ANNUAL

ENVIRONMENTAL REPORT

JANUARY 2016 TO DECEMBER 2<u>016</u>

W0270-01
Miltown Composting Systems Ltd
Milltownmore
Fethard
Co. Tipperary
Office of Environmental Enforcement
EPA Regional Inspectorate Kilkenny
Seville Lodge
Callan Road
Kilkenny

CONTENTS

SECTION 1: INTRODUCTION

- 1.1 Introduction
- 1.2 Site Description
 - 1.2.1 Description of Activity
 - 1.2.2 Organisational Chart 2016

SECTION 2: SUMMARY DATA

2.1 Waste Management Table 2.1.1 Annual Intake 2016

2.2 Environmental Monitoring

- 2.2.1 Groundwater Monitoring Table 2.2.1 General Chemical Analysis
 - Table 2.2.2VOC Analysis USEPA 524.2
- 2.2.2 Dust Monitoring 2016 Table 2.2.3 Dust Results

2.2.3 Biofilter Monitoring 2016

Table 2.2.4	Monitoring results from the Biofilter 23/03/16
Table 2.2.5	Monitoring results from the Biofilter 11/08/16
Table 2.2.6	Inlet emission levels 23/03/16
Table 2.2.7	Outlet emission levels 11/08/16
Table 2.2.8	Inlet emission levels 23/03/16
Table 2.2.9	Outlet emission levels 11/08/16

2.2.4 PM10 Monitoring 2016

Table 2.2.10 Results of PM10 Monitoring

2.2.5 Odour Monitoring 2016

- Table 2.2.11Meteorological Conditions
- Table 2.2.12 Odour Sampling Results Q2 2016
- Table 2.2.13 Chemical Results Q2 2016
- Table 2.2.14Odour Sampling Results Q4 2016
- Table 2.2.15 Chemical Results Q4 2016

- 2.2.6 Noise Monitoring 2016 Table 2.2.16 Day-time Results
- 2.2.7 Surface water 2016 Table 2.2.17 Surface water results 2016 for SW1

2.2.8 Non-Compliances 2016Table 2.2.18 Details of Non-Compliances 2016

2.3 Resource Usage

Table 2.3.1 Resource Usage 2016

- 2.4 Environmental Incidents and Complaints
- 2.5 Environmental Spending
- 2.6 Environmental Training

SECTION 3: ENVIRONMENTAL MANAGEMENT SYSTEM

3.1 Environmental Management Programme for 2016

EOT 1.1/5	Objectives and Targets 2016 Review
EOT 2.1/5	Objectives and targets 2017 EMP

Appendices

Appendix 01PRTR ScanAppendix 02Environmental training records

SECTION 1

INTRODUCTION

1.1 INTRODUCTION

The following is the Annual Environmental Report (AER) for the period January 2016 to December 2016 at Miltown Composting Ltd.

The company was granted an EPA Waste Licence No. W0270-01 on the 9th September 2010. This is the 2016 Annual Environmental Report of Miltown Composting Ltd and detailed within is a summary of all activities on-site during this period that has had an influence on the environmental performance of the company. Current guidance from the Agency requires that the AER is referenced per calendar year.

This AER reflects company's commitment to achieving objectives of a documented ongoing improvement programme at the site.

1.2 SITE DESCRIPTION

Site Location

The site is located in the townland of Milltownmore, approximately 6 km to the east of Fethard and 10 km to the south west of Cashel. The site is accessed by a private road off the Rosegreen to Fethard third class public road.

Layout

The site encompasses approximately 5.9 hectares. It is at an elevation of approximately 139m Ordnance Datum (OD) and slopes gently to the west from a high point in the east.

It is occupied by the three main composting buildings-Sheds 1, 2 and 3- a covered yard, and paved open yards; weighbridge, office; canteen/changing room; storage shed; wetlands, biofilter and former cattle sheds. The base for a proposed lined slurry storage lagoon is located to the west of the cattle sheds and is currently used to store building materials. The area to the north of the shed is undeveloped and formerly used for animal grazing. The rest is a series of constructed wetlands in the south west of the site.

Site History

The site was originally used for agricultural purposes. The cattle sheds and Shed 1 were originally constructed to house pigs, cattle, meat and bone meal and animal feed. In 2004 South Tipperary Council granted planning permission and a Waste Permit for composting (in-vessel and maturation) to be carried out in Shed 1.

The Council issued a revised Waste Permit in May 2008 and this is valid until May 2015. In March 2009 the Council granted planning permission for the retention of the offices, canteen/changing room, underground leachate storage tanks, and weighbridge.

