

ANNUAL ENVIRONMENTAL REPORT

Waste Licence Registration No.: W0167-03

Licensee:

Indaver Ireland Limited

Location of Activity:

Carranstown, Duleek, Co-Meath

Attention:

Environmental Protection Agency Office of Environmental Enforcement McCumiskey House, Richview Clonskeagh Road Dublin 14

Table of Contents

Contents

1.	Waste Recovery Report	3
2.	Emissions from the installation	4
3.	Waste Management Record, including summary of rejected waste loads	4
4.	Resource consumption summary	6
5.	Complaints Summary	7
6.	Schedule of Environmental Objectives and Targets	7
7.	Environmental Management Programme-report for 2016	7
8.	Environmental Management Programme-proposal for 2017	8
9.	PRTR-report for previous year	9
10.	PRTR-proposal for current year	9
11.	Noise Monitoring Report Summary	9
12.	Ambient Monitoring Summary	12
13.	Tank and pipeline testing and inspection report	14
14.	Reported incidents summary	14
15.	Energy Efficiency audit report summary	15
16.	Report on the assessment of the efficiency of use of raw materials in processes and the reduction of waste generated	15
17.	Report on progress made and proposals being developed to minimise wa demand and the volume of trade effluent discharges	iter 16
18.	Development/Infrastructural works summary (completed in previous year prepared for current year)	or 16
19.	Reports on financial provision made under this licence, management and staffing structure of the installation and a programme for public information 17	

20.	Review of decommissioning plan	17
21.	Statement of measures in relation to prevention of environmental damage and remedial actions (Environmental liabilities)) 17
22.	Environmental Liabilities Risk assessment review	17
23.	Summary record of the use of the emergency generator	18
24.	Summary of audits of waste disposal, treatment and recovery sites for the incinerator residues from the installation	e 18
25.	Report on particulates monitoring	18
26.	Waste activities carried out at the facility	18
27.	Quantity and composition of waste received, recovered and disposed of during the reporting period and each previous year (relevant ewc codes to be used)	о 19
28.	Full title and a written summary of any procedures developed by the licensee in the year which relates to the facility operation	23
29.	Review of nuisance controls	34

Appendix 1:E-PRTR 2016Appendix 2:Energy Efficiency Report 2016

1. Waste Recovery Report

As a recovery option, the waste-to-energy facility can contribute to packaging recovery targets set out under the Packaging Directive (currently 60% recovery). It is estimated that up to 48,000t residual packaging waste in the MSW accepted will be recovered at the facility.

The facility contributed to the national target of diverting 50% household waste from landfill. Approximately 156,582 tonnes of municipal type waste (EWC code Chapter 20) was treated at the facility in 2016, compared with 589,693 tonnes¹ household waste disposed of to landfill in the country.

The End of Life Vehicles Directive sets a minimum reuse and recovery target of 85% from 2006 increasing to 95% reuse and recovery by 2015. Up to 10% of this target may be met through energy recovery. The Meath waste-to-energy facility is positioned to accept End of Life Vehicle residue in the form of car shred and contribute to this recovery target from 2011 onwards. In the reporting year 2016, a figure of 1,000Kg of automotive shredder waste was accepted and recovered.

Flue Gas Residue and Boiler ash are removed from site and where possible sent to an underground salt mine in Germany. This is considered a recovery operation, R5/R11, as the mine is being back-filled with this material in order to stabilise the ground above. There are plans in 2017 to build a solidification plant at the site in order to treat the material for onward use in an Irish mine.

Ferrous metals are recovered from the bottom ash on site using a magnet and sent to metal brokers within Ireland. Indaver are also recovering non ferrous metal from the bottom ash on site using an eddy current system. This began in June 2014 and has been a successful project with good yields of non ferrous metals.

Residue	Tonnage	Recovery Option
Ferrous Metal	2923	R4
Non Ferrous Metal	695.2	R4
Flue Gas Residue	9145	R5/R11
Boiler Ash	1804	R5
Bottom Ash	15704	R11a

Bottom ash is currently being landfilled. The bottom ash is generally being used for cover or road making within the landfill which allows the recovery code R11a to be assigned.

¹ Figures from 2012, From the National Waste Report 2012, EPA

2. Emissions from the installation

The E-PRTR attached as appendix 1 gives an account of the emissions from the installation.

Surface Water Emissions

Surface Water/Pond

The system is monitored continuously at the DCS by the operators. The discharge is checked daily in accordance with the licence. There have been no unusual discharges in 2016. Also, no water can be discharged when the readings are over the trigger levels.

Surface Water Agreed Trigger Levels:

рН	ТОС	Conductivity
6-9	Warning Level 25 mg/L Action Level 30mg/L	Warning Level 1000 µScm ⁻¹ Action Level 1200 µScm ⁻¹

Average Results per quarter for 2016:

Quarter	pH	TOC mg/L	Conductivity µScm ⁻¹	Discharge Volume m ³
Quarter 1	7.18	7.72	733	3,289
Quarter 2	7.44	12.16	364	2,434
Quarter 3	7.51	11.50	215	1,913
Quarter 4	7.10	8.70	411	1,690

3. Waste Management Record, including summary of rejected waste loads

All waste that arrives at the site is planned in advance. It is tracked through our SAP system. It is weighed prior to entry on the weighbridge and this weight is updated within the sales order on SAP. There were 3 tanker loads rejected in 2016.

Waste accepted in 2016:

Waste Type	Weight (T)
020304 WASTE UNFIT FOR CONSUMPTION	17.8
020501 FOOD UNSUITABLE FOR CONSUMPTION	80.2
070511* WWTP SLUDGE	0.06
070512 WWTP SLUDGE	4708.9
070513* PHARMA WASTE SOLID	597.852
070514 NON HAZ SOLID WASTE	21.74
070514 PHARMA WASTE SOLID	616.846
110110 SLUDGES AND FILTERCAKES	2.76
150102 EMPTY PLASTIC PACKAGING	1.792
150110* EMPTY PACKAGING WASTE	131.128
150202* FILTERS/ABSORBENTS/WIPES ORG	109.334
150203 FILTERS/ABSORBENTS/WIPES	92.74
160216 WEEE (NON HAZARDOUS)	38.46
160303* OFF SPEC LIQUID	0.001
160303* OFF SPEC SOLID	0.3
160304 OFF SPEC LIQUID	12.764
160304 OFF SPEC SOLID	3.54
160305* OFF SPEC LIQUID	136.951
160305* OFF SPEC SOLID	101.307
160306 OFF SPEC LIQUID	66.64
160306 OFF SPEC SOLID	226.098
160508* DISCARDED CHEMICALS LIQUID	3.997
161002 AQUEOUS WASTE	11.3
170204* MIXED WOOD/PLASTIC/GLASS	1
170503* SOIL AND STONES	0.5
170505* DREDGING SPOIL	0.5
170604 INSULATION	990.18
170903* C&D WASTE MIXED	0.76
180104 NON-INFECTIOUS MEDICAL WASTE	9.24
190203 PREMIXED NON HAZ WASTE	6746.76
190805 SLUDGES FROM URBAN WASTE WATER	19.96
191003* AUTOMOTIVE SHREDDER RESIDUE	1
191206* WOOD CONTAINING DANGEROUS SUBST.	0.5
191210 RDF	8041.26
191212 RESIDU FROM MECH. TREATM.	45024.62
191303* SLUDGES FROM SOIL REMEDIATION	0.498
200101 PAPER AND CARDBOARD	0.26
200127* PAINT/INK/ADHESIVES/RESINS	111.052
200128 PAINT/INK/ADHESIVE/RESIN LIQUID	0.66

200137* WOOD CONTAINING DANGEROUS SUBST.	0.64
200138 TIMBER	1.56
200139 PLASTICS	27.52
200140 METALS	26.551
200301 MUNICIPAL WASTE	154822.14
200307 BULKY WASTE	1591.392
07 05 12 NON HAZ ORGANIC SLUDGE	66.38
07 01 01* Aqueous washing liquids and mother liquors	26.24
07 05 01* Aqueous washing liquids and mother liquors	4103.734
07 05 11* Sludges from on-site effluent treatment containing	
hazardous substances	600.18
08 03 08 Aqueous sludges containing ink	381.56
Total	229579

Waste removed from facility in 2016:

Waste Description	Tonnage
13 08 99 Waste otherwise not specified	0.64
16 10 02 Aqueous liquids	88.71
17 09 04 Mixed Construction and Demolition Waste	13.322
19 01 02 Ferrous Metals	2922.76
19 01 07* Flue Gas Residue	9169.43
19 01 12 Bottom Ash	35565.732
19 01 13* Boiler Ash	1934.61
19 12 03 Non-Ferrous Metal	695.2
20 01 36 WEEE Equipment	0.29
20 01 38 Wood	6.96
20 03 01 Mixed Municipal Waste	5.2
20 03 04 Septic Tank Sludge	118.33
Total	50521.184

*=Hazardous waste classification

4. Resource consumption summary

Resource	Consumption in 2016	
IN		
Waste	ton	229,579
Energy		
Fuel (diesel)	m3	247
Steam to use in the process	GJ	721,616
Electricity	MWh	18,037
Additives		
Quicklime	Ton	2,653
Hydrated lime	Ton	1,939
Activated carbon	Ton	108
Expanded Clay	Ton	213
ammonia	Ton	395
Water		
well water	m³	59,256

5. Complaints Summary

All Environmental Complaints are dealt with as per the Environmental Complaints Procedure.

There were 12 environmental complaints registered in 2016. However, only 4 of these were attributable to our activities. All 2016 complaints have been closed out.

6. Schedule of Environmental Objectives and Targets

A schedule of environmental objectives and targets were set for 2016 as per section 7. A new schedule has been set up for 2017 as outlined under section 8.

7. Environmental Management Programme-report for 2016

2016 Schedule of Environmental Objectives and Targets

Item	Status	Responsible	Completion Status
Radiation Detector to be installed at the entrance to the facility	Proposal was issued to the EPA. It was rejected. Further discussions between EPA/ORP and Indaver.	Joe Crawley	NC received from EPA. New building to be installed prior to installation of detector. Ongoing discussions between EPA, ORP and Indaver
Install the pre- treatment plant for the treatment of hazardous residues	Awaiting planning permission. To be complete by end of 2016	Oliver Kelly	Planning permission and licence agreement have been received. The Outlet is awaiting their permit. Will be moved into 2017 targets.
Audit of external outlet which is used by the facility	Included in audit schedule for 2016	Grace McCormack	Complete
Complete energy audit of the facility	Proposals received and are being reviewed. Report to be reviewed and any findings followed up by including in the schedule of objectives and targets. These will include any of the actions raised during the 2015 energy audit report also.	Grace McCormack	Complete
Develop and implement an action plan for transition to ISO 14001:2015	Action plan for ISO 2015. Assess the requirements, complete gap analysis and action plan.	Mary Miller	Ongoing. Will be brought forward into 2017

8. Environmental Management Programme-proposal for 2017

2017 Schedule of Environmental Objectives and Targets

ltem	Status	Responsible	Time frame
Radiation Detector to be installed at the entrance to the facility	New building to be installed prior to installation of detector. Ongoing discussions between EPA, ORP and Indaver Currently waiting for	Joe Crawley Oliver Kelly	Planning and licence review required. End of 2018 Q4 2017
treatment plant for the treatment of hazardous residues	the outlet to receive their planning and permit.		
Audit of external outlet which is used by the facility	Included in audit schedule for 2017	Grace McCormack	Q4 2017
Complete energy audit of the facility	In goals for maintenance department	Rory Murphy	Q4 2017
Develop and implement an action plan for transition to ISO 14001:2015	Action plan for ISO 2015. Assess the requirements, complete gap analysis and action plan.	Mary Miller	Q2 2017
New speciation study for bottom ash	After meeting with the EPA a new speciation study is to be completed	Grace McCormack	Q4 2017
Lighting	Lights to be replaced by energy efficient LED bulbs	Rory Murphy	Q4 2017
Upgrade of the surface water network	Must pass hydrostatic tests	Rory Murphy	Q4 2017

9. PRTR-report for previous year

As per the PRTR regulations, S.I. No 123 of 2007 requires that Indaver report to the Agency on an annual basis. Indaver submitted their E-PRTR on 28th March 2016 and this is attached in Appendix 1.

10. PRTR-proposal for current year

It is anticipated that Indaver will continue to monitor the air emissions as in 2016. These are TOC, HCI, HF, SO_2 , NO_x , CO, dust and dioxins.

11. Noise Monitoring Report Summary

Noise level results

Monitoring Point	Date/ Start Time	Monitoring Interval (minutes)	L(A)eq	L(A) ₁₀	L(A) ₉₀	Audible Noise Sources
AN1-1	20/09/2016 11:26 11:58 12:32 23:29 23:59	30 30 30 30 30 30	59.2 58.7 59.94 49.8 53.03	63.3 62.0 63.27 46.6 57.48	46.0 43.5 46.5 38.4 40.27	Low level audible noise from site activities during daytime hours. Road traffic noise from R152 main audible noise source. Some site traffic noise entering and exiting main gate approx. 120m away. Low level noise from incinerator just audible during evening and night time hours.
	03/10/2016 20:03	30	55.99	60.84	42.86	
AN1-2	20/09/2016 13:14 13:45 14:27 21/09/2016	30 30 30	69.3 69.3 68.05	71.1 70.4 72.23	50.9 49.1 51.76	Little if any noise from site activities. Road traffic noise from R152 main audible noise source. Some site traffic noise entering and exiting main gate approx. 40m away. Low level noise from incinerator just audible during evening and night time hours.
	00:33 01:17 03/10/2016	30 30	45.57 45.4	48.08 47.2	42.17 41.1	
	20:37	30	51.37	54.06	45.09	
AN1-3	20/09/2016 13:23 13:54 15:11 21/09/2016	30 30 30	62.05 61.98 61.8	65.1 65.08 63.4	52.1 53.37 52.0	Little if any noise audible from site activities. Some site traffic noise entering and exiting main gate approx. 60m away. Road traffic noise from R152 main audible noise source. Low level noise from incinerator emissions just audible during evening and night time hours.
	00:45 01:20 03/10/2016	30 30	51.9 48.74	32.3 52.08	32.3 41.21	
	21:09	30	58.43	62.68	47.58	
AN1-4	20/09/2016 11:10 11:41 12:35 23:13 21/09/2016	30 30 30 30 30	50.16 50.09 50.2 45.55	52.17 52.34 51.6 47.5	46.17 46.03 46.7 42.23	Forklift operating approx. 90m away and waste trucks unloading approx. 80m away main source of site noise during daytime hours. Noise audible from off site road traffic. Some low level audible noise from bottom ash hall during evening and night time hours.
	00:07 03/10/2016	30	45.0	46.3	41.3	
	20:27	30	48.6	52.2	45.5	

Tonal or Impulsive Noise

Monitoring Point	Time of Day	Tonal or Impulsive Noise from Site Activity	Comments
AN1-1	Day, Evening & Night	No	No significant tonal and impulsive noise from site activities.
AN1-2	Day, Evening & Night	No	No significant tonal and impulsive noise from site activities.
AN1-3	Day, Evening & Night	No	No significant tonal and impulsive noise from site activities.
AN1-4	Day, Evening & Night	No	No significant tonal and impulsive noise from site activities.

Noise levels recorded at AN1-1, AN1-2 and AN1-3 are primarily due to interference noise from road traffic on the R152 which runs adjacent to the front of the facility and not as a result of Indaver site operations. The further away from the front of the facility the more reduced the noise levels are.

Noise readings at location AN1-4 did not exceed day, evening or night time noise limits except for one reading during night time hours of 45.55 L(A)eq.

LA90 readings are the noise levels recorded over 90% of the monitoring duration. These readings remove intermittent noise from the recorded noise level such as noise from passing road traffic. The LA90 readings are a truer reflection of noise from Indaver site operations. The LA90 readings were within noise limits at locations AN1-1, AN1-2 and AN1-3 for all readings.

The noise levels detected at AN1-1, AN1-2 and AN1-3 were not due to Indaver activities.

No tonal or impulsive noise from site activities was recorded during monitoring.

In conclusion, noise emissions from the site have a minimal impact on the local environment.

12. Ambient Monitoring Summary

It is a requirement of Schedule C.6.1 of W0167-03 that monthly groundwater monitoring and biannual monitoring of the groundwater monitoring boreholes takes place. Please see below a summary of the results for the same.

Monitoring Frequency	TOC(mg/L)	Ammonia (NH4) μg/L as N	Conductivity uscm- 1@25C
Jan-16	1.69	10	610
Feb-16	1.47	15	596
Mar-16	1.92	12	594
Apr-16	1.51	22	588
May-16	3.289	10	593
Jun-16	1.53	10	588
Jul-16	3.1	10	605
Aug-16	1.68	10	614
Sep-16	5.97	10	610
Oct-16	20.32	12	602
Nov-16	4.5	10	603
Dec-16	1.7	10	606

AGW1-1 Upgradient Monitoring Point

AGW1-2 Downgradient Monitoring Point

Monitoring Frequency	TOC(mg/L)	Ammonia (NH4) μg/L as N	Conductivity uscm- 1@25C
Jan-16	0.73	10	633
Feb-16	0.7	13	683
Mar-16	0.82	13	707
Apr-16	0.48	30	767
May-16	2.276	10	752
Jun-16	0.65	10	785
Jul-16	2.3	10	803
Aug-16	0.47	10	806
Sep-16	3.71	10	777
Oct-16	17.77	10	765
Nov-16	4.6	10	750
Dec-16	0.63	10	743

Monitoring Frequency	TOC(mg/L)	Ammonia (NH4) μg/L as N	Conductivity uscm- 1@25C
Jan-16	0.5	10	617
Feb-16	0.59	10	624
Mar-16	0.65	10	631
Apr-16	0.5	10	624
May-16	2.197	10	628
Jun-16	0.69	10	619
Jul-16	3.44	10	609
Aug-16	0.43	10	616
Sep-16	4.26	10	621
Oct-16	20.97	10	631
Nov-16	5	10	624
Dec-16	0.64	10	624

AGW1-3 Downgradient Monitoring Point

Biannual Results

	AGW1-1	AGW1-2	AGW1-3	AGW1-1	AGW1-2	AGW1-3
Date	05/05/16	05/05/16	05/05/16	17/10/16	17/10/16	17/10/16
рН	7.3	7.3	7.2	7.4	7.4	7.4
Nitrate(mg/L as N)	2.2	7.05	7.69	6.64	1.62	8.52
Nitrite(mg/L as N)	<0.002	<0.002	0.002	6.64	1.62	8.29
Chloride (mg/L)	31.17	92.4	37.66	25.09	111.67	39.12
Fluoride (mg/L)	<0.02	<0.02	<0.02	0.17	0.18	0.23
Metals-Cd (ug/L)	<0.09	<0.09	<0.09	<0.09	<0.09	0
Metals TI (ug/L)	<0.06	<0.06	<0.06	<0.06	<0.06	0.209
Metals Hg (ug/L)	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Metals Pb (ug/L)	<0.02	0.023	<0.02	0.93	0.202	1.158
Metals Cr (ug/L)	5.483	6.183	3.839	<2.14	4.134	<2.14
Metals Cu (ug/L)	0.456	0.527	0.775	1.075	1.024	3.406
Metals Mn (ug/L)	0.262	0.349	0.151	23.48	3.164	60.41
Metals Ni (ug/L)	0.951	0.804	0.812	0.852	0.542	2.429
Metals As (ug/L)	0.302	0.301	0.25	0.615	0.268	0.847
Metals CO (ug/L)	0.237	0.316	0.168	0.277	0.076	0.733
Metals V (ug/L)	0.835	0.413	0.211	0.594	0.911	2.2
Metals Sn (ug/L)	<2.8	<2.8	<2.8	<2.8	<2.8	<2.8
Organohalogens	<5	<5	30.23	41.091	<5	<5
Total coliforms(no/100ml)	170	0	0	640	<10	<10
Faecal Coliforms(no/100ml)	0	0	0	30	<10	<10

Overall it can be stated the activities on the site at W0167-03 has no significant impact on the groundwater quality as can be shown by the above results.

