portlaoise

2017 Groundwater Compliance Monitoring Quarter 4 (Oct – Dec 2017)

Document Control Sheet

Client:	Enva Ireland Ltd.					
Project Title:	Enva Portlaoise 2017 Groundwater Compliance Monitoring					
Document Title:	Quarter 4 (Oct – Dec 2017)	Quarter 4 (Oct – Dec 2017)				
Document No:	MDE0973Rp0034					
	· · ·					
Text Pages:	49	Appendices:	-			

Rev.	Status	Date	Author(s)		Author(s) Reviewed By			Approved By
D01	Draft	3 rd January 2018	DC	DouCaline	Лſ	Joula Whate	DC	DouCaline
A01	Client Approval	19 th January 2018	DC	DurCaline	JN	Joela Whohe	DC	DurCaline

Copyright RPS Group Limited. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by RPS Group Limited no other party may use, make use of or rely on the contents of this report.

The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS Group Limited for any use of this report, other than the purpose for which it was prepared.

RPS Group Limited accepts no responsibility for any documents or information supplied to RPS Group Limited by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made.

RPS Group Limited has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy. No part of this report may be copied or reproduced, by any means, without the written permission of RPS Group Limited

rpsgroup.com/ireland

TABLE OF CONTENTS

1		INTRODUCTION	1
	1.1	BACKGROUND	1
	1.2	OBJECTIVES & SCOPE OF WORK	1
2		REVIEW OF PREVIOUS DATA	2
	2.1	INFORMATION SOURCES	2
	2.2	SITE SETTING	2
	2.3	REGIONAL SETTING	4
		2.3.1 Geology	4
		2.3.2 Hydrogeology	4
	2.4	SITE GROUND CONDITIONS	4
		2.4.1 Licence Conditions	5
3		METHODOLOGY	6
	3.1	LABORATORY ANALYSIS	6
	3.2	PRESENTATION & INTERPRETATION OF RESULTS	8
4		QUARTER 4 RESULTS NOVEMBER 2017	9
5		DISCUSSION OF QUARTER 4 RESULTS	2
5	5.1	DISCUSSION OF QUARTER 4 RESULTS	2 2
5	5.1 5.2	DISCUSSION OF QUARTER 4 RESULTS 2 FIELD PARAMETERS 2 RESULTS OF BTEX & MTBE 2	2 2 2
5	5.1 5.2 5.3	DISCUSSION OF QUARTER 4 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)2	2 2 3
5	5.1 5.2 5.3 5.4	DISCUSSION OF QUARTER 4 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2	2 2 3 3
5	5.1 5.2 5.3 5.4 5.5	DISCUSSION OF QUARTER 4 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2	2 2 3 3 4
5	5.1 5.2 5.3 5.4 5.5 5.6	DISCUSSION OF QUARTER 4 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2	2 2 3 3 4 4
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	DISCUSSION OF QUARTER 4 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2	2 2 3 3 4 4 4
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	DISCUSSION OF QUARTER 4 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2	2 2 3 3 4 4 4 7
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1	DISCUSSION OF QUARTER 4 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2GROUNDWATER LEVELS OVER TIME2	2 2 3 3 4 4 7
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 4 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2GROUNDWATER LEVELS OVER TIME3	2 2 3 3 4 4 7 7 2
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 4 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2GROUNDWATER LEVELS OVER TIME36.2.1 Phenols3	2 2 3 4 4 7 2 2
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 4 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2GROUNDWATER LEVELS OVER TIME36.2.1 Phenols36.2.2 Polycyclic Aromatic Hydrocarbons3	2 2 3 4 4 7 2 2 4
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 4 RESULTS2FIELD PARAMETERS2RESULTS OF BTEX & MTBE2RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)2RESULTS OF SPECIATED PHENOLS2RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS2RESULTS OF VOLATILE ORGANIC COMPOUNDS2RESULTS OF TOTAL PETROLEUM HYDROCARBONS2HISTORICAL RESULTS & TRENDS2GROUNDWATER LEVELS OVER TIME36.2.1 Phenols36.2.2 Polycyclic Aromatic Hydrocarbons (TPH)4	2 2 3 4 4 7 2 4 6

LIST OF FIGURES

Figure 2.1 – Site Location	3
Figure 3.1 – Site Layout Plan with Groundwater Monitoring Locations	7
Figure 6.1 – Ground Elevation (mAOD) in all Monitoring Wells	28
Figure 6.2 – Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells	29
Figure 6.3 – Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells	30
Figure 6.4 – Phenol Concentrations in all Monitoring Wells	33
Figure 6.5 – PAH (Total) Concentrations in all Monitoring Wells	37
Figure 6.6 – PAH (Total) Concentrations in all Monitoring Wells Since 2010	38
Figure 6.7 – Fluoranthene Concentrations in all Monitoring Wells	39
Figure 6.8 – Naphthalene Concentrations in all Monitoring Wells	40
Figure 6.9 – Benzo (g,h,i) perylene Concentrations	41
Figure 6.10 – Benzo (g,h,i) perylene in Monitoring Wells GW4 & GW7	42
Figure 6.11 – Benzo (g,h,i) perylene in Monitoring Wells GW4 & GW7 Since 2010	43
Figure 6.12 – Benzo (a) pyrene Concentrations in all Monitoring Wells	44
Figure 6.13 – Benzo (a) pyrene Concentrations in all Monitoring Wells Since 2010	45
Figure 6.14 – TPH (Carbon Range C10-C44) in all Monitoring Wells	48

LIST OF TABLES

Table 2.1 – Ground Conditions	5
Table 2.2 – Licence Parameters	5
Table 3.1 – Analytical Methodologies – ALS Environmental	6
Table 4.1 – Groundwater Levels (Quarter 4, 2017)	10
Table 4.2 – Results of Field Parameters Measured at each Groundwater Monitoring Well (Qua	arter 4,
2017)	11
Table 4.3 – Results of BTEX and MTBE	12
Table 4.4 – Results of Speciated PAHs	12
Table 4.5 – Results of Speciated Phenols	14
Table 4.6 – Results of Semi-Volatile Organic Compounds (SVOCs)	15
Table 4.7 – Results of Volatile Organic Compounds (VOCs)	17
Table 4.8 – Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)	20
Table 4.9 – Results of Inorganic Analysis	21
Table 6.1 – Monthly Rainfall Data for Year 2013 for Oak Park, Carlow	31
Table 6.2 – Monthly Rainfall Data for Year 2014 for Oak Park, Carlow	31
Table 6.3 – Monthly Rainfall Data for Year 2015 for Oak Park, Carlow	31
Table 6.4 – Monthly Rainfall Data for Year 2016 for Oak Park, Carlow	31
Table 6.5 – Monthly Rainfall Data for Year 2017 for Oak Park, Carlow	31

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd (Enva) to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence, Register No. W0184-02.

Enva Ireland has been operating under Industrial Emissions Licence Register No. W0184-02 since June 2017, having replaced the previous Waste licence, W0184-01, granted in January 2004. Enva is required to submit a report to the EPA on a quarterly basis, outlining the existing groundwater quality underlying the site.

A suitably qualified environmental consultant from RPS collected groundwater samples from a series of 8 monitoring wells within the site boundary on the 14th of November 2017. These on-site wells have been renamed under the current licence, W0184-02, as follows: GW1, formerly BH101; GW2, formerly BH102; GW3, formerly BH103; GW4, formerly BH104B; GW5, formerly MW01; GW6, formerly MW02; GW7, formerly MW03; and GW8, formerly MW04). The samples underwent laboratory analysis for the suite of parameters specified in Schedule C.6 of Industrial Emissions Licence W0184-02. This report outlines the results of the Quarter 4 monitoring for 2017 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 4 2017 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Industrial Emissions Licence W0184-02 and any available EPA documents from the EPA website;
- Quarterly Groundwater Monitoring Reports (Quarter 1 2004 to Quarter 4 2005), URS;
- Quarterly Groundwater Monitoring Reports (Quarter 1 2006 to Quarter 3 2017), RPS;
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007);
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008);
- Hydrogeological Review and Assessment Report, Ref MDE0973Rp0017F01, RPS (2014); and
- Baseline Environment Report, Ref: MDE0973Rp0104.

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1.5 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 2.1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 3.1**. The site is largely covered in hardstanding with some open areas in the far north and northeast of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

Figure 2.1 – Site Location

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoils in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological Survey of Ireland (GSI) as a Locally Important Karstified Aquifer (LI). Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising three groundwater abstraction well fields comprising of two abstraction wells in each well field. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends to within 3.2 km of the Enva site but does not encompass the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk; the accuracy of this location is also 1 km so it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2.1**.

Table 2.1 – Ground Conditions

Strata	Extent	Thickness	Description
Made Ground	GW4	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium, well rounded gravels.
Sand and Gravel	Confined to south east corner of site (GW1, GW4 and GW7)	0-2 m	In general the transition from boulder clay to sand is gradual with changes from gravel, to sandy gravel, to sand.
Limestone Bedrock	Encountered in GW5, GW6 and GW7.	Top of limestone ranges from 7.7m to 9m below ground level.	Pale grey, fine-grained bedrock, differentiated from boulders by its un-weathered nature.

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

2.4.1 Licence Conditions

The Industrial Emissions Licence requires the regular monitoring and sampling of boreholes GW1, GW2, GW3, GW4, GW5, GW6, GW7 and GW8. The parameters requiring measurement or analysis are presented in **Table 2.2**.

Table 2.2 – Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement
	Groundwater Level	Groundwater Level
	рН	рН
Field Parameters	Temperature	Temperature
	Dissolved Oxygen	Dissolved Oxygen
	Electrical Conductivity	Electrical Conductivity
	Visual Inspection	Visual Inspection
	Mineral Oil	Mineral Oil
	BTEX & MTBE	BTEX & MTBE
Organics	PAHs	PAHs
Organics	Phenols	Phenols
	VOCs	VOCs
	SVOCs	SVOCs
Inorganics	-	Total Alkalinity, Calcium, Manganese, Sulphate, Cyanide (Total), Chloride, Sodium,

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (GW1, formerly BH101; GW2, formerly BH102; GW3, formerly BH103; GW4, formerly BH104B; GW5, formerly MW01; GW6, formerly MW02; GW7, formerly MW03; and GW8, formerly MW04) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.

Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, ALS Environmental for the suite of analyses listed in **Table 3.1**. **Table 3.1** also indicates the analytical techniques used by the laboratory.

Parameter	Analytical Methodology
Phenols	GC-MS
Speciated PAHs	GC-MS
BTEX & MTBE	Headspace GC-MS
Petroleum Hydrocarbons	Headspace GC-MS
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS

Table 3.1 – Analytical Methodologies – ALS Environmental

Figure 3.1 – Site Layout Plan with Groundwater Monitoring Locations

Shallow Monitoring Well locations Deep Monitoring Well locations

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

æ

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 4 2017 results are tabulated in **Section 4** and discussed with respect to previous results in **Section 5**. Results are compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

Previous monitoring reports (as listed in **Section 2.1**) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in **Section 6** and include the results of this Quarter 4 2017 monitoring round. As the monitoring continues in accordance with the Industrial Emissions licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 4 RESULTS NOVEMBER 2017

The results of all field measurements and laboratory analysis are presented in this section. Satisfactory calibration of the Dissolved Oxygen meter was unable to be achieved on the day of monitoring. This resulted in a lack of field measurements. Results are primarily compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010) & Amendment 2016 (S.I. No 366 of 2016), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'*.

The results are discussed in relation to appropriate guideline values in **Section 5**. Results that are shown to be above the relevant threshold or guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Monitoring Well	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	ly GW6 (formerly GW7 (forme MW02) MW03)		GW8 (formerly MW04)
Depth (mbgl)	6.75	6.44	4.29	4.67	22.77	22.77 30.84 9.72		6.35
Static Water Level (mbgl)	4.08	2.26	1.72	0.37	2.71	3.77	4.09	3.76
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	98.98	100.29	99.44	101.15	99.39	99.35	98.68	-
Free Phase Oil (mm)	No detection	No detection	No detection	No detection	No detection	No detection	No detection	No detection

mbgl = metres below ground level

Monitoring Well	pH (pH Units)	Temperature (°C)	Conductivity (μS/cm)	Dissolved O ₂ (ppm)	Observations
GW1 (formerly BH101)	7.41	13.1	1106	5.52	Clear on purging with little suspended solids
GW2 (formerly BH102)	7.53	13.1	407	3.37	Clear but some suspended solids
GW3 (formerly BH103)	6.97	13.0	736	2.88	Cloudy grey/brown colour with some sediment
GW4 (formerly BH104B)	7.29	12.0	762	3.20	Clear on purging but with some suspended solids. Slight sheen and no odour
GW5 (formerly MW01)	7.31	12.0	659	3.65	Some sediment but samples clear
GW6 (formerly MW02)	7.60	13.2	711	3.07	Clear on purging, slight odour
GW7 (formerly MW03)	7.12	13.0	1223	2.93	Clear/slightly cloudy with slight sheen and odour
GW8 (formerly MW04)	6.99	13.2	1511	3.22	Light cloudy brown, slight odour and high level of sandy sediment
Groundwater Threshold Value	-	-	1875	-	-
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25°C	1000	No abnormal change	-

Table 4.2 – Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 4, 2017)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Table 4.3 – Results of BTEX and MTBE

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	GW6 (formerly MW02)	GW7 (formerly MW03)	GW8 (formerly MW04)	GTV	IGV
Benzene	μg/l	1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.75	1.0
Toluene	µg/l	1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	525	10
Ethylbenzene	µg/l	1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-	10
m & p-xylene	µg/l	1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-	10 Note 1
o-xylene	µg/l	1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-	10 ^{Note 1}
MTBE (Methyl Tertiary Butyl Ether)	µg/I	1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	8. <i>7</i>	1.8	10	30

Note: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	GW6 (formerly MW02)	GW7 (formerly MW03)	GW8 (formerly MW04)	GTV	IGV
Naphthalene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	0.107	-	1.0
Acenaphthylene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	-
Acenaphthene	μg/l	0.01	<0.01	<0.01	0.031	<0.01	<0.01	<0.01	0.02	0.012	-	-
Fluorene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.016	0.028	-	-
Phenanthrene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	-
Anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	10,000
Fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.011	<0.10	-	1.0
Pyrene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.078	<0.10	-	-
Benzo(a)anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.021	<0.10	-	-
Chrysene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	-

Table 4.4 – Results of Speciated PAHs

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	GW6 (formerly MW02)	GW7 (formerly MW03)	GW8 (formerly MW04)	GTV	IGV
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.10	-	0.5
Benzo(k)fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	0.05
Benzo(a)pyrene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.036	<0.10	-	0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	0.05
Dibenz(a,h)anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	<0.10	-	-
Benzo(g,h,i)perylene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.041	<0.10	-	0.05
Total EPA-16 PAHs	µg/l	0.1	<0.01	<0.01	0.031	<0.01	<0.01	<0.01	0.243	0.147	0.075	0.1

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.5 – Results of Speciated Phenols

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	GW6 (formerly MW02)	GW7 (formerly MW03)	GW8 (formerly MW04)	GTV	IGV
Phenol	µg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	0.5
2,4,6-Trichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.12	<1.0	<1.0	-	200
2,4-Dichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2-Methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
3+4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	GW6 (formerly MW02)	GW7 (formerly MW03)	GW8 (formerly MW04)	GTV	IGV
Phenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
2-Chlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
Bis(2-chloroethyl)ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroisopropyl)ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Nitrobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
3&4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Isophorone	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2- chloroethoxy)methane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Naphthalene	μg/l	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	1.0
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobutadiene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4,6-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4,5-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylnaphthalene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Table 4.6 – Results of Semi-Volatile Organic Compounds (SVOCs)

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly	GW2 (formerly	GW3 (formerly	GW4 (formerly	GW5 (formerly	GW6 (formerly	GW7 (formerly	GW8 (formerly	GTV	IGV
2 Chlanana chthalana		1.0	BH101)	BH102)	BH103)	BH104B)			101003)	101004)		
2-Chioronaphthalene	µg/I	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dimethylphthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,6-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dibenzofuran	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Diethylphthalate	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Fluorene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Bromophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.03
Phenanthrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10,000
Pyrene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzyl Butyl Phthalate	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(a)anthracene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chrysene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(b)fluoranthene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
Benzo(k)fluoranthene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Benzo(a)pyrene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.01
Indeno(1,2,3-c,d)pyrene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Dibenz(a,h)anthracene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(g,h,i)perylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	GW6 (formerly MW02)	GW7 (formerly MW03)	GW8 (formerly MW04)	GTV	IGV
Bis(2-ethylhexyl)phthalate	μg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	-

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.7 – Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	GW6 (formerly MW02)	GW7 (formerly MW03)	GW8 (formerly MW04)	GTV	IGV
Chloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	8.9	-	-
Bromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Vinyl Chloride	μg/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.375	-
Trichlorofluoromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,1-dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	30
1,1-dichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.3	3.1	-	-
Cis-1,2-dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	8.7	1.8	10	30
2,2-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,1,1-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	500
1,2-dichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.25	-
1,1-Dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trans-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.75	1.0
1,2-dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.5	70
Dibromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	GW6 (formerly MW02)	GW7 (formerly MW03)	GW8 (formerly MW04)	GTV	IGV
Bromodichloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Cis-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trans-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Toluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	525	10
1,1,2-Trichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dibromochloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Tetrachloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.5	40
1,2-Dibromoethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	1.0
1,1,1,2-Tetrachloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Ethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
m&p-Xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
Styrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
o-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
Isopropylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
N-Propylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3,5-Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Tert-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Sec-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
P-Isopropyltoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	GW6 (formerly MW02)	GW7 (formerly MW03)	GW8 (formerly MW04)	GTV	IGV
1,2-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
n-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dibromo-3- chloropropane	μg/l	1.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	-
1,2,4-Trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Hexachlorobutadiene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10
1,2,3-Trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	GW6 (formerly MW02)	GW7 (formerly MW03)	GW8 (formerly MW04)	GTV	IGV
Aliphatic > C10-C12	μg/l	10	<10	<10	<40	<10	<10	<10	<40	<40	-	-
Aliphatic > C12-C16	μg/l	10	<10	15	<40	<10	<10	<10	<40	<40	-	-
Aliphatic > C16-C35	μg/l	10	<10	70	263	<10	49	<10	<40	<40	-	-
Aliphatic > C35-C44	μg/l	10	<10	13	<40	<10	<10	<10	<40	<40	-	-
Aliphatic > C10-C44	μg/l	10	<10	98	263	<10	49	<10	<40	<40	-	10
Aromatic > C10-C12	μg/l	10	<10	<10	<40	<10	<10	<10	<40	<40	-	-
Aromatic > C12-C16	μg/l	10	<10	<10	<40	<10	<10	<10	<40	<40	-	-
Aromatic > C16-C21	μg/l	10	<10	<10	<40	<10	<10	<10	<40	<40	-	-
Aromatic > C21-C35	μg/l	10	<10	<10	89	<10	11	<10	<40	<40	-	-
Aromatic > C35-C44	μg/l	10	<10	<10	<40	<10	<10	<10	<40	<40	-	-
Aromatic > C10-C44	µg/l	10	<10	<10	89	<10	11	<10	<40	<40		10

Table 4.8 – Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

RPS
Table 4.9 – Results of Inorganic Analysis

Parameter	Units	Laboratory Limit of Detection	GW1 (formerly BH101)	GW2 (formerly BH102)	GW3 (formerly BH103)	GW4 (formerly BH104B)	GW5 (formerly MW01)	GW6 (formerly MW02)	GW7 (formerly MW03)	GW8 (formerly MW04)	GTV	IGV
Total Alkalinity	mg/l	10	343	313	356	188	324	301	384	348	-	No abnormal change
Calcium	mg/l	0.2	138	79.3	200	57.5	62.8	58.2	112	430	-	200
Manganese	mg/l	0.007	0.0258	0.083	1.28	0.0428	0.0454	0.0135	0.555	4.96	-	0.05
Sulphate	mg/l	0.1	38.9	5.6	25.57	12.1	13	17.8	8.8	<4.4	187.5	200
Cyanide (Total)	mg/l	0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	0.375	0.01
Chloride	mg/l	4	122	6.1	33.5	13.8	12.4	13.4	141	269	187.5	30
Sodium	mg/l	0.1	76.5	3.72	10.3	11.4	21	19.3	84.1	124	150	150

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

5 DISCUSSION OF QUARTER 4 RESULTS

The results of the Quarter 4 monitoring event for 2017 are presented in **Table 4.1** to **4.9** of this report. For the purpose of this report, the results are compared against the Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations (S.I. No. 9 of 2010) where available. Where GTVs are not available results are compared against the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in Table 4.2. Groundwater samples recorded pH levels ranging between 6.97 and 7.60, all within the EPA Interim guideline range of \geq 6.5 to \leq 9.5. Temperature measurements ranged from 12.0°C to 13.2°C and were below the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 407 μ S/cm and 1511 μ S/cm. Three measurements of Electrical Conductivity were above the IGV of 1000 μ S/cm at GW1 (1106 μ S/cm), GW7 (1223 μ S/cm) and GW8 (1511 μ S/cm), but all however were below the GTV limit of 1875 μ S/cm.

Dissolved oxygen levels ranged between 2.88 and 5.52 ppm. Factors such as climate, nutrients in the water, suspended solids; organic wastes and groundwater inflow can all influence the dissolved oxygen values.

Observations relating to colour and odour varied from well to well as detailed in Table 4.2.

5.2 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in **Table 4.3**. BTEX concentrations are below the limit of detection at all locations. MTBE was detected at GW7 (8.7 μ g/l) and GW8 (1.8 μ g/l), however these concentrations were below the GTV of 10 μ g/l and the IGV of 30 μ g/l. MTBE was below the laboratory limit of detection and IGV at all other locations.

Previous detections of MTBE was in the Quarter 3 monitoring event of 2017 and recorded concentrations above the laboratory limit of detection at GW3 (1.2 μ g/l), GW7 (2.7 μ g/l) and GW8 (2.0 μ g/l). MTBE was also above the laboratory limit of detection at GW3 (0.81 μ g/l), GW7 (1.73 μ g/l) and GW8 (1.73 μ g/l) during Quarter 2 2017, at GW7 (2.4 μ g/l) and GW8 (1.2 μ g/l) during Quarter 1 2017, at GW7 (1.5 μ g/l) and GW8 (1.2 μ g/l) during Quarter 4 2016, and at GW7 (1.2 μ g/l) during Quarter 3 2016. These detections are still below the GTV limit however. Prior to this there was a detection of MTBE at BH104B in the Quarter 1 monitoring event of 2012 with a recorded concentration of 280 μ g/l which is above the GTV. This was the only recorded exceedance in Quarter 1 2012.

Monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at GW3 at a concentration of 16 μ g/l. Subsequent monitoring in 2010 recorded concentrations below the

laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at GW3 were recorded at 63 μ g/l in December 2009.

5.3 RESULTS OF SPECIATED POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)

The results of the Speciated PAH analysis during this monitoring period are presented in Table 4.4.

The laboratory limit of detection for Total EPA-16 PAHs is 0.1 μ g/l and has been lowered for comparison with the EPA IGV of 0.1 μ g/l; however this is not accredited. This laboratory limit of detection is above the EPA GTV of 0.075 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l.

Total polycyclic aromatic hydrocarbons were above the IGV limit of 0.1 μ g/l at GW7 (0.243 μ g/l), and GW8 (0.147 μ g/l). Total PAHs were below the IGV of 0.1 μ g/l and the GTV of 0.075 μ g/l at all other locations.

Total PAHs were previously detected above the IGV at GW3 (0.108 μ g/l), GW4 (0.139 μ g/l), GW5 (0.145 μ g/l), and GW8 (0.161 μ g/l) during Quarter 3 2017, GW3 (0.127 μ g/l), GW7 (0.11 μ g/l) and GW8 (0.194 μ g/l) during Quarter 2 2017, at GW5 (0.121 μ g/l), GW7 (0.47 μ g/l) and GW8 (0.148 μ g/l) during the Quarter 1 2017 monitoring event.

The results of the speciated polycyclic aromatic hydrocarbon analysis detected a number of different compounds in GW3, GW4, GW5 and GW8 above the laboratory limit of detection. Benzo(a)pyrene was detected at GW7 (0.036 μ g/l) above the IGV of 0.01 μ g/l. However none of the other compounds were above their respective IGV limits at any location.

5.4 **RESULTS OF SPECIATED PHENOLS**

During previous quarterly monitoring events and sample analysis, total monohydric phenol was determined and historically has been below the laboratory limit of detection of 10 μ g/l since December 2008. It should be noted that the laboratory limit of detection is above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in **Table 4.5**. The speciated phenol analysis reduces the laboratory limit of detection to $1.0 \,\mu$ g/l for individual parameters.

The results of the current Quarter 4 2017 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 1.0 μ g/l at all locations.

2-Methylphenol (3.48 μ g/l) and 3+4-Methylphenol (2.19 μ g/l) in GW7 were detected above the laboratory limit of detection during Quarter 1 2017, and 4-Chloro-3-methylphenol at GW4 (1.37 μ g/l) above the laboratory limit of detection during the Quarter 1 2015 analysis. With the exception of these, all other results are consistently below detection limit since the 2012 quarterly monitoring events.

5.5 RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.6.

There are no GTVs for individual SVOC parameters. No SVOCs were detected above the relevant IGVs during this monitoring period, consistent with the results from the previous 2017, 2016, 2015 and 2014 monitoring periods. It should be noted that the laboratory limit of detection was however above the IGVs for some SVOCs, for example the result for 1,2,4-Trichlorobenzene was <1.0 μ g/l but the IGV for this parameter is 0.40 μ g/l, but testing at this limit is not accredited.

The Quarter 3 2013 monitoring event detected two SVOC compounds, Acenaphthene (1.1 μ g/l) and Fluorene (1.5 μ g/l) in GW7. Prior to this detection the Quarter 2 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene in GW7 at concentrations of 2.4 μ g/l and 0.12 μ g/l respectively.

5.6 **RESULTS OF VOLATILE ORGANIC COMPOUNDS**

The results of the Volatile Organic Compound analysis are presented in Table 4.7.

Chloroethane at GW7 (1.1 μ g/l) and GW8 (8.9 μ g/l), 1,1-dichloroethane at GW7 (2.3 μ g/l) and GW8 (3.1 μ g/l), and MTBE at GW7 (8.7 μ g/l) and GW8 (1.8 μ g/l) were the only compounds detected above the limit of detection during the Quarter 4 2017 monitoring event. However, these are below their respective limits and all other compounds are below their respective laboratory limits of detection.

Historic groundwater monitoring events detected some parameters above the laboratory limit of detection in November 2009, corresponding to Quarter 4 of 2009. Historically 1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene were detected above the laboratory limits of detection, where applicable.

The results of the Quarter 3 and Quarter 4 monitoring events of 2009 and all subsequent monitoring events indicate that there were no other exceedances of the GTVs or IGVs for specific parameters.

5.7 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in **Table 4.8**.

The EPA IGV of 10 μ g/l for Total Hydrocarbons is deemed comparable with the results for Total Petroleum Hydrocarbons. Some detections of TPH in both the aliphatic and aromatic range were observed during the current Quarter 4 2017 monitoring event.

Detections were found in samples from the following wells; at GW2 detections were in the aliphatic ranges C12-C16 (15 μ g/l), C16-C35 (70 μ g/l) and C35-C44 (13 μ g/l), at GW3 detections were the

aliphatic range C16-C35 (263 μ g/l) and in the aromatic range C21-C35 (89 μ g/l), and at GW5 detections were in the aliphatic range C16-C35 (49 μ g/l) and in the aromatic range C21-C35 (11 μ g/l).

The previous Quarter 3 2017 monitoring event detected TPH in the wells; at GW3 in the aliphatic range C16-C35 (177 μ g/l) and in the aromatic range C21-C35 (71 μ g/l), at GW5 in the aliphatic range C16-C35 (120 μ g/l), at GW7 in the aliphatic range C16-C35 (61 μ g/l) and in the aromatic range C21-C35 (40 μ g/l), and at well GW8 in the aromatic ranges C10-C12 (17 μ g/l) and C12-C16 (24 μ g/l).

The Quarter 2 2017 monitoring event detected TPH in the wells; at GW3 in the aliphatic range C16-C35 (50 μ g/l), at GW4 in the aliphatic ranges C12-C16 (13 μ g/l) and C16-C35 (37 μ g/l), and in the aromatic ranges C12-C16 (15 μ g/l) and C16-C21 (20 μ g/l), at GW6 in the aliphatic range C16-C35 (12 μ g/l), at GW7 in the aromatic range C12-C16 (18 μ g/l), and at well GW8 in the aromatic range C12-C16 (29 μ g/l).

The Quarter 1 2017 monitoring event detected TPH in the wells GW2 in the aliphatic range C16-C35 (11 μ g/l), GW3 in the aliphatic range C16-C35 (15 μ g/l at GW5 in the aliphatic range C16-C35 (23 μ g/l), at GW7 in the aliphatic range C16-C35 (40 μ g/l) and in the aromatic range C21-C35 (13 μ g/l), and at well GW8 in the aromatic ranges C10-C12 (11 μ g/l) and C12-C16 (21 μ g/l).

The Quarter 4 2016 monitoring event detected TPH in the wells GW2 in the aliphatic range C16-C35 (13 μ g/l), GW3 in the aliphatic range C16-C35 (160 μ g/l), C35-C44 (14 μ g/l) and in the aromatic range C21-C35 (47 μ g/l), GW4 in the aromatic range C12-C16 (12 μ g/l), GW7 in the aliphatic range C16-C35 (14 μ g/l), and GW8 in the aromatic ranges C10-C12 (13 μ g/l) and C12-C16 (23 μ g/l)

The Quarter 3 monitoring event detected TPH in the well GW3 in the aliphatic range C16-C35 (35 $\mu g/I$), C35-C44 (10 $\mu g/I$) and in the aromatic range C21-C35 (11 $\mu g/I$), at GW4 detections were in the aromatic range C12-C16 (25 $\mu g/I$), C16-C21 (12 $\mu g/I$) and at well GW8 detections were in the aromatic range C12-C16 (23 $\mu g/I$).

The Quarter 2 monitoring event of 2016 detected TPH in the well GW3 were in the aliphatic range C16-C35 (150 μ g/l) and in the aromatic range C21-C35 (57 μ g/l) and from well GW8 in the aromatic range C12-C16 (20 μ g/l).

The Quarter 1 monitoring event of 2016 detected TPH in the aliphatic range C16-C35 (132 μ g/l) at GW3 and in the aliphatic range C12-C16 (15 μ g/l) at GW8.

The Quarter 4 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (879 μ g/l), C16-C21 (1380 μ g/l) and C21-C35 (694 μ g/l) at GW4, C21-C35 at GW3 (60 μ g/l) and C10-C12 (13 μ g/l) and C12-C16 (21 μ g/l) at GW8. TPH concentrations were detected in the aliphatic ranges C10-C12 (495 μ g/l), C12-C16 (3080 μ g/l) and C16-C35 (3360 μ g/l) at GW4 and C16-C35 (231 μ g/l) and C35-C44 (14 μ g/l).

The Quarter 3 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l) at GW4, C21-C35 at GW3 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at GW8. TPH concentrations were detected in the aliphatic ranges C10-C12 (13 μ g/l), C12-C16 (40 μ g/l) and C16-C35 (62 μ g/l) at GW4 and C16-C35 at GW3 (72 μ g/l) and GW7 (14 μ g/l).

The Quarter 2 monitoring event of 2015 detected TPH in the aromatic range C21-C35 at BH03 (509 μ g/l). TPH concentrations were detected in the aliphatic ranges C16-C35 at GW3 (1760 μ g/l) and GW4 (337 μ g/l), and C12-C16 at GW4 (225 μ g/l).

The Quarter 1 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 at wells GW7 (14 μ g/l), GW8 (15 μ g/l) and GW4 (27 μ g/l), C16-C21 at GW4 (15 μ g/l), and C21-C35 (14 μ g/l) at GW3. TPH concentrations were detected in the aliphatic ranges C16-C35 and C35-C44 at GW7 (46 μ g/l and 12 μ g/l respectively), GW3 (54 μ g/l) and GW4 (11 μ g/l).

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 4 2017 monitoring round. As the monitoring continues in accordance with the Industrial Emissions Licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

6.1 GROUNDWATER LEVELS OVER TIME

Figure 6.1 to **Figure 6.3** below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 6.2 illustrates groundwater elevations (mAOD) in shallow groundwater wells (GW1 to GW4) ranging between approximately 98 mAOD and 102 mAOD.

Figure 6.3 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (GW5 to GW7). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 97.5 mAOD to approximately 100 mAOD.

Figure 6.2 – Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; the general direction of flow in the shallow and deeper groundwater bearing unit is in an easterly or north easterly direction however there have been some occasional historic cases of groundwater flowing in a south-easterly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Éireann to examine the relationship between compounds and rainfall events. The data from Oak Park was chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in **Tables 6.1** to **6.5**.

Table 6.1 – M	Ionthly Rainfall	Data for Year	2013 for Oak	Park, Carlow
---------------	------------------	----------------------	--------------	--------------

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.8	57.6	44.4	35.6	37.5	32.3	85.6	24.4	170.0	27.7	136.6

Table 6.2 – Monthly Rainfall Data for Year 2014 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	147.2	176.7	65.0	52.6	78.6	61.9	24.6	122.1	18.2	138.2	165.6	47.7

Table 6.3 – Monthly Rainfall Data for Year 2015 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
Rainfall (mm)	66.0	36.3	53.5	26.3	89.4	29.7	79.4	83.0	17.9	56.8	110.0	270.9

Table 6.4 – Monthly Rainfall Data for Year 2016 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	Jul	Aug	Sep	Oct	Nov	Dec
Rainfall (mm)	110.9	95.7	40.6	64.3	61.6	61.7	29.6	46.0	97.4	32.3	26.3	80.2

Table 6.5 – Monthly Rainfall Data for Year 2017 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	Jul	Aug	Sep	Oct	Nov	Dec
Rainfall (mm)	36.3	57.8	66.6	15.8	81.8	91.0	52.7	62.3	91.3	62.9	n/a	84.2

6.2 GROUNDWATER CONCENTRATIONS OVER TIME

Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.

The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

Phenols have been detected historically in all boreholes with the highest concentrations recorded in GW3. However concentrations in GW3 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

2,4-Dimethylphenol was detected at a concentration of 0.12 μ g/l during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the current Quarter 4 2017 monitoring event, with the exception of 2-Methylphenol (3.48 μ g/l) and 3+4-Methylphenol (2.19 μ g/l) in GW7 during the Quarter 1 2017 monitoring event. However, there is no IGV or GTV for either of these parameters.

6.2.2 Polycyclic Aromatic Hydrocarbons

Figures 6.5 and 6.6 below illustrate that PAHs (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within GW7 and GW4, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. In addition, a range of PAHs including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Naphthalene have previously been detected in GW7 with **Figures 6.7** to **6.13** illustrating some of the PAH compounds which were detected above their respective IGVs.

Since 2007 concentrations of PAH have shown a marked decrease and since 2010 elevated concentrations of PAH have been largely confined to GW7, GW6 and GW4. Concentrations of Total PAH above the GTV in 2010 were detected during the Quarter 1 monitoring event in GW7 ($0.3 \mu g/I$), Quarter 2 monitoring event in GW4 ($1.2 \mu g/I$) and Quarter 3 monitoring event in GW6 ($2.0 \mu g/I$) and GW4 ($0.2 \mu g/I$). There were no elevated concentrations of Total PAH during the Quarter 4 2010 monitoring event.

No Total PAH detections were recorded throughout 2011 and in Q1 of 2012. Total PAH was detected above the IGV in GW7 in the Q2 2012 monitoring event. No Total PAH exceedances were detected from Quarter 3 2012 to Quarter 4 2013 inclusive. Total PAHs were detected at a concentration of 2.62 μ g/l in GW7 during the Q3 2013 monitoring event however; no detections above the laboratory limit were noted during the subsequent monitoring events up to and including the Quarter 2 2015 monitoring event.

Total PAHs were also above the GTV at GW3 (0.093 μ g/l), GW4 (0.159 μ g/l) and GW7 (0.586 μ g/l) during Quarter 3 2015, at GW3 (0.21 μ g/l), GW7 (0.986 μ g/l) and GW8 (0.079 μ g/l) during Quarter 4 2015, and at GW3 (0.123 μ g/l), GW4 (0.159 μ g/l) and GW8 (0.153 μ g/l) during the Quarter 1 2016 monitoring event. Total PAHs were detected above the GTV at GW3 (0.181 μ g/l), GW4 (0.158 μ g/l), GW7 (0.562 μ g/l) and GW8 (0.151 μ g/l) during Quarter 3 2016, at GW2 (0.124 μ g/l) and GW7 (0.596 μ g/l) during Quarter 4 2016, at GW5 (0.121 μ g/l), GW7 (0.47 μ g/l) and GW8 (0.148 μ g/l) during Quarter 1 2017, and at GW3 (0.127 μ g/l), GW7 (0.11 μ g/l) and GW8 (0.194 μ g/l) during the Quarter 2 2017 monitoring event. During the previous Quarter 3 2017 monitoring event, Total PAHs were detected above the GTV at GW3 (0.145 μ g/l) and GW8 (0.161 μ g/l).

During the current Quarter 4 2017 monitoring event, Total Polycyclic Aromatic Hydrocarbons were detected above the IGV limit of 0.1 μ g/l and GTV of 0.075 μ g/l at GW7 (0.243 μ g/l) and GW8 (0.147 μ g/l).

Figure 6.7 illustrates that **Fluoranthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells GW4 (October 2007, 1.33 μ g/l) and GW7 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l. During the Quarter 4 2017 monitoring event Fluoranthene was detected above the limit of detection at GW7 (0.011 μ g/l), however this detection does not exceed the IGV of 1.0 μ g/l.

A similar trend to Fluoranthene has been noted in **Figure 6.8**, with historic concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in GW4 and GW7 only. 4 no. exceedances of the IGV were noted in GW4 in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in GW4 have decreased

below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in GW7, with the highest concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were slightly above the laboratory limit of detection of 0.01 μ g/l at GW4 (0.08 μ g/l) and GW7 (0.05 μ g/l); however these levels are deemed low. Concentrations of Naphthalene were below the EPA IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 and 2012 quarterly monitoring events and the Quarter 1 to Quarter 3 2014 monitoring periods, inclusive. No detections of Naphthalene were noted from the Quarter 4 2014 monitoring event to the Quarter 2 2015 monitoring event. Naphthalene was detected at GW1 (0.011 μ g/l) and GW7 (0.031 μ g/l) during Quarter 3 2015, and at GW3 (0.095 μ g/l) and at GW8 (0.067 μ g/l) during Quarter 4 2015, but were below the IGV.

Naphthalene was also detected at GW4 (0.034 μ g/l) and GW8 (0.153 μ g/l) during the Quarter 1 2016 monitoring event, at GW3 (0.13 μ g/l), GW4 (0.039 μ g/l), GW7 (0.028 μ g/l) and GW8 (0.12 μ g/l) during Quarter 3 2016, GW7 (0.036 μ g/) during Quarter 4 2016, at GW3 (0.018 μ g/l), GW5 (0.041 μ g/l) and GW8 (0.12 μ g/l) during Quarter 1 2017, and at GW3 (0.066 μ g/l), GW7 (0.11 μ g/l) and GW8 (0.157 μ g/l) during the Quarter 2 2017 monitoring event. During the previous Quarter 3 2017 monitoring event, Naphthalene was detected above the laboratory limit of detection at GW3 (0.04 μ g/l), GW4 (0.024 μ g/l) and GW8 (0.161 μ g/l). During the current Quarter 4 2017 monitoring event, Naphthalene was detected above the laboratory limit of detection at GW3 (0.107 μ g/l). However, these are all still below the IGV of 1.0 μ g/l.

Figure 6.9 illustrates the concentrations of **Benzo(g,h,i)perylene** in all monitoring wells over time. Elevated concentrations above the IGV were recorded at GW4 (0.087 μ g/l) and GW7 (1.283 μ g/l) on one occasion in March 2006.

Figures 6.10 and 6.11 illustrate elevated concentrations above the IGV recorded at GW7 on 6 no. occasions with the most recent elevated concentration recorded during the Quarter 4 2015 monitoring event (0.053 µg/l). The previous elevated concentration detected was in Quarter 3 2015 (0.053 µg/l). The results of all monitoring events from 2010 to the Quarter 2 2015 monitoring event recorded concentrations below the laboratory limit of detection of 0.01 µg/l at all locations. Concentrations were also below the laboratory limit of detection at all locations during the Quarter 2 2016, in GW3 (0.015 µg/l) and GW7 (0.035 µg/l) during Quarter 3 2016, in GW3 (0.015 µg/l) and GW7 (0.035 µg/l) during Quarter 3 2016, in GW7 (0.036 µg/l) during Quarter 1 2017, and below the limit of detection at locations during the Quarter 2 2017 monitoring event Benzo(g,h,i)perylene detected in GW5 (0.013 µg/l). During the current Quarter 4 2017 monitoring event Benzo(g,h,i)perylene detected in GW7 (0.041 µg/l). However, these are below the IGV of 0.05 µg/l.

Figures 6.12 and 6.13 illustrate the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicate that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 μ g/l. Similarly with the above mentioned trends, the highest concentrations have been detected in GW7 and GW4. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 μ g/l was detected in GW7; however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in GW1, GW3 and GW5 during this same period.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result

possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGVs.

Benzo(a)pyrene was detected above the IGV limit of 0.01 μ g/l at GW7 (0.108 μ g/l) during the Quarter 4 2015 monitoring event. Benzo(a)pyrene was also detected above the IGV at GW7 (0.052 μ g/l) during the Quarter 3 2015 monitoring event. All other results of all monitoring events from 2010 to Quarter 2 2016 monitoring event did not detect other concentrations above the IGV. Benzo(a)pyrene was detected at GW3 (0.04 μ g/l) and GW7 (0.037 μ g/l) during the Quarter 3 2016 monitoring event. All other results of all monitoring the Quarter 3 2016 monitoring event did not detect other concentrations above the IGV. Benzo(a)pyrene was detected at GW3 (0.04 μ g/l) and GW7 (0.037 μ g/l) during the Quarter 3 2016 monitoring event, at GW7 (0.032 μ g/l) during Quarter 4 2016, and at GW7 (0.033 μ g/l) during the Quarter 1 2017 monitoring event. During the Quarter 2 2017 and previous Quarter 3 2017 monitoring events, Benzo(a)pyrene was below the IGV of 0.01 μ g/l and also below the limit of detection at all locations. During the current Quarter 4 2017 monitoring event, Benzo(a)pyrene was detected at GW7 (0.036 μ g/l) but below the limit of detection at all other locations.

Figure 6.6 – PAH (Total) Concentrations in all Monitoring Wells Since 2010

41

Figure 6.11 – Benzo (g,h,i) perylene in Monitoring Wells GW4 & GW7 Since 2010

6.2.3 Total Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within GW3, GW4 and GW7. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12-C16, C16-C21 and C21-C35. **Figure 6.14** illustrates the TPH analysis for the total TPH analysis from C10-C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells GW7, GW4 and GW3 respectively.

Previous quarterly monitoring reports have outlined the hydrocarbon trends recorded in each well since 2010. This report outlines the trends from 2015 up to and including the current monitoring report.

During the Quarter 1 2015 monitoring event, hydrocarbons were detected in GW7, GW8, GW3 and GW4. The predominant aromatic carbon range comprised C21-C35 (14 μ g/l) in GW3, C12-C16 (27 μ g/l) and C16-C21 (15 μ g/l) in GW4, C12-C16 (14 μ g/l) in GW7 and C12-C16 (15 μ g/l) in GW8. Aliphatic hydrocarbons were detected in the ranges C16-C35 (54 μ g/l) in GW3, C16-C35 (11 μ g/l) in GW4 and C16-C35 (46 μ g/l) and C35-C44 (12 μ g/l) in GW7.

During the Quarter 2 2015 monitoring event, the TPH concentration in the aromatic C21-C35 range was detected at one shallow groundwater wells GW3 (509 μ g/l). The TPH concentration in the aliphatic range was detected at C16-C35 (1760 μ g/l) in GW3 and C12-C16 (225 μ g/l) and C16-C35 (11 μ g/l) in GW4.

The Quarter 3 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l) at GW4, C21-C35 at GW3 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at GW8. TPH concentrations were detected in the aliphatic ranges C10-C12 (13 μ g/l), C12-C16 (40 μ g/l) and C16-C35 (62 μ g/l) at GW4 and C16-C35 at GW3 (72 μ g/l) and GW7 (14 μ g/l).

The Quarter 4 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (879 μ g/l), C16-C21 (1380 μ g/l) and C21-C35 (694 μ g/l) at GW4, C21-C35 at GW3 (60 μ g/l) and C10-C12 (13 μ g/l) and C12-C16 (21 μ g/l) at GW8. TPH concentrations were detected in the aliphatic ranges C10-C12 (495 μ g/l), C12-C16 (3080 μ g/l) and C16-C35 (3360 μ g/l) at GW4 and C16-C35 (231 μ g/l) and C35-C44 (14 μ g/l) at GW3.

The Quarter 1 2016 monitoring event detected TPH in samples from the well GW3 were in the aliphatic range C16-C35 ($132 \mu g/l$) and from well GW8 in the aromatic range C12-C16 ($15 \mu g/l$).

The Quarter 2 2016 monitoring event detected TPH in samples from the well GW3 and were in the aliphatic range C16-C35 (150 μ g/l) and in the aromatic range C21-C35 (57 μ g/l) and from well GW8 in the aromatic range C12-C16 (20 μ g/l).

The Quarter 3 2016 monitoring event detected TPH in samples from the well GW3 in the aliphatic ranges C16-C35 (35 μ g/l), C35-C44 (10 μ g/l) and in the aromatic range C21-C35 (11 μ g/l), well GW4 in the aromatic ranges C12-C16 (25 μ g/l) and C16-C21 (12 μ g/l) and from well GW8 in the aromatic range C12-C16 (23 μ g/l).

The Quarter 4 2016 monitoring event detected TPH in samples from the well GW2 in the aliphatic range C16-C35 (13 μ g/l), well GW3 in the aliphatic ranges C16-C35 (160 μ g/l), C35-C44 (14 μ g/l) and in the aromatic range C21-C35 (47 μ g/l), well GW4 in the aromatic ranges C12-C16 (12 μ g/l), well GW7 in the aliphatic range C16-C35 (14 μ g/l) and from well GW8 in the aromatic ranges the aromatic ranges C10-C12 (13 μ g/l) and C12-C16 (23 μ g/l).

The Quarter 1 2017 monitoring event detected TPH in samples from the well GW2 in the aliphatic range C16-C35 (11 μ g/l), well GW3 in the aliphatic range C16-C35 (15 μ g/l), well GW5 in the aliphatic range C16-C35 (23 μ g/l), well GW7 in the aliphatic range C16-C35 (40 μ g/l) and in the aromatic range C21-C35 (13 μ g/l), and well GW8 in the aromatic ranges C10-C12 (11 μ g/l) and C12-C16 (21 μ g/l).

The Quarter 2 2017 monitoring event detected TPH in samples from the well GW3 in the aliphatic range C16-C35 (50 μ g/l), well GW4 in well the aliphatic ranges C12-C16 (13 μ g/l) and C16-C35 (37 μ g/l), and in the aromatic ranges C12-C16 (15 μ g/l) and C16-C21 (20 μ g/l), well GW6 in the aliphatic range C16-C35 (12 μ g/l), well GW7 in the aromatic range C12-C16 (18 μ g/l), and well GW8 in the aromatic range C12-C16 (29 μ g/l).

During the previous Quarter 3 2017 monitoring event, TPH was detected in samples from the well GW3 in the aliphatic range C16-C35 (177 μ g/l) and in the aromatic range C21-C35 (71 μ g/l), well GW5 in the aliphatic range C16-C35 (120 μ g/l), well GW7 in the aliphatic range C16-C35 (61 μ g/l) and in the aromatic range C21-C35 (40 μ g/l), and well GW8 in the aromatic ranges C10-C12 (17 μ g/l) and C12-C16 (24 μ g/l).

During the current Quarter 4 2017 monitoring event, TPH was detected in samples from the well GW2 in the aliphatic ranges C12-C16 (15 μ g/l), C16-C35 (70 μ g/l) and C35-C44 (13 μ g/l), well GW3 in the aliphatic range C16-C35 (263 μ g/l) and in the aromatic range C21-C35 (89 μ g/l), and in well GW5 in the aliphatic range C16-C35 (49 μ g/l) and in the aromatic range C21-C35 (11 μ g/l).

7 CONCLUSIONS

- In accordance with the criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence Register No. W0184-02, groundwater monitoring was carried out at the ENVA Ireland site on the 14th of November 2017 corresponding to Quarter 4 of 2017. Samples were collected at 8 groundwater monitoring wells during this event.
- The results presented have been referenced against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. no 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.
- Results of the BTEX and MTBE demonstrate that the levels of Benzene, Toluene, Ethylbenzene, m&p Xylene, o-xylene were all below the recommended EPA IGVs. MTBE was detected at GW7 (8.7 µg/l) and GW8 (1.8 µg/l), however these concentrations are below the GTV.
- The Quarter 4 2017 results of the polycyclic aromatic hydrocarbons indicate that Total PAHs were above the GTV of 0.075 μg/l and the EPA IGV of 0.1 μg/l at two monitoring wells, GW7 (0.243 μg/l) and GW8 (0.147 μg/l).
- Chloroethane at GW7 (1.1 μg/l) and GW8 (8.9 μg/l), 1,1-dichloroethane at GW7 (2.3 μg/l) and GW8 (3.1 μg/l), and MTBE at GW7 (8.7 μg/l) and GW8 (1.8 μg/l) were detected above the laboratory limits of detection. All other VOCs and SVOCs were below their respective laboratory limits of detection.
- Samples were analysed for speciated phenols to include chlorophenols and the results indicate that there were no detections above the laboratory limits of detection.
- For the current Quarter 4 2017 monitoring event, TPH detections in samples from GW2 in the aliphatic ranges C12-C16 (15 μg/l), C16-C35 (70 μg/l) and C35-C44 (13 μg/l), well GW3 in the aliphatic range C16-C35 (263 μg/l) and in the aromatic range C21-C35 (89 μg/l), and in well GW5 in the aliphatic range C16-C35 (49 μg/l) and in the aromatic range C21-C35 (11 μg/l). Each of these is therefore over the limit of detection which is 10 μg/l. For the previous Quarter 3 2017 monitoring event, TPH detections in samples from the well GW3 in the aliphatic range C16-C35 (177 μg/l) and in the aromatic range C21-C35 (71 μg/l), well GW5 in the aliphatic range C16-C35 (120 μg/l), well GW7 in the aliphatic range C16-C35 (61 μg/l) and in the aromatic range C21-C35 (40 μg/l), and well GW8 in the aromatic ranges C10-C12 (17 μg/l) and C12-C16 (24 μg/l).
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Appendix 5

Enva Ireland Limited

2017 CSM Update

Report for: Enva Ireland Ltd

Date: 1st February 2018

Report No.: BRE17017Rp01A02

BlueRock Environmental Limited

Suite 332, The Capel Building, Galway. Mary's Abbey, Dublin 7.

33 Lower Salthill,

THIS PAGE IS LEFT BLANK INTENTIONALLY

DOCUMENT INFORMATION

Project Title:	Enva Ireland Ltd
Project No.:	BRE17017
EPA Licence No.:	W0184-02
Report Ref.:	BRE17017Rp01A02
Date	1 st February 2018
Status:	Final – issued to client
Client:	Enva Ireland Ltd
Client Details:	Clonminam Industrial Estate. Portlaoise, Co Laois

Document Production / Approval Record

	Name	Signature	Date	Position
Prepared by (consultant /professional)	Niall Mitchell / Grainne Barron	Nial Mitche	01/02/2018	Hydrogeologist /Chartered Engineer
Approved by (consultant /professional)	Niall Mitchell	Nial Mitche	01/02/2018	Hydrogeologist /Chartered Engineer

DISCLAIMER

This report has been prepared by BlueRock Environmental Ltd (BREL) with all reasonable skill, care and diligence within the terms of the contract with the client, incorporating our terms and conditions and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

The conclusions and recommendations contained in this report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by BREL has not been independently verified by BREL, unless otherwise stated in the report. Where assessments of works or costs identified in this report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

BREL disclaim any undertaking or obligation to advise any person of any change in any matter affecting the report, which may come or be brought to BREL attention after the date of the report.

Certain statements made in the report that are not historical facts may constitute estimates, projections or other forward looking statements and even though they are based on reasonable assumptions as of the date of the report, such forward-looking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. BREL specifically does not guarantee or warrant any estimate or projections contained in this report.

Where field investigations are carried out, these have been restricted to a level of detail required to meet the stated objectives of the services. The results of any measurements taken may vary spatially or with time and further confirmatory measurements should be made after any significant delay in issuing this report.

TABLE OF CONTENTS

1	INTR	ODUCTIO	ON	1
	1.1	Introe	DUCTION	1
	1.2	SCOPE	OF WORK	1
	1.3	Previo	DUS REPORTS	2
2	BAC	KGROUN	ID SITE INFORMATION	3
	2.1	SITE LO	OCATION AND SETTING	3
	2.2	SITE D	ESCRIPTION	5
	2.3	REGIO	NAL & SITE GEOLOGY	5
	2.4	Hydro	DGEOLOGY	6
		2.4.1	Aquifer Classification & Vulnerability	6
		2.4.2	Shallow Groundwater	8
		2.4.3	Deep Bedrock Groundwater	8
	2.5	Hydro	DLOGY/SITE DRAINAGE	10
	2.6	SENSIT	TIVE SITES	10
3	REVI	EW OF 2	008 GROUNDWATER RISK ASSESSMENT	11
	3.1	SUMM	IARY OF 2008 GROUNDWATER RISK ASSESSMENT REPORT	11
		3.1.1	Groundwater Flow	11
		3.1.2	Potential Sources of Contamination	11
		3.1.3	2008 Conceptual Site Model (CSM)	13
4	2014	GROUNI	DWATER RISK ASSESSMENT	15
	4.1	GROUN	NDWATER FLOW MAPPING	15
	4.2	Updat	ED RISK ASSESSMENT	15
	4.3	2014 L	JPDATED CSM	16
5	2017	GROUNI	DWATER FLOW INTERPRETATION	17
		5.1.1	Shallow Groundwater	17
		5.1.2	Bedrock Groundwater	18
6	2017	GROUNI	DWATER QUALITY & TREND ANALYSIS	21
	6.1	Guidei	LINE VALUES	21
	6.2	ORGAN	VICS	21
		6.2.1	Total Petroleum Hydrocarbons	21
		6.2.2	BTEX & MTBE	24
		6.2.3	Polycyclic Aromatic Hydrocarbons (PAHs)	25
		6.2.4	Total Phenols	25
	6.3	CHLOR	INATED SOLVENTS	26
	6.4	INORG	ANICS	26
		6.4.1	Manganese	26
		6.4.2	Iron	27
		6.4.3	Chloride	28
		6.4.4	Dissolved Oxygen	28

	6.5	HEAVY METALS	28
		6.5.1 Nickel	28
		6.5.2 Arsenic	28
		6.5.3 Copper	28
		6.5.4 Lead	29
7	POTEN	ITIAL SOURCES	30
8	2017 U	PDATED CSM & HYDROGEOLOGICAL ASSESSMENT	32
	8.1	SOURCE ZONES	32
	8.2	Pathways	34
	8.3	RECEPTOR	35
	8.4	RISK ASSESSMENT	35
9	CONCL	_USIONS	11
10	RECON	IMENDATIONS	13
LIST OF TABLES

Table 1.1	Previous Reports & Data	. 2
Table 1.2	Amended Monitoring Well Labels	. 2
Table 2.1	Summary of Site Geology	. 6
Table 5.1	Groundwater Levels & Well Depths – Q3 Monitoring 2017	20
Table 8.1	2017 CSM SPR Linkages	40

LIST OF FIGURES

Figure 2.1	Site Location
Figure 2.2	Site Layout 4
Figure 2.3	Groundwater Bedrock Aquifers7
Figure 2.2	Source Protection Zones7
Figure 2.3	Monitoring Well Locations
Figure 5.1	Groundwater Levels – Shallow Boreholes 18
Figure 5.2	Groundwater Levels – Bedrock Boreholes 19
Figure 6.1	Manganese Levels 2014-2017 27
Figure 6.2	Iron Levels 2014-2017
Figure 8.1	Potential Source Zones
Figure A	Section X - X'
Figure B	Bedrock Groundwater Flow – February 2017
Figure C	Bedrock Groundwater Flow – May 2017
Figure D	Bedrock Groundwater Flow – August 2017
Figure E	Shallow Groundwater Flow – February 2017
Figure F	Shallow Groundwater Flow - May 2017
Figure G	Shallow Groundwater Flow – August 2017

LIST OF APPENDICES

- Appendix A EPA Correspondence
- Appendix B Borehole Logs
- Appendix C Groundwater Levels
- Appendix D Summary Laboratory data
- Appendix E Laboratory Certificates 2017

1 INTRODUCTION

1.1 INTRODUCTION

BlueRock Environmental Ltd was requested to undertake an update of the previous 2014 Conceptual Site Model and Hydrogeological Risk Assessment previous undertaken at the Enva Ireland (Enva) facility at Clonminam Industrial Estate, Portlaoise, Co. Laois. The most recent assessment for the facility is outlined in an RPS report (MDE0788Rp00017F01) produced for Enva in 2014 taking account of quarterly groundwater monitoring between 2014 and 2018.

This updated hydrogeological CSM report has been undertaken in accordance with Condition 6.15 of the recently issued revised EPA licence No. W0184-02 issued on the 15th June 2017 and in accordance with recent correspondence from the EPA, Ref: RI008474.

- 6.15 Ground Water
- 6.15.1 The licensee shall annually assess groundwater monitoring data and determine compliance under this licence with the European Communities Environmental Objectives (Groundwater) Regulations 2010 as amended.
- 6.15.2 A report on this assessment shall be included in the AER.
- 6.15.3 The licensee shall, in the event of a failure to demonstrate compliance with the European Communities Environmental Objectives (Groundwater) Regulations 2010 as amended or if instructed by the Agency, arrange for the completion, by an appropriately qualified consultant/professional, of a hydrogeological risk assessment to:
 - *i.* identify the risk of groundwater contamination arising from licensed activities;
 - ii. assess the impact of extant groundwater contamination;
 - iii. propose preventative and, as appropriate, remedial actions to be undertaken;
 - iv. propose groundwater compliance values to be maintained at compliance points; and,
 - v. address other matters that may be identified by the Agency.
- 6.15.4 A hydrogeological risk assessment prepared under this condition shall be submitted to the Agency according to a schedule to be directed by the Agency.
- 6.15.5 The licensee shall implement the following according to a schedule to be agreed or directed by the Agency:
 - *i.* any proposals or recommendations arising from a hydrogeological risk assessment;
 - *ii.* the installation of new groundwater monitoring boreholes where necessary to characterise groundwater quality; and
 - iii. any other matters that may be directed by the Agency.

The recent EPA correspondence is included in **Appendix A**.

1.2 SCOPE OF WORK

The following scope of works was undertaken during the completion of this assessment:

- 1. A detailed review of all previous RPS monitoring data and risk assessments undertaken at the facility including quarterly groundwater monitoring results.
- 2. Develop an up-to-date CSM and Risk Assessment for the facility based on the information provided and the EPA licence requirements.

1.3 PREVIOUS REPORTS

A number of reports and water quality laboratory data were reviewed relating to the facility – see **Table 1.1** below.

Report Title	Author and Date
Groundwater Risk Assessment Report - MDE0788Rp0001	RPS, 20/11/2008
Hydrogeological Review and Assessment Report - MDE0973Rp0017F01	RPS, 09/06/2014
Quarterly Groundwater Monitoring Data – RPS Consultants	2004 - 2017

 Table 1.1
 Previous Reports & Data

NOTE

As part of the licence review process and the granting of a new EPA licence in mid-2017, all monitoring wells on site have been relabelled as outlined in **Table 1.2** below.

Shallow	Wells	Bedrock	Wells
Former Borehole ID	New Borehole ID	Former Borehole ID	New Borehole ID
BH101	GW1	MW01	GW5
BH102	GW2	MW02	GW6
BH103	GW3	MW03	GW7
BH104b	GW4		
MW04	GW8		

Table 1.2 Amended Monitoring Well Labels

This report is based on the spreadsheet data supplied by RPS consultants and the 2008 and 2014 CSM reports. BREL take no responsibility in relation to the accuracy of the data provided.

It should be noted that in 2004 borehole BH104 was converted to a ground sump and a new borehole was drilled labelled as BH104b. BH104 sump remains on site and is located in close proximity to BH104b.

2 BACKGROUND SITE INFORMATION

2.1 SITE LOCATION AND SETTING

Enva Ireland operates a waste treatment and management facility to the south-west of Portlaoise town in Clonminam Industrial Estate. The site occupies an area of approximately 1.5 hectares and comprises of a packaged waste storage area, waste oil and contaminated soil treatment plant. The site is bounded to the north and east by land belonging to Irish Rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west, the site is adjoined by further industrial land, as well as residential land. The site location is shown in **Figure 2.1**.

The site has been in operation since 1978, and the layout and site function have remained relatively consistent. The site layout is shown on **Figure 2.2**. The site is largely covered in hardstanding surface. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

The wider regional area in which the site is located is gently undulating. The site itself slopes gently to the south west but to the east of the site the ground slopes gently towards the River Triogue, located approximately 1.5 km to the east.

Figure 2.1 Site Location

2.2 SITE DESCRIPTION

The Enva facility accepts waste oils, packaged waste, mixed fuels and contaminated soil under the waste licence W0184-02. Waste oils are processed on-site to form a new final fuel product which is tested in the in-house laboratory prior to transportation and distribution from the site. Accepted waste oils and the new final fuel product are stored in bulk storage tanks in the fully bunded tank farm. Packaged waste includes mixed plastic packaging, paint, solid oily waste, filters and batteries. Packaged waste is stored on site in a bunded area where it is segregated before being transported to relevant waste disposal or recovery facilities. Contaminated soil is directed to designated soil storage bays where it undergoes treatment through bio-remediation and soil stabilisation.

