SL	SLR Calary Waste Licence					Во	reho	ole Log	GW2 Sheet 1 of 2		
Project	Name:	Calary V Applicati	Vaste Lic		Project No. 501.00180.0189 Co-ords:				Hole Type RO		
_ocatior	n:	Calary C	Quarry, K	ilmacanogue, Co.	Wicklow		Level:		Scale 1:250 Logged By		
Client:		Roadsto	ne Limit	ed.			Dates:	01/09/2017			
Well	Water Strikes			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description			
	Surkes	Depth (m)	Type	Results	1.50			Clay. Subsoil Interbedded Sandstone and Siltstone the true true.	1 2 3 3 4 4 5 6 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49		

SLR			Borehole Log					Borehole No. GW2 Sheet 2 of 2									
roject Name:		aste Licence n		pject No. 1.00180.018	39	Co-ords:		Hole Type RO									
ocation:	Calary Qu	ıarry, Kilmac	anogue, Co. W	Co. Wicklow Level:										Co. Wicklow			Scale 1:250
ient:	Roadston	e Limited.				Dates:	01/09/2017	Logged By									
Vell Water Strikes		and In Situ 1		Depth (m)	Level (m)	Legend	Stratum Description										
	Depth (m)	Type	Results	to in the title of the state of	n Purose da		Interbedded Sandstone and Siltstone Bet use. End of Borehole at 91.500m	51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 89 90 91 92 93 94 95 96 97 98 99 99 99 99 99 99 99 99 99 99 99 99									

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside

> Tel: (01244) 528700 Fax: (01244) 528701

CH5 3US

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Post Certification Report

SLR Consulting Ireland CSA House Unit 7 Dundrum Business Park Windy Harbour Dublin Dublin14

Attention: Aldona Binchy

Date: 01/12/2017 Location: Calary Quarry

Customer:SLR Consulting IrelandNo. Of Samples Received:1Your Reference:501.00180.00109Samples Scheduled:1

Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Exprinted to the first of t

SLR Consulting Ireland 501.00180.00109 Customer:

Client Reference : Calary Quarry Location:

Received Sample Overview

Customer Sample Ref. ab Sample No(s) **Sampled Date** Depth (m) 20/11/2017 16599482 0.00 - 0.00

ISO5667-3 Water quality - Sampling - Part3 -

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of $(5\pm3)^{\circ}$ C for a period of up to

Only received samples which have had analysis scheduled will be shown on the following pages.

Consent of copyright owner required for any other use.

ALS

Post Certification Report

Customer: SLR Consulting Ireland
Client Reference: 501.00180.00109 Location: Calary Quarry

(ALS) Cile	nt Reference :	501.00180.0	וטנ	U9				Location :	Ca
Results Legend X Test	Lab Sample	No(s)					16599482		
No Determination Possible	Custom Sample Ref						GWZ		
	AGS Reference Depth (m)								
							0.00 - 0.00		
	Contain	ner	0.5l glass bottle	1L Plastic	500ml Plastic	H2SO4 (ALE244)	HNO3 Filtered	ליים ו	
Ammonium Low	All	NDPs: 0 Tests: 1				X		†	
Anions by Kone (w)	All	NDPs: 0 Tests: 1			x			owner required for any other use.	
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 1			X			ु हुट ती प्राप	
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 1					X	an purdelitie	
EPH (DRO) (C10-C40) Aqueous (W)	All	NDPs: 0 Tests: 1	X		á	ij	Sign Second	o with	
Faecal Coliforms	All	NDPs: 0 Tests: 1		×	O	Ź,			
GRO by GC-FID (W)	All	NDPs: 0 Tests: 15	Selv)	K	
Metals by iCap-OES Dissolved (W)	All	NDPs: 0 Tests: 1					X		
Nitrite by Kone (w)	All	NDPs: 0 Tests: 1			X				
PAH Spec MS - Aqueous (W)	All	NDPs: 0 Tests: 1	X						
pH Value	All	NDPs: 0 Tests: 1			X				
Suspended Solids	All	NDPs: 0 Tests: 1			X				
Total Coli & Escherichia coli (W)	All	NDPs: 0 Tests: 1		X					
Total Dissolved Solids (Grav)	All	NDPs: 0 Tests: 1			X				
Total EPH (aq)	All	NDPs: 0 Tests: 1	X						

Customer: SLR Consulting Ireland
Client Reference: 501.00180.00109 Location: Calary Quarry

# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filit Dissolved / filtered sample. tot.unfilit Total / unfiltered sample. subcontracted test. ** % recovery of the surrogate stacheck the efficiency of the met results of the individual compowithin the samples are not conditional to the condition of the met results of the individual compowithin the samples are not conditional to the conditional to th	andard to hod. The ounds	Depth (m) Sample Type Date Sampled Date Received DBG Ref Lab Sample No.(s) AGS Reference	GW2 0.00 - 0.00 Ground Water (GW) 20/11/2017 21/11/2017 17/1121-76 16599482				
this recovery. 1-5&+§@ Sample deviation (see appendi							
Component Dissolved solids, Total	<10 mg/l	Method TM021	155				
(gravimetric) Suspended solids, Total	<2 mg/l	TM022	332 #				
Ammoniacal Nitrogen as N (low level)	<0.01 mg/l	TM099	0.0262				
Ammoniacal Nitrogen Low as NH3	<0.01 mg/l	TM099	0.0318 #				
Conductivity @ 20 deg.C	<0.005 mS/cm	TM120	0.308				
Cadmium (diss.filt)	<0.08 µg/l	TM152	<0.08 #				
Copper (diss.filt)	<0.3 µg/l	TM152	0.413 #				
Lead (diss.filt)	<0.2 µg/l	TM152	<0.2				
Manganese (diss.filt)	<1 µg/l	TM152	1.02				
Nickel (diss.filt)	<0.4 µg/l	TM152	<0.4				
Zinc (diss.filt)	<1 µg/l	TM152	6.9		of itse.		
EPH Range >C10 - C40 (aq)	<100 µg/l	TM172	<100		14. 114 othe		
Total EPH (C6-C40) (aq) Nitrite as NO2	<100 µg/l <0.05 mg/l	TM172 TM184	<100 <0.05	ingciton autoriti	foi at		
	,	TM184	<0.05 2#	aut out to	,		
Sulphate Chloride	<2 mg/l	TM184	11.4 # 50.7	action net l'			
	<2 mg/l <0.05 mg/l	TM184	<0.05 *	institu			
Phosphate (ortho) as PO4 Nitrate as NO3	<0.05 mg/l	TM184	#	O.A.			
Magnesium (diss.filt)	<0.036 mg/		.e.fil				
Iron (diss.filt)	<0.030 mg/		12. 4 . <0.019				
pH	<1 pH Units		8.21				
Escherichia coli (Presumtive)	<1 pri onite	TM367	18				
Total Coliforms (Presumptive)	CFU/100ml <1	TM367	930				
Faecal Coliforms	CFU/100ml <1		10				
	CFU/100ml						

