Appendix 18

Trial Pit Logs

Consent of copyright owner required for any other use.

FTC Trial Pit Log

	Millennium		Thornton's
Site	Park	Client	Waste
		Job	DE07-046-
Supervisor	DF/DD	Number	02
Trial Pit			_
Number	TP 1	Date	13/09/2007
Trial Pit			
Location	10342: 40796		

Trial Pit Details

		Ze.	
Depth (m)	Geology	Description	Comments
0.0 – 0.6	Topsoil	Uncompact brown Loam CLAY	
0.6 – 1.4	Silt	Firm sandy SILT with gravel	
1.4 – 3.0	Clay	gravelly CLAY with some	
3.0 – 3.7	Clay Consent of C	Stiff gravelly CLAY with cobbles and some weathered boulders (grey/ black limestone)	

Depth to Not encountered Not Rock type encountered Not Water entry encountered Total depth 3.7 m bgl

Notes/

Comments No odour or visible contamination

FTC Trial Pit Log

	Millennium		Thornton's
Site	Park	Client	Waste
		Job	DE07-046-
Supervisor	DD	Number	02
Trial Pit			
Number	TP 2	Date	13/09/2007
Trial Pit			
Location	10401: 40683		

Trial Pit Details

Depth (m)	Geology	Description so	Comments
0.0 – 0.3	Topsoil	Uncompact of own loam CLAY	
0.3 – 0.8	Clay	Soft to firm sandy SILT/CLAY layer with gravel	Strong red colour/ staining
0.8 – 1.2	Clay Consent of Co	Firm CLAY with (rounded) gravel	Č
1.2 – 3.4	Clay	Firm gravelly CLAY (rounded gravel) and larger cobbles and boulders (increasing with depth) (grey/ black limestone)	Almost 50/50 gravel/ clay at depth

Depth to	Not
Rock	encountered
	Not
Rock type	encountered
	Not
Water entry	encountered
Total depth	3.4 m bgl
Notes/ Comments	No odour or visible contamination. Evidence of mottling down to 0.8 m. Trial pit left opened for one hour and no water entered.

FTC Trial Pit Log

Millennium Thornton's Site Park Client Waste Job DE07-046-Supervisor DD Number 02 **Trial Pit** Number TP 3 13/09/2007 Date Trial Pit Location 10376: 40745

Trial Pit Details

Depth (m)	Geology	Description St. 200	Comments
0.0 – 0.45	Topsoil	Uncompact brown loam CLAY topsoil	
0.45 – 1.8	Clay çर्ज	Firm CLAY/ gravely CLAY with cobbles (increasing from 1 m onwards)	
1.8 – 2.7	Clay consent of co	Stiff gravely CLAY with larger cobbles and boulders (increasing with depth) (grey/ black limestone)	

Depth to Not encountered Not Rock type encountered Not water entry encountered 2.7 m bgl

Notes/

Comments No odour or visible contamination. Evidence of mottling at 0.8 m.

Soil Analysis Report

Soil Analysis Report

Consent Fortneyer Report Rep

18a Rosemount Business Park, Ballycoolin, Dublin 11

Ireland Tel: +353 (0) 1 8829893 Fax: +353 (0) 1 8829895

CERTIFICATE OF ANALYSIS

Client: Fehily Timoney & Company (Dublin)

> Floor 2 Mill House Ashtowngate Navan Road Dublin 15

Attention: Declan Duff

Date: 9 October, 2007

Our Reference: 07-B06606/01

Your Reference: DE07 - 46

Location:

Pection thirtoses outly in other use. A total of 9 samples was received for analysis on Friday, 21 September 2007 and authorised on Tuesday, 9 October 2007. Accredited laboratory tests are defined in the log sheet, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17925 accreditation. We are pleased to enclose our final report, it was a pleasure to be of service to you, and we look forward to our continuing association.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Signed

Lorenine Nr Nomero

Lorraine McNamara

Laboratory Technical Manager

Compiled By

Paul Barry

Printed at 12:41 on 22/10/2007

ALcontrol Geochem Ireland is a trading division of ALcontrol UK Limited.

Registered Office: Templebarough House, Mill Close, Rotherham, S60 1BZ. Registered in England and Wales No. 4057291

Paint Bury

ALcontrol Laboratories Ireland

Test Schedule

Ref Number: 07-B06606/01

Sample Type: SOIL

Client: Fehily Timoney & Company (Dublin)

Location:

Date of Receipt: 21/09/2007

Client Contact: Declan Duff

Client Ref: DE07 - 46

	Detect	ion Method		GRAVIMETRIC	GRAVIMETRIC	HPLC	ICP	ICP	ICP OES	KONE	LECO	METER	SPECTRO		
UKAS Accre	dited [Testing Lal	oratory] N	o. 1291			✓		✓	√		✓	✓	✓		
ALcontrol Reference	Sample Identity	Other ID	P/V	Natural Moisture Content	Solvent Extractable Matter	Total Phenols by HPLC	Total Sulphate (Acid Soluble)**	Metals (9) High	Water Soluble Boron	Acid Soluble Sulphide	Total Sulphur**	pH (Solid)	Total Cyanide		
07-B06606-S0006-A01	TP 1 0.4M	UNKNOWN	Amber Jar	Х	Х	Х	X	00:3X	Х	Х	Х	Х	X		
07-B06606-S0007-A01	TP 1 0.6M	UNKNOWN	Amber Jar	X	X	Х	X Qu	Soy, X	X	Х	X	X	X		
07-B06606-S0008-A01	TP 1 3.5M	UNKNOWN	Amber Jar	X	X	Х	Pect When	X	X	X	X	X	X		
07-B06606-S0009-A01	TP 2 0.5M	UNKNOWN	Amber Jar	X	Х	Х	Dec. XALL	X	X	X	X	X	Х		
07-B06606-S0010-A01	TP 2 0.6M	UNKNOWN	Amber Jar	X	Х		MX		Х	X	X	X	X		
07-B06606-S0011-A01	TP 2 0.8M	UNKNOWN	Amber Jar	X	X	Xot	X W	X	X	X	X	X	X		
07-B06606-S0012-A01	TP 2 3.4M	UNKNOWN	Plastic tub	-	-	- * 08	X	Х	X	X	X	Х	X		
07-B06606-S0012-A09	TP 2 3.4M	UNKNOWN	Amber Jar	X	Χ	N.	-	-	-	-	-	-	-		
07-B06606-S0013-A01	TP 3 1.0M	UNKNOWN	Amber Jar	X	X	e Til X	X	Х	X	Х	X	X	X		
07-B06606-S0014-A01	TP 3 2.5M	UNKNOWN	Amber Jar	Х	X	X	Х	X	X	Х	X	X	X		

Notes: NUMERIC VALUES INDICATE ADDITIONAL SCHEDULING

ALcontrol Laboratories Ireland

Test Schedule Summary

Ref Number: 07-B06606/01

Sample Type: SOIL

Client: Fehily Timoney & Company (Dublin)

Location:

Date of Receipt: 21/09/2007

Client Contact: Declan Duff

Client Ref: DE07 - 46

* SUBCONTRACTED TO OTHER LABORATORY / ** SAMPLES ANALYSED AT THE CHESTER LABORATORY

SCHEDULE	METHOD	TEST NAME	TOTAL
x x x x x x x	GRAVIMETRIC GRAVIMETRIC HPLC ICP ICP ICP OES KONE LECO METER SPECTRO	Natural Moisture Content Solvent Extractable Matter Total Phenols by HPLC Total Sulphate (Acid Soluble)** Metals (9) Water Soluble Boron Acid Soluble Sulphide Total Sulphur** pH (Solid) Total Cyanide	9 9 9 9 9 9 9
		pH (Solid) Total Cyanide Total Cyanide Consent of copyright conner required for any other use.	

Interim

ALcontrol Laboratories Ireland

✓ Validated

Table Of Results

Ref Number: 07-B06606/01

Sample Type: SOIL

Client: Fehily Timoney & Company (Dublin)

Location:

Date of Receipt: 21/09/2007

Client Contact: Declan Duff

(of first sample)

