

| G. BRUSS GmbH | Dichtungstechnik | Sligo | Ireland

Office of Climate, Licensing & Resource Use PO Box 3000 Johnstown Castle Estate County Wexford G. BRUSS GmbH Dichtungstechnik

Finisklin Road Sligo Ireland Phone +353 71 915 6300 Fax +353 71 916 9352

Internet: www.Bruss.de

Branch Registered Office Finisklin Road, Sligo Co. Reg. No. 902311 Vat No 4540059 I

IPC Reg. No: PO465-02 Re: Letter of 29 June 2016 Request for Information according to Reg. 10(2)(b)(ii) of PA(PC) (Licensing) Regulations 2013 - Follow up Monitoring Report

04 Oct 2017

Dear Mr. Clabby,

Further to the submission of additional information as requested by the Agency under Reg 10, I am enclosing a follow up monitoring report on Air emissions from the proposed A2-05 emission point, the subject of the licence application. This monitoring report is the analysis of samples taken from the upgraded process equipment 'Walther Trowal' ROTAWAT System, as described in our response to item No. 4 of the Reg. 10 response.

We declare that the content of the electrome files on the accompanying CD-ROM is a true copy of the original form.

Please find enclosed the following documents for review:

- Reg 10 Request follow Monitoring Report Hardcopy: 1 signed original, I copy
- 2 electronic copies of all files on CD-ROM

Please do not hesitate to contact us with any queries you may have,

Yours sincerely,

Anna Garvey Environmental Manager G. Bruss GmbH DICHTUNGSTECHNIK Finisklin Road, Sligo Tel: 003537191564342 Fax: 00353719169352 Email: <u>annagarvey@bruss.ie</u>

tms environment ltd

TMS Environment Ltd 53 Broomhill Drive Tallaght Dublin 24 Phone: +353-1-4626710 Fax: +353-1-4626714 Web: www.tmsenv.ie

CONFIDENTIAL REPORT

AIR EMISSIONS SURVEY August 2017

> AT G BRUSS GMBH Finisklin Road, Sligge

Licence, Reg. P0465-01 TMS Environment Ref. 24420

æ

Commencement Date: 03 August 2017

Consent

Completion Date: 15 September 2017

Reporting Enda Flood James Carroll Site Personnel Enda Flood Analysts

Approved by:

Inelda Starahan

Dr Imelda Shanahan Technical Manager

Terms and conditions: 1. Reports shall

Reports shall not be reproduced except in full, without prior approval of TMS Environment Ltd This report relates only to the items tested

Complaints should be addressed in writing to the Quality Manager

ľ

2.

3.

EXECUTIVE SUMMARY

This Air Emissions report presents results of emissions monitoring from emission point A2-05 at G Bruss GmbH, Finisklin Road, Sligo, County Sligo. Monitoring has been conducted to satisfy the customer's requirements in respect of the following parameters:

Emission Point	Monitoring Parameters	
A2-05	• T.A. Luft Classes I, II & III	
	• TOC as C	
	Propan-2-ol	
	Di-butyl Tin	
	Velocity and Temperature	

Measurements were completed on 03 August 2017. Details of the monitoring methods employed, Standard Reference Methods used and Guidance Notes consulted are presented in Section 4.0 of this report together with information on the equipment used and the monitoring personnel.

Monitoring for VOCs was carried out at an emission point located at a position pre-abatement while simultaneously at an emission point post abatement system. The results for VOC monitoring at both points are to be used to assess the effectiveness of the abatement system.

Monitoring for TOC as C was also conducted at points pre- and post-abatement, however monitoring did not occur simultaneously. FOC concentration rises rapidly at commencement of a batch but remain relatively constant throughout the batch.

G Bruss GmbH P0465-01

1.0	Scope
2.0	Survey protocol 4
2.1	Protocol 4
3.0	Monitoring Results5
3.1 14:37	Results for Emission Point A2-05, Pre Abatement Monitoring, 03 August 2017, to 15:10
	Results for Emission Point A2-05, Pre Abatement TOC Monitoring, 03 August 14:41 to 15:11
	Results for Emission Point A2-05, Post Abatement Monitoring, 03 August 14:37 to 15:10
3.4 Augus	Results for Emission Point A2-05, Post Abatement TOC Monitoring, 03 at 2017, 13:50 to 14:20 Reference Conditions for emission point A2-05 Discussion of Results 6 Supporting Information 6 Monitoring team information
3.5	Reference Conditions for emission point A2-05
3.6	Discussion of Results
4.0	Supporting Information
4.1	Monitoring team information 6
4.2	Substance(s) monitored, SOP's and Standard Methods
4.3	Equipment used and Quality checks
4.4	Reporting results7
4.4.1	Expression of test results
4.4.2	Reporting results less than the detection limit7
4.4.3	Uncertainty calculation7

í

1.0 Scope

This Air Emissions report presents results of emissions monitoring from emission point A2-05 at G Bruss GmbH, Finisklin Road, Sligo, County Sligo. Monitoring has been conducted to satisfy the customer's requirements in respect of the following parameters:

Reporting pe	riod	August 2017	
EMISSION Point	PARAMETER	SAMPLING METHOD AND MEDIUM & ANALYSIS METHODOLOGY	STANDARD REFERENCE METHOD
	Speciated VOC's	Non-isokinetic / Absorbent tube absorption / Analysis by solvent desorption followed by GC-MS or GC-FID	CEN/TS 13649:2014
PRESSURE	VELOCITY, FLOW	Pitot tube coupled with pressure measurement device or anemometer, and temperature measurement device	EN/ISO 16911-1:2013
) Survey	protocol	ontrel conducted the monitorin	

Table 1-1 Scope of Monitoring Survey

2.0 Survey protocol

2.1 **Protocol**

i: ;

TMS Environment Ltd personnel conducted the monitoring survey on 03 August 2017. Emissions to atmosphere from the Emission Point, A2-05 were monitored during the visit.