01/12/2017 12:47:00

Customer: SLR Consulting Ireland
Client Reference: 501.00180.00109 Location: Calary Quarry

# ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. subcontracted test. * % recovery of the surrogate stacheck the efficiency of the met	andard to	tomer Sample Ref. Depth (m) Sample Type Date Sampled Date Received SDG Ref	GW2 0.00 - 0.00 Ground Water (GW) 20/11/2017 21/11/2017 17/121-76				
results of the individual compo within the samples are not corn this recovery.	unds ected for	Lab Sample No.(s) AGS Reference	16599482				
1-5&+§@ Sample deviation (see appendix Component	LOD/Units	Method					
Methyl tertiary butyl ether (MTBE)	<3 µg/l	TM245	<3				
Benzene	<7 µg/l	TM245	<7				
Toluene	<4 µg/l	TM245	<4				
Ethylbenzene	<5 µg/l	TM245	<5				
m,p-Xylene	<8 µg/l	TM245	<8				
o-Xylene	<3 µg/l	TM245	<3				
Sum of detected BTEX	<28 µg/l	TM245	<28				
GRO >C5-C10	<10 µg/l	TM245	<10				
EPH (C6-C10)	<100 µg/l	TM245	<100				
					1150.		
					Jed and other use.		
				,	of air		
				170° jis	de la companya de la		
				ion or roat			
				inspection and property of the city of the			
			\$ ^c	2011.011			
			at of C	, v			
			Consentation				
04/40/0047 40:47:00							

Customer: SLR Consulting Ireland
Client Reference: 501.00180.00109 Location: Calary Quarry

# ISO17025 accredited. # M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * subcontracted test. ** % recovery of the surrogate stacheck the efficiency of the met results of the individual compowithin the samples are not corr this recovery. 1-5&4\$@ Sample deviation (see appendit	andard to hod. The bunds rected for	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	GW2 0.00 - 0.00 Ground Water (GW) 20/11/2017 21/11/2017 17/1121-76 16599482				
Component	LOD/Units	Method					
Naphthalene (aq)	<0.01 µg/l		<0.0683				
Acenaphthene (aq)	<0.005 µg/	TM178	<0.005				
Acenaphthylene (aq)	<0.005 µg/	TM178	<0.005				
Fluoranthene (aq)	<0.005 µg/	TM178	<0.005				
Anthracene (aq)	<0.005 µg/	TM178	<0.005				
Phenanthrene (aq)	<0.005 µg/	TM178	<0.005				
Fluorene (aq)	<0.005 µg/	TM178	<0.005				
Chrysene (aq)	<0.005 µg/	TM178	<0.005				
Pyrene (aq)	<0.005 µg/	TM178	<0.005				
Benzo(a)anthracene (aq)	<0.005 µg/	I TM178	<0.005				
Benzo(b)fluoranthene (aq)	<0.005 µg/	I TM178	<0.005		ng.		
Benzo(k)fluoranthene (aq)	<0.005 µg/	TM178	<0.005		Afot and other use.		
Benzo(a)pyrene (aq)	<0.002 µg/	TM178	<0.002	ے	of and		
Dibenzo(a,h)anthracene (aq)	<0.005 µg/	TM178	<0.005	. 150 citon feet require			
Benzo(g,h,i)perylene (aq)	<0.005 µg/	TM178	<0.005	tion per real			
Indeno(1,2,3-cd)pyrene (aq)	<0.005 µg/	TM178	<0.005				
PAH, Total Detected USEPA 16 (aq)	<0.082 µg/	TM178	<0.082	2017			
			Consent of C				
			Cours				

SLR Consulting Ireland 501.00180.00109 Customer: Client Reference : Location: Calary Quarry

Table of Results - Appendix

REPORT KEY Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7 No Determination Possible ISO 17025 Accredited Subcontracted Test М **MCERTS Accredited**

Result previously reported (Incremental reports only) NFD Possible Fibres Detected **Equivalent Carbon** No Fibres Detected PFD EC (Aromatics C8-C35)

Method No	Reference	Description
TM021	Method 2540C, AWWA/APHA, 20th Ed., 1999	Determination of total dissolved solids in waters by gravimetry.
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters
TM061	Method for the Determination of EPH, Massachusetts Dept. of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM172	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	EPH in Waters
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM228	US EPA Method 6010B	Determination of Major Cations in Water by iCap 6500 Duo ICP-OES
TM245	By GC-FID	Determination of GRO by Headspace in waters
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter
TM367		
TM395	Faecal Coliforms	Faecal Coliforms in Waste Water &

NA = not applicable.