Client Ref: DE07 - 46

1	Detection Method GRAVIMETRIC GRAVIMETRIC HPLC TCP TCP TCP TCP TCP TCP TCP TCP TCP TC																	
					GRAVIMETRIC	HPLC	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP OES	KONE
	Method Detection Limit UKAS Accredited [Testing Laboratory] No. 129			<0.1%	<10mg/kg		<100mg/kg	<1mg/kg	<1mg/kg	<1mg/kg	<1mg/kg	<1mg/kg	<1mg/kg	<1mg/kg	<1mg/kg	<1mg/kg	<1mg/kg	<5mg/kg
UKAS Accredite	ed [Testing La	aborator	y] No. 1291			✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
ALcontrol Reference	Sample Identity		Other ID	Natural Molsture Content	Solvent Extractable Matter	Total Phenois	Total Sulphate**	Arsenic	Cadmium So	of all militer	Copper	Lead	Mercury	Nickel	Selenium	Zinc	Water Soluble Boron	Acid Soluble Sulphide
				%	mg/kg	mg/kg	mg/kg	mg/kg 🗸	vimg∕kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
07-B06606-S0006		.4M	UNKNOWN	17.3	<10	0.02	490	<1,01	<u>3</u> 2	18	31	48	<1	46	<1	139	<1	10
07-B06606-S0007		.6M	UNKNOWN	22.5	10	0.01	620	SOL M	2	27	64	120	<1	45	<1	160	1	<5
07-B06606-S0008		.5M	UNKNOWN	12.6	<10	0.07	270	High of	<1	18	23	22	<1	52	<1	128	<1	36
07-B06606-S0009		.5M	UNKNOWN	21.5	10	0.06	350	1 10 8 i	3	25	39	53	<1	55	<1	155	<1	<5
07-B06606-S0010		.6M	UNKNOWN	22.7	<10	0.09	280	ुर ⁷ <1	3	27	32	51	<1	53	<1	156	<1	<5
07-B06606-S0011		.8M	UNKNOWN	22.2	<10	0.09	220 🔊	<1	3	34	48	39	<1	69	<1	163	<1	<5
07-B06606-S0012		.4M	UNKNOWN	8.7	18	0.03	770	<1	2	14	22	53	<1	40	<1	159	<1	15
07-B06606-S0013		.0M	UNKNOWN	12.0	<10	0.06	310	<1	3	18	35	22	<1	47	<1	90	<1	<5
07-B06606-S0014	TP 3 2.	.5M	UNKNOWN	7.8	<10	0.03	510	<1	2	12	21	15	<1	34	<1	87	<1	20
No.	METHOD DETE	CTION LT	MITC ADE NO	TALWAYC	A CLUTTO (A DI	E DUE TO	VA DIOUS	CTD CI II ICT	******							NATION DO		

Notes: METHOD DETECTION LIMITS ARE NOT ALWAYS ACHIEVABLE DUE TO VARIOUS CIRCUMSTANCES BEYOND OUR CONTROL.

NDP = NO DETERMINATION POSSIBLE

Checked By:

Paul Barry

Interim

ALcontrol Laboratories Ireland

✓ Validated

Table Of Results

Ref Number: 07-B06606/01

Client: Fehily Timoney & Company (Dublin)

Date of Receipt: 21/09/2007

(of first sample)

Sample Type: SOIL

Location:

Client Contact: Declan Duff

Client Ref: DE07 - 46

	Detectio	n Method	LECO	METER	SPECTRO								1			
	Method De	tection Limit	<0.01%	napH Units	<2.5mg/kg											
UKAS Accredite	d [Testing Labo	ratory] No. 1291		/	√											
ALcontrol Reference	Sample Identity	Other ID	Total Sulphur**	PH	Total Cyanide			~O*. *C*	stany other i	è.						
			%	pH Units	mg/kg		Q	114 111							Ì	
07-B06606-S0006	TP 1 0.4M		0.05	8.21	<2.5		nspection dightown	25								
07-B06606-S0007	TP 1 0.6M		0.03	8.15	<2.5		Secr. Al									
07-B06606-S0008	TP 1 3.5M		0.03	8.41	<2.5		15 ht									
07-B06606-S0009	TP 2 0.5M		0.02	8.28	<2.5	çot	1100									
07-B06606-S0010	TP 2 0.6M		0.01	8.10	<2.5											
07-B06606-S0011	TP 2 0.8M		0.01	8.37	<2.5	\$ 9										
07-B06606-S0012	TP 2 3.4M	UNKNOWN	0.06	8.42	<2.5	atil										
07-B06606-S0013	TP 3 1.0M		0.03	8.40	<2.5	ousett of co										
07-B06606-S0014	TP 3 2.5M	UNKNOWN	0.07	8.45	<2.5											
							1							 		
														-		
									-	-	 		-			
									-		 -			<u> </u>		
			-		-						 <u> </u>			-		-
1											 -			-		
		TON LIMITE ARE NO		1					l		 L	DIDD N		1		1

Notes: METHOD DETECTION LIMITS ARE NOT ALWAYS ACHIEVABLE DUE TO VARIOUS CIRCUMSTANCES BEYOND OUR CONTROL.

NDP = NO DETERMINATION POSSIBLE

Checked By: Paul Barry

ARPENDIX

Consent of cooperate to unterstand the cooperate

APPENDIX

- Results are expressed as mg/kg dry weight (dried at 30°C) on all soil analyses except for the following: NRA Leach tests, flash point, and ammoniacal N₂ by the BRE method, VOC, PRO, Cyanide, Acid Soluble Sulphide, SVOC, DRO, PAH, PCB, TPH CWG, TPH by IR, OFGs and SEM.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. A sub sample of all samples received will be retained free of charge for one month for soils and one month for waters (sample size permitting), but may then be discarded unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, an asbestos screen is done in-house on soils and if no fibres are found will be reported as NFD no fibres detected. If fibres are detected, then identification and quantification is carried out by ALcontrol Technichem or Alcontrol Shutlers in the UKO. If a sample is suspected of containing asbestos, then drying and crushing will be suspended on that sample until the asbestos results are known. If asbestos is present, then no analysis requiring dry sample are undertaken.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace is present in the volatile sample.
- 8. NDP No Determination Possible due to insufficient/unsuitable sample.
- 9. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 10. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

Last updated February 2005

Chain of Custody No: 52890 **GEOTRACE - ANALYSIS REQUEST FORM AND SAMPLE CUSTODY SHEET** Client: FTC Address: FLOOR 2 PSJ7D JN 9A7 Date of Despatched: Sheet ... MAL HOUSE NAVAN RDIDG Sampler: **ALcontrol Laboratories** Email schedule to: Email results to: Report Format Unit 18a, Rosemount Business Park, Project/Site Name: /DEOF- 0 Ballycoolin, Dublin 11 Standard.. Email: e-mail: Ireland.schedulers@alcontrol.ie Contact Name: (LAN) Project Code: Tel: 01 8829893 Fax: 01 8829895 **ALcontrol Quote Number:** Job Continuation - yes / no (S)oll or (W)ater (specify If other Suite Name/Analysis Required Turnaround - please tick Sample Concentration Low, Medium or High (L, M, H) Time Dependant Sample Preservation Y/N 10 day t/a __/_ Please Tick Box Sampling: 5 day t/a Depth in metres 3 day t/a _____ **BOD** 1 day t/a ____ Date of date results required by: **MICRO** Comments + 9283 Special Instructions: P.O. Number 10 10 10 1 Invoice address if different from above: (Please include any know or suspected hazardous in the samples for analysis) Date Received: Signature: full an ALcontrol Job No.

Groundwater Analysis Report

Consent Fort Heart Report Report Fort Heart Report Report

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

Fehily Timoney 3rd Floor North Park Offices North Park Business Park North Road Dublin Dublin 11

Attention: Barry Donovan

CERTIFICATE OF ANALYSIS

 Date:
 13 June 2016

 Customer:
 D_FTIM_DUB

 Sample Delivery Group (SDG):
 160603-119

Your Reference: LW15-046-02 Thorntons
Location: Thorntons Millenium Park

Report No: 364675

We received 2 samples on Friday June 03, 2016 and 2 of these samples were scheduled for analysis which was completed on Monday June 13, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the score of ISO 17025 accreditation.

Should this report require incorporation into client reports it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan
Operations Manager

Validated

 SDG:
 160603-119

 Job:
 D_FTIM_DUB-253

 Client Reference:
 LW15-046-02 Thorntons

Location: Customer: Attention: Thorntons Millenium Park Fehily Timoney Barry Donovan Order Number: Report Number: Superseded Report: Z0275 364675

Received Sample Overview

13536878 GW05 0.00 - 0.00 02/06/2016 13536890 GW06 0.00 - 0.00 02/06/2016	Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
13536890 GW06 0.00 - 0.00 02/06/2016	13536878	GW05		0.00 - 0.00	02/06/2016
	13536890	GW06		0.00 - 0.00	02/06/2016

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

Z0275 SDG: 160603-119 Location: Thorntons Millenium Park Order Number: D_FTIM_DUB-253 Fehily Timoney 364675 Job: **Customer:** Report Number: Client Reference: LW15-046-02 Thorntons Attention: Barry Donovan Superseded Report:

Client Reference: LW15-046	i-02 Thorntons	Attention	:	Ва	ırry	Dor	ova	ın			
LIQUID Results Legend X Test	Lab Sample I	No(s)				13536878				13536890	
No Determination Possible	Custome Sample Refe	GWOS							GW06		
	AGS Refere										
	Depth (m	0.00				 					
	Containe	r	1000ml glass bottle	Dissolved Metals Pr	H2SO4 (ALE244)	Vial (ALE297)	<u> </u>	Dissolved Metals Pr	H2SO4 (ALE244)	Vial (ALE297) NaOH (ALE245)	
Alkalinity as CaCO3	All	NDPs: 0 Tests: 2	,	K			,	(N. any other use.
Ammonium Low	All	NDPs: 0 Tests: 2			X				X	ුර	id, and other
Anions by Kone (w)	All	NDPs: 0 Tests: 2	2	K			3	QUI	\$0 00	ine	
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 2	2	K C	¥ 10°	300 300 300 300 300 300 300 300 300 300	CON S	C.			
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 2	- Q	o C	OR		2	(
Dissolved Oxygen by Probe	All	NDPs: 0 Tests 2) 	K			2	(
EPH (DRO) (C10-C40) Aqueous (W)	All	NDPs: 0 Tests: 2	X				X				
Fluoride	All	NDPs: 0 Tests: 2	2	K			2	(
GRO by GC-FID (W)	All	NDPs: 0 Tests: 2				X				X	
Metals by iCan OES Dissalved (M)	All	NDPs: 0 Tests: 2		X				X			
Metals by iCap-OES Dissolved (W)	All	NDPs: 0 Tests: 2	2	K			2	(
Metals by iCap-OES Unfiltered (W) Nitrite by Kone (w)	All	NDPs: 0 Tests: 2	2	K			2	(
pH Value	All	NDPs: 0 Tests: 2				X				X	
	All	NDPs: 0	2	K			2	(
Total EPH (aq)	All	NDPs: 0 Tests: 2	X				X				