The survey was completed in order to meet the requirements of the company's IPPC Licence (Reg. No. P0465-02)

Relevant Process conditions during the survey are summarized below.

Emission monitoring point	Date and time	Details
A2-05	03 August 2017 13:50 to 15:30	Normal operation, Batch process, process lasts for periods of 7 - 9 mins, 2 batches monitored over 30 minute period.

Table 2-1: Operational information during testing

A Site Specific Protocol was prepared in accordance with EPA Air Guidance Note AG1 and CEN/TS 15675:2007 after a site review has been conducted with site personnel. A site risk assessment was completed prior to commencement of any monitoring to confirm that the monitoring could be carried out in a safe manner. All necessary PPE was worn at all times on site.

3.0 Monitoring Results

The results of the air emission monitoring reported in this document are presented in tables below. The methods used are defined by Standard Operating Procedures (SOP), each SOP has a unique number, details regarding each SOP are given in Part 2 of this report. Specific parameters monitored in each TA Luft Class are detailed in the Appendices.

<i>3.1</i>	Results for Emission Point A2-05, Pre Abatement Monitoring, 03 August 2017, 14:37
1 1	to 15:10

Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance
Di-Butyl Tin Laurate	N/S	<1.4	±0.28	mg/m ³	<0.001	N/A
VOC Screen (including Xylene)	N/S	666.5	±70	mg/m ³	0.41	N/A
VOC Total	N/S	1493	±308	mg/m ³	0.931	N/A
Isopropyl Alcohol	N/S	19.2	±3.97 other	mg/m ³	0.012	N/A
Volume Flow	N/S	624	Heating \$36	m³/hr		N/A

3.2 Results for Emission Point A2-05, Fre Abatement TOC Monitoring, 03 August 2017, 14:41 to 15:11

Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance
TOC as C	N/S	2306.9	±452	mg/m ³	1.49	N/A

3.3 Results for Emission Point A2-05, Post Abatement Monitoring, 03 August 2017, 14:37 to 15:10

Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance
Di-Butyl Tin Laurate	N/S	<1.37	±0.28	mg/m ³	<0.001	N/A
VOC Screen (including Xylene)	N/S	<0.68	±0.14	mg/m ³	<0.001	N/A
VOC Screen (excluding targets)	N/S	<0.68	±0.14	mg/m ³	<0.001	N/A
Isopropyl Alcohol	N/S	3.6	±0.75	mg/m ³	0.002	N/A
Volume Flow	N/S	646	±37	m³/hr	-	N/A

G Bruss GmbH P0465-01 Air Emissions Report August 2017 Ref. 24420, Page 5 of 23

•	13:50 to 14:20							
Parameter	Emission limit value	Emission results	Uncertainty	Units	Mass Emission kg/hr	Compliance		

 ± 77.0

mg/m³

0.255

N/A

21 Results for Emission Point A2-05, Post Abatement TOC Monitoring 03 August 2017

3.5 **Reference Conditions for emission point A2-05**

N/S

Reference Conditions for concentrations and volume flow as expressed as:

601

393.2

Temperature, K	Temperature, K Pressure, kPa		Moisture %	
273	101.3	N/A	Dry	

3.6 **Discussion of Results**

TOC as C

Based on a review of MSDS's supplied by the Client a VOC screen was run on the tubes used during monitoring of both pre and post abatement monitoring locations. This VOC screen specifically looked for concentrations of Di-butyl Tin Laurate, Xylene in TA Luft Class II and Isopropyl Alcohol (IPA) in TA Luft Class III as welkas Aliphatic Hydrocarbons.

Analysis of the TOC as C data shows a rapid increase in the concentration at the beginning of a spray batch and then a relatively constant level until the end of the process. After completion of the batch, the TOC levels drop back to near ambient levels.

The concentration of organics in the emissions after abatement is significantly lower than the pre-abatement levels. Abatement efficiencies were calculated at 99.9% (VOC) and 81% (IPA) based on the survey results. The % abatement efficiency based on the TOC readings (83%) should be considered in the context that the pre- and post-abatement TOC measurements were not recorded simultaneously.