Operational & Waste Acceptance Hours

The normal operational hours are 06.00 to 18.00 Monday to Saturday. Materials are accepted between the hours of 08.00 and 18.00.

1.2.1 DESCRIPTION OF ACTIVITY

Overview

The facility is a composting plant that accepts a broad range of compostable materials including source segregated household kitchen waste; catering wastes; non-hazardous industrial and municipal waste water sludges and organic fines generated in the treatment of mixed municipal solid waste (MSW).

The treatment process, depending on the nature of the source material, can involve initial screening to remove contaminants, blending with bulking agents, composting in separate enclosed tunnels and open bays, maturation in windrows and post treatment to remove impurities.

Due to the modular lay-out, the tunnels/bays can be operated independently, which provides flexibility in treating the different organic waste streams. The finished product can, depending on quality, either be used for horticultural and agricultural purposes, or as landfill cover.

Site Layout/Buildings & Hardstanding

Waste reception, blending and in-vessel composting is carried out in Shed No 1, which occupies an area of 1,700 square meters (m2). Maturation is carried out in Sheds 2 and 3, which occupy 2,840 m₂.

The site office is a portacabin located at the north-west corner of Shed 1. A small canteen/changing room is located to the south west of Shed 1. There is an open fronted shed to the west of the canteen, which is used for the storage of green waste bulking materials and shredded wood. A Container located at the northern side of the canteen is used to store lubricating/hydraulic oil and the power washer.

The covered yard to the east of Shed 1 and the open yards to the west of Shed 1 and west of the cattle sheds are paved with concrete. The biofilter is located on the southern side of Shed 1 and is accessed by an unpaved road running along the southern side of Sheds 1 and 2.

Composting Process

Waste Reception Areas

In the reception area, the MSW fines may, depending on composition be shredded to enhance the composting process. The source segregated household and catering organic waste may be screened to remove contaminants. The wastewater treatment sludges are mixed with a bulking agent e.g. shredded green waste to improve porosity.

Thermophilic Stage

The materials are transferred from the reception area to the vessels using the telescopic loaders. The material placed in each of the vessels is assigned an individual batch number to allow performance monitoring during the treatment stages and ensure the maintenance of accurate records.

Five (5 No.) temperature probes are placed within the waste mass before the sheeting is placed over the top of the vessel. There is a computerised process control system, located in the site office, which records the temperature in each vessel to ensure that optimum composting conditions are maintained. In addition to the constant temperature monitoring, oxygen levels are monitored daily using a hand held probe. The moisture level is assessed either visually or using a hand held moisture meter. In order to comply with the Animal By-Products Regulations a 'two barrier' system is operated in the MSW/kitchen/catering waste processing area. The objective is to ensure a maximum particle size of 40mm and achieve a sustained temperature of 60°C over two separate 48 hour periods.

The MSW fines as delivered typically have a particle size less than 40mm. Large items are manually removed before the materials are composted. Maintaining the temperature at 60°C for the two separate time periods is done by composting the same batch in two different vessels.

In the first vessel, or Barrier 1, the process usually takes one week. When completed, the material is removed to a second vessel-Barrier 2-where it is thoroughly mixed and again composted until the temperature requirements are met. To avoid cross contamination different loaders and buckets are used to move the materials into and out of the vessels.

Mesophilic Stage

When the material has completed the thermophilic stage it is removed from the vessel and transferred to Sheds 2 and 3 where it is formed into windrows. Depending on the source of the materials it may be blended with shredded green waste to improve porosity. The windrows are formed using the loader and are turned as required using either the specialized turner or the loader.

Temperature, oxygen and moisture content are regularly monitored and moisture and the turning regime amended as required to ensure optimum conditions. The mesophilic stage can take up to 6 weeks.

When complete the compost may, depending on the nature of the source material, be screened to remove contaminants. These are stored on-site in Shed 3 pending consignment to off-site disposal/treatment facilities.

1.2.2 Organisational Chart 2016

Section 2

DATA

WASTE MANAGEMENT 2.1

TABLE 2.1.1 – ANNUAL WASTE INTAKE 2016		
Waste Type	EWC Code	2016 Intake
		Tonnes
Waste from the mechanical treatment of	19 12 07	223.18
wood waste	17 12 07	223.10
Garden and park waste from municipal	20.02.01	652.68
sources	20 02 01	002.00
Organic Fines	19 12 12	23621.15

2.2 **ENVIRONMENTAL MONITORING**

2.2.1 Groundwater Results 2016

Table 2.2.1 / 2 – Groundwater Analysis Results 2016

2.2.1 GENERAL CHEMICAL ANALYSIS RESULTS			
Parameter	GW1	GW2	GW3
Chloride (mg/l)	70	97	34
Conductivity (uS/cm)	611	857	299
Nitrate (mg/l)	2.94	0.38	7.09
pН	6.8	6.6	6.4
Total Nitrogen (mg/l)	2.2	<1	8.0
Ammonia (mg/l)	0.036	0.071	0.013

