Comhairle Contae Chiarraí

Kerry County Council

Waste Licence Ref No. W0001-04

Annual Environmental Report for North Kerry Landfill 2016

Reporting Period:

January 2016 - December 2016

TABLE OF CONTENTS

1.0	Introduction and Reporting Period	3
2.0	Waste Activities carried out at the Facility	3
3.0	Quantity and composition of waste received, disposed and recovered	4
4.0	Remaining Capacity and Closure Date	5
5.0	Method of Deposition of Waste at North Kerry Landfill - 2015	5
6.0	Summary Report on Emissions for the Reporting Period	6
7.0	Resource and Energy Consumption.	7
8.0	Energy Efficiency and Audit Report Summary	7
9.0	Proposed Development of the Facility and timescale of the Development	7
10.0	Volume of leachate produced and volume transported off site.	8
11.0	Report on Development Works Undertaken during the Reporting Period	8
12.0	Report on Restoration of Completed Cells and Phases	8
13.0	Site Survey showing existing Levels of the Facility at the end of the reporting period	8
14.0	Estimated Annual and Cumulative quantities of landfill gas emitted from	9
the F	acility	9
13.0	Estimated Annual and Cumulative quantities of Indirect Emissions to Groundwater	12
14.0	Annual Water Balance Calculation and Interpretation	12
15.0	Report on the Progress towards Achievement of Environmental Objectives contained in previous	ıs AER 2015
	13	
19.0	Schedule of environmental objectives and targets for the forthcoming year	14
20.0	Summary of Procedures Developed by the Licensee during the reporting period	15
21.0	Tank, Pipeline and Bund Testing and Inspection Report	15
22.0	Environmental Incidents and Complaints	15
24.0	Report on Financial Provision	16
25.0	Management and Staffing Structure at the Facility 2016	17
26.0	Programme of Public Information	18
27.0	Training of Staff 2016	18
28.0	Cost of Landfill / Community Fund	18
29.0	Meteorological, Noise and Dust Monitoring Results	21
30.0	Statement on the Achievement of the Waste Acceptance and Treatment Obligations	21
Appe	ndix A: Historic Data	23
Appe	ndix B: Summary of results and Interpretation of Environmental Monitoring	24
Appe	ndix C: Engine Stack Monitoring Testing	26
Appe	ndix D: Flare Stack Monitoring Results	27
Appe	ndix E: Monthly Balancing Records – Gas field	28
Appe	ndix F: Noise Monitoring	29
Appe	ndix G: Landfill Gas Survey 2016	30
Appe	ndix H: PRTR Report 2016	31
Appe	ndix I: Topographical Survey 2016	32
Appe	ndix J: Side Slope Assessment 2017	33

1.0 Introduction and Reporting Period

Kerry County Council (KCC) operated a municipal solid waste landfill facility at Muingnaminnane, Kielduff, Tralee, Co. Kerry.

It is located approximately 8km northeast of Tralee, in the Stacks Mountains.

The landfill site accepted solid waste for disposal and is operated under licence W0001-04.

This Annual Environment Report is prepared in accordance with Condition 12.6 and Schedule F of Waste Licence W0001-04.

The reporting period for this Annual Environmental Report is from January 1st 2016 to December 31st 2016.

The acceptance of waste for landfilling and for recycling ceased on site on the 11th July 2014. Both the landfill site and the civic amenity site are now closed to all customers.

Kerry County Council is now looking at alternative options for North Kerry Landfill and the Agency will be advised and consulted on the same as this progresses.

2.0 Waste Activities carried out at the Facility

Waste disposal activities carried out at North Kerry Landfill were in accordance with Part 1 of Waste Licence W0001-04.

Licenced activities include;

- Class 2 Land treatment, including biodegradation of liquid or sludge discards in soils.
- Class 4 Surface impoundment, including placement of liquid or sludge discards into pits, ponds or lagoons.
- Class 5 Specially engineered landfill, including placement into lined discrete cells which are capped and isolated from one another and the environment.
- Class 6 Biological treatment not referred to elsewhere in this Schedule which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule.
- Class 7 Physico-chemical treatments not referred to elsewhere in this Schedule which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule.
- Class 11 Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule.
- Class 12 Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule.
- Class 13 Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced.

Waste recovery activities carried out at North Kerry Landfill are in accordance with Part 1 of Waste Licence W0001-04.

Licenced activities include:

- Class 2 Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes).
- Class 3 Recycling or reclamation of metals and metal compounds.
- Class 4 Recycling or reclamation of other inorganic materials.
- Class 10 The treatment of any waste on land with a consequential benefit for an agricultural activity or ecological system.
- Class 11 Use of waste obtained from any activity referred to in a preceding paragraph of this Schedule.
- Class 13 Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced.

3.0 Quantity and composition of waste received, disposed and recovered

The acceptance of waste for landfilling and for recycling ceased on site on the 11th July 2014. Both the landfill site and the civic amenity site are now closed to all customers.

Kerry County Council is now looking at alternative options for the site. Kerry County Council have procured Consultants to manage this project.

Quantity of Waste disposed at facility

Since opening in May 1994 the total quantity of waste disposed of at the facility was 888,400 tonnes.

BMW Percentage Composition of Waste disposed at facility

Year	Period	Total Qty MSW of which the BMW Condition Applies	Total Qty BMW	% BMW
2010	Q3 – Q4	9,461.84	5,834.46	61.66
2011	Q1 – Q4	16,315.41	10,301.91	63.14
2012	Q1 – Q4	71,006.59	44,689.45	62.94
2013	Q1 – Q4	55,117.72	30,668.49	55.64
2014	Q1 – Q4	4,741.01	2,628.35	55.44
2015	Q1 – Q4	0	0	0
2016	Q1 – Q4	0	0	0

Please note that submitted figures for 2013 and 2014 were incorrect below shows the discrepancies in both.

Year	BMW Returns	Total Waste Landfilled	Total BMW (biological municipal waste)	% BMW
2013	Reported	55,117.72	30668.49	55.64%
	Actual	55,276.68	29,749.68	53.52%
2014	Reported	4,741.01	2,628.35	55.44%
	Actual	4,521.4	2,476.83	54.78%
2015	Reported	0	0	0
	Actual	0	0	0
2016	Reported	0	0	0
	Actual	0	0	0

4.0 Remaining Capacity and Closure Date

The North Kerry Landfill and civic amenity site ceased operation on the 11th July 2014.

The Total Permitted Landfill Capacity is 1,527,567 m³ as per Table A.2 of the Waste Licence and the total quantity of waste disposed of at the facility is 888,400 m³ which leaves an undeveloped licensed volume of 639,167 m³ which could be utilised in the future.

5.0 Method of Deposition of Waste at North Kerry Landfill

The civic amenity ceased operation on the 11th July 2014.

6.0 Summary Report on Emissions for the Reporting Period.

Emissions to Water.

A full report prepared by the Environmental Laboratory of KCC is included in this document in Appendix B. Also included are the Invertebrate Results and Biological Assessment. Please note that two sampling locations are inaccessible and Kerry County Council wishes to liaise with the Agency to relocate this points via a licensee return on the EDEN Portal Website. The verified lab results are also provided in Appendix B.

Emissions to Air.

Gas management practices at North Kerry Landfill are an interlinked system of actions no one of which can fully control or manage the generation of LFG from the deposited waste mass. In combination however, they comply fully with the requirements of the licence.

The Systems and operations include:

- Active management of the gas control infrastructure
- Odour patrol
- o Monitoring and testing of infrastructure

The infrastructure in place at North Kerry Landfill includes the construction of a basal liner and capping system.

Outside the footprint of the landfill is a network of LFG monitoring boreholes. There are constructed in a grid around the footprint of the area that waste has been deposited within. These wells are monitored on a monthly basis for the presence of a suite of indicator gases that would signal the possible migration of LFG.

Perimeter Gas Wells No. 6 through to 6d continues to show methane and CO2 concentrations above the allowable limits. These are historically problematic wells. In 2004 wells 6a to 6d were constructed to monitor the gas migration in the vicinity of the gas well. These perimeter gas wells also showed gas concentration levels in excess of the allowable at times during the year.

It is noted however that there is no odour nuisance at the location of gas wells 6 through to 6d or any evidence of vegetation die back. The likely cause was due to Historical contamination issues. The perimeter Gas Wells 6, 6a to 6d were constructed on a man-made embankment. These gas wells are currently connected to the gas extraction system and are under a low negative pressure.

In November 2011 the gas to energy project was successfully commissioned. A Genset of nominal rating - 320 kW is in operation at the facility.

The demand of the generation plant has been balanced against the generation output of the field. Field balancing and network management are vital components of a successful operation of the gas to energy project. These are actively managed by B9 to ensure maximum production.

Gas Balancing records, Flare and Engine Stack, Dust and Noise Monitoring are included in are Appendices: C, D, E, F, and G.

7.0 Resource and Energy Consumption.

The following is the energy consumption for North Kerry Landfill for the reporting period.

<u>Diesel</u>

The diesel usage for the reporting period (1st January to 31st December 2016) was 1,393 litres. This is an increase in diesel of 128 litres from the previously reported year.

Electricity

The total usage for 2016 was 76,900 kWh. This is a decrease in energy consumption of 18,750kWh. This is primarily due to the installation of the SCADA system.

8.0 <u>Energy Efficiency and Audit Report Summary</u>

Electricity

The kW hour usage on site for 2016 is set out in the attached table.

Table 8.1, kWh usage 2016

Date scale	Consumption (kWh)
Feb/2016	17,650.81
Apr/2016	15,099.19
Jun/2016	10,850.00
Jul/2016	5,775.00
Aug/2016	5,775.00
Sep/2016	4,450.82
Oct/2016	4,599.18
Nov/2016	6,245.90
Dec/2016	6,454.10
	76,900.00

9.0 Proposed Development of the Facility and timescale of the Development

The following projects are proposed at North Kerry Landfill over 2017.

Electrical Infrastructure Upgrade to the Old part of the site

Installation of an upgrade to the electrical infrastructure to the old part of the site which will involve installation of cables, electrical panels and leachate pumps.

Optimal Uses of the NKL Site

Kerry County Council (KCC) have sought Provision of Environmental Consultancy Services for proposals recommending the optimal uses of the North Kerry Landfill at Muingnaminnane, County Kerry. Landfilling activities on site ceased on the 11th July 2014. There is no further built capacity on site, however there is approx 500,000 m3 of un-built licensed capacity available over approximately 26 acres that could be developed.

Minor Remediation of capping

If the VOC survey scheduled for April 2017 highlights areas for remediation to the gas wells, Kerry County Council will undertake minor repairs to repairs them and also improvements to the capping system.

10.0 Volume of leachate produced and volume transported off site.

Over the reporting period, 39,480.86m³ of leachate was produced on site.

The total quantity of leachate produced on site since the landfill site opened in May 1994 to the end of the reporting period is 895,655.12m³

Table 10.1, Leachate volumes tankered off -site 2016

Month	2010	2011	2012	2013	2014	2015	2016
January	4,230.94	5,255.90	11,271.74	9,991.34	14,069.56	6,375.97	6,356.84
February	5,666.38	5,395.38	6,780.04	10,926.18	11,161.2	2,905.77	7,070.08
March	3,324.86	3,768.72	2,502.62	2,412.84	6,039.42	4,176.74	3,279.08
April	4,080.68	3,845.78	3,623.48	5,506.44	3,269.7	2,231.66	3,942.24
May	1,711.48	2,805.70	3,724.42	5,322.99	3,479.30	3,859.72	1,562.26
June	1,236.44	3,735.13	4,351.31	3,488.05	2,358.17	2,563.78	1,595.84
July	4,304.64	3,698.12	7,551.38	2,313.66	1,317.42	1,457.82	3,436.38
August	2,208.06	2,751.70	6,072.90	4,572.32	3,043.37	2,236.16	3,034.40
September	4,902.34	3,655.51	4,576.09	2,028.98	1,229.30	2,606.70	2,665.06
October	2,393.60	3,956.40	5775.56	5,791.80	3,748.06	2,434.60	2,257.14
November	6,719.70	4,905.12	6997.38	9,154.71	6,346.25	5,147.28	2,654.80
December	1,663.61	6,335.12	5836.08	6,320.70	5,102.68	8,033.48	1,626.74
Total	42,442.73	50,108.58	69,063.00	67,830.01	61,164.43	44,029.68	39,480.86

11.0 Report on Development Works Undertaken during the Reporting Period

The permanent capping of Cells 17 to 19 and their connection to the landfill gas network was completed in March 2015.

12.0 Report on Restoration of Completed Cells and Phases

All constructed cells 1 – 19 are fully capped with a gas extraction system.

13.0 Site Survey showing existing Levels of the Facility at the end of the reporting period

See Appendix K for Topographical Survey 2016 showing contours of the landfill area

14.0 <u>Estimated Annual and Cumulative quantities of landfill gas emitted from the Facility</u>

The LandGEM Landfill Gas Prediction Model was produced by Fehily Timoney & Co in 2016

1. Actual

		hrs	rate m3/hr	total m3	methane %	methane m3
Flare	Jan	494	116	57,304.00	45.30	25,440
	Feb	258	125	32,250.00	38.00	12,010
	Mar	264	100	26,400.00	36.00	9,314
	Apr	623	135	84,105.00	46.00	37,915
	May	550	130	71,500.00	48.00	33,634
	Jun	546	105	57,330.00	45.00	25,283
	Jul	596	105	62,580.00	44.10	27,046
	Aug	570	155	88,350.00	48.00	41,560
	Sep	88	150	13,200.00	47.00	6,080
	Oct	70	100	7,000.00	45.40	3,114
	Nov	13	110	1,430.00	41.70	584
	Dec	0	0	0.00	0.00	0
Engine	Jan	692	160	110,720.00	45.30	49,153
	Feb	683	210	143,430.00	38.00	53,413
	Mar	739	200	147,800.00	36.00	52,144
	Apr	685	165	113,025.00	46.00	50,952
	May	697	150	104,550.00	48.00	49,180
	Jun	719	165	118,635.00	45.00	52,318
	Jul	739	150	110,850.00	44.10	47,907
	Aug	728	145	105,560.00	48.00	49,655
	Sep	736	150	110,400.00	47.00	50,850
	Oct	740	165	122,100.00	45.40	54,325
	Nov	697	185	128,945.00	41.70	52,695
	Dec	730	210	153,300.00	38.50	57,840
		12,657.00		1,970,764.00	41.98	842,411

@98% efficiency

2. Theoretical

z. moorodou					
	hrs	rate m3/hr	total m3	% Methane	Total
Theoretical	8,760.00	282	2,471,780.00	41.98	1,037,633

methane m3

825,562.75

	Methane	Density	Total
Theoretical	1,037,632.65	0.67	691,163.46
Actual	825,562.75	0.67	556,065.80
			135.10

kg kg tonnes unexplained

These figures were used in the estimation of landfill gas generation over the reporting period and submitted as part of the Landfill Gas Survey 2016 (Appendix H) and the PRTR 2016 (Appendix I).

Kerry County Council engaged Fehily Timoney & Co to carry out a Gas Assessment of the Landfill in 2016 and as part of this assessment a revised the Gas Model in 2016 was undertaken.

The development of Gas Predication model for future PRTR estimates that historical landfill gas prediction modelling for the landfill significantly overestimated the potential generation of landfill gas. This overestimation when referenced to utilisation and flaring flow rates suggested that there was significant fugitive emission escaping from the waste body. This is not the case as evidenced by:

- VOC emission survey results
- No odour issues
- · No evidence of vegetation die-back

B9 Power Ltd. has a financial incentive to capture landfill gas for utilisation. The audit findings suggest that the majority of gas that is being produced is being oxidised in either the flare or the engine.

FT believes that gas production flow rates on the site will be similar to current flow rates and will most likely remain low for many years. As leachate drains and is removed following secondary consolidation of the waste, breakdown of the waste body will be initiated in what were leachate saturated pockets and gas production is likely to continue for many years albeit at lower gas production rates.

The graph below presents a range of indicative gas production curve of future gas production flow rates. The calibration is based on existing available information

The volume of gas recorded as captured by the flare and engine is shown as 'Actual' on the graph. The GasSim model prepared by B9 Power Ltd. is shown as 'Other Gas Production Model.' For that curve please note that gas production will continue post 2049, it is limited to this date here by our calibration tool.

Model 2 shows a scenario of a long flat curve, created by wet waste conditions. The curve which is likely the best fit, is called 'Table 1.84 Model Inputs.'

Models 1, 4 and 6 use input parameters which are closer to the default settings in Landgem, but as can be seen do not predict generation as high as would have been predicted in the period 2010-2013 in the AERs on file.

FT advises that whilst it is not possible to accurately estimate the future gas production flow rates it is unlikely that these rates will increase significantly year on year given that leachate dissipation within perched bodies will most likely be a function of secondary consolidation.

Revised Model 2016 – Fehily Timoney & Co.

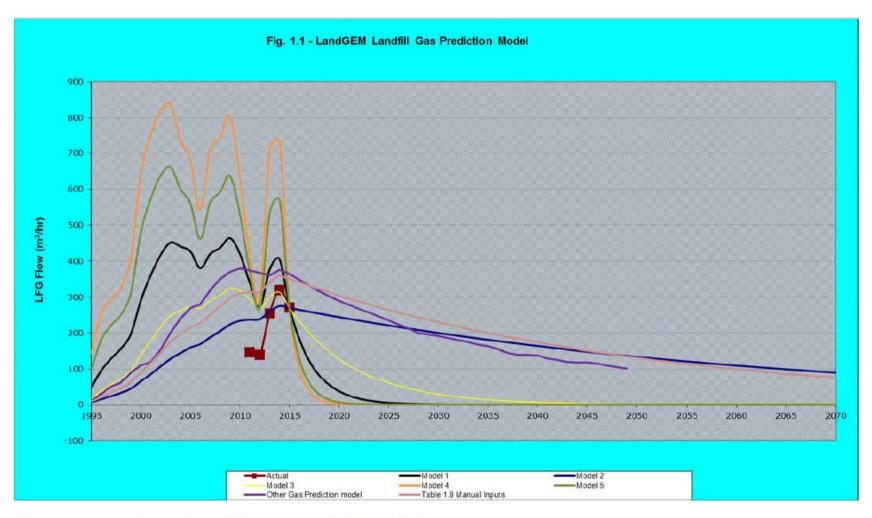


Figure 3-8: Calibrated Landfill Gas Prediction Models

Estimated Annual and Cumulative quantities of Indirect Emissions to Groundwater 13.0

None to report.

14.0 <u>Annual Water Balance Calculation and Interpretation</u>
The predicted Water Mass Balance calculation shows predicted leachate production for 2016.

Lo = [ER(A) + LW + IRCA + ER(I)] - [aW]

			4		•		2	,					
Year	Active Phase	Active Area	Active Area infiltration	Restored Phase No.	Liquid Waste	Restored Area	Restored Area Infiltration	4 ER(I)	Total Water	Absorptive Capacity	Leachate Produced	Actual Leachate	Difference
		A (m2)	ER(A) (m3)		LW (m3)	RCA (m2)	IRCA (m3)		1+2+3+4 (m3)	aW (m3)	Lo (m3)	(m3)	(m3)
2002	5	11,800.00	19,918.40	1,2,3	0	22,050	2,840.04	3127.264	25,885.70	1,770.81	49,771.34	34,218.23	-15,553.11
2003	6	16,100.00	20,946.10	1,2,3,4	0	25,450	2,547.55	2430.428	25,924.07	879.12	51,436.60	30,721.59	-20,715.01
2004	6	19,500.00	32,416.80	1,2,3,4	0	27,550	3,306.00		35,722.80	840.95	37,947.25	45,130.40	7,183.15
2005	6,7	16,200.00	27,596.70	1,2,3,4,5	0	29,600	4,004.88		31,601.58	602.54	34,155.79	54,784.59	20,628.80
2006	7	28,800.00	27,596.70	1,2,3,4,5	0	29,600	4,025.60		31,622.30	1,050.44	33,361.86	60,922.61	27,560.75
2007	7	14,400.00	24,036.48	1,2,3,4,5,6	0	53,340	6,769.91		30,806.39	1,391.46	33,307.30	55,436.15	22,128.85
2008	8	24,300.00	50,517.27	1,2,3,4,5,6	0	53,340	6,931.00		57,448.27	1,528.82	59,811.81	78,558.23	18,746.42
2009	8	32,400.00	62,763.98	1,2,3,4,5,6	0	53,340	8,295.22		71,059.21	695.72	73,862.60	73,727.85	-134.75
2010	8	32,400.00	43,957.08	1,2,3,4,5,7	0	63,340	4,736.82		48,693.90	367.27	50,009.27	42,442.00	-7,567.27
2011	8	32,400.00	45,398.88	1,2,3,4,5,7	0	63,340	1,280.86		46,679.74	289.55	46,845.19	50,108.58	3,263.39
2012	8,9	33,616.67	61,630.45	1,2,3,4,5,7,8	0	95,740	11,620.16		73,250.60	1,242.62	72,462.98	69,063.01	-3,399.97
2013	9	38,323.34	53,334.59	1,2,3,4,5,7,8	0	95,740	9,650.59		62,985.18	967.33	62,472.84	67,830.10	5,357.26
2014	9	21,515.00	38,468.82	1,2,3,4,5,7,8	0	134,063	13,961.32		52,430.14	79.12	52,806.01	61,164.43	8,358.42
2015	9	21,515.00	9,524.69	1,2,3,4,5,7,8	0	134,063	12,371.33		21,896.02	23.81	23,948.51	44,029.68	20,081.17
2016				1,2,3,4,5,7,8,9	0	134,063	12,371.33		12,371.33	0.00	14,447.63	39,480.86	25,033.23
													<u> </u>

15.0 Report on the Progress towards Achievement of Environmental Objectives contained in previous AER 2015

Target Area	Objective	Works Carried Out	Results
Reduction in Fugitive Gas Emissions	Reduction in number of on-site minor surface emissions following two VOC surveys	Regular patrol of gas collection infrastructure to ensure that there is no blockages on the lines. Gas extraction from cells 17 to 19. Minor remediation works on gas wells and side risers	No Odour Complaints in 2016.
Surface Water Emissions	Keep Surface Water Emissions within agreed limits	Proper management of leachate on site. Regular inspection of surface water drains Regular inspection of bunded area for integrity on site	No ammonia levels exceeded in surface water lagoons.
Ground Water Emissions	Keep Ground Water Emissions to within agreed limits	Proper management of leachate levels on site.	No licence limit exceeded in Boreholes
Leachate Management	Reduction in the quantity of leachate produced on site	Recirculation Tanks Removed Gas Wells remediated Compost Lagoon Decommissioned ICW Decommissioned	Decrease in leachate produced on site during reporting period.
Energy Resources	Reduce the quantity of diesel and electricity used on site		Slight decrease in electricity consumption on site

19.0 Schedule of environmental objectives and targets for the forthcoming year.

The following tables sets out the environmental objectives for the facility under a range of headings.

Target Area	Objective	Actions to be progressed and methods	Ву	2017	2018	2019
Reduction in Fugitive Gas Emissions	Reduction in number of surface emissions from VOC Survey	Minor remediation works around gas wells and side risers	FM	On-going		
Surface Water Emissions	Keep surface water emissions within limits	 Proper management of leachate on site Monitoring of SCADA to Cells 1 to 16 Regular inspection of surface water drains Regular inspection of bunded area for integrity on site 	FM FM FM FM	On-going On-going On-going On-going	On-going On-going On-going On-going	On-going On-going On-going On-going
Ground Water Emissions	No emissions	 Proper management of leachate on site Regular inspection of bunded area for integrity on site 	FM FM	On-going On-going	On-going On-going	On-going On-going
Leachate Management	Reduction in the quantity of leachate produced on site	o Remediation works to capping	FM	On-going	On-going	On-going

FM – Facility Manager

20.0 Summary of Procedures Developed by the Licensee during the reporting period

No additional procedures were developed by the Licensee during the reporting period. The CRAMP has been reviewed and sent to the Agency for approval in Dec 2016. The original CRAMP was approved by the Agency in March 2015.

The Environmental Liabilities Risk Assessment will be reviewed in 2017 and submitted to the Agency for approval. Kerry County Council have engaged Environmental Consultants to review the ELRA in 2017 and will request approval from the Agency in Q2/Q3 2017 via a Licensee Return on the EDEN Portal Website.

21.0 Tank, Pipeline and Bund Testing and Inspection Report

Integrity testing was completed on leachate lagoons 1 and 2 in 2016. The report was sent to the Agency via a Licensee Return in 2016. Integrity testing is to be carried out every 3 years as per Waste Licence Conditions.

22.0 Environmental Incidents and Complaints

Environmental Incidents

The incidents reported to the agency refer to exceedences experienced in perimeter gas wells 6 to 6d and the temporary exceedence above one meter in the leachate level of Waste Cell 13.

It is noted that there was no odour nuisances in the perimeter gas well exceedences or no vegetative die back and so it is thought that the readings in gas well 6 to 6d refer to a sump effect in a rock fill embankment that is at a finished construction height above the original ground level. Well 6 is currently connected to the gas extraction system and this is noted in the monthly returns to the Agency.

Complaints

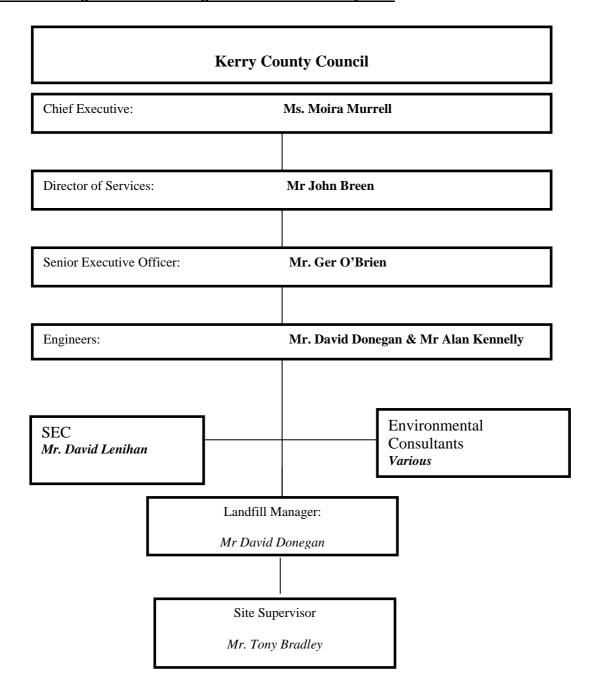
There were no complaints received for the reporting period (2016). There were none in 2015, 1 in 2014 and 10 in 2013

Table 18.1: Breakdown of complaints received over last five years

Issue	2011	2012	2013	2014	2015	2016
Odour	1	16	5	1	0	0
Illegal Dumping	6	3	1	0	0	0
Rubbish on Main Road	2	1	1	0	0	0
Uncovered/unsecure loads being admitted into landfill site	0	9	0	0	0	0
Flies	5	5	0	0	0	0
Site Infrastructure	6	3	3	0	0	0
Speeding Leachate Trucks	0	0	0	0	0	0
Noise from Leachate Lorries at Treatment Plant	1	0	0	0	0	0
Windblown litter	0	0	0	0	0	0
Total Number of Complaints	21	37	10	1	0	0

24.0 Report on Financial Provision

Kerry County Council has a Landfill Aftercare and Development Fund.


The CRAMP report as submitted to the agency and approved in March 2015 requires the Kerry County Council to maintain the landfill site both during its active phase and closed phase. A review by Kerry County Council was completed in Dec 2016 and submitted to the Agency for approval.

Kerry County Council is well positioned to meet its financial liabilities.

The EPA have corresponded with the Local Authorities to make financial provisions to cover any liabilities associated with the operation (including closure and aftercare) of the facility, as per Condition 13.3.3.

Kerry County Council have submitted licensee returns to deal with these liabilities.

25.0 Management and Staffing Structure at the Facility 2016

26.0 Programme of Public Information

The following files are available for inspection and it is proposed that all files will be available at Maine Street, Tralee, Co. Kerry. KCC intend to propose this change as a Licensee Return which will then require approval from the EPA.

The site has been closed since 11th July 2014.

- o AER of previous reporting year.
- All correspondence with the Agency
- Surface Water Monitoring Results
- o Ground Water Monitoring Results
- Perimeter Gas Detection Well Monitoring Results
- o Leachate Chemical Analysis results
- o Leachate quantities produced
- o Operational Procedure Manual

27.0 Training of Staff 2016

The Site Supervisor is up to date with regards to training in SAFEPASS and CSCS.

The Facility Manager has completed the Waste Management Training Programme Module 1 to 6

28.0 Cost of Landfill / Community Fund.

Please see Condition 13.5 of Waste Licence referenced W000 1-04

The licensee shall provide the sum of €57,419 per annum (index linked) for local environmental and community initiatives for each year that the landfill accepts waste for disposal. A report on the use of this annual fund shall be included in the Annual Environmental Report to the Agency.

The Community Fund is operated under the Local Government Act 2001 – Section 109 – (1) In this section "community initiative" means any project or programme which in the opinion of the local authority will benefit the local community and includes the provision or improvement of amenity, recreational, cultural or heritage facilities, the protection or enhancement of the environment and programmes to promote social inclusion and community development.

As no waste was accepted at North Kerry Landfill in 2016, Kerry County Council did not allocate any money to the Community Fund. There is a balance of approximately €50,000 remaining in the Community Fund. Kerry County Council, Environment Section has been in contact with community leaders & asked them to submit a viable community initiative project (or projects), for consideration. The Environmental Management Team have met with the Landfill Committee to discuss possible projects in 2016.

The following table gives a breakdown of the financial outlay under the landfilling headings. The Revenue expenditure accounted for €385,533.00 and an extra Capital Expenditure accounted for €244,025.00 to deal with Aftercare Management Items.

Table 22.2, financial outlay 2016

Statement of Costs for Waste Operations - NKL 2016

Accelem	Account Element	Euro	€
60030	Wages	€	31,086.00
60040	Salaries	€	52,452.00
60100	ER PRSI	€	15,143.00
60200	Overtime	€	171.00
60300	Arrears	€	54,846.00
60400	Sick Pay	€	1,468.00
60500	Annual Leave	€	3,554.00
60510	Bank Holiday Leave	€	1,085.00
60600	Travel/Subsistence	€	27.00
60700	Eating on site allowance	€	425.00
60800	Acting Allowance	€	628.00
65500	Minor Contracts- Trade Services & other works	€	142,564.00
66500	Non-Capital Equip Purchase - Fire Services	€	37.00
67500	Non-Capital Equip Purchase - Computers	€	6,894.00
68500	Non-Capital Equip Purchase - Other	€	385.00
69000	Hire (Ext) - Plant/Transport/Machinery & Equipment	-€	3,773.00
69200	Repairs & Maint - Plant	€	1,660.00
69260	Repairs & Maint - Other Equip	€	24.00
69400	Transfers from Machinery Yard	€	5,469.00
69600	Other Vehicle Expenses	€	922.00
70000	Materials	€	5,034.00
70990	Issues from Stores	€	1,091.00
71000	Insurance	€	32,229.00
73400	Staff Travelling & Subsistence Expenses	€	4,348.00
75000	Computer Software and Maintenance Fees	€	5,046.00
76000	Communication Expenses	€	736.00
77100	Courier	€	50.00
77200	Security - Property	€	656.00
78000	Training	€	2,900.00
79000	Legal Fees and Expenses	€	9,065.00
79900	Consultancy/Professional Fees and Expenses	-€	39,511.00
81000	Printing & Office Consumables	€	1,337.00
82100	Statutory Contributions to Other Bodies	€	24,177.00
85100	Rates & Other LA Charges	€	95.00
85200	Cleaning	€	3,440.00
86000	Energy / Utilities	€	19,758.00
90200	Overdraft interest & financial charges	€	15.00
	Total	€	385,533.00

EPA Compliance & Other Remediation

Accelem	Account Element	Euro	€
65500	Minor Contracts- Trade Services & other works	€	120,962.00
67500	Non-Capital Equip Purchase - Computers	€	895.00
68500	Non-Capital Equip Purchase - Other	€	14,051.00
69000	Hire (Ext) - Plant/Transport/Machinery & Equipment	€	43,471.00
69400	Transfers from Machinery Yard	€	6,678.00
70000	Materials	€	15,710.00
77100	Courier	€	160.00
79900	Consultancy/Professional Fees and Expenses	€	42,098.00
	Total	€	244,025.00

29.0 Meteorological, Noise and Dust Monitoring Results

Table 23.1, Rainfall data 2015 / 2016

	2015 Rainfall	2016 Rainfall
	(mm)	(mm)
Jan	199.4	293.8
Feb	108.1	190.6
Mar	135.2	104.6
Apr	54.0	104.0
May	127.6	77.9
Jun	81.4	108.0
Jul	120.5	83.3
Aug	126.0	105.1
Sep	148.9	182.7
Oct	96.1	186.4
Nov	199.9	76.7
Dec	339.0	103.8
Total	1,736.1	1,616.9

Noise Monitoring 2016

Southern Scientific were commissioned by Kerry County Council to undertake a noise survey at North Kerry Landfill for 2016

No limits were exceeded as shown in Appendix G

It is intended to seek approval from the EPA to reduce the frequency of noise monitoring now that the Landfill is closed.

Dust Monitoring

The EPA have approved (LR017694) to discontinue certain monitoring criteria as set out in Condition 8.12.

However, this is subject to:

- 1. The licensee shall contact the Agency should any change occur in the activities on site which may require a reinstatement of this monitoring.
- 2. Monitoring shall resume in the event of any complaints being received by the facility in relation to litter, vermin, birds or mud.
- 3. The Agency may revoke/amend this agreement at any time. The Agency does not agree to the discontinuation of odour monitoring at this time as concerns remain in relation to the management of landfill gas at the facility.

30.0 Statement on the Achievement of the Waste Acceptance and Treatment Obligations

None to Report

Appendix A: Historic Data

North Kerry Landfill Leachate Tankered Off Site				
	Waste Tonnes	Leachate m3		
1994	16,902	1,494.00		
1995	23,505	6,475.00		
1996	23,722	8,496.37		
1997	25,581.88	12,175.49		
1998	33,529.67	20,318.09		
1999	57,872.71	22,822.95		
2000	60,473.65	36,780.71		
2001	63,945.91	18,953.85		
2002	62,821.52	34,218.23		
2003	50,235.29	30,721.59		
2004	48,054.47	45,130.40		
2005	34,430.82	54,784.59		
2006	60,025.22	60,922.61		
2007	56,794.24	55,436.15		
2008	62,412.96	78,558.53		
2009	39,755.40	73,727.85		
2010	20,986.80	42,442.73		
2011	16,545.71	50,108.58		
2012	71,006.59	69,063.01		
2013	55,276.68	67,830.01		
2014	4,521.40	61,164.43		
2015	0	44,029.68		
2016	0	39,480.86		
Total	888,400.08	935,135.98		

Appendix B: Summary of results and Interpretation of Environmental Monitoring

ANNUAL ENVIRONMENT REPORT

Physio-chemical and Biological Monitoring of North Kerry Landfill 2016

Prepared by: David Lenihan

Senior Executive Chemist 15/03/2017

INTRODUCTION

As Part of requirements under EPA Licence for North Kerry landfill this laboratory produces a report on a six monthly basis as well as an annual detailed report. This report can thus be interpreted as *Laboratory contribution to Annual Environment report*.

Enclosed are:

- Annual results in spreadsheet format for Leachate, Surface Water and Groundwater
 as required per monitoring provisions as of licence requirements for 2016. Please refer
 to these as you read report
- Interpretation of results pertaining to three matrices of concern i.e. Groundwater, Surface water and Leachate
- results from ELS contract laboratory pertaining to individual List 1 and List 2 organics which were analysed for in Nov 2016 at three groundwater locations *App3*
- Appendix 1 detailing sample locations and associated grid references used in report
- Table 1 outlines trigger values for strategic parameters analysed in groundwater
- Appendix 2 details list of List 1,2 Organics monitored and their associated Limits of detection (LODs)
- Appendix 3; summary of invertebrate report 2016 of impacts sites surrounding North Kerry Landfill

All except for analysis of *Total cyanide*, *list 1* and *List 2 organic substances*, was conducted at KCC laboratory.

Analysis on these Parameters (italics *and asterix*) was farmed out to *ELS laboratories* Mahon Industrial Estate, Cork.

A summary of Environmental requirements has been prepared by Tobin Consulting engineers. This is the document we are using. Results are also included for monthly analysis of groundwater as required by provisions of old licence

In 2016 a total of 222 samples were sampled by KCC Laboratory personnel

David Lenihan 1of17

Altogether 2300 tests were analysed to satisfy requirements of licence monitoring.

Of these 2215 tests were analysed in KCC laboratory

The outsourced tests were analysed by *ELS laboratories*. The latter included Cyanide and List1 / 2 organics as required on an annual basis for three groundwater locations It must however be stressed that each test for SVOCs or VOCs comprises analysis for 153 specific compounds. These are included as appendix to this report

The monitoring locations monitored are as per requirements of licence. *APP1* outlines locations and associated northing's and easting's **Trigger limits**

Trigger limits are required to be set for certain parameters in groundwater and submitted to EPA. Perhaps the best such limits to use are groundwater threshold values as set out in groundwater regulations 2009. Other standards used, correspond to drinking water regulatory standards. However where drinking water limits cannot be adhered to because of natural conditions (non anthropogenic effects) i.e. Ph the trigger value would have to be more flexible. The trigger values for Boreholes 1 to 4 are as highlighted in Table 1. Borehole 5 appears to be monitoring an aquifer which contains a lot of decaying organic matter more than likely from natural sources. Therefore trigger value for ammonia may be too strict.

Table I Parametric Trigger values for Groundwater

Parameter	units	Trigger value (max)	Trigger value(min)
Ammonium	mg/L	0.225	
Nitrite	mg/L	0.38	
Total Oxidised Nitrogen	mg/L (NO ₃)	37.5	
Conductivity	Us/cm	800	
Ph	Ph units	10	4.5
Dissolved Oxygen	mg/L O2		1.0
Chloride	mg/L	200	
Flouride	ug/L	1000	
Sodium	mg/L	150	
Potassium	mg/L	10	
Boron	mg/L	0.75	
Copper	mg/L	1.5	
Cadmium	ug/L	3.75	
Chromium	ug/L	37.5	
Arsenic	ug/L	7.5	
Lead	ug/L	10	
Nickel	ug/L	15	
Mercury	ug/L	0.75	
Total Cyanide	ug/L	37.5	
<u>VOCs</u> Benzene	ug/L	0.75	
1,2 dichloroethane	ug/L	2.25	
Tetra chloroethene and Trichloroethene	ug/L	7.5	
Toluene	ug/L	5	
Phenols	mg/L	0.05	

David Lenihan 2of17

Parameter	units	Trigger value (max)	Trigger value(min)
<u>SVOCs</u>			
Atrazine	ug/L	0.075	
Simazine	ug/L	0.075	
Poly aromatic	ug/L	0.075	
Hydrocarbons ¹			
Pesticides ^{2,3}	ug/L	0.375	

¹ PAHs neasured should include at least benzo(b)Fluoranthene, benzo(k Fluoranthene, benzo(ghi)perylene,indeno(123-cd)pyrene Fluoranthene

List 1 and List 2 Organics

Under the provisions of monitoring requirements we are required to monitor List 1 and List 2 organic compounds in three groundwater locations on an annual basis. These locations have to be agreed with EPA. In this report we report on four groundwater locations which were monitored for these compounds i.e. **Borehole 3, 4, 6** and **Sugrues well** (well on adjoining property to Landfill)

The compounds analysed comprised of two types Volatile Organic compounds (VOCs) and Semi Volatile organic compounds (SVOCs). VOCs comprise of organic compounds with boiling points close to or less than that of Water i.e. Petroleum products and common solvents –up to 79 compounds were screened for using Purge and Trap GC MS. Semi Volatile compounds comprise of higher boiling point organics and comprise of classes of compounds such as pesticides, herbicides, PCBs (polychlorinated Biphenyls) and PAHs(Poly aromatic Hydrocarbons). Up to 63 different compounds in this category were screened for. A list of these compounds, together with limits of detection is given in Appendix 2. Original report from contract laboratory is also enclosed One VOC compound out of 79 was detected at trace levels in all 4 boreholes that were monitored i.e. cis 12-Dichloroethene Levels varied between 1.2 and 5.2 ug/L. all of remaining 78 were less than detection limit. No SVOCs were detected below detection limit

Heavy Metals

As we possess and use *ICP-MS instrument we monitored many more locations for heavy metals than were strictly required i.e. 12 surface water,6 Leachate, and 8 groundwater locations

David Lenihan 3of17

² the trigger value applies to each individual pesticide measured.

³Pesticides include organic insecticides, Organic herbicides, Organic nematocides, organic acaricides, organic algicides, organic rodenticides, organic slimicides, related products (inter alia, growth regulators

^{*}Inductively coupled Plasma Mass spectrometer

INTERPRETATION OF RESULTS

Groundwater

All boreholes are showing evidence of surface water contamination to a greater or lesser extent –borehole 2 been least affected. This is evident from turbidity colour and Total Organic carbon levels. The source of this surface water contamination, is undoubtedly exacerbated by abnormally high rainfall.

There have been however no abnormal changes in water quality in wells GWML E1 ,2,3.4,and 6. The last abnormal changes observed were in 2013 with GWML –E1 when high Ammonia levels in May 2013 were experienced due to issues with leakage of leachate . Since then however there has been no recurrence.

Borehole 5 continues pattern of other years i.e. high Ammonias coupled with highest levels of colour and molybdate reactive Phosphorous see *Fig 1*. However in last two years there is also increasing evidence of above background levels of cyanide and Arsenic. This may point to contamination from Landfill source and thus requires further investigation.

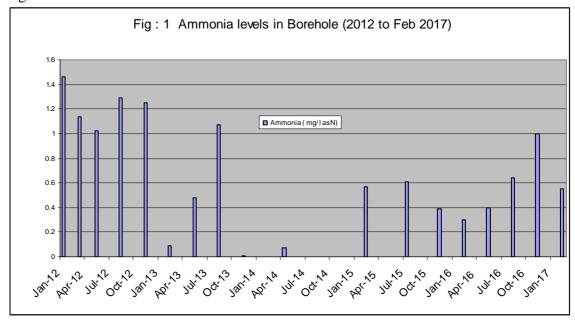


Fig 1 Ammonia levels in Borehole 5 2012 to 2017

Boreholes *GWML_E3*, 4,6 and *Sugrues well* were tested for list 1, 2 organics. The only compound which was detected above detection limit in all wells was *cis 12-Dichloroethene*. However the level detected was tiny and insignificant. However I recommend that Borehole 5 be sampled for same as soon as possible before end of 2017

David Lenihan 4of17

Surface water:

Impact of Suspended solids:

Results from monitoring over last 10 years indicates that most significant threat or impact from Landfill activities in surrounding waters is suspended solids Samples were obtained "in site monitoring" from Stations *SWML 1,2.3,4,5,10,11 and new lagoon SWMLE1*.

Suspended solids have declined significantly since 2014 at on site surface water lagoons (*SWMLE1*) and *SWML 10* in Nov. Figs 4 and 7. There was one spike in Western Lagoon (*SWML2*) in Jan 16 which corresponded to preceding heavy rainfall as a result of storm activity *See Fig 3* but since then there has been no significant levels

There has been a noticeable decrease in suspended solids in receiving waters at W1 during period of study – The last significant spike in results was in July 2013

There was also in general less significant impact from Suspended Solids on off site SW1. since the last spike was recorded in July 2015

High suspended solids in river waters may impair fish spawning grounds particularly in winter and spring. Occasional pulses of suspended matter entering these sites are more than likely the main contributory factor for unsatisfactory biological quality at this site in the past (see 2011 AER)

Ecological assessment of *W1* In 2013 denotes a *Q3* value (moderate pollution), which still reflects some impact. This is a deterioration from 2012 where same site scored a *Q3-4*. However as explained in accompanying Biological report with this AER access to this site was not possible in 2016 due to work in area. Biological assessment at station on Lee about 3 km downstream (O'Brennans bridge) continues to indicate a stream of good quality i.e. *Q =4and and also Q4 at* Glashroeg at Ivy bridge which is a tributary of Smeralagh *see summary of Biological report in appendix*

Impact of Ammonia levels on receiving waters

No significant levels of ammonia were recorded in period 2014 to 2017 unlike in 2013, where up to Nov 2013 significant levels were recorded in new lagoon *SWML E1*

Leachate results

Leachate was detected in all detection manholes monitored i.e. LD1, LD2 and LD3.

David Lenihan 5of17

Conclusion

- Evidence of surface water contamination noted in all boreholes –
- Possible evidence of landfill contamination in Borehole 5 requiring further investigation
- Biological assessment in 2016 denoted waters of good quality in main impact sites on Glashroeg and Lee
- No significant levels of Ammonia detected in receiving water sites unlike in earlier years i.e. 2013
- Evidence of leachate was detected in all three leachate detection manholes

References:

1. Summary of Environmental Monitoring requirements For- Kerry Co Council Landfill, Muingnaminnane, Tralee, Co Kerry -Waste Licence Ref No: 1-3: Tobin Consulting Engineers

2. Biological Invertebrate Monitoring of Surface Waters 2012; Laboratory KCC

David Lenihan 6of17

APPENDIX 1; LIST 1, 2 Organics Appendix1: Details Sampling points referred to in report

Appendix1: Details Sampling points referred to in report				
<u>Location</u>	<u>comments</u>	old or alternative name	Location Easting	Location Northing
<u>Groundwater</u>				
specified groundwater monitoring pts			0.4007	447000
Groundwater – GWML-E1			94697	117360
Groundwater - BH-2			94814	117306
Groundwater - BH-3			94808	117005
Groundwater - BH-4			95430	117040
Groundwater - BH-5			94917.5	117152.7
Groundwater – GWML-E3			94843	117658
Private boreholes adjacent to landfill				
borehole: Dennis O Mahony	not specified in new licence		97390.7	118348.7
borehole: Gerry Sugrue	not specified in new licence		93037.8	116489.5
<u>Leachate</u>				
<u>Detection manholes</u>				
LD-1		leachate detection manhole 1	94909	117268
LD-2		leachate detection manhole 2	94894	117298
LD-3		leachate detection manhole from lagoon	94905	117264
Lagoon sampling pts		·		
LL-1		Leachate in lagoon 1	94904	117237
LL-2		leachate in Lagoon 2	94927	117166
LL-3		lagoon containing run off from compost	94979	117414
Ancillary pts				
Puraflo Treatment Inlet	not specified in new licence			
Puraflo Treatment Outlet	not specified in new licence		94867.2	117332
Wheelwash	Not specified in new licence			
Surface water				
Off site sampling pts				
Surface Water sampling point: W1	not specified in new licence	biological station	94493.3	117107.5
Surface water sampling point: E2	Not specified in new licence	O'Learys farm	95870.6	116575.6
Surface water sampling point: W2	Not specified in new licence		94493.3	117159.9
SW-1		previously E1	95471	117077
SW-2			95143.6	117969.4
SW-3			94853	118263
On site sampling pts				
SWML-1		previously 1	94948.3	117376.4
SWML-2	Western Lagoon	previously 2	94837.9	117263.7
SWML-3			94866	117221
SWML-4		previously 4	94883.9	117092.6
SWML-5			94911	117027
SWML-10	Eastern lagoon		95092	117470
SWML-11		previously 11	95067	117520
SWML-E1	New surface water lagoon		94592	117510

i David Lenihan

SVOCs: (Semi Volatile base Neutrals)
Std Method 6410 B Liquid-Liquid Extraction
GC/MS.

limit of Parameter Parameter detection <u>units</u> ug/l 1.3 - Dichlorobenzene 1.4 - Dichlorobenzene 1 ug/l Hexachloroethane 1 ug/l bis(2-Chloroethyl) ether 1 ug/l 1,2-Dichlorobenzene 1 ug/l 1 bis(2-Chloroisopropyl) ether ug/l N-Nitrosodi-n-propylamine 1 ug/l Nitrobenzene 1 ug/l Hexachlorobutadiene 1 ug/l 1,2,4-Trichlorobenzene 1 ug/l Isophorone 1 ug/l Naphthalene 1 ug/l bis(2-Chlororthoxy) ug/l 1 methane 1 Hexachlorocyclopentadiene ug/l 2-Chloronaphthalene 1 ug/l Acenaphthylene 1 ug/l 1 Acenaphthene ug/l Dimethyl phthalate 1 ug/l 2,6-Dinitrotoluene 1 ug/l 1 Fluorene ug/l 4-Chlorophenyl phenyl ether 1 ug/l 2,4-Dinitrotoluene 1 ug/l Diethyl phthalate 1 ug/l N-Nitrosodiphenylamine 1 ug/l Hexachlorobenzene 1 ug/l a-BHC 1 ug/l 4-Bromophenyl phenyl eth<u>er</u> 1 ug/l 1 y-BHC ug/l Phenanthrene 1 ug/l Anthracene 1 ug/l B-BHC 1 ug/l Heptachlor 1 ug/l d-BHC 1 ug/l Aldrin 1 ug/l Dibutyl phthalate 1 ug/l 1 Heptachlor epoxide ug/l Endosulfan I 1 ug/l Fluoranthene 1 ug/l Dieldrin 1 ug/l 4,4'-DDE 1 ug/l Py<u>rene</u> 1 ug/l Endrin 1 ug/l Endosulfan II 1 ug/l 4,4'-DDD 1 ug/l Benzidine 1 ug/l 4,4'-DDT 1 ug/l Endosulfan sulfate ug/l

VOCs: Std Method 6210 D-Purge and Trap Capillary Column GCMS.Screening per USEPA 524.2 list.

GCMS.Screening per USE	PA 524.2 list.	
<u>Parameter</u>	<u>limit of</u> <u>detection</u>	<u>units</u>
Dichlorodifluoromethane	10	ug/l
Chloromethane	0.5	ug/l
Ethyl Chloride/Chloroethane	0.5	ug/l
Vinyl Chloride/Chloroethene *(0.5ppb)	0.5	ug/l
Vinyl Chloride/Chloroethene * (25ppb)	0.5	ug/l
Bromomethane	0.5	ug/l
Trichloromonofluoromethane	0.5	ug/l
Ethyl Ether/Diethyl Ether	0.5	ug/l
11 Dichloroethene	0.5	ug/l
Acetone	2	ug/l
Iodomethane/Methyl Iodide	0.5	ug/l
Carbon Disulphide	0.5	ug/l
Allyl Chloride	0.5	ug/l
Methylene Chloride/DCM	5	ug/l
2-Propenenitrile/Acrylonitrile	2	ug/l
Chloroacetonitrile	0.5	ug/l
Nitrobenzene	0.5	ug/l
Propanenitrile	10	ug/l
Hexachlorobutadiene	0.5	ug/l
Trans-1,2 Dichloroethene	0.5	ug/l
MtBE	0.5	ug/l
11 Dichloroethane	0.5	ug/l
22 Dichloropropane	0.5	ug/l
cis-12 Dichloroethene	0.5	ug/l
2-Butanone	5	ug/l
Methyl Acrylate	5	ug/l
Bromochloromethane	0.5	ug/l
Methacrylonitrile	5	ug/l
Tetrahydrofuran	5	ug/l
Chloroform*	1	ug/l
111 Trichloroethane	0.5	ug/l
1-Chlorobutane	0.5	ug/l
Carbon Tetrachloride	0.5	ug/l
11 Dichloropropene	0.5	ug/l
Benzene	0.1	ug/l
12 Dichloroethane)	0.1	ug/l
Trichloroethylene/ Trichloroethene	0.1	ug/l
12 Dichloropropane	0.5	ug/l
Dibromomethane	0.5	ug/l
Methyl Methacrylate	0.5	ug/l
Bromodichloromethane*	2	ug/l
13 Dichloropropene,cis	2	ug/l
MIBK/4 Methyl 2 Pentanone	2	ug/l
Toluene	0.5	ug/l
13 Dichloropropene,trans	2	ug/l
Ethyl Methacrylate	2	ug/l
112 Trichloroethane	0.5	ug/l

David Lenihan ii

APPENDIX 1; LIST 1, 2 Organics

SVOCs: (Semi Volatile base Neutrals)
Std Method 6410 B Liquid-Liquid Extraction
GC/MS.