4.0 Supporting Information

4.1 Monitoring team information

Name	Function	Qualification
Enda Flood	Environmental Scientist	• PgC Green Tech (2010) UCD Dublin
	Environmental Scientist	BAgSc (2008) UCD Dublin

Substance Monitored	SOP	Standard Method	Analysis by	ISO 17025 Accreditation Status	Analysis Date
Speciated VOCs	QP-SITE-2016	EN 13649	SAL	В	16 Aug - 06 Sept 2017
VOCs	QP-SITE-2016	EN 13649	SAL	D	16 Aug - 06 Sept 2017
TOC as C	QP-SITE-2025	EN 12619	TMS	A	03 Aug 2017
Velocity & Temp	QP-SITE-2006	EN 13284-1:2002/ EN/ISO 16911- 1:2013	TMS	A	03 Aug 2017

4.2 Substance(s) monitored, SOP's and Standard Methods

Note 1: ISO 17025 Accreditation Status: A – TMS accredited for Monitoring and Analysis, B - TMS accredited for Monitoring, sub contract lab accredited for analysis; D TMS not accredited for monitoring as non-accredited analysis is carried out by sub-contract lab

4.3 [*]	Equipment	used and	Quality	checks
-------------------------	-----------	----------	---------	--------

Equipment	Equipment ID	Quality Check			
	M-S-E-20-7				
Deluxe SKC Sampling pump	M-S-E-20-4	On-site per and post			
	M-S-E-20-3 other	calibration check			
	M-S-E-20-6				

4.4 Reporting results

4.4.1 Expression of test results

All test results are expressed to one decimal place lower than the Emission Limit Value (ELV), while uncertainty of measurement results are expressed to two decimal places lower than the ELV, e.g. where an ELV of 50mg/m^3 applies, the reported result shall be reported to the first decimal place e.g. 6.6mg/m^3 with the uncertainty of measurement reported to two decimal places, e.g. $\pm 0.12 \text{mg/m}^3$.

4.4.2 Reporting results less than the detection limit

If a single result is reported as being less than the limit of detection, the measurement result is expressed using a less than "<" sign, e.g. <0.005 mg/Nm³. Where a number of parameter results, found to be less than the limit of detection, are expressed as an overall parameter, these results are calculated as per Section 3.3, Method 3 (Half the Limit of Detection) of the EPA *BREF Guidance on the General Principles of Monitoring*. This percentage method provides an estimation of the value of the measurement. It is reported without the less than "<" sign, e.g. 0.05 mg/Nm³.

4.4.3 Uncertainty calculation

An estimation of the uncertainty of measurement is attached to all measurements. Measurement uncertainties are based on calibration data and laboratory repeatability experiments. All uncertainties are given at a 95% confidence, based on applying a coverage factor of k=2 to the combined uncertainties for each measurement. The uncertainty of measurement associated with emissions monitoring are provided in the Table below.

G Bruss GmbH P0465-01

Air Emissions Report August 2017 Ref. 24420, Page 7 of 23

Parameter	Source of uncertainty	Estimated uncertainty %	Combined uncertainty %	Expanded uncertainty % (95% confidence level)
• •	Oxygen Analyser	6		
TOC	Temperature Analyser	0.5	9.80	20%
	FID	5		
i i	Velocity	2		
	CSA	1		21%
VOC	Stack Pressure	2	10.32	
	Stack Temperature	2		
	Analysis	5		
	Velocity	2		
Volume	Stack Temperature	0.5		
Flow	Stack Pressure	0.5	2.9	5.81%
TIOW	O ₂	1	<u>رو</u> .	
	CSA	2	ther ut	
	Consent of con	0.5 1 2 1 2	- 3HY	