TABLE 2.2.2 - VOC ANALYSIS USEPA 524.2			
VOC's (µg/l)	GW1	GW2	GW3
Dichlorodifluoromethane	<10	<10	<10
Chloromethane	<0.5	<0.5	<0.5
Vinyl chloride	<0.5	<0.5	<0.5
Bromomethane	<0.5	<0.5	<0.5
Chloroethane	<0.5	<0.5	<0.5
Trichlorofluoromethane	<0.5	<0.5	<0.5
1,1-Dichloroethene	<0.5	<0.5	<0.5
Dichloromethane	<0.5	<0.5	<0.5
trans-1,2-Dichloroethene	<0.5	<0.5	<0.5
1,1-Dichloroethane	<0.5	<0.5	<0.5
2,2-Dichloropropane	<0.5	<0.5	<0.5
cis-1,2-Dichloroethene	<0.5	<0.5	<0.5
Bromochloromethane	<0.5	<0.5	<0.5
Chloroform	<1	<1	<1
1,1,1-Trichloroethane	<0.5	<0.5	<0.5
Carbon Tetrachloride	<0.5	<0.5	<0.5
1,1-Dichloropropene	<0.5	<0.5	<0.5
Benzene	<0.1	<0.1	<0.1
1,2-Dichloroethane	<0.1	<0.1	<0.1
Trichloroethene	<0.1	<0.1	<0.1
1,2-Dichloropropane	<0.5	<0.5	<0.5
Dibromomethane	<0.5	<0.5	<0.5
Bromodichloromethane	<2.0	<2.0	<2.0
Toluene	<0.5	<0.5	1
1,1,2-Trichloroethane	<2.0	<2.0	<2.0

TABLE 2.2.2 - VOC A	ANALYSIS USE	PA 524.2 (CONT	(INUED)
VOC's (µg/l)	GW1	GW2	GW3
1,1,1,2-Tetrachloroethane	<2.0	<2.0	<2.0
m,p-Xylene	< 0.5	< 0.5	< 0.5
Styrene	<2.0	<2.0	<2.0
Isopropylbenzene	< 0.5	< 0.5	< 0.5
Propylbenzene	< 0.5	< 0.5	< 0.5
2-Chlorotoluene	< 0.5	< 0.5	< 0.5
4-Chlorotoluene	< 0.5	< 0.5	< 0.5
1,2,4-Trimethylbenzene	< 0.5	< 0.5	< 0.5
P - Isopropyltoluene	< 0.5	< 0.5	< 0.5
1,4-Dichlorobenzene	<0.5	<0.5	<0.5
1,2-Dichlorobenzene	<0.5	<0.5	<0.5
Naphthalene	<2.0	<2.0	<2.0
1,3-Dichloropropane	< 0.5	< 0.5	< 0.5
cis-1,3-Dichloropropene	<2.0	<2.0	<2.0
trans-1,3-Dichloropropene	<2.0	<2.0	<2.0
Dibromochloromethane	<1.0	<1.0	<1.0
Chlorobenzene	<0.5	<0.5	< 0.5
Ethyl Benzene	<0.5	<0.5	<0.5
o-Xylene	<0.5	<0.5	<0.5
Bromoform	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	<2.0	<2.0	<2.0
Bromobenzene	< 0.5	< 0.5	< 0.5
Tert-Butylbenzene	< 0.5	< 0.5	< 0.5
Sec-Butylbenzene	< 0.5	< 0.5	< 0.5
1,3,5-Trimethylbenzene	< 0.5	< 0.5	< 0.5
1,2- Dibromo-3-chloropropane	<2.0	<2.0	<2.0
Hexachlorobutadiene	<5.0	<5.0	<5.0
1,2,3-Trichlorobenzene	< 0.5	< 0.5	< 0.5
1,3-Dichlorobenzene	< 0.5	< 0.5	< 0.5
Tetrachloroethene	<0.1	<0.1	<0.1
n-butylbenzene	< 0.5	< 0.5	< 0.5
Acetone	<2	<2	<2
Methyl Iodide	< 0.5	< 0.5	< 0.5
Carbon disulphide	< 0.5	< 0.5	< 0.5
Allyl Chloride	< 0.5	< 0.5	< 0.5
Nitrobenzene	< 0.5	< 0.5	< 0.5
Propanenitrile	<10	<10	<10
MtBE	<0.5	<0.5	<0.5
2 Butanone	<5	<5	<5
2 Hexanone	<1	<1	<1
Hexacloroethane	<5	<5	<5
1,2,4-Trichlorobenzene	< 0.5	<0.5	<0.5