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Consent of Consent

01/12/2017 12:47:00

Customer: SLR Consulting Ireland
Client Reference: 501.00180.00109 Location: Calary Quarry

Test Completion Dates

Lab Sample No(s)	16599482
Customer Sample Ref.	GW2
AGS Ref.	
Depth	0.00 - 0.00
Туре	GROUND_W
Ammonium Low	23-Nov-2017
Anions by Kone (w)	25-Nov-2017
Conductivity (at 20 deg.C)	25-Nov-2017
Dissolved Metals by ICP-MS	27-Nov-2017
EPH (DRO) (C10-C40) Aqueous (W)	27-Nov-2017
Faecal Coliforms	22-Nov-2017
GRO by GC-FID (W)	24-Nov-2017
Metals by iCap-OES Dissolved (W)	27-Nov-2017
Nitrite by Kone (w)	25-Nov-2017
PAH Spec MS - Aqueous (W)	28-Nov-2017
pH Value	24-Nov-2017
Suspended Solids	26-Nov-2017
Total Coli & Escherichia coli (W)	22-Nov-2017
Total Dissolved Solids (Grav)	25-Nov-2017
Total EPH (aq)	27-Nov-2017

Consent of copyright owner required for any other use.

01/12/2017 12:47:00 Page 8 of 9 EPA Export 08-12-2017:04:11:57

Customer : SLR Consulting Ireland Client Reference: 501.00180.00109 Location: Calary Quarry

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories. who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on received However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved Consento metals - total metals must be requested separately.
- 11. Results relate only to the items tested.
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 14. Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeayour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

- Container with Headspace provided for volatiles analysis
- ncorrect container received 2
- 3 Deviation from method
- Holding time exceeded before sample received Ø
- Samples exceeded holding time before presevation was performed 5
- Sampled on date not provided
- Sample holding time exceeded in laboratory
- Sample holding time exceeded due to sampled on date
- Sample Holding Time exceeded Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name				
Chrysotle	White Asbests				
Amosite	Brown Asbestos				
Cro d dolite	Blue Asbe stos				
Fibrous Act nolite	=				
Fib to us Anthop hyll ite	=				
Fibrous Tremol ite	-				

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

SLR Consulting Ireland CSA House Unit 7 Dundrum Business Park Windy Harbour Dublin Dublin14

Attention: Aldona Binchy

CERTIFICATE OF ANALYSIS

 Date:
 10 November 2017

 Customer:
 D_SLRCON_DUB

 Sample Delivery Group (SDG):
 171104-108

 Your Reference:
 501.00180.00109

 Location:
 Calary Quarry

 Report No:
 432164

We received 2 samples on Saturday November 04, 2017 and 2 of these samples were scheduled for analysis which was completed on Friday November 10, 2017. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Approved By:

Sonia McWhan
Operations Manager

ALS

 SDG:
 171104-108
 Client Reference:
 501.00180.00109
 Report Number:
 432164

 Location:
 Calary Quarry
 Order Number:
 3513
 Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
16496217	SW01		0.00 - 0.00	01/11/2017
16496221	SW02		0.00 - 0.00	01/11/2017

Maximum Sample/Coolbox Temperature (°C):

 $\label{locality} \textbf{ISO5667-3 Water quality - Sampling - Part3 -} \\ \text{During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5<math>\pm$ 3)°C.}

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Validated

Only received samples which have had analysis scheduled will be shown on the following pages.

CERTIFICATE OF ANALYSIS

 SDG:
 171104-108
 Client Reference:
 501.00180.00109
 Report Number:
 432164

 Location:
 Calary Quarry
 Order Number:
 3513
 Superseded Report:

(ALS) Location:	Calary Quarry		Orae	er Nu	mber:		351	3	
Results Legend					16			16	
X Test	Lab Sample I	No(s)			16496217			16496221	
No Determination Possible					7				
Sample Types -	Custome Sample Refei				SW01	C			
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prepared Leachate	AGS Refere	nce							
PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m		0.00 - 0.00			0.00 - 0.00			
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	0.5l glass bottle (ALE227)	1L Plastic (Microbiology)	H2SO4 (ALE244)	0.5l glass bottle (ALE227)	1L Plastic (Microbiology)	H2SO4 (ALE244)		
	Sample Ty	WS	WS	WS	WS	WS	WS		
Ammonium Low	All	NDPs: 0 Tests: 2			X			X	, ol ^X
Anions by Kone (w)	All	NDPs: 0 Tests: 2	Х			X	05.38	X Rith Orot	MY.
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 2	х		ectici	of Dist	ECHIL		
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 2	xŶ	or the	ght	Х			
EPH (DRO) (C10-C40) Aqueous (W)	All	NDPs: 0 Tests: 2				Х			
Faecal Coliforms	All	NDPs: 0 Tests: 2		X			Х		
GRO by GC-FID (W)	All	NDPs: 0 Tests: 2	Х			X			
Metals by iCap-OES Dissolved (W)	All	NDPs: 0 Tests: 2	х			Х			
PAH Spec MS - Aqueous (W)	All	NDPs: 0 Tests: 2	х			Х			
pH Value	All	NDPs: 0 Tests: 2	х			Х			
Suspended Solids	All	NDPs: 0 Tests: 2	х			Х			
Total Coli & Escherichia coli (W)	All	NDPs: 0 Tests: 2		Х			Х		
Total EPH (aq)	All	NDPs: 0 Tests: 2	X			X			
	-		•						•

CERTIFICATE OF ANALYSIS

 SDG:
 171104-108
 Client Reference:
 501.00180.00109
 Report Number:
 432164

 Location:
 Calary Quarry
 Order Number:
 3513
 Superseded Report:

Results Legend # ISO17025 accredited.	C	Customer Sample Ref.	SW01	SW02			
 M mCERTS accredited. aq Aqueous / settled sample. 							
diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	0.00 - 0.00 Surface Water (SW)	0.00 - 0.00 Surface Water (SW)			
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	01/11/2017	01/11/2017			
** % recovery of the surrogate standa check the efficiency of the method.		Sample Time	04/11/2017	04/11/2017			
results of individual compounds wi samples aren't corrected for the re	ithin	Date Received SDG Ref	171104-108	171104-108			
(F) Trigger breach confirmed	Lovery	Lab Sample No.(s)	16496217	16496221			
1-5&+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method					
Suspended solids, Total	<2 mg/l	TM022	<2	<2			
Ammoniacal Nitrogen as N (low	<0.01 mg/l	TM099	0.0774	0.0728			
level)	-0.04 #	T14000	#	#			
Ammoniacal Nitrogen Low as NH3	<0.01 mg/l	TM099	0.094 #	0.0884 #			
Conductivity @ 20 deg.C	<0.005 mS/cm	TM120	0.196 #	0.197 #			
Cadmium (diss.filt)	<0.08 µg/l	TM152	<0.08	<0.08			
Copper (diss.filt)	<0.3 µg/l	TM152	2.47	1.43			
Lead (diss.filt)	<0.2 µg/l	TM152	<0.2	<0.2			
Manganese (diss.filt)	<1 µg/l	TM152	<1	<1			
Nickel (diss.filt)	<0.4 µg/l	TM152	<0.4	<0.4			
Zinc (diss.filt)	<1 µg/l	TM152	<1	<1	115°.		
EPH Range >C10 - C40 (aq)	<100 µg/l	TM172	<100	<100	14 of other use.		
Total EPH (C6-C40) (aq)	<100 µg/l	TM172	<100	<100			
Sulphate	<2 mg/l	TM184	6.8	6.9 quito di la constante di l	20		
Chloride	<2 mg/l	TM184	11 #	ecity et le			
Phosphate (ortho) as PO4	<0.05 mg/l	TM184	<0.05 #	in the control of the			
Nitrate as NO3	<0.3 mg/l	TM184	0.597	0.55			
Magnesium (diss.filt)	<0.036 mg/l		8.97 ent #	8.51 #			
Iron (diss.filt)	<0.019 mg/l	TM228	<0.019 #	<0.019 #			
pH	<1 pH Units	TM256	8.01 #	8.04 #			
Escherichia coli (Presumtive)	<1 CFU/100ml	TM367	<1 #	<1 #			
Total Coliforms (Presumptive)	<1 CFU/100ml	TM367	9 #	7 #			
Faecal Coliforms	<1 CFU/100ml	TM395	<1	<1			

CERTIFICATE OF ANALYSIS

Report Number: Superseded Report: SDG: 171104-108 Client Reference: 501.00180.00109 432164 Calary Quarry Order Number: 3513 Location:

GRO by GC-FID (W) Results Legend								
# ISO17025 accredited.		Customer Sample Ref.	SW01	SW02				
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test		Depth (m) Sample Type	0.00 - 0.00 Surface Water (SW)	0.00 - 0.00 Surface Water (SW)				
Subcontracted test. ** % recovery of the surrogate standa check the efficiency of the method.		Date Sampled Sample Time	01/11/2017	01/11/2017 ·				
results of individual compounds wi samples aren't corrected for the rec	ithin	Date Received SDG Ref	04/11/2017 171104-108	04/11/2017 171104-108				
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)	covery	Lab Sample No.(s) AGS Reference	16496217	16496221				
Component	LOD/Units	s Method			_			
Methyl tertiary butyl ether (MTBE)	<3 µg/l		<3		1#			
Benzene	<7 µg/l	TM245	<7 1#		1#			
Toluene	<4 µg/l	TM245	<4 1#		1#			
Ethylbenzene	<5 µg/l	TM245	<5 1#	<5 1	1#			
m,p-Xylene	<8 µg/l	TM245	<8 1#	<8 1	1#			
o-Xylene	<3 µg/l	TM245	<3 1#	<3 1	1#			
Sum of detected BTEX	<28 µg/l	TM245	<28 1	<28	1			
GRO >C5-C10	<10 µg/l	TM245	<10 1	<10	1			
EPH (C6-C10)	<100 µg/	TM245	<100 1	<100	1			
						and other lise.		
					\top	other		
					ر د د	his and		
				alipo	13112 (1111)	,		
				action V res	,			
				inspire	\top			
			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	08)	十			
			onser					
			<u>G</u>					
					\top			
					\top			
					\top			
					\top			
					十			
					\top			
					\top			
					\dagger			
					_			

CERTIFICATE OF ANALYSIS

SDG: 171104-108 Client Reference: 501.00180.00109 Report Number: 432164
Location: Calary Quarry Order Number: 3513 Superseded Report:

ALS) LOCALIONI		Julius Guussy		r rumbor.			
PAH Spec MS - Aqueous Results Legend	s (W)						
Results Legend # ISO17025 accredited.	Cı	istomer Sample Ref.	SW01	SW02			
M mCERTS accredited.							
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00			
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type	Surface Water (SW) 01/11/2017	Surface Water (SW) 01/11/2017			
** % recovery of the surrogate standa	ard to	Date Sampled Sample Time	01/11/2017	01/11/2017			
check the efficiency of the method results of individual compounds w		Date Received	04/11/2017	04/11/2017			
samples aren't corrected for the re		SDG Ref	171104-108	171104-108 16496221			
(F) Trigger breach confirmed 1-5&•§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	16496217	10430221			
Component	LOD/Units	Method					
Naphthalene (aq)	<0.01 µg/l	TM178	0.0252	<0.01			
Acenaphthene (aq)	<0.005 µg/l	TM178	<0.005	<0.005			
Acenaphthylene (aq)	<0.005 µg/l	TM178	<0.005	<0.005			
Fluoranthene (aq)	<0.005 µg/l	TM178	<0.005	<0.005			
(, , ,							
Anthracene (aq)	<0.005 µg/l	TM178	<0.005	<0.005			
	1						
Phenanthrene (aq)	<0.005 µg/l	TM178	<0.005	<0.005			
i nonananono (aq)	0.000 µg/.		0.000	0.000			
Fluorene (aq)	<0.005 µg/l	TM178	<0.005	<0.005			
ridorene (dq)	10.000 μg/1	1101170	40.000	10.000			
Chrysono (2g)	<0.005.ug/l	TM178	<0.005	<0.005			
Chrysene (aq)	<0.005 µg/l	1101170	\U.UUJ	\0.005			
Durana (ag)	<0.005.ug/l	TM170	<0.005	<0.00E			
Pyrene (aq)	<0.005 µg/l	TM178	<0.005	<0.005			
D(-)th()	40.005	TN4470	40.005	40.005			
Benzo(a)anthracene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	يق.		
D (1)(1 11 ()	.0.005 #	T14470	-0.005	-0.005	112		
Benzo(b)fluoranthene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	ather		
					on's and the use.		
Benzo(k)fluoranthene (aq)	<0.005 µg/l	TM178	<0.005	<0.005	only alv.		
				<0.002 0.002 0.005 <0.002 0.005	260,		
Benzo(a)pyrene (aq)	<0.002 µg/l	TM178	<0.002	<0.002	2		
				Qui cult			
Dibenzo(a,h)anthracene (aq)	<0.005 µg/l	TM178	<0.005	<0.005			
				ect with			
Benzo(g,h,i)perylene (aq)	<0.005 µg/l	TM178	<0.005	- 115 140.005 - 115 140.005			
			Q ⁽	N Jilo			
Indeno(1,2,3-cd)pyrene (aq)	<0.005 µg/l	TM178	<0.005	<0.005			
			(37	Ĭ			
PAH, Total Detected USEPA 16	<0.082 µg/l	TM178	<0.082 enl	<0.082			
(aq)			COILS				
			C				

 SDG:
 171104-108
 Client Reference:
 501.00180.00109
 Report Number:
 432164

 Location:
 Calary Quarry
 Order Number:
 3513
 Superseded Report:

Table of Results - Appendix

	Table 0	Troodito Appondix		
Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser		
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM172	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	EPH in Waters		
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM228	US EPA Method 6010B	Determination of Major Cations in Water by iCap 6500 Duo ICP-OES		
TM245	By GC-FID	Determination of GRO by Headspace in waters		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		
TM367				
TM395	Faecal Coliforms	Faecal Coliforms in Waste Water		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Consent of copyright owner reduited for any other use.

CERTIFICATE OF ANALYSIS

ALS

 SDG:
 171104-108
 Client Reference:
 501.00180.00109
 Report Number:
 432164

 Location:
 Calary Quarry
 Order Number:
 3513
 Superseded Report:

Test Completion Dates

Lab Sample No(s)	16496217	16496221
Customer Sample Ref.	SW01	SW02
AGS Ref.		
Depth	0.00 - 0.00	0.00 - 0.00
Туре	Surface Water	Surface Water
Ammonium Low	08-Nov-2017	08-Nov-2017
Anions by Kone (w)	09-Nov-2017	09-Nov-2017
Conductivity (at 20 deg.C)	08-Nov-2017	08-Nov-2017
Dispersion index		07-Nov-2017
Dissolved Metals by ICP-MS	10-Nov-2017	10-Nov-2017
EPH (DRO) (C10-C40) Aqueous (W)	08-Nov-2017	08-Nov-2017
Faecal Coliforms	07-Nov-2017	07-Nov-2017
GRO by GC-FID (W)	09-Nov-2017	09-Nov-2017
Metals by iCap-OES Dissolved (W)	09-Nov-2017	09-Nov-2017
Nitrite by Kone (w)	08-Nov-2017	08-Nov-2017
PAH Spec MS - Aqueous (W)	08-Nov-2017	08-Nov-2017
pH Value	07-Nov-2017	07-Nov-2017
Suspended Solids	07-Nov-2017	07-Nov-2017
Total Coli & Escherichia coli (W)	07-Nov-2017	07-Nov-2017
Total EPH (aq)	09-Nov-2017	09-Nov-2017

Consent of copyright owner required for any other use.

CERTIFICATE OF ANALYSIS

432164 SDG: 171104-108 501.00180.00109 Client Reference: Report Number: Superseded Report: Location: Calary Quarry Order Number: 3513

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on received.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.