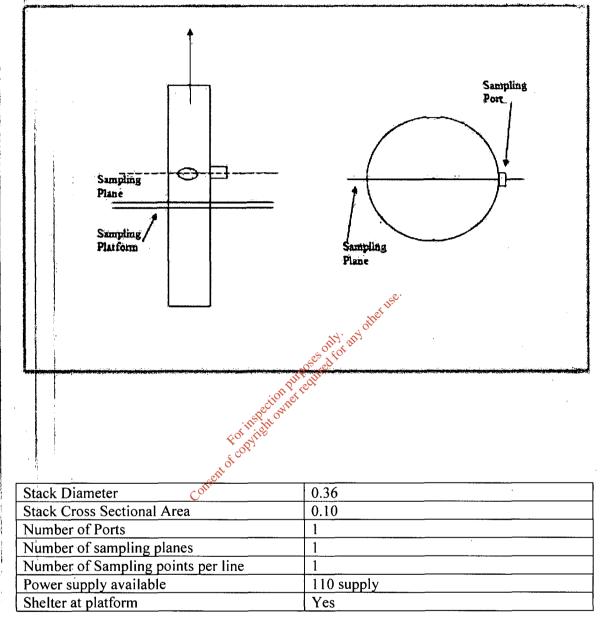
Table 4-1: Uncertainty of Measurement

G Bruss GmbH P0465-01

Ē

4

.ţ


ŝ,

ļ

I.,

Appendix 1: Emission Point A2-05 Pre- and Post Abatement Points

G Bruss GmbH P0465-01 Air Emissions Report August 2017 Ref. 24420, Page 9 of 23

leasurements Pre Adat	ement VUC Run			
Reference method	EN 13649			
Sampling date	03 August 2017			
Sampling time	14:37 to 15:10			
ue gas sampling system	SKC pumps with Ty tube holder	gon tubing low flow		
measurement technique	N/A			
Sampling material	Charcoal tubes			
	1			
mpling flow rate [l/min]	0.5 per tube			
tal sampling time [min]	33	M-97-1		
the dry gas at STP [m ³]	0.015			
s temp temperature [°C]	29.7			
conditions	Actual co	onditions		
Dry	Moisture [%]	Dry		
273	Temperature [K]	303		
101.3	Pressure [kPa]	99.10		
N/A	Oxygen [%]	N/A		
sokinetic conditions [%]	NA			
ce method	There was no devia method.	tion from reference		
For inspection net.				
	Reference method Sampling date Sampling time ue gas sampling system measurement technique Sampling material mpling flow rate [l/min] otal sampling time [min] the dry gas at STP [m ³] s temp temperature [°C] conditions Dry 273 101.3 N/A sokinetic conditions [%]	tube holder measurement technique N/A Sampling material Charcoal tubes mpling flow rate [l/min] 0.5 per tube otal sampling time [min] 33 the dry gas at STP [m³] 0.015 s temp temperature [°C] 29.7 conditions Actual co Dry Moisture [%] 273 Temperature [K] 101.3 Pressure [kPa] N/A Oxygen [%] sokinetic conditions [%] N/A		

Appendix 1:2 - Stack Measurements Pre Abatement VOC Run

 3

4

1

Appendix 1:3 - Stack Measurer	nents Pre Abater	ment TOC Ru	I <u>N</u>	
R	eference method	EN 12619		
	Sampling date	03 August 2017		
	Sampling time	14:41 to 15:1	1	
Sampling technique				
	TOC	Flame ionisa	tion detection	
Material				
Samplin	g probe material	SS, PTFE		
н. - 2	Fuel	Hydrogen		
Spa	n calibration gas	Propane 90.0	ppm	
Zer	o calibration gas	Ambient air	after passing charcoal filter	
Span gas drift	[% of the range]	<2		
Zero gas drift	[% of the range]	<2		
Sampling conditions				
D	uct diameter [m]	0.36		
Number o	f sampling ports	1		
Number of	of sampling lines	Single point sampling		
Heated line	temperature [°C]	180		
Number of samplir	g points per line	1		
Average flue g	as velocity [m/s]	1.93		
Average flue gas temp	temperature [°C]	1.93 11 29.00 ¹¹⁰		
Sampling conditions	ć	all an		
Conditions	Refere	nce	Sampling plane	
Moisture	pureDiry	/	2.92	
Temperature [K]	citomet 273	3 303		
Pressure [kPa]	101.	3	99.60	
Oxygen [%]	For pure N/A		N/A	
Deviation from reference metl	1gd ^{ox}			
Deviation from reference met	erence method			
Colle				

4

G Bruss GmbH P0465-01

1

tement VOC Run
EN 13649
03 August 2017
14:37 to 15:10
SKC pumps with Tygon tubing low flow tube holder
N/A
Charcoal tubes
0.5 per tube
33
0.015
21
Actual conditions
Moisture [%] Dry
Temperature [K] 294
Pressure [kPa] 99.90
Oxygen [%] N/A
There was no deviation from reference
method.
There was no deviation from reference method.

Appendix 1:4 - Stack Measurements Post Abatement VOC Run

G Bruss GmbH P0465-01

į

T

ł

÷

1 ;

į

Appendix 1:5 - Stack Measurem	ents Post Abate	ment TOC R	un	
Re	eference method	EN 12619		
· · · · · · · · · · · · · · · · · · ·	Sampling date		017	
	Sampling time	13:50-14:20		
Sampling technique				
	TOC	Flame ionisa	tion detection	
Material				
Sampling	g probe material	SS, PTFE		
	Fuel	Hydrogen		
Spar	n calibration gas	Propane 90.0) ppm	
Zero	calibration gas		after passing charcoal filter	
	[% of the range]	<2		
Zero gas drift	% of the range]	<2		
Sampling conditions				
Dı	ict diameter [m]	0.36		
Number of	f sampling ports	1		
Number o	f sampling lines	Single point sampling		
Heated line t	emperature [°C]	180		
Number of samplin	g points per line	1		
Average flue ga	s velocity [m/s]	1.93 10 ¹¹⁰ 20.0 ³¹⁰		
Average flue gas temp t	emperature [°C]	20.00		
Sampling conditions	0	in an		
Conditions	Refere	nce	Sampling plane	
Moisture	Purcery	/	2.92	
Temperature [K]	ction for 273		293	
Pressure [kPa]			99.60	
Oxygen [%]	FOT VIE N/A	1	N/A	
Deviation from reference meth	Qđ			
	erence method			
Cons				

G Bruss GmbH P0465-01

Instrument	Equipment ID	Calibration Parameter	Reading before Calibration	Reading post Calibration	Reading post sampling
SKC Pump	M-S-E-20-7	Volume Flow	500 ml/min	500 ml/min	500 ml/min
SKC Pump	M-S-E-20-4	Volume Flow	500 ml/min	500 ml/min	500 ml/min
SKC Pump	M-S-E-20-3	Volume Flow	500 ml/min	500 ml/min	500 ml/min
SKC Pump	M-S-E-20-6	Volume Flow	500 ml/min	500 ml/min	500 ml/min

Appendix 1:6 – Equipment Calibration

ŝ

1

Ĵ.