2.2.2 Dust Monitoring 2016

TABLE 2.2.3 - DUST RESULTS 2016			
Month	D1 (mg/m ² /day)	D2 (mg/m ² /day)	D3 mg/m ² /day)
April	91	80	24
July	188	299	123
September	17	61	100

2.2.3 Biofilter Monitoring 2016

TABLE 2.2.4 MONITORING RESULTS FROM THE BIOFILTER MEDIA 23/03/16		
Parameter	Result	
% Moisture	74.9	
pH	7.8	
Ammonia (mg/kg)	17.39	
Total Viable Counts @ 30°C (Solid) cfu/g	2.2×10^{6}	

TABLE 2.2.5 MONITORING RESULTS	S FROM THE BIOFILTER MEDIA 11/8/16
Parameter	Result
% Moisture	72.1
pH	7.4
Ammonia (mg/kg)	15.36
Total Viable Counts @ 30°C (Solid) cfu/g	1.6×10^5

TABLE 2.2.6 BIOFILTER INLET EMISSION LEVELS 23/03/16		
Parameter	Inlet 1 Concentration (ppm)	Inlet 2 Concentration (ppm)
Hydrogen Sulphide	<0.2	<0.2
Ammonia	10	15
Mercaptans	0.5	<0.5
Amines	Negative	Negative

-

TABLE 2.2.7BIOFILTER OUTLET EMISSION LEVELS 23/3/16	
Parameter	Outlet Concentration (ppm)
Hydrogen Sulphide	<0.2
Ammonia	<5
Mercaptan	<0.5
Amines	Negative

TABLE 2.2.8BIOFILTER INLET EMISSION LEVELS 11/8/16				
Parameter	Inlet 1 Concentration (ppm)	Inlet 2 Concentration (ppm)		
Hydrogen Sulphide	<0.2	<0.2		
Ammonia	15	10		
Mercaptans	0.5	<0.5		
Amines	Negative	Negative		

TABLE 2.2.9 BIOFILTER OUTLET EMISSION LEVELS 11/8/16				
Parameter	Inlet Concentration (ppm)			
Hydrogen Sulphide	<0.2			
Ammonia	<5			
Mercaptan	<0.5			
Amines	Negative			

2.2.4 PM10 Monitoring 2016

TAB	LE 2.2.10 RESULT	S OF PM ₁₀ MONITOR	ING 2016
Sampling Location	Date	Weight Gain (g)	Concentration $(\mu g/m^3)$
Location 1	02/06/16 - 03/06/16	<0.001	<0.1
Location 1	23/11/16 - 24/11/16	<0.001	< 0.1

2.2.5 Odour Monitoring 2016

TABLE 2.2.11 METEOROLOGICAL CONDITIONS Q2 / Q4						
Parameter	Q2 2016 Q4 2016					
Wind speed (km/hr)	8-10			2-4		
Wind direction		Easterly		Northerly		
TAI	BLE 2.2	.12 ODOUR SAMPLING	FRESU	LTS Q2 2016		
Locations		On site observations Results				
OD1		No distinct adour 55 ou /m		$55 \text{ ou} - lm^3$		
Biofilter		No distinct odour 5		55 Ou _E /III		
OD2		NT 1. 4. 4 1		$42 \text{ or } lm^3$		
300m downwind	of site	No distinct odour		No distinct odour 42 ou		$42 \text{ Ou}_{\text{E}}/\text{III}$

TABLE 2.2.13 CHEMICAL ANALYSIS Q2 2016				
SampleHydrogen SulphideAmmoniaMercaptenAmines				
OD 01	<0.2	<5	<0.5	Negative
OD 02	<0.2	<5	<0.5	Negative

TABLE 2.2.14 ODOUR SAMPLING RESULTS Q4 2016			
Locations	On site observations	Results	
OD 01	No Distinct Odour	42 our/m^3	
At biofilter unit	No Distillet Odou	42 0 u g/m	
OD 02	No Distinct Odour	$62 \text{ ou} - lm^3$	
425 meters downwind	No Distillet Odou	02 Ou _E /III	

TABLE 2.2.15 CHEMICAL ANALYSIS Q4 2016					
SampleHydrogen SulphideAmmoniaMercaptenAmines					
OD 01	< 0.2	<5	<0.5	Negative	
OD 02	<0.2	<5	<0.5	Negative	