 11. Results relate only to the items tested.
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 14. Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 22. We are accredited to MCERTS for sand, clav and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised
- 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

I	1	Container with Headspace provided for volatiles analysis
I	2	incorrect container received
I	A03.	Deviation from method
Ş	N. Con	Holding time exceeded before sample received
Ź	5	Samples exceeded holding time before presevation was performed
	§	Sampled on date not provided
I	•	Sample holding time exceeded in laboratory
I	@	Sample holding time exceeded due to sampled on date
I	&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbests
Amosite	Brown Asbestos
Cro di dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

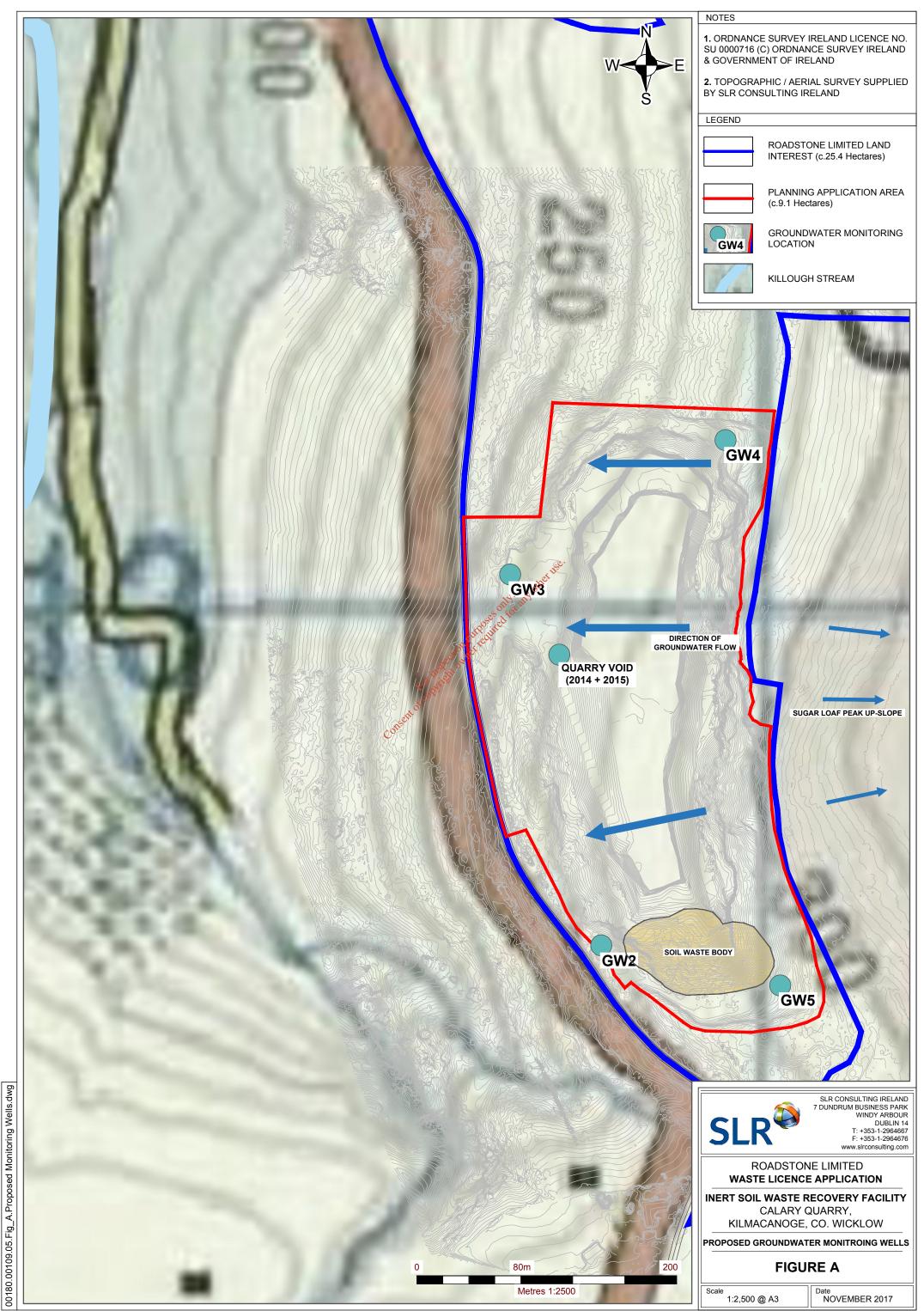
Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