13. Tank and pipeline testing and inspection report

Please see below for summary of bunds tested in 2016. This testing is followed up on the maintenance programme in SAP.

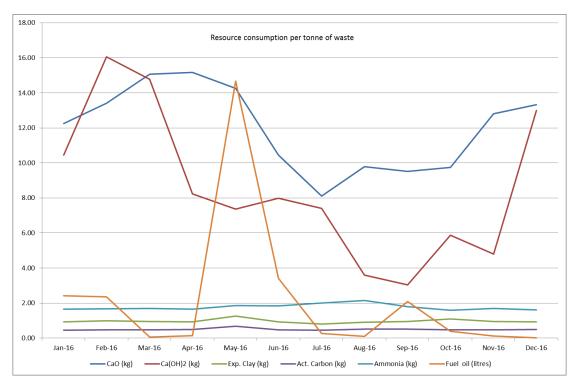
Tank					Last	Next
ID	Item	SAP Description	Bund Tag	Serial Number	Test	Test
1	Main diesel tank	Main Diesel Tank	UYA99-BB001	EGB10 BB001	Sep- 16	Sep- 19
2	3 * diesel for pump house	Fuel Tank in Diesel Pump House	UYA99-BB002	IFP-C013714- 001/002/003	Jul- 16	Jul- 19
3	3 * diesel for pump house	Fuel Tank in Diesel Pump House	UYA99-BB003	IFP-C013714- 001/002/003	Jul- 16	Jul- 19
4	3 * diesel for pump house	Fuel Tank in Diesel Pump House	UYA99-BB004	IFP-C013714- 001/002/003	Jul- 16	Jul- 19
5	Back up diesel generator tank	Back up diesel generator tank	UYA99-BB005	MTD 0842	Sep- 16	Sep- 19
6	Transformer bunds 1 under electrical rooms (T1, T2, T3,)	T1 bund under electrical rooms	UYA99-BB006		Oct- 16	Oct- 19
7	Transformer bunds 1 under electrical rooms (T1, T2, T3,)	T2 bund under electrical rooms	UYA99-BB007		Oct- 16	Oct- 19
8	Transformer bunds 1 under electrical rooms (T1, T2, T3,)	T3 bund under electrical rooms	UYA99-BB008		Oct- 16	Oct- 19
12	Nitric acid spill containment	Nitric acid spill containment	UYA99-BB012	00031/TSUS/P/2010	Jan- 16	Jan- 19
13	Ammonia solution tank spill containment	Ammonia Tank	UYA99-BB013	EVC 056-07-09	Jan- 16	Jan- 19

14. Reported incidents summary

All Environmental Incidents are dealt with as per the Environmental Incident Investigation and Reporting Procedure.

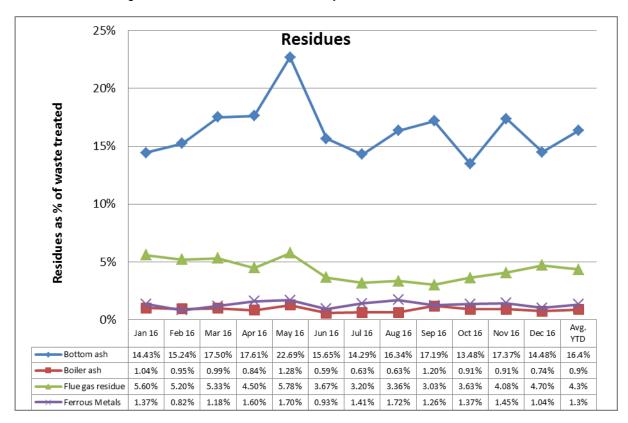
There were 4 minor incidents reported in 2016. These relate to CO and low temperature.

15. Energy Efficiency audit report summary


An energy audit was completed at the facility in 2016 as required by Condition 7.1.3 of W0167-03. This year the report was combined with another requirement under SI 426 of 2014. Indaver has surpassed the requirement for 0.65 for energy efficiency and so the plant is deemed a recovery facility. The full report is attached in appendix 2.

Actions arising out of this audit report have been included in our schedule of objectives and targets.

For the reporting year 2016 Indaver exported 128,513 MWh of electricity to the national grid and imported just 1,033 MWh. This is a slight decrease in the amount of electricity exported and a slight increase in the amount of energy imported. This was due to the fact that there was a 3 week maintenance outage where we need to import electricity. During this time no electricity was being exported. Indaver produce electricity to run the facility and only import electricity when in shutdown.


16. Report on the assessment of the efficiency of use of raw materials in processes and the reduction of waste generated

Indaver strive to ensure that raw consumables are used to their full effect and this is monitored continuously by the management and staff at the facility. The process engineer is tasked with reviewing this data to ensure that raw materials are used as efficiently as possible. Below is a graph showing the weight of consumable used per tonne of waste processed. The spike in diesel consumption (May 2016) was due to planned shutdown for a 3 week period in May 2016. The consumables figure for lime milk (Ca(OH)₂) has reduced since 2016 with improvements in process controls.

Indaver also strive to ensure that residues are monitored to ensure that the production of residues is kept to a minimum. This is again tracked by the process engineer at the site. The graph below shows the percentage of residues produced per tonne of waste treated. The spike in May 2016 in bottom ash is due to complete emptying of all bottom ash during maintenance works. Some residues are of benefit for example the ferrous metal and non ferrous metal. These residues are sent on to recovery outlets for further treatment. The majority of the other residues, bottom ash, boiler ash and flue gas residue, are used as a recovery material.

17. Report on progress made and proposals being developed to minimise water demand and the volume of trade effluent discharges

Indaver do not have any effluent discharges from the site. Any water that is generated in the process is re-used within the process. The water demand from the site is not large and water that is used for cleaning purposes on the site is re-used.

18. Development/Infrastructural works summary (completed in previous year or prepared for current year)

The area for the unloading of aqueous tankers on site was re-structured in 2015. This now allows two tankers to offload into the storage tank on site. These tankers can also unload directly into the aqueous injection point. The ground was demarcated to show that any spillage in this area goes towards the underground pits which are re-used in the process. Additional drainage to contain potential spillages is due for completion by end of April 2017.

In 2016 it was planned to develop an ash pre-treatment facility, subject to planning amendment permission. Indaver received an agreement from the Agency prior to infrastructural works taking place. Current projections are that works will be completed by Q4 2017.

19. Reports on financial provision made under this licence, management and staffing structure of the installation and a programme for public information

A bond is in place for the CRAMP costs at W0167-03 and was approved on 02 October 2015 and is in place until 19 June 2021. An insurance policy is in place for the ELRA costings and was approved by the Agency on the 08 March 2017.

Management structure at the site has changed and was notitifed to the Agency on 13th January 2017. The plant is run by a plant manager with a production manager (deputy plant manager), process engineer, maintenance manager and the site is supported by the quality & environmental manager, the health & safety manager and the regional project engineer. The site has production staff of 20 people on a 5-shift pattern which allows the site to run 24/7. There is also a maintenance department of 10 people and these employees comprise the Emergency Response Team.

All communications with interested parties are dealt with as per P0184 Internal & External Communications Procedure. Indaver has several visits per year from interested parties e.g. schools, universities etc. Customers and interested parties also audit the site to assess Indaver's systems and treatment of their waste streams.

Environmental information is made available to interested parties upon request.

Indaver's website, <u>www.indaver.ie</u>, is a valuable source of information for customers and interested parties.

20. Review of decommissioning plan

The decommissioning plan or CRAMP was updated in September 2015 to incorporate hazardous waste being accepted at the facility under the new revision licence W0167-03. This was approved by the Agency prior to the acceptance of hazardous waste at the site. This was reviewed and is still applicable.

21. Statement of measures in relation to prevention of environmental damage and remedial actions (Environmental liabilities)

The output of the risk treatment process is the development of a statement of measures to be taken to minimise the environmental risk of the activity. Since its development, the facility has been designed constructed and operated to minimise risk in every aspect of its operations.

Though additional suitable hazardous waste streams will be accepted at the facility, the same mitigation measures are in place to ensure the risk of an accident or environmental incident at the site is minimised. On the basis of the risks identified above, a statement of measures is not presently considered necessary but Indaver will continue to review operations to identify additional environmental mitigation as the need arises.

22. Environmental Liabilities Risk assessment review

The ELRA was reviewed and updated to take account of hazardous waste at the facility. This was approved by the Agency in September 2015. There is an insurance policy in place to cover the financial risks and this was agreed with the Agency in 08 March 2017.

23. Summary record of the use of the emergency generator

The emergency generator was used a total of 68 hours in 2016. It is tested weekly and these records are stored at the facility.

24. Summary of audits of waste disposal, treatment and recovery sites for the incinerator residues from the installation

During 2011, Indaver Group audited K&S, the facility for the recovery of our flue gas residues and boiler ash. The facility was approved for use and continued use.

Hammond Lane, the facility which accepts the ferrous metal from the site was audited in March 2014. The facility was approved for continued use.

United Metal, the facility which accepts the ferrous metal from the site was audited in May 2016. The facility was approved for continued use.

Rilta, the facility which accepts oil from the site was audited in December 2016. The facility was approved for continued use.

25. Report on particulates monitoring

Please refer to Appendix 1-E-PRTR.

26. Waste activities carried out at the facility

The primary operation on the Meath Waste-to-Energy Facility is the incineration of non hazardous wastes with associated energy recovery in the form of steam which is used to generate electricity. In 2015 the licence was reviewed and this now allows the acceptance and treatment of 10,000 tonnes of some suitable hazardous waste annually.

In general terms, the Meath WtE Facility is designed to incinerate and recover energy from the residual fraction of non-hazardous household, commercial and industrial waste, non-hazardous wastewater sludge and some suitable hazardous waste also. It consists of an incineration plant with energy recovery and ancillary services, and the throughput of the facility for incineration is 235,000tpa.

The facility comprises of the following main elements:

- The main process building (comprising of tipping hall, waste bunker, furnace, boiler, steam turbine, flue gas treatment and ash storage) including the control room and administration offices
- A building housing the air cooled condenser
- A contractors' compound and office accommodation
- A warehouse building with a workshop
- A transformer compound and ESB substation with emergency generator
- A security building with weighbridge at facility entrance
- A process/firewater water storage tank and fire pump house.

The main process building is approximately 160 m long, 40 m wide at the widest point and 40 m above ground at the highest point. The stack is 65 m tall and vents the treated combustion gases to atmosphere. The plant is based on conventional grate furnace technology with a horizontal steam boiler and an advanced flue gas treatment system designed to meet the current emissions regulations. The plant will produce up to 21 MW electricity of which approximately 18MW is exported to the national grid.

Waste is transported to the site by waste contractors in accordance with the site's licensed opening hours. On entering the site, waste contractors follow a well marked two-way route to the tipping hall where inspections on the waste are conducted by Indaver on a routine basis. There is a large turning area outside the tipping hall to allow the waste delivery vehicles turn safely before entering the hall and a maximum speed limit of 15 km/h. In the tipping hall, waste is deposited into the waste bunker where it is mixed by the crane before being placed in the hopper for the furnace. Liquids are incinerated by way of the direct injection point at the aqueous unloading station or from the storage tank.

In the furnace, the waste is incinerated at temperatures exceeding 850° C T₂S. The ash collected from the bottom of the furnace passes through a wet bath before being stored for collection and removal from the site. The combustion gases from the process pass through a number of treatment stages. This includes two stages of dosing (lime milk and lime) for acid removal and two stages of dosing (expanded clay and activated carbon) for dioxin removal, before passing through filter bags and being discharged to atmosphere via the emissions stack. The emissions to air are continuously monitored and fed back to the control room for the facility where the levels of dosing can be adjusted if required.

27. Quantity and composition of waste received, recovered and disposed of during the reporting period and each previous year (relevant ewc codes to be used)

The figures below are for incoming waste to the site. All these wastes were received and recovered at W0167-03.

Waste Type	Weight (T)
020304 WASTE UNFIT FOR CONSUMPTION	17.8
020501 FOOD UNSUITABLE FOR CONSUMPTION	80.2
070511* WWTP SLUDGE	0.06
070512 WWTP SLUDGE	4708.9
070513* PHARMA WASTE SOLID	597.852
070514 NON HAZ SOLID WASTE	21.74
070514 PHARMA WASTE SOLID	616.846
110110 SLUDGES AND FILTERCAKES	2.76
150102 EMPTY PLASTIC PACKAGING	1.792
150110* EMPTY PACKAGING WASTE	131.128
150202* FILTERS/ABSORBENTS/WIPES ORG	109.334
150203 FILTERS/ABSORBENTS/WIPES	92.74
160216 WEEE (NON HAZARDOUS)	38.46
160303* OFF SPEC LIQUID	0.001
160303* OFF SPEC SOLID	0.3
160304 OFF SPEC LIQUID	12.764
160304 OFF SPEC SOLID	3.54
160305* OFF SPEC LIQUID	136.951
160305* OFF SPEC SOLID	101.307
160306 OFF SPEC LIQUID	66.64

Waste accepted to site in 2016

160306 OFF SPEC SOLID	226.098
160508* DISCARDED CHEMICALS LIQUID	3.997
161002 AQUEOUS WASTE	11.3
170204* MIXED WOOD/PLASTIC/GLASS	1
170503* SOIL AND STONES	0.5
170505* DREDGING SPOIL	0.5
170604 INSULATION	990.18
170903* C&D WASTE MIXED	0.76
180104 NON-INFECTIOUS MEDICAL WASTE	9.24
190203 PREMIXED NON HAZ WASTE	6746.76
190805 SLUDGES FROM URBAN WASTE WATER	19.96
191003* AUTOMOTIVE SHREDDER RESIDUE	1
191206* WOOD CONTAINING DANGEROUS SUBST.	0.5
191210 RDF	8041.26
191212 RESIDU FROM MECH. TREATM.	45024.62
191303* SLUDGES FROM SOIL REMEDIATION	0.498
200101 PAPER AND CARDBOARD	0.26
200127* PAINT/INK/ADHESIVES/RESINS	111.052
200128 PAINT/INK/ADHESIVE/RESIN LIQUID	0.66
200137* WOOD CONTAINING DANGEROUS SUBST.	0.64
200138 TIMBER	1.56
200139 PLASTICS	27.52
200140 METALS	26.551
200301 MUNICIPAL WASTE	154822.14
200307 BULKY WASTE	1591.392
07 05 12 NON HAZ ORGANIC SLUDGE	66.38
07 01 01* Aqueous washing liquids and mother liquors	26.24
07 05 01* Aqueous washing liquids and mother liquors	4103.734
07 05 11* Sludges from on-site effluent treatment containing	
hazardous substances	600.18
08 03 08 Aqueous sludges containing ink	381.56
Total	229579

Waste accepted in 2015

EWC	Description of waste	Weight (Kg)
020203	020203 FOOD ANIMAL ORIG UNFIT FOR CONSUM	8460
020304	020304 WASTE UNFIT FOR CONSUMPTION	18560
020501	020501 FOOD UNSUITABLE FOR CONSUMPTION	139560
070512	070512 WWTP SLUDGE	4518020
070513	070513* PHARMA WASTE SOLID	49033
070514	070514 NON HAZ SOLID WASTE	35800
070514	070514 PHARMA WASTE SOLID	510007
080318	080318 WASTE PRINTING TONER	5800
110110	110110 SLUDGES AND FILTERCAKES	2320
150106	150106 EMPTY MIXED PACKAGING	2200
150110	150110* EMPTY PACKAGING WASTE	567
150202	150202* FILTERS/ABSORBENTS/WIPES ORG	1967
150203	150203 FILTERS/ABSORBENTS/WIPES	83000
160304	160304 OFF SPEC LIQUID	19499
160304	160304 OFF SPEC SOLID	820
160305	160305* OFF SPEC SOLID	220
160306	160306 OFF SPEC LIQUID	2720
160306	160306 OFF SPEC SOLID	236083
160508	160508* DISCARDED CHEMICALS LIQUID	47
170604	170604 INSULATION	942880
180104	180104 NON-INFECTIOUS MEDICAL WASTE	7240
190203	190203 PREMIXED NON HAZ WASTE	8274620
190805	190805 SLUDGES FROM URBAN WASTE WATER	37780
191006	191006 SHREDDINGS FROM METAL CTG WASTE	776040
191212	191212 RESIDU FROM MECH. TREATM.	45425120
200111	200111 TE XTILE	1900
200127	200127* PAINT/INK/ADHE SIVE S/RE SINS	13840
200140	200140 METALS	2840
200301	200301 MUNICIPAL WASTE	165810150
200307	200307 BULKY WASTE	74039
02 01 07	ASH TREES	760
16 10 02	HIGH WATER WITH GLYCOL	236540
07 05 12	NON HAZORGANIC SLUDGE	103460
16 01 07*	OIL FILTERS	100
07 05 01*	PRODUCTION PROCESS LIQUID WASTE	15140
08 03 08	WASTE INK SOLUTION	308280
16 10 02	WATER FROM FIREPOND	44620

Waste accepted in 2014

Material Accepted	Quantity/Tonnes
020203 MATERIALS UNFIT FOR CONSUMPTION	14.12
020501 FOOD UNSUITABLE FOR CONSUMPTION	194.04
040222 WASTE FROM PROCESSED TEXTILE	44.68
070512 WWTP SLUDGE	5737.26
070514 NON HAZ SOLID WASTE	32.78
070514 PHARMA WASTE SOLID	230.06
080318 WASTE PRINTING TONER	136.76
110110 SLUDGES AND FILTERCAKES	4.2
150102 EMPTY PLASTIC PACKAGING	0.6
150103 TIMBER PALLETS	0.18
150203 FILTERS/ABSORBENTS/WIPES	39.46
160304 OFF SPEC LIQUID	0.22
160306 OFF SPEC SOLID	333.28
170604 INSULATION	741.38
190203 PREMIXED NON HAZ WASTE	7283.3
190805 SLUDGES FROM URBAN WASTE WATER	56.4
191006 SHREDDINGS FROM METAL CTG WASTE	498.22
191212 RESIDU FROM MECH. TREATM.	59789.52
200111 TEXTILE	19.46
200139 PLASTICS	37.78
200140 METALS	8.54
200301 MUNICIPAL WASTE	155808.42
200307 BULKY WASTE	772.18
080308 WASTE INK SOLUTION	301.41

28. Full title and a written summary of any procedures developed by the licensee in the year which relates to the facility operation

P0104	Sampling of Residues at <u>ME1.docx</u>	QESH	Describes the procedure for the sampling of residues at the Meath site
P0300	Radiation Procedure.docx	QESH	Covers the radiation sources at the site used for level detection
P0441	Fire Protection Systems.docx	Plant Meath	Covers the fire protection systems in place at the site
P0037	<u>Approval and Monitoring of</u> <u>General Contractors.docx</u>	QESH	Describes the procedure for the approving and monitoring general contractors that are used by the company
P0038	Approval and Monitoring of Waste Facilities.docx	QESH	Describes the procedure for the approving and monitoring of waste facilities that are used by the company
P0070	Customer Complaints and Comments.docx	QESH	Describes how to record and investigate customer complaints and comments
P0072	Customer Surveys by Means of Post Collection Questionnaires, Balance Score cards and Driver Comment Cards.docx	QESH	Part of the quality of service provision for the customer
P0093	DGSA-Non Regulated Material Incident Investigation and Reporting.docx	QESH	Describes how to investigate and report any incidents with dangerous good or non dangerous goods
P0111	Environmental Complaints.docx	QESH	Describes how to record and investigate environmental complaint
P0112	Environmental Incident Investigation and Reporting.docx	QESH	Describes how to record and investigate environmental incidents
P0113	Environmental Non Compliance.docx	QESH	Describes how to record and investigate environmental non compliance

P0171	<u>Approval and Monitoring of</u> <u>Hauliers.docx</u>	QESH	Describes the procedure for the approving and monitoring of haulage companies that are used by the company
P0184	Internal and External Communications.docx	Communications	Describes how Indaver issue communications internally and externally
P0185	Internal External and Customer Audits.docx	QESH	Describes the process of internal and external customer audits
P0201	Maintenance Of Equipment.docx	QESH	Describes how equipment is maintained
P0205	Monitoring and Measurement of Environmental Emissions.docx	QESH	Describes how environmental emissions are monitored and measured
P0278	Pre Invoicing and Invoicing MSW Customers to Meath WTE.docx	Regional Sales	Describes how customers are preinvoiced and invoiced
P0288	Processing Corrective Actions and Preventive Actions - OFIs.docx	QESH	Decribes our preventative action system
P0289	Purchase Hire and Decommissioning of Equipment.docx	QESH	Describes how to buy/hire or decommission equipment
P0292	Management of Records.docx	QESH	Describes how documents are managed within the document management system
P0359	Site Security Meath Plant.docx	Plant Meath	Describes the security on site at the Meath plant
P0360	Electricity Profiles Nomination.docx	Plant Meath	This procedure defines the actions needed to nominate electricity profiles for Meath Waste to Energy.
P0362	Waste Acceptance.docx	Plant Meath	This procedure gives clear guidelines on the type of waste that can be accepted at Meath Waste- to-Energy and the checks that are required prior to setting up the waste on Indavers systems.