The Enva site consists of the following infrastructure;

- Administration building including on-site laboratory
- Maintenance workshop
- Mixed fuel underground storage tank
- No 3. unloading gantries
- Bunded waste storage areas
- Enclosed process building for storage for oily rags and filters
- Bunded mixed fuel storage tank
- Bunded oil tank farm consisting of 42 storage tanks.
- Bunded soil storage bay
- Sludge holding area
- Bunded wastewater lime treatment plant for treatment of wastewater
- Boiler house

Bunds are integrity tested on a 3 yearly basis with the most recent testing undertaken in 2017. BREL understands that all integrity testing results have described the bunds as being in adequate condition and fit for purpose. All bunds will be integrity tested again in 2018 as per Enva's waste licence requirements.

The wastewater lime treatment plant is fully bunded and treated effluent is discharged to sewer and ultimately the Portlaoise waste water treatment plant. Treated effluent is sampled prior to release from the wastewater treatment plant.

All surfaces are covered in hardstanding cover with the exception of a section of open ground to the east of the soil storage bay. The section of open ground is used for storage of clean redundant plant. A surface water drainage system is in place to capture run-off from roofs and the hardstanding concrete yard. The surface water drainage system is fitted with three Class I interceptors. The two interceptors located on the line that discharges surface water off site to the municipal network are installed with shut-off valves.

Underground foul sewer and surface water drainage pipelines were inspected in June 2016 at a number of locations and their integrity was considered sufficient.

2.3 REGIONAL & SITE GEOLOGY

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoil's in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

The Enva facility lies on limestone bedrock which is overlain by glacial clayey sands and boulder clay.

The glacial subsoil consists of gravelly clay and loose clayey sand at a thickness of between 4.5 m and 9.0 m above the underlying limestone bedrock. A 3.5 m depth of made ground has been identified in the southern portion of the site close to the southern site boundary. The made ground is underlain by sand and gravel above the bedrock.

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2.1**. The logs for each of the boreholes are presented as **Appendix B**.

Strata Extent Thickness Description Dominantly concrete, with hardcore Made Ground BH104 0-3.5m fill and clay Includes fine to medium, well **Boulder Clay** All boreholes <8.5m rounded gravels Confined to south In general, the transition from boulder clay to sand is gradual with Sand and east corner of site 0 - 2.0m(BH101, BH104 changes from gravel to sandy Gravel and MW03) gravel to sand. Not penetrated. Top of Pale grey, fine grained bedrock, Encountered in Limestone limestone ranges from MW01, MW02 differentiated from boulders by Bedrock 7.5 m to 9.0 metres and MW03 unweathered nature. below ground level.

A schematic cross section of ground conditions across the site is presented as Figure A.

Table 2.1	Summary of Site Geology
-----------	-------------------------

2.4 HYDROGEOLOGY

2.4.1 Aquifer Classification & Vulnerability

The limestone bedrock is Dinatian Pure Bedded Limestone and has been categorised as a Locally Important Aquifer which is moderately productive only in local zones (LI). The new national groundwater vulnerability map issued by the Geological Survey of Ireland (Jan 2014) indicates the north eastern area of the site is defined as high vulnerability and the southern area of the site is mapped as moderate vulnerability.

A Regionally Important Karstifed Aquifer (Rk) lies approximately 0.5 km to the east of the Enva site (see **Figure 2.3**). This regionally important aquifer provides groundwater supply to the Portlaoise and Meelick public water systems. Each system has a dedicated source protection scheme developed within both inner and outer protection zones delineated.

Figure 2.3 Groundwater Bedrock Aquifers

The Portlaoise Source Protection Zone (SPZ) comprises three groundwater abstraction well fields, comprising of two abstraction wells each, supply the Portlaoise public water system. The abstraction well fields are located to the north and north-east of Enva. The source protection zone for the abstraction well fields extends to within 3.5 km of the Enva site.

The Meelick SPZ is located approximately 1.85 metres southeast of Enva with the Inner Protection Zone the closest area to the Enva facility.

Figure 2.2 Source Protection Zones

The GSI8/ have mapped annual groundwater recharge in the Portlaoise area as being between 101 mm/yr and 150 mm/yr. Direct groundwater recharge across the Enva site is likely to be lower than this range due to the hardstanding cover. The area of open ground to the north east of the site will afford some recharge to the underlying groundwater. Groundwater quality status mapping from the Environmental Protection Agency (EPA) Envision website, indicates that groundwater quality in the Portlaoise area has a 'Good' status under the EU Water Framework Directive criteria.

2.4.2 Shallow Groundwater

Shallow groundwater in the glacial subsoil, above the limestone bedrock, has the potential for connection to the deep groundwater through a diffuse network of factures and fissures in the limestone. Bi-annual groundwater flow mapping at the site indicates that shallow groundwater flows eastwards towards the River Triogue. It is thought that shallow groundwater is in hydraulic continuity with the River Triogue.

Groundwater levels were historically automatically logged using data loggers from June 2008 to October 2008. Data logger and rainfall data revealed at this time that shallow groundwater had an almost instantaneous response to rainfall which may be indicative of low storage potential in the subsoil. Direct recharge potential to the subsoil from the rainfall was considered to be low due to the hardstanding that covers much of the site.

Five shallow groundwater monitoring wells are present on site, GW1 (formerly BH101), GW2 (formerly BH102), GW3 (formerly BH103), GW4 (formerly BH104B) and GW8 (formerly MW04) – see **Figure 2.5**. Four wells were drilled in 2001 and were drilled to depths of 5.7 mbgl to 6.8 mbgl. An additional well, GW8/MW04, was drilled in 2011 to a depth of 7.5 mbgl.

2.4.3 Deep Bedrock Groundwater

Deep groundwater in the limestone bedrock flows within fractures in the limestone. Deep groundwater flow direction has been mapped to flow in varying directions on different occasions. In 2005 URS mapped groundwater to flow in a south-south easterly direction, while RPS mapping in 2005 determined that groundwater flow was to the north.

The most recent groundwater mapping of the deep groundwater indicates that flow is in a north easterly direction. The variation in groundwater flow direction in the deep groundwater may be due to the fact that the monitoring boreholes are screened within fracture zones at different depths and no vertical connection has been proven between these fracture zones. Groundwater contour mapping of the deep groundwater assumes that a connection exists between the fractures zones however this may not be the case and groundwater may be flowing along several different planes.

A comparison between data logger data and rainfall data from June 2008 to October 2008 indicates that deep groundwater shows a response to rainfall events. Recharge to the deep groundwater will be restricted by the overlying low permeability subsoil and the hardstanding cover at the surface. Three deep groundwater monitoring wells are located on site, GW1 (formerly MW01), GW2 (formerly MW02) and GW3 (formerly MW03) – see **Figure 2.5**. The deep groundwater monitoring wells were drilled in 2004 to depths of between 15 mbgl and 32 mbgl.

Figure 2.3 Monitoring Well Locations

2.5 HYDROLOGY/SITE DRAINAGE

The River Triogue flows in a northerly direction through the eastern region of Portlaoise town and is approximately 1.5 km from the Enva site. South of Portlaoise town the River Triogue has a Q-rating of 4 corresponding to a 'Good' quality status under the Water Framework Directive. The quality status of the River Triogue was measured at an EPA monitoring point adjacent to The Portlaoise Golf Club along the Wells Road. Approximately 2 km north of Portlaoise at Ballytegan the Triogue River has a Q-rating of 2-3 indicating a 'Poor' quality status.

2.6 SENSITIVE SITES

The following sensitive receptors have been identified in relation to the Enva site:

- Locally Important Limestone Aquifer (LI);
- Regionally Important Karstified Aquifer (Rk) 0.5km east of the site; and,
- River Triogue approximately 1.5 km to the east of the site.
- Meelick SPZ located approximately 1.8 km southeast of the site.

3 REVIEW OF 2008 GROUNDWATER RISK ASSESSMENT

The 2008 assessment was undertaken in response to an EPA audit report in 2007 and a request for further information in relation to Enva's response to the audit report. The groundwater risk assessment report covered the following topics:

- Review of previous information
- Review of site environmental setting
- Identification of contaminants and contaminant trends
- Conceptual Site Model
- Risk Assessment in accordance with UK Remedial Targets Methodology
- Free-phase product monitoring

The 2008 hydrogeological assessment was undertaken using a number of information sources including previous intrusive investigations on site, borehole logs, quarterly monitoring reports, installation of automatic data loggers, targeted groundwater sampling and measurement of free product.

A summary of the 2008 groundwater risk assessment report is provided in **Section 3.1** below and a review of the report is provided in **Section 3.2**

3.1 SUMMARY OF 2008 GROUNDWATER RISK ASSESSMENT REPORT

3.1.1 Groundwater Flow

Groundwater was encountered, during drilling, within fractures in the limestone bedrock in boreholes MW01, MW02 and MW03 at depths of 22mbgl (80.1mAOD), 29mbgl (74.12mAOD) and 7.8mbgl (94.97mAOD) respectively. Stabilised groundwater levels within the limestone ranged from approximately 98 to 100 mOD indicating that the groundwater is confined by the relatively low permeability rock matrix and overlying drift deposits.

Shallow groundwater was also encountered within the drift deposits at depths of between 1.5mbgl (99.66mAOD) and 4.5mbgl (98.27mAOD). Stabilised levels in the drift deposits also ranged from approximately 89 m to 100 mOD. This water was interpreted to be perched upon the relatively low permeability bedrock although there is potential for connection with deeper groundwater through vertical or sub-vertical fractures.

Groundwater levels were measured manually since 2004 and utilising automated dataloggers within selected monitoring wells in 2008. The resulting graphs showed that groundwater levels vary significantly between monitoring rounds and that the location of the up-gradient and down gradient holes also vary meaning that groundwater changes direction over time.

3.1.2 Potential Sources of Contamination

Quarterly groundwater monitoring events in 2008 detected chlorinated solvents, petroleum hydrocarbons and phenols at a number of groundwater monitoring wells. The 2008 groundwater risk assessment report outlined several potential on-site and off-site sources of the detected organic contamination. These sources are outlined below. Chlorinated solvents and phenols have not been detected at any monitoring location at the Enva facility since 2009.

1. Soil remediation and storage area in the north of the site

This area is covered with hardstanding. No soil contamination was noted in BH102, MW02 or MW01 during drilling and observations of contamination in groundwater are generally within the south of the site. This area is therefore not considered to be a source.

2. Tank farm area and fill points in the centre of the site

The tank farm area was appropriately bunded and located on hard-standing. This area was therefore not considered a source.

3. Sludge bay to the north of the tank farm

A trial pit was excavated beneath the sludge bay in September 2004 and did not detect any evidence of contamination. This area was therefore not considered to be a source.

4. Mixed fuel tank in the south-east corner of the site

This tank had been in use since 2006. The tank was fitted with a leak detection system and was pressure tested. The mixed fuel tank was therefore not considered to be a source.

5. Surface water drainage system, oil interceptors

These are located at the northern end of the site, one beside the waste oil processing plant, and the other north of GW5/BH103, and were regularly maintained. They were not considered to be a source.

6. Former vehicle repair workshop in the south of the site in the vicinity of BH104B

This operation was closed in 1990. An oily sheen and odour was detected in soils whilst drilling BH104 but no free product was recorded until 2004. The analysis of the product recovered indicated that it was unweathered diesel which is not consistent with the closure of the garage over 10 years prior to this.

7. Former oil reception sump in the east of the site in the vicinity of MW03

Some localised remediation of soils was undertaken in this area but a residual source may remain. Contaminants detected within MW03 were considered to be potentially consistent with the contents of waste oil tanks.

8. Accidental spillage

There were no reportable incidents of spillages since boreholes were first installed on the site in 2001.

9. LNAPL within BH104

It was considered possible that the contamination observed in groundwater observed in MW03 could be a result of vertical migration of contaminants along preferential pathways created by fractures within the limestone bedrock. Although both MW03 and BH104 recorded the presence of hydrocarbons their detailed chemical signatures varied.

10. Operational automotive repair business

An automotive repair business was present immediately to the south of the site, and immediately adjacent to BH104B. The adjoining site was elevated by approximately 1.5 m relative to the Enva site and at the time of the monitoring round in July 2008, drums of unknown liquids were being stored in an unbunded area immediately adjacent to the site boundary, although no evidence of leakage was observed on the retaining wall.

11. Irish Rail operations

Land immediately to the north and east of the site was occupied by Irish Rail and used for the storage of railway sleepers which were stored uncovered on open ground. It was thought that Irish Rail had operated at this location since before the Enva facility was established. Railway land was considered a potential source of metal, TPH and PAH contamination. Railway sleepers are commonly treated with creosote which is a source of PAH contamination.

3.1.3 2008 Conceptual Site Model (CSM)

A Conceptual Site Model (CSM) was developed for the Enva Portlaoise site in 2008 using the source– pathway receptor linkage approach. The CSM is outlined below.

• Sources

The film of free product observed within BH104 and GW7/MW03 was described as representing secondary sources of contamination. The primary sources were unknown and were deemed to be derived from historical activities at the site or off-site sources. The two secondary sources of contamination identified included the following:

Light Non-Aqueous Phase Liquid (LNAPL) in vicinity of BH104

The film of product (<2mm thick) in BH104 was identified as diesel. Diesel is comprised of approximately 98% Aliphatic (straight chain) hydrocarbons and 2% Aromatic (ringed) hydrocarbons which implied a low mobility hydrocarbon material in this area. Aromatic compounds are more mobile in groundwater than aliphatic compounds and therefore, dissolved phase contaminants derived from the free phase diesel are likely to comprise predominantly aromatic compounds. Being more mobile these compounds were determined to generally present a greater risk to groundwater and surface water receptors. Polycyclic Aromatic Hydrocarbons (PAHs) were also detected within groundwater.

Free product in GW7/MW03

The free product in GW7/MW03 was unidentified and its exact positioning in relation to the water table was determined to be unknown. The groundwater analysis did not record any hydrocarbons in this area suggested that this product was immobile and did not mix readily with water. 1,1 Dichloroethane. and PAHs have been historically detected within the groundwater at this location.

• Pathways

It was considered that the main pathway for contaminants to enter groundwater was via dissolution from NAPL and migration in the direction of groundwater flow. In the case of the LNAPL film within BH104 sump, groundwater flow was assumed to be taking place predominantly within the glacial deposits in the direction of GW1/BH101, which is located adjacent to the eastern site boundary.

In the case of product film within GW7/MW03, groundwater flow was reported to be occurring within a discrete fracture zone at a depth of approximately 15 mbgl. The direction of flow and the degree of connectivity with other fracture zones within the bedrock was not determined. The potential for vertical dissolved phase migration of contaminants along preferential pathways created by vertical fractures within the limestone was considered a possibility. Along the lateral migration pathway contaminants were considered likely to be subject to the attenuation processes of dispersion, adsorption, biodegradation and restriction of floating by free phase (LNAPL) product migration within vertically/steeply inclined fractured limestone.

• Receptors

The following receptors were considered:

- Shallow groundwater within the glacial deposits immediately beneath the site;
- Deeper groundwater within limestone bedrock immediately beneath the site;
- The wider limestone aquifer which is used for the abstraction of drinking water from an abstraction point 6 km distance from the site;
- The River Triogue 1.5 km to the east of the site; and,
- Meelick SPZ.

3.1.3 Risk Assessment in accordance with UK Remedial Targets Methodology

The objective of the risk assessment undertaken in 2008 was to assess the potential risks that the identified contaminants could have on the receptors outlined in the CSM. The risk assessment approach adhered to the UK Remedial Target Methodology for Hydrogeological Assessment of Land Contamination (EA, 2007).

The eastern groundwater monitoring well, GW1/BH101, was selected as the most appropriate compliance point for the assessment based on interpreted groundwater flow direction.

Aliphatic and aromatic hydrocarbons of the range C8-C10 and C10-C12, Naphthalene and Benzo(a)pyrene were the contaminants chosen to be assessed in the risk assessment process. Aquifer properties and contaminant transport constraints were derived from site measurements where possible and literature values. Where literature values were used conservative values were taken in all cases.

Tier 3 of the risk assessment considered contaminant concentrations after attenuation within the aquifer along the contaminant travel pathway. The risk assessment for the Enva site determined that none of the contaminants recorded concentrations greater than the relevant environmental compliance criteria at the compliance point.

The conclusion outlined in the 2008 groundwater risk assessment reported that the thin LNAPL in GW4/BH104B and the unidentified product within GW7/MW03 represented a source of dissolved phase concentrations within groundwater. The compounds that comprised these products were considered to be hydrophobic and would not preferentially partition into the dissolved phase. Significant off-site migration was determined to be therefore unlikely and these contaminants were not considered to present a risk to the wider shallow and deep groundwater. This was subsequently confirmed by the quantitative risk assessment.

Free Phase Product Monitoring

The risk assessment report made the following commentary on the likely transport mechanisms of free product detected in GW4/BH104B and GW7/MW03:

- The only measureable thickness (<2mm) of product related to GW4/BH104B was in the adjacent BH104 sump. As the product related to GW4/BH104b is lighter than water it was considered likely to spread out across the surface of the water. Product migration is controlled by the direction of groundwater flow and physical features within the aquifer.
- The product associated with GW7/MW03 was different in character to GW4/BH104B with no recordable thickness of this product was recorded at any location. It was thought that the product at GW7/MW03 was a dense non-aqueous phase liquid (DNAPL) which is generally immobile and would sink to the base of the water column. Within the fractured limestone aquifer DNAPL may collect in pockets within the fractures however the risk assessment and the groundwater analysis demonstrated that product within GW7/MW03 was not giving rise to a significant dissolved phase plume.

4 2014 GROUNDWATER RISK ASSESSMENT

This 2014 hydrogeological assessment provided an update to the 2008 hydrogeological assessment. It evaluated the potential risk that the Enva facility posed to sensitive receptors in an effort to confirm that the site was compliant with SI no 9 of 2010. The assessment utilised the following information sources to develop source-pathway-receptor risk factors for the Enva facility:

- The 2008 Groundwater Risk Assessment Report produced by RPS (MDE0788RP0001);
- Groundwater flow direction maps from 2011 to 2013; and,
- Quarterly groundwater monitoring reports from 2008 to 2013.

4.1 GROUNDWATER FLOW MAPPING

The report determined that shallow groundwater flows fluctuated from an east to north-easterly direction. Deep groundwater flow mapping has shown that deep groundwater is flowing in a north easterly direction. This flow mapping suggested that GW1/BH101 is the most relevant downgradient well associated with the shallow groundwater aquifer and that GW2/MW02 is the most relevant downgradient well associated with the deep groundwater aquifer; however, GW7/MW03 is located adjacent to the eastern boundary in the southern portion of the site and therefore was also considered when discussing off site migration of contaminants within the deep groundwater body.

4.2 UPDATED RISK ASSESSMENT

A CSM was developed in 2014 utilising the EPA Guidance on Authorisation of Discharges to Groundwater. The source-pathway-receptor (SPR) risk factors were then utilised to assess the potential risk to the sensitive receptors. The SPRs identified in the 2008 report were reassessed and an updated list of SPRs considered. T

A number of potential sources were considered across the site including the following:

- 1. Mixed Fuel Storage Tank Farm;
- 2. Maintenance Workshop;
- 3. Unloading Gantries Made Ground to the South of the Site;
- 4. Made Ground to the South of the Site; and,
- 5. Residuals from a Former Oil Reception Sump in the Vicinity of MW03.

A number of potential and known pathways were considered and the risks posed to downgradient sensitive receptors were considered to be low for each identified SPR linkage.

4.3 2014 UPDATED CSM

The 2014 CSM report was updated based on the 2008 CSM and the quarterly groundwater monitoring data between 2011 and 2013. The updated hydrogeological assessment made the following conclusions;

- 1. The River Triogue, the Locally Important Limestone Aquifer (LI) beneath the site and the Regionally Important Karstified Aquifer (Rk) east of the site were identified as sensitive receptors of the site. Shallow groundwater flow direction in the boulder clay was interpreted to the east towards the River Triogue which is located 1.5 km downgradient. Deep groundwater flow direction in the Locally Important Limestone Aquifer was interpreted to be in a northeasterly direction towards the Regionally Important Limestone Aquifer.
- 2. Trend analysis of quarterly monitoring data from 2008 to 2013 identified manganese, iron, chloride and nickel as inorganic parameters that were detected above the relevant water quality standards, predominately at monitoring locations GW4/BH104b and GW7/MW03. Manganese and iron are naturally occurring metals; however detected levels of both parameters were determined to be attributed to an anoxic environment where contamination may be naturally attenuating. It was reported that chloride and nickel levels may have been related to a contamination source however no known sources of either chloride or nickel were identified on the Enva site. Detections of PAHs and TPHs were also intermittent since May 2012 and these detections were confined to GW7/MW03.
- 3. Detections of parameters above the relevant water quality standards were confined to groundwater monitoring wells in the south-east of the site, namely GW4/BH104B, GW8/MW04 and GW7/MW03. Six potential sources of the elevated parameters were identified. Of the six potential sources, four were linked to accidental historical spillages during normal operations; however, no accidental spillages were recorded at the Enva facility. The concrete hardstanding ground cover, suitable bunding of sources and collection of run-off by an integrity tested surface water drainage system were determined to negate the pathway for surface contaminants to reach groundwater.
- 4. Made ground in the southern area of the site i.e. beneath GW4/BH104B, was considered as a potential source of contamination. No parameters were detected above the relevant water quality standards at GW4/BH104B between 2012 and 2013, with the exception of iron which was detected at a concentration equal to the GTV of 0.2 mg/l in Q4 2013. As groundwater quality at GW4/BH104B was not considered to be contaminated, it was concluded that if a source was present in the made ground it had been attenuated and did not pose a risk to sensitive receptors at the time.
- 5. A former oil reception sump in the vicinity of GW7/MW03 was identified as a potential source during the 2008 hydrogeological assessment. As GW7/MW03 was reportedly the only monitoring location where hydrocarbon contaminants were detected at the time, the 2014 CSM report determined that the former oil reception sump was a potential source. The source-pathway-receptor assessment of the risk associated with this potential source was however deemed to be low. The hydrocarbon contamination associated with GW7/MW03 was characterised as highly immobile and immiscible in the 2008 groundwater risk assessment report and trend analysis since 2008 indicated that the source was naturally attenuating. In addition to the immobile nature of the source, the 2014 report determined that dilution and dispersion would reduce contaminant concentrations downgradient at the Rk aquifer and the River Triogue resulting in a low level risk to both receptors.

The updated hydrogeological assessment concluded that the Enva facility was not posing a risk to sensitive receptors and is in compliance with the European Communities Environmental Objectives (Groundwater) Regulations 2010 (SI no 9 of 2010).

5 2017 GROUNDWATER FLOW INTERPRETATION

A review of groundwater flows across the site and data from 8 no. rounds of groundwater monitoring in 2016 and 2017 were assessed. Groundwater contour maps were developed for each sampling event in 2017 and are included in **Appendix B**. Groundwater level graphs are provided in the following sections and in **Appendix C**.

5.1.1 Shallow Groundwater

In general, shallow groundwater appears to be consistently flowing in a northeasterly direction across the site in the <u>southern region</u> of the site and possibly in a southeasterly and occasionally southwesterly direction in the <u>northern</u> region of the site.

The manual dip levels suggest the presence of a groundwater flow divide running in a line between GW1/BH101 (in the east) to GW3/BH103 (in the west). To the north of this line groundwater flow (from GW2/BH102) appears to be towards the southwest or the southeast. To the south of the line (from GW4/BH104b) groundwater predominantly flows in a northeasterly direction towards GW1/BH101 and historically and occasionally to the northwest towards GW3/BH103. There is no regular seasonal trend to the fluctuation in groundwater flow direction and it is likely to be due to preferential recharge in particular areas and may also be influenced by upward flow of groundwater with the deeper bedrock.

The information from the automated data loggers show GW4/BH104B to be the consistently upgradient borehole, however as the logger from GW1/BH101 was lost prior to downloading of the data and the logger from GW3/BH103 was lost after only six weeks, it was not possible to examine the connection between GW1/BH101 and GW3/BH103.

Based on groundwater levels recorded throughout 2016 and 2017 (see **Figure 5.1** and **Appendix C**) shallow groundwater flow direction is consistently to the northeast in the southern region of the site. This water is believed to be perched upon the relatively low permeability bedrock although there is water through vertical or sub-vertical fractures. The installation details for each of the boreholes are provided on the borehole logs in **Appendix B**.

It is noted that wells head levels have not been confirmed and it recommended that a re-survey of all well heads is undertaken to confirm groundwater levels relative to Ordnance Datum. It is also noted that no well head level has been recorded for GW8/MW04 to-date.

Manual Groundwater Dips - Shallow Boreholes

The automated data loggers historically recorded an almost instantaneous response to rainfall in the shallow boreholes indicating high recharge potential within the area. The majority of the site is covered with hard-standing however the Irish rail site to the east is not covered and will allow infiltration of rainfall. The hydraulic gradient within the shallow groundwater was previous estimated as ranging between 0.005 and 0.06. However, for the majority of cases it is in the region of 0.01.

5.1.2 Bedrock Groundwater

In 2005 URS mapped bedrock groundwater to flow in a south to southeasterly direction, while RPS mapping in 2008 determined that bedrock groundwater flow was to the north. Subsequent monitoring by RPS reported bedrock groundwater to be consistently flowing in a northeasterly direction.

BREL undertook a review of bedrock groundwater levels and determined bedrock groundwater to be predominantly flowing in a southeasterly direction since 2014. (see **Figure 5.2** and **Appendix C**). Prior to 2014 groundwater levels vary significantly with the downgradient well GW7/MW03 on occasion representing an upgradient location

Manual Groundwater Dips - Deep Boreholes

Figure 5.2 Groundwater Levels – Bedrock Boreholes

Stabilised groundwater levels within the bedrock wells and the screen depths suggest that groundwater is confined by the relatively low permeability rock matrix and the overlying drift deposits (see **Table 5.1**).

The recorded significant variations in groundwater flow direction over time are likely to be due to the fact that the monitoring boreholes are screened within three different fracture zones with a vertical separation of up to 15 m between screened horizons. A vertical connection between these fracture zones is likely but has not been proven and as such the assumption of a linear variation in groundwater level between these holes (such as assumed when drawing contour plots) is questionable as the water is potentially being transmitted on three different planes. Any connection between these fracture zones will be greatly influenced by the nature and orientation of fracturing within the bedrock and external factors such as changes to recharge patterns (influenced by changes in land use and geological morphology) and abstraction of water.

The automated data loggers historically recorded instant and significant changes in the groundwater level within the bedrock in response to purging of the well for sampling. This response illustrates that the bedrock aquifer is characterised by low permeability matrix and low storage potential with flow occurring within fractures. The automated groundwater monitoring data also demonstrates that groundwater within the bedrock records a response in relation to rainfall, which indicates that recharge to the deeper bedrock aquifer is occurring. This recharge is likely to be occurring over open-ground surrounding the site, particularly to the west (within 1km of the site) where bedrock is known to be close to surface. Based on the low permeability nature of the bedrock matrix this response indicates that vertical or sub-vertical fractures are present within the bedrock and provide preferential pathways for vertical migration of ground water within the bedrock.

Monitoring Well	GW1/BH101	GW2/BH102	GW3/BH103	GW4/BH104b	GW8/MW04	GW5/MW01	GW6/MW02	GW7/MW03
Depth (mbgl)	6.68	6.41	4.40	4.71	-	2.36	3.62	9.75
Static Water Level (mbgl)	4.19	3.21	1.75	0.49	3.89	2.36	3.62	4.01
Ground Level (mOD)	103.06	102.55	101.16	101.52	-	102.10	103.12	102.77
Water Level (mOD)	98.87	99.34	99.41	101.03	-	99.74	99.50	98.76
Total Depth (mbgl)	6.71	6.48	4.35	4.72	6.42	22.59	22.96	14.69
Screen Depth (mbgl)	4.0 - 6.8	3.0 6.8	1.25 – 5.7	1.5 – 6.8	1.5 – 6.8	20.0 – 23.0	23.0 - 32.0	7.5 – 15.0

Total depth measured 4th January 2018

mOD = metres Ordnance Datum

mbgl = metres below ground level

Table 5 1	Groundwater Levels	& Well Denths -	Q3 Monitoring 2017
		a wen Depins -	

6 2017 GROUNDWATER QUALITY & TREND ANALYSIS

A review and interpretation of groundwater quality across the Enva facility between 2014 and 2017 is provided below. The most recent round of monitoring data is stated at the beginning of each section and a summary of all results is provided in **Appendix D** and all laboratory certificates for 2017 provided in **Appendix E**.

It should be noted that no graphs were provided for the hydrocarbon and organic parameters as it was considered that the tables provided in **Appendix D** would provide a clearer trend over time.

6.1 GUIDELINE VALUES

All groundwater quality results were screened against the 2010 Groundwater Regulations¹ and the Environmental Protection Agency Interim Guideline Values (IGVs) which are considered to provide an initial, albeit very conservative, screening tools.

6.2 ORGANICS

6.2.1 Total Petroleum Hydrocarbons

The November 2017 sampling event recorded elevated TPH levels within 3 no. monitoring wells only i.e. GW2/BH102 (98 μ g/l), GW3/BH103 (351 μ g/l) and GW5/MW01 (60 μ g/l). The EPA IGV for TPH is 10 μ g/l.

No detections of Total Petroleum Hydrocarbons (TPHs) were detected above the EPA IGV in any monitoring well across the site between August 2012 and December 2014 with the exception of isolated elevated levels within GW7/MW03 (i.e. 390 μ g/l September 2013) and GW4/BH104b (i.e. 410 μ g/ August 2014).

Between 2015 and 2017 elevated levels of TPH were consistently detected within a number of wells i.e. GW3/BH103, GW4/BH104b and GW8/MW04. It is noted that elevated levels of TPH were historically recorded within these monitoring wells i.e. prior to 2010. Also of note is the recent TPH detections in 2017 recorded within wells GW2/BH102, GW5/MW01, GW6/MW02 and GW7/MW03 ranging between 11 and 120 μ g/l (see **Appendix D**).

GW3/BH103

The most recent round of monitoring in November 2017 within this well recorded an elevated TPH level of $351 \mu g/l$ (see **Appendix D**).

Elevated levels of TPH were consistently recorded within GW3/MW103 between February 2015 and November 2017 ranging between 15 μ g/l (February 2017) and 2,269 μ g/l (May 2015). From May 2015, the levels broadly reduced over time to a level of 15 μ g/l in February 2017; however they have since started to increase steadily again since February 2017 with the most recent level of 351 μ g/l recorded in November 2017.

¹ Statutory Instruments, SI No. 9 of 2010 - European Communities Environmental Objectives (Groundwater) Regulations, 2010

The hydrocarbon signature is predominantly recorded within the Aliphatic C16-C35 carbon range with a notably lower proportion within the aromatic, more mobile, phase when detected. No detections of aromatics were initially recorded during the February and May 2017 monitoring data; however the aromatics have since been detected in subsequent rounds of monitoring in August and November 2017 ranging between 71 and 89 μ g/l suggesting a mobile component to this contaminant.

With respect to the aliphatic bands, all of the measured concentrations exceeded the respective pure phase solubility for that band. The same is also true for the aromatic bands when detected. This would suggest the presence of a NAPL at this location. This is supported by the fact that the proportion of aliphatic to aromatic compounds varied between samples and monitoring visits indicating differences in the nature of the sample collected, which probably relate to the amount of NAPL captured within the sample.

It was previously reported that historical TPH detections at GW 3/BH103 may have been as a result of surface contamination entering the groundwater monitoring well. GW3/BH103 is located in a storage shed to the west of the facility. The storage shed has a hard standing floor and is generally used to store IBCs and small machinery. The monitoring well BH103 was covered with an ill-fitting flush cover with no closing screws until August 2012. The absence of a fully sealed cover on BH103 may have allowed small leaks from the machinery or IBCs to enter the groundwater. The well cover and headworks at BH103, and at all groundwater monitoring wells, were upgraded in August 2012 to provide better protection to groundwater monitoring wells from surface ingress. The resulting groundwater quality results confirmed the success of this activity with non-detections recorded between August 2012 and February 2015. However a recent site inspection undertaken by BREL in January 2018, observed pondered surface water within the wellhead of the well surrounding the open standpipe. A slight hydrocarbon sheen was observed on this water.

Based on the above, the source of the recently elevated TPH levels detected within this monitoring well is unclear. BREL are aware of a number of underground interceptors and sumps present in the general vicinity of this well that may potentially be contributing to the TPH levels being detected. The well is surrounding by concrete hardstanding and no evidence of spillages were observed or recorded on site.

GW4/BH104b

The most recent round of monitoring in November 2017 in GW4/BH104b recorded a TPH level of <10 μ g/l.

Elevated levels of TPH were historically recorded within GW4/MW104b ranging between 53 and 9,890 μ g/l during the monitoring events between 2014 and 2015. The levels significantly reduced from February 2016 to below laboratory limits of detection (i.e. <10 μ g/l). Since February 2016 the levels recorded ranged between <10 μ g/l and 85 μ g/l with no obvious trend. The most recent monitoring in August 2017 and November 2017 recording levels <10 μ g/l.

When detected the hydrocarbon material within this well was found to be predominantly within the aliphatic C12-C16 and C16-C35 carbons bands and to a lesser extent within similar aromatic bands. The levels recorded since 2015 occasionally exceeded the respective solubility levels for the individual carbon bands and suggest a possible presence of NAPL in the general area when detected. The non-detections subsequently recorded suggest that a source in the general vicinity of the well may only be intermittently contaminating groundwater in the area. The signature is also suggestive of a diesel based source.

The levels recorded in 2017 do not appear to represent a source of hydrocarbon contamination in the general vicinity of the well; however it is noted that non-detections were previously recorded at this location between 2011 and 2014 with subsequent detections again occurring between February 2015 and December 2016. A hydrocarbon sheen and odour was noted on all samples from this monitoring well during each of the 2017 sampling events. On-going monitoring is recommended to determine the persistency of the non-detections at this location. The high levels detected recorded in December 2015 are notable; however the levels have dramatically reduced since this period. The rational for this sudden reduction is unclear with possible explanations including:

- An upgradient source of contamination to the south of the Enva facility intermittently releasing hydrocarbons to groundwater;
- A soil source remaining within the subsoils in the vicinity of the well intermittently releasing hydrocarbons to groundwater;
- Sampling procedure error;
- Laboratory error; or,
- Surface water runoff entering the well via the well head due to a non-sealed cover. It is noted a new well head covers were installed across the site; however water was noted to be ponded within the installation close to the top of the open well head.

In summary, the hydrocarbon levels recorded since February 2016 within GW4/BH104b are considered to be low with occasional spikes of slightly elevated levels. The most recent monitoring in August 2017 and November 2017 recorded levels <10 μ g/l. The levels do not appear to represent a source of hydrocarbon in the vicinity of the well although on-going monitoring is warranted to confirm this.

GW8/MW04

The most recent round of monitoring in November 2017 recorded a TPH level of <40 μ g/l within GW8/MW04; however the laboratory limit of detection is considered too high and a reduced level is required for future sampling events.

No detections of Total Petroleum Hydrocarbons (TPHs) were detected in GW8/MW04 between August 2012 and December 2014. However, from February 2015 onwards, relatively steady and consistent levels of TPH ranging between 15 µg/l and 47 µg/l have been recorded.

The hydrocarbon signature from GW8/MW04 suggests a dissolved phase mobile hydrocarbon within the aromatic C10-C16 carbon range only. The consistent presence of low level Naphthalene confirms the mobile phase of this material. The levels recorded do not exceed their respective solubility phase levels and therefore do not represent a source of NAPL. The source of this hydrocarbon is potentially from an upgradient source in the vicinity of GW4/BH104b or alternatively within the area of the sump formerly excavated at BH104. However it is noted that the signature of the hydrocarbon detected within GW8/MW04 is at odds to that detected upgradient of this location which suggests a source in closer proximity to the well itself. The waste oil UST located in the southeastern corner of the site containing mixed petrol and kerosene is considered a possibility although this tank is integrity tested periodically with no leaks detected.

GW7/MW03

The most recent round of monitoring in November 2017 recorded a TPH level of <40 μ g/l within GW7/MW07; however the laboratory limit of detection is considered too high and a reduced level is required for future sampling events.

From February 2015 onwards sporadic detections of hydrocarbons were recorded ranging between 14 μ g/l and 102 μ g/l within monitoring well GW7/MW03. The hydrocarbon signature represents a dissolved phase hydrocarbon predominantly within the aliphatic C16-C35 range and to a lesser extent aromatic C21 – C35 carbon range.

The previous 2008 and 2014 CSMs concluded that the hydrocarbons historically recorded at this location were characterised as highly immobile and immiscible DNAPL that was naturally attenuating over time. The hydrocarbon levels recorded in 2017 suggest that the natural attenuation of this material did in fact occur post 2008; however the recent increasing trend warrants further consideration and monitoring.

It is noted that the hydrocarbons detected within this well have a slightly different signature to that recorded within upgradient wells GW8/MW04 and GW4/BH104b is likely to be attributed to the former sump was that previously located and excavated in this area. The more recent hydrocarbon detections

potentially suggest a residual source of hydrocarbons within the shallow subsoils in this area. Ongoing monitoring is recommended to confirm the persistency of these detections.

GW5/MW01

Detections of hydrocarbons above the EPA IGV were recorded within GW5/MW01 during 3 no. sampling events in 2017 i.e. February 2017 (23 μ g/l), August 2017 (120 μ g/l) and November 2017 (60 μ g/l). The levels represent an increase with non-detections recorded over the previous 7 years. It is noted that high levels were historically recorded at this location in March 2009 with a level of 16.7 mg/l recorded. The well is located in proximity to a wheel wash and its associated drainage system and the recent detections may be attributed to this activity.

The signature of the hydrocarbons detected is within the aliphatic C16-C35 range which is indicative of a heavier end oil.

GW1/BH101, GW2/BH102 and GW6/MW02

No detections of TPH were recorded within GW2/BH102 and GW6/MW02 with the exception of some isolated detections, as follows:

- Two detections of 11 μg/l and 98 μg/l were recorded within GW2/BH02 with the higher level recorded in November 2017;
- A single detection of 12 µg/l was recorded in GW6/MW02 in May 2017.

The levels detected are considered to be minor and do not represent a source of contamination at these locations. No detections were recorded within GW1/BH101.

6.2.2 BTEX & MTBE

<u>BTEX</u>

No detections of BTEX were recorded across the site during the August and November 2017 sampling events. Benzene has not been detected in any monitoring wells across the site between 2014 and 2017 with the exception of 2 no. trace detections recorded within GW7/MW03 and GW8/MW04 in May 2017 i.e. 0.39 and 0.49 μ g/l respectively. The 2010 GTV for Benzene is 0.75 μ g/l.

A single detection of Toluene of 1.2 μ g/l was detected in GW7/MW03 in August 2016 only. No detections were recorded above the laboratory limit of detection prior to or after this sampling event.

A single detection of Ethylbenzene (0.15 μ g/l), p&m xylene (0.47 μ g/l) and o-xylene (0.16 μ g/l) was detected in GW6/MW02 in May 2016 only. No detections were recorded above the laboratory limit of detection prior to or after this sampling event.

<u>MTBE</u>

No detections of MTBE were recorded in any wells across the site during the November 2017 sampling event with the exception of GW7/MW03 (8.7 μ g/l) and GW8/MW04 (1.8 μ g/l). The EPA IGV for MTBE is 30 μ g/l.

No detections of MTBE were detected in any monitoring well across the site between February 2014 and December 2014. Consistent trace detections of MTBE were subsequently detected in wells GW7/MW03 and GW8/MW04 ranging between 1.2 and 8.7 µg/l between 2015 and 2017. The levels of MTBE recorded within these two relatively proximate wells are similar during all sampling events between 2015 and 2017 which possible suggests a similar source. The non-detections of MTBE within GW4/MW104b provided additional evidence of a diesel source at this southern location.

Occasional detections of MTBE were recorded in GW2/BH102 between 2015 and 2017 ranging between 0.81 and 3.1 μ g/l.

6.2.3 Polycyclic Aromatic Hydrocarbons (PAHs)

Benzo(a)pyrene

No detections of benzo(a)pyrene were recorded across the site during the November 2017 sampling event with the exception of well GW7/MW03 (0.036 μ g/l). The EPA IGV for benzo(a)pyrene is 0.01 μ g/l.

Isolated and trace levels of benzo(a)pyrene above the laboratory limit of detection were recorded within wells GW3/BH103 and GW5/MW01 between February 2014 and November 2017. The detections recorded within GW7/MW03 have been generally recorded at consistent levels ranging between 0.032 and 0.108 μ g/l between August 2015 and November 2017.

Benzo (g,h,i) perylene

No detections of benzo(g,h,i)perylene were recorded across the site during the November 2017 sampling event with the exception of well GW7/MW03 (0.041 μ g/l). The EPA IGV for benzo(g,h,i)perylene is 0.05 μ g/l. The detections recorded within GW7/MW03 have been generally recorded at consistent levels ranging between 0.035 and 0.131 μ g/l between August 2015 and November 2017.

Isolated and trace levels of benzo(g,h,i)perylene above the laboratory limit of detection were recorded within well GW3/BH103 only in August 2016 only.

Naphthalene

No detections of Naphthalene have been recorded above the EPA IGV of 1 µg/l since February 2014.

Trace detections above the laboratory limit of detection have been recorded predominantly within GW3/BH103 (ranging between 0.018 μ g/l and 0.095 μ g/l), GW7/MW03 (ranging between 0.028 μ g/l and 0.11 μ g/l) and GW8/MW04 (ranging between 0.067 and 0.161 μ g/l). Isolated and trace detections were recorded within wells GW4/BH104b and GW5/MW01.

As Naphthalene is generally the most abundant compound in areas of notable hydrocarbons it is unsurprising to it being detected as it is the most soluble and mobile constituent.

Total PAH

The EPA IGV for Total PAHs is 0.1 μ g/l. Detections of total PAH slightly above the EPA IGV during the November 2017 sampling event were recorded in GW7/MW03 (0.243 μ g/l) and GW8/MW04 (0.147 g/l).

Levels of total PAH slightly above the IGV between February 2014 and November 2017 were recorded in wells GW3/BH103 (ranging between 0.108 and 0.21 μ g/l), GW4/BH104b (ranging between 0.139 and 0.159 μ g/l), GW5/MW01 (ranging between 0.106 and 0.145 μ g/l), GW7/MW03 (ranging between 0.11 and 0.986 μ g/l) and GW8/MW04 (ranging between 0.147 and 0.194 μ g/l).

The remaining detections of Total PAH were not recorded above their respective thresholds.

6.2.4 Total Phenols

No detections of Total Phenols were detected within groundwater across the site since 2014.

6.3 CHLORINATED SOLVENTS

Although previously detected in GW7/MW03 prior to 2008, no detections of **1,1,1 Trichloroethane (TCA)** have been recorded across the site since 2008.

Dichloromethane (DCM) was previously detected across the site prior to 2006. However no detections of DCM have been recorded since November 2005. The presence of DCM was previously attributed to laboratory testing procedures and was not considered representative of contamination at the site.

Chlorinated solvent **1,1 Dichloroethane (DCA)** has repeatedly been detected within shallow groundwater in GW8/MW04 above the IGV of 3 μ g/l. The levels recorded since February 2014 ranged between 3.1 and 10.7 μ g/l. A downward trend is event from the data which suggests the degradation of the chlorinated solvent is occurring; however it is noted that the DCA levels have stabilised somewhat since mid-2016. This solvent is associated with degreasers used in automotive manufacture and repair. Low levels of DCA have been detected in GW7/MW03 since February 2015 although are below the EPA IGV. The levels ranged between <1.0 and 2.8 μ g/l.

Detections of **Chloroethane (CA)** have been recorded consistently within GW8/MW04 ranging between 1.2 and 12.6 μ g/l between August 2015 and November 2017. Occasional detections ranging between 1.1 and 6.3 μ g/l were recorded within GW7/MW03 during this same period. Its presence in groundwater is likely the result of the dehydrochlorination of 1, 1-DCA.

Elevated levels of **Vinyl Chloride (VC)** have been recorded within GW8/MW04 between May 2016 and February 2017 ranging between 0.5 and 1.1 g/l. The 2010 GTV for VC is 0.375 µg/l. Elevated detections of VC were also recorded within GW7/MW03 in August 2016 and February 2017 at 0.6 µg/l on both occasions. No detections of VC have been recorded above the laboratory limit of detection during the August and November 2017 sampling events. However, it is noted that the laboratory limit of detection for VC is above the 2010 GTV and lower limits are recommended for any future monitoring events.

6.4 INORGANICS

6.4.1 Manganese

Manganese has been detected above the IGV of 0.05 mg/l at all monitoring locations, with the exception of GW1/BH101 and GW6/MW02, during one or more monitoring events from 2014 to 2017. No GTV or EQS is available for manganese.

The 2017 sampling event in November recorded elevated level of manganese in 4 no. wells i.e. GW2/BH102, GW3/BH103, GW7/MW03 and GW8/MW04 ranging between 83 and 1,280 µg/l. It is noted that the levels have been broadly reducing over time within all wells with the exception of GW8/MW04. The most recent round of sampling in November 2017 recorded the highest level of manganese recorded to-date at this location and represents an increasing trend (see **Figure 6.1**).

Manganese is a naturally occurring metal with low toxicity however it may cause staining and taste problems in drinking water. The low levels of manganese detected across the majority of the site in both the shallow and deep groundwater are likely to be naturally occurring; however the elevated levels recorded in GW8/MW04 should be monitored in future monitoring events as it may be attributed to anoxic conditions due to contaminant breakdown.

6.4.2 Iron

Elevated levels of iron have been consistently recorded above the EPA IGV across the site since 2014 with the exception of GW7/MW03 where only trace levels were recorded (see **Figure 6.2**). Consistently high levels were recorded within wells GW3/BH04 (between 0.27 and 16.4 mg/l) and GW8/MW04 (between 0.8 and 16.0 mg/l). These two locations are representative of localised hydrocarbon hotspots in these areas. The natural occurrence of manganese and iron in groundwater can increase in anoxic conditions and may be an indicator of contaminant attenuation. The high detections of both these parameters in GW8/MW04 and GW3/BH103 during the recent monitoring period are an indication of contamination present in groundwater.

6.4.3 Chloride

Chloride has been recorded above the GTV of 187.5 mg/l within wells GW1/BH101, GW7/MW03 and GW8/MW04 during the most recent round of groundwater monitoring in November 2017 ranging between 6.1 and 269 mg/l. The elevated levels are consistently recorded within these wells with levels significantly lower recorded across the remainder of the site since 2014.

The elevated levels recorded within GW8/MW04 are suggestive of a contaminant hotspot at this location similar to the elevated levels of iron and manganese within this well.

Chloride may be an indication of water pollution from both industrial and sewage sources. There is no evidence that any of the material handled on the Enva site contains chloride.

6.4.4 Dissolved Oxygen

Dissolved oxygen recorded during each sampling event generally ranges from 2 to 8 ppm indicating that groundwater is slightly depleted in oxygen across much of the site. Changes in concentration of dissolved oxygen correspond reasonably well with changes in water level and indicate recharge by oxygen rich rainwater. The results indicate that the aquifer may be capable of supporting aerobic degradation.

6.5 HEAVY METALS

6.5.1 Nickel

Elevated levels of Nickel were recorded in 3 no. monitoring wells during the November 2017 sampling event i.e. GW3/BH103 (0.25 mg/l), GW7/MW03 (0.36 mg/l) and GW8/MW04 (0.176 mg/l). The GTV for Nickel is 0.015 mg/l.

Elevated levels of nickel have consistently been detected above the GTV in the deep groundwater monitoring well, GW7MW03, between 2014 and November 2017 ranging between 0.036 and 0.106 mg/l. Similar elevated levels were recorded within GW8/MW04 during the same period. Isolated elevated levels of Nickel were recorded across the site within the remaining wells. It is noted that the monitoring events between May and November 2017 recorded slightly elevated levels of nickel in well GW3/BH103 ranging between 0.025 and 0.03 mg/l.

Nickel sources include naturally occurring minerals and industrial waste. No known sources of nickel have been identified at the Enva site. It is also noted that the levels recorded across the site are considered to be relatively low and do not represent a source of contamination at the site.

6.5.2 Arsenic

Consistently elevated levels of arsenic were recorded within well GW3/BH103 above the 2010 GTV (7.5 μ g/l) between August 2015 and November 2017. Levels ranged between 7.6 and 29 μ g/l. The levels recorded albeit relatively low are demonstrating a slightly upward trend. Isolated and minor exceedances were recorded in GW8/MW04 on two occasions at 11 μ g/l on both occasions between 2014 and 2017.

6.5.3 Copper

There were no recorded exceedances of Copper above the 2010 GTV (i.e. 1,500 $\mu g/l)$ between 2014 and 2017.

6.5.4 Lead

Elevated levels of lead were recorded in a single monitoring well during the November 2017 sampling event i.e. GW3/BH103 at a level of 207 μ g/l.

Consistently elevated levels of lead were recorded within well GW3/BH103 above the 2010 GTV of 18.75 μ g/l ranging between 39 and 679 μ g/l. Isolated exceedances of the GTV were sporadically recorded across the site between 2014 and 2017. It is noted that two consecutive exceedances were recorded in May and August ranging between 20 and 40 μ g/l within well GW1/BH101 although no exceedance was recorded during the November 2017 sampling event. The source of these detections is unclear based on interpreted groundwater flow direction.

7 POTENTIAL SOURCES

Potential sources are discussed below and outlined in Figure 7.1.

1. Mixed Fuel Container Storage Area

The mixed fuel container storage area is located in a bunded area above hardstanding ground. The associated bund is integrity tested every 3 years with the most recent testing undertaken in 2015 and was deemed fit for purpose.

2. Tank Farm

The tank farm in the centre of the site consists of 42 no. storage tanks containing waste oils and regenerated fuel products. The tank farm is bunded by a concrete bund which was integrity tested in 2015. The bunding is visually inspected weekly as per the licence Condition 6.10 and will be integrity tested again in 2018.

3. Underground Waste Mixed Fuel Tank

A 30,000 litre Underground Storage Tank (UST) is located in the southeastern corner of the site that is used to temporary store waste petrol and kerosene. The UST is currently not in use.

4. Former oil reception sump in the east of the site in the vicinity of GW7/MW03

Some localised remediation of soils was undertaken in this area but a residual source may remain. Contaminants detected within GW7/MW03 could be consistent with the contents of former waste oil tanks in this area.

5. Maintenance Workshop

A small maintenance workshop is located to the west of GW7/MW03. The maintenance workshop has a hardstanding floor and no drums or liquid containers are stored here. Surface run-off or accidental spillages from the maintenance workshop are contained in the workshop area. Self-contained bunds are in available in this area if required. No accidental spillages have been reported at the maintenance workshop.

6. Unloading Gantries

The Enva unloading gantries are located to the east of the production office and west of the tank farm. Oils and fuels are pumped to and from the tank farm from this location. Activities at the unloading gantries are carried out by trained operators and over hardstanding ground. No accidental spillages have been reported to-date in relation to the unloading gantries. Any accidental spillages would be directed to the surface water drainage system, which would contain the spillage and direct them to the on-site oil-water interceptors.

7. Surface water Drainage System, Oil interceptors & Sumps

Three interceptors are present across the site located at the northern and western regions of the site. A third interceptor is located south of the tank farm. A CCTV survey was undertaken in June 2016 of the drainage system with no faults noted within the system.

Although regularly inspected and cleaned, no integrity testing of the oil-water interceptors and drainage sumps has been undertaken to-date.

8. Wheel Wash in the north of the site

Recent detections of hydrocarbons within GW5/MW01 during 3 no. sampling events in 2017 suggest a recent impact to groundwater in this area. The source is unclear and is potentially attributed to the proximate wheel wash facility and its associated drainage system.

9. Storage Shed in western region of site

The monitoring well, GW3/BH103, located in close proximity to this shed previously reported that historical TPH detections may have been as a result of surface contamination entering the groundwater monitoring well. The well cover and headworks were upgraded in August 2012 to provide better protection to groundwater monitoring wells from surface ingress. The resulting groundwater quality results confirmed the success of this activity with non-detections recorded between August 2012 and February 2015. However a recent site inspection undertaken by BREL in January 2018, observed ponded surface water within the wellhead of the well surrounding the open standpipe. A slight hydrocarbon sheen was also observed on this water.

Based on the above, the source of the recently elevated TPH levels detected within this monitoring well is potential attributed to surface water runoff to the well or by its proximity to interceptors and collection sumps in the general vicinity of this well.

It is noted that no observed surface staining was observed during the site visit nor has there been any reported spill in the area. Therefore activities above-ground in this area are unlikely to be the source of the recent hydrocarbon detections at this location.

10. Irish Rail Site

Land immediately to the north and east of the site is occupied by Irish Rail and used for the storage of railway sleepers. These are stored uncovered on open ground. Railway land can be a potential source of metal, TPH and PAH contamination. Railway sleepers are commonly treated with creosote which is a source of PAH contamination. Given the difficulty in interpreting groundwater flow within the bedrock aquifer across the Enva facility, it is unclear if the Irish Rail is contributing to the hydrocarbon contamination detection within GW7/MW03. However, it is unlikely that the Irish Rail site is impacting on other identified areas of impact across the Enva facility.

11. Soil remediation and storage area in the north of the site

This area is covered with hard- standing. No soil contamination was noted in boreholes GW2/BH102, GW6/MW02 or GW5/MW01 during drilling and observations of contamination in groundwater are generally within the south of the site. This area is therefore not considered to be a source.

12. Sludge bay to the north of the tank farm

A trial pit was excavated beneath the sludge bay in September 2004 and did not detect any evidence of contamination. This area is therefore not considered to be a source.

13. Former vehicle repair workshop in the south of the site in the vicinity of GW4/BH104b

This operation was closed in 1990. An oily sheen and odour was detected in soils whilst drilling BH104 but no free product was recorded until 2004. The analysis of the product recovered historically indicated that it was unweathered diesel which is not consistent with the closure of the garage over 10 years prior to this. The presence of chlorinated solvents in the groundwater historically in this area suggest that the garage could be a potential source although it is not consistent with the chronology of observed contamination in BH104. This former workshop is therefore not considered to be a source.

14. Accidental spillage

There have been no recorded incidents of spillages since the boreholes were first installed on the site in 2001 and are therefore <u>not considered to be a source</u>.

15. LNAPL in BH104 Sump

LNAPL was historically detected within BH104 that was subsequently converted into a sump location. Groundwater pumping was historically undertaken within this sump. No detections of oil were observed on the water surface within this sump during the recent site visit in January 2018 and therefore is <u>not considered to be acting as a source of contamination at the site.</u>

8 2017 UPDATED CSM & HYDROGEOLOGICAL ASSESSMENT

BREL have developed an update to the 2014 CSM report taking into consideration the findings and data recorded in the 2008 and 2014 CSM reports and quarterly groundwater monitoring between 2014 and 2017.

8.1 SOURCE ZONES

There have been no intentional or reported discharges to ground or groundwater associated with any operation at the Enva site to-date. The site is covered in concrete hardstanding with the exception of a thin margin along the eastern site boundary.

Despite no intentional discharges to ground quarterly groundwater monitoring trends from 2014 to 2017 have identified some inorganic and organic parameters whose concentrations have been detected above relevant groundwater quality standards.

Manganese, iron, chloride and nickel are inorganic parameters that have been detected above the relevant water quality standards, predominately at monitoring locations GW7/MW03 and GW8/MW04 and to a lesser extent GW1/BH01 and GW3/BH03. Manganese and iron are naturally occurring metals; however detected levels of both parameters may increase in anoxic environments where contamination may be naturally attenuating and therefore may be indicative of a contaminative source in GW3/BH03, GW7/MW03 and GW8/MW04. Chloride and nickel may be related to a contamination source however no known sources of either chloride or nickel have been identified onsite. Elevated levels of lead are consistently detected within GW3/MW03.

PAHs and TPHs are organic compounds that have been detected in the groundwater at Enva. Detections of PAHs and TPHs were previously intermittent however in recent times consistently elevated levels of TPH have been detected within GW3/MW03, GW4/BH104b and GW8/MW04 and to a lesser extent GW7/MW03.

The spatial pattern of detections of both inorganic and organic parameters above the water quality standards has facilitated the identification of a number of potential source zones of non-intentional discharges to ground in the western and southern regions of the facility. These are outlined on **Figure 8.1.**

1. Made Ground to the South of the Site in the vicinity of GW4/BH104b

The borehole log for GW4/BH104B describes a 3.5 m depth of made ground beneath the site at this location. Below the made ground the geology is sand and gravel above the limestone bedrock. The extent and origin of the made ground is unknown. A contamination source in the made ground could potentially leach through the sand and gravel to the limestone bedrock or migrate horizontally in a northeasterly direction in the direction of shallow groundwater flow.

Although the levels of hydrocarbon recently detected in this location since 2016 are considered to be low to moderate, when detected, they do not appear to represent a source of hydrocarbon in the vicinity of the well.

A more plausible source is an off-site former garage with a former diesel source located upgradient and to the south of the Enva facility – see **Section 7.1**.

2. Residuals from a Former Oil Reception Sump in the vicinity of GW7/MW03

The former oil reception sump was identified as a source in the 2008 groundwater risk assessment report. The oil reception sump was removed in 2003 and the 2008 report states that some localised remediation of soils was undertaken at this location. Soil remediation at this location may not have completely removed the source and a residual source may remain. The presence of hydrocarbons and chlorinated solvents above the water quality standards at GW7/MW03 and GW8/MW04 may be an indication that a contamination source is present at this location with some evidence of natural

attenuation reducing the source over time. The 2008 report identified the contamination at GW7/MW03 to be immobile and not readily miscible with water suggesting that if a source is present here it is confined within the immediate area of the former sump. However more recent laboratory data suggests that aromatic fraction of the hydrocarbon material is likely to be slightly more mobile than previously interpreted.

3. Made Ground in the west of the site at the Warehouse Storage Area in vicinity of GW3/BH103

Previous detections of hydrocarbon odours were recorded during the drilling of this borehole.

Elevated levels of TPH were recorded within GW3/BH103 between February 2015 and November 2017 ranging between 15 μ g/l (February 2017) and 2,269 μ g/l (May 2015). The levels reduced between May 2015 and December 2016; however they have since started to increase steadily again since February 2017 with the most recent level of 351 μ g/l recorded in November 2017.

It was previously reported that historical TPH detections at BH103 may have been as a result of surface contamination entering the groundwater monitoring well. The well cover and headworks at BH103, and at all groundwater monitoring wells, were upgraded in August 2012 to provide better protection to groundwater monitoring wells from surface ingress. The resulting groundwater quality results confirmed the success of this activity with non-detections recorded between August 2012 and February 2015.

The source of the hydrocarbons detected in this location is unclear; however the proximity of the well to a number of wash bay sumps and interceptor tanks in the area may potentially be impacting on water quality at the well.

4. Made Ground in the vicinity of GW8/MW04

The detections of hydrocarbons within this well, with a dissimilar signature to hydrocarbons recorded within upgradient well GW4/BH104b would suggest an alternative source of contamination in this area. Historically impacted made ground in the vicinity of this well is a possibility. Similarly the proximity of the 30,000 litre mixed fuel (i.e. petrol and kerosene) underground tank is also considered a potential source to the hydrocarbons detected.

5. Wheel Wash/Drainage System in the vicinity of GW5/MW01

The detections of hydrocarbons in GW5/MW01 in 2017 suggest an impact from the proximate wheel wash and/or its associated drainage system.

6. Off-Site Sources

As discussed previously an automotive repair business is present immediately to the south and upgradient of the site. The adjoining site is elevated by approximately 1.5 m relative to the Enva site. The former storage of diesel in this location is considered a likely source to the hydrocarbon detected in GW4/BH104b.

Land immediately to the north and east of the site is occupied by Irish Rail and used for the storage of railway sleepers. These are stored uncovered on open ground. Railway land can be a potential source of metal, TPH and PAH contamination. Railway sleepers are commonly treated with creosote which is a source of PAH contamination. It is unclear if the Irish Rail is contributing to the hydrocarbon contamination detection within GW7/MW03. It is unlikely that the Irish Rail site is impacting on other identified areas of impact across the Enva facility.

8.2 PATHWAYS

The pathways that could potentially link the identified sources to the site's receptors, and the constraints on these pathways are outlined in this section. Flows to and within the shallow groundwater and the deep groundwater underlying the Enva site are the primary pathways by which sources can potentially impact the Locally Important Limestone Aquifer directly underlying the site, the adjacent Regionally Important Aquifer, the River Triogue and Meelick SPZ.

• Vertical Migration from Surface to Groundwater

Contamination from sources at the surface has the potential to migrate from the surface into the subsoil in areas of exposed ground. The hardstanding cover across much of the Enva site, bunding of identified sources and the surface water drainage system which collects surface water run-off, negate this potential. All bunds were appropriately tested every 3 years as per the EPA licence requirements.

The surface water drainage system is fitted with 3 no. interceptors on the site and the interceptor located at the point where surface water is discharged off site to the municipal drain, is fitted has a shut-off valve installed. Groundwater monitoring wells may present a pathway for surface water to migrate into the groundwater through absent or damaged well covers. All groundwater monitoring well covers and head works were improved in August 2012 to protect the underlying groundwater from surface water ingress; however a number of wells when inspected in January 2018 had surface water present within the well head works close to the open well head pipe which increases the risk of surface water ingress to a number of these wells.

• Vertical Groundwater Flow

In the event that contaminants migrate from the surface to the subsoil vertical groundwater flow from the shallow groundwater to the deep groundwater may become a pathway. The GSI vulnerability mapping of moderate to high for the Enva site suggests that if contaminants migrate from the surface, the deep groundwater is be moderately to highly vulnerable to receiving that contamination. Dissolved phase contaminants will be transported vertically, within the groundwater, down through the subsoil into the deep bedrock aquifer. The boulder clay subsoil overlying the bedrock aquifer is a sandy gravelly clay generally offering moderate protection to the underlying aquifer. Vertical groundwater flows may also occur within the deep limestone aquifer where fractures on different horizontal planes connect. Contaminants will float on the top of the shallow groundwater or sink to the bottom of the limestone aquifer depending on their density. Dense NAPLs tend to follow vertical groundwater flow down through the aquifer. This movement will be constrained by the presence of fractures in the limestone aquifer.