<u>Parameter</u>	<u>limit of</u> <u>detection</u>	<u>units</u>
Endrin aldehyde	1	ug/l
Butyl benzyl phthalate	1	ug/l
bis(2-Ethylhexyl) phthalate	1	ug/l
Chrysene	1	ug/l
Benzo(a)anthracene	1	ug/l
3,3'-Dichlorobenzidine	1	ug/l
Di-n-octyl phthalate	1	ug/l
Benzo(b)fluoranthene	1	ug/l
Benzo(k)fluoranthene	1	ug/l
Benzo(a)pyrene	1	ug/l
Indeno(1,2,3-cd)pyrene	1	ug/l
Dibenzo(a,h)anthracene	1	ug/l
Benzo(ghi)perylene	1	ug/l
N-Nitrosodimethylamine	1	ug/l
Chlordane	1	ug/l
Toxapene	1	ug/l
PCB 1016	1	ug/l
PCB 1221	1	ug/l
PCB 1232	1	ug/l
PCB 1242	1	ug/l
PCB 1248	1	ug/l
PCB 1254	1	ug/l
PCB 1260	1	ug/l

VOCs: Std Method 6210 D-Purge and Trap Capillary Column GCMS.Screening per USEPA 524.2 list.

3		
<u>Parameter</u>	<u>limit of</u> detection	<u>units</u>
Tetrachloroethylene/ Tetrachloroethene*	0.1	ug/l
Tetrachloroethylene/ Tetrachloroethene*	0.1	ug/l
13 Dichloropropane	0.5	ug/l
2-Hexanone	1	ug/l
Dibromochloromethane *	1	ug/l
12 Dibromoethane	0.5	ug/l
Chlorobenzene	0.5	ug/l
1112 Tetrachloroethane	2	ug/l
Ethyl Benzene	0.5	ug/l
m & p Xylene	0.5	ug/l
o Xylene	0.5	ug/l
Styrene	2	ug/l
Bromoform *	1	ug/l
Isopropyl Benzene	0.5	ug/l
Bromobenzene	0.5	ug/l
1122 Tetrachloroethane	0.5	ug/l
123 Trichloropropane	2	ug/l
Trans 14 Dichloro 2 Butene, tran	2	ug/l
Propyl Benzene	0.5	ug/l
2-Chlorotoluene	0.5	ug/l
4 Chlorotoluene	0.5	ug/l
135 Trimethylbenzene	0.5	ug/l
Tert Butyl Benzene	0.5	ug/l
124 Trimethylbenzene	0.5	ug/l
Sec Butyl Benzene	0.5	ug/l
13 Dichlorobenzene	0.5	ug/l
P Isopropyltoluene	0.5	ug/l
14 Dichlorobenzene	0.5	ug/l
12 Dichlorobenzene	0.5	ug/l
N Butyl Benzene	0.5	ug/l
Hexachloroethane	5	ug/l
12 Dibromo 3 Chloropropane	2	ug/l
124 Trichlorobenzene	0.5	ug/l
Napththalene	2	ug/l
123 Trichlorobenzene	0.5	ug/l
Toluene	0.5	ug/l
13 Dichloropropene,trans	2	ug/l
Ethyl Methacrylate	2	ug/l
112 Trichloroethane	0.5	ug/l
Tetrachloroethylene/ Tetrachloroethene*	0.1	ug/l

David Lenihan iii

Biological Invertebrate Monitoring

Of

Surface Waters

Draining North Kerry Landfill

2016

Laboratory KCC C Markey, I McGloin

Introduction:

Under the EPA License granted to North Kerry Landfill at Muingnaminane surface waters draining the landfill are continually monitored. Condition 9.9 of the EPA waste licence requires biological assessment to be carried out annually. Seven sites are

date of report: 19/10/2016

chosen: W1, W2, E1, E2, G1, G2 and N1 (See Map). All sites were sampled or attempted to be sampled between 20th and 22nd Sep 2016

details of species determination are available in electronic format

Biological Q Rating:

The samples were classified using the Biological Quality Rating System for Rivers (Q Rating System) as outlined by the Environmental Protection Agency (EPA). The Biological Quality Rating System for Rivers (Q ratings) ranges from Q1 to Q5 where a Q5 denotes a pristine river and Q1 indicates serious pollution (see Quality Rating Table below). From the point of view of the Water Framework Directive all designated river and stream stations must attain least Good status. i.e. Q4, before 2015.High Status River stations are not allowed to deteriorate. There are different classifications for depositing and eroding substrates. The Q system is aimed particularly at larger streams and rivers and is carried out between May and September. Three-minute kick samples are carried out at each station accompanied by stone examinations and weed sweeps.

Table 1: Q invertebrate status rating vs. Water Framework Directive(WFD) Quality status

Biotic Index	Water Quality	WFD Quality Status
Q5	pristine	High
Q4-5	Very good	High
Q4	Good	Good
Q3-4	Slightly Polluted	Moderate
Q3	Moderately Polluted	
Q2-3	Moderate to Poor	
Q2	Poor	Poor
Q1-2	Poor to bad	
Q1	Bad	

Results:

Table 2: Biological Q Rating (Final results and comparison with 2011)

App 3 AER ; North Kerry Landfill : Invertebrate Monitoring report

Biological Station	Lab Ref No	Date	Result
W1	inacessible	20/09/2016	
	2013/2428	10/06/2013	3
	2012 / 2448	22/05/2012	4
	2012 / 4517	17/09/2012	3_4
	2011/3450	03/08/2011	3
W2	2016/2964	20/09/2016	4
	2014/3718	16/09/2014	4
	2013/2367	04/06/2013	4_5
	2012 / 2419	21/05/2012	4_5
	2012 / 4518	17/09/2012	4_5
E1	2016/3023	26/09/2016	4_5
	2014 / 3716	16/09/2014	4_5
	2013/2417	10/06/2013	4_5
	2012 / 4519	17/09/2012	4_5
E2	2016/3021	22/09/2016	3_4
	2014//3717	16/09/2014	3
	2013/2368	04/06/2013	3_4
	2012 / 4570	19/09/2012	3_4
G1	2016/3019	22/09/2016	4_5
	2014/3738	17/09/2014	4
	2013/2616	18/06/2013	4
	2012 / 4556	18/09/2012	4_5
G2	inaccessible	22/09/2016	
	2014/3739	17/09/2014	3_4
	2013/2616	18/06/2013	4
	2012 / 4557	18/09/2012	4_5
N1	2016/3018	22/09/2016	4
	2014/3740	17/09/2014	3
	2013/2617	18/06/2013 I	3_4
	2012 / 4558	18/09/2012	3_4

Table 3: Chemical results

App 3 AER; North Kerry Landfill: Invertebrate Monitoring report

			Suspended solids	NH₄	Hd	Cond	OG	Тетр	NOT	MRP	Iron
				N			02		N	Р	
		Max.			9		15				
		Target									
		Min.			6		5				
Location	Lab Ref no.	Date	mg/l	mg/l	pH units	μS/cm	mg/l	Degrees C	mg/l	mg/l	μg/l
W1	Inaccessible	20/09/2016									
W2	2016/2964	20/09/2016	2	< 0.05	7.5	133	10.72	12.2	<0.5	<0.005	
E1	2016/3023	26/09/2016	2	< 0.05	6.9	81	9.88	12.9	<0.5	< 0.005	899
E2	2016/3021	22/09/2016	3	< 0.05	5.1	57	10.75	11.9	<0.5	0.1	2302
		00/00/0040	2	<0.05	6.2	62	11.19	11	<0.5	0.01	1518
G1	2016/3019	22/09/2016		<0.05	0.2	-			10.0	0.0	
G1 G2	2016/3019 Inaccessible	22/09/2016									
										0.03	1597

Discussion: See Map in Appendix 1 and detailed field sheets in Appendix1 W1:

W1biological station drains the western side of North Kerry Landfill. It is a very small stream just downstream of the landfill and a tributary of the river Lee. The terrain is very steep, the stream is very narrow and the water flows over a series of small falls. When last sampled In September 2014 this site was found to be inaccessible due to

(i) A new high wire fence with barbed wire on top running the length of the stream.

(ii) Trees and bushes cut down and allowed to fall over the stream.

The situation remains the same in September 2016. Therefore this station could not be sampled.

The site was awarded a Q3 in 2013, a pollution status of "moderate". Sensitive A group species are absent. The more tolerant C group are superabundant but mainly due to the presence of Baetis Rhodani. It is important to note that the more tolerant species from groups D and E are also absent. There had been a deterioration in status since 2012. It has not been possible to assess this site since 2013

W2: R Lee at O Brennans bridge

W2 biological station is at O'Brennan's Bridge on the River Lee about 3km downstream of W1. It also drains the Western side of the landfill including many of the surface water drains. This site merited a Q rating of 4 denoting clean unpolluted conditions. Three species of the pollution sensitive A group were found in fair numbers. There is also an absence of the more tolerant D and E groups.

This represents a slight deterioration from 2013.

E1 biological station is a small stream draining the Eastern side of the landfill. It runs through bog land. It merits a Q rating of 4-5 suggesting very good quality and a WFD status of "High". Four species of the tolerant A group are present in "Abundant/Dominant" abundance. A relatively low abundance was found in the very diverse C group. The more tolerant D and E groups are absent.

Results of chemical parameters denotes a water which complies with standards for good water quality status in accordance with surface water regulations.

E2

. **E2** biological station also drains the Eastern side of the landfill. It is a tributary of the Smearlagh River. It obtains a Q 3-4 rating indicating slight pollution. Group A is present but in small numbers. Group C falls into the "superabundant/excessive" abundance mainly due to Baetis Rhondani with other group C species being relatively low in number. The more tolerant D and E groups are absent and conditions in the river appear clean. This site has low density and biodiversity, both on this occasion and historically. It is notable that the pH is low at 5.1pH units, the dissolved iron level high at $2302\mu g/l$ and the Molybdate Reactive Phosphate at 0.1 mg/l. In 2012 Ph was 7.0 here. The only difference in this time period is some private forestry development . These may be contributing factors to the low density and biodiversity and reduced Q rating.

G1

G1 The Glashoreag River drains the Northern side of the landfill. **G1** biological station is on the Glashoreag River upstream of the Northern stream confluence. It scores a Q4-5 rating which indicates very good quality and a "High" WFD quality status. Three A group species were found in "Numerous" abundance. The more tolerant and diverse C group are

in relatively low numbers and the tolerant D and E groups are absent. These factors are significant in its rating.

Results of chemical parameters denotes a water which complies with standards for high water quality in accordance with surface water regulations

N1

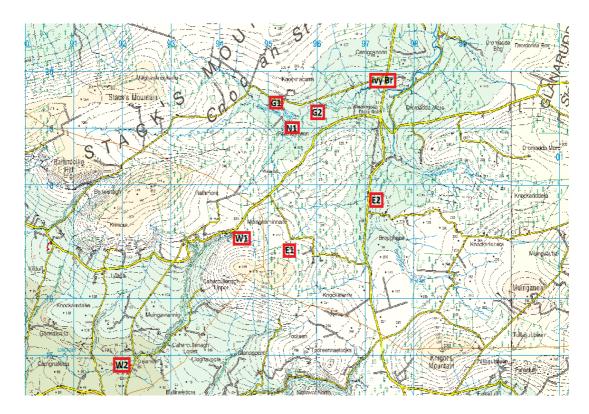
N1 biological station is situated on a small stream which drains forestry on the northern side of the landfill. For the purposes of this report it will be referred to as the Northern Stream. It is a tributary of the Glashoreag River, its confluence lying between biological stations G1 and G2. It scores a biological Q rating of 4 indicating clean unpolluted conditions. This is an improvement from earlier years since it last scored a Q value of 3 in 2014.

Results of chemical parameters denotes a water which complies with standards for good water quality status in accordance with surface water regulations.

G2 Glashoreag

G2 biological station is located on the Glashoreag River downstream of the N1 confluence. Access is through private land densely planted with trees with a heavy overgrown ditch at the access point to the river. It has always been a difficult site to access but has become inaccessible due to increased growth in the last two years. Due to this it could not be sampled. It was decided to sample further downstream at Ivy Bridge.

In recent years this site had deteriorated to Q3-4 (2014) down from 4 in 2013



The Glashoreag River at Ivy Bridge is further downstream of G2 and upstream of the confluence with the River Smearlagh. It scores a biological Q rating of 4 indicating good water quality and unpolluted conditions

Conclusion:

- Biological station W1 is inaccessible. This station has always been flagged as not very suitable for biological Q rating due to its size. It is now also inaccessible and has been since 2014. Biological station W2 on the River Lee at O'Brennan's Bridge is downstream of W1 and gives a good picture of water draining the Western side of the landfill. It is showing good unpolluted conditions with a Q4.
- The Glashoreag River is in good condition scoring a very high Q4-5 at G1 and deteriorating slightly to a Q4 at Ivy Bridge. As G2 was inaccessible we do not have a picture of the river at this point. The stream draining the Northern side of the landfill is in good condition scoring a Q4.
- E1, a small stream close to bore hole 4 is in very good condition at a Q4-5. Further downstream at E2 there is deterioration to a Q3-4. As noted the deterioration at E2 may be linked to the acidic conditions and elevated phosphate level found there.

Appendix a: Map of Sampling Stations

Accreditation Certificate

Kerry County Council

Áras an Chontae, Rathass, Tralee, Co. Kerry

Testing Laboratory

Registration number: 340T

is accredited by the Irish National Accreditation Board (INAB) to undertake testing as detailed in the Schedule bearing the Registration Number detailed above, in compliance with the International Standard ISO/IEC 17025:2005 2nd Edition

"General Requirements for the Competence of Testing and Calibration Laboratories"

(This Certificate must be read in conjunction with the Annexed Schedule of Accreditation)

Date of award of accreditation: 08:12:2015

Date of last renewal of accreditation: n/a

Expiry date of this certificate of accreditation: 08:12:2020

This Accreditation shall remain in force until further notice subject to continuing compliance with INAB accreditation criteria, ISO/IEC 17025 and any further requirements specified by the Irish National Accreditation Board.

Manager: _____ Chairperson: _____ Mr Tom O'Neill

Issued on 08 December 2015

Organisations are subject to annual surveillance and are re-assessed every five years. The renewal date on this Certificate confirms the latest date of renewal of accreditation. To confirm the validity of this Certificate, please contact the Irish National Accreditation Board.

INAB is a signatory of the European co-operation for Accreditation (EA) Multilateral Agreement (MLA) and the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement, for Testing.

The Metropolitan Building, James Joyce Street, Dublin 1, Ireland Tel 1890 289 389 E-mail inab@inab.ie Web inab@inab.ie

Schedule of Accreditation

(Annex to Accreditation Certificate)

Permanent Laboratory:

Category A

KERRY COUNTY COUNCIL LABORATORY

Chemical and BiologicaL Testing Laboratory

Initial Registration Date: 08-December-2015

Postal Address: Áras an Chontae,

(Address of other locations Rathass, as they apply)Tralee,

Co. Kerry.

 Telephone:
 +353 (66) 7183592

 Fax:
 +353 (66) 7161819

E-mail: dlenihan@kerrycoco.ie

Contact Name: David Lenihan

Facilities: Normally not available for Public testing

Schedule of Accreditation

Permanent Laboratory: Category A

THE IRISH NATIONAL ACCREDITATION BOARD (INAB) is the Irish body for the accreditation of organisations including laboratories.

Laboratory accreditation is available to testing and calibration facilities operated by manufacturing organisations, government departments, educational institutions and commercial testing/calibration services. Indeed, any organisation involved in testing, measurement or calibration in any area of technology can seek accreditation for the work it is undertaking.

Each accredited laboratory has been assessed by skilled specialist assessors and found to meet criteria which are in compliance with ISO/IEC 17025 or ISO/IEC 15189 (medical laboratories). Frequent audits, together with periodic inter-laboratory test programmes, ensure that these standards of operation are maintained.

Testing and Calibration Categories:

Category A: Permanent laboratory calibration and testing where the laboratory is erected on a fixed

location for a period expected to be greater than three years.

Category B: Site calibration and testing that is performed by staff sent out on site by a permanent

laboratory that is accredited by the Irish National Accreditation Board.

Category C: Site calibration and testing that is performed in a site/mobile laboratory or by staff sent

out by such a laboratory, the operation of which is the responsibility of a permanent

laboratory accredited by the Irish National Accreditation Board.

Category D: Site calibration and testing that is performed on site by individuals and organisations that

do not have a permanent calibration/testing laboratory. Testing may be performed using

(a) portable test equipment

(b) a site laboratory

(c) a mobile laboratory or

(d) equipment from a mobile or site laboratory

Standard Specification or Test Procedure Used:

The standard specification or test procedure that is accredited is the issue that is current on the date of the most recent visit, unless otherwise stated.

Glossary of Terms

Facilities:

Public calibration/testing service: Commercial operations which actively seek work from others.

Conditionally available for public Established for another primary purpose but, more commonly than not,

calibration/testing: is available for outside work.

Normally not available for public Unavailable for public calibration/testing more often than not.

calibration/testing:

Laboratory users wishing to obtain assurance that calibration or test results are reliable and carried out to the Irish National Accreditation Board criteria should insist on receiving an accredited calibration certificate or test report. Users should contact the laboratory directly to ensure that this scope of accreditation is current. INAB will, on request, verify the status and scope.

Kerry County Council Laboratory

Permanent Laboratory: Category A

Chemical Testing Laboratory

	lassification number (P9) als/products tested	Type of test/properties measured Range of measurement	Standard specifications Equipment/techniques used
766	Waters		Documented in-house methods based on AQKM based on HMSO-1981
.01	Waters for potable and domestic purposes	Ammonia 0.05-1 mg/L as N	541-P-004
.99	Other waters	Chloride 5-80 mg/L Cl	541-P-006
.,,,	- surface waters	Total Oxidised Nitrogen 0.5-10 mg/L as N	541-P-016
		Sulphate 5-100 mg/L SO4	541-P-024
		Nitrite 0.05 - 1 mg/L as N	541-P-018
		pH 4-10	Documented in-house method based on Standard Methods for the Examination of Water and Wastewater 22nd Edition 2012 4500-H 541-P-020
		Conductivity 15-2500 μS/cm	Documented in-house method based on Standard Methods for the Examination of Water and Wastewater 22nd Edition 2012 2510-B 541-P-011

Kerry County Council Laboratory

Permanent Laboratory:

Category A

Chemical Testing Laboratory

	lassification number (P9) als/products tested	Type of test/properties measured Range of measurement	Standard specifications Equipment/techniques used
766	Waters		
.01	Waters for potable and domestic purposes	Turbidity by nephlometric method 0.25-10 NTU	Documented in-house method based on Standard Methods for the Examination of Water and Wastewater 22nd Edition 2012 2130-B 541-P-029
		Fluoride by Ion Selective Electrode 0.1-2. mg/L F	Documented in-house method based on Standard Methods for the Examination of Water and Wastewater 22nd Edition 2012 4500-F 541-P-012
.01	Waters for potable and domestic purposes	Colour 5-100 Hazen units	Hach Method 8025 541-P-010
.99	Other waters - surface waters		
		Major Ions by ICP-MS Calcium 1-100mg/L Ca	Documented in-house method based on USEPA Method 200.8 (1999) 541-P-038

Kerry County Council Laboratory

Permanent Laboratory: Category A

Chemical Testing Laboratory

	lassification number (P9) als/products tested	Type of test/properties measured Range of measurement	Standard specifications Equipment/techniques used
766	Waters	Metals by ICP-MS	Documented in-house
			method based on USEPA
.01	Waters for potable	Arsenic 1-500µg/L As	Method 200.8 (1999)
	and domestic purposes	Chromium 1-500µg/L Cr	541-P-030
		Iron 20-1000μg/L Fe	
.99	Other waters	Manganese 1-500µg/L Mn	
	- surface waters	Nickel 10-500µg/L Ni	
		Cadmium 1-500µg/L Cd	
		Lead 1-300µg/L Pb	
		Selenium 1-500µg/L Se	
		Copper 0.002-1.0mg/L Cu	

Kerry County Council Laboratory

Permanent Laboratory:
Category A

Biological Testing Laboratory

	lassification number (P9) als/products tested	Type of test/properties measured Range of measurement	Standard specifications Equipment/techniques used		
870	Waters, including effluents		Documented in-house method based on		
.11	Bacteriological condition of potable waters	Enumeration of Coliforms & E.coli by Idexx (Colilert 18) Quanti Tray	MPN by IDEXX Colilert 18 ISO standard 9308-2:2012 541-P-031		

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Tim Supple

Address

Kerry County Council

County Buildings,

Tralee,

Tel No Customer PO Quotation No Customer Ref 066-7183592 400387348 QN006125

2016/3656

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type **104287 - 1** 104287/001 24/11/2016 24/11/2016

An Post 14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

	<u></u>	· · · · · · · · · · · · · · · · · · ·						
TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
SVOC (sub)								
1,4-Dichlorobenzene	*	Default	1.0		<1.0	ug/L	YES	
2,4,5-Trichlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4,6-Trichlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dichlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dimethylphenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dinitrotoluene	*	Default	1.0		<1.0	ug/L	YES	
2,6-Dinitrotoluene	*	Default	1.0		<1.0	ug/L	YES	
2-Chloronaphthalene	*	Default	1.0		<1.0	ug/L	YES	
2-Chlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2-Methylnaphthalene	*	Default	1.0		<1.0	ug/L	YES	
2-Methylphenol	*	Default	1.0		<1.0	ug/L	YES	
2-Nitrophenol	*	Default	1.0		<1.0	ug/L	YES	
3&4-Methylphenol	*	Default	1.0		<1.0	ug/L	YES	
4-Bromophenyl Phenyl Ether	*	Default	1.0		<1.0	ug/L	YES	
4-Chloro-3-methylphenol	*	Default	1.0		<1.0	ug/L	YES	
4-Chlorophenyl phenyl ether	*	Default	1.0		<1.0	ug/L	YES	
4-Nitrophenol	*	Default	5.0		< 5.0	ug/L	YES	
Acenaphthene	*	Default	1.0		<1.0	ug/L	YES	
Acenaphthylene	*	Default	1.0		<1.0	ug/L	YES	
Anthracene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(a)anthracene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(a)pyrene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(b)fluoranthene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(g,h,i)perylene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(k)fluoranthene	*	Default	1.0		<1.0	ug/L	YES	
Benzyl Butyl Phthalate	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chloroethoxy)methane	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chloroethyl)ether	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chloroisopropyl)ether	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-ethylhexyl)phthalate	*	Default	5.0		< 5.0	ug/L	YES	
Chrysene	*	Default	1.0		<1.0	ug/L	YES	
Dibenz(a,h)anthracene	*	Default	1.0		<1.0	ug/L	YES	
Dibenzofuran	*	Default	1.0		<1.0	ug/L	YES	
Diethylphthalate	*	Default	1.0		<1.0	ug/L	YES	
Dimethylphthalate	*	Default	1.0		<1.0	ug/L	YES	
di-n-Butylphthalate	*	Default	1.0		<1.0	ug/L	YES	
Di-n-octylphthalate	*	Default	1.0		<1.0	ug/L	YES	
Diphenylamine	*	Default	1.0		<1.0	ug/L	YES	
						-		

Donento

& libert

Signed:

14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No 066-7183592 **Customer PO** 400387348 QN006125 **Quotation No** 2016/3656 **Customer Ref**

Report Number Sample Number **Date of Receipt Date Started**

Received or Collected Date of Report Sample Type

104287 - 1 104287/001 24/11/2016 24/11/2016 An Post 14/03/2017

Ground Waters

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
SVOC (sub)								
Fluoranthene	*	Default	1.0		<1.0	ug/L	YES	
Fluorene	*	Default	1.0		<1.0	ug/L	YES	
Hexachlorobenzene	*	Default	1.0		<1.0	ug/L	YES	
Indeno(1,2,3-c,d)pyrene	*	Default	1.0		<1.0	ug/L	YES	
Isophorone	*	Default	1.0		<1.0	ug/L	YES	
n-Nitrosodi-n-propylamine	*	Default	1.0		<1.0	ug/L	YES	
Pentachlorophenol	*	Default	1.0		<1.0	ug/L	YES	
Phenanthrene	*	Default	1.0		<1.0	ug/L	YES	
Phenol	*	Default	1.0		<1.0	ug/L	YES	
Pyrene	*	Default	1.0		<1.0	ug/L	YES	
VOC Full Suite								
Dichlorodifluoromethane		EO025	10.0		<10.0	ug/L		
Chloromethane		EO025	0.5		< 0.5	ug/L		
Ethyl Chloride/Chloroethane		EO025	0.5		< 0.5	ug/L		
Vinyl Chloride		EO025	0.1		< 0.1	ug/L		
Bromomethane		EO025	0.5		< 0.5	ug/L	INAB	
Trichloromonofluoromethane		EO025	0.5		< 0.5	ug/L		
Ethyl Ether/Diethyl Ether		EO025	0.5		< 0.5	ug/L	INAB	
11 Dichloroethene		EO025	0.5		< 0.5	ug/L	INAB	
Acetone		EO025	2.0		< 2.0	ug/L		
Iodomethane/Methyl Iodide		EO025	0.5		< 0.5	ug/L	INAB	
Carbon Disulphide		EO025	0.5		< 0.5	ug/L	INAB	
Dichloromethane		EO025	5.0		< 5.0	ug/L	INAB	
2-Propenenitrile/Acrylonitrile		EO025	2.0		< 2.0	ug/L	INAB	
Chlormethyl Cyanide/Chloroacetonitrile		EO025	0.5		< 0.5	ug/L	INAB	
Nitrobenzene		EO025	0.5		< 0.5	ug/L		
Propanenitrile		EO025	10		<10	ug/L		
Hexachlorobutadiene		EO025	0.5		< 0.5	ug/L	INAB	
Trans-1,2 Dichloroethene		EO025	0.5		< 0.5	ug/L	INAB	
MtBE		EO025	0.5		< 0.5	ug/L	INAB	
1,1-dichloroethane		EO025	0.5		< 0.5	ug/L	INAB	
2,2-dichloropropane		EO025	0.5		< 0.5	ug/L		
cis-12 Dichloroethene		EO025	0.5		4.6	ug/L	INAB	
2-Butanone		EO025	5.0		< 5.0	ug/L		
Methyl Acrylate		EO025	0.5		< 0.5	ug/L	INAB	
Bromochloromethane		EO025	0.5		< 0.5	ug/L	INAB	
Methacrylonitrile		EO025	5.0		< 5.0	ug/L		
Tetrahydrofuran		EO025	0.5		< 0.5	ug/L	INAB	
Chloroform		EO025	1.0		<1.0	ug/L	INAB	

Signed:

flibert.

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Tim Supple **Contact Name**

Kerry County Council **Address**

County Buildings,

Tralee,

066-7183592 Tel No **Customer PO** 400387348 QN006125 **Quotation No** 2016/3656 **Customer Ref**

Report Number Sample Number **Date of Receipt Date Started**

Received or Collected Date of Report Sample Type

104287 - 1 104287/001 24/11/2016 24/11/2016 An Post 14/03/2017 **Ground Waters**

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
OC Full Suite								
1,1,1-trichloroethane		EO025	0.5		< 0.5	ug/L	INAB	
1-Chlorobutane		EO025	0.5		< 0.5	ug/L	INAB	
Carbon Tetrachloride		EO025	0.5		< 0.5	ug/L	INAB	
11 Dichloropropene		EO025	0.5		< 0.5	ug/L	INAB	
Benzene		EO025	0.1		< 0.1	ug/L	INAB	
1,2 dicloroethane		EO025	0.1		< 0.1	ug/L	INAB	
Trichloroethene		EO025	0.1		< 0.1	ug/L	INAB	
1,2-dichloropropane		EO025	0.5		< 0.5	ug/L	INAB	
Dibromomethane		EO025	0.5		< 0.5	ug/L	INAB	
Methyl Methacrylate		EO025	0.5		< 0.5	ug/L	INAB	
Bromodichloromethane		EO025	2.0		< 2.0	ug/L	INAB	
13 Dichloropropene,cis		EO025	2.0		< 2.0	ug/L	INAB	
MIBK/4 Methyl 2 Pentanone		EO025	2.0		< 2.0	ug/L	INAB	
Toluene		EO025	0.5		< 0.5	ug/L	INAB	
13 Dichloropropene,trans		EO025	2.0		< 2.0	ug/L	INAB	
Ethyl Methacrylate		EO025	2.0		< 2.0	ug/L	INAB	
112 Trichloroethane		EO025	0.5		< 0.5	ug/L	INAB	
Tetrachloroethene		EO025	0.1		< 0.1	ug/L	INAB	
1,3-dichloropropane		EO025	0.5		< 0.5	ug/L	INAB	
2-Hexanone		EO025	1.0		<1.0	ug/L	INAB	
Dibromochloromethane		EO025	1.0		<1.0	ug/L	INAB	
1,2-dibromoethane		EO025	0.5		< 0.5	ug/L	INAB	
Chlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,1,1,2-tetrachloroethane		EO025	2.0		< 2.0	ug/L	INAB	
Ethylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
Xylene P&M		EO025	0.5		< 0.5	ug/L	INAB	
Xylene -o		EO025	0.5		< 0.5	ug/L	INAB	
Styrene		EO025	2.0		< 2.0	ug/L	INAB	
Bromoform		EO025	1.0		<1.0	ug/L	INAB	
Isopropylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
Bromobenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,1,2,2-tetrachloroethane		EO025	0.5		< 0.5	ug/L	INAB	
1,2,3-trichloropropane		EO025	2.0		< 2.0	ug/L	INAB	
Trans 14 Dichloro 2 Butene, tran		EO025	2.0		< 2.0	ug/L		
Propylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
2-chlorotoluene		EO025	0.5		< 0.5	ug/L	INAB	
4-chlorotoluene		EO025	0.5		< 0.5	ug/L	INAB	
1,3,5-trimethylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
Tert Butyl Benzene		EO025	0.5		< 0.5	ug/L	INAB	

flibert.

Domenico Giliberti-Technical Manager

NOTES

Signed:

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No Customer PO Quotation No Customer Ref 066-7183592 400387348 QN006125

2016/3656

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104287 - 1 104287/001 24/11/2016 24/11/2016 An Post 14/03/2017

Ground Waters

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
VOC Ful	l Suite								
1,2,4-tri	methylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
sec-buty	lbenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,3-dich	lorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
P Isopro	pyltoluene		EO025	0.5		< 0.5	ug/L	INAB	
1,4-dich	lorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,2-dich	lorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
N Butyl	Benzene		EO025	0.5		< 0.5	ug/L	INAB	
Hexachl	oroethane		EO025	5.0		< 5.0	ug/L	INAB	
1,2-dibre	omo-3-chloropropane		EO025	2.0		< 2.0	ug/L	INAB	
1,2,4-tri	chlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
Naphtha	lene		EO025	2.0		<2.0	ug/L		
1,2,3-tri	chlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	

Signed:

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name Address Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3657

 Report Number
 104287 - 1

 Sample Number
 104287/002

 Date of Receipt
 24/11/2016

 Date Started
 24/11/2016

Received or Collected An Post
Date of Report 14/03/2017
Sample Type Ground Waters

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
SVOC (sub)								
1,4-Dichlorobenzene	*	Default	1.0		<1.0	ug/L	YES	
2,4,5-Trichlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4,6-Trichlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dichlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dimethylphenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dinitrotoluene	*	Default	1.0		<1.0	ug/L	YES	
2,6-Dinitrotoluene	*	Default	1.0		<1.0	ug/L	YES	
2-Chloronaphthalene	*	Default	1.0		<1.0	ug/L	YES	
2-Chlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2-Methylnaphthalene	*	Default	1.0		<1.0	ug/L	YES	
2-Methylphenol	*	Default	1.0		<1.0	ug/L	YES	
2-Nitrophenol	*	Default	1.0		<1.0	ug/L	YES	
3&4-Methylphenol	*	Default	1.0		<1.0	ug/L	YES	
4-Bromophenyl Phenyl Ether	*	Default	1.0		<1.0	ug/L	YES	
4-Chloro-3-methylphenol	*	Default	1.0		<1.0	ug/L	YES	
4-Chlorophenyl phenyl ether	*	Default	1.0		<1.0	ug/L	YES	
4-Nitrophenol	*	Default	5.0		< 5.0	ug/L	YES	
Acenaphthene	*	Default	1.0		<1.0	ug/L	YES	
Acenaphthylene	*	Default	1.0		<1.0	ug/L	YES	
Anthracene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(a)anthracene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(a)pyrene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(b)fluoranthene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(g,h,i)perylene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(k)fluoranthene	*	Default	1.0		<1.0	ug/L	YES	
Benzyl Butyl Phthalate	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chloroethoxy)methane	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chloroethyl)ether	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chloroisopropyl)ether	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-ethylhexyl)phthalate	*	Default	5.0		< 5.0	ug/L	YES	
Chrysene	*	Default	1.0		<1.0	ug/L	YES	
Dibenz(a,h)anthracene	*	Default	1.0		<1.0	ug/L	YES	
Dibenzofuran	*	Default	1.0		<1.0	ug/L	YES	
Diethylphthalate	*	Default	1.0		<1.0	ug/L	YES	
Dimethylphthalate	*	Default	1.0		<1.0	ug/L	YES	
di-n-Butylphthalate	*	Default	1.0		<1.0	ug/L	YES	
Di-n-octylphthalate	*	Default	1.0		<1.0	ug/L	YES	
Diphenylamine	*	Default	1.0		<1.0	ug/L	YES	
Fluoranthene	*	Default	1.0		<1.0	ug/L	YES	

Donento

flibert.

Signed:

14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name Address Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3657

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104287 - 1 104287/002 24/11/2016 24/11/2016

An Post 14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
SVOC (sub)								
Fluorene	*	Default	1.0		<1.0	ug/L	YES	
Hexachlorobenzene	*	Default	1.0		<1.0	ug/L	YES	
Indeno(1,2,3-c,d)pyrene	*	Default	1.0		<1.0	ug/L	YES	
Isophorone	*	Default	1.0		<1.0	ug/L	YES	
n-Nitrosodi-n-propylamine	*	Default	1.0		<1.0	ug/L	YES	
Pentachlorophenol	*	Default	1.0		<1.0	ug/L	YES	
Phenanthrene	*	Default	1.0		<1.0	ug/L	YES	
Phenol	*	Default	1.0		<1.0	ug/L	YES	
Pyrene	*	Default	1.0		<1.0	ug/L	YES	
VOC Full Suite						-		
Dichlorodifluoromethane		EO025	10.0		<10.0	ug/L		
Chloromethane		EO025	0.5		< 0.5	ug/L		
Ethyl Chloride/Chloroethane		EO025	0.5		< 0.5	ug/L		
Vinyl Chloride		EO025	0.1		< 0.1	ug/L		
Bromomethane		EO025	0.5		< 0.5	ug/L	INAB	
Trichloromonofluoromethane		EO025	0.5		< 0.5	ug/L		
Ethyl Ether/Diethyl Ether		EO025	0.5		< 0.5	ug/L	INAB	
11 Dichloroethene		EO025	0.5		< 0.5	ug/L	INAB	
Acetone		EO025	2.0		< 2.0	ug/L		
Iodomethane/Methyl Iodide		EO025	0.5		< 0.5	ug/L	INAB	
Carbon Disulphide		EO025	0.5		< 0.5	ug/L	INAB	
Dichloromethane		EO025	5.0		< 5.0	ug/L	INAB	
2-Propenenitrile/Acrylonitrile		EO025	2.0		< 2.0	ug/L	INAB	
Chlormethyl Cyanide/Chloroacetonitrile		EO025	0.5		< 0.5	ug/L	INAB	
Nitrobenzene		EO025	0.5		< 0.5	ug/L		
Propanenitrile		EO025	10		<10	ug/L		
Hexachlorobutadiene		EO025	0.5		< 0.5	ug/L	INAB	
Trans-1,2 Dichloroethene		EO025	0.5		< 0.5	ug/L	INAB	
MtBE		EO025	0.5		< 0.5	ug/L	INAB	
1,1-dichloroethane		EO025	0.5		< 0.5	ug/L	INAB	
2,2-dichloropropane		EO025	0.5		< 0.5	ug/L		
cis-12 Dichloroethene		EO025	0.5		5.2	ug/L	INAB	
2-Butanone		EO025	5.0		< 5.0	ug/L		
Methyl Acrylate		EO025	0.5		< 0.5	ug/L	INAB	
Bromochloromethane		EO025	0.5		< 0.5	ug/L	INAB	
Methacrylonitrile		EO025	5.0		< 5.0	ug/L		
Tetrahydrofuran		EO025	0.5		< 0.5	ug/L	INAB	
Chloroform		EO025	1.0		<1.0	ug/L	INAB	
1,1,1-trichloroethane		EO025	0.5		< 0.5	ug/L	INAB	

Dovento

flibert.

Signed:

14/03/2017

Domenico Giliberti-Technical Manager

NOTES

- 1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value
- 3.OOS=Result which is outside specification highlighted as OOS-A
- 4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited
- 6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Tim Supple

Address

Kerry County Council

County Buildings,

Tralee,

Tel No Customer PO Quotation No 066-7183592 400387348

Quotation No QN006125 **Customer Ref** QN006125 Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type **104287 - 1** 104287/002 24/11/2016 24/11/2016

An Post 14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

EST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
OC Full Su	iite								
1-Chlorobuta	ine		EO025	0.5		< 0.5	ug/L	INAB	
Carbon Tetra	chloride		EO025	0.5		< 0.5	ug/L	INAB	
11 Dichlorop	ropene		EO025	0.5		< 0.5	ug/L	INAB	
Benzene	-		EO025	0.1		< 0.1	ug/L	INAB	
1,2 dicloroeth	hane		EO025	0.1		< 0.1	ug/L	INAB	
Trichloroethe	ene		EO025	0.1		< 0.1	ug/L	INAB	
1,2-dichlorop	propane		EO025	0.5		< 0.5	ug/L	INAB	
Dibromometl	hane		EO025	0.5		< 0.5	ug/L	INAB	
Methyl Meth	acrylate		EO025	0.5		< 0.5	ug/L	INAB	
Bromodichlo	romethane		EO025	2.0		< 2.0	ug/L	INAB	
13 Dichlorop	ropene,cis		EO025	2.0		< 2.0	ug/L	INAB	
MIBK/4 Met	hyl 2 Pentanone		EO025	2.0		< 2.0	ug/L	INAB	
Toluene			EO025	0.5		< 0.5	ug/L	INAB	
13 Dichlorop	ropene,trans		EO025	2.0		< 2.0	ug/L	INAB	
Ethyl Methac	crylate		EO025	2.0		< 2.0	ug/L	INAB	
112 Trichloro	pethane		EO025	0.5		< 0.5	ug/L	INAB	
Tetrachloroet	thene		EO025	0.1		< 0.1	ug/L	INAB	
1,3-dichlorop	propane		EO025	0.5		< 0.5	ug/L	INAB	
2-Hexanone			EO025	1.0		<1.0	ug/L	INAB	
Dibromochlo	romethane		EO025	1.0		<1.0	ug/L	INAB	
1,2-dibromoe	ethane		EO025	0.5		< 0.5	ug/L	INAB	
Chlorobenzer	ne		EO025	0.5		< 0.5	ug/L	INAB	
1,1,1,2-tetrac	chloroethane		EO025	2.0		< 2.0	ug/L	INAB	
Ethylbenzene	e		EO025	0.5		< 0.5	ug/L	INAB	
Xylene P&M			EO025	0.5		< 0.5	ug/L	INAB	
Xylene -o			EO025	0.5		< 0.5	ug/L	INAB	
Styrene			EO025	2.0		< 2.0	ug/L	INAB	
Bromoform			EO025	1.0		<1.0	ug/L	INAB	
Isopropylben	zene		EO025	0.5		< 0.5	ug/L	INAB	
Bromobenzer	ne		EO025	0.5		< 0.5	ug/L	INAB	
1,1,2,2-tetrac	chloroethane		EO025	0.5		< 0.5	ug/L	INAB	
1,2,3-trichlor	ropropane		EO025	2.0		< 2.0	ug/L	INAB	
Trans 14 Dic	hloro 2 Butene, tran		EO025	2.0		< 2.0	ug/L		
Propylbenzer	ne		EO025	0.5		< 0.5	ug/L	INAB	
2-chlorotolue	ene		EO025	0.5		< 0.5	ug/L	INAB	
4-chlorotolue	ene		EO025	0.5		< 0.5	ug/L	INAB	
1,3,5-trimeth	ylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
Tert Butyl Be	~		EO025	0.5		< 0.5	ug/L	INAB	
	ylbenzene		EO025	0.5		< 0.5	ug/L	INAB	

Donento

flibert.

Domenico Giliberti-Technical Manager

14/03/2017

NOTES

Signed:

- 1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value
- 3.OOS=Result which is outside specification highlighted as OOS-A
- 4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited
- 6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No Customer PO Quotation No Customer Ref 066-7183592 400387348 QN006125

2016/3657

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104287/002 24/11/2016 24/11/2016 An Post 14/03/2017

Ground Waters

104287 - 1

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
VOC Full	l Suite								
sec-butyl	lbenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,3-dichl	lorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
P Isoprop	pyltoluene		EO025	0.5		< 0.5	ug/L	INAB	
1,4-dichl	lorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,2-dichl	lorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
N Butyl	Benzene		EO025	0.5		< 0.5	ug/L	INAB	
Hexachlo	oroethane		EO025	5.0		< 5.0	ug/L	INAB	
1,2-dibro	omo-3-chloropropane		EO025	2.0		<2.0	ug/L	INAB	
1,2,4-tric	chlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
Naphtha	lene		EO025	2.0		<2.0	ug/L		
1,2,3-tric	chlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	

Signed:

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

104287 - 1

104287/003

24/11/2016

24/11/2016

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3659

Report Number Sample Number Date of Receipt Date Started

Received or Collected An Post
Date of Report 14/03/2017
Sample Type Ground Waters

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
SVOC (su	ıb)								
1,4-Dich	lorobenzene	*	Default	1.0		<1.0	ug/L	YES	
2,4,5-Tri	chlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4,6-Tri	chlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dich	lorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dime	ethylphenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dinit	rotoluene	*	Default	1.0		<1.0	ug/L	YES	
	rotoluene	*	Default	1.0		<1.0	ug/L	YES	
2-Chloro	naphthalene	*	Default	1.0		<1.0	ug/L	YES	
2-Chloro	phenol	*	Default	1.0		<1.0	ug/L	YES	
2-Methyl	naphthalene	*	Default	1.0		<1.0	ug/L	YES	
2-Methyl	phenol	*	Default	1.0		<1.0	ug/L	YES	
2-Nitropl	nenol	*	Default	1.0		<1.0	ug/L	YES	
3&4-Met	hylphenol	*	Default	1.0		<1.0	ug/L	YES	
4-Bromo	phenyl Phenyl Ether	*	Default	1.0		<1.0	ug/L	YES	
4-Chloro	-3-methylphenol	*	Default	1.0		<1.0	ug/L	YES	
4-Chloro	phenyl phenyl ether	*	Default	1.0		<1.0	ug/L	YES	
4-Nitropl	nenol	*	Default	5.0		< 5.0	ug/L	YES	
Acenaph	thene	*	Default	1.0		<1.0	ug/L	YES	
Acenaph	thylene	*	Default	1.0		<1.0	ug/L	YES	
Anthrace	ne	*	Default	1.0		<1.0	ug/L	YES	
Benzo(a)	anthracene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(a)	pyrene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(b)	fluoranthene	*	Default	1.0		<1.0	ug/L	YES	
	h,i)perylene	*	Default	1.0		<1.0	ug/L	YES	
	fluoranthene	*	Default	1.0		<1.0	ug/L	YES	
Benzyl B	utyl Phthalate	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chl	oroethoxy)methane	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chl	oroethyl)ether	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chl	oroisopropyl)ether	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-eth	ylhexyl)phthalate	*	Default	5.0		< 5.0	ug/L	YES	
Chrysene		*	Default	1.0		<1.0	ug/L	YES	
Dibenz(a	,h)anthracene	*	Default	1.0		<1.0	ug/L	YES	
Dibenzof	uran	*	Default	1.0		<1.0	ug/L	YES	
Diethylpl	nthalate	*	Default	1.0		<1.0	ug/L	YES	
	phthalate	*	Default	1.0		<1.0	ug/L	YES	
	ylphthalate	*	Default	1.0		<1.0	ug/L	YES	
	lphthalate	*	Default	1.0		<1.0	ug/L	YES	
Diphenyl		*	Default	1.0		<1.0	ug/L	YES	
Fluoranth		*	Default	1.0		<1.0	ug/L	YES	
Fluoranti	nene	•	Default	1.0		<1.0	ug/L	YES	

Donento

flibert.

Domenico Giliberti-Technical Manager

NOTES

Signed:

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

104287 - 1

104287/003

24/11/2016

24/11/2016

Contact Name Address Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3659

Report Number Sample Number Date of Receipt Date Started

Received or Collected An Post
Date of Report 14/03/2017
Sample Type Ground Waters

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
SVOC (sub)								
Fluorene	*	Default	1.0		<1.0	ug/L	YES	
Hexachlorobenzene	*	Default	1.0		<1.0	ug/L	YES	
Indeno(1,2,3-c,d)pyrene	*	Default	1.0		<1.0	ug/L	YES	
Isophorone	*	Default	1.0		<1.0	ug/L	YES	
n-Nitrosodi-n-propylamine	*	Default	1.0		<1.0	ug/L	YES	
Pentachlorophenol	*	Default	1.0		<1.0	ug/L	YES	
Phenanthrene	*	Default	1.0		<1.0	ug/L	YES	
Phenol	*	Default	1.0		<1.0	ug/L	YES	
Pyrene	*	Default	1.0		<1.0	ug/L	YES	
VOC Full Suite								
Dichlorodifluoromethane		EO025	10.0		<10.0	ug/L		
Chloromethane		EO025	0.5		< 0.5	ug/L		
Ethyl Chloride/Chloroethane		EO025	0.5		< 0.5	ug/L		
Vinyl Chloride		EO025	0.1		< 0.1	ug/L		
Bromomethane		EO025	0.5		< 0.5	ug/L	INAB	
Trichloromonofluoromethane		EO025	0.5		< 0.5	ug/L		
Ethyl Ether/Diethyl Ether		EO025	0.5		< 0.5	ug/L	INAB	
11 Dichloroethene		EO025	0.5		< 0.5	ug/L	INAB	
Acetone		EO025	2.0		< 2.0	ug/L		
Iodomethane/Methyl Iodide		EO025	0.5		< 0.5	ug/L	INAB	
Carbon Disulphide		EO025	0.5		< 0.5	ug/L	INAB	
Dichloromethane		EO025	5.0		< 5.0	ug/L	INAB	
2-Propenenitrile/Acrylonitrile		EO025	2.0		<2.0	ug/L	INAB	
Chlormethyl Cyanide/Chloroacetonitrile		EO025	0.5		< 0.5	ug/L	INAB	
Nitrobenzene		EO025	0.5		< 0.5	ug/L		
Propanenitrile		EO025	10		<10	ug/L		
Hexachlorobutadiene		EO025	0.5		< 0.5	ug/L	INAB	
Trans-1,2 Dichloroethene		EO025	0.5		< 0.5	ug/L	INAB	
MtBE		EO025	0.5		< 0.5	ug/L	INAB	
1,1-dichloroethane		EO025	0.5		< 0.5	ug/L	INAB	
2,2-dichloropropane		EO025	0.5		< 0.5	ug/L		
cis-12 Dichloroethene		EO025	0.5		4.2	ug/L	INAB	
2-Butanone		EO025	5.0		< 5.0	ug/L		
Methyl Acrylate		EO025	0.5		< 0.5	ug/L	INAB	
Bromochloromethane		EO025	0.5		< 0.5	ug/L	INAB	
Methacrylonitrile		EO025	5.0		< 5.0	ug/L		
Tetrahydrofuran		EO025	0.5		< 0.5	ug/L	INAB	
Chloroform		EO025	1.0		<1.0	ug/L	INAB	
1,1,1-trichloroethane		EO025	0.5		< 0.5	ug/L	INAB	
						-		

Donenco

flibert.

Domenico Giliberti-Technical Manager

14/03/2017

NOTES

Signed:

- 1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value
- 3.OOS=Result which is outside specification highlighted as OOS-A
- 4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited
- 6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3659

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type **104287 - 1** 104287/003 24/11/2016 24/11/2016

An Post 14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

EST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	00
OC Full Suite								
1-Chlorobutane		EO025	0.5		< 0.5	ug/L	INAB	
Carbon Tetrachloride		EO025	0.5		< 0.5	ug/L	INAB	
11 Dichloropropene		EO025	0.5		< 0.5	ug/L	INAB	
Benzene		EO025	0.1		< 0.1	ug/L	INAB	
1,2 dicloroethane		EO025	0.1		< 0.1	ug/L	INAB	
Trichloroethene		EO025	0.1		< 0.1	ug/L	INAB	
1,2-dichloropropane		EO025	0.5		< 0.5	ug/L	INAB	
Dibromomethane		EO025	0.5		< 0.5	ug/L	INAB	
Methyl Methacrylate		EO025	0.5		< 0.5	ug/L	INAB	
Bromodichloromethane		EO025	2.0		< 2.0	ug/L	INAB	
13 Dichloropropene,cis		EO025	2.0		< 2.0	ug/L	INAB	
MIBK/4 Methyl 2 Pentanone		EO025	2.0		< 2.0	ug/L	INAB	
Toluene		EO025	0.5		< 0.5	ug/L	INAB	
13 Dichloropropene,trans		EO025	2.0		<2.0	ug/L	INAB	
Ethyl Methacrylate		EO025	2.0		< 2.0	ug/L	INAB	
112 Trichloroethane		EO025	0.5		< 0.5	ug/L	INAB	
Tetrachloroethene		EO025	0.1		< 0.1	ug/L	INAB	
1,3-dichloropropane		EO025	0.5		< 0.5	ug/L	INAB	
2-Hexanone		EO025	1.0		<1.0	ug/L	INAB	
Dibromochloromethane		EO025	1.0		<1.0	ug/L	INAB	
1,2-dibromoethane		EO025	0.5		< 0.5	ug/L	INAB	
Chlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,1,1,2-tetrachloroethane		EO025	2.0		<2.0	ug/L	INAB	
Ethylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
Xylene P&M		EO025	0.5		< 0.5	ug/L	INAB	
Xylene -o		EO025	0.5		< 0.5	ug/L	INAB	
Styrene		EO025	2.0		<2.0	ug/L	INAB	
Bromoform		EO025	1.0		<1.0	ug/L	INAB	
Isopropylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
Bromobenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,1,2,2-tetrachloroethane		EO025	0.5		< 0.5	ug/L	INAB	
1,2,3-trichloropropane		EO025	2.0		<2.0	ug/L	INAB	
Trans 14 Dichloro 2 Butene, tran		EO025	2.0		< 2.0	ug/L		
Propylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
2-chlorotoluene		EO025	0.5		< 0.5	ug/L	INAB	
4-chlorotoluene		EO025	0.5		< 0.5	ug/L	INAB	
1,3,5-trimethylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
Tert Butyl Benzene		EO025	0.5		<0.5	ug/L	INAB	
1,2,4-trimethylbenzene		EO025	0.5		<0.5	ug/L	INAB	

Signed:

flibert.