160603-119

D_FTIM_DUB-253

SDG:

Job:

CERTIFICATE OF ANALYSIS

Thorntons Millenium Park

Fehily Timoney

Validated

Z0275

364675

Order Number:

Report Number:

Superseded Report:

Client Reference: LW15-046-02 Thorntons Attention: Barry Donovan **LIQUID** 13536878 13536890 **Results Legend** Lab Sample No(s) X Test No Determination Possible Customer GW05 GW06 Sample Reference **AGS Reference** 0.00 - 0.00 0.00 - 0.00 Depth (m) Vial (ALE297)
NaOH (ALE245)
H2SO4 (ALE244)
Dissolved Metals Pr
Tiplastic (ALE221)
1000ml glass bottle
Vial (ALE245)
NaOH (ALE245)
H2SO4 (ALE246)
Dissolved Metals Pr
Tiplastic (ALE271)
1000ml glass bottle Container Consent of copyright owner reduced for any other tyse. Total Organic and Inorganic Carbon All NDPs: 0 Tests: 2

Location:

Customer:

13:36:22 13/06/2016

Validated

Z0275 SDG: 160603-119 Location: Thorntons Millenium Park Order Number: D_FTIM_DUB-253 Fehily Timoney Job: **Customer:** Report Number:

364675 Client Reference: LW15-046-02 Thorntons Attention: Barry Donovan Superseded Report:

Results Legend		Customer Sample R	GW05	GW06				
# ISO17025 accredited. M mCERTS accredited.			5.1.00	0				
aq Aqueous / settled sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00				
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Water(GW/SW)	Water(GW/SW)				
* Subcontracted test.		Date Sampled	02/06/2016	02/06/2016				
** % recovery of the surrogate standa check the efficiency of the method.		Sample Time Date Received	. 03/06/2016	03/06/2016				
results of individual compounds wi samples aren't corrected for the re-		SDG Ref	160603-119	160603-119				
(F) Trigger breach confirmed	COVERY	Lab Sample No.(s)	13536878	13536890				
1-5&+§@ Sample deviation (see appendix)	LODUL	AGS Reference						
Component Alkalinity, Total as CaCO3	LOD/Unit		245	335				
Airainity, Total as Cacco	\Z IIIg	71 1101043	Z-13 #		#			
Oxygen, dissolved	<0.3 mg	g/I TM046	7.62	5.64				
Oxygen, dissolved	\0.5 III	g/i 1101046	7.02		#			
Organic Carbon, Total	<2 ma	/I TM090	<3	<3				
Organic Carbon, Total	<3 mg	/1 110090	\ 		#			
Ammonio cal Nitrogon co	~ 0.01	TM099	0.0208	0.0618	#			
Ammoniacal Nitrogen as N (low level)	<0.01 mg/l	110099	U.U2U8 #		#			
Fluoride	<0.5 mg/l	g/l TM104	<0.5	0.59	#			
Fluoride	\0.5 III	g/i 1101104	~ 0.5		#			
Conductivity @ 20 deg.C	<0.005	5 TM120	0.445	0.768	#			
Conductivity @ 20 deg.C	mS/cm		0. 44 5 #		#			
Arsenic (diss.filt)	<0.12 μ		0.639	5.38	#			
Arsenic (diss.iiit)	<0.12 μ	9/1 1101152	0.039 #		#			
Daran (dian filt)	-0.4 w	g/l TM152			#			
Boron (diss.filt)	<9.4 μο	y/ı 11V115∠	10.7 #	25.5	#			
Cadmium (diss.filt)	~0 1 ···	g/l TM152		<0.1	#			
Caumium (diss.iiit)	<0.1 μς	yn IIVII5∠	0.195 #		#			
Chromium (dies filt)	<0.22···	g/I TM450			#	Ø:+		
Chromium (diss.filt)	<0.22 µ	g/l TM152	3.06 #	3.91	#	on a stry other use.		
Conner (dies filt)	<0.0E	~// TM150			#	thei		
Copper (diss.filt)	<0.85 µ	g/l TM152	2.09	1.27	ш	11. A OL		
1 171 510	0.00	# T14450	#		#	July our,		
Lead (diss.filt)	<0.02 µ	g/l TM152	0.279	0.076	دى	offor ar		
A (E 50)	0.04	" T14450	#	105 (8)	#	20		
Manganese (diss.filt)	<0.04 µ	g/l TM152	210	165	20,			
			#	ion tric	#			
Nickel (diss.filt)	<0.15 µ	g/l TM152	2.55	20,0				
			#	105 ATO	#			
Zinc (diss.filt)	<0.41 µ	g/l TM152	179	1 1 1 1 8.93				
				100	#			
EPH Range >C10 - C40	<46 µg	ı/l TM172	<46 \$	<46				
(aq)			# # #		#			
Total EPH (C6-C40) (aq)	<100 µ	g/I TM172	<1005 ^{SOLV}	<100				
					_			
Mercury (diss.filt)	<0.01 µ	g/l TM183	<0.01	<0.01				
100			#		#			
Nitrite as NO2	<0.05	TM184	<0.05	<0.05				
	mg/l		#		#			
Sulphate	<2 mg	/I TM184	64.9	151				
			#		#			
Chloride	<2 mg	/I TM184	8.9	40.8				
Dhaanhata (antias) BO (-0.0-	TMACCA	# 40.05		#			
Phosphate (ortho) as PO4	<0.05	TM184	<0.05	<0.05	,,,			
Nitrata as NOO	mg/l	-/I TA4404	#		#			
Nitrate as NO3	<0.3 mg	g/I TM184	<0.3	<0.3	Д.			
Calaine (diaa 511)	40.015	T 1000	4		#			
Calcium (diss.filt)	<0.012	2 TM228	97.2	139	щ			
Cadima (d' 5'II)	mg/l	T14000	#		#			
Sodium (diss.filt)	<0.076	5 TM228	6.05	20.9	щ			
14 1 7 2 200	mg/l	77	#		#			
Magnesium (diss.filt)	<0.036	5 TM228	7.78	21	щ			
Determine (P. 600	mg/l	, T14555	#		#			
Potassium (diss.filt)	<1 mg	/I TM228	1.41	1.89	,,,			
Lean Alban (200		711000	# .0.10		#			
Iron (diss.filt)	<0.019	9 TM228	<0.019	<0.019	,,			
	mg/l		#		#			
Hardness, Total as	<0.35	TM228	413	663				
CaCO3 unfiltered	mg/l				_			
pH	<1 pH	TM256	7.69	7.56				
	Units		#		#			
					_			

Validated

Z0275 Thorntons Millenium Park SDG: 160603-119 Location: Order Number: D_FTIM_DUB-253 Fehily Timoney 364675 Job: **Customer:** Report Number:

Client Reference: LW15-046-02 Thorntons Attention: Barry Donovan Superseded Report:

Client Reference: LW15	5-046-02 Thor	ntons	Attention:	Barry Donovan			Superseded Re	port:	
GRO by GC-FID (W)									
Results Legend # ISO17025 accredited.	Cus	stomer Sample R	GW05	GW06					
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m) Sample Type	0.00 - 0.00 Water(GW/SW)	0.00 - 0.00 Water(GW/SW)				
Subcontracted test. % recovery of the surrogate standar check the efficiency of the method results of individual compounds w	. The ithin	Date Sampled Sample Time Date Received SDG Ref	02/06/2016 03/06/2016 160603-119	02/06/2016 03/06/2016 160603-119					
samples aren't corrected for the re (F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix) Component	LOD/Units	ab Sample No.(s) AGS Reference Method	13536878	13536890					
Methyl tertiary butyl ether (MTBE)	<3 μg/l	TM245	<3	4	#				
Benzene	<7 μg/l	TM245	<7	<7	#				
Toluene	<4 µg/l	TM245		<4 #	#				
Ethylbenzene	<5 µg/l	TM245		<5 #	#				
n,p-Xylene	<8 µg/l	TM245		4	#				
o-Xylene	<3 µg/l	TM245		<3	#				
Sum of detected BTEX	<28 μg/l	TM245	<28	<28					
GRO >C5-C10 EPH (C6-C10)	<10 μg/l	TM245 TM245	<100	<10					
=PH (C6-C10)	<100 µg/i	1 M245	<100	<100		Ø)*			
						ather use			
						of of any			
				100	ر المار وهي	edito			
				citon pur	èos				
				Widelf on		on of the other rese.			
				the order					
			Consent	3					
			20						

Validated

Thorntons Millenium Park Z0275 SDG: 160603-119 Location: Order Number: D_FTIM_DUB-253 Fehily Timoney 364675 Job: **Customer:** Report Number: Client Reference: LW15-046-02 Thorntons Attention: Barry Donovan Superseded Report:

Table of Results - Appendix

Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984	Determination of alkalinity in aqueous samples		
Method 4500G, AWWA/APHA, 20th Ed., 1999	Measurement of Dissolved Oxygen by Oxygen Meter		
Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser		
Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter		
Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	EPH in Waters		
BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
Standard Methods for the examination of waters and wastewaters 16th Edition, ALPHA, Washington DC, USA. ISBN 0-87553-131-8.	Determination of Unfiltered Metals in Water Matrices by ICP-MS		
US EPA Method 6010B	Determination of Major Cations in Water by iCap 6500 Duo ICP-OES		
By GC-FID	Determination of GRO by Headspace in waters		
The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 7514284.	Determination of pH in Water and Leachate using the GLpH pH Meter		
ples only. DRY indicates samples have been uned at	of the chold philipplicable.		
	Reference Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984 Method 4500G, AWWA/APHA, 20th Ed., 1999 Method for the Determination of EPH,Massachusetts Dept.of EP, 1998 Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060 BS 2690: Part 7:1968 / BS 6068: Part2.11:1984 Method 4500F, AWWA/APHA, 20th Ed., 1999 / Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970 Method 3125B, AWWA/APHA, 20th Ed., 1999 / Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3 EPA Methods 325.1 & 325.2, Standard Methods for the examination of waters and wastewaters 16th Edition, ALPHA, Washington DC, USA. ISBN 0-87553-131-8. US EPA Method 6010B By GC-FID	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984 Method 4500G, AWWA/APHA, 20th Ed., 1999 Measurement of Dissolved Oxygen by Oxygen Meter Method for the Determination of EPH, Massachusetts Dept. of EP, 1998 GC-FID (C10-C40) Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060 Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water BS 2690: Part 7:1968 / BS 6068: Part2.11:1984 Determination of Ammonium in Water Samples using the Kone Analyser Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970 Method 3125B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970 Method 3125B, AWWA/APHA, 20th Ed., 1999 Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3 EPA Methods 325.1 & 325.2, Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry The Determination of Unfiltered Metals in Water Matrices by ICP-MS Determination of Unfiltered Metals in Water Matrices by ICP-MS Determination of Major Cations in Water by iCap 6500 Duo ICP-OES Determination of pH Value of Natural, Treated and Wastewaters. HMSO, Meter Meter	Method 2320B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part109 1984 Method 4500G, AWWA/APHA, 20th Ed., 1999 Measurement of Dissolved Oxygen by Oxygen Meter Method for the Determination of Evaluation of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40) Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060 in Water and Waste Water Method 4500F, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060 in Water and Waste Water Method 4500F, AWWA/APHA, 20th Ed., 1999 / Determination of Fluoride using the Kone Analyser Method 4500F, AWWA/APHA, 20th Ed., 1999 / Determination of Fluoride using the Kone Analyser Method 2510B, AWWA/APHA, 20th Ed., 1999 / Determination of Fluoride using the Kone Analyser Method 2510B, AWWA/APHA, 20th Ed., 1999 / Method 3125B, AWWA/APHA, 20th Ed., 1999 / M

Validated

Thorntons Millenium Park Z0275 SDG: 160603-119 Location: Order Number: D_FTIM_DUB-253 Fehily Timoney 364675 Job: **Customer:** Report Number: Client Reference: LW15-046-02 Thorntons Attention: Barry Donovan Superseded Report:

Test Completion Dates

Lab Sample No(s)	13536878	13536890
Customer Sample Ref.	GW05	GW06
•		
AGS Ref.		
Depth	0.00 - 0.00	0.00 - 0.00
Туре	LIQUID	LIQUID
Alkalinity as CaCO3	07-Jun-2016	07-Jun-2016
Ammonium Low	06-Jun-2016	07-Jun-2016
Anions by Kone (w)	06-Jun-2016	06-Jun-2016
Conductivity (at 20 deg.C)	06-Jun-2016	07-Jun-2016
Dissolved Metals by ICP-MS	09-Jun-2016	09-Jun-2016
Dissolved Oxygen by Probe	05-Jun-2016	05-Jun-2016
EPH (DRO) (C10-C40) Aqueous (W)	10-Jun-2016	10-Jun-2016
Fluoride	06-Jun-2016	06-Jun-2016
GRO by GC-FID (W)	09-Jun-2016	09-Jun-2016
Mercury Dissolved	06-Jun-2016	06-Jun-2016
Metals by iCap-OES Dissolved (W)	07-Jun-2016	07-Jun-2016
Metals by iCap-OES Unfiltered (W)	06-Jun-2016	06-Jun-2016
Nitrite by Kone (w)	06-Jun-2016	06-Jun-2016
pH Value	07-Jun-2016	07-Jun-2016
Total EPH (aq)	13-Jun-2016	13-Jun-2016
Total Organic and Inorganic Carbon	06-Jun-2016	06-Jun-2016

Consent of copyright owner required for any other use.

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

Thorntons Millenium Park Z0275 SDG: 160603-119 Location: Order Number: D FTIM DUB-253 364675 Fehily Timoney Job: **Customer:** Report Number: Barry Donovan LW15-046-02 Thorntons Client Reference: Attention: Superseded Report:

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipts. Foring copyright However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved Consen metals - total metals must be requested separately
- 11. Results relate only to the items tested.
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment . Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect
- 14. Product analyses Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- Stones/debris are not routinely removed. We always endeavour to take representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

- calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis
- 21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

	1 (Container with Headspace provided for volatiles analysis
	205	Incorrect container received
	~°3.√	Deviation from method
Ó	Y SOL	Holding time exceeded before sample received
۲	(P) 5	Samples exceeded holding time before presevation was performed
e	§	Sampled on date not provided
	•	Sample holding time exceeded in laboratory
	@	Sample holding time exceeded due to sampled on date
	&	Sample Holding Time exceeded - Late arrival of instructions.
١		

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name					
Chrysofile	WhiteAsbestos					
Amoste	BrownAsbestos					
Crodoble	Blue Astrestos					
Fibrous Adindite	-					
Florous Anthophylite	-					
Fibrous Trendite	-					

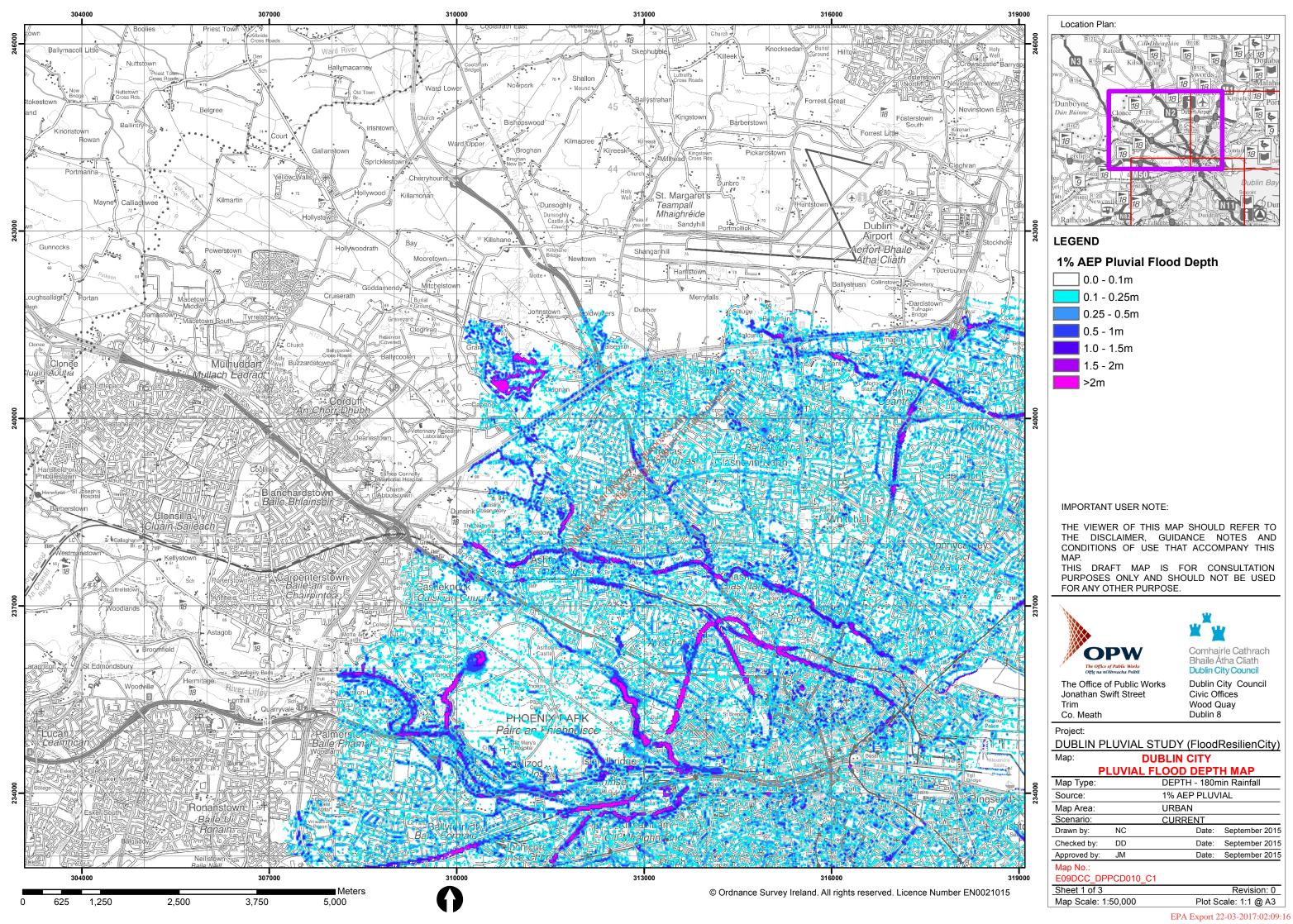
Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside scope of UKAS accreditation.