2.2.6 Noise Monitoring 2016

TABLE 2.2.16: DAY-TIME NOISE MEASUREMENT RESULTS 07:30 to 13:00					
Location / Measurement No.	Measurement Period (min)	L _{eq} dB(A)	L ₁₀ dB(A)	L ₉₀ dB(A)	L _{F Max} dB(A)
NSL No1	30	43	48	37	62
NSL No2	30	50	55	45	82
NSL No3	30	56	57	44	88

2.2.7 Surface Water 2016

Table 2.2.17 - Surface water Results 2015 for SW1				
Sample ID	BOD (mg/l)	Suspended Solids (mg/l)	Ammonia (mg/l)	
SW1 01/04/16	<2	<5	0.47	
SW1 20/08/16	<2	<5	0.27	

2.2.8 Non-Compliances 2016

Table 2.2.18 Details of Reported Non-compliance 2016		
Date	Non-compliance	
	None during 2016	

2.3 <u>RESOURCE USAGE</u>

The summary details of energy and water usage at the plant for the period January 2016 to December 2016 is detailed in Table 2.3.1 below.

Resources	Quantities
Diesel	43793 L
Electricity	187850 KWh
Hydraulic, Transmission & Engine Oil	3000 L
Detergent	20 L
Anti Freeze	200 L

151,467

2.4 ENVIRONMENTAL INCIDENTS AND COMPLAINTS

2.4.1 Incidents report for the period January 2016 to December 2016.

Incident	Incident Category	Start date	Finish date	Likely Cause	
No Incidents					

2.4.2 There were no complaints to report for the period January 2016 to December 2016

2.5 ENVIRONMENTAL SPENDING

The itemised spend on environmental issues at Miltown Composting Limited is listed below.

<u> January 2016 – December 2016</u>	£
EPA Fee's	9700
Waste Licence management	13,388
Environmental Improvements	128,379

2.6 ENVIRONMNETAL TRAINING

Copy of environmental training record included in Attachment 2.

Total Spend

Environmental Management Programme for 2017.

Review of Objectives and Targets for the period January to December 2016

Tables EMP 1.1 to 1.5 reviews the Objectives and Targets set for 2016. A number of the listed Objectives and their subsequent targets are cyclical as the company attempts to achieve continuous environmental improvement.

Tables EMP 2.1 to 2.5 set out the Objectives and Targets for 2017. A number of the listed Objectives and their subsequent targets are cyclical as the company attempts to achieve continuous environmental improvement.

MILTOWN COMPOSTING LTD

ENVIRONMENTAL OBJECTIVES AND TARGETS 2017

Item No	OBJECTIVE	TARGET	RESPONSIBLE PERSON
1	Water Management	 Maintain checklist for alarms and daily records Carry out construction of covering for final unroofed yard Get permission to use reed beds for managing the discharge of surface waters from the site 	D.Murphy
2	Energy Management	 Assess wind power options for the site including a determination of the sites base load. Investigate potential for Anaerobic Digestion (AD) Plant. Study possibility of installing a CHP plant in conjunction with AD plant. 	D.Murphy
3	E.M.S	 Maintain EMS documentation. Prepare waste storage plan for the site as per technical amendment A to waste licence W0270-01 Fire risk assessment required as part of waste storage plan. 	D.Murphy
4	Licence Management	 Prepare groundwater contouring maps. Assess nuisance control procedures and practices. Undertake all environmental monitoring as per licence. 	D.Murphy
5	Increase tonnage	Finalise planning application for increased tonnage.Review of waste licence following grant of planning.	D.Murphy

Water Pollution Prevention

Objective	Target	Target Date	Method	2016 Review
	Maintain checklist for alarms and daily records	Continuous 2016	Fill in the daily checklist and site alarms	Complete
Water Pollution Prevention	Carry out construction of covering for final unroofed yard	Q2 /Q3 2016	Construct roof over final uncovered yard	90% complete Finish in 2017
	Update application for fire water retention facility following RFI in 2015	Q1 2016	Send on RFI details to EPA.	17/2/16 uploaded to Eden

Energy management

Objective	Target	Target Date	Method	2016 Review
	Carry out Energy Audit	Q3 2016	Undertake Energy Audit as per EPA requirements.	Data recording complete for 2016
Energy Management	Investigate potential for Anaerobic Digestion (AD) Plant.	2016	Carry out a review of AD plants and the feasibility of installing a plant at the Milltown Compost Site Also assess renewable heat incentives	On going Further investigation required
	Study possibility of installing a CHP plant in conjunction with AD plant.	2016	Further to the review of the AD plant a further review of a CHP plant to be carried out.	On going Further investigation required