Lateral Groundwater Flow

Dissolved phase and NAPL contamination that enters the shallow groundwater or the deep groundwater aquifer will be transported laterally in the direction of groundwater flow. Groundwater flow beneath the Enva site is predominantly to the north or north-east, towards the Regionally Important Aquifer 0.5 km east of the site and the River Triogue 1.5 km east of the site. However occasionally groundwater within the bedrock is to the south and southeast. Dissolved phase contaminants will be transported within the shallow and deep groundwater and less dense NAPL will be transported on the shallow groundwater surface. Dilution and dispersion of contamination will occur with lateral transport meaning that contaminant concentrations at the receptor will be lower than those at the source. Lateral movement of dense NAPL in the deep aquifer will be confined by the presence of fractures in the limestone bedrock and the contaminant may be immobile if no fractures are present.
8.3 RECEPTOR

• Locally Important Limestone Aquifer (LI)

The limestone bedrock aquifer beneath the Enva site is classified by the GSI as a Locally Important Aquifer, moderately productive in local zones. The vulnerability of the aquifer has been assessed as moderate to high and groundwater in the area has a 'Good' Water Framework Directive status as assessed between 2007 and 2009.

• Regionally Important Karstified Aquifer (Rk)

The Regionally Important Karstified Aquifer lies approximately 0.5 km from the Enva site. The aquifer is moderately vulnerability according to GSI mapping and has a 'Good' Water Framework Directive status. The aquifer contributes to the Portlaoise public water supply with two abstraction well fields located to the north and north east of the Enva site. The outer extent of source protection zones defined for the abstraction well fields are 3.2 km from the Enva site.

• River Triogue

The River Triogue is located approximately 1.5 km east of the Enva site and flows in a northerly direction through Portlaoise town. Upgradient of Portlaoise town the River Triogue has a Good quality status under the Water Framework Directive. Downgradient of Portlaoise and the Enva site the river has been assessed as having 'Poor' quality under the Water Framework Directive.

• Meelick SPZ

The Meelick public supply borehole is located approximately 2 km southeast of the Enva facility. The Enva site is approximately 1.85km from the source protection zone around the well. Shallow groundwater across the area of the site with hydrocarbon detected generally flows in a northeasterly direction and not towards the Meelick SPZ. Bedrock groundwater has been interpreted to flow in a southeasterly direction towards the SPZ. However, the interpretation of the flow direction is questionable to the varying well installations and the connectively between each of the bedrock monitoring wells.

8.4 RISK ASSESSMENT

This section assesses the potential risk that conditions at the Enva facility could pose to off-site sensitive receptors. The sensitive receptors are those outlined in **Section 7.1** and discussed in **Sections 7.2 to 7.4**. The risk assessment is carried out using the source-pathway-receptor linkages philosophy and in accordance with the risk screening approach outlined in the EPA Guidance on Authorisation of Discharges to Groundwater. The process of assessing Enva's risk to the sensitive receptors will determine Enva's compliance with SI no 9 of 2010, as per Section 6.15.1 of the their waste Licence.

Table 8.1 below presents the source-pathway-receptor risk factors that have been identified as relevant to the Enva facility under the updated hydrogeological assessment process.

Figure 8.1 Potential Source Zones

Linkage No.	Source	Pathway	Receptor	Risk
1	Mixed Fuel Container Storage Area located in the centre of the site	Vertical Migration from Surface To Groundwater The mixed fuel storage container area is bunded and the bund was integrity tested in 2015. The site is covered in hardstanding and all surface water run- off is directed to the surface water drainage system. The surface water drainage pipework was integrity tested in 2013 and a CCTV camera survey undertaken in June 2016 with no breakages or leaks detected. New groundwater well covers were installed in 2012 and well head improvements were made to protect groundwater wells from surface water ingress.	Locally Important Limestone (LI) Aquifer located directly beneath the site and high to moderate vulnerability. Regionally Important Karstified (Rk) Aquifer Located 0.5 km east of the site and moderate vulnerability. River Triogue - Located 1.5	Low Risk There is no pathway for accidental surface spillages to any receptor
			km east of the site and has a moderate to poor quality status.	

Linkage No.	Source	Pathway	Receptor	Risk
2	Tank Farm No leaks have been reported from the tank farm to-date	Vertical Migration from Surface To Groundwater The tank farm is bunded and the bund was integrity tested in 2015. The site is covered in hardstanding and all surface water run-off is directed to the surface water drainage system. The surface water drainage pipework was integrity tested in 2013 and a CCTV camera survey undertaken in June 2016 with no breakages or leaks detected. New groundwater well covers were installed in 2012 and well head improvements were made to protect groundwater wells from surface water ingress.	Locally Important Limestone (LI) Aquifer located directly beneath the site and high to moderate vulnerability. Regionally Important Karstified (Rk) Aquifer Located 0.5 km east of the site and moderate	Low Risk There is no pathway for accidental surface spillages to any receptor
3	Underground Waste Petrol/Kerosene Tank Leaks or spills associated with the tank may be contributing to the hydrocarbons detected in GW8/MW04.	Horizontal migration from tank to shallow Groundwater The migration of hydrocarbon contaminants from this 30,000 litre UST may impact on proximate monitoring wells. The tank is integrity tested every 3 years		Low to Moderate Risk Given the proximity of GW8/MW04 to this tank, the tank is considered a potential source of contamination.
4	Former Oil Reception Sump The detections of hydrocarbons and chlorinated solvents within GW7/MW03 located adjacent to the former oil reception sump suggest that some residual contamination is present within the subsoils.	Vertical Migration from Subsurface to Groundwater The migration of residual hydrocarbon and solvent contamination in the vicinity of the former oil reception sump to groundwater appears to be persisting.	River Triogue - Located 1.5 km east of the site and has a moderate to poor quality status.	Low to Moderate Risk The persistency and recent increase in trends warrants further consideration at this location. In addition, recent analysis suggests a slightly more mobile contaminant than previously identified.
5	Maintenance Workshop No accidental spillages have been reported from the maintenance workshop to-date	The workshop is covered in hardstanding and all surface water run- off is directed to the surface water drainage system. The surface water drainage pipework was integrity tested	Source Protection Zone	Low Risk There is no pathway for accidental surface spillages to any receptor

Linkage No.	Source	Pathway	Receptor	Risk
		in 2016.		
6	Unloading Gantries No accidental spillages or leaks have been reported from the refuelling gantry	Operators at the three unloading gantries are fully trained. The site is covered in hardstanding and all surface water run-off is directed to the surface water drainage system. The surface water drainage pipework was survey via CCTV in 2016 with no leaks or damage detected. New groundwater well covers were installed in 2012 and well head improvements were made to protect groundwater wells from surface water	Locally Important Limestone (LI) Aquifer located directly beneath the site and high to moderate vulnerability.	Low Risk There is no pathway for accidental surface spillages to any receptor
		ingress.	Regionally Important Karstified (Rk) Aquifer Located 0.5 km east of the site and moderate vulnerability.	
7	Made Ground to the South of the Site at GW4/BH104b Quarterly groundwater monitoring from GW4/BH104b indicates that since 2015 hydrocarbon levels occasionally exceeded the respective solubility levels for the individual carbon bands and suggests a		River Triogue - Located 1.5 km east of the site and has a moderate to poor quality status.	Low Risk Quarterly groundwater monitoring indicates that the made ground in the vicinity of the well in addition to an upgradient diesel source is a potential source of contamination on occasion with both low mobility NAPI
	possible presence of NAPL in the general area when detected. The non-detections subsequently recorded (including the most recent two		Meelick Groundwater Supply Source Protection Zone	and moderate mobility dissolved phase aromatics present. However, the source of the contamination is predominantly attributed to an

Linkage No.	Source	Pathway	Receptor	Risk
	rounds of monitoring) suggest that a source in the general vicinity of the well may only be intermittently contaminating groundwater in the area. The levels detected in 2017 suggest a reducing trend over time since 2015.	Vertical Groundwater Flow The sand and gravel beneath the made		off-site source and therefore this made ground risk linkage is considered to be low.
8	Off-site Source to the South of the Enva facility Refurbishment works were undertaken to the south of and upgradient of the Enva facility in 2014/2015 are attributed to the sudden detections of hydrocarbons in well GW4/BH104 at this time. Diesel storage was historically undertaken at this site.	ground will provide a pathway for vertical migration of contaminants to the LI aquifer. Lateral Groundwater Flow Fractures in the LI aquifer will allow	Locally Important Limestone (LI) Aquifer located directly beneath the site and high to moderate vulnerability. Regionally Important Karstified (Rk) Aquifer Located 0.5 km east of the	Low Risk The sudden and high levels of hydrocarbons detected in GW4/BH104b in Dec 2015 are attributed to the off-site source. However the levels have dramatically reduced since this period with the most recent data recording low levels.
9	Wheel Wash in the north of the site Recent detections of hydrocarbons within GW5/MW01 during 3 sampling events in 2017 suggest a recent impact to groundwater in this area. The source is potentially attributed to the proximate wheel wash facility and its associated drainage system.	contaminants to move towards the downgradient Rk aquifer. Dilution and dispersion will act on contaminants as they move away from the source reducing concentrations at the downgradient receptor.	River Triogue - Located 1.5 km east of the site and has a moderate quality status. Meelick Groundwater Supply Source Protection Zone	Low Risk Groundwater quality in the vicinity of the wheel wash has been of a good quality prior to 2017. The hydrocarbon levels detected in 2017 warrant further consideration to determine the persistency of these detections in this area. The levels recorded to-date you suggest a recent source although the levels recorded and the type of hydrocarbon present does not suggest an increased risk to sensitive receptors at this time.

Table 8.12017 CSM SPR Linkages

9 CONCLUSIONS

- BlueRock Environmental Ltd was requested to undertake an update of the previous 2014 Conceptual Site Model and Hydrogeological Risk Assessment previous undertaken at the Enva Ireland (Eva) facility at Clonminam Industrial Estate, Portlaoise, Co. Laois.
- This updated hydrogeological CSM report has been undertaken in accordance with Condition 6.15 of the recently issued revised EPA licence No. W0184-02 issued on the 15th June 2017 and in accordance with recent correspondence from the EPA, Ref: RI008474.
- While the activities above were undertaken in accordance with the EPA Guidance on Authorisation of Discharges to Groundwater, there are no discharges to ground or groundwater associated with the Enva facility. The entire site, with the exception of a small area to the north-east, is covered in hardstanding and bunding and drainage pipelines have passed the most recent integrity testing required by the Waste Licence. As Enva does not have any intentional discharges to ground or groundwater the sourcepathway-receptor risk factors outlined in the EPA guidance were applied to contaminants identified by trend analysis of quarterly groundwater monitoring data.
- An updated hydrogeological assessment was carried out to assess the potential risk the Enva facility may pose to the sensitive receptors. Source-pathway-receptor risk factors were used to assess risk and feed into the updating of the Conceptual Site Model (CSM). The assessment and the CSM were updated from the 2014 Updated CSM report. Quarterly groundwater monitoring data from 2014 to 2017 and groundwater flow direction mapping from 2015 to 2017 were used to update the hydrogeological assessment of the site. The updated hydrogeological assessment made the following conclusions:
 - In general, shallow groundwater appears to be consistently flowing in a northeasterly direction in the southern region of the site and possibly in a southeasterly/southwesterly direction in the northern region of the site. A shallow groundwater divide has been suggested across the centre of the site based on groundwater levels; however this requires further assessment to conclusively determine its presence. There is no regular seasonal trend to the fluctuation in groundwater flow direction and it is likely to be due to preferential recharge in particular areas and may also be influenced by upward flow of groundwater with the deeper bedrock.
 - A review of bedrock groundwater levels determined bedrock groundwater to be 0 predominantly flowing in a southeasterly direction since 2014. Prior to 2014 groundwater levels vary significantly with the downgradient well GW7/MW03 on occasion representing an upgradient location and groundwater within bedrock flowing in a northerly direction. The recorded significant variations in groundwater flow direction over time are likely to be due to the fact that the monitoring boreholes are screened within three different fracture zones with a vertical separation of up to 15 m between screened horizons. A vertical connection between these fracture zones is likely but has not been proven and as such the assumption of a linear variation in groundwater level between these holes (such as assumed when drawing contour plots) is questionable as the water is potentially being transmitted on three different planes. Any connection between these fracture zones will be greatly influenced by the nature and orientation of fracturing within the bedrock and external factors such as changes to recharge patterns (influenced by changes in land use and geological morphology) and abstraction of water.
 - The River Triogue, the Locally Important Limestone Aquifer (LI) beneath the site and the Regionally Important Karstified Aquifer (Rk) east of the site and have been identified as sensitive receptors of the site. Meelick Source Protection Zone is also considered a sensitive receptor.
 - An analysis of contaminant trends and levels from 2014 to 2017 was undertaken. Manganese, iron, chloride and nickel are inorganic parameters that have been detected above the relevant water quality standards, predominately at monitoring

locations GW7/MW03 and GW8/MW04 and to a lesser extent GW1/BH01 and GW3/BH03. Manganese and iron are naturally occurring metals; however detected levels of both parameters may increase in anoxic environments where contamination may be naturally attenuating and therefore may be indicative of a contaminative source at these locations. Chloride and nickel may be related to a contamination source however no known sources of either chloride or nickel have been identified on-site. Elevated levels of lead are consistently detected within GW3/MW03.

- Levels of PAHs and TPHs were previously intermittent or non-detected across the site between 2008 and 2014; however in more recent times consistently elevated levels of TPH have been detected within 3 no. locations i.e. GW3/MW03, GW7/MW03 and GW8/MW04 and slightly elevated and more recent detections within GW5/MW01. Although hydrocarbons were previously detected in GW4/BH104b, no detections have been recorded in the most recent rounds of monitoring in August and November 2017. The hydrocarbon signature at each location varies across the site suggesting separate sources of contamination at each location.
- o The main sources of contamination identified at the site relate to the following:
 - Residual contamination from a Former Oil Reception Sump in the vicinity of GW7/MW03 impacting on groundwater quality within the well.
 - Contamination in the west of the site at the Warehouse Storage Area in vicinity of GW3/BH103 potentially attributed to underground interceptor and collection sumps in the area.
 - Contamination in the vicinity of GW8/MW04 potentially impacted by a UST in the southeastern corner of the site although he UST was integrity tested and deemed fit for purpose.
 - Made Ground and groundwater in the south of the site in the vicinity of GW4/BH104b that has been potentially impacted by an off-site and upgradient diesel source to the south of the site. It is noted however the contaminant levels recorded recently are considered to be low.
 - Recent detections of hydrocarbons in the north of the site at GW5/MW01 potentially attributed to the proximate wheel wash and associated collection sumps/drainage system.
- The 2017 Updated CSM concludes that based on the most up-to-date laboratory and monitoring data, all risk linkages identified were considered to pose a low risk to the downgradient sensitive receptors with the exception of contaminant levels recorded within GW8/MW04 and GW7/MW03. Recent laboratory testing of the contaminant material at these locations suggests a slightly more mobile contaminant than previously interpreted and the risk posed has been increased slightly to Low to Moderate as a conservative approach. More detailed information is required to confirm otherwise as detailed in Section 10.

10 RECOMMENDATIONS

The following recommendations have been made to ensure compliance with the 2010 Groundwater Regulations and on the findings of this 2017 CSM report:

- Resurvey all groundwater monitoring well heads including well GW8/MBH104 which has not been previously surveyed in addition to installation dataloggers within a select number of shallow monitoring wells. The objective is to confirm the previously interpreted groundwater flow directions across the site to minimise any uncertainty in this regard. In particular the presence of a possible shallow groundwater divide across the centre of the site requires definitive confirmation.
- 2. Assess the seal on all Fibrolite well heads installed across the site to determine how water is entering a number of well heads and reseal where appropriate.
- 3. Undertake integrity testing on all underground interceptors and selected sumps
- 4. During 1 round of groundwater sampling in 2018, collect additional water samples for chemical testing from the UST in the southeastern corner of the site, from each interceptor and from the BH104 sump.
- 5. During 1 round of groundwater sampling in 2018, arrange for the laboratory to undertake product identification where appropriate and provide chromatographs for relevant samples to determine linkages between identified sources and impacted monitoring wells.
- 6. Given the uncertainty relating to recent detections (in particular hydrocarbons) within a number of wells, undertake duplicate sampling from selected wells and have them independently tested for comparison purposes.
- 7. Ensure all laboratory limits of detection are below their respectively IGV and GTV guideline levels in particular Vinyl Chloride and Total Hydrocarbons.
- 8. Request from the laboratory that all further hydrocarbon analysis is the TPHCWG testing method which provides a more representative range of carbon bands for risk assessment purposes.
- 9. Given the recent detections of hydrocarbons in particular wells, a review of sampling methodologies undertaken to-date at the site should be undertaken to ensure representative groundwater samples are being tested for chemical analysis going forward.
- 10. Depending on the outcome of the above works, additional boreholes should be considered to provide a better understanding of groundwater flow direction, the presence of a groundwater divide, to identify possible residual sources of contamination at the facility and to provide a more representative downgradient compliance well, if appropriate.
- 11. Continue quarterly groundwater monitoring as per the EPA licence requirements. On completion of the 2018 monitoring events and subject to completion of the above recommendations, an updated CSM report should be provided at the end of 2018. An interim monitoring report should be considered in June/July 2018 on completion of 2 rounds of quarterly monitoring to assess the persistency of the recent hydrocarbon detections recorded. Depending on the results recorded, a predictive groundwater risk assessment/model may be required similar to that completed in 2008; however a more accurate understanding of groundwater flow directions across the site is required to facilitate this model.

FIGURES

APPENDIX A

EPA Correspondence

Reference RI008474 ParentSubject LR027854 Question

Dear Mr Coll,

The Agency has reviewed your submission LR027854, "RPS Reports on Groundwater" in relation to ENVA Ireland Limited (Portlaoise) Licence Reg. No. W0184-02.

It is noted in this submission that:

- The measurement range of concentration on the graphs do not enable interrogation of recent monitoring results and trends, or enable comparison with applicable limits/guideline values e.g. Total PAHs, TPH>C5-C44;
- The discussion of results is not succinct and does not provide a comprehensive overview of results. A significant amount of the discussion provided is spent on historical data rather than recent current data and does not clearly focus on what wells exceeded the limit/guideline value, what is the source of this exceedance, and what is the significance and the impact of this exceedance. Discussions of results should focus primarily on the previous 12 months, and if relevant, historical data could be placed in an Appendix for reference purposes;
- The discussion is broken up into results by parameter, rather than a summary comparison between recent upgradient results compared with downgradient results, and between recent results and historical results;
- The Licensee is comparing results with the highest historical concentration, but is not comparing results with the target (precontamination) quality concentrations;
- The last update to the conceptual site model and hydrogeological risk assessment on the effectiveness of time to manage the groundwater contamination was undertaken in 2014, based on data up to the end of 2013 (ref. LR010225).

The Licensee is referred to Condition 6.15 of Licence Reg. No. W0184-02 and shall update the conceptual site model for the site.

· · .

The Licensee shall refer to the EPA *Guidance On The Management Of Contaminated Land And Groundwater At EPA Licensed Sites* (available on the EPA website at <u>http://www.epa.ie/pubs/advice/waste/contaminatedland/contaminatedlan</u> *d/Guidance on the Management of Contaminated Land and Groundwa* <u>ter at EPA Licensed Sites FINAL.pdf</u>), and shall submit an updated hydrogeological risk assessment to the EPA no later than 15/12/2017.

Furthermore, the Licensee shall ensure the format and content of future groundwater monitoring reports submitted to the EPA take account of the above points.

You are reminded of the requirement to comply with the Conditions of Licence Reg. No. W0184-01 at all times.

The Licensee shall note that a direct response to this correspondence is not required.

Yours sincerely,

Joan Fogarty,

Office of Environmental Enforcement, Southeast Region.

APPENDIX B

Borehole Logs

CLIEN SITE N SITE L JOB N LOGGE CHECH DATES	PR PR AME OCA D.: ED B (ED I	OJECT IN Attas Portla TION: Portla 4660 Y: Nicol BY: LLED: 05/03	Jhoun IFOR Oil aois aois, C 5-002 a O'Ha 3/01-08	MATIO to Laois ara	Irela N		DRIL DRIL DRIL SCR SCR SAM	DRILLING INFORMATION DRILLER: Glovers DRILLER: John Sheppard DRILLING METHOD/DIAMETER: Shell and Auger SCREEN TYPE/DIAMETER: HDPE/ 50mm SCREEN SLOT SIZE: 1mm SAMPLING METHODS: Grab Water level during drilling Water level in completed well				
NOTES	5:	<u> </u>										
BOREHOL	É ION	SAMP. #	PID ppm	WATER LEVEL	DEPTI m	GEOLOGY	DESCRI	PTION		COMMENTS	DEPTH m	
l	<mark>ا</mark> :	· <u>·</u> ··································	<u> </u>	ل ــــــــــــــــــــــــــــــــــــ	0	· · ·	ĊŌNCRE	TE		· · · · ·	- <u>I</u> 0	
		BH101.1	and the second se	4			CLAY: ligi gravelly, s	nt-medium ignificant	brown/grey, sandy, cobbles and boulders,	no odour		
• •				· · · ·	-1 -		CLAY: ligi significant	nt brown, angular a	dry, sandy gravelly, and subangular cobbles,		-1	
					-2		CLAY: ve	y stiff, ligt	nt brown, bouider clay,		-2	
		· ·					gravelly, s	andy,				
				• • •	-3 .			. 4 .	and a second	moist, no sheen, no odour	-3	
				ж	-4			- -	÷		-4	
				-		······································	CLAY: vei subangula	y stiff, co r, mediun	mpacted, sandy, dry, some n-coarse gravel,			
		BH101.2		V	-5		CLAY: ve subangula	y stiff, co Ir, mediun	mpacted, sandy, dry, some n-coarse gravel,		-5 ·	
					-6		GRAVEL: cobbles a	subangul nd boulde	ar and subrounded, rs, some sand,	no sheen, no odour	-6	
			For a first the second of the second s									
• • •			1			faar					- · ·	

а 1

.

Da Da Da Th	D mes & Moo Prien Kreitzi pribum Coly	bre berg phoun	· ·	Da Ive 6-8 Du Ire	imes & Moor agh Court, 4 Harcourt Ro blin 2 land	e th Floo pad	BOREHOLE BOREHOLE N TOTAL DEPTH	LOG Page 1 O.: BH 102 : 6.8m bgl	of 1
PRC CLIENT: SITE NAME: SITE LOCATI JOB NO.: LOGGED BY CHECKED BY DATES DRILI	DJECT II Atlas Porti ION: Porti 4660 Çaro f: .ED: 01/0:	NFOF laois laois, ()5-002 lline Ei 3/01-0:	RMATI Co Laois nright 3/03/01	ON			DRILLING INFOR DRILLING CO.: GI DRILLER: Jo DRILLER: Sh DRILLING METHOD/DIAMETER: Sh SCREEN TYPE/DIAMETER: HI SCREEN SLOT SIZE: 1n SAMPLING METHODS: Gr	RMATION overs hn Sheppard ell and Auger OPE/ 50mm ab	
NOTES:				<u> de la contra</u>		<u></u>	☑ Water leve ☑ Water leve	Lduring-drilling	
OREHOLE	SAMP, #	PID ppm	WATEF LEVEL	DEPT m	HGEOLOGY	DE	SCRIPTION	COMMENTS	DEPT
				- 0 -		CON	ICRETE .		0 0
BI	1102_1	1		-1		CLA peat,	Y: soft-firm, mid-brown, friable, some some small-medium subangular gravel, (: soft-firm, mid-brown with grey/green	Slightly damp	-1
				~2		CLAY large	': soft, green grey, slightly plastic, some cobbles,		-2
	and a second	· · · · · · · · · · · · · · · · · · ·	T.	-3		CLAY	; firm to stiff, light grey with green	slightly damp, no	-3 -
		· · · · · · · · · · · · · · · · · · ·				CLAY: gravel	s oft, brown, plastic, marley, large and cobbles	odour	-
		-		-4		CLAY: coarse	soft, light brown, plastic, marley, fine- gravel, some cobbles soft, light brown, plastic, marley, fine-	_ slightly damp, no odour 	-4 -
BH	102.2 1	-	× 7	-5		coarse BOULI	DERS: very hard ground		-5 -
			- X_			BOUL(some c	DERS: large cobles gravel and boulders, clay		
		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-6	\diamond			-	-6 -
						BOULD Iravel,	DERS: some firm clay with fine-coarse large cobbles		

	ames & Moor Brien Kreitzbe orbum Colqu OJECT IN Atlas	e ng houn FOR Oil	MATIO	Dam Ivea 6-8 I Dub Irela	nes & Moore gh Court, 4th Harcourt Road lin 2 and	Floor BOREHOLE NO.: BH 103 TOTAL DEPTH: 5.7m bg1 DRILLING INFORMATION					
SITE NAME SITE LOCA JOB NO.: LOGGED B CHECKED E DATES DRI	: Portla FION: Portla 46605 7: Caroli 3Y: _LED: 01/03	iois 5-002 ine En /01-03	o Laois right /03/01			DRILLER: DRILLING ME SCREEN TYE SCREEN SLO SAMPLING M	John THOD/DIAMETER: Shell PE/DIAMETER: HDPE DT SIZE: 1mm IETHODS: Grab	Sheppard and Auger 5 50mm			
NOTES:							✓ vvater level of ★ Water level in	completed well			
BOREHOLE COMPLETION	SAMP. #	PiD ppm	WATER LEVEL	DEPTI	GEOLOGY	DESCRIPTION	· · · · · · · · · · · · · · · · · · ·	COMMENTS	DEPTI m		
				0 -	Г	CONCRETE					
1 27 27						GRAVEL: dense, g fine-medium subar GRAVEL: firm, ligh	rey, clayey, some sand, igular gravel, it grey, sandy, clayey,	slightly damp, slight HC odour			
				-1 -		CLAY: firm, light-m and yellow mottling	edium grey, some brown g, sandy gravelly, fine-	damp, slight HC odour	-1		
						medium gravel, su large cobbles CLAY: soft, medium fine-coarse, some	b angular and sub rounded, m grey, plastic, some gravel sand, cobbles	HC odour			
			;]	-2 -			•		-2		
	BH103.1	4				CLAY: firm, brown sand, some gravel	/grey, slightly plastic, some fine-coarse, cobbles	damp, no odour			
				-3 -			~~~		-3		
		-				·					
	BH103.2		· · · ·	-4		CLAY: soft-firm, br coarse, slightly pla	own-grey, gravelly fine- slic	damp, no odour	-4		
			X			CLAY: soft, brown slightly plastic, sor	-grey, gravelly fine-coarse, ne cobbles				
				-5 -			-	-	-5		
						BOULDERS: black	k/grey, very hard ground				
						· · · · ·					
					·						

.

	ames & Moo 'Brien Kreitz) horbum Colqu	re erg Ikoun	MATIC	6-8 Du Irel	Harcourt Road blin 2 and	·	BOREHOLE	E NO.: 'TH:	BH 104 6.8m bgl		
CLIENT: SITE NAME SITE LOCA JOB NO.: LOGGED B CHECKED DATES DRI	Atlas Atlas Portla TION: Portla 4660 Y: Nicol BY: ILLED: 05/03	Oil aois aois, C 5-002 a O'Ha	co Laois ara 3/03/01			DRILLING INFORMATION DRILLING CO.: Glovers DRILLER: John Sheppard DRILLING METHOD/DIAMETER: Shell and Auger SCREEN TYPE/DIAMETER: HDPE/ 50mm SCREEN SLOT SIZE: 1mm SAMPLING METHODS: Grab					
NOTES:	- -							r level du Flevel în	ring drilling completed well		
BOREHOLE COMPLETION	SAMP. #	PID ppm	WATER	DEPT m		SCRIPTION			COMMENTS	DEP m	
	[-, O · ,		NCRETE	····			70	
	. BH104.1				Fil.	L: dense, hardco	ore some clay, •		HC odour, sheen		
				-1 -						-1	
						. *					
				; -2						-2	
			SZ .	-3			۰ ۱۹۹۰ - ۲۰۰۰ - ۲۰۰۰ ۱۹۹۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ ۱۹۹۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰		no odour, no sheen	-3	
		-		-4		VEL & SAND: I	nedium grained grav	el,	no odour, wet	-4	
								-			
	BH104.2			-5 -	SAN coar and	D: medium-coa se gravel angula subangular cobl	rse grained, medium ar and subangular, ar bles,	to ngular	no odour	-5	
		-		1.00 84 94 4 2 4 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10						· · · · · · · · · · · · · · · · · · ·	
	11	4		-6 .						-6	
					SAN	D: as above, ex	cept more gravel cor	ilent			

.

ł.

							•				
° «											
	SAMPL	E	(ppr	L E E			BOREHOLE NUMBER: MW	01	PA	GE 1 of 1	
			0 Z	VAT			DRILLING DATES: 14 April 2003	DRIL		S : Air Rotary	<u></u>
L H N	L L L S		¶0		(E)	5	DRILLENC DATES: THE Investiga	tions BORE		IER:	
ST ST	Σ	 ш	КË		王		LOGGED BY : SES	SCRE	EN TYPE & DI	AM:	_
^m NO	ANA	μ		SRO	E E	Ш	CHECKED BY : CG	SCRE	EN SLOT SIZE	: :	
		+	<u> </u>	<u> </u>			DESCR		· · · · · · · · · · · · · · · · · · ·	COMMENTS	
(o`o`d ⊟ o`o`o				1.1	0.0	<u>-</u>	Grev brown, Sandy Boulde	r Clav with abund	dant fine	· · · · · · · ·	- 0.0
0.00 0.00	alla n ing or o	*			1.0.	e	to medium rounded gravels.	Moist.		NEC	1.0.
V// V//				elda	20	<u></u>					2.0.
				ater to							
				≩ ₩	3.0						3.0.
				-	4.0	••_ •_•					4.0.
					50	<u> </u>					5.0.
						<u>+</u> •					
					6.0	÷					6.0.
			•		7.0	1. 					7.0.
					80	°					8.0
V/// V///						<u> </u>			4		
V/Λ V/Λ			. ·		9.0	H	Limestone, light grey, unwe	eathered. Dry to 2	i m.	NEC	9.0.
VIA VIA					10.0						10.0.
V/A V/A			÷		11 0					k	1110.
VIA VIA					11.0.4	╧┿┩					
V/X V/X					12.0	1					12.0.
VIA VIA					13.0	<u></u>					13.0.
											140
					14.0						14.0.
VA VA	-		··• • · ··· ·		15.0		n e sign da y dana. A e sign da ya manaka sa a	and a second		an a	15.0
VIA VIA					16.0						16.0
$V/\lambda V/\lambda$					17.0.3						17.0_
					18.0	┉┼┩					18.0
SIN VII					10.0	—]					19.0
VIA VIA											
				Strike	20.0						20.0
				Vater :	21.0	+					21.0
				Σ					`		22.0
				-	22.0						
					23.0	┛┽┫					23.0
					24.0						24.0
					25.0		End of B	orehole			25.0
ļ				<u> </u>	20.0-						
NEC= No	LOCATIC Evidence	ON / of Co	NOTES	: tion			<u>LEGENU</u> M Disturbed Sample	Inh Titles Commission	KEHOLE I	LUG	
								Joo Title: Groundwater Invest	ugation		
							PID Headsnare Analysis	Location: Portlaoise, Co Laois Client: Affac Ireland Ltd	5		
							Down Borehole Analysis	Auds Heldilü Llü	App'd:	Date: 14-4-04	
							Groundwater Table	TTDC	Drawn : SES	Ref: SS/CG/GW	
					· .		Perched Water Table		Scale:	Job No: 46605-0	09-447
									Drg. Size: A4	BOREHOLE	LOG

:	NO	SAMPL	.E	(mqq)	ER			B	OREHOLE NUMBER: MV	V02		PAG	GE 1 of 1
	CI	. (0		U N U	VAT			DF	ILLING DATES: 14-15 April	2003			S · Air Rotarv
	HE D	Ш		AD I	l₫	<u>Ξ</u>	5 S		II FR · Glover Site Investic	ations	BORFHO		FR ·
	NST ST	Ĺ	ш	RE	5	E	닐	LÖ	GGED BY : SES		SCREEN	TYPE & DIA	AM:
<i>i</i> .	Ő	NA NA	μ	Q	GRO	ЦЩ.	ы	CH	ECKED BY : CG		SCREEN	SLOT SIZE	· · ·
			1		<u> </u>		<u> </u>		DESCI				COMMENTS
ini	///	winstern of Alexandro	e de récente est			0.0-	***	M	ade Ground: Loose San ome silt. Dry.	d and Grave	hardcore	e with	NEC
	8				Vater tabl	3.0		Li to	ght brown, Sandy Bould medium rounded gravel	le r Clay , with s. Dry.	n abundan	nt fine	NEC
	▓≠▓				Ţ	4.0							
	XX 🕅					5.0	<u></u>					[
	XX 🕅					6.0	**		,				
ļ	XX 🕅					7.0.							
	XX 🕅					8.0-							
ľ	7771 1771					9.0	•						•
ļ	777 V/X					10.0	\top	Li	mestone, pale grey, fine 29m	grained, uni	weathered		NEC
ł	/// <i>\//</i> /					11.0	┵┤			· .			
t	777 V/X					12.0.	┯╋╡						
ł	//A V/A					13.0	<u>_</u>						× *
ł	//X V/X					14.0-	뒤		· · · · ·				
ł	//A V/A	•				15.0	╧┯┫		· · · ·				
ł	//X V/X					16.0							. · · ·
ł	// /					17.0		•					
ł	/// 1///	۰.			н. 1	18.0					•		
	/// <i>\//</i> /					19.0	⊥┼┨						
ľ	/// V//	e ne en el		ر دونه می را د فره میشوند می		20.0		ر د. معر الحالي	ایک ادر ور ا مربو مسرست همورد ورواند افاد ایراد ماد ساند	د ادان محمول اد. دير برو مستقور ا	a an	ر دری در معر موقعه در محرم	en santanan 1911 - Santanan
ł	/// <i>\//</i> /					21.0-	┼┦						
ł	//X V/X					22.0	┿┯┩				,		
ſ		1				23.0			ς.				
					-	24.0					•		· .
						25.0						.	. · · ·
			- *			26.0			. ,		· .		
					trike	27.0				· . ·			•
					ater si	28.0	$\frac{1}{1}$						•
					N V	29.0	╈		· · ·	· .	`		
					-	30.0							
						31.0 म			·				
						32.0.	1		r	Davahala	· · · · · ·		. '
						33.0 특			End of t	SULEUOIE			
ŀ		LOCATIO	IN/I	NOTES:	l		l		LEGEND		BOREI	HOLE L	OG _
			100	ana) minau	UT .	. 1		M	Disturbed Sample	Job Title: Groundwa	ater Investigation		
								_	Undisturbed Sample	Location: Portlaoise	, Co Laois		
						.		*	PID Headspace Analysis	Client: Atlas Ireland	Ltd	Appid	Date: 15 4 04
								Ť	Down Borenole Analysis				Ref: \$9/00/0W
								Ţ	Groundwater Table	UK		Scale:	Job No: 46605-0
								Ţ	Perched Water Lable			Drg. Size: A4	BOREHOLE

щ	SAMPLE (mdd) UOL UCL							BOREHOLE NUMBER: MW03		PAGE 1 of 1	
· · · · · · · · · · · · · · · · · · ·	3	ល		ONIC	M	(c)		DRILLING DATES: 14 April 2003	DRILLING MET		 rv
<u> </u>		ΥTE		EAC			0	DRILLER : Glover Site Investigations	BOREHOLE DIA	METER :	·
		, AL	비	R		L d	Ы	LOGGED BY : SES	SCREEN TYPE	& DIAM:	
	3	AN	≿	PIC	L R	Ш О	Ш Ш	CHECKED BY : CG	SCREEN SLOT	SIZE:	
	.v.v.					0.0_		DESCRIPTION	<u> </u>	COMMENT	s
		and a failure to find	erene i s	ng againtakan d	Anteres	vasojom (T		Light brown, Sandy Boulder Clay with	abundant fine		
					ie ie	2.0-11 3.0-11		to medium rounded gravels. Moist.		Slight Hydrocarbon Odour	2.0
					•1 Water fab	4.0 111 5.0 111		Slightly loose, light brown Clayey Sand medium grained gravel, slightly moist.	, with fine to	Slight Hydrocarbon	4.0_11 5.0_111
					네 Water strike	6.0 111 10 10 10 10 10 10 10 10 10 10 10 1		Grey brown Sand with fine to medium s rounded gravels. Moist, becoming wet a	ubrounded to at 7.5m.	Slight Hydrocarbon Odour	6.0 111111111111111111111111111111111111
					:	9.0		Limestone, pale grey, unweathered. W		NEC	8.0 9.0 10.0
					1						11.0
	******				1	3.0			•		13.0
					1	5.0		End of Borehole			15.0
NEC= N	LOCATION / NOTES: NEC= No Evidence of Contamination							LEGEND Disturbed Sample Undisturbed Sample ↓ Disturbed Sample ↓ Disturbed Sample ↓ Disturbed Sample ↓ Disturbed Sample ↓ Location: Portlaoise, C Client: Atlas Ireland Lt ↓ Down Borehole Analysis Groundwater Table ↓ Perched Water Table	BOREHOLE r Investigation Co Laois d App'd: Drawn : SE: Scale: Drg. Size: A	Date: 14-4-04 S Ref: SS/CC/GW Job No: 46605-00 4 BOREHOLE	<u>19-447</u>

.

, n

~ •

o b

APPENDIX C

Groundwater Levels

Manual Groundwater Dips - Deep Boreholes

APPENDIX D

Summary Laboratory data

Total Hydrocarbons

	GW1/BH	GW2/B	GW3/B	GW4/BH	GW5/M	GW6/M	GW7/M	GW8/M	EPA IGV
TPH >C5 - C44	101	H102	H103	104B	W01	W02	W03	W04	(ug/l)
02-Mar-06									
19-Apr-06									
27-Jul-06									
17-Oct-06									
19-Feb-07									
27-Apr-07									
26-Jul-07									
22-Oct-07									
13-Feb-08									
07-May-08									
16-Jul-08									
15-Dec-08									
05-Mar-09	2103	462	3294	16711	118	25	2568		10
27-May-09	516	<10	2937	386	63	<10	34700		10
06-Aug-09	40	<10	12	511	<10	<10	1800		10
04-Dec-09	66	141	2670	193	2020	<10	10300		10
18-Feb-10	<10	<10	<10	<10	<10	<10	4700		10
27-May-10	<10	<10	<10	270	<10	<10	<10		10
12-Aug-10	<10	<10	<10	31	<10	<10	98		10
24 Nov 2010	<10	<10	<10	<10	<10	<10	<10		10
10-Mar-2011	<10	<10	<10	<10	<10	<10	<10		10
24 May 2011	<10	<10	760	120	<10	<10	210		10
03 Aug 2011	<10	<10	<10	<10	<10	<10	370		10
06 Nov 2011	<10	<10	<10	<10	<10	<10	270		10
23 Feb 2012	<10	<10	2000	<10	<10	<10	<10		10
28 May 2012	<10	<10	500	<10	<10	<10	<10	<10	10
14 Aug 2012	<10	<10	<10	<10	<10	<10	<10	<10	10
07 Nov 2012	<10	<10	<10	<10	<10	<10	<10	<10	10
19 Feb 2013	<10	<10	<10	<10	<10	<10	<10	<10	10
17 Apr 2013	<10	<10	<10	<10	<10	<10	<10	<10	10
23 Sep 2013	<10	<10	<10	<10	<10	<10	390	<10	10
05 Nov 2013	<10	<10	<10	<10	<10	<10	<10	<10	10
25 Feb 2014	<10	<10	<10	<10	<10	<10	<10	<10	10
22 May 2014	<10	<10	<10	<10	<10	<10	<10	<10	10
22 Aug 2014	<10	<10	<10	410	<10	<10	<10	<10	10
03 Dec 2014	<10		<10	<10	<10	<10	<10	<10	10
12 Feb 2015	<10	<10	68	53	<10	<10	72	15	10
20-May-15	<10	<10	2269	557	<10	<10	<20	<40	10
26-Aug-15	<10	<10	89	219	<10	<10	14	47	10
08-Dec-15	<10	<10	304	9890	<10	<10	<10	35	10
24-Feb-16	<10	<10	132	<10	<10	<10	<10	15	10
25 May 2016	<10	<10	207	<10	<10	<10	<10	20	10
31 Aug 2016	<10	<10	56	37	<10	<10	<10	23	10
06 Dec 2016	<10	<10	47	12	<10	<10	<10	35	10
16 Feb 2017	<10	11	15	<10	23	<10	53	32	10
30 May 2017	<10	<10	50	85	<10	12	18	29	10
28/08/2017	<40	<10	247	<10	120	<10	102	41	10
14/11/2017	<10	98	351	<10	60	<10	<40	<40	10

Benzo (a) pyrene

	GW1/BH	GW2/B	GW3/B	GW4/BH	GW5/M	GW6/M	GW7/M	GW8/M	EPA IGV
	101	H102	H103	104B	W01	W02	W03	W04	(ug/l)
11 Apr 2004				1045					0.01
19 Jul 2004	<0.01	<0.01	0.0/1		<0.01	<0.01	<0.01		0.01
04 Oct 2004	<0.01	<0.01	<0.041	-0.01	<0.01	<0.01	<0.01		0.01
07 Ech 2005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01
12 Jun 2005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01
13 Juli 2005	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01		0.01
21 Sep 2005	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01		0.01
10 Nov 2003	<0.01	0.115	<0.01	0.01	0.012	0.017	2 751		0.01
02 Mai 2000	<0.01	-0.01	<0.01	0.10	10.012	10.017	2.731		0.01
19 Apr 2006	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01
27 Jul 2000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.249		0.01
17 Oct 2006	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.337		0.01
19 Feb 2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01
27 Apr 2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.024		0.01
26 Jul 2007	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01		0.01
22 Oct 2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05		0.01
13 Feb 2008	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.010		0.01
07 May 2008	<10	<10	<10	<10	<10	<10	0.01		0.01
16 Jul 2008	<10	<10	<10	<10	<10	<10	0.023		0.01
15 Dec 2008	<10	<10	<10	<10	<10	<10	<10		0.01
05 Mar 2009	< 0.01	<0.01	0.34	< 0.01	< 0.01	<0.01	< 0.01		0.01
27 May 2009	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	0.18		0.01
06 Aug 2009	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02		0.01
04 Dec 2009	0.04	<0.01	0.01	<0.01	0.03	<0.01	0.27		0.01
18 Feb 2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01
27 May 2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01
12 Aug 2010	< 0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01		0.01
24 Nov 2010	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01		0.01
10 Mar 2011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01
24 May 2011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01
03 Aug 2011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01
16 Nov 2011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01
23 Feb 2012	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.01
28 May 2012	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
14 Aug 2012	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
07 Nov 2012	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	0.01
19 Feb 2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
17 Apr 2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	0.01
23 Sep 2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	0.01
05 Nov 2013	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	0.01
25 Feb 2014	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
22 May 2014	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	0.01
28 Aug 2014	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
03 Dec 2014	< 0.01	< 0.01	< 0.0.1	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.01
12 Feb 2015	<0.01	<0.01	<0.0.1	<0.01	0.011	<0.01	<0.01	<0.01	0.01
20 May 2015	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01
26-Aug-15	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.052	<0.10	0.01
08 Dec 2015	<0.01	< 0.01	< 0.01	<0.10	< 0.01	< 0.01	0.108	< 0.01	0.01
24 Feb 2016	<0.10	< 0.01	< 0.04	<0.01	< 0.01	< 0.01	< 0.01	<0.10	0.01
25 May 2016	< 0.01	< 0.01	< 0.05	<0.10	< 0.01	0.01	<0.10	< 0.01	0.01
31 Aug 2016	<0.01	< 0.01	0.04	<0.01	< 0.01	< 0.01	0.037	< 0.01	0.01
06-Dec-16	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	0.032	< 0.01	0.01
16-Feb-17	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	0.033	< 0.01	0.01
30-May-17	<0.10	< 0.01	< 0.01	< 0.04	< 0.01	< 0.01	< 0.02	< 0.01	0.01
28-Aug-17	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.10	<0.10	0.01
14-Nov-17	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.036	< 0.01	0.01

Benzo (g,h,i) perylene

	GW1/BH	GW2/B	GW3/B	GW4/BH	GW5/M	GW6/M	GW7/M	GW8/M	EPA IGV
	101	H102	H103	104B	W01	W02	W03	W04	(ug/l)
11 Apr 2004	-	-	-	-	-	-	-		0.05
19 Jul 2004	<0.01	<0.01	<0.01	-	<0.01	<0.01	<0.01		0.05
04 Oct 2004	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.05
07 Feb 2005	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01		0.05
13 Jun 2005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.05
21 Sep 2005	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01		0.05
10 Nov 2005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.05
02 Mar 2006	<0.01	<0.01	<0.01	0.087	<0.01	<0.01	1.283		0.05
19 Apr 2006	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.05
27 Jul 2006	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	0.232		0.05
17 Oct 2006	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.1		0.05
19 Feb 2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.05
27 Apr 2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.012		0.05
26 Jul 2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.05
22 Oct 2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.05
13 Feb 2008	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		0.05
07 May 2008	<10	<10	<10	<10	<10	<10	<10		0.05
16 Jul 2008	<10	<10	<10	<10	<10	<10	0.022		0.05
15 Dec 2008	<10	<10	<10	<10	<10	<10	<10		0.05
05 Mar 2009	<0.01	< 0.01	0.42 [*]	<0.01	< 0.01	<0.01	<0.01		0.05
27 May 2009	<0.01	< 0.01	< 0.01	<0.01	< 0.01	0.02	0.08		0.05
06 Aug 2009	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03		0.05
04 Dec 2009	0.05	< 0.01	0.02	< 0.01	0.05	< 0.01	0.26		0.05
18 Feb 2010	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.05
27 May 2010	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.05
12 Aug 2010	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.05
24 Nov 2010	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.05
10 Mar 2011	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.05
24 May 2011	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.05
3 Aug 2011	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		0.05
16 Nov 2011	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01		0.05
23 Feb 2012	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01		0.05
28 May 2012	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
14 Aug 2012	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	0.05
07 Nov 2012	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	0.05
19 Feb 2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
17 Apr 2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
23 Sep 2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
05 Nov 2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
25 Feb 2014	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
22 May 2014	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
28 Aug 2014	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
03 Dec 2014	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	0.05
12 Feb 2015	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
20 May 2015	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	0.05
26-Aug-15	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.053	<0.10	0.05
08 Dec 2015	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	0.131	<0.01	0.05
24 Feb 2016	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.05
25 May 2016	<0.01	< 0.01	< 0.01	<0.10	< 0.01	0.011	<0.10	< 0.01	0.05
31 Aug 2016	<0.01	<0.01	0.015	<0.01	< 0.01	< 0.01	0.035	<0.01	0.05
06-Dec-16	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	0.036	< 0.01	0.05
16-Feb-17	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	0.037	< 0.01	0.05
30-May-17	<0.10	< 0.01	< 0.01	< 0.04	< 0.01	< 0.01	< 0.02	< 0.01	0.05
28-Aug-17	<0.01	< 0.01	< 0.01	< 0.01	0.013	< 0.01	<0.10	<0.10	0.05
14-Nov-17	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.041	< 0.01	0.05
PAH Total

101 H102 H103 104B W01 W02 W03 W04 (w01) 11 9,Jul 2004 0.879 0.324 1.829 - - - 0.11 04 0ct 2004 0.031 0.037 0.039 0.130 0.037 0.099 0.11 07 Feb 2005 0.34 0.386 0.874 2.881 0.34 0.143 0.177 0.11 13 Jun 2005 - - - - - - 0.1 0.11 10 Nov 2005 - - - - - - 0.1 0.01 127.Jul 2006 <0.011 -0.01 <0.011 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.		GW1/BH	GW2/B	GW3/B	GW4/BH	GW5/M	GW6/M	GW7/M	GW8/M	EPA IGV
		101	H102	H103	104B	W01	W02	W03	W04	(ug/l)
	11 Apr 2004	-	-	-		-	-	-		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19 Jul 2004	0.879	0.324	1.829		1.151	0.791	1.08		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	04 Oct 2004	0.031	0.087	0.034	1.006	0.103	0.037	0.099		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	07 Feb 2005	0.334	0.386	0.874	2.881	0.34	0.143	7.77		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13 Jun 2005	-	-	-	-	-	-	-		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21 Sep 2005	-	-	-	-	-	-	-		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10 Nov 2005	-	-	-	-	-	-	-		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02 Mar 2006	<0.01	1.499	0.14	4.775	1.122	0.553	107.35		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19 Apr 2006	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	27 Jul 2006	<0.01	<0.01	<0.01	1.988	< 0.01	<0.01	21.439		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17 Oct 2006	<0.01	<0.01	<0.01	0.235	<0.01	<0.01	17.325		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19 Feb 2007	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	4.186		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	27 Apr 2007	<0.01	<0.01	<0.01	0.702	<0.01	<0.01	0.839		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	26 Jul 2007	<0.01	<0.01	<0.01	0.702	< 0.01	<0.01	2.262		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22 Oct 2007	0.15	< 0.01	< 0.01	19.72	< 0.01	<0.01	3.86		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13 Feb 2008	<0.01	< 0.01	< 0.01	1.701	< 0.01	<0.01	1.146		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	07 May 2008	<10	<10	<10	1.501	<10	<10	1.003		0.1
15 Dec 2008 <10 <10 <10 0.2865 <10 <10 0.184 0.1 05 Mar 2009 <0.01'	16 Jul 2008	<10	<10	<10	0.963	<10	<10	1.564		0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15 Dec 2008	<10	<10	<10	0.2865	<10	<10	0.184		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	05 Mar 2009	< 0.01	< 0.01	8.40 [*]	<0.03*	0.02	0.01	0.01		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27 May 2009	< 0.01	< 0.01	< 0.01	0.09	0.07	0.28	2.51		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	06 Aug 2009	< 0.01	0.02	0.02	0.85	< 0.01	0.01	0.45		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	04 Dec 2009	0.57	0.03	0.12	0.85	0.92	< 0.01	4.58		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18 Feb 2010	<0.2	< 0.2	< 0.2	<0.2	< 0.2	<0.2	0.3		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27 May 2010	<0.1	<0.1	<0.1	1.2	<0.1	<0.1	<0.1		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12 Aug 2010	<0.2	<0.2	<0.2	0.2	<0.2	2.0	<0.2		0.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24 Nov 2010	<0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10 Mar 2011	<0.2	< 0.2	< 0.2	<0.2	<0.2	<0.2	<0.2		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	03 Aug 2011	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16 Nov 2011	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	23 Feb 2012	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	28 May 2012	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	2.6	<0.2	0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14 Aug 2012	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	07 Nov 2012	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19 Feb 2013	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17 Apr 2013	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	23 Sep 2013	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	2.62	<0.2	0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	05 Nov 2013	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25 Feb 2014	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	22 May 2014	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	28 Aug 2014	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12 Eeb 2015	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12 Feb 2015	< 0.01	< 0.01	< 0.22	0.096	0.100	< 0.10	<0.10	< 0.01	0.1
20-Augr13 0.011 < 0.01 0.033 0.139 < 0.01 < 0.01 0.030 < 0.01 < 0.01 0.011 < 0.01 0.011 < 0.01 0.011 < 0.01 0.011 < 0.01 0.011 < 0.01 0.011 < 0.01 0.011 < 0.01 0.011 < 0.01 0.011 < 0.01 0.011 < 0.01 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.013 0.11 24-Feb-16 <0.01	20 Way 2015	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.015	< 0.01	0.1
00-Dec-13 0.011 C.0.1 <thc.0.1< th=""> C.0.1 C.0.1</thc.0.1<>	08-Doc-15	0.011	< 0.01	0.093	<0.109	<0.01	< 0.01	000.0 320.0	0.070	0.1
25 May 2016 <0.01 <0.01 0.123 0.139 <0.01 <0.01 <0.01 0.153 0.1 25 May 2016 <0.01	24-Ech-16	<0.011	< 0.01	0.21	0 150	<0.01	< 0.01	<0.01	0.079	0.1
25 May 2016 0.011 0.033 0.111 0.101 0.003 0.011 0.003 0.011 0.003 0.011 0.003 0.011 0.023 0.11 31 Aug 2016 0.011 0.033 0.181 0.158 0.011 0.01 0.562 0.151 0.1 06-Dec-16 <0.01	24-1 60-10 25 May 2016	<0.10	<0.01	0.123	<0.10	0.011	0.060	<0.01	0.023	0.1
Off Original <thoriginal< th=""> Original O</thoriginal<>	20 Way 2010	0.011	0.033	0.111	0.10	0.011	<0.009	0.10	0.023	0.1
16-Feb-17 <0.01 0.014 0.05 0.021 0.121 <0.01 0.47 0.148 0.1 30-May-17 <0.10	06 Dog 16	<0.011	0.033	0.027	0.130	0.011	<0.01	0.502	0.151	0.1
30-May-17 <0.01 0.014 0.03 0.021 0.121 <0.01 0.147 0.148 0.1 30-May-17 <0.10	16 Ech 17	<0.01	0.014	0.027	0.037	0.024	<0.01	0.390	0.015	0.1
Stringer	20 May 17	<0.01	0.014	0.03	0.021	0.024	<0.01	0.47	0.140	0.1
	28-Aug-17	<0.10	<0.01	0.127	0.049	0.024	<0.01	<0.10	0.154	0.1
	14-Nov-17	<0.01	<0.01	0.031	<0.139	<0.01	<0.01	0 243	0.101	0.1

Naphthalene

	GW1/BH	GW2/B	GW3/B	GW4/BH	GW5/M	GW6/M	GW7/M	GW8/M	EPA IGV
	101	H102	H103	104B	W01	W02	W03	W04	(ua/l)
11 Apr 2004	-	-	-	-	-	-	-	-	1.0
19 Jul 2004	0.747	0.213	0.374	-	0.8	0.628	0.81		1.0
04 Oct 2004	<0.01	0.019	0.012	0.044	0.024	0.011	0.02		1.0
07 Feb 2005	0.187	0.07	0.51	0.147	0.048	0.028	4.883		1.0
13 Jun 2005	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01		1.0
21 Sep 2005	<0.01	< 0.01	<0.01	39	<0.01	< 0.01	< 0.01		1.0
10 Nov 2005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		1.0
02 Mar 2006	<0.01	0.046	0.032	1 069	0.034	0.043	19 986		1.0
19 Apr 2006	<0.01	<0.01	<0.002	<0.01	<0.001	<0.01	<0.01		1.0
27 Jul 2006	<0.01	<0.01	<0.01	1 594	<0.01	<0.01	6 641		1.0
17 Oct 2006	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1 64		1.0
10 Ecb 2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.04		1.0
27 Apr 2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.085		1.0
27 Api 2007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.060		1.0
20 Jul 2007	<0.01	< 0.01	< 0.01	16 31	< 0.01	< 0.01	0.020		1.0
12 Feb 2008	0.07	-0.01	<0.01	0.630	<0.01	<0.01	0.20		1.0
13 Feb 2008	<0.01	<0.01	<0.01	0.639	<0.01	<0.01	0.067		1.0
07 May 2008	<10	<10	<10	0.001	<10	<10	0.075		1.0
15 Jul 2008	<10	<10	<10	0.134	<10	<10	0.004		1.0
15 Dec 2008	<10	<10	<10	0.030	< 10	< 10	0.0110		1.0
05 Mar 2009	<0.01	<0.01	0.13	<0.01	<0.01	<0.01	0.04		1.0
27 May 2009	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.06		1.0
00 Aug 2009	<0.01	0.02	0.02	0.01	<0.01	0.01	0.04		1.0
18 Ecb 2009	0.03	<0.01	<0.01	0.24	<0.01	< 0.01	-0.00		1.0
27 May 2010	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		1.0
12 Aug 2010	<0.01	<0.01	<0.01	0.24	<0.01	<0.01	0.05		1.0
24 Nov 2010	<0.01	<0.01	<0.01	<0.00	<0.01	<0.01	<u>0.05</u> ∠0.01		1.0
10 Mar 2011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		1.0
24 May 2011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		1.0
03 Aug 2011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		1.0
16 Nov 2011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		1.0
23 Eeb 2012	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		1.0
231 eb 2012 28 May 2012	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.4	<0.01	1.0
14 Aug 2012	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1
07 Nov 2012	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1
19 Feb 2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1
17 Apr 2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1
23 Sep 2013	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	1
05 Nov 2013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1
25 Feb 2014	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	1
22 May 2014	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1
28 Aug 2014	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1
03 Dec 2014	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1
12 Feb 2015	< 0.01	< 0.01	< 0.04	< 0.05	< 0.01	< 0.01	<0.10	< 0.18	1
20 May 2015	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1
26-Aug-15	0.011	< 0.01	<0.14	< 0.07	< 0.01	< 0.01	0.031	<0.10	1
08-Dec-15	< 0.01	< 0.01	0.095	<0.10	< 0.01	< 0.01	< 0.01	0.067	1
24-Feb-16	<0.10	< 0.01	<0.12	0.034	< 0.01	< 0.01	< 0.01	0.153	1
25-Mav-16	< 0.01	< 0.01	<0.12	<0.10	< 0.01	< 0.01	< 0.01	<0.16	1
31-Aug-16	< 0.01	< 0.01	<0.13	0.039	< 0.01	< 0.01	0.028	0.12	1
06-Dec-16	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	< 0.01	0.036	<0.17	1
16-Feb-17	< 0.01	< 0.01	0.018	< 0.01	0.041	< 0.01	< 0.01	0.12	1
30-May-17	<0.10	< 0.01	0.066	< 0.04	< 0.01	< 0.01	0.11	0.157	1
28/08/2017	<0.01	<0.01	0.04	0.024	<0.01	<0.01	<0.10	0.161	1
14/11/2017	< 0.01	< 0.01	< 0.03	< 0.01	< 0.01	< 0.01	< 0.01	0.107	1

Vinyl Chloride

	GW1/BH	GW2/B	GW3/B	GW4/BH	GW5/M	GW6/M	GW7/M	GW8/M	2010 GTV
	101	H102	H103	104B	W01	W02	W03	W04	ug/l
12-Feb-15	<0.5	<0.5	0.8	< 0.5	0.9	<0.5	<0.5	<0.5	0.375
20-May-15	<0.5	<1.0	<5.0	< 0.5	<0.5	<0.5	<1.0	<0.5	0.375
01-Aug-15	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<5.0	<5.0	0.375
08-Dec-15	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<2.0	<2.0	0.375
24-Feb-16	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	0.375
25-May-16	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	0.9	0.375
31-Aug-16	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	0.375
06-Dec-16	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.375
16-Feb-17	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	0.5	0.375
30-May-17									0.375
28-Aug-17	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	0.375
14-Nov-17	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	0.375

APPENDIX E

•

Laboratory Certificates 2017

ALS Environmental Ltd Torrington Avenue Coventry CV4 9GU

T: +44 (0)24 7642 1213 F: +44 (0)24 7685 6575 www.alsenvironmental.co.uk

06 March 2017

Test Report: COV/1363169/2017

Dear Miss Reilly

Analysis of your sample(s) submitted on 16 February 2017 is now complete and we have pleasure in enclosing the appropriate test report(s).

An invoice for the analysis carried out will be sent under separate cover.

Should you have any queries regarding this report(s) or any part of our service, please contact Customer Services on +44 (0)24 7642 1213 who will be happy to discuss your requirements.

If you would like to arrange any further analysis, please contact Customer Services. To arrange container delivery or sample collection, please call the Couriers Department directly on 024 7685 6562.

Thank you for using ALS Environmental Ltd and we look forward to receiving your next samples.

Yours Sincerely,

Signed:

Name: P. Johal

Title: Microbiology Manager

This communication has been sent to you by ALS Environmental Ltd. Registered in England and Wales. Registration No.02148934. Registered Office: ALS Environmental Limited, Torrington Avenue, Coventry, CV4 9GU.

Miss Reilly RPS Consultants West Pier Business Campus Dun Laoghaire Dublin

Report Summary	UKAS TESTING 1314 0897 4409		Ent	ALS
Miss Catriona Reilly RPS Consultants West Pier Business Campus Dun Laoghaire Dublin				
	Date o	f Issue:	06 March	2017
Report Number: COV/136316	69/2017	Issue	e 1	This issue replaces all previous issues

Job Description:	Portlaoise Groundwater
------------------	------------------------

Job Location: Portlaoise

Number of Samples included in this report **8**

Number of Test Results included in this report **1416**

Signed:

Name:	P. Johal	Date:	(

Job Received:

Date: 06 March 2017

Analysis Commenced: 20 February 2017

16 February 2017

Microbiology Manager

ALS Environmental Ltd was not responsible for sampling unless otherwise stated. Sampling is not covered by our UKAS accreditation.

Title:

Information on the methods of analysis and performance characteristics are available on request. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. The results relate only to the items tested. Tests marked 'Not UKAS Accredited' in this Report/Certificate are not included in the UKAS Accreditation Schedule for our laboratory.

This communication has been sent to you by ALS Environmental Ltd. Registered in England and Wales. Registration No. 02148934. Registered Office: ALS Environmental Limited, Torrington Avenue, Coventry, CV4 9GU.

(c) ALS Environmental Ltd 2017. All rights reserved. We, ALS Environmental Ltd, are the owner of all copyright in this report. You must not copy, reproduce, amend or adapt this report, its contents or any format in which it is delivered without our prior written agreement. If you copy, reproduce, amend, or adapt this report in any way without our agreement you will be liable for any damage or loss to us. In the event of a dispute the copy of the report held by us shall be the reference copy.