Appendix 1:7 Parameter results

Parameter	unit	24420-2 (Blank)	24420-5	24420-8	24420-3 (Blank)	24420-6	24420-9
Isopropyl Alcohol	μg	<5	280	53	-	-	-
Di-butyl Tin	μg	NA	NA	NA	<20	<20	<20

Appendix 1:8 Parameter results

Parameter	unit	24420-1 (Blank)	24420-4 Pre-Abatement	24420-7 Post Abatement
VOC's Screen excluding targets	μg	<10	12,000	8
VOCs including targets	μg	< 10	9730	< 10
Octane, 2-methyl	μg	ND	880 ⁻	ND
Heptane 3-ethyl-2-methyl	HEI	ND ND	1000	ND
Ethyl benzene	Se Ing	ND	1600	ND
Nonane	purequifig	ND	1200	ND
M - / p- xylene	net µg	ND	1300	ND
1-ethyl-4-methyl cyclohexane	μg	ND	810	ND
o-xylene For the	μg	ND	1300	ND
	μg	ND	400	ND
Cyclohexane, 1-ethy-2,3 dimethyl	μg	ND	680	ND
Branched benzene (C10)	μg	ND	530	ND

No significant peaks detected in VOC screen, screen included analysis for Xylene and Aliphatic hydrocarbons.

G Bruss GmbH P0465-01

Appendix II Calibration Certificates

G Bruss GmbH P0465-01

ł

Certificate of Ca	alibration	Hac MRA
Date of issue: 20-Apr-17	Certificate Number N 022121	
Chell Instruments Ltd Folgate House Folgate Road North Walsham NR28 OAJ England Felephone 01692 502003 direct line Fax 01692 500088 e-mail pcm@chell.co.uk web site www.chell.co.uk	Gas Pressure Vacuum & Flow	Page 1 of 8 pages Approved Signatory Name [] P.C.A. Marks [] J. Shanahan [] P.J. Kerrison Signature
CUSTOMER DETAILS		
Address: Purchase order No.: Chell Job No.: UNIT UNDER TEST DETAILS Manufacturer: Model & description: Serial / I.D. No. Ranges calibrated: CALIBRATION DETAILS Laboratory conditions:	25238 Tecora Connected in the Tecora Connected in the Sector Connected in the Tecora Connected in the	pler 50 l/min), Electical simulation K type thermocouple ars 0 to 2500 Pa, om & pitot absolute pressure, o orifice meter. DGM single point temperature check.
Calibration completed:	20-Apr-17	
Engineers note: The instrument was receiv	ved with no obvious signs	of major damage or contamination.
confidence of approximately 95%. The uncerta The uncertainty is true at the time observations calibrated value(s) with time.	ainty evaluation has been c s were recorded and is not i ral Agreement of the Europe	Itiplied by a coverage factor k=2, providing a level of arried out in accordance with UKAS requirements. Indicative of the instruments' ability to retain the easy co-operative for Accreditation (EA) for the mutual

Template number: (Method 5 template)

- C - Section of

t

÷,

4

3

Certificate of Calibration

UKAS Accredited Calibration Laboratory No. 0687

Certificate Number N 022121

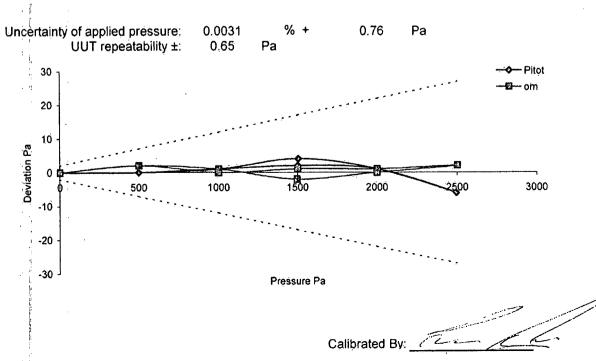
1

Page 2 of 8 Pages

Method:

The UUT was calibrated using a PPC3 Pressure Calibrator/Controller in gauge mode of operation. For differential pitot channel calibration the test pressures were applied to the + test port on the front of the instrument. Calibration of the OM (orifice meter) differential pressure was performed by applying test pressures to the test hoses at the internal orific meter tappings, observing the direction of flow.

Reference (low) ports of the differential sensors were maintained at ambient pressure and were pressure cycled and leak checked. Readings were taken from the Sensor list of the 'Check test' sub menu.


The SI unit of pressure (Pa) is realised using a conversion factor of:

Results: Differential pressure, as found

Pitot differential

Orifice (om) flow meter differential

Standard preșsure Pa	UUT indication Pa	Deviation Pa	Measurement uncertainty Pa	Standard pressure Pa	UUT indication Pa	Deviation Pa	Measurement uncertainty Pa
0.0	0	0	1.5	0.0	Pa .	0	1.8
500.0	500	0	1.5	500.0 💉	and 502	2	[.] 1.8
1000.0	1.001	1	1.5	500.0 1000.0000	<mark>ب</mark> ۲۵۵۱	1	1.8
1500.0	1502	2	1.5	1500.0	1498	-2	1.8
2000.0	2001	1	1.5	2000.0	2000	0	1.8
2500.0	2494	-6		2500.0	2502	2	1.8
2000.0	2001	1	15 💉	2000.0	2001	1	1.8
1500.0	1504	4	1.5, 199 1.5, 199 1,500 199	500.0	1501	1	1.8
1000.0	1001	1	1.50 Mile	1000.0	1000	0	1.8
500.0	500	0	1,50	500.0	502	2	1.8
0.0	Ó	0	×1.5	0.0	0	0	1.8
			Consent.5				

EPA Export 10-10-2017:03:45:31

Template number: (Method 5 template)