13:36:37 13/06/2016 Modification Date: 13/06/2016


Appendix 21

Dublin Pluvial Study (FloodResilienCity)

Consent of congretation that required first any other tages.

Consent of congretation that required first any other tages.

Appendix 22

Justification Test

Consent of copyright owner required for any other use.

Ref.: The Planning System and Flood Risk Management Guidelines for Planning Authorities, OPW & DoEHLG, November 2009

Box 5.1 Justification Test for development management

When considering proposals for development, which may be vulnerable to flooding, and that would generally be inappropriate as set out in Table 3.2 (in the case of the Proposed development identified as a 'Less Vulnerable Development in Flood Zone A (Pluvial), the following criteria must be satisfied:

The subject lands have been zoned or otherwise designated for the particular use or form of development in an operative development plan, which has been adopted or varied taking account of these Guidelines.

Response

The site for the proposed development for the materials processing & transfer facility at Millennium Business Park, in the townland of Grange, in north County Dublin is zoned to Provide Heavy Industry in the Fingal Development Plan 2011 – 2017, in the Zoning Objectives for Blanchardstown North.

The proposal has been subject to an appropriate flood risk assessment that demonstrates:

The development proposed will not increase flood risk elsewhere and, if practicable, will reduce overall flood risk;

Response

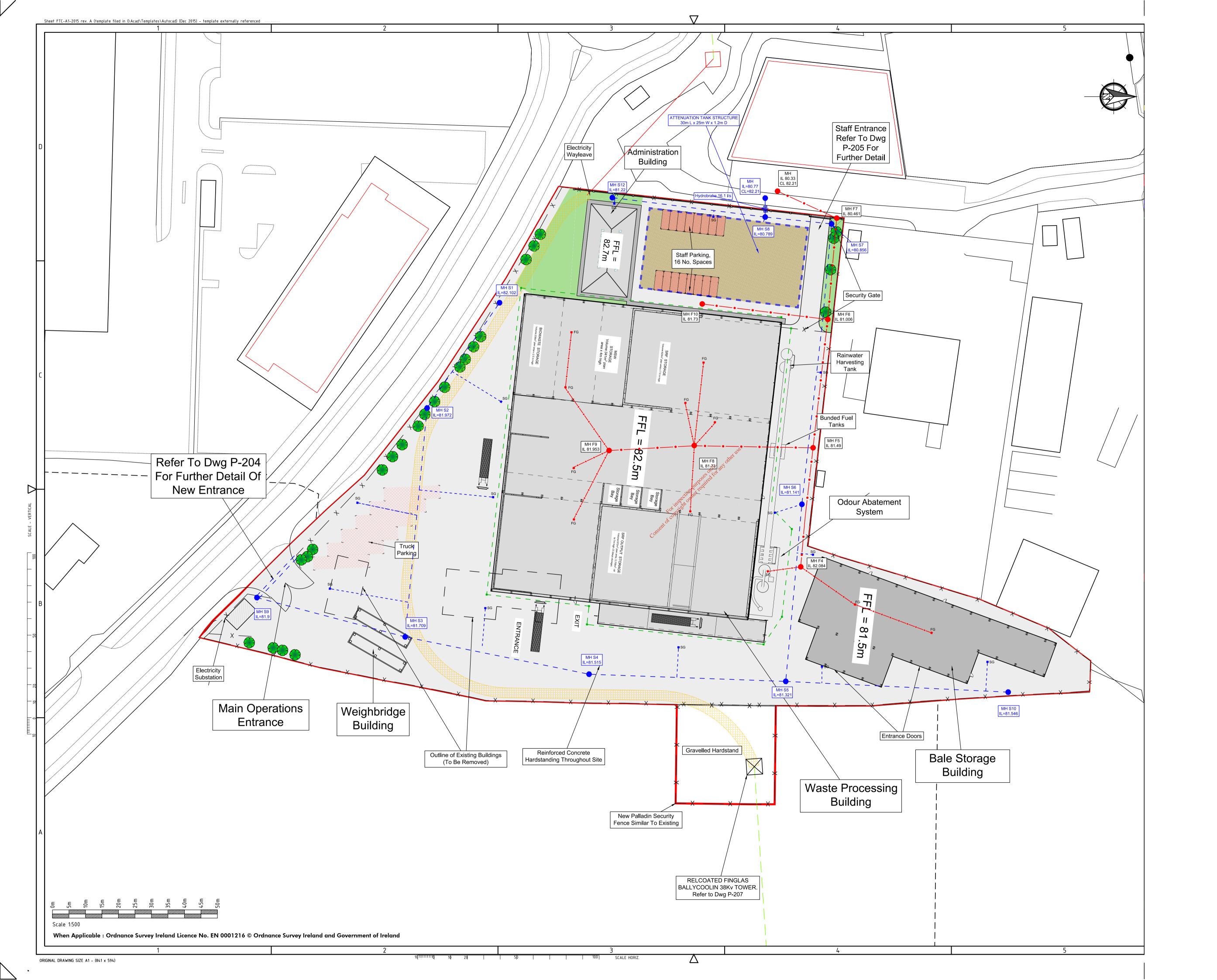
2

A flood risk identification and assessment was undertaken. It is proposed to raise the ground where appropriate at the proposed development, above the predicted pluvial flood levels. It is proposed to collect the surface water run-off from the development via roof rainwater pipes, road gullies and surface water channels into a collection system leading to an attenuation facility that incorporates permeable paving. All surface water flows from hard surfaces (car parking areas, yards and access roads) will drain via an attenuation tank, hydrobrake and petrol interceptor before entering the existing drainage system that serves the Millenium Business Park. A rainwater harvesting system will be provided to collect and reuse the rainwater from the roofs of significant buildings in the proposed development. The flows discharging from the attenuation tank into the existing drainage system will be limited to Greenfield Rates. Therefore it is expected that the development will not increase flood risk elsewhere. In addition, the proposed drainage for the site will in effect increase the Time of Concentration of surface water flows from the site into the catchment, thus introducing an overall improvement in the risk of flooding contributing to Batchelors Stream, downstream of the site.

(ii) The development proposal includes measures to minimise flood risk to people, property, the economy and the environment as far as reasonably possible;

Response

A topographical survey was available for the site and a flood risk assessment has been undertaken to ascertain the extent of the site within flood zones A and B where this applies (See Appendix XX for copies of Pluvial Flood Maps produced for the OPW as part of the Dublin Pluvial Study (FloodResilienCity) Project). The Finished Floor Level (FFL) of any buildings will be greater than 0.5 m above existing ground levels within the site, where buildings are coincident with the pluvial flood depths identified in the detailed Dublin Pluvial Study (Proposed FFL for buildings is set at 82.5 – 82.7 m OD which is greater than XX m above existing levels). Car and truck parking areas will avoid the areas with predicted pluvial depths greater than 0.25 m in the identified pluvial Flood Zone A areas. The electricity substation will be located outside the identified pluvial Flood Zone A or Flood Zone B (predicted pluvial flooding with a return period of 1 in 1000 years) areas. All other open areas will be allowed to flood in an extreme pluvial event. Any foul sewers running through such areas will have sealed manhole covers. This will minimise the flood risk to people, property, the economy and the environment.


	(iii) The development proposed includes measures to ensure that residual risks to the area and/or development can be managed to an acceptable level as regards the adequacy of existing flood protection measures or the design, implementation and funding of any future flood risk management measures and provisions for emergency services access; and									
Response	The development will avoid flood risk areas or be raised above them and therefore will not impede the full access for emergency services onto the sit Future flood protection measures in this area are dependent on Pluvial Flood Warning systems and the proposed development will not impede these measures.									
	(iv) The development proposed addresses the above in a manner that is also compatible with the achievement of wider planning objectives in relation to development of good urban design and vibrant and active streetscapes. The acceptability or otherwise of levels of residual risk should be made with consideration of the type and foreseen use of the development and the local development context.									
Response	It is not expected that the proposed development will impact negatively on any wider planning objectives. It is proposed to use SuDS systems in the Surface Water Management at the site. The efficient operation of the proposed SuDS systems will be dependent on the effective maintenance of the existing drainage system which will receive flows from the proposed development and this will be in accordance with the wider management of the Millennium Business Park. The proposed development will be in accordance with proper planning and sustainable development of the area.									
	proposed development will be in accordance with proper planning and sustainable development of the area. Consent of copyright owner ted principles of the area of the area of the area of the area.									

Appendix 23

Drainage Layout & Storage Tank Sizing Calculations

Consent of copyright owner required for any other uses.