Report Number: COV/1363169/2017 Laboratory Number: 15887316 Issue 1 Sample 1 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH101
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date Accred		ditation	Method
Magnesium, Total as Mg	11000	ug/l	25/02/2017	Y	Cov	WAS049
Potassium, Total as K	4570	ug/l	25/02/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	27/02/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	25/02/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	25/02/2017	Y	Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	25/02/2017	Y	Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	25/02/2017	Y	Cov	WAS049
Iron, Total as Fe	538	ug/l	25/02/2017	Y	Cov	WAS049
Lead , Total as Pb	<6.00	ug/l	25/02/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	20/02/2017	Ν	Cov	WAS013
Nickel , Total as Ni	5.80	ug/l	25/02/2017	Y	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	27/02/2017	Y	Cov	WAS060
Zinc , Total as Zn	<18.0	ug/l	25/02/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	28/02/2017	N	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	02/03/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	28/02/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	23/02/2017	N	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	23/02/2017	N	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46

Report Number: COV/1363169/2017 Laboratory Number: 15887316 Issue 1 Sample 1 of 8

RPS Consultants
RPS
3H101
Ground Water
6 February 2017
6 February 2017
)2 March 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method
Aromatic EPH >C10 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
EPH >C10 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Acenaphthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Fluorene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Naphthalene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
PAH, Total	<0.01	ug/l	21/02/2017	Ν	Cov	GEO19
VOC	Y	ug/l	27/02/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	27/02/2017	Ν	Cov	GEO32
Chloroform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

Report Number: COV/1363169/2017 Laboratory Number: 15887316 Issue 1 Sample 1 of 8

PS Consultants
PS
H101
round Water
February 2017
February 2017
March 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method
1,1-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromodichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Toluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Vinyl Chloride	<0.5	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Tetrachloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Ethyl Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
m&p-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
o-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Styrene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromoform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Isopropylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

Report Number: COV/1363169/2017 Laboratory Number: 15887316 Issue 1 Sample 1 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH101
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accredita		Method
tert-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromofluoromethane	99.1	%Recovery	27/02/2017	Ν	Cov	GEO32
Toluene-d8	99.0	%Recovery	27/02/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	96.1	%Recovery	27/02/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	24/02/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40

Report Number: COV/1363169/2017 Laboratory Number: 15887316 Issue 1 Sample 1 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH101
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation	
2-Nitrophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	24/02/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	24/02/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	24/02/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Pyrene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Chrysene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	24/02/2017	Y Cov	GEO40

Issue 1 Sample 1 of 8

Report Number: COV/1363169/2017 Laboratory Number: 15887316

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH101
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	S Date Accreditation		Method
Di-n-octylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Fluorophenol	98.7	%Recovery	24/02/2017	Ν	Cov	GEO40
Phenol-d6	82.0	%Recovery	24/02/2017	Ν	Cov	GEO40
Nitrobenzene-d5	94.4	%Recovery	24/02/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	86.5	%Recovery	24/02/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	88.3	%Recovery	24/02/2017	Ν	Cov	GEO40
Terphenyl-d14	94.9	%Recovery	24/02/2017	Ν	Cov	GEO40

Analyst Comments for 15887316:

This sample has been analysed for Phenols in Water method GEO18, Boron Total as B outside recommended stability times. It is therefore possible that the results provided may be compromised. This sample has been re-analysed for 2,4-dimethylphenol outside recommended stability times due to quality failure on original extraction. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Ottroburs Accelerate(S021 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed:

Name: P. Johal Date: 06 March 2017

Title: **Microbiology Manager**

Report Number: COV/1363169/2017 Laboratory Number: 15887317 Issue 1 Sample 2 of 8

Laboratory Number:15887317Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:BH102Sample Matrix:Ground Water

Sample Matrix:Ground WaterSample Date/Time:16 February 2017Sample Received:16 February 2017Analysis Complete:02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Magnesium, Total as Mg	5360	ug/l	25/02/2017	Y	Cov	WAS049
Potassium, Total as K	2730	ug/l	25/02/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	27/02/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	25/02/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	25/02/2017	Y	Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	25/02/2017	Y	Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	25/02/2017	Y	Cov	WAS049
Iron, Total as Fe	<230	ug/l	25/02/2017	Y	Cov	WAS049
Lead , Total as Pb	<6.00	ug/l	25/02/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	20/02/2017	Ν	Cov	WAS013
Nickel , Total as Ni	7.60	ug/l	25/02/2017	Y	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	27/02/2017	Y	Cov	WAS060
Zinc , Total as Zn	18.1	ug/l	25/02/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	02/03/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	28/02/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	11	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	11	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46

COV/1363169/2017 15887317 Issue 1 Sample 2 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH102
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Report Number:

Laboratory Number: 15887317

Test Description	Result	Units	Analysis Date	Accreditat	on Method
Aromatic EPH >C10 - C44	<10	ug/l	23/02/2017	N Cov	GEO46
EPH >C10 - C44	11	ug/l	23/02/2017	N Cov	GEO46
Acenaphthene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Anthracene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Chrysene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Fluoranthene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Fluorene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Naphthalene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Phenanthrene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Pyrene	0.014	ug/l	21/02/2017	Y Cov	GEO19
PAH, Total	0.014	ug/l	21/02/2017	N Cov	GEO19
VOC	Y	ug/l	27/02/2017	N Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Chloromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Chloroethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Bromomethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Dichloromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	27/02/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32

Issue Sample 2

1

of 8

Report Number: COV/1363169/2017 Laboratory Number: 15887317

Sample Sources	DDC Consultanta
Sample Source.	RP5 Consultants
Sample Point Description:	RPS
Sample Description:	BH102
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,1-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromodichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Toluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Vinyl Chloride	<0.5	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Tetrachloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Ethyl Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
m&p-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
o-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Styrene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromoform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Isopropylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

COV/1363169/2017 Laboratory Number: 15887317

Issue 1 Sample 2 of **8**

RPS Consultants Sample Source: Sample Point Description: RPS Sample Description: BH102 Sample Matrix: **Ground Water** Sample Date/Time: 16 February 2017 Sample Received: 16 February 2017 Analysis Complete: 02 March 2017

Report Number:

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation		Method
tert-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromofluoromethane	98.4	%Recovery	27/02/2017	Ν	Cov	GEO32
Toluene-d8	98.8	%Recovery	27/02/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	98.6	%Recovery	27/02/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	24/02/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40

Issue 1 Sample 2 of 8

Report Number:COV/1363169/2017Laboratory Number:15887317

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH102
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
2-Nitrophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Naphthalene	<2.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Dimethylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Acenaphthylene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Acenaphthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Diethylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
4-Nitrophenol	<5.0	ug/l	24/02/2017	Y	Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Fluorene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Diphenylamine	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Pentachlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Phenanthrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	24/02/2017	Y	Cov	GEO40

Issue	1	
Sample	2	of

8

Report Number: COV/1363169/2017 Laboratory Number: 15887317

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH102
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	s Analysis Date		ditation	Method
Di-n-octylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	24/02/2017	Υ	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Fluorophenol	101.8	%Recovery	24/02/2017	Ν	Cov	GEO40
Phenol-d6	83.7	%Recovery	24/02/2017	Ν	Cov	GEO40
Nitrobenzene-d5	95.6	%Recovery	24/02/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	87.4	%Recovery	24/02/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	97.9	%Recovery	24/02/2017	Ν	Cov	GEO40
Terphenyl-d14	92.5	%Recovery	24/02/2017	Ν	Cov	GEO40

Analyst Comments for 15887317:

This sample has been analysed for Phenols in Water method GEO18, Boron Total as B outside recommended stability times. It is therefore possible that the results provided may be compromised. This sample has been re-analysed for 2,4-dimethylphenol outside recommended stability times due to quality failure on original extraction. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed:

Name: P. Johal Date: 06 March 2017

Title: **Microbiology Manager**

Report Number: COV/1363169/2017 Laboratory Number: 15887318 Issue 1 Sample 3 of 8

Laboratory Number: 15887318Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:BH103Sample Matrix:Ground Water

Sample Matrix:Ground WaterSample Date/Time:16 February 2017Sample Received:16 February 2017Analysis Complete:02 March 2017

Test Description	Result	Units	Analysis Date	Accred	litation	Method
Magnesium, Total as Mg	12800	ug/l	25/02/2017	Y	Cov	WAS049
Potassium, Total as K	2550	ug/l	25/02/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	7.6	ug/l	27/02/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	25/02/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	25/02/2017	Y	Cov	WAS049
Chromium , Total as Cr	2.10	ug/l	25/02/2017	Y	Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	25/02/2017	Y	Cov	WAS049
Iron, Total as Fe	5500	ug/l	25/02/2017	Y	Cov	WAS049
Lead , Total as Pb	24.3	ug/l	25/02/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	20/02/2017	Ν	Cov	WAS013
Nickel , Total as Ni	7.90	ug/l	25/02/2017	Y	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	27/02/2017	Y	Cov	WAS060
Zinc , Total as Zn	30.5	ug/l	25/02/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	02/03/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	28/02/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	15	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	15	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46

Report Number: COV/1363169/2017 Laboratory Number: 15887318 Issue 1 Sample 3 of 8

RPS Consultants
RPS
BH103
Ground Water
16 February 2017
16 February 2017
02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Aromatic EPH >C10 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
EPH >C10 - C44	15	ug/l	23/02/2017	Ν	Cov	GEO46
Acenaphthene	0.032	ug/l	21/02/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Fluorene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Naphthalene	0.018	ug/l	21/02/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
PAH, Total	0.050	ug/l	21/02/2017	Ν	Cov	GEO19
VOC	Y	ug/l	27/02/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	27/02/2017	Ν	Cov	GEO32
Chloroform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

Report Number: COV/1363169/2017 Laboratory Number: 15887318 Issue 1 Sample 3 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH103
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,1-Dichloropropene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	27/02/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	27/02/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
n-Propylbenzene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Bromobenzene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	27/02/2017	Y Cov	GEO32

Report Number:COV/1363169/2017Laboratory Number:15887318

Issue 1 Sample 3 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH103
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
tert-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromofluoromethane	101.6	%Recovery	27/02/2017	Ν	Cov	GEO32
Toluene-d8	99.9	%Recovery	27/02/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	97.6	%Recovery	27/02/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	24/02/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40

Report Number: COV/1363169/2017 Laboratory Number: 15887318 Issue 1 Sample 3 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH103
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
2-Nitrophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Naphthalene	<2.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Dimethylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Acenaphthylene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Acenaphthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Diethylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
4-Nitrophenol	<5.0	ug/l	24/02/2017	Y	Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Fluorene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Diphenylamine	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Pentachlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Phenanthrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	24/02/2017	Y	Cov	GEO40

Issue 1 Sample 3 of 8

Report Number: COV/1363169/2017 Laboratory Number: 15887318

Sample Source:	RPS Consultants
Sample Description:	BH103
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date		ditation	Method
Di-n-octylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Fluorophenol	89.6	%Recovery	24/02/2017	Ν	Cov	GEO40
Phenol-d6	74.7	%Recovery	24/02/2017	Ν	Cov	GEO40
Nitrobenzene-d5	85.4	%Recovery	24/02/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	83.2	%Recovery	24/02/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	97.2	%Recovery	24/02/2017	Ν	Cov	GEO40
Terphenyl-d14	97.5	%Recovery	24/02/2017	Ν	Cov	GEO40

Analyst Comments for 15887318:

This sample has been analysed for Phenols in Water method GEO18, Boron Total as B outside recommended stability times. It is therefore possible that the results provided may be compromised. This sample has been re-analysed for 2,4-dimethylphenol outside recommended stability times due to quality failure on original extraction. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed:

Name: P. Johal Date: 06 March 2017

Title: **Microbiology Manager**

Report Number: COV/1363169/2017 Laboratory Number: 15887319 Issue 1 Sample 4 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH104
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accreditatio	n Method
Magnesium, Total as Mg	4260	ug/l	25/02/2017	Y Cov	WAS049
Potassium, Total as K	7130	ug/l	25/02/2017	Y Cov	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	27/02/2017	Y Cov	WAS060
Boron , Total as B	<230	ug/l	25/02/2017	Y Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	25/02/2017	Y Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	25/02/2017	Y Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	25/02/2017	Y Cov	WAS049
Iron, Total as Fe	410	ug/l	25/02/2017	Y Cov	WAS049
Lead , Total as Pb	<6.00	ug/l	25/02/2017	Y Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	22/02/2017	N Cov	WAS013
Nickel , Total as Ni	5.30	ug/l	25/02/2017	Y Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	27/02/2017	Y Cov	WAS060
Zinc , Total as Zn	<18.0	ug/l	25/02/2017	Y Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	28/02/2017	Y Cov	GEO18
2 - Methylphenol	<1.00	ug/l	28/02/2017	N Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	28/02/2017	Y Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	02/03/2017	Y Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	28/02/2017	N Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	28/02/2017	Y Cov	GEO18
4-Chlorophenol	<1.00	ug/l	28/02/2017	Y Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	28/02/2017	N Cov	GEO18
Phenol	<5.00	ug/l	28/02/2017	Y Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	23/02/2017	N Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	23/02/2017	N Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	23/02/2017	N Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	23/02/2017	N Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	23/02/2017	N Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	23/02/2017	N Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	23/02/2017	N Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	23/02/2017	N Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	23/02/2017	N Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	23/02/2017	N Cov	GEO46

Report Number: COV/1363169/2017 Laboratory Number: 15887319 Issue 1 Sample 4 of 8

RPS Consultants
RPS
BH104
Ground Water
16 February 2017
16 February 2017
02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Aromatic EPH >C10 - C44	<10	ug/l	23/02/2017	N	Cov	GEO46
EPH >C10 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Acenaphthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Fluorene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Naphthalene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Pyrene	0.021	ug/l	21/02/2017	Y	Cov	GEO19
PAH, Total	0.021	ug/l	21/02/2017	Ν	Cov	GEO19
VOC	Y	ug/l	27/02/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	27/02/2017	Ν	Cov	GEO32
Chloroform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

Report Number:COV/1363169/2017Laboratory Number:15887319

Issue 1 Sample 4 of 8

Sample Source: R	RPS Consultants
Sample Point Description: R	RPS
Sample Description: B	3H104
Sample Matrix: G	Ground Water
Sample Date/Time: 10	6 February 2017
Sample Received: 10	6 February 2017
Analysis Complete: 02	2 March 2017

Test Description	Result	Units	Analysis Date	alysis Date Accreditation		Method
1,1-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromodichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Toluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Vinyl Chloride	<0.5	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Tetrachloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Ethyl Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
m&p-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
o-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Styrene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromoform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Isopropylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

Report Number: COV/1363169/2017 Laboratory Number: 15887319 Issue 1 Sample 4 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH104
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation		Method
tert-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromofluoromethane	99.6	%Recovery	27/02/2017	Ν	Cov	GEO32
Toluene-d8	99.7	%Recovery	27/02/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	97.3	%Recovery	27/02/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	24/02/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40

COV/1363169/2017 Laboratory Number: 15887319

Issue 1 Sample 4 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH104
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Report Number:

Test Description	Result	Units	Analysis Date	Accreditation	Method
2-Nitrophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	24/02/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	24/02/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	24/02/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Pyrene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Chrysene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	24/02/2017	Y Cov	GEO40

Issue 1 of 8 Sample 4

Report Number: COV/1363169/2017 Laboratory Number: 15887319

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH104
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Di-n-octylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Fluorophenol	102.2	%Recovery	24/02/2017	Ν	Cov	GEO40
Phenol-d6	88.5	%Recovery	24/02/2017	Ν	Cov	GEO40
Nitrobenzene-d5	96.3	%Recovery	24/02/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	87.3	%Recovery	24/02/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	95.7	%Recovery	24/02/2017	Ν	Cov	GEO40
Terphenyl-d14	93.7	%Recovery	24/02/2017	Ν	Cov	GEO40

Analyst Comments for 15887319:

This sample has been analysed for Phenols in Water method GEO18, Boron Total as B outside recommended stability times. It is therefore possible that the results provided may be compromised. This sample has been re-analysed for 2,4-dimethylphenol outside recommended stability times due to quality failure on original extraction. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed:

Name: P. Johal Date: 06 March 2017

Title: **Microbiology Manager**

Report Number: COV/1363169/2017 Laboratory Number: 15887320 Issue 1 Sample 5 of 8

-	
Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Magnesium, Total as Mg	17300	ug/l	25/02/2017	Y	Cov	WAS049
Potassium, Total as K	2380	ug/l	25/02/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	9.3	ug/l	27/02/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	25/02/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	25/02/2017	Y	Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	25/02/2017	Y	Cov	WAS049
Copper , Total as Cu	24.8	ug/l	25/02/2017	Y	Cov	WAS049
Iron, Total as Fe	4800	ug/l	25/02/2017	Y	Cov	WAS049
Lead , Total as Pb	190	ug/l	25/02/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	22/02/2017	Ν	Cov	WAS013
Nickel , Total as Ni	9.60	ug/l	25/02/2017	Y	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	27/02/2017	Y	Cov	WAS060
Zinc , Total as Zn	74.3	ug/l	25/02/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	02/03/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	28/02/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	23	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	23	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46

Report Number:COV/1363169/2017Laboratory Number:15887320

Issue 1 Sample 5 of 8

S Consultants
S
/01
ound Water
February 2017
February 2017
March 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method
Aromatic EPH >C10 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
EPH >C10 - C44	23	ug/l	23/02/2017	Ν	Cov	GEO46
Acenaphthene	0.061	ug/l	21/02/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Fluorene	0.018	ug/l	21/02/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Naphthalene	0.041	ug/l	21/02/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
PAH, Total	0.121	ug/l	21/02/2017	Ν	Cov	GEO19
VOC	Y	ug/l	27/02/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	27/02/2017	Ν	Cov	GEO32
Chloroform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

Report Number: COV/1363169/2017 Laboratory Number: 15887320 Issue 1 Sample 5 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,1-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromodichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Toluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Vinyl Chloride	<0.5	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Tetrachloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Ethyl Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
m&p-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
o-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Styrene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromoform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Isopropylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

Report Number: COV/1363169/2017 Laboratory Number: 15887320 Issue 1 Sample 5 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
tert-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromofluoromethane	100.0	%Recovery	27/02/2017	Ν	Cov	GEO32
Toluene-d8	98.8	%Recovery	27/02/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	97.4	%Recovery	27/02/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	24/02/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40

Report Number: COV/1363169/2017 Laboratory Number: 15887320 Issue 1 Sample 5 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date Accreditati		ditation	Method
2-Nitrophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Naphthalene	<2.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Dimethylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Acenaphthylene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Acenaphthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Diethylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
4-Nitrophenol	<5.0	ug/l	24/02/2017	Y	Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Fluorene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Diphenylamine	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Pentachlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Phenanthrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	24/02/2017	Y	Cov	GEO40

Issue 1 Sample 5 of 8

Report Number: COV/1363169/2017 Laboratory Number: 15887320

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units Analysis Date		Accreditation		Method
Di-n-octylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	24/02/2017	Υ	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Fluorophenol	100.1	%Recovery	24/02/2017	Ν	Cov	GEO40
Phenol-d6	86.0	%Recovery	24/02/2017	Ν	Cov	GEO40
Nitrobenzene-d5	96.9	%Recovery	24/02/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	87.7	%Recovery	24/02/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	101.4	%Recovery	24/02/2017	Ν	Cov	GEO40
Terphenyl-d14	96.0	%Recovery	24/02/2017	Ν	Cov	GEO40

Analyst Comments for 15887320:

This sample has been analysed for Phenols in Water method GEO18, Boron Total as B outside recommended stability times. It is therefore possible that the results provided may be compromised. This sample has been re-analysed for 2,4-dimethylphenol outside recommended stability times due to quality failure on original extraction. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed:

Name: P. Johal Date: 06 March 2017

Title: **Microbiology Manager**

Report Number: COV/1363169/2017 Laboratory Number: 15887321 Issue 1 Sample 6 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date Accreditation		Method	
Magnesium, Total as Mg	31900	ug/l	25/02/2017	Y C	Cov	WAS049
Potassium, Total as K	1570	ug/l	25/02/2017	ΥC	Cov	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	27/02/2017	ΥC	Cov	WAS060
Boron , Total as B	237	ug/l	25/02/2017	ΥC	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	25/02/2017	ΥC	Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	25/02/2017	ΥC	Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	25/02/2017	ΥC	Cov	WAS049
Iron, Total as Fe	<230	ug/l	25/02/2017	ΥC	Cov	WAS049
Lead , Total as Pb	<6.00	ug/l	25/02/2017	ΥC	Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	22/02/2017	N C	Cov	WAS013
Nickel , Total as Ni	<3.00	ug/l	25/02/2017	ΥC	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	27/02/2017	ΥC	Cov	WAS060
Zinc , Total as Zn	23.7	ug/l	25/02/2017	ΥC	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	28/02/2017	ΥC	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	28/02/2017	N C	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	28/02/2017	ΥC	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	02/03/2017	ΥC	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	28/02/2017	N C	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	28/02/2017	ΥC	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	28/02/2017	ΥC	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	28/02/2017	N C	Cov	GEO18
Phenol	<5.00	ug/l	28/02/2017	ΥC	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	23/02/2017	N C	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	23/02/2017	N C	Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	23/02/2017	N C	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	23/02/2017	N C	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	23/02/2017	N C	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	23/02/2017	N C	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	23/02/2017	N C	Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	23/02/2017	N C	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	23/02/2017	N C	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	23/02/2017	N C	Cov	GEO46

Report Number:COV/1363169/2017Laboratory Number:15887321

Issue 1 Sample 6 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017
Sample Point Description: Sample Description: Sample Matrix: Sample Date/Time: Sample Received: Analysis Complete:	RPS MW02 Ground Water 16 February 2017 16 February 2017 02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Aromatic EPH >C10 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
EPH >C10 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Acenaphthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Fluorene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Naphthalene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
PAH, Total	<0.01	ug/l	21/02/2017	Ν	Cov	GEO19
VOC	Y	ug/l	27/02/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	27/02/2017	Ν	Cov	GEO32
Chloroform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

COV/1363169/2017 15887321

Issue 1 Sample 6 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Report Number:

Laboratory Number: 15887321

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,1-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromodichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Toluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Vinyl Chloride	<0.5	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Tetrachloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Ethyl Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
m&p-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
o-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Styrene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromoform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Isopropylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

Report Number: COV/1363169/2017 Laboratory Number: 15887321 Issue 1 Sample 6 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
tert-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromofluoromethane	100.1	%Recovery	27/02/2017	Ν	Cov	GEO32
Toluene-d8	98.8	%Recovery	27/02/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	96.4	%Recovery	27/02/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	24/02/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	24/02/2017	N	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40

Issue 1 Sample 6

of 8

Report Number:COV/1363169/2017Laboratory Number:15887321

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
2-Nitrophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	24/02/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	24/02/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	24/02/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Pyrene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Chrysene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	24/02/2017	Y Cov	GEO40

Issue	1	
Sample	6	of

8

Report Number: COV/1363169/2017 Laboratory Number: 15887321

Sample Source: **RPS Consultants** Sample Point Description: RPS Sample Description: **MW02** Sample Matrix: **Ground Water** Sample Date/Time: 16 February 2017 Sample Received: 16 February 2017 Analysis Complete: 02 March 2017

Test Description	Result	Units Analysis Date A		Result Units Analysis Date Accreditation		Method
Di-n-octylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Fluorophenol	99.1	%Recovery	24/02/2017	Ν	Cov	GEO40
Phenol-d6	84.4	%Recovery	24/02/2017	Ν	Cov	GEO40
Nitrobenzene-d5	97.5	%Recovery	24/02/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	87.2	%Recovery	24/02/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	98.4	%Recovery	24/02/2017	Ν	Cov	GEO40
Terphenyl-d14	93.4	%Recovery	24/02/2017	Ν	Cov	GEO40

Analyst Comments for 15887321:

This sample has been analysed for Phenols in Water method GEO18, Boron Total as B outside recommended stability times. It is therefore possible that the results provided may be compromised. This sample has been re-analysed for 2,4-dimethylphenol outside recommended stability times due to quality failure on original extraction. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed:

P. Johal Name:

Date: 06 March 2017

Title: **Microbiology Manager**

Report Number: COV/1363169/2017 Issue 1 Sample 7 of **8**

Laboratory Number: 15887322 Sample Source: **RPS Consultants** Sample Point Description: RPS

Sample i Sin Description.	
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	sis Date Accreditation		Method
Magnesium, Total as Mg	14800	ug/l	25/02/2017	Y	Cov	WAS049
Potassium, Total as K	2420	ug/l	25/02/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	1.4	ug/l	27/02/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	25/02/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	25/02/2017	Y	Cov	WAS049
Chromium , Total as Cr	6.00	ug/l	25/02/2017	Y	Cov	WAS049
Copper , Total as Cu	40.7	ug/l	25/02/2017	Y	Cov	WAS049
Iron, Total as Fe	5500	ug/l	25/02/2017	Y	Cov	WAS049
Lead , Total as Pb	7.80	ug/l	25/02/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	22/02/2017	Ν	Cov	WAS013
Nickel , Total as Ni	106	ug/l	25/02/2017	Y	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	27/02/2017	Y	Cov	WAS060
Zinc , Total as Zn	93.3	ug/l	25/02/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
2 - Methylphenol	3.48	ug/l	28/02/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	02/03/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	28/02/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	28/02/2017	Y	Cov	GEO18
3+4-Methylphenol	2.19	ug/l	28/02/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	28/02/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	40	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	40	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	13	ug/l	23/02/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	23/02/2017	Ν	Cov	GEO46

Report Number:COV/1363169/2017Laboratory Number:15887322

Issue 1 Sample 7 of 8

RPS Consultants
RPS
MW03
Ground Water
16 February 2017
16 February 2017
02 March 2017

Test Description	Result	Units	Analysis Date Accreditation		Method	
Aromatic EPH >C10 - C44	13	ug/l	23/02/2017	Ν	Cov	GEO46
EPH >C10 - C44	53	ug/l	23/02/2017	Ν	Cov	GEO46
Acenaphthene	0.093	ug/l	21/02/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) anthracene	0.025	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	0.037	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (a) pyrene	0.033	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	0.019	ug/l	21/02/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Chrysene	0.060	ug/l	21/02/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Fluoranthene	0.021	ug/l	21/02/2017	Y	Cov	GEO19
Fluorene	0.103	ug/l	21/02/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Naphthalene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/02/2017	Y	Cov	GEO19
Pyrene	0.081	ug/l	21/02/2017	Y	Cov	GEO19
PAH, Total	0.470	ug/l	21/02/2017	Ν	Cov	GEO19
VOC	Y	ug/l	27/02/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1-Dichloroethane	1.8	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	27/02/2017	Ν	Cov	GEO32
Chloroform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

Issue Samp

Issue 1 Sample 7 of 8

Report Number:COV/1363169/2017Laboratory Number:15887322

Sample Point Description: RPS
Sample Description: MW03
Sample Matrix: Ground Water
Sample Date/Time: 16 February 2017
Sample Received: 16 February 2017
Analysis Complete: 02 March 2017

Test Description	Result	Units	Analysis Date Accreditation		Method	
1,1-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Trichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromodichloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromomethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Toluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Vinyl Chloride	0.6	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Tetrachloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Dibromochloromethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Chlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Ethyl Benzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
m&p-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
o-Xylene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Styrene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromoform	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Isopropylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32

COV/1363169/2017 Laboratory Number: 15887322

Issue 1 Sample 7 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Report Number:

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
tert-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
МТВЕ	2.4	ug/l	27/02/2017	Y	Cov	GEO32
Dibromofluoromethane	99.1	%Recovery	27/02/2017	Ν	Cov	GEO32
Toluene-d8	99.8	%Recovery	27/02/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	98.4	%Recovery	27/02/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	24/02/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40

Issue **1** Sample **7** of **8**

Report Number:COV/1363169/2017Laboratory Number:15887322

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
2-Nitrophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	24/02/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	24/02/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	24/02/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Pyrene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Chrysene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	24/02/2017	Y Cov	GEO40

Issue 1 Sample 7 of 8

Report Number: COV/1363169/2017 Laboratory Number: 15887322

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units Analysis Date A		Accreditation		Method
Di-n-octylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Fluorophenol	89.9	%Recovery	24/02/2017	Ν	Cov	GEO40
Phenol-d6	85.3	%Recovery	24/02/2017	Ν	Cov	GEO40
Nitrobenzene-d5	93.7	%Recovery	24/02/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	95.0	%Recovery	24/02/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	104.6	%Recovery	24/02/2017	Ν	Cov	GEO40
Terphenyl-d14	98.8	%Recovery	24/02/2017	Ν	Cov	GEO40

Analyst Comments for 15887322:

This sample has been analysed for Phenols in Water method GEO18, Boron Total as B outside recommended stability times. It is therefore possible that the results provided may be compromised. This sample has been re-analysed for 2,4-dimethylphenol outside recommended stability times due to quality failure on original extraction. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed:

Name: P. Johal Date: 06 March 2017

Title: **Microbiology Manager**

Report Number: COV/1363169/2017 Laboratory Number: 15887323 Issue 1 Sample 8 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Magnesium, Total as Mg	25300	ug/l	25/02/2017	Y Cov	WAS049
Potassium, Total as K	2410	ug/l	25/02/2017	Y Cov	WAS049
Arsenic, Ultra-low Total as As	2.8	ug/l	27/02/2017	Y Cov	WAS060
Boron , Total as B	341	ug/l	25/02/2017	Y Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	25/02/2017	Y Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	25/02/2017	Y Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	25/02/2017	Y Cov	WAS049
Iron, Total as Fe	2600	ug/l	25/02/2017	Y Cov	WAS049
Lead , Total as Pb	<6.00	ug/l	25/02/2017	Y Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	22/02/2017	N Cov	WAS013
Nickel , Total as Ni	50.4	ug/l	25/02/2017	Y Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	27/02/2017	Y Cov	WAS060
Zinc , Total as Zn	32.1	ug/l	25/02/2017	Y Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	28/02/2017	Y Cov	GEO18
2 - Methylphenol	<1.00	ug/l	28/02/2017	N Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	28/02/2017	Y Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	02/03/2017	Y Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	28/02/2017	N Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	28/02/2017	Y Cov	GEO18
4-Chlorophenol	<1.00	ug/l	28/02/2017	Y Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	28/02/2017	N Cov	GEO18
Phenol	<5.00	ug/l	28/02/2017	Y Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	23/02/2017	N Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	23/02/2017	N Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	23/02/2017	N Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	23/02/2017	N Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	23/02/2017	N Cov	GEO46
Aromatic EPH >C10 - C12	11	ug/l	23/02/2017	N Cov	GEO46
Aromatic EPH >C12 - C16	21	ug/l	23/02/2017	N Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	23/02/2017	N Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	23/02/2017	N Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	23/02/2017	N Cov	GEO46

COV/1363169/2017 Laboratory Number: 15887323

Issue 1 Sample 8 of **8**

RPS Consultants Sample Source: Sample Point Description: RPS Sample Description: **MW04** Sample Matrix: **Ground Water** Sample Date/Time: 16 February 2017 Sample Received: 16 February 2017 Analysis Complete: 02 March 2017

Report Number:

Test Description	Result	Units	Analysis Date	Accreditatio	on Method
Aromatic EPH >C10 - C44	32	ug/l	23/02/2017	N Cov	GEO46
EPH >C10 - C44	32	ug/l	23/02/2017	N Cov	GEO46
Acenaphthene	0.014	ug/l	21/02/2017	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Anthracene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Chrysene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Fluoranthene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Fluorene	0.014	ug/l	21/02/2017	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Naphthalene	0.120	ug/l	21/02/2017	Y Cov	GEO19
Phenanthrene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
Pyrene	<0.01	ug/l	21/02/2017	Y Cov	GEO19
PAH, Total	0.148	ug/l	21/02/2017	N Cov	GEO19
VOC	Y	ug/l	27/02/2017	N Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Chloromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Chloroethane	5.8	ug/l	27/02/2017	Y Cov	GEO32
Bromomethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Dichloromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,1-Dichloroethane	2.2	ug/l	27/02/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	27/02/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	27/02/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	27/02/2017	Y Cov	GEO32

Report Number:COV/1363169/2017Laboratory Number:15887323

Issue 1 Sample 8 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accredit	tation	Method
1,1-Dichloropropene	<1.0	ug/l	27/02/2017	Y (Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Benzene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Trichloroethene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Bromodichloromethane	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Dibromomethane	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Toluene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Vinyl Chloride	0.5	ug/l	27/02/2017	Y C	Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Tetrachloroethene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Dibromochloromethane	<1.0	ug/l	27/02/2017	Y (Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	27/02/2017	Y (Cov	GEO32
Chlorobenzene	<1.0	ug/l	27/02/2017	Y (Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y (Cov	GEO32
Ethyl Benzene	<1.0	ug/l	27/02/2017	Y (Cov	GEO32
m&p-Xylene	<1.0	ug/l	27/02/2017	Y (Cov	GEO32
o-Xylene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Styrene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Bromoform	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Isopropylbenzene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
Bromobenzene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	27/02/2017	Y C	Cov	GEO32

Report Number:COV/1363169/2017Laboratory Number:15887323

Issue 1 Sample 8 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
tert-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	27/02/2017	Y	Cov	GEO32
МТВЕ	1.2	ug/l	27/02/2017	Y	Cov	GEO32
Dibromofluoromethane	99.0	%Recovery	27/02/2017	Ν	Cov	GEO32
Toluene-d8	100.8	%Recovery	27/02/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	98.1	%Recovery	27/02/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	24/02/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	24/02/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	24/02/2017	Y	Cov	GEO40

Report Number: COV/1363169/2017 Laboratory Number: 15887323 Issue 1 Sample 8 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
2-Nitrophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	24/02/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	24/02/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	24/02/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Pyrene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Chrysene	<1.0	ug/l	24/02/2017	Y Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	24/02/2017	Y Cov	GEO40

Issue	1	
Sample	8	of

8

Report Number: COV/1363169/2017 Laboratory Number: 15887323

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	16 February 2017
Sample Received:	16 February 2017
Analysis Complete:	02 March 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Di-n-octylphthalate	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	24/02/2017	Y	Cov	GEO40
2-Fluorophenol	89.8	%Recovery	24/02/2017	Ν	Cov	GEO40
Phenol-d6	85.1	%Recovery	24/02/2017	Ν	Cov	GEO40
Nitrobenzene-d5	90.4	%Recovery	24/02/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	87.0	%Recovery	24/02/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	99.0	%Recovery	24/02/2017	Ν	Cov	GEO40
Terphenyl-d14	99.7	%Recovery	24/02/2017	Ν	Cov	GEO40

Analyst Comments for 15887323:

This sample has been analysed for Phenols in Water method GEO18, Boron Total as B outside recommended stability times. It is therefore possible that the results provided may be compromised. This sample has been re-analysed for 2,4-dimethylphenol outside recommended stability times due to quality failure on original extraction. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed:

Name: P. Johal Date: 06 March 2017

Title: **Microbiology Manager**

ALS Environmental Ltd Torrington Avenue Coventry CV4 9GU

T: +44 (0)24 7642 1213 F: +44 (0)24 7685 6575 www.alsenvironmental.co.uk

31 July 2017

Test Report: COV/1394345/2017

Dear Miss Reilly

Analysis of your sample(s) submitted on 31 May 2017 is now complete and we have pleasure in enclosing the appropriate test report(s).

An invoice for the analysis carried out will be sent under separate cover.

Should you have any queries regarding this report(s) or any part of our service, please contact Customer Services on +44 (0)24 7642 1213 who will be happy to discuss your requirements.

If you would like to arrange any further analysis, please contact Customer Services. To arrange container delivery or sample collection, please call the Couriers Department directly on 024 7685 6562.

Thank you for using ALS Environmental Ltd and we look forward to receiving your next samples.

Yours Sincerely,

Signed:

Name: P. Patel

Title: Inorganic Team Leader

This communication has been sent to you by ALS Environmental Ltd. Registered in England and Wales. Registration No.02148934. Registered Office: ALS Environmental Limited, Torrington Avenue, Coventry, CV4 9GU.

Miss Reilly RPS Consultants West Pier Business Campus Dun Laoghaire Dublin

Report Sum	mary	UKAS TESTING 13114 0897 4409	ſ	ALS Environmental
Miss Catriona Rea RPS Consultants West Pier Busines Dun Laoghaire Dublin	illy ss Campus			
		Date of Issue:	31 Ju	ıly 2017
Report Number:	COV/1394345/2	2 017 Issu	ue 2	This issue replaces all previous issues
Job Description:	Portlaoise Groundw	vater		
Job Location:	Portlaoise			
Number of Samples included in this report	8	Job Received	:	31 May 2017
Number of Test Result included in this report	s 1384	Analysis Com	menced:	02 June 2017

Signed:	P. Kaly
---------	---------

ALS Environmental Ltd was not responsible for sampling unless otherwise stated.

Information on the methods of analysis and performance characteristics are available on request. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. The results relate only to the items tested. Tests marked 'Not UKAS Accredited' in this Report/Certificate are not included in the UKAS Accreditation Schedule for our laboratory.

Title:

This communication has been sent to you by ALS Environmental Ltd. Registered in England and Wales. Registration No. 02148934. Registered Office: ALS Environmental Limited, Torrington Avenue, Coventry, CV4 9GU.

Name: P. Patel

Inorganic Team Leader

(c) ALS Environmental Ltd 2017. All rights reserved. We, ALS Environmental Ltd, are the owner of all copyright in this report. You must not copy, reproduce, amend or adapt this report, its contents or any format in which it is delivered without our prior written agreement. If you copy, reproduce, amend, or adapt this report in any way without our agreement you will be liable for any damage or loss to us. In the event of a dispute the copy of the report held by us shall be the reference copy.

Date: 31 July 2017

Report Number: COV/1394345/2017 Laboratory Number: 16119369 Issue 2 Sample 1 of 8

Laboratory Number: 16119	9369
Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH01

Sample Description:	BH01
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Magnesium, Total as Mg	10600	ug/l	12/06/2017	Y	Cov	WAS049
Potassium, Total as K	4300	ug/l	12/06/2017	Y	Cov	WAS049
Bromomethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Chloroethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Methyl tert-Butyl Ether	<0.20	ug/l	22/06/2017	Ν	S	SUBCON
Arsenic, Ultra-low Total as As	3.9	ug/l	13/06/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	12/06/2017	Y	Cov	WAS049
Cadmium , Total as Cd	1.90	ug/l	12/06/2017	Y	Cov	WAS049
Chromium , Total as Cr	6.20	ug/l	12/06/2017	Y	Cov	WAS049
Copper , Total as Cu	20.9	ug/l	12/06/2017	Y	Cov	WAS049
Iron, Total as Fe	5900	ug/l	12/06/2017	Y	Cov	WAS049
Lead , Total as Pb	41.3	ug/l	12/06/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	15/06/2017	Y	Cov	WAS013
Nickel , Total as Ni	16.0	ug/l	12/06/2017	Y	Cov	WAS049
Selenium, trace Total as Se	2.08	ug/l	13/06/2017	Y	Cov	WAS060
Zinc , Total as Zn	127	ug/l	12/06/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	06/06/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	12/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	12/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	12/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	12/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	12/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	12/06/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	12/06/2017	Ν	Cov	GEO46

Issue 2 Sample 1 of 8

Report Number:COV/1394345/2017Laboratory Number:16119369

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH01
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Aromatic EPH >C16 - C21	<10	ug/l	12/06/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	12/06/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	12/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	<10	ug/l	12/06/2017	Ν	Cov	GEO46
EPH >C10 - C44	<10	ug/l	12/06/2017	Ν	Cov	GEO46
Acenaphthene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Acenaphthylene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Anthracene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Chrysene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Fluoranthene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Fluorene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Naphthalene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Phenanthrene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
Pyrene	<0.10	ug/l	08/06/2017	Y	Cov	GEO19
PAH, Total	<0.10	ug/l	08/06/2017	Ν	Cov	GEO19
SVOC	Y	ug/l	05/06/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40

Report Number:COV/1394345/2017Laboratory Number:16119369

Issue 2 Sample 1 of 8

Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:BH01Sample Matrix:Ground WaterSample Date/Time:30 May 2017Sample Received:31 May 2017Analysis Complete:22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
n-Nitrosodi-n-propylamine	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Naphthalene	<2.0	ug/l	05/06/2017	Y	Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Dimethylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Acenaphthylene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Acenaphthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Diethylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
4-Nitrophenol	<5.0	ug/l	05/06/2017	Y	Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Fluorene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Diphenylamine	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Pentachlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Phenanthrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40

Report Number: COV/1394345/2017 Laboratory Number: 16119369 Issue 2 Sample 1 of 8

Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:BH01Sample Matrix:Ground WaterSample Date/Time:30 May 2017Sample Received:31 May 2017Analysis Complete:22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	05/06/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Fluorophenol	113.6	%Recovery	05/06/2017	Ν	Cov	GEO40
Phenol-d6	92.4	%Recovery	05/06/2017	Ν	Cov	GEO40
Nitrobenzene-d5	100.1	%Recovery	05/06/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	99.4	%Recovery	05/06/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	90.1	%Recovery	05/06/2017	Ν	Cov	GEO40
Terphenyl-d14	100.0	%Recovery	05/06/2017	Ν	Cov	GEO40
1,1,1,2-Tetrachloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,1-Trichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,2,2-Tetrachloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1,2-Trichloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromo-3-chloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromoethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichloroethane	<0.50	ug/l	22/06/2017	Y	s	SUBCON

Issue Samp

Issue 2 Sample 1 of 8

Report Number:COV/1394345/2017Laboratory Number:16119369

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH01
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3,5-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,4-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
2,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
2-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
4-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Benzene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Bromobenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Bromochloromethane	<2.0	ug/l	22/06/2017	Y S	SUBCON
Bromodichloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Bromoform	<0.20	ug/l	22/06/2017	Y S	SUBCON
Carbon Tetrachloride	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloroform	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
cis-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y S	SUBCON
cis-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dibromochloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Dibromomethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichlorodifluoromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichloromethane	<6.0	ug/l	22/06/2017	Y S	SUBCON
Ethyl Benzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Hexachlorobutadiene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Isopropylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
m&p-Xylene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Naphthalene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Propylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
o-Xylene	<0.10	ug/l	22/06/2017	Y S	SUBCON
p-Isopropyltoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
sec-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON

Issue 2 Sample 1 of 8

Report Number: COV/1394345/2017 Laboratory Number: 16119369

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH01
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Styrene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
tert-Butylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Tetrachloroethene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
Toluene	<0.50	ug/l	22/06/2017	Y	S	SUBCON
trans-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y	s	SUBCON
trans-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Trichloroethene	<0.10	ug/l	22/06/2017	Y	s	SUBCON
Trichlorofluoromethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Vinyl Chloride	<0.10	ug/l	22/06/2017	Y	S	SUBCON

Analyst Comments for 16119369:

This sample has been analysed for Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues

Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands of on ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

P. Xalin Signed:

Name: P. Patel Date: 31 July 2017

Title: **Inorganic Team Leader**

Report Number: COV/1394345/2017

Issue 2 Sample 2 of 8

Laboratory Number: 16119	9370
Sample Source:	RPS Consultants
Sample Point Description:	DDC

Sample Point Description:	RP5
Sample Description:	BH02
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Magnesium, Total as Mg	4330	ug/l	12/06/2017	Y	Cov	WAS049
Potassium, Total as K	1560	ug/l	12/06/2017	Y	Cov	WAS049
Bromomethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Chloroethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Methyl tert-Butyl Ether	<0.20	ug/l	22/06/2017	Ν	S	SUBCON
Arsenic, Ultra-low Total as As	<1.0	ug/l	13/06/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	12/06/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	12/06/2017	Y	Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	12/06/2017	Y	Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	12/06/2017	Y	Cov	WAS049
Iron, Total as Fe	529	ug/l	12/06/2017	Y	Cov	WAS049
Lead , Total as Pb	17.6	ug/l	12/06/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	15/06/2017	Y	Cov	WAS013
Nickel , Total as Ni	4.50	ug/l	12/06/2017	Y	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	13/06/2017	Y	Cov	WAS060
Zinc , Total as Zn	38.9	ug/l	12/06/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	06/06/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	08/06/2017	N	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	08/06/2017	N	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	08/06/2017	Ν	Cov	GEO46

Issue 2 Sample 2 of 8

Report Number:COV/1394345/2017Laboratory Number:16119370

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH02
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Aromatic EPH >C16 - C21	<10	ug/l	08/06/2017	N Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	08/06/2017	N Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	08/06/2017	N Cov	GEO46
Aromatic EPH >C10 - C44	<10	ug/l	08/06/2017	N Cov	GEO46
EPH >C10 - C44	<10	ug/l	08/06/2017	N Cov	GEO46
Acenaphthene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Anthracene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Chrysene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Fluoranthene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Fluorene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Naphthalene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
Phenanthrene	0.010	ug/l	05/06/2017	Y Cov	GEO19
Pyrene	<0.01	ug/l	05/06/2017	Y Cov	GEO19
PAH, Total	0.010	ug/l	05/06/2017	N Cov	GEO19
SVOC	Y	ug/l	05/06/2017	N Cov	GEO40
Phenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Chlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Methylphenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	05/06/2017	N Cov	GEO40
Dibenzofuran	<1.0	ug/l	05/06/2017	N Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	05/06/2017	Y Cov	GEO40

Issue 2 Sample 2 of 8

Report Number:COV/1394345/2017Laboratory Number:16119370

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH02
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	nalysis Date Accreditation	
n-Nitrosodi-n-propylamine	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachloroethane	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Nitrobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Isophorone	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Nitrophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	05/06/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	05/06/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	05/06/2017	Y Cov	GEO40

Issue **2** Sample **2** of **8**

Report Number:COV/1394345/2017Laboratory Number:16119370

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH02
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	05/06/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Fluorophenol	111.6	%Recovery	05/06/2017	Ν	Cov	GEO40
Phenol-d6	95.6	%Recovery	05/06/2017	Ν	Cov	GEO40
Nitrobenzene-d5	98.2	%Recovery	05/06/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	96.5	%Recovery	05/06/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	94.4	%Recovery	05/06/2017	Ν	Cov	GEO40
Terphenyl-d14	92.9	%Recovery	05/06/2017	Ν	Cov	GEO40
1,1,1,2-Tetrachloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,1-Trichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,2,2-Tetrachloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1,2-Trichloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromo-3-chloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromoethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichloroethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON

lssue **2** Sample **2** of **8**

Report Number:COV/1394345/2017Laboratory Number:16119370

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH02
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3,5-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,4-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
2,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
2-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
4-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Benzene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Bromobenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Bromochloromethane	<2.0	ug/l	22/06/2017	Y S	SUBCON
Bromodichloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Bromoform	<0.20	ug/l	22/06/2017	Y S	SUBCON
Carbon Tetrachloride	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloroform	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
cis-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y S	SUBCON
cis-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dibromochloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Dibromomethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichlorodifluoromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichloromethane	<6.0	ug/l	22/06/2017	Y S	SUBCON
Ethyl Benzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Hexachlorobutadiene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Isopropylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
m&p-Xylene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Naphthalene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Propylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
o-Xylene	<0.10	ug/l	22/06/2017	Y S	SUBCON
p-IsopropyItoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
sec-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON

Report Number: COV/1394345/2017 Laboratory Number: 16119370

Issue 2 Sample 2 of 8

RPS Consultants Sample Source: Sample Point Description: RPS Sample Description: **BH02** Sample Matrix: **Ground Water** Sample Date/Time: 30 May 2017

Sample Received: 31 May 2017 Analysis Complete: 22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method
Styrene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
tert-Butylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Tetrachloroethene	<0.20	ug/l	22/06/2017	Y	s	SUBCON
Toluene	<0.50	ug/l	22/06/2017	Y	S	SUBCON
trans-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
trans-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Trichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
Trichlorofluoromethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Vinyl Chloride	<0.10	ug/l	22/06/2017	Y	S	SUBCON

Analyst Comments for 16119370:

This sample has been analysed for Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues

Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

) Xalin Signed:

Name: P. Patel Date: 31 July 2017

Title: **Inorganic Team Leader**

Report Number: COV/1394345/2017 Laboratory Number: 16119371 Issue 2 Sample 3 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH03
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation		Method
Magnesium, Total as Mg	20300	ug/l	13/06/2017	Y	Cov	WAS049
Potassium, Total as K	2350	ug/l	13/06/2017	Y	Cov	WAS049
Bromomethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Chloroethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Methyl tert-Butyl Ether	0.81	ug/l	22/06/2017	Ν	S	SUBCON
Arsenic, Ultra-low Total as As	29	ug/l	13/06/2017	Y	Cov	WAS060
Boron , Total as B	<2300	ug/l	13/06/2017	Y	Cov	WAS049
Cadmium , Total as Cd	6.20	ug/l	13/06/2017	Y	Cov	WAS049
Chromium , Total as Cr	<20.0	ug/l	13/06/2017	Y	Cov	WAS049
Copper , Total as Cu	159	ug/l	13/06/2017	Y	Cov	WAS049
Iron, Total as Fe	16400	ug/l	13/06/2017	Y	Cov	WAS049
Lead , Total as Pb	679	ug/l	13/06/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	15/06/2017	Y	Cov	WAS013
Nickel , Total as Ni	30.7	ug/l	13/06/2017	Y	Cov	WAS049
Selenium, trace Total as Se	2.06	ug/l	13/06/2017	Y	Cov	WAS060
Zinc , Total as Zn	802	ug/l	13/06/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	06/06/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	50	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	50	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	08/06/2017	Ν	Cov	GEO46

Issue 2 Sample 3 of 8

Report Number: COV/1394345/2017 Laboratory Number: 16119371

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH03
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation		Method
Aromatic EPH >C16 - C21	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
EPH >C10 - C44	50	ug/l	08/06/2017	Ν	Cov	GEO46
Acenaphthene	0.051	ug/l	05/06/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Fluorene	0.010	ug/l	05/06/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Naphthalene	0.066	ug/l	05/06/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
PAH, Total	0.127	ug/l	05/06/2017	Ν	Cov	GEO19
SVOC	Y	ug/l	05/06/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40

Issue 2 Sample 3

of 8

Report Number: COV/1394345/2017 Laboratory Number: 16119371

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH03
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation		Analysis Date Accreditation		Method
n-Nitrosodi-n-propylamine	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Hexachloroethane	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Nitrobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Isophorone	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
2,4-Dimethylphenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
2-Nitrophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Bis(2-chloroethoxy)methane	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
2,4-Dichlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
1,2,4-Trichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Naphthalene	<2.0	ug/l	05/06/2017	Y	Cov	GEO40		
Hexachlorobutadiene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
4-Chloro-3-methylphenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
2-Methylnaphthalene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
2,4,6-Trichlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
2,4,5-Trichlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
2-Chloronaphthalene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Dimethylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
2,6-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Acenaphthylene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Acenaphthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
2,4-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Diethylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
4-Nitrophenol	<5.0	ug/l	05/06/2017	Y	Cov	GEO40		
4-Chlorophenyl phenyl ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Fluorene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Diphenylamine	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40		
4-Bromophenyl Phenyl Ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Hexachlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Pentachlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Phenanthrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
di-n-Butylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		

Report Number:COV/1394345/2017Laboratory Number:16119371

Issue 2 Sample 3 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH03
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date Accreditation		Method	
Pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	05/06/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Fluorophenol	122.1	%Recovery	05/06/2017	Ν	Cov	GEO40
Phenol-d6	100.4	%Recovery	05/06/2017	Ν	Cov	GEO40
Nitrobenzene-d5	101.3	%Recovery	05/06/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	98.1	%Recovery	05/06/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	100.5	%Recovery	05/06/2017	Ν	Cov	GEO40
Terphenyl-d14	104.6	%Recovery	05/06/2017	Ν	Cov	GEO40
1,1,1,2-Tetrachloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,1-Trichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,2,2-Tetrachloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1,2-Trichloroethane	<0.20	ug/l	22/06/2017	Y	s	SUBCON
1,1-Dichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	s	SUBCON
1,2,3-Trichloropropane	<1.0	ug/l	22/06/2017	Y	s	SUBCON
1,2,4-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	s	SUBCON
1,2,4-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromo-3-chloropropane	<1.0	ug/l	22/06/2017	Y	s	SUBCON
1,2-Dibromoethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichloroethane	<0.50	ug/l	22/06/2017	Y	s	SUBCON

5/2017

Issue 2 Sample 3 of 8

Report Number: COV/1394345/2017 Laboratory Number: 16119371

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH03
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3,5-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,4-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
2,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
2-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
4-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Benzene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Bromobenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Bromochloromethane	<2.0	ug/l	22/06/2017	Y S	SUBCON
Bromodichloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Bromoform	<0.20	ug/l	22/06/2017	Y S	SUBCON
Carbon Tetrachloride	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloroform	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
cis-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y S	SUBCON
cis-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dibromochloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Dibromomethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichlorodifluoromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichloromethane	<6.0	ug/l	22/06/2017	Y S	SUBCON
Ethyl Benzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Hexachlorobutadiene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Isopropylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
m&p-Xylene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Naphthalene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Propylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
o-Xylene	<0.10	ug/l	22/06/2017	Y S	SUBCON
p-Isopropyltoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
sec-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON

Report Number: COV/1394345/2017 Laboratory Number: 16119371

Issue 2 Sample 3 of 8

RPS Consultants Sample Source: Sample Point Description: RPS Sample Description: **BH03** Sample Matrix: **Ground Water** Sample Date/Time: 30 May 2017 Sample Received: 31 May 2017 Analysis Complete: 22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Styrene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
tert-Butylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Tetrachloroethene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
Toluene	<0.50	ug/l	22/06/2017	Y	S	SUBCON
trans-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
trans-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Trichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
Trichlorofluoromethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Vinyl Chloride	<0.10	ug/l	22/06/2017	Y	S	SUBCON

Analyst Comments for 16119371:

This sample has been analysed for Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised. {/*}Reporting limit raised for metals due to interference with the internal standard.{*/}

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed: Rate

Name: P. Patel Date: 31 July 2017

Title: **Inorganic Team Leader**

Report Number: COV/1394345/2017

Issue 2 Sample 4 of 8

Laboratory Number: 16119372

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH04B
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Magnesium, Total as Mg	3690	ug/l	12/06/2017	Y	Cov	WAS049
Potassium, Total as K	6100	ug/l	12/06/2017	Y	Cov	WAS049
Bromomethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Chloroethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Methyl tert-Butyl Ether	<0.20	ug/l	22/06/2017	Ν	S	SUBCON
Arsenic, Ultra-low Total as As	1.0	ug/l	13/06/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	12/06/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	12/06/2017	Y	Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	12/06/2017	Y	Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	12/06/2017	Y	Cov	WAS049
Iron, Total as Fe	577	ug/l	12/06/2017	Y	Cov	WAS049
Lead , Total as Pb	<6.00	ug/l	12/06/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	15/06/2017	Y	Cov	WAS013
Nickel , Total as Ni	3.40	ug/l	12/06/2017	Y	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	13/06/2017	Y	Cov	WAS060
Zinc , Total as Zn	<18.0	ug/l	12/06/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	06/06/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	13	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	37	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	50	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	15	ug/l	08/06/2017	Ν	Cov	GEO46

Issue 2 Sample 4 of 8

Report Number:COV/1394345/2017Laboratory Number:16119372

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH04B
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Units Analysis Date		ditation	Method
Aromatic EPH >C16 - C21	20	ug/l	08/06/2017	N	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	35	ug/l	08/06/2017	N	Cov	GEO46
EPH >C10 - C44	85	ug/l	08/06/2017	Ν	Cov	GEO46
Acenaphthene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Acenaphthylene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Anthracene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Chrysene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Fluoranthene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Fluorene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Naphthalene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Phenanthrene	<0.04	ug/l	05/06/2017	Y	Cov	GEO19
Pyrene	0.049	ug/l	05/06/2017	Y	Cov	GEO19
PAH, Total	0.049	ug/l	05/06/2017	N	Cov	GEO19
SVOC	Y	ug/l	05/06/2017	N	Cov	GEO40
Phenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	05/06/2017	N	Cov	GEO40
Dibenzofuran	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40

Report Number:COV/1394345/2017Laboratory Number:16119372

Issue 2 Sample 4 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH04B
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accredita	tion	Method
n-Nitrosodi-n-propylamine	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Hexachloroethane	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Nitrobenzene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Isophorone	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
2,4-Dimethylphenol	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
2-Nitrophenol	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
2,4-Dichlorophenol	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Naphthalene	<2.0	ug/l	05/06/2017	Y Co	v	GEO40
Hexachlorobutadiene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
2-Methylnaphthalene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
2-Chloronaphthalene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Dimethylphthalate	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Acenaphthylene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Acenaphthene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Diethylphthalate	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
4-Nitrophenol	<5.0	ug/l	05/06/2017	Y Co	v	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Fluorene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Diphenylamine	<1.0	ug/l	05/06/2017	N Co	v	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Hexachlorobenzene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Pentachlorophenol	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Phenanthrene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Anthracene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
di-n-Butylphthalate	<1.0	ug/l	05/06/2017	Y Co	v	GEO40
Fluoranthene	<1.0	ug/l	05/06/2017	Y Co	v	GEO40

Issue 2 Sample 4 of 8

Report Number:COV/1394345/2017Laboratory Number:16119372

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH04B
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	05/06/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Fluorophenol	114.7	%Recovery	05/06/2017	Ν	Cov	GEO40
Phenol-d6	97.8	%Recovery	05/06/2017	Ν	Cov	GEO40
Nitrobenzene-d5	101.5	%Recovery	05/06/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	101.2	%Recovery	05/06/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	100.7	%Recovery	05/06/2017	Ν	Cov	GEO40
Terphenyl-d14	90.6	%Recovery	05/06/2017	Ν	Cov	GEO40
1,1,1,2-Tetrachloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,1-Trichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,2,2-Tetrachloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1,2-Trichloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromo-3-chloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromoethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichloroethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON

Issue 2 Sample 4 of 8

Report Number:COV/1394345/2017Laboratory Number:16119372

RPS Consultants
RPS
BH04B
Ground Water
30 May 2017
31 May 2017
22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3,5-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,4-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
2,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
2-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
4-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Benzene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Bromobenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Bromochloromethane	<2.0	ug/l	22/06/2017	Y S	SUBCON
Bromodichloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Bromoform	<0.20	ug/l	22/06/2017	Y S	SUBCON
Carbon Tetrachloride	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloroform	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
cis-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y S	SUBCON
cis-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dibromochloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Dibromomethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichlorodifluoromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichloromethane	<6.0	ug/l	22/06/2017	Y S	SUBCON
Ethyl Benzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Hexachlorobutadiene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Isopropylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
m&p-Xylene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Naphthalene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Propylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
o-Xylene	<0.10	ug/l	22/06/2017	Y S	SUBCON
p-Isopropyltoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
sec-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON

Issue 2 Sample 4 of 8

Report Number: COV/1394345/2017 Laboratory Number: 16119372

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH04B
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Styrene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
tert-Butylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Tetrachloroethene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
Toluene	<0.50	ug/l	22/06/2017	Y	S	SUBCON
trans-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
trans-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Trichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
Trichlorofluoromethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Vinyl Chloride	<0.10	ug/l	22/06/2017	Y	S	SUBCON

Analyst Comments for 16119372:

This sample has been analysed for Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues

Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands of on ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

P. Xalin Signed:

Name: P. Patel Date: 31 July 2017

Title: **Inorganic Team Leader**

ALS Environmental Ltd Torrington Avenue, Coventry, CV4 9GU Tel:+44 (0)24 7642 1213 Fax:+44 (0)24 7685 6575

Report Number: COV/1394345/2017 Laboratory Number: 16119373 Issue 2 Sample 5 of 8

Sample Source:	RPS Consultants
Cample Course:	
Sample Point Description:	RP5
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Magnesium, Total as Mg	35800	ug/l	12/06/2017	Y	Cov	WAS049
Potassium, Total as K	1810	ug/l	12/06/2017	Y	Cov	WAS049
Bromomethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Chloroethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Methyl tert-Butyl Ether	<0.20	ug/l	22/06/2017	Ν	S	SUBCON
Arsenic, Ultra-low Total as As	<1.0	ug/l	13/06/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	12/06/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	12/06/2017	Y	Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	12/06/2017	Y	Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	12/06/2017	Y	Cov	WAS049
Iron, Total as Fe	513	ug/l	12/06/2017	Y	Cov	WAS049
Lead , Total as Pb	9.60	ug/l	12/06/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	15/06/2017	Y	Cov	WAS013
Nickel , Total as Ni	<3.00	ug/l	12/06/2017	Y	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	13/06/2017	Y	Cov	WAS060
Zinc , Total as Zn	52.9	ug/l	12/06/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	06/06/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	08/06/2017	Ν	Cov	GEO46

lssue **2** Sample **5** of **8**

Report Number:COV/1394345/2017Laboratory Number:16119373

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation		Analysis Date Accreditation		Method
Aromatic EPH >C16 - C21	<10	ug/l	08/06/2017	Ν	Cov	GEO46		
Aromatic EPH >C21 - C35	<10	ug/l	08/06/2017	Ν	Cov	GEO46		
Aromatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46		
Aromatic EPH >C10 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46		
EPH >C10 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46		
Acenaphthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Acenaphthylene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Benzo (a) anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Benzo (g,h,i) perylene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Benzo (a) pyrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Benzo (b) fluoranthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Benzo (k) fluoranthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Chrysene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Dibenz (a,h) anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Fluoranthene	0.012	ug/l	05/06/2017	Y	Cov	GEO19		
Fluorene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Indeno (1,2,3) cd pyrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Naphthalene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Phenanthrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19		
Pyrene	0.012	ug/l	05/06/2017	Y	Cov	GEO19		
PAH, Total	0.024	ug/l	05/06/2017	Ν	Cov	GEO19		
SVOC	Y	ug/l	05/06/2017	Ν	Cov	GEO40		
Phenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Bis(2-chloroethyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
2-Chlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
1,3-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
1,4-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
2-Methylphenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
3&4-Methylphenol	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40		
Dibenzofuran	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40		
1,2-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		
Bis(2-chloroisopropyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40		