Environmental Management System

Objective	Target	Target Date	Method	2016 Review
	Maintain EMS documentation.	Q2 2016	Review all EMS procedures	Complete
E.M.S	Update procedures to reflect operational and control change.	Continuous 2016	Continuous review of procedures to reflect any changes which occur in terms of site operations or processes.	Complete Accident prevention procedure released in 2016
	Maintain EMP by means of Bi-annual assessment.	June / Dec 2016	Assess biannually to ensure targets are achieved.	Complete

Licence Management

Objective	Target	Target Date	Method	2016 Review
Licence Management	Prepare proposal for and finalise Hydrogeological Study.	Q1 2016	Carry out a desktop hydrogeological study.	Complete - groundwater contouring now required
	Assess nuisance control procedures and practices.	Continuous 2016	Review procedures. Ensure 6 weekly visits of nuisance control company occurs.	Complete
	Undertake all environmental monitoring as per licence.	2016	1 x Noise Survey 2 x Odour Assessment 3 x Dust Monitoring 2 x Biofilter Analysis 1 x Bioaerosol Study 2 x PM10 Survey	Complete

Miltown Composting Ltd.

Fugitive Emissions

Objective	Target	Target Date	Method	2016 Review
Eucitivo Emissions	Assess all flanges and valves used to transport material other than water	Q2 2016	Visually assess all flanges and valves on site used	Completed on a weekly basis
Fugitive Emissions	Determine scope of catchment system for any leaks identified in assessment	Q4 2016	Base on finding of leak assessment	No leaks obsereved

Water Pollution Prevention

Objective	Target	Target Date	Method
Water Pollution Prevention	Maintain checklist for alarms and daily records	Continuous 2017	Fill in the daily checklist and site alarms
	Complete the construction of covering for final unroofed yard	Q1 /Q2 2017	Finish the construction of the roof over final uncovered yard
	Get permission to use reed beds for managing the discharge of surface waters from the site	Q1 2016	Liaise with EPA RE the use of the reed beds.

Energy Management

Objective	Target	Target Date	Method
Energy Management	Assess wind power options for the site including a determination of the sites base load.	2017	Investigate wind power options for the site.
	Investigate potential for Anaerobic Digestion (AD) Plant.	2017	Carry out a review of AD plants and the feasibility of installing a plant at the Milltown Compost Site Also assess renewable heat incentives
	Study possibility of installing a CHP plant in conjunction with AD plant.	2017	Further to the review of the AD plant a further review of a CHP plant to be carried out.

Environmental Management System

Objective	Target	Target Date	Method
E.M.S	Maintain EMS documentation.	Q2 2017	Review all EMS procedures
	Prepare waste storage plan for the site as per technical amendment A to waste licence W0270-01	Q3 2017	Prepare storage plan as per condition 8.12 of the waste licence
	Fire risk assessment required as part of waste storage plan.	Q1/2 2017	Fire water risk assessment required as per condition 9.5 of the licence

Licence Management

Objective	Target	Target Date	Method
Licence Management	Prepare groundwater contouring maps.	2017	Further to desktop hydrogeological study - use of groundwater modelling software to produce a contour map
	Assess nuisance control procedures and practices.	Continuous 2016	Review procedures. Ensure 6 weekly visits of nuisance control company occurs.
	Undertake all environmental monitoring as per licence.	2017	1 x Noise Survey 2 x Odour Assessment 3 x Dust Monitoring 2 x Biofilter Analysis 1 x Bioaerosol Study 2 x PM10 Survey

Miltown Composting Ltd.

Annual Environmental Report 2016

Site management

Objective	Target	Target Date	Method
Increase tonnage	Finalise planning application for increased tonnage.	2017	Submit Planning application to Tipperary county council.
	Review of waste licence following grant of planning.	2017	Undertake a licence review as per EPA guidelines

Appendix 1

PRTR Scans

Sheet : Facility ID Activities

AER Returns Workbook

] PRTR# . W0270] Facility Name . Miltown Composting Systems Limited | Filename W0270_2016 xls] Return Year : 2016 |

Guidance to completing the PRTR workbook

PRTR Returns Workbook

REFERENCE YEAR 2016

1. FACILITY IDENTIFICATION	
Parent Company Name	Miltown Composting Systems Limited
Facility Name	Miltown Composting Systems Limited
PRTR Identification Number	W0270
Licence Number	W0270-01