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name Address Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3659

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104287/003 24/11/2016 24/11/2016 An Post

104287 - 1

14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
VOC Ful	l Suite								
sec-buty	lbenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,3-dich	lorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
P Isopro	pyltoluene		EO025	0.5		< 0.5	ug/L	INAB	
1,4-dich	lorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,2-dich	lorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
N Butyl	Benzene		EO025	0.5		< 0.5	ug/L	INAB	
Hexachle	oroethane		EO025	5.0		< 5.0	ug/L	INAB	
1,2-dibro	omo-3-chloropropane		EO025	2.0		<2.0	ug/L	INAB	
1,2,4-trio	chlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
Naphtha	lene		EO025	2.0		<2.0	ug/L		
1,2,3-trio	chlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No O
Customer PO 4
Quotation No Customer Ref 2

066-7183592 400387348 QN006125

QN006125 2016/3661 Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type **104287 - 1** 104287/004 24/11/2016

24/11/2016

An Post 14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
SVOC (sub)								
1,4-Dichlorobenzene	*	Default	1.0		<1.0	ug/L	YES	
2,4,5-Trichlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4,6-Trichlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dichlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dimethylphenol	*	Default	1.0		<1.0	ug/L	YES	
2,4-Dinitrotoluene	*	Default	1.0		<1.0	ug/L	YES	
2,6-Dinitrotoluene	*	Default	1.0		<1.0	ug/L	YES	
2-Chloronaphthalene	*	Default	1.0		<1.0	ug/L	YES	
2-Chlorophenol	*	Default	1.0		<1.0	ug/L	YES	
2-Methylnaphthalene	*	Default	1.0		<1.0	ug/L	YES	
2-Methylphenol	*	Default	1.0		<1.0	ug/L	YES	
2-Nitrophenol	*	Default	1.0		<1.0	ug/L	YES	
3&4-Methylphenol	*	Default	1.0		<1.0	ug/L	YES	
4-Bromophenyl Phenyl Ether	*	Default	1.0		<1.0	ug/L	YES	
4-Chloro-3-methylphenol	*	Default	1.0		<1.0	ug/L	YES	
4-Chlorophenyl phenyl ether	*	Default	1.0		<1.0	ug/L	YES	
4-Nitrophenol	*	Default	5.0		< 5.0	ug/L	YES	
Acenaphthene	*	Default	1.0		<1.0	ug/L	YES	
Acenaphthylene	*	Default	1.0		<1.0	ug/L	YES	
Anthracene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(a)anthracene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(a)pyrene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(b)fluoranthene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(g,h,i)perylene	*	Default	1.0		<1.0	ug/L	YES	
Benzo(k)fluoranthene	*	Default	1.0		<1.0	ug/L	YES	
Benzyl Butyl Phthalate	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chloroethoxy)methane	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chloroethyl)ether	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-chloroisopropyl)ether	*	Default	1.0		<1.0	ug/L	YES	
Bis(2-ethylhexyl)phthalate	*	Default	5.0		< 5.0	ug/L	YES	
Chrysene	*	Default	1.0		<1.0	ug/L	YES	
Dibenz(a,h)anthracene	*	Default	1.0		<1.0	ug/L	YES	
Dibenzofuran	*	Default	1.0		<1.0	ug/L	YES	
Diethylphthalate	*	Default	1.0		<1.0	ug/L	YES	
Dimethylphthalate	*	Default	1.0		<1.0	ug/L	YES	
di-n-Butylphthalate	*	Default	1.0		<1.0	ug/L	YES	
Di-n-octylphthalate	*	Default	1.0		<1.0	ug/L	YES	
Diphenylamine	*	Default	1.0		<1.0	ug/L	YES	
Fluoranthene	*	Default	1.0		<1.0	ug/L	YES	

Signed:

flibert.

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

066-7183592 Tel No **Customer PO** 400387348 QN006125 **Quotation No Customer Ref** 2016/3661

Report Number Sample Number **Date of Receipt Date Started**

Received or Collected Date of Report Sample Type

104287 - 1 104287/004 24/11/2016 24/11/2016 An Post 14/03/2017 **Ground Waters**

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
VOC (sub)								
Fluorene	*	Default	1.0		<1.0	ug/L	YES	
Hexachlorobenzene	*	Default	1.0		<1.0	ug/L	YES	
Indeno(1,2,3-c,d)pyrene	*	Default	1.0		<1.0	ug/L	YES	
Isophorone	*	Default	1.0		<1.0	ug/L	YES	
n-Nitrosodi-n-propylamine	*	Default	1.0		<1.0	ug/L	YES	
Pentachlorophenol	*	Default	1.0		<1.0	ug/L	YES	
Phenanthrene	*	Default	1.0		<1.0	ug/L	YES	
Phenol	*	Default	1.0		<1.0	ug/L	YES	
Pyrene	*	Default	1.0		<1.0	ug/L	YES	
OC Full Suite								
Dichlorodifluoromethane		EO025	10.0		<10.0	ug/L		
Chloromethane		EO025	0.5		< 0.5	ug/L		
Ethyl Chloride/Chloroethane		EO025	0.5		< 0.5	ug/L		
Vinyl Chloride		EO025	0.1		< 0.1	ug/L		
Bromomethane		EO025	0.5		< 0.5	ug/L	INAB	
Trichloromonofluoromethane		EO025	0.5		< 0.5	ug/L		
Ethyl Ether/Diethyl Ether		EO025	0.5		< 0.5	ug/L	INAB	
11 Dichloroethene		EO025	0.5		< 0.5	ug/L	INAB	
Acetone		EO025	2.0		<2.0	ug/L		
Iodomethane/Methyl Iodide		EO025	0.5		< 0.5	ug/L	INAB	
Carbon Disulphide		EO025	0.5		< 0.5	ug/L	INAB	
Dichloromethane		EO025	5.0		< 5.0	ug/L	INAB	
2-Propenenitrile/Acrylonitrile		EO025	2.0		<2.0	ug/L	INAB	
Chlormethyl Cyanide/Chloroacetonitrile		EO025	0.5		< 0.5	ug/L	INAB	
Nitrobenzene		EO025	0.5		< 0.5	ug/L		
Propanenitrile		EO025	10		<10	ug/L		
Hexachlorobutadiene		EO025	0.5		< 0.5	ug/L	INAB	
Trans-1,2 Dichloroethene		EO025	0.5		< 0.5	ug/L	INAB	
MtBE		EO025	0.5		< 0.5	ug/L	INAB	
1,1-dichloroethane		EO025	0.5		< 0.5	ug/L	INAB	
2,2-dichloropropane		EO025	0.5		< 0.5	ug/L		
cis-12 Dichloroethene		EO025	0.5		4.2	ug/L	INAB	
2-Butanone		EO025	5.0		< 5.0	ug/L		
Methyl Acrylate		EO025	0.5		< 0.5	ug/L	INAB	
Bromochloromethane		EO025	0.5		< 0.5	ug/L	INAB	
Methacrylonitrile		EO025	5.0		<5.0	ug/L		
Tetrahydrofuran		EO025	0.5		< 0.5	ug/L	INAB	
Chloroform		EO025	1.0		<1.0	ug/L	INAB	
1,1,1-trichloroethane		EO025	0.5		< 0.5	ug/L	INAB	

flibert.

Domenico Giliberti-Technical Manager

NOTES

Signed:

- 1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value
- 3.OOS=Result which is outside specification highlighted as OOS-A
- 4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited
- 6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

066-7183592 Tel No **Customer PO** 400387348 QN006125 **Quotation No Customer Ref** 2016/3661

Report Number Sample Number **Date of Receipt Date Started**

Received or Collected Date of Report Sample Type

104287 - 1 104287/004 24/11/2016 24/11/2016 An Post 14/03/2017

Ground Waters

CERTIFICATE OF ANALYSIS

EST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	00
OC Full Suite								
1-Chlorobutane		EO025	0.5		< 0.5	ug/L	INAB	
Carbon Tetrachloride		EO025	0.5		< 0.5	ug/L	INAB	
11 Dichloropropene		EO025	0.5		< 0.5	ug/L	INAB	
Benzene		EO025	0.1		< 0.1	ug/L	INAB	
1,2 dicloroethane		EO025	0.1		< 0.1	ug/L	INAB	
Trichloroethene		EO025	0.1		< 0.1	ug/L	INAB	
1,2-dichloropropane		EO025	0.5		< 0.5	ug/L	INAB	
Dibromomethane		EO025	0.5		< 0.5	ug/L	INAB	
Methyl Methacrylate		EO025	0.5		< 0.5	ug/L	INAB	
Bromodichloromethane		EO025	2.0		< 2.0	ug/L	INAB	
13 Dichloropropene,cis		EO025	2.0		< 2.0	ug/L	INAB	
MIBK/4 Methyl 2 Pentanone		EO025	2.0		< 2.0	ug/L	INAB	
Toluene		EO025	0.5		< 0.5	ug/L	INAB	
13 Dichloropropene,trans		EO025	2.0		<2.0	ug/L	INAB	
Ethyl Methacrylate		EO025	2.0		< 2.0	ug/L	INAB	
112 Trichloroethane		EO025	0.5		< 0.5	ug/L	INAB	
Tetrachloroethene		EO025	0.1		< 0.1	ug/L	INAB	
1,3-dichloropropane		EO025	0.5		< 0.5	ug/L	INAB	
2-Hexanone		EO025	1.0		<1.0	ug/L	INAB	
Dibromochloromethane		EO025	1.0		<1.0	ug/L	INAB	
1,2-dibromoethane		EO025	0.5		< 0.5	ug/L	INAB	
Chlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,1,1,2-tetrachloroethane		EO025	2.0		<2.0	ug/L	INAB	
Ethylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
Xylene P&M		EO025	0.5		< 0.5	ug/L	INAB	
Xylene -o		EO025	0.5		< 0.5	ug/L	INAB	
Styrene		EO025	2.0		<2.0	ug/L	INAB	
Bromoform		EO025	1.0		<1.0	ug/L	INAB	
Isopropylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
Bromobenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,1,2,2-tetrachloroethane		EO025	0.5		< 0.5	ug/L	INAB	
1,2,3-trichloropropane		EO025	2.0		<2.0	ug/L	INAB	
Trans 14 Dichloro 2 Butene, tran		EO025	2.0		< 2.0	ug/L		
Propylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
2-chlorotoluene		EO025	0.5		< 0.5	ug/L	INAB	
4-chlorotoluene		EO025	0.5		< 0.5	ug/L	INAB	
1,3,5-trimethylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
Tert Butyl Benzene		EO025	0.5		<0.5	ug/L	INAB	
1,2,4-trimethylbenzene		EO025	0.5		< 0.5	ug/L	INAB	

Signed:

flibert.

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

6."*" Indicates sub-contract test

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Tim Supple **Address**

Kerry County Council

County Buildings,

Tralee,

066-7183592 Tel No **Customer PO** 400387348 QN006125 **Quotation No Customer Ref** 2016/3661

Report Number Sample Number **Date of Receipt Date Started**

Received or Collected Date of Report Sample Type

104287/004 24/11/2016 24/11/2016 An Post 14/03/2017 **Ground Waters**

104287 - 1

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
OC Full Suite								
sec-butylbenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,3-dichlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
P Isopropyltoluene		EO025	0.5		< 0.5	ug/L	INAB	
1,4-dichlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
1,2-dichlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
N Butyl Benzene		EO025	0.5		< 0.5	ug/L	INAB	
Hexachloroethane		EO025	5.0		< 5.0	ug/L	INAB	
1,2-dibromo-3-chloropropane		EO025	2.0		< 2.0	ug/L	INAB	
1,2,4-trichlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	
Naphthalene		EO025	2.0		<2.0	ug/L		
1,2,3-trichlorobenzene		EO025	0.5		< 0.5	ug/L	INAB	

flibert. Signed: 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2.SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email:info@elsltd.com

Contact Name Address Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No
Customer PO
Quotation No

066-7183592 400387348

QN006125

Customer Ref 2016/3654

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type **104314 - 1** 104314/001 24/11/2016 24/11/2016

An Post 14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-I	Free								
Cyanide-	Free		EW154M-1	1.2		<1.2	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No
Customer PO
Quotation No
Customer Ref

066-7183592 400387348 QN006125 2016/3655 Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104314 - 1 104314/002 24/11/2016 24/11/2016 An Post 14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-Fr	ree								
Cyanide-Fr	ee		EW154M-1	1.2		<1.2	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No Occustomer PO 40 Quotation No Quotation Ref

066-7183592 400387348 QN006125 2016/3656 Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type **104314 - 1** 104314/003 24/11/2016 24/11/2016

An Post 14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-F	ree								
Cyanide-F	ree		EW154M-1	1.2		<1.2	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No
Customer PO
Quotation No
Customer Ref

066-7183592 400387348 QN006125

2016/3657

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104314 - 1 104314/004 24/11/2016 24/11/2016 An Post

14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-F	ree								
Cyanide-F	ree		EW154M-1	1.2		<1.2	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No Customer PO Quotation No 066-7183592 400387348 QN006125

Customer Ref 2016/3658

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104314 - 1 104314/005 24/11/2016 24/11/2016

An Post 14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-Fr	ree								
Cyanide-Fr	ee		EW154M-1	1.2		15.6	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No Customer PO Quotation No 066-7183592 400387348 QN006125

Customer Ref 2016/3659

Report Number Sample Number Date of Receipt Date Started

Received or Collected

Date of Report Sample Type **104314 - 1** 104314/006 24/11/2016

24/11/2016 An Post 14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-F	ree								
Cyanide-l	Free		EW154M-1	1.2		<1.2	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email:info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No
Customer PO
Quotation No
Customer Ref

066-7183592 400387348 QN006125 2016/3660 Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104314 - 1 104314/007 24/11/2016 24/11/2016 An Post

14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-Fr	ree								
Cyanide-Fr	ee		EW154M-1	1.2		<1.2	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

Tel No
Customer PO
Quotation No
Customer Ref

066-7183592 400387348 QN006125

2016/3661

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type **104314 - 1** 104314/008 24/11/2016 24/11/2016

An Post 14/03/2017 Ground Waters

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-F	ree								
Cyanide-l	Free		EW154M-1	1.2		<1.2	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3662

Report Number Sample Number Date of Receipt Date Started

Received or Collected
Date of Report
Sample Type

104317 - 1 104317/001 24/11/2016 24/11/2016 An Post 14/03/2017

Waste Water

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-F	ree								
Cyanide-F	ree		EW154M-1	6		<6	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: <u>www.elsltd.com</u> email:<u>info@elsltd.com</u>

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3663

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104317 - 1 104317/002 24/11/2016 24/11/2016 An Post 14/03/2017 Waste Water

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-F	ree								
Cyanide-F	ree		EW154M-1	6		<6	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3664

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104317 - 1 104317/003 24/11/2016 24/11/2016 An Post 14/03/2017 Waste Water

CERTIFICATE OF ANALYSIS

TEST A	NALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-Free									
Cyanide-Free			EW154M-1	6		<6	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

ENVIRONMENTAL LABORATORY SERVICES

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3665

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104317 - 1 104317/004 24/11/2016 24/11/2016 An Post 14/03/2017 Waste Water

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB METHO	D LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-F	Free							
Cyanide-l	Free	EW154M	-1 6		23	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3666

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104317 - 1 104317/005 24/11/2016 24/11/2016 An Post 14/03/2017 Waste Water

CERTIFICATE OF ANALYSIS

TEST	ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-F	ree								
Cyanide-F	ree		EW154M-1	6		14	ug/L	INAB	

Signed: _______ 14/03/2017

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

EXCELLENCE THROUGH ACCREDITATION

Acorn Business Campus Mahon Industrial Park, Blackrock, Cork Ireland

Tel: +353 21 453 6141 Fax: +353 21 453 6149 Web: www.elsltd.com email: info@elsltd.com

Contact Name

Address

Tim Supple

Kerry County Council

County Buildings,

Tralee,

 Tel No
 066-7183592

 Customer PO
 400387348

 Quotation No
 QN006125

 Customer Ref
 2016/3667

Report Number Sample Number Date of Receipt Date Started

Received or Collected Date of Report Sample Type 104317 - 1 104317/006 24/11/2016 24/11/2016 An Post 14/03/2017 Waste Water

CERTIFICATE OF ANALYSIS

TEST ANALYTE	SUB	METHOD	LOQ	SPEC	RESULT	UNITS	ACCRED.	oos
Cyanide-Free								
Cyanide-Free		EW154M-1	6		<6	ug/L	INAB	

Domenico Giliberti-Technical Manager

NOTES

1. This Report shall not be Reproduced except in full, without the permission of the laboratory and only relates to the items tested. 2. SPEC= Allowable limit or parametric value

3.OOS=Result which is outside specification highlighted as OOS-A

4.LOQ=Limit of Quantification or lowest value that can be reported 5.ACCRED=Indicates matrix accreditation for the test,a blank field indicates not accredited

Ground Water, Surface Water and Leachate Results – North Kerry Landfill 2016

Kerry County Council - All Laboratory Results Report (Environment)

* Please note that in accordance with Quality assurance procedures some of this data may be provisional and may be subject to further revision. This data is not validated until issued in report form signed by Senior Executive Chemist or another approved signatory

Page 1 of 1 Run By KERRY_DOMAIN\david.donegan on

																		Analysis Parameter Reported Name	003_ODOUR Odour	O05A_TEMP_F IELD Temperature	NIA Ammonia	028K_CHLORI DE Chloride	I 037_SUSPEN DED_SOLIDS Suspended Solids	PECTION
Product	Product Version	Project	SAMPLING POINT	Sampling Point	SP EPA Code	X-Coordinate	Y-Cordinate	Consumer	Sample No.	COA Link	Sampled Date Sa	ampled Time Sampled By	Sample Type	Test List	Comments	Sample Status	Certifficate of Authorisation	Min. Value Max Value Units	NONE	DEG_C	0.0 0.0 <i>MGLN</i>	MGL	MGL	NONE
SURF_WATER	1	North Kerry Landfill		North_Kerry_Landfill Surface water: SW-1					2015/5183	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2	21-Dec-15	11:20 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2		Not Detected	9.5			2	Brown Colour
				North_Kerry_Landfill Surface					2016/0073	015- 5183 v1.pdf	14-Jan-16	14:33 AS	LANDFILL	130_NKL_SURF		Not Authorised	015- 5183 v1.pdf		Not Detected	5.0			<1	Brown Colour
				water: SW-1 North_Kerry_Landfill Surface					2015/5184	\\doc_server\C	21-Dec-15	11:15 AS	LANDFILL	_MONTH 130_NKL_SURF		Authorised	\\doc_server\C		Not Detected	9.5			4	Brown Colour
			_LANDFILL_SW 2	water: SW-2						OA\KCC_ENVIR ON\2016\Jan\2 015-				_MONTH			OA\KCC_ENVIR ON\2016\Jan\2 015-							
				North_Kerry_Landfill Surface					2016/0074	5184_v1.pdf	14-Jan-16	14:23 AS	LANDFILL	130_NKL_SURF		Not Authorised	5184_v1.pdf		Not Detected	5.0			<1	Brown Colour
			NORTH_KERRY _LANDFILL_SW 3	water: SW-2 North_Kerry_Landfill Surface water: SW-3					2015/5185	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2		11:05 AS	LANDFILL	_MONTH 130_NKL_SURF _MONTH		Authorised	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2		Not Detected	9.8			4	Brown Colour
				North_Kerry_Landfill Surface					2016/0075	015- 5185_v1_pdf	14-Jan-16	14:15 AS	LANDFILL	130_NKL_SURF		Not Authorised	015- 5185_v1.pdf		Not Detected	5.0			2	Slight Brown
				water: SW-3 North_Kerry_Landfill Surface					2015/5190	\\doc_server\C	21-Dec-15	11:53 AS	LANDFILL	_MONTH 130_NKL_SURF					Not Detected		<0.05		0	Colour
			_LANDFILL_SW	water: SWML-10(Eastern Lagoon outlet)					2015/5190	OA\KCC_ENVIR ON\2016\Jan\2 015-		11:03 AS	LANDFILL	_SS_AMMO		Authorised	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2		Not Detected	9.0	<0.05		0	Slightly Cloudy
				North_Kerry_Landfill Surface water: SWML-10(Eastern Lagoon outlet)					2016/0080	5190 v1.pdf	14-Jan-16	15:27 AS	LANDFILL	130_NKL_SURF _SS_AMMO		Not Authorised	5190 v1.pdf		Not Detected	5.0	<0.05		4	Clear
				North_Kerry_Landfill Surface water: SWML-10(Eastern Lagoon outlet)					2016/0082QA		14-Jan-16	15:27 AS	LANDFILL	130_NKL_SURF _SS_AMMO		Not Authorised			Not Detected	5.0	<0.05	13.2	5	Clear
			NORTH_KERRY _LANDFILL_SW ML11	North_Kerry_Landfill Surface water: SWML-11					2015/5191	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2 015-		11:57 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2 015-		Not Detected	9.0			6	Slightly Cloudy
				North_Kerry_Landfill Surface					2016/0081	5191_v1.ndf	14-Jan-16	15:32 AS	LANDFILL	130_NKL_SURF		Not Authorised	5191 v1.ndf		Not Detected	5.0			6	Clear
			NORTH_KERRY _LANDFILL_SW	water: SWML-11 North_Kerry_Landfill Surface water: SWML-2(Western Lagoon outlet)					2015/5186	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2		11:27 AS	LANDFILL	MONTH 130_NKL_SURF _SS_AMMO		Authorised	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2		Not Detected	9.0	0.08		<1	Clear
				North_Kerry_Landfill Surface water: SWML-2(Western Lagoon					2016/0076	015- 5186_v1.pdf	14-Jan-16	14:50 AS	LANDFILL	130_NKL_SURF _SS_AMMO		Not Authorised	015- 5186_v1.pdf		Not Detected	4.5	<0.05		108	Cloudy
				outlet) North_Kerry_Landfill Surface					2015/5187	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2		11:32 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2		Not Detected	8.5			4	Cloudy
										015- 5187_v1.ndf							015- 5187_v1.ndf							
				North_Kerry_Landfill Surface water: SWML-3					2016/0077		14-Jan-16	14:52 AS	LANDFILL	130_NKL_SURF _MONTH		Not Authorised			Not Detected	5.0			27	Cloudy
			NORTH_KERRY _LANDFILL_SW ML4	North_Kerry_Landfill Surface					2015/5188	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2 015-		11:40 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2 015-		Not Detected	10.0			10	Clear
			NORTH_KERRY _LANDFILL_SW ML5	North_Kerry_Landfill Surface water: SWML-5					2015/5189	5188 v1.ndf \\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2 015-		11:45 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	5188 v1.pdf \\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2 015-		Not Detected	10.0			2	Slightly Cloudy
				North_Kerry_Landfill Surface					2016/0079	5189 v1.ndf	14-Jan-16	15:07 AS	LANDFILL	130_NKL_SURF		Not Authorised	5189 v1.ndf		Not Detected	4.0			4	Clear
			NORTH_KERRY _LANDFILL_SW	water: SWML-5 North_Kerry_Landfill Surface water: SWML-E1(Northern Lagoon)					2015/5192	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2		12:06 AS	LANDFILL	_MONTH 130_NKL_SURF _SS_AMMO		Authorised	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2		Not Detected	9.0	<0.05		22	Cloudy
				North_Kerry_Landfill Surface					2015/5193QA	015- 5192_v1.pdf \\doc_server\C	21-Dec-15	12:06 AS	LANDFILL	130_NKL_SURF		Authorised	015- 5192 v1.pdf \\doc_server\C		Not Detected	9.0	<0.05		20	Cloudy
				water: SWML-E1(Northern Lagoon)						OA\KCC_ENVIR ON\2016\Jan\2 015- 5193OA_v1.pdf				_SS_AMMO			OA\KCC_ENVIR ON\2016\Jan\2 015- 5193OA_v1.pdf							
				North_Kerry_Landfill Surface water: SWML-E1(Northern Lagoon)					2016/0085		14-Jan-16	15:40 AS	LANDFILL	130_NKL_SURF _SS_AMMO		Not Authorised			Not Detected	5.0	<0.05	13.1	12	Cloudy
			NORTH_KERRY _LANDFILL_W1	North_Kerry_Landfill Surface					2015/5194	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2 015-		10:52 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\C OA\KCC_ENVIR ON\2016\Jan\2 015-		Not Detected	9.5			2	Brown Colour
				North_Kerry_Landfill Surface					2016/0083	5194 v1.ndf	14-Jan-16	13:50 AS	LANDFILL	130_NKL_SURF		Not Authorised	5194 v1.ndf		Not Detected	4.5			4	Brown Colour
				water: W1 North_Kerry_Landfill Surface					2015/5195	\\doc_server\C	21-Dec-15	10:40 AS	LANDFILL	_MONTH 130_NKL_SURF	River in flood	Authorised	\\doc_server\C		Not Detected	9.5	<0.05		24	Brown Colour
				water: W2(O'Brennan's Br. R.Lee)						OA\KCC_ENVIR ON\2016\Jan\2 015- 5195_v1.pdf				_MONTH			OA\KCC_ENVIR ON\2016\Jan\2 015- 5195 v1.pdf							
				North_Kerry_Landfill Surface water: W2(O'Brennan's Br. R.Lee)					2016/0084	71,53	14-Jan-16	13:40 AS	LANDFILL	130_NKL_SURF _MONTH		Not Authorised	11231		Not Detected	6.0			4	Clear

Kerry County Council - All Laboratory Results Report (Environment)
with Quality assurance procedures some of this data may be provisional and may be subject to further
until issued in report form signed by Senior Executive Chemist or another approved signatory

Run By KERRY_DOMAIN/david.donegan on 29/02/2016

																		Analysis	001_COLOUR	002_TURBIC	I 003_ODOUR	005A_TEMP_	. 00	5_PH		J 011_TOTAL_	. 014_COD	015_TOC	022K_AN	MONIA		036_DO_MG	_ 082_VIS_INS
																		Parameter		Turbidity	Odour	FIELD Temperature			CTIVITY20C Conductivity	HARDNESS Total					I DE Chloride	Dissolved	
																		Reported Name								Hardness						Oxygen	
																		Min. Value Max Value						6.0 9.0						0.0			
Product	Product Version	Project	SAMPLING POINT	Sampling Point	SP EPA Code	X-Coordinate	Y-Cordinate	Consumer Sample No.	COA Link	Sampled Date	Sampled Time	Sampled By	Sample Type	Test List	Comments	Sample Status	Certifficate of Authorisation	Units			NOWE					MGCACO3L							NONE
GRD_WATER		North Kerry Landfill		th_Kerry_Landfill Groundwater rehole No 2				2016/0528		18-Feb-16	12:30	0 AS	LANDFILL	130_NKL_GRD_ QUART		Not Authorised	Authorisation		31	5.32	Not Detected	9.9	5.4		171	42.0		<1.0	0.05		41.2	3.1	Clear
			NORTH_KERRY Nor LANDFILL BH :Bo	th_Kerry_Landfill Groundwater				2016/0529		18-Feb-16	13:33	3 AS	LANDFILL	130_NKL_GRD_		Not Authorised			5	0.27	Not Detected	8.9	7.3		415	191.0		2.1	0.05		27.3	3.1	Clear
			NORTH_KERRY Nor	th_Kerry_Landfill Groundwater				2016/0530		18-Feb-16	14:55	5 AS	LANDFILL	130_NKL_GRD_		Not Authorised			18	2.06	Not Detected	8.6	6.1		201	71.0		<1.0 <	:0.05		19.7	3.4	Clear
			_LANDFILL_BH :Bo 4 NORTH_KERRY Nor	th_Kerry_Landfill Groundwater				2016/0531		18-Feb-16	13:25	5 AS	LANDFILL	QUART 130_NKL_GRD_		Not Authorised			475	99.80	Metallic	8.5	5.8		161	58.0		22.7	1.30		24.1	4.9	Iron Oxide
			_LANDFILL_BH :Bo	rehole No 5 th_Kerry_Landfill Groundwater				2016/0532		18-Feb-16	13:38	0.00	LANDFILL	QUART CDD	Water level at top of borehole	No. to the standard			10	4.03	Not Detected	0.0			153	60.0		<1.0	:0.05		ļ.,	49	Clear
			_LANDFILL_BH :Bo	rehole No 6										QUART	water level at top or borenoic				17	4.01			5.7										
			NORTH_KERRY Nor _LANDFILL_GW :GV	th_Kerry_Landfill Groundwater /ML E1				2016/0527		18-Feb-16	12:55	5 AS	LANDFILL	130_NKL_GRD_ QUART		Not Authorised			670	413.00	Not Detected	7.8	6.5		438	119.0		6.9	:0.05		96.2	8.8	Cloudy/Sediment
			NORTH_KERRY Nor _LANDFILL_OM : De	th_Kerry_Landfill Groundwater nnis O'Mahony				2016/0533		18-Feb-16	12:10	0 AS	LANDFILL	130_NKL_GRD_ QUART		Not Authorised			57	2.68	Not Detected	5.5	5.7		87	26.0		4.9	:0.05		15.7	4.2	Specks of Iron Oxide
			AHONY NORTH_KERRY Nor _LANDFILL_SU :Ge	th_Kerry_Landfill Groundwater rry Sugrue				2016/0534		18-Feb-16	14:30	0 AS	LANDFILL	130_NKL_GRD_ QUART		Not Authorised			<5	<0.25	Not Detected	7.0	5.4		182	56.0		<1.0	:0.05		31.5	4.7	Clear
			GRUE Nor	th_Kerry_Landfill Groundwater rry Sugrue				2016/0535QA		18-Feb-16	14:30	0 AS	LANDFILL	130_NKL_GRD_		Not Authorised			<5	0.25	Not Detected	7.0	5.4		188	53.0		<1.0	:0.05		32.2	4.7	Clear
		North Kerry Landfill	NORTH_KERRY Nor _LANDFILL_LD1 1	th_Kerry_Landfill Leachate: LD-				2016/0536		18-Feb-16	13:05	5 AS	LANDFILL	130_NKL_LEC_		Not Authorised					Not Detected	8.2											Iron Oxide
			NORTH_KERRY Nor _LANDFILL_LD2 2	th_Kerry_Landfill Leachate: LD-				2016/0537		18-Feb-16	13:07	7 AS	LANDFILL	130_NKL_LEC_		Not Authorised					Not Detected	7.8											Clear
			NORTH_KERRY Nor _LANDFILL_LD3 3	th_Kerry_Landfill Leachate: LD-				2016/0538		18-Feb-16	13:10	0 AS	LANDFILL	130_NKL_LEC_		Not Authorised					Not Detected	7.8											Clear
			NORTH_KERRY Nor	th_Kerry_Landfill Leachate: LL				2016/0539		18-Feb-16	13:19	5 AS	LANDFILL	130_NKL_LEC_		Not Authorised					Leachate	7.5									-		Brown Colour
			LANDFILL_LL1 1 NORTH_KERRY Nor _LANDFILL_LL2 2	th_Kerry_Landfill Leachate: LL				2016/0540		18-Feb-16	13:18	8 AS	LANDFILL	130_NKL_LEC_ CHART		Not Authorised					Leachate	7.8											Black/Brown Colour
			NORTH_KERRY Nor _LANDFILL_LL3 3	th_Kerry_Landfill Leachate: LL				2016/0541		18-Feb-16	13:00	0 AS	LANDFILL	130_NKL_LEC_ CHART		Not Authorised					Not Detected	7.1											Clear
		North Kerry Landfill	NORTH_KERRY Nor _LANDFILL_SW wat	th_Kerry_Landfill Surface er: SW-1				2016/0570		23-Feb-16	15:08	8 AS	LANDFILL	130_NKL_SURF _QUART		Not Authorised					Not Detected	6.2		6.3	81		16			<0.05	22.2	11.1	Clear
			NORTH_KERRY Nor _LANDFILL_SW wat	th_Kerry_Landfill Surface er: SW-2				2016/0571		23-Feb-16	15:02	2 AS	LANDFILL	130_NKL_SURF _QUART		Not Authorised					Not Detected	7.6		<4	111		65			< 0.05	24.5	11.0	Brown Colour
			NORTH_KERRY Nor _LANDFILL_SW wat	th_Kerry_Landfill Surface er: SW-3				2016/0572		23-Feb-16	14:55	5 AS	LANDFILL	130_NKL_SURF _QUART		Not Authorised					Not Detected	6.1		5.9	99		18			< 0.05	24.2	11.6	Clear
			NORTH_KERRY Nor	th_Kerry_Landfill Surface er: SWML-10(Eastern Lagoon				2016/0577		23-Feb-16	15:40	0 AS	LANDFILL	130_NKL_SURF QUART		Not Authorised					Not Detected	7.8		6.8	177		12	$\overline{}$		<0.05	17.9	11.4	Clear
			ML10 outl	et) th_Kerry_Landfill Surface				2016/0578		23-Feb-16	15:43	3 AS	LANDFILL	130_NKL_SURF		Not Authorised					Not Detected	7.9		7.0	178		25	$\overline{}$		<0.05	18.1	11.3	Clear
			_LANDFILL_SW wat ML11 NORTH_KERRY Nor	th_Kerry_Landfill Surface				2016/0573		23-Feb-16	15:52	2 AS	LANDFILL	130_NKL_SURF	Sampled from lagoon	Not Authorised					Not Detected	6.8		6.8	221		<10	-		< 0.05	28.3	10.6	Cloudy
			ML2 out	er: SWML-2(Western Lagoon et) th_Kerry_Landfill Surface				2016/0582QA		23-Feb-16	15:52	2 45	LANDFILL	_QUART	Sampled from lagoon	Not Authorised					Not Detected	6.8		6.9	225		10			<0.05	28.4	10.6	Cloudy
			wat	er: SWML-2(Western Lagoon et)										_QUART	- January - Janu													\perp					
			_LANDFILL_SW wat					2016/0574		23-Feb-16	15:57		LANDFILL	130_NKL_SURF _QUART		Not Authorised					Not Detected			7.1	210		<10					10.8	Clear
			_LANDFILL_SW wat					2016/0576		23-Feb-16	16:05	5 AS	LANDFILL	130_NKL_SURF _QUART	Slow flow	Not Authorised					Not Detected	5.2		7.2	223		11			<0.05	14.0	11.0	Clear
			_LANDFILL_SW wat	th_Kerry_Landfill Surface er: SWML-E1(Northern				2016/0581		23-Feb-16	15:24	4 AS	LANDFILL	130_NKL_SURF _QUART		Not Authorised					Not Detected	7.7		7.2	234		<10			<0.05	34.1	11.0	Clear
				th_Kerry_Landfill Surface				2016/0579		23-Feb-16	14:37	7 AS	LANDFILL	130_NKL_SURF		Not Authorised					Not Detected	6.6		6.4	104		<10			< 0.05	23.2	11.4	Clear
				er: W1 th_Kerry_Landfill Surface er: W2(O'Brennan's Br. R.Lee)				2016/0580		23-Feb-16	14:15	5 AS	LANDFILL	QUART 130_NKL_SURF _QUART		Not Authorised					Not Detected	7.0		6.6	139		<10			< 0.05	26.7	11.5	Clear
																										1							

Kerry County Council - All Laboratory Results Report (Environment)

* Please note that in accordance with Quality assurance procedures some of this data may be provisional and may be subject to further revision. This data is not validated until issued in report form signed by Senior

Executive Chemist or another approved signatory

Page 1 of 1

													Analysis	000_0000	FIELD	0221(_/	IVIIVIONTA	DED_SOLIDS	PECTION
													Parameter	Odour	Temperature	Amı	nonia	Suspended	Visual
													Departed Name					Solids	Inspection
													Reported Name Min. Value				0.0		
													Max Value				0.0		
Product	Product	Project	SAMPLING	Sampling Point	Sample No.	COA Link	Sampled Date S	Sampled Time Sampled By	Sample Type	Test List	Sample Status	s Certifficate of	Units	NONE	DEG_C	MGLN	MGLN	MGL	NONE
AOLIATE	Version	4 N. H. W. L. 1611	POINT		004 / /0000	lv	00.14	47.00 40	LANDELLI	IAGO NIKI GUDE	10.11	Authorisation		N I B I I I	0.5				
ACHATE		1 North Kerry Landfill	_LANDFILL_LL3	North_Kerry_Landfill Leachate: LL 3	2016/0930	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0930_v1.pdf		17:00 AS	LANDFILL	130_NKL_SURF _MONTH	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0930_v1.pdf		Not Detected	9.5	0.08		14	Slightly Cloudy
				North_Kerry_Landfill Leachate: LL 3	2016/0931QA	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-	22-Mar-16	17:00 AS	LANDFILL	130_NKL_SURF _MONTH	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-		Not Detected	9.5	0.06		14	Slightly Cloudy
IRF_WATER		1 North Kerry Landfill	_LANDFILL_IC	North_Kerry_Landfill Surface water: ICW Pond 1	2016/0927	09310A_v1.pdf	22-Mar-16	16:30 AS	LANDFILL	130_NKL_SURF _MONTH	Not Authorised	09310A v1.pdf		Not Detected	9.0		0.15		Clear
				North_Kerry_Landfill Surface water: ICW Pond 2	2016/0928		22-Mar-16	16:26 AS	LANDFILL	130_NKL_SURF _MONTH	Not Authorised			Not Detected	8.0		0.31		Clear
			NORTH_KERRY	North_Kerry_Landfill Surface water: ICW Pond 3	2016/0929		22-Mar-16	16:19 AS	LANDFILL	130_NKL_SURF _MONTH	Not Authorised			Not Detected	8.5		0.06		Clear
				North_Kerry_Landfill Surface water: SW-1	2016/0915	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0915_v1.pdf	22-Mar-16	15:35 AS	LANDFILL	130_NKL_SURF _MONTH	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0915_v1.pdf		Not Detected	8.5			<1	Clear
			NORTH_KERRY _LANDFILL_SW 3		2016/0917	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0917_v1.pdf		15:15 AS	LANDFILL	130_NKL_SURF _MONTH	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0917_v1.pdf		Not Detected	8.5			<1	Clear
			_LANDFILL_SW	North_Kerry_Landfill Surface water: SWML-10(Eastern Lagoon outlet)	2016/0922	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0922_v1.pdf		16:05 AS	LANDFILL	130_NKL_SURF _MONTH	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0922_v1.pdf		Not Detected	8.0		0.07	3	Clear
				North_Kerry_Landfill Surface water: SWML-2(Western Lagoon outlet)	2016/0918	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0918_v1.pdf	22-Mar-16	16:42 AS	LANDFILL	130_NKL_SURF _MONTH	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0918_v1.pdf		Not Detected	9.0		<0.05	8	Cloudy
				North_Kerry_Landfill Surface water: SWML-E1(Northern Lagoon)	2016/0926	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0926_v1.pdf	22-Mar-16	15:50 AS	LANDFILL	130_NKL_SURF _MONTH	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0926_v1.pdf		Not Detected	9.0		0.08	2	Clear
			NORTH_KERRY _LANDFILL_W1		2016/0924	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0924_v1.pdf		14:52 AS	LANDFILL	130_NKL_SURF _MONTH	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0924_v1.pdf		Not Detected	7.5			4	Clear
			_	North_Kerry_Landfill Surface water: W2(O'Brennan's Br. R.Lee)	2016/0925	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0925_v1.pdf		14:40 AS	LANDFILL	130_NKL_SURF _MONTH	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Mar\20 16-0925_v1.pdf		Not Detected	8.0			4	Clear

Analysis 003_ODOUR 005A_TEMP_ 022K_AMMONIA 037_SUSPEN 082_VIS_INS

Kerry County Council - All Laboratory Results Report (Environment)

* Please note that in accordance with Quality assurance procedures some of this data may be provisional and may be subject to further revision. This data is not validated until issued in report form signed by Senior Evecutive Chemist or another approved signatory.

Page 1 of 1

																FIELD			PECTION
														Parameter	Odour	Temperature	Ar	nmonia	Visual Inspection
														Reported Name Min. Value				0.0	
														Max Value				0.0	
														Units	NONE	DEG_C	MGLN	MGLN	NONE
Product	Product Version	•	SAMPLING POINT	Sampling Point	Sample No.	COA Link	Sampled Date S				Test List	Sample Status	Certifficate of Authorisation						
ACHATE		North Kerry Landfill	_LANDFILL_LL3 3	th_Kerry_Landfill Leachate: LL			07-Apr-16	17:03		LANDFILL	_SS_AMMO	Not Authorised			Not Detected	8.0	<0.05		Cloudy
RF_WATER	1	North Kerry Landfill	NORTH_KERRY North _LANDFILL_IC wate WPOND 1	th_Kerry_Landfill Surface er: ICW Pond 1	2016/1104		07-Apr-16	16:35	AS	LANDFILL	130_NKL_SURF _SS_AMMO	Not Authorised			Not Detected	8.0		<0.05	Clear
			NORTH_KERRY Nort _LANDFILL_IC wate WPOND 2	th_Kerry_Landfill Surface er: ICW Pond 2	2016/1105		07-Apr-16	16:30	AS	LANDFILL	130_NKL_SURF _SS_AMMO	Not Authorised			Not Detected	7.5		0.07	Clear
				th_Kerry_Landfill Surface er: ICW Pond 3	2016/1106		07-Apr-16	16:25	AS	LANDFILL	130_NKL_SURF _SS_AMMO	Not Authorised			Not Detected	8.0		<0.05	Clear
				th_Kerry_Landfill Surface er: SW-1	2016/1091		07-Apr-16	15:10	AS	LANDFILL	130_NKL_SURF _MONTH	Not Authorised			Not Detected	8.0			Brown Colou
			NORTH_KERRY North_LANDFILL_SW water	th_Kerry_Landfill Surface er: SW-2	2016/1092		07-Apr-16	15:07	AS	LANDFILL	130_NKL_SURF _MONTH	Not Authorised			Not Detected	9.0			Brown Colou
			NORTH_KERRY Nort	th_Kerry_Landfill Surface er: SW-3	2016/1093		07-Apr-16	15:00	AS	LANDFILL	130_NKL_SURF _MONTH	Not Authorised			Not Detected	9.0			Brown Colou
				th_Kerry_Landfill Surface er: SWML-10(Eastern Lagoon	2016/1098		07-Apr-16	16:52	AS	LANDFILL	130_NKL_SURF _MONTH	Not Authorised			Not Detected	9.5			Cloudy
				th_Kerry_Landfill Surface	2016/1099		07-Apr-16	16:56	AS	LANDFILL	130_NKL_SURF _SS_AMMO	Not Authorised			Not Detected	9.5		<0.05	Cloudy
			NORTH_KERRY Nort	th_Kerry_Landfill Surface er: SWML-2(Western Lagoon	2016/1094		07-Apr-16	16:10	AS	LANDFILL	130_NKL_SURF _SS_AMMO	Not Authorised			Not Detected	8.0		<0.05	Cloudy
				th_Kerry_Landfill Surface	2016/1095		07-Apr-16	16:12	AS	LANDFILL	130_NKL_SURF _MONTH	Not Authorised			Not Detected	8.0			Clear
				th_Kerry_Landfill Surface er: SWML-5	2016/1097		07-Apr-16	16:20	AS	LANDFILL	130_NKL_SURF _MONTH	Not Authorised			Not Detected	7.5			Clear
			NORTH_KERRY Nort	th_Kerry_Landfill Surface er: SWML-E1(Northern oon)	2016/1102		07-Apr-16	15:20	AS	LANDFILL	130_NKL_SURF _SS_AMMO	Not Authorised			Not Detected	9.5		0.06	Cloudy
			Nort wate	th_Kerry_Landfill Surface er: SWML-E1(Northern oon)	2016/1108QA		07-Apr-16	15:20	AS	LANDFILL	130_NKL_SURF _SS_AMMO	Not Authorised			Not Detected	9.5		0.06	Cloudy
			NORTH_KERRY Nort _LANDFILL_W1 water	th_Kerry_Landfill Surface er: W1	2016/1100		07-Apr-16	14:40	AS	LANDFILL	130_NKL_SURF _MONTH	Not Authorised			Not Detected	8.0			Clear
			NORTH_KERRY Nort	th_Kerry_Landfill Surface er: W2(O'Brennan's Br. R.Lee)	2016/1101		07-Apr-16	14:20	AS	LANDFILL		Not Authorised			Not Detected	8.0			Clear

Analysis 003_ODOUR 005A_TEMP_ 022K_AMMONIA 082_VIS_INS

Kerry County Council - All Laboratory Results Report (Environment)

with Quality assurance procedures some of this data may be provisional and may be subject to further revision. This data is not validated until issued in report from signed by Senior Executive Chemist or another approved signatury.