P0363	Waste Handling.docx	Plant Meath	This procedure covers
			waste handling in the
			Meath Waste to Energy
			facility. It covers all
			movements of waste from
			the security gate to the
			feeding hopper.
P0348	Meath Maintenance Warehouse	Plant Meath	The purpose of this
	Management.docx		procedure is to describe
			the warehouse
			management concept and
			the link with all applicable
Doooo		Onenetiene	maintenance procedures.
P0383	Completing WTF and TFS	Operations	The Purpose of this
	Paperwork.docx		procedure is to outline the
			steps to correctly complete WTF and TFS
			paperwork for shipments
			of waste from a customers
			site.
P0394	Bunker Management.docx	Plant Meath	The Purpose of this
			procedure isto provide an
			overview of Bunker
			Management, what is
			involved and who is
			responsible for it.
P0397	Common Shut Down.docx	Plant Meath	The purpose of this
			procedure is to assist the
			DCS/field operator when
			shutting down the plant
			from fully operational
			conditions to cold
			conditions and to outline
			the main responsibilities of
Doooo			the relevant people.
P0398	Common Start Up.docx	Plant Meath	The purpose of this
			procedure is to provide a guide for the process
			•
			operators at the Meath waste to energy facility as
			to how to start the
			equipment on site from a
			complete plant shutdown.
P0399	Compressed Air.docx	Plant Meath	It describes its operational
			Procedures to the
			Operator, providing an
			overview of the
			Compressed Air
			Generation and Delivery
			system.
P0402	De-mineralised Water Plant.docx	Plant Meath	This procedure sets out
			how the de-mineralised
			water (Demin) generation
			plant is designed to
			produce the correct quality
			of water at a flow rate of
			5m3/h to the DIW storage
			tanks and how this is

			achieved via plant control and DCS.
P0404	Emergency Diesel Generator Weekly Test.docx	Plant Meath	The purpose of this procedure is to explain how the Diesel Generator Weekly Test is to be completed in cooperation with the E&I maintenance team.
P0407	Fabric Filter.docx	Plant Meath	This procedure defines the actions to be taken during the operation of the Fabric Filter.
P0411	HVAC Utilities.docx	Plant Meath	The purpose of this document is to explain how the Sygma HVAC Unit works and to show how a process operator should operate it and allow the operator to monitor air handling units for the entire building.
P0413	Hydrated Lime.docx	Plant Meath	Defines the actions to be taken during the Running/Injection of Ca(OH)2 Hydrated Lime to the Lab Loop.
P0418	Monthly Evacuation Alarm Test.docx	Plant Meath	To explain the procedure for carrying out the monthly fire alarm test done by shift leader/deputy shift leader.
P0420	Nitric Acid.docx	Plant Meath	To define the actions to be taken during the replacing of the nitric acid IBC.
P0423	Process Water and Mains Water.docx	Plant Meath	This procedure provides an overview of the Process Water and Mains Water System and describes its Operational Procedures to the Operator.
P0426	Restart Following Power Failure.docx	Plant Meath	The purpose of this procedure is to explain how to restore mains power to the plant following a complete power failure.

P0431	Steam and Condensate DCS Hot	Plant Meath	This procedure instructs
1 0 101	Start Up.docx	i lant moath	operations personnel on
	·		the actions that must be
			carried out by the DCS
			operator when starting the
			steam and condensate
			system while the process
			is heating up after a
			complete plant shutdown.
P0432	Steam and Condensate Field Hot	Plant Meath	This procedure sets out to
	Start Up.docx		instruct operators in the
			Meath waste to energy
			facility what actions are
			required to start the steam
			and condensate cycle
			from a hot condition when
			the system is heating up
			to operational temperature
			after a shutdown for
			maintenance work.
P0433	Steam and Condensate System	Plant Meath	This procedure instructs
	DCS Cold Start Up.docx		operators in the Meath
			waste to energy facility
			what actions are required
			to start the steam and
			condensate cycle from a
			cold condition where all
			system components have
			been completely cooled,
			isolated and drained for
			maintenance work during
D 0404			a plant shutdown.
P0434	Steam and Condensate System	Plant Meath	This procedure is to
	Operating.docx		instruct operations
			personnel working in the
			plant on the actions that
			must be carried out on
			items of equipment by the
			operator when the steam
			and condensate cycle is in normal operation.
P0435	Steam and Condensate System	Plant Meath	The purpose of this
F0433	Shutdown.docx		procedure is to instruct
			operations personnel
			working in the plant on the
			actions that must be
			carried out on items of
			equipment by the
			operators when the steam
			and condensate cycle is
			being shutdown.
P0436	Steam Sootblowers.docx	Plant Meath	The purpose of this
			procedure is to outline the
			steps to be taken in the
			operation of the steam
			sootblowers.
L		1	

P0437	Surface Water Attenuation Pond	Plant Meath	This procedure provides
F0437	and Fire Water Retention		an overview of the
	Tank.docx		Surface & Fire Water
			System, and describes its
			Operational Procedures to
			the Operator.
P0439	Turbine Operation.docx	Plant Meath	This procedure is to
1 0 100			instruct Indaver operations
			personnel in the basic
			functions of each of the
			turbine components, the
			safety measures that must
			be taken when working
			with the turbine and the
			actions that must be
			carried out by the DCS
			and field operators in
			order to start, operate and
			shutdown the turbine.
P0442	Checklists.docx	Plant Meath	This procedure details
			what checklists need to be
			filled out, by whom and
			how often for the Meath
			Waste to Energy facility.
P0443	Pump Change Over.docx	Plant Meath	The purpose of this
			procedure is to detail what
			pumps need to be
			switched between duty
			and stand by, who can
			switch them out and when
			they can be switched out.
P0455	Working at Height.docx	QESH	This procedure describes
			the measures used to
			prevent accidents from
			working at height or above
			a depth and applies to all
DOOFT	Clossification and Identification of	Operations	sites.
P0057	Classification and Identification of	Operations	This procedure defines
	Waste.docx		the steps to be taken
			when a waste item or list
			of waste items, requiring identification &
			classification, is received
			by the technical
			department or from a
			customer or any other
			route and how the
			identification &
			classification is recorded.
			It includes both waste
			produced by Indaver
			clients and waste
			produced at any Indaver
			facilities.
L			

P0353	Control of Hot Work Procedure.docx	QESH	This procedure is to specify the manner in which hot work is managed and controlled at the Indaver Ireland & UK facilities to prevent/minimise the potential for fire or other risks to health and safety associated with hot works and ensure the safety, health & welfare of persons involved in hot works and any other persons that may be
P0355	Excavations and Underground Works.docx	QESH	affected by the activity. The purpose of this procedure is to provide a standard operating procedure and permit system for excavation and underground works at Indaver Ireland's facilities to ensure such works are properly controlled to prevent personnel injury and/or damage to Indaver's facility or the environment.
P0356	Facility Safety Induction Meath .docx	QESH	The purpose of this procedure is to clarify the Site Safety Induction process for Contractors, Hauliers and Visitors to the Meath Plant.
P0367	Financial Procedure for Electricity Charges – Supply and Generation.docx	Finance & Administration IE/UK	This procedure describes the process for ensuring all payments relating to electricity generation & supply, and ensure that they are made on time and in line with requirements.
P0352	<u>General Permit to Work</u> <u>Procedure.docx</u>	QESH	This procedure describes the General Permit to Work system in operation at Indaver Ireland & UK and sets out scope and requirements of the permit to work system so that employees, contractors, plant and environment are protected and work is carried out in a safe, environmentally sound and controlled manner.

Bair			
P0173	HazID Safety Study.docx	QESH	The purpose of this procedure is to: • Describe the system by which hazards that could lead to Major Accidents • Ensure that the process for Hazard Identification and Risk Assessment (HAZID) is sufficiently comprehensive to identify all potential Major Accident Hazards associated with Indaver's activities • Ensure that the Indaver management is aware of the hazards with potential for Major Accidents on- site. • Fulfil the requirements for demonstrating that Major Accident Hazards have been identified, that the risk of occurrence and
			the risk of occurrence and severity are assessed and that installations and systems of work at Indaver are, so far as is
			reasonably practical, without risk for man and the environment • Identify essential inputs for emergency planning
P0174	Health and Safety Checks.docx	QESH	purposes. The purpose of this procedure is to ensure that the relevant Health & Safety Checks are carried out at the following locations: Dublin Port Hazardous Waste Facility, Civic Amenity Sites ,Office Environment,At any of the workstations where Indaver Employees work, Any other work location to which the procedure applies.
P0175	Health and Safety Incident Investigation and Reporting.docx	QESH	This procedure outlines the reporting and investigation procedure to be followed in the event of a health and safety incident.

P0178	Identification of Safety Critical Components of an Installation.docx	QESH	This procedure deals with the identification of the safety-critical components of a technical installation and covers the following aspects: definition of safety-critical components, description of 'DE FACTO' and 'POTENTIALLY' safety- critical components, method for identifying safety-critical components and inspection programmes for the various types of safety- critical components.
P0301	Indaver Personnel Visiting the Meath Facility.docx	QESH	This procedures outlines the requirements upon arrival at the Meath facility for all Non Meath based Indaver personnel.
P0445	IT Business Continuity.docx	Business Support	The purpose of this procedure is to explain how IT systems and operations can be maintained if Irish operations loose network access with the network servers in Belgium.
P0354	Lock Out Tag Out Procedure.docx	QESH	The purpose of this procedure is to ensure that when invasive work is carried out on equipment containing hazardous energy, that such energy is properly isolated and controlled prior to commencing work so that persons are not exposed to hazardous energy.
P0204	<u>ME1 - Calculating Recovery Code</u> <u>R1 Status.docx</u>	Plant Meath	The purpose of this procedure is outline the method for validating the recovery (R1) status for ME1, which is required by the EPA in the plant's Waste Licence.
P0293	Raising a TFS.docx	Sales & Marketing IWS	The purpose of this procedure is to detail how to complete and obtain authorisation for a Transfrontier Shipment document (TFS) in Ireland and the UK.

P0318	Shipment of Controlled Drugs and	Operations	The purpose of this
1 0010	Scheduled Substances.docx	operations	procedure is to outline the
			steps needed to identify
			controlled drugs and
			scheduled substances,
			detail the documentation
			required for their shipment
			and to outline the steps involved in obtaining this
			5
DODDZ	The LIAZOD Cofety Study do or		documentation.
P0327	The HAZOP Safety Study.docx	QESH	This procedure outlines
			how HAZOP Safety
50477			Studies are conducted.
P0477	Maintain Technical File.docx	Plant Meath	The purpose of this
			procedure is to describe
			the system to maintain the
			technical files for the
			Meath WTE Facility.
P0478	Scaffolding Management.docx	Plant Meath	This procedure is to
			ensure the safe use of
			scaffolds, including
			checks and use by
			workers, supervisors, and
			scaffold qualified persons.
P0487	Injection Of Polluted Water into	Plant Meath	This sets out an overview
	the Furnace.docx		of the Polluted Water
			Injection process,
			operations and who is
			responsible for it.
P0489	Electricity Permits and Licence	Plant Meath	This procedure outlines
	Compliance Procedure.docx		Indaver Meath Plant's
	· · ·		obligations and
			procedures for meeting
			obligations set out in
			licences, agreements and
			codes applicable to
			electricity exports and
			imports for the Meath
			waste-to-energy facility.
P0525	Electricity Permits and Licence	QESH	This procedure outlines
	Compliance Procedure-		obligations and
	QESH.docx		procedures for meeting
			obligations as set out in
			licences, agreements and
			codes applicable to
			electricity exports and
			imports for the Meath
			waste-to-energy facility as
			they relate to QESH
			activities.
P0536	Isolation of the Hydraulic	Plant Meath	This procedure defines
1 0000	Accumulators.docx		how to carry out the de-
			energising and isolation of
			the hydraulic
			accumulators for the chute
			dampers.
			dumpors.

P0357	Analysis of liquid samples for ME	QESH	This procedure describes
1 0007	<u>1 Indaver Waste to Energy</u>	QLOIT	all analysis necessary for
	Facility.docx		tankers going to Indaver's
			waste to energy facility
			ME 1.
P0540	Boiler pressure test (40 bar).docx	Plant Meath	This procedure is
			describes the steps
			required to perform a 40
			bar pressure test of the
			boiler, after boiler repairs.
P0560	SEAI Monthly Electricity	Plant Meath	This document sets out
	Generator Survey.docx		how Indaver submit
			monthly statistical data
			relating to the Energy
			Policy Statistical Support
			Unit of the Sustainable
			Energy Authority of
			Ireland.
P0558	Turbine over-speed test.docx	Plant Meath	The purpose of this
			procedure is detail how
			the annual over-speed
			test on the turbine is to be
			carried out.
P0562	Acceptance of controlled and	Plant Meath	The purpose of this
	scheduled substances at		procedure is to;
	ME1.docx		outline the steps needed
			to identify controlled and
			scheduled substances;
			 detail the documentation
			required for their
			shipment;
			 outline the steps
			involved in obtaining this
			documentation;
			 outline the transport
			arrangements for moving
			the waste to the outlet for
			destruction; and
			 outline the supervision
			required and security
			measures to be taken at
			the outlet should it be an
DOFOO	Completing a Test		Indaver facility.
P0566	Completing a Test	QESH	The procedures details
	Programme.docx		the steps and timelines for
			completing a test
			programme under W0167
			and any of its associated
Docoo		Devianel Oals	revisions.
P0568	REFIT (electricity) procedure.docx	Regional Sales	This procedure outlines
			obligations and
			procedures for receiving
			the Renewable Energy
			Feed in Tariff for the
			Meath waste-to-energy
		1	facility.

29. Review of nuisance controls

Indaver ensures that the following do not cause nuisance at the site. Vermin, birds, flies, mud, dust, litter and odour. Vermin is controlled by an external contractor who comes to site monthly and reviews the status of the site. There is no issue with vermin at the site. Birds are monitored to ensure they are not causing nuisance. Flies are not an issue at the site. Mud, dust, litter and odour are taken care of through good operational practices at the site. Negative pressure in the tipping hall and bunker area ensures that no odours escape. It also ensures that dust and windswept litter are minimised. A road sweeper comes to site on a monthly basis as a minimum which ensures no mud and dust is present to cause a nuisance. Litter picks are completed as and when necessary. Routine odour assessments are also undertaken at the site.

Appendix 1:E-PRTR plus acceptance verification

| PRTR# : W0167 | Facility Name : Indaver Ireland Limited (Duleek) | Filename : W0167_2016.xls | Return Year : 2016 |

Guidance to completing the PRTR workbook

PRTR Returns Workbook

REFERENCE YEAR 2016

1. FACILITY IDENTIFICATION

Parent Company Name Ir	ndaver Ireland Limited
Facility Name Ir	ndaver Ireland Limited (Duleek)
PRTR Identification Number V	V0167
Licence Number V	V0167-03

Classes of Activity

No. class_name - Refer to PRTR class activities below

Address 1	Carranstown
Address 2	Duleek
Address 3	Meath
Address 4	
	Meath
Country	/ Ireland
Coordinates of Location	-6.39215 53.6765
River Basin District	IEEA
NACE Code	3821
	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	Grace McCormack
AER Returns Contact Email Address	grace.mccormack@indaver.ie
	Quality and Environmental Manager
AER Returns Contact Telephone Number	041 213 4005
AER Returns Contact Mobile Phone Number	086 046 4224
AER Returns Contact Fax Number	N/a
Production Volume	
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	
Number of Employees	
User Feedback/Comments	There has been some changes of over 50% in the emissions to air, some are higher and some are reduced, it is based on the acid load that is pro-
	waste that the SO2 is higher, lower for others but essentially the waste controls a lot of the results for the emissions. For PM10, the result is an a
	2016 multiplied by the flow rate and run hours. The measurement uncertainty on the result is very close to the average result for 2016.
Web Address	www.indaver.ie

2. PRTR CLASS ACTIVITIES	
Activity Number	Activity Name
	Installations for the incineration of non-hazardous waste in the scope of Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000
5(b)	on the incineration of waste
5(c)	Installations for the disposal of non-hazardous waste
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 20	02)
Is it applicable?	No
Have you been granted an exemption ?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being	
used ?	

4. WASTE IMPORTED/ACCEPTED ONTO SITE

4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accept
Do you import/accept waste onto your site for on-	
site treatment (either recovery or disposal	
activities)?	