Certificate of Calibration

M-S-E-1-1 27-APR17

UKAS Accredited Calibration Laboratory No. 0687

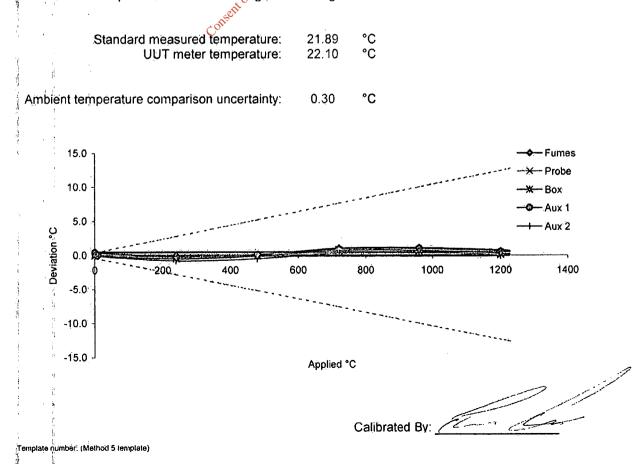
Number N 022121	Certificate	е	
	Number	Ν	022121

Page 3 of 8 Pages

64

Method:

The thermocouple of each channel was connected to a precision electrical thermocouple simulator using K type thermocouple wire and connectors.


The following sequence of simulated temperatures were applied and the resulting indications recorded.

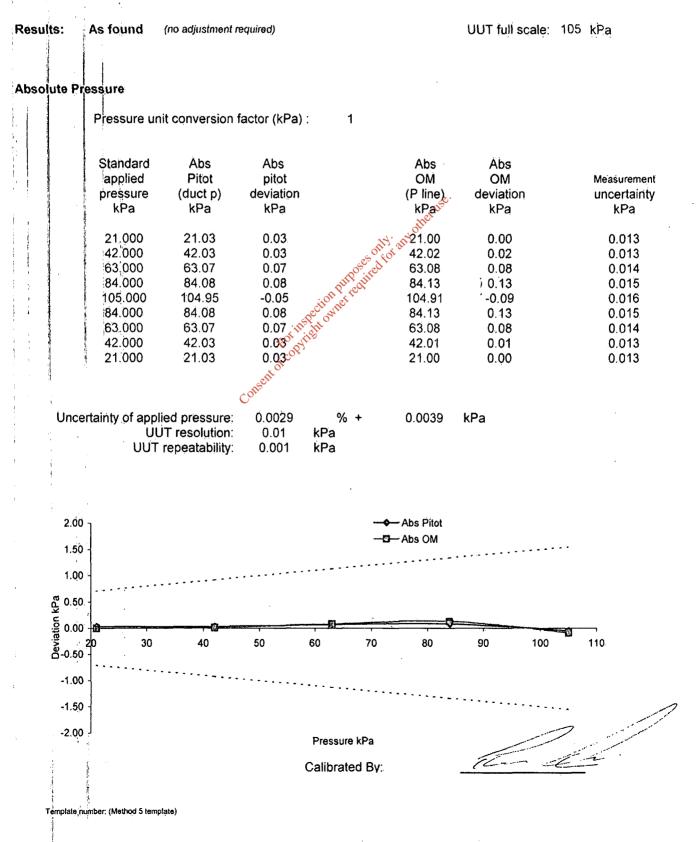
The UUT had previously been powered-up for a minimum of 30 minutes prior to calibration.

Results:	Electrical thermocouple simulation									
	Standard	Fumes	Aux 1	Aux 2	Probe	Box				
	temperature	channel	channel	channel	channel	channel				
	°C	°C	°C	°C	°C	°C				
	0.0	0.5	0.4	-0.1	0.1	-0.1				
	240.0	239.8	239.8	239.2	239.6	239.5				
	480.0	480.1	480.1	479.5	480.0	479.9				
	720.0	721.0	720.8	720.3	720.8	720.7				
	960.0	961.1	961.0	960.4	960.9	960.7				
	1200.0	1200.6	1200.5	1199.9	1200.4	1200.1				
	0.0	0.5	0.4	-0.1	0.1	0.0				
	Unc	certainty of m	neasurement:	1199.9 -0.1 019 0000000000000000000000000000000000	°C					

Results: DGM ambient temperature probe check.

A calibrated temperature probe was placed in good thermal contact with the UUT 'meter' probe and allowed to stabilise at ambient temperatrue before recording the following data.

UKAS Accredited Calibration Laboratory No. 0687


Certificate Number N 022121

Page 4 of 8 Pages

Method:

The UUT was calibrated using a PPC3 Pressure Calibrator/Controller in absolute mode of operation. The test gas used was dry filtered air.

Test pressures were applied directly to the the internal absolute pressure sensors in isolation of the differential sensors in order to avoid overpressure damage. The sensors were pressure cycled and leak checked prior to calibration. Readings were taken whilst system was in run mode.

