
APPENDIX 13B

R755 PAVEMENT CONDITION SURVEY
AND GEOMETRIC ALIGNMENT REPORT

Planning Reference 08/1650: Response to Request for Further Information – Roads Issues

Roadstone Dublin Ltd.

Calary Quarry, Killough Upper, Kilmacanogue, Lee Co. Wicklow

March 2009

Consent of Conference of The Conference of The

QM

Issue/revision	Issue 1	Revision 1	Revision 2	Revision 3
Remarks	Draft	Draft		
Date	19th March 2008	28 th April 2008		
Prepared by	MC	MC		
	PC	PC		
Signature				
Checked by	AA	AA		
Signature				
Authorised by	AA	AA		
Signature				
Project number	20010186	20010186		
File reference		20010186 ties		

Consent of copyright owner required for

WSP Ireland Floor 2, Merchants House, 27-30 Merchants Quay Dublin 8

Tel: +353 (0)1 8994020 Fax: +353 (0)1 8994021 http://www.wspgroup.com

Reg. No: 347522

Contents

- 1 Introduction
- 2 Request for Further Information
- 3 Pavement Condition Survey
- 4 Alignment Analysis
- **5** Mitigation Measures
- 6 Costs
- 7 Conclusion

Appendix A Drawings and Mappings

Appendix B Pavement Condition Details

Appendix C Pavement Condition Photographs

Appendix D NRA tables reduits

Appendix E R755 Road widths

1 Introduction

This report has been prepared by WSP Ireland in response to Wicklow County Council's Request for Further Information in relation to a planning application prepared by SLR Consulting (formerly known as John Barnett & Associates Ltd.) for Roadstone Dublin Ltd.'s existing quarry at Calary, Upper Kilmacanogue, Co. Wicklow (Planning Register Reference 08/1650).

This report addresses Item 3 of the Request for Further Information. It examines the existing condition of the regional road, R755, between the existing quarry site and the N11 in terms of its carriageway width, its vertical and horizontal alignment and its pavement condition.

Arising from the evaluation of the existing road, a number of mitigation measures have been proposed to improve the road condition of the R755 between the existing site entrance and the N11 and to improve the general operation and safety of this section of road.

2 Request for Further Information

The section of the R755 road between the site entrance and the N11 (R755) is currently utilised as the primary access route for the transportation of materials to and from the existing quarry site. While this is a regional road in close proximity to a national primary road, the Planning Authority has requested some further information in relation to this section of road.

The items of information requested by the Planning Authority are;

- (a) "A comprehensive and complete evaluation of the full length of the regional road from the site entrance to the N11 in terms of road carriageway width (cross sections required), alignment (long sections) and structural conditions / stability".
- (b) "Where deficiencies are revealed by (a) above, details of proposals / mitigation measures required to address same and confirmation that any necessary works identified will either be carried out by the applicant or that the applicant will make a special contribution towards to the carrying out of such works".

Consent of contribution towards to the carrying out o

3 Pavement Condition Survey

In order to evaluate the existing road condition of the R755 a road condition survey was undertaken by WSP Ireland on 12th March 2009. The procedure and results of this survey are outlined below.

3.1 PROCEDURE FOR THE ROAD CONDITION SURVEY AND DATA COLLECTION

The method used to carry out the road condition survey was in compliance with NRA RC.337 "Guidelines on Inventory and Condition Rating of Regional and County Roads" by E. Mulkeen, June 1988.

As recommended within the above guidelines a two person team, consisting of two Engineers from WSP Ireland, travelled the route on foot on Thursday 12th March 2009 between the hours of 11:00 am and 3.00 pm, assessing and recording defects and taking the relevant measurements where appropriate. The route was also driven along several times in each direction to identify any other defects; i.e., surface degradation, overgrown foliage, tight corners etc.

The road network was then divided into different sections based upon the condition of the pavement. The full trafficked wight of each carriageway section was assessed. Areas off the carriageway, such as on-road parking were not considered within the survey.

For each of the above sections the following pavement defects were studied and recorded in intervals of 100 metres:

- Surface related defects: ravelling (loss of blacktop) and bleeding (fatting up).
- Structurally related surface defects: crocodile cracking, rutting >20mm. and rutting <20mm.
- Pavement edge deterioration: left and right hand sides.
- Stability of surface materials: slippage cracks and shoving.
- Stability of pavement or soil: heaving.
- Other pavement defects: Reflection cracking and potholes.

In addition other features of the road were assessed such as the sight lines and road signing and lining.

All substantial defects were recorded using a digital camera. These photographs are included in Appendix C, while Appendix B includes all the inspection sheets which show the data collected for all the defects listed above.

3.2 DATA PROCESSING

The data collected during the pavement condition survey is categorised for each section as follows:

- Yes/No responses which count number of defect instances.
- Percentage length over which the defect occurs.
- Percentage area over which the defect occurs.

For each of the defects an average figure for the road section is obtained. The rating of the road section is calculated by multiplying the incidence of each defect by a factor related to the difficulty of repairing that type of defect. The sum of defect incidences multiplied by the factors and divided by the length of the road gives the rating per metre length for each section. The higher the rating, the poorer the condition of the road.

To divide the road sections into condition categories the following threshold levels have been taken from the guidance documents:

- Good roads: Rating less than 1.
- Deficient roads: Rating between 1 and 3.
- Poor roads: Rating between 3 and 4.
- Bad roads: Rating greater than 4.

The factors used to calculate the difficultly of repairing a defect were obtained from RC 337.

- Factors per square metre:
 - Ravelling... 3.0
 - Bleeding... 1.5
- 2. Factors per metre run:
 - ■Crocodile cracking... 2.5
 - ■Rutting >20mm... 2.5
 - ■Rutting <20mm...1.5
 - Pavement edge deterioration...2.5
- 3. Factors per Yes/No responses:
 - Slippage cracks...2.5
 - Shoving...2.5
 - Heaving...2.5
 - Reflection cracking...1.0
 - Potholes... 0.5
 - Drainage maintenance...0.4
 - Drainage minor improvement...0.4

- Drainage major improvement...25.0
- Lines required...0.75

All the calculations required were processed in an Excel spreadsheet. The results are illustrated together with the inspection sheet data in Appendix B. An outline of the results obtained for each section is given in Section 3.3 below and full details of the results are contained Appendix B. As no defects were recorded from Chainage 3000m to Chainage 3660m (at the N11) the inspection sheet for this section has not been included.

3.3 RESULTS OF ROAD CONDITION SURVEY ALONG R755 FROM CALARY QUARRY TO N11 AT KILMACANOGUE

In general, the results of the pavement condition survey indicate that there are very few surface defects and that the road pavement is in a good condition for its entire length. This is to be expected as Wicklow County Council has recently undertaken extensive resurfacing works on the R755.

Notwithstanding the above, the Table 3.1 indicates some small localised defects which should be addressed. For Chainage locations refer to Drawings 0186-001-007 in Appendix A.

Location	Road	Pavement Defect	Photograph Reference (See Appendix C)
Ch 50m	R755	Drainage – needs minor improvement	50
Ch 300m	R755	Shoving	60
Ch 400m	R755	Drainage – needs maintenance	63
Ch 600m	R755	Road Edge Deterioration	68
Ch 650m	R755	Ravelling/Loss of Blacktop	70
Ch 700m	R755	Road Edge Deterioration	72
Ch 850m	R755	Crocodile Cracking	76
Ch 1100m	R755	Road Edge Deterioration	83
Ch 1350m	R755	Drainage – needs maintenance	89
Ch 1350m	R755	Drainage – needs maintenance	90
Ch 1400m	R755	Bleeding / Fatting Up	92
Ch 2150m	R755	Road Edge Deterioration	109
Ch 2150m	R755	Drainage needs maintenance	110
Ch 2150m	R755	Pothole round Gully	111
Ch 2200m	R755 💉	Road Edge Deterioration	112
Ch 2250m	R755150	Drainage – needs maintenance	116
Ch 2400m	R7550 1750 R755	Drainage – needs maintenance	120
Ch 2450m	₹755	Drainage – needs maintenance	121
Ch 2500m	R755	Inconsistent Road Layer Build Up	124
Ch 2700	R755	Road Edge Deterioration	131

Table 3.1 Location of surface defects on the R755 – N11 Road

4 Alignment Analysis

4.1 GENERAL

In response to Item Three of the Request for Further Information, this section of the report details a complete evaluation of the R755 Regional road from the quarry entrance to the N11, in terms of its carriageway width and it's vertical and horizontal alignment.

Following the design principles set out in the NRA's Road Geometry Handbook ref TD 9/00, the methodology for assessing the road is as follows:

- 1. Determine the design speed of the road based on the existing alignment and layout constraints.
- 2. Determine the visibility requirements for the road based on the calculated design speed
- 3. Identify areas of the road which do not satisfy the visibility requirements and determine appropriate remedial solutions

Prior to the commencement of the alignment evaluation, a full topographical survey was carried out on the R755 Regional Road between the quarry site entrance and the N11. Supported by on site inspections, this survey forms the basis of the evaluation of the road alignment. A road modelling software package was used to create a best fit replica of the roads' horizontal and vertical alignment. The full Horizontal and Vertical alignments for the R755 is illustrated in Drawings No 20010186-001 to 20010186-007 contained within Appendix A.

4.2 DESIGN SPEED OF THE ROAD

Whilst the general speed limit on all regional roads in the rural environment is 80km/h, the design speed of the road is a factor of the roads alignment and layout. A relatively straight alignment in flat country will generate higher speeds, and thus a higher design speed than a more sinuous alignment in hilly terrain.

The three factors which constraint the speed of vehicles on roads are its alignment, its layout and the mandatory speed limit. Following the standards set out in TD 9/00, 'Road Link Design', the design speed of the road can be derived from the relation of these three factors. The calculation of the design speed of the R755 from the quarry entrance to the N11 is detailed below:

4.2.1 Alignment Constraint

The alignment constraint (Ac),(NRA DMRB TD 9/00) is a measure of the bendiness and forward sight visibility of a road. For single carriageways the Alignment constraint is:

$$Ac = 12 - Visi/60 + 2B/45$$

where, B = Bendiness (total angle the road turns through), degrees/km;

and Visi = Harmonic Mean Visibility, m.

For the R755 from the quarry entrance to the N11, a distance of 3660metres, the Bendiness of the road is 236 degrees/km, whilst the Harmonic Mean visibility is 92.3m. This equates to an Alignment Constraint value of 21.

Layout Constraint

The layout constraint is a measure of constraint imparted by the road cross section, verge width and frequency of junctions and accesses. This is measured in km/h. Table 1 of TD 9/00, 'Road Link Design' lists Layout Constraint values based on the road type, the carriageway width, the degree of access and junctions, and the verge width. A copy of this table is contained in Appendix D.

With regards to the R755, the Road type is classified as S2 (Reduced or Standard Single Carriageway) and the mean carriageway width is in the region of 6.0 to 7.0metres. There are 25 entrances within the 3660metre length, giving a 'medium access numbering'. The average verge width between the quarry and the N11 is between 1.5metres to 3.0 metres. Given the above measurements, the Layout constraint value for the R755 is 28 km/h.

4.2.2 General Speed Limits

Whilst the Alignment Constraint and the Layout Constraint physically impress upon the speed at which motorists drive, the general speed limit provides a prohibitive constraint on the drivers speed. The general speed limit on this section of the R755 is 80kph.

4.2.3 Selection of Design Speed

Arising from the calculation of the above constraint factors, the design speed of the road can be derived from table 1 of 10 9/00, 'Road Link Design'. A copy of this table is contained in Appendix D. Given an Ac value of 21 and an Lc value of 28, the Design Speed of the R755 from the quarry entrance to the N11 is 70km/h.

4.3 VISIBILITY REQUIREMENTS

The design speed parameters relating to the various design speed bands are detailed in Table 3 of TD 9/00, 'Road Link Design'. A copy of this table is contained in Appendix D. On examination of this table it can be seen that the Desirable Minimum Stopping Sight Distance for a road with a 70km/h design speed is 120metres.

Relaxations below Desirable Minimum can be applied to the Stopping Sight Distance in specific circumstances at the designer's discretion. The maximum permissible relaxation for the Stopping Distance at two steps below the Desirable Minimum is 70 metres for a design speed of 70kph. Distances below this 70 metre distance are considered Departures from Standard.

4.4 GEOMETRIC ANALYSIS

Drawing No's 20010186-001 to 20010186-007 contained within Appendix A, indicate locations along the R755 where the Desirable Minimum Sight Distance of 120metres cannot be achieved. These drawings also indicate locations where the Stopping Sight Distance at two steps below desirable minimum of 70metres cannot be achieved. Table 4.1 below lists the locations at which the 120metre, Desirable Minimum Stopping Sight Distance cannot be achieved and Table 4.2 lists the locations at which the 70metres two steps below Desirable Minimum Stopping Sight Distance cannot be achieved. Each table lists the prevailing carriageway width along these sections. Table 1 Appendix E, lists the width of the R755 from the N11 to the quarry entrance at 75 metre intervals.

Location	Chainage	Length over which the 120metres: Desirable Minimum Stopping Sight Distances cannot be achieved:	Prevailing Road Width over this section (m)	Remarks
150m West of R755 Roundabout	150-300	150	7.6	
425m West of R755 Roundabout	425-730	305	7.0	
Series of Bends between R755 Roundabout and Junction with R760	775-1240	465	7.6	
Junction with R670	1500-1725	225	7.0	
Bend at Chainage 1810	1750-1875	125	6.5	
Bend at Chainage 2020	1950-2075	125	6.1	
Bend at Chainage 2200	2125-2240	115	6.2	
Bend at Chainage 2350	2260-2575	115 315 offer and the state of	6.1	At Chainage 2400 road narrows to between 5.7 and 6.0 metres for a distance of 27m
Bend at Chainage 2725	ور 2625-2820	195	6.1	
Bend at Chainage 3075	3000-3170	170	6.3	
100m South of Site Entrance	3460-3660	215	6.0	

Table 4.1 Locations at which the Desirable Minimum Stopping Sight Distance of 120metres cannot be achieved

Location	Chainage	Length over which the 70metres: two steps below Desirable Minimum (Maximum Relaxation) cannot be achieved	Prevailing Road Width over this section (m)	Remarks
Series of Bends	900-965	65	7.4	
between R755 Roundabout and	980-1075	95		
Junction with R760	1125-1175	50		
Bend at Chainage 2200	2180-2225	45	6.0	
Bend at Chainage 2725	2675-2775	50	6.1	
Bend at Chainage 3075	3030-3125	95	6.5	

Table 4.2 Locations at which the Two Steps Below Desirable Minimum Stopping Sight Distance of 70metres cannot be achieved.

4.5 REMEDIAL SOLUTIONS

The above tables indicates a number of sections along the route where the stopping sight distances and horizontal alignment are sub standard for a road with a design speed of 70km/h. At locations where the stopping sight distances are sub standard but the prevailing width of the road is greater than 6.0metres no widening or realignment measures are proposed as sufficient road width exists for the safe passage of commercial and local traffic. Notwithstanding this, mitigation measures such as the erection of chevron signage at bends can be implemented.

At locations where the stopping sight distance cannot be achieved and the prevailing road width is less than 6.0metres, it is recommended that the road be locally widened to achieve satisfactory road widths. It can be seen from examination of Drawing 20010186/005 and the above table that this occurs at Chainage 2400 where the road narrows briefly to between 5.7 and 6.0 metres for a distance of approximately 27 metres. In order to insure quarry traffic can pass at this point and in the interest of increased safety along the road, this short section should be widened to 6 metres if sufficient lands are available.

The above assessment for calculating the design speed of the road and the associated alignment and sight distance parameters is based on the NRA requirements for new road design. With regards to the existing alignment deficiencies of the road, it is evident that these are in the main created by the necessity for the road to integrate with the existing topography. To provide improvements at all these locations would necessitate improvements to the mainline horizontal alignment of the road to such an extent that it would require significant earthworks and land acquisition.

As this planning application is for an extension to the existing quarry operation it is considered that the areas which would need to be addressed are where the road is too narrow to accommodate the safe passage of local and quarry traffic. The provision of such improvements would be sufficient and wholly appropriate for the safe and proper operation of the Calary Quarry traffic and indeed all road users on the R755.

Whilst the remaining areas may benefit from the realignment of the road, the benefit would primarily be to the net journey time for all road users and would need to be undertaken as part of a realistic improvement strategy for the entire length of the R755.

5 Mitigation Measures

As outlined within this report there are a number of mitigation measures which could be adopted along the length of the R755 to improve the safety of road users.

5.1.1 Localised widening

At locations where the requisite forward sight visibility cannot be achieved and the width of the road is insufficient for the safe passage of quarry traffic, localised road widening should be undertaken. This occurs at chainage 2400 as outlined within Section 4.5 of this report.

5.1.2 Repairs to Localised Pavement defects

Whilst the pavement of the R755 from the site entrance to the N11 is in good condition, a small number of localised pavement defects have been identified in Table 3.1 which could be repaired.

5.1.3 Signs

Strategically placed signage could be placed at the approaches to sharp bends and concealed junctions to improve driver awareness of the potential danger of slow moving traffic.

5.1.4 Trimming of Vegetation

Regular trimming of vegetation at bends which impede driver visibility will help improve stopping sight distances and road safety in general.

6 Costs

6.1.1 Improvements to the R755

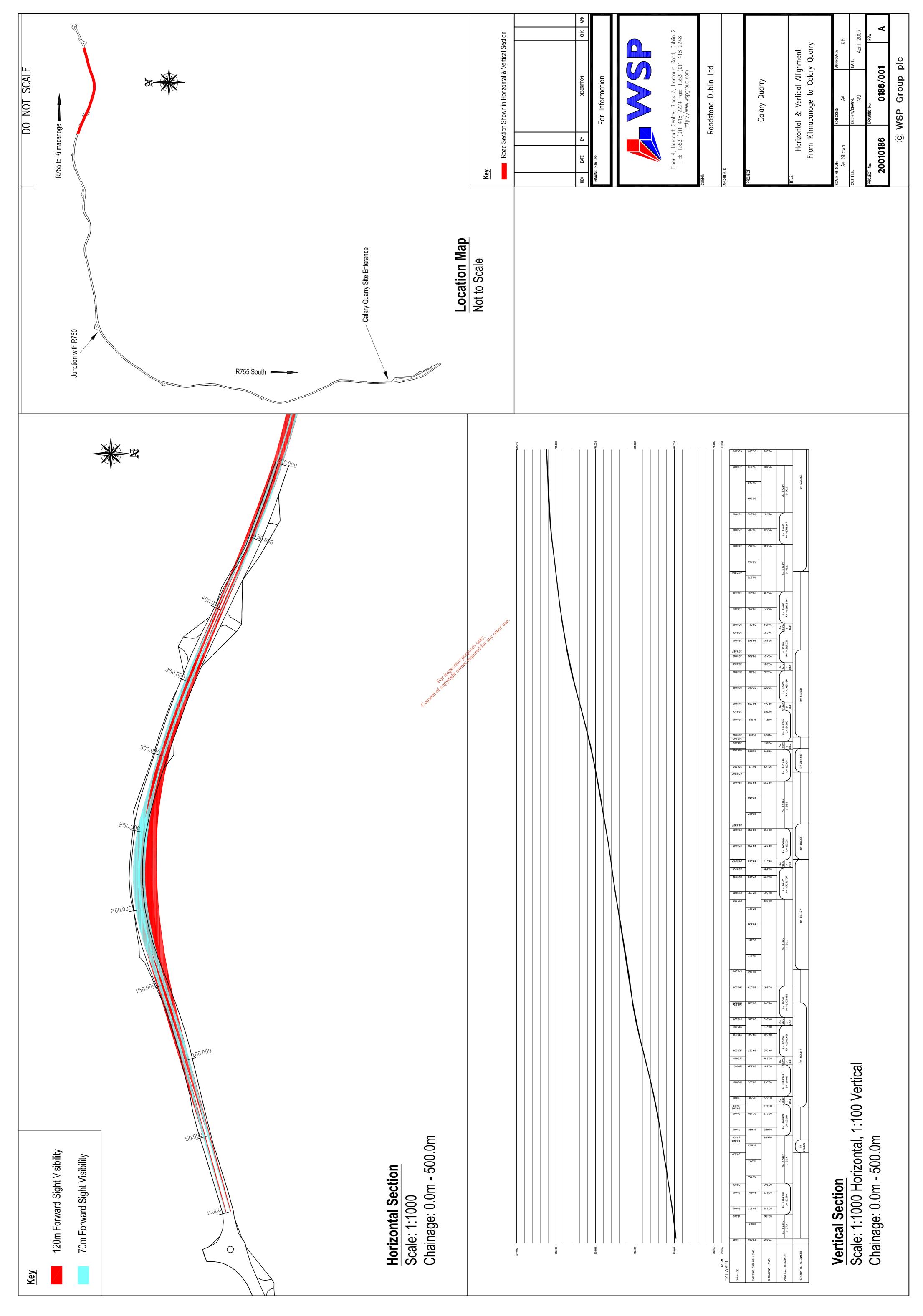
Roadstone Dublin Ltd is willing to make a reasonable financial contribution in the form of a Special Contribution for the improvements to the section of the R755 as detailed within Section 5 of this report. The amount of this financial contribution would be in direct proportion of the traffic generated by the quarry in relation to the total volume of traffic on this section of the R755, and would be agreed with the Roads Section, Wicklow Co. Council.

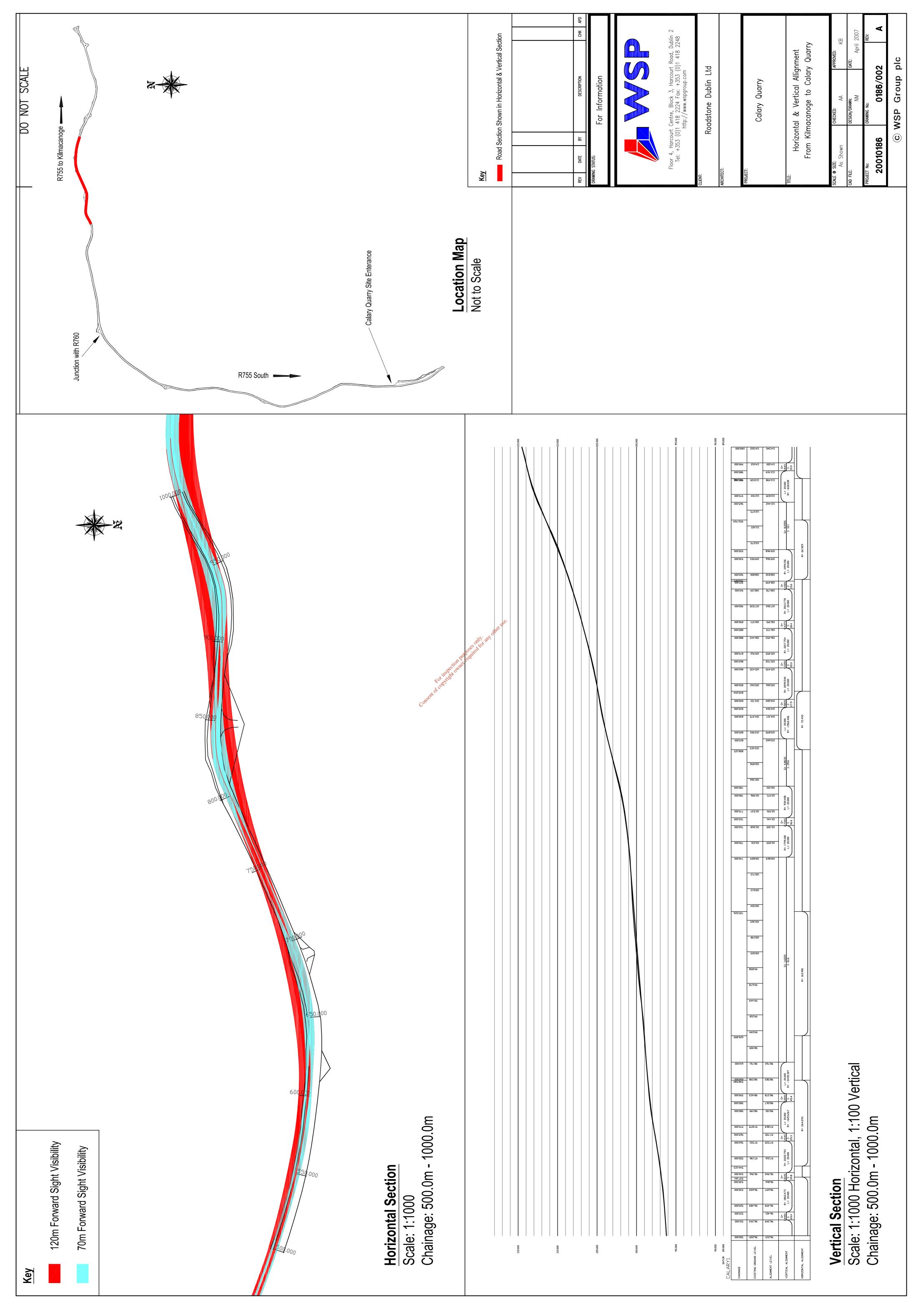
7 Conclusion