This question is only applicable if you are an IPPC or Quarry site

39
esent in the
average result for
December 2000

0.0

Version 1.1.19

29/03/2017 14:23

4.1 RELEASES TO AIR

Link to previous years emissions data

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

		RELEASES TO AIR				Please enter all quantities i	in this section in KGs		
		POLLUTANT		METHOD			QUANTITY		
				Method Used					
	No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					EN 14181 (Continuous				
02		Carbon monoxide (CO)	M	OTH	monitoring using FTIR)	9211.85	9211.85	0.0	0.0
					EN 14181 (Continuous				
03		Carbon dioxide (CO2)	M	OTH	monitoring using FTIR)	324845880.0	324845880.0	0.0	0.0
					EN 14181 (Continuous				
80		Chlorine and inorganic compounds (as HCl)	M	OTH	monitoring using FTIR)	2010.77	2010.77	0.0	0.0
					EN 14181 (Continuous				
84		Fluorine and inorganic compounds (as HF)	M	OTH	monitoring using FTIR)	228.7	228.7	0.0	0.0
21		Mercury and compounds (as Hg)	M	EN 13211:2001		6.91	6.91	0.0	0.0
					EN 14181 (Continuous				
08		Nitrogen oxides (NOx/NO2)	M	OTH	monitoring using FTIR)	218880.62	218880.62	0.0	
86		Particulate matter (PM10)	M	OTH	US EPA M01A	625.08	625.08	0.0	0.0
47		PCDD + PCDF (dioxins + furans)(as Teq)	M	EN 1948-1 to3:2003		0.000049	0.0000049	0.0	0.0
					EN 14181 (Continuous				
11		Sulphur oxides (SOx/SO2)	M	OTH	monitoring using FTIR)	53297.86	53297.86	0.0	0.0
05		Nitrous oxide (N2O)	Μ	OTH	TGN M22	2058.1	2058.1	0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTA	NTS							
	RELEASES TO AIR				Please enter all quantitie	es in this section in KG	S	
	POLLUTANT			METHOD			QUANTITY	
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
						0.0	0.0	0.0 0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES TO AIR				Please enter all quantities	in this section in KGs		
POLLUTANT			ME	ETHOD	QUANTITY			
				Method Used				
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
210	Dust	М	OTH	EN 14181	107.38	3 107.38	0.0	0.0
				EN 14181 (Continuous				
351	Total Organic Carbon (as C)	Μ	OTH	monitoring using FID)	707.78	3 707.78	0.0	0.0
347	Total heavy metals	М	EN 14385:2004		0.000962	2 0.000962	0.0	0.0
	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button							

Additional Data Requested from Landfill operators For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KG/yr for Section A: Sector specific PRTR pollutants above. Please complete the table below: Landfill: Indaver Ireland Limited (Duleek) Please enter summary data on the quantities of methane flared and / or utilised Method U T (Total) kg/Year M/C/E Method Code Total estimated methane generation (as per 0.0 0.0 site model) Methane flared 0.0 Methane utilised in engine/s Net methane emission (as reported in Section A above) 0.0

laad		
sed		
Designation or	Facility Total Capacity m3	
Description	per hour	
	N/A	
		(Total Flaring Capacity)
	0.0	(Total Flaring Capacity) (Total Utilising Capacity)
	0.0	
	0.0	

Link to previous years emissions data

4.2 RELEASES TO WATERS

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

	RELEASES TO WATERS
PO	LLUTANT
No. Annex II	Name

* Select a row by double-clicking on the Pollutant Name (Column B)

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO WATERS
PO	LLUTANT
No. Annex II	Name

* Select a row by double-clicking on the Pollutant Name (Column B)

SECTION C : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RELEASES TO WATERS					
POLLUTANT						
Pollutant No.	Name					

* Select a row by double-clicking on the Pollutant Name (Column B)

| PRTR# : W0167 | Facility Name : Indaver Ireland Limited (Duleek) | Filename : W0167_2016.xls | Return Year : 2016 |

Data on an	Data on ambient monitoring of storm/surface water or groundwater, conducted as part of your licence requirements, should N					
	Please enter all quantities in this section in KGs					
		Method Used				
M/C/E	M/C/E Method Code Designation or Description		Emission Point 1	T (Total) KG/Year		
			0.0	0.0		

) then click the delete button

			Please enter all quantities	in this section in K	Gs
		Method Used			
M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	
			0.0		0.0

) then click the delete button

			Please enter all quantities	in this section in KG	Gs
		Method Used			
M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	
			0.0	C	0.0

) then click the delete button

29/03/2017 14:23

OT be submitted under AER / PRTR Reporting as this only concerns Releases from your facility

QUANTITY				
A (Accidental) KG/Year	F (Fugitive) KG/Year			
0.0 0.0				

QUANTITY	
A (Accidental) KG/Year	F (Fugitive) KG/Year
0.0	0.0

QUANTITY	
A (Accidental) KG/Year	F (Fugitive) KG/Year
0.0	0.0

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

PRTR# : W0167 | Facility Name : Indaver Ireland Limited (Duleek) | Filename : W0167_2016.xls | F 29/03/2017 14:23

SECTION A : PRTR POLLUTANTS

OFFSITE TRAN	OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER			Please enter all quantities in this section in KGs				
PO	LLUTANT	METHOD				QUANTITY		
			Met	hod Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0	0.	0 0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-W	DLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER				Please enter all quantities in this section in KGs			
	POLLUTANT		METHOD				QUANTITY		
			Method Used						
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					0.0		0.0 0.0) 0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

4.4 RELEASES TO LAND

Link to previous years emissions data

SECTION A : PRTR POLLUTANTS

		RELEASES TO LAND
	POLL	UTANT
No. Annex II	N	ame

* Select a row by double-clicking on the Pollutant Name (Column B)

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RELEASES TO I	AND
	POLLUTANT	
Pollutant No.	Name	

* Select a row by double-clicking on the Pollutant Name (Column B)

| PRTR# : W0167 | Facility Name : Indaver Ireland Limited (Duleek) | Filename : W0167_2016.xls | Return Year : 201

			Please enter all quantities
	ME	THOD	
		Method Used	
M/C/E	Method Code	Designation or Description	Emission Point 1
			0.0

) then click the delete button

			Please enter all quantities
	ME	THOD	
		Method Used	
M/C/E	Method Code	Designation or Description	Emission Point 1
			0.0

) then click the delete button

in this section in KGs	
	QUANTITY
T (Total) KG/Year	A (Accidental) KG/Year
0.0	0.0

in this section in KGs	
	QUANTITY
T (Total) KG/Year	A (Accidental) KG/Year
0.0	0.0

5. ONSITE TREATME	NT & OFFSITE TRANSFE		PRTR# : W0167 Facility Name : Indaver Ireland Limited	(Duleek) Filena	ıme : W0167	_2016.xls Return Year : 20′	16				29/03/2017 14:23 0
		Quar	ntity					<u>Haz Waste</u> : Name and Licence/Permit No of Next Destination Facility <u>Non Haz Waste</u> : Name and	<u>Haz Waste</u> : Address of Next Destination Facility	Name and License / Permit No. and	Actual Address of Final Destination i.e.
	European Waste	(Tonne Yea	r)	Waste Treatment		Method Used	Location of	Licence/Permit No of Recover/Disposer	<u>Non Haz Waste</u> : Address of Recover/Disposer	Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Destination	n Code	Hazardous	Description of Waste	Operation	M/C/E	Method Used	Treatment			Abfall Verwertungs Gesellschaft Gmb (AVG),IB2234/AVG-GENB-	
To Other Countries	06 01 05	Yes	0.0 nitric acid and nitrous acid	D10	Μ	Weighed	Abroad	Indaver Ireland Limited,W0036-02	Tolka Quay Road,Dublin Port,D1,D1,Ireland	Hamburg,Hamburg,D-22113	Borsigstr. 2,D-22113 Hamburg,Hamburg,D-22113 Hamburg,Germany
								Indaver Ireland	Tolka Quay Road,Dublin	Gesellschaft Gmb (AVG),IB2234/AVG-GENB- 2,Borsigstr. 2,D-22113	Borsigstr. 2,D-22113 Hamburg,Hamburg,D-22113
To Other Countries	06 01 06	Yes	0.0 other acids	D10	Μ	Weighed	Abroad	Limited,W0036-02	Port,D1,D1,Ireland	Hamburg,Germany Abfall Verwertungs Gesellschaft Gmb	Hamburg,Germany
To Other Countries	06 02 03	Yes	0.0 ammonium hydroxide	D10	М	Weighed	Abroad	Indaver Ireland Limited,W0036-02	Tolka Quay Road,Dublin Port,D1,D1,Ireland	Hamburg,Hamburg,D-22113	Borsigstr. 2,D-22113 Hamburg,Hamburg,D-22113 Hamburg,Germany
										Abfall Verwertungs Gesellschaft Gmb (AVG),IB2234/AVG-GENB- 2,Borsigstr. 2,D-22113	Borsigstr. 2,D-22113
To Other Countries	06 02 04	Yes	0.0 sodium and potassium hydroxide	D10	Μ	Weighed	Abroad	Indaver Ireland Limited,W0036-02	Tolka Quay Road,Dublin Port,D1,D1,Ireland	Hamburg,Hamburg,D-22113	Hamburg,Hamburg,D-22113 Hamburg,Germany
								Indaver Ireland	Tolka Quay Road, Dublin	(AVG),IB2234/AVG-GENB- 2,Borsigstr. 2,D-22113 Hamburg,Hamburg,D-22113	Borsigstr. 2,D-22113 Hamburg,Hamburg,D-22113
To Other Countries	13 02 08	Yes	0.0 other engine, gear and lubricating oils	D10	Μ	Weighed	Abroad	Limited,W0036-02	Port,D1,D1,Ireland MacAnulty Clear Drains,John	Enva Ireland Ltd,196- 1,MacAnulty Clear	Hamburg,Germany MacAnulty Clear Drains,John
Within the Country	13 05 07	Yes	0.0 oily water from oil/water separators	D9	Μ	Weighed	Offsite in Ireland	Enva Ireland Ltd,196-1	F Kennedy Industrial Estate John F Kennedy Road,Naas Road,Dublin 12,Ireland	Kennedy Road,Naas	F Kennedy Industrial Estate John F Kennedy Road,Naas Road,Dublin 12,Ireland
										Gesellschaft Gmb (AVG),IB2234/AVG-GENB- 2,Borsigstr. 2,D-22113	Borsigstr. 2,D-22113
To Other Countries	13 07 01	Yes	0.0 fuel oil and diesel	D10	Μ	Weighed	Abroad	Indaver Ireland Limited,W0036-02	Tolka Quay Road,Dublin Port,D1,D1,Ireland	Hamburg,Germany Rilta Environmental,W0192-	Hamburg,Hamburg,D-22113 Hamburg,Germany
Within the Country	13 08 99	Yes	0.64 wastes not otherwise specified	R9	Μ	Weighed	Offsite in Ireland	Rilta Environmental,W0192- 03	Block 402,Greenogue Business Park,Rathcoole,Dublin,Ireland	Business	Block 402,Greenogue Business Park,Rathcoole,Dublin,Ireland
			absorbents, filter materials (including oil filters not otherwise specified), wiping cloths, protective clothing contaminated by					Indaver Ireland	Tolka Quay Road,Dublin	-	Borsigstr. 2,D-22113 Hamburg,Hamburg,D-22113
To Other Countries	15 02 02	Yes	0.0 dangerous substances	D10	Μ	Weighed	Abroad	Limited,W0036-02	Port,D1,D1,Ireland	Hamburg,Germany Abfall Verwertungs Gesellschaft Gmb	Hamburg,Germany
To Other Countries	16 05 04	Yes	gases in pressure containers (including 0.0 halons) containing dangerous substances	D10	М	Weighed	Abroad	Indaver Ireland Limited,W0036-02	Tolka Quay Road,Dublin Port,D1,D1,Ireland	Hamburg,Hamburg,D-22113	Borsigstr. 2,D-22113 Hamburg,Hamburg,D-22113 Hamburg,Germany
			aqueous liquid wastes containing dangerous					Rilta Environmental,W0192-	Block 402,Greenogue Business	. .	Block 402,Greenogue Business
Within the Country	16 10 01	Yes	0.0 substances aqueous liquid wastes other than those	D9	Μ	Weighed	Offsite in Ireland	03 EPS Dundalk and Drogheda WWTW,EPS Pumping &	Park,Rathcoole,Dublin,Ireland Dundalk WWTW,Lower point road,Co-Louth,Co-	Park,Rathcoole,Dublin,Ireland	Park,Rathcoole,Dublin,Ireland
Within the Country	16 10 02	No	88.71 mentioned in 16 10 01	D9	Μ	Weighed	Offsite in Ireland	Treatment Systems	Louth,Ireland Block 402,Greenogue		
Within the Country	16 10 02	No	aqueous liquid wastes other than those 0.0 mentioned in 16 10 01	D9	Μ	Weighed	Offsite in Ireland	Rilta Environmental,W0192- 03 Nurendale Limited trading as Panda Waste Services	Business Park,Rathcoole,Dublin,Ireland Rathdrinagh,Beauparc,Navan		
Within the Country Within the Country	17 02 01 17 04 05	No	0.0 wood 0.0 iron and steel	R13 R13	M	Weighed Weighed	Offsite in Ireland Offsite in Ireland	Limited,W0140 - 03 Nurendale Limited trading as Panda Waste Services Limited,W0140 - 03	,Co Meath ,Ireland Rathdrinagh,Beauparc,Navan ,Co Meath ,Ireland		
Within the Country	17 05 04	No	soil and stones other than those mentioned 0.0 in 17 05 03	D15	М	Weighed	Offsite in Ireland	Nurendale Limited trading as Panda Waste Services Limited,W0140 - 03 Nurendale Limited trading as	Rathdrinagh,Beauparc,Navan ,Co Meath ,Ireland		
Within the Country	17 06 04	No	insulation materials other than those 0.0 mentioned in 17 06 01 and 17 06 03 mixed construction and demolition wastes	D15	Μ	Weighed	Offsite in Ireland	Panda Waste Services Limited,W0140 - 03 Nurendale Limited trading as	Rathdrinagh,Beauparc,Navan ,Co Meath ,Ireland		
Within the Country	17 09 04	No	other than those mentioned in 17 09 01, 17 3.322 09 02 and 17 09 03	R13	Μ	Weighed	Offsite in Ireland	Panda Waste Services Limited,W0140 - 03 Hammond Lane Metal Company Limited,WFP-DC-	Rathdrinagh,Beauparc,Navan ,Co Meath ,Ireland Pigeon House Road,Ringsend,Dublin		
Within the Country	19 01 02	No	0.0 ferrous materials removed from bottom ash	R4	Μ	Weighed	Offsite in Ireland	0013-01 Clearcircle Metals (Limerick) Limited,WFP-LC+KC-11-001-	4,Ringsend,Ireland Ballysimon Road,Ballysimon Road,Limerick,Limerick,Irelan		
Within the Country Within the Country	19 01 02 19 01 02	No	0.0 ferrous materials removed from bottom ash 0.0 ferrous materials removed from bottom ash		M	Weighed Weighed	Offsite in Ireland Offsite in Ireland	01 AES t/A Midland Waste Disposal Company Limited,W0131-02	d Clonmagadden,Proudstown, Navan,Co-Meath,Ireland		
Within the Country	19 01 02	No	0.0 ferrous materials removed from bottom ash		М	Weighed	Offsite in Ireland	Multimetal Recycling,WFP- WW-10-0014-02	Conway Port Industrial Estate,Bollarney,Murrough,Wi cklow,Ireland Industriele		
To Other Countries	19 01 02	No	0.0 ferrous materials removed from bottom ash	R4	Μ	Weighed	Abroad	Indaver NV,MLAV1/9800000485/MV/bc	Afvalverwerking,Poldervlietwe g,B-2030 Antwerpen 3,B-2030		
Within the Country	19 01 02	No 29	022.76 ferrous materials removed from bottom ash	R4	Μ	Weighed	Offsite in Ireland	United Metals,WFP LK 2013 147A R1	Park,Ballysimon,Ballysimon,L imerick,Ireland		
Within the Country	19 01 02	No	0.0 ferrous materials removed from bottom ash	R4	Μ	Weighed	Offsite in Ireland	Wilton Waste Recycling Limited ,WFP CN 15-003-01	Kiffagh,Crosserlough,Ballyja mesduff,Cavan,Ireland	K&S Kali GmBH,LicenceM76D310/57,R	
To Other Countries	10.01.07			55		Model ed	Alexand	K&S Kali	Reutilisation Salt Mines(Phillippstaal),Nipper StraBe 33,36269	Mines(Phillippstaal),Nipper StraBe 33,36269 Philippsthal,36269	Reutilisation Salt Mines (Phillippstaal), Nipper StraBe 33,36269 Philippsthal, 36269
To Other Countries	19 01 07	Yes 72	278.01 solid wastes from gas treatment	R5	Μ	Weighed	Abroad	GmBH,LicenceM76D310/57	Philippsthal,36269,Germany	Indaver NV,MLAV1/9800000485/MV/bd ,Industriele	Philippsthal,Germany
To Other Countries	19 01 07	Yes	24.68 solid wastes from gas treatment	D9	Μ	Weighed	Abroad	Indaver NV,MLAV1/9800000485/MV/bc		g,B-2030 Antwerpen 3,B-2030 Antwerpen 3,Belgium Indaver	Afvalverwerking,Poldervlietwe g,B-2030 Antwerpen 3,B-2030 Antwerpen 3,Belgium
									Werk Werra,Standort Wintershall Herfagrund,36266 Herfa	Afvalverwerking,Poldervlietwe g,B-2030 Antwerpen 3,B-2030	
To Other Countries	19 01 07	Yes	26.86 solid wastes from gas treatment	R5	Μ	Weighed	Abroad	K&S,34/Hef-79 n 330-51/153	,36266 Herfa ,Germany Standort	K&S Kali GmbH Werk Werra,AZ.1325/98	Antwerpen 3,Belgium Standort
To Other Countries	19 01 07	Yes 18	339.88 solid wastes from gas treatment	R11	М	Weighed	Abroad	K&S Kali GmbH Werk Werra,AZ.1325/98 AZ6631/99	Unterbreizbach,Untertagaever wertung Schaet 11,Unterbreizbach,D36414,G ermany	wertung Schaet 11,Unterbreihbach,D36414,G	Unterbreizbach,Untertagaever wertung Schaet 11,Unterbreihbach,D36414,G ermany
Within the Country	19 01 12	No	bottom ash and slag other than those 0.0 mentioned in 19 01 11	D1	М	Weighed	Offsite in Ireland	Whiteriver Landfill[Louth County Council] ,W0060-03	Whiteriver and Gunstown Townland ,Dunleer,Co-Louth,Co- Louth,Ireland		
Within the Country	19 01 12		bottom ash and slag other than those 361.38 mentioned in 19 01 11	D1	M	Weighed	Offsite in Ireland	Scotchcorner Landfill Monaghan County Council,W0020-02	Letterbane,Annyalla,Castlebla yney,Co-Monaghan,Ireland	I	
Within the Country	19 01 12	No	bottom ash and slag other than those 423.7 mentioned in 19 01 11	R11a	М	Weighed	Offsite in Ireland	Greenstar Holdings Limited,W0165-02	Ballynagran Residual Landfill,Ballynagran,Coolbeg and Kilcandra,Wicklow,Ireland	1	
Within the Country	19 01 12	No	bottom ash and slag other than those 52.32 mentioned in 19 01 11	R11a	М	Weighed	Offsite in Ireland	Drehid Landfill(Bord Na Mona PLC).W201-03	Drehid Landfill(Bord Na Mona PLC),Killinagh Upper,Carbury,Co- Kildare,Ireland		
						Ţ			Industriele	Indaver NV,MLAV1/9800000485/MV/bd ,Industriele Afvalverwerking,Poldervlietwe	
To Other Countries	19 01 13	Yes	27.34 fly ash containing dangerous substances	D9	Μ	Weighed	Abroad	Indaver NV,MLAV1/9800000485/MV/bo	g,B-2030 Antwerpen 3,B-2030	g,B-2030 Antwerpen 3,B-2030	.,.,,,Belgium
								K&S Kali	Reutilisation Salt Mines(Phillippstaal),Nipper StraBe 33,36269	eutilisation Salt Mines(Phillippstaal),Nipper StraBe 33,36269	Reutilisation Salt Mines (Phillippstaal), Nipper StraBe 33,36269 Philippsthal, 36269
To Other Countries	19 01 13	Yes	0.0 fly ash containing dangerous substances	R5	Μ	Weighed	Abroad	K&S Kall GmBH,LicenceM76D310/57	Straße 33,36269 Philippsthal,36269,Germany Werk Werra,Standort Wintershall	Philippsthal,Germany K & S,34/Hef-79 n 330-	Philippsthal,36269 Philippsthal,Germany Werk Werra,Standort Wintershall
To Other Countries	19 01 13	Yes 18	303.46 fly ash containing dangerous substances	R5	Μ	Weighed	Abroad	K&S,34/Hef-79 n 330-51/153	Wintershall Herfagrund,36266 Herfa ,36266 Herfa ,Germany	Herfagrund,36266 Herfa ,36266 Herfa ,Germany K & S ,34/Hef-79n330-	Wintershall Herfagrund,36266 Herfa ,36266 Herfa ,Germany
	10.01.12	Ver		Dis		14/			Werra Plant Underground Waste Disposal Plant,Herfa- Neurode,36266 Heringen	Heringen ,36266 Heringen	Waste Disposal Plant,Herfa- Neurode,36266 Heringen
To Other Countries	19 01 13	Yes	03.81 flyash containing dangerous substances	D12	Μ	Weighed	Abroad	K & S ,34/Hef-79n330-51/153 CRAENHALS METAL	,36266 Heringen ,Germany Van Patraestraat 90 ,2660 HOBOKEN (Antwerpen),Antwerp,2660,Bel		,36266 Heringen ,Germany
To Other Countries	19 12 03 19 12 03		361.6 non-ferrous metal 90.02 non-ferrous metal	R4 R4	M	Weighed Weighed	Abroad Abroad	TERMINAL,10088 Galloo,IHM-AFVAL4024	gium Wervikstraat 320,8930 Menen,Menen,8930,Belgium		
Within the Country	20 01 36	No	discarded electrical and electronic equipment other than those mentioned in 20 01 21, 20 0.29 01 23 and 20 01 35		M	Weighed	Offsite in Ireland	Nurendale Limited trading as Panda Waste Services Limited,W0140 - 03	Rathdrinagh,Beauparc,Navan ,Co Meath ,Ireland		
Within the Country	20 01 38	No	6.96 wood other than that mentioned in 20 01 37	R12	М	Weighed	Offsite in Ireland	Nurendale Limited trading as Panda Waste Services Limited,W0140 - 03 Nurendale Limited trading as	Rathdrinagh,Beauparc,Navan ,Co Meath ,Ireland		
Within the Country	20 01 39	No	0.0 plastics	R13	Μ	Weighed	Offsite in Ireland	Panda Waste Services Limited,W0140 - 03 Nurendale Limited trading as Panda Waste Services	Rathdrinagh,Beauparc,Navan ,Co Meath ,Ireland Rathdrinagh,Beauparc,Navan		
Within the Country Within the Country	20 03 01 20 03 01	No	0.0 mixed municipal waste 0.0 mixed municipal waste	R13 D15	M	Weighed Weighed	Offsite in Ireland Offsite in Ireland	Limited,W0140 - 03 Nurendale Limited trading as Panda Waste Services Limited,W0140 - 03	,Co Meath ,Ireland Rathdrinagh,Beauparc,Navan ,Co Meath ,Ireland		
Within the Country Within the Country Within the Country	20 03 01 20 03 03	No	5.2 mixed municipal waste0.0 street-cleaning residues	R1	E	Volume Calculation	Onsite of generati	Indaver Ireland o Limited,W0167-02 Indaver Ireland o Limited,W0167-02	Carranstown,Duleek,Co- Meath,N/A,Ireland Carranstown,Duleek,Co- Meath,N/A,Ireland		
Within the Country	20 03 03	No	18.0 septic tank sludge	R1	M	Weighed	Offsite in Ireland		Dundalk WWTW,Lower point road,Co-Louth,Co- Louth,Ireland		
Country	200004		. cro sopro tank siduye	20	111	gneu	Shone in Ireland	Dublin City Council Ringsend	Drainage Services Environmental and Engineering Dept,Civic		
Within the Country	20 03 04	No	00.33 septic tank sludge	D9	Μ	Weighed	Offsite in Ireland	Waste Water Treatment Plant,D0034-01 Whiteriver Landfill[Louth County Council]	Office,Wood Quay,Dublin 8,Ireland Whiteriver and Gunstown Townland		
Within the Country	20 03 07	No	0.0 bulky waste	D1	Μ	Weighed	Offsite in Ireland	,W0060-03	,Dunleer,Co-Louth,Co- Louth,Ireland Drainage Services		
Within the Country	16 10 02	No	aqueous liquid wastes other than those 0.0 mentioned in 16 10 01	D9	М	Weighed	Offsite in Ireland	Dublin City Council Ringsend Waste Water Treatment Plant,D0034-01	Office,Wood Quay,Dublin 8,Ireland		
To Other Countries	19 12 03		143.6 non-ferrous metal bottom ash and slag other than those	R4	Μ	Weighed	Abroad	Recco Non Ferro Metals BV,OLO Number 1016711 Greenstar	Montage Weg 2,8304 BG Emmeloord,Emmeloord,.,Net herlands Knockharley,Navan,Co-		
Within the Country	19 01 12		28.332 mentioned in 19 01 11 icking the Description of Waste then click the delete button	R11a	М	Weighed	Offsite in Ireland	Knockharley,W0146-01	Meath,,,Ireland		