COV/1394345/2017 Laboratory Number: 16119373

Issue 2 Sample 5 of 8

RPS Consultants
RPS
MW01
Ground Water
30 May 2017
31 May 2017
22 June 2017

Report Number:

Test Description	Result	Units	Analysis Date	Accredit	tation	Method
n-Nitrosodi-n-propylamine	<1.0	ug/l	05/06/2017	Y (Cov	GEO40
Hexachloroethane	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Nitrobenzene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Isophorone	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Naphthalene	<2.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Dimethylphthalate	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Acenaphthylene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Acenaphthene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Diethylphthalate	1.3	ug/l	05/06/2017	ΥC	Cov	GEO40
4-Nitrophenol	<5.0	ug/l	05/06/2017	ΥC	Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Fluorene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Diphenylamine	<1.0	ug/l	05/06/2017	N C	Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Pentachlorophenol	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Phenanthrene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Anthracene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40
Fluoranthene	<1.0	ug/l	05/06/2017	ΥC	Cov	GEO40

Report Number:COV/1394345/2017Laboratory Number:16119373

Issue 2 Sample 5 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	05/06/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Fluorophenol	114.8	%Recovery	05/06/2017	Ν	Cov	GEO40
Phenol-d6	95.0	%Recovery	05/06/2017	Ν	Cov	GEO40
Nitrobenzene-d5	102.3	%Recovery	05/06/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	99.5	%Recovery	05/06/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	92.8	%Recovery	05/06/2017	Ν	Cov	GEO40
Terphenyl-d14	92.6	%Recovery	05/06/2017	Ν	Cov	GEO40
1,1,1,2-Tetrachloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,1-Trichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,2,2-Tetrachloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1,2-Trichloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromo-3-chloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromoethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichloroethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON

Report Number:COV/1394345/2017Laboratory Number:16119373

Issue 2 Sample 5 of 8

RPS Consultants
RPS
MW01
Ground Water
30 May 2017
31 May 2017
22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3,5-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,4-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
2,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
2-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
4-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Benzene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Bromobenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Bromochloromethane	<2.0	ug/l	22/06/2017	Y S	SUBCON
Bromodichloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Bromoform	<0.20	ug/l	22/06/2017	Y S	SUBCON
Carbon Tetrachloride	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloroform	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
cis-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y S	SUBCON
cis-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dibromochloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Dibromomethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichlorodifluoromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichloromethane	<6.0	ug/l	22/06/2017	Y S	SUBCON
Ethyl Benzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Hexachlorobutadiene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Isopropylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
m&p-Xylene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Naphthalene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Propylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
o-Xylene	<0.10	ug/l	22/06/2017	Y S	SUBCON
p-Isopropyltoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
sec-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON

Report Number: COV/1394345/2017 Laboratory Number: 16119373

Issue 2 Sample 5 of 8

Sample Source:	RPS Consultants
Sample Boint Description	
Sample Point Description.	RF3
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Styrene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
tert-Butylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Tetrachloroethene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
Toluene	<0.50	ug/l	22/06/2017	Y	S	SUBCON
trans-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y	s	SUBCON
trans-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Trichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
Trichlorofluoromethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Vinyl Chloride	<0.10	ug/l	22/06/2017	Y	S	SUBCON

Analyst Comments for 16119373:

This sample has been analysed for Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues

Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands of on ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

P. Xalin Signed:

Name: P. Patel Date: 31 July 2017

Title:

Inorganic Team Leader

COV/1394345/2017 Report Number:

Issue 2 Sample 6 of 8

Laboratory Number: 16119374 Sample Source: **RPS Consultants**

Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Magnesium, Total as Mg	32100	ug/l	12/06/2017	Y	Cov	WAS049
Potassium, Total as K	1650	ug/l	12/06/2017	Y	Cov	WAS049
Bromomethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Chloroethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Methyl tert-Butyl Ether	<0.20	ug/l	22/06/2017	Ν	S	SUBCON
Arsenic, Ultra-low Total as As	1.0	ug/l	13/06/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	12/06/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	12/06/2017	Y	Cov	WAS049
Chromium , Total as Cr	2.70	ug/l	12/06/2017	Y	Cov	WAS049
Copper , Total as Cu	15.9	ug/l	12/06/2017	Y	Cov	WAS049
Iron, Total as Fe	1000	ug/l	12/06/2017	Y	Cov	WAS049
Lead , Total as Pb	38.6	ug/l	12/06/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	15/06/2017	Y	Cov	WAS013
Nickel , Total as Ni	<3.00	ug/l	12/06/2017	Y	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	13/06/2017	Y	Cov	WAS060
Zinc , Total as Zn	92.2	ug/l	12/06/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	06/06/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	12	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	12	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	08/06/2017	Ν	Cov	GEO46

Issue 2 Sample 6 of 8

Report Number:COV/1394345/2017Laboratory Number:16119374

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Aromatic EPH >C16 - C21	<10	ug/l	08/06/2017	N	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
EPH >C10 - C44	12	ug/l	08/06/2017	Ν	Cov	GEO46
Acenaphthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Fluorene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Naphthalene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
PAH, Total	<0.01	ug/l	05/06/2017	Ν	Cov	GEO19
SVOC	Y	ug/l	05/06/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	05/06/2017	N	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40

ls S

Issue 2 Sample 6 of 8

Report Number:COV/1394345/2017Laboratory Number:16119374

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
n-Nitrosodi-n-propylamine	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachloroethane	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Nitrobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Isophorone	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Nitrophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	05/06/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	05/06/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	05/06/2017	Y Cov	GEO40

Report Number:COV/1394345/2017Laboratory Number:16119374

Issue 2 Sample 6 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	05/06/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Fluorophenol	127.8	%Recovery	05/06/2017	Ν	Cov	GEO40
Phenol-d6	106.8	%Recovery	05/06/2017	Ν	Cov	GEO40
Nitrobenzene-d5	111.2	%Recovery	05/06/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	106.8	%Recovery	05/06/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	96.1	%Recovery	05/06/2017	Ν	Cov	GEO40
Terphenyl-d14	94.3	%Recovery	05/06/2017	Ν	Cov	GEO40
1,1,1,2-Tetrachloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,1-Trichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,2,2-Tetrachloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1,2-Trichloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromo-3-chloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromoethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichloroethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON

Report Number:COV/1394345/2017Laboratory Number:16119374

Issue 2 Sample 6 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017
Sample Matrix: Sample Date/Time: Sample Received: Analysis Complete:	Ground Water 30 May 2017 31 May 2017 22 June 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation	
1,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3,5-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,4-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
2,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
2-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
4-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Benzene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Bromobenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Bromochloromethane	<2.0	ug/l	22/06/2017	Y S	SUBCON
Bromodichloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Bromoform	<0.20	ug/l	22/06/2017	Y S	SUBCON
Carbon Tetrachloride	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloroform	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
cis-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y S	SUBCON
cis-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dibromochloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Dibromomethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichlorodifluoromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichloromethane	<6.0	ug/l	22/06/2017	Y S	SUBCON
Ethyl Benzene	0.15	ug/l	22/06/2017	Y S	SUBCON
Hexachlorobutadiene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Isopropylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
m&p-Xylene	0.47	ug/l	22/06/2017	Y S	SUBCON
Naphthalene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Propylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
o-Xylene	0.16	ug/l	22/06/2017	Y S	SUBCON
p-Isopropyltoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
sec-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON

Issue	2	
Sample	6	of

8

Report Number: COV/1394345/2017 Laboratory Number: 16119374

Sample Source: Sample Point Description: Sample Description: Sample Matrix: Sample Date/Time:	RPS Consultants RPS MW02 Ground Water 30 May 2017
Sample Date/Time:	30 May 2017
Sample Received: Analysis Complete:	31 May 2017 22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Styrene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
tert-Butylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Tetrachloroethene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
Toluene	<0.50	ug/l	22/06/2017	Y	S	SUBCON
trans-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
trans-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Trichloroethene	<0.10	ug/l	22/06/2017	Y	s	SUBCON
Trichlorofluoromethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Vinyl Chloride	<0.10	ug/l	22/06/2017	Y	S	SUBCON

Analyst Comments for 16119374:

This sample has been analysed for Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues

Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands of on ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

P. Xalin Signed:

Name: P. Patel Date: 31 July 2017

Title: **Inorganic Team Leader**

Report Number: COV/1394345/2017

Issue 2 Sample 7 of 8

Laboratory Number: 16119375

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Magnesium, Total as Mg	17200	ug/l	12/06/2017	Y	Cov	WAS049
Potassium, Total as K	2160	ug/l	12/06/2017	Y	Cov	WAS049
Bromomethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Chloroethane	6.3	ug/l	22/06/2017	Y	S	SUBCON
Methyl tert-Butyl Ether	1.73	ug/l	22/06/2017	Ν	S	SUBCON
Arsenic, Ultra-low Total as As	4.5	ug/l	13/06/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	12/06/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	12/06/2017	Y	Cov	WAS049
Chromium , Total as Cr	3.50	ug/l	12/06/2017	Y	Cov	WAS049
Copper , Total as Cu	39.5	ug/l	12/06/2017	Y	Cov	WAS049
Iron, Total as Fe	8100	ug/l	12/06/2017	Y	Cov	WAS049
Lead , Total as Pb	22.0	ug/l	12/06/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	15/06/2017	Y	Cov	WAS013
Nickel , Total as Ni	69.5	ug/l	12/06/2017	Y	Cov	WAS049
Selenium, trace Total as Se	2.25	ug/l	13/06/2017	Y	Cov	WAS060
Zinc , Total as Zn	44.2	ug/l	12/06/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	06/06/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	18	ug/l	08/06/2017	Ν	Cov	GEO46

Issue 2 Sample 7 of 8

Report Number: COV/1394345/2017 Laboratory Number: 16119375

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Aromatic EPH >C16 - C21	<10	ug/l	08/06/2017	N	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	18	ug/l	08/06/2017	Ν	Cov	GEO46
EPH >C10 - C44	18	ug/l	08/06/2017	Ν	Cov	GEO46
Acenaphthene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Acenaphthylene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Anthracene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Chrysene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Fluoranthene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Fluorene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Naphthalene	0.110	ug/l	05/06/2017	Y	Cov	GEO19
Phenanthrene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
Pyrene	<0.02	ug/l	05/06/2017	Y	Cov	GEO19
PAH, Total	0.110	ug/l	05/06/2017	Ν	Cov	GEO19
SVOC	Y	ug/l	05/06/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40

ls S

Issue 2 Sample 7 of 8

Report Number:COV/1394345/2017Laboratory Number:16119375

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
n-Nitrosodi-n-propylamine	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachloroethane	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Nitrobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Isophorone	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Nitrophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	05/06/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	05/06/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	05/06/2017	Y Cov	GEO40

Report Number:COV/1394345/2017Laboratory Number:16119375

Issue 2 Sample 7 of 8

Consultants
3
Ind Water
ay 2017
ay 2017
une 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	05/06/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Fluorophenol	105.3	%Recovery	05/06/2017	Ν	Cov	GEO40
Phenol-d6	92.5	%Recovery	05/06/2017	Ν	Cov	GEO40
Nitrobenzene-d5	92.3	%Recovery	05/06/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	91.1	%Recovery	05/06/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	100.3	%Recovery	05/06/2017	Ν	Cov	GEO40
Terphenyl-d14	91.3	%Recovery	05/06/2017	Ν	Cov	GEO40
1,1,1,2-Tetrachloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,1-Trichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,2,2-Tetrachloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1,2-Trichloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethane	2.80	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromo-3-chloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromoethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichloroethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON

Report Number:COV/1394345/2017Laboratory Number:16119375

Issue 2 Sample 7 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3,5-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,4-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
2,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
2-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
4-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Benzene	0.39	ug/l	22/06/2017	Y S	SUBCON
Bromobenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Bromochloromethane	<2.0	ug/l	22/06/2017	Y S	SUBCON
Bromodichloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Bromoform	<0.20	ug/l	22/06/2017	Y S	SUBCON
Carbon Tetrachloride	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloroform	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
cis-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y S	SUBCON
cis-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dibromochloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Dibromomethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichlorodifluoromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichloromethane	<6.0	ug/l	22/06/2017	Y S	SUBCON
Ethyl Benzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Hexachlorobutadiene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Isopropylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
m&p-Xylene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Naphthalene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Propylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
o-Xylene	<0.10	ug/l	22/06/2017	Y S	SUBCON
p-IsopropyItoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
sec-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON

Report Number: COV/1394345/2017 Issue 2 Sample 7 of 8

Laboratory Number: 16119375

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date Accreditation		Method	
Styrene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
tert-Butylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Tetrachloroethene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
Toluene	<0.50	ug/l	22/06/2017	Y	S	SUBCON
trans-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
trans-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Trichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
Trichlorofluoromethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Vinyl Chloride	0.40	ug/l	22/06/2017	Y	S	SUBCON

Analyst Comments for 16119375:

This sample has been analysed for Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues

Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands of on ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

P. Xalin Signed:

Name: P. Patel Date: 31 July 2017

Title: **Inorganic Team Leader**

Report Number: COV/1394345/2017 Laboratory Number: 16119376 Issue 2 Sample 8 of 8

Laboratory Number: 16119376							
Sample Source:	RPS Consultants						
Sample Point Description:	RPS						
Sample Description:	MW04						
Sample Matrix:	Ground Water						
Sample Date/Time:	30 May 2017						

31 May 2017

Sample Received:

Analysis Complete: 22 June 2017						
Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Magnesium, Total as Mg	22500	ug/l	13/06/2017	Y	Cov	WAS049
Potassium, Total as K	<1800	ug/l	13/06/2017	Y	Cov	WAS049
Bromomethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Chloroethane	7.4	ug/l	22/06/2017	Y	S	SUBCON
Methyl tert-Butyl Ether	1.73	ug/l	22/06/2017	Ν	S	SUBCON
Arsenic, Ultra-low Total as As	5.1	ug/l	13/06/2017	Y	Cov	WAS060
Boron , Total as B	<2300	ug/l	13/06/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<6.00	ug/l	13/06/2017	Y	Cov	WAS049
Chromium , Total as Cr	<20.0	ug/l	13/06/2017	Y	Cov	WAS049
Copper , Total as Cu	<90.0	ug/l	13/06/2017	Y	Cov	WAS049
Iron, Total as Fe	12300	ug/l	13/06/2017	Y	Cov	WAS049
Lead , Total as Pb	<60.0	ug/l	13/06/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	15/06/2017	Y	Cov	WAS013
Nickel , Total as Ni	106	ug/l	13/06/2017	Y	Cov	WAS049
Selenium, trace Total as Se	2.93	ug/l	13/06/2017	Y	Cov	WAS060
Zinc , Total as Zn	<180	ug/l	13/06/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	06/06/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	06/06/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	06/06/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	29	ug/l	08/06/2017	Ν	Cov	GEO46

Issue 2 Sample 8 of 8

Report Number:COV/1394345/2017Laboratory Number:16119376

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date Accreditation		Method	
Aromatic EPH >C16 - C21	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	08/06/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	29	ug/l	08/06/2017	Ν	Cov	GEO46
EPH >C10 - C44	29	ug/l	08/06/2017	Ν	Cov	GEO46
Acenaphthene	0.019	ug/l	05/06/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Fluorene	0.019	ug/l	05/06/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Naphthalene	0.157	ug/l	05/06/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	05/06/2017	Y	Cov	GEO19
PAH, Total	0.194	ug/l	05/06/2017	Ν	Cov	GEO19
SVOC	Y	ug/l	05/06/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	05/06/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	05/06/2017	Y	Cov	GEO40

7

Issue 2 Sample 8 of 8

Report Number:COV/1394345/2017Laboratory Number:16119376

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Ilysis Date Accreditation	
n-Nitrosodi-n-propylamine	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachloroethane	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Nitrobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Isophorone	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Nitrophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	05/06/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	05/06/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	05/06/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	05/06/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	05/06/2017	Y Cov	GEO40

Report Number:COV/1394345/2017Laboratory Number:16119376

Issue 2 Sample 8 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	analysis Date Accred		Method
Pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	05/06/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	05/06/2017	Y	Cov	GEO40
2-Fluorophenol	113.0	%Recovery	05/06/2017	Ν	Cov	GEO40
Phenol-d6	97.3	%Recovery	05/06/2017	Ν	Cov	GEO40
Nitrobenzene-d5	101.4	%Recovery	05/06/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	97.3	%Recovery	05/06/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	105.5	%Recovery	05/06/2017	Ν	Cov	GEO40
Terphenyl-d14	95.9	%Recovery	05/06/2017	Ν	Cov	GEO40
1,1,1,2-Tetrachloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,1-Trichloroethane	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1,2,2-Tetrachloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1,2-Trichloroethane	<0.20	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethane	3.58	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,1-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,3-Trichloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2,4-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromo-3-chloropropane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dibromoethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
1,2-Dichloroethane	<0.50	ug/l	22/06/2017	Y	S	SUBCON

Report Number:COV/1394345/2017Laboratory Number:16119376

Issue 2 Sample 8 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date Accreditation		Method
1,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3,5-Trimethylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
1,3-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
1,4-Dichlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
2,2-Dichloropropane	<1.0	ug/l	22/06/2017	Y S	SUBCON
2-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
4-Chlorotoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Benzene	0.49	ug/l	22/06/2017	Y S	SUBCON
Bromobenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Bromochloromethane	<2.0	ug/l	22/06/2017	Y S	SUBCON
Bromodichloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Bromoform	<0.20	ug/l	22/06/2017	Y S	SUBCON
Carbon Tetrachloride	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chlorobenzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloroform	<0.10	ug/l	22/06/2017	Y S	SUBCON
Chloromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
cis-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y S	SUBCON
cis-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dibromochloromethane	<0.10	ug/l	22/06/2017	Y S	SUBCON
Dibromomethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichlorodifluoromethane	<1.0	ug/l	22/06/2017	Y S	SUBCON
Dichloromethane	<6.0	ug/l	22/06/2017	Y S	SUBCON
Ethyl Benzene	<0.10	ug/l	22/06/2017	Y S	SUBCON
Hexachlorobutadiene	<1.0	ug/l	22/06/2017	Y S	SUBCON
Isopropylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
m&p-Xylene	<0.20	ug/l	22/06/2017	Y S	SUBCON
Naphthalene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
n-Propylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON
o-Xylene	<0.10	ug/l	22/06/2017	Y S	SUBCON
p-Isopropyltoluene	<1.0	ug/l	22/06/2017	Y S	SUBCON
sec-Butylbenzene	<1.0	ug/l	22/06/2017	Y S	SUBCON

Issue 2 Sample 8 of 8

Report Number: COV/1394345/2017 Laboratory Number: 16119376

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	30 May 2017
Sample Received:	31 May 2017
Analysis Complete:	22 June 2017

Test Description	Result	Units	Analysis Date	Date Accreditation		Method
Styrene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
tert-Butylbenzene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Tetrachloroethene	<0.20	ug/l	22/06/2017	Y	S	SUBCON
Toluene	<0.50	ug/l	22/06/2017	Y	S	SUBCON
trans-1,2-Dichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
trans-1,3-Dichloropropene	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Trichloroethene	<0.10	ug/l	22/06/2017	Y	S	SUBCON
Trichlorofluoromethane	<1.0	ug/l	22/06/2017	Y	S	SUBCON
Vinyl Chloride	0.49	ug/l	22/06/2017	Y	S	SUBCON

Analyst Comments for 16119376:

This sample has been analysed for Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised. {/*}Reporting limit raised for metals due to interference with the internal standard.{*/}

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed: Retry

Name: P. Patel

Date: 31 July 2017

Inorganic Team Leader Title:

ALS Environmental Ltd Torrington Avenue Coventry CV4 9GU

T: +44 (0)24 7642 1213 F: +44 (0)24 7685 6575 www.alsenvironmental.co.uk

19 September 2017

Test Report: COV/1430113/2017

Dear Miss Reilly

Analysis of your sample(s) submitted on 29 August 2017 is now complete and we have pleasure in enclosing the appropriate test report(s).

An invoice for the analysis carried out will be sent under separate cover.

Should you have any queries regarding this report(s) or any part of our service, please contact Customer Services on +44 (0)24 7642 1213 who will be happy to discuss your requirements.

If you would like to arrange any further analysis, please contact Customer Services. To arrange container delivery or sample collection, please call the Couriers Department directly on 024 7685 6562.

Thank you for using ALS Environmental Ltd and we look forward to receiving your next samples.

Yours Sincerely,

Signed: A 1 Horbin

Name: A. Horobin

Title: Organic Operations Manager

This communication has been sent to you by ALS Environmental Ltd. Registered in England and Wales. Registration No.02148934. Registered Office: ALS Environmental Limited, Torrington Avenue, Coventry, CV4 9GU.

Miss Reilly RPS Consultants West Pier Business Campus Dun Laoghaire Dublin

Report Summary

Miss Catriona Reilly RPS Consultants West Pier Business Campus Dun Laoghaire Dublin

		Date of Issue: 19 S	September 2017
Report Number:	COV/1430113/201	7 Issue 1	This issue replaces all previous issues
Job Description:	Portlaoise Groundwater		
Job Location:	Portlaoise		
Number of Samples included in this report	8	Job Received:	29 August 2017
Number of Test Result included in this report	s 1408	Analysis Commenced	1: 31 August 2017
Signed: A 1 Horbin	Name Title:	e: A. Horobin Organic Operations Ma	Date: 19 September 2017 anager

ALS Environmental Ltd was not responsible for sampling unless otherwise stated.

Information on the methods of analysis and performance characteristics are available on request.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. The results relate only to the items tested. Tests marked 'Not UKAS Accredited' in this Report/Certificate are not included in the UKAS Accreditation Schedule for our laboratory.

This communication has been sent to you by ALS Environmental Ltd. Registered in England and Wales. Registration No. 02148934. Registered Office: ALS Environmental Limited, Torrington Avenue, Coventry, CV4 9GU.

(c) ALS Environmental Ltd 2017. All rights reserved. We, ALS Environmental Ltd, are the owner of all copyright in this report. You must not copy, reproduce, amend or adapt this report, its contents or any format in which it is delivered without our prior written agreement. If you copy, reproduce, amend, or adapt this report in any way without our agreement you will be liable for any damage or loss to us. In the event of a dispute the copy of the report held by us shall be the reference copy.

Report Number: COV/1430113/2017 Laboratory Number: 16358230 Issue 1 Sample 1 of 8

Laboratory Number:16358230Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:MW02Sample Matrix:Ground WaterSample Date/Time:28 August 2017Sample Received:29 August 2017

19 September 2017

Analysis Complete:

Test Description	Decult	Unito	Analysis Data	Acore	ditation	Mothod
Test Description	Result	Units		Accre	Carr	
	31600	ug/i	11/09/2017	Y V		VVA5049
Potassium, Total as K	1520	ug/i	11/09/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	12/09/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	11/09/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	11/09/2017	Y	Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	11/09/2017	Y	Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	11/09/2017	Y	Cov	WAS049
Iron, Total as Fe	<230	ug/l	11/09/2017	Y	Cov	WAS049
Lead , Total as Pb	<6.00	ug/l	11/09/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	05/09/2017	Y	Cov	WAS013
Nickel , Total as Ni	<3.00	ug/l	11/09/2017	Y	Cov	WAS049
Zinc , Total as Zn	<18.0	ug/l	11/09/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	12/09/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	12/09/2017	N	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	12/09/2017	N	Cov	GEO18
Phenol	<5.00	ug/l	12/09/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	07/09/2017	N	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	07/09/2017	N	Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	07/09/2017	N	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	07/09/2017	N	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	07/09/2017	N	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	07/09/2017	N	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	07/09/2017	N	Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	07/09/2017	N	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	07/09/2017	N	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	07/09/2017	N	Cov	GEO46
Aromatic EPH >C10 - C44	<10	ug/l	07/09/2017	N	Cov	GEO46

Report Number:COV/1430113/2017Laboratory Number:16358230

Issue 1 Sample 1 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method	
EPH >C10 - C44	<10	ug/l	07/09/2017	N (Cov	GEO46	
Acenaphthene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Acenaphthylene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Anthracene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Benzo (a) anthracene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Benzo (g,h,i) perylene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Benzo (a) pyrene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Benzo (b) fluoranthene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Benzo (k) fluoranthene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Chrysene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Dibenz (a,h) anthracene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Fluoranthene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Fluorene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Indeno (1,2,3) cd pyrene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Naphthalene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Phenanthrene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
Pyrene	<0.01	ug/l	04/09/2017	Y (Cov	GEO19	
PAH, Total	<0.01	ug/l	04/09/2017	N (Cov	GEO19	
VOC	Y	ug/l	12/09/2017	N (Cov	GEO32	
Dichlorodifluoromethane	<1.0	ug/l	12/09/2017	N (Cov	GEO32	
Chloromethane	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	
Chloroethane	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	
Bromomethane	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	
Trichlorofluoromethane	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	
1,1-Dichloroethene	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	
Dichloromethane	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	
1,1-Dichloroethane	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	
cis-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	
2,2-Dichloropropane	<1.0	ug/l	12/09/2017	N (Cov	GEO32	
Chloroform	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	
Bromochloromethane	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	
1,1,1-Trichloroethane	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	
1,1-Dichloropropene	<1.0	ug/l	12/09/2017	Y (Cov	GEO32	

Report Number:COV/1430113/2017Laboratory Number:16358230

Issue 1 Sample 1 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,2-Dichloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Benzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Trichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromodichloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dibromomethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Toluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Vinyl Chloride	<0.5	ug/l	12/09/2017	Y	Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Tetrachloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dibromochloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Chlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Ethyl Benzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
m&p-Xylene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
o-Xylene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Styrene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromoform	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Isopropylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32

Report Number:COV/1430113/2017Laboratory Number:16358230

Issue 1 Sample 1 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,2,4-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dibromofluoromethane	100.2	%Recovery	12/09/2017	Ν	Cov	GEO32
Toluene-d8	101.7	%Recovery	12/09/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	91.7	%Recovery	12/09/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	04/09/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	04/09/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	04/09/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40

Report Number:COV/1430113/2017Laboratory Number:16358230

Issue 1 Sample 1 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Bis(2-chloroethoxy)methane	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	04/09/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	04/09/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	04/09/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Pyrene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Chrysene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	04/09/2017	Y Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40

COV/1430113/2017 Laboratory Number: 16358230

Issue 1 Sample 1 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW02
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Report Number:

Test Description	Result	Units	Analysis Date	alysis Date Accreditation		Method
Benzo(b)fluoranthene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Fluorophenol	87.0	%Recovery	04/09/2017	Ν	Cov	GEO40
Phenol-d6	72.4	%Recovery	04/09/2017	Ν	Cov	GEO40
Nitrobenzene-d5	81.3	%Recovery	04/09/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	81.6	%Recovery	04/09/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	81.8	%Recovery	04/09/2017	Ν	Cov	GEO40
Terphenyl-d14	93.0	%Recovery	04/09/2017	Ν	Cov	GEO40

Analyst Comments for 16358230:

This sample has been analysed for Phenols in Water method GEO18, Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues

Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin

Date: 19 September 2017

Title: **Organic Operations Manager**

Report Number: COV/1430113/2017 Laboratory Number: 16358231 Issue 1 Sample 2 of 8

Laboratory Number: 16358231Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:BH102Sample Matrix:Ground WaterSample Date/Time:28 August 2017Sample Received:29 August 2017Analysis Complete:19 September 2017

Test Description	Result	Units	Analysis Date	Accredita	tion	Method
Magnesium, Total as Mg	4260	ug/l	11/09/2017	Y Co	οv	WAS049
Potassium, Total as K	2000	ug/l	11/09/2017	Y Co	οv	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	12/09/2017	Y Co	οv	WAS060
Boron , Total as B	<230	ug/l	11/09/2017	Y Co	οv	WAS049
Cadmium , Total as Cd	<0.600	ug/l	11/09/2017	Y Co	οv	WAS049
Chromium , Total as Cr	<2.00	ug/l	11/09/2017	Y Co	οv	WAS049
Copper , Total as Cu	<9.00	ug/l	11/09/2017	Y Co	οv	WAS049
Iron, Total as Fe	334	ug/l	11/09/2017	Y Co	οv	WAS049
Lead , Total as Pb	<6.00	ug/l	11/09/2017	Y Co	οv	WAS049
Mercury, Total as Hg	<0.05	ug/l	05/09/2017	Y Co	ov	WAS013
Nickel , Total as Ni	<3.00	ug/l	11/09/2017	Y Co	οv	WAS049
Zinc , Total as Zn	<18.0	ug/l	11/09/2017	Y Co	οv	WAS049
2 - Chlorophenol	<1.00	ug/l	12/09/2017	Y Co	οv	GEO18
2 - Methylphenol	<1.00	ug/l	12/09/2017	N Co	ov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	12/09/2017	Y Co	οv	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	12/09/2017	Y Co	ov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	12/09/2017	N Co	οv	GEO18
3,5-Dimethylphenol	<1.00	ug/l	12/09/2017	Y Co	ov	GEO18
4-Chlorophenol	<1.00	ug/l	12/09/2017	Y Co	ov	GEO18
3+4-Methylphenol	<1.00	ug/l	12/09/2017	N Co	v	GEO18
Phenol	<5.00	ug/l	12/09/2017	Y Co	ov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	15/09/2017	N Co	ov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	15/09/2017	N Co	ov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	15/09/2017	N Co	ov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	15/09/2017	N Co	ov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	15/09/2017	N Co	v	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	15/09/2017	N Co	ov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	15/09/2017	N Co	ov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	15/09/2017	N Co	v	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	15/09/2017	N Co	v	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	15/09/2017	N Co	ov	GEO46
Aromatic EPH >C10 - C44	<10	ug/l	15/09/2017	N Co	v	GEO46

Report Number: COV/1430113/2017 Laboratory Number: 16358231 Issue 1 Sample 2 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH102
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditat	on Method
EPH >C10 - C44	<10	ug/l	15/09/2017	Ν Cov	GEO46
Acenaphthene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Anthracene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Chrysene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Fluoranthene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Fluorene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Naphthalene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Phenanthrene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Pyrene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
PAH, Total	<0.01	ug/l	04/09/2017	N Cov	GEO19
VOC	Y	ug/l	12/09/2017	N Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	12/09/2017	N Cov	GEO32
Chloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Chloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromomethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dichloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	12/09/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32

Report Number: COV/1430113/2017 Laboratory Number: 16358231 Issue 1 Sample 2 of 8

Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:BH102Sample Matrix:Ground WaterSample Date/Time:28 August 2017Sample Received:29 August 2017Analysis Complete:19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,2-Dichloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Benzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Trichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromodichloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dibromomethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Toluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Vinyl Chloride	<0.5	ug/l	12/09/2017	Y	Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Tetrachloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dibromochloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Chlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Ethyl Benzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
m&p-Xylene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
o-Xylene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Styrene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromoform	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Isopropylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32

Report Number: COV/1430113/2017 Laboratory Number: 16358231 Issue 1 Sample 2 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH102
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation		Method
1,2,4-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dibromofluoromethane	102.5	%Recovery	12/09/2017	Ν	Cov	GEO32
Toluene-d8	100.9	%Recovery	12/09/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	91.1	%Recovery	12/09/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	04/09/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	04/09/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	04/09/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40

Report Number: COV/1430113/2017 Laboratory Number: 16358231 Issue 1 Sample 2 of 8

Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:BH102Sample Matrix:Ground WaterSample Date/Time:28 August 2017Sample Received:29 August 2017Analysis Complete:19 September 2017

Test Description	Result	Units	Analysis Date Accreditation		Method
Bis(2-chloroethoxy)methane	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	04/09/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	04/09/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	04/09/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Pyrene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Chrysene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	04/09/2017	Y Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40

Issue 1 Sample 2 of 8

Report Number: COV/1430113/2017 Laboratory Number: 16358231

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH102
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units Analysis Date Accreditation		ditation	Method	
Benzo(b)fluoranthene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Fluorophenol	90.4	%Recovery	04/09/2017	Ν	Cov	GEO40
Phenol-d6	83.1	%Recovery	04/09/2017	Ν	Cov	GEO40
Nitrobenzene-d5	82.9	%Recovery	04/09/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	82.5	%Recovery	04/09/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	78.4	%Recovery	04/09/2017	Ν	Cov	GEO40
Terphenyl-d14	89.7	%Recovery	04/09/2017	Ν	Cov	GEO40

Analyst Comments for 16358231:

This sample has been analysed for Phenols in Water method GEO18, Boron Total as B. Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues

Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin

Date: 19 September 2017

Title: **Organic Operations Manager**

Report Number: COV/1430113/2017 Laboratory Number: 16358232 Issue 1 Sample 3 of 8

Caboratory Number: 10350232Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:MW01Sample Matrix:Ground WaterSample Date/Time:28 August 2017Sample Received:29 August 2017Analysis Complete:19 September 2017

Test Description	Result	Units	Analysis Date	Accreditatio	n Method
Magnesium, Total as Mg	33700	ug/l	11/09/2017	Y Cov	WAS049
Potassium, Total as K	1780	ug/l	11/09/2017	Y Cov	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	12/09/2017	Y Cov	WAS060
Boron , Total as B	<230	ug/l	11/09/2017	Y Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	11/09/2017	Y Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	11/09/2017	Y Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	11/09/2017	Y Cov	WAS049
Iron, Total as Fe	411	ug/l	11/09/2017	Y Cov	WAS049
Lead , Total as Pb	27.3	ug/l	11/09/2017	Y Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	05/09/2017	Y Cov	WAS013
Nickel , Total as Ni	<3.00	ug/l	11/09/2017	Y Cov	WAS049
Zinc , Total as Zn	48.8	ug/l	11/09/2017	Y Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	12/09/2017	Y Cov	GEO18
2 - Methylphenol	<1.00	ug/l	12/09/2017	N Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	12/09/2017	Y Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	12/09/2017	Y Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	12/09/2017	N Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	12/09/2017	Y Cov	GEO18
4-Chlorophenol	<1.00	ug/l	12/09/2017	Y Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	12/09/2017	N Cov	GEO18
Phenol	<5.00	ug/l	12/09/2017	Y Cov	GEO18
Aliphatic EPH >C10 - C12	<40	ug/l	15/09/2017	N Cov	GEO46
Aliphatic EPH >C12 - C16	<40	ug/l	15/09/2017	N Cov	GEO46
Aliphatic EPH >C16 - C35	120	ug/l	15/09/2017	N Cov	GEO46
Aliphatic EPH >C35 - C44	<40	ug/l	15/09/2017	N Cov	GEO46
Aliphatic EPH >C10 - C44	120	ug/l	15/09/2017	N Cov	GEO46
Aromatic EPH >C10 - C12	<40	ug/l	15/09/2017	N Cov	GEO46
Aromatic EPH >C12 - C16	<40	ug/l	15/09/2017	N Cov	GEO46
Aromatic EPH >C16 - C21	<40	ug/l	15/09/2017	N Cov	GEO46
Aromatic EPH >C21 - C35	<40	ug/l	15/09/2017	N Cov	GEO46
Aromatic EPH >C35 - C44	<40	ug/l	15/09/2017	N Cov	GEO46
Aromatic EPH >C10 - C44	<40	ug/l	15/09/2017	N Cov	GEO46

Report Number:COV/1430113/2017Laboratory Number:16358232

Issue 1 Sample 3 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
EPH >C10 - C44	120	ug/l	15/09/2017	N Cov	GEO46
Acenaphthene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Anthracene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (g,h,i) perylene	0.013	ug/l	04/09/2017	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (b) fluoranthene	0.012	ug/l	04/09/2017	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Chrysene	0.014	ug/l	04/09/2017	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Fluoranthene	0.052	ug/l	04/09/2017	Y Cov	GEO19
Fluorene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Naphthalene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Phenanthrene	0.017	ug/l	04/09/2017	Y Cov	GEO19
Pyrene	0.038	ug/l	04/09/2017	Y Cov	GEO19
PAH, Total	0.145	ug/l	04/09/2017	N Cov	GEO19
VOC	Y	ug/l	12/09/2017	N Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	12/09/2017	N Cov	GEO32
Chloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Chloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromomethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dichloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	12/09/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32

Report Number:COV/1430113/2017Laboratory Number:16358232

Issue 1 Sample 3 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	12/09/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	12/09/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
n-Propylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32

Report Number:COV/1430113/2017Laboratory Number:16358232

Issue 1 Sample 3 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,2,4-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dibromofluoromethane	98.9	%Recovery	12/09/2017	Ν	Cov	GEO32
Toluene-d8	101.0	%Recovery	12/09/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	91.6	%Recovery	12/09/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	14/09/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	14/09/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	14/09/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40

Report Number:COV/1430113/2017Laboratory Number:16358232

Issue 1 Sample 3 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation	
Bis(2-chloroethoxy)methane	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	14/09/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Diethylphthalate	1.4	ug/l	14/09/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	14/09/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	14/09/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Pyrene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Chrysene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	14/09/2017	Y Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	14/09/2017	Y Cov	GEO40

Report Number: COV/1430113/2017 Laboratory Number: 16358232

Issue 1 Sample 3 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW01
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date Accreditation		ditation	Method
Benzo(b)fluoranthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Fluorophenol	96.3	%Recovery	14/09/2017	Ν	Cov	GEO40
Phenol-d6	79.6	%Recovery	14/09/2017	Ν	Cov	GEO40
Nitrobenzene-d5	124.3	%Recovery	14/09/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	140.4	%Recovery	14/09/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	115.7	%Recovery	14/09/2017	Ν	Cov	GEO40
Terphenyl-d14	132.9	%Recovery	14/09/2017	Ν	Cov	GEO40

Analyst Comments for 16358232:

This sample has been analysed for Phenols in Water method GEO18, SVOC Waters method GEO40, Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised.

Raised reporting limits for GEO46 EPH Waters due to the nature of the sample matrix.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed: A 1 Horbin

Name: A. Horobin

Date: 19 September 2017

Title: **Organic Operations Manager**

Report Number: COV/1430113/2017 Laboratory Number: 16358233 Issue 1 Sample 4 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH104B
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation		Method
Magnesium, Total as Mg	3530	ug/l	11/09/2017	Y	Cov	WAS049
Potassium, Total as K	5710	ug/l	11/09/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	12/09/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	11/09/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	11/09/2017	Y	Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	11/09/2017	Y	Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	11/09/2017	Y	Cov	WAS049
Iron, Total as Fe	<230	ug/l	11/09/2017	Y	Cov	WAS049
Lead , Total as Pb	<6.00	ug/l	11/09/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	05/09/2017	Y	Cov	WAS013
Nickel , Total as Ni	<3.00	ug/l	11/09/2017	Y	Cov	WAS049
Zinc , Total as Zn	<18.0	ug/l	11/09/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	12/09/2017	N	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	12/09/2017	N	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	12/09/2017	N	Cov	GEO18
Phenol	<5.00	ug/l	12/09/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	15/09/2017	N	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	15/09/2017	N	Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	15/09/2017	N	Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	15/09/2017	N	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	15/09/2017	N	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	15/09/2017	N	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	15/09/2017	N	Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	15/09/2017	N	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	15/09/2017	N	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	15/09/2017	N	Cov	GEO46
Aromatic EPH >C10 - C44	<10	ug/l	15/09/2017	N	Cov	GEO46

Report Number:COV/1430113/2017Laboratory Number:16358233

Issue 1 Sample 4 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH104B
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation		Method
EPH >C10 - C44	<10	ug/l	15/09/2017	Ν	Cov	GEO46
Acenaphthene	0.030	ug/l	04/09/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Fluorene	0.053	ug/l	04/09/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Naphthalene	0.024	ug/l	04/09/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Pyrene	0.032	ug/l	04/09/2017	Y	Cov	GEO19
PAH, Total	0.139	ug/l	04/09/2017	Ν	Cov	GEO19
VOC	Y	ug/l	12/09/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	12/09/2017	Ν	Cov	GEO32
Chloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dichloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	12/09/2017	Ν	Cov	GEO32
Chloroform	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromochloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32

Report Number:COV/1430113/2017Laboratory Number:16358233

Issue 1 Sample 4 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH104B
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	12/09/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	12/09/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
n-Propylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32

Report Number:COV/1430113/2017Laboratory Number:16358233

Issue 1 Sample 4 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH104B
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation		Method
1,2,4-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dibromofluoromethane	100.5	%Recovery	12/09/2017	Ν	Cov	GEO32
Toluene-d8	101.8	%Recovery	12/09/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	90.5	%Recovery	12/09/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	04/09/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	04/09/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	04/09/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	04/09/2017	Y	Cov	GEO40

Report Number:COV/1430113/2017Laboratory Number:16358233

Issue 1 Sample 4 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH104B
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date Accreditation		Method
Bis(2-chloroethoxy)methane	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	04/09/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	04/09/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	04/09/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Pyrene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Chrysene	<1.0	ug/l	04/09/2017	Y Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	04/09/2017	Y Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	04/09/2017	Y Cov	GEO40

COV/1430113/2017 Laboratory Number: 16358233

Issue 1 Sample 4 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH104B
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Report Number:

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Benzo(b)fluoranthene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	04/09/2017	Y	Cov	GEO40
2-Fluorophenol	87.8	%Recovery	04/09/2017	Ν	Cov	GEO40
Phenol-d6	75.1	%Recovery	04/09/2017	Ν	Cov	GEO40
Nitrobenzene-d5	81.6	%Recovery	04/09/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	83.0	%Recovery	04/09/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	82.2	%Recovery	04/09/2017	Ν	Cov	GEO40
Terphenyl-d14	78.6	%Recovery	04/09/2017	Ν	Cov	GEO40

Analyst Comments for 16358233:

This sample has been analysed for Phenols in Water method GEO18, Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues

Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin

Date: 19 September 2017

Title: **Organic Operations Manager**

Report Number: COV/1430113/2017 Laboratory Number: 16358234 Issue 1 Sample 5 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Magnesium, Total as Mg	16000	ug/l	11/09/2017	Y Cov	WAS049
Potassium, Total as K	2390	ug/l	11/09/2017	Y Cov	WAS049
Arsenic, Ultra-low Total as As	4.5	ug/l	12/09/2017	Y Cov	WAS060
Boron , Total as B	<230	ug/l	11/09/2017	Y Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	11/09/2017	Y Cov	WAS049
Chromium , Total as Cr	5.10	ug/l	11/09/2017	Y Cov	WAS049
Copper , Total as Cu	29.4	ug/l	11/09/2017	Y Cov	WAS049
Iron, Total as Fe	8000	ug/l	11/09/2017	Y Cov	WAS049
Lead , Total as Pb	15.2	ug/l	11/09/2017	Y Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	05/09/2017	Y Cov	WAS013
Nickel , Total as Ni	74.9	ug/l	11/09/2017	Y Cov	WAS049
Zinc , Total as Zn	49.0	ug/l	11/09/2017	Y Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	12/09/2017	Y Cov	GEO18
2 - Methylphenol	<1.00	ug/l	12/09/2017	N Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	12/09/2017	Y Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	12/09/2017	Y Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	12/09/2017	N Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	12/09/2017	Y Cov	GEO18
4-Chlorophenol	<1.00	ug/l	12/09/2017	Y Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	12/09/2017	N Cov	GEO18
Phenol	<5.00	ug/l	12/09/2017	Y Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	19/09/2017	N Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	19/09/2017	N Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	19/09/2017	N Cov	GEO46
Aliphatic EPH >C35 - C44	<10	ug/l	19/09/2017	N Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	19/09/2017	N Cov	GEO46
Aromatic EPH >C10 - C12	17	ug/l	19/09/2017	N Cov	GEO46
Aromatic EPH >C12 - C16	24	ug/l	19/09/2017	N Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	19/09/2017	N Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	19/09/2017	N Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	19/09/2017	N Cov	GEO46
Aromatic EPH >C10 - C44	41	ug/l	19/09/2017	N Cov	GEO46

Report Number: COV/1430113/2017 Laboratory Number: 16358234 Issue 1 Sample 5 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
EPH >C10 - C44	41	ug/l	19/09/2017	N	Cov	GEO46
Acenaphthene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Acenaphthylene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Anthracene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Chrysene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Fluoranthene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Fluorene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Naphthalene	0.161	ug/l	13/09/2017	Y	Cov	GEO19
Phenanthrene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
Pyrene	<0.10	ug/l	13/09/2017	Y	Cov	GEO19
PAH, Total	0.161	ug/l	13/09/2017	Ν	Cov	GEO19
VOC	Y	ug/l	12/09/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	12/09/2017	Ν	Cov	GEO32
Chloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Chloroethane	10.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dichloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1-Dichloroethane	3.3	ug/l	12/09/2017	Y	Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	12/09/2017	Ν	Cov	GEO32
Chloroform	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromochloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32

Report Number: COV/1430113/2017 Laboratory Number: 16358234 Issue 1 Sample 5 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	on Method
1,2-Dichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	12/09/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	12/09/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
n-Propylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32

Report Number: COV/1430113/2017 Laboratory Number: 16358234 Issue 1 Sample 5 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2,4-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
n-Butylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	12/09/2017	Y Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Naphthalene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
МТВЕ	2.0	ug/l	12/09/2017	Y Cov	GEO32
Dibromofluoromethane	98.4	%Recovery	12/09/2017	N Cov	GEO32
Toluene-d8	98.8	%Recovery	12/09/2017	N Cov	GEO32
4-Bromofluorobenzene	91.5	%Recovery	12/09/2017	N Cov	GEO32
SVOC	Y	ug/l	14/09/2017	N Cov	GEO40
Phenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2-Chlorophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2-Methylphenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	14/09/2017	N Cov	GEO40
Dibenzofuran	<1.0	ug/l	14/09/2017	N Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	14/09/2017	Y Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Hexachloroethane	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Nitrobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Isophorone	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2-Nitrophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40

Report Number: COV/1430113/2017 Laboratory Number: 16358234 Issue 1 Sample 5 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW04
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Bis(2-chloroethoxy)methane	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	14/09/2017	Y Cov	GEO40
Hexachlorobutadiene	<4.0	ug/l	14/09/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	14/09/2017	Y Cov	GEO40
4-Nitrophenol	<20.0	ug/l	14/09/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	14/09/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Fluoranthene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Pyrene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Chrysene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	14/09/2017	Y Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	14/09/2017	Y Cov	GEO40

Report Number: COV/1430113/2017 Laboratory Number: 16358234

Issue 1 Sample 5 of 8

Sample Source: **RPS Consultants** Sample Point Description: RPS Sample Description: **MW04** Sample Matrix: **Ground Water** Sample Date/Time: 28 August 2017 Sample Received: 29 August 2017 Analysis Complete: 19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Benzo(b)fluoranthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Fluorophenol	92.3	%Recovery	14/09/2017	Ν	Cov	GEO40
Phenol-d6	83.2	%Recovery	14/09/2017	Ν	Cov	GEO40
Nitrobenzene-d5	90.6	%Recovery	14/09/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	92.5	%Recovery	14/09/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	105.8	%Recovery	14/09/2017	Ν	Cov	GEO40
Terphenyl-d14	96.2	%Recovery	14/09/2017	Ν	Cov	GEO40

Analyst Comments for 16358234:

This sample has been analysed for Phenols in Water method GEO18, SVOC Waters method GEO40, Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised. Reporting limits raised for PAH due to nature of sample matrix. Sub sample taken from PET bottle for PAH due to quality failure on the original sample taken from the glass container and re-analysed outside recommended stability times. It is therefore possible that the results provided could be compromised.GEO40 SVOC Waters: Raised reporting limits for Hexachlorobutadiene & 4-Nitrophenol part of the SVOC suite due to insufficient sample as repeat extraction performed due to a quality control failure therefore extraction performed on reduced volumes.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed: A 1 Horbbin

Name: A. Horobin Date: 19 September 2017

Title:

Organic Operations Manager

Report Number: COV/1430113/2017 Laboratory Number: 16358235 Issue 1 Sample 6 of 8

Laboratory Number: 16358235				
Sample Source:	RPS Consultants			
Sample Point Description:	RPS			
Sample Description:	MW03			
Sample Matrix:	Ground Water			
Sample Date/Time:	28 August 2017			
Sample Received:	29 August 2017			
Analysis Complete:	19 September 2017			

Test Description	Result	Units	Analysis Date	Accred	ditation	Method
Magnesium, Total as Mg	17800	ug/l	11/09/2017	Y	Cov	WAS049
Potassium, Total as K	2840	ug/l	11/09/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	2.1	ug/l	12/09/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	11/09/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	11/09/2017	Y	Cov	WAS049
Chromium , Total as Cr	3.60	ug/l	11/09/2017	Y	Cov	WAS049
Copper , Total as Cu	10.3	ug/l	11/09/2017	Y	Cov	WAS049
Iron, Total as Fe	3600	ug/l	11/09/2017	Y	Cov	WAS049
Lead , Total as Pb	8.30	ug/l	11/09/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	05/09/2017	Y	Cov	WAS013
Nickel , Total as Ni	51.2	ug/l	11/09/2017	Y	Cov	WAS049
Zinc , Total as Zn	38.3	ug/l	11/09/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	12/09/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	12/09/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	12/09/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	12/09/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	61	ug/l	15/09/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	61	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	40	ug/l	15/09/2017	Ν	Cov	GEO46

Report Number: COV/1430113/2017 Laboratory Number: 16358235 Issue 1 Sample 6 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
EPH >C10 - C44	102	ug/l	15/09/2017	N Cov	GEO46
Acenaphthene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Acenaphthylene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Anthracene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Benzo (a) anthracene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Benzo (a) pyrene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Benzo (b) fluoranthene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Benzo (k) fluoranthene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Chrysene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Fluoranthene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Fluorene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Naphthalene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Phenanthrene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
Pyrene	<0.10	ug/l	13/09/2017	Y Cov	GEO19
PAH, Total	<0.10	ug/l	13/09/2017	N Cov	GEO19
VOC	Y	ug/l	12/09/2017	N Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	12/09/2017	N Cov	GEO32
Chloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Chloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromomethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dichloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloroethane	1.7	ug/l	12/09/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	12/09/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32

Report Number: COV/1430113/2017 Laboratory Number: 16358235 Issue 1 Sample 6 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	12/09/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	12/09/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
n-Propylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32

Report Number: COV/1430113/2017 Laboratory Number: 16358235 Issue 1 Sample 6 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,2,4-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
МТВЕ	2.7	ug/l	12/09/2017	Y	Cov	GEO32
Dibromofluoromethane	99.8	%Recovery	12/09/2017	Ν	Cov	GEO32
Toluene-d8	99.3	%Recovery	12/09/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	95.1	%Recovery	12/09/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	14/09/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	14/09/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	14/09/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40

Report Number: COV/1430113/2017 Laboratory Number: 16358235 Issue 1 Sample 6 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method
Bis(2-chloroethoxy)methane	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
2,4-Dichlorophenol	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	14/09/2017	Y Co	vv	GEO40
Naphthalene	<2.0	ug/l	14/09/2017	Y Co	v	GEO40
Hexachlorobutadiene	<1.0	ug/l	14/09/2017	Y Co	vv	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
2-Methylnaphthalene	<1.0	ug/l	14/09/2017	Y Co	vv	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	14/09/2017	Y Co	vv	GEO40
2-Chloronaphthalene	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Dimethylphthalate	<1.0	ug/l	14/09/2017	Y Co	vv	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Acenaphthylene	<1.0	ug/l	14/09/2017	Y Co	vv	GEO40
Acenaphthene	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Diethylphthalate	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
4-Nitrophenol	<5.0	ug/l	14/09/2017	Y Co	v	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	14/09/2017	Y Co	vv	GEO40
Fluorene	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Diphenylamine	<1.0	ug/l	14/09/2017	N Co	vv	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Hexachlorobenzene	<1.0	ug/l	14/09/2017	Y Co	v I	GEO40
Pentachlorophenol	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Phenanthrene	<1.0	ug/l	14/09/2017	Y Co	v I	GEO40
Anthracene	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
di-n-Butylphthalate	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Fluoranthene	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Pyrene	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Benzo(a)anthracene	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Chrysene	<1.0	ug/l	14/09/2017	Y Co	v	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	14/09/2017	Y Co	v	GEO40
Di-n-octylphthalate	<1.0	ug/l	14/09/2017	Y Co	v	GEO40

Issue 1 Sample 6 of 8

Report Number: COV/1430113/2017 Laboratory Number: 16358235

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	MW03
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Benzo(b)fluoranthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Fluorophenol	92.6	%Recovery	14/09/2017	Ν	Cov	GEO40
Phenol-d6	82.5	%Recovery	14/09/2017	Ν	Cov	GEO40
Nitrobenzene-d5	91.2	%Recovery	14/09/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	90.0	%Recovery	14/09/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	102.9	%Recovery	14/09/2017	Ν	Cov	GEO40
Terphenyl-d14	91.2	%Recovery	14/09/2017	Ν	Cov	GEO40

Analyst Comments for 16358235:

This sample has been analysed for Phenols in Water method GEO18, SVOC Waters method GEO40, Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised. Reporting limits raised for PAH due to nature of sample matrix. Sub sample taken from PET bottle for PAH due to quality failure on the original sample taken from the glass container and re-analysed outside recommended stability times. It is therefore possible that the results provided could be compromised.GEO40 SVOC Waters: This sample For Hexachlorobutadiene & 4-Nitrophenol as part of the SVOC suite, has been analysed outside recommended stability times due to quality control failures. It is therefore possible that the results provided may be compromised. Raised reporting limits for GEO46 EPH Waters due to the nature of the sample matrix.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin Date: 19 September 2017

Title:

Organic Operations Manager

Report Number:	COV/1430113/2017
Laboratory Number:	16358236

Issue 1 Sample 7 of 8

Laboratory Number:16358236Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:BH103Sample Matrix:Ground WaterSample Date/Time:28 August 2017Sample Received:29 August 2017

19 September 2017

Analysis Complete:

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Magnesium. Total as Mg	14500		11/09/2017	Y	Cov	WAS049
Potassium. Total as K	4070	ug/l	11/09/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	23	ua/l	12/09/2017	Y	Cov	WAS060
Boron . Total as B	<230	ua/l	11/09/2017	Y	Cov	WAS049
Cadmium , Total as Cd	2.80	ug/l	11/09/2017	Y	Cov	WAS049
Chromium, Total as Cr	8.80	ug/l	11/09/2017	Y	Cov	WAS049
Copper, Total as Cu	45.4	ug/l	11/09/2017	Y	Cov	WAS049
Iron, Total as Fe	10700	ug/l	11/09/2017	Y	Cov	WAS049
Lead , Total as Pb	194	ug/l	11/09/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	05/09/2017	Y	Cov	WAS013
Nickel , Total as Ni	28.6	ug/l	11/09/2017	Y	Cov	WAS049
Zinc , Total as Zn	387	ug/l	11/09/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	12/09/2017	N	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	12/09/2017	N	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	12/09/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	12/09/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<40	ug/l	15/09/2017	N	Cov	GEO46
Aliphatic EPH >C16 - C35	177	ug/l	15/09/2017	N	Cov	GEO46
Aliphatic EPH >C35 - C44	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	177	ug/l	15/09/2017	N	Cov	GEO46
Aromatic EPH >C10 - C12	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<40	ug/l	15/09/2017	N	Cov	GEO46
Aromatic EPH >C16 - C21	<40	ug/l	15/09/2017	N	Cov	GEO46
Aromatic EPH >C21 - C35	71	ug/l	15/09/2017	N	Cov	GEO46
Aromatic EPH >C35 - C44	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	71	ug/l	15/09/2017	Ν	Cov	GEO46

Report Number: COV/1430113/2017 Laboratory Number: 16358236 Issue 1 Sample 7 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH103
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
EPH >C10 - C44	247	ug/l	15/09/2017	N Cov	GEO46
Acenaphthene	0.054	ug/l	04/09/2017	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Anthracene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Chrysene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Fluoranthene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Fluorene	0.013	ug/l	04/09/2017	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Naphthalene	0.040	ug/l	04/09/2017	Y Cov	GEO19
Phenanthrene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
Pyrene	<0.01	ug/l	04/09/2017	Y Cov	GEO19
PAH, Total	0.108	ug/l	04/09/2017	N Cov	GEO19
VOC	Y	ug/l	12/09/2017	N Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	12/09/2017	N Cov	GEO32
Chloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Chloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromomethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dichloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	12/09/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32

Report Number:COV/1430113/2017Laboratory Number:16358236

Issue 1 Sample 7 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH103
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,2-Dichloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Benzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Trichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromodichloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dibromomethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Toluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Vinyl Chloride	<0.5	ug/l	12/09/2017	Y	Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Tetrachloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dibromochloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Chlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Ethyl Benzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
m&p-Xylene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
o-Xylene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Styrene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromoform	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Isopropylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32

Report Number: COV/1430113/2017 Laboratory Number: 16358236 Issue 1 Sample 7 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH103
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2,4-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
n-Butylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	12/09/2017	Y Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Naphthalene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
МТВЕ	1.2	ug/l	12/09/2017	Y Cov	GEO32
Dibromofluoromethane	100.8	%Recovery	12/09/2017	N Cov	GEO32
Toluene-d8	99.2	%Recovery	12/09/2017	N Cov	GEO32
4-Bromofluorobenzene	90.1	%Recovery	12/09/2017	N Cov	GEO32
SVOC	Y	ug/l	14/09/2017	N Cov	GEO40
Phenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2-Chlorophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2-Methylphenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	14/09/2017	N Cov	GEO40
Dibenzofuran	<1.0	ug/l	14/09/2017	N Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	14/09/2017	Y Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Hexachloroethane	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Nitrobenzene	<1.0	ug/l	14/09/2017	Y Cov	GEO40
Isophorone	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40
2-Nitrophenol	<1.0	ug/l	14/09/2017	Y Cov	GEO40

Report Number:COV/1430113/2017Laboratory Number:16358236

Issue 1 Sample 7 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH103
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accredita	Accreditation	
Bis(2-chloroethoxy)methane	<1.0	ug/l	14/09/2017	Y Co	vc	GEO40
2,4-Dichlorophenol	<1.0	ug/l	14/09/2017	Y Co	ov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	14/09/2017	Y Co	ov	GEO40
Naphthalene	<2.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Hexachlorobutadiene	<1.0	ug/l	14/09/2017	Y Co	ov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	14/09/2017	Y Co	ov	GEO40
2-Methylnaphthalene	<1.0	ug/l	14/09/2017	Y Co	ov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	14/09/2017	Y Co	ov	GEO40
2-Chloronaphthalene	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Dimethylphthalate	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Acenaphthylene	<1.0	ug/l	14/09/2017	Y Co	ov	GEO40
Acenaphthene	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	14/09/2017	Y Co	οv	GEO40
Diethylphthalate	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
4-Nitrophenol	<5.0	ug/l	14/09/2017	Y Co	οv	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Fluorene	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Diphenylamine	<1.0	ug/l	14/09/2017	N Co	ov vc	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Hexachlorobenzene	<1.0	ug/l	14/09/2017	Y Co	ov	GEO40
Pentachlorophenol	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Phenanthrene	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Anthracene	<1.0	ug/l	14/09/2017	Y Co	ov	GEO40
di-n-Butylphthalate	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Fluoranthene	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Pyrene	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Benzo(a)anthracene	<1.0	ug/l	14/09/2017	Y Co	ov	GEO40
Chrysene	<1.0	ug/l	14/09/2017	Y Co	ov vc	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	14/09/2017	Y Co	ov	GEO40
Di-n-octylphthalate	<1.0	ug/l	14/09/2017	Y Co	ov	GEO40

Issue 1 Sample 7 of 8

Report Number: COV/1430113/2017 Laboratory Number: 16358236

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH103
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	alysis Date Accreditation		Method
Benzo(b)fluoranthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Fluorophenol	90.9	%Recovery	14/09/2017	Ν	Cov	GEO40
Phenol-d6	76.3	%Recovery	14/09/2017	Ν	Cov	GEO40
Nitrobenzene-d5	88.1	%Recovery	14/09/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	86.6	%Recovery	14/09/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	99.6	%Recovery	14/09/2017	Ν	Cov	GEO40
Terphenyl-d14	101.0	%Recovery	14/09/2017	Ν	Cov	GEO40

Analyst Comments for 16358236:

This sample has been analysed for Phenols in Water method GEO18, SVOC Waters method GEO40, Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised. GEO40 SVOC Waters: This sample For Hexachlorobutadiene & 4-Nitrophenol as part of the SVOC suite, has been analysed outside recommended stability times due to quality control failures. It is therefore possible that the results provided may be compromised.