Run By KERRY_DOMAIN/david_donegan on Page 1 of 1

															Analysis	001_COLOUR	002_TURBIC	003_ODOUR	005A_TEMP_ FIELD	006	_PH	007A_CONDU	011_TOTAL_	013C_BOD	014_COD	015_TOC	022K_	_AMMONIA	028K_CHLC	OR 036_DO_MG	3_ 037_SUSPEN	082_VIS_INS
															Parameter		Turbidity	Odour	Temperature			CTIVITY20C Conductivity	Total Hardness				An	mmonia	Chloride	Dissolved Oxygen	DED_SOLIDS Suspended Solids	Visual Inspection
															Reported Name Min. Value																	
															Max Value Units	HAZEN		NONE			9.0 PH	USCM	MGCACO3L	BOD			MGLN	0.0 MGLN				NONE
Product Product	Project	SAMPLING Sampling Point POINT	SP EPA Code	X-Coordinate	Y-Cordinate C	onsumer Sample	No. COA Lin	nk Sampled Date	Sampled Time Sampled By	y Sample Typ	pe Test List	Comments	Sample Status	Certifficate of Authorisation																		
GRD_WATER	North Kerry Landfill	NORTH_KERRY North_Kerry_Landfill Groundwater LANDFILL BH :Borehole No 2				2016/1537		12-May-16	10:51 AS	LANDFILL	130_NKL_GF	D_	Not Authorised	AMERICAN		11	0.38	Not Detected	11.3	5.5		172	33.0			<1.0	< 0.05		41.7	9.1		Clear
		2 NORTH KERRY North Kerry Landfill Groundwater				2016/1538		12.16	10:40 AS	LANDENI	130 NKL GF	0	Not Authorised			10	1 17	Not Detected				403	179.0			1.5	< 0.05		22.8	16		Class
		_LANDFILL_BH :Borehole No 3						12-May-16	10:40 AS	LANDFILL	QUART	0_	Not Authorised			12	1.17	Not Detected	11.3	7.1		402	179.0			1.5	<0.05		22.8	1.6		Clear
		NORTH_KERRY North_Kerry_Landfill Groundwater _LANDFILL_BH :Borehole No 4				2016/1539		12-May-16	16:25 AS	LANDFILL	130_NKL_GF QUART	D_	Not Authorised			19	0.51	Not Detected	9.9	6.1		201	72.0			<1.0	<0.05		20.0	4.0		Clear
		NORTH_KERRY North_Kerry_Landfill Groundwater _LANDFILL_BH :Borehole No 5				2016/1540	'	12-May-16	12:33 AS	LANDFILL	130_NKL_GF QUART	D_	Not Authorised			1840	495.00	Metallic	10.5	5.9		167	46.0			36.2	0.40		29.3	8.0	+	Iron Oxide
		NORTH_KERRY North_Kerry_Landfill Groundwater LANDFILL_BH Borehole No 6				2016/1541		12-May-16	15:45 AS	LANDFILL	130_NKL_GF	D_	Not Authorised			16	5.35	Not Detected	10.8	5.6		150	41.0			2.2	<0.05	+	25.5	1.8	+	Clear
		6 NORTH_KERRY North_Kerry_Landfill Groundwater				2016/1536		12-May-16	16:07 AS	LANDFILL	130_NKL_GF	D_	Not Authorised			930	948.00	Not Detected	10.5	6.3		224	75.0			8.1	<0.05	+	26.2	3.6	+	Cloudy /
		_LANDFILL_GW :GWML E1 ML_E1 NORTH_KERRY North_Kerry_Landfill Groundwater				2016/1542		12-May-16	15:35 AS	LANDFILL	QUART 130 NKL GF	D Mike O'Mahony	Not Authorised			264	22.40	Not Detected	12.4	5.6		112	36.0			11.6	< 0.05	+	15.9	1.9		Sediment Slightly Cloudy
		_LANDFILL_OM :Dennis O'Mahony AHONY NORTH_KERRY North_Kerry_Landfill Groundwater				2016/1543					QUART						0.49						52.0			<10	c0.05		37.8			
		LANDFILL SU :Gerry Sugrue						12-May-16	13:25 AS	LANDFILL	130_NKL_GF QUART		Not Authorised			<5	0.49	Not Detected	16.1	5.4		189	52.0							7.3		Clear
		GRUE North_Kerry_Landfill Groundwater Gerry Sugrue				2016/1544		12-May-16	13:25 AS	LANDFILL	130_NKL_GF QUART		Not Authorised			<5	0.44	Not Detected	16.1	5.4		190	52.0			<1.0	< 0.05		32.6	7.3		Clear
LEACHATE	North Kerry Landfill	NORTH_KERRY North_Kerry_Landfill Leachate: LD- LANDFILL LD1 1				2016/1545		12-May-16	11:00 AS	LANDFILL	130_NKL_LE QUART	٤	Not Authorised					Metallic	11.5													Iron Oxide
		NORTH_KERRY North_Kerry_Landfill Leachate: LD- LANDFILL LD2 2				2016/1546		12-May-16	11:03 AS	LANDFILL	130_NKL_LE	2	Not Authorised					Not Detected	11.3													Clear
		NORTH_KERRY North_Kerry_Landfill Leachate: LD- _LANDFILL_LD3 3				2016/1547		12-May-16	11:07 AS	LANDFILL	130_NKL_LE	2	Not Authorised					Not Detected	11.6													Clear
		NORTH_KERRY North_Kerry_Landfill Leachate: LL _LANDFILL_LL1 1				2016/1548		12-May-16	11:35 AS	LANDFILL	130_NKL_LE	2	Not Authorised					Leachate	14.8													Brown
		NORTH_KERRY North_Kerry_Landfill Leachate: LL _LANDFILL_LL2 2				2016/1549		12-May-16	11:38 AS	LANDFILL	130_NKL_LE	2	Not Authorised					Leachate	15.1									1			1	Black
		NORTH_KERRY North_Kerry_Landfill Leachate: LL				2016/1550		12-May-16	12:53 AS	LANDFILL	130_NKL_LE	2	Not Authorised					Musty	13.8									1			1	Slighty cloudy
SURF_WATER	North Kerry Landfill	_LANDFILL_LL3 3									QUART																\pm	+			_	
		NORTH_KERRY North_Kerry_Landfill Surface _LANDFILL_SW water: SW-1				2016/1524		12-May-16	15:07 AS	LANDFILL	130_NKL_SU _QUART	RF	Not Authorised					Not Detected	12.6		7.0	94		1.3	44			<0.05	19.4	9.5		Slight Brown Colour
		NORTH_KERRY North_Kerry_Landfill Surface _LANDFILL_SW water: SW-2				2016/1525		12-May-16	14:55 AS	LANDFILL	130_NKL_SU QUART	RF	Not Authorised					Not Detected	13.7		4.0	118	<	1.3	130			<0.05	23.3	9.6	<1	Brown Colour
		2 NORTH_KERRY North_Kerry_Landfill Surface _LANDFILL_SW water: SW-3				2016/1526		12-May-16	14:42 AS	LANDFILL	130_NKL_SU	RF	Not Authorised					Not Detected	14.2		6.5	91	<	1.3	40		+	<0.05	19.9	9.8		Slight Brown Colour
		3 NORTH_KERRY North_Kerry_Landfill Surface				2016/1531		12-May-16	12:47 AS	LANDFILL	130_NKL_SU	96	Not Authorised					Not Detected	12.2		7.5	254		1.3	19			<0.05	16.3	8.8	4	Clear
		_LANDFILL_SW water: SWML-10(Eastern Lagoon outlet) NORTH KERRY North Kerry Landfill Surface									_QUART																					
		_LANDFILL_SW water: SWML-2(Western Lagoon ML2				2016/1527		12-May-16		LANDFILL	_QUART	RF	Not Authorised					Not Detected			8.0	216	2	9	<10			<0.05	13.1	9.5	12	Cloudy
		NORTH_KERRY North_Kerry_Landfill Surface _LANDFILL_SW water: SWML-3				2016/1528	'	12-May-16	11:20 AS	LANDFILL	_QUART	RF	Not Authorised					Not Detected	12.0		7.8	286	*	1.3	< 10			<0.05	16.6	9.2	2	Clear
		NORTH_KERRY North_Kerry_Landfill Surface _LANDFILL_SW water: SWML-E1 (Northern				2016/1535		12-May-16	15:59 AS	LANDFILL	130_NKL_SU _QUART	RF	Not Authorised					Not Detected	17.0		7.9	192		1.3	<10			<0.05	14.7	9.6	4	Clear
		MLE1 Laccon) North_Kerry_Landfill Surface water: SWML-E1 (Northern				2016/1731		01-Jun-16	14:30 TOS	LANDFILL	004_AMMON		Not Authorised															<0.05			1	
		NORTH_KERRY North_Kerry_Landfill Surface				2016/1533		12-May-16	10:32 AS	LANDFILL	130_NKL_SU	RF	Not Authorised				1	Not Detected	10.9		7.5	107		1.3	21		+	<0.05	20.6	10.1	3	Clear
		_LANDFILL_W1 water: W1 NORTH_KERRY North_Kerry_Landfill Surface				2016/1534		12-May-16	13:35 AS	LANDFILL	QUART 130_NKL_SU	RF	Not Authorised					Not Detected	13.6		7.5	141		1.3	22		+	<0.05	23.3	10.3	+	Clear
		_LANDFILL_W2 water: W2(O'Brennan's Br. R.Lee)						,			_QUART																					

Kerry County Council - All Laboratory Results Report (Environment)

* Please note that in accordance with Quality assurance procedures some of this data may be provisional and may be subject to further revision. This data is not validated until issued in report form signed by Senior Executive Chemist or another approved signatory

Run By KERRY_DOMAIN\david.donegan on 06/07/2016 Page 1 of 1

																	Parameter Reported Name	Odour	Temperature	Ammonia	Suspended Solids	Visual Inspection
																	Min. Value Max Value			0.0 0.0		
Product	Product	Project	SAMPLING	Sampling Point	SP EPA Code	X-Coordinate Y-	-Cordinate Consur	er Sample No.	COA Link	Sampled Date Sa	ampled Time Sampled	By Sample Type	Test List	Comments	Sample Statu	s Certifficate of	Units	NONE	DEG_C	MGLN	MGL	NONE
SURF_WATER	Version		POINT	North_Kerry_Landfill Surface				2016/1900	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20		12:42 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	Authorisation \\doc_server\co a\KCC_ENVIRO N\2016\Jun\20		Not Detected	15.0		<1	Brown Colour
			NORTH KERRY	North_Kerry_Landfill Surface				2016/1901	16-1900_v1.pdf \\doc_server\co	20-Jun-16	12:33 AS	LANDFILL	130_NKL_SURF		Authorised	16-1900_v1.pdf \\doc_server\co		Not Detected	15.0		2	Brown Colour
			_LANDFILL_SW					2010/1701	a\KCC_ENVIRO N\2016\Jun\20 16-1901_v1.pdf	20-3411-10	12.55 / 15	EANDITEE	_MONTH		Adtionsed	a\KCC_ENVIRO N\2016\Jun\20 16-1901_v1.pdf		Not Detected	13.0			Brown colour
			NORTH_KERRY _LANDFILL_SW 3	North_Kerry_Landfill Surface water: SW-3				2016/1902	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1902_v1.pdf	20-Jun-16	12:27 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1902_v1.pdf		Not Detected	15.5		2	Clear
			_LANDFILL_SW	North_Kerry_Landfill Surface water: SWML-10(Eastern Lagoon outlet)				2016/1907	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1907_v1.pdf		13:40 AS	LANDFILL	130_NKL_SURF _SS_AMMO		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1907_v1.pdf		Not Detected	15.5	<0.05	5	Slightly Cloudy
				North_Kerry_Landfill Surface water: SWML-11				2016/1908	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1908_v1.pdf	20-Jun-16	13:43 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1908_v1.pdf		Not Detected	15.5		6	Slightly Cloudy
			_LANDFILL_SW	North_Kerry_Landfill Surface water: SWML-2(Western Lagoon outlet)				2016/1903	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1903_v1.pdf	20-Jun-16	13:05 AS	LANDFILL	130_NKL_SURF _SS_AMMO	Taken from Lagoon	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1903_v1.pdf		Not Detected	16.5	<0.05	10	Cloudy
				North_Kerry_Landfill Surface water: SWML-3				2016/1904	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1904_v1.pdf	20-Jun-16	13:01 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1904_v1.pdf		Not Detected	15.5		2	Clear
				North_Kerry_Landfill Surface water: SWML-4				2016/1905	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1905_v1.pdf	20-Jun-16	13:24 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1905_v1.pdf		Not Detected	13.5		3	Clear
			NORTH_KERRY _LANDFILL_SW ML5	North_Kerry_Landfill Surface water: SWML-5				2016/1906	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1906_v1.pdf		13:32 AS	LANDFILL	130_NKL_SURF _MONTH	New drain south of SWML 5	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1906_v1.pdf		Not Detected	13.5		4	Clear
			_LANDFILL_SW	North_Kerry_Landfill Surface water: SWML-E1(Northern Lagoon)				2016/1731	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1731_v1.pdf	01-Jun-16	14:30 TOS	LANDFILL	004_AMMON		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1731_v1.pdf				<0.05		
				North_Kerry_Landfill Surface water: SWML-E1(Northern Lagoon)				2016/1911	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1911_v1.pdf		13:50 AS	LANDFILL	130_NKL_SURF _SS_AMMO		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1911_v1.pdf		Not Detected	16.5	<0.05	13	Cloudy
			NORTH_KERRY _LANDFILL_W1	North_Kerry_Landfill Surface water: W1				2016/1909	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1909_v1.pdf	20-Jun-16	12:12 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1909_v1.pdf		Not Detected	14.0		2	Clear
				North_Kerry_Landfill Surface water: W2(O'Brennan's Br. R.Lee)				2016/1910	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1910_v1.pdf	20-Jun-16	14:15 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16-1910_v1.pdf		Not Detected	15.5		3	Clear
				North_Kerry_Landfill Surface water: W2(O'Brennan's Br. R.Lee)				2016/1912QA	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16- 1912OA_v1.pdf	20-Jun-16	14:15 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jun\20 16- 1912OA_v1.ndf		Not Detected	15.5		3	Clear

Kerry County Council - All Laboratory Results Report (Environment)

* Please note that in accordance with Quality assurance procedures some of this data may be provisional and may be subject to further revision. This data is not validated until issued in report form signed by Senior Executive Chemist or another approved signatory

Page 1 of 1 Run By KERRY_DOMAIN/david.donegan on

																		Reported Name						
																		Min. Value						
																		Max Value Units	NONE	DEG_C	MGLN	0.0 MGLN	MGL	NONE
duct	Product	Project	SAMPLING	Sampling Point	SP EPA Code	X-Coordinate	Y-Cordinate	Consumer	Sample No.	COA Link	Sampled Date S	ampled Time Sample	d By Sample Typ	e Test List	Comments	Sample Status	s Certifficate of	Omis		D20_0	mozn.	moz.v	mor	- AUAL
TED	Version	lorth Kerny I andfill	POINT NORTH KERRY	North_Kerry_Landfill Surface					2016/2192	\\doc_server\co	14-Jul-16	16:05 AS	LANDFILL	130 NKI SLIDI	Below Perimeter fence sth of	Authorised	Authorisation \\doc_server\co		Not Detected	14.0		0.08 1	A	Clear
				water: general SP						a\KCC_ENVIRO N\2016\Jul\201 6-2192_v1.pdf	14-301-10	10.03 K3	DANDITE	_SS_AMMO	SWML5	Authorised	a\KCC_ENVIRO N\2016\Jul\201 6-2192_v1.pdf		Not Detected	14.0		3.00	*	Clear
			NORTH_KERRY _LANDFILL_SW 1	North_Kerry_Landfill Surface water: SW-1					2016/2178	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201	14-Jul-16	15:09 AS	LANDFILL	130_NKL_SURI		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201		Not Detected	14.5		2	!	Slight Brown Colour
			NORTH_KERRY _LANDFILL_SW	North_Kerry_Landfill Surface water: SW-2					2016/2179	6-2178_v1.pdf \\doc_server\co a\KCC_ENVIRO N\2016\Jul\201	14-Jul-16	15:00 AS	LANDFILL	130_NKL_SURI _MONTH		Authorised	6-2178_v1.pdf \\doc_server\co a\KCC_ENVIRO N\2016\Jul\201		Not Detected	14.0		1		Brown Colou
			NORTH KERRY	North_Kerry_Landfill Surface					2016/2180	6-2179_v1.pdf \\doc_server\co	14-Jul-16	14:50 AS	LANDFILL	130_NKL_SURI	:	Authorised	6-2179_v1.pdf		Not Detected	14.5		1		Brown Colou
			_LANDFILL_SW 3	water: SW-3						a\KCC_ENVIRO N\2016\Jul\201 6-2180_v1.pdf				_MONTH			a\KCC_ENVIRO N\2016\Jul\201 6-2180_v1.pdf							
			_LANDFILL_SW	North_Kerry_Landfill Surface water: SWML-10(Eastern Lagoon outlet)					2016/2185	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2185_v1.pdf	14-Jul-16	16:14 AS	LANDFILL	130_NKL_SURI _SS_AMMO	=	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2185_v1.pdf		Not Detected	13.5		<0.05 2	!	Clear
			NORTH_KERRY _LANDFILL_SW ML11	North_Kerry_Landfill Surface water: SWML-11					2016/2186	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2186_v1.pdf	14-Jul-16	16:17 AS	LANDFILL	130_NKL_SURI _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2186_v1.pdf		Not Detected	13.5		<0.05 2	!	Clear
			_LANDFILL_SW	North_Kerry_Landfill Surface water: SWML-2(Western Lagoon outlet)					2016/2181	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2181_v1.pdf	14-Jul-16	15:28 AS	LANDFILL	130_NKL_SURI _SS_AMMO		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2181_v1.pdf		Not Detected	14.0		<0.05 4		Clear
			NORTH_KERRY _LANDFILL_SW ML3	North_Kerry_Landfill Surface water: SWML-3					2016/2182	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2182_v1.pdf	14-Jul-16	15:33 AS	LANDFILL	130_NKL_SURI _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2182_v1.pdf		Not Detected	13.5		<	:1	Clear
			NORTH_KERRY _LANDFILL_SW ML4	North_Kerry_Landfill Surface water: SWML-4					2016/2183	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2183_v1.pdf	14-Jul-16	15:40 AS	LANDFILL	130_NKL_SURI _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2183_v1.pdf		Not Detected	14.5		1		Clear
			NORTH_KERRY _LANDFILL_SW ML5	North_Kerry_Landfill Surface water: SWML-5					2016/2184	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2184_v1.pdf	14-Jul-16	15:47 AS	LANDFILL	130_NKL_SURI _MONTH	For Oxide at location	Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2184_v1.pdf		Not Detected	14.5		6	1	Clear
			NORTH_KERRY _LANDFILL_SW MLE1	North_Kerry_Landfill Surface water: SWML-E1(Northern Lagoon)						\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2189_v1.pdf	14-Jul-16	16:20 AS	LANDFILL	130_NKL_SURI _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2189_v1.pdf		Not Detected	14.0		<0.05 3		Clear
			NORTH_KERRY _LANDFILL_W1	North_Kerry_Landfill Surface water: W1					2016/2187	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2187_v1.pdf	14-Jul-16	14:35 AS	LANDFILL	130_NKL_SURI _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2187_v1.pdf		Not Detected	14.5		2	!	Slight Brown Colour
				North_Kerry_Landfill Surface water: W1						\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-	14-Jul-16	14:35 AS	LANDFILL	130_NKL_SURI _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-		Not Detected	14.5		<	:1	Slight Brown Colour
				North_Kerry_Landfill Surface water: W2(O'Brennan's Br. R.Lee)					2016/2188	2190QA v1.pdf \\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2188_v1.pdf	14-Jul-16	16:28 AS	LANDFILL	130_NKL_SURI		Authorised	2190QA v1.pdf \\doc_server\co a\KCC_ENVIRO N\2016\Jul\201 6-2188_v1.pdf		Not Detected	14.5		1		Clear

Kerry County Council - All Laboratory Results Report (Environment)

* Phase note that in accordance with Challing assurance procedures some of this data may be provisional and may be subject to further revision. This data is not validated until its based in report from signed by Senior Executive Chemist or another approved signatory

Run By KERRY_DOMAIN/david.donegan on 05/09/2016 Page 1 of 1

																	Analysis Parameter	001_COLOU	R 002_TURBID TY Turbidity	Odour	R 005A_TEMP_ IELD Temperature		5_PH 5H	007A_CONE CTIVITY20 Conductive	OU 011_TOTAL_F IC ARDNESS ty Total Hardness	B.O.D.	014_COD C.O.D.	022K_AN			I 036_DO_MG_ L Dissolved Oxygen	037_SUSPET DED SOLID Suspended Solids	S PECTION
																	Reported Name Min. Value Max Value																
																	Max Value Units			NONE									0.0 MGLN				NONE
Product	Product Version	Project	SAMPLING POINT	Sampling Point	SP EPA Code	X-Coordinate	Y-Cordinate		COA Link	Sampled Date Sa					Comments	Sample Status Certifficate of Authorisation																	
GRD_WATER		North Kerry Landfil	LANDFILL BH2 :BI	rth_Kerry_Landfill Groundwater prehole No 2				2016/2683		31-Aug-16	13:20 AS	LANDFI		130_NKL_GRD_ QUART		Not Authorised		10	3.49	Not Detected	12.4	5.5		165	27.0			<0.05			7.6		Clear
			:Bi	rth_Kerry_Landfill Groundwater prehole No 2				2016/2690QA		31-Aug-16	13:20 AS	LANDFI		130_NKL_GRD_ QUART		Not Authorised		29	6.69	Not Detected	12.4	5.4		162	30.0			<0.05			7.6		Clear
			NORTH_KERRY_ No LANDFILL_BH3 :Bi	rth_Kerry_Landfill Groundwater prehole No 3				2016/2684		31-Aug-16	13:32 AS	LANDFI	LL	130_NKL_GRD_ QUART		Not Authorised		53	5.36	Not Detected	14.9	7.3		400	6.0			0.05			2.2		Clear
			NORTH_KERRY_ No LANDFILL_BH4 :Bi	rth_Kerry_Landfill Groundwater prehole No 4				2016/2685		31-Aug-16	16:25 AS	LANDFI	LL	130_NKL_GRD_ QUART		Not Authorised		18	3.66	Not Detected	12.0	6.0		189	69.0			<0.05			3.4		Clear
			NORTH_KERRY_ No LANDFILL_BH5 :Bi	rth_Kerry_Landfill Groundwater prehole No 5				2016/2686		31-Aug-16	16:05 AS	LANDFI	LL	130_NKL_GRD_ QUART		Not Authorised		640	200.00	Metallic	13.7	6.0		185	24.0			0.64			2.6		Iron Oxide
			NORTH_KERRY_No LANDFILL_BH6 :Bi	rth_Kerry_Landfill Groundwater prehole No 6				2016/2687		31-Aug-16	13:51 AS	LANDFI	LL	130_NKL_GRD_ QUART		Not Authorised		33	8.28	Not Detected	12.9	5.8		142	42.0			<0.05			2.8		Clear
			NORTH_KERRY_ No LANDFILL_GWM :G'	rth_Kerry_Landfill Groundwater WML E1				2016/2682		31-Aug-16	13:42 AS	LANDFI		130_NKL_GRD_ QUART		Not Authorised		580	917.00	Earthy	12.8	6.5		203	71.0			<0.05			3.1		Cloudy / Sediment
			NORTH_KERRY_ No LANDFILL_OMA :D	rth_Kerry_Landfill Groundwater ennis O'Mahony				2016/2688		31-Aug-16	12:50 AS	LANDFI	LL	130_NKL_GRD_ QUART		Not Authorised		42	1.25	Not Detected	14.8	5.6		109	31.0			0.06			2.1		Clear
			NORTH_KERRY_ No LANDFILL_SUG :G	rth_Kerry_Landfill Groundwater erry Sugrue				2016/2689		31-Aug-16	15:20 AS	LANDFI	LL	130_NKL_GRD_ QUART		Not Authorised		<5	0.59	Not Detected	17.3	5.8		178	54.0			<0.05			7.9		Clear
LEACHATE		North Kerry Landfil		rth_Kerry_Landfill Leachate: LD-1				2016/2691		31-Aug-16	15:44 AS	LANDFI	LL	130_NKL_LEC_O		Not Authorised				Metallic	16.2												Iron Oxide
			LANDFILL_LD1 NORTH_KERRY_No LANDFILL_LD2	rth_Kerry_Landfill Leachate: LD-2				2016/2692		31-Aug-16	15:49 AS	LANDFI	LL	130_NKL_LEC_Q		Not Authorised				Not Detected	18.9												Clear
			NORTH_KERRY_ No	rth_Kerry_Landfill Leachate: LD-3				2016/2693		31-Aug-16	15:40 AS	LANDFI	LL	130_NKL_LEC_O		Not Authorised				Not Detected	15.4												Clear
			NORTH_KERRY_ No	rth_Kerry_Landfill Leachate: LL 1				2016/2694		31-Aug-16	15:30 AS	LANDFI	LL	130_NKL_LEC_O		Not Authorised				Leachate	14.8												Dirty / Brown
			NORTH_KERRY_ No	rth_Kerry_Landfill Leachate: LL 2				2016/2695		31-Aug-16	15:33 AS	LANDFI	ILL	130_NKL_LEC_O		Not Authorised				Leachate	15.9			1									Brown / Black
			NORTH_KERRY_ No	rth_Kerry_Landfill Leachate: LL 3				2016/2696		31-Aug-16	15:36 AS	LANDFI	LL	130_NKL_LEC_Q		Not Authorised				Not Detected	15.4			1									Murky / Cloudy
SURF_WATER		North Kerry Landfil	NORTH_KERRY_No LANDFILL_SW1 SW	rth_Kerry_Landfill Surface water: /-1				2016/2452		15-Aug-16	15:15 AS	LANDFI	LL	UART 130_NKL_SURF_ QUART		Not Authorised				Not Detected	14.6		7.4	107		<1.3	38		< 0.05	16.0	8.5	3	Clear
			NORTH_KERRY_ No LANDFILL_SW3 SW	rth_Kerry_Landfill Surface water: /-3				2016/2454		15-Aug-16	15:00 AS	LANDFI	LL	130_NKL_SURF_ QUART		Not Authorised				Not Detected	16.3		7.2	106		<1.3	54		< 0.05	17.0	9.5	1	Brown Colour
			LANDFILL_SWM SV	rth_Kerry_Landfill Surface water: /ML-10(Eastern Lagoon outlet)				2016/2324		02-Aug-16	15:10 AS	LANDFI	LL	004_AMMON		Not Authorised													< 0.05				
			L10 No	rth_Kerry_Landfill Surface water: /ML-10(Eastern Lagoon outlet)				2016/2459		15-Aug-16	16:10 AS	LANDFI		130_NKL_SURF_ QUART		Not Authorised				Not Detected	15.3		7.6	247		1.9	15		< 0.05	11.9	7.9	<1	Clear
			No SV	rth_Kerry_Landfill Surface water: /ML-10(Eastern Lagoon outlet)				2016/2464		15-Aug-16	16:05 AS	LANDFI	LL	130_NKL_SURF_ QUART		Not Authorised				Not Detected	22.6		8.7	226		2.4	10		< 0.05	12.2	11.0	<1	Clear
			No SV	rth_Kerry_Landfill Surface water: /ML-10(Eastern Lagoon outlet)				2016/2697		31-Aug-16	16:08 AS	LANDFI	LL	004_AMMON		Not Authorised													<0.05				
			NORTH_KERRY_ No LANDFILL_SWM SV	rth_Kerry_Landfill Surface water: /ML-2(Western Lagoon outlet)				2016/2323		02-Aug-16	15:00 AS	LANDFI	LL	004_AMMON		Not Authorised													<0.05				
				rth_Kerry_Landfill Surface water: /ML-2(Western Lagoon outlet)				2016/2325QA		02-Aug-16	15:00 AS	LANDFI	LL	004_AMMON		Not Authorised													<0.05				
			No SV	rth_Kerry_Landfill Surface water: IML-2(Western Lagoon outlet)				2016/2455		15-Aug-16	15:40 AS	LANDFI	LL	130_NKL_SURF_ QUART		Not Authorised				Not Detected	20.7		8.4	264		2.4	<10		< 0.05	8.2	10.2	2	Clear
			No SV	rth_Kerry_Landfill Surface water: /ML-2(Western Lagoon outlet)				2016/2465QA		15-Aug-16	15:40 AS	LANDFI	LL	130_NKL_SURF_ QUART		Not Authorised				Not Detected	20.7		8.3	270		2.3	11		< 0.05	11.3	10.2	2	Clear
				rth_Kerry_Landfill Surface water: /ML-E1(Northern Lagoon)				2016/2463		15-Aug-16	16:20 AS	LANDFI		130_NKL_SURF_ QUART		Not Authorised				Not Detected	19.9		8.2	188		1.5	<10		< 0.05	10.4	9.2	5	Clear
			NORTH_KERRY_ No	rth_Kerry_Landfill Surface water:				2016/2461		15-Aug-16	14:38 AS	LANDFI	IL	130_NKL_SURF_		Not Authorised				Not Detected	14.1	1	7.2	117	1	<1.3	<10		<0.05	19.0	10.2	2	Clear
			LANDFILL_W1 W NORTH_KERRY_ No LANDFILL_W2 W2	rth_Kerry_Landfill Surface water: 2(O'Brennan's Br. R.Lee)				2016/2462		15-Aug-16	16:40 AS	LANDFI	LL	130_NKL_SURF_ QUART		Not Authorised				Not Detected	15.4		7.3	155		<1.3	<10		<0.05	23.9	9.8	2	Clear

Kerry County Council - All Laboratory Results Report (Environment)

* Please note that in accordance with Quality assurance procedures some of this data may be provisional and may be subject to further revision. This data is not validated until Issued in report form signed by Senior Executive Chemist or another approved signatory

Run By KERRY_DOMAIN\david.donegan on 04/10/2016 Page 1 of 1

																			FIELD	NIA		JS PECTION
																	Parameter	Odour	Temperature	Ammonia	Suspended Solids	d Visual Inspection
																	Reported Name				Solius	Hispection
																	Min. Value			0.0		
																	Max Value					
																	Units	NONE	DEG_C	MGLN	MGL	NONE
Product	Product Version	Project	SAMPLING Sampling Point POINT	SP EPA Code	X-Coordinate	Y-Cordinate	Consumer	Sample No.	COA Link	Sampled Date	Sampled Time Sa	impled By Samp	le Type Test List	Comments	Sample Statu	s Certifficate of Authorisation						
SURF_WATER	1	North Kerry Landfill	NORTH_KERRY North_Kerry_Landfill Surface					2016/2931		15-Sep-16	12:41 AS	LANDF		RF	Not Authorised	1		Not Detected	13.3		23	Brown Colour
			_LANDFILL_SW water: SW-1										_MONTH									
			NORTH_KERRY North_Kerry_Landfill Surface					2016/2932		15-Sep-16	12:34 AS	LANDF	LL 130_NKL_SU	RF	Not Authorised	ı		Not Detected	14.3		4	Brown Colour
			_LANDFILL_SW water: SW-2										_MONTH									
			NORTH_KERRY North_Kerry_Landfill Surface					2016/2933		15-Sep-16	12:22 AS	LANDF		RF	Not Authorised	1		Not Detected	14.4		3	Brown Colour
			_LANDFILL_SW water: SW-3										_MONTH									
			NORTH_KERRY North_Kerry_Landfill Surface					2016/2938		15-Sep-16	13:24 AS	LANDF	LL 130_NKL_SU	RF	Not Authorised	1		Not Detected	13.8	< 0.05	1	Clear
			_LANDFILL_SW water: SWML-10(Eastern Lagoon outlet)										_SS_AMMO									
			NORTH_KERRY North_Kerry_Landfill Surface					2016/2934		15-Sep-16	12:53 AS	LANDF	LL 130_NKL_SU	RF	Not Authorised			Not Detected	14.5	< 0.05	2	Clear
			_LANDFILL_SW water: SWML-2(Western Lagoon										_SS_AMMO									
			NORTH_KERRY North_Kerry_Landfill Surface					2016/2935		15-Sep-16	12:49 AS	LANDF		RF	Not Authorised	1		Not Detected	13.7		<1	Clear
			_LANDFILL_SW water: SWML-3										_MONTH									
			NORTH_KERRY North_Kerry_Landfill Surface					2016/2936		15-Sep-16	13:00 AS	LANDF		RF	Not Authorised	1		Not Detected	15.1		1	Clear
			_LANDFILL_SW water: SWML-4										_MONTH									
			NORTH_KERRY North_Kerry_Landfill Surface					2016/2937		15-Sep-16	13:14 AS	LANDF		RF	Not Authorised	1		Metallic	16.1		4	Clear
			_LANDFILL_SW water: SWML-5										_MONTH									
			NORTH_KERRY North_Kerry_Landfill Surface					2016/2942		15-Sep-16	13:45 AS	LANDF			Not Authorised			Not Detected	16.6	< 0.05	4	Cloudy
			_LANDFILL_SW water: SWML-E1(Northern										_SS_AMMO									
			MLE1 Laqoon) North_Kerry_Landfill Surface					2016/29423QA		15-Sep-16	13:45 AS	LANDF	LL 130_NKL_SU	DF	Not Authorised			Not Detected	16.6	< 0.05	- 5	Cloudy
			water: SWML-E1(Northern					2010/2742547		15 500 10	15.457.5	L. C.	_SS_AMMO		Not right of sec			Not Detected	10.0	10.00		oloudy
			Lagoon) NORTH_KERRY North_Kerry_Landfill Surface					2016/2940		15-Sep-16	12:05 AS	LANDF	LL 130_NKL_SU	DE .	Not Authorised			Not Detected	12.0		-	Clear
			LANDFILL W1 water: W1					2010/2940		15-Sep-16	12:05 AS	LANDF	MONTH	RF	INUI AUTHORISED			Not Detected	12.9		0	Clear
			NORTH_KERRY North_Kerry_Landfill Surface					2016/2941		15-Sep-16	14:10 AS	LANDF		RF	Not Authorised	I I		Not Detected	13.6		1	Clear
			_LANDFILL_W2 water: W2(O'Brennan's Br. R.Lee)										_MONTH							1		
																			1	1		

Kerry County Council - All Laboratory Results Report (Environment)

* Please note that in accordance with Quality assurance procedures some of this data may be provisional and may be subject to further revision. This data is not validated until issued in report form signed by Senior Executive Chemist or another approved signatory

Analysis 003_ODOUR 005A_TEMP_ 021K_NITRIT 022K_AMMO

Page 1 of 1 Run By KERRY_DOMAIN\david.donegan on

																					FIELD	E	NIA
																			Parameter	Odour	Temperature	Nitrite	Ammonia
																			Reported Name Min. Value				
																			Max Value Units	NONE	DEG_C	MGLN	0.0 MGLN
Product	Product Version	Project	SAMPLING POINT	Sampling Point	SP EPA Code	X-Coordinate	Y-Cordinate	Consumer	Sample No.	COA Link	Sampled Date Sampl	ampled Time	Sampled By	Sample Type	Test List	Comments	Sample Status	Certifficate of Authorisation					
.WATER		North Kerry Landfill	NORTH_KERRY N	lorth_Kerry_Landfill Surface vater: ICW Pond 1					2016/3151		05-Oct-16	14:20	AS	LANDFILL	130_NKL_SURF _SS_AMMO		Not Authorised			Not Detected	14.3		0.08
			NORTH_KERRY N	lorth_Kerry_Landfill Surface vater: ICW Pond 2					2016/3152		05-Oct-16	14:16	AS	LANDFILL	130_NKL_SURF _SS_AMMO		Not Authorised			Not Detected	15.0		0.05
			NORTH_KERRY N	lorth_Kerry_Landfill Surface vater: ICW Pond 3					2016/3153		05-Oct-16	14:11	AS	LANDFILL	130_NKL_SURF _SS_AMMO		Not Authorised			Not Detected	14.8		<0.05
				lorth_Kerry_Landfill Surface vater: SW-1					2016/3138		05-Oct-16	13:16	AS	LANDFILL	130_NKL_SURF _MONTH		Not Authorised			Not Detected	13.4		
			NORTH_KERRY N _LANDFILL_SW v	lorth_Kerry_Landfill Surface water: SW-2					2016/3139		05-Oct-16	13:10	AS	LANDFILL	130_NKL_SURF _MONTH		Not Authorised			Not Detected	12.9		
			NORTH_KERRY N _LANDFILL_SW v	lorth_Kerry_Landfill Surface vater: SW-3					2016/3140		05-Oct-16	13:00	AS	LANDFILL	130_NKL_SURF _MONTH		Not Authorised			Not Detected	13.5		
			_LANDFILL_SW v	lorth_Kerry_Landfill Surface vater: SWML-10(Eastern Lagoon					2016/3339		17-Oct-16	11:20	AS	LANDFILL	004_AMMON		Not Authorised					< 0.05	<0.05
			N	outlet) lorth_Kerry_Landfill Surface vater: SWML-10(Eastern Lagoon					2016/3443		27-Oct-16	15:20	AS	LANDFILL	004_AMMON		Not Authorised						<0.05
			_LANDFILL_SW v	orth_Kerry_Landfill Surface vater: SWML-2(Western Lagoon					2016/3141		05-Oct-16	13:40	AS	LANDFILL	130_NKL_SURF _SS_AMMO		Not Authorised			Not Detected	14.0		0.05
			v	orth_Kerry_Landfill Surface vater: SWML-2(Western Lagoon					2016/3338		17-Oct-16	10:55	AS	LANDFILL	004_AMMON		Not Authorised					< 0.05	<0.05
			N	lorth_Kerry_Landfill Surface vater: SWML-2(Western Lagoon					2016/3444		27-Oct-16	15:00	AS	LANDFILL	004_AMMON		Not Authorised						<0.05
				lorth_Kerry_Landfill Surface vater: SWML-2(Western Lagoon					2016/3445QA		27-Oct-16	15:00	AS	LANDFILL	004_AMMON		Not Authorised						<0.05
			_LANDFILL_SW v	utlet) lorth_Kerry_Landfill Surface vater: SWML-3					2016/3142		05-Oct-16	13:44	AS	LANDFILL	130_NKL_SURF _MONTH		Not Authorised			Not Detected	14.0		
			_LANDFILL_SW v	lorth_Kerry_Landfill Surface vater: SWML-4					2016/3143		05-Oct-16	13:52	AS	LANDFILL	130_NKL_SURF _MONTH		Not Authorised			Not Detected	14.5		
			ML4 NORTH_KERRY N _LANDFILL_SW v ML5	lorth_Kerry_Landfill Surface vater: SWML-5					2016/3144		05-Oct-16	14:06	AS	LANDFILL	130_NKL_SURF _MONTH		Not Authorised			Not Detected	13.8		
			NORTH_KERRY N _LANDFILL_SW v	Jorth_Kerry_Landfill Surface vater: SWML-E1(Northern					2016/3149		05-Oct-16	14:37	AS	LANDFILL	130_NKL_SURF _SS_AMMO		Not Authorised			Not Detected	14.2		<0.05
			N v	agoon) Iorth_Kerry_Landfill Surface vater: SWML-E1(Northern					2016/3150QA		05-Oct-16	14:37	AS	LANDFILL	130_NKL_SURF _SS_AMMO		Not Authorised			Not Detected	14.2		<0.05
				agoon) lorth_Kerry_Landfill Surface					2016/3147		05-Oct-16	12:42	AS	LANDFILL	130_NKL_SURF _MONTH		Not Authorised			Not Detected	12.8		
			NORTH_KERRY N	lorth_Kerry_Landfill Surface vater: W2(O'Brennan's Br. R.Lee)					2016/3148	\\doc_server\co a\KCC_ENVIRO N\2016\Oct\20 16-3148_v1.pdf		12:30	AS	LANDFILL	130_NKL_SURF _MONTH			\\doc_server\co a\KCC_ENVIRO N\2016\Oct\20 16-3148_v1.pdf		Not Detected	14.1		

Kerry County Council - All Laboratory Results Report (Environment)

Quality assurance procedures some of this data may be provisional and may be subject to further envision. This data is not validated until issued in report from signed by Senter Executive Chemistr cannot approved signaturery.

												Analysis	001_COLOUR 003_ODOUR 005A_TEA	MP_ 00	6_PH	007A_CONDU 011_TOTAL	L_ 013C_BOD 014_C	0D 015_TO	IC 016_FLUORI	022K_AMMONIA	IIA 025_PHC	SPH 028K_CHLOR	028K_SULPH 031	_SOLIDS 033K_1	TON 036_DO_M	G_ 037_SUSPEN 065_ALKANI 082_VI	S_INS			ICP)	_MS_HM				
												Parameter	Colour Odour Temperat	hure :	nH	CTIVITY20C HARDNES: Conductivity Total	S BOD COL		DE_ISE Fluoride	Ammonia	ATE_SE Phospho	RP IDE	ATE Suinhate Tot	_WW at Solids TON	L Dissolved	DED_SOLIDS TY_TOTAL PECT Suspended Alkalinity Visi Solids Insee	TON As	Ra Cri							
												Panestad Name									OMRE				Oxygen	Solids Inspe									
												Min. Value																							
												Max Value Units			9.0 PH					MGLN MG	O.O MGL							secz ucz							
Product	Version	SAMPLING POINT	Sampling Point	SP EPA Code X-Coordinate Y-Cordinate Consumer	Sample No. COA	DA Link Sampled Date	Sampled Time		le Type Test Lis		Sample Status Certifficate of Authorisation																								
CRD_WATER		ORTH_KERRY_LANDFIL Nor _BH2 Gro	th_Kerry_Landfill undwater :Borehole No 2		2016/3655	17-Nov-16	6 11:10	TOS LANDE	ILL 130_NKL_G ANNUAL	RD_	Not Authorised		43 Not Detected 11.3	5.4		159 39.0		< 1.0	< 0.1	0.05	< 0.005	38.4	<5 165	0.99	4.3	17 Clear			<1		475.9	<10			
		ORTH_KERRY_LANDFIL Nor BH3 Gro	th_Kerry_Landfill undwater :Borehole No 3		2016/3656	17-Nov-16	6 12:36	AS LANDF	ILL 130_NKL_G ANNUAL	RD_	Not Authorised		122 Not Detected 9.4	6.9		404 207.0		1.6	0.1	.06	< 0.005	21.2	<5 263	< 0.5	3.1	208 Clear			<1		2267.3	<10			
		ORTH_KERRY_LANDFIL Nor BH4 Gro			2016/3657	17-Nov-16	6 13:26	TOS LANDFI	ILL 130_NKL_G ANNUAL	RD_	Not Authorised		68 Not Detected 8.0	6.1		193 106.0	+ + + + + + + + + + + + + + + + + + + +	1.0	0.1	0.05	< 0.005	19.1	<s 156<="" td=""><td><0.5</td><td>5.4</td><td>80 Clear</td><td></td><td></td><td><1</td><td></td><td>1592.7</td><td><10</td><td>-</td><td></td><td></td></s>	<0.5	5.4	80 Clear			<1		1592.7	<10	-		
	NC NC	ORTH_KERRY_LANDFIL Nor BHS Gro	th_Kerry_Landfill		2016/3658	17-Nov-16	6 13:26	TOS LANDF		RD_	Not Authorised		2700 Not Detected 10.1	6.1		184 47.0		29.4	<0.1	.00	0.06	23.2	5.2 372	<0.5	3.8	31 highly coloured			3.1		266.0	<10			
	NC NC	ORTH_KERRY_LANDFIL Nor	th_Kerry_Landfill		2016/3659	17-Nov-16	6 13:00	AS LANDFI		RD_	Not Authorised		102 Not Detected 9.2	5.9		143 38.0		1.3	<0.1	0.05	< 0.005	25.3	<5 627	<0.5	4.0	with iron	flocs		<1		524.5	<10			
		BH6 Gro			2016/3654	17-Nov-16	6 10:42	TOS LANDE	ANNUAL ILL 130 NKL G	00	Not Authorised		3050 Not Detected 8.7			200		7.0		0.05	0.00	24.0	10.1			S6 Cloudy v			1			- 10			
	U	_GWML_E1 Gro	undwater : GWML E1						ANNUAL					0.4		204 178.0		1.7			0.03	31.9	10.4 3504	1.49	0.2	solids			e1		83.4	<10			
	NC L	ORTH_KERRY_LANDFIL Nor _OMAHONY Gro	th_Kerry_Landfill undwater : Dennis O'Mahony		2016/3660	17-Nov-16	6 13:47	TOS LANDE	ILL 130_NKL_G ANNUAL	RD_	Not Authorised		152 Not Detected 8.9	5.6		86 39.0		9.5	<0.1	0.05	< 0.005	13.3	<5 71	<0.5	3.6	27 Cloudy appeara	nce		<1		351.4	<10			
		ORTH_KERRY_LANDFIL Nor _SUGRUE Gro			2016/3661	17-Nov-16	6 14:29	AS LANDE	ILL 130_NKL_G ANNUAL	RD_	Not Authorised		8 Not Detected 7.2	5.6		188 79.0		<1.0	<0.1	.05	< 0.005	32.5	7.2 136	3.41	5.9	34 Clear			<1		31.1	<10			
LEACHATE	North Kerry Landfill NC	ORTH_KERRY_LANDFIL Nor	th_Kerry_Landfill Leachate:		2016/3662	17-Nov-16			ILL 130_NKL_L ANNUAL	EC_	Not Authorised		Leachate 10.6	6.3		333	1.9 34		< 0.1	.41	0.01	22.0	<5	<0.5		Brown/C			1.0	+	1514.9	<10		-	_
	NC	ORTH_KERRY_LANDFIL Nor	th_Kerry_Landfill Leachate:		2016/3663	17-Nov-16			ILL 130_NKL_L		Not Authorised		Not Detected 9.4	7.2		401	1.3 17		<0.1	.13	0.01	17.1	<5	1.12		Cloudy			<1		500.1	<10			
		ORTH_KERRY_LANDFIL Nor LD3 LD-	3		2016/3664	17-Nov-16			AMBILIAL		Not Authorised		Not Detected 10.0	7.6		917	<1.3 16		0.1	0.05	0.05	67.9	45.7	54.13		Clear			<1		2.0	<10			
		LL1 1	th_Kerry_Landfill Leachate: LL		2016/3665	17-Nov-16			ANNUAL		Not Authorised		Leachate 8.8	7.4		2330	28 287			40.85	0.23	193.8	15.8	0.53		Brown/S			14.6						
		112	th_Kerry_Landfill Leachate: LL th_Kerry_Landfill Leachate: LL		2016/3666	17-Nov-16			ANNUAL	-	Not Authorised Not Authorised		Leachate 7.6 Not Detected 7.0	7.6		2380	31 360			24.85	0.14	225.2	55.4	6.55		Green/S	edimen		12.2		1881.9	18.8			
SHIPE WATER	L I	LL3 3 ORTH KERRY LANDFIL NOT			2016/3643	17-Nov-16			ANNUAL	-	Not Authorised		Not Detected 7.1	9.0		/5	6.1 52		<0.1	<0.05	0.01	5.7	<5	<0.5		Chia			<1		77.0	< 10			
SUMWATER			er: SW-1 th_Kerry_Landfill Surface		2016/3643	17-Nov-16			ANNUAL		Not Authorised		Not Detected 7.1		7.3	15/	<1.3 21			<0.05		16.6	<5	<0.5	11.2	<1 58 Char			<1		<1	<10			
	W.		er: SW-1		2016/3644	17-Nov-16			AMNUAL		Not Authorised		Not Detected 8.0		0.0	92	<1.3			<0.05		15.0	0.4	-0.5	11.0	6 138 Clear 2 115 Slight B	Table 1		-1		00.2	-10			
	L. C.		er: SW-2		2016/3645	17-Nov-16			ANNUAL		Not Authorised		Not Detected 7.9		6.4	75	<1.3 44			<0.05		16.1	<5	<0.5	11.3	Colour			<1		76.3	<10			
		SW3 wat	er: SW-3 th_Kerry_Landfill Surface er: SWML-10(Eastern Lagoon		2016/3796	01-Dec-16	6 15:40	AS LANDE	ANNUAL 130_NKL_S _SS_AMMO		Not Authorised		Not Detected 4.0							<0.05						2 Colour 2 Clear			+	+	_	+	\rightarrow	-	_
	100	ORTH_KERRY_LANDFIL Nor	let)		2016/3792	01-Dec-16	6 15:52	AS LANDE			Not Authorised		Not Detected 3.0							<0.06						A Store									
	U	_SWML2 wat	er: SWML-2(Western Lagoon let)						_SS_AMMO																	2 Crear									
		ORTH_KERRY_LANDFIL Nor SWML3 wat ORTH_KERRY_LANDFIL Nor			2016/3669	17-Nov-16			ANNUAL	URF	Not Authorised		Not Detected 8.7		7.6	288	<1.3 <10				< 0.005	14.0	6.8	<0.5	9.9	2 141 Clear			<1			<10			
	NC.	ORTH_KERRY_LANDFIL Nor SWML4 wat	th_Kerry_Landfill Surface er: SWML-4		2016/3646	17-Nov-16	6 12:50	TOS LANDF	ILL 130_NKL_S _ANNUAL	URF	Not Authorised		Not Detected 10.3		7.1	329	<1.3 10			<0.06	< 0.005	13.5	8.7	<0.5	9.0	8 168 light bro	wn		<1		576.5	<10			
	NC NC	ORTH KERRY LANDFIL Nor	th Kerry Landfill Surface		2016/3647	17-Nov-16				URF	Not Authorised		Not Detected 11.8		6.4	327	<1.3 11			0.08	< 0.005	14.6	8.2	< 0.5	3.7	9 167 Clear wi	th iron		<1		1253.1	<10			
	NO L	SWML5 wat ORTH_KERRY_LANDFIL Nor SWMLE1 wat	th_Kerry_Landfill Surface er: SWML-E1 (Northern		2016/3652	17-Nov-16	6 13:00	TOS LANDE	ILL 130_NKL_S _ANNUAL	URF	Not Authorised		Not Detected 8.3		7.5	176	<1.3 12			<0.06	<0.005	14.3	5.2	<0.5	10.8	4 75 Clear			<1		67.9	<10			
			oon) th_Kerry_Landfill Surface er: SWML-E1 (Northern		2016/3653/QA	17-Nov-16	6 13:00	TOS LANDE	ILL 130_NKL_S _ANNUAL	URF	Not Authorised		Not Detected 8.3		7.5	173	<1.3			<0.05	<0.005	14.0	6.3	<0.5	10.8	7 68 Clear			<1	+	62.8	<10	-	-	
	NC	ORTH_KERRY_LANDFIL Nor			2016/3650	17-Nov-16	6 14:40	TOS LANDE		ure	Not Authorised		Not Detected 6.4		7.0	74	<1.3 40			<0.05	< 0.005	16.3	<5	<0.5	11.7	<1 10 Light bro			<1	+	169.6	<10	+		
	L. NO	ORTH_KERRY_LANDFIL Nor	er: W1 th_Kerry_Landfill Surface		2016/3651	17-Nov-16	6 14:14	AS LANDE	_ANNUAL ILL 130_NKL_S	uRF	Not Authorised		Not Detected 7.7		7.0	116	<1.3 32			<0.06	0.01	20.4	6.1	<0.5	11.5	2 24 Clear			<1	++	15.1	<10	+		
	-	_W2 wat	er: W2(O'Brennan's Br. R.Lee)						_ANNUAL					1	1			- 1										1							

Kerry County Council - All Laboratory Results Report (Environment)

* Please note that in accordance with Quality assurance procedures some of this data may be provisional and may be subject to further revision. This data is not validated until issued in report form signed by Senior Executive Chemist or another approved signatory

Page 1 of 1 Run By KERRY_DOMAINIdavid.donegan on 01/02/2017

																			Parameter	Odour	Temperature	Ammonia	Suspended Solids	Visual Inspection
Draduet	Draduat	Drainat	SAMPLING	Sampling Daint	SP EPA Code	V Coordinate	V Cardinata	Concumer	Comple No.	COAlimb	Samulad Data	Complet Time	Compled Dr	Samula Tuna	Took Link	Comments	Commis Status	ıs Certifficate of	Reported Name Min. Value Max Value Units	NONE	DEG_C	0.0 0.0 <i>MGLN</i>	MGL	NONE
Product F_WATER	Product Version	Project	POINT	Sampling Point North_Kerry_Landfill Surface	SP EPA Code	X-Coordinate	Y-Cordinate	Consumer	2016/3789	\\doc_server\co					Test List	Comments	Authorised	Authorisation \\doc_server\co		Not Detected	4.0		12	Clear
		,	_LANDFILL_SW	water: SW-1						a\KCC_ENVIRO N\2016\Dec\20 16-3789_v1.pdf					_MONTH			a\KCC_ENVIRO N\2016\Dec\20 16-3789_v1.pdf						
				North_Kerry_Landfill Surface water: SW-1					2017/0006	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\20 17-0006_v1.pdf	04-Jan-17	14:1	0 TS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\201 7-0006_v1.pdf		Normal	4.4		5	SI. coloured/cle
			NORTH_KERRY _LANDFILL_SW 2	North_Kerry_Landfill Surface water: SW-2					2017/0007	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\20 17-0007_v1.pdf	04-Jan-17	7 14:0	5 TS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\201 7-0007_v1.pdf		Normal	4.5		<1	coloured/riv e
			NORTH_KERRY _LANDFILL_SW 3	North_Kerry_Landfill Surface water: SW-3					2016/3791	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3791_v1.pdf	01-Dec-16	15:1	5 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3791_v1.pdf		Not Detected	4.0		<1	Clear
				North_Kerry_Landfill Surface water: SW-3					2017/0008	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\20 17-0008_v1.pdf	04-Jan-17	7 13:5	0 TS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\201 7-0008_v1.pdf		Normal	4.2		<1	clear
			_LANDFILL_SW	North_Kerry_Landfill Surface water: SWML-10(Eastern Lagoon outlet)					2016/3796	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3796_v1.pdf	01-Dec-16	5 15:4	0 AS	LANDFILL	130_NKL_SURF _SS_AMMO		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3796_v1.pdf		Not Detected	4.0	<0.05	2	Clear
				North_Kerry_Landfill Surface water: SWML-10(Eastern Lagoon outlet)					2017/0013	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\20 17-0013_v1.pdf	04-Jan-17	7 12:5	5 TS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\201 7-0013_v1.pdf		Normal	3.6	<0.05	8	clear
				North_Kerry_Landfill Surface water: SWML-10(Eastern Lagoon outlet)					2017/0014QA	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\20 17-	04-Jan-17	7 12:5	8 TS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\201 7-		Normal	3.7	<0.05	7	clear
				North_Kerry_Landfill Surface water: SWML-11					2017/0015	0014OA v1.pdf \\doc_server\co a\KCC_ENVIRO N\2017\Jan\20 17-0015_v1.pdf	04-Jan-17	7 13:0	5 TS	LANDFILL	130_NKL_SURF _MONTH		Authorised	0014OA v1.pdf \\doc_server\co a\KCC_ENVIRO N\2017\Jan\201 7-0015_v1.pdf		Normal	4.9		10	sl. coloured
			_LANDFILL_SW	North_Kerry_Landfill Surface water: SWML-2(Western Lagoon outlet)					2016/3792	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3792_v1.pdf		5 15:5	2 AS	LANDFILL	130_NKL_SURF _SS_AMMO		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3792_v1.pdf		Not Detected	3.0	<0.05	2	Clear
				North_Kerry_Landfill Surface water: SWML-2(Western Lagoon outlet)					2017/0009	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\20 17-0009_v1.pdf	04-Jan-17	7 12:0	5 TS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\201 7-0009_v1.pdf		Normal	2.1	<0.05	6	clear
				North_Kerry_Landfill Surface water: SWML-4					2017/0011	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\20 17-0011_v1.pdf	04-Jan-17	7 12:2	5 TS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\201 7-0011_v1.pdf		Normal	7.8		7	clear
				North_Kerry_Landfill Surface water: SWML-5					2016/3795	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3795_v1.pdf	01-Dec-16	16:0	0 AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3795_v1.pdf		Not Detected	4.0		6	Iron Oxide
			_LANDFILL_SW	North_Kerry_Landfill Surface water: SWML-E1(Northern Lagoon)					2016/3798	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3798_v1.pdf	01-Dec-16	16:1	7 AS		130_NKL_SURF _SS_AMMO		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3798_v1.pdf		Not Detected	6.0	<0.05	6	Slightly Clou
				North_Kerry_Landfill Surface water: SWML-E1(Northern Lagoon)					2016/3801QA	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-	01-Dec-16	5 16:1	7 AS		130_NKL_SURF _SS_AMMO		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-		Not Detected	6.0	<0.05	3	Slightly Clou
				North_Kerry_Landfill Surface water: SWML-E1(Northern Lagoon)					2017/0018	3801OA v1.pdf \\doc_server\co a\KCC_ENVIRO N\2017\Jan\20 17-0018_v1.pdf	04-Jan-17	7 13:3	0 TS	LANDFILL	130_NKL_SURF _MONTH		Authorised	38010A v1 ndf \\doc_server\co a\KCC_ENVIRO N\2017\Jan\201 7-0018_v1.pdf		Normal	5.2	<0.05	9	clear
			NORTH_KERRY _LANDFILL_W1	North_Kerry_Landfill Surface water: W1					2016/3799	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3799_v1.pdf	01-Dec-16	15:0	D AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3799_v1.pdf		Not Detected	5.0		2	Clear
			NORTH_KERRY _LANDFILL_W2	North_Kerry_Landfill Surface water: W2(O'Brennan's Br. R.Lee)					2016/3800	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3800_v1.pdf	01-Dec-16	16:4	D AS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2016\Dec\20 16-3800_v1.pdf		Not Detected	4.0		<1	Clear
				North_Kerry_Landfill Surface water: W2(O'Brennan's Br. R.Lee)					2017/0017	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\20 17-0017_v1.pdf	04-Jan-17	7 14:5	0 TS	LANDFILL	130_NKL_SURF _MONTH		Authorised	\\doc_server\co a\KCC_ENVIRO N\2017\Jan\201 7-0017_v1.pdf		Normal	5.2	<0.05	3	clear

Appendix C: Engine Stack Monitoring Testing

Visit No: 1 Year: 2016

Office: Trim

IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Report Title	Air Emissions Compliance Monitoring Emissions Report
Company address	Air Scientific Ltd., 32 DeGranville Court, Dublin road, Trim, Co. Meath
Stack Emissions Testing Report Commissioned by	B9 Power
Facility Name	North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Contact Person	Ruth Baker
EPA Licence Number	W0001-03
Licence Holder	North Kerry Landfill, E1
Stack Reference Number	E1
Dates of the Monitoring Campaign	20/10/2016
Job Reference Number	NOKETL1201016 / 2016548
Report Written By	Dr. John Casey
Report Approved by	Dr. Brian Sheridan
Stack Testing Team	Dr. John Casey
Report Date	23/11/2016
Report Type	Test Report Compliance Monitoring
Version	1
Signature of Approver	Brian Sheridan Technical Manager

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Contents

1.	Executive Summary	4
	I. Monitoring Objectives	4
	Overall Aim of the monitoring Campaign	4
	Special Requirements	4
	Target Parameters	4
	Emission Limit Values	4
	Reference Conditions	4
	Overall Results	5
	Accreditation details	5
	Monitoring Dates & Times	6
	Process details	7
	Monitoring, Equipment & Analytical Methods	8
	Sampling Deviations	10
	Reference Documents	10
	Suitability of sampling location	11
	Stack diagram	12
2.	APPENDICES	13
	II. Appendix I - Monitoring Personnel & Equipment	13
	Stack Emissions Monitoring Personnel	13
	III. Appendix II - Stack Details & flow characteristics	14
	Preliminary stack survey calculations	14
	IV. Appendix III - Individual parameter sampling details and results	
	Total Particulate Matter: Sampling details and results	21
	Total Particulates Quality Assurance	23
	Carbon Monoxide Quality Assurance	24
	Carbon Monoxide Results & Sampling details	25
	Carbon Monoxide Trend	26
	Carbon Monoxide Measurement Uncertainty	27
	Oxides of Nitrogen Quality Assurance	
	Oxides of Nitrogen Results & Sampling details	29
	Oxides of Nitrogen Trend	
	Oxides of Nitrogen Measurement Uncertainty	31
	Sulphur Dioxide Quality Assurance	32
	Sulphur Dioxide Results & Sampling details	33
	Sulphur Dioxide Trend	34
	Sulphur Dioxide Measurement Uncertainty	35

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

Opinions and interpretations expresses herein are outside the scope of Air Scientific Limited INAB accreditation. This test report shall not be reproduced, without the written approval of Air Scientific Limited. All sampling and reporting is completed in accordance with Environmental Protection Agency Air Guidance Note 2 requirements.

Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

1. Executive Summary

I. Monitoring Objectives

Overall Aim of the monitoring Campaign

The aim of the monitoring campaign was to demonstrate compliance with a set of emission limit values as specified in the site licence.

Special Requirements

There were no special requirements.

Target Parameters

Total Particulate Matter (TPM)
Carbon Monoxide (CO)
Oxides of Nitrogen (NOx) as NO ₂
Sulphur Dioxide (SO ₂)
Stack Gas Temperature
Volume (m³.h ⁻¹)

Emission Limit Values

Emission Limit Values / Mass Emissions Limit Values	mg.m ⁻³	kg.h ⁻¹
TPM	130	-
СО	-	-
NOx as NO ₂	500	-
SO ₂	-	-
Stack Gas Temperature	-	-
Volume (m³.h ⁻¹)	3,000	-

Reference Conditions

Reference Conditions	Value
Oxygen Reference %	5
Temperature °C	273.15
Total Pressure kPa	101.3
Moisture %	Yes

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Executive Summary

Overall Results

	Concentration					Mass Emission	
Parameter	Units	Result	MU +/-	Limit	Compliant	Units	Result
Total Particulate Matter (TPM)	mg.m ⁻³	6.34	1.94	130	Yes	kg.h ⁻¹	0.005
Carbon Monoxide (CO)	mg.m ⁻³	1945	116.55	-	N/A	kg.h ⁻¹	1.436
Oxides of Nitrogen (NOx) as NO ₂	mg.m ⁻³	218.36	17.35	500	Yes	kg.h ⁻¹	0.161
Sulphur Dioxide (SO ₂)	mg.m ⁻³	628.33	38.74	-	N/A	kg.h ⁻¹	0.464
Oxygen (%)	% v/v	7.32	0.14	-	N/A	-	-
Stack Gas Temperature	K	626.15	-	-	N/A	-	-
Stack Gas Velocity	m.s ⁻¹	19.21	1.47	-	N/A	=	-
Volumetric Flow Rate	m³.h ⁻¹	864	ī	-	N/A	-	-
Volumetric Flow Rate (Ref.)	m ³ .h ⁻¹	738	-	3,000	Yes	=	-

Accreditation details

Air Scientific Limited	INAB319T
External Analytical Laboratory	UKAS0605
Other	-

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Executive Summary

Monitoring Dates & Times

Parameter	Run	Location ID	Sampling Dates	Sampling Time On	Sampling Time Off	Duration (mins.)
	Run 1	E1	20/10/2016	09:45:00	10:16:00	00:31:00
Total Particulate Matter (TPM)	Run 2	-	-	-	-	-
,	Run 3	-	-	-	-	-
	Run 1	E1	20/10/2016	10:37:00	11:16:00	00:39:00
Carbon Monoxide (CO)	Run 2	-			-	-
()	Run 3	-	-	-	-	-
Oxides of	Run 1	E1	20/10/2016	10:37:00	11:16:00	00:39:00
Nitrogen (NOx)	Run 2	-	-	-	-	-
as NO ₂	Run 3	-			-	-
	Run 1	E1	20/10/2016	10:37:00	11:16:00	00:39:00
Sulphur Dioxide (SO ₂)	Run 2	-	-	-	-	-
()	Run 3	-	-	-	-	-
Oxygen (%)		E1	20/10/2016	10:37:00	11:16:00	00:39:00

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Executive Summary

Process details

Parameter	
Process status	Normal
Capacity (per/hour) (if applicable)	N/a
Continuous or Batch Process	Continuous
Feedstock	LFG
Abatement System	No
Abatement Systems Running Status	N/A
Fuel	LFG
Plume Appearance	Yes
Other information	None

Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03

Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Executive Summary

Monitoring, Equipment & Analytical Methods

	Monitoring				Analysis	
Parameter	Standard	Technical Procedure	Accredited Testing	Testing Lab	Analytical Technique	Analysis Lab
Total Particulate Matter (TPM)	EN13284-1:2002	SOP 2000	Yes	AirSci	Gravimetric	RPS
Carbon Monoxide (CO)	EN15058:2006	SOP 2004	No	AirSci	NCIR By Horiba PG-250	AirSci
Oxides of Nitrogen (NOx)	EN14792:2006	SOP 2002	Yes	AirSci	Chemiluminescence	AirSci
Sulphur Dioxide (SO2)	TGN 21	SOP 2012	Yes	AirSci	NDIR Absorption	AirSci
Oxygen (%)	EN14789:2005	SOP 2008	Yes	AirSci	Paramagnetic	AirSci
Stack Gas Temperature	EN16911:2013	SOP 2005	Yes	AirSci	Thermocouple	AirSci
Stack Gas Velocity	EN16911:2013	SOP 2005	Yes	AirSci	Pitot tubes	AirSci

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Co. Kerry Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee,

Rev.No: 1

List of Equipment

ID	Item of Equipment	Manufacturer	Serial No.
ASLTM12EQ517	Testo 400 Gas Pressure Vacumn and Flow	Testo	00828828/305
			100063602044367-
ASLTM12EQ520	Buhler Sample Gas Cooler	Buhler Technologies	001
ASLTM13EQ504	Horiba PG2500 Portable Flue Gas Analzer	Horiba	41432840053
ASLTM13EQ506	S TYPE PITOT TUBE	Tecora	0710
	10 metre industrial heated sample line		
ASLTM13EQ509	(Temp controller box 1 & 2)	Neptech	13B088
ASLTM14EQ507	Stanley 5m Measuring Tape	Stanley	30-696
	ISO Stack Sampling Machine and associated		
ASLTM14EQ513	equipment	TCR Tecora	070205976 & 049039P
ASLTM14EQ516	6" Digital Calliper	Stanley	052013w

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Co. Kerry Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee,

Rev.No: 1

Sampling Deviations

Parameter	Deviation	
Standard ID	EN16911 - in accordance with MID6911-1	
Standard ID	EN13284-1 - Nozzle size <6mm	
Standard ID	EN15058 – Calibration gas not 50 – 90 % of the range	
Standard ID	-	

Reference Documents

Risk Assessment (RA)	SOP1011
Site Review (SR)	SOP1015
Site Specific Protocol (SSP)	SOP1015

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1

Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Executive Summary

Suitability of sampling location

General Information	Value
Permanent/Temporary	Temporary
Inside/ Outside	Outside

Platform Details		
Irish EPA Technical Guidance Note AG1 / BS EN 15259 Platform Requirements	Value	Comment
Sufficient Working area to manipulate probe and measuring instruments	Yes	<u>-</u>
Platform has 2 handrails (approx. 0.5m & 1.0 m high)	Yes	=
Platform has vertical base boards (approx. 0.25 m high)	Yes	-
Platform has chains / self closing gates at top of ladders	Yes	-
There are no obstructions present which hamper insertion of sampling equipment	No	-
Safe Access Available	Yes	-
Easy Access Available	Yes	-

Sampling Location / Platform Improvement Recommendations	
None	

BSEN 15259 Homogeneity Test Requirements

1: There is no requirement to perform a BSEN15259 Homogenity Test on this stack

E.g. Select Option

- 1: There is no requirement to perform a BSEN15259 Homogenity Test on this stack
 2: Test results were obtained from previous Homogeneity test carried out by ASL
- 3: Test results were obtained from previous Homogeneity test carried out by Alternative contractor 4: Other: Enter Description

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Executive Summary

Stack diagram

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

APPENDICES

II. Appendix I Monitoring Personnel & Equipment

Stack Emissions Monitoring Personnel

Team Leader	Name	John Casey
	Qualifications	PhD. (Eng.), MSc. (Agr.), B. Agr. Sc.
	System approval	Air Scientific Limited Approved
		-

Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

III. Appendix II Stack Details & flow characteristics

Preliminary stack survey calculations

General Stack Details		
Stack details	Units	Value
Date of survey		20/10/2016
Time of survey		09:15
Туре		Circular
Stack Diameter / Depth, D	m	0.20
Stack Width, W	m	-
Average Stack Gas Temp., Ta	С	353
Average Static Pressure, P static	kPa	0.1
Average Barometric Pressure, Pb	kPa	102.1
Type of Pitot		S
Are Water Droplets Present ?		No
Average Pitot Tube Calibration Coeff, Cp		0.85
Negative flow		No
Highly homogeneous flow stream/gas velocity		Yes

Sample Port Size	mm	100
Initial Pitot Leak Check	Pa	850
Final Pitot Leak Check	Pa	820
Orientation of Duct		Vertical
Pitot Tube Cp		0.998
Number of Lines Available		1
Number of Lines Used		1

IPPC Licence No.: W0001-03

Visit No: 1 Year: 2016 Office: Trim Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Sampling Line A						
Point	Distance to duct (m)	Pa	Temp °C	Velocity (m/s)	Oxygen (%)	Angle of Swirl
1	0.01	-	-	-	-	-
2	0.05	138	350	18.7	-	<15
3	0.15	153	351	19.7	1	<15
4	0.19	-	-	-	1	-
5	-	-	-	-	-	-
6	-	-	-	-	-	-
7	-	-	-	-	-	-
8	-	-	-	-	-	-
9	-	-	=	-	=	-
10	-	-	=	-	=	-
Average	-	145.50	350.5	19.21	-	<15
Min	-	138	350	18.71	-	<15
Max	-	153	351	19.70	-	<15

IPPC Licence No.: W0001-03 Visit No: 1 Year: 2016 Office: Trim Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Sampling Line B						
Point	Distance to duct (m)	Pa	Temp °C	Velocity (m/s)	Oxygen (%)	Angle of Swirl
1	-	-	-	-	-	-
2	-	-	-	-	-	<15
3	-	-	-	-	-	<15
4	-	-	-	-	-	-
5	-	-	-	-	-	-
6	-	-	-	-	-	-
7	-	-	-	-	-	-
8	-	-	-	-	-	-
9	-	-	-	-	-	-
10	-	-	-	-	-	-
Average	-	-	-	-	-	-
Min	-	-	-	-	-	-
Max	-	_	-	_	_	_

IPPC Licence No.: W0001-03

Visit No: 1 Year: 2016 Office: Trim Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev No: 1

Component	Conc. ppm	Conc. Dry % v/v	Conc. Wet % v/v	Molar Mass
Carbon Dioxide CO ₂	-	9.9	-	44.01
Oxygen O ₂	-	7.32	-	32
Nitrogen N ₂	-	82.78	-	28.1
Moisture (H₂O)	-	-	9.6	18.02
	1			
Reference Conditions	Units	Numbers		
Temperature	Units °C	Numbers 273.15		
			_	
Temperature	°C	273.15		

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03

Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Stack Gas Composition & Molecular Weights										
Component	Molar Mass M	Density Kg/m³	Conc. Dry % v/v	Dry Volume Fraction r	Dry Conc. kg/m³ pi	Conc. wet % v/v	Wet Volume Fraction r	Wet Conc.kg/m³ pi		
Carbon Dioxide CO ₂	44.01	1.96	9.9	0.099	0.19	8.95	0.09	0.18		
Oxygen O ₂	32	1.43	7.32	0.0732	0.10	6.62	0.07	0.09		
Nitrogen N ₂	28.1	1.25	82.78	0.8278	1.04	74.83	0.75	0.94		
Moisture (H₂O)	18.02	0.80	-	-	-	9.6	0.10	0.08		
	-	-	-	-	-	-	-	-		
where p=M/22.41	-	-	-	-	-	-	-	-		
pi = r x p	-	-	-	_	-	_	-	_		

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03

Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Calculation of Stack Gas Densities		
Determinand	Units	Result
Dry Density (STP), P STD	kg.m ⁻³	1.337
Wet Density (STP), P STW	kg.m ⁻³	1.290
Dry Density (Actual), P Actual	kg.m ⁻³	0.588
Average wet Density (Actual), P ActualW	kg.m ⁻³	0.567
Where		
P STD = sum of component concentrations, kg/m3 (excluding water vapour)	-	-
P STW = (P STD + pi of H2O) / (1 + (pi of H2O / 0.8036))	-	-
P actual = P STD x (T STP / (P STP)) x (Pa / Ta)	-	-
P actual W (at each sampling point) = P STW x (Ts / Ps) x (Pa / Ta)	-	-

IPPC Licence No.: W0001-03

Visit No: 1

Year: 2016

Office: Trim

Licence Holder: North Kerry Landfill, E1

Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

Sampling Plane Validation Criteria	Value	Units	Requirement	Compliance	Method
Lowest Differential Pressure	138	Pa	>5 Pa	Yes	EN16911:2013
Lowest Gas Velocity	18.71	m/s	-	N/A	-
Highest Gas Velocity	19.70	m/s	-	N/A	-
Ratio of Above	1.05	:1	<3:1	Yes	EN16911:2013
Mean Velocity	19.21	m/s	-	N/A	-
Angle of flow with regard to duct axis	<15	degrees	< 15	Yes	EN16911:2013
No local negative flow	No	-	-	Yes	-
Homogeneous flow stream/gas velocity	Yes	-	-	Yes	_

	Calculation of stack Gas Velocity, V
-	Velocity at Traverse Point, V = Kcp * Sqroot ((2 * DP) / Density)
	Where
0.85	Kpt = Pitot tube calibration coefficient
0.998	Compressibility correction factor, assumed at a constant 0.998

Gas Volumetric Flowrate	Units	Result
Gas Volumetric Flow Rate (Actual)	m ³ .h ⁻¹	2173
Gas Volumetric Flow Rate (STP, Wet)	m³. h ⁻¹	956
Gas Volumetric Flowrate (STP, Dry)	m³. h ⁻¹	864
Gas Volumetric Flowrate REF to Oxygen	m³. h ⁻¹	738

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

IV. Appendix III Individual parameter sampling details and results

Total Particulate Matter : Sampling details and results

Run 1			Time On	09:45:00	_
Stack ID	E1	_	Time Off	10:16:00	_
Filter ID	138034	_	Uncertainty Data	-	_
Start Dry Gas Meter	-	Nm3	Temperature at Pump	12	Deg C
Finish Dry Gas Meter	_	Nm3	Pressure at Pump	102	kPa
Average Stack Temperature	380	degrees	Air Volume at Pump	0.18	m³
Moisture Content	9.60	%	Humidity at Pumps	0.1	%
Stack Flow Rate STP, Dry	864	m ^{3.} h ⁻¹	Filter Weight	0.42	mg
Volume of Air Sampled	0.17	m ^{3 (VgN)}	Front End Weight	<0.5	mg
Balance Calibration	Weight				
300.0	-	g	-	-	=
500.0	-	g	-	-	-
1000.0	-	g	-	-	-
Inpinger Weights	Initial	Final	Difference		
1	-	-	-	-	-
2	-	-	-	-	-
3	-	-	-	-	-
4	-	-	-	-	-
Volume of Air Sampled	-	Nm3	0	-	-
Moisture Content (EN 14790)	-	%	-	-	-
Leak Check Results	Result	-	% Leak		
Before Blank	0.1	l/min	0.7	-	-
After Blank	0.1	l/min	0.7	-	-
Before Sample 1	0.2	l/min	1.3	-	-
After Sample 1	0.2	l/min	1.3	-	-
Average Flow Rate	15	l/min	1.3	-	-
Standard Maximum	0.3	l/min	2%	-	-
Back Pressure	-	bar	-	-	-
Leak check acceptable	Yes	-	Yes/No	-	-
Water droplets present	No	-	Yes/No	-	-
Standard Criteria to be Met	Result	Standa	ard Requirement		
Angle of Flow	<15	<15 Degrees			
Negative Flow in the Stack	None	None			
Pitot Pressure Difference	>5Pa	>5Pa			
Ratio of Flow Measurement	<3:1	<3:1			
Pitot Tube Leak Check	Result				
Positive Pressure	Pass	-			
Negative Pressure	Pass	-			

IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1 Visit No: 1 Year: 2016 Office: Trim

Number of Ports	1	2			
Straight length before sample point	> 5	> 5 Hy	draulic Diameters		
Straight length after sample point	> 5	> 5 Hy	draulic Diameters		
Sample Calculations	-	-			
Blank (Filter and Front Wash Combined)	0.57	mg			
Sample 1 (Filter and Front Combined)	0.92	mg			
Volume of Air Sampled	0.17	m³			
Blank Result	3.35	mg.m ⁻³			
Sample Result	5.41	mg.m ⁻³			
Emission Limit Value	130	mg.m ⁻³			
Blank as Percentage of ELV	2.6	%	Standard Requirement	<10% ELV	_
	-				
Isokinetic Criterion Compliance					
Isokinetic Variation	%	-0.1	-	-	-
Allowable IsoKinetic Range	%	95-115	-	-	-
Iso Kineticity Acceptable		Yes			

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Total Particulates Quality Assurance

Stack ID	E1	-
Parameter	Units	Run 1
Sampling Times	-	09:45:00
Sampling dates	-	20/10/2016
Sampling Device	-	Iso Stack Basic
Volume Sampled (REF.)	m3	0.17
Filter ID Number	-	138034
Probe rinse ID	-	138034W
Total Filter Mass	mg	0.4
Probe Rinse Solids Mass	mg	<0.5
Total Mass Collected	mg	0.92
General information		
Standard	ISEN13284-1	Run 1
Technical Procedure	-	2000
Probe Material	-	SS
Filter Housing	-	SS
Positioning of Filter	-	In-stack
Filter Size and Material	-	47mm filter, 4mm nozzle
Number of Sampling lines used	-	1
Number of Sampling Points used	-	2

Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Carbon Monoxide Quality Assurance

Sampling Details	1	•
I - 9		
Stack ID	E1	-
	Units	Run 1
Parameter		
Sampling Times	-	10:36
Sampling Dates	-	20/10/2016
Instrument Range	ppm	2000
Span Gas Value	ppm	598
Acceptable Gas Range	-	No
Quality Assurance	Units	Run 1
Conditioning Unit Temperature	С	2
Average Temperature	< C	2
Allowable Temperature	-	4
Temperature Acceptable	-	Yes
Pump flow rate	l/min.	0.5
Zero Drift	Units	Run 1
Zero Down Sampling Line (Pre)	ppm	1
Zero Down Sampling Line (Post)	ppm	3.5
Zero drift	ppm	2.5
Allowable Zero Drift	ppm	11.94
Zero Drift Acceptable	-	Yes
Span Drift	Units	Run 1
Span Down Sampling Line (Pre)	ppm	597
Span Down Sampling Line (Post)	ppm	593
Span Drift	ppm	-4
Allowable Span Drift	ppm	11.94
Span Drift Acceptable (Y/N)	-	Yes
Leak Check		
Span Gas Conc.	ppm	598
Recorded Conc. down Line	ppm	597
Leak check acceptable (< 2%)	(Y/N)	Yes
Test Conditions	Units	Run 1
Run Ambient Temperature Range	С	8

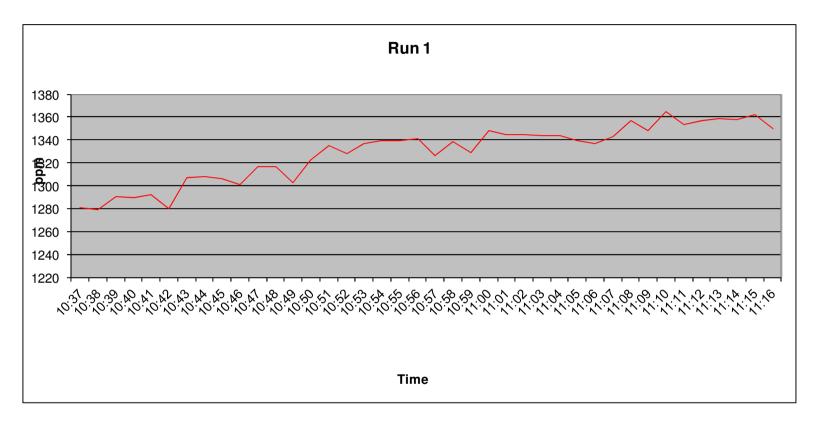
Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Carbon Monoxide Results & Sampling details

Parameter	Units	Run 1
Concentration	mg.m ⁻³	1661.10
Uncertainty	mg.m ⁻³	116.55
Mass Emission	kg.h	1.44

General Sampling Information	
Parameter	Value
Standard	EN15058
Technical Procedure	SOP2004
Probe material	SS
Filtration Type/Size	PTFE
Heated Head Filter Used	Yes
Heated Line Temperature	190
Span Gas Reference Number	ASLTM14ING522
Span Gas Expiry Date	Jan-17
Span Gas Start Pressure (bar)	40
Gas Cylinder Concentration (ppm)	598
Span Gas Uncertainty (%)	<2
Zero Gas Type	Nitrogen
Number of Sampling Lines Used	1
Number of Sampling Points Used	1
Sample Point I.D's	E1
Reference Conditions	
Temperature (K)	273.15
Pressure (kPa)	101.3
Gas (Wet or Dry)	Dry
Oxygen	5



Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1

Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

Carbon Monoxide Trend

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Carbon Monoxide Measurement Uncertainty

	Units	Run 1
Measured Quantities		
Certified Range of Analyser	ppm	1.36 to 1000
Operational Range of Analyser	ppm	2000
Measured Reading	ppm	1328.88
Measured Quantities	Units	Run 1
Nonlinearity	%	0.9
Temperature Dependent Zero drift	%	0.14
Temperature Dependent Span drift	%	-0.12
Cross-sensitivity	%	0.08
Leak	%	0
Calibration Gas Uncertainty	%	<2
Parameter	Units	Run 1
Combined uncertainty	mg.m ⁻³	20.94
Expanded uncertainty	mg.m⁻³	41.88
Uncertainty corrected to std conds.	mg.m ⁻³	116.55
Expanded uncertainty expressed	% of ELV	
with a level of confidence of 95%	70 01 22 0	-
Expanded uncertainty expressed with a level of confidence of 95%	mg.m ⁻³	116.55
		110.00
Expanded uncertainty expressed	% of value	
with a level of confidence of 95%	∕₀ UI Value	7.02
Requirement in standard is for uncertainty to be < 10% at ELV at standard conditions		

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Oxides of Nitrogen Quality Assurance

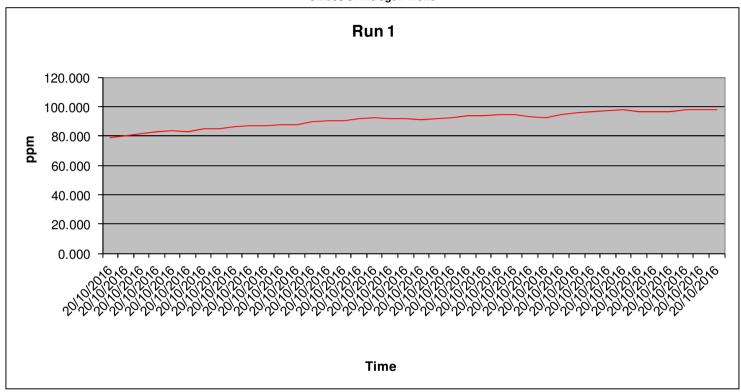
Sampling Details		
Stack ID	E1	-
	Units	Run 1
Parameter		
Sampling Times	-	10:36
Sampling Dates	-	20/10/2016
Instrument Range	ppm	250
Span Gas Value	ppm	158
Acceptable Gas Range	-	Yes
Quality Assurance	Units	Run 1
Conditioning Unit Temperature	С	2
Average Temperature	< C	2
Allowable Temperature	-	4
Temperature Acceptable	-	Yes
Pump flow rate	l/min.	0.5
Zero Drift	Units	Run 1
Zero Down Sampling Line (Pre)	ppm	0.1
Zero Down Sampling Line (Post)	ppm	0.5
Zero drift	ppm	0.4
Allowable Zero Drift	ppm	3.1
Zero Drift Acceptable	-	Yes
Span Drift	Units	Run 1
Span Down Sampling Line (Pre)	ppm	158.1
Span Down Sampling Line (Post)	ppm	157.3
Span Drift	ppm	-0.8
Allowable Span Drift	ppm	3.1
Span Drift Acceptable (Y/N)	-	Yes
Leak Check		
Span Gas Conc.	ppm	158
Recorded Conc. down Line	ppm	158.1
Leak check acceptable (< 2%)	(Y/N)	Yes
	,	
Test Conditions	Units	Run 1
Run Ambient Temperature Range	С	8
NOx Converter Efficiency	%	95.3

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Oxides of Nitrogen Results & Sampling details

Parameter	Units	Run 1
Concentration	mg.m ⁻³	186.45
Uncertainty	mg.m ⁻³	17.35
Mass Emission	kg.h ⁻¹	0.16


General Sampling Information	
Parameter	Value
Standard	EN14792
Technical Procedure	SOP2002
Probe material	SS
Filtration Type/Size	PTFE
Heated Head Filter Used	Yes
Heated Line Temperature	190
Date & Result of last converter check	95.3 18/12/15
Span Gas Reference Number	ASLTM15ING533
Span Gas Expiry Date	Dec-16
Span Gas Start Pressure (bar)	34
Gas Cylinder Concentration (ppm)	158
Span Gas Uncertainty (%)	<2
Zero Gas Type	Nitrogen
Number of Sampling Lines Used	1
Number of Sampling Points Used	1
Sample Point I.D's	E1
Reference Conditions	
Temperature (K)	273.15
Pressure (kPa)	101.3
Gas (Wet or Dry)	Dry
Oxygen	5

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Oxides of Nitrogen Trend

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Oxides of Nitrogen Measurement Uncertainty

Measured Quantities	Units	Run 1
Nonlinearity	%	1.4
Temperature Dependent Zero drift	%	-0.04
Temperature Dependent Span drift	%	-0.25
Cross-sensitivity	%	0.5
Leak	%	0
Calibration Gas Uncertainty	%	<2
Mass Flow Controllers (Dilution) Uncertainty	%	<1
NOx Converter Efficiency	%	95.3
Parameter	Units	Run 1
Combined uncertainty	mg.m ⁻³	5.60
Expanded uncertainty	mg.m ⁻³	11.21
Uncertainty corrected to std conds.	mg.m ⁻³	17.35
Expanded uncertainty expressed with a level of confidence of 95%	% of ELV	3.47
Expanded uncertainty expressed with a level of confidence of 95%	mg.m ⁻³	17.35
Expanded uncertainty expressed with a level of confidence of 95%	% of value	9.31
Requirement in standard is for uncertainty to be < 10% at ELV at standard conditions		

Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Sulphur Dioxide Quality Assurance

Sampling Dataila		
Sampling Details		
Stack ID	E1	-
	Units Run 1	
Parameter		
Sampling Times	-	10:36
Sampling Dates	-	20/10/2016
Instrument Range	ppm	1000
Span Gas Value	ppm	548
Acceptable Gas Range	-	Yes
	-	-
Quality Assurance	Units	Run 1
Conditioning Unit Temperature	С	2
Average Temperature	< C	2
Allowable Temperature	-	4
Temperature Acceptable	-	Yes
Pump flow rate	l/min.	0.5
	-	=
Zero Drift	Units	Run 1
Zero Down Sampling Line (Pre)	ppm	2
Zero Down Sampling Line (Post)	ppm	5
Zero drift	ppm	3
Allowable Zero Drift	ppm	27.2
Zero Drift Acceptable	-	Yes
	_	-
Span Drift	Units	Run 1
Span Down Sampling Line (Pre)	ppm	544
Span Down Sampling Line (Post)	ppm	553
Span Drift		9
Allowable Span Drift	ppm	27.2
Span Drift Acceptable (Y/N)	ppiii	Yes
		103
Leak Check	-	-
Span Gas Conc.	nnm	548
Recorded Conc. down Line	ppm	
Leak check acceptable (< 2%)	ppm (V/N)	544 Voc
	(Y/N)	Yes
Test Conditions	- Unito	Pun 1
Run Ambient Temperature Range	Units	Run 1
Trail Ambient Temperature Hange	С	8

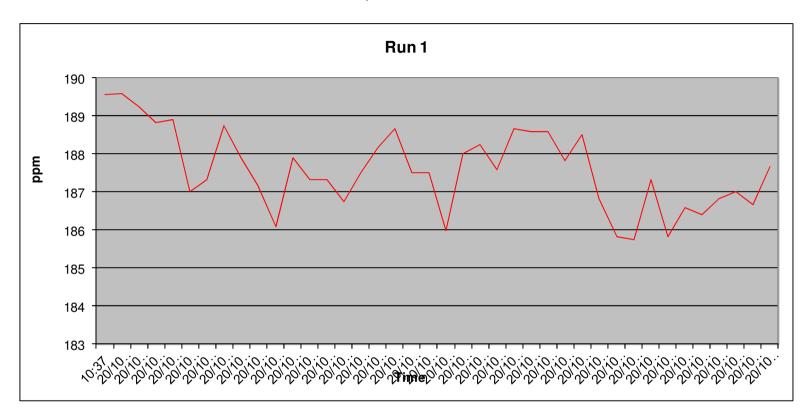
Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Sulphur Dioxide Results & Sampling details

Parameter	Units	Run 1
Concentration	mg.m ⁻³	536.52
Uncertainty	mg.m ⁻³	38.74
Mass Emission	kg.h	0.46

General Sampling Information	
Parameter	Value
Standard	TGN 21
Technical Procedure	2012
Probe material	SS
Filtration Type/Size	PTFE
Heated Head Filter Used	Yes
Heated Line Temperature	190
Date & Result of last converter check	-
Span Gas Reference Number	ASLTM15ING538
Span Gas Expiry Date	Dec-17
Span Gas Start Pressure (bar)	60
Gas Cylinder Concentration (ppm)	548
Span Gas Uncertainty (%)	<2
Zero Gas Type	N
Number of Sampling Lines Used	1
Number of Sampling Points Used	1
Sample Point I.D's	E1
Reference Conditions	
Temperature (K)	273.15
Pressure (kPa)	101.3
Gas (Wet or Dry)	Dry
Oxygen	5



Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, E1
Facility Location: North Kerry Landfill Site, Mujnonaminnane, Tralee

Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

Sulphur Dioxide Trend

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, E1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Sulphur Dioxide Measurement Uncertainty

	Units	Run 1
Measured Quantities		
Certified Range of Analyser	ppm	2.14 to 1000
Operational Range of Analyser	ppm	1000
Measured Reading	ppm	187.60
Measured Quantities	Units	Run 1
Nonlinearity	%	0.8
Temperature Dependent Zero drift	%	0.8
Temperature Dependent Span drift	%	2
Cross-sensitivity	%	1.5
Leak	%	0
Calibration Gas Uncertainty	%	<2 %
Parameter	Units	Run 1
Combined uncertainty	mg.m ⁻³	7.80
Expanded uncertainty	mg.m ⁻³	15.61
Uncertainty corrected to std conds.	mg.m ⁻³	38.74
Expanded uncertainty expressed with a level of confidence of 95%	% of ELV	-
Expanded uncertainty expressed with a level of confidence of 95%	mg.m ⁻³	38.74
Expanded uncertainty expressed with a level of confidence of 95%	% of value	7.22
Requirement in standard is for uncertainty to be < 10% at ELV at standard conditions		

Appendix D: Flare Stack Monitoring Results

Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Report Title	Air Emissions Compliance Monitoring Emissions Report	
Company address	Air Scientific Ltd., 32 DeGranville Court, Dublin road, Trim, Co. Meath	
Stack Emissions Testing Report Commissioned by	B9 Power	
Facility Name	North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry	
Contact Person	Ruth Baker	
EPA Licence Number	W0001-03	
Licence Holder	North Kerry Landfill, F1	
Stack Reference Number	F1	
Dates of the Monitoring Campaign	20/10/2016	
Job Reference Number	NOKETL1201016 / 2016548	
Report Written By	Dr. John Casey	
Report Approved by	Dr. Brian Sheridan	
Stack Testing Team	Dr. John Casey	
Report Date	23/11/2016	
Report Type	Test Report Compliance Monitoring	
Version	1	
Signature of Approver	Brian Sheridan Technical Manager	

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Contents

1.	Executive Summary	4
	I. Monitoring Objectives	4
	Overall Aim of the monitoring Campaign	4
	Special Requirements	4
	Target Parameters	4
	Emission Limit Values	4
	Reference Conditions	4
	Overall Results	5
	Accreditation details	5
	Monitoring Dates & Times	6
	Process details	
	Monitoring, Equipment & Analytical Methods	8
	Sampling Deviations	10
	Reference Documents	10
	Suitability of sampling location	11
	Stack diagram	12
2.	. APPENDICES	13
	II. Appendix I - Monitoring Personnel & Equipment	13
	Stack Emissions Monitoring Personnel	13
	III. Appendix II - Stack Details & flow characteristics	14
	Preliminary stack survey calculations	14
	IV. Appendix III - Individual parameter sampling details and results	21
	Carbon Monoxide Quality Assurance	
	Carbon Monoxide Results & Sampling details	22
	Carbon Monoxide Trend	23
	Carbon Monoxide Measurement Uncertainty	24
	Oxides of Nitrogen Quality Assurance	25
	Oxides of Nitrogen Results & Sampling details	26
	Oxides of Nitrogen Trend	27
	Oxides of Nitrogen Measurement Uncertainty	28
	Total Volatile Organic Carbon Quality Assurance	29
	Total Volatile Organic Carbon Results and Sampling Details	30
	Total Volatile Organic Carbon Trend	31
	Total Volatile Organic Carbon Measurement Uncertainty	
	Sulphur Dioxide Quality Assurance	33
	Sulphur Dioxide Results & Sampling details	
	Sulphur Dioxide Trend	35
	Sulphur Dioxide Measurement Uncertainty	36

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

Opinions and interpretations expresses herein are outside the scope of Air Scientific Limited INAB accreditation. This test report shall not be reproduced, without the written approval of Air Scientific Limited. All sampling and reporting is completed in accordance with Environmental Protection Agency Air Guidance Note 2 requirements.

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Executive Summary

Monitoring Objectives

Overall Aim of the monitoring Campaign

The aim of the monitoring campaign was to demonstrate compliance with a set of emission limit values as specified in the site licence.

Special Requirements

There were no special requirements.

Target Parameters

Carbon Monoxide (CO)
Oxides of Nitrogen (NOx) as NO ₂
Total Volatile Organic Carbon (TOC)
Sulphur Dioxide (SO ₂)
Stack Gas Temperature
Volume (m³.h ⁻¹)

Emission Limit Values

Emission Limit Values / Mass Emissions Limit Values	mg.m ⁻³	kg.h ⁻¹
СО	-	-
NOx as NO ₂	150	-
TOC	10	-
SO ₂	-	-
Stack Gas Temperature	-	-
Volume (m³.h ⁻¹)	-	-

Reference Conditions

Reference Conditions	Value
Oxygen Reference %	3
Temperature °C	273.15
Total Pressure kPa	101.3
Moisture %	Yes

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Executive Summary

Overall Results

	Concentration				
Parameter	Units	Result	MU +/-	Limit	Compliant
Carbon Monoxide (CO)	mg.m ⁻³	9.90	2.82	-	N/A
Oxides of Nitrogen (NOx) as NO ₂	mg.m ⁻³	82.88	6.80	150	Yes
Total Volatile Organic Carbon (VOC)	mgC.m ⁻³	3.65	0.60	10	Yes
Sulphur Dioxide (SO ₂)	mg.m ⁻³	119.57	10.35	-	N/A
Oxygen (%)	% v/v	7.17	0.14	1	N/A
Stack Gas Temperature	K	1283.15	-	-	N/A

Accreditation details

Air Scientific Limited	INAB319T
External Analytical Laboratory	-
Other	-

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Executive Summary

Monitoring Dates & Times

Parameter	Run	Location ID	Sampling Dates	Sampling Time On	Sampling Time Off	Duration (mins.)
	Run 1	F1	20/10/2016	12:36:00	13:16:00	00:40:00
Carbon Monoxide (CO)	Run 2	-			-	-
, ,	Run 3	-	-	-	-	-
Oxides of	Run 1	F1	20/10/2016	12:36:00	13:16:00	00:40:00
Nitrogen (NOx)	Run 2	-			-	-
as NO ₂	Run 3	-	-	-	-	-
Total Volatile	Run 1	F1	20/10/2016	12:38:06	13:14:06	00:36:00
Organic Carbon	Run 2	-	-	-	-	-
(VOC)	Run 3	-	-	-	-	-
	Run 1	F1	20/10/2016	12:36:00	13:16:00	00:40:00
Sulphur Dioxide (SO ₂)	Run 2	-	-	-	-	-
(= -2)	Run 3	-	-	-	-	-
Oxygen (%)		F1	20/10/2016	12:36:00	13:16:00	00:40:00

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Executive Summary

Process details

Parameter	
Process status	Normal
Capacity (per/hour) (if applicable)	N/a
Continuous or Batch Process	Continuous
Feedstock	LFG
Abatement System	No
Abatement Systems Running Status	N/A
Fuel	LFG
Plume Appearance	Yes
Other information	None

Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03

Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Executive Summary

Monitoring, Equipment & Analytical Methods

	Monitoring				Analysis	
Parameter	Standard	Technical Procedure	Accredited Testing	Testing Lab	Analytical Technique	Analysis Lab
Carbon Monoxide (CO)	EN15058:2006	SOP 2004	Yes	AirSci	NCIR By Horiba PG-250	AirSci
Oxides of Nitrogen (NOx)	EN14792:2006	SOP 2002	Yes	AirSci	Chemiluminescence	AirSci
Total Volatile Organic Carbon (TOC)	EN12619:2013	SOP 2009	Yes	AirSci	Flame Ionisation Detection	AirSci
Sulphur Dioxide (SO2)	TGN 21	SOP 2012	Yes	AirSci	NDIR Absorption	AirSci
Oxygen (%)	EN14789:2005	SOP 2008	Yes	AirSci	Paramagnetic	AirSci
Stack Gas Temperature	EN16911:2013	SOP 2005	No	AirSci	Thermocouple	AirSci

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Co. Kerry Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee,

Rev.No: 1

List of Equipment

ID	Item of Equipment	Manufacturer	Serial No.
			100063602044367-
ASLTM12EQ520	Buhler Sample Gas Cooler	Buhler Technologies	001
ASLTM13EQ504	Horiba PG2500 Portable Flue Gas Analzer	Horiba	41432840053
	10 metre industrial heated sample line		
ASLTM13EQ509	(Temp controller box 1 & 2)	Neptech	13B088
ASLTM12EQ511	Signal 3010	Signal	

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Co. Kerry Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee,

Rev.No: 1

Sampling Deviations

Parameter	Deviation	
Standard ID	EN16911 - Flow measurement not possible	
Standard ID	-	
Standard ID	-	
Standard ID	-	

Reference Documents

Risk Assessment (RA)	SOP1011
Site Review (SR)	SOP1015
Site Specific Protocol (SSP)	SOP1015

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1

Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Executive Summary

Suitability of sampling location

General Information	Value
Permanent/Temporary	Temporary
Inside/ Outside	Outside

Platform Details		
Irish EPA Technical Guidance Note AG1 / BS EN 15259 Platform Requirements	Value	Comment
Sufficient Working area to manipulate probe and measuring instruments	Yes	-
Platform has 2 handrails (approx. 0.5m & 1.0 m high)	Yes	-
Platform has vertical base boards (approx. 0.25 m high)	Yes	-
Platform has chains / self closing gates at top of ladders	Yes	-
There are no obstructions present which hamper insertion of sampling equipment	No	-
Safe Access Available	Yes	-
Easy Access Available	Yes	-

Sampling Location / Platform Improvement Recommendations				
None				

BSEN 15259 Homogeneity Test Requirements

1: There is no requirement to perform a BSEN15259 Homogenity Test on this stack

E.g. Select Option

- 1: There is no requirement to perform a BSEN15259 Homogenity Test on this stack
 2: Test results were obtained from previous Homogeneity test carried out by ASL
- 3: Test results were obtained from previous Homogeneity test carried out by Alternative contractor 4: Other: Enter Description

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Executive Summary

Stack diagram

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

APPENDICES

II. Appendix I Monitoring Personnel & Equipment

Stack Emissions Monitoring Personnel

Team Leader	Name	John Casey
	Qualifications	PhD. (Eng.), MSc. (Agr.), B. Agr. Sc.
	System approval	Air Scientific Limited Approved
		-

Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

III. Appendix II Stack Details & flow characteristics

Preliminary stack survey calculations

· · · · · · · · · · · · · · · · · · ·		
General Stack Details		
Stack details	Units	Value
Date of survey		20/10/2016
Time of survey		-
Туре		Circular
Stack Diameter / Depth, D	m	-
Stack Width, W	m	-
Average Stack Gas Temp., Ta	С	1010
Average Static Pressure, P static	kPa	0.1
Average Barometric Pressure, Pb	kPa	102.1
Type of Pitot		-
Are Water Droplets Present ?		-
Average Pitot Tube Calibration Coeff, Cp		-
Negative flow		-
Highly homogeneous flow stream/gas velocity		Yes

Sample Port Size	mm	25
Initial Pitot Leak Check	Pa	-
Final Pitot Leak Check	Pa	-
Orientation of Duct		Vertical
Pitot Tube Cp		0.998
Number of Lines Available		1
Number of Lines Used		1

IPPC Licence No.: W0001-03

Visit No: 1 Year: 2016 Office: Trim Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Sampling Line A						
Point	Distance to duct (m)	Pa	Temp °C	Velocity (m/s)	Oxygen (%)	Angle of Swir
1	-	-	-	-	-	-
2	-	-	-	-	-	-
3	-	-	=	-	=	-
4	-	-	=	-	=	-
5	-	-	-	-	-	-
6	-	-	-	-	-	-
7	-	-	-	-	-	-
8	-	-	-	-	-	-
9	-	-	=	-	=	-
10	-	-	=	-	=	-
Average	-	-	-	-	-	-
Min	-	-	=	-	=	-
Max	-	-	-	-	-	-

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Visit No: 1 Year: 2016 Office: Trim

Sampling Line B						
Point	Distance to duct (m)	Pa	Temp °C	Velocity (m/s)	Oxygen (%)	Angle of Swirl
1	-	-	-	-	-	-
2	-	-	-	-	-	-
3	-	-	-	-	-	-
4	-	-	-	-	-	-
5	-	-	-	-	-	-
6	-	-	-	-	-	-
7	-	-	-	-	-	-
8	-	-	-	-	-	-
9	-	-	-	-	-	-
10	-	-	-	-	-	-
Average	-	-	-	-	-	-
Min	-	-	-	-	-	-
Max	-	_	-	-	-	_

Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03

Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Component	Conc. ppm	Conc. Dry % v/v	Conc. Wet % v/v	Molar Mass
Carbon Dioxide CO ₂	-	10.63	-	44.01
Oxygen O ₂	-	7.17	-	32
Nitrogen N ₂	-	82.2	-	28.1
Moisture (H ₂ O)	-	-	9.8	18.02
	T T		_	
Reference Conditions	Unite	Numbers		
Reference Conditions Temperature	Units °C	Numbers 273.15	-	
			_	
Temperature	°C	273.15	_	

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03

Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Stack Gas Composition & Molecular Weights								
Component	Molar Mass M	Density Kg/m³	Conc. Dry % v/v	Dry Volume Fraction r	Dry Conc. kg/m³ pi	Conc. wet % v/v	Wet Volume Fraction r	Wet Conc.kg/m³ pi
Carbon Dioxide CO ₂	44.01	1.96	10.63	0.1063	0.21	9.59	0.10	0.19
Oxygen O ₂	32	1.43	7.17	0.0717	0.10	6.47	0.06	0.09
Nitrogen N₂	28.1	1.25	82.2	0.822	1.03	74.14	0.74	0.93
Moisture (H ₂ O)	18.02	0.80	-	-	-	9.8	0.10	0.08
	-	-	-	-	-	-	-	-
where p=M/22.41	-	-	-	-	-	-	ı	-
pi = r x p	-	-	-	-	-	-	-	-

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Calculation of Stack Gas Densities		
Determinand	Units	Result
Dry Density (STP), P STD	kg.m ⁻³	1.342
Wet Density (STP), P STW	kg.m ⁻³	1.294
Dry Density (Actual), P Actual	kg.m ⁻³	0.288
Average wet Density (Actual), P ActualW	kg.m ⁻³	0.278
Where		
P STD = sum of component concentrations, kg/m3 (excluding water vapour)	-	-
P STW = (P STD + pi of H2O) / (1 + (pi of H2O / 0.8036))	-	-
P actual = P STD x (T STP / (P STP)) x (Pa / Ta)	-	-
P actual W (at each sampling point) = P STW x (Ts / Ps) x (Pa / Ta)	-	-

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03

Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Sampling Plane Validation Criteria	Value	Units	Requirement	Compliance	Method
Lowest Differential Pressure	-	Pa	>5 Pa	N/A	EN16911:2013
Lowest Gas Velocity	-	m/s	-	N/A	-
Highest Gas Velocity	-	m/s	-	N/A	-
Ratio of Above	-	:1	<3:1	N/A	EN16911:2013
Mean Velocity	-	m/s	-	N/A	-
Angle of flow with regard to duct axis	-	degrees	< 15	N/A	EN16911:2013
No local negative flow	-	-	-	N/A	-
Homogeneous flow stream/gas velocity	-	-	-	N/A	-

Calculation of stack Gas Velocity, V	
Velocity at Traverse Point, V = Kcp * Sqroot ((2 * DP) / Density)	-
Where	
Kpt = Pitot tube calibration coefficient	-
Compressibility correction factor, assumed at a constant 0.998	0.998

Gas Volumetric Flowrate	Units	Result
Gas Volumetric Flow Rate (Actual)	m ³ .h ⁻¹	-
Gas Volumetric Flow Rate (STP, Wet)	m³. h ⁻¹	-
Gas Volumetric Flowrate (STP, Dry)	m³. h ⁻¹	-
Gas Volumetric Flowrate REF to Oxygen	m³. h ⁻¹	-

Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03
Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

IV. Appendix III Individual parameter sampling details and results

Carbon Monoxide Quality Assurance

	1	1
Sampling Details	1	
Stack ID	F1	-
	Units	Run 1
Parameter		
Sampling Times	-	12:35
Sampling Dates	-	20/10/2016
Instrument Range	ppm	200
Span Gas Value	ppm	161
Acceptable Gas Range	-	Yes
Quality Assurance	Units	Run 1
Conditioning Unit Temperature	С	2
Average Temperature	< C	2
Allowable Temperature	-	4
Temperature Acceptable	-	Yes
Pump flow rate	l/min.	0.5
Zero Drift	Units	Run 1
Zero Down Sampling Line (Pre)	ppm	0.2
Zero Down Sampling Line (Post)	ppm	0.8
Zero drift	ppm	0.6
Allowable Zero Drift	ppm	3.2
Zero Drift Acceptable	-	Yes
Span Drift	Units	Run 1
Span Down Sampling Line (Pre)	ppm	160
Span Down Sampling Line (Post)	ppm	161
Span Drift	ppm	1
Allowable Span Drift	ppm	3.2
Span Drift Acceptable (Y/N)	-	Yes
Leak Check		
Span Gas Conc.	ppm	161
Recorded Conc. down Line	ppm	160
Leak check acceptable (< 2%)	(Y/N)	Yes
Test Conditions	Units	Run 1
Run Ambient Temperature Range	С	8

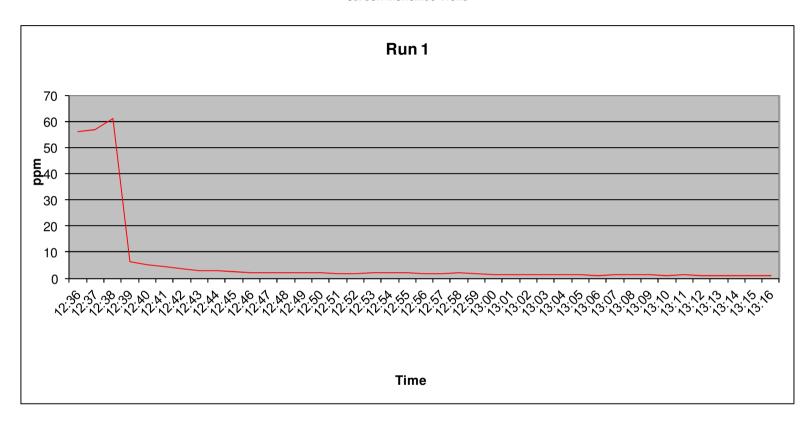
Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Carbon Monoxide Results & Sampling details