29/03/2017 14:23 O ress of Final Destination i.e. ecovery / Disposal Site RDOUS WASTE ONLY)

r, 2,D-22113 rg,Hamburg,D-22113 rg,Germany 02,Greenogue ss thcoole,Dublin,Ireland

From:	aerreturns@epa.ie	03:03
To:	Crace McCormack	
Cc: Subject:	AER / PRTR Emissions Data VERIFICATION OF ACCEPTANCE (W0167_2016.xml)	
Thank yo	u,	
Your AER	/ PRTR Emissions Data submission has been accepted by our data system.	
	now proceed to save your submitted emissions and waste transfers information in a format suitable for insertion into your Full AER report. The Full AER Report must be submitted in electronic (PDF) form only, the AER is uired in hardcopy (paper) form.	i
Please re	tain the receipt / tracking number below in case of future queries about this submission and in case a request is made by an authorised person in this regard.	
c5632ed	dc70a4ee01b40678b5ae1d390	
******	***************************************	
	il and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the EPA postmaster - ter@epa.ie The opinions contained within are personal to the sender and do not necessarily reflect the policy of the Environmental Protection Agency.	
******	***************************************	
	il has been scanned by the Symantec Email Security.cloud service.	
For more	information please visit http://www.symanteccloud.com	

Appendix 2: Energy Efficiency Report

Indaver Ireland

Energy Audit

Waste Licence W0167-03

2016 Energy Audit

Introduction

This document reflects the licence requirement in Condition 7.1.3 to demonstrate the energy efficiency of the site. Energy Efficiency must be, as a minimum, 0.65. This document reports the result of 0.72.

Audit

Audit period

1st January 2016 to 31st December 2016.

Audit personnel

The persons involved in the audit were the Process Engineer Joe Crawley, the Maintenance Manager, Rory Murphy, Electrical and Instrumentation Supervisor Eoin Wright and the Quality and Environmental Manager, Grace McCormack.

Scope of audit

The scope of the required energy audit is as defined by the 'Guidance Note on Energy Efficiency Auditing', published by the EPA, Johnstown Castle, Co. Wexford, Ireland.

Additional requirements re the energy audit are contained in Condition 7.1.2 and Condition 7.1.3 of the Waste Licence. The scope of the audit includes these conditions which reads as follows:

7.1.2 The licensee shall build and operate the facility to achieve an energy efficiency of, as a minimum, 0.65 using the formulae below to calculate Energy Efficiency:

Energy Efficiency = [Ep- (Ef + Ei)]/0/97 x (Ew + Ef] where

Emission point = annual energy produced as heat or electricity (GJ/year) (heat produced for commercial use is multiplied by 1.1 and electricity is multiplied by 2.6)

Ef = annual energy input to the system from fuels contributing to the production of steam (GJ/year)

Ew = annual energy contained in the waste input using the net calorific value of the waste (GJ/year)

Energy Efficiency

Condition 7.1.2 of the Waste Licence sets minimum energy efficiency. The achievement of this parameter is reviewed.

Energy Performance

Condition 7.1.3 requires a calculation to be determined for the net usable energy produced per tonne of waste. This calculation was performed and the result is as shown:

Net Usable Energy Per Tonne of Waste Processed	0.64 M Wh/Tonne

Condition 7.1.3 also requires a full breakdown of the calculation of each parameter in the equation and the results for this is shown below:

Energy efficiency = $\frac{E_p - (E_f + E_i)}{0.97 * (E_w + E_f)}$

In which:

 E_p means annual energy produced as heat or electricity. It is calculated with energy in the form of electricity being multiplied by 2.6 and heat produced for commercial use multiplied by 1.1 (GJ/year)

 E_f means annual energy input to the system from fuels contributing to the production of steam (GJ/year)

 E_{w} means annual energy contained in the treated waste calculated using the net calorific value of the waste (GJ/year)

 E_i means annual energy imported excluding E_v and E_f (GJ/year)

0.97 is a factor accounting for energy losses due to bottom ash and radiation

In addition, Annex II of the WFD highlights that this formula shall be applied in accordance with the Reference Document on Best Available Techniques for Waste Incineration (BREF WI).

Energy Audit

	Total waste treated 01/01/16 to 31/12/16	229122	Tonnes		
	Total electricity produced 01/01/16 to 31/12/16	146550	MWh		
	Type of energy	Unit	Tonne	NCV (kJ/kg)	Energy (MWh)
1.1	Adjusted amount incinerated waste		226,327	9,568	601,528
1.2	E _w Energy input of waste	MWh			601,528
1.3	Ef: Light fuel oil used for startup / keeping temperature	tonne	120.52	42,000	1,406
2	Ef: Natural gas used		-	-	-
2.1 + 2.	2 Ef: Energy input by imported energy with steam	MWh			1,406
2.3	Ei: Light fuel oil used for startup / shutdown	tonne	120.52	42,000	1,406
3	Ei: Natural gas used	-	-	-	-
3.1	Ei: imported electricity (multiplied with equivalence factor 2.6)	-	-	-	
3.2	Ei: imported heat	-	-	-	-
3.3	Ei: Energy input by imported energy without steam	MWh			1,406
3.4	Ep: Adjusted electricity produced and internally used for incineration process	MWh	18,037.00	-	
4	Ep: electricity delivered to a third party	MWh	128,514.00	-	
4.1	Ep: Electricity produced adjusted for curtailment	MWh	145,926.28		145,926.28
4.2	Ep: Heat exported	MWh	-	-	-
5	Ep: Heat exported	MWh	-	-	-
5.1 + 5.	2 Ep: heat used internally for steam driven pumps, backflow, heating flue gas, liquid APC residues		-	-	-
6	Ep: for soot blowing without backflow		-	-	
6.1 t 6.3	o Ep: for heating buildings, deaeration, NH4OH injection		-	-	-
6.4	Ep: Heat used internally	MWh	-	-	-
6.5 t 6.7	o Ep	MWh			379,408
7	R1				0.720

Data used: 1st January 2016 to 31st December 2016.

Energy Audit

R	1 Adjusti	ments: C	urtailme	nt								
Objective:					ils plant as	s energy mu	ist be spilt	during thes	e periods.			
Data affected:	MWh prod	uced, wast	e tonnes pr	ocessed	-							
Obtaining data:	-		vaste treate		onstraints	from NCC						
affect of data	Tonnes of	waste in 1.	1 reduced to	o exclude	contraint p	eriods						
	Ep Electrit	y produced	in 5 reduced by electricity producted during contraint									
				-			_					
Frequency of pro	ocesssing da	<u>ata:</u>	monthly									
		0										
		Curta	ilment									
		MWh	t waste									
	Jan-16											
	Feb-16		-									
	Mar-16											
	Apr-16					_	_					
	· ·											
	May-16	53.539	313									
	Jun-16	34.15	205									
	Jul-16											
	Aug-16	42.288	127									
	Sep-16	131.306	510									
	Oct-16											
	Nov-16	-	. –						_			
	Dec-16											
	200 10	105.55										
	Total	623.7	2794.6									

Energy Auditing Scheme Report

for

Revision Control

Energy Consultants	Reckhill, Main Street, Blackrock, Co.Dublin SOLUTIONS From - +353 1 278 4388 Email - Info@powertherm.le www.powertherm.le www.powertherm.le Senergy Consultants - Project Managers - Energy and Maintenance Managers					
Document Title:	EAS Report					
Revision number:	170320					
Status:	Final (comments incorporated)					
Issue Date:	20 th March 2017					
Prepared by:	Steven Roycroft					
Checked by:	Cian O'Riordan					
Supporting Spreadsheets (retained by PowerTherm)	161108 Indaver calculation spreadsheet					

PowerTherm

Executive Summary

This Energy Audit has been prepared for Indaver Ireland Ltd to ensure compliance with S.I. 426 (2014), which requires large enterprises to carry out an Energy Audit of their operations every four years.

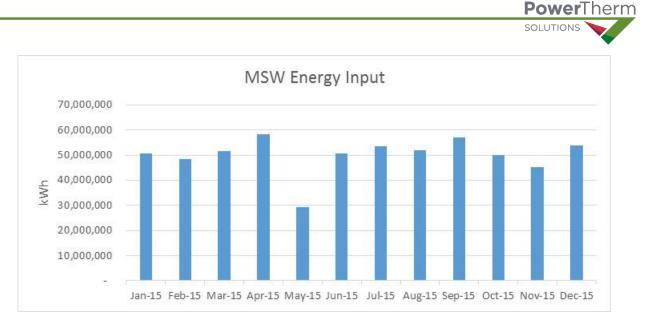
Indaver provide waste management solutions to large scale industry and public authorities, including the operation of a Waste-to-Energy plant located in Meath which treats more than 200,000 tonnes of municipal solid waste every year.

S.I. 426 states that "Companies that are not SMEs shall carry out an energy audit..." Indaver is not an SME and so is undertaking an audit of the facilities it owns or occupies. In 2015 Indaver owned the following facilities and vehicles, which fall within the scope of this energy audit:

- Cork Office, South Ring Business Park
- Dublin Office, Dun Laoghaire
- Dublin Port Waste Transfer Station
- Meath WTE Plant
- Civic Amenity Centre, Newcastlewest
- Civic Amenity Centre, Glenfield
- Civic Amenity Centre, Bunlicky
- Company Car Fuel Use

The audit must include 70% of total primary energy use in order to comply. This includes all forms of energy used, including transport fuel. In this instance MSW is included as energy used by Indaver. The below table summarises the energy used in each area.

Final Energy								
Consumpton 2015								
(kWh)	Electricity	Natural Gas	Propane	Diesel	Petrol	MSW ¹	Total	Comments
Cork Office	45,936	8,411		26,554	427		81,328	
Dublin Office	57,276	72,348		106,833	4,025		240,482	Utility use based on CIBSE floor area benchmark
Dublin Port	412,925			6,922	11,940		431,787	
WTE Plant	17,755,000		69,907	2,342,673	389	600,135,876	620,303,845	Elec use is considered as total consumed onsite
Newcastlewest	12,827						12,827	Annualised based on 10 months of data
Kilmallock	10,050						10,050	Annualised based on 10 months of data
Bunlicky	20,846						20,846	Annualised based on 10 months of data
Other Vehicles				709,610			709,610	Vehicles unassigned to a location
Total	18,314,860	80,759	69,907	3,192,592	16,781	600,135,876	621,810,775	


1 - Municipal Solid Waste burned in the incinerator

Primary energy includes the energy requirements for the conversion of primary sources of energy into forms that are useful for the final consumer, for example electricity generation and oil refining. From the initial analysis it was found the Meath WTE plant uses over 99% of Invader's energy use. It was thus concluded that the scope of the assessment would be limited to the WTE plant.

In 2015 the energy used by Indaver resulted in 70,621 tonnes of CO₂ being emitted.

Analysis of Energy Use

As the facility runs 24x7, its energy inputs and outputs are relatively constant. The MSW is mixed in the bunker to ensure an even calorific value is maintained going into the furnace. The below chart shows the monthly breakdown of the MSW energy input into the system.

The site is capable, and has an license to export 19MW of electricity at any time. Although the turbine generates 21MW, there are site loads of approximately 2MW which reduce the export amount.

As the process of incineration is a specialist area the focus of the audit was around the balance of plant, in an effort to reduce the site load consumption.

Energy Savings and Conservation Measures

At the early stages of the audit process, meetings were conducted with site staff to establish areas where scope for energy savings may be possible and to develop a better understanding of the operation of the facility. Much of the opportunities explored were outside of the core process, in areas where there was better scope to implement changes. The areas of focus which were agreed upon were:

- Heat recovery of boiler blowdown steam
 - Steam is blown down to control the level of contaminates in the boiler. The heat from this steam could be recovered and used to preheat boiler feed water
- Compressed air opportunities
 - Quantify benefits of reducing supply pressure setpoint
 - Every 1 bar in pressure reduction produces a 6 7 % power saving
 - Quantify costs of drying air with subsequent recommendations for improvements
 - The refrigerated dryers are doing 11% of their rated capacity but they are using 65% of their rated power, indicating they have a very poor part load energy performance. The measured specific power consumption of the dryer as it is currently configured is 1.7 kW/m³/min. Their rated specific power consumption is 0.16 kW/m³/min. Allowing a single dryer to handle the air volume requirements would significantly reduce electricity consumption
 - It was found that 36% of the compressors air output is used to purge the regenerating tower of the desiccant dryer due to the fact that they are so oversized. The measured specific power consumption of the desiccant dryer as it is currently configured is 9.18 kW/m³/min. Their rated specific power consumption is 0.98 kW/m³/min at current system pressure. A smaller dryer should be installed, or a dryer that uses the hot discharge gas of the compressor to regenerate the tower could be purchased
 - o Investigate effects of exhaust and intake air short circuiting on compressor performance

- A 1% reduction in compressor power consumption can be achieved through a 4 °C reduction in inlet temperature. The air entering the compressors are significantly hotter than the ambient air and ductwork modifications are required to remedy this
- Heat recovery possibilities
 - Up to 85% of the electrical energy supplied to a compressor can be recovered as heat. This could be recovered to preheat boiler feed water
- Free cooling in the VSD MCC Room
 - Due to the moderate climate in Ireland, free cooling is possible for a high % of the year. Ambient air could be used to cool the room when temperatures are below 16°C which is approximately 80% of the time
- Improved control of turbine hall extractor fan
 - The fan could be used to maintain a room setpoint temp, rather than running at a fixed speed. During colder months this would result in savings and the infrastructure to implement the measure is already in place
- Control of Admin Building AHU
 - Many control issues were found during the audit. The heating coil appears to be on at the same time as the cooling coil. The heat being recovered from the boiler hall could be increased. The AHU runs 24x7 and at night there is only the control room which is occupied local ventilation and heating should be considered. The return fan speed should be ramped rather than using the bypass damper to achieve fan savings. Changes in supply setpoint control and deadbands were suggested. See section 3.3.8. for more detail
- LED lighting and controls upgrades
 - Significant savings could be achieved by upgrading the 400W SON and T8 fittings to LED with daylight controls where appropriate

There were 2no. site visits conducted to investigate these opportunities, take measurements and where appropriate log electricity power usage of specific pieces of equipment. The detailed analysis can be found in the body of the report, but below summaries the energy and cost savings calculated.

	Annual Energy Use	Potential Savings	% Savings	Cos	st Savings	Bud	get Cost	Simple Payback
	kWh elec	kWh elec	%	€		€		Years
Heat Recovery from Boiler Blowdown	2,861,050	2,506,775	87.6%	€	67,285	TBC	2	
Compressed Air - Reduce Supply Pressure Setpoint	654,810	40,296	6.2%	€	3,425	€	-	Immediate
Compressed Air - Dryer Energy Saving	319,722	274,589	85.9%	€	23,340	TBC	2	
Compressed Air - Exhaust and Intake Air Cross Circuiting	654,810	15,388	2.4%	€	1,308	€	17,500	13.4
Compressed Air - Heat Recovery	625,098	500,078	80.0%	€	13,423	TBC	2	
VSD MCC Room Free Cooling	141,309	113,434	80.3%	€	9,642	€	50,000	5.2
Turbine Hall Extract Fan Control	157,680	81,468	51.7%	€	6,478	€	-	Immediate
Admin Building AHU Controls		116,360		€	9,891	€	15,000	1.5
LED Lighting and Controls Upgrade	654,012	454,822	69.5%	€	38,660	€	59,000	1.5
Total		4,103,210		€	173,451			

Note that as some of the measures involved specialist items of equipment budget costs could not be established for all measures.

CEO/Senior Director Sign Off
Signature:
Name: Conor Jours
Position: RECLONA ENGLAGUNC DINECTON
Date: 29/03/2017

Table of Contents

1.	INTRO		
1.	1.	CORPORATE STRUCTURE & SCOPE OF AUDIT	8
2.	ANAL	YSIS OF ENERGY CONSUMPTION & PERFORMANCE	
2.	1.	INTRODUCTION	8
2.	2.	FACILITIES AND UTILITY SUPPLY POINTS	8
2.	3.	FINAL ENERGY CONSUMPTION	9
2.	4.	PRIMARY ENERGY CONSUMPTION	
2.	5.	Energy Costs	11
2.	6.	GREENHOUSE GAS (CO2) EMISSIONS	11
2.	7.	Scope of Detailed Survey	
3.	DETA	ILED ENERGY SURVEY OF THE MEATH WTE FACILITY	
3.	1.	INTRODUCTION	13
3.	2.	ANALYSIS OF ENERGY USE	13
3.	3.	ENERGY SAVINGS AND CONSERVATION MEASURES	14
	3.3.1.	Heat Recovery from Boiler Blowdown	
	3.3.2.	Compressed Air – Reduce Supply Pressure Setpoint	
	3.3.3.	Compressed Air – Dryer Energy Use and Opportunities	
	3.3.4.	Compressed Air – Exhaust and Intake Air Cross Circuiting	
	3.3.5.	Compressed Air – Heat Recovery	23
	3.3.6.	VSD MCC Room Free Cooling	25
	3.3.7.	Turbine Hall Extract Fan Control	27
	3.3.8.	Admin Building AHU Control	27
	3.3.9.	LED Lighting and Controls Upgrade	31
APPE	ENDIX	A – WELL WATER CONTROL ENERGY SAVING TESTING METHODOLOGY	
APPE	ENDIX	B – REFRIGERATED DRYER SPEC SHEET	
APPE	ENDIX	C – DESICCANT DRYER SPEC. SHEET	

1. Introduction

This Energy Audit has been prepared for Indaver Ireland Ltd to ensure compliance with S.I. 426 (2014), which requires large enterprises to carry out an Energy Audit of their operations every four years, with the first such audit being completed by 5th December 2015.