Raised reporting limits for GEO46 EPH Waters due to the nature of the sample matrix.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ot = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin

Date: 19 September 2017

Title: **Organic Operations Manager**

Report Number: COV/1430113/2017 Laboratory Number: 16358237 Issue 1 Sample 8 of 8

Sample Source:	PPS Concultante
Sample Source.	KF3 Consultants
Sample Point Description:	RPS
Sample Description:	BH101
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date Accredi		ditation	Method
Magnesium, Total as Mg	11600	ug/l	11/09/2017	Y	Cov	WAS049
Potassium, Total as K	5320	ug/l	11/09/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	3.8	ug/l	12/09/2017	Y	Cov	WAS060
Boron , Total as B	<230	ug/l	11/09/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	11/09/2017	Y	Cov	WAS049
Chromium , Total as Cr	8.20	ug/l	11/09/2017	Y	Cov	WAS049
Copper , Total as Cu	14.5	ug/l	11/09/2017	Y	Cov	WAS049
Iron, Total as Fe	5400	ug/l	11/09/2017	Y	Cov	WAS049
Lead , Total as Pb	20.3	ug/l	11/09/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.05	ug/l	05/09/2017	Y	Cov	WAS013
Nickel , Total as Ni	23.2	ug/l	11/09/2017	Y	Cov	WAS049
Zinc , Total as Zn	98.1	ug/l	11/09/2017	Y	Cov	WAS049
2 - Chlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	12/09/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	12/09/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	12/09/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	12/09/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	12/09/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aliphatic EPH >C35 - C44	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	<40	ug/l	15/09/2017	Ν	Cov	GEO46

Report Number:COV/1430113/2017Laboratory Number:16358237

Issue 1 Sample 8 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH101
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
EPH >C10 - C44	<40	ug/l	15/09/2017	Ν	Cov	GEO46
Acenaphthene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Fluorene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Naphthalene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	04/09/2017	Y	Cov	GEO19
PAH, Total	<0.01	ug/l	04/09/2017	Ν	Cov	GEO19
VOC	Y	ug/l	12/09/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	12/09/2017	Ν	Cov	GEO32
Chloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dichloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	12/09/2017	Ν	Cov	GEO32
Chloroform	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Bromochloromethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32

Report Number:COV/1430113/2017Laboratory Number:16358237

Issue 1 Sample 8 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH101
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	12/09/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	12/09/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,1,2,2-Tetrachloroethane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	12/09/2017	Y Cov	GEO32
n-Propylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
Bromobenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	12/09/2017	Y Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	12/09/2017	Y Cov	GEO32

Report Number:COV/1430113/2017Laboratory Number:16358237

Issue 1 Sample 8 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH101
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,2,4-Trimethylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	12/09/2017	Y	Cov	GEO32
Dibromofluoromethane	100.1	%Recovery	12/09/2017	Ν	Cov	GEO32
Toluene-d8	100.6	%Recovery	12/09/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	93.8	%Recovery	12/09/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	14/09/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	14/09/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	14/09/2017	Ν	Cov	GEO40
1,2-Dichlorobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40

Report Number:COV/1430113/2017Laboratory Number:16358237

Issue 1 Sample 8 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH101
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accrea	ditation	Method
Bis(2-chloroethoxy)methane	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Naphthalene	<2.0	ug/l	14/09/2017	Y	Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Dimethylphthalate	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Acenaphthylene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Acenaphthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Diethylphthalate	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
4-Nitrophenol	<5.0	ug/l	14/09/2017	Y	Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Fluorene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Diphenylamine	<1.0	ug/l	14/09/2017	Ν	Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Pentachlorophenol	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Phenanthrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Anthracene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
di-n-Butylphthalate	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	14/09/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	14/09/2017	Y	Cov	GEO40

Issue 1 Sample 8 of 8

Report Number: COV/1430113/2017 Laboratory Number: 16358237

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	BH101
Sample Matrix:	Ground Water
Sample Date/Time:	28 August 2017
Sample Received:	29 August 2017
Analysis Complete:	19 September 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Benzo(b)fluoranthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	14/09/2017	Y	Cov	GEO40
2-Fluorophenol	94.0	%Recovery	14/09/2017	Ν	Cov	GEO40
Phenol-d6	80.1	%Recovery	14/09/2017	Ν	Cov	GEO40
Nitrobenzene-d5	92.0	%Recovery	14/09/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	90.6	%Recovery	14/09/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	96.8	%Recovery	14/09/2017	Ν	Cov	GEO40
Terphenyl-d14	97.1	%Recovery	14/09/2017	Ν	Cov	GEO40

Analyst Comments for 16358237:

This sample has been analysed for Phenols in Water method GEO18, SVOC Waters method GEO40, Boron Total as B, Magnesium, Total as Mg outside recommended stability times. It is therefore possible that the results provided may be compromised. GEO40 SVOC Waters: This sample For Hexachlorobutadiene & 4-Nitrophenol as part of the SVOC suite, has been analysed outside recommended stability times due to quality control failures. It is therefore possible that the results provided may be compromised.

Raised reporting limits for GEO46 EPH Waters due to the nature of the sample matrix.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS.

Analysed at: Cov = Coventry(CV4 9GU), Che = Chester(CH4 9EP), Ot = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin

Date: 19 September 2017

Title: **Organic Operations Manager**

ALS Environmental Ltd Torrington Avenue Coventry CV4 9GU

T: +44 (0)24 7642 1213 F: +44 (0)24 7685 6575 www.alsenvironmental.co.uk

28 November 2017

Test Report: COV/1464510/2017

Dear Miss Reilly

Analysis of your sample(s) submitted on 14 November 2017 is now complete and we have pleasure in enclosing the appropriate test report(s).

An invoice for the analysis carried out will be sent under separate cover.

Should you have any queries regarding this report(s) or any part of our service, please contact Customer Services on +44 (0)24 7642 1213 who will be happy to discuss your requirements.

If you would like to arrange any further analysis, please contact Customer Services. To arrange container delivery or sample collection, please call the Couriers Department directly on 024 7685 6562.

Thank you for using ALS Environmental Ltd and we look forward to receiving your next samples.

Yours Sincerely,

Signed: A 1 Horbin

Name: A. Horobin

Title: Organic Operations Manager

This communication has been sent to you by ALS Environmental Ltd. Registered in England and Wales. Registration No.02148934. Registered Office: ALS Environmental Limited, Torrington Avenue, Coventry, CV4 9GU.

Miss Reilly RPS Consultants West Pier Business Campus Dun Laoghaire Dublin

Report Summary

Miss Catriona Reilly RPS Consultants West Pier Business Campus Dun Laoghaire Dublin

		Date of Issue: 28 N	ovember 2017
Report Number:	COV/1464510/201	7 Issue 1	This issue replaces all previous issues
Job Description:	Portlaoise Groundwater		
Job Location:	Portlaoise		
Number of Samples included in this report	8	Job Received:	14 November 2017
Number of Test Result included in this report	s 1472	Analysis Commenced	: 15 November 2017
signed: A 1 Horbein	Name Title:	e: A. Horobin Organic Operations Ma	Date: 28 November 2017 nager

ALS Environmental Ltd was not responsible for sampling unless otherwise stated.

Information on the methods of analysis and performance characteristics are available on request.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. The results relate only to the items tested. Tests marked 'Not UKAS Accredited' in this Report/Certificate are not included in the UKAS Accreditation Schedule for our laboratory.

This communication has been sent to you by ALS Environmental Ltd. Registered in England and Wales. Registration No. 02148934. Registered Office: ALS Environmental Limited, Torrington Avenue, Coventry, CV4 9GU.

(c) ALS Environmental Ltd 2017. All rights reserved. We, ALS Environmental Ltd, are the owner of all copyright in this report. You must not copy, reproduce, amend or adapt this report, its contents or any format in which it is delivered without our prior written agreement. If you copy, reproduce, amend, or adapt this report in any way without our agreement you will be liable for any damage or loss to us. In the event of a dispute the copy of the report held by us shall be the reference copy.

Report Number: COV/1464510/2017 Laboratory Number: 16581460 Issue 1 Sample 1 of 8

Cabbratory Number.1050 1460Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:GW1Sample Matrix:Ground WaterSample Date/Time:14 November 2017Sample Received:14 November 2017Analysis Complete:28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method
Sodium, Total as Na	76500	ug/l	21/11/2017	Y	Cov	WAS049
Calcium, Total as Ca	138000	ug/l	21/11/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	22/11/2017	Y	Cov	WAS060
Boron, Total as B	<0.23	mg/l	21/11/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	21/11/2017	Y	Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	21/11/2017	Y	Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	21/11/2017	Y	Cov	WAS049
Iron, Total as Fe	283	ug/l	21/11/2017	Y	Cov	WAS049
Lead , Total as Pb	8.70	ug/l	21/11/2017	Y	Cov	WAS049
Magnesium, Total as Mg	9.5	mg/l	21/11/2017	Y	Cov	WAS049
Manganese , Total as Mn	25.8	ug/l	21/11/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	20/11/2017	Y	Cov	WAS013
Nickel , Total as Ni	<3.00	ug/l	21/11/2017	Y	Cov	WAS049
Potassium , Total as K	5.05	mg/l	21/11/2017	Y	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	22/11/2017	Y	Cov	WAS060
Zinc , Total as Zn	<18.0	ug/l	21/11/2017	Y	Cov	WAS049
Alkalinity as CaCO3	358	mg/l	26/11/2017	Y	Cov	WAS025
Chloride as Cl	122	mg/l	15/11/2017	Ν	Cov	WAS036
Sulphate as SO4	38.9	mg/l	15/11/2017	Ν	Cov	WAS036
Cyanide, Total as CN	<9	ug/l	17/11/2017	Y	Cov	WAS018
2 - Chlorophenol	<1.00	ug/l	22/11/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	22/11/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	22/11/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	22/11/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	22/11/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	22/11/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	22/11/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	22/11/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	22/11/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	21/11/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	21/11/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	21/11/2017	Ν	Cov	GEO46

Issue 1 Sample 1 of 8

Report Number:COV/1464510/2017Laboratory Number:16581460

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW1
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Aliphatic EPH >C35 - C44	<10	ug/l	21/11/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	<10	ug/l	21/11/2017	Ν	Cov	GEO46
EPH >C10 - C44	<10	ug/l	21/11/2017	Ν	Cov	GEO46
Acenaphthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Fluorene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Naphthalene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
PAH, Total	<0.01	ug/l	21/11/2017	Ν	Cov	GEO19
VOC	Y	ug/l	22/11/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	22/11/2017	Ν	Cov	GEO32
Chloromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32

Issue **1** Sample **1** of **8**

Report Number:COV/1464510/2017Laboratory Number:16581460

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW1
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Dichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	22/11/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	22/11/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32

Issue 1 Sample 1 of 8

Report Number:COV/1464510/2017Laboratory Number:16581460

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW1
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,1,2,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
p-IsopropyItoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Dibromofluoromethane	101.1	%Recovery	22/11/2017	Ν	Cov	GEO32
Toluene-d8	99.5	%Recovery	22/11/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	100.6	%Recovery	22/11/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	17/11/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40

Issue 1 Sample 1 of 8

Report Number:COV/1464510/2017Laboratory Number:16581460

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW1
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachloroethane	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Nitrobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Isophorone	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Nitrophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	17/11/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	17/11/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	17/11/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	17/11/2017	Y Cov	GEO40

Issue 1 Sample 1 of 8

Report Number: COV/1464510/2017 Laboratory Number: 16581460

Sample Source:	RPS Consultants
Sample Point Desc	ription: RPS
Sample Description	n: GW1
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
di-n-Butylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Fluorophenol	79.9	%Recovery	17/11/2017	Ν	Cov	GEO40
Phenol-d6	65.8	%Recovery	17/11/2017	Ν	Cov	GEO40
Nitrobenzene-d5	80.9	%Recovery	17/11/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	84.9	%Recovery	17/11/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	74.8	%Recovery	17/11/2017	Ν	Cov	GEO40
Terphenyl-d14	101.0	%Recovery	17/11/2017	Ν	Cov	GEO40

Analyst Comments for 16581460:

No Analyst Comment

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Che = Chester(CH4 9EP), Ctd = Coatbridge(ML5 4FR), Cov = Coventry(CV4 9GU), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Signed: A 1 Horobin

Name: A. Horobin

Date: 28 November 2017

Title: **Organic Operations Manager**

Report Number: COV/1464510/2017 Laboratory Number: 16581461 Issue 1 Sample 2 of 8

Laboratory Number:16581461Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:GW2Sample Matrix:Ground WaterSample Date/Time:14 November 2017Sample Received:14 November 2017Analysis Complete:28 November 2017

Test Description	Result	Units	Analysis Date	Accreditatio	n Method
Sodium, Total as Na	3720	ug/l	17/11/2017	Y Cov	WAS049
Calcium, Total as Ca	79300	ug/l	17/11/2017	Y Cov	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	17/11/2017	Y Cov	WAS060
Boron, Total as B	<0.23	mg/l	17/11/2017	Y Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	17/11/2017	Y Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	17/11/2017	Y Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	17/11/2017	Y Cov	WAS049
Iron, Total as Fe	245	ug/l	17/11/2017	Y Cov	WAS049
Lead , Total as Pb	<6.00	ug/l	17/11/2017	Y Cov	WAS049
Magnesium, Total as Mg	2.8	mg/l	17/11/2017	Y Cov	WAS049
Manganese , Total as Mn	83.0	ug/l	17/11/2017	Y Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	20/11/2017	Y Cov	WAS013
Nickel , Total as Ni	3.50	ug/l	17/11/2017	Y Cov	WAS049
Potassium , Total as K	1.18	mg/l	17/11/2017	Y Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	17/11/2017	Y Cov	WAS060
Zinc , Total as Zn	<18.0	ug/l	17/11/2017	Y Cov	WAS049
Alkalinity as CaCO3	198	mg/l	26/11/2017	Y Cov	WAS025
Chloride as Cl	6.1	mg/l	15/11/2017	N Cov	WAS036
Sulphate as SO4	5.6	mg/l	15/11/2017	N Cov	WAS036
Cyanide, Total as CN	<9	ug/l	17/11/2017	Y Cov	WAS018
2 - Chlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2 - Methylphenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
4-Chlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
Phenol	<5.00	ug/l	27/11/2017	Y Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	21/11/2017	N Cov	GEO46
Aliphatic EPH >C12 - C16	15	ug/l	21/11/2017	N Cov	GEO46
Aliphatic EPH >C16 - C35	70	ug/l	21/11/2017	N Cov	GEO46

Issue 1 Sample 2 of 8

Report Number:COV/1464510/2017Laboratory Number:16581461

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW2
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditatio	n Method
Aliphatic EPH >C35 - C44	13	ug/l	21/11/2017	N Cov	GEO46
Aliphatic EPH >C10 - C44	98	ug/l	21/11/2017	N Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	21/11/2017	N Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	21/11/2017	N Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	21/11/2017	N Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	21/11/2017	N Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	21/11/2017	N Cov	GEO46
Aromatic EPH >C10 - C44	<10	ug/l	21/11/2017	N Cov	GEO46
EPH >C10 - C44	98	ug/l	21/11/2017	N Cov	GEO46
Acenaphthene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Anthracene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Chrysene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Fluoranthene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Fluorene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Naphthalene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Phenanthrene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
Pyrene	<0.01	ug/l	21/11/2017	Y Cov	GEO19
PAH, Total	<0.01	ug/l	21/11/2017	N Cov	GEO19
VOC	Y	ug/l	22/11/2017	N Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	22/11/2017	N Cov	GEO32
Chloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Chloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromomethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32

Issue 1 Sample 2 of 8

Report Number: COV/1464510/2017 Laboratory Number: 16581461

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW2
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description Result Units Analysis Date Accreditation Method <1.0 Cov GEO32 Dichloromethane ug/l 22/11/2017 Y GEO32 1.1-Dichloroethane <1.0 ug/l 22/11/2017 Y Cov Y cis-1,2-Dichloroethene <1.0 ug/l 22/11/2017 Cov GEO32 2,2-Dichloropropane <1.0 ug/l 22/11/2017 Ν Cov GEO32 Chloroform <1.0 ug/l 22/11/2017 Y Cov GEO32 Bromochloromethane <1.0 ug/l 22/11/2017 Y Cov GEO32 1.1.1-Trichloroethane <1.0 ug/l 22/11/2017 Y Cov GEO32 1,1-Dichloropropene <1.0 ug/l 22/11/2017 Υ Cov GEO32 1,2-Dichloroethane <1.0 ug/l 22/11/2017 Υ Cov GEO32 GEO32 Benzene <1.0 22/11/2017 Y Cov ug/l 1,2-Dichloropropane <1.0 ug/l 22/11/2017 Y Cov GEO32 Trichloroethene Y Cov GEO32 <1.0 ug/l 22/11/2017 ug/l Bromodichloromethane <1.0 Υ Cov GEO32 22/11/2017 Dibromomethane <1.0 22/11/2017 Y Cov GEO32 ug/l cis-1,3-Dichloropropene <1.0 Cov GEO32 ug/l 22/11/2017 Y Toluene Y Cov <1.0 ug/l 22/11/2017 GEO32 Y trans-1.3-Dichloropropene <1.0 ug/l 22/11/2017 Cov GEO32 1,1,2-Trichloroethane <1.0 ug/l 22/11/2017 Υ Cov GEO32 Carbon Tetrachloride <1.0 ug/l 22/11/2017 Y Cov GEO32 Vinyl Chloride <0.5 Y Cov ug/l 22/11/2017 GEO32 <1.0 ug/l 22/11/2017 Υ Cov GEO32 1,3-Dichloropropane Tetrachloroethene <1.0 ug/l 22/11/2017 Υ Cov GEO32 Dibromochloromethane Cov GEO32 <1.0 ug/l 22/11/2017 Y 1,2-Dibromoethane <1.0 ug/l 22/11/2017 Υ Cov GEO32 Chlorobenzene <1.0 ug/l 22/11/2017 Υ Cov GEO32 1,1,1,2-Tetrachloroethane <1.0 ug/l 22/11/2017 Υ Cov GEO32 Ethyl Benzene <1.0 ug/l 22/11/2017 Y Cov GEO32 m&p-Xylene <1.0 ug/l 22/11/2017 Y Cov GEO32 o-Xylene <1.0 ug/l 22/11/2017 Υ Cov GEO32 GEO32 Styrene <1.0 ug/l 22/11/2017 Υ Cov GEO32 Bromoform <1.0 ug/l 22/11/2017 Υ Cov ug/l trans-1,2-Dichloroethene <1.0 22/11/2017 Y Cov GEO32 Isopropylbenzene <1.0 ug/l 22/11/2017 Y Cov GEO32

Report Number:COV/1464510/2017Laboratory Number:16581461

Issue 1 Sample 2 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW2
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	analysis Date Accreditation	
1,1,2,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
n-Propylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
n-Butylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	22/11/2017	Y Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Naphthalene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
МТВЕ	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromofluoromethane	100.3	%Recovery	22/11/2017	N Cov	GEO32
Toluene-d8	99.3	%Recovery	22/11/2017	N Cov	GEO32
4-Bromofluorobenzene	96.8	%Recovery	22/11/2017	N Cov	GEO32
SVOC	Y	ug/l	17/11/2017	N Cov	GEO40
Phenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Chlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Methylphenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	17/11/2017	N Cov	GEO40
Dibenzofuran	<1.0	ug/l	17/11/2017	N Cov	GEO40

Issue 1 Sample 2 of 8

Report Number:COV/1464510/2017Laboratory Number:16581461

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW2
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachloroethane	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Nitrobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Isophorone	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Nitrophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	17/11/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	17/11/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	17/11/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	17/11/2017	Y Cov	GEO40

Issue 1 Sample 2 of 8

Report Number: COV/1464510/2017 Laboratory Number: 16581461

Sample Source: **RPS Consultants** Sample Point Description: RPS Sample Description: GW2 **Ground Water** Sample Matrix: Sample Date/Time: 14 November 2017 Sample Received: 14 November 2017 Analysis Complete: 28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
di-n-Butylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Fluorophenol	82.4	%Recovery	17/11/2017	Ν	Cov	GEO40
Phenol-d6	78.7	%Recovery	17/11/2017	Ν	Cov	GEO40
Nitrobenzene-d5	83.2	%Recovery	17/11/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	87.5	%Recovery	17/11/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	73.4	%Recovery	17/11/2017	Ν	Cov	GEO40
Terphenyl-d14	91.6	%Recovery	17/11/2017	Ν	Cov	GEO40

Analyst Comments for 16581461:

This sample has been analysed for Phenols in Water method GEO18 outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Che = Chester(CH4 9EP), Ctd = Coatbridge(ML5 4FR), Cov = Coventry(CV4 9GU), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wake Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is

<1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin Title:

Date: 28 November 2017

Organic Operations Manager

Report Number: COV/1464510/2017 Laboratory Number: 16581462 Issue 1 Sample 3 of 8

Laboratory Number:16581462Sample Source:RPS ConsultantsSample Point Description:RPSSample Description:GW3Sample Matrix:Ground WaterSample Date/Time:14 November 2017Sample Received:14 November 2017Analysis Complete:28 November 2017

Test Description	Result	Units	Analysis Date	sis Date Accreditation		Method
Sodium, Total as Na	10300	ug/l	21/11/2017	Y	Cov	WAS049
Calcium, Total as Ca	200000	ug/l	21/11/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	15	ug/l	22/11/2017	Y	Cov	WAS060
Boron, Total as B	<0.23	mg/l	21/11/2017	Y	Cov	WAS049
Cadmium , Total as Cd	1.50	ug/l	21/11/2017	Y	Cov	WAS049
Chromium , Total as Cr	9.90	ug/l	21/11/2017	Y	Cov	WAS049
Copper , Total as Cu	42.9	ug/l	21/11/2017	Y	Cov	WAS049
Iron, Total as Fe	10800	ug/l	21/11/2017	Y	Cov	WAS049
Lead , Total as Pb	207	ug/l	21/11/2017	Y	Cov	WAS049
Magnesium, Total as Mg	13.3	mg/l	21/11/2017	Y	Cov	WAS049
Manganese , Total as Mn	1280	ug/l	21/11/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	20/11/2017	Y	Cov	WAS013
Nickel , Total as Ni	25.6	ug/l	21/11/2017	Y	Cov	WAS049
Potassium , Total as K	4.94	mg/l	21/11/2017	Y	Cov	WAS049
Selenium, trace Total as Se	1.23	ug/l	22/11/2017	Y	Cov	WAS060
Zinc , Total as Zn	251	ug/l	21/11/2017	Y	Cov	WAS049
Alkalinity as CaCO3	506	mg/l	26/11/2017	Y	Cov	WAS025
Chloride as Cl	33.5	mg/l	15/11/2017	Ν	Cov	WAS036
Sulphate, total as SO4 by I.C.	25.57	mg/l	21/11/2017	Y	Cov	CON27
Cyanide, Total as CN	<9	ug/l	17/11/2017	Y	Cov	WAS018
2 - Chlorophenol	<1.00	ug/l	27/11/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	27/11/2017	Ν	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	27/11/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	27/11/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	27/11/2017	Ν	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	27/11/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	27/11/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	27/11/2017	Ν	Cov	GEO18
Phenol	<5.00	ug/l	27/11/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aliphatic EPH >C12 - C16	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aliphatic EPH >C16 - C35	263	ug/l	21/11/2017	N	Cov	GEO46

COV/1464510/2017

lss Sa

Issue 1 Sample 3 of 8

Laboratory Number: 16581	1462
Sample Source: Sample Point Description:	RPS Consultants RPS
Sample Description:	GW3
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Report Number:

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Aliphatic EPH >C35 - C44	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	263	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	89	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	89	ug/l	21/11/2017	Ν	Cov	GEO46
EPH >C10 - C44	351	ug/l	21/11/2017	Ν	Cov	GEO46
Acenaphthene	0.031	ug/l	21/11/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Fluorene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Naphthalene	<0.03	ug/l	21/11/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
PAH, Total	0.031	ug/l	21/11/2017	Ν	Cov	GEO19
VOC	Y	ug/l	22/11/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	22/11/2017	Ν	Cov	GEO32
Chloromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32

Issue 1 Sample 3 of 8

Report Number:COV/1464510/2017Laboratory Number:16581462

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW3
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Dichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	22/11/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	22/11/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32

Issue 1 Sample 3 of 8

Report Number:COV/1464510/2017Laboratory Number:16581462

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW3
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,1,2,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
p-IsopropyItoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Dibromofluoromethane	99.3	%Recovery	22/11/2017	Ν	Cov	GEO32
Toluene-d8	100.4	%Recovery	22/11/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	94.9	%Recovery	22/11/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	17/11/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40

Issue 1 Sample 3 of 8

Report Number:COV/1464510/2017Laboratory Number:16581462

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW3
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,2-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Naphthalene	<2.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dimethylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Acenaphthylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Acenaphthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Diethylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Nitrophenol	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluorene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Diphenylamine	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pentachlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Phenanthrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40

Issue 1 Sample 3 of 8

Report Number: COV/1464510/2017 Laboratory Number: 16581462

Sample Source:	RPS Consultants
Sample Point Description	n: RPS
Sample Description:	GW3
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units Analysis Date		e Accreditation		Method
di-n-Butylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Fluorophenol	83.4	%Recovery	17/11/2017	Ν	Cov	GEO40
Phenol-d6	78.5	%Recovery	17/11/2017	Ν	Cov	GEO40
Nitrobenzene-d5	87.0	%Recovery	17/11/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	94.2	%Recovery	17/11/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	89.8	%Recovery	17/11/2017	Ν	Cov	GEO40
Terphenyl-d14	108.9	%Recovery	17/11/2017	Ν	Cov	GEO40

Analyst Comments for 16581462:

This sample has been analysed for Phenols in Water method GEO18 outside recommended stability times. It is therefore possible that the results provided may be compromised. The reporting limit for Naphthalene for PAH analysis has been raised due to interference from sample matrix. {/*}Sulphate analysed by ion chromatography due to interference with turbidmetric determination {*/}

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Che = Chester(CH4 9EP), Ctd = Coatbridge(ML5 4FR), Cov = Coventry(CV4 9GU), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WE5 9TG)

For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin

Date: 28 November 2017

Title: **Organic Operations Manager**

Report Number: COV/1464510/2017 Laboratory Number: 16581463 Issue 1 Sample 4 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW4
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Sodium, Total as Na	11400	ug/l	17/11/2017	Y Cov	WAS049
Calcium, Total as Ca	57500	ug/l	17/11/2017	Y Cov	WAS049
Arsenic, Ultra-low Total as As	1.1	ug/l	17/11/2017	Y Cov	WAS060
Boron, Total as B	<0.23	mg/l	17/11/2017	Y Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	17/11/2017	Y Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	17/11/2017	Y Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	17/11/2017	Y Cov	WAS049
Iron, Total as Fe	347	ug/l	17/11/2017	Y Cov	WAS049
Lead , Total as Pb	<6.00	ug/l	17/11/2017	Y Cov	WAS049
Magnesium, Total as Mg	3.2	mg/l	17/11/2017	Y Cov	WAS049
Manganese , Total as Mn	42.8	ug/l	17/11/2017	Y Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	20/11/2017	Y Cov	WAS013
Nickel , Total as Ni	4.70	ug/l	17/11/2017	Y Cov	WAS049
Potassium , Total as K	4.77	mg/l	17/11/2017	Y Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	17/11/2017	Y Cov	WAS060
Zinc , Total as Zn	<18.0	ug/l	17/11/2017	Y Cov	WAS049
Alkalinity as CaCO3	157	mg/l	26/11/2017	Y Cov	WAS025
Chloride as Cl	13.8	mg/l	15/11/2017	N Cov	WAS036
Sulphate as SO4	12.1	mg/l	15/11/2017	N Cov	WAS036
Cyanide, Total as CN	<9	ug/l	17/11/2017	Y Cov	WAS018
2 - Chlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2 - Methylphenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
4-Chlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
Phenol	<5.00	ug/l	27/11/2017	Y Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	24/11/2017	N Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	24/11/2017	N Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	24/11/2017	N Cov	GEO46

lssue **1** Sample **4**

of 8

Report Number:COV/1464510/2017Laboratory Number:16581463

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW4
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Aliphatic EPH >C35 - C44	<10	ug/l	24/11/2017	N	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	<10	ug/l	24/11/2017	Ν	Cov	GEO46
EPH >C10 - C44	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Acenaphthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Fluorene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Naphthalene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
PAH, Total	<0.01	ug/l	21/11/2017	Ν	Cov	GEO19
VOC	Y	ug/l	22/11/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	22/11/2017	Ν	Cov	GEO32
Chloromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32

Issue 1 Sample 4 of 8

Report Number:COV/1464510/2017Laboratory Number:16581463

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW4
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Dichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	22/11/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	22/11/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32

Issue 1 Sample 4

of 8

Report Number:COV/1464510/2017Laboratory Number:16581463

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW4
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,1,2,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Dibromofluoromethane	100.9	%Recovery	22/11/2017	Ν	Cov	GEO32
Toluene-d8	100.0	%Recovery	22/11/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	97.2	%Recovery	22/11/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	17/11/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	17/11/2017	N	Cov	GEO40

Issue 1 Sample 4 of 8

Report Number:COV/1464510/2017Laboratory Number:16581463

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW4
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method
1,2-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Naphthalene	<2.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dimethylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Acenaphthylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Acenaphthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Diethylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Nitrophenol	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluorene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Diphenylamine	<1.0	ug/l	17/11/2017	N	Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pentachlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Phenanthrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40

Issue 1 Sample 4 of 8

Report Number: COV/1464510/2017 Laboratory Number: 16581463

Sample Source: **RPS Consultants** Sample Point Description: RPS Sample Description: GW4 **Ground Water** Sample Matrix: Sample Date/Time: 14 November 2017 Sample Received: 14 November 2017 Analysis Complete: 28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method
di-n-Butylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Fluorophenol	83.7	%Recovery	17/11/2017	Ν	Cov	GEO40
Phenol-d6	72.4	%Recovery	17/11/2017	Ν	Cov	GEO40
Nitrobenzene-d5	85.3	%Recovery	17/11/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	88.4	%Recovery	17/11/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	73.5	%Recovery	17/11/2017	Ν	Cov	GEO40
Terphenyl-d14	89.9	%Recovery	17/11/2017	Ν	Cov	GEO40

Analyst Comments for 16581463:

This sample has been analysed for Phenols in Water method GEO18 outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Che = Chester(CH4 9EP), Ctd = Coatbridge(ML5 4FR), Cov = Coventry(CV4 9GU), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wake Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is

<1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin Title:

Date: 28 November 2017

Organic Operations Manager

Report Number: COV/1464510/2017 Laboratory Number: 16581464 Issue 1 Sample 5 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW5
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accredita	Accreditation	
Sodium, Total as Na	21000	ug/l	17/11/2017	Y Co	v	WAS049
Calcium, Total as Ca	62800	ug/l	17/11/2017	Y Co	vv	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	17/11/2017	Y Co	vv	WAS060
Boron, Total as B	<0.23	mg/l	17/11/2017	Y Co	vv	WAS049
Cadmium , Total as Cd	<0.600	ug/l	17/11/2017	Y Co	vv	WAS049
Chromium , Total as Cr	<2.00	ug/l	17/11/2017	Y Co	vv	WAS049
Copper , Total as Cu	<9.00	ug/l	17/11/2017	Y Co	vv	WAS049
Iron, Total as Fe	521	ug/l	17/11/2017	Y Co	v	WAS049
Lead , Total as Pb	27.9	ug/l	17/11/2017	Y Co	v	WAS049
Magnesium, Total as Mg	38.0	mg/l	17/11/2017	Y Co	v	WAS049
Manganese , Total as Mn	45.4	ug/l	17/11/2017	Y Co	v	WAS049
Mercury, Total as Hg	<0.10	ug/l	20/11/2017	Y Co	vv	WAS013
Nickel , Total as Ni	4.20	ug/l	17/11/2017	Y Co	v	WAS049
Potassium , Total as K	2.09	mg/l	17/11/2017	Y Co	vv	WAS049
Selenium, trace Total as Se	<0.80	ug/l	17/11/2017	Y Co	v	WAS060
Zinc , Total as Zn	31.1	ug/l	17/11/2017	Y Co	vv	WAS049
Alkalinity as CaCO3	324	mg/l	26/11/2017	Y Co	v	WAS025
Chloride as Cl	12.4	mg/l	15/11/2017	N Co	vv	WAS036
Sulphate as SO4	13.0	mg/l	15/11/2017	N Co	v	WAS036
Cyanide, Total as CN	<9	ug/l	17/11/2017	Y Co	vv	WAS018
2 - Chlorophenol	<1.00	ug/l	27/11/2017	Y Co	v	GEO18
2 - Methylphenol	<1.00	ug/l	27/11/2017	N Co	vv	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	27/11/2017	Y Co	vv	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	27/11/2017	Y Co	vv	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	27/11/2017	N Co	vv	GEO18
3,5-Dimethylphenol	<1.00	ug/l	27/11/2017	Y Co	vv	GEO18
4-Chlorophenol	<1.00	ug/l	27/11/2017	Y Co	vv	GEO18
3+4-Methylphenol	<1.00	ug/l	27/11/2017	N Co	vv	GEO18
Phenol	<5.00	ug/l	27/11/2017	Y Co	vv	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	21/11/2017	N Co	vv I	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	21/11/2017	N Co	vv	GEO46
Aliphatic EPH >C16 - C35	49	ug/l	21/11/2017	N Co	ov I	GEO46

Issue 1 Sample 5 of 8

Report Number:COV/1464510/2017Laboratory Number:16581464

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW5
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017
Sample Description: Sample Matrix: Sample Date/Time: Sample Received: Analysis Complete:	GW5 Ground Water 14 November 2017 14 November 2017 28 November 2017

Test Description	Result	Units	Analysis Date	Accredita	ation	Method
Aliphatic EPH >C35 - C44	<10	ug/l	21/11/2017	N Co	vc	GEO46
Aliphatic EPH >C10 - C44	49	ug/l	21/11/2017	N Co	ov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	21/11/2017	N C	ov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	21/11/2017	N Co	ov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	21/11/2017	N C	ov	GEO46
Aromatic EPH >C21 - C35	11	ug/l	21/11/2017	N Co	ov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	21/11/2017	N Co	ov	GEO46
Aromatic EPH >C10 - C44	11	ug/l	21/11/2017	N C	ov	GEO46
EPH >C10 - C44	60	ug/l	21/11/2017	N C	ov	GEO46
Acenaphthene	<0.01	ug/l	21/11/2017	Y C	οv	GEO19
Acenaphthylene	<0.01	ug/l	21/11/2017	Y Co	ov	GEO19
Anthracene	<0.01	ug/l	21/11/2017	Y C	οv	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/11/2017	Y Co	ov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/11/2017	Y C	ov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/11/2017	Y Co	ov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/11/2017	Y Co	vc	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/11/2017	Y Co	vc	GEO19
Chrysene	<0.01	ug/l	21/11/2017	Y Co	vc	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/11/2017	Y Co	vc	GEO19
Fluoranthene	<0.01	ug/l	21/11/2017	Y Co	vc	GEO19
Fluorene	<0.01	ug/l	21/11/2017	Y Co	vc	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/11/2017	Y C	vc	GEO19
Naphthalene	<0.01	ug/l	21/11/2017	Y Co	vc	GEO19
Phenanthrene	<0.01	ug/l	21/11/2017	Y C	vc	GEO19
Pyrene	<0.01	ug/l	21/11/2017	Y Co	vc	GEO19
PAH, Total	<0.01	ug/l	21/11/2017	N Co	vc	GEO19
VOC	Y	ug/l	22/11/2017	N Co	vc	GEO32
Dichlorodifluoromethane	<1.0	ug/l	22/11/2017	N Co	vc	GEO32
Chloromethane	<1.0	ug/l	22/11/2017	Y Co	vc	GEO32
Chloroethane	<1.0	ug/l	22/11/2017	Y C	vc	GEO32
Bromomethane	<1.0	ug/l	22/11/2017	Y Co	vc	GEO32
Trichlorofluoromethane	<1.0	ug/l	22/11/2017	Y C	vc	GEO32
1,1-Dichloroethene	<1.0	ug/l	22/11/2017	Y C	vc	GEO32

Issue 1 Sample 5 of 8

Report Number:COV/1464510/2017Laboratory Number:16581464

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW5
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Dichloromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	22/11/2017	Ν	Cov	GEO32
Chloroform	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromochloromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Benzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Trichloroethene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromodichloromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Dibromomethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Toluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Vinyl Chloride	<0.5	ug/l	22/11/2017	Y	Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Tetrachloroethene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Dibromochloromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Chlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Ethyl Benzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
m&p-Xylene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
o-Xylene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Styrene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromoform	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Isopropylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32

Issue 1 Sample 5 of 8

Report Number:COV/1464510/2017Laboratory Number:16581464

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW5
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,1,2,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Dibromofluoromethane	99.8	%Recovery	22/11/2017	Ν	Cov	GEO32
Toluene-d8	99.4	%Recovery	22/11/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	95.6	%Recovery	22/11/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	17/11/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40

Issue 1 Sample 5 of 8

Report Number:COV/1464510/2017Laboratory Number:16581464

Sample Source:	RPS Consultants
Sample Description:	GW5
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditatio	n Method
1,2-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachloroethane	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Nitrobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Isophorone	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Nitrophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	17/11/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	17/11/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	17/11/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	17/11/2017	Y Cov	GEO40

Issue 1 Sample 5 of 8

Report Number: COV/1464510/2017 Laboratory Number: 16581464

Sample Source: **RPS Consultants** Sample Point Description: RPS Sample Description: GW5 **Ground Water** Sample Matrix: Sample Date/Time: 14 November 2017 Sample Received: 14 November 2017 Analysis Complete: 28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
di-n-Butylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Fluorophenol	84.2	%Recovery	17/11/2017	Ν	Cov	GEO40
Phenol-d6	78.6	%Recovery	17/11/2017	Ν	Cov	GEO40
Nitrobenzene-d5	91.9	%Recovery	17/11/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	96.9	%Recovery	17/11/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	77.2	%Recovery	17/11/2017	Ν	Cov	GEO40
Terphenyl-d14	105.5	%Recovery	17/11/2017	Ν	Cov	GEO40

Analyst Comments for 16581464:

This sample has been analysed for Phenols in Water method GEO18 outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Che = Chester(CH4 9EP), Ctd = Coatbridge(ML5 4FR), Cov = Coventry(CV4 9GU), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wake Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is

<1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin Title:

Date: 28 November 2017

Organic Operations Manager

Report Number: COV/1464510/2017 Laboratory Number: 16581465 Issue 1 Sample 6 of 8

Laboratory Number: 16581465					
Sample Source:	RPS Consultants				
Sample Point Description:	RPS				
Sample Description:	GW6				
Sample Matrix:	Ground Water				
Sample Date/Time:	14 November 2017				
Sample Received:	14 November 2017				
Analysis Complete:	28 November 2017				

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Sodium, Total as Na	19300	ug/l	17/11/2017	Y	Cov	WAS049
Calcium, Total as Ca	58200	ug/l	17/11/2017	Y	Cov	WAS049
Arsenic, Ultra-low Total as As	<1.0	ug/l	17/11/2017	Y	Cov	WAS060
Boron, Total as B	<0.23	mg/l	17/11/2017	Y	Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	17/11/2017	Y	Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	17/11/2017	Y	Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	17/11/2017	Y	Cov	WAS049
Iron, Total as Fe	<230	ug/l	17/11/2017	Y	Cov	WAS049
Lead , Total as Pb	<6.00	ug/l	17/11/2017	Y	Cov	WAS049
Magnesium, Total as Mg	34.2	mg/l	17/11/2017	Y	Cov	WAS049
Manganese , Total as Mn	13.5	ug/l	17/11/2017	Y	Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	20/11/2017	Y	Cov	WAS013
Nickel , Total as Ni	<3.00	ug/l	17/11/2017	Y	Cov	WAS049
Potassium , Total as K	1.60	mg/l	17/11/2017	Y	Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	17/11/2017	Y	Cov	WAS060
Zinc , Total as Zn	<18.0	ug/l	17/11/2017	Y	Cov	WAS049
Alkalinity as CaCO3	294	mg/l	26/11/2017	Y	Cov	WAS025
Chloride as Cl	13.4	mg/l	15/11/2017	N	Cov	WAS036
Sulphate as SO4	17.8	mg/l	15/11/2017	N	Cov	WAS036
Cyanide, Total as CN	<9	ug/l	17/11/2017	Y	Cov	WAS018
2 - Chlorophenol	<1.00	ug/l	27/11/2017	Y	Cov	GEO18
2 - Methylphenol	<1.00	ug/l	27/11/2017	N	Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	27/11/2017	Y	Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	27/11/2017	Y	Cov	GEO18
2,4,6 - Trichlorophenol	1.12	ug/l	27/11/2017	N	Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	27/11/2017	Y	Cov	GEO18
4-Chlorophenol	<1.00	ug/l	27/11/2017	Y	Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	27/11/2017	N	Cov	GEO18
Phenol	<5.00	ug/l	27/11/2017	Y	Cov	GEO18
Aliphatic EPH >C10 - C12	<10	ug/l	24/11/2017	N	Cov	GEO46
Aliphatic EPH >C12 - C16	<10	ug/l	24/11/2017	N	Cov	GEO46
Aliphatic EPH >C16 - C35	<10	ug/l	24/11/2017	N	Cov	GEO46

Issue 1 Sample 6 of 8

Report Number:COV/1464510/2017Laboratory Number:16581465

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW6
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method
Aliphatic EPH >C35 - C44	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	<10	ug/l	24/11/2017	Ν	Cov	GEO46
EPH >C10 - C44	<10	ug/l	24/11/2017	Ν	Cov	GEO46
Acenaphthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Fluorene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Naphthalene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
PAH, Total	<0.01	ug/l	21/11/2017	Ν	Cov	GEO19
VOC	Y	ug/l	22/11/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	22/11/2017	Ν	Cov	GEO32
Chloromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Chloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32

Issue 1 Sample 6 of 8

Report Number:COV/1464510/2017Laboratory Number:16581465

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW6
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Dichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	22/11/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	22/11/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32

Issue 1 Sample 6 of 8

Report Number:COV/1464510/2017Laboratory Number:16581465

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW6
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,1,2,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
МТВЕ	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Dibromofluoromethane	98.4	%Recovery	22/11/2017	Ν	Cov	GEO32
Toluene-d8	99.7	%Recovery	22/11/2017	N	Cov	GEO32
4-Bromofluorobenzene	96.5	%Recovery	22/11/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	17/11/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40

Issue 1 Sample 6 of 8

Report Number:COV/1464510/2017Laboratory Number:16581465

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW6
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method
1,2-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Naphthalene	<2.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dimethylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Acenaphthylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Acenaphthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Diethylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Nitrophenol	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluorene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Diphenylamine	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pentachlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Phenanthrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40

Issue 1 Sample 6 of 8

Report Number: COV/1464510/2017 Laboratory Number: 16581465

Sample Source: **RPS Consultants** Sample Point Description: RPS Sample Description: GW6 **Ground Water** Sample Matrix: Sample Date/Time: 14 November 2017 Sample Received: 14 November 2017 Analysis Complete: 28 November 2017

Test Description	Result	Units	Analysis Date	Analysis Date Accreditation		Method
di-n-Butylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Fluorophenol	78.8	%Recovery	17/11/2017	Ν	Cov	GEO40
Phenol-d6	65.7	%Recovery	17/11/2017	Ν	Cov	GEO40
Nitrobenzene-d5	89.9	%Recovery	17/11/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	97.7	%Recovery	17/11/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	75.2	%Recovery	17/11/2017	Ν	Cov	GEO40
Terphenyl-d14	109.1	%Recovery	17/11/2017	Ν	Cov	GEO40

Analyst Comments for 16581465:

This sample has been analysed for Phenols in Water method GEO18 outside recommended stability times. It is therefore possible that the results provided may be compromised.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Che = Chester(CH4 9EP), Ctd = Coatbridge(ML5 4FR), Cov = Coventry(CV4 9GU), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wake Wakefield(WF5 9TG). For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is

<1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin Title:

Date: 28 November 2017

Organic Operations Manager

Report Number: COV/1464510/2017 Laboratory Number: 16581466 Issue 1 Sample 7 of 8

Laboratory Number: 16581466						
Sample Source:	RPS Consultants					
Sample Point Description:	RPS					
Sample Description:	GW7					
Sample Matrix:	Ground Water					
Sample Date/Time:	14 November 2017					
Sample Received:	14 November 2017					
Analysis Complete:	28 November 2017					

Test Description	Result	Units	Analysis Date	Accreditation	Method
Sodium, Total as Na	84100	ug/l	21/11/2017	Y Cov	WAS049
Calcium, Total as Ca	112000	ug/l	21/11/2017	Y Cov	WAS049
Arsenic, Ultra-low Total as As	3.6	ug/l	22/11/2017	Y Cov	WAS060
Boron, Total as B	0.28	mg/l	21/11/2017	Y Cov	WAS049
Cadmium , Total as Cd	<0.600	ug/l	21/11/2017	Y Cov	WAS049
Chromium , Total as Cr	<2.00	ug/l	21/11/2017	Y Cov	WAS049
Copper , Total as Cu	<9.00	ug/l	21/11/2017	Y Cov	WAS049
Iron, Total as Fe	3100	ug/l	21/11/2017	Y Cov	WAS049
Lead , Total as Pb	13.3	ug/l	21/11/2017	Y Cov	WAS049
Magnesium, Total as Mg	20.8	mg/l	21/11/2017	Y Cov	WAS049
Manganese , Total as Mn	555	ug/l	21/11/2017	Y Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	20/11/2017	Y Cov	WAS013
Nickel , Total as Ni	36.8	ug/l	21/11/2017	Y Cov	WAS049
Potassium , Total as K	3.29	mg/l	21/11/2017	Y Cov	WAS049
Selenium, trace Total as Se	<0.80	ug/l	22/11/2017	Y Cov	WAS060
Zinc , Total as Zn	30.7	ug/l	21/11/2017	Y Cov	WAS049
Alkalinity as CaCO3	356	mg/l	26/11/2017	Y Cov	WAS025
Chloride as Cl	141	mg/l	15/11/2017	N Cov	WAS036
Sulphate as SO4	8.8	mg/l	15/11/2017	N Cov	WAS036
Cyanide, Total as CN	<9	ug/l	17/11/2017	Y Cov	WAS018
2 - Chlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2 - Methylphenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
4-Chlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
Phenol	<5.00	ug/l	27/11/2017	Y Cov	GEO18
Aliphatic EPH >C10 - C12	<40	ug/l	24/11/2017	N Cov	GEO46
Aliphatic EPH >C12 - C16	<40	ug/l	24/11/2017	N Cov	GEO46
Aliphatic EPH >C16 - C35	<40	ug/l	24/11/2017	N Cov	GEO46

Issue 1 Sample 7 of 8

Report Number:COV/1464510/2017Laboratory Number:16581466

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW7
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
Aliphatic EPH >C35 - C44	<40	ug/l	24/11/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	<40	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<40	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<40	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<40	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<40	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<40	ug/l	24/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	<40	ug/l	24/11/2017	Ν	Cov	GEO46
EPH >C10 - C44	<40	ug/l	24/11/2017	Ν	Cov	GEO46
Acenaphthene	0.020	ug/l	21/11/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) anthracene	0.021	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	0.041	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) pyrene	0.036	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	0.020	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Chrysene	<0.03	ug/l	21/11/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Fluoranthene	0.011	ug/l	21/11/2017	Y	Cov	GEO19
Fluorene	0.016	ug/l	21/11/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Naphthalene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Pyrene	0.078	ug/l	21/11/2017	Y	Cov	GEO19
PAH, Total	0.243	ug/l	21/11/2017	Ν	Cov	GEO19
VOC	Y	ug/l	22/11/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	22/11/2017	Ν	Cov	GEO32
Chloromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Chloroethane	1.1	ug/l	22/11/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32

Issue 1 Sample 7 of 8

Report Number:COV/1464510/2017Laboratory Number:16581466

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW7
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Dichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloroethane	2.3	ug/l	22/11/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	22/11/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	22/11/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32

Issue 1 Sample 7 of 8

Report Number:COV/1464510/2017Laboratory Number:16581466

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW7
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,1,2,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
МТВЕ	8.7	ug/l	22/11/2017	Y	Cov	GEO32
Dibromofluoromethane	99.3	%Recovery	22/11/2017	Ν	Cov	GEO32
Toluene-d8	101.1	%Recovery	22/11/2017	Ν	Cov	GEO32
4-Bromofluorobenzene	97.1	%Recovery	22/11/2017	Ν	Cov	GEO32
SVOC	Y	ug/l	17/11/2017	Ν	Cov	GEO40
Phenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40
Dibenzofuran	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40

Issue 1 Sample 7 of 8

Report Number:COV/1464510/2017Laboratory Number:16581466

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW7
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
1,2-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachloroethane	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Nitrobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Isophorone	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Nitrophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Naphthalene	<2.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Dimethylphthalate	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Acenaphthylene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Acenaphthene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Diethylphthalate	<1.0	ug/l	17/11/2017	Y Cov	GEO40
4-Nitrophenol	<5.0	ug/l	17/11/2017	Y Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Fluorene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Diphenylamine	<1.0	ug/l	17/11/2017	N Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Pentachlorophenol	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Phenanthrene	<1.0	ug/l	17/11/2017	Y Cov	GEO40
Anthracene	<1.0	ug/l	17/11/2017	Y Cov	GEO40

Issue 1 Sample 7 of 8

Report Number: COV/1464510/2017 Laboratory Number: 16581466

ļ	Sample Source:	RPS Consultants
Ş	Sample Point Description:	RPS
Ş	Sample Description:	GW7
Ş	Sample Matrix:	Ground Water
Ş	Sample Date/Time:	14 November 2017
Ş	Sample Received:	14 November 2017
/	Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
di-n-Butylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Fluorophenol	84.0	%Recovery	17/11/2017	Ν	Cov	GEO40
Phenol-d6	83.5	%Recovery	17/11/2017	Ν	Cov	GEO40
Nitrobenzene-d5	84.9	%Recovery	17/11/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	90.3	%Recovery	17/11/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	91.5	%Recovery	17/11/2017	Ν	Cov	GEO40
Terphenyl-d14	101.4	%Recovery	17/11/2017	Ν	Cov	GEO40

Analyst Comments for 16581466:

This sample has been analysed for Phenols in Water method GEO18 outside recommended stability times. It is therefore possible that the results provided may be compromised. Raised reporting limits for GEO46 EPH Waters due to the nature of the sample matrix.

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Che = Chester(CH4 9EP), Ctd = Coatbridge(ML5 4FR), Cov = Coventry(CV4 9GU), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WF5 9TG).

For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin Date: 28 November 2017

Title: **Organic Operations Manager**

Report Number: COV/1464510/2017 Laboratory Number: 16581467 Issue 1 Sample 8 of 8

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW8
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Sodium, Total as Na	124000	ug/l	24/11/2017	Y Cov	WAS049
Calcium, Total as Ca	430000	ug/l	24/11/2017	Y Cov	WAS049
Arsenic, Ultra-low Total as As	11	ug/l	22/11/2017	Y Cov	WAS060
Boron, Total as B	<2.30	mg/l	24/11/2017	Y Cov	WAS049
Cadmium , Total as Cd	<6.00	ug/l	24/11/2017	Y Cov	WAS049
Chromium , Total as Cr	<20.0	ug/l	24/11/2017	Y Cov	WAS049
Copper , Total as Cu	108	ug/l	24/11/2017	Y Cov	WAS049
Iron, Total as Fe	16000	ug/l	24/11/2017	Y Cov	WAS049
Lead , Total as Pb	<60.0	ug/l	24/11/2017	Y Cov	WAS049
Magnesium, Total as Mg	29.7	mg/l	24/11/2017	Y Cov	WAS049
Manganese , Total as Mn	4960	ug/l	24/11/2017	Y Cov	WAS049
Mercury, Total as Hg	<0.10	ug/l	20/11/2017	Y Cov	WAS013
Nickel , Total as Ni	176	ug/l	24/11/2017	Y Cov	WAS049
Potassium , Total as K	4.96	mg/l	24/11/2017	Y Cov	WAS049
Selenium, trace Total as Se	5.78	ug/l	23/11/2017	Y Cov	WAS060
Zinc , Total as Zn	704	ug/l	24/11/2017	Y Cov	WAS049
Alkalinity as CaCO3	1020	mg/l	26/11/2017	Y Cov	WAS025
Chloride as Cl	269	mg/l	15/11/2017	N Cov	WAS036
Sulphate as SO4	<4.4	mg/l	15/11/2017	N Cov	WAS036
Cyanide, Total as CN	<9	ug/l	17/11/2017	Y Cov	WAS018
2 - Chlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2 - Methylphenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
2,4 - Dichlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2,4 - Dimethylphenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
2,4,6 - Trichlorophenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
3,5-Dimethylphenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
4-Chlorophenol	<1.00	ug/l	27/11/2017	Y Cov	GEO18
3+4-Methylphenol	<1.00	ug/l	27/11/2017	N Cov	GEO18
Phenol	<5.00	ug/l	27/11/2017	Y Cov	GEO18
Aliphatic EPH >C10 - C12	<40	ug/l	21/11/2017	N Cov	GEO46
Aliphatic EPH >C12 - C16	<40	ug/l	21/11/2017	N Cov	GEO46
Aliphatic EPH >C16 - C35	<40	ug/l	21/11/2017	N Cov	GEO46

Issue 1 Sample 8 of 8

Report Number:COV/1464510/2017Laboratory Number:16581467

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW8
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation		Method
Aliphatic EPH >C35 - C44	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aliphatic EPH >C10 - C44	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C12	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C12 - C16	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C16 - C21	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C21 - C35	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C35 - C44	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Aromatic EPH >C10 - C44	<40	ug/l	21/11/2017	Ν	Cov	GEO46
EPH >C10 - C44	<40	ug/l	21/11/2017	Ν	Cov	GEO46
Acenaphthene	0.012	ug/l	21/11/2017	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Chrysene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Fluorene	0.028	ug/l	21/11/2017	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Naphthalene	0.107	ug/l	21/11/2017	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
Pyrene	<0.01	ug/l	21/11/2017	Y	Cov	GEO19
PAH, Total	0.147	ug/l	21/11/2017	Ν	Cov	GEO19
VOC	Y	ug/l	22/11/2017	Ν	Cov	GEO32
Dichlorodifluoromethane	<1.0	ug/l	22/11/2017	Ν	Cov	GEO32
Chloromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Chloroethane	8.9	ug/l	22/11/2017	Y	Cov	GEO32
Bromomethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Trichlorofluoromethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,1-Dichloroethene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32

Issue 1 Sample 8 of 8

Report Number:COV/1464510/2017Laboratory Number:16581467

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW8
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accreditation	Method
Dichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloroethane	3.1	ug/l	22/11/2017	Y Cov	GEO32
cis-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
2,2-Dichloropropane	<1.0	ug/l	22/11/2017	N Cov	GEO32
Chloroform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Trichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromodichloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromomethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
cis-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Toluene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,3-Dichloropropene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,2-Trichloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Carbon Tetrachloride	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Vinyl Chloride	<0.5	ug/l	22/11/2017	Y Cov	GEO32
1,3-Dichloropropane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Tetrachloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Dibromochloromethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,2-Dibromoethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Chlorobenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
1,1,1,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Ethyl Benzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
m&p-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
o-Xylene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Styrene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Bromoform	<1.0	ug/l	22/11/2017	Y Cov	GEO32
trans-1,2-Dichloroethene	<1.0	ug/l	22/11/2017	Y Cov	GEO32
Isopropylbenzene	<1.0	ug/l	22/11/2017	Y Cov	GEO32

Issue 1 Sample 8 of 8

Report Number:COV/1464510/2017Laboratory Number:16581467

Sample Source:	RPS Consultants
Sample Point Description	n: RPS
Sample Description:	GW8
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accredi	itation	Method
1,1,2,2-Tetrachloroethane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichloropropane	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Propylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Bromobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
2-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3,5-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
4-Chlorotoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
tert-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trimethylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
sec-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
p-Isopropyltoluene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,3-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,4-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
n-Butylbenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2-Dibromo-3-chloropropane	<2.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,4-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Hexachlorobutadiene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
Naphthalene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
1,2,3-Trichlorobenzene	<1.0	ug/l	22/11/2017	Y	Cov	GEO32
МТВЕ	1.8	ug/l	22/11/2017	Y	Cov	GEO32
Dibromofluoromethane	99.0	%Recovery	22/11/2017	N	Cov	GEO32
Toluene-d8	100.6	%Recovery	22/11/2017	N /	Cov	GEO32
4-Bromofluorobenzene	98.6	%Recovery	22/11/2017	N /	Cov	GEO32
SVOC	Y	ug/l	17/11/2017	N	Cov	GEO40
Phenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroethyl)ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Chlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,3-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,4-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Methylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
3&4-Methylphenol	<1.0	ug/l	17/11/2017	N	Cov	GEO40
Dibenzofuran	<1.0	ug/l	17/11/2017	N	Cov	GEO40

Issue 1 Sample 8 of 8

Report Number:COV/1464510/2017Laboratory Number:16581467

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW8
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
1,2-Dichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroisopropyl)ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
n-Nitrosodi-n-propylamine	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachloroethane	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Nitrobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Isophorone	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dimethylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Nitrophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-chloroethoxy)methane	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
1,2,4-Trichlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Naphthalene	<2.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachlorobutadiene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Chloro-3-methylphenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Methylnaphthalene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4,6-Trichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4,5-Trichlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Chloronaphthalene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dimethylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,6-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Acenaphthylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Acenaphthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2,4-Dinitrotoluene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Diethylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Nitrophenol	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
4-Chlorophenyl phenyl ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluorene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Diphenylamine	<1.0	ug/l	17/11/2017	Ν	Cov	GEO40
4-Bromophenyl Phenyl Ether	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Hexachlorobenzene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pentachlorophenol	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Phenanthrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40

Issue 1 Sample 8 of 8

Report Number: COV/1464510/2017 Laboratory Number: 16581467

Sample Source:	RPS Consultants
Sample Point Description:	RPS
Sample Description:	GW8
Sample Matrix:	Ground Water
Sample Date/Time:	14 November 2017
Sample Received:	14 November 2017
Analysis Complete:	28 November 2017

Test Description	Result	Units	Analysis Date	Accre	ditation	Method
di-n-Butylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzyl Butyl Phthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Chrysene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Bis(2-ethylhexyl)phthalate	<5.0	ug/l	17/11/2017	Y	Cov	GEO40
Di-n-octylphthalate	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(b)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(k)fluoranthene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(a)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Indeno(1,2,3-c,d)pyrene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Dibenz(a,h)anthracene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
Benzo(g,h,i)perylene	<1.0	ug/l	17/11/2017	Y	Cov	GEO40
2-Fluorophenol	82.4	%Recovery	17/11/2017	Ν	Cov	GEO40
Phenol-d6	79.5	%Recovery	17/11/2017	Ν	Cov	GEO40
Nitrobenzene-d5	81.6	%Recovery	17/11/2017	Ν	Cov	GEO40
2-Fluorobiphenyl	82.6	%Recovery	17/11/2017	Ν	Cov	GEO40
2,4,6-Tribromophenol	96.2	%Recovery	17/11/2017	Ν	Cov	GEO40
Terphenyl-d14	93.6	%Recovery	17/11/2017	Ν	Cov	GEO40

Analyst Comments for 16581467:

This sample has been analysed for Phenols in Water method GEO18, Boron, Total as B, Sodium, Total as Na outside recommended stability times. It is therefore possible that the results provided may be compromised. Raised reporting limits for GEO46 EPH Waters due to the nature of the sample matrix. {/*} Reporting limit raised for metals due to interference with the sample matrix. {*/}

This issue replaces all previous issues Accreditation Codes: Y = UKAS / ISO17025 Accredited, N = Not UKAS / ISO17025 Accredited, M = MCERTS. Analysed at: Che = Chester(CH4 9EP), Ctd = Coatbridge(ML5 4FR), Cov = Coventry(CV4 9GU), Ott = Otterbourne(SO21 2SW), S = Subcontracted, Trb = Subcontracted to Trowbridge(BA14 0XD), Wak = Wakefield(WE5 9TG)

For Microbiological determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed).

Name: A. Horobin

Date: 28 November 2017

Title: **Organic Operations Manager**

Appendix 6

•/

4.0 Summary of Results

Bund Identity	Pass / Fail	Comments
Bund 1 Section A	Pass	This storage area is too large to complete a hydrostatic test. The building was split into 3 sections to allow for movement of material in order to complete visual assessments thoroughly. The bund was deemed to pass the visual inspection.
Bund 2		This bund passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements
Bund 5 Section 1		This bund passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements
Bund 6		This bund passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements
Bund 8		This bund passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements

Project	Manager	La Lang	Date of Report	07-07-2015	
CI	ient	Enva Ireland Limited	Contact	Kevin Coll	

Bund Number 5 Section 1

Company	ENVA Ireland	Waste Reference No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
Bund Reference No	Bund 5 (Section 1)	Bund Type: Local/ Remote / Combined	Local
Bund Location	Storage Area	Bund Risk Classification: 0, 1, 2, 3	2
Bund Dimensions	4210 x 8280 x 220mm	Primary Vessel Material	Steel Tanks
Bund Materials of Construction	Reinforced Concrete	Primary Vessel Storage Volume	c. 13m ³ full
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel	14.3 m ³
Bund Retention Volume (local/ Remote)	76 m³ (Local)	Primary Vessel 25% Total Volume	
Practical to Conduct Hydrostatic Test	Yes	Date of Visual Inspection	11-06-2015
Visual Description:			

Visual inspection was carried out on the walls, joints and floor both internally and externally. The walls and floors were deemed acceptable and therefore the bund passed through to the hydrostatic test. Water was filled to a height of 125mm from the floor of the bund – this bund could not be filled much higher due to the risk of damage to in line equipment and damage to the storage vessel controls. A visual inspection was completed on the remainder of the bund walls which has not been submerged for the test. There were no cracks, fissures or weak spots identified above the water line with the exception of a pipe connected through the wall. The seals around the pipe are finished and deemed appropriate to retain water. This pipe is above the level of water in the tank and therefore did not form part of the hydrostatic test but has been deemed to pass the visual inspection.

Date Bunds Filled	11-06-2015	Date of Hydrostatic Test	12 to 15-06-15
Start Time	10:00	End Time	11:00
Start Level of Water	125 mm	End of Test Level of Water	124 mm
Status & Recommendations:			

Bund Passes Hydrostatic Test to the level of water filled.

 Hydrostatic retest required in 2018 unless bund is damaged or repaired in the meantime.