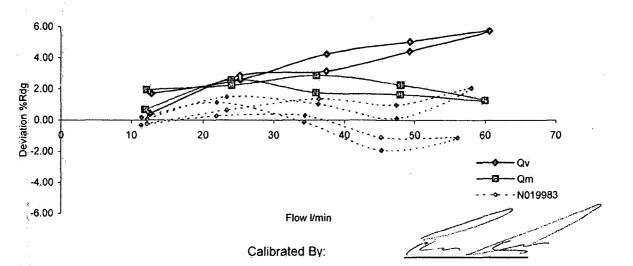
M <u>S-€-1-1</u> Certificate	27	APRIT	64
Certificate			
Number N	02212	21	
Page	5 of	8 Pages	

UKAS Accredited Calibration Laboratory No. 0687

Certificate of Calibration

Method:

The instrument orifice meter was calibrated using a series of precision sonic nozzles located upstream of the UUT gas inlet port. UUT measurements were recorded from page 1 of flux test in 'Flowrate' mode of operation. The absolute pressure was measured at the downstream tapping of the orifice meter and the temperature was measured at the outlet of the internal dry gas meter and used to calculate the true volumetric flow rate of dry air at the DGM.


'Normalised' mass flow units are referenced to a standard temperature and pressure shown below (0°C & 101.325kPa).

	Reference cor	nditions (STP)
	Standard temperature:	273	ĸ
St	andard reference pressure:	101.3	kPa

Results: As found flow rate (orifice meter)

Ś

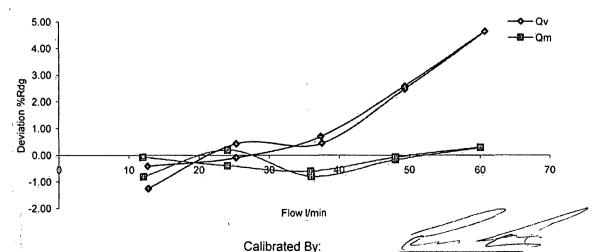
07	% of UUT full scale	Standard flow (Qm) NI/min	Equivalent flow (Qv) I/min	UUT (act f) IVmin	Deviation from std %	UUTe (stat) Nit/min	Deviation from std %	Measurement Uncertainty %
·.					es ato	\$ ⁻⁰⁴		
4	0	0.000	0.000	0.00	DA NOU	0.00	n/a	n/a
÷.	20	11.889	12.567	12.62	0.42	11.97	0.68	6.8
- 14 - 1	40	23.976	25.203	25.92	NOT 2.85	24.59	2.56	5.2
	60	36.014	37.456	38.63 🔬	o ¹⁰¹ 2.85	36.65	1.77	4.6
	80	47.987	49.234	51.41	20100 12.85 0 0 13.14 4.42 5 74	48.78	1.65	5.2
í	100	59.991	60.565	64.04	5.74	60,76	1.28	3.3
	80	48.055	49.314	51,80	5.04	49.14	2.26	5.2
	60	36,039	37,481	39.07	4.24	37.07	2.86	4.6
	40	24.024	25.237	Cons25.89	2.59	24.56	2.23	5.2
ł	20	12.113	12.801	13.02	1.71	12.35	1.96	6.8
1	Ó	0.000	0.000	0.00	n/a	0.00	n/a	n/a

Template number: (Method 5 template)

Ce	rtificate	of	Calib	ration

UKAS Accredited Calibration Laboratory No. 0687

Method:


The instrument orifice meter was calibrated using a series of precision sonic nozzles located upstream of the UUT gas inlet port. UUT measurements were recorded from page 1 of flux test in 'Flowrate' mode of operation. The absolute pressure was measured at the downstream tapping of the orifice meter and the temperature was measured at the outlet of the internal dry gas meter and used to calculate the true volumetric flow rate of dry air at the DGM.

'Normalised' mass flow units are referenced to a standard temperature and pressure shown below (0°C & 101.325kPa).

Reference col	Reference conditions (STP)					
Standard temperature:	273	ĸ				
Standard reference pressure:	101.3	kPa				

Results: As left flow rate (orifice meter)

a and there	% of UUT full scale	Standard flow (Qm) Nl/min	Equivalent flow (Qv) I/min	UUT (act f) It/min	Deviation from std %	UUT (std্*) Nivmin	Deviation from std %	Measurement Uncertainty %
ł					n/assonty.	and		
	0	0.000	0.000	0.00	n/a di	0.00	n/a	n/a
Î	20	12.067	12.770	12.61	A 25	11.97	÷0.80	3.6
	40	24.023	25.261	25.37	in 01.43	24.07	0.20	2.8
Ì	60	36.035	37.521	37.69 📈	ction 0.45	35.75	-0.79	3.6
1	80	48.001	49.296	25.37 37.69 50.52156 63.46	s ² 2.48	47.92	-0.17	2.8
1	100	60.015	60.643	63,46,	² 4.64	60.19	0.29	3.3
1	80	48.022	49.311	50,59	2.59	47.99	-0.07	2.4
Ì	60	35.937	37.396	37.66	0.70	35.72	-0.60	2.6
1	40	24.015	25.243	Conse25.22 12.63	-0.09	23.92	-0.40	1.8
ł	20	11.988	12.682	⁽⁰⁾ 12.63	-0.41	11.98	-0,07	1.5
1	20 0	0.000	0.000	0.00	n/a	0.00	n/a	n/a