This Energy Audit is based on energy data for the 2015 calendar year.

All euro figures exclude VAT.

1.1. Corporate Structure & Scope of Audit

Indaver provide waste management solutions to large scale industry and public authorities, including the operation of a Waste-to-Energy plant located in Meath which treats more than 200,000 tonnes of municipal solid waste every year.

S.I. 426 states that "Companies that are not SMEs shall carry out an energy audit..." Indaver is not an SME and so is undertaking an audit of the facilities it owns or occupies. In 2015 Indaver owned the following facilities and vehicles, which fall within the scope of this energy audit:

- Cork Office, South Ring Business Park
- Dublin Office, Dun Laoghaire
- Dublin Port Waste Transfer Station
- Meath WTE Plant
- Civic Amenity Centre, Newcastlewest
- Civic Amenity Centre, Glenfield
- Civic Amenity Centre, Bunlicky
- Company Car Fuel Use

2. Analysis of Energy Consumption & Performance

2.1. Introduction

SEAI has advised that where an organisation is made up of many geographically diverse sites "an overall audit of the operation can be prepared by gathering energy use data for all of the sites. A sample of sites with similar business operations can be audited in order to build a representative picture and this must equate to at least 70% of total primary energy use in order to comply. This type of benchmarking audit can help to identify replicable projects and potential outliers."

This section analyses overall primary energy use in an attempt to identify the appropriate site(s) to undergo detailed audit.

2.2. Facilities and Utility Supply Points

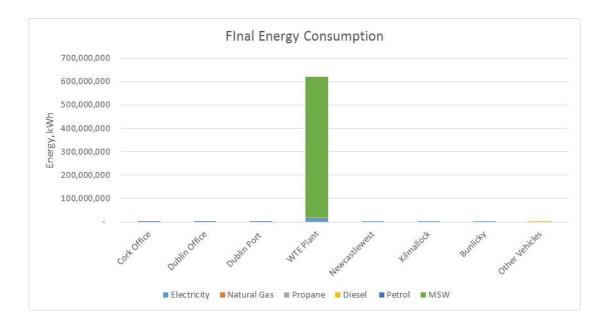
Indaver currently conduct activities at 7 different sites throughout Ireland. The below is a list of those facilities and details of their electricity and/or gas meter reference numbers.

Site	Address	MPRN	GPRN	Notes
Cork Office	Kinsale Road Roundabout, Cork	10006211700	951715	
Dublin Office	West pier, old Dun Leary road, Dun Laoghaire			Office sublet in multi tenant building
Dublin Port Waste Transfer Station	Tolka Quay Road, Dublin port	10001059391	NA	
Meath WTE Plant	Carranstown, Duleek, Co-Meath		NA	Power station
Civic Amenity Centre Newcastlewest	Station Road, Templegreen, Newcastlewest, Co. Limerick	10019039383	NA	
Civic Amenity Centre, Kilmallock	Shannon Development Ind Estate, Bruree Road, Co.Limerick	10020644405	NA	
Civic Amenity Centre, Bunlicky	Bunlicky, Mungret, Co.Limerick	10301998411	NA	

The Dublin Office is a single floor of a multi-tenant building and the utility consumption is not sub-metered and is charged on a pro rata basis. Therefore there are no meter reference numbers associated with it.

Final Energy								
Consumpton 2015 (kWh)	Electricity	Natural Gas	Dronono	Diesel	Petrol	MSW ¹	Total	Comments
			Propane			IVISVV		comments
Cork Office	45,936	8,411		26,554	427		81,328	
Dublin Office	57,276	72,348		106,833	4,025		240,482	Utility use based on CIBSE floor area benchmark
Dublin Port	412,925			6,922	11,940		431,787	
WTE Plant	17,755,000		69,907	2,342,673	389	600,135,876	620,303,845	Elec use is considered as total consumed onsite
Newcastlewest	12,827						12,827	Annualised based on 10 months of data
Kilmallock	10,050						10,050	Annualised based on 10 months of data
Bunlicky	20,846						20,846	Annualised based on 10 months of data
Other Vehicles				709,610			709,610	Vehicles unassigned to a location
Total	18,314,860	80,759	69,907	3,192,592	16,781	600,135,876	621,810,775	

2.3. Final Energy Consumption


1 - Municipal Solid Waste burned in the incinerator

The propane, diesel and petrol usage was broken out per site where possible. Not every vehicle was based at a particular site and so the usage associated with these were designated as 'Other Vehicles'.

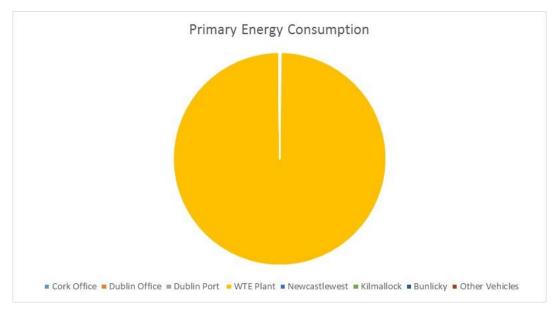
The utility usage for the Dublin office was estimated based on its floor area which was obtained from floor plan drawings¹ and CIBSE benchmark figures² as follows. The landlord could not provide the energy consumption details that were requested so this approach was taken.

Office area	602.9	m ²
Electricity typical Benchmark	95	kWh/m²
Fossil Fuel typical Benchmark	120	kWh/m²
Estimated Electricity Use	57,276	kWh
Estimated Gas Use	72,348	kWh

A stacked bar chart showing the energy used per site can be seen as follows.

¹ Drawing number 5923-001 – BKD Architects

² Energy benchmarks, TM46:2008, Table 1(b)


2.4. Primary Energy Consumption

Under the EU Energy Efficiency Directive (2012/27/EU) that has been imposed into Irish Law through the guidance of the Sustainable Energy Authority of Ireland (SEAI), it is required that the Energy Audit must cover at least 70% of the Primary Energy Consumption. Primary Energy consumption evaluates the energy that is consumed at the source and the energy needed to transport to the end user. For the generation and transmission of electricity, losses are incurred at the generation station and in the losses of transmitting the electricity through the network. As generating station and transmission distribution become more efficient, the losses are reduced.

The Final Energy Consumption of Electricity, Gas and Diesel, when multiplied by the primary energy conversion factors³ results with the Primary Energy Consumption breakdown as tabulated below.

Primary Energy								
Consumpton 2015								
(kWh)	Electricity	Natural Gas	Propane	Diesel	Petrol	MSW	Total	Comments
Cork Office	100,140	9,252	-	26,554	427	-	136,374	
Dublin Office	124,861	79,583	-	106,833	4,025	-	315,302	Utility use based on CIBSE floor area benchmark
Dublin Port	900,177	-	-	6,922	11,940	-	919,039	
WTE Plant	38,705,900	-	69,907	2,342,673	389	600,135,876	641,254,745	Elec use is considered as total consumed onsite
Newcastlewest	27,962	-	-	-	-	-	27,962	Annualised based on 10 months of data
Kilmallock	21,909	-	-	-	-	-	21,909	Annualised based on 10 months of data
Bunlicky	45,445	-	-	-	-	-	45,445	Annualised based on 10 months of data
Other Vehicles	-	-	-	709,610	-	-	709,610	Vehicles unassigned to a location
Total	39,926,394	88,835	69,907	3,192,592	16,781	600,135,876	643,430,385	

The above table and below chart shows that the Meath Waste to Energy plant consumes over 99% of the primary energy used by Indaver in Ireland. It was therefore concluded that the scope of the audit would be limited to this location.

2.5. Energy Costs

Energy costs are tabulated below.

Energy Cost 2015 (€)	Ele	ctricity	Nat	ural Gas	Pro	pane	Die	sel	Pet	rol	MSW	To	tal	Comments
Cork Office	€	8,268	€	378	€	-	€	3,135	€	60		€	11,842	
Dublin Office	€	10,310	€	3,256	€	-	€	12,612	€	565		€	26,742	Utility use based on CIBSE floor area benchmark
Dublin Port	€	74,327	€	-	€	-	€	817	€	1,675		€	76,818	
WTE Plant	€	1,509,175	€	-	€	8,389	€	276,558	€	55	€ -	€	1,794,176	MSW is not purchased
Newcastlewest	€	2,309	€	-	€	-	€	-	€	-		€	2,309	Annualised based on 10 months of data
Kilmallock	€	1,809	€	-	€	-	€	-	€	-		€	1,809	Annualised based on 10 months of data
Bunlicky	€	3,752	€	-	€	-	€	-	€	-		€	3,752	Annualised based on 10 months of data
Other Vehicles	€	-	€	-	€	-	€	83,771	€	-		€	83,771	Vehicles unassigned to a location
Total	€	1,609,950	€	3,634	€	8,389	€	376,892	€	2,354	€ -	€	2,001,219	

Note MSW is not purchased as a fuel and so its value has been left blank.

The assumed Average Utility Prices (AUPs) used to establish costs are as follows:

Fuel Types	AUP (€/kWh)	Notes
WTE Plant Elec	0.085	advised by client
General Elec	0.18	SEAI commerical fuel cost comparision Oct 2016
Gas	0.045	SEAI commerical fuel cost comparision Oct 2016
Propane	0.12	SEAI commerical fuel cost comparision Oct 2016
Diesel 0.12		Based on cost per L of €1.2
Petrol	0.14	Based on cost per L of €1.3

The AUP for electricity generated and used on the Meath site has a value of 0.085 €/kWh as this is the average price paid for export of electricity, as advised by the client. This electricity is not bought from the grid, hence the lower value.

2.6. Greenhouse Gas (CO₂) Emissions

Greenhouse gases are produced in the generation of electricity and the combustion of other fuels. This contributes to global warming. The below table shows the amount of greenhouse gases produced by Indaver in Ireland.

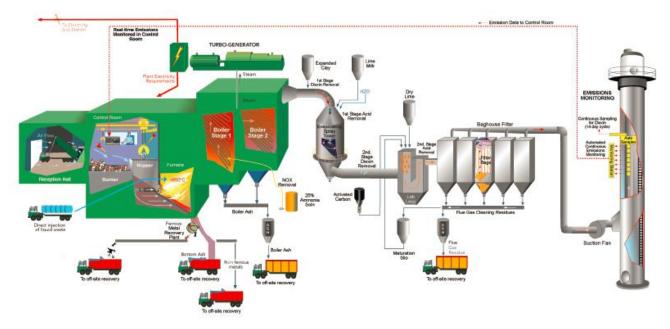
Emissions 2015 (Tonnes								
CO ₂)	Electricity	Natural Gas	Propane	Diesel	Petrol	MSW	Total	Comments
Cork Office	21.0	1.7	-	7.0	0.1		29.8	
Dublin Office	26.2	14.8	-	28.2	1.0		70.2	Utility use based on CIBSE floor area benchmark
Dublin Port	188.5	-	-	1.8	3.0		193.4	
WTE Plant	8,106.9	-	8.4	618.2	0.1	61,387.6	70,121.2	MSW is based on elec export of 134,445,000 kWh
Newcastlewest	5.9	-	-	-	-		5.9	Annualised based on 10 months of data
Kilmallock	4.6	-	-	-	-		4.6	Annualised based on 10 months of data
Bunlicky	9.5	-	-	-	-		9.5	Annualised based on 10 months of data
Other Vehicles	-	-	-	187.3	-		187.3	Vehicles unassigned to a location
Total	8,362.6	16.5	8.4	842.5	4.2	61,387.6	70,621.8	

Note that there was no emissions factor available from SEAI for the combustion of MSW at the time of writing. In order to arrive at a figure for MSW emissions the total amount of electricity exported was used and multiplied by the relevant factor.

The emissions factors used are as follows:

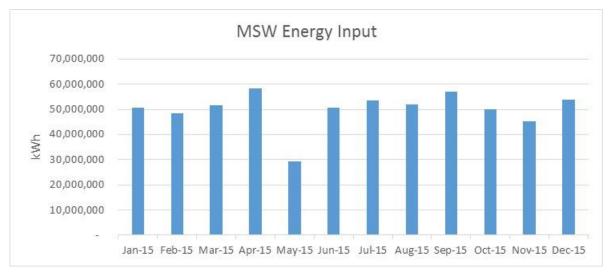
Fuel Types	kg CO ₂ /kWh	Notes
Electricity (2014)	0.457	SEAI Emissions Factors
Gas	0.205	SEAI Emissions Factors
Propane	0.229	SEAI Emissions Factors
Diesel	0.264	SEAI Emissions Factors
Petrol	0.252	SEAI Emissions Factors

2.7. Scope of Detailed Survey


The guidance supplied by the SEAI for conducting an Energy Audit is that is must cover at least 70% of the total primary energy used by the organization as a whole in order to comply with the law.

Based on the analysis of primary energy use in Section 2.4, it was decided to focus the audit on energy use by the WTE facility in Meath. The energy audit will therefore cover 99% of primary energy.

3. Detailed Energy Survey of the Meath WTE Facility


3.1. Introduction

The WTE facility in Duleek, Co. Meath processes approximately 230,000 tonnes of waste on an annual basis and exports 19MW of electricity to the grid, using 2MW on the site on a continual basis (except planned maintenance shutdowns). It treats the waste in a boiler to generate steam to be used in a turbine to produce electricity.

3.2. Analysis of Energy Use

As the facility runs 24x7, its energy inputs and outputs are relatively constant. The MSW is mixed in the bunker to ensure an even calorific value is maintained going into the furnace. The below chart shows the monthly breakdown of the MSW energy input into the system.

The site is capable, and has a license to export 19MW of electricity at any time. Although the turbine generates 21MW, there are site loads of approximately 2MW which reduce the export amount.

As the process of incineration is a specialist area the focus of the audit was around the balance of plant, in an effort to reduce the site load consumption.

3.3. Energy Savings and Conservation Measures

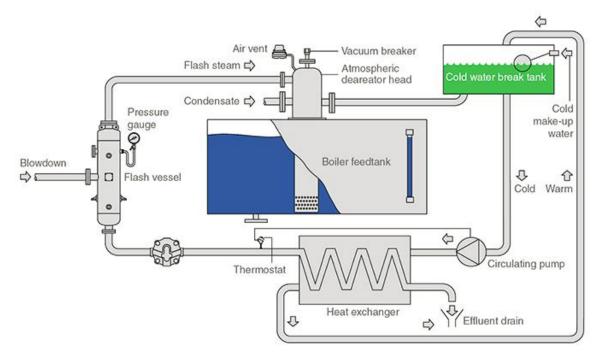
At the early stages of the audit process, meetings were conducted with site staff to establish areas where scope for energy savings may be possible and to develop a better understanding of the operation of the facility. Much of the opportunities explored were outside of the core process, in areas where there was better scope to implement changes. The areas of focus which were agreed upon were:

- Heat recovery of boiler blowdown steam
- Compressed air opportunities
 - Quantify benefits of reducing supply pressure setpoint
 - Quantify costs of drying air with subsequent recommendations for improvements
 - Investigate effects of exhaust and intake air short circuiting on compressor performance
 - Heat recovery possibilities
- Free cooling in the VSD MCC Room
 - Include proposal for hot isle separation
- Improved control of turbine hall extractor fan
- Control of Admin Building AHU
- LED lighting and controls upgrades

Opportunities that were suggested for review but were not thought to be feasible, or practical, or would not add any significant benefit were:

- Speed Control of Well Water Pumps
 - The well pumps are pushing against the ball cock in the main storage tank which is producing a back pressure on the pumps, causing excessive power usage. Controlling the pumps VSDs on a level sensor would be more efficient, however the client felt that the work involved in making changes would be prohibitive. The proposed methodology for testing what the savings might be can be seen in Appendix A.
- Analysis of electricity flows to identify significant energy users
 - It was felt by the client that this would not add any benefit
- DSU participation using backup generator as a dispatchable load
 - Not possible to quantify benefit due to changing electricity market
- Calculate savings from the change of pitch angle on air cooled condenser fans
 - The change was made in advance of the survey starting
- Optimisation and control of ash conveyor system
 - This has already been reviewed by Indaver
- Upgrade of some motors to high efficiency
 - Motors that were installed were highest efficiency available and are only a few years old
- Optimise crane operation in tipping hall
 - \circ $\;$ Current operation critical to maintaining stable CV of fuel

As there is no electrical sub-metering on the site power logging was conducted on specific items of plant that were under investigation where it added value to the analysis and where practical.


3.3.1. Heat Recovery from Boiler Blowdown

As water is boiled within the boiler, and steam is produced, impurities in the feed water concentrate in the boiler water. The concentration of these impurities is called Total Dissolved Solids (TDS). These impurities need to be removed to ensure good quality dry steam is produced.

There are many ways of controlling the removal of these impurities. Indaver have adopted the method of periodic blowdown for a set time period. Other, more efficient methods involve continual controlled blowdown with a flowrate based on the % of TDS present in the boiler. Generally speaking this results in less steam blowdown over the course of a day as it is based on actual requirements, meaning less heat is sent to drain.

The current regime involves a 10 minute blowdown, three times a day. The blowdown is injected into a flash vessel at 250°C (50 Barg) where it is mixed with process water until a temperature of 60 °C is achieved. The mixed water is then sent to the 'clean water pit'. The associated volumes of water are not all measured and the only detail that is recorded is the total boiler daily makeup water which includes trap losses as well as blowdown. This volume is typically 26,000 litres a day.

Up to 75% of the heat in blowdown water can typically be recovered (50% from the flash stem and 25% from the remaining water)⁴. The flash steam is clean and can be injected back into the boiler feedwater tank and the remaining, hot water can be passed through a heat exchanger to recover heat from it. The below diagram shows an indicative schematic of such an arrangement.

As the blowdown is periodic it is necessary to install a break tank with a circulating pump which is operated on a thermostat to take the heat when it becomes available.

Savings

The SEAI figures are approximate, and a more accurate savings figure can be achieved by using the actual enthalpies of steam at the relevant points in the system.

					•	
Enthalpy of blowdown at 50barg, 250degC	hf		1,085	kJ/kg		
Enthalpy of water at 1.7 barg	hf		547	kJ/kg		
	hg		2,721	kJ/kg		
	hfg		2,174	kJ/kg		
Enthalpy of water at 0 barg, saturation temp	hf		419	kJ/kg		
Enthalpy of water at 0 barg, 12degC	hf		50	kJ/kg		
				, 0		
% of total blowdown mass flow rate as flash steam		24.8%				
Mass flowrate flash steam		2,349,862	kg/year			
Energy recoverable from flash steam		1,775,888	kWh/yea	r	62% of total heat available for recovery	
Mass flowrate of contaminated blowdown water		7,140,138	kg/year			
Energy in contaminated water		419	kJ/kg			
Enthalpy of water at 12deg		50	kJ/kg			
Energy available to heat makeup water		369	kJ/kg			
Energy recoverable from condensate		730,887	kWh/yea	r	26% of total heat available for recovery	
			-			
Total energy available		2,861,050	kWh/year			
Total energy recoverable		2,506,775	kWh/yea	r i	88% of total heat available for recovery	

This analysis shows that up to 88% of the blowdown heat can be recovered and used to heat boiler feedwater. To put a value on this it is easier to consider this saving in terms of potential additional generation capacity. Trying to put a value on offset MSW does not work in this situation as Indaver are paid to receive the waste.