Parameter	Units	Run 1
Concentration	mg.m ⁻³	7.60
Uncertainty	mg.m ⁻³	2.82
Mass Emission	kg.h	-

General Sampling Information	
Parameter	Value
Standard	EN15058
Technical Procedure	SOP2004
Probe material	SS
Filtration Type/Size	PTFE
Heated Head Filter Used	Yes
Heated Line Temperature	190
Span Gas Reference Number	ASLTM15ING534
Span Gas Expiry Date	Dec-18
Span Gas Start Pressure (bar)	60
Gas Cylinder Concentration (ppm)	161
Span Gas Uncertainty (%)	<2
Zero Gas Type	Nitrogen
Number of Sampling Lines Used	1
Number of Sampling Points Used	1
Sample Point I.D's	F1
Reference Conditions	
Temperature (K)	273.15
Pressure (kPa)	101.3
Gas (Wet or Dry)	Dry
Oxygen	3



Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1

Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

Carbon Monoxide Trend

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Carbon Monoxide Measurement Uncertainty

	Units	Run 1
Measured Quantities		
Certified Range of Analyser	ppm	1.36 to 1000
Operational Range of Analyser	ppm	200
Measured Reading	ppm	6.08
Measured Quantities	Units	Run 1
Nonlinearity	%	0.9
Temperature Dependent Zero drift	%	0.14
Temperature Dependent Span drift	%	-0.12
Cross-sensitivity	%	0.08
Leak	%	0
Calibration Gas Uncertainty	%	<2
Parameter	Units	Run 1
Combined uncertainty	mg.m ⁻³	1.06
Expanded uncertainty	mg.m ⁻³	2.12
Uncertainty corrected to std conds.	mg.m ⁻³	2.82
Expanded uncertainty expressed with a level of confidence of 95%	% of ELV	-
Expanded uncertainty expressed with a level of confidence of 95%	mg.m ⁻³	2.82
Expanded uncertainty expressed with a level of confidence of 95%	% of value	37.16
Requirement in standard is for uncertainty to be < 10% at ELV at standard conditions		

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Oxides of Nitrogen Quality Assurance

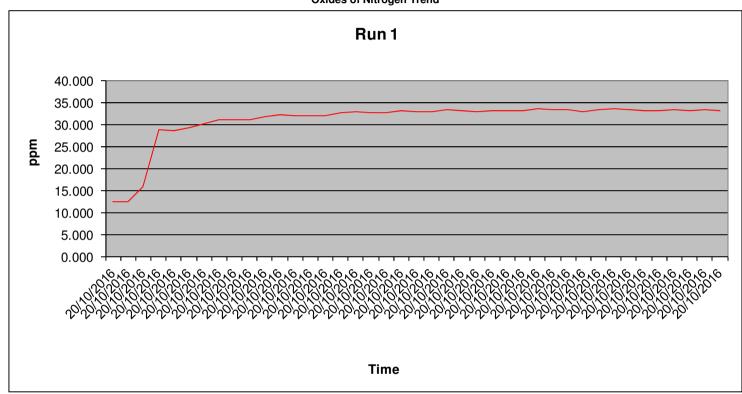
Sempling Datails		
Sampling Details		1
Stack ID	F1	-
	Units	Run 1
Parameter		
Sampling Times	-	12:35
Sampling Dates	-	20/10/2016
Instrument Range	ppm	250
Span Gas Value	ppm	158
Acceptable Gas Range	-	Yes
Quality Assurance	Units	Run 1
Conditioning Unit Temperature	С	2
Average Temperature	< C	2
Allowable Temperature	-	4
Temperature Acceptable	-	Yes
Pump flow rate	l/min.	0.5
Zero Drift	Units	Run 1
Zero Down Sampling Line (Pre)	ppm	0.1
Zero Down Sampling Line (Post)	ppm	0.4
Zero drift	ppm	0.3
Allowable Zero Drift	ppm	3.1
Zero Drift Acceptable	-	Yes
Span Drift	Units	Run 1
Span Down Sampling Line (Pre)	ppm	158.1
Span Down Sampling Line (Post)	ppm	158.9
Span Drift	ppm	0.8
Allowable Span Drift	ppm	3.1
Span Drift Acceptable (Y/N)	-	Yes
Leak Check		
Span Gas Conc.	ppm	158
Recorded Conc. down Line	ppm	158.1
Leak check acceptable (< 2%)	(Y/N)	Yes
	, ,	
Test Conditions	Units	Run 1
Run Ambient Temperature Range	С	8
NOx Converter Efficiency	%	95.3
	, ,,	, 55.5

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Oxides of Nitrogen Results & Sampling details

Parameter	Units	Run 1
Concentration	mg.m ⁻³	63.59
Uncertainty	mg.m ⁻³	6.80
Mass Emission	kg.h ⁻¹	-


General Sampling Information	
Parameter	Value
Standard	EN14792
Technical Procedure	SOP2002
Probe material	SS
Filtration Type/Size	PTFE
Heated Head Filter Used	Yes
Heated Line Temperature	190
Date & Result of last converter check	95.3 18/12/15
Span Gas Reference Number	ASLTM15ING5
Span Gas Expiry Date	Dec-16
Span Gas Start Pressure (bar)	30
Gas Cylinder Concentration (ppm)	158
Span Gas Uncertainty (%)	<2
Zero Gas Type	Nitrogen
Number of Sampling Lines Used	1
Number of Sampling Points Used	1
Sample Point I.D's	F1
Reference Conditions	
Temperature (K)	070.45
Pressure (kPa)	273.15
Gas (Wet or Dry)	101.3
Oxygen	Dry 3

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1
Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry
Rev.No: 1

Oxides of Nitrogen Trend

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Oxides of Nitrogen Measurement Uncertainty

Measured Quantities	Units	Run 1		
Nonlinearity	%	1.4		
Temperature Dependent Zero drift	%	-0.04		
Temperature Dependent Span drift	%	-0.25		
Cross-sensitivity	%	0.5		
Leak	%	0		
Calibration Gas Uncertainty	%	<2		
Mass Flow Controllers (Dilution) Uncertainty	%	<1		
NOx Converter Efficiency	%	95.3		
Parameter	Units	Run 1		
Combined uncertainty	mg.m ⁻³	2.03		
Expanded uncertainty	mg.m ⁻³	4.06		
Uncertainty corrected to std conds.	mg.m ⁻³	6.80		
Expanded uncertainty expressed with a level of confidence of 95%	% of ELV	4.53		
Expanded uncertainty expressed with a level of confidence of 95%	mg.m ⁻³	6.80		
Expanded uncertainty expressed with a level of confidence of 95%	% of value	10.69		
Requirement in standard is for uncertainty to be < 10% at ELV at standard conditions				

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Total Volatile Organic Carbon Quality Assurance

Sampling Details		
Stack ID	F1	-
	Units	Run 1
Parameter		
Sampling Times	-	12:38
Sampling Dates	-	20/10/2016
Instrument Range	ppm	100
Span Gas Value	ppm	80.7
Acceptable Gas Range	-	Yes
Quality Assurance	Units	Run 1
Oven Temperature	С	190
Average Temperature	< C	190
Temperature Acceptable	-	Yes
Sample line temperature	С	190
Zero Drift	Units	Run 1
Zero Down Sampling Line (Pre)	ppm	0.2
Zero Down Sampling Line (Post)	ppm	0.9
Zero drift	ppm	0.7
Allowable Zero Drift	ppm	1.6
Zero Drift Acceptable	-	Yes
Span Drift	Units	Run 1
Span Down Sampling Line (Pre)	ppm	80.8
Span Down Sampling Line (Post)	ppm	80.4
Span Drift	ppm	-0.4
Allowable Span Drift	ppm	1.6
Span Drift Acceptable (Y/N)	-	Yes
Leak Check		
Span Gas Conc.	ppm	80.7
Recorded Conc. down Line	ppm	80.8
Leak check acceptable (< 2%)	(Y/N)	Yes

Visit No: 1 Year: 2016 Office: Trim

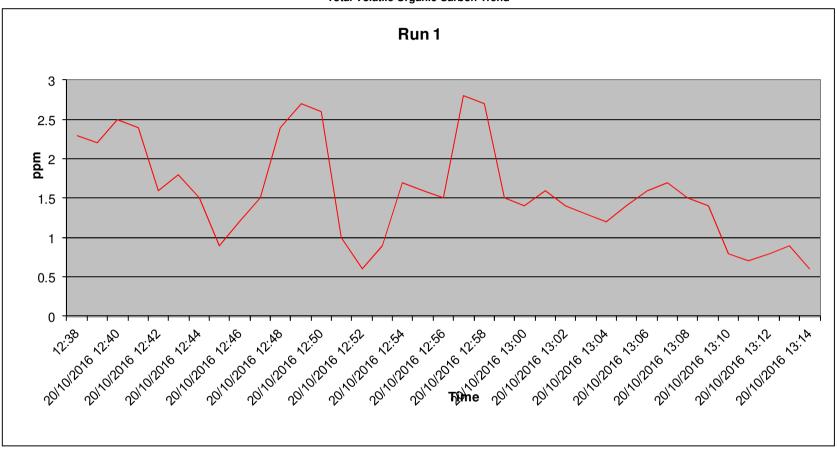
IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Total Volatile Organic Carbon Results and Sampling Details

Parameter	Units	Run 1
Concentration	mgC.m ⁻³	2.80
Uncertainty	mgC.m ⁻³	0.60
Mass Emission	kg.h ⁻¹	-

General Sampling Information	
Parameter	Value
Standard	EN12619
Technical Procedure	SOP2009
Probe material	SS
Filtration Type/Size	PTFE
Heated Head Filter Used	Yes
Heated Line Temperature	190
Span Gas Reference Number	ASLTM16ING501
Span Gas Expiry Date	01/08/2021
Span Gas Start Pressure (bar)	20
Gas Cylinder Concentration (ppm)	80.7
Span Gas Uncertainty (%)	<2
Zero Gas Type	Zero Air
Number of Sampling Lines Used	1
Number of Sampling Points Used	1
Sample Point I.D's	F1
Reference Conditions	-
Temperature (K)	273.15
Pressure (kPa)	101.3
Gas (Wet or Dry)	Dry
Oxygen	3

Visit No: 1 Year: 2016


Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1

Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

Total Volatile Organic Carbon Trend

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Total Volatile Organic Carbon Measurement Uncertainty

	Units	Run 1
Measured Quantities		
Certified Range of Analyser	ppm	0.5 to 1000
Operational Range of Analyser	ppm	100
Measured Reading	ppm	1.57
Measured Quantities	Units	Run 1
Nonlinearity	%	0.068
Temperature Dependent Zero drift	%	0.3
Temperature Dependent Span drift	%	0.3
Cross-sensitivity	%	-
Leak	%	<2
Calibration Gas uncertainty	%	<2
Parameter	Units	Run 1
Combined uncertainty	mg.m ⁻³	2.80
Expanded uncertainty	mg.m ⁻³	0.30
Expanded uncertainty expressed with a level of confidence of 95%	% of ELV	10.63
with a level of confidence of 95%		10.03
Expanded uncertainty expressed with a level of confidence of 95%	% of value	21.26
Expanded uncertainty expressed with a level of confidence of 95%	mg.m ⁻³	0.60
Requirement in standard is for uncertainty to be < 10% at ELV at standard conditions		

Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Sulphur Dioxide Quality Assurance

Sampling Details		
Stack ID	F4	
	F1	Prom 4
Parameter	Units	Run 1
Sampling Times		10.05
Sampling Dates	-	12:35
Instrument Range	nnm	20/10/2016
Span Gas Value	ppm	1000 548
Acceptable Gas Range	ppm	Yes
	_	162
Quality Assurance		Pun 1
Conditioning Unit Temperature	Units C	Run 1
Average Temperature	< C	2
Allowable Temperature	-	4
Temperature Acceptable	_	Yes
Pump flow rate	l/min.	0.5
·	1/111111.	0.5
Zero Drift	Units	Run 1
Zero Down Sampling Line (Pre)		1
Zero Down Sampling Line (Post)	ppm	7
Zero drift	ppm	6
Allowable Zero Drift	ppm	27.4
Zero Drift Acceptable	ppm	Yes
	_	103
Span Drift	Units	Run 1
Span Down Sampling Line (Pre)	ppm	549
Span Down Sampling Line (Post)	ppm	540
Span Drift	ррт	9
Allowable Span Drift	ppm	27.4
Span Drift Acceptable (Y/N)	-	Yes
	_	-
Leak Check		
Span Gas Conc.	ppm	548
Recorded Conc. down Line	ppm	549
Leak check acceptable (< 2%)	(Y/N)	Yes
	-	-
Test Conditions	Units	Run 1
Run Ambient Temperature Range	С	8

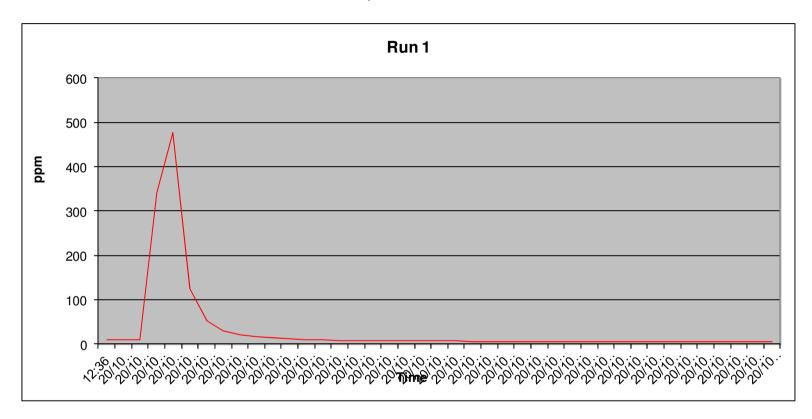
Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Sulphur Dioxide Results & Sampling details

Parameter	Units	Run 1
Concentration	mg.m ⁻³	91.73
Uncertainty	mg.m ⁻³	10.35
Mass Emission	kg.h	ı

General Sampling Information	
Parameter	Value
Standard	TGN 21
Technical Procedure	2012
Probe material	SS
Filtration Type/Size	PTFE
Heated Head Filter Used	Yes
Heated Line Temperature	190
Date & Result of last converter check	-
Span Gas Reference Number	ASLTM15ING538
Span Gas Expiry Date	Dec-17
Span Gas Start Pressure (bar)	60
Gas Cylinder Concentration (ppm)	548
Span Gas Uncertainty (%)	<2
Zero Gas Type	N
Number of Sampling Lines Used	1
Number of Sampling Points Used	1
Sample Point I.D's	F1
Reference Conditions	
Temperature (K)	273.15
Pressure (kPa)	101.3
Gas (Wet or Dry)	Dry
Oxygen	3



Visit No: 1 Year: 2016 Office: Trim IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1

Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry

Rev.No: 1

Sulphur Dioxide Trend

Document No.: NOKETL1201016 / 2016548 Visit No: 1 Year: 2016 Office: Trim

IPPC Licence No.: W0001-03 Licence Holder: North Kerry Landfill, F1 Facility Location: North Kerry Landfill Site, Muingnaminnane, Tralee, Co. Kerry Rev.No: 1

Sulphur Dioxide Measurement Uncertainty

	Units	Run 1
Measured Quantities		
Certified Range of Analyser	ppm	2.14 to 1000
Operational Range of Analyser	ppm	1000
Measured Reading	ppm	32.07
Measured Quantities	Units	Run 1
Nonlinearity	%	0.8
Temperature Dependent Zero drift	%	0.8
Temperature Dependent Span drift	%	2
Cross-sensitivity	%	1.5
Leak	%	0
Calibration Gas Uncertainty	%	<2 %
Parameter	Units	Run 1
Combined uncertainty	mg.m ⁻³	3.12
Expanded uncertainty	mg.m ⁻³	6.24
Uncertainty corrected to std conds.	mg.m ⁻³	10.35
Expanded uncertainty expressed with a level of confidence of 95%	% of ELV	-
Expanded uncertainty expressed with a level of confidence of 95%	mg.m ⁻³	10.35
Expanded uncertainty expressed with a level of confidence of 95%	% of value	11.29
Requirement in standard is for uncertainty to be < 10% at ELV at standard conditions		

Appendix E: Monthly Balancing Records – Gas field

 Model
 Serial No
 GM09053

 Date:
 30/01/2016

 Weather:
 Dry/Cool
 986

Cell	Well	CH4 (%)	CO2 (%)	O2 (%)	Balance (%)	CO (ppm)	Static Pressure (mb)	Valve Pos (%)	Monitor at wellhead/f lowline/m anifold (w/f/m)	Comments
Cells 1	1.3	59 58	24 18	1.9			-1 -1	2% 5%		
0-11- 2										Constituted and delayed
Cells 2	2.1	12 22	15 16	1.5		0	-1 -1	5% 2%	W	Over extracted - gas depleted Over extracted - gas depleted
	2.3	31	20	1	49		-1	2%	W	Over extracted - gas depleted
Cells 3	3.2 3.4	48 61	23 18	0.2 0.7	29 20		-1 -1	5% 5%	W W	
Cells 4	4.2	52	27	0.6	20		-6	60%	W	KCC to address issues
	4.3 4.4	57 64	27 31	0.6 0.5	15 4.1	0	-1	2% 5%	W	No suction B9 to investigate this issue
Cells 5	5.1	65		0.4	5.7	0	-1	2%		Excavated gas well all surface pipe work ok
	5.2 5.3	12 29	15 14	5 9	67 47	0	-1 -1	2% 2%		KCC design perforated pipe close to surface drawing in air ingress
	5.4	69	30	0	0.3	0	-1	2%	W	Excavation needs to be back filled by KCC
Cells 6	6.1 6.2	9	13 21	7 0.7	71 36		-1 -1	5% 2%		Over extracted - gas depleted
	6.3	59 6	9	1.5	29	0	-1 -1	2% 1%	W	Well needs excavated for further investigation. Possible cap defect - KCC contractor to repair
Cells 7	7.1	0		22	77		0		W	Cap damaged perforated pipe above ground level
OCIIS /	7.1	16 15		14 11		0	0	0	W	Cap damaged Cap damaged
	7.4	32	6	5	56		-1		W	Cap damaged
	7.5									
Cells 8	8.1 8.2	46 39		1	24 35	1	-1 -13		M	
	8.3 8.4	40 0		0.7 22	33 76		-1 0	5% 0	W	Requires wellhead repair. KCC contractor to repair as the well is in a deep excavation
Cells 9	9.1	22	14	4	60		-4	1%	W	Over extracted - gas depleted
	9.2 9.3	65 21	27 9	0.5	7 66		-12 0	30% 0%	w	Well location flooded
	9.4 9.6	38 39	9 22	10 1	0 38		-10 -2	15% 2%		Well location flooded
Cells 10	10.2	64	5	0.3	41	0	-1	1%	W	Cap damaged perforated pipe above ground level
	10.3 10.4	76 74	10 22	1 0.1	12		-3 -8			
	10.5 10.6	72 8	22	1 19	5 69	0	-8 -2		W	
Cells 11	1 2	52 15	26 8	3 14	17 62	0	-12 0	20 0%	W	To excavate well would require digging up road
	3	57	28	2	13		-11		W	To excurate their fround require digging up roud
Cells 12	1	0.5	1.4	21	76	0	0	0	M	WCC design perfected also along to our good drougher in air largests
Cells 12	2	32	22	0.7	45	0	-4	2	M	KCC design perforated pipe close to surface drawing in air ingress Over extracted gas well
	3	20	19	1.7	59	0	-9	30	IVI	Flooded gas field was a productive well but gas quality has reduced significantly
Cells 13	1 2	65 42	21 18	0.2	12 40		-12 -13	20 25		
	3	54 61	15 25	0.6	31 14	0	-6 -12		M	
	5	61	20	0.5	18	0	-12 -8 12	10	M	
	ļ ,	40	19	0.0	31	J	12	50	.41	
Cells 14	1	20	17	13			-1		M	Well over extracted need to check this well for air ingress
	3	45.5 63		0.4	32 21	0	-6 -10	20	M	
	5	56 55	26 23	0.5	16 20	0	-11 -12	15 12	M	
	6	69	30	0.6	0	2	-9	6	M	
Cells 15/16	1	70	32	0.5	0		-19			
	2	64 64	33	0.9	1.4	0	-18 -19	60	W	
	4 5	62 68		0.1 0.2	10	0	-17 -19		W	
	6 7	8 50	20	19 0.5	30	0	-1 -1	10 10	W	Well needs further investigation damaged well when pumping wells pump got stuck in well casing
	8 9	73 59		0.3 0.1	0 12		-19 -18			
	10 11	61 63	26 24	0.5	0 12	0	-19 -19	60	W	
	12	48		0.5			-18	60		

Cells 17	1	57	34	0.9	0	n	-2	50	W KCC to carry out remedial works on the liner cap around the wells on Cells 15/16
Cells 17	2	56			0	0	-16		
	3	34		5	31	1	-16		
	3	62				1	-16		
	4	41	32	0.8 2.8		0	-16		
	6	41	35	1.9		0	-15		
	- 6	41	35	1.9	24	0	-16	90	W
Calle 10	- 1	52	25	1.5	11	0	-15	50	M .
Cells 18	1			1.5		0			
	2	50		2.2	12	0	-15		
	3	46		2.2		0	-14		
	4	61	43	0.4		0	-15		
	5	42	32	2	24	0	-15	60	M
Valves	1	39		3	38	1	-1	1%	Line 1
	2	36			44	0	-1	1%	Line 2
	3	44		2	26	1	-24		Line 3
	4	30		3	49	1	-18		Manifold 11/12
	5	58		0.3		0	-14		Manifold 13
	6	45	24	3	28	1	-15		Manifold 14
	7	56		1	7	0	-18		Mainline cell 15
	8	42		3	29	0	-19		Cell 9&10
	9	43	28	2	27	2	-16	60%	Mainline 17
	10	52	36	1	11	0	-15	100%	Manifold 18
Flare/Engine	Before	38	27	3	32	2	-30	370m3hr	Over extraction evident with depletion of gas quality
Flare/Engine	After	42		2		2		230m3hr	Flare shutdown as over extraction is evident

Comments:

Serial No Fehilly Timony Gas Analyser

Model Date: Weather: 22/23/02/2016

Dry/Cool 978

Cell	Well	CH4 (%)	CO2 (%)	O2 (%)	Balance (%)	CO (ppm)	Static Pressure (mb)	Valve Pos (%)	Monitor at wellhead/f lowline/m anifold (w/f/m)	
Cells 1	1.3 1.4	54 75	22 22	3.7 0.6	20 1.9	0	-9 -10	2% 5%	w	
Calla 2						1			\A/	
Cells 2	2.1 2.2	0 22	0.1 17	21 0.8	78 59	0	-3 -2	60%	W	Well over pulled
	2.3	38	20	0.4	42	1	-5	2%	W	
Cells 3	3.2	69	28	0.5	1.7	2	-10		W	
	3.4	60	28	0	10.8		-16	30%	W	
Cells 4	4.2	48 57	25 27	0.5 0.6	28 15	2	-4 0	60% 2%	w	KCC to address issues No suction Everton. To investigate this issue
	4.4	60	28	0.6	11	2	-5	20%		The Sucion Everton. To investigate this issue
Cells 5	5.1	73	29	0.3	0	5	-9	2%	W	Excavated gas well all surface pipe work ok
	5.2 5.3	27 1.9	19 1.2	1.6 20	52 76	4	-9		W	Valve seized suction on main line KCC design perforated pipe close to surface drawing in air ingress
	5.4	66	27	0.8	6	3	-9		W	Excavation needs to be back filled by KCC
Cells 6	6.1	2.7	8	13	76	1	-6	5%	W	Well over pulled - Poor cap
	6.2	70 56	31 12	0.2 5	0 27	2	-1 -1	2% 2%	W	
	6.3	30	1Z	5		ı				Well needs excavated for further investigation. Possible cap defect - KCC
	0.4	4	3	18	74	1	-7	1%	W	contractor to repair
Cells 7	7.1	0	0.7	22	77	0	0		W	Cap damaged perforated pipe above ground level
	7.2 7.3	12 17	5 6	14 8	68 69	8	0		W	Cap damaged Cap damaged
	7.4 7.5	0.3	0.3	21	78	1	-6	2	W	Cap damaged
Cells 8	8.1 8.2	65 10	33 4	0.8 17	0.8 68	1	-6 -5	15% 5%		
	8.3	10	6	17	66	2	-5	5%	W	Con well down and and flooded
	8.4	0	1.1	22	76	2	0		W	Gas well damaged and flooded
Cells 9	9.1 9.2	30 66	15 27	0.3	49 6	3	-6 -14	10% 25%	W	
	9.3	0.1	0.6	21	78	3	-3	0%	W	Well location flooded
	9.4 9.6	28 67	9 24	13 2	50 7	5	-14 -14	25% 2%		Well location flooded
Cells 10	10.2	52	3	0.9	44	1	-8	1%	W	Cap damaged perforated pipe above ground level
Cells 10	10.3	23	7	14	54	2	-15	15%		Cap damaged periorated pipe above ground level
	10.4 10.5	80 28	21 9	0.3 13	0 49	3 1	-15 -8	10% 30%	W	
	10.6	17	7	14	62	2	-2		W	
Cells 11	2	35 0	16 0.1	20	39 79	1	-13 -1	20 0%		To excavate well would require digging up road
	3	47	25	0.5		1				
Cells 12	1 2	0.4 23	0.2 20	20 0.3	78 57	0	-1 -1	10 20		Under ground well issue pipe work ok Over pulled gas well
	3									Flooded gas field was a productive well but gas quality has reduced
	4	26	21	0.2	52	1	-11	40	M	significantly
Cells 13	1	62	23	3	12	5	-14	100	M	
	2	70	25	1	4	3	-14	25	M	
	3 4	48 73	21 27	0.3	30 0	4	-14 -13	90 95	M	
	5 6	75 30	23 13	0.3 12	1.8 45	2	-14 -14	20 80		
	J	30	13	12	73		-14	30	1*1	
Cells 14	1	28	14	11	45	2	-5	10	M	Well over pulled need to check this well for problems
	2	64	30 24	1.5	5	3	-14 -14	20	M	
	4	65	29	1.6	4	4	-14	30	M	
	5 6	66 62	25 27	2	6 7	4	-14 -14	20 30		
Cells 15/16	1	69	26	1.3	3	6	-15	60		
	3	71 69	28 32	0.3	1 0	6	-15 -15	60		
	4	72	31	0.1	0	5	-15	60	W	
	5 6	70	32	0.1	0	5	-15	60	VV	Well needs further investigation damaged well when pumping wells pump got
	7	9 73	5 28	19 0.4	67 0	6 5	-2 -2	10 10		stuck in well casing
	8	72 68	28	0.5 0.5	0	6	-15 -15	60	W	
		40	27	Λ Ε		6				

	11	75	27	0.2	0	6	-15	60	W	
	12	61	30	0.2	8	5	-15	60	W	
Cells 17	1	1	2	20	77	2	-1	15	W	
	2	56	34	0.2	10	3	-12	75	W	
	3	45	32	2.8	21	3	-12	100	W	Gas well over pulled
	4	64	38		0	6	-12	75	W	
	5	51	34	2	13	4	-12	60	W	
	6	47	33	2	21	3	-12	90	W	
Cells 18	1	56	36			2	-12			
	2	61	38	0.1	12	4	-12	50	M	
	3	55	35	1.8	8	3	-12	30	M	
	4	64	39	0.5	0	18	-12	50	M	
	5	54	35	1.7	9	3	-9	50	M	
Valves	1	13	9			2	-1	5%		Line 1
	2	26	17	3.5	53	2	-1	5%		Line 2
	3	45	27	2	26	1	-24	40%		Line 3
	4	29	20	2.5	48	2	-18	30%		Manifold 11/12
	5	62	20				-14	60%		Manifold 13
	6	39	20	8	33	3	-15	80%		Manifold 14
	7	81	20			5	-18			Mainline cell 15
	8	68	26	0.3	5	1	-19	80%		Cell 9&10
	9	48	30		20	3	-16			Mainline 17
	10	52	54	35	1.4	4	-15	100%		Manifold 18
Flare/Engine	Before	44	28			2		325m3hr		
Flare/Engine	After	46	32	2	22	2	-19	300m3hr		

Comments:

 Model
 Serial No
 GM09053

 Date:
 24/03/2016

 Weather:
 Dry/Cool
 984mb

Cell	Well	CH4 (%)	CO2 (%)	O2 (%)	(,,,	CO (ppm)	(mb)	Valve Pos (%)	Monitor at wellhead/f lowline/m anifold (w/f/m)	Comments
Cells 1	1.3 1.4	58 76	23 22		15 0.6		-8 -7	2% 5%		
Cells 2	2.1	16	13	7	62	2	-4	30%	W	
OCII3 Z	2.2	1.7	7	11	79	0	-1	60%	W	Well over pulled
	2.3	27	18	0.9	52	1	-3	2%	W	
Cells 3	3.2	24	20			3	-8	20%	W	
	3.4	10	15	/	68	1	-12	30%	W	
Cells 4	4.2	40 38	25 19			1 2	-5 0	60% 2%		KCC to address issues Investigate this issue
	4.4	24	21				-6	20%	vv	investigate tills issue
Cells 5	5.1	61	22	0.5	16	4	-10	2%	W	Excavated gas well all surface pipe work ok
	5.2	26	18	1.5	54	3	0	0%	W	Valve seized suction on main line
	5.3 5.4	58 38	23 16		17.5 45		-7 -7	100% 2%		KCC design perforated pipe close to surface drawing in air ingress Excavation needs to be back filled by KCC
Cells 6	6.1	4	6	15	75	1	-5	5%	W	Wall our rulled Dear can
Cells 0	6.2	47	24				-2	2%	W	Well over pulled - Poor cap
	6.3	6	2	21 18		1 2	-1 -5	2% 1%		Well needs excavated for further investigation. Possible cap defect - KCC contractor to repair
Cells 7	7.1 7.2	0.2	1.2 1.6	22 22	77 77	1 5	0		W W	Cap damaged perforated pipe above ground level Cap damaged
	7.3	37	20	14	29	0	0	0	W	Cap damaged
	7.4 7.5	62	22	1.7	14	2	-5	2	W	Cap damaged
Cells 8	8.1 8.2	58 15	31 8		9 64		-5 -3	15% 5%		
	8.3	18	9	12	61	2	-2	2%	W	
	8.4	0.8	3	21	75	1	0	0	W	Gas well damaged and flooded
Cells 9	9.1	64	18				-7	10%		
	9.2 9.3	77 52	26 9				-12 -2	25% 0%		Well location flooded
	9.4	48	17				-11	25%	W	Well location flooded
	9.6	51	25	I	23	3	-10	2%	VV	
Cells 10	10.2 10.3	68 62	19 25		35 13		-9 -8	1% 15%		Cap damaged perforated pipe above ground level
	10.4	49	15	0.4	35	2	-10	10%		
	10.5 10.6	70 58	20 20		20		-9 -1	30% 10%	W	
Cells 11	1	62	24	0.5	13	2	-11	20	W	
	2	19	9				-2	0%		To excavate well would require digging up road
	3	40	17	9	33	1	-11	20%	W	
Cells 12	1	0.6	1.5	21	76	1	-2	10	M	Under ground well issue pipe work ok
Cells 12	2	40	24	0.7	35	2	-2	20	M	Over pulled gas well
	3	41	23	1.7	35	1	-9	40	M	Flooded gas field was a productive well but gas quality has reduced significantly
Cells 13	1	۸۰					4.0	40-		
00113 13	2	24 71	11 25		51 2		-11 -10	100 25		
	3	42 71	21 27	1.3			-11 -10	90 95	M	
	5	23	19	1.5	56	1	-11	20	M	
	6	13	6	18	63	1	-2	3	M	
Cells 14	2	29 74	18 30				-2 -11	20		Well over pulled need to check this well for problems
	3	54	20	0.6	24	2	-10	30	M	Important not to over pull gas well
	4 5	62 65	28 24		9		-9 -10	30 20		
	6	63	25				-11	30		
Cells 15/16	1 2	58 64	22 25	1.5 0.1			-11 -11	60 60		
	3	61	30	2.4	6	5	-10	60	W	
	4 5	58 58	19 27			5 4	-11 -11	60		
	6	52	26	5	16	6	-4	10	W	Well needs further investigation damaged well when pumping wells pump got stuck in well casing
			26	0.1	13	3	-4	10	VV	
	7 8	61 59	24					60	W	
	8 9	59 64	24 23	0.3 0.4	16 12	6 4	-11 -11	60	W	
	8	59	24	0.3 0.4 2	16 12 3	6 4 4	-11 -11 -10	60	W W	

Cells 17	1	2	3	21	75	3	-1	15	W	To investigate
	2	62	36	0.5	0.8		-9	75		
	3	38	31	3	28	3	-10	100		Gas well over pulled
	4	64	41	0.3	0	4	-9	75	W	
	5	42	32		22	3	-9	60	W	
	6	49	37	1.9	12	4	-9	90	W	
Cells 18	1	58	37		4	3	-10	50	M	
	2	56	39	1.2	3	5	-10	50		
	3	51	36	1.8	11	3	-9	30	M	
	4	64	41	0.7	0	11	-10	50	M	
	5	47	34	3	16	4	-9	50	M	
Valves	1	15	7	11	67	1	-1	2%		Line 1
	2	21	14	2	63	1	-1	1%		Line 2
	3	43	25	3	31	1	-15	40%		Line 3
	4	34	23	2	41	1	-13	30%		Manifold 11/12
	5	59	26	2	13	3	-12	60%		Manifold 13
	6	41	24	5	30	2	-11	80%		Manifold 14
	7	68	32	0.2	1	3	-13	30%		Mainline cell 15
	8	65	28	0.6	6	1	-12	80%		Cell 9&10
	9	46	31	2.8	19	3	-10	60%		Mainline 17
	10	54	35	2	9	4	-11	100%		Manifold 18
Flare/Engine	Before	43	29	2.8	21	1	-16	300m3hr		
Flare/Engine	After	47	32	1.3	19	2		280m3hr		

Comments:
KCC contractor commencing remedial works on the cap

 Model
 Serial No
 GM09053

 Date:
 26/04/2016

 Weather:
 Dry/Sunny
 996

Cell	Well	CH4 (%)	CO2 (%)	O2 (%)	Balance (%)	CO (ppm)	Static Pressure (mb)		Monitor at wellhead/f lowline/m anifold (w/f/m)	Comments
Cells 1	1.3	57.7	17	2	22	0	-2	2%		
	1.4	63	17	0.9			-2	5%		
Cells 2	2.1 2.2	38 60	21 21	1.7 0.7	39 18	3	-3 -1	30% 60%		Well over pulled
	2.3	43	18	0.7	38	1	-2	2%	W	
Cells 3	3.2 3.4	58 46	20 15	0.4	21 38	3	-3 -2	20% 30%	W	
Cells 4	4.2	53	27	1.3			-2	60%		KCC to address issues
Cells 4	4.3	47	22	0.6	31	1	0	2%		Investigate this issue
	4.4	42	16	0.6			-2	20%		
Cells 5	5.1 5.2	44 16	17 15	1 5	38 63	1	-2 0	2% 0%		Excavated gas well all surface pipe work ok Valve seized suction on main line
	5.3 5.4	30 52	13 27	12 1	45 19		-3 -2	100% 2%		KCC design perforated pipe close to surface drawing in air ingress Excavation needs to be back filled by KCC
Cells 6	6.1	18	10	12		1	-2	5%		Well over pulled
Cells 0	6.2	54	24	1	21	1	1	2%	W	vveii ovei puilea
	6.3 6.4	43 0.3	10 2	3 21	43 76	0	-1 0	2% 1%		
Cells 7	7.1	19	6	15	60	1	0	0	W	Cap damaged perforated pipe above ground level
	7.2 7.3	59 34	23 13	2	16 48		0		W W	Cap damaged Cap damaged
	7.4 7.5	1	5	9			-1		W	Cap damaged
Cells 8	8.1 8.2	51 31	26 21	2			-3 -3	15% 5%	M	
	8.3 8.4	0.3	2.4	21 9	76 85		-2 0	2% 0	W	Gas well damaged and flooded
Cells 9	9.1	53	20	2	24	2	-10	10%	W	
OCHS 7	9.2	60	26	0.4	13	1	-11	25%		Mc W control flooded
	9.3 9.4	44 61	17	1.6	19	3	-1 -8	0% 25%		Well location flooded Well location flooded
	9.6	47	22	2	29		-4	2%		
Cells 10	10.2 10.3	51 57	10 24	1.6	38 17	3	-7 -9	1% 15%		Cap damaged perforated pipe above ground level
	10.4 10.5	53 68	17 15	0.9		1	-8 -6	10% 30%		
	10.6	56	16	3	23	1	-1	10%	W	
Cells 11	2	47 24	18 11	0.6	54	3	-7 -1	20 0%		To excavate well would require digging up road
	3	54	22	2	21	1	-8	20%	W	
Cells 12	1	46	16	0.5	38	1	-5	10	M	Under ground well issue pipe work ok
OCHS 12	2	34 41	22	0.7	43	2	-5	20	M	Over pulled gas well Flooded gas field was a productive well but gas quality has reduced significantly
	3 4	41	23	1.9	34		-10	40	IVI	Flooded gas neid was a productive well but gas quality has reduced significantly
Cells 13	1	49	16	1			-13	100		
	3	64 41	22 19		38	2	-12 -13	25 90	M	
	4 5	65 22	25 18	1.7			-12 -12	95 20		
	6	16	7	16	60	1	-1	3	M	
Cells 14	1	37	21	5	36	2	-1	2	M	Well over pulled need to check this well for problems
JCII3 14	2	65	27	1.8	6	2	-12	20	M	
	3	43 61	15 28	0.9	9	1	-9 -11	30 30	M	Important not to over pull gas well
	5 6	63 38	23 17	2 8			-11 -2	20 2		
Cells 15/16	1 2	58 64	23 22	1.8 0.4			-13 -13	60 60		
	3 4	63	33 26	0.3	3	3	-13 -13	60	W	
	5	61	31	0.7	7	3	-12	60	W	Melli anda farka kan akada da mana kan
	6 7	42 61	19 24	0.4	15	2	-5 -5	10 10	W	Well needs further investigation damaged well when pumping wells pump got stuck in well casing
	8 9	68 52	25 22	0.3	6 25		-14 -13	60 60		
	10 11	55 48	23 20	1.8	17	2	-13 -13	60 60	W	
	12	55	29	2	13		-13	60		

Cells 17	1	57	36				-1	3	W	
	2	52	32		15	3	-9	75	W	
	3	44	33	2	21	2	-12	100	W Ga	as well over pulled
	4	65	41	0.2	0	2	-11	75	W	
	5	51	35	2	11	1	-11	60	W	
	6	46	34	2	18	3	-10	90	W	
Cells 18	1	55	36	1	6	1	-12	50	M	
	2	54	36		9	3	-11	50		
	3	55	37	1.8	6	2	-10	30	M	
	4	52	36	0.4	11	6	-11	50	M	
	5	48	37	2	14	3	-11	50	M	
Valves	1	25	16	1	55	1	-4	2%	Lin	ne 1
	2	31	18	1	50		-4	1%	Lin	ne 2
	3	45	27	2	26	2	-18	40%	Lin	ne 3
	4	41	23	2	31	1	-11	30%	Ma	anifold 11/12
	5	51	24	2	23	4	-13	60%	Ma	anifold 13
	6	43	25	3	29	3	-12	80%	Ma	anifold 14
	7	58	38		3	4	-15	30%		ainline cell 15
	8	62	31		5	1	-16	80%	Ce	ell 9&10
	9	44	29	3	24	3	-13	60%	Ma	ainline 17
	10	51	36	1	12	5	-14	100%	Ma	anifold 18
Flare/Engine	Before	45	30	2	77	1	-20	320m3hr	Ga	as quality sustaining.
Flare/Engine	After	48		2	17	3		305m3hr		as flow has improved slightly due to the dry weather

Flare/Engine
Comments:

 Model
 Serial No
 GM09053

 Date:
 31/05/2016

 Weather:
 Dry/Sunny
 987

Cell	Well	CH4 (%)	CO2 (%)	O2 (%)	Balance (%)	CO (ppm)	Static Pressure (mb)		Monitor at wellhead/f lowline/m anifold (w/f/m)	
Cells 1	1.3	54	14	1	30	0	0	0%		KCC gasfield works
	1.4	53	16	1	30	1	0	0%	W	KCC gasfield works
Cells 2	2.1 2.2	53 54	21 19	0.4	26 26	1 0	0	0% 0%		KCC gasfield works KCC gasfield works
	2.3	40	17	1.5		1	0	0%		KCC gasfield works
Cells 3	3.2	66	22	1.1	11	1	0	0%	w	KCC gasfield works
00110	3.4	64	22	1	12	1	0	0%	W	KCC gasfield works
Cells 4	4.2	1	2	20	77	1	0	0%	W	KCC gasfield works
	4.3 4.4	50 53	30 21	0.7	19 25	0	0	0% 0%	W	KCC gasfield works KCC gasfield works
				0.7						Well over pulled
Cells 5	5.1 5.2	59 28	23 17	0.7	17 54	1 0	0	0% 0%		KCC gasfield works KCC gasfield works
	5.3 5.4	37 58	16 23	3 0.6		0	0	0% 0%	W	KCC gasfield works
	5.4	38	23	0.0	18	0	U	0%	VV	KCC gasfield works Excavated needs to be back filled
Cells 6	6.1	15 45	8 20	14 0.4	63	0	0	0% 0%		KCC gasfield works KCC gasfield works
	6.3	54	34	1	11	0	0	0%	W	KCC gasfield works
	6.4	2	3	19	76	0	0	0%	W	KCC gasfield works
Cells 7	7.1	1	2	20		1	0	0%		KCC gasfield works
	7.2 7.3	2	3 5	19 19		0		0% 0%		KCC gasfield works KCC gasfield works
	7.4 7.5	1	5	16	76	0	0	0%	W	KCC gasfield works
Cells 8	8.1 8.2	54 38	32 24	1	13 38	0	0	0% 0%		KCC gasfield works KCC gasfield works
	8.3	1	5	20	74	0	0	0%	W	KCC gasfield works
	8.4	0.2	6	21	72	0	0	0%	W	KCC gasfield works
Cells 9	9.1 9.2	54 53	20 16	1.6		0	-4 -12	5% 25%		
	9.3	65	17	1.8	14	4	-1	0%	W	Well location flooded
	9.4 9.6	51 42	18 23	2	22 36	3 1	-11 -4	25% 2%		Well location flooded
Cells 10	10.2 10.3	70 45	12 25	1.5 0.8	16 30	2	-3 -4	1% 15%		Cap damaged perforated pipe above ground level
	10.4 10.5	54 56	18 12	0.7 0.8	27 31	1 3	-7 -7	10% 30%	W	
	10.5	52	19	0.8	29	2	-7	10%	W	
Cells 11	1	44	22	3	31	1	-9	20%		
	3	19 56	9 25	12 1	60 17	3 1	-1 -7	1% 20%		To excavate well would require digging up road
Cells 12	1	63	21	0.3		2	-6	10%		Under ground well issue pipe work ok
	3	38 38	19 21	0.8		2	-4 -9	20% 40%		Over pulled gas well Flooded gas field was a productive well but gas quality has reduced significantly
	4							1070		Trouble gab note that a productive from but gab quality has roduced significantly
Cells 13	1	53	17	0.7		1	-10	100%		
	3	55 40	19 19	0.3	25 40	2	-11 -10	25% 90%		
	4	55	21	1	22	1	-11	95%	M	
	5 6	25 24	19 12	0.9		2	-10 -1	20% 2%		
Cells 14	1	43	29	4	24	1	-1	2%		Well over pulled need to check this well for problems
	3	51 49	21 16	3	21 35	2	-10 -11	20% 30%		Important not to over pull gas well
	4	55	26	1	17	2	-9	30%	M	
	5 6	61 24	23 9	1 14	15 53	1 2	-10 -1	20% 1%		
Cells 15/16	1	53	22	1.9		1	-11	60%		
	3	58 52	22 28	0.6 1.7	19 18	2	-12 -11	60% 60%		
	4	55	25	1.2	19	1	-12	60%	W	
	5 6	51 48	27 25	0.9		2	-13 -4	60% 10%	W	Well needs further investigation damaged well when pumping wells pump got stuck in well casing
	7	59 45	26 21	0.4 1.3	14	3	-4 -12	10% 60%	W	
	9	60	26	0.9	13	2	-11	60%	W	
	10 11	64 47	26 18	1.4		3	-10 -11	60% 60%	W	
	12	64	28	0.7	7	2	-12	60%		
Ì					ĺ					

Cells 17	1	54	36	0.1	9	1	-1	2%	W	
	2	52	36		13	2	-11	75%		
	3	58	42		0	3	-10	100%		Gas well over pulled
	4	47	35	1	17	1	-9	75%	W	
	5	58	42	2	0	2	-9	60%	W	
	6	59	40	1	0	1	-10	90%	W	
Cells 18	1	57	37	0.6	5	1	-11	50%	M	
	2	62	40	0.4	0	2	-10	50%	M	
	3	56	41		2	3	-9	30%		
	4	47	36		11	6	-11	50%		
	5	58	40	0.6	0.5	3	-9	50%	M	
Valves	1	15	13	6	64	1	0	0%		Line 1 valve closed due to KCC gasfield works
	2	42	21	2	35	0	0	0%		Line 2 valve closed due to KCC gasfield works
	3	44	28		27	2	-16	40%		Line 3
	4	39	27		33	2	-13	30%		Manifold 11/12
	5	49	25		25	3	-11	60%		Manifold 13
	6	41	24		32	1	-12	80%		Manifold 14
	7	57	31		11	4	-13	30%		Mainline cell 15
	8	55	23		21	2	-13	80%		Cell 9&10
	9	46	31		21	4	-11	60%		Mainline 17
	10	56	38	1	5	3	-11	100%		Manifold 18
Flare/Engine	Before	44	28	2.8	25	2	-16	280m3hr		Gas quality holding flare running approx 7 hours each day Monday to Friday
Flare/Engine	After	46	31	1	22	3	-15	270m3hr		Gas flow has improved slightly as dry weather has made some difference
Comments:										

 Model
 Serial No
 GM09053

 Date:
 30/06/2016

 Weather:
 Heavy Rain
 984

Cell	Well	CH4 (%)	CO2 (%)	O2 (%)	Balance (%)	CO (ppm)	Static Pressure (mb)		Monitor at wellhead/f lowline/m anifold (w/f/m)	Comments
Cells 1	1.3	58	17	0.8	24.2	0	0	0%	W	KCC gasfield works
	1.4	50	19	1	30	1	0	0%	W	KCC gasfield works
Cells 2	2.1	55	23	1	21	2	0	0%	W	KCC gasfield works
OCHS Z	2.2	49	23	1	27	0	0	0%		KCC gasfield works
	2.3	43	19	1	37	1	0	0%	W	KCC gasfield works
Cells 3	3.2	61	25	1.1	12.9	2	0	0%	***	VCC gooffold works
Cells 3	3.4	57	26	1.7	15.3	1	0	0%		KCC gasfield works KCC gasfield works
		-								
Cells 4	4.2	2	3	19		1	0	0%		KCC gasfield works
	4.3 4.4	48 50	31 23	0.6	20.4 26	0	0	0% 0%		KCC gasfield works KCC gasfield works
			20		20	·		0,0		Well over pulled
Cells 5	5.1	55	24	1	20	1	0	0%		KCC gasfield works
	5.2 5.3	32 41	19 21	1.5	47.5 36	0	0	0% 0%		KCC gasfield works KCC gasfield works
	5.4	52	25	0.4	22.6	0	0	0%		KCC gasfield works
Cells 6	6.1	5	6	17		1	0	0%		KCC gasfield works
	6.2	36 44	17 29	1	45 26	0	0	0% 0%		KCC gasfield works KCC gasfield works
	6.4	1	5	18		0	0	0%		KCC gasfield works
0-11- 7	7.4							201	\A/	VCC gooffeld weeks
Cells 7	7.1 7.2	0.9	3	19 20	77.1 76	0	0	0% 0%		KCC gasfield works KCC gasfield works
	7.3	1	3	18	78	1	0	0%	W	KCC gasfield works
	7.4	0.6	2	19	78.4	0	0	0%	W	KCC gasfield works
-	7.5									
Cells 8	8.1	48	34	0.7	17.3	2	0	0%	W	KCC gasfield works
	8.2	41	25	1.6		1	-2	0%		KCC gasfield works
	8.3 8.4	0.8	2	19 18		0	0	0% 0%		KCC gasfield works KCC gasfield works
	0.4	0.0	-	10	77.2	Ü		070	**	Rec gasicia works
Cells 9	9.1	49	21	2		0	-2	5%		
	9.2 9.3	47 62	19 19		32.7 17.5	2	-13 -1	25% 0%	W	
	9.4	43	19		35.4	1	-13	25%	W	Well head needed to be tightened
	9.6	40	22	1.6	35.4	1	-2	2%	W	·
Cells 10	10.2	62	14	1.3	22.8	1	-2	1%	w	Cap damaged perforated pipe above ground level
OCIIS 10	10.2	47	27	1.3	25	1	-3	15%		cap damaged periorated pipe above ground rever
	10.4	46	19		33.6	1	-9	10%	W	
	10.5 10.6	58 48	13 21	1.4 1.1	27.6 29.9	3	-9 -3	30% 10%	W	
	10.0	40	21		27.7		3	1070		
			-							
Cells 11	2	49 16	29 11	10	20 63	2	-7 -1	20% 1%	w	To excavate well would require digging up road
	3	48	26	2	24	2	-8	20%	**	To excavate well would require digging up road
Cells 12	1	48	23	2	27	1	-7	10%	M	Under ground well issue pipe work ok
OCIIS 12	2	40	21	1	38	2	-2	20%		Over pulled gas well
	3	41	24	1.4	33.6	0	-10	40%	M	Flooded gas field was a productive well but gas quality has reduced significantly
	4									
Cells 13	1	50	20	1	29	2	-11	100%	М	
	2	52	21	2	25	1	-10	25%	M	
	3	43 46	21 23	0.9		1	-11 -10	90% 95%		
	5	31	23	1.6		1	-10	20%		
	6	45	24		29	2	-1	2%		
-										
Cells 14	1	44	27	3	26	2	-1	2%	M	Well over pulled need to check this well for problems
	2	53	26		20	1	-6	20%	M	
	3	46 57	19 29		33.4 12.5	2	-9 -7	30% 30%		Important not to over pull gas well
	5	59	26	0.7	14.3	1	-9	20%		
	6	26	13		54	1	-0.5	1%		
-										
Cells 15/16	1	50	26	1.2	22.8	2	-13	60%	W	
	2	59	26	1	14	1	-12	60%	W	
	3 4	55 57	29 28		14.6 13.5	1	-13 -13	60% 60%		
	5	53	28		17.7	1	-13 -14	60%		
	6	43	23	3.2	30.8	2	-6	10%	W	Well needs further investigation damaged well when pumping wells pump got stuck in well casing
-	7 8	57 48	28 24		14.1 63.1	2	-6 -14	10% 60%		
	9	58	28		12.6	1	-14	60%		
	10	61	28	2.2	8.8	2	-14	60%	W	
	11 12	45 59	23 31	1.7 1.2	30.3 8.8	2 1	-14 -14	60% 60%		
-	14	59	اد	1.2	0.0		-14	JU /0	**	

Cells 17	1	46	29	2.2	22.8	1	-1	2%	W	
	2	49	33	1.4	16.6	3	-14	75%	W	
	3	51	36	0.8	12.2	1	-13	100%	W Gas	well over pulled
	4	46	31	2	21	2	-11	75%	W	
	5	54	38	1	7	1	-12	60%	W	
	6	57	38	1.4	3.6	1	-12	90%	W	
Cells 18	1	53	35	1	11	2	-13	50%	M	
	2	58	38	0.8	3.2	1	-12	50%	M	
	3	57	40	1.4	1.6	2	-13	30%	M	
	4	49	34	1.2	15.8	3	-14	50%		
	5	54	38	1.2	6.8	2	-13	50%	M	
Valves	1	12	14	7	67	1	0	0%		1 valve closed due to KCC gasfield works
	2	39	23		33	0	0	0%	Line	2 valve closed due to KCC gasfield works
	3	43	30		25.3	1	-14	40%	Line	
	4	43	28		28	1	-13	30%		fold 11/12
	5	47	29		22.6	2	-12	60%		fold 13
	6	46	26		25.5	2	-11	80%		fold 14
	7	55	35		9	3	-15	30%		ine cell 15
	8	49	28		21.3	1	-13	80%	Cell	
	9	51	33		15	3	-14	60%		ine 17
	10	55	36	0.5	9.5	2	-14	100%	Mani	fold 18
Flare/Engine	Before	45	30	2.5	22.5	2	-18	275m3hr	Gas	quality holding flare running approx 7 hours each day Monday to Friday
Flare/Engine	After	48	31	1.6	19.4	1	-16	265m3hr	Gas	flow will have to be monitored as there has been heavy rain over the last few days.