12:43:09 10/11/2017 Modification Date: 10/11/2017 EPA Export 08-12-2017:04:11:57

CALARY GROUNDWATER: WATER QUALITY TESTING NOVEMBER 2017


	Units	Detection limits	SI No 9 of 2010 (GW Regs)	SI No 122 of 2014 (EC Drinking Water Regs)	EPA IGVs	WHO DWS	GW2
Sample Date							20/11/2017
Lab ID							16599482
Well depth m							93.2
Groundwater Level mGL							42.58
Groundwater Level mTOC							42.88
Inorganics/Metals							
Dissolved Solids, Total (gravim		<10					155
Suspended Solids, Total	mg/l	<2					332
Manganese (diss.filt)	ug/l	<1					1.02
Nitrite as NO2	mg/l	<0.05	0.375				<0.05
Magnesium	mg/l	<0.036	3.75	-		3	12.4
Cadmium	ug/l	<0.08 <0.3	3.75 1500	5 2000	5 30	2000	<0.08 0.413
Copper Lead	ug/l ug/l	<0.3	18.75	10	10	2000	<0.2
Nickel	ug/l ug/l	<0.4	15.75	20	20	70	<0.2
Zinc	ug/l ug/l	<0.4	10	20	100	70	6.9
Iron	ug/l	<19		200	200		<19
Sulphate (soluble)	mg/l	<2	187.5	250	200		11.4
Nitrate as NO3	mg/l	<0.3	37.5	50	25		5.78
Chloride	Ţ	<2	24-187.5	25000	30		50
	mg/l			25000			
Ammonical Nitrogen as N	mg/l	<0.01	0.065-0.175		0.15		0.0262
Total Ammonia as NH3	mg/l	<0.01	0.07891-0.21245		0.1821		0.0318
Orthophosphate as PO4	mg/l	<0.05		<i>S</i>	0.03		<0.05
pH Value	pH Units	<1		Mr. Mr.	6.5 - 9.5		8.21
Conductivity	mS/cm	<0.005	0.8 - 1.875*	22.50	1		0.308
Hydrocarbons				Althouses the			
GRO(>C5-C10)	ug/l	<10		on by year			<10
MTBE	ug/l	<3	800	Willo,	30		<3
Benzene	ug/l	<7	0.75 115 11	1	1	10	<7
Toluene	ug/l	<4	FORTHER		10	700	<4
Ethyl benzene	ug/l	<5	and com		10	300	<5
m & p Xylene	ug/l	<8 <3	Collection			500	<8
o Xylene Sum of BTEX	ug/l	<3 <28	C			500	<3 <28
EPH Range >C10-C40(aq)	μg/l ug/l	<100					<100
Total EPH (C6-C40) (aq)	ug/l	<100					<100
EPH Band >(C6-C10)	ug/l	<100					
PAH	<u></u>						
		<100					<100
Acenaphthene Aqueous	ua/l						<100
Acenaphthene Aqueous Acenaphthylene Aqueous	ug/l ug/l	<0.005					<100 <0.005
Acenaphthene Aqueous Acenaphthylene Aqueous Anthracene Aqueous	ug/l ug/l ug/l				10000		<100
Acenaphthylene Aqueous	ug/l	<0.005 <0.005			10000		<0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous	ug/l ug/l	<0.005 <0.005 <0.005	0.075	0.01	10000	0.7	<0.005 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous	ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.002 <0.005	0.075	0.01	0.01 0.5	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.002 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous	ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005	0.075	0.01	0.01 0.5 0.05	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous	ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.005	0.075	0.01	0.01 0.5	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous Chrysene Aqueous	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.005	0.075	0.01	0.01 0.5 0.05	0.7	<0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.005 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous Chrysene Aqueous Dibenzo(ah)anthracene Aqueo	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.005 <0.005	0.075	0.01	0.01 0.5 0.05 0.05	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous Chrysene Aqueous Dibenzo(ah)anthracene Aqueo Fluoranthene Aqueous	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.005 <0.005 <0.005	0.075	0.01	0.01 0.5 0.05	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous Chrysene Aqueous Dibenzo(ah)anthracene Aqueo Fluoranthene Aqueous Fluorene Aqueous	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.075	0.01	0.01 0.5 0.05 0.05	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous Chrysene Aqueous Dibenzo(ah)anthracene Aqueo Fluoranthene Aqueous Fluorene Aqueous Indeno(123cd)pyrene Aqueous	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.075	0.01	0.01 0.5 0.05 0.05 1.0	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous Chrysene Aqueous Dibenzo(ah)anthracene Aqueo Fluoranthene Aqueous Fluorene Aqueous Indeno(123cd)pyrene Aqueous Naphthalene Aqueous	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.075	0.01	0.01 0.5 0.05 0.05	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous Chrysene Aqueous Dibenzo(ah)anthracene Aqueo Fluoranthene Aqueous Fluorene Aqueous Indeno(123cd)pyrene Aqueous Naphthalene Aqueous Phenanthrene Aqueous	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.075	0.01	0.01 0.5 0.05 0.05 1.0	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous Chrysene Aqueous Dibenzo(ah)anthracene Aqueo Fluoranthene Aqueous Fluorene Aqueous Indeno(123cd)pyrene Aqueous Naphthalene Aqueous Phenanthrene Aqueous Pyrene Aqueous	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005			0.01 0.5 0.05 0.05 1.0 0.05 1.0	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous Chrysene Aqueous Dibenzo(ah)anthracene Aqueo Fluoranthene Aqueous Fluorene Aqueous Indeno(123cd)pyrene Aqueous Naphthalene Aqueous Phenanthrene Aqueous Pyrene Aqueous PAH 16 Total	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.075	0.01	0.01 0.5 0.05 0.05 1.0	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous Chrysene Aqueous Dibenzo(ah)anthracene Aqueo Fluoranthene Aqueous Fluorene Aqueous Indeno(123cd)pyrene Aqueous Naphthalene Aqueous Phenanthrene Aqueous Pyrene Aqueous PAH 16 Total Microbiological	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005		0.1	0.01 0.5 0.05 0.05 1.0 0.05 1.0	0.7	<100 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0082
Acenaphthylene Aqueous Anthracene Aqueous Benz(a)anthracene Aqueous Benzo(a)pyrene Aqueous Benzo(b)fluoranthene Aqueous Benzo(ghi)perylene Aqueous Benzo(k)fluoranthene Aqueous Chrysene Aqueous Dibenzo(ah)anthracene Aqueo Fluoranthene Aqueous Fluorene Aqueous Indeno(123cd)pyrene Aqueous Naphthalene Aqueous Phenanthrene Aqueous Pyrene Aqueous PAH 16 Total Microbiological Escherichia coli (Presumtive)	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005			0.01 0.5 0.05 0.05 1.0 0.05 1.0	0.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005

Notes:

The limit values for the Groundwater Regulations (SI 9 of 2010) are for the Category "Column 4" Threshold Values for for the general quality of groundwater in a groundwater body in terms of whether its ability to support human uses has been significantly impaired by pollution. Where no value is defined, the Overall Threshold values have been used.