The calculated system efficiency (Electricity generated / MSW energy input) for 2015 was 25.3%. To convert heat savings from blowdown to MSW fuel savings a boiler efficiency of 80% was used. The below calculation shows that the system could potentially deliver an additional 791,586 kWh of electricity for the same MSW fuel input.

Electricity generated and used onsite	17,163,000 kWh
Electricity exported	134,445,000 kWh
Total electricity generated	151,608,000 kWh
MSW fuel used	600,135,876 kWh
System efficiency	25.3%

Heat recovered from blowdown	2,506,775	kWh
Assumed Boiler Efficiency	80%	
Increased potential electrical output	791,586	kWh
Value of increased output	€ 67,285	

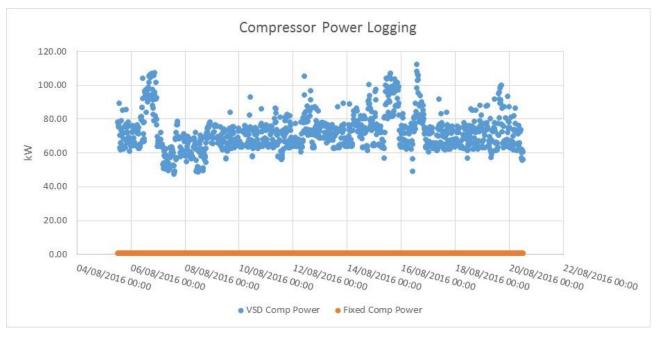
Estimation of budget costs for this measure are not provided as this is specialised work that Indaver would need to be involved in pricing.

3.3.2. Compressed Air – Reduce Supply Pressure Setpoint

There are 3no. compressors on the site, two of which are fixed speed and one is variable speed. The VSD controlled compressor acts as the lead and is typically 40% loaded.

Every 1 bar in pressure reduction produces a 6 – 7 % power saving⁵. The spec sheet for the variable speed compressor provides details on specific power consumption as per the below chart.

⁵ SEAI, Energy Agreements Programme 2007 – Compressed Air Technical Guide EAS Report Page **16** of **35**


	opeenie snan power	(at stated presse	
psig	bar g	HP/100CFM	kW/m³/min
145	10.0	25	6.5
140	9.5	24	6.3
135	9.2	24	6.2
130	8.8	23	6.1
125	8.5	23	5.9
120	8.2	22	5.8
115	7.8	22	5.8
110	7.5	21	5.7
105	7.1	21	5.6
100	6.8	21	5.5
65	4.4	17	4.5

Specific shaft power (at stated pressure)

The compressors control panel provides details of air volume flow rates and system pressure. A reading of 11.5 m³/min at 9.8 bar was recorded during the audit. The compressor is rated to deliver 27.2 m³/min and so it was operating at 42% of its rated output at the time. According to the spec sheet data this corresponds to an electrical power consumption of 74.8 kW.

As part of the audit power logging of the VSD compressor and one of the fixed speed compressors was carried out over the course of 2 weeks. The average power consumption of the VSD compressor was recorded to be 71.4kW during this period and a graph of the results can be seen below. The fixed speed compressor that was monitored did not operate during this time period (as would be expected).

The power consumption recorded closely matches what the spec sheet power consumption was stating at given system pressures (assuming the flow rate witnessed on the VSD control panel during the audit was typical).

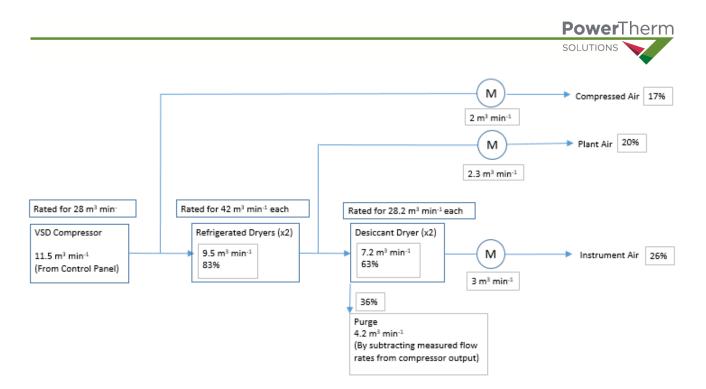
The data suggests that while the compressed air system load is generally steady, there are periods where they fluctuate.

The compressor auto stop pressure is 10.5 bar and the target pressure is 9.5bar. The control panel showed that it was delivering a pressure of 9.8 bar on the day of audit. The spec sheet suggests that 10 bar is the rated maximum pressure of the compressor. This pressure is reduced to 8 bar on the distribution network and the end users have a 6 bar requirement.

The system contains large receivers which are used to buffer demand peaks and ensure reliable operation of equipment. If these receivers, and system pipework are sized to deal with much larger flow rates than what is being witnessed, then this means that there should be scope for pressure reduction while maintaining reliable operation of equipment.

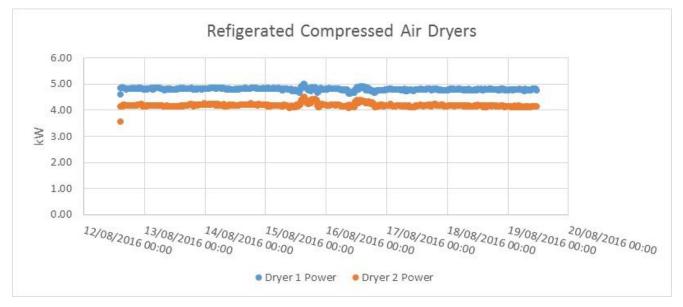
Savings

If the pressure setpoint could be safely reduced to 8.8 bar (2.8 bar above the requirement of the equipment) it would result in annual savings of 40,100 kWh, saving \in 3,400. Further reduction in pressures may be possible but any changes should be made incrementally. There is no capital expenditure required for this measure.


Specific energy use at 10 bar	6.5 kW/m3/min
Specific energy use at 8.8 bar	6.1 kW/m3/min
Volume flow rate	11.5 m3/min
Annual run hours	8,760
Current annual energy use at 9.2 bar	654,810
Annual energy use at 8.2 bar	614,514
Saving kWh	40,296
Saving€	€ 3,425

3.3.3. Compressed Air – Dryer Energy Use and Opportunities

Broadly speaking the compressed air system serves three separate circuits:


- **Compressed air** Not dried
- **Plant air** Dried using a refrigeration circuit to a dew point of 3 °C
- **Instrument air** Once passed through the refrigerated drier, it is passed through a desiccant dryer to a dew point of -40 °C

The first step in this analysis was to establish the cost of refrigeration per m³ of compressed air and map the air flows. There is air flow meters on the system which is logged on the DCS (Distributed Control System). The below simple schematic shows typical flow rates through the system as found on the day of audit. It also shows the % of total flow at each point and the equipment rated capacity.

Refrigerated Dryers

There are 2 dryers installed and both are running at the same time. The power consumption of both dryers was logged over the course of a week and the results are as follows

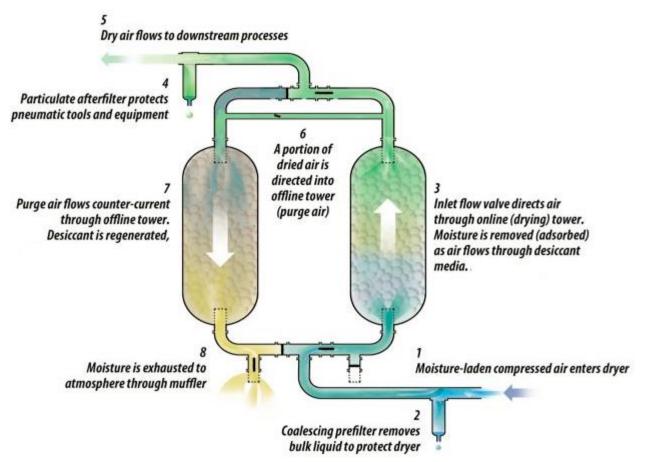
The results show that both dryers have a steady power consumption throughout the course of the week. There were small fluctuations on the 15th and 16th of August which corresponds to the fluctuations in the compressor power on those dates (see section 3.3.2).

An important observation is that the combined capacity of the dryers is 84 m³/min, while on the day of the audit the requirement was 9.2 m³/min meaning they are only 11% loaded. However, the combined average power consumption over the week of logging was 9 kW, while the combined nominal power consumption is 13.8 kW from the spec sheet. **So while they are doing 11% of their rated capacity they are using 65% of their rated power, indicating they have a very poor part load energy performance.** The spec for this dryer can be seen in Appendix B.

The measured specific power consumption of the dryer as it is currently configured is 1.7 $kW/m^3/min$. Their rated specific power consumption is 0.16 $kW/m^3/min$.

Savings

A simple measure which could be performed is to simply put one of the dryers into standby as a single dryer would be sufficient to deal with the load and its energy consumption would only increase a small amount. The measure could save up to 42,000 kWh of electricity. This would reduce the specific power consumption of the dryers by almost 50%. This requires no capital investment.


It should also be noted that Indaver are experiencing issues on their compressed air lines from water in the untreated air. This analysis seems to suggest that increasing the load on the refrigerated dryer by 2m³/min will not have a significant effect on energy consumption and so reconfiguration of the pipework to dry the compressed air line may be worth considering.

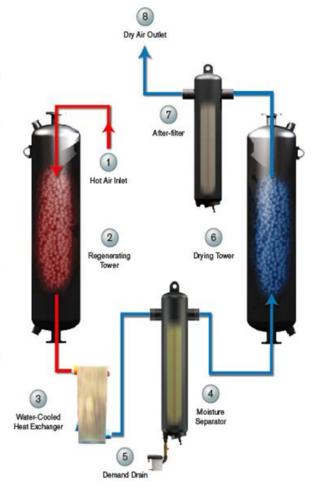
Desiccant Dryers

Desiccant dryers are used where the end compressed air user requires a high quality, dry air. There are many types of desiccant dryers, but the ones installed at Indaver are known as heatless dryers and are one of the more basic models available with low initial capital costs but higher operational costs. They are capable of delivering air with a dew point of -40 °C. Indaver have 2 dryers, but only operate one at a time.

Like all desiccant dryers, the units at Indaver have 2 towers filled with a desiccant material which absorbs moisture. Heatless dryers rely on dried air from the drying tower to purge the regenerating tower. This purged, wet air is then blown out to atmosphere. The below sketch describes the basic operating principles.

The spec of the existing desiccant dryer can be seen on Appendix C.

Each of the dryer's onsite have the capacity to dry 28.2 m3/min of compressed air. The spec sheet also notes that the nominal purge rate for the regenerating tower is 15% of total capacity, or 4.23 m3/min. However, the demand for instrument air at the time of audit was only 3m3/min which indicates the towers


are significantly oversized. It also appears that by subtraction of the measured end user airflow requirements from the overall compressor output there is 4.2 m³/min of air unaccounted for. This is the same as the nominal purge flow rate of the dryer and indicates that the purge function is a time based operation, not condition based. **This means that 36% of the compressors output from the compressor is used to purge the regenerating tower.**

The measured specific power consumption of the desiccant dryer as it is currently configured is 9.18 kW/m³/min. Their rated specific power consumption is 0.98 kW/m³/min at current system pressure.

Savings

As mentioned previously there are other models of desiccant dryer that are more efficient. The most efficient type of desiccant dryer is a 'Waste Heat Regenerative Dryer'. Its principle of operation as described from a Spirax Sarco brochure is as follows. It does not require any compressed air to be purged and instead uses a water cooled heat exchanger to remove moisture from the air.

- Hot oil-free air, generated by the air compressor, is directed into the dryer by a high performance switching valve.
- The hot air flows downward through the off-line tower, effectively regenerating the desiccant bed.
- 3. Hot, moist air then travels to the water-cooled heat exchanger. The cooling water runs counter-flow to the hot air causing water vapor in the air to condense.
- Condensed liquid is removed in a high performance, two-stage filter/separator. Bulk liquid and solid particles 3.0 micron and larger are captured.
- Condensate is discharged by an energy efficient, noair-loss demand drain. The system is equipped with a back-up drain providing fail safe operation.
- The pre-cooled air flows upward through the on-line tower and is dried to the specified pressure dew point.
- Air travels through a high temperature after-filter removing solid particles 1.0 micron and larger. Dry, oil-free air enters the system for use.
- 8. The cycle is reversed based on a one hour fixed time (30 minutes regenerating/30 minutes drying), or on an extended cycle. The cycle is extended based on the regenerating tower temperature or optional pressure dew point.

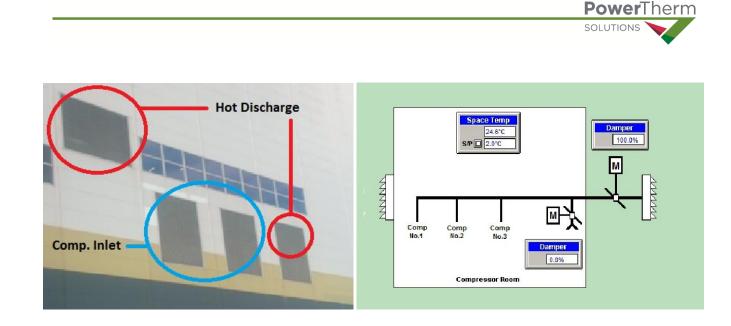
This system would require some pipework reconfiguration so that the refrigerated dryer is bypassed allowing hot compressed air to be sent to the desiccant dryer and a water cooled heat exchanger would be required. However, the annual savings from this measure would be 232,600 kWh, or €19,700.

% of compressor power required (from spec)		5%
Specific comp energy use at 10 bar		6.5 kW/m3/min
Annual energy requirement of proposed dryer		0.325 kW/m3/min
Measured average dryer demand		3 m3/min
Power required		0.975 kW
Annual energy use		8,541
Origional annual dryer energy use		241,141
Saving (kWh)		232,600
Saving (€)	€	19,771

A less capital intensive alternative solution would be to replace the existing standby dryer with a more appropriately sized heatless dryer. This smaller unit could then be made the lead dryer. Ingersoll Rand supply a unit with a 3.4 m3/min capacity which would require a purge rate of 0.5 m3/min, an 88% saving. This would result in annual savings of 210,000 kWh, or €18,000.

It should also be noted that the desiccant material in these dryers must be changed periodically. This is a costly maintenance procedure and so presents an opportunity to replace the unit entirely with a smaller one at this time and offset the cost of this maintenance against this. Subsequent maintenance costs would also be reduced as the volume of desiccant in this unit would be lower, costing less to replace.

3.3.4. Compressed Air – Exhaust and Intake Air Cross Circuiting


Compressors should be located in a well ventilated area, or capable of drawing inlet air from ambient conditions where possible. A 1% reduction in compressor power consumption can be achieved through a 4 °C reduction in inlet temperature⁶.

At the Indaver site the inlet temperature of the air being compressed at the day of audit was measured at 27.4 °C, on a day when ambient conditions were 18 °C. This is a difference of 9.4 °C and as a result the compressor was drawing 2.4% more power than required.

The cause of this short circuiting of hot air to the inlet of the compressor is from 3 sources:

- 1. The air which is used to cool the compressor is blown out of a grille which is very close to the compressor inlet grille on the exterior of the building. There is also another discharge grille from the turbine hall extract fan which is nearby. Hot discharge air is likely being drawn in the inlet grilles.
- 2. Inside the compressor plant room there is a motorised damper on a branch off the main extract duct. Its intent appears to be to let hot air into the plantroom to prevent against frost damage as the room has large grilles along one side and so is open to atmosphere. The below screenshot of the BMS shows a room setpoint of 2 °C and the damper position as being fully closed. The room temperature is shown as being 24.6 °C. However, on visual inspection of the damper from ground level it appears to be partially open allowing hot discharge air into the room.
- 3. Hot air from the lead VSD compressor is flowing out of the 2 fixed speed compressors which are off. They are all connected on the same ductwork header but there is no dampers in place to isolate them when they are off. This means hot air is escaping out of the inlets of the fixed speed compressors and short circuiting into the lead compressor inlet.

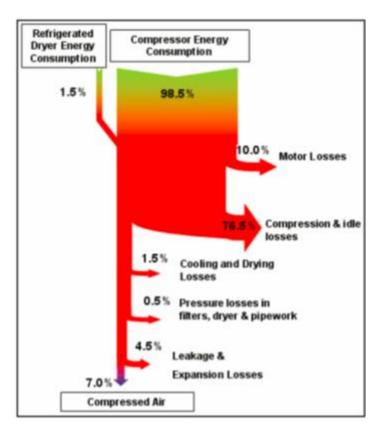
⁶ SEAI Energy Agreements Programme 2007, Compressed Air Technical Guide EAS Report Page **22** of **35**

In order to prevent this short circuiting:

- 1. The damper which does not appear to be fully closing should be examined and the issue rectified.
- 2. Each compressor should have a motorised damper which would enable it to be isolated from the main header when offline.
- 3. Consider supplying the hot air up into the boiler hall rather than out through external cladding. This may have a knock on positive effect of raising the secondary air temperature which is taken from the top of the hall, improving combustion efficiency.

Savings

The potential savings from these actions is 15,400 kWh or \in 1,300. The budget cost to implement the recommendations are:


- 1. Repair the faulty damper €1,000 (depending on issue identified)
- 2. Install motorised dampers and alter controls €9,500
- 3. Re-route ductwork into the boiler hall \notin 7,000

A summary of the calculations can be seen as follows:

Inlet temp measured on day of test		27.4 °C
Ambient		18 °C
Difference		9.4 °C
% reduction in power usage		2.4%
Saving (kWh)		15,388
Saving (€)	€	1,308
Total cost to impliment changes (\mathbf{f})	€	17,500

3.3.5. Compressed Air – Heat Recovery

Up to 85% of the electrical energy supplied to a compressor can be recovered as heat. The below Sankey diagram illustrates the energy flow of a typical compressor system.

By installing a plate heat exchanger within the compressor and linking this to a hydraulic circuit this excess heat can be captured. The below image provides an indication of how this can be achieved.

This is only useful if an appropriate heat sink is available, at the appropriate temperature grade, to allow it to receive this heat. One such possibility in Indaver is to preheat the boiler make-up water which has been lost from blowdown and leaking drain valves. The volume of water used every day for this purpose is 26m³ as advised by the client and this is supplied from the site well.

If the heat was recovered from the compressor and used to pre heat this water to 60°C before being supplied to the boiler feed tank, then the amount of energy required on a daily basis would be just under 1,450 kWh, with available heat from the compressor of 1,370 kWh

PowerTherm

SOLUTIONS

% of heat recoverable from compressor	80%
Average compressor power input (kW)	71.4
Daily heat available (kWh)	1,370
Daily makeup water volume (Litres)	26,000
Temp lift - 12 to 60 (°C)	48
Energy required to raise water temp (kWh)	1,449
Note supply and demand are approximately equal	

Annual recoverable heat (kWh) 500,078

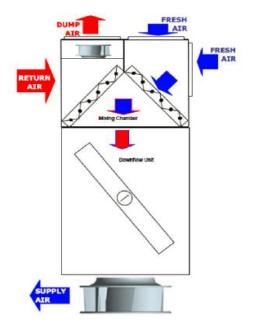
If this heat was recovered to the system the potential additional electricity that could be generated for the same MSW input would be 158,000 kWh, with a value of $\leq 13,400$.

3.3.6. VSD MCC Room Free Cooling

The VSD MCC room is currently cooled by:

- 1no. Edpac Upflow unit with twin 50kW (100kW of total cooling capacity) circuits with fixed compressor speed.
- 2no. Mitsubishi ducted ceiling units, each with 25kW capacity (cooling), inverter driven. Added after the facility was constructed.

The power consumption of these units was logged over the course of a week at 15 minute intervals. The results are as follows:



Based on a notional COP of 3 for the Edpac, and 3.5 for the Mitsubishi units, the total cooling load for the room is approximately 42kW. These COPs are estimates and were used to get an order of magnitude cooling load to see if the cooling units were appropriately sized. This does indicate that the Edpac unit should have enough capacity to cool the room on its own with full redundancy as was the original design intent, but the distribution of airflow is not ideal which restricts its effectiveness and this will be discussed later.