Flare/Engine
Comments:

 Model
 Serial No
 GM09053

 Date:
 28/07/2016
 993

 Weather:
 Mild/Wet
 993

Cell	Well	CH4 (%)	CO2 (%)	O2 (%)	Balance (%)	CO (ppm)	Static Pressure (mb)		Monitor at wellhead/f lowline/m anifold (w/f/m)	Comments
Cells 1	1.3 1.4	44 47	21 24	1.2		1	-2 -2		W	
0.11- 2										
Cells 2	2.1	19 36	15 21	3	40			3% 3%	W	
	2.3	36	21	1		1	-2		W	
Cells 3	3.2 3.4	31 21	22 15	2		1	-2 -2		W	
Cells 4	4.2	44	24	2	30	2	-4	10%	W	
	4.3 4.4	41 22	24 19	2	33	1	-2		W	
Cells 5	5.1	56	26	1	17		-2		10/	
Cells 3	5.2	30	17	2	51	2	-2	3%	W	
	5.3 5.4	51 41	28 25	1	20 33	1 2	-2 -2		W	
Cells 6	6.1	22	15	2	61	2	-2	3%	W	
	6.2	48 17	27 12	1 3			-2 -2	3% 3%		
	6.4	3	8	17			-2			
Cells 7	7.1 7.2	24 16	16 13	3 2		1 2	-2 -2	3% 3%	W	
	7.3	48	31	1	20	2	-2	3%	W	
	7.4 7.5	0.6	4	18	77	1	0	0%	W	KCC gasfield works well not connected as pumping of gas well in progress
Cells 8	8.1	46	28	2	24	2	-2	3%	W	
	8.2 8.3	38 34	24 19	2		1 2	-5 -2		M W	
	8.4	1	3		75		0			Gas well poor will investigate further
Cells 9	9.1 9.2	47	29 25	1	23 22		-1 -14	3% 25%		
	9.3	51 41	21	1.5	36	1	-1	0%		
	9.4 9.6	46 38	24 23	1 2	29 37					
Cells 10	10.2	54	17	2	27	2	-2	1%	W	Cap damaged perforated pipe above ground level
	10.3 10.4	44 49	24 16	2			-5 -7		W W	
	10.5 10.6	62 51	16 24	1 2	21	2	-8 -4	30%	W	
	10.0	0.		-	- 20			1070		
Cells 11	1	42	26	1	31	1	-9		W	To according to the control of the c
	3	18 44	13 27	8		3 1				To excavate well would require digging up road
Cells 12	1 2	44 37	24 19	2			-8 -2			Under ground well issue pipe work ok Over pulled gas well
	3 4	43	25	1	31					Flooded gas field was a productive well but gas quality has reduced significantly
	7									
Cells 13	1	53	23	2	22	1	-12	100%	M	
	2	49	22	1	28	2	-12	25% 90%	M	
	4 5	43	24 26	2	31	2	-12 -7		M	
	6	40	22	3	35		-1	1%		
0										
Cells 14	2	42 48	28 23	3	27	2			M	Well over pulled need to check this well for problems
	3 4	42 59	19 33	<u>2</u> 1			-11 -11	30% 30%		Important not to over pull gas well
	5 6	48 32	23 16	1 4	28 48	1	-11 -0.5	20% 1%	M	Need to investigate this gas well
							2.0			
Cells 15/16	1 2	52 57	28 27	1	19 15		-15 -16	60%		
	3	50	31	1	18	2	-16	60%	W	
	4 5	54 57	31 34	1	14 8		-16 -15		W	
	6	45	26	2	27	1	-5	10%	W	Well needs further investigation damaged well when pumping wells pump got stuck in well casing
	7	55 46	29 26	1		2		10%	W	
	9	52 62	31 32	1	16	1	-16	60%	W	
 	11	47	26	2						

Cells 17	1	42			29		-1	2%		Gas well over pulled
	2	46			22		-16			
	3	49			16					Gas well over pulled
	4	48			22		-15			
	5	50			15		-15			
	6	53	33	2	12	1	-15	90%	W	
Cells 18	1	55			8	2	-16			
	2	56		1	5	2	-15	50%	M	
	3	59		1	0	1	-16	30%	M	
	4	53	32	1	14	3	-16	50%	M	
	5	58	38	1	3	2	-15	50%	M	
Valves	1	39			39		-3	3%		Line now under suction after KCC works
	2	41	25		32		-3	3%		Line now under suction after KCC works
	3	41	31		27		-16	40%		Line 3
	4	44	26	2	28	1	-15	30%		Manifold 11/12
	5	46	32	2	20	2	-16	60%		Manifold 13
	6	43	24	3	30	2	-15	80%		Manifold 14
	7	56	38	1	5	2	-17	30%		Mainline cell 15
	8	46	27	3	24	2	-17	80%		Cell 9&10
	9	46	31	2	21	3	-16	60%		Mainline 17
	10	57	39	1	3	3	-17	100%		Manifold 18
lare/Engine	Before	43	26	2.5	29	2	-22	280m3hr		Gas quality has reduced on gasfield
lare/Engine	After	46			20			270m3hr		Gas flow will have to be monitored so not to over pull gasfield

Flare/Engine After 46 33 1 20 Comments:

No significant improvement on the gas recovery since KCC works.

 Model
 Serial No
 GM09053

 Date:
 30/08/2016

 Weather:
 Cool/Wet
 0989mb

Cell	Well	CH4 (%)	CO2 (%)	O2 (%)	Balance (%)	CO (ppm)	Static Pressure (mb)		Monitor at wellhead/f lowline/m anifold (w/f/m)	Comments
Cells 1	1.3	39	18	2.5	40.5	1	-1	3%	W	
	1.4	41	22	2	35	1	-1	3%	W	
Cells 2	2.1	16	14	3	67	1	-1	3%	W	
	2.2	38	22	3	37	2	-2	3%		
	2.3	39	24	2	35	1	-1	3%	W	
Cells 3	3.2	35	24		40	1	-1	3%		
	3.4	25	18	3	54	1	-2	3%	W	
Cells 4	4.2	49	28	1	22	2	-4	10%	W	
	4.3	44 18	26 16	1	29 63	1 2	-1 -1	3% 3%	W	
	4.4	18	10	3	03		-1	3%		
Cells 5	5.1	46	24	1	29	1	-1	3%		
	5.2 5.3	34 44	20 23	2	43 31	1	-1 -1	3% 3%		
	5.4	38	24	3	35	2	-1	3%		
Cells 6	6.1	14	13	2	70	1	-1	3%	W/	
OCII3 0	6.2	44	24	1	31	1	-1	3%		
	6.3	23	18	2		2	-1	3%		
	6.4	6	5	14	75	1	-1	3%	vV	
Cells 7	7.1	30	19	2	49	1	-1	3%		
	7.2 7.3	42 51	25 33	1	31 15	1 2	0	3% 3%		Needs new valve at well head valve seized Needs new valve at well head valve seized
	7.4	36	25	3	36	1	-1	3%		Well pumped out and now connected to extraction system
	7.5									
Cells 8	8.1	42	23	2	33	1	-1	3%	W	
	8.2	34	19		44	1	-4	6%	M	
	8.3 8.4	39 42	24 29	2	35 27	2	-1 -1	3% 1%		
	0.4	42	27		21		-	170	**	
Cells 9	9.1	44	26	2	28	1	-1	3% 25%		
	9.2 9.3	54 38	32 21	3	13 38	<u>2</u> 1	-12 -1	25%		
	9.4	42	22	2	34	2	-11	25%	W	
	9.6	42	26	2	30	1	-3	1%	W	
Cells 10	10.2	46	23	1	30	2	-3	1%		Cap damaged perforated pipe above ground level
	10.3 10.4	39 45	20 21	2	39 31	1	-7 -7	15% 10%	W	
	10.5	51	23	2	24	1	-6		W	
	10.6	43	22	3	32	1	-6	15%	W	
Cells 11	1	46	29	1	24	1	-8	20%		
	3	19 48	15 29		57 21	4	-1 -11	1% 20%		To excavate well would require digging up road
Cells 12	1	39	22	2	36	2	-4	10%	M	Under ground well issue pipe work ok
OCII3 IZ	2	35	21	2	42	1	-1	20%		Over pulled gas well
	3	45	27	1	27	0	-13	40%	M	Gas quality starting to recover will monitor closely
	4									
Cells 13	1	45	21	2	32	1	-14	100%	М	
	3	53 41	25 25	1	21 33	1 2	-14 -13	25% 90%		
	4	39	22		37	1	-14	95%	M	
<u> </u>	5 6	37 44	28 25		33 29	1	-5 -2	15% 1%		
	0	44	25	2	29		-2	176	IVI	
0 " ::	_			-						Mall and collection of the shoot distribution of the state of the stat
Cells 14	2	36 45	25 22	2	37	1 2	-1 -11	1% 20%		Well over pulled need to check this well for problems
	3	39	21	2	38	1	-13	30%	M	Important not to over pull gas well
<u> </u>	4 5	57 44	36 25	1	6 30			30% 20%	M	
	6	35	21			1	-0.5	1%		Need to investigate this gas well
					\vdash					
Cells 15/16	1	50	31	3	16	1	-18	60%		
	2	54	33		12	1	-18	60%	W	
	3	53 52	34 33	1	11 14	1	-17 -18	60% 60%	W	
	5	52	35	2	11	2	-17	60%	W	
	6 7	42 57	25		30	1	-6	10% 10%		Well needs further investigation damaged well when pumping wells pump got stuck in well casing
	8	45	34 24		30	4	-6 -18	60%		
	9	49	33	1	17	1	-17	60%	W	
	10 11	58 48	34 29	1	7 21	1	-18 -18	60% 60%		
	12	57	33	1	9		-18	60%		

Cells 17	1	36	25		36	1	-1	2%		Gas well over pulled
	2	44	27	3	26	2	-19	75%	W	
	3	51	33		15	2	-19	100%		Gas well over pulled
	4	46	27	2	25	2	-18	75%	W	
	5	47	35	2	16	3	-19	60%		
	6	49	35	1	15	1	-18	90%	W	
Cells 18	1	52	34		13	2	-19	50%	M	
	2	58	39	1	2	3	-18	50%		
	3	56	40	1	3	1	-19	30%		
	4	49	34		14	3	-18	50%		
	5	56	36	2	6	2	-18	50%	M	
Valves	1	32	17		48	2	-2			Line now under suction after KCC works
	2	38	22		37	1	-1	3%		Line now under suction after KCC works
	3	44	29		25	4	-18	40%		Line 3
	4	42	28		28	1	-19			Manifold 11/12
	5	44	30		24	3	-14	60%		Manifold 13
	6	40	22		35	2	-15			Manifold 14
	7	54	36		8	3	-19			Mainline cell 15
	8	44	29		25	1	-14	80%		Cell 9&10
	9	43	33		22	3	-20	60%		Mainline 17
	10	55	37	2	6	3	-20	100%		Manifold 18
Flare/Engine	Before	45	30	2	23	3		310m3hr		Gas quality has reduced on gasfield
Flare/Engine	After	48	34	2	16	4	-23	290m3hr		Gas flow will have to be monitored so not to over pull gasfield
Comments:										

NORTH KERRY LANDFILL GAS EXTRACTION WELL MONITORING

 Model
 Serial No
 GM09053

 Date:
 28/09/2016

 Weather:
 Cool/Dry
 0985mb

Cell	Well	CH4 (%)	CO2 (%)	O2 (%)	Balance (%)	CO (ppm)	Static Pressure (mb)	Valve Pos (%)	Monitor at wellhead/f lowline/m anifold (w/f/m)	Comments
Cells 1	1.3	29		3		0	-2			
	1.4	39	22	2	37	2	-2	3%	W	
Cells 2	2.1	41		1	33	0	-2			Fixed pipe work
	2.2	36 42		2		1	-2 -2	3% 3%	w	
Cells 3	3.2	38 31		1 2			-2 -2			
0 !! 1	4.0									
Cells 4	4.2	45 41	25 23	1	29 35		-6 -2	10% 3%	w	
	4.4	44		1			-2			fixed pipe work
Cells 5	5.1	41	23	2	35	2	-2	3%	W	
	5.2	37	22	2			-2	3%		
	5.3 5.4	46 35		1 3			-2 -1	3% 3%		
Calle /	/ 1	1/	15		/5	1	1	20/	14/	
Cells 6	6.1	16 40		1	65 37	2	-2 -2	3% 3%		
	6.3	25		1		1	-2			
	6.4	3		13	77		-2	3%	٧٧	
Cells 7	7.1	34 39		3			-2 0			Noode now valvo at wall bood valvo exited
	7.2 7.3	47		1	35 23	3	0			Needs new valve at well head valve seized Needs new valve at well head valve seized
	7.4	41		2		1	-2	3%		Well pumped out and now connected to extraction system
	7.5									
Cells 8	8.1 8.2	45 36		1	28 39	1	-2	3%		
	8.2	35		1			-4 -2	6% 3%		
	8.4	36		3			-2			
Cells 9	9.1	46	26	1	27	2	-0.5	3%	W	
	9.2	57	34	1	8	2	-9	25%	W	
	9.3 9.4	41 44		1			-1 -9	1% 25%		
	9.6	40		1			-1	1%		
Cells 10	10.2	43	25	2	30	2	-4	1%	w	Cap damaged perforated pipe above ground level
	10.3	41	23	2	34	1	-8	15%	W	
	10.4 10.5	42 47		1	33 27	3	-9 -7	10% 30%	w	
	10.6	41		2	32	2	-9		w	
Cells 11	1	42		2			-9			To consider will consider all control of the state of the
	3	16 46		11			-1 -10	1% 20%		To excavate well would require digging up road
Cells 12	1	35	24	2	39	2	-3	10%	M	Under ground well issue pipe work ok
	2	32	19	1	48	2	-1	20%	М	Over pulled gas well
	3	44	25	1	30	1	-11	40%	M	Gas quality starting to recover will monitor closely
Cells 13	1			_		_		4000:		
OCII3 13	2	47 49	27	1		2	-12 -11	100% 25%		
	3	45	27	1	27	1	-11	90%	М	
	5	37 39		2			-12 -3			
	6	47		3			-1	1%		
					L					
Cells 14	1	34		4			-1 12	1%		Well over pulled need to check this well for problems
	3	47 41	24	1			-13 -11	20% 30%		Important not to over pull gas well
	4	59	38	1	2	3	-11	30%	М	
	5 6	48 39		1 3			-12 -0.5	20% 1%		Need to investigate this gas well
Cells 15/16	1	48		2			-15	60%	W	
	2	51	35	1	13	2	-14	60%	W	
	3	55 54	36 36	1			-15 -15		W	
	5	54	33	2	11	2	-14	60%	W	Mall people further in postertion demand and the first people further and the first people further in the first people further than the first people further
	6 7	45 58		2	25 5		-4 -4	10% 10%	W	Well needs further investigation damaged well when pumping wells pump got stuck in well casing
	8	47	28	1	24	2	-14	60%	W	
	9	53 56		1			-15 -14		W	
	11	52	33	2	10	1	-15	60%	W	
	12	52	33	2	13	3	-14	60%	VV	

Cells 17	1	41	22	3	34	2	-1	1%		Gas well over pulled
	2	47	31	1	21	3	-16	75%	W	
	3	49	31	2	18	3	-15	100%	W	Gas well over pulled
	4	44	30	1	25	3	-15	75%	W	
	5	43	32	3	22	2	-14	60%	W	
	6	46	33	2	19	2	-15	90%	W	
Cells 18	1	54	35	2	9	2	-14	50%	M	
	2	55	37	1	7	3	-15	50%	M	
	3	51	38	1	10	2	-15	30%	M	
	4	50	37	2	11	1	-14	50%	M	
	5	52	37	1	10	3	-15	50%	M	
Valves	1	34	21	3	42	3	-3	3%		Line now under suction after KCC works
	2	36	24	2	38	1	-3	3%		Line now under suction after KCC works
	3	46	31	2	21	3	-16	40%		Line 3
	4	44	29	2	25	2	-13	30%		Manifold 11/12
	5	46	29	2	23	3	-13	60%		Manifold 13
	6	44	25	3	28	3	-14	80%		Manifold 14
	7	50	38	1	11	4	-17	30%		Mainline cell 15
	8	41	26	3	27	2	-17	80%		Cell 9&10
	9	45	36	1	18	2	-16	60%		Mainline 17
	10	54	39	2	5	4	-15	100%		Manifold 18
Flare/Engine	Before	40	04	_	0.4	2	22	200m2hr		Coo musiku koo yadugad an maafiald
-		43	31	2	24	3		300m3hr		Gas quality has reduced on gasfield
Flare/Engine	After	46	32	ı 1	21	3	-18	280m3hr		Gas flow will have to be monitored so not to over pull gasfield

Flare/Engine
Comments:

NORTH KERRY LANDFILL GAS EXTRACTION WELL MONITORING

 Model
 Serial No
 GM09053

 Date:
 28/10/2016

 Weather:
 Cool/Dry
 1001mb

Color Colo											
Cells 2 21			, ,			(%)	(ppm)	Pressure (mb)	(%)	wellhead/f lowline/m anifold (w/f/m)	
Cells 2 1 15 17 2 6 6 0 0 5 35 77 Fined gap work Cells 3 12 10 17 10 1 10 1 10 1 10 1 10 1 10 1	Cells 1										
22 S											
College 1	Cells 2										Fixed pipe work
Cells											
Cells 3 3 3 5 3 5 3 6 3 6 3 6 6 3 6 6											
Cells 4 4 2 78 27 1 1 6 2 77 705 2 8 8 8 8 8 9 7 9 7 105 2 8 8 8 8 9 7 9 7 105 2 8 8 8 8 9 9 9 9 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cells 3						1				
43		3.4	- 02	34	'	3	J	-5	370	vv	
Cells 5	Cells 4										
Cells 5											Fixed pine work
5.2 33 22 2 43 3 6 35 W											
S	Cells 5										
Cells 6											
6.2 68 19 1 31 2 2 5 39 8											
6.2 68 19 1 31 2 2 5 39 8	Colle 4	6.1	14	15	А	4.0	2	2	20/	W/	
6.3 6.6 16 2 15 1 -1 33 W	Cells o						2				
Cells 7		6.3	66	16	2	15	1	-1	3%	W	
12		6.4	41	25	1	33	2	-1	3%	VV	
7.3	Cells 7	7.1	44	24	1	32	2	-5	3	W	
7.4											
Cells 9 8.1 45 26 1 28 1 1 2 3 3 4 4 1 1 5 3 3 4 4 1 1 1 5 3 3 4 4 1 1 1 5 3 3 4 4 1 1 1 5 1 3 4 4 1 1 1 5 1 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1				
8.2 36 23 2 39 2 4 6% M			0.0	2.0	2.	7.0			J		Well pumped out and now connected to extraction system
8.2 36 23 2 39 2 4 6% M	0.11.0	0.1	45	2/	1	20	-		20/	10/	
8.3 33 22 3 41 1 5 39/6 W	Cells 8										
Cells 9		8.3	33	23	3	41	1	-5	3%	W	
9.2 58 22 1 19 3 11 25% w 9.3 37 22 2 39 1 1 15% w 9.4 54 18 1 27 2 11 25% W 9.5 41 28 1 30 1 1 1 1 1 1 1 1 1		8.4	53	30	1	16	2	-5	1%	W	
9.2 58 22 1 19 3 11 25% w 9.3 37 22 2 39 1 1 15% w 9.4 54 18 1 27 2 11 25% W 9.5 41 28 1 30 1 1 1 1 1 1 1 1 1	Cells 9	9.1	44	18	1	38	1	-1	3%	W	
9.4		9.2	58	22	1	19	3	-11	25%	W	
Section 10.2											
10.3											
10.3											
10.4	Cells 10								1% 15%		Cap damaged perforated pipe above ground level
10.5						39	1				
Cells 11											
Cells 12		10.6	49	19	3	29	3	-11	15%	W	
Cells 12											
Cells 12	Cells 11						2				To everythe well would require digning up read
Cells 12						1	1				ro excavate weii woulu require ulggirig up roau
2			3,	32							
2	Calle 12	1		2	10	70	2	-	10	M	Under ground well issue pine work ak
3	CEIIS IZ					60	2		20	M	
19											
Cells 13	-		19	19	2	61	1	-13	40	M	- 2-7 3-2 from the foot for and quality pipe from to the man toos of from at this menigranical under pressure
2 62 25 2 11 2 -6 25 M 3 3 43 21 1 35 1 -16 90 M 4 4 53 22 1 25 3 -16 95 M 5 5 32 22 1 45 3 -7 15 M 5 6 41 20 5 33 1 -1 1 M 6 7 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1											
2 62 25 2 11 2 -6 25 M 3 3 43 21 1 35 1 -16 90 M 4 4 53 22 1 25 3 -16 95 M 5 5 32 22 1 45 3 -7 15 M 5 6 41 20 5 33 1 -1 1 M 6 7 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1 1 M 7 1											
3	Cells 13			25	1	24					
4 53 22 1 25 3 -16 95 M				25	2	11	2				
S 32 22 1 45 3 -7 15 M			53	27	1	25	3		90	M	
Cells 14 1 62 34 1 4 1 4 1 M Well over pulled need to check this well for problems 2 50 30 2 18 2 -18 20 M		5	32	22	1	45	3	-7	15	M	
2 50 30 2 18 2 -18 20 M 3 56 20 1 23 2 -17 30 M Important not to over pull gas well 4 42 28 3 27 2 -18 30 M		6	41	20	5	33	1	-1	1	M	
2 50 30 2 18 2 -18 20 M 3 56 20 1 23 2 -17 30 M Important not to over pull gas well 4 42 28 3 27 2 -18 30 M										 	
3 56 20 1 23 2 -17 30 M Important not to over pull gas well 4 42 28 3 27 2 -18 30 M	Cells 14						1				Well over pulled need to check this well for problems
4 42 28 3 27 2 -18 30 M						18	2				Important not to over null gas well
5 48 24 3 24 3 -18 20 M			42	28	3	27	2				Important not to over pull gas well
									20	М	

1	6	37	22	3	36	1	-0.5	1	M	Need to investigate this gas well
	U	37	22	,	30	- '	-0.5	- '	VI	need to investigate this gas wen
Cells 15/16	1	48	21	3	28	2	-18	60	M	
CellS 15/16	2	64	25		11	3	-10	60		
	3	48	24		26		-17	60		
	4	55	26		18	1	-18	60		
	5	42	23		31	2	-17	60		
	6	56	31		12		-6	10		Well needs further investigation damaged well when pumping wells pump got stuck in well casing
	7	48			30	1	-6	10		
	8	56			24	1	-18	60		
	9	49					-17	60		
	10	61	26		12	2	-18	60		
	11	64	25		11	2	-18	60		
	12	55	28	0.4	17	2	-18	60	N	
Cells 17	1	52	31		15	1	-1	1		Gas well over pulled
	2	52	33		14	2	-22	75	N	
	3	42	32	4	22	4	-22	100	N	Gas well over pulled
	4	56	38	1	5	3	-23	75	N	
	5	47	34	1	17	1	-21	60	N	
	6	48	34		16	2	-22	90	N	
Cells 18	1	56	36	1	6	2	-20	50	M	
00110 10	2	57	39		3	1	-21	50		
	3	50	34		15	2	-20	30		
	4	56			6	2	-21	50		
	5	47	34		17	1	-20	50		
		- 17		<u> </u>	- ''		20	50	V1	
Valves	1	27	19	1	50	2	-8	3%		Line now under suction after KCC works
vaivos	2	26	18		50	3	-7	3%		Line now under suction after KCC works Line now under suction after KCC works
	3	41	26		32		-27	40%		Line 3
	4	20	18		59		-16	30%		Manifold 11/12
	5	42			29		-10	60%		Manifold 13
	6	42	26		29	2	-19	80%		Manifold 14
	7	43				3		30%		Mainline cell 15
					13		-20			
	8	45	27		26		-20	80%		Cell 9&10
	9	42			26	3	-23	60%		Mainline 17
	10	49	36	3	13	2	-22	100%		Manifold 18
<u> </u>										
Flare/Engine	Before	35	25			3		240m3hr		Gas quality has reduced on gasfield. Insufficient gas to run the gas flare
Flare/Engine	After	39			30		-24	225m3hr		Gasfield under pressure reduced flow and quality from cell 12,13,14.

Comments: There is reduced flow from cells 12,13,14. This is putting pressure on the rest of the gasfield. Gas well 12.3 which is the best gas producing well has deteriorated considerably.

Suction has increased considerably. The flare hasn't been running since Tuesday the 25th October

NORTH KERRY LANDFILL GAS EXTRACTION WELL MONITORING

 Model
 Serial No
 GM09053

 Date:
 28/11/2016

 Weather:
 Cool/Dry
 995mb

Cell	Well	CH4 (%)	CO2 (%)	O2 (%)	Balance (%)	CO (ppm)	Static Pressure (mb)		Monitor at wellhead/f lowline/m anifold (w/f/m)	
Cells 1	1.3	17 22	12	4	67 59	0	-1	3%		
	1.4		16	3				3%		
Cells 2	2.1	18 9	17 15	4	63 72	1	-1 -1	3% 3%	W	
	2.3	15	15	2	68	2	-1	3%	W	
Cells 3	3.2 3.4	42 46	18 29	3	37 23		-1 -1	3% 3%		
Cells 4	4.2	32	25	1	42		-8	10%		
00.10	4.3	39 41	23	2	36	0		3% 3%		
O.H. F				2						
Cells 5	5.1 5.2	41 28	25 16	4	32 52	1	-1 -1	3% 3%	W	
	5.3 5.4	26 34	12 26	10	52 38		-1 -1	3% 3%		
Cells 6	6.1	19	17	3	61	1	-1	3%	W	
	6.2	40 52	18 18	3	39 28	2	-1 -1	3% 3%	W	
	6.4	36	19	3	42			3%		
Cells 7	7.1	41	21	3	35		-1		W	
	7.2 7.3	40 45	22 27	2	36 26	1	0	3	W	Needs new valve at well head valve seized Needs new valve at well head valve seized
	7.4 7.5	4	6	17	73	1	-1	3	W	Well pumped out and now connected to extraction system
Cells 8	8.1	42	24	1	33	2	-1	3%	W	
	8.2 8.3	39 36	26 25	1 2	34 37	3	-8 -1	6% 3%	M	
	8.4	46	26	2	26		-1	1%		
Cells 9	9.1	48	28	1	27	2	-1	3%		
	9.2 9.3	47 0.2	26 1	2 21	23 78	1	0	25% 1%	W	
	9.4 9.6	55 39	18 25	2 1	24 35		-22 -6	25% 1%		
Cells 10	10.2	6	5	13	75	2	-3	1%	w	Cap damaged perforated pipe above ground level
	10.3 10.4	48 6	26 6	11	25 77	2	-21	15% 10%	W	
	10.5	42	24	2	31	2	-22	30%	W	
	10.6	60	27	I	12	2	-21	15%	W	
Cells 11	1	16	9	13	62	2	-6	20	W	
	3	15 50	9 30	13	62 18		-1 -9	1% 20%		To excavate well would require digging up road
Cells 12	1 2	11 11	19 19	1	68 67		-1 -1	10 20		Under ground well issue pipe work ok Over pulled gas well
	3	11	20	1	69		-11	40	M	Very important gas well has lost flow and quality
Cells 13	1	/2	20	2		1	22	100	М	
255 10	2	63 31	30 19	4	45	3		25	M	
	3	31 33	19 17	4	48 46	2	-22 -23	90 95	M	
	5 6	19 49	18 22	1 3	61 25		-10 -15	15 1	M M	
Cells 14	1 2	27 25	14 14	11 10	47 50		-7 -6	1 20		Well over pulled need to check this well for problems
	3	64	15	10	20	1	-23	30	M	Important not to over pull gas well
	4 5	31 46	19 26	7 1	43 26	2	-23 -20	30 20	M	
	6	30	19	7	43	2	-2	1	М	
Cells 15/16	1	54	26	2	17	3	-21	60	W	
	2	53 66	25 32	2	6	2	-22 -23	60	W	
	4	60	27	3	10	2	-23	60	W	
	5 6	54	32	3	10		-22	60		Well needs further investigation damaged well when pumping wells pump got stuck in well
	7	47 53	28 28	1 1.5	24 18	2		10 10	W	casing
	8	25 26	20 20	2	52 51	2		60 60		
	10 11	19 66	14 25	7	60	1		60	W	
	12	35	25	2	37		-20	60		

Cells 17	1	30	26	2	42	2	-1	1	W	Gas well over pulled
	2	28	17	12	43	1	-25	75		
	3	27	17	12	44	2	-26	100	W	Gas well over pulled
	4	57	38	1	4	2	-26	75	W	
	5	32	18	11	38	2	-26	60	W	
	6	39	30	3	28	1	-25	90	W	
Cells 18	1	45	33	2	21	2	-26	50	M	
	2	39	32	2	27	1	-27	50	M	
	3	44	31	3	22	1	-27	30	M	
	4	56	37	2	4	3	-27	50	M	
	5	43	32	2	23	1	-27	50	M	
Valves	1	24	17	3	56	1	-1	3%		Line now under suction after KCC works
	2	24	16	3	55	3	-1	3%		Line now under suction after KCC works
	3	39	25	3	33	2	-29	40%		Line 3
	4	12	18	2	68	1	-8	30%		Manifold 11/12
	5	36	24	4	36	3	-25	60%		Manifold 13
	6	31	21	4	44	4	-26	80%		Manifold 14
	7	44	22	3	31	4	-24	30%		Mainline cell 15
	8	39	23	3	25	3	-26	80%		Cell 9&10
	9	34	19		42	4	-27	60%		Mainline 17
	10	46	32	2	20	3	-28	100%		Manifold 18
Flare/Engine	Before	36	24	3.5	36	2	-31	240m3hr		Gas quality has reduced on gasfield. Flare has been off
Flare/Engine	After	37	28	2.5	35	3	-29	230m3hr		Gasfield under pressure reduced flow and quality from cell 12,13,14,17,15.

Comments: There is reduced flow from Cells 11,12,13,14,15

This is putting pressure on the rest of the gasfield. Gas well 12.3 which is the best gas producing well has deteriorated considerably. Suction has increased considerably also

Engine load has been reduced

It is evident that there is a loss of gas production & consequently the gasfield is over extracted

NORTH KERRY LANDFILL GAS EXTRACTION WELL MONITORING

Model Date: Weather: Serial No GM09053 22/12/2016

Cool/Dry 1016

Cell	Well	CH4 (%)	CO2 (%)	O2 (%)	Balance (%)	CO (ppm)	Static Pressure (mb)	Valve Pos (%)	Monitor at wellhead/f lowline/m anifold (w/f/m)	Comments
Cells 1	1.3	15	13	3	56	0	-1	3%	w	
	1.4	20	13	3	64	1	-1	3%	W	
Cells 2	2.1	17	15	2	66	1	-1	3%		Fixed pipe work
	2.2	14 17	14 14	4	67 67	1	-1 -1	3% 3%		
	2.3		14		07	2	-	370	vv	
Cells 3	3.2 3.4	40 42	17 27	2	41 29	2	-1 -1	3% 3%		
	3.4		21		27		-	370	**	
Cells 4	4.2	30 36	23 24	1	46 38	3	-8 -1	10% 3%		
	4.4	38	24	3	35	3	-1		w	Fixed pipe work
Cells 5	5.1	40	26	2	32	2	-1	3%		
Cells 5	5.2	30	17	3	50	1	-1	3%		
	5.3 5.4	21 37	14 24	6	59 37	3	-1 -1	3% 3%		
	3.4	37	24		31		-1	370	VV	
Cells 6	6.1 6.2	23 38	19 16	3	55 44	1	-1 -1	3% 3%		
	6.3	44	17	2	37	2	-1			
	6.4	32	19	3	46	3	-1	3%	W	
Cells 7	7.1	38	19	4	39	2	-1	3%	W	
	7.2	37	24	2	36	3	0	3%	W	Needs new valve at well head valve seized
	7.3 7.4	42 6	25 8	14	31 72	2	-1			Needs new valve at well head valve seized Well pumped out and now connected to extraction system
	7.5									
Cells 8	8.1	40	22	2	36	3	-1	3%	W	
	8.2	34	22	2	42	4	-8	6%	М	
	8.3 8.4	32 39	23 22	3	42 36	1 3	-1 -1	3% 1%		
Cells 9	9.1 9.2	43 44	23 25	2	32 29	2	-1 -24	3% 25%		
	9.3	0.2	3	19	77	3	0	1%	W	
	9.4 9.6	46 37	22 23	2	30 39	3	-25 -3	25% 1%		
						Ŭ				
Cells 10	10.2 10.3	9 42	8 21	12	71 34	3	-5 -26			Cap damaged perforated pipe above ground level
	10.4	13	12	6	69	1	-5	10%	W	
	10.5 10.6	36 50	20 25	1	43 23	2	-27 -27	30% 15%		
	10.0	30	23	2	20		21	1370		
Cells 11	1	22	16	4	58	3	-9	20%	W	
00110 11	2	14	8		64	1	-1	1%	W	To excavate well would require digging up road
	3	44	28	3	25	1	-12	20%	w	
Cells 12	1 2	13 23	18 19	2	67 56	1	-2 -3	10% 20%		Under ground well issue pipe work ok Over pulled gas well
	3	13	23	1	63	1	-13			Very important gas well has lost flow and quality. Pipe work is ok
	4									
Cells 13	1	47	28	2	23	1	-27	100%		
	3	29 29	21 18	4	46 50	3	-11 -27	25% 90%		
	4	31	18	3	48		-28	95%	М	
	5 6	22 44	18 20	2	58 33	2	-14 -20			
	U	44	20	3	33	2	-20	176	IAI	
Calla 14	1	24	15	9	45	_	1.4	401	M	Wall over pulled need to check this wall for makings
Cells 14	2	31 22	15 11	10	45 50	2	-11 -2	1% 20%		Well over pulled need to check this well for problems
	3	54 29	17	1	28		-27 27			Important not to over pull gas well
	4 5	42	18 23	1	49 34	2	-27 -27			
	6	34	21	5	40	3	-1			Need to investigate this gas well
Cells 15/16	1	42	22	2	34	2	-28			
	3	44 45	23 29	2	30 25	1	-29 -28	60%		
	4	40	23	3	34		-29	60%	W	
	5 6	39 42	23 24	1	36 33	3	-29 -10			Well needs further investigation damaged well when pumping wells pump got stuck in well casing
	7	45	26	2	27	3	-10	10%	W	
	8 9	28 29	20 21	2	50 48	1	-29 -29	60% 60%		
	10	23	17	4	57	1	-29	60%	W	
	11 12	46 33	23 23	3	29 41	1	-29 -28	60% 60%		
					· · ·	i		1		

Cells 17	1	24	21		52		-1	1%		Gas well over pulled
	2	24	15		49		-27	75%		
	3	25	18	10	53		-29	100%		Gas well over pulled
	4	46	32	2	20	3	-29	75%	W	
	5	29	20	6	45	2	-29	60%	W	
	6	32	23	4	41	1	-29	90%	W	
Cells 18	1	42	28	2	28	2	-29	50%		
	2	36	29	2	33	2	-29	50%	M	
	3	41	26	3	30	2	-29	30%	M	
	4	43	31	2	24	3	-29	50%	М	
	5	39	24	3	34	1	-29	50%	M	
Valves	1	20	15	3	62	2	-1	3%		Line now under suction after KCC works
	2	21	16	3	60	3	-1	3%		Line now under suction after KCC works
	3	37	24	3	36	3	-35	40%		Line 3
	4	15	19	3	63	1	-13	30%		Manifold 11/12
	5	31	22	4	43	2	-30	60%		Manifold 13
	6	26	19	4	51	4	-31	80%		Manifold 14
	7	41	24	3	32	4	-31	30%		Mainline cell 15
	8	31	20	3	36	3	-30	80%		Cell 9&10
	9	32	20	4	44	4	-30	60%		Mainline 17
	10	43	27	2	28	3	-30	100%		Manifold 18
Flore/Engine	Defere									
Flare/Engine	Before	34	22	3.5	40.5	2		260m3hr		Gas quality has reduced on gasfield flare has been off
Flare/Engine	After	36	28	2.5	33.5	4	-39	240m3hr		Gasfield under pressure reduced flow and quality from cell 12,13,14,17,15.

Comments: There is reduced flow from Cells 12,13,14.

Suction has increased considerably also

The flare hasn't been running since Tuesday 25th of October Engine load reduced to take pressure off the gasfield

It is evident that there is a loss of gas production & consequently the gasfield is over extracted

Appendix F: Noise Monitoring

southern scientific services Itd

ENVIRONMENTAL NOISE SURVEY

NORTH KERRY LANDFILL MUINGNAMINNANE TRALEE CO. KERRY W0001-04

Requested By: David Donegan

Kerry County Council

Surveyed By: Sinead Fagan

M.A. Env. Res. Management

Reported By: Sinead Fagan

M.A. Env. Res. Management

Date Reported: 01/02/2017

Our Reference: 16P 024

Issue Date	Revision	Checked	Comment
01/02/2017	00	P. Byrne (B.Sc; Ph.D) Cert. Env. Noise (IOA)	Final Report

4park business centre | farranfore | county kerry | ireland | telephone+353 66 9763588 fax +353 66 9763589 email: info@southernscientificireland.com

Registered in Ireland No. 323196 VAT Reg. No. IE 6343196 M

Table of Contents

1. Introduction	3
2. Site location & activities	3
3. Survey details and methodology	4
3.1 Survey details	4
3.2 Equipment	6
3.3 Monitoring methodology	6
3.4 Measurement parameters/terminology	7
4. Results	8
5. Discussion & Conclusion	12
Appendix 1 One-third octave frequency spectra	13
Appendix 2 Calibration Certificates	23

1. Introduction

Southern Scientific Services Ltd was commissioned by Kerry County Council to conduct a daytime environmental noise survey at North Kerry Landfill, Muingnaminnane, Tralee, Co. Kerry. The landfill is located approximately 9km north-west of Castleisland town in a rural setting. The site is bounded by a windfarm, bogland and forestry.

Six noise monitoring locations are listed in Schedule D.1 of the EPA Waste Licence (W0001-04) for the site. Schedule C.3 of the licence stipulates a daytime noise limit of 55dB(A) at noise sensitive locations, measured over a 30-minute period. The EPA Guidance Note for Noise (NG4) 2016 stipulates three noise surveys at each monitoring location for day-time assessments. Three noise surveys at each monitoring location were undertaken to fulfill and assess compliance with these licence conditions.

2. Site Location and Activities

The landfill is located at Muingnaminnane, Tralee, Co. Kerry. The facility closed for waste acceptance on Friday the 11th of July 2014. Sources of noise within the site include machinery (some with reversing alarms), vehicle movements and the pumping of leachates. The facility is closed at night-time.

3. Survey Details and Methodology

3.1 Survey Details

The noise surveys were undertaken on the 25th February, 23rd June and 6th October 2016 to assess the noise levels at predetermined locations (N1, N2, N3, E1, E2, E3) provided by Kerry County Council. The monitoring locations are described in Table 1 and illustrated in Figure 1. A thirty minute monitoring period was employed for each survey conducted at each monitoring location.

Table 1: Noise Monitoring Locations

I.D.	Location	Surrounding ground features
N1	Site boundary at lagoon adjacent to public recycling	Hardcore, lagoon, some earthen
	area	mounds
N2	Adjacent to Gas Detection Well No. 8	Hardcore, some earthen mounds
N3	On access road to forestry plantation	Hardcore, some earthen mounds
E1	Access road to windfarm	Rough grass & trees
E2	Junction of access road to windfarm and the public	Conifer plantation
	road	
E3	At entrance to landfill	Roadway, conifer plantation

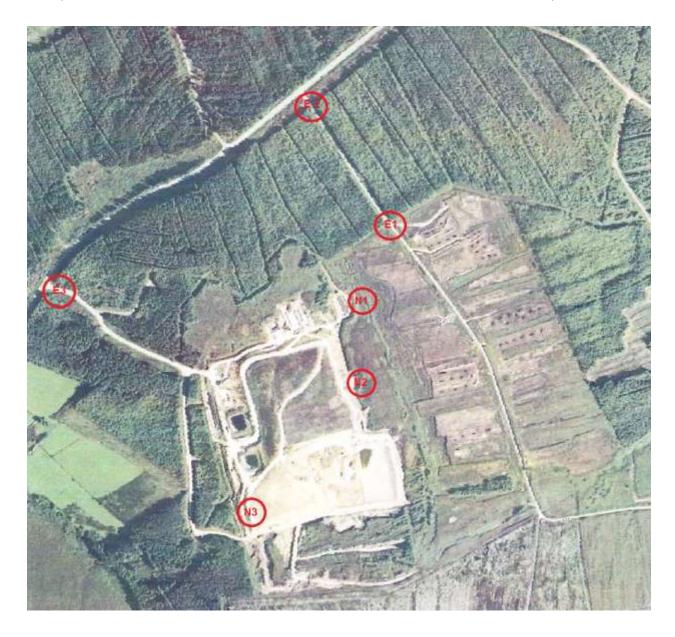


Figure 1: Map showing monitoring locations (refer to Table 1 for description)

3.2 Equipment

Instrument: Brüel & Kjaer (Type 2250-L with Type 4950 microphone).

Instrument Serial No: 2654679

Microphone Serial No: 2652929

Instrument Last Calibrated: 16/11/2015

This instrument conforms to the following standards:

IEC 61672-1, Class 1

IEC 61260 1/3 Oct. Band Class 0

IEC 60651, Type 1 IEC 60804, Type 1

Sound Calibrator: Brüel & Kjaer Type 4231

Sound Calibrator Serial No.: 3001116

Sound Calibrator Calibration Date: 09/11/2015

Utility Software: BZ – 5298 Version 4.5

3.3 Monitoring Methodology

Noise monitoring was carried out in accordance with:

 International Standard ISO 1996 – Acoustics – Description, measurement and assessment of environmental noise

Guidance Note for Noise (NG 4) – EPA, 2016

Briefly, these standards recommend calibration of instruments before and after the survey (this was undertaken on-site using the Bruel & Kjaer Type 4231 acoustic calibrator detailed above); measurement at least 3.5m from any reflecting structure (other than the ground) and 1.2m - 1.5m above ground level. The microphone was fitted with a windshield (Brüel & Kjaer Type UA-0237). Tonal analysis was undertaken following Annex D of ISO 1996 (Part 2), 2007. In this method, a prominent discrete tone is identified as present when the sound pressure level in the one-third-octave band of interest exceeds the sound pressure levels of both adjacent one-third-octave bands as follows:

- 1. 15 dB in the low frequency one-third-octave bands (25Hz 125Hz)
- 2. 8dB in the middle frequency bands (160Hz 400Hz)
- 3. 5dB in the high frequency bands (500Hz 10, 000Hz)

3.4 Measurement Parameters/Terminology

A-weighted: The adjustment applied to sound level recordings to approximate the non-linear

frequency response of the human ear. The A-weighting is denoted by the suffix

A in the parameters listed below such as LAeq, LA10.

Decibel (dB): The scale in which sound pressure level is expressed, which is based on a

logarithmic scale.

Impulsive Noise: A noise that is of short duration (typically less than one second), the sound

pressure level of which is significantly higher than the background.

Tonal Noise: Noise caused by the dominance of one or more frequencies which may result

in increased noise nuisance.

Interval: The time period, t, over which noise monitoring is carried out.

L_{Aeq t}: The equivalent continuous sound level during a measurement interval,

effectively representing the average A-weighted noise level.

L_{AF10}: The A-weighted sound level with Fast time weighting (F) which is exceeded for

10% of the measurement interval, usually used to quantify traffic noise.

L_{AF90}: The A-weighted sound level with Fast time weighting (F) which is exceeded for

90% of the measurement interval, usually used to quantify background noise.

1/3 Octave Band Analysis: Frequency Analysis of sound such that the frequency spectrum is subdivided

into bands of one-third of an octave each. An octave is taken to be a frequency

interval, the upper limit of which is twice the lower limit.

4. Results

4.1 Environmental Conditions on the 25th February 2016

Cloud Cover	Precipitation	Wind Direction	Av. wind speed @2m	Av. temperature
60%	0mm	South Westerly	Variable <0.5 – 1.7/s	3°C

4.2 Noise Survey Results on the 25th February 2016

I.D.	Start Time	L _{Aeq (30 mins)} dB	L _{AF10 (30 mins)} dB	L _{AF90 (30 mins)} dB
N1	11:44	35.3	32.9	25.2

Noise Sources: Background noise included water flow from lagoon, this was most dominant noise source. Birdsong and rustling vegetation, traffic faintly audible from main road, occasional traffic on adjacent local road were also detected in background. An airplane was noted overhead at 12:00. Noise associated with the adjacent windfarm turbines was continuous but very faint in the background. No site activity was noted.

N2	12:19	32.6	32.9	28.9

Noise Sources: Noise associated with turbines on adjacent windfarm was continuous and most dominant noise source at this location. Background noise included birdsong. No site activity was noted at this location.

N3	12:55	36.8	39.2	33.2

Noise Sources: Internal site traffic was noted at this monitoring location. Leachate was being pumped for 10minutes into tankard and then truck engine started up and truck exited vicinity. Noise associated with the adjacent windfarm turbines was continuous in the background. Other background noise included birdsong. External road traffic in the distance to the west of site could be heard.

E1	09:47	33.1	34.1	31.0

Noise Sources: Main noise source at this monitoring location was flowing water in adjacent stream. Main road traffic was faintly audible. Local road traffic included 1 No. van. Background noise included birdsong and rustling vegetation in breeze. Noise associated with the adjacent windfarm turbines was faint but continuous in the background.

E2	10:23	54.2	39.8	29.8
----	-------	------	------	------

Noise Sources: Passing traffic on the public road included 7No. Cars, 2 No. vans and 1 No. jeep. Background noise included, rustling vegetation in breeze, flowing water in nearby ditch and birdsong. Intermittently a chainsaw was noted in the background at a distance.

E3	10:58	53.0	48.0	31.9

Noise Sources: Passing traffic on the public road included 11No. Cars, 4No. Vans and 1No. Jeep. No traffic entered or exited the landfill during this monitoring event. Background noise included wind-derived noise from adjacent forestry trees, other rustling vegetation and birdsong. Noise associated with the adjacent windfarm turbines was faint but continuous and louder than at point E1.

4.3 Environmental Conditions on the 23rd June 2016

Cloud Cover	Precipitation	Wind Direction	Av. wind speed @2m	Av. temperature
90%	0mm	South Westerly	Variable 0.0 – 3.8m/s	14°C

4.4 Noise Survey Results on the 23rd June 2016

I.D.	Start Time	L _{Aeq (30 mins)} dB	L _{AF10 (30 mins)} dB	L _{AF90 (30 mins)} dB
N1	11:30	41.1	42.9	38.5
Noise Sou	urces: Wind turbines w	ere the most dominant noise so	ource at this monitoring location	on. Background noise included
birdsong, b	pees and rustling vegeta	ation, as well as the occasional s	sheep and dog barking. No au	dible sources of noise could be
heard from	the facility. Occasional	water flowing in the lagoon and	local road traffic were faintly n	oted.
N2	12:06	43.9	45.2	42.2
Noise Sou	ırces: Wind turbines we	re the most dominant noise sour	ce at this monitoring location a	lso. Background noise included
birdsong, r	rustling vegetation and b	oees. Very faint road traffic noise	was noted at this location also	0.
N3	12:55	47.9	49.9	45.6
Noise Sou	ırces: Noise associated	with the adjacent windfarm turb	ines was the prevailing noise a	at this location. Background
noise inclu	ded birdsong, bees and	rustling vegetation. Squeaking r	noises from the forestry was a	lso noted. Local road traffic
could be fa	aintly heard in the distan	ce. Internal site traffic included 1	No. car and 1 No. van.	
E1	09:40	42.0	42.7	39.3
Noise Sou	irces: Wind farm noise	was the most dominant at this m	onitoring location. Local road	network traffic was faintly
audible. L	ocal traffic directly pass	ing monitor included 1No. Car. B	ackground noise included bird	Isong, rustling vegetation and
stream flov	wing alongside to the mo	onitoring location. Noise from the	e facility was not audible.	
E2	10:14	52.6	46.7	32.0
Noise Sou	ırces: Wind turbines we	re fainter at this monitoring locat	tion. Passing traffic on the pub	lic road included 3No. Cars
and 2No. \	/ans. Background noise	included birdsong, water flowing	g in a ditch and rustling vegeta	ition. No noise from the facility
was noted	at this location.			·
E3	10:49	49.4	51.1	38.1
		ere the most dominant noise soul	-	
			• .	•
	·	d 2No. Cyclists. Background noi	0 0	i and bildsong. An airpiane
passed ove	ernead at 10:51. No noi	se from the facility was noted at	tnis location.	

4.5 Environmental Conditions on the 6th October 2016

Cloud Cover	Precipitation	Wind Direction	Av. wind speed @2m	Av. temperature
70%	0mm	E to SE	Variable 0.0 – 4.5m/s	13°C

4.6 Noise Survey Results on the 6th October 2016

be heard at this location.