CALARY SURFACE WATER POND: WATER QUALITY TESTING NOVEMBER 2017

			01.007 - 1.0040	01.007 - (.0040	01.070 - (.000	01 070 - (0000		
			SI 327 of 2012 EQS Inland	SI 327 of 2012 EQS Other	SI 272 of 2009 EQS Inland	SI 272 of 2009 EQS Other		
		Detection	Surface Waters					
	Units	limits	(MACs)	(MACs)	(MACs)	(MACs)	SW01	SW02
Sample Date							01/11/2017	01/11/2017
Lab ID							16496217	16496221
Well depth m								
Groundwater Level mGL								
Groundwater Level mTOC								
Field Parameters	°C						10.9	10.9
Temperature Dissolved Oxygen %	<u> </u>						4.8	54
Dissolved Oxygen Dissolved Oxygen	mg/l						0.53	5.9
Conductivity	mScm ⁻¹						0.16	0.161
pH	pH Units						8.44	8.33
ORP	mV						-83.6	-77.7
Inorganics/Metals								
Dissolved Solids, Total (gravim	mg/l	<10						
Suspended Solids, Total	mg/l	<2					<2	<2
Manganese (diss.filt)	ug/l	<1					<1	<1
Nitrite as NO2	mg/l	<0.05						
Magnesium	mg/l	<0.036					8.97	8.51
Cadmium	ug/l	<0.08	0.45 - 1.5	0.45 - 1.5	0.45 - 1.5	0.45 - 1.5	<0.08	<0.08
Copper	ug/l	<0.3			5 - 30 (AA)	5 (AA)	2.47	1.43
Lead	ug/l	<0.2	7.2 (AA)	7.2 (AA)	7.2 (AA)	7.2 (AA)	<0.2	<0.2
Nickel	ug/l	<0.4	20 (AA)	20 (AA)	20 (AA)	20 (AA)	<0.4	<0.4
Zinc	ug/l	<1					<1	<1
Iron	ug/l	<19					<19	<19
Sulphate (soluble) Nitrate as NO3	mg/l	<2 <0.3			ise.		6.8 0.597	6.9 0.55
Nitrate as NO3	mg/l	<0.3			High status ≤0	.040 (mean) or		
Chloride	mg/l	<2		. 41.	≥0.090(95%ile) G	ood status ≤0.065	11	11.1
Ammonical Nitrogen as N	mg/l	<0.01		onit?	ot t		0.0774	0.0728
Total Ammonia as NH3	mg/l	<0.01		- 100° 100° 100° 100° 100° 100° 100° 100			0.094	0.0884
				ns edion pure regired for		5 (mean) or ≤0.045 %ile)	<0.05	<0.05
Orthophosphate as PO4	mg/l	< 0.05		ectionnet.	Good status ≤0.03	5 (mean) or ≤0.075	<0.05	<0.03
pH Value	pH Units	<1	2				8.01	8.04
Conductivity	mS/cm	<0.005	₹or	Syrie			0.196	0.197
Hydrocarbons			Solo					
GRO(>C5-C10)	ug/l	<10	Serie				<10	<10
MTBE	ug/l	<3	Cogn				<3	<3
Benzene	ug/l	<7	50	50	10 (1.1)	10 (11)	<7	<7
Toluene	ug/l	<4			10 (AA)	10 (AA)	<4	<4
Ethyl benzene	ug/l	<5 <8			10 (0 0)	10 (4 4)	<5 <8	<5 <8
m & p Xylene o Xylene	ug/l	<3			10 (AA)	10 (AA)	<3	<3
Sum of BTEX	ug/l µg/l	<3 <28					<3 <28	<3 <28
EPH Range >C10-C40(aq)	μg/l ug/l	<100					<100	<100
Total EPH (C6-C40) (aq)	ug/l	<100					<100	<100
EPH Band >(C6-C10)	ug/l	<100					<100	<100
PAH	,							
Acenaphthene Aqueous	ug/l	<0.005					<0.005	<0.005
Acenaphthylene Aqueous	ug/l	< 0.005					<0.005	<0.005
Anthracene Aqueous	ug/l	<0.005	0.4	0.4	0.4	0.4	<0.005	<0.005
Benz(a)anthracene Aqueous	ug/l	<0.005					<0.005	<0.005
Benzo(a)pyrene Aqueous	ug/l	<0.002	0.1	0.1	0.1	0.1	<0.002	<0.002
Benzo(b)fluoranthene Aqueous	_	<0.005					<0.005	<0.005
Benzo(ghi)perylene Aqueous	ug/l	<0.005					<0.005	<0.005
Benzo(k)fluoranthene Aqueous		<0.005					<0.005	<0.005
Chrysene Aqueous	ug/l	<0.005					<0.005	<0.005
Dibenzo(ah)anthracene Aqueo Fluoranthene Aqueous		<0.005 <0.005	1	1			<0.005 <0.005	<0.005 <0.005
Fluorantnene Aqueous Fluorene Aqueous	ug/l ug/l	<0.005	ı	ı			<0.005	<0.005
Indeno(123cd)pyrene Aqueous	_	<0.005					<0.005	<0.005
macholization/pyrelie Aqueous			2.4	1.2	N/A	N/A	0.0252	<0.003
Naphthalene Aqueous	_	<0.01		1.6	13// \	1 4/7 (
Naphthalene Aqueous Phenanthrene Aqueous	ug/l	<0.01 <0.005	2.1				<0.005	<0.005
Naphthalene Aqueous Phenanthrene Aqueous Pyrene Aqueous	ug/l ug/l	<0.01 <0.005 <0.005	2				<0.005 <0.005	<0.005 <0.005
Phenanthrene Aqueous	ug/l	<0.005						
Phenanthrene Aqueous Pyrene Aqueous	ug/l ug/l ug/l	<0.005 <0.005	2.1				<0.005	<0.005
Phenanthrene Aqueous Pyrene Aqueous PAH 16 Total	ug/l ug/l ug/l	<0.005 <0.005 <0.082	2.1				<0.005	<0.005
Phenanthrene Aqueous Pyrene Aqueous PAH 16 Total Microbiological Escherichia coli (Presumtive) Faecal Coliforms	ug/l ug/l ug/l ug/l	<0.005 <0.005 <0.082 <1 <1	2.1				<0.005 <0.082	<0.005 <0.082