Certificate Number N 022121

> 6 of 8 Pages Page

Certificate of Calibration

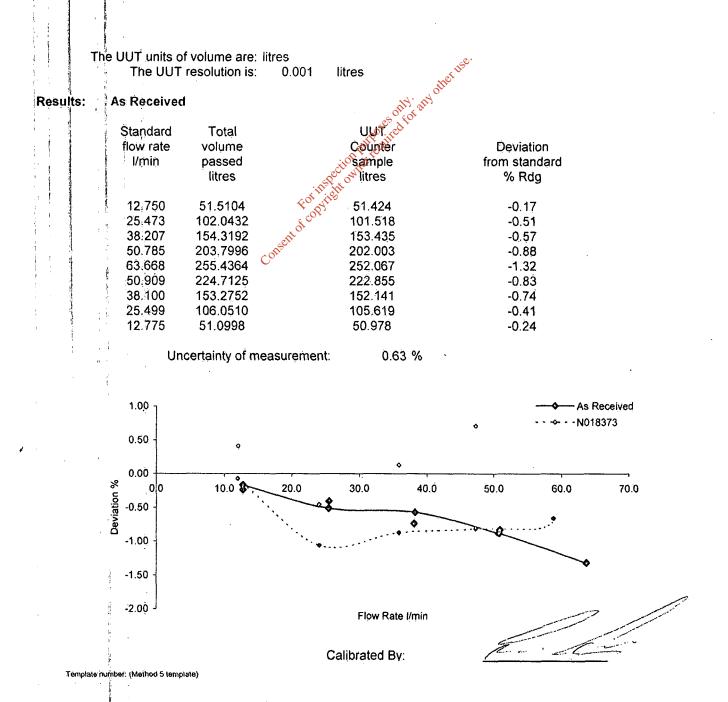
UKAS Accredited Calibration Laboratory No. 0687

mse			27 APRIT	65
Certi	ficat	е		
Num	ber	N	022121	
5				

Page 7 of 8 Pages

Method Statement:

Test flows were set up using a gas regulator upstream of the DGM internal inlet port via a set of precision sonic nozzles upstream of the DGM.


The standard flow rate was recorded at the start and end of each measurement.

UUT measurements were recorded from page 2 of flux test in 'Flowrate' mode of operation.

The gas temperature and barometric pressure were measured at the outlet port of the meter under test, to enable the calculation of the true volumetric flow rate. All volumetric flow units assume the test gas (dry filtered air) obeys the ideal gas law. Back-pressure and viscosity effects were not corrected for.

The meter totalizer timing method is traceable to the UK off-air frequency standard. The meter was mounted vertically with the test ports facing upwards.

The quoted measurement uncertainty includes contributions from the UUT such as resolution, repeatability as well as applied flow rate and pressure, temperature and time measurements taken during the calibration.

EPA Export 10-10-2017:03:45:31

Certificate of Calibration

UKAS Accredited Calibration Laboratory No. 0687

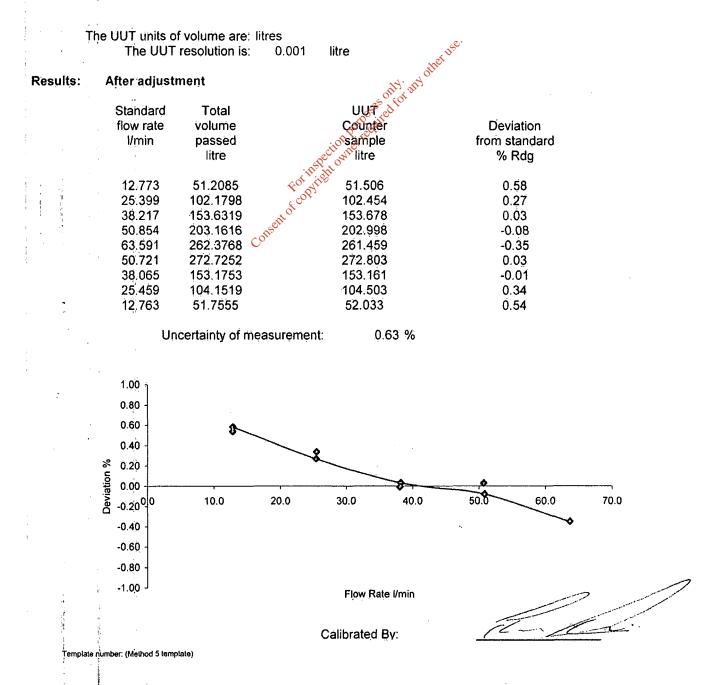
Certificate Number **N** 022121

Page 8 of 8 Pages

Method Statement:

Test flows were set up using a gas regulator upstream of the DGM internal inlet port via a set of precision sonic nozzles upstream of the DGM.

The standard flow rate was recorded at the start and end of each measurement.


UUT measurements were recorded from page 2 of flux test in 'Flowrate' mode of operation.

The gas temperature and barometric pressure were measured at the outlet port of the meter under test, to enable the calculation of the true volumetric flow rate. All volumetric flow units assume the test gas (dry filtered air) obeys the ideal gas law. Back-pressure and viscosity effects were not corrected for.

The meter totalizer timing method is traceable to the UK off-air frequency standard. The meter was mounted vertically with the test ports facing upwards.

The quoted measurement uncertainty includes contributions from the UUT such as resolution, repeatability as well as applied flow rate and pressure, temperature and time measurements taken during the calibration.

DGM correction factor adusted within 'calibration' sub-menu prior to recording the following results.

EPA Export 10-10-2017:03:45:31