Notes:

Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46, R50, R51, R52, R53, R54, R55, R56, R58, R61, R63

Signed: 10.200	Date: 07-07-2015	Title: Project Manager
Signed: Noel Harrington	Date: 07-07-2015	Title: Chartered Engineer

Bund Number 6

é é

Company	ENVA Ireland	Waste Refer	ence No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Categ	jory	Hazardous Waste Facility
Bund Reference No	Bund 6	Bund Type: Local/ Remo	ote / Combined	Local
Bund Location	Effluent Discharge Tank	Bund Risk (0, 1, 2, 3	Classification:	1
Bund Dimensions	1200 x 410 x 144mm	Primary Ves	sel Material	Steel Tanks
Bund Materials of Construction	Reinforced Concrete	Primary Ves Volume	sel Storage	c. 130 m³ full
Bund Lining materials	N.a	Primary Ves Largest Ves	sel 110% sel	55 m³
Bund Retention Volume (local/ Remote)	71 m ³ (Local)	Primary Ves Volume	sel 25% Total	32.5 m³
Practical to Conduct Hydrostatic Test	Yes	Date of Visu	al Inspection	11-06-2015
Visual Description:				
Visual inspection was carried out of were deemed acceptable and ther 92 mm from the floor of the bund –	n the walls, joints and floor bo efore the bund passed through this bund could not be filled hi	th internally and to the hydrosta gher due to the	externally. The wa atic test. Water was risk of damage to e	lls, joints and floors filled to a height of lectrical equipment.
A visual inspection was complete There were no cracks, fissures or through the wall. The seals around level of water in the tank and there inspection.	d on the remainder of the bur weak spots identified above the pipe are finished and deer fore did not form part of the hy	nd walls which the water line w med appropriate ydrostatic test bu	has not been subm with the exception o to retain water. Thi ut has been deeme	nerged for the test. f a pipe connected is pipe is above the d to pass the visual
The bund is fitted with a screw cor	to allow for emptying purpose	e – this connecti	on was included in t	the hydrostatic test.
Date Bunds Filled	11-06-2015	Date of Hydros	tatic Test	12 to 15-06-15
Start Time	10:35	End Time		11:05
Start Level of Water	92 mm	End of Test Lev	vel of Water	91 mm
Status & Recommendations:				
	 Bund Passes Hyd Hydrostatic retest in the meantime. 	lrostatic Test to required in 201	the level of water fil 8 unless bund is da	led. maged or repaired
Notes:				
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46	, R50, R51, R52, R53, R54, R	55, R56, R58, R	61, R63	
Signed: 10.00	Date: 07-07-2	2015	Title: Proj	ect Manager
Signed: Noel Harrington	Date: 07-07-2	2015	Title: Charte	ered Engineer

Bund Number 1 Section 1 of 3

Note: This store was sectioned into 3 parts for this visual inspection. The reason for only completing 1/3rd of the building was to allow for stored materials to be moved into the other sections leaving one completely free for visual observation. There were no materials in this section for the visual observation therefore allowing a complete and comprehensive assessment of the section. This store is far too large of floor area to be deemed suitable for a hydrostatic test.

Company	ENVA Ireland	Waste Refer	ence No	W0184-01	
Site	Clonminam Industrial Estate Portlaoise	Waste Categ	jory	Hazardous Waste Facility	
Bund Reference No	Bund 1 Section 1	Bund Type: Local/ Remo	ote / Combined	Local	
Bund Location	Export Storage	Bund Risk C	lassification:	2	
Bund Dimensions	c. 322 m ² for Section 1	Primary Ves	sel Material	IBC's, Plastic and Metal Barrells	
Bund Materials of Construction	Reinforced Concrete	Primary Ves Volume	sel Storage	Variable – max 100 m ³	
Bund Lining materials	N.a	Primary Ves Largest Ves	sel 110% sel	1.1 m³	
Bund Retention Volume (local/ Remote)	Total c. 57 m ³ (Local)	Primary Ves Volume	sel 25% Total	25 m³	
Practical to Conduct Hydrostatic Test	No	Date of Visu	al Inspection	11-06-2015	
Visual Description:					
Visual inspection was carried out of with this section would be 22mm. volume of this export store was cal	on the walls and floor both inte Above this level liquid would culated at c. 40 m ³ .	rnally and exte overflow the I	ernally. The maximu bund lip. Therefore	um retention height the total retention	
A visual inspection was completed fissures or weak spots identified. constitute a failure of visual inspect	on section 1 of the store floor There was evidence of weal ion as they were very minor.	, joints and w surface con	alls. There were no crete in places ho	significant cracks, wever this did not	
Date Bunds Filled	N/a D	ate of Hydros	tatic Test	N/a	
Start Time	N/a E	nd Time		N/a	
Start Level of Water	N/a E	nd of Test Lev	vel of Water	N/a	
Status & Recommendations:					
	 Bund Section 1 pas This should be insp caused as per the I 	sed the visual ected every th icence require	inspection. ree years or in the e ment.	event of damage	
Notes:					
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46	, R50, R51, R52, R53, R54, R55	5, R56, R58, R	61, R63		
Signed: 10.00mg	Date: 07-07-20	15	Title: Proje	ect Manager	
Signed: Neel Harrington	Date: 07-07-20	15	Title: Charte	ered Engineer	

Signed: Noel Harrington

Bund Number 2

· · ·

Company	ENVA Ireland	Waste Refer	ence No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Categ	jory	Hazardous Waste Facility
Bund Reference No	Bund 2	Bund Type: Local/ Remo	ote / Combined	Local & Remote
Bund Location	Mixed Fuels Bay	Bund Risk (0, 1, 2, 3	lassification:	3
Bund Dimensions	8680 x 8260 x avg 220mm	Primary Ves	sel Material	IBC, Plastic and Steel Barrels
Bund Materials of Construction	Reinforced Concrete	Primary Ves Volume	sel Storage	Variable max 50 m³full
Bund Lining materials	N.a	Primary Ve Largest Ves	ssel 110% sel	1.1 m³
Bund Retention Volume (local/ Remote)	15 m³ (Local)	Primary Ves Volume	ssel 25% Total	12 m³
Practical to Conduct Hydrostatic Test	Yes	Date of Visu	al Inspection	11-06-2015
Visual Description:				
Visual inspection was carried out or floors were deemed acceptable an height of 161 mm from the floor of th	n the walls and floor both inter d therefore the bund passed the bund.	nally and exter hrough to the	nally of the bund. TI hydrostatic test. Wa	ne walls, joints and ater was filled to a
A visual inspection was completed There were no cracks, fissures or through the wall to another bund. Thydrostatic test.	l on the remainder of the bun weak spots identified above th his bung was below the level o	d walls which he water line w of water in the l	has not been subm ith the exception of bund and therefore o	erged for the test. a bung connected did form part of the
Date Bunds Filled	11-06-2015 D	ate of Hydros	tatic Test	12 to 15-06-15
Start Time	10:55 E	nd Time		11:10
Start Level of Water	161 mm E	nd of Test Lev	vel of Water	159 mm
Status & Recommendations:				
	 Bund Passes Hydr Hydrostatic retest in the meantime. 	ostatic Test to required in 201	the level of water fill 8 unless bund is dar	ed. naged or repaired
Notes:				
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46,	R50, R51, R52, R53, R54, R5	5, R56, R58, R	61, R63	
Signed: 40.400	Date: 07-07-20)15	Title: Proje	ect Manager

Signed:		
Signed: Noel Harrington	Date: 07-07-2015	Title: Chartered Engineer

Bund Number 8

· · · · ·

Company	ENVA Ireland	Waste Refer	ence No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Categ	Jory	Hazardous Waste Facility
Bund Reference No	Bund 8	Bund Type: Local/ Remo	ote / Combined	Local
Bund Location	Chemical Dosing Area	Bund Risk C 0, 1, 2, 3	lassification:	2
Bund Dimensions	6260 x 5190 x 1020mm	Primary Ves	sel Material	Steel Tanks
Bund Materials of Construction	Reinforced Concrete	Primary Ves Volume	sel Storage	20 m ³ full
Bund Lining materials	N.a	Primary Ves Largest Ves	ssel 110% sel	11 m³
Bund Retention Volume (local/ Remote)	33 m ³ (Local)	Primary Ves Volume	ssel 25% Total	5 m³
Practical to Conduct Hydrostatic Test	Yes	Date of Visu	ual Inspection	11-06-2015
Visual Description:				
Visual inspection was carried out of joints and floors were deemed acc filled to a height of 64 mm from the the hydrostatic test to this level.	on the walls, joints and floor b eptable and therefore the bun floor of the bund. There was el-	oth internally a d passed throu actrical equipm	and externally of th ugh to the hydrosta lent in the bund rest	e bund. The walls, tic test. Water was ricting the height of
A visual inspection was completed fissures or weak spots identified about	d on the reminder or the wall ove the water line. The hydrost	which was no atic test was co	ot submerged. Thei ompleted and passe	e were no cracks, d.
Date Bunds Filled	11-06-2015 D	ate of Hydros	tatic Test	12 to 15-06-15
Start Time	11:20 E	nd Time		11:20
Start Level of Water	64 mm E	nd of Test Lev	vel of Water	64 mm
Status & Recommendations:				
 Bund Passes Hydrostatic Test to the level of water filled. Hydrostatic retest required in 2018 unless bund is damaged or repaired in the meantime. 				
Notes:				
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46,	R50, R51, R52, R53, R54, R5	5, R56, R58, R	61, R63	
Signed: AQ Com	Date: 07-07-20)15	Title: Proje	ect Manager
Signed: Noel Harrington	Date: 07-07-20	015	Title: Charte	red Engineer

4.0 Summary of Results

Bund Identity	Pass / Fail	Comments
Stores Area Section 2 (Bund No 5)	Pass	This bund passed the visual inspection. This bund also passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements
Export Section 2 (Bund No 1)	Pass	This bund passed the visual inspection. It was not deemed practical to complete a hydrostatic test in this bund due to the size of floor area that needed to be covered and large volumes of water required.
Export Section 3 (Bund No 1)	Pass	This bund passed the visual inspection. It was not deemed practical to complete a hydrostatic test in this bund due to the size of floor area that needed to be covered and large volumes of water required.
Main Tank Farm (Bund No 3)	Pass	This bund passed the visual inspection. It was not deemed practical to complete a hydrostatic test in this bund due to the size of floor area that needed to be covered and large volumes of water required.

Project Manager	AQ LOCAL	Date of Report	02-10-2015	
Client	Enva Ireland Limited	Contact	Kevin Coll	

, . . .

Company	ENVA Ireland	Waste Refe	erence No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Cate	egory	Hazardous Waste Facility
Bund Reference No	Bund No 5	Bund Type Local/ Rem	: note / Combined	Local
Bund Location	Stores Area	Bund Risk 0, 1, 2, 3	Classification:	2
Bund Dimensions	1600 x 700 x 170mm	Primary Ve	ssel Material	IBC / 200 L steel barrels
Bund Materials of Construction	Reinforced Concrete walls, concrete floor	Primary Ve Volume	essel Storage	Total storage c. 64m ³
Bund Lining materials	N.a	Primary Ve Largest Ve	essel 110% ssel	1.1 m³ IBC's
Bund Retention Volume (local/ Remote)	19 m³ (Local)	25% Total	Volume	c. 12 m³
Practical to Conduct Hydrostatic Test	Yes	Date of Vis	ual Inspection	20-09-2015
Visual Description:				
Visual inspection was carried out o deemed acceptable and therefore and 47mm from the floor of the bun being used by employees for acce floor and walls which had not bee above the water line. The bund floo the bund to get an overview of the e	In the walls, joints and floor bo the bund passed through to the d at 2 separate locations – this ass to the stores. A visual insp n submerged for the test. The or is sloped and raised in the r entire structure.	th internally ar the hydrostatic bund could no ection was co re were no cr niddle – nume	Id externally. The wa test. Water was fille of be filled much high impleted on the rem acks, fissures or we rous measurements	alls and floors were d to a height of 35 ner due to the room ainder of the bund sak spots identified were made across
Date Bunds Filled	20-09-2015	ate of Hydros	static Test	21/22-09-2015
Start Time	14:20 E	nd Time		15:00
Start Level of Water	Side 1 35 mm E Side 2 47 mm	nd of Test Le	vel of Water	Side 1 35 mm Side 2 47 mm
Status & Recommendations:				
	 Bund Passes Hydr Hydrostatic retest in the meantime. 	ostatic Test to equired in 201	the level of water fill 8 unless bund is dar	ed. naged or repaired
Notes:				
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46,	R50, R51, R52, R53, R54, R5	5, R56, R58, R	61, R63	
Signed: AGACCO	Date: 02-10-20	115	Title: Proje	ct Manager
Signed: Noel Harrington	Date: 02-10-20	15	Title: Charte	red Engineer

Stores Area Section 2 - Bund No. 5

5.15

1

Export Storage – Bund No. 1 Section 2

Note: This store was sectioned into 3 parts for this visual inspection. The reason for only completing 1/3rd of the building was to allow for stored materials to be moved into the other sections leaving one completely free for visual observation. There were no materials in this section for the visual observation therefore allowing a complete and comprehensive assessment of the section. This store is far too large of floor area to be deemed suitable for a hydrostatic test.

Company	ENVA Ireland	Waste Refe	rence No	W0184-01	
Site	Clonminam Industrial Estate Portlaoise	Waste Cate	gory	Hazardous Waste Facility	
Bund Reference No	Bund 1 Section 2	Bund Type: Local/ Rem	ote / Combined	Local	
Bund Location	Export Storage	Bund Risk	Classification:	2	
Bund Dimensions	c. 320 m ² for Section 2	0, 1, 2, 3 Primary Ve	ssel Material	IBC's, Plastic and Metal Barrels	
Bund Materials of Construction	Reinforced Concrete walls and concrete floors	Primary Ves Volume	ssel Storage	1.0 m³ IBC	
Bund Lining materials	N.a	Primary Ve Largest Ve	ssel 110% ssel	1.1 m³	
Bund Retention Volume (local/ Remote)	Total c. 57 m ³ (Local)	25% Total V	olume	25 m³	
Practical to Conduct Hydrostatic Test	No	Date of Vis	ual Inspection	21-09-2015	
Visual Description:					
Visual inspection was carried out on the walls and floor both internally and externally. The maximum retention height with this section would be 22mm. Above this level liquid would overflow the bund lip. Therefore the total retention volume of this export store was calculated at c. 57 m ³ .					
A visual inspection was completed fissures or weak spots identified. constitute a failure of visual inspec previously tested and passed hydro	on section 2 of the store floor There was evidence of weak ction as they were very minor. statically by Kavanagh Ryan &	; joints and w surface con There were 2 Associates.	alls. There were no crete in places how 2 sumps in this bay	significant cracks, wever this did not which have been	
Date Bunds Filled	N/a Da	ate of Hydros	tatic Test	N/a	
Start Time	N/a Er	nd Time		N/a	
Start Level of Water	N/a Er	nd of Test Lev	vel of Water	N/a	
Status & Recommendations:					
	 Bund Section 2 pas This should be insp caused as per the li 	sed the visual ected every th cence require	inspection. ree years or in the e ment.	event of damage	
Notes:					
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46,	R50, R51, R52, R53, R54, R55	, R56, R58, R	61, R63		
Signed: 4Q.4CQ	Date: 02-10-20	15	Title: Proje	ct Manager	
Signed: Noel Harrington	Date: 02-10-20	15	Title: Charte	red Engineer	

s c

÷

Export Storage – Bund No. 1 Section 3

Note: This store was sectioned into 3 parts for this visual inspection. The reason for only completing 1/3rd of the building was to allow for stored materials to be moved into the other sections leaving one completely free for visual observation. There were no materials in this section for the visual observation therefore allowing a complete and comprehensive assessment of the section. This store is far too large of floor area to be deemed suitable for a hydrostatic test.

Company	ENVA Ireland	Waste Refe	rence No	W0184-01		
Site	Clonminam Industrial Estate Portlaoise	Waste Category		Hazardous Waste Facility		
Bund Reference No	Bund 1 Section 3	Bund Type: Local/ Remote / Combined		Local		
Bund Location	Export Storage	Bund Risk Classification: 0, 1, 2, 3		2		
Bund Dimensions	c. 280 m ² for Section 3	o, i, 2, o Primary Vessel Material		IBC's, Plastic and Metal Barrels		
Bund Materials of Construction	Reinforced Concrete walls and concrete floors	s Primary Vessel Storage Volume		1.0 m³		
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel		1.1 m³		
Bund Retention Volume (local/ Remote)	Total c. 57 m ³ (Local)	25% Total Volume		25 m³		
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection		02-10-2015		
Visual Description:						
Visual inspection was carried out on the walls and floor both internally and externally. The maximum retention height with this section would be 22mm. Above this level liquid would overflow the bund lip. Therefore the total retention volume of this export store was calculated at c. 57 m ³ .						
A visual inspection was completed on section 3 of the store floor, joints and walls. There were no significant cracks, fissures or weak spots identified. There was evidence of weak surface concrete in places however this did not constitute a failure of visual inspection as they were very minor. There was 1 sump in this bay which have been previously tested and passed hydrostatically by Kavanagh Ryan & Associates.						
Date Bunds Filled	N/a Da	ate of Hydrostatic Test		N/a		
Start Time	N/a Er	End Time		N/a		
Start Level of Water	N/a Er	a End of Test Level of Water		N/a		
Status & Recommendations:						
 Bund Section 3 passed the visual inspection. This should be inspected every three years or in the event of damage caused as per the licence requirement. 						
Notes:						
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46, R50, R51, R52, R53, R54, R55, R56, R58, R61, R63						
Signed: 40400	Date: 02-10-20*	15	Title: Proje	ect Manager		
Signed: Noel Harrington	Date: 02-10-20	15	Title: Chartered Engineer			

e

Tank Farm – Bund No. 3

Company	ENVA Ireland	Waste Reference No	W0184-01		
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility		
Bund Reference No	Bund 3	Bund Type: Local/ Remote / Combined	Local		
Bund Location	Tank Farm	Bund Risk Classification: 0, 1, 2, 3	2		
Bund Dimensions	c. 1880 m² x 2 m high	Primary Vessel Material	Large Steel Tanks		
Bund Materials of Construction	Reinforced Concrete walls and concrete floors	Primary Vessel Storage Volume	180 m³		
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel	200 m ³		
Bund Retention Volume (local/ Remote)	Total c. 4066 m ³ (Local)	25% Total Volume	1,850 m³		
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	21-09-2015		
Visual Description:					
Visual inspection was carried out on the walls and floor both internally and externally. The maximum retention height with this section would be 2000mm. Above this level liquid would overflow the bund at its lowest point. A visual inspection was completed on floor, joints and walls. There were no significant cracks, fissures or weak spots identified. There was evidence of weak surface concrete in places however this did not constitute a failure of visual inspection as they were very minor. The bund consists of 45 tanks totalling 7,400 m ³ . Boiler condensate is discharged into the bund through permanent pipes which could not be ceased without shutting down production. This fact rendered a hydrostatic test impractical to complete on top of the excessive volumes of water that would be required to cover the base of the bund.					
Date Bunds Filled	N/a D	ate of Hydrostatic Test	N/a		
Start Time	N/a E	nd Time	N/a		
Start Level of Water	N/a E	nd of Test Level of Water	N/a		
Status & Recommendations:					
	 Bund 3 passed the visual inspection. This should be inspected every three years or in the event of damage caused as per the licence requirement. 				
Notes:					
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46, R50, R51, R52, R53, R54, R55, R56, R58, R61, R63					

Signed: 49.400	Date: 02-10-2015	Title: Project Manager	
Signed: Noel Harrington	Date: 02-10-2015	Title: Chartered Engineer	
6 13

4.0 Summary of Results

Bund Identity	Pass / Fail	Comments		
Area 7 – Water Treatment	Pass	This bund passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements		
Bund 4 Sump	Pass	This sump passed the Hydrostatic Integrity test.		
Bund 4	Pass	This bund passed the visual inspection. It was not deemed practical to complete a hydrostatic test in this bund due to the size of floor area that needed to be covered and large volumes of water required.		

Project Manager	KQ LOCKIN	Date of Report	12-08-2015
Client	Enva Ireland Limited	Contact	Kevin Coll

Water	Treatment A	rea 7
-------	-------------	-------

Company	ENVA Ireland	Waste Reference No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
Bund Reference No	Area 7	Bund Type: Local/ Remote / Combined	Local
Bund Location	Wastewater treatment area	Bund Risk Classification: 0, 1, 2, 3	2
Bund Dimensions	1112 x 1153 x 220mm	Primary Vessel Material	Steel Tanks
Bund Materials of Construction	Reinforced Concrete	Primary Vessel Storage Volume	c. 20m ³ full
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel	22 m³
Bund Retention Volume (local/ Remote)	28 m ³ (Local)	Primary Vessel 25% Total Volume	5 m³
Practical to Conduct Hydrostatic Test	Yes	Date of Visual Inspection	20-07-2015
Visual Description:			
Visual inspection was carried out of	on the walls, joints and floor bot	h internally and externally. The w	alls and floors were

Visual inspection was carried out on the walls, joints and noor both internally and externally. The wais and noors were deemed acceptable and therefore the bund passed through to the hydrostatic test. Water was filled to a height of 99mm from the floor of the bund – this bund could not be filled much higher due to the risk of damage to in line equipment and damage to the storage vessel controls. A visual inspection was completed on the remainder of the bund floor and walls which has not been submerged for the test. There were no cracks, fissures or weak spots identified above the water line with the exception of a pipe connected through the wall. The seals around the pipe are finished and deemed appropriate to retain water. This pipe is above the level of water in the tank and therefore did not form part of the hydrostatic test but has been deemed to pass the visual inspection. The bund floor is sloped and raised in the middle – numerous measurements were made across the bund to get an overview of the entire structure.

Date Bunds Filled	17-07-2015	Date of Hydrostatic Test	20 - 21-07-15
Start Time	10:30	End Time	11:00
Start Level of Water	Side 1 99 mm Side 2 104 mm	End of Test Level of Water	Side 1 98 mm Side 2 104 mm

Status & Recommendations:

Bund Passes Hydrostatic Test to the level of water filled.

 Hydrostatic retest required in 2018 unless bund is damaged or repaired in the meantime.

Notes:

Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46, R50, R51, R52, R53, R54, R55, R56, R58, R61,	R63	
		_

Signed: AQ. Comp	Date: 12-08-2015	Title: Project Manager
Signed: Noel Harrington	Date: 12-08-2015	Title: Chartered Engineer

. · ·

	TAN (A lock and	Wante Dafe	ence No	W0184-01
Company	ENVA Ireland	waste kefel	ence No	Hazardous
Site	Portlaoise	Waste Cate	gory	Waste Facility
Bund Reference No	Bund 4 – Sump under Filter Press	Bund Type: Local/ Reme	ote / Combined	Local
Bund Location	Filter Press	Bund Risk (0, 1, 2, 3	Classification:	1
Bund Dimensions	1840 x 6060 x 1790mm	Primary Ves	sel Material	Filter Press
Bund Materials of Construction	Reinforced Concrete	Primary Ves Volume	sel Storage	-
Bund Lining materials	N.a	Primary Ves Largest Ves	ssel 110% ssel	-
Bund Retention Volume (local/ Remote)	20 m ³ (Local)	Primary Ves Volume	ssel 25% Total	R.
Practical to Conduct Hydrostatic Test	Yes	Date of Visi	ual Inspection	20-07-2015
Visual Description:				
Visual inspection was carried out of limited visual inspection that could a height of 1570 mm from the floor	on the walls where possible – t be carried out. The sump pass of the sump.	he sump is loo ed through to t	ated below the filte he hydrostatic test.	er press so there is Water was filled to
Date Bunds Filled	17-07-2015 D	ate of Hydros	tatic Test	20 - 21-07-15
Start Time	10:00 E	nd Time		11:10
Start Level of Water	1570 mm E	nd of Test Le	vel of Water	1569 mm
Status & Recommendations:				
 Sump Passes Hydrostatic Test to the level of water filled. Hydrostatic retest required in 2018 unless bund is damaged or repaired in the meantime. 				
Notes:				
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46	, R50, R51, R52, R53, R54, R55	5, R56, R58, R	61, R63	
Signed: 10. Com	Date: 12-08-20	15	Title: Proj	ect Manager
Signed: Noel Harrington	Date: 12-08-20	15	Title: Charte	ered Engineer

Bund Number 4 – Sump under Filter Press

-

Bund Number 4 – Filter Press

Company	ENVA Ireland	Waste Refere	ence No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Categ	ory	Hazardous Waste Facility
Bund Reference No	Bund 4 – Bund Surrounding Filter Press	Bund Type: Local/ Remo	te / Combined	Local
Bund Location	Filter Press	Bund Risk C 0, 1, 2, 3	lassification:	2
Bund Dimensions	18180 x 8540 x 250mm	Primary Ves	sel Material	Filter Press
Bund Materials of Construction	Reinforced Concrete	Primary Ves Volume	sel Storage	-
Bund Lining materials	N.a	Primary Ves Largest Ves	sel 110% sel	-
Bund Retention Volume (local/ Remote)	38.8 m³ (Local)	Primary Ves Volume	sel 25% Total	÷
Practical to Conduct Hydrostatic Test	No	Date of Visu	al Inspection	20-07-2015
Visual Description:				
Visual inspection was carried out on the walls and floor both internally and externally. The maximum retention height with this section would be 250mm. Above this level liquid would overflow the bund lip. The bund was so large (c. 155m ²) that is was not deemed practical to conduct a hydrostatic test due to the volumes of water required, the limited means of emptying and disposal of this liquid afterwards and the size of floor space that would need to be covered and put of commission while the test was underway.				
A visual inspection was completed weak spots identified. There was a	on of the bund floor, joints and hole in one wall which was plug	d walls. There ged and deem	were no significant ed watertight.	cracks, fissures or
Date Bunds Filled	- D	ate of Hydrost	tatic Test	-
Start Time	- E	nd Time		-
Start Level of Water	- <u>E</u>	nd of Test Lev	vel of Water	-
Status & Recommendations:				
 Bund passed the visual inspection. This should be inspected every three years or in the event of damage caused as per the licence requirement. 				
Notes:				
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46,	R50, R51, R52, R53, R54, R55	5, R56, R58, R	61, R63	
Signed: AQ. COM	Date: 12-08-20	15	Title: Proj	ect Manager
Signed: Noel Harrington	Date: 12-08-20	15	Title: Charte	ered Engineer

l

•

•

4.0 Summary of Results

Sump Identity	Pass / Fail	Comments
1	Pass	This sump passed the Hydrostatic Integrity test and visual inspection
3	Pass	This sump passed the Hydrostatic Integrity test and visual inspection
4	Pass	This sump passed the Hydrostatic Integrity test and visual inspection
6	Pass	This sump passed the Hydrostatic Integrity test and visual inspection
7	Pass	This sump passed the Hydrostatic Integrity test and visual inspection
8	Pass	This sump passed the Hydrostatic Integrity test and visual inspection
9		This bund passed the visual inspection however it was emptied before Hydrostatic test was completed
11	Pass	This sump passed the Hydrostatic Integrity test and visual inspection
12	Pass	This sump passed the Hydrostatic Integrity test and visual inspection

Project Manager	Re Clary	Date of Report	27-09-2017
Client	Enva Ireland Limited	Contact	Kevin Coll

Sump 1				_
Company	ENVA Ireland	Waste Reference No	W0184-02	
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility	
Sump Reference No	1	Sump Type: Local/ Remote / Combined	Local	
Sump Location	Filter/Paint Processing Shed	Sump Risk Classification: 0, 1, 2, 3	-	
Sump Dimensions	1060 X 1400 X 1440	Sump Vessel Material	-	
Sump Materials of Construction	Concrete	Primary Vessel Storage Volume	-	
Sump Lining materials	None	Primary Vessel 110% Largest Vessel		
Sump Retention Volume (local/ Remote)	m³ (Local)	Primary Vessel 25% Total Volume		
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	08-07-2017	
Visual Description:				
Visual inspection was carried out s	ump. There were no cracks, fiss	sures or weak spots identified.		
The sump was deemed visually to	be appropriate for storage of ma	aterials.		
	No picture availa	able		
Date Bunds Filled	07-07-2017 D	ate of Hydrostatic Test	10-07-2017	
Start Time	09:10 E	ind Time	10:37	
Start Level of Water	956mm E	nd of Test Level of Water	956mm	
Status & Recommendations:				
	Sump passes Hydr	rostatic and visual inspections		

<u>.</u>

Sump 3				
Company	ENVA Ireland	Waste Reference No	W0184-02	
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility	
Sump Reference No	3	Sump Type: Local/ Remote / Combined	Local	
Sump Location	Filter/Paint Processing Shed	Sump Risk Classification: 0, 1, 2, 3	-	
Sump Dimensions	1290 X 1270 X 1710	Sump Vessel Material	2011	
Sump Materials of Construction	Concrete	Primary Vessel Storage Volume	-	
Sump Lining materials	None	Primary Vessel 110% Largest Vessel		
Sump Retention Volume (local/ Remote)	m³ (Local)	Primary Vessel 25% Total Volume	-	
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	08-07-2017	
Visual Description:				
Visual inspection was carried out s	ump. There were no cracks, fiss	ures or weak spots identified.		
The sump was deemed visually to	be appropriate for storage of ma	terials.		
Date Bunds Filled	07-07-2017 D	ate of Hydrostatic Test	10-07-2017	
Start Time	09:35 E	nd Time	10:52	
Start Level of Water	956mm E	nd of Test Level of Water	956mm	
Status & Recommendations:				
	Sump passes Hydr	ostatic and visual inspections		

i.

Sump 4			
Company	ENVA Ireland	Waste Reference No	W0184-02
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
Sump Reference No	4	Sump Type: Local/ Remote / Combined	Local
Sump Location	-	Sump Risk Classification: 0, 1, 2, 3	•
Sump Dimensions	1300 X 1270 X 1820	Sump Vessel Material	
Sump Materials of Construction	Concrete	Primary Vessel Storage Volume	2 <u>_1</u>
Sump Lining materials	None	Primary Vessel 110% Largest Vessel	-
Sump Retention Volume (local/ Remote)	m ³ (Local)	Primary Vessel 25% Total Volume	~
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	08-07-2017
Visual Description:			
Visual inspection was carried out s	ump. There were no cracks, fis	sures or weak spots identified.	
The sump was deemed visually to	be appropriate for storage of m	aterials.	
Date Bunds Filled	07-07-2017	Date of Hydrostatic Test	10-07-2017
Start Time	09:47 I	End Time	11:00
Start Level of Water	635mm I	End of Test Level of Water	635mm
Status & Recommendations:			
	 Sump passes Hyd 	rostatic and visual inspections	

Sump 6			
Company	ENVA Ireland	Waste Reference No	W0184-02
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
Sump Reference No	6	Sump Type: Local/ Remote / Combined	Local
Sump Location	Soil Processing/Storage Shed	Sump Risk Classification: 0, 1, 2, 3	
Sump Dimensions	760 X 1880 X 680	Sump Vessel Material	-
Sump Materials of Construction	Concrete	Primary Vessel Storage Volume	-
Sump Lining materials	None	Primary Vessel 110% Largest Vessel	-
Sump Retention Volume (local/ Remote)	m ³ (Local)	Primary Vessel 25% Total Volume	-
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	08-07-2017
Visual Description:			
Visual inspection was carried out s	ump. There were no cracks, fiss	sures or weak spots identified.	
The sump was deemed visually to	be appropriate for storage of ma	aterials.	
Date Bunds Filled	07-07-2017 D	ate of Hydrostatic Test	10-07-2017
Start Time	09:53 E	nd Time	11:06
Start Level of Water	445mm E	nd of Test Level of Water	442mm
Status & Recommendations:			
	Sump passes Hydr	ostatic and visual inspections	

.

Sump 7			
Company	ENVA Ireland	Waste Reference No	W0184-02
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
Sump Reference No	7	Sump Type: Local/ Remote / Combined	Local
Sump Location	Water Storage Area	Sump Risk Classification: 0, 1, 2, 3	-
Sump Dimensions	670 X 1430 X 555	Sump Vessel Material	-
Sump Materials of Construction	Concrete	Primary Vessel Storage Volume	-
Sump Lining materials	None	Primary Vessel 110% Largest Vessel	-
Sump Retention Volume (local/ Remote)	m ³ (Local)	Primary Vessel 25% Total Volume	-
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	08-07-2017
Visual Description:			
Visual inspection was carried out se	ump. There were no cracks, fiss	sures or weak spots identified.	
The sump was deemed visually to I	be appropriate for storage of ma	aterials.	
Date Bunds Filled	07-07-2017 D	ate of Hydrostatic Test	10-07-2017
Start Time	09:11 E	nd Time	10:16
Start Level of Water	382mm E	nd of Test Level of Water	378mm
Status & Recommendations:			
	Sump passes Hydr	ostatic and visual inspections	

*

Sump 8				
Company	ENVA Ireland	Waste Reference No	W0184-02	
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility	
Sump Reference No	8	Sump Type: Local/ Remote / Combined	Local	
Sump Location	Between tanker dig out area and waste storage area	Sump Risk Classification: 0, 1, 2, 3		
Sump Dimensions	650 X 1470 X 875	Sump Vessel Material	-90A	
Sump Materials of Construction	Concrete	Primary Vessel Storage Volume		
Sump Lining materials	None	Primary Vessel 110% Largest Vessel	-	
Sump Retention Volume (local/ Remote)	m ³ (Local)	Primary Vessel 25% Total Volume	ii	
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	08-07-2017	
Visual Description:				
Visual inspection was carried out s	ump. There were no cracks, fiss	sures or weak spots identified.		
The sump was deemed visually to	be appropriate for storage of ma	aterials.		
Date Bunds Filled	07-07-2017 D	ate of Hydrostatic Test	10-07-2017	
Start Time	09:13 E	nd Time	10:14	
Start Level of Water	650mm E	nd of Test Level of Water	650mm	
Status & Recommendations:				
	Sump passes Hydr	ostatic and visual inspections		

. . .

	Sump 9			
ſ	Company	ENVA Ireland	Waste Reference No	W0184-02
	Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
	Sump Reference No	9	Sump Type: Local/ Remote / Combined	Local
	Sump Location	Waste Storage Area	Sump Risk Classification: 0, 1, 2, 3	-
	Sump Dimensions	640 X 1500 X 735	Sump Vessel Material	
	Sump Materials of Construction	Concrete	Primary Vessel Storage Volume	÷
	Sump Lining materials	None	Primary Vessel 110% Largest Vessel	->
	Sump Retention Volume (local/ Remote)	m³ (Local)	Primary Vessel 25% Total Volume	- :
	Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	08-07-2017
	Visual Description:			
	Visual inspection was carried out su	Imp. There were no cracks, fis	ssures or weak spots identified.	
	The sump was deemed visually to Hydrostatic test	be appropriate for storage	of materials. Sump was accidenta	ally emptied during
	Date Bunds Filled	07-07-2017	Date of Hydrostatic Test	10-07-2017
	Start Time	09:15	End Time	-
	Start Level of Water	665mm	End of Test Level of Water	Sump emptied
	Status & Recommendations:			
		 Sump passes visu 	ual inspections but requires an hydro	ostatic test

, . . . , . .

Sump 11				
Company	ENVA Ireland	Waste Reference No	W0184-02	
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility	
Sump Reference No	11	Sump Type: Local/ Remote / Combined	Local	
Sump Location	Water Treatment	Sump Risk Classification: 0, 1, 2, 3	a.	
Sump Dimensions	660 X 660 X 460	Sump Vessel Material	-	
Sump Materials of Construction	Concrete	Primary Vessel Storage Volume	-	
Sump Lining materials	None	Primary Vessel 110% Largest Vessel	-	
Sump Retention Volume (local/ Remote)	m³ (Local)	Primary Vessel 25% Total Volume	-	
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	08-07-2017	
Visual Description:				
Visual inspection was carried out se	ump. There were no cracks, fis	sures or weak spots identified.		
The sump was deemed visually to I	be appropriate for storage of m	aterials.		
Date Bunds Filled	07-07-2017	Date of Hydrostatic Test	10-07-2017	
Start Time	09:08 E	End Time	10:13	
Start Level of Water	74mm E	End of Test Level of Water	74mm	
Status & Recommendations:				
	 Sump passes Hyd 	rostatic and visual inspections		

к. К

Sump 12			
Company	ENVA Ireland	Waste Reference No	W0184-02
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
Sump Reference No	12	Sump Type: Local/ Remote / Combined	Local
Sump Location	Water Treatment	Sump Risk Classification: 0, 1, 2, 3	re
Sump Dimensions	560 X 570 X 440	Sump Vessel Material	
Sump Materials of Construction	Concrete	Primary Vessel Storage Volume	-
Sump Lining materials	None	Primary Vessel 110% Largest Vessel	-
Sump Retention Volume (local/ Remote)	m ³ (Local)	Primary Vessel 25% Total Volume	-
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	08-07-2017
Visual Description:			
Visual inspection was carried out s	ump. There were no cracks, fis	ssures or weak spots identified.	
The sump was deemed visually to	be appropriate for storage of m	naterials.	
Date Bunds Filled	07-07-2017	Date of Hydrostatic Test	10-07-2017
Start Time	09:06	End Time	10:12
Start Level of Water	19mm	End of Test Level of Water	19mm
Status & Recommendations:			
	Sump passes Hyd	drostatic and visual inspections	

Enva Ireland Ltd

ENVA Environmental Services

3.0 Summary of Results

Table 1 below outlines the bunds tested at the Enva Ireland Portlaoise facility. All tested bunds passed the bund integrity assessment.

Bund Description	Test Date	Pass/Fail	Recommendations/ Comments
Stores Waste Storage Bund	27/09/2017	Pass	N/A
Fire Foam Container Bund	19/09/2017	Pass	N/A
Export Warehouse – Sump 2	12/09/2017	Pass	N/A
Soil Remediation Waste Storage Area Sump 10	19/12/2017	Pass	N/A (
Tanker Digout Washarea	19/12/2017	Pass	N/A
Gantry Sump	19/12/2017	Pass	N/A
Collection	19/12/2017	Pass	N/A

Table 1: Summary of Results

4

5.0 Bund Test Record Sheets5.1 Stores Waste Storage Bund

Site:			Date of Inspection:	27-28" September, 2017.
	Clonminam Indust	rial Park,	License Reg. No.:	W0184-01
	Portlaoise			
D J D C N	Charges Washe Char	aga hund	Bund Type	Local
Bund Kel. No.:	Stores waste stora	age pund	(Local/Remote/Combined/Portable):	ುರಾವ ನಡಗಳು
				Directio IBC (10001)
Bund Dimensions:	6.87 x 28.73 x 0.22	25 m +	Primary Vessel(s) – Materials of	Plastic IBC (1000L)
	11.16 x 5.01 x 0.22	25 m	construction:	
Bund Construction	In Situ Concrete		Primary Vessel(s) - Total Storage	1BC- 28.38 m ³
Material:	rial:		Volume:	1000 ltr
	N - Linen		Primory Vessel(s) - 110% Volume of	1.1 m ³
Bund Lining Material	No Liner		Largest Vessel:	1100 ltr
Bund Retention	56.9 m3 (56900 lt	r)	Primary Vessel(s) - 25% of Total	N/A
Volume:			storage volume:	
Deemed Practicable / S	Deemed Practicable / Safe to Conduct Hydrostatic Te		Yes/No YES	
If no give reasons:				
				
	Wigual Incore	on around inter-	and external of hund walls reveals no s	igns of breaches or leaks. Bund
visual inspection:	newly construe	rted. Bund is root	fed.	• • • • • • • • • • • • • • • • • • •
	Bund filled 156	6 mm due to volu	me of water required.	
	Bund located u	nder roofed area	1	
				an a
Photographs	APPENDIX A			
HYDROSTATIC TEST DETAIL	.S:			
BS 8007:1987	(Yes/No)?	YES		
BS 8007:1987 Fill Rate	(Yes/No)?	YES N/A		
BS 8007:1987 Fill Rate Stabilisation F	' (Yes/No)? 'eriod	YES N/A Acceptable (24	thrs)	
BS 8007:1987 Fill Rate Stabilisation F Duration of th	' (Yes/No)? Period e Test	YES N/A Acceptable (24 24 hrs	łhrs)	
BS 8007:1987 Fill Rate Stabilisation F Duration of th Acceptance Cr	Y (Yes/No)? Period le Test 'iteria (Total	YES N/A Acceptable (24 24 hrs During the test	thrs) t period, the total permissible drop in leve	l after
BS 8007:1987 Fill Rate Stabilisation F Duration of th Acceptance Cr permissible d	Y (Yes/No)? Period Te Test Teria (Total rop in water	YES N/A Acceptable (24 24 hrs During the test allowing for ev	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed	l after 1/500 th of
BS 8007:1987 Fill Rate Stabilisation F Duration of th Acceptance Cr permissible d level)	Y (Yes/No)? Period Le Test 'iteria (Total rop in water	YES N/A Acceptable (24 24 hrs During the test allowing for ev the average wa	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed ater depth, 10mm or another specified an	l after 1/500 th of nount.
BS 8007:1987 Fill Rate Stabilisation F Duration of th Acceptance Cr permissible d level) Water Level C Reference Ves	Y (Yes/No)? Period te Test 'iteria (Total rop in water hange in sel	YES N/A Acceptable (24 24 hrs During the test allowing for ex the average way 0 mm	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed ater depth, 10mm or another specified an	l after 1/500 th of nount.
BS 8007:1987 Fill Rate Stabilisation H Duration of th Acceptance Cr permissible d level) Water Level C Reference Ves	Y (Yes/No)? Period te Test Titeria (Total rop in water hange in sel	YES N/A Acceptable (24 24 hrs During the test allowing for ex the average way 0 mm	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed ater depth, 10mm or another specified an	l after 1/500 th of nount.
BS 8007:1987 Fill Rate Stabilisation I Duration of th Acceptance Cr permissible d level) Water Level C Reference Ves Date and	Y (Yes/No)? Period te Test riteria (Total rop in water hange in sel Water Level	YES N/A Acceptable (24 24 hrs During the test allowing for ex the average wa 0 mm Water Level	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed ater depth, 10 mm or another specified an in Bund Level (+/-) (mm)	Reference vessel Level
BS 8007:1987 Fill Rate Stabilisation I Duration of th Acceptance Cr permissible d level) Water Level C Reference Ves Date and Time	Y (Yes/No)? Period te Test Titeria (Total rop in water hange in isel Water Level in Bund	YES N/A Acceptable (24 24 hrs During the test allowing for ev the average wa 0 mm Water Level i Reference Ve	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed ater depth, 10 mm or another specified an in Bund Level (+/-) (mm)	Reference vessel Level (+/-) (mm)
BS 8007:1987 Fill Rate Stabilisation I Duration of th Acceptance Cr permissible d level) Water Level C Reference Ves Date and Time Day 1	Y (Yes/No)? Period te Test Titeria (Total rop in water hange in sel Water Level in Bund 156 mm	YES N/A Acceptable (24 24 hrs During the test allowing for ex the average wa 0 mm Water Level Reference Ve 176 mm	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed ater depth, 10 mm or another specified an in Bund Level (+/-) (mm)	Reference vessel Level (+/-) (mm)
BS 8007:1987 Fill Rate Stabilisation I Duration of th Acceptance Cr permissible d level) Water Level C Reference Ves Date and Time Day 1 27/09/17	Y (Yes/No)? Period te Test iteria (Total rop in water hange in isel Water Level in Bund 156 mm	YES N/A Acceptable (24 24 hrs During the test allowing for ex the average wa 0 mm Water Level Reference Ve 176 mm	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed ater depth, 10 mm or another specified an in Bund Level (+/-) (mm) essel	Reference vessel Level (+/-) (mm)
BS 8007:1987 Fill Rate Stabilisation I Duration of th Acceptance Cr permissible d level) Water Level C Reference Ves Date and Time Day 1 27/09/17 13:00 Day 2	Y (Yes/No)? Period te Test riteria (Total rop in water hange in isel Water Level in Bund 156 mm 156 mm	YES N/A Acceptable (24 24 hrs During the test allowing for ex the average was 0 mm Water Level Reference Ve 176 mm	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed ater depth, 10 mm or another specified an in Bund Level (+/-) (mm) essel	Reference vessel Level (+/-) (mm)
BS 8007:1987 Fill Rate Stabilisation I Duration of th Acceptance Cr permissible d level) Water Level C Reference Ves Date and Time Day 1 27/09/17 13:00 Day 2 28/09/2017	Y (Yes/No)? Period te Test riteria (Total rop in water hange in sel Water Level in Bund 156 mm 156 mm	YES N/A Acceptable (24 24 hrs During the test allowing for ex the average was 0 mm Water Level Reference Ve 176 mm	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed ater depth, 10 mm or another specified an in Bund Level (+/-) (mm) essel 0 mm	Reference vessel Level (+/-) (mm)
BS 8007:1987 Fill Rate Stabilisation I Duration of th Acceptance Cr permissible d level) Water Level C Reference Ves Date and Time Day 1 27/09/17 13:00 Day 2 28/09/2017 13:15	Y (Yes/No)? Period te Test riteria (Total rop in water hange in ssel Water Level in Bund 156 mm 156 mm	YES N/A Acceptable (24 24 hrs During the test allowing for ex the average wa 0 mm Water Level Reference Ve 176 mm 176 mm	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed ater depth, 10 mm or another specified an in Bund Level (+/-) (mm) essel 0 mm	Reference vessel Level (+/-) (mm)
BS 8007:1987 Fill Rate Stabilisation I Duration of th Acceptance Cr permissible d level) Water Level C Reference Ves Date and Time Day 1 27/09/17 13:00 Day 2 28/09/2017 13:15	Y (Yes/No)? Period te Test Titeria (Total rop in water hange in ssel Water Level in Bund 156 mm 156 mm	YES N/A Acceptable (24 24 hrs During the test allowing for ex the average wa 0 mm Water Level Reference Ve 176 mm 176 mm	thrs) t period, the total permissible drop in leve vaporation and rainfall should not exceed ater depth, 10 mm or another specified an in Bund Level (+/-) (mm) essel 0 mm	Reference vessel Level (+/-) (mm)

 \hat{t}

Enva Ireland Ltd

VISUAL TEST DETAILS: INSPECTION DESC	RIPTION & RESULTS:	
Result (Pass/Fail)	PASS	
Recommendation(s): Retest October 2020 as per the condi	tions outlined in license	
Signed: John Gocall	Title : BE, M.Sc, MIEI	Date: 29/09/2017
Signed:	Title: BE, C Eng, MIEI	Date:29/09/2017
	Mr. Wi Narte Reg of The In	Illiam Stack ared Engineer patrent 059877 withulon of Engineers of Ireland

.

5.2 Fire Foam Container Bund

Compa	inv:	Enva Ireland Por	tlaoise	Date of	Inspection:	19-20th Sep	otember, 2017.	
Site:		Clonminam Indus	trial Park,	License	Reg. No.:	W0184-01		
		roruaoise						
Bund F	Ref. No.:	Fire Foam Container Bund		Bund Ty (Local/l	Bund Type (Local/Remote/Combined/Portable):		Local	
Bund I	Dimensions:	2.2 x 5.7 x 0.13 m		Primary Constru	Vessel(s) – Materials of ction:	Plastic IBC (1000L)		
Bund (Materi	Construction ial:	Steel		Primary Volume	v Vessel(s) – Total Storage	IBC- 1m ³ 1000 ltr		
Bund I Materi	Lining al:	No Lining		Primary Largest	Vessel(s) – 110% Volume of Vessel:	1.10 m ³ 1100 ltr		
Bund F Volum	Retention e:	1.63 m ³ (1630ltr)		Primary Storage	v Vessel(s) – 25% of Total Volume:	N/A		
Doomo	Densitiashia / Safa to Conduct Hydrost		udrostatic Tes	t? Ves/No	YES			
If no gi	ive reasons:	Sale to conduct in	ful ostatic res	103/110				
Visual	Inspection:	Visual Inspecti The bund floor Bund filled 54	on around inte to wall joint a mm.	ernal and ex ppears to b	sternal of bund walls reveals no sig e in good condition.	gns of breaches of	or leaks.	
Photos	ranhs	APPENDIX A						
HYDROS	STATIC TEST DETA	LS:						
	BS 8007:198	7 (Yes/No)?	YES					
	Fill Rate	Deried	N/A Accentable ((24hrs)				
	Stabilisation	he Test	24 hrs	24115)				
	Accentance	riteria (Total	During the t	est neriod.	the total permissible drop in level	after		
	permissible	lrop in water	allowing for	g for evaporation and rainfall should not exceed 1/500 th of age water depth. 10 mm or another specified amount.				
	Water Level Reference Ve	Change in ssel	0 mm drop	when the r	eference vessel is taken into accou	nt		
	Date and Time	Water Level in Bund	Water Leve Reference	el in Vessel	Bund Level (+/-) (mm)	Refer (+/-)	ence vessel Level (mm)	
	Day 1 19/09/17 15:15	54 mm	131 mm					
	Day 2 20/09/2017 15:25	74 mm	151 mm		20 mm	20 mr	n	
	L	1	J					
		to of the descention	Fact					
Descrij	ption / Commen	its of Hydrostatic	i est: r in hund meas	aured and n	hotographed day 1 and day 2. We	ather was wet a	nd showery over	
the 24h	mpleted success	ulting in the referen	r in bund meas	l and bund	increasing by 20 mm. Based on the	e survey and hy	drostatic test	
carried	out ENVA deem	the Fire foam conta	iner bund to b	e of sound	integrity and therefore Passed.	•		
currica	out Diffit dooin				0.1			
					and the second			
VISUAL	TEST DETAILS: IN:	SPECTION DESCRIPTION	ON & RESULTS:					
VISUAL '	Test Details: In:	SPECTION DESCRIPTION	on & Results:					

.

.

Enva Ireland Ltd

Result (Pass/Fail)	PASS	
Recommendation(s): Retest October 2020 as per the o	onditions outlined in license	
Signed: John Greek	Title : BE, M.Sc, MIE	I Date: 20/09/2017
signed: WHE	Title: BE, C Eng, MIE	El Date:20/09/2017
		Mr. William Stack Chartered Englineer Registrant 059577 of The Institution of Engineers of Ireland

• 2

1

.

.....

5.3 Export Warehouse - Sump 2

Compa	nv:	Enva ireland Por	tlaoise	Date of I	Inspection:	12-13	September, 2017.
Site:		Clonminam Indust	trial Park.	License	Reg. No.:	W0184	4-01
one.		Portlaoise					
Bund R	ef. No.:	Export Warehouse	e – Sump 2	Bund Ty (Local/I	Bund Type (Local/Remote/Combined/Portable):		
Bund D	imensions:	1.05 x 1.4 x 1.41 m		Primary Constru	v Vessel(s) – Materials of ction:	Plastic I	BC (1000L)
Bund C Materia	onstruction al:	InSitu concrete sump		Primary Volume	v Vessel(s) – Total Storage :	IBC- 1n	1 ³ 1000 ltr
Bund L Materia	ining al:	No Liner		Primary Largest	v Vessel(s) – 110% Volume of Vessel:	1.10 m ³ 1100 ltr	r
Bund R Volume	etention ei	2.07 m ³ (2072 ltr)	l.	Primary Storage	v Vessel(s) – 25% of Total Volume:	N/A	
Deemo	d Practicable /	Safe to Conduct H	drostatic Te	st? Yes/No	YES	1	
Deeme	u Practicable /	Sale to conduct ny	vui ostatite re	31, 103/110			
ii no gi	ve reasons:						
Visual	Inspection:	Visual Inspecti Bund sump is l Level of water	on around int ocated inside measured 559	ernal of sun building an 9mm from f	np walls reveals no signs of breach d is protected by a heavy duty cov loor level to water level	nes or leaks. er.	6
Dhotog	ranho						
Photog	TATIC TEST DETA	IS					
III DROS	TATIC ILST DETA						-
	BS 8007:198	7 (Yes/No)?	YES				_
	Fill Rate		N/A				
	Stabilisation	Period	Acceptable	(24hrs)			
	Duration of t	he Test	24 hrs	S			
	Accentance	riteria (Total	During the	test period.	the total permissible drop in level	after	
	nermissible	dron in water	allowing for	r evaporatio	on and rainfall should not exceed 1	L/500 th of	
	level)	arop in neite	the average	water dept	th, 10 mm or another specified am	ount.	
	Water Level	Change in	0 mm				
	Reference Vo	essel		-]
	Date and	Water Level	Water Lev	el in	Bund Level (+/-) (mm)	R	eference vessel Level
	Time	in Bund	Reference	Vessel		(1	•/•) (mm)
	Day 1 12/09/17	559 mm	154 mm				
	Day 2 13/09/2017 16:05	559 mm	154 mm		0 mm	0	mm
Descrip	ption / Comme	nts of Hydrostatic	Test:				due and cald over the
Test con	mpleted success	fully, depth of wate	r in bund mea	isured and p	photographed day 1 and day 2. We	eather was	dry and cold over the
24hr te	st period. Based	on the survey and l	ydrostatic te:	st carried ou	ut ENVA deem the bund sump 2 to	be of sound	a integrity and therefore
Passed.							
VISUAL	Test Details: In	SPECTION DESCRIPTI	ON & RESULTS:				
VISUAL	TEST DETAILS: IN	SPECTION DESCRIPTION	ON & RESULTS:				
VISUAL	Test Details: In	SPECTION DESCRIPTI	ON & RESULTS:				

. .

Enva Ireland Ltd

Result (Pass/Fail)	PASS	
Recommendation(s): Retest October 2020 as per the co	nditions outlined in license	
Signed: John Greed	Title : BE, M.Sc, MIEI	Date: 20/09/2017
Signed: WRC	Title: BE, C Eng, MIEI	Date:20/09/2017
	Mr. WIIIa Chartered Registrant of The Institution of Irela	DINEERS RELAND m Stack Engineer 059577 n of Engineers land

÷

Enva Ireland Ltd

Soil Remediation Waste Storage Area - Sump 10 5.4

Compar	nv:	Enva ireland Por	tlaoise	Date of	Inspection:	18-19th Dec	ember, 2017.
Site:		Clonminam Indus	trial Park,	License	Reg. No.:	W0184-01	
		Portlaoise					
Bund R	ef. No.:	Soil Remediation	Waste	Bund Ty	лре	Local	
Dundin		Storage Area – Su	mp 10	(Local/I	Remote/Combined/Portable):		
		0.0	4	Drimon	Vessel(s) - Materials of	Plastic IBC (1	1000L)
Bund D	imensions:	0.9m x 2.7m x 1.04	łm	Constru	ction:	Thusace is a (
Bund Co	onstruction	In Situ Concrete		Primary	v Vessel(s) – Total Storage	IBC- 1m ³	1000 ltr
Materia	al:			volume			
Bund Li	ining	None		Primary	Vessel(s) - 110% Volume of	1.10 m ³	
Materia	al:			Largest	Vessel:	1100 ltr	
Pund D	atantian	2 52m3 (2527 ltr)		Primary	Vessel(s) - 25% of Total	N/A	
Volume	etencion e:	2.5211 (2527 14)		Storage	Volume:		
				12.11 (3)	VEC		
Deemee	d Practicable /	Safe to Conduct Hy	drostatic Tes	st? Yes/No	YES		
If no giv	ve reasons:						
Visual I	Inspection:	Visual Inspecti	on around inte	ernal and e	xternal of bund walls reveals no sig	ns of breaches o	or leaks.
		The bund floor	to wall joint a	ppears to b	e in good condition.		
		Bund filled 105	50 mm.				
Photom	ranhs	APPENDIX A	initian and initian				
HYDROS	TATIC TEST DETA	ILS:					
			1				
	BS 8007:198	7 (Yes/No)?	YES			ile terreteri	
	Fill Rate	Pariad	N/A Accentable ((24hrs)			
	Duration of t	he Test	24 hrs	211115)			
	Acceptance (Criteria (Total	During the t	est period,	the total permissible drop in level	after	
	permissible	drop in water	allowing for	evaporatio	on and rainfall should not exceed 1,	/500 th of	
	level)	Change in	Tero drop v	water depr	ference vessel is taken into account	t	
	Reference Ve	essel	Zero urop v	viien die re			
						Defer	and wascal Laval
	Date and	Water Level	Water Leve	el in Veccel	Bund Level (+/·) (mm)	(+/-) (mm)
	Time	in Bund	159 mm	vessel			
	Davi 1		132 11111				
	Day 1 18/12/2018	1050 mm					
	Day 1 18/12/2018 13:00	1050 mm					
	Day 1 18/12/2018 13:00 Day 2	1050 mm	159 mm				
	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10	1050 mm	159 mm				
	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10	1050 mm	159 mm				
	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10	1050 mm	159 mm				
	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10	1050 mm	159 mm				
Descrip	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10	1050 mm 1048 mm nts of Hydrostatic	159 mm				nd cold over the
Descrip Test cor	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Comment mpleted success	1050 mm 1048 mm nts of Hydrostatic fully, depth of wate	159 mm Test: r in bund meas	sured and p	photographed day 1 and day 2. We	ather was dry a	nd cold over the ity and therefore
Descrip Test cor 24hr tes	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Comme mpleted success st period. Based	1050 mm 1048 mm 1048 mm nts of Hydrostatic fully, depth of wate on the survey and l	159 mm 159 mm Test: r in bund meas hydrostatic tes	sured and p	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore
Descrip Test cor 24hr tes Passed.	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Comme mpleted success st period. Based	1050 mm 1048 mm 1048 mm nts of Hydrostatic fully, depth of wate on the survey and l	159 mm 159 mm Test: r in bund meas hydrostatic tes	sured and p t carried or	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore
Descrip Test cor 24hr tes Passed.	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Commeen mpleted success st period. Based	1050 mm 1048 mm 1048 mm nts of Hydrostatic fully, depth of wate on the survey and l	159 mm 159 mm Test: r in bund meas hydrostatic tes	sured and p t carried or	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore
Descrip Test cor 24hr tes Passed.	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Commen mpleted success st period. Based	1050 mm 1048 mm 1048 mm nts of Hydrostatic fully, depth of wate on the survey and l	159 mm 159 mm Test: r in bund meas hydrostatic tes	sured and p t carried of	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore
Descrip Test cor 24hr tes Passed.	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Comment mpleted success st period. Based	1050 mm 1048 mm 1048 mm nts of Hydrostatic fully, depth of wate on the survey and l	159 mm Test: r in bund meas hydrostatic tes	sured and p t carried of	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore
Descrip Test cor 24hr tes Passed.	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Comment mpleted success st period. Based	1050 mm 1048 mm 1048 mm nts of Hydrostatic fully, depth of wate on the survey and l	159 mm Test: r in bund meas hydrostatic tes	sured and p t carried of	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore
Descrip Test cor 24hr tes Passed.	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Comme mpleted success st period. Based	1050 mm 1048 mm 1048 mm nts of Hydrostatic fully, depth of wate on the survey and l	159 mm Test: r in bund meas hydrostatic tes	sured and p t carried or	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore
Descrip Test cor 24hr tes Passed.	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Comme mpleted success st period. Based	1050 mm 1048 mm 1048 mm nts of Hydrostatic fully, depth of wate on the survey and l	159 mm Test: r in bund meas hydrostatic tes	sured and p t carried or	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore
Descrip Test cor 24hr tes Passed.	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Comment mpleted success st period. Based	1050 mm 1048 mm 1048 mm nts of Hydrostatic fully, depth of wate on the survey and l	159 mm Test: r in bund meas hydrostatic tes	sured and p t carried of	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore
Descrip Test cor 24hr tes Passed. Visual 7	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Comme mpleted success st period. Based	1050 mm 1048 mm 1048 mm 1048 mm ints of Hydrostatic fully, depth of wate on the survey and b spection Description	159 mm Test: r in bund meas hydrostatic tes	sured and p t carried or	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore
Descrip Test cor 24hr tes Passed. Visual 7	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Comme mpleted success st period. Based	1050 mm 1048 mm 1048 mm ints of Hydrostatic fully, depth of wate on the survey and b spection Description	159 mm Test: r in bund meas hydrostatic tes	sured and p	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore
Descrip Test cor 24hr tes Passed. Visual 7	Day 1 18/12/2018 13:00 Day 2 19/12/2018 13:10 Detion / Comme mpleted success st period. Based	1050 mm 1048 mm 1048 mm ints of Hydrostatic fully, depth of wate on the survey and b spection Description	159 mm Test: r in bund meas hydrostatic tes	sured and p	photographed day 1 and day 2. We ut ENVA deem bund sump 10 to be	ather was dry a of sound integr	nd cold over the ity and therefore

.

Enva Ireland Ltd

	Result (Pass/Fail)	PASS		
Recomm Retest Oc	endation(s): tober 2020 as per the co	nditions outline	d in license	
Signed:	John Gecall		Title : BE, C Eng, MIEI	Date: 19/12/2017
Signed:	1. Ste	2	Title: BE, C Eng, MIEI	Date:19/12/2017
			Mr. W Chart of The I	ENGINEERS RELAND William Stack rered Engineer registrant 059577 Institution of Engineers of Ireland

÷

.