Rainwater	Harvesting	Calculations													
Ref. drawin	g Plans Ele	ations Sections	3												
SRF Proce	ssing Buildii	ng - Pitched Ro	of - Plan Area -	78m long x 89.9m wide											
Description	Plan Area	Half Maximum	Effective Area	Annual Rainfall (Source:	Annual	5% of Annual									
	(One Side		$A_e = A_h +$	FSU Website	Rainfall Yield										
	of pitched	Elevation A _v /2	A/2	OPW.Hydronet.com)	for this roof	Underground									
	roof only)		· .v. =			Tank sizing									
	A_h														
	m ²	m^2	m ²	mm	m ³	m ³									
Roof	3506	140.9				134.93									
11001	3300	140.5	3040.3	7 - 10	2000.00	104.00									
Expected F	emand for F	Potable Water													
		otable trate.						, 115°.							
Building				Facilit	ies and Estim	ated Water Den	nand*	Me.							
		W.C.s			ory Basins		Kitche	n Sink (Ca	inteen)	Buid	ling Washd	own**			
							es of for d								5% of
						موف	Cop.	Estimated			Estimated		Grand		Annual
		Estimated	Total daily		Estimated	Total dail		demand	Total daily		demand	Total daily	Total daily	Annual	water
		demand per	demand		demand per	demand		per day	demand		per day	demand	demand	demand	demand
		day (Litres)	(Litres)	No.	day (Litres)	(Litres)	No.	(Litres)	(Litres)	No.	(Litres)	(Litres)	(Litres)	(m ³)	(m^3)
Wash						in ohi									
down					F.C.	RAIL									
activities	0	181.8	0.0	0	272,76	0.0	0	181.80	0.0	1	8000.00	8000.0	8000.00	2920.00	146.00
					cent										
*Public Health	Engineering P	ractice: Water Sup	pply and Building Sa	anitation v. 1 – March 1972, Le	onard®ushby Es	critt									
**Assuming a	4 hour cleanir	ng event, with two	people operating 2	No. standard industrial pow e	r washers, each	with a flow rate o	f 1,000l/hour	(Karcher Higl	h Pressure H	D10 or similar), results in 8	cu.m of wate	er demand.		
				accordance with											
			·	provide the lesser of 5% o	f the										
annual rain	water yield o	or 5% of the ann	nual water dema	ınd.											
Therefore th	e capacity	of the storage ta	ank =		134.93	m ³	= 3 No. 80	00 Gallon	tanks and	1 No. 6000) Gallon ta	nk			

Attenuation Facility Design

Attenuation Facility Design

Consent for ingeringer representation and other trees.

				Total Stor	rage Provi	ded=	830	m3
2	42 units long x 48 units wide	42	24	1008	806.4	766.08	<u>766.08</u>	m3
(0.4m)	(each unit 1.0m long x 0.5m wide		m 24	m2	(x 0.4) m3		766.60	
	Layout of units	length	width	area	Volume	Storage		
		Consent of cod						
Actual Sto	rage volume per unit (95%) =	dic	1		0.19	m3		
Volume of	each unit =	for	Office.		0.2	m3		
			ASPEN ONL					
Dimension	s of AquaCell Units =		1m (long) x	0.5m (wid	e) x 0.4m (high)		
volume of	storage required in Aquacell Unit	s=	aut Paul	eo.	766	m3		
			O'N	Office all.				
Volume of	storage from permeable paving a	assuming 3	30% voids ra	itio= odine	64	m3	64	m3
	eturn period storm plus a 20% al e Change*=	llowance		<i>a</i>	<u>210</u>	mm		
	nded depth of permeable paving f							
Available A	Area of Permeable Paving=				1008.00	m2		
Total Volu	me required (As determined from	MicroDrain	iage)=		830.00	m3		
Volume of	Storage Required							
	Permeable Paving and Aqua Cell	type unit						

*Guide to the Design, Construction and Maintenance of Concrete Block Permeable Pavements, by Interpave, The Precast Concrete Paving and Kerb Association, January 2010, Edition 6

					DESIGNED:	MC	CHECKED:						
FEHILY					DATE:	25-May-16	REVISION:	-					
& COMPANY					JOB NUMB	ER:	LW15-04	6-02					
Fehily Timoney and Compa	any Engineering and Environ	mental Consulta	nts		CALC NUM	BER:	C1						
Cork : Tel 021-4964133	Fax 021-4964464				FILE	https://uss.ftco.ie/ 02_Attenuation Po			W15-046-				
					SHEET	Pond 30 yr	-GDSDS						
PROJECT:	Planning a	ng and licence application for Millennium Park											
DESCRIPTION:	Attenuation	Attenuation Pond Design Calculations for whole site											
Catchment Characteri	stics												
Site Area					16.1874	ha							
SAAR					other 715	mm	Met Eirear	n					
Soil Category	2		SOIL =	ally, all	0.3		(change th	e categor	y, 1, 2,5)				
M5-60				ses digit	15	mm							
M5-2D			a si	170 differ	50	mm							
r = M5-60 / M5-2d =			ion ?	3003	0.30								
			1050 CONT	togical for an									
QBAR = 0.00108 (Are	a^0.89)(SAAR^1.17)(So	oil^2.17) for Q	A>50 ha										
If CA<50 ha, apply it f	or 50 ha and get value t	for smaller ca				fer page 70,	Vol. 2 of G	DSDS, RI	OP).				
		Let the Area	be		50	ha							
		Qbartor 50 h	na area =		0.0934	m3/s							
		Qbar for the	given area	=	0.0302	m3/s							
For Irish Region,		1 year factor			0.85	(Refer to pa	ige 71, Vol	2 of GDSI	OS, RDP)				
		30 year facto	or		1.63								
		100 year fac	tor		1.96								
Therefore the greenfic	ald limiting discharge re	too oro											
Therefore, the greenile	eld limiting discharge ra				25.71	1/0	1 50	l/s/ha					
		1 year throttl											
		30 year throt			49.41			l/s/ha					
		100 year thro	ottle		59.27	I/s	3.66	l/s/ha					

Return Period =	:	1	yr							l/s
Development Ai	rea =	16.1874	ha	Permisible	flow =	25.71			=	25.71
Impervious Area	a =	16.1874	ha							
Rainfall	Rainfall	Rainfall	Total volume	Average	Permsble	Flow to	Storage	Retention		
duration	depth (R1)	depth*1.1	of runoff	flow	Flow	be stored	Volume	Time		
hrs	mm	mm	m3	m3/s	m3/s	m3/s	m3	hrs		
0.25	5.6	6.1	990.45	1.101	0.025705	1.075	967	10.45		
0.5	7.3	8.1	1305.20	0.725	0.025705	0.699	1259	13.60		
1	9.6	10.6	1717.40	0.477	0.025705	0.451	1625	17.56		
2	12.6	13.8	2237.96	0.311	0.025705	0.285	2053	22.18		
4	16.7	18.4	2979.59	0.207	0.025705	0.181	2609	28.20		
6	20.1	22.1	3578.50	0.166	0.025705	√ 0.140	3023	32.67		
12	26	28.3	4586.84	0.106	0.025705	0.080	3476	37.57		
24	31	34.4	5574.39	0.065	0.025705	0.039	3353	36.24		
48	38	42.2	6823.13	0.039	0.025705	0.014	2381	25.73		
Required Volum	ne = Maximum	of storage volu	me, V =	gi	Malifi		3476	m3		
				dionie	, ⁵⁰					
				of its and other consists of the consists of t						
D . D . I			Ý	or tright						1,
Return Period = Development A		30 16.1874	yr '	Dorminible	flow –	49.41		25.71		l/s 23.71
Impervious Area		16.1874	ha ento	Permisible	ilow =	49.41	-	23.71	=	23.71
Rainfall	Rainfall	(R30-R1)*1.1			Permsble	Flow to	Storage	Retention		
duration	depth (R30)	,	of runoff	flow	Flow	be stored	Volume	Time		
hrs	mm	mm	m3	m3/s	m3/s	m3/s	m3	hrs		
0.25	15.6	11.0	1782.95	1.981	0.023709	1.957	1762	20.64		
0.5	20.1	14.1	2276.92	1.265	0.023709	1.241	2234	26.18		
1	25	17.1	2763.57	0.768	0.023709	0.744	2678	31.38		
2	31	19.9	3225.77	0.448	0.023709	0.424	3055	35.79		
4	38	23.1	3743.96	0.260	0.023709	0.236	3403	39.86		
6	44	26.4	4271.56	0.198	0.023709	0.174	3759	44.05		
12	54	31.2	5055.50	0.117	0.023709	0.093	4031	47.23		
24	64	36.4	5900.03	0.068	0.023709	0.045	3852	45.12		
48	76	42.0	6791.53	0.039	0.023709	0.016	2695	31.57		
Required Volum	ne = Maximum	of storage volu	me, V =				4031	m3		