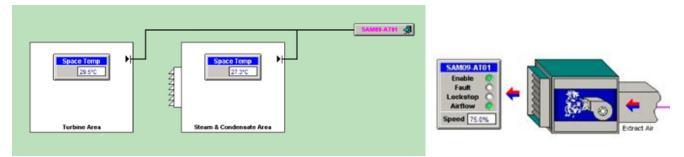
The graph shows that the load is relatively stable and it also demonstrates the difference between an inverter driven compressor and a fixed speed unit. The Mitsubishi units have a much smoother power consumption profile, while the Edpac has a 'choppy' profile as a result of compressors kicking in and out.

One way of reducing the cooling power consumption in the room is to use ambient air to 'free cool' in times where the ambient air temperatures are below 16 °C. Ambient air could be drawn in through an opening in the back wall of the room, behind where the existing Edpac unit is. The hot return air could be blown up through the above slab, into the boiler hall. The below sketch shows a typical configuration.

Due to the moderate climate in Ireland, free cooling is possible for a high % of the year. Based on 2014 weather data, the number of hours the weather was below 16 °C was 7,030 hours, or 80% of the time. The potential electrical savings from installing a free cooling unit, and using the Mitsubishi units as standby units only, would be approximately 113,000 kWh, or €9,600.

The budget cost to supply and install 2no. 50kW free cooling Edpac units is €60,000. These units can also incorporate humidly control if required.

The configuration shown is a downflow unit, with cold air being supplied at low level. This is better than supplying cold air at high level and drawing in hot air at low level as is currently the case. The racks and panels are designed to draw in air at low level with their own fan and dump hot air to high level. By supplying cold air at low level this helps deliver the cold air to where it is required. The hot air at the top of the units should be ducted back to the Edpac to prevent short circuiting of cold supply to hot return. This will improve the performance of the cooling system and improve the distribution of airflow.


It is also recommended that the return air be ducted from the VSDs back to the Edpac unit, provide proper hot aisle / cold aisle separation. This is best practice and will ensure the Edpac units can operate at the highest acceptable temperature, thereby minimising energy use.

Mechanical dampers will have to be installed on any new openings to the room due to the presence of an Inergen gas suppression system. When an alarm is activated the dampers would have to close to prevent the escape of this gas.

3.3.7. Turbine Hall Extract Fan Control

The Turbine Hall and the Steam & Condensate Area are cooled by a large fan which draws out hot air through ductwork at high level and passively pulls air in from outside through openings in the building fabric.

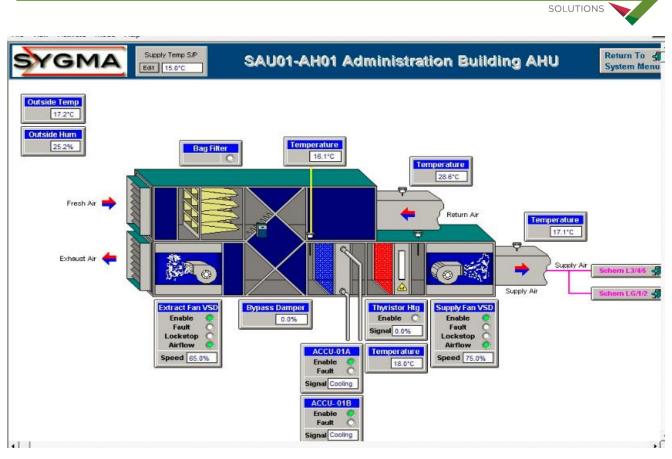
This fan is connected to the BMS and the room temperatures are monitored but the fan does not appear to be controlled, and is running at a constant speed of 50 Hz, drawing 18 kW of power according to its VSD. The fan is at full speed, although he BMS is providing a 75% signal – this requires some investigation to determine why this is.

The room temperatures at the time of audit as can be seen in the above screenshots was 29.5 and 27.3 °C respectively. The ambient air temperature was approximately 18 °C.

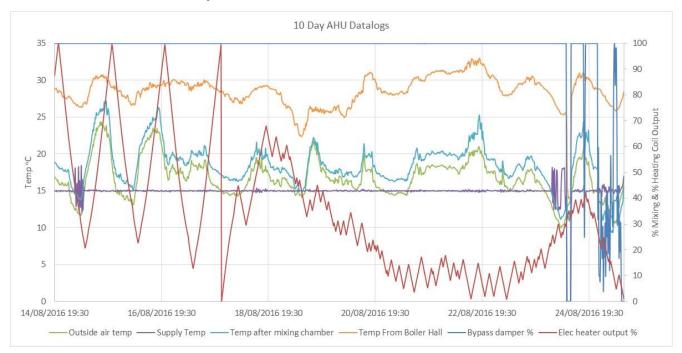
If the strategy was changed to control the fan speed to a room setpoint of, for instance, 35 °C, then the fan speed could reduce. The BMS would control the fan speed to maintain the temperature in whichever the hotter room is. The power savings would be highest in the winter where the ambient air temperatures are lower, providing more cooling capability.

To establish indicative from reducing the fan speed site testing was conducted. The fan speed was manually controlled on the VSD for a short period and power readings were taken from the VSD.

- @ 50Hz power consumption was 18 kW
- @ 45Hz power consumption was 13.2 kW Annual savings of 42,050 kWh possible
- @ 40 Hz power consumption was 9.3 kW Annual savings of 76,200 kWh possible

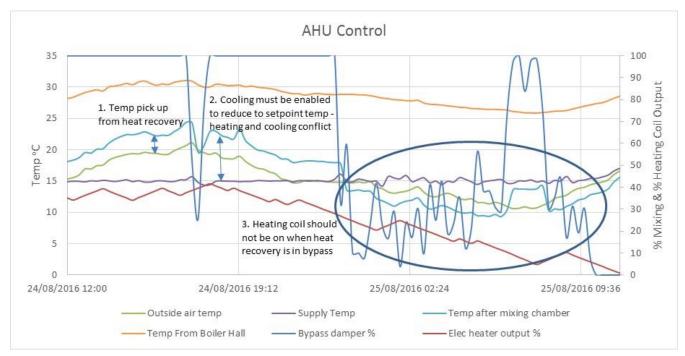

The potential annual energy savings have also been calculated above based on maintaining different average fan speeds. The capital costs will be small as it just requires some strategy changes and could be done as part of routine maintenance.

3.3.8. Admin Building AHU Control


The Admin building is supplied with tempered fresh air on a continual basis from an AHU with a 66 kW electrical heating coil, a DX cooling coil and a heat recovery section which recovers heat by extracting hot air from the top of the boiler and passing it over a cross flow heat exchanger, fitted with a bypass. The unit is controlled on the BMS and is currently set to supply air at 15 °C, with local duct electrical reheats where required. The fans are VSD driven but are currently controlled to fixed setpoints as follows:

- Supply fan @ 75% speed, drawing 3.9 kW
- Return fan (from boiler hall) @ 65%, drawing 1.8 kW

The building also has ceiling cassette split units for cooling and heating. A separate extract system dumps stale air at roof level. The building must be positively pressurised to prevent the ingress of smells from the waste which is stored onsite and so the supply and extract systems are balanced.



During the audit a number of datalogs which were available on the BMS were downloaded and subsequently plotted against each other to examine how the AHU was controlling. The default amount of data stored on the BMS is 10 days.

From the above graph it can be seen that the supply temperature is in general controlled to very tight limits as can be seen by the flat line. Where there are deviations in this temperature (such as on the 15th of August) the heating coil output tends to react very slowly, but over a wide range. This suggests that the control response time needs to be altered.

PowerTherm

It is beneficial to look at a shorter time period where it is easier to look at the detail of what is occurring. The below chart looks at the 24th and 25th of August, when the bypass damper is modulating.

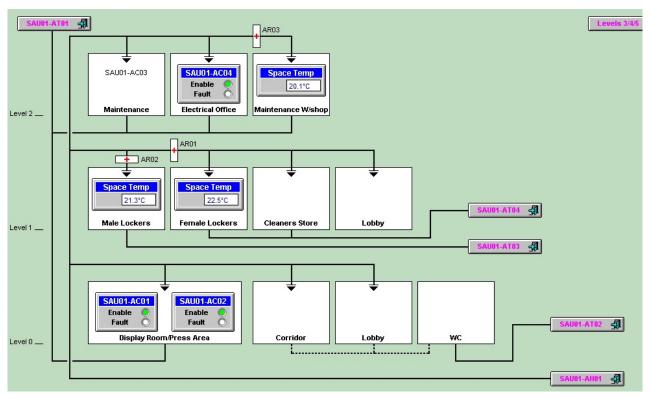
Some points to note are as follows:

- 1. When the system is in full heat recovery mode (bypass damper is at 100%) the temperature pick up is approximately 2 °C. Considering the temperature of the air coming from the boiler hall was 10 °C higher than the ambient one would expect a greater temperature uplift.
- 2. The ambient temperature was above the 15 °C setpoint at the time, however the AHU was still recovering heat, and the heating coil output was 40%. Unfortunately there was no facility to download the datalog for cooling demand, but one can only deduce that the cooling coil must also have been on to bring the temperature down to its setpoint. This shows a conflict between the cooling coil, heat recovery and heating coil.
- 3. When the ambient air temperature goes below the setpoint the first thing that should have reacted was the heating coil, not the heat recovery damper. The priority should be to recover heat first and then to use the heating coil.

The above indicates significant energy wastage is occurring due to poor control.

Recommendations and Savings

1. Turn off the AHU and extract fans outside of normal office hours and install a dedicated heat recovery ventilation system in the control room as this is the only area requiring ventilation at night. Openings in the walls could be made at the control room level to allow for local supply and extract of air. This will save on AHU fan and heating coil power.


	Power		Proposed			
	Consumption	Annual	Run	Savings		
Item	kW	Energy Use	Hours	kWh	Savi	ings €
Supply Fan	3.9	34,164	5,110	14,235	€	1,210
Return Fan	1.8	15,768	5,110	6,570	€	558
Other 5no. Extract fans	1.5	13,140	5,110	5,475	€	465
Heating Coil savings		84259	5,110	40,774	€	3,466
			Total	67,054	€	5,700

Power herm

SOLUTIONS

Note: The heating coil savings figure assumes the AHU is performing as expected. This results in a conservative savings figure. There will also be a small added electrical load from the installed heat recovery unit but its impact would be negligible. The cost to make the strategy changes and install a heat recovery unit would be approximately $\leq 15,000$.

- 2. The AHU heating coil output control response time should be faster. This is primarily a measure which will improve performance but some energy savings may also be achieved by ramping back the heating coil faster to avoid having it on as well as bypassing the heat recovery section.
- 3. When there is heat available for recovery this should take priority over the heating coil. The control strategy does not seem to be set up like this as one would expect. As the system is performing outside of the normal parameters, accurate calculation of savings is not possible.
- 4. There should be a dead band of 2 °C put in place, i.e. 1 °C either side of the setpoint. The heating coil should only be enabled when below this dead band and the cooling coil only enabled when above it. This should prevent simultaneous heating and cooling. This may result in slight fluctuations in supply temperatures but this is not a critical temperature and so should be acceptable. This will result in savings but as the information on the performance of the AHU is limited to the 10 day log that was captured during the audit the calculation of effect of making this change over the course of the year is difficult. The cost to implement this change in strategy is small.
- 5. The supply setpoint should be dynamic rather than fixed to reduce the amount of electrical reheating. The areas of the building with reheat control have space temperatures logging on the BMS. If an area is starting to overheat, and its reheat is off, then the AHU supply temperature should reduce. There should never be a requirement for all reheats to be on at the same time. This will save energy as the AHU recovers heat from the boiler hall.

Without detailed design data and logging of reheat energy demand over a period of time it is difficult to calculate savings accurately. As this is a change in strategy the cost to implement is small.

6. The AHU return fan should be ramped up to increase the fan speed when heat recovery is required and ramp the speed down when the ambient temperature approaches the setpoint, shutting it down

when the ambient is higher. This would effectively mean the bypass damper should always be at 100%, and the fan speed would ramp rather than modulating the damper. It should be possible to recover more than 2 °C from the return fan given its relatively high temperature of approximately 30 °C. If the flow rates between the supply and the return were equal, and the heat exchanger was 90% efficient then there should be no need for electrical heating until the ambient conditions are below approximately 5 °C.

By changing the control strategy to switch off the return fan when the ambient is above 15° C the savings were calculated to be 4,266 kWh, or €363. The savings from increasing the amount of heat being recovered from the boiler could be significant. The estimated total annual consumption of the heating coil is 84,259 kWh. The cost to implement the control strategy change is small and the savings could be 30 - 60%.

3.3.9. LED Lighting and Controls Upgrade

When the facility was built LED fittings were not installed. In recent years LEDs have decreased in price and the quality has improved. There is a significant lighting load onsite and there is potential for controls improvements also.

The existing lighting within the facility is made up of twin, 5ft fluorescent fittings which are left on 24x7. As the building has a lot of clear roof and cladding sections there is a good deal of ambient light available. Depending on how the lighting circuits are configured, it may be possible to only leave the lights above access ways on, and operate the remaining lighting on a photocell.

Outside the building there are 400W son fittings installed which are operated on a photocell.

The client has provided an estimated number of fittings and these have been used to calculate savings figures as per the below table.

		Pre Retrofit								
Area	Pre Retrofit fittings	No. fittings	Watts per fitting	Load kW	Control	year	Electricity per year, kWh			
Outside Lighting	400W SON	40	420	16.80	Photocell	4,150	69,720			
Inside Lighting - Main Access Routes	Twin 5ft T8 flourescent	150	133.4	20.01	Switch	8,760	175,288			
Inside Lighting - All Other Areas	Twin 5ft T8 flourescent	350	133.4	46.69	Switch	8,760	409,004			

Grand Total

	Post Retrofit Savi				Savings				
	Post Retrofit	No.	Watts	Full Load	Control	Hrs p.a. at	Electricity	kWh saving	Comments
	fittings	fittings	per	kW		Full Load	per year,	p.a. incl.	
Area			fitting				kWh	controls	
Outside Lighting	200 W LED	40	200	8.0	Photocell	4,150	33,200	36,520	Default control gear loss 5% per seai EEOS
									guidance
Inside Lighting - Main	60 W LED	150	60	9.0	Switch	8,760	78,840	96,448	Default control gear loss 15% per seai EEOS
Access Routes									guidance
nside Lighting - All	60 W LED	350	60	21.0	Photocell	4,150	87,150	321,854	Default control gear loss 15% per seai EEOS
Other Areas									guidance.
Grand Total							199,190	454,822	

654,012

The estimated costs and paybacks to implement this upgrade are as follows:

Area	Post Retrofit fittings		Co: fitt		Control	Cos	t	En cos	ergy st	Payback
								sav	/ings	
Outside Lighting	200 W LED	40	€	350	Photocell	€	14,000	€	3,104	4.51
Inside Lighting - Main	60 W LED	150	€	90	Switch	€	13,500	€	8,198	1.65
Access Routes										
Inside Lighting - All	60 W LED	350	€	90	Photocell	€	31,500	€	27,358	1.15
Other Areas										
					Totals	€	59,000	€	38,660	1.53

Note: The implementation cost does not include labour and it is assumed this could be carried out under maintenance over an extended period.

Appendix A – Well Water Control Energy Saving Testing Methodology

It was noted that the pumps appear to be pumping against the ball cock which is reducing the flow as the pressure at the top of the well according to a gauge was at 6.5 bar, and it cuts out at 8bar. The pump is drawing 7.2kW at a fixed 60% speed and delivering 7 m3/hr. The pump is working to overcome the back pressure on the ball cock and it would be more efficient to control the pump speed to a level based on a sensor, with the ball cock acting as a last resort. To test what the elec savings would be the following test should be conducted.

- 1. Take note of the flow rate, head pressure (on a gauge at the top of the well), ball cock position (partially closed or fully open), pump speed (%) and power consumption (kW).
- 2. Ramp back the well pump and allow the tank level to drop below the point where the ball cock is fully open (assuming it is partially closed to begin with).
- 3. Continually monitor the tank level (to make sure there is no risk to the process) and flow rate in the pipe.
- 4. Once the level of the water has dropped sufficiently ramp the pump speed up until a flow rate similar to that of before the test is achieved, ensuring the ball cock is fully open. Also check that this figure is typical for a standard day of operation by looking back at the logs.
- Once the correct flow rate is achieved, and at least 10 minutes has passed, note the pump speed (%), pressure at the head of the well (bar there is manual gauge there) and the power consumption (kW this can done by scrolling through the parameters menu).

The pump should be drawing less power than when it was pushing against the ball cock. The pressure at the head of the well should also be lower. The level of saving will influence the decision on whether to implement the new control measure or not.

Appendix B – Refrigerated Dryer Spec Sheet

	TECHNIC		A SHEET	ST 08A.2700	AG0.00B0
R) Ingersoll I	Rand Tag number	rs: QEA03 AT010		Rev. 00	Pg. 1/1
	ragitutito			Date	26.06.0
			RESSED AIR DRYER RESSA A REFRIGERAZIONE		
MODEL:	MODELLO:		D2520IN-A 400/3/50		
RATED CAPACITY	PORTATA :	m3/h I/min cfm	2520 42000 1482		
Power supply Power consumption Full Load cons.	Alimentazione Consumo nom. Consumo max.	V/Ph/Hz KW KW	400/3/50 6,88 8,7		
Rated absorpt. Full Load Ampere Lock. Rotor Ampere	Ass. nominale Ass. pieno carico Ass. spunto	Ampere Ampere Ampere	11,6 14,3 80		
Weight Air connection	Peso Attacchi aria	Kg FLG	330 DN 100		
Coolant type	Tipo refrigerante	Freon	R 507		
Inlet air temp. Outlet air temp.	Temp. aria ingr. Temp. aria uscita	°C / °F °C / °F	35 /95 25 / 77	(Max 60 / 140) (Max 40 / 104)	
Ambient temp. Working pressure Pressure drop	Temp. Ambiente Press. Nominale Perdita carico	°C / °F bar bar / psi	25 / 77 7 / 100 0,28 / 4,06	(Max 45 / 113) (Max 12 / 174) (Max 0,35 / 5)	
Pressure dew point	P.to rugiada	°C / °F	3°/37°	ISO CLASS 4	

Appendix C – Desiccant Dryer Spec. Sheet

			ST 08U.	1600BG.0			
IR) Ingersoll Rand	TECHNICA	Rev. 00	Pag. 1/1				
	Tag numbers: Q	Tag numbers: QEA05 AT010 & AT020					
I	DESICCANT DI	RYER					
MODEL		D1600IL-40	С				
TYPE		HEAT-LESS REGENER	RATION				
OPERATING DATA							
APPLICATION FLUID		AIR					
NOMINAL CAPACITY	l/min	28500					
	m³/h	1694					
	cfm	1000					
PRESSURE RATE	bar	7					
INLET AIR TEMPERATURE RATE	C	35					
PRESSURE DEW POINT	r G	- 40					
RELATIVE HUMIDITY INLET AIR	%	100					
PRESSURE DROP	bar	0.2					
DRYING CYCLE COMPLETE	min	10					
DRYING TIME FOR ONE COLUMN	min	5					
REGENATION AIR CONSUMPTION	%	15					
(NOMINAL FLOW RATE)							
OPERATING LIMITS							
MAXIMUM WORKING PRESSURE	bar	10					
MAXIMUM WORKING TEMPERATURE	3	50					
MAXIMUM AMBIENT TEMPERATURE	C	50					
GENERAL DATA							
AIR CONNECTION	IN/OUT	3" BSP	ISO 7/1				
POWER SUPPLY	V/Ph/Hz	230/1/50					
DESSIGANT MEDIUM		Alumina					
ELECTRICAL PROTECTION		IP 54					
WEIGHT	kg	1015					
HEIGHT (A)	mm	2230					
LENGTH (B)	mm	1630					
WIDTH (C)	mm	1310					