Classes of Activity

No.	class_name
-	Refer to PRTR class activities below

Address 1	Miltownmore
Address 2	Fethard
Address 3	County Tipperary
Address 4	to the second
	Tipperary
Country	Ireland
Coordinates of Location	-7.76889 52.45236
River Basin District	IESE
NACE Code	3832
Main Economic Activity	Recovery of sorted materials
AER Returns Contact Name	Derry Murphy
AER Returns Contact Email Address	derry@miltowncomposting.ie
AER Returns Contact Position	Site manager
AER Returns Contact Telephone Number	0874125625
AER Returns Contact Mobile Phone Number	0874125625
AER Returns Contact Fax Number	
Production Volume	• 0.0
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	3648
Number of Employees	6
User Feedback/Comments	
	the second s
Web Address	

Activity Number Activity Name 50.1 General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

Is it applicable?	
Have you been granted an exemption ?	
If applicable which activity class applies (as per	and a second
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being	
used ?	

| PRTR# : W0270 | Facility Name : Miltown Composting Systems Limited | Filename : W0270_2016.xls | Return Yeberge20167 P

.

4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site
Do you import/accept waste onto your site for on-	
site treatment (either recovery or disposal	
activities) ?	

| PRTR# : W0270 | Facility Name : Miltown Composting Systems Limited | Filename : W0270_2016.xls | Return Y dange20 tof p

AER Returns Workbook

30/3/2017 9:1

4.1 RELEASES TO AIR Link to previous years emissions data

Sheet : Releases to Air

SECTION A : SECTOR SE LUTANTS

	No. Annex II			
	Name		POLLUTANT	
	MICIE			
	Method Code		ME	
	Designation or Description	Method Used	THOD	
	Emission Point 1			
0.0	T (Total) KG/Year			
0.0	A (Accidental) KG/Ye		QUANTITY	
0.0 0.0	ar F (Fugitive) KG/Year			
		No. Anney II Name MICE Method Code Designation or Description Emission Point 1 T (Ticita) KG/Year / A (Accidenta) KG/Year / F (Fugitive) KG/Year / A (Accidenta) KG/Year / F (Fugitive) KG/Year / A (Accidenta) KG/Year / A (A	No. Annex II Name M/C/E Method Code Method Used A (Accidental) KG/Year F (Fugitive) KG/Year F (Fugitive) KG/Year F (Fugitive) KG/Year 0 0 00 00 00	POLLUTANT METHOD METHOD QUANTITY No. Annex II Name MICE Method Code Description Emission Point 1 T (Total) KGY'ear A (Accidental) KGY'ear F (Fugitive) KGY'ear No. Annex II Name MICE Method Code Description Emission Point 1 T (Total) KGY'ear F (Fugitive) KGY'ear

ſ

Τ

		No. Annex II			
· Select a row by destricting on the Dollatent Name (Column B) then click the delate by		Name		POLLUTANT	RELEASES TO AIR
#00		M/C/E Method Cod			
		fe Designation or Description	Method Used	METHOD	
	0.	Emission Point 1			Please enter all quantitie
	0.0	T (Total) KG/Year			s in this section in NGS
	0.0	A (Accidental) KG/Year F		QUANTITY	
	0.0	(Fugitive) KG/Year			

	220	215				
			Pollutant No.			
* Select a row by double-clicking on the Pollutant Name (Column B)	Mercaptans	Hydrogen sulphide	Name		POLLUTANT	RELEASES T
then click the delete button	мотн	м отн	M/C/E Method Code			'O AIR
	Dreager Tube	Dreager Tube	Designation or Description	Method Used	METHOD	
	0.0	0.0	Emission Point 1 T (Total) KG/Year			Please enter all quantities in this section in
	0.0 0.0	0.0 0.0	A (Accidental) KG/Year F (Fug		QUANTITY	KGs
	0.0	0.0	itive) KG/Year			

ring Capacity)		Facility Total Capacit m3 per hour N/A	hod Used Designation or Description	Method Code	Mic/E	fill operators Class, lundfill operators are requested to provide summary data on hondfill gas (Methane) faved or nationes generated. Class are requested on provide summary data on hondfill gas (Methane) faved or softic PRTR politizatis above. Plasse complete the table below. Villiown Compositing Systems Limited Villiown Compositing Systems Limited 0.00000000000000000000000000000000000	Additional Data Requested from Landfi To the purpose of the hadroal leverage on Genetican (and the transmission of the summary on Genetican spe- meteoremet under Titrail Koly for Section A: Sector spe- meteoremeter summary data on the Paese enter summary data on the Contrained Sector Sector Sector Contrained S
----------------	--	--	---	-------------	-------	--	--