I.D.	Start Time	L _{Aeq (30 mins)} dB	L _{AF10} (30 mins) dB	L _{AF90 (30 mins)} dB
N1	11:44	48.1	49.6	45.6
loise So	urces: Noise associate	d with turbines on adjacent win	ndfarm was most audible in the	background at this location.
Backgrour	nd noise included birdso	ong and rustling vegetation, traff	ic faintly audible from main road	d and water flow from lagoon.
Excavator	working at lagoon spla	ashing sounds noted, occasiona	l warning siren noted. Work me	en talking. Internal site traffic
ncluded 1	No. Jeep.			
N2	12.18	48.8	50.6	46.4
loise Sou	urces: Noise associated	 with turbines on adjacent windf	arm was most audible in the ba	ckground. Local road network
		tently. Background noise include		•
nt this loca	ation.	, ,	0 0	•
N3	12:57	51.4	54.0	48.0
loise Sou	urces: Noise associated	d with turbines on adjacent windf	arm was clearly audible at this lo	ocation. Trickle of water
lowina ne	arby monitor was faintly	noted. Background noise includ	ed birdsong and rustling vegeta	tion. No site activity was
J	nis location.	3 · · · · · · · · · · · · · · · · · · ·		,
E1	09:58	47.5	50.0	43.8
loise Sou	urces Noise associate	d with turbines on adjacent windf	farm was most audible in the ba	ckground. Breeze in
egetation	and nearby forestry wa	s clearly noted. Water flowing in	stream along with birdsong form	ned the background noise at
his locatio	on. No noise emanating	from the landfill was noted. Loca	ıl road traffic included 1No. Van.	
E2	10:31	58.2	50.3	36.8
loise Sou	urces: Passing traffic or	n the public road included 11No.	Cars, 1No. Jeep, 2No. Tractors	and 5No. Vans. One car
urned ont	o local road directly pas	sing monitor. Background noise	included, wind-derived noise fro	m adjacent forestry trees,
ther rustl	ing vegetation, flowing v	vater in ditch and birdsong. Noise	e associated with turbines was a	also audible in the
background. No noise associated with facility could be heard at this location.				
E3	11.04	53.6	53.4	42.5
loise Sou	ırces: Noise associated	d with turbines on adjacent windf	arm was most audible in the bad	ckground at this location.
assing tr	affic on the public road i	included 7No. Cars, 3No. Vans,	1 No. truck and 2No. Jeeps. Bac	ckground noise included
vind-deriv	ed noise from adjacent	forestry trees, other rustling vege	etation and birdsong. No noise a	ssociated with facility could

4.7 Summary of results

Station	Date	Start Time	L _{Aeq} (30mins)	L _{AF10}	L _{AF90}
	25.02.16	11:44	35.3	32.9	25.2
N1	23.06.16	11:30	41.1	42.9	38.5
	06.10.16	11:44	48.1	49.6	45.6
	25.02.16	12:19	32.6	32.9	28.9
N2	23.06.16	12:06	43.9	45.2	42.2
	06.10.16	12:18	48.8	50.6	46.4
	25.02.16	12:55	36.8	39.2	33.2
N3	23.06.16	12:55	47.9	49.9	45.6
	06.10.16	12:57	51.4	54.0	48.0
	25.02.16	09:47	33.1	34.1	31.0
E 1	23.06.16	09:40	42.0	42.7	39.3
	06.10.16	09:58	47.5	50.0	43.8
	25.02.16	10:23	54.2	39.8	29.8
E2	23.06.16	10:14	52.6	46.7	32.0
	06.10.16	10:31	58.2	50.3	36.8
	25.02.16	10:58	53.0	48.0	31.9
E3	23.06.16	10:49	49.4	51.1	38.1
	06.10.16	11.04	53.6	53.4	42.5

5. Discussion & Conclusion

The L_{AF10} & L_{AF90} noise parameters along with the audible noise sources recorded during the survey assist in providing an understanding of the sources and nature of the noise in the area. The L_{A10} is the A-weighted sound level, which is exceeded for 10% of the measurement interval and is usually used to quantify traffic noise or other short duration/passing events. In contrast, the L_{A90} is the A-weighted sound level that is exceeded for 90% of the measurement interval and is usually used to quantify background noise. The L_{Aeq} is the equivalent continuous sound level during a measurement interval, effectively representing the average A-weighted noise level. The site waste licence specifies a day-time limit of 55dB (A) L_{Aeq (30 min)} at noise sensitive locations.

The noise levels measured were below 55dB (A) L_{Aeq} (30 min) during all survey periods at five of the six monitoring locations. All three on-site locations (N1-N3) were within the 55dB (A) L_{Aeq} (30 min) limit during all survey periods. Likewise, at two of the off-site locations (E1 & E3) results were within the 55dB (A) L_{Aeq} (30 min) limit during all survey periods. The single elevated noise level measured at the roadside position (E2) on October 6th (58dB(A)) was primarily attributed to traffic on the public road and in particular one vehicle which turned off the road and passed immediately adjacent to the monitor. Background noise is given by the L_{A90} and was recorded well below 55dB (A) at location E2 (37 dB(A)) on the same occasion. The 1/3 Octave Frequency Spectra show that there was no prominent tonal noise present during any of the surveys when assessed following the criteria in Annex D of ISO 1996 (Part 2), 2007.

Having regard to the monitoring results obtained in these surveys, it is concluded that the very limited activities now occurring at the landfill site are unlikely to adversely impact upon the noise environment at noise sensitive receptors in the locality.

Appendix 1

1/3 Octave Frequency Spectra

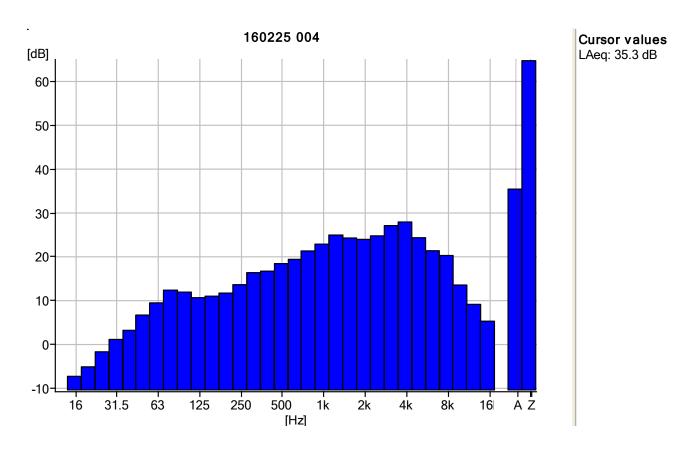


Figure A.1: 1/3 Octave Frequency Graph for N 1 on the 25th February 2016

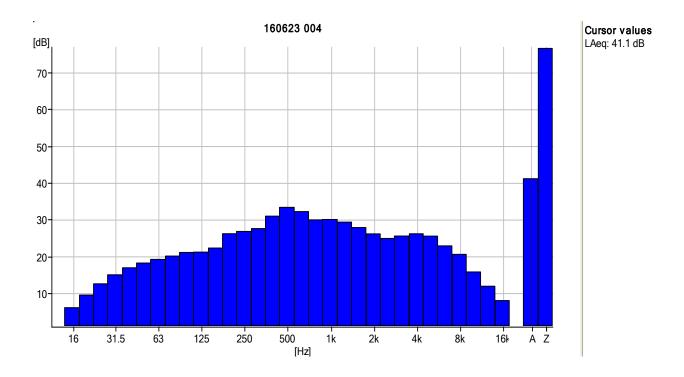


Figure A.2: 1/3 Octave Frequency Graph for N 1 on the 23rd June 2016

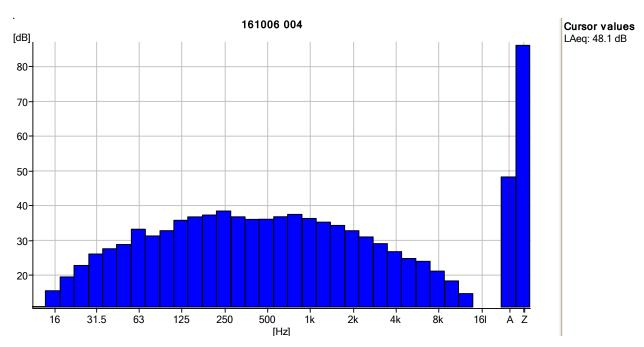


Figure A.3: 1/3 Octave Frequency Graph for N 1 on the 6th October 2016

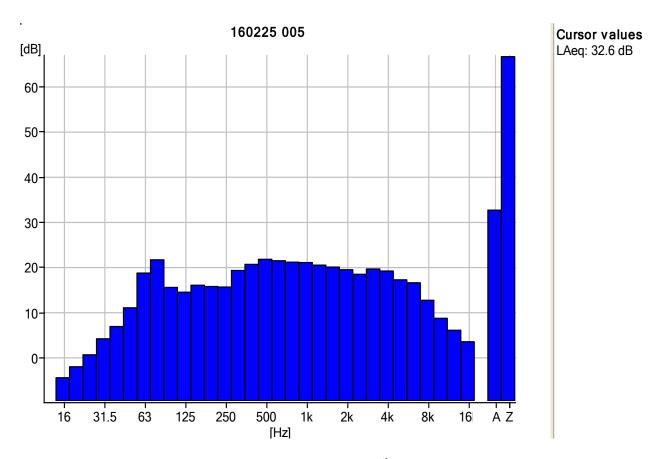


Figure A.4: 1/3 Octave Frequency Graph for N 2 on the 25th February 2016

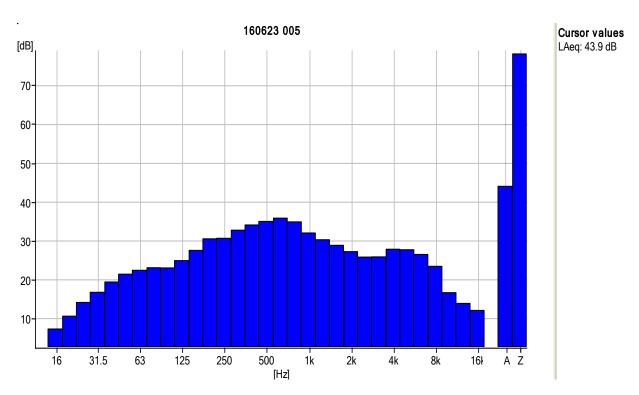


Figure A.5: 1/3 Octave Frequency Graph for N 2 on the 23rd June 2016



Figure A.6: 1/3 Octave Frequency Graph for N 2 on the 6th October 2016

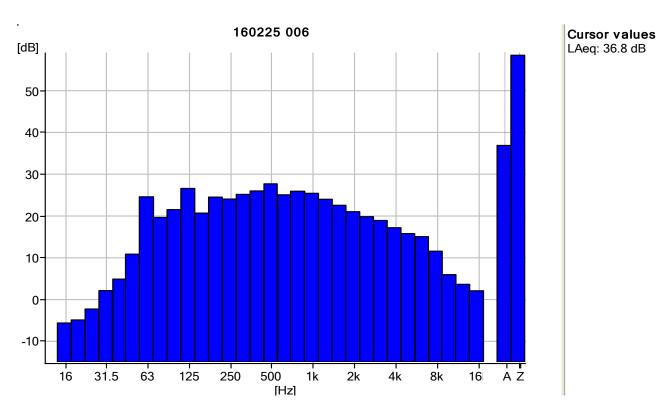


Figure A.7: 1/3 Octave Frequency Graph for N 3 on the 25th February 2016

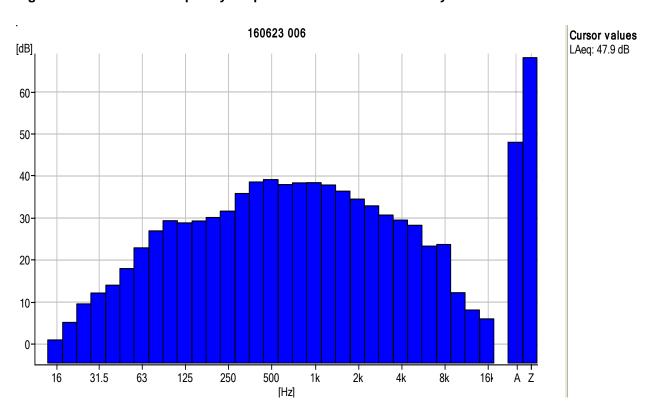


Figure A.8: 1/3 Octave Frequency Graph for N 3 on the 23rd June 2016

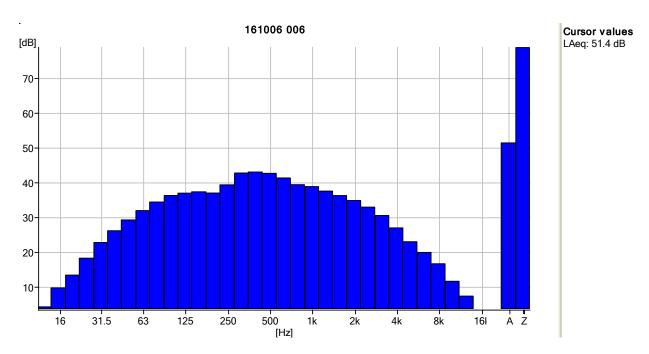
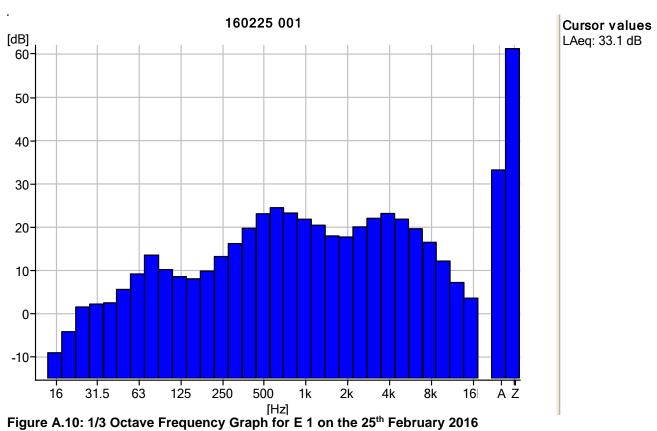



Figure A.9: 1/3 Octave Frequency Graph for N 3 on the 6th October 2016

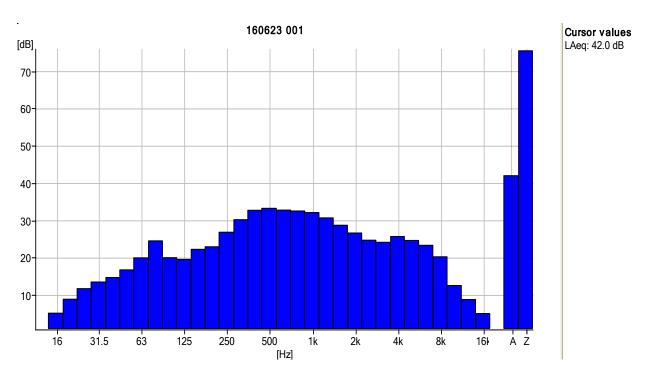


Figure A.11: 1/3 Octave Frequency Graph for E 1 on the 23rd June 2016

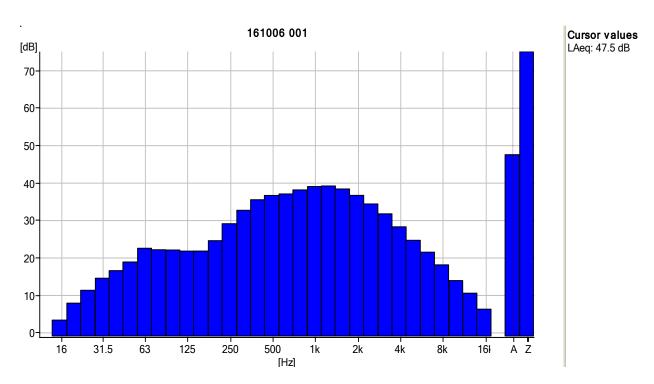


Figure A.12: 1/3 Octave Frequency Graph for E 1 on the 6th October 2016

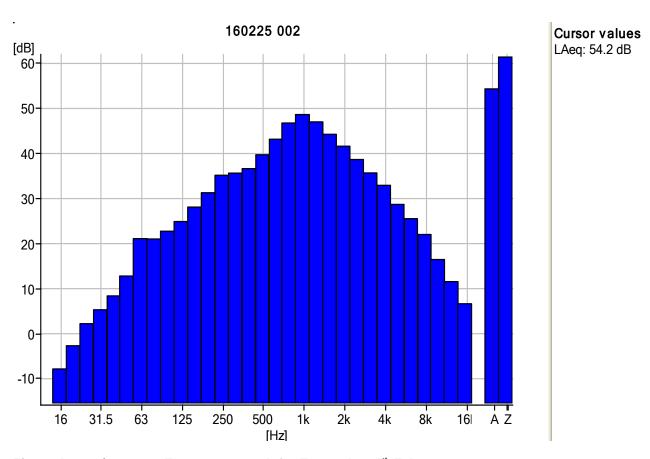


Figure A.13: 1/3 Octave Frequency Graph for E 2 on the 25th February 2016

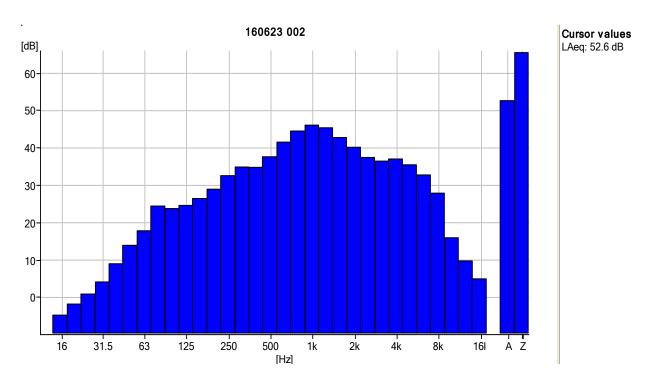


Figure A.14: 1/3 Octave Frequency Graph for E 2 on the 23rd June 2016

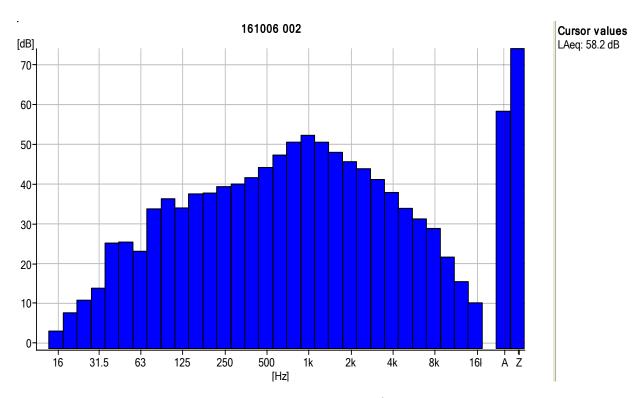


Figure A.15: 1/3 Octave Frequency Graph for E 2 on the 6th October 2016

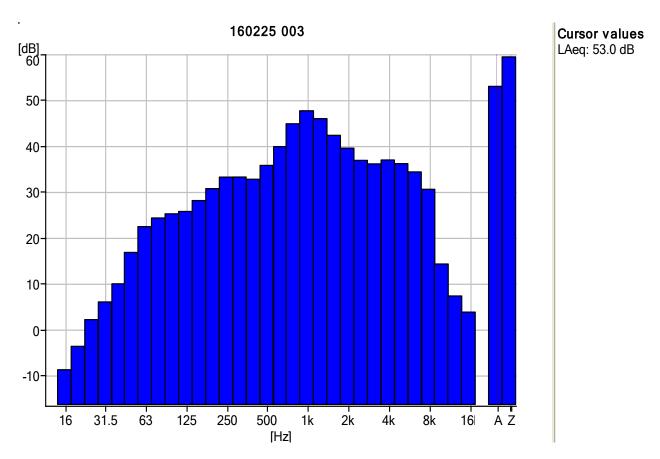


Figure A.16: 1/3 Octave Frequency Graph for E 3 on the 25th February 2016

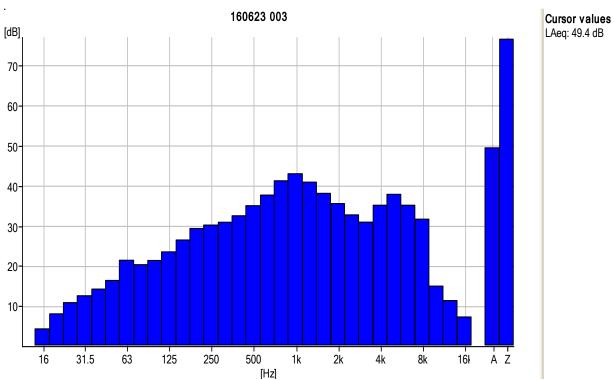


Figure A.17: 1/3 Octave Frequency Graph for E 3 on the 23rd June 2016

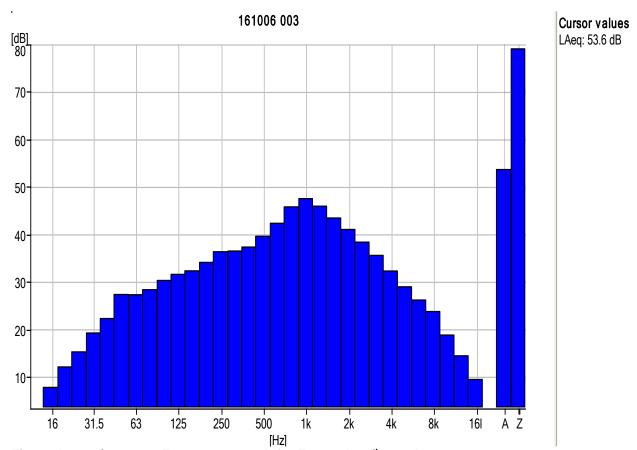


Figure A.18: 1/3 Octave Frequency Graph for E 3 on the 6th October 2016

Appendix 2

Calibration Certificates

The Calibration Laboratory Skindubergvej 307, DK-2850 Natrum, Deomark

CERTIFICATE OF CALIBRATION

No: CDK1508295

Page 1 of 10

CALIBRATION OF

Sound Level Meter:

Bruel & Kjær Type 2250 Light

No: 2654679 Id: -

Microphone:

Brüel & Kjær Type 4950

No: 2652929

Preamplifier: Supplied Calibrator: Brüel & Kjær Type ZC-0032 Brüel & Kjær Type 4231 No: 23415 No: 3006120

Software version:

BZ7130 Version 2.4

Pattern Approval:

PTB1.63-4061063

Instruction manual:

WERE CONTRACTOR

CUSTOMER

Southern Scientific Services Ltd

Dunrine . Killarney Kerry, Ireland

BE1853-11

CALIBRATION CONDITIONS

Preconditioning:

4 hours at 23°C = 3°C

Environment conditions:

See actual values in Environmental conditions sections.

SPECIFICATIONS

The Sound Level Meter Britel & Kjær Type 2250 Light has been calibrated in accordance with the requirements as specified in IEC61672-1:2002 class 1. Procedures from IEC 61672-3:2006 were used to perform the periodic tests. The accreditation assures the traceability to the international units system SL.

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System 3630 with application software type 7763 (version 5.1 - DB: 5.10) by using procedure B&K proc 2250-L-4950 (IEC61672).

RESULTS

Calibration Mode: Calibration after repair/adjustment.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-11-16

Date of issue: 2015-11-16

Lene Petersen

Calibration Technician

Jonas Johannessen Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.

The Californion Laboratory Skodsborgcej 307, OK-2850 Natrum, Denmark

CERTIFICATE OF CALIBRATION

No: CDK1508125

No: 3006120 ld: -

Page 1 of 4

CALIBRATION OF

Calibrator:

Brüel & Kjær Type 4231

5 Inch adaptor:

Brilel & Kjær Type UC-0210

Pattern Approval:

PTB-1.61-4057176

CUSTOMER

Southern Scientific Services Ltd

Dunnine Kerry, Ireland

CALIBRATION CONDITIONS

Preconditioning:

4 hours at 23°C ± 3°C

Environment conditions: Pressure: 100.57 kPa. Humidity: 44 % RH. Temperature: 22.8 °C.

SPECIFICATIONS

The Calibrator Brüel & Kjær Type 4231 has been calibrated in accordance with the requirements as specified in IEC60942:2003 Annex B Class 1. The accreditation assures the traceability to the international units system SL

PROCEDURE

The measurements have been performed with the assistance of Brüel & Kjær acoustic calibrator calibration application software Type 7794 (version 2.5) by using procedure P 4231 D07.

RESULTS

Calibration Mode: Calibration after repair/adjustment.

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k=2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of calibration: 2015-11-09

Date of issue: 2015-11-09

Susanne Nygaard

wanne o Pygganel

Calibration Technician

Susanne Jorgensen

Approved Signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission

Appendix G: Landfill Gas Survey 2016

A survey of landfill sites to determine the quantity of methane flared and or recovered in utilisation plants for 2016

Please choose from the drop down menu the license number for your site		W0004	▼	
Please choose from the drop down menu the name of the landfill site		North Kerry		~
Please enter the number of flares operational at your site in 2016		1	•	
Please enter the number of engines operational at your site in 2016		1	▼	
Total metha	ine flared	14	19,258 kg/year	
Total met	thane utilised in engines	41	L6,382 kg/year	

Please note that the closing date for reciept of completed surveys is 31/03/2017

Introduction

The Office of Environmental Sustainability (OES) of the Environmental Protection Agency acts as the inventory agency in Ireland with responsibility for compiling and reporting national greenhouse gas inventories to the European Commission and the United Nations Framework Convention on Climate Change. In addition to meeting international commitments Ireland's national greenhouse gas inventory informs national agencies and Government departments as they face the challenge to curb emissions and meet Ireland's emission reduction targets under the Effort Sharing Decision (No. 406/2009/EC). The national inventory also informs data suppliers, making them aware of the importance of their contributions to the inventory process and a means of identifying areas where input data may be improved.

It is on this basis that the Environmental Protection Agency is asking landfill operators to partake in this survey so that the most uptodate information on methane flaring and recovery in utilisation plants at landfills sites is used in calculating the contribution of the landfill sector to national greenhouse gas emissions

The Environmental Protection Agency wishes to thank you for partaking in this survey. If you have any questions about the survey and how to complete it please view the "Help sheet" worksheet. If however, your query is not answered by viewing the "Help sheet" worksheet please contact:

LFGProject@epa.ie

Once completed please send the completed file as an attachment clearly stating the name and or license number of the landfill site (e.g. W000 Xanadu landfill_2015) to: LFGProject@epa.ie

to be filled in by licensee	calculated by spreadsheet
-----------------------------	---------------------------

Please note: Only fill the "Yearly" table if data is not availabe or cannot be calculated nor estimated on a monthly basis

							Average Inlet							
Yearly	Method	Runtime	Runtime	Downtime	Total runtime	Average Inlet	Temp	Average Flow	Average CH ₄	Average CO ₂	Average O ₂	Combustion	Total CH ₄	Total CH ₄
	M/C/E	days/year	hrs/day	hrs	hrs/year	Pressure (mbg)	∘ C	Rate m ³ /hr	%v/v	%v/v	%v/v	efficiency (%)	m^3	kgs
2016					0		10					98.0	0	0

to be filled in by licensee	calculated by spreadsheet	

Engine No. 1														
	Engine type	⊋?				Other	▼			J	enbacher J208 (GS		
	Month /yea	r comissioned ?				November	▼	2011	▼					
	Month deco	omissioned if dec	comissione	d in 2016 ?		Select	▼							
						Average Inlet								
Monthly	Method	Runtime	Runtime	Downtime	Total runtime	Average Inlet	Temp	Average Flow	Average CH ₄	Average CO ₂	Average O ₂	Combustion	Total CH ₄	Total CH ₄
	M/C/E	days/month	hrs/day	hrs	hrs/month	Pressure (mbg)	。 C	Rate (m ³ /hr)	%v/v	%v/v	%v/v	efficiency (%)	m ³	kgs
January	M	31	24	52	692	-30	10	160	45.30	31.30	2.20	98.0	49,153	32,933
February	M	29	24	13	683	-30	10	210	38.00	26.00	1.20	98.0	53,413	35,787
March	M	31	24	5	739	-30	10	200	36.00	24.00	1.80	98.0	52,144	34,937
April	M	30	24	36	685	-30	10	165	46.00	31.00	1.40	98.0	50,914	34,113
May	M	31	24	47	697	-30	10	150	48.00	33.00	1.20	98.0	49,180	32,951
June	M	30	24	2	719	-20	10	165	45.00	30.00	2.50	98.0	52,282	35,385
July	M	31	24	5	739	-22	10	150	44.10	29.10	1.50	98.0	47,907	32,359
August	M	31	24	16	728	-24	10	145	48.00	31.00	1.00	98.0	49,655	33,472
September	M	31	24	8	736	-22	10	150	47.00	31.00	1.40	98.0	50,850	34,347
October	M	31	24	4	740	-26	10	165	45.40	29.60	1.50	98.0	54,325	36,546
November	M	30	24	23	697	-31	10	185	41.70	27.30	1.80	98.0	52,695	35,270
December	М	31	24	14	730	-42	10	210	38.50	26.00	2.20	98.0	57,840	38,280
Total					8,584								620,359	416,382

Please note: Only fill the "Yearly" table if data is not availabe or cannot be calculated nor estimated on a monthly basis

ı								Average Inlet							
h	Yearly	Method	Runtime	Runtime	Downtime	Total runtime	Average Inlet	Temp	Average Flow	Average CH ₄	Average CO ₂	Average O ₂	Combustion	Total CH₄	Total CH ₄
ı		M/C/E	days/year	hrs/day	hrs	hrs/year	Pressure (mbg)	。 C	Rate m ³ /hr	%v/v	%v/v	%v/v	efficiency (%)	m^3	kgs
	2016					0	Select	10					98.0	0	0

Appendix H: PRTR Report 2016

| PRTR# : W0001 | Facility Name : North Kerry Landfill Site | Filename : w0001_2016.xlsx | Return Year : 2016 |

Guidance to completing the PRTR workbook

PRTR Returns Workbook

•	
. FACILITY IDENTIFICATION	
Parent Company Name	Kerry County Council
Facility Name	North Kerry Landfill Site

PRTR Identification Number W0001

REFERENCE YEAR 2016

Licence Number W0001-04

Classes of Activity No. class_name - Refer to PRTR class activities below

Address 1	Muingnaminnane
Address 2	Tralee
Address 3	
Address 4	
	Kerry
Country	
Coordinates of Location	
River Basin District	
NACE Code	
	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	
AER Returns Contact Email Address	
AER Returns Contact Position	
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number	
Production Volume	
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	
Number of Employees	
User Feedback/Comments	Methane Emission Point was in m3 rather than kg/year in 2015.
	Correction made in 2016. Leachate reducing slightly due to capping
	remediation works year on year.
Mala Address	
Web Address	

2. PRTR CLASS ACTIVITIES

	Activity Name						
5(d)	Landfills						
	nstallations for the disposal of non-hazardous waste						
	General						
3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)							
Is it applicable?							

Have you been granted an exemption ? If applicable which activity class applies (as per Schedule 2 of the regulations) ?

Is the reduction scheme compliance route being

4. WASTE IMPORTED/ACCEPTED ONTO SITE Guidance on waste imported/accepted onto site

Do you import/accept waste onto your site for onsite treatment (either recovery or disposal activities) ?

This question is only applicable if you are an IPPC or Quarry site

29/03/2017 11:25

29/03/2017 11:25

SECTION A: SECTOR SPECIFIC PRIK POLI	RELEASES TO AIR								
	Please enter all quantities in this section in KGs								
	METHOD				QUANTITY				
				Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					0.0	0.0	0.0	0.0	
	Methane (CH4)	E	ESTIMATE	Calculated	130798.52	130798.52	0.0	0.0	
03	Carbon dioxide (CO2)	E	ESTIMATE	Calculated	1117.0	1117.0	0.0	0.0	
	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button								

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO AIR				Please enter all quantities in this section in KGs							
POLLUTANT				THOD	QUANTITY							
			Method Used									
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year				
					0.0		0.0	0.0				

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES TO AIR	Please enter all quantities in this section in KGs							
	POLLUTANT			QUANTITY					
			Method Used						
Pollutant No.	Name	M/C/E Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
				0.0)	0.0 0.	0.0		

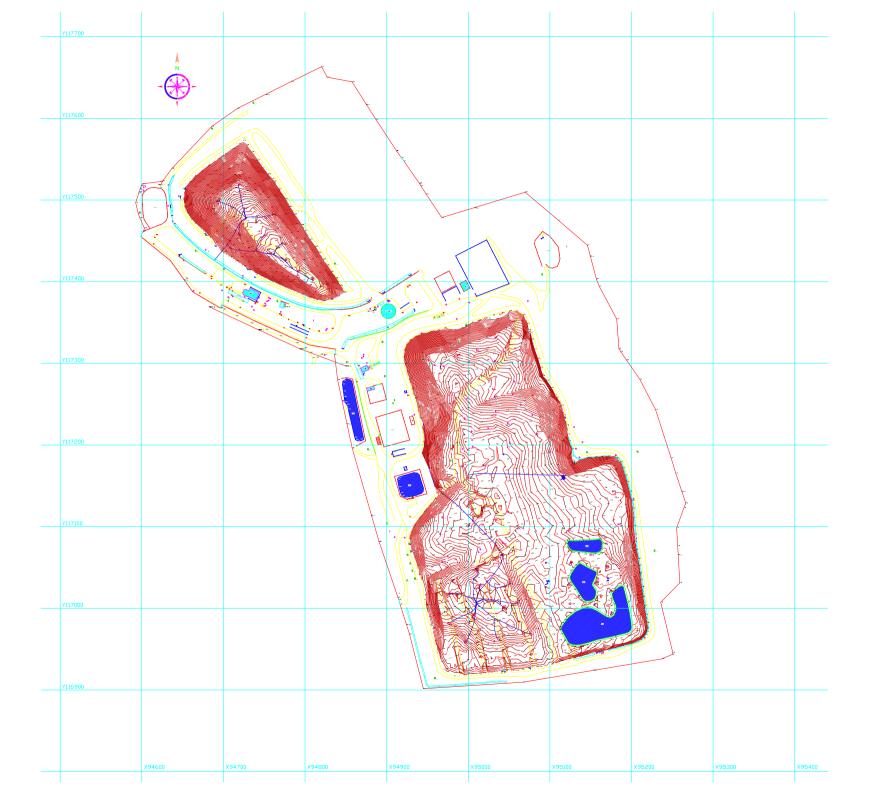
* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Met methane (CH4) emission to the environment under Titotal KGU/ for Section A. Sectors gascelife PRTR politicians above. Please complete the table box.

Landfill:	North Kerry Landfill Site					
Please enter summary data on the quantities of methane flared and / or utilised			Meti	hod Used		_
				Designation or	Facility Total Capacity m3	1
	T (Total) kg/Year	M/C/E	Method Code	Description	per hour	
Total estimated methane generation (as per						Í
site model)	1037632.65	E	oth	Landgem	N/A	
Methane flared			oth	Calculated		(Total Flaring Capacity)
Methane utilised in engine/s	620433.0	M	oth	Calculated	200.0	(Total Utilising Capacity)
Net methane emission (as reported in Section A						Í
above)	195221.65	E	oth	Calculated	N/A	i

3. UNSITE TREATMENT & OFFSITE TRANSFERS OF WASTE	5. ONSITE TREATMENT	& OFFSITE TRANSFERS OF WASTE
--	---------------------	------------------------------


| PRTR# : W0001 | Facility Name : North Kerry Landfill Site | Filename : w0001_2016.xlsx | Return Year : 2016 |

Please enter all quantities on this sheet in Tonnes												
			Quantity (Tonnes per Year)		Waste		Method Used		Haz Waste: Name and Licence/Permit No of Next Destination Facility Haz Waste: Name and Licence/Permit No of Recover/Disposer	Haz Waste : Address of Next Destination Facility Non Haz Waste: Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
	European Waste				Treatment			Location of				
Transfer Destination		Hazardous				M/C/E	Method Used	Treatment				
										Tralee Wastewater		
				Landfill leachate other than those mentioned					Finucane Burke Haulage,WCP-CK-09-0691-	Treatment Plant,The Kerries,Tralee ,Co		
Within the Country	19 07 03	No	39480.86		D8	М	Weighed	Offsite in Ireland		Kerry,Ireland		

^{*} Select a row by double-clicking the Description of Waste then click the delete button

Link to previous years waste data Link to previous years waste summary data & percentage change Link to Waste Guidance 29/03/2017 11:25

Appendix I: Topographical Survey 2016

Appendix J: Side Slope Assessment 2017

SLOPE STABILTY ASSESSMENT FOR NORTH KERRY LANDFILL

KERRY COUNTY COUNCIL

MARCH 2017

SLOPE STABILTY ASSESSMENT FOR NORTH KERRY LANDFILL

<u>User is Responsible for Checking the Revision Status of This Document</u>

Rev. Nr.	Description of Changes	Prepared by:	Checked by:	Approved by:	Date:	
Α	Issue to Client	JD/MG	TC	JN	14.03.2017	

Client: Kerry County Council

Keywords: Slope, Stability, Assessment, Muingnaminnane, Kerry.

Abstract: Kerry County Council retained Fehily Timoney & Company (FT) to carry out a slope

stability assessment of the landfill side slopes at North Kerry Landfill in order to

comply with Condition 8.11.1 of Waste Licence W0001-04 (IED).

P0971 i/ii

TABLE OF CONTENTS

		<u>PAGE</u>
1	INTRODUCTION	1
1. 1.	.1 BACKGROUND	1 1
2	CONDITIONS OF SURVEY	3
3	SLOPE STABILITY OBSERVATIONS	4
3. 3.	.1 CELLS 17, 18 AND 19	4
4	SUMMARY AND CONCLUSIONS	11

LIST OF APPENDICES

Appendix 1: Slope Location Plan

1 INTRODUCTION

1.1 Background

Fehily Timoney and Company (FT) was appointed by Kerry County Council to undertake a slope stability assessment of North Kerry Landfill, Muingnaminnane, Tralee Co. Kerry. FT undertook the previous slope stability assessments for the landfill during March 2016.

This 2017 assessment is in accordance with Condition 8.11.1 of the EPA waste licence issued to the site (Current IED Licence No: W0001-04)

1.2 Site Description

The facility is situated in north County Kerry, approximately 11 km west of the town of Tralee in the townland of Muingnaminnane.

The site was developed as a municipal landfill facility and recycling centre. The site ceased receiving waste for deposition in 2014. Kerry County Council is currently undertaking various works associated with the sites aftercare.

FT completed a site walkover of the site on 8th March 2017 to examine the existing landfill slopes at North Kerry Landfill. All slopes within the site were inspected as part of the visual assessment with written and photographic notes taken. Slopes were inspected on foot generally traversing from toe to crest across the entire length of the slope.

The landfill cap at Cells 1 - 16 is overgrown and vegetated with long grasses, scrubland and rushes with some trees and larger bushes. The topography of the cap at these cells is undulating and difficult to traverse on foot. At capped cells 17, 18 & 19 the slopes were generally lighted vegetated and as such were accessible on foot.

No visibly unstable slopes were observed on the site and no tension cracks were observed in any of the slopes which may have suggested potential instability. Some ponding was noted over cells 1-16 (Photos 5 and 6), particularly in the west of the capped area. Evidence of historical ground movement as highlighted in the previous FT Slope Stability Assessment, March 2016 (Photos 36 - 38) was noted with no evidence of recent movement observed.

1.3 Previous Slope Stability Assessments

FT undertook the previous slope stability assessments for the landfill during March 2016. The reported issues noted during the visual assessment undertaken in March 2016 are outlined below:

- 1. Waterlogged area of cap adjacent constructed wetland at southeast corner of Cells 1 to 16 (eastern slope);
- 2. Apparent ground movement on the western slope adjacent to haul road on cap; and
- 3. Some minor issues were noted such as areas of bare vegetation which may result in erosion or waterlogging of slopes.

1.4 Site Walkover

FT completed a site walkover of the site on the 8th March 2017. All slopes within the site were inspected as part of the visual assessment with written and photographic notes taken. Slopes were inspected on foot generally traversing from toe to crest across the entire length of the slope.

P0971 Page 1 of 11

All slopes were assessed for signs of instability or identification of potential factors which may impact the future stability of the landfill slopes.

A Site Layout Plan is included in Appendix 1 to this document.

P0971 Page 2 of 11

2 CONDITIONS OF SURVEY

The condition survey completed was limited to a visual inspection of the exposed elements of the landfill slopes only and limited to readily accessible areas. The purpose of the condition survey was to assess and advise of issues relating to the stability of the landfill slopes as required by Waste License W0001-04 (IED).

No intrusive investigations or prolonged monitoring of defective areas were carried out. FT did not undertake any work of a specific engineering nature such as engineering calculations, structural analyses, testing or measurements. This report reflects FT's interpretation of the site condition from visual inspections only. Recommendations in this report define where more detailed investigations maybe appropriate.

While issues relating to public safety and issues relevant for the safe use of the site may be raised in this report they should not be taken as an exhaustive list of all operational issues. A review of site operations is beyond the scope of this report.

This report is not a certification, a warranty or a guarantee and was scoped in accordance with the instructions given and the time allowed.

This report may not be relied upon by a third party for any purpose without the written consent of Fehily Timoney and Company. Furthermore, this report has been prepared and issued for the purposes of the addressee and no responsibility will be extended to any third party for the whole or any part of its contents.

P0971 Page 3 of

3 SLOPE STABILITY OBSERVATIONS

3.1 CELLS 17, 18 and 19

Cells 17, 18 and 19 are shown in the Appendix 1: Site Layout Plan. These cells are the most recently filled cells to be completed and capped.

The main slopes were observed to be vegetated by grass, slopes at the north of the cells were sparsely vegetated although grass coverage is developing.

No indications of translational or rotational instabilities were observed. In FT's opinion the slopes are stable.

Photo 1 - Cells 17, 18 & 19

Photo 2 - Southwest Slope

Photo 3 - Southwest Slope

Photo 4 – Southwest Slope

Photo 5 - Northwest Slope

Photo 6 - Northwest Slope

P0971 Page 4 of 11

Photo 7 - Northwest Slope

Photo 8 - Northeast Slope

Photo 9 - Northeast Slope

Photo 10 - Northeast Slope

Photo 11 - Northeast Slope

Photo 12 - Northeast Slope

Photo 13 - Southeast Slope

Photo 14 – Southeast Slope

P0971 Page 5 of 11

Photo 16 - Ridge along Cell 17

P0971 Page 6 of 11

3.2 CELLS 1 to 16

Cells 1 to 16, the oldest in the landfill, are shown in Appendix A: Site Layout Plan. All cells in this area have been capped. The slopes to cells 1 to 16 vary in steepness from 1:1 to 1:10 approximately. The slopes are vegetated with scrubland, rushes and some small trees and bushes.

Whilst the slopes are considered to be generally stable. There are areas where remedial works may be required at the following locations described below:

- Waterlogging of cap across cells 1 -16 is evident in Photos No 33 to 35 inclusive. FT advises that surface water is being contained in a localised depressions in the ground across the landfill cap across cells particularly in the vicinity of Cells 2 & 6 and Cells 4 and 9 at the central and western portions of the landfill.
- The capping surface is generally undulating (Photos 21 23 and Photos 33 34) with localised depressions were noted across the capping in Cells 1 16 and may have been caused by settlement following waste degradation or additional surcharge loading caused by the waterlogging of the capping material; and
- The capping at Cells 1 16 was observed to be heavily vegetated with trees having being established
 at the northern slopes of the cells (Photos 17 18) with the remainder of the capping covered by
 grasses and rushes.
- Evidence of historical ground movement was noted at the western slopes at Cells 4 & 9 (Photos 36 38) as noted in the previous FT Slope Stability Assessment (March 2016). No evidence of recent movement was noted during the site walkover

Photo 17: Northern slope

Photo 18: Northern slope

Photo 19: Northern Slope

Photo 20: Western Slope

P0971 Page 7 of 11

Photo 21: Western Slope

Photo 22: Western Slope

Photo 23: Western Slope

Photo 24: Southern Slope

Photo 25: Southern Slope

Photo 26: Former ICW

Photo 27: Former ICW

Photo 28: Former ICW

P0971 Page 8 of 11

Photo 29: Eastern Slope

Photo 30: Eastern Slope

Photo 31: Eastern Slope

Photo 32: North-eastern Slope

Photo 33: Eastern Slope

Photo 34: Eastern Slope

Photo 35: Eastern Slope

Photo 36: Historical ground movement

P0971 Page 9 of 11

Photo 38: Historical ground movement

P0971 Page 10 of 11

4 SUMMARY AND CONCLUSIONS

FT completed a site walkover and visual slope stability assessment of North Kerry Landfill on the 8th March 2017. All slopes were walked in a toe to crest survey, photographed and examined for indications of instability.

The results of this visual assessment indicate that the landfill body main slopes are considered to be stable, with the exception of the issues outlined below. However, the accuracy of the visual assessment was restricted by the abundance of overgrown vegetation on the landfill cap. Therefore, FT cannot be sure that other areas of the landfill slopes are free from defects.

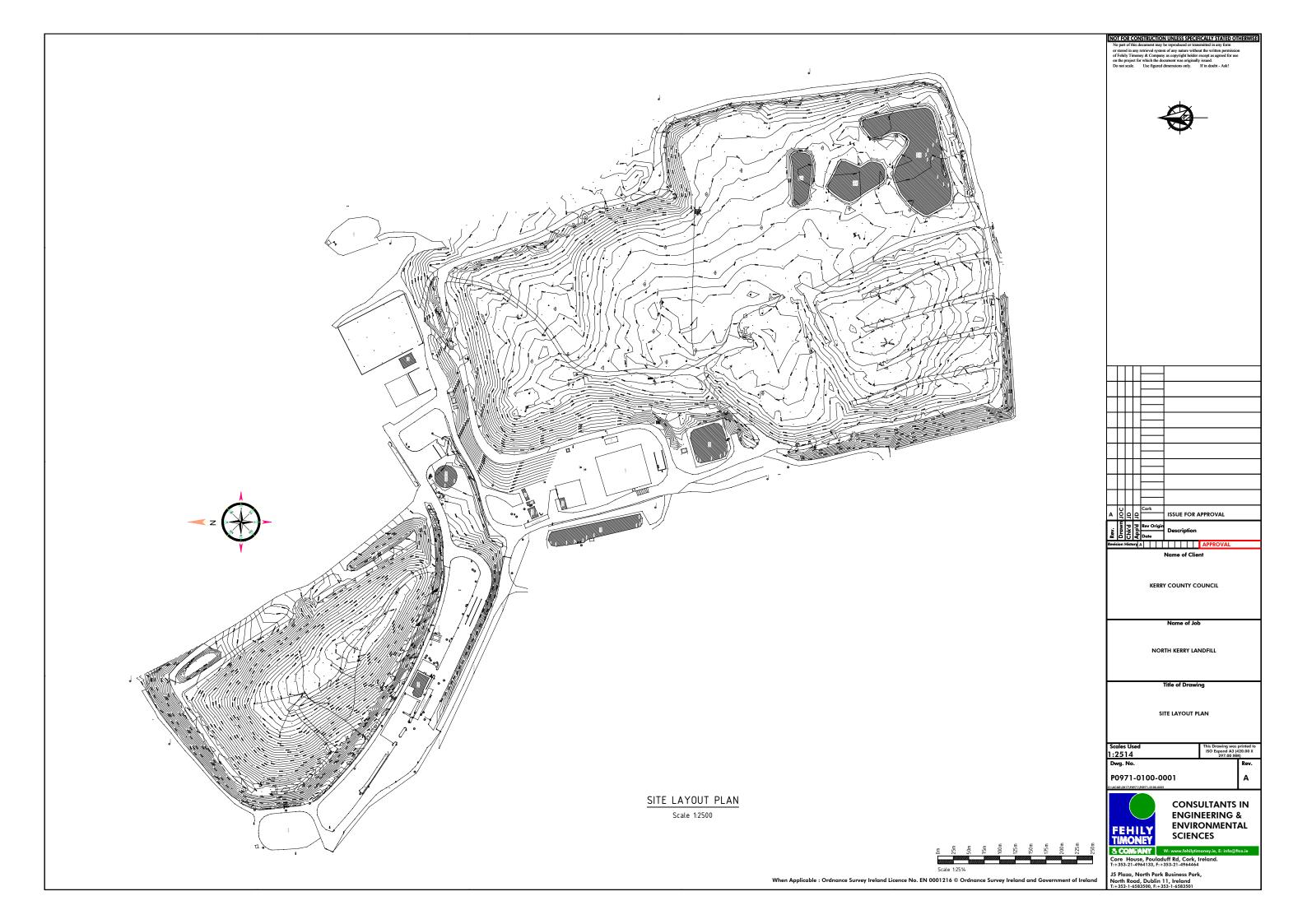
FT recommends actions as follows at locations listed below:

- 1. Vegetation growth on slopes be cut back and maintained such that more effective visual inspections can be completed on the landfill slopes for future annual inspections as required by the conditions attached to IED Licence No. W0001-04.
- 2. Re-profiling and installation of drainage within the landfill cap across Cells 1 to 16 to shed runoff, improve trafficability and reduce surcharge loading. The localised depressions noted across the capping may have been caused by settlement following waste degradation or additional surcharge loading caused by the waterlogging of the capping material.
 - Where areas are noticeably waterlogged waste below the liner may also be saturated in the event that the cap liner has been compromised. If materials above the cap liner remain saturated there is an increased risk of a translational failures. If the waste is saturated there is an increased risk of a rotational failure within the waste body as any tension cracks that develop become water filled allowing water ingress deeper into the slope.
- 3. The ground movements noted at the western slopes of Cell 4 appear to have occurred at some time in the past or over a prolonged period given the extent of vegetation growth in the area and absence of tension cracks, shear planes or similar. The movement may also be in equilibrium at this point.

FT reviewed the ground profile in 2016 from two separate topographical surveys completed by Kerry County Council in 2012 and 2015. Both show similar ground contours for the landfill slope in this area. It is also noted that this area has a steeper gradient than other adjacent landfill slopes which may contribute to ground movement. FT notes that we do not have any As-Built information on the type of capping material or the type of geomembrane used in the cap construction at the time of writing of this report.

It is recommended that:

- ground movements as may be present at this location are investigated and monitored using topographic surveys (xyz) of fixed point (peg delineated) locations perpendicular to the shear plane along the slope at intervals not exceeding 10.0m and removed from the slope at top and bottom for a distance not less than 20m. The survey should be carried out quarterly for a time interval not less than 12 months with a view to establishing whether translational or rotational failures are evident.
- Trial pits are excavated and or as-built records reviewed to determine whether geogrids are in place
- If no geogrids are present, a translational stability assessment be carried out to determine if the slopes are theoretically stable.
- Surcharge loading from machinery be avoided on these slopes and vegetation management as may be required to facilitate visual inspections and surveying should be carried out using a strimmer or similar.


From a Health & Safety perspective, the undulating nature of the cap profile and hidden hazards such as gas well enclosures below ground level, hidden by vegetation and without protective covers are a concern and should be addressed by the Licensee at the earliest possible opportunity.

P0971 Page 11 of 11

APPENDIX 1

Site Location Plan