Return Period =	=	100	yr							l/s
Development Area =		16.1874	•	Permisible	flow =	59.27	-	49.41	=	9.86
Impervious Area =		16.1874	ha							
Rainfall	Rainfall	(R100-R30)*1.1	Total volume	Average	Permsble	Flow to	Storage	Retention		
duration	depth (R100)		of runoff	flow	Flow	be stored	Volume	Time		
hrs	mm	mm	m3	m3/s	m3/s	m3/s	m3	hrs		
0.25	21	6.0	969.52	1.077	0.009859	1.067	961	27.07		
0.5	27	7.7	1251.61	0.695	0.009859	0.685	1234	34.77		
1	34	9.4	1526.06	0.424	0.009859	0.414	1491	42.00		
2	41	11.0	1780.34	0.247	0.009859	0.237	1709	48.16		
4	49	12.3	1986.88	0.138	0.009859	0.128	1845	51.98		
6	57	13.9	2248.90	0.104	0.009859	0.094	2036	57.36		
12	69	16.0	2589.61	0.060	0.009859		2164	60.96		
24	81	18.3	2966.69	0.034	0.009859	net 0.024	2115	59.59		
48	96	21.1	3420.15	0.020	0.009859		1717	48.37		
Required Volun	ne = Maximum	of storage volu	me, V =		Solforg		2164	m3		
					2164					
			1yr	30 yr 🕎	₩ 00 yr					
Total storage requirement =		3476	4039 Tres	2164	=	7508	m3	(30 year)		
				insperon			9671	m3	(100 year)	
Allowance to a	count for the s	simplifying assu	mption of hea	ad-discharg	e relationsh	nip of 1.25 is	s not require	d on this si	ite due to	
the fact that the				~~.						
			Consento							
			1 M367							

FILE SHEET Ilennium for wast 2.2634 715 0.3	ER: BER: https://uss.ftco.ie/ 02_Attenuation Po Pond 30 yr n Park te transfe	r-GDSDS er facility Met Eirear	direct/139769/LW MTF only.xls	
CALC NUM FILE SHEET Ilennium for wast 715 0.3 15 50	https://uss.ftco.ie/ 02_Attenuation Port Pond 30 yr n Park te transfe ha mm	C1 /_files/renditioncond Volume for M r-GDSDS er facility Met Eirear	direct/139769/LW	
FILE SHEET Ilennium for wast 2.2634 715 0.3 15 50	https://uss.ftco.ie/ 02_Attenuation Po Pond 30 yr n Park te transfe ha mm	r-GDSDS r facility Met Eirear	M TF only.xls	
ETILE SHEET Ilennium for wast	Pond 30 yr Park te transfe ha mm	r-GDSDS er facility Met Eirear	M TF only.xls	
2.2634 715 0.3 15	ha mm	er facility Met Eirear		1, 2,5)
715 0.3 15	ha mm	Met Eirear		1, 2,5)
2.2634 715 0.3 15	ha mm mm	Met Eirear		1, 2,5)
715 0.3 15 50	mm mm			1, 2,5)
715 0.3 15 50	mm mm			1, 2,5)
715 0.3 15 50	mm mm			1, 2,5)
15 50		(change th	ne category,	1, 2,5)
50				
	mm			
0.30				
olation (ref	fer page 70,	Vol. 2 of G	DSDS, RD	P).
50	ha			
0.0934	m3/s			
0.0042	m3/s			
0.85	(Refer to pa	age 71, Vol	2 of GDSD	S, RDP)
1.63				
1.96				
3.59	l/s	1.59	l/s/ha	
6.91	l/s	3.05	l/s/ha	
8.29	l/s	3.66	l/s/ha	
	50 0.0934 0.0042 0.85 1.63 1.96	50 ha 0.0934 m3/s 0.0042 m3/s 0.85 (Refer to pa	50 ha 0.0934 m3/s 0.0042 m3/s 0.85 (Refer to page 71, Vol 1.63 1.96 3.59 l/s 6.91 l/s 3.05	0.0934 m3/s 0.0042 m3/s 0.85 (Refer to page 71, Vol 2 of GDSDS 1.63 1.96 3.59 l/s 1.59 l/s/ha 6.91 l/s 3.05 l/s/ha

Return Period =	-	1	yr							l/s
Development Ai	rea =	2.2634	ha	Permisible	flow =	3.59			=	3.59
Impervious Area	a =	2.2634	ha							
Rainfall	Rainfall	Rainfall	Total volume	Average	Permsble	Flow to	Storage	Retention		
duration	depth (R1)	depth*1.1	of runoff	flow	Flow	be stored	Volume	Time		
hrs	mm	mm	m3	m3/s	m3/s	m3/s	m3	hrs		
0.25	5.6	6.1	138.49	0.154	0.003594	0.150	135	10.45		
0.5	7.3	8.1	182.50	0.101	0.003594	0.098	176	13.60		
1	9.6	10.6	240.14	0.067	0.003594	0.063	227	17.56		
2	12.6	13.8	312.92	0.043	0.003594	0.040	287	22.18		
4	16.7	18.4	416.62	0.029	0.003594	0.025	365	28.20		
6	20.1	22.1	500.36	0.023	0.003594	9 :020	423	32.67		
12	26	28.3	641.35	0.015	0.003594	30.011	486	37.57		
24	31	34.4	779.44	0.009	0.003594	0.	469	36.24		
48	38	42.2	954.04	0.006	0.003594	0.002	333	25.73		
Required Volume = Maximun		of storage volu	me, V =	3	Palite		486	m3		
·				ion P	100					
				or inspection the or inspection and or inspectio						
				of itight						
Return Period =		30	yr ×	COLY,		2.24		0.50		l/s
Development A		2.2634	ha &	Permisible	tlow =	6.91	-	3.59	=	3.32
Impervious Area Rainfall	a = Rainfall	2.2634 (R30-R1)*1.1	na Total vo lume		Permsble	Flow to	Storage	Retention		
duration	depth (R30)	(K30-K1) 1.1	of runoff	flow	Flow	be stored	Volume	Time		
hrs	mm	mm	m3	m3/s	m3/s	m3/s	m3	hrs		
0.25	15.6	11.0	249.30	0.277	0.003315		246	20.64		
0.5	20.1	14.1	318.37	0.177	0.003315		312	26.18		
1	25	17.1	386.42	0.107	0.003315		374	31.38		
2	31	19.9	451.04	0.063	0.003315	0.059	427	35.79		
4	38	23.1	523.50	0.036	0.003315	0.033	476	39.86		
6	44	26.4	597.27	0.028	0.003315	0.024	526	44.05		
12	54	31.2	706.88	0.016	0.003315	0.013	564	47.23		
24	64	36.4	824.97	0.010	0.003315	0.006	539	45.12		
48	76	42.0	949.62	0.005	0.003315	0.002	377	31.57		
Required Volum							564	m3		
·		J								

Return Period =		100	yr							l/s
Development Area =		2.2634	ha	Permisible	flow =	8.29	-	6.91	=	1.38
Impervious Area	a =	2.2634	ha							
Rainfall	Rainfall	(R100-R30)*1.1	Total volume	Average	Permsble	Flow to	Storage	Retention		
duration	depth (R100)		of runoff	flow	Flow	be stored	Volume	Time		
hrs	mm	mm	m3	m3/s	m3/s	m3/s	m3	hrs		
0.25	21	6.0	135.56	0.151	0.001379	0.149	134	27.07		
0.5	27	7.7	175.01	0.097	0.001379	0.096	173	34.77		
1	34	9.4	213.38	0.059	0.001379	0.058	208	42.00		
2	41	11.0	248.94	0.035	0.001379	0.033	239	48.16		
4	49	12.3	277.82	0.019	0.001379	0.018	258	51.98		
6	57	13.9	314.45	0.015	0.001379	0.013	285	57.36		
12	69	16.0	362.09	0.008	0.001379	0.007	303	60.96		
24	81	18.3	414.82	0.005	0.001379	0.003	296	59.59		
48	96	21.1	478.22	0.003	0.001379		240	48.37		
Required Volum	ne = Maximum	of storage volu	me, V =		no relationship		303	m3		
					oce de					
			1yr	30 yr 🞺	00 yr					
Total storage re	equirement =		486	564 ⁰¹ 11e	303	=	1050	m3	(30 year)	
				: USP OT OT			1352	m3	(100 year)	
Allowance to ad	count for the s	simplifying assu	mption of hea	d-discharg	e relationsh	nip of 1.25 is	not require	d on this si	te due to	
the fact that the										
			cent							
			Consent							

Site:	Planning and li	<mark>cence apr</mark>	olication	for Miller	nium Pa	ırk			
D	1 1 1	00				. 6 . 1 . 1			
Design vo	lume based on =		turn period			ntiela			
		or on spilla	age contain	ment it requ	iirea"				
Doguirod	live volume *=			7508	m2				
Required	iive voiuille =			7300	IIIS				
l enath of t	he tank, L =			70	m	input			
	ne tank, W=			7.55		input	(average)		
au or tr	io tank, vv –			7.00		ipat	(avoiago)		
						چې.			
Side slope	= 1V:ZH		Z =	0.001	M Mod and officer	input			
					17. VA OF				
Free board	l =			0.01	all of the state o	input			
Live depth	=			5.059	an and	input	from invert of orifice outfall		
Permanent	t depth =			Dury	m	input			
Total depth	1 =		For its	100 5.069	m				
Live and de	ead storage (total wa	ter) depth =	حد	5.059	m		3m is Max.	allowable	
			OT IT	ghi					
Surface Ar	ea of the tank =		troby,	528.5	m2				
			, of o						
	level length =		nsent.	69.99998	m				
.	level width =		Or	7.54998	m				
Area at top	water level, A =			528	m2	< Use to	assess SS	Removal	
Bottom Le	9			69.98986					
Bottom wid				7.539862					
Bottom are	ea =			527.7139	m2				
Coloudate -	Live velues = 11/0*/A	101004(4-)	1	0070	m 2				
Calculated live volume = H/3*(A+a+sqrt(Aa)) =				2672	m3 m3				
Permanent volume = Freeboard volume =					m3				
Freeboard Total volum				2677	m3				
TOTAL VOIUII	10 -			2011	IIIO				
Check:									
1st Flush :	= 0.01	EV	161874		2428.11	m ³			

Appendix 25

Outline Invasive Species Management Plan

Consent of copyright owner required for any other use.