A above

Sheet : Treatment Transfers of Waste

AER Returns Workbook

31/3/2017 11:25

5. ONSITE TREA	TMENT & OFFSITE TH	RANSFERS O	DF WASTE I PRIAZ MUZTALFACAN/ Name . Mager		mted Filenap	ne (vd2/0_2016 as Re					
			Quantity (Tromes per Year)			Method Used		Haz Waste : Name and LicencePermit No of Next Destination Facility Haz Waste: Name and LicencePermit No of	Haz Waste : Address of Next Cestination Fracity Non Haz Waste Address of	Name and License / Permit No. and Address of Final Recoverer / Discover (Mar Zandra)	d 1/20 20117 14 20
Transfer Destination	European Waste	Hazardous	5 Description of Waste	Waste Treatme Operati	e ent M/C/E	Method Used	Location of		Recover/Disposer	ONLY	(HAZARDOUS WASTE ONLY)
Within the Country	19 05 99	8	10108.21 wastes not otherwise specified	R 10	z	Weighed	Offsite in Ireland	Bord na Mona Drehid Iandfill,W0201-03	Killinagh Lower Upper,".",Carbury,Co. Kildare,Ireland		
Within the Country	19 05 99	8	346.16 wastes not otherwise specified	₽	z	Weighed	Offsite in Ireland	Bord na Mona Drehid Iandfill, W0201-03	Killinagh Lower Upper,".",Carbury,Co. Kildare,Ireland		
Within the Country	19 05 99	S	1640.12 wastes not otherwise specified	R10	z	Weighed	Offsite in Ireland	Galway county Council - East Galway landfill, W0178- 02	Killagh more, Ballybaun, Ballinasloe, C		
within the Country	19 05 99	8	278.12 wastes not otherwise specified	R10	z	Weighed	Offsite in Ireland	Knockharley landfill, W0146- 03	Knockharley ,Navan,Co.		
within the Country	19 05 99	8	573.48 wastes not otherwise specified	R10	z	Weighed	Offsite in Ireland	Ballynagran, W0165-02	ballynagran, Coolbeg, Co. Wicklow, ".", Ireland		
Within the Country	19 05 01	N	non-composted fraction of municipa 321.2 similar wastes	R5	£	Weighed	Offsite in Ireland	Greyhound Recycling e .W0205-01 2000	Crag avenue, Clondalkin Ind est, Clondalkin, Dublin 22, Ireland		
Within the Country	20 03 01	8	6.38 mixed municipal waste	Ŗ	z	Weighed	Offsite in Ireland	Disposal, WFP-TS-11-0001- 1 01 1	awlesstown,clonmel ,Co. Tipperary,".", Ireland		
Within the Country	16 01 17	5	46.46 ferrous metal	R4	z	Weighed	Offsite in Ireland	Recycling, WFP-CK-09-0039- 02	Cork,".", Ireland		
Within the Country	19 05 99	No * Select a row by	1286.64 wastes not otherwise specified by double-clicking the Description of Waste then click the delete be	R10	z	Weighed	Offsite in Ireland	Monaghan CoCo Scotch L Comer landfill, W020-02 a	etterbane, Annyalla, Castlebi Iney, Co. Monadhan. Ireland		
			a contract of the property of the prime truth cack the celete by	ution					iney, co. wonagnan, ireland		

| PRTR# : W0270 | Facility Name : Miltown Composting Systems Limited | Filename : P0357_2016.xts | Return Year : 2016 |

Page 1 of 1

Appendix 2

Training Records

MILLTOWN COMPOSTING SYSTEMS LTD Issue Date: 16 July 2010

Safety Statement Prepared by: NRGE LTD

Final Version

Page: 31

Task/Work Practice	Specific Training Provided	Name of Employee
	(In-House/Outside	
	Agency/Date)	
Waste License & Dopt of Ag Requirmo	to With DERRY MURPHY	John Thean
V U	9 2 16	
MC 01 Waste Acceptance P. MC 02 Crussel Sandlag	In House Refresher	Martin Backer 7 7
MC03 Cleaning & hygicae	APIS Davis Derry Murphu	Nel Jamy John/Sree
MCOS Balch Tracibility P.	Fac, liky Manago,	14/3/16
MCOB Handling al Loachak MCOT Now Compliance & Correct	tid action WHOUSE Roproster	Martin Berta Thin R.
MCOS Greation MIC	robio kailury Facility Managor	red DAMY - THE
MC10 Oil Moropher Mainte	marce / Porcy Murphy	16/4/16 E.C.
MC 11 Incident Notifica	tron P. IN House	Martin Baraha Neit
MC 12 Storm Water Might	Perry Muph	John Rose
Emorgency Response Procedu	re 28/4/2016	E.C. Such
Accident Provention Prove	tare in House with	Jan Prear Deil BARD
	Borry Murphy	-2, (,)
	Facility Managor	
ODeur Maragomonk Plan	IN House up date anth	John Dreen Neil
U	Dercy Marphy	E.C. Der Mart
	19/10/2016	