Enva Ireland Ltd

5.5 Tanker Digout WashArea

	any:	Enva ireland Po	rtlaoise	Date of Inspection:	18-19th December, 2017.
Site:		Clonminam Indu	strial Park,	License Reg. No.:	W0184-01
		Portlaoise			r.
Bund I	Ref. No.:	Tanker Digout W	ash Area	Bund Type	Local
		Sump		(Local/Remote/Combined/Portable):	
Dund	1 700	125 m2		Primary Voscal(s) - Materials of	Wash Down Area
Bullu /	nica	155 11-		Construction:	Wash Down In ca
				Constituenteni	
Bund (Construction	In Situ Concrete		Primary Vessel(s) - Total Storage	N/A
Materi	ial:			Volume:	20 ⁻⁰
		34			
Bund I	Lining	None		Primary Vessel(s) - 110% Volume of	N/A
Materi	al:			Largest Vessel:	
		20.0. 2 (2000 k)			N/A
Bund H	Retention	33.8m ³ (3380 ltr	ļ	Primary vessel(s) - 25% of Total	N/A
volum	e:			Storage volume:	
Deeme	d Practicable /	Safe to Conduct H	vdrostatic Tes	t? Ves/No VFS	_
If no gi	ive reasons:	Sale to conduct in	yurostatic res	100	
n no gi	ive reasons.				
Visual	Inspection:	Visual Inspect	ion around inte	rnal and external of bund walls reveals no sig	ns of breaches or leaks.
		The bund floor	to wall joint ap	ppears to be in good condition.	1. (2014)
		Bund filled 55	0 mm at deep e	nd of digout bay. Bund is roofed and protecte	d from any rainfall.
Photog	raphs	APPENDIX A			
Hydros	STATIC TEST DETAI	LS:			
			1 1000		
	BS 8007:198	(Yes/No)?	YES		
	Fill Rate	Deviad	N/A	24 hrs)	
	Stabilisation	reriou	Acceptable [24115)	
	Acceptance	riteria (Total	During the te	ast period the total permissible drop in level	after
	nermissible	iron in water	allowing for	evanoration and rainfall should not exceed 1.	/500 th of
	level)	nop in nator	the average v	water depth, 10 mm or another specified amo	unt.
	Water Level (Change in	Zero drop w	hen the reference vessel is taken into accoun	
	Reference Ve	ssel			
			Watan Lava	lin Rund Level (+/.) (mm)	
	Date and	Water Level	water Leve	Dund Lever (1/-) (mm)	Reference vessel Level
	Date and Time	Water Level in Bund	Reference V	Vessel	(+/-) (mm)
	Date and Time Day 1	Water Level in Bund 550 mm	Reference V 159 mm	Vessel	(+/-) (mm)
	Date and Time Day 1 18/12/2018	Water Level in Bund 550 mm	Reference V 159 mm	Vessel	(+/-) (mm)
	Date and Time Day 1 18/12/2018 13:15	Water Level in Bund 550 mm	Reference V 159 mm	Zessel	(+/-) (mm)
	Date and Time Day 1 18/12/2018 13:15 Day 2 10/12/2018	Water Level in Bund 550 mm 548 mm	Reference V 159 mm	-2 mm	(+/-) (mm)
	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20	Water Level in Bund 550 mm 548 mm	Reference V 159 mm	-2 mm	(+/-) (mm)
	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20	Water Level in Bund 550 mm 548 mm	Reference V 159 mm 159 mm	-2 mm	0 mm
	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20	Water Level in Bund 550 mm 548 mm	Reference V 159 mm 159 mm	-2 mm	0 mm
	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20	Water Level in Bund 550 mm 548 mm	Reference V 159 mm	-2 mm	0 mm
Descrir	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Day 2 19/12/2018 13:20	Water Level in Bund 550 mm 548 mm	159 mm	-2 mm	0 mm
Descrip Test cor	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Day 2 Day 2 Day 2 Day 2 Day 2 Day 2 Day 1 Day 2 Day 1 Day 2 Day 2 Day 2 Day 1 Day 2 Day	Water Level in Bund 550 mm 548 mm ts of Hydrostatic ' ully, depth of wate	Fest:	-2 mm	0 mm
Descrip Test cor over the	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Dition / Commen mpleted successf 2 4hr test period	Water Level in Bund 550 mm 548 mm ts of Hydrostatic ' ully, depth of wate: Based on the sur	Fest: • in bund measure very and hydros	-2 mm -2 mm ured and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	0 mm
Descrip Test cor over the sound in	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Detion / Commen mpleted successf 2 4hr test period ntegrity and ther	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ' ully, depth of water Based on the sur efore Passed.	Fest: • in bund measu vey and hydros	-2 mm -2 mm ured and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	0 mm ther was dry, warm and breezy digout wash area sump to be of
Descrip Test cor over the sound in	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Day 2 19/12/2018 13:20 Day 2 24hr test period ntegrity and ther	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ' ully, depth of wate: Based on the sur efore Passed.	Fest: • in bund measu vey and hydros	-2 mm -2 mm ured and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	0 mm 0 mm
Descrip Test cor over the sound in	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Detion / Commen mpleted successfe 24hr test period ntegrity and ther	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ' ully, depth of wate l. Based on the sur efore Passed.	Fest: • in bund measu vey and hydros	-2 mm -2 mm ured and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	0 mm 0 mm ther was dry, warm and breezy digout wash area sump to be of
Descrip Test cor over the sound in	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Detion / Commen mpleted successfe 2 4hr test period ntegrity and ther	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ' ully, depth of wate: Based on the sur efore Passed.	Fest: • in bund measu vey and hydros	-2 mm -2 mm ured and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	0 mm 0 mm 0 mm 0 mm
Descrip Test cor over the sound in	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Detion / Commen mpleted successfe 24hr test period integrity and ther	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ' ully, depth of wate: I Based on the sur efore Passed.	Fest:	-2 mm -2 mm ured and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	0 mm 0 mm 0 mm 0 mm 0 mm
Descrip Test cor over the sound in	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Detion / Commen mpleted successfe 24hr test period integrity and ther	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ' ally, depth of wate: a. Based on the sur efore Passed.	rest: in bund measure vey and hydros	-2 mm -2 mm ared and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	0 mm 0 mm 0 mm 0 mm 0 mm
Descrip Test cor over the sound in	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Detion / Commen mpleted successfe 24hr test period integrity and ther	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ully, depth of water I Based on the sur efore Passed.	rest: in bund measure vey and hydros	-2 mm -2 mm ared and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	0 mm 0 mm 0 mm 0 mm 0 mm
Descrip Test cor over the sound in	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Date of the second	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ally, depth of water assed on the sure fore Passed.	Fest:	-2 mm -2 mm ured and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	0 mm 0 mm 0 mm 0 mm 0 mm
Descrip Test cor over the sound in	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Detion / Commen mpleted successfee 24hr test period ntegrity and ther	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ully, depth of water I. Based on the sur efore Passed.	Fest: in bund measure vey and hydros	-2 mm -2 mm ured and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	0 mm 0 mm 0 mm 0 mm 0 mm
Descrip Test cor over the sound in	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Day 2 19/12/2018 13:20 Day 2 24hr test period ntegrity and ther	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ully, depth of water Based on the sur efore Passed.	rest: in bund measures	-2 mm -2 mm ured and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	ther was dry, warm and breezy digout wash area sump to be of
Descrip Test cor over the sound in Visual 1	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Date of the second	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ully, depth of water Based on the sur efore Passed.	rest: in bund measure vey and hydros	-2 mm -2 mm ured and photographed day 1 and day 2. Wea static test carried out ENVA deem the Tanker	ther was dry, warm and breezy digout wash area sump to be of
Descrip Test cor over the sound in VISUAL 1	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Definition / Commen mpleted successfe 2 4hr test period ntegrity and ther CEST DETAILS: INS	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ully, depth of water Based on the sur efore Passed.	rest: in bund measures vey and hydros	-2 mm -2 mm ared and photographed day 1 and day 2. Weatstatic test carried out ENVA deem the Tanker	ther was dry, warm and breezy digout wash area sump to be of
Descrip Test cor over the sound in VISUAL T	Date and Time Day 1 18/12/2018 13:15 Day 2 19/12/2018 13:20 Definition / Commen mpleted successfies 24hr test period integrity and ther FEST DETAILS: INS	Water Level in Bund 550 mm 548 mm 548 mm ts of Hydrostatic ully, depth of wate ally, depth of wate Based on the sur efore Passed.	Fest: • in bund measure vey and hydros	-2 mm -2 mm ared and photographed day 1 and day 2. Westatic test carried out ENVA deem the Tanker	ther was dry, warm and breezy digout wash area sump to be of

.

Enva Ireland Ltd

Result (Pass/Fail)	PASS		
Recommendation(s): Retest October 2020 as per th	e conditions outlined	l in license	
Signed: John Greed		Title : BE, C Eng, MIEI	Date: 19/12/2017
Signed: W.Ste		Title: BE, C Eng, MIEI	Date:19/12/2017
		Mr. I Cha	ENGINEERS RELAND William Stack artered Engineer Registrant 059577 he Institution of Engineers of Ireland

Enva Ireland Ltd

5.6 Gantry Sump

. . .

Bite: Clemminum Industrial Park, Portioaise License Reg. No: W0184-01 Band Ref. No: Gantry Sump Bund Type (Local/Remote/Combined/Portable): Local Bund Dimensions 3.0m x 9.75m x 2.21 m Primary Vessel(s) - Total Storage (Local/Remote/Combined/Portable): Wash Down Area Band Otimensions 3.0m x 9.75m x 2.21 m Primary Vessel(s) - Total Storage (Note: Storage Volume: N/A Band Lining Atterial: In Situ Concrete Primary Vessel(s) - Total Storage Volume: N/A Band Lining Atterial: None Primary Vessel(s) - 25% of Total Storage Volume: N/A Band Beention 64.64m ³ (64.642 ltr) Primary Vessel(s) - 25% of Total Storage Volume: N/A Statistical Inspection: Visual Inspection around internal and external of bund walls reveals no signs of breaches or leaks. The bund floor to wall joint appears to be in good condition. Bund filed 1510 mm ArPENNDX A Visual Inspection: Visual Inspection around internal and external of bund walls reveals no signs of breaches or leaks. The bund floor to wall joint appears to be in good condition. Bund floor to wall joint appears to be in good condition. Bund Storage Volume: Primary Vessel(s) - 25% of Total Storage Volume: Motor the Tose Vessel Visual Inspection around internal and external of bund walls reveals no signs of breaches or leaks. The bund floor to wall joint appears to be in good	Site: Bund Ref. No.: Bund Dimensions Bund Construction Material: Bund Lining Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test pi BS 8007:1 Fill Rate Stabilisati Duration Acceptance permissib level) Water Lew Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas- therefore Passed.	Clonminan Portlaoise Gantry Sun 3.0m x 9.75 In Situ Con None 64.64m ³ (6 64.64m ³ (6 2 / Safe to Conc Visual Ir The bun Bund fill APPENE TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	Industrial Park, m x 2.21 m rete 4642 ltr) uct Hydrostatic Tea ispection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (License F Bund Tyı (Local/R Primary ' Construc Primary ' Volume: Primary ' Storage V st? Yes/No ernal and ext uppears to be	Reg. No.: pe semote/Combined/Portable Vessel(s) – Materials of stion: Vessel(s) – Total Storage Vessel(s) – 110% Volume of Vessel: Vessel(s) – 25% of Total Volume: YES ternal of bund walls reveals no a in good condition.	W018 Local Wash I N/A N/A N/A signs of brea	Down Area
Portiaoise Contraction Stand Ref. No:: Gantry Sump Bund Type (Local Remote/Combined/Portable): Local Stand Dimensions 3.0m x9.75m x2.21 m Primary Vessel(s) - Materials of Construction: Wash Down Area Stand Construction In Situ Concrete Primary Vessel(s) - Total Storage N/A Stand Construction In Situ Concrete Primary Vessel(s) - Total Storage N/A Stand Retention 64.64m3 (64642 hr) Primary Vessel(s) - 25% of Total N/A Stand Retention 64.64m3 (64642 hr) Primary Vessel(s) - 25% of Total N/A Stand Retention 64.64m3 (64642 hr) Primary Vessel(s) - 25% of Total N/A Fastal Inspection: You will point appears to be in good condition. N/A Participher Constructions: The bund floor to wall joint appears to be in good condition. N/A Notographs A AppenDIX A AppenDIX A N/A Vareance Criteria (Total During the test period, the total permissible drop in level after permissible drop in water Buod Total Shourd concernet after appendice and and the scenare vessel in a scenare differed mount StaliBilisation Period Acceptable (24 hrs) Duru	Bund Ref. No.: Bund Dimensions Bund Construction Material: Bund Lining Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test Di BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe	Portlaoise Gantry Sun 3.0m x 9.75 In Situ Con None 64.64m ³ (6 2 / Safe to Conc Visual Ir The bun Bund fill APPENE TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	np m x 2.21 m rete 4642 ltr) uct Hydrostatic Tea ispection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Bund Tyı (Local/R Primary ' Construc Primary ' Volume: Primary ' Largest V Primary ' Storage V st? Yes/No ernal and ext uppears to be	pe lemote/Combined/Portable Vessel(s) - Materials of ction: Vessel(s) - Total Storage Vessel(s) - 110% Volume of Vessel: Vessel(s) - 25% of Total Volume: YES ternal of bund walls reveals no a in good condition.	Local Wash I N/A N/A N/A	Down Area
Stand Ref. No:: Gantry Sump Bund Type (Local/Remote/Combined/Portable): Local Stand Dimensions 3.0m x 9.75m x 2.21 m Primary Vessel(s) - Total Storage W.Ash Down Area Stand Construction In Situ Concrete Primary Vessel(s) - Total Storage N/A Mand Lining None Primary Vessel(s) - Total Storage N/A Mand Lining None Primary Vessel(s) - 25% of Total N/A Johne: Descend Practicable / Safe to Conduct Hydrostatic Test? Yes/No YES For give reasons: The bund floor to wall joint appears to be in good condition. Bund file 1510 mm N/A Notographs APPENDIXA VES N/A Notographs APPENDIXA VES Subbilitation Period Acceptable (24hrs) During the test period, the total permissible drop in level after permissible drop in water Doration of the Test 24hrs During the test period, the total permissible drop in level after permissible drop in water Data and Water Level (Bange in Zero drop when the reference vessel is taken into account Exception account Day 1 1510 mm 159 mm 1/2/2 (mm) Exception account and the reference vessel is taken into account Day 2 10448 m	Bund Ref. No.: Bund Dimensions Bund Construction Material: Bund Lining Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	Gantry Sun Gantry Sun Gantry Sun Gantry Sun Gantry Sun Gantry Sun In Situ Con None 64.64m ³ (6 Con	ip m x 2.21 m :rete 4642 ltr) uct Hydrostatic Tea ispection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Bund Tyı (Local/R Primary Construc Primary Volume: Primary Largest V Primary Storage V st? Yes/No ernal and ext uppears to be	pe emote/Combined/Portable Vessel(s) – Materials of ction: Vessel(s) – Total Storage Vessel(s) – 110% Volume of Vessel: Vessel(s) – 25% of Total Volume: YES ternal of bund walls reveals no a in good condition.	Local Wash I N/A N/A N/A signs of brea	Down Area
Band Ref. No:: Gantry Sump Bund Type (Local/Remote/Combined/Portable): Local Sund Dimensions 3.0m x 9.75m x 2.21 m Primary Vessel(s) - Materials of Construction: Wash Down Area Bund Construction In Situ Concrete Primary Vessel(s) - Total Storage N/A Bund Construction In Situ Concrete Primary Vessel(c) - 110% Volume of Largest Vessel(c) - 25% of Total N/A Bund Refention 64.644m ³ (64642 ltr) Primary Vessel(c) - 25% of Total N/A Storage Volume: N/A Interview Vessel(c) - 25% of Total N/A Powered Practicable / Safe to Conduct Hydrostatic Test? Yes/No YES YES Fino give reasons: The bund floor to wall joint appears to be in good condition. Bund filed 1510 mm Hotographs APPENDIX A YES YOBOSTATICTEST DETAILS: YES YES Notabilisation Period Acceptable (24hrs) Acceptable (24hrs) Duration of the Test 24 hrs N/A Acceptable drop in wall be est period, the total permissible drop in level after Acceptable drop in wall for wall or tok on and rainfall abould not exceed 1/500 ^A of the average water depth. 10 mm or another specified amount. Nater Level (Lhange in Acceptable drop in wall for the Test: Bund Lev	Bund Ref. No.: Bund Dimensions Bund Construction Material: Bund Lining Material: Bund Retention Volume: Deemed Practicabi If no give reasons: Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptance permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas therefore Passed.	Gantry Sun 3.0m x 9.75 In Situ Con None 64.64m ³ (6 2 / Safe to Conc Visual Ir The bun Bund fill APPENE TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	ip m x 2.21 m crete 4642 ltr) uct Hydrostatic Tea ispection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Bund Tyı (Local/R Primary Construc Primary Volume: Primary Largest V Primary Storage V st? Yes/No ernal and ext uppears to be	pe emote/Combined/Portable Vessel(s) - Materials of ction: Vessel(s) - Total Storage Vessel(s) - 110% Volume of Vessel: Vessel(s) - 25% of Total Volume: YES ternal of bund walls reveals no a in good condition.	Wash I N/A N/A N/A	Down Area
Local / Remote / Combined / Portable /: Sund Dimensions 3.0m x 9.75m x 2.21 m Primary Vessel(s) - Materials of Construction Wash Down Area Sund Construction In Situ Concrete Primary Vessel(s) - Total Storage N/A Auri Alining None Primary Vessel(s) - Total Storage N/A Sund Lining None Primary Vessel(s) - Total Storage N/A Sund Reteation 64.64m ³ (64642 ltr) Primary Vessel(s) - 25% of Total N/A Storage Volume: N/A Storage Volume: N/A Premend Practicable / Safe to Conduct Hydrostatic Test? Yes/No YES Total Monor wall joint appears to be in good condition. Bund filed 1510 nm AppeNDIX A Storage Volume: YES VirkostArtCEST DETALS: Storage Yor (Yes/NO)? YES Stallisation Period Acceptable (24hrs) Dam arial should not exceed 1/500% of the exceed 1/500% of the exceeding and rainfall should not exceed 1/500% of the exceeding and rainfall should not exceed 1/500% of the exceeding and rainfall should not exceed 1/500% of the exceeding and rainfall should not exceed 1/500% of the exceeding and rainfall should not exceed 1/500% of the exceeding and rainfall should not exceed 1/500% of the exceeding and rainfall should not exceed 1/500% of the exceeding and the exceeding and rainfall should not exceed	Bund Dimensions Bund Construction Material: Bund Lining Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs HyDROSTATIC TEST DI BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Test completed succe 24hr test period. Bas cherefore Passed.	3.0m x 9.75 In Situ Con None 64.64m ³ (6 4.64m ³ (6 5 / Safe to Conc Visual Ir The bun Bund fill APPENE TAILS: 987 (Yes/No)? 91 Period f the Test c Criteria (Tota	m x 2.21 m rrete 4642 ltr) uct Hydrostatic Tea ispection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable ((Local/R Primary Construc Primary Volume: Primary Largest V Primary Storage V st? Yes/No ernal and ext uppears to be	emote/Combined/Portable Vessel(s) - Materials of ction: Vessel(s) - Total Storage Vessel(s) - 110% Volume of Vessel: Vessel(s) - 25% of Total Volume: YES ternal of bund walls reveals no a in good condition.	Wash I N/A N/A N/A	Down Area
Sund Dimensions 3.0m x 9.75m x 2.21 m Primary Vessel(s) - Materials of Construction: Wash Down Area Sund Construction In Situ Concrete Primary Vessel(s) - Total Storage N/A Sund Construction In Situ Concrete Primary Vessel(s) - 110% Volume of Area N/A Sund Retention 64.64m³ (64642 ltr) Primary Vessel(s) - 25% of Total N/A Storage Volume: Storage Volume: N/A Primery Vessel(s) - 25% of Total N/A Storage Volume: N/A Primery Vessel(s) - 25% of Total N/A Storage Volume: N/A Primery Vessel(s) - 25% of Total N/A Storage Volume: N/A The bund floor to vall joint appears to be in good condition. Bund filed 1510 mm Hotographs APPENDIXA VPROSTATICTEST DETALS: Storage Volume: Not Stabilisation Period Acceptable (24hrs) Aver Evel Change in Zero from when the reference vessel Lake linto account Mater Level N/A Stabilisation Period Acceptable (24hrs) Duration of the Test 24 hrs Stabilisation Period Acceptable (24hrs)	Bund Dimensions Bund Construction Material: Bund Lining Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs HyDROSTATIC TEST DI BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Test completed succe Stherefore Passed.	3.0m x 9.75 In Situ Con None 64.64m ³ (6 2 / Safe to Conc Visual Ir The bun Bund fill APPENE TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	m x 2.21 m rete 4642 ltr) uct Hydrostatic Tea spection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Primary Construc Primary Volume: Primary Largest V Primary Storage V st? Yes/No ernal and ext uppears to be [24hrs]	Vessel(s) – Materials of ction: Vessel(s) – Total Storage Vessel(s) – 110% Volume of Vessel: Vessels: Vessel(s) – 25% of Total Volume: YES ternal of bund walls reveals no a in good condition.	Wash I N/A N/A N/A	Down Area
stand Dimensions JUIN X9.75m X 221 m Primary Vessel(s) - Materials of Construction: Value: Stand Construction In Situ Concrete Primary Vessel(s) - Total Storage N/A Stand Lining None Primary Vessel(s) - 110% Volume of Largest Vessel: N/A Stand Lining None Primary Vessel(s) - 25% of Total Storage Volume: N/A Dommary Construction: 64.64m3 (64642 ltr) Primary Vessel(s) - 25% of Total Storage Volume: N/A Dommary Construction: Storage Volume: Vessel(s) - 25% of Total Storage Volume: N/A Primary Vessel(s) - 25% of Total Storage Volume: N/A N/A Primary Vessel(s) - 25% of Total Storage Volume: N/A N/A Primary Vessel(s) - 25% of Total Storage Volume: N/A Stand Inspection: Yisual Inspection around internal and external of bund walls reveals no signs of breaches or leaks. The bund floor to vall joint appears to be in good condition. Bund Heid 1510 mm Norestruction of the Test 24 hrs: APPENDIX A Volume to respective annows Zero drop when the reference vessel is taken into account Mater Level Change in Zero drop when the reference vessel is taken into account Heiderand Reference Vessel Mater Level Ch	Bund Dimensions Bund Construction Material: Bund Lining Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs HyDROSTATIC TEST DI BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas therefore Passed.	S.UM X 9.75 In Situ Con None 64.64m ³ (6 2 / Safe to Conc Visual Ir The bun Bund fill APPENE TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	m x 2.21 m crete 4642 ltr) uct Hydrostatic Te spection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Primary Construc Primary Volume: Primary Largest V Primary Storage V st? Yes/No ernal and ext uppears to be [24hrs]	Vessel(s) – Materials of ction: Vessel(s) – Total Storage Vessel(s) – 110% Volume of Vessel: Vessels: Vessel(s) – 25% of Total Volume: YES ternal of bund walls reveals no a in good condition.	N/A N/A N/A	ches or leaks.
Stand Construction In Situ Concrete Primary Vessel(s) - Total Storage N/A Stand Lining None Primary Vessel(s) - 110% Volume of N/A Stand Retention 64.64m³ (64642 ltr) Primary Vessel(s) - 25% of Total N/A Dand Retention 64.64m³ (64642 ltr) Primary Vessel(s) - 25% of Total N/A Darde Tracticable / Safe to Conduct Hydrostatic Test? Yes/No YES YES Fing yer reasons: The bund floor to wall joint appears to be in good condition. Bund filed 1500 mm * hotographs APPENDIX A YES YMROSTATIC EST DETAILS: The bund floor to wall joint appears to be in good condition. Bund filed 1500 mm * burget of the Conduct Hydrostatic Test? Yes/No YES YES * hotographs APPENDIX A APPENDIX YMROSTATIC TEST DETAILS: ************************************	Bund Construction Material: Bund Lining Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas therefore Passed.	In Situ Con None 64.64m ³ (6 c / Safe to Cond Visual Ir The bun Bund fill APPENE TAILS: 987 (Yes/No)? on Period f the Test c Criteria (Tota	4642 ltr) uct Hydrostatic Te spection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Primary Volume: Primary Largest V Primary Storage V st? Yes/No ernal and ext ppears to be [24hrs]	Vessel(s) – Total Storage Vessel(s) – 110% Volume of Vessel: Vessels Vessel(s) – 25% of Total Volume: YES ternal of bund walls reveals no e in good condition.	N/A N/A N/A	ches or leaks.
Sund Construction faterial: In Situ Concrete Primary Vessel(s) - Total Storage Volume: N/A Sund Lining faterial: None Primary Vessel(s) - 110% Volume of Largest Vessel: N/A Sund Retention 64.64m³ (64642 ltr) Primary Vessel(s) - 25% of Total Storage Volume: N/A Deemed Practicable / Safe to Conduct Hydrostatic Test? Yes/No YES N/A Fing give reasons: The bund floor to wall joint appears to be in good condition. Bund filled 1510 mm YES Totographs APPENDIX A Primary Vessel(s) - 10% Volume of Reference Vessel YES Fill Rate N/A N/A N/A Bibliosation Period Acceptable (24hrs) Stabilisation Period Acceptable (24hrs) Duration of the Test 24 hrs During the test period, the total permissible drop in level after allowing for evaporation and rainfall should not exceed 1/20% of the average water depth.10 mm or another specified amount. Water Level Water Level in Reference Vessel Bund Level (+/-) (mm) Reference vessel Level (f/.) (mm) 10 Jay 1 1510 mm 159 mm -2 mm 0 mm 13.20 159 mm -2 mm 0 mm 0 mm 19/12/2018 159 mm -2 mm 0 mm <	Bund Construction Material: Bund Lining Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptand permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas therefore Passed.	In Situ Con None 64.64m ³ (6 2 / Safe to Conc Visual Ir The bun Bund fill APPENE TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	4642 ltr) uct Hydrostatic Te spection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Primary Volume: Primary Largest V Primary Storage V st? Yes/No ernal and ext ppears to be [24hrs]	Vessel(s) – Total Storage Vessel(s) – 110% Volume of Vessel: Vessels Vessel(s) – 25% of Total Volume: YES ternal of bund walls reveals no e in good condition.	N/A N/A N/A	ches or leaks.
Bill UDIFUELION In Sill UDIFUEL If Think y vessel(s) = Toki Job Jay Type Sund Lining None Primary Vessel(s) = 110% Volume of N/A Jund Lining Alacrial: Primary Vessel(s) = 25% of Total N/A Jund Retention 64.64m3 (64642 ltr.) Primary Vessel(s) = 25% of Total N/A Jund Retention 64.64m3 (64642 ltr.) Primary Vessel(s) = 25% of Total N/A Jund Bayerion Yisual Inspection around internal and external of bund walls reveals no signs of breaches or leaks. The bund flow to wall joint appears to be in good condition. Bund Unitsoft ESF DEFILIAS ES 8007:1987 (Yes/No)? YES Though The State To Total Job Total ArPENDIX A Type Job Total Job Tot	Bund Construction Material: Bund Lining Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas therefore Passed.	None 64.64m ³ (6 c / Safe to Conc Visual Ir The bun Bund fill APPENE TAILS: 987 (Yes/No)? on Period f the Test c Criteria (Tota	4642 ltr) uct Hydrostatic Te spection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Primary Volume: Primary Largest V Storage V st? Yes/No ernal and ext ppears to be [24hrs]	Vessel(s) – 110% Volume of Vessel: Vessel: Vessel(s) – 25% of Total Volume: YES ternal of bund walls reveals no e in good condition.	N/A N/A	ches or leaks.
Name Finite: Volume. Stand Lining faterial: None Primary Vessel(s) - 110% Volume of Largest Vessel. N/A Startarial: None Primary Vessel(s) - 110% Volume of Largest Vessel. N/A Storage Volume: N/A N/A Detende Practicable / Safe to Conduct Hydrostatic Test? Yes/No YES Fine give reasons: The bund floor to wall joint appears to be in good condition. Bund filed 1510 mm APPEPNIX A Hotographs APPENIX A VROUTH: BS 8007:1987 (Yes/No)? YES Fill Rate NACceptance Criteria (Total appensible drop in were allowing for exponential should not exceed 1/500 ^w of the average water depth. 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Day 1 1510 mm 159 mm 192/2 1048 mm 159 mm -2 mm Day 2 1540 m 159 mm 193/2 / 2018 159 mm -2 mm 13:30 159 mm -2 mm 19/12/2018 159 mm -2 mm 0 mm 13:30 159 mm -2 mm 0 mm 19/12/2018	Bund Lining Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test dillisati Duration Acceptance permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:30 Description / Completed succe Z4hr test period. Bas herefore Passed.	None 64.64m ³ (6 c / Safe to Cond Visual Ir The bun Bund fill APPENE TAILS: 987 (Yes/No)? on Period f the Test c Criteria (Tota	4642 ltr) uct Hydrostatic Tea spection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Primary Largest V Primary Storage V st? Yes/No ernal and ext ppears to be [24hrs]	Vessel(s) – 110% Volume of Vessel: Vessel: Volume: YES ternal of bund walls reveals no e in good condition.	N/A N/A	ches or leaks.
Sand Lining faterial: None Primary Vessel(s) - 110% Volume of Largest Vessel: N/A Sund Retention folume: 64.64m³ (64642 ltr) Primary Vessel(s) - 25% of Total Storage Volume: N/A Deemed Practicable / Safe to Conduct Hydrostatic Test? Yes/No YES N/A Fine give reasons: The bund floor to wall joint appears to be in good condition. Bund filled 1510 mm YES Fisual Inspection: Visual Inspection around internal and external of bund walls reveals no signs of breaches or leaks. The bund floor to wall joint appears to be in good condition. Bund filled 1510 mm N/A Hotographs APPENDIX A N/A N/A WRONTATE TEST DETAILS: ES 8007:1987 (Yes/No)? YES BS 8007:1987 (Yes/No)? YES N/A AprepENDIX A N/A Material and the test period, the total permissible drop in level after allowing for evaporation and rainfall should not exceed 1/500° of the average water depth, 10 mm or another specified amount. Mater Level in Baund Reference vessel Duration of the Test: 24 hrs Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) Mater Level in Baund Reference vessel Level (+/-) (mm) Mater Level in Baund Reference vessel Level (+/-) (mm) Mater Level in Baund Mater Level in Ba	Bund Lining Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	None 64.64m ³ (6 2 / Safe to Conc Visual Ir The bun Bund fill APPENE TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	4642 ltr) uct Hydrostatic Tea spection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Primary Largest V Primary Storage V st? Yes/No ernal and ext ippears to be [24hrs]	Vessel(s) - 110% Volume of Vessel: Vessels) - 25% of Total Volume: YES ternal of bund walls reveals no e in good condition.	N/A N/A	ches or leaks.
And a timing Note Largest Vessel: N/A Bund Retention 64.64m3 (66642 ltr) Primary Vessel(s) - 25% of Total N/A Promeed Practicable / Safe to Conduct Hydrostatic Test? Yes/No YES YES Fine give reasons: The bund floor to wall joint appears to be in good condition. Bund filed 1510 mm Hotographs APPENDIX A YES Froe give reasons: The bund floor to wall joint appears to be in good condition. Bund filed 1510 mm Hotographs APPENDIX A N/A Arepst Vessel(s) Arepst Vessel(s) Fill Rate N/A Stabilisation Period Acceptable (24hrs) During the test period, the total permissible drop in level after allowing for evaporation and rainfall should one exceed 1/500m of the average water depth 10 mm or another specified manut. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Mater Level Change in Reference Vessel Bund Level (+/-) (mm) Reference vessel Level 13:30 159 mm -2 mm 0 mm 13:30 159 mm -2 mm 0 mm 13:30 159 mm -2 mm 0 mm 13:30 199 m -2 mm 0 mm	Material: Material: Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test du BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas- therefore Passed.	for the formation of the formation	4642 ltr) luct Hydrostatic Tea ispection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Primary Storage V st? Yes/No ernal and ext ippears to be [24hrs]	Vessel(s) – 25% of Total Vessel: Volume: YES ternal of bund walls reveals no e in good condition.	N/A signs of brea	ches or leaks.
March Int. Dright Primary Vessel(3) - 25% of Total Sund Retention 64.64m³ (64642 ltr) Primary Vessel(3) - 25% of Total Olume: Dright Practicable / Safe to Conduct Hydrostatic Test? Yes/No YES Fino give reasons: The bund floor to wall joint appears to be in good condition. Bund diled 1510 mm N/A Hotographs APPENDIX A NROBOTATIC TEST DETAILS: BS 8007:1987 (Yes/No)? YES Fill Rate N/A Motographs APPENDIX A NROBOTATIC TEST DETAILS: March International Appendication of the Test 24 hrs Acceptate Criteria (Total During the test period, the total permissible drop in level after allowing for evaporation and rainfall should not exceed 1/500% of the test everage water depth. 10 mm or another specified amount. Water Level Change in Zero drop when the reference vessel is taken into account Reference vessel Time in Bund Reference Vessel Bund Level (+/-) (mm) (+/-) (mm) 19/12/2018 1510 mm 159 mm -2 mm 0 mm 19/12/2018 152.20 -2 mm 0 mm 159 mm 159 mm 19/12/2018 150 mm 159 mm -2 mm 0 mm 159 mm 19/12/2018	Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptand permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	64.64m ³ (6 c / Safe to Conc Visual II The bun Bund fill APPENE TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	4642 ltr) uct Hydrostatic Tea spection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Primary Storage V st? Yes/No ernal and ext uppears to be [24hrs]	Vessel(s) - 25% of Total Volume: YES ternal of bund walls reveals no e in good condition.	N/A signs of brea	ches or leaks.
Sund Retention 64.64m3 (64.642 ltr) Primary Vessel(s) - 25% of Total Storage Volume: N/A Deemed Practicable / Safe to Conduct Hydrostatic Test? Yes/No YES YES Fino give reasons: The bund floor to wall joint appears to be in good condition. Bund filed 1510 mm YES Hotographs APPENDIX A YES Probabilisation Period Acceptable (24hrs) Primary Vessel(s) Duration of the Test 24 hrs All Period Acceptable (24hrs) Duration of the Test 24 hrs allowing for evaporation and rainfall should not exceed 1/500% of the average water depth. 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Reference Vessel Reference vessel Level (+/-) (mm) Date and Water Level in Bund Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) By 1 1510 mm 159 mm -2 mm 0 mm 13/30 159 mm -2 mm 0 mm 1 mm 13/30 159 mm -2 mm 0 mm 1 mm 13/30 159 mm -2 mm 0 mm 1 mm 13/30 159 mm -2 mm 0 mm 1 mm <t< td=""><td>Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30</td><td>64.64m³ (6 2 / Safe to Conc 2 / Safe to Conc 4 Visual II The bun Bund fill 4 APPENE TAILS: 987 (Yes/No)? 987 (Yes/No)? 987 Criteria (Tota</td><td>4642 ltr) luct Hydrostatic Te ispection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (</td><td>Primary Storage V st? Yes/No ernal and ext uppears to be (24hrs)</td><td>Vessel(s) – 25% of Total Volume: YES ternal of bund walls reveals no e in good condition.</td><td>N/A signs of brea</td><td>ches or leaks.</td></t<>	Bund Retention Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	64.64m ³ (6 2 / Safe to Conc 2 / Safe to Conc 4 Visual II The bun Bund fill 4 APPENE TAILS: 987 (Yes/No)? 987 (Yes/No)? 987 Criteria (Tota	4642 ltr) luct Hydrostatic Te ispection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Primary Storage V st? Yes/No ernal and ext uppears to be (24hrs)	Vessel(s) – 25% of Total Volume: YES ternal of bund walls reveals no e in good condition.	N/A signs of brea	ches or leaks.
Storage Volume: Yes Preemed Practicable / Safe to Conduct Hydrostatic Test? Yes/No YES Fino give reasons: The bund floor to wall joint appears to be in good condition. Bund filed 1510 mm Fisual Inspection: Visual Inspection around internal and external of bund walls reveals no signs of breaches or leaks. The bund floor to wall joint appears to be in good condition. Bund filed 1510 mm Horostatic TEST DETAILS: Image: Stabilisation Period Acceptable (24hrs) Acceptance Criteria (Total Duration of the frest 24 Hrs Acceptance Criteria (Total During the test period, the total permissible drop in level after permissible drop in water level) Date and Water Level in Bund 1510 mm Data and Mater Level Reference Vessel Bund Level (+/-) (mm) (+/-) (mm) (+/-) (mm) (+/-) (mm) (+/-) (mm) (-/-) (mm)	Volume: Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptand permissib level) Water Lew Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Test completed succe 24hr test period. Bas-	Visual II The bun Bund fil APPENE TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	luct Hydrostatic Te spection around intr d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (Storage V st? Yes/No ernal and ext sppears to be (24hrs)	Volume: YES ternal of bund walls reveals no e in good condition.	signs of brea	ches or leaks.
Construction Image: Construction Figual Inspection: Visual Inspection around internal and external of bund walls reveals no signs of breaches or leaks. The bund floor to wall joint appears to be in good condition. Bund filled 1510 nm Hotographs APPENDIX A NYDROSTATIC TEST DETAILS: Image: Construction of the Test BS B007:1987 (Yes/No)? YES Stabilisation Period Acceptable (24hrs) During the test period, the total permissible drop in level after allowing for evaporation and rainfall should not exceed 1/500° of the average water depth. 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Reference Vessel Date and Water Level in Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) Reference Vessel 159 mm -2 mm 0 mm 19/12/2018 159 mm -2 mm 0 mm 13:30 Impleted State in the survey and hydrostatic test carried out ENVA deem bund Gattry sump to be of sound integrity and terefore Passed. State TEST DETAILS: Inspection Description & Results: Impleted State State in the survey and hydrostatic test carried out ENVA deem bund Gattry sump to be of sound integrity and terefore Passed.	Deemed Practicabl If no give reasons: Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptand permissib level) Water Lew Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	e / Safe to Conc Visual II The bun Bund fil APPEND TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	luct Hydrostatic Te spection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (st? Yes/No ernal and ext appears to be (24hrs)	YES ternal of bund walls reveals no e in good condition.	signs of brea	ches or leaks.
Peemed Practicable / Safe to Conduct Hydrostatic Test? Yes/No YES The give reasons: The bund floor to wall joint appears to be in good condition. Bund filled 1510 mm Bund filled 1510 mm APPENDIX A NROROSTATIC TEST DETAILS: YES Bibliographs APPENDIX A NROROSTATIC TEST DETAILS: YES Bibliographs APPENDIX A Acceptable (24hrs) During the test period, the total permissible drop in level after apermissible drop in water Acceptance Criteria (Total permissible drop in water During the test period, and rainfall should not exceed 1/500% of the average water depth. 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account the average water depth. 10 mm or another specified amount. Date and Day 1 15/12/2018 13:20 159 mm -2 mm 0 mm Day 2 19/12/2018 13:30 159 mm -2 mm 0 mm escription / Comments of Hydrostatic Test: esc completed successfully, dept of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the the test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and terefore Passed.	Deemed Practicabl If no give reasons: Visual Inspection: Photographs HyDROSTATIC TEST DI BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	e / Safe to Cond Visual Ir The bun Bund fil APPENL TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	luct Hydrostatic Te Ispection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (st? Yes/No ernal and ext appears to be (24hrs)	YES ternal of bund walls reveals no e in good condition.	signs of brea	ches or leaks.
fno give reasons: Tisual Inspection: Visual Inspection around internal and external of bund walls reveals no signs of breaches or leaks. The bund filed 1510 mm Hotographs APEPNDIX A Noncorrection: BS 8007:1987 (Yes/No)? YES N/A Stabilisation Period Acceptable (24hrs) Duration of the Test 24 hrs Acceptable (24hrs) Duration of the Test Period Acceptable (24hrs) Duration of the Test 24 hrs Matter Level (1000 acceptable (24hrs) Duration of the Test Very of the average water depth. 10 mm or another specified amount. Water Level of the average water depth. 10 mm or another specified amount. Water Level In Bund Reference vessel Time in Bund Reference Vessel Date and Water Level in mBund Level (+/-) (mm) Reference vessel Level (+/-) (mm) 18/12/2018 1510 mm 159 mm -2 mm 0 mm 13:30 159 mm -2 mm 0 mm 19/12/2018 13:30 159 mm -2 mm 0 mm 19/12/2018 13:30 159 mm -2 mm 0 mm 19/12/2018 <	If no give reasons: Visual Inspection: Photographs HyDROSTATIC TEST DI BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas herefore Passed.	Visual Ir The bun Bund fil APPENT TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	Ispection around inte d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (ernal and ext appears to be (24hrs)	ternal of bund walls reveals no e in good condition.	signs of brea	ches or leaks.
Tisual Inspection: Visual Inspection around internal and external of bund walls reveals no signs of breaches or leaks.	Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas herefore Passed.	Visual In The bun Bund fil APPENT TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	espection around intended floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (ernal and ext ppears to be (24hrs)	ternal of bund walls reveals no e in good condition.	signs of brea	ches or leaks.
Tisual Inspection: Visual Inspection around internal and external of bund walls reveals no signs of breaches or leaks. The bund filed 1510 mm Appendix Appears to be in good condition. Bund filed 1510 mm Appendix Appendix Appears to be in good condition. Bund filed 1510 mm Appendix Appendix	Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas herefore Passed.	Visual In The bund fil APPENE TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tota	spection around intended floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (ernal and ext ppears to be (24hrs)	ternal of bund walls reveals no e in good condition.	signs of brea	ches or leaks.
Tisual Inspection Visual Inspection around internal and external of bund walls reveals no signs of breaches or leaks. The bund floor to wall joint appears to be in good condition. Bund filled 1510 mm Hotographs APPENDIX A WROSTATICTEST DETAILS: Stabilisation Period Acceptable (24hrs) Duration of the Test 24 hrs Acceptance Criteria (Total During the test period, the total permissible drop in level after allowing for evaporation and rainfall should not exceed 1/500 ^{on} of the average water depth. 10 mm or another specified amount. Water Level Change in Zero drop when the reference vessel is taken into account Bay 1 1510 mm 18/12/2018 150 mm Day 2 1048 mm 19/12/2018 1510 mm Day 2 1048 mm 19/12/2018 Day 2 Day 2 Day 3 19/12/2018 Day 4 19/12/2018 Day 2 Day 3 19/12/2018 Day 4 19/12/2018	Visual Inspection: Photographs Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Pest completed succe 24hr test period. Bas herefore Passed.	Visual Ii The bun Bund fil APPENI TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tot:	spection around int d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (ernal and ext appears to be (24hrs)	ternal of bund walls reveals no e in good condition.	signs of brea	ches or leaks.
The bund floor to wall joint appears to be in good condition. Bund filled 1510 mm APPENDIX A INDROSTATIC TEST DETAILS: INTERDITION CONTRACTION TO THE CONTRACT OF C	Photographs Hydrostatic test di Fill Rate Stabilisati Duration Acceptand permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	The bun Bund fil APPENT TAILS: 987 (Yes/No)? on Period f the Test e Criteria (Tot:	d floor to wall joint a ed 1510 mm IX A YES N/A Acceptable (appears to be	e in good condition.]
Bund filed 1510 mm 'hotographs APPENDIX A WR08074TICTEST DETAILS:	Photographs Hydrostatic test di Fill Rate Stabilisati Duration of Acceptand permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	Bund fil APPENI TAILS: 987 (Yes/No)? on Period of the Test e Criteria (Tot:	ed 1510 mm IX A YES N/A Acceptable ((24hrs)]
hotographs APPENDIX A WINDOSTATICTEST DETAILS: BS 8007:1987 (Yes/No)? YES Fill Rate N/A Stabilisation Period Acceptable (24hrs) Duration of the Test 24 hrs Acceptance Criteria (Total permissible drop in water allowing for evaporation and rainfall should not exceed 1/500% of the average water depth. 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Time in Bund Reference Vessel Time in Bund Reference Vessel Day 1 1510 mm 159 mm 13:20 Day 2 1048 mm Day 2 1048 mm 159 mm 19/12/2018 13:30 -2 mm 0 mm 19/12/2018 13:30 -2 mm 0 mm 19/12/2018 1048 mm 159 mm 13:30 -2 mm 0 mm 13:30 -2 mm 0 mm 19/12/2018 -2 mm 0 mm 13:30 -2 mm 0 mm 141 test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and teref	Photographs Hydrostatic test di Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	APPENI TAILS: 987 (Yes/No)? on Period of the Test e Criteria (Tot:	IX A YES N/A Acceptable ((24hrs)]
HYDROSTATICTEST DETAILS: BS 8007:1987 (Yes/No)? YES Fill Rate N/A Stabilisation Period Acceptable (24hrs) Duration of the Test 24 hrs Acceptance Criteria (Total period During the test period, the total permissible drop in level after allowing for evaporation and rainfall should not exceed 1/500% of the average water depth, 10 mm or another specified amount. Water Level Change in Zero drop when the reference vessel is taken into account Reference Vessel Date and Water Level Matter Level in Reference Vessel Bund Level (+/-) (mm) Reference vessel Level (+/-) (nm) Day 1 1510 mm 159 mm -2 mm 0 mm 18/12/2018 13:20 -2 mm 0 mm -2 mm 0 mm 19/12/2018 159 mm -2 mm 0 mm -2 mm 0 mm 13:30	Hydrostatic test di BS 8007:1 Fill Rate Stabilisati Duration Acceptand permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Cescription / Comm Pest completed succe 24hr test period. Bas herefore Passed.	TAILS: 987 (Yes/No)? on Period of the Test e Criteria (Tota	YES N/A Acceptable ((24hrs)			-
BS 8007:1987 (Yes/No)? YES FIIL Rate N/A Stabilisation Period Acceptable (24hrs) Duration of the Test 24 hrs Acceptance Criteria (Total permissible drop in water During the test period, the total permissible drop in level after allowing for evaporation and rainfall should not exceed 1/500% of the average water depth. Jo mm or another specified amount. Water Level Change in Zero drop when the reference vessel is taken into account Mater Level Change in Zero drop when the reference vessel is taken into account Time in Bund Reference Vessel Date and Water Level Water Level in Reference Vessel Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) Daty 1 1510 mm 159 mm -2 mm 0 mm 19/12/2018 13:20 -2 mm 0 mm 19/12/2018 13:30 -2 mm 0 mm 19/12/2018 Isseed on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and herefore Passed. usual Test Details: Inspection Description & Results:	BS 8007:1 Fill Rate Stabilisati Duration (Acceptance permissib level) Water Lew Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	987 (Yes/No)? on Period of the Test e Criteria (Tota	YES N/A Acceptable	(24hrs)			-
BS 8007:1987 (Yes/No)? YES Fill Rate N/A Stabilisation Period Acceptable (24hrs) Duration of the Test 24 hrs Acceptance Criteria (Total permissible drop in level after allowing for evaporation and rainfall should not exceed 1/500 th of the average water depth. 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Date and Water Level Number of Water Level in Reference Vessel Day 1 1510 mm 18/12/2018 159 mm 13:20 0 Day 2 1048 mm 19/12/2018 159 mm 13:30 -2 mm 0 mm 19/12/2018 159 mm -2 mm secription / Comments of Hydrostatic Test: est completed successfully, dept of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and terefore Passed. HS Matt Test DETAILS: INSPECTION DESCRIPTION & RESULTS:	BS 8007:1 Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lew Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	987 (Yes/No)? on Period of the Test e Criteria (Tota	YES N/A Acceptable ((24hrs)			
Fill Rate N/A Stabilisation Period Acceptable (24hrs) Duration of the Test 24 hrs Acceptance Criteria (Total permissible drop in water allowing for evaporation and rainfall should not exceed 1500% of the average water depth. 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Time in Bund Reference Vessel Date and Water Level in Reference Vessel Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) Day 1 1510 mm 159 mm -2 mm 0 mm 18/12/2018 13:20 0 mm -2 mm 0 mm Day 2 1048 mm 159 mm -2 mm 0 mm 13:20 -2 mm 0 mm -2 mm 0 mm 13:30 -2 mm 0 mm -2 mm 0 mm escription / Comments of Hydrostatic Test: est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and ierefore Passed.	Fill Rate Stabilisati Duration Acceptanc permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30	on Period If the Test e Criteria (Tota	N/A Acceptable ((24hrs)			-
Stabilisation Period Acceptable (24hrs) Duration of the Test 24 hrs Acceptance Criteria (Total permissible drop in water level) During the test period, the total permissible drop in level after allowing for evaporation and rainfall should not exceed 1/500 th of the average water depth, 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Date and Water Level Water Level in Reference Vessel Bund Level (+/-) (mm) Reference vessel Level (+/-) (num) Day 1 1510 mm 159 mm -2 mm 0 mm 19/12/2018 1048 mm 159 mm -2 mm 0 mm 13:30 Image: Second and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and erefore Passed.	Stabilisati Duration Acceptance permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm est completed succe 24hr test period. Bas herefore Passed.	on Period of the Test e Criteria (Tota	Acceptable	(24hrs)		and the	
Duration of the Test 24 hrs Acceptance Criteria (Total permissible drop in water level) During the test period, the total permissible drop in level after allowing for evaporation and rainfall should not exceed 1/500 th of the average water depth, 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Date and Time Mater Level in Bund Water Level in Reference Vessel Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) Date and Time 1510 mm 159 mm -2 mm 0 mm 19/12/2018	Duration of Acceptand permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Pest completed succe 4hr test period. Bas herefore Passed.	of the Test e Criteria (Tota					
Acceptance Criteria (Total permissible drop in level after allowing for evaporation and rainfall should not exceed 1/500 th of the average water depth, 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Date and in Bund Water Level in Reference Vessel Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) Date and in Bund 1510 mm 159 mm - - - - Day 1 1510 mm 159 mm -2 mm 0 mm -<	Acceptance permissib level) Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Common Pest completed succe 4hr test period. Bas herefore Passed.	e Criteria (Tota	24 hrs				
permissible drop in water level allowing for evaporation and rainfall should not exceed 1/500th of the average water depth, 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Date and Water Level Water Level in n Bund Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) Date and Water Level Reference Vessel Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) Day 1 1510 mm 159 mm -2 mm 0 mm 19/12/2018 1048 mm 159 mm -2 mm 0 mm 19/12/2018 13:30 -2 mm 0 mm -2 mm 0 mm escription / Comments of Hydrostatic Test: est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and erefore Passed. usual Test DETAILS: INSPECTION DESCRIPTION & RESULTS: Survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and	Description / Comme Performed Succession (Comme Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30		During the t	est period, th	he total permissible drop in le	vel after	
Ievel) the average water depth, 10 mm or another specified amount. Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Date and Water Level Reference Vessel Day 1 1510 mm Reference Vessel Day 2 1048 mm 159 mm 13:20 0 mm 19/12/2018 1048 mm 159 mm 13:30 0 mm escription / Comments of Hydrostatic Test: est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and therefore Passed.	Date and Time Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas herefore Passed.	e drop in wate	r allowing for	evaporation	n and rainfall should not excee	d 1/500 th of	
Water Level Change in Reference Vessel Zero drop when the reference vessel is taken into account Date and Water Level Reference Vessel Imme in Bund Reference Vessel Reference vessel Level (+/-) (mm) Day 1 1510 mm 159 mm (+/-) (mm) Reference vessel Level (+/-) (mm) Day 2 1048 mm 159 mm -2 mm 0 mm 19/12/2018 13:30 -2 mm 0 mm 19/12/2018 1048 mm 159 mm -2 mm 0 mm 19/12/2018 1048 mm 159 mm -2 mm 0 mm 19/12/2018 1048 mm 159 mm -2 mm 0 mm secription / Comments of Hydrostatic Test: est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and terefore Passed. ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS: Image: Complete Successful Amplete Success	Water Lev Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas herefore Passed.		the average	water depth	, 10 mm or another specified	imount.	
Reference Vessel Date and in Bund Water Level in Reference Vessel Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) Day 1 1510 mm 159 mm 100 mm 19/12/2018 13:20 1048 mm 159 mm -2 mm 0 mm 19/12/2018 13:30 13:30 159 mm -2 mm 0 mm 19/12/2018 13:30 13:30 159 mm -2 mm 0 mm 19/12/2018 13:30 140 mm 159 mm -2 mm 0 mm 19/12/2018 13:30 13:30 159 mm -2 mm 0 mm 19/12/2018 13:30 140 mm 159 mm -2 mm 0 mm 19/12/2018 13:30 140 mm 159 mm -2 mm 0 mm 19/12/2018 13:30 140 mm 159 mm 12 mm 13 mm 12 mm 12 mm 12 mm 12 mm 12 mm 12 mm	Reference Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Pest completed succe 24hr test period. Bas herefore Passed.	el Change in	Zero drop v	when the refe	erence vessel is taken into acc	ount	
Date and Water Level Water Level in Reference Vessel Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) Day 1 1510 mm 159 mm - Day 2 1048 mm 159 mm -2 mm 0 mm Day 2 1048 mm 159 mm -2 mm 0 mm 19/12/2018	Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Pest completed succe 24hr test period. Bas herefore Passed.	Vessel					
Date and Time Water Level in Bund Water Level in Reference Vessel Bund Level (+/-) (mm) Reference vessel Level (+/-) (mm) Day 1 1510 mm 159 mm 19/12/2018 1048 mm 159 mm -2 mm 0 mm 19/12/2018 13:30 159 mm -2 mm 0 mm 19/12/2018 1048 mm 159 mm -2 mm 0 mm 19/12/2018 1048 mm 159 mm -2 mm 0 mm 19/12/2018 1048 mm 159 mm -2 mm 0 mm 19/12/2018 1048 mm 159 mm -2 mm 0 mm 19/12/2018 1048 mm 10 mm	Date and Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas therefore Passed.						
Time in Bund Reference Vessel (+/-) (mm) Day 1 1510 mm 159 mm (13:20 0 0 (Day 2 1048 mm 159 mm -2 mm 0 mm 19/12/2018 13:30 0 ((13:30 0 0 (((escription / Comments of Hydrostatic Test: (((((est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and terefore Passed. (Isual Test DETAILS: INSPECTION DESCRIPTION & RESULTS: (((Time Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas therefore Passed.	Water L	vel Water Leve	el in	Bund Level (+/-) (mm)	R	leference vessel Level
Day 1 18/12/2018 1510 mm 159 mm 0 mm Day 2 19/12/2018 1048 mm 159 mm -2 mm 0 mm escription / Comments of Hydrostatic Test: 0 0 0 0 escription / Comments of Hydrostatic Test: 0 0 0 0 escription / Comments of Hydrostatic Test: 0 0 0 0 est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and terefore Passed. ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:	Day 1 18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas herefore Passed.	in Bund	Reference	Vessel		(+/-) (mm)
18/12/2018 0 mm Day 2 1048 mm 159 mm -2 mm 0 mm 19/12/2018 0 mm 0 mm 0 mm 13:30 0 0 mm 0 mm escription / Comments of Hydrostatic Test: 0 mm 0 mm est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and merefore Passed. ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:	18/12/20 13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas herefore Passed.	1510 mr	n 159 mm				
13:20 0 mm Day 2 1048 mm 159 mm -2 mm 0 mm 19/12/2018 13:30 0 0 mm 0 escription / Comments of Hydrostatic Test: 0 0 0 0 est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and herefore Passed. ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:	13:20 Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas herefore Passed.	18					
Day 2 19/12/2018 1048 mm 159 mm -2 mm 0 mm 13:30	Day 2 19/12/20 13:30 Description / Comm Fest completed succe 24hr test period. Bas herefore Passed.						
19/12/2018	Description / Comm Fest completed succe 24hr test period. Bas herefore Passed.	1048 mr	1 159 mm		-2 mm	0	mm
13:30	Description / Comm Fest completed succe 24hr test period. Bas herefore Passed.	18					
escription / Comments of Hydrostatic Test: est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and herefore Passed.	Description / Comm Pest completed succe 4hr test period. Bas herefore Passed.						and the second se
escription / Comments of Hydrostatic Test: est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and herefore Passed.	Description / Comm 'est completed succe 4hr test period. Bas herefore Passed.						
escription / Comments of Hydrostatic Test: est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and herefore Passed.	Description / Comm 'est completed succe 4hr test period. Bas nerefore Passed.						
escription / Comments of Hydrostatic Test: est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and herefore Passed.	Description / Comm 'est completed succe '4hr test period. Bas herefore Passed.						
est completed successfully, depth of water in bund measured and photographed day 1 and day 2. Weather was cold and breezy over the 4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and herefore Passed.	est completed succe 4hr test period. Bas herefore Passed.	ents of Hydros	tatic Test:				
4hr test period. Based on the survey and hydrostatic test carried out ENVA deem bund Gantry sump to be of sound integrity and herefore Passed.	4hr test period. Bas herefore Passed.	ssfully, depth o	water in bund meas	sured and ph	otographed day 1 and day 2.	Weather was	cold and breezy over the
ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:	herefore Passed.	ed on the surve	and hydrostatic tes	t carried out	ENVA deem bund Gantry sun	p to be of sou	ind integrity and
ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:		1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -					
ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:							
ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:							
ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:							
ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:							
ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:							
ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:							
ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:							
ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:							
ISUAL TEST DETAILS: INSPECTION DESCRIPTION & RESULTS:							
	ISUAL TEST DETAILS:						
		INSPECTION DESC	RIPTION & RESULTS:				
		INSPECTION DESC	RIPTION & RESULTS:				
		INSPECTION DESC	RIPTION & RESULTS:				
		INSPECTION DESC	RIPTION & RESULTS:				
DASC		INSPECTION DESC	RIPTION & RESULTS:				
PASS PASS	Result (Pas	INSPECTION DESC	RIPTION & RESULTS:			44891-9751-7	

ь . Ф

ų,

Enva Ireland Ltd

Signed: John Gecult	Title : BE, C Eng, MIEI	Date: 19/12/2017
Signed:	Title: BE, C Eng, MIEI	Date:19/12/2017
	Mr. W Charl of The	ENGINEERS IRELAND VIIIiam Stack tered Engineer legistrant 059577 Institution of Engineers of Ireland

, *f*

Enva Ireland Ltd

5.7 Collection Sump 5

enva)	Enva Ireland Ltd Clonminam Business Park, Portlaoise, Co. Laois +353 57 8678600 John.Carroll@Enva.com www.enva.com Sump Exfiltration Test	Date of test: 19/12/2018
Client: Enva Ireland Ltd	By: J. Carroll	
Site: Clonminam Indust	rial Park, Portlaoise, Co. Laois	Licence: W0184-1

Sumn	Sump Dimensions	Inspection 1		Inspection 2		Difference		Comments
Ref.	(mm)	Time	Depth of water (mm)	Time	Depth of water (mm)	Time (mins)	Depth of water (mm)	
No. 5	4900 x 1200 x 845	09:30	547	10:15	547	45	0	Passed

Result (Pass/Fail)	PASS		
Signed: John Gazell -		Title : BE, M.Sc, MIEI	Date: 19/12/2017
Signed:	2	Title: BE, C Eng, MIEI	Date:19/12/2017
		Mr. William Chartered Eng Registrant 0599 of The Institution of Eng of Ireland	NEERS AND Stack ineer 577 gineers

Appendix 7

	Detection Method Method Detection Limit ISO 17025 Accredited		ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES
			<0.2	<0.1	<0.5	<1.5	<7	<20	<2	<2	<3	<1	<5
			~	~	~	~	~	~	~	~	~	✓	✓
Jones Environmen Reference N	Sample Identity	Other ID	Dissolved Calcium	Dissolved Magnesium	Dissolved Cadmium	Total Dissolved Chromium	Dissolved Copper	Total Dissolved Iron	Dissolved Manganese	Dissolved Nickel	Dissolved Zinc	Dissolved Mercury	Dissolved Lead
lo lo			mg/l	mg/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Report No: 17/2391 Batch1-1	Quarterly Effluent	Effluent Screen 12/01/2017	341.4	229.8	<0.5	8.1	<7	875	488	24	9	<1	<5

Quarterly Effluent Metal Screen for Q1 2017 is shown in the table below.

Quarterly Effluent Metal Screen for Q2 2017 is shown in the table below.

	Detection Method Method Detection Limit ISO 17025 Accredited		ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES
			<0.2	<0.1	<0.5	<1.5	<7	<20	<2	<2	<3	<1	<5
			~	~	~	~	~	✓	~	~	~	✓	√
Jones Environmen Reference N	Sample Identity	Other ID	Dissolved Calcium	Dissolved Magnesium	Dissolved Cadmium	Total Dissolved Chromium	Dissolved Copper	Total Dissolved Iron	Dissolved Manganese	Dissolved Nickel	Dissolved Zinc	Dissolved Mercury	Dissolved Lead
ıtal lo			mg/l	mg/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Report No: 17/10896	Quarterly Effluent	Effluent Screen 21/06/2017	404.7	62.0	<0.5	16	<7	1238	343	31	21	<1	<5

Portlaoise Clonminam Industrial Estate, Portlaoise, Co. Laois, R32 XD95, Ireland (Registered address) Enva Ireland Limited

Cork Raffeen Industrial Estate, Ringaskiddy Road, Monkstown, Co. Cork, T12 TW44, Ireland

Shannon Smithstown Industrial Estate, Shannon, Co. Clare, V14 FT53, Ireland

Dublin John F Kennedy Road, John F Kennedy Industrial Estate, Dublin 12, D12 CF34, Ireland Northern Ireland 1 Cloonagh Road, Downpatrick, Co. Down, BT30 6LJ, Northern Ireland Enva Ireland Limited Registered No: 317186. VAT No: IE 6337186A.

Directors: S. Dick (Managing), T. Walsh, A. Fitzpatrick, G. Kelly

www.enva.com

	Detection Method		ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES
	Method Detection Limit		<0.2	<0.1	<0.5	<1.5	<7	<20	<2	<2	<3	<1	<5
	ISO 17025 Accredited		\checkmark	~	~	~	~	✓	~	~	~	~	~
Jones Environmental Reference No	Sample Identity	Date	Dissolved Calcium	Dissolved Magnesium	Dissolved Cadmium	Total Dissolved Chromium	Dissolved Copper	Total Dissolved Iron	Dissolved Manganese	Dissolved Nickel	Dissolved Zinc	Dissolved Mercury	Dissolved Lead
			mg/l	mg/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
17/16242	Quarterly Effluent	Effluent Screen 27/09/2017	323.5	58.3	<0.5	7.5	<7	2035	454	33	<3	<1	<5

Quarterly Effluent Metal Screen for Q3 2017 is shown in the table below.

Quarterly Effluent Metal Screen for Q4 2017 is shown in the table below.

	Detection Method		ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES
	Method Detection Limit ISO 17025 Accredited		<0.2	<0.1	<0.5	<1.5	<7	<20	<2	<2	<3	<1	<5
			~	~	~	✓	✓	✓	~	~	~	~	~
Jones Environmental Reference No	Sample Identity	Date	Dissolved Calcium	Dissolved Magnesium	Dissolved Cadmium	Total Dissolved Chromium	Dissolved Copper	Total Dissolved Iron	Dissolved Manganese	Dissolved Nickel	Dissolved Zinc	Dissolved Mercury	Dissolved Lead
			mg/l	mg/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
17/19151	Quarterly Effluent	Effluent Screen 15/11/2017	384.4	66.0	<0.5	7.1	<7	1054	671	17	<3	<1	<5

Portlaoise Clonminam Industrial Estate, Portlaoise, Co. Laois, R32 XD95, Ireland (Registered address) Enva Ireland Limited

Cork Raffeen Industrial Estate, Ringaskiddy Road, Monkstown, Co. Cork, T12 TW44, Ireland

Shannon Smithstown Industrial Estate, Shannon, Co. Clare, V14 FT53, Ireland

Dublin John F Kennedy Road, John F Kennedy Industrial Estate, Dublin 12, D12 CF34, Ireland Northern Ireland 1 Cloonagh Road, Downpatrick, Co. Down, BT30 6LJ, Northern Ireland Enva Ireland Limited
 Registered No: 317186. VAT No: IE 6337186A.

Directors: S. Dick (Managing), T. Walsh, A. Fitzpatrick, G. Kelly

Lauralynn

www.enva.com