Consent of copyright owner required for any other use.

THORNTONS RECYCLING

OUTLINE INVASIVE SPECIES MANAGEMENT PLAN FOR PROPOSED DEVELOPMENT AT MILLENNIUM BUSINESS **PARK**

NOVEMBER 2016

TABLE OF CONTENTS

		<u>PAGE</u>
1	INTRODUCTION	1
1.1	Consultation	1
2	EXISTING ENVIRONMENT	2
3	INVASIVE SPECIES WITHIN THE STUDY AREA	3
3.1 3.2	Desktop Study Results of the site walkover	
4	PROPOSED MEASURES FOR THE MANAGEMENT OF JAPANESE KNOTWEED WITHIN THE DEVELOPMENT SITE	6
4.1 4.2	Project EcologistInvasive species	
LIST	OF TABLES	
Table 1	OF TABLES 1: Invasive Species within 10km of Site	3
LIST	OF FIGURES FOR THE PARTY OF THE	
FIGURE	1: The Location of the Japanese Knotweed stands within the site	5

LW15-046-02 i/i

1 INTRODUCTION

This chapter of the EIS details the ecological appraisal for the project carried out by Fehily Timoney & Company (FT) including a site walkover survey and bat survey on the 7th of July 2016 and the 30th of September 2016. A series of ecological surveys were carried out at the site, including habitat and botanical surveys, bird surveys, and mammal (including bats) surveys. Based on the results of these various studies, FT considered potential direct, indirect and cumulative impacts of the proposed development on the existing ecological receptors and proposed appropriate mitigation measures to minimise these potential impacts.

1.1 Consultation

The following bodies were consulted on the proposed project, as described in Chapter 5 of this EIS:

- National Parks and Wildlife Services (NPWS)
- The Development Application Unit
- Inland Fisheries Ireland (IFI)
- The Environmental Protection Agency (EPA)
- An Taisce.

Consent of copyright owner reduired for any other use.

LW15-046-02 Page 1 of 7

2 EXISTING ENVIRONMENT

The development site is located at the Millennium Business Park, Cappagh Road, Dublin 11 at an elevation of 82 mOD and is c. 2.4 ha in area. It is located in the townlands of Grange & Cappage, approximately 4 km north-west of Finglas village and 3 km north-east of Blanchardstown village. The site is located approximately 700 m directly north of the M50 and 1.4 km west of the N2.

The site is currently undeveloped and comprises a grassed surfaced portion and a tarmacadam hardstanding area, with three disused building thereon. The site is not currently enclosed along its western boundary. It is bordered to the immediate north by a concrete processing activity and existing waste management facility, to the east by an active quarry, to the south by the Cappagh Road and to the west by a light industrial unit and undeveloped lands. A small café, Rose Café, is also located directly behind the light industrial unit, to its west.

The Thorntons Recycling site is zoned for heavy industry, under the Fingal Development Plan 2011 to 2017. There are a large number of commercial and industrial units within 1 km of the site boundary. In addition to the Millennium Business Park in which the site is located, the Northwest, Ballycoolin, Huntstown, Rosemont, Stadium, Keypoint and Premier Point Business Parks are also located nearby.

The nearest major residential zones are Finglas West, located approximately 1.5 km south east of the site, and Corduff, located approximately 2 km south west of the site. There is one residential dwelling located 300m south-east of the site on the Cappagh Road. An aerial view of the site is presented in Figure 1.

aerial view (
. aerial view (

LW15-046-02 Page 2 of 7

3 INVASIVE SPECIES WITHIN THE STUDY AREA

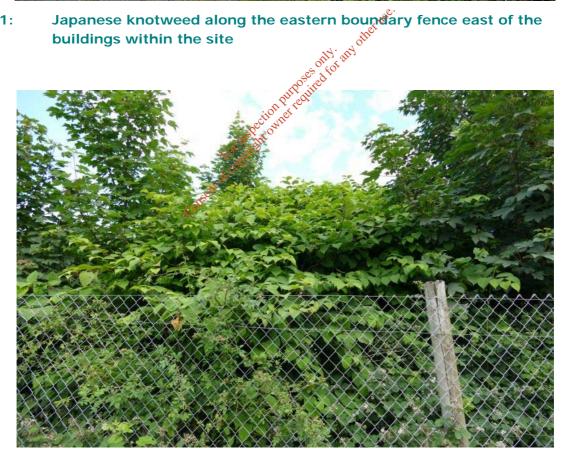
3.1 Desktop Study

Butterfly bush (Buddleja davidii) and sycamore (Acer pseudoplatanus) were also noted within the site boundary. The invasive species listed in Table 1 have been recorded within the 10 km grid square (O04) in which the proposed development is located. None of these invasive species were listed within the 2 km (grid square OO4A) in which the site is located and these species were not recorded within the site during surveys.

Table 1: Invasive Species within 10km of Site

Species	Date recorded			
Giant Hogweed (<i>Heracleum</i> mantegazzianum)	20/08/2012			
Himalayan Honeysuckle (<i>Leycesteria Formosa</i>)	31/07/2014			
Winter Heliotrope (Petasites fragrans)	24/03/2014			
Cherry Laurel (Prunus laurocerasus)	o5/08/2005			
Common Cord-grass (Spartina anglica)	15/07/2014			

3.2 Results of the site walkover
One highly invasive species noted on Invasive species Ireland's 'most-unwanted list' was recorded along the eastern boundary of the site during surveys1. Two stands of Japanese knotweed (Fallopia japonica) were recorded on a bank immediately east of the site boundary (Irish Grid Ref: O 10405 40725). The underground rhizomes of this highly invasive plant can extend up to 7 meters from the parent plant and up to 3 meters in depth.


Page 3 of 7 LW15-046-02

EPA Export 22-03-2017:02:09:16

¹ www.invasivespeciesireland.com/most-wanted-species/

Plate 1:

Close up of Japanese knotweed Plate 2:

Page 4 of 7 LW15-046-02

Figure 1: The location of the Papanese Knotweed stands within the site

LW15-046-02 Page 5 of 7

4 PROPOSED MEASURES FOR THE MANAGEMENT OF JAPANESE KNOTWEED WITHIN THE DEVELOPMENT SITE

4.1 Project Ecologist

It is recommended that a Project Ecologist with appropriate experience and expertise will be employed for the duration of project to ensure that all the mitigation measures outlined in relation to the Invasive Species Management Plan are implemented. The Project Ecologist will be awarded a level of authority and will be allowed to stop construction activity if there is potential for significant adverse ecological effects to occur.

4.2 Invasive species

While it is extremely important and more efficient to contain invasive species at the point of infestation, care shall also be taken to ensure the plan shall also be adhered to ensure that the species is not spread outside the site.

Ecological walkover surveys shall be undertaken by a qualified ecologist, at intervals over the construction phase of the project to examine the study area for newly established invasive species. If an invasive species is recorded within the site NPWS and Fingal County Council shall be informed immediately and the final invasive species management plan amended.

The following recommendations will be adhered to as part of that plan:

- Japanese knotweed root systems can extend for up to 7m underground from stands of the plants visible above the ground and to a depth of 3m. Staff shall be made aware of this buffer zone when working within areas of infestation.
- Areas of infestation to be fenced from other works areas including a buffering distance of up to 7m around the areas of infestation.
- Areas of infestation shall be treated on site where possible by injecting stems of Japanese knotweed with herbicides.
- Care will need to be taken is areas of infestation to avoid the potential contamination of watercourses.
- The continual monitoring of areas of infestation will be required for the successful treatment of
 Japanese knotweed. Herbicides may need to be applied on more than one occasion to completely
 eradicate the species on site. New stands of invasive species may also occur over the course of the
 project.
- No works to take place in these areas without supervision.
- All machinery and vehicles operating within areas of infestation to be thoroughly checked and if necessary cleaned prior to leaving the area to protect against further spreading of Japanese knotweed.
- During vegetation clearance and the removal of rubbish and other waste materials from infested areas
 care must be taken to ensure that Japanese knotweed is not carried with these materials out of the
 site. Japanese knotweed plants (or other invasive species) should not be removed along with other
 vegetation during clearance works.
- No material shall be taken from areas of infestation (unless for disposal at a suitably licenced facility).

LW15-046-02 Page 6 of 7

- All staff shall be made aware of nature of threat via toolbox talks as part of site inductions. Toolbox talks shall be undertaken with all personnel accessing the site to ensure that the details of the invasive species management plan are adhered to and to raise awareness of the potential treat of invasive species.
- Wheel washes shall be put in place at entry and exit points, if considered appropriate. Waste water from these facilities will need to stored and treated to avoid further outbreaks.
- If operating within an area of known infestation all machinery, vehicles, equipment, foot ware and clothing will need to cleaned thoroughly (if necessary using steam cleaners) in a contained area to avoid further contamination.

Consent of copyright owner reduited for any other use.

LW15-046-02 Page 7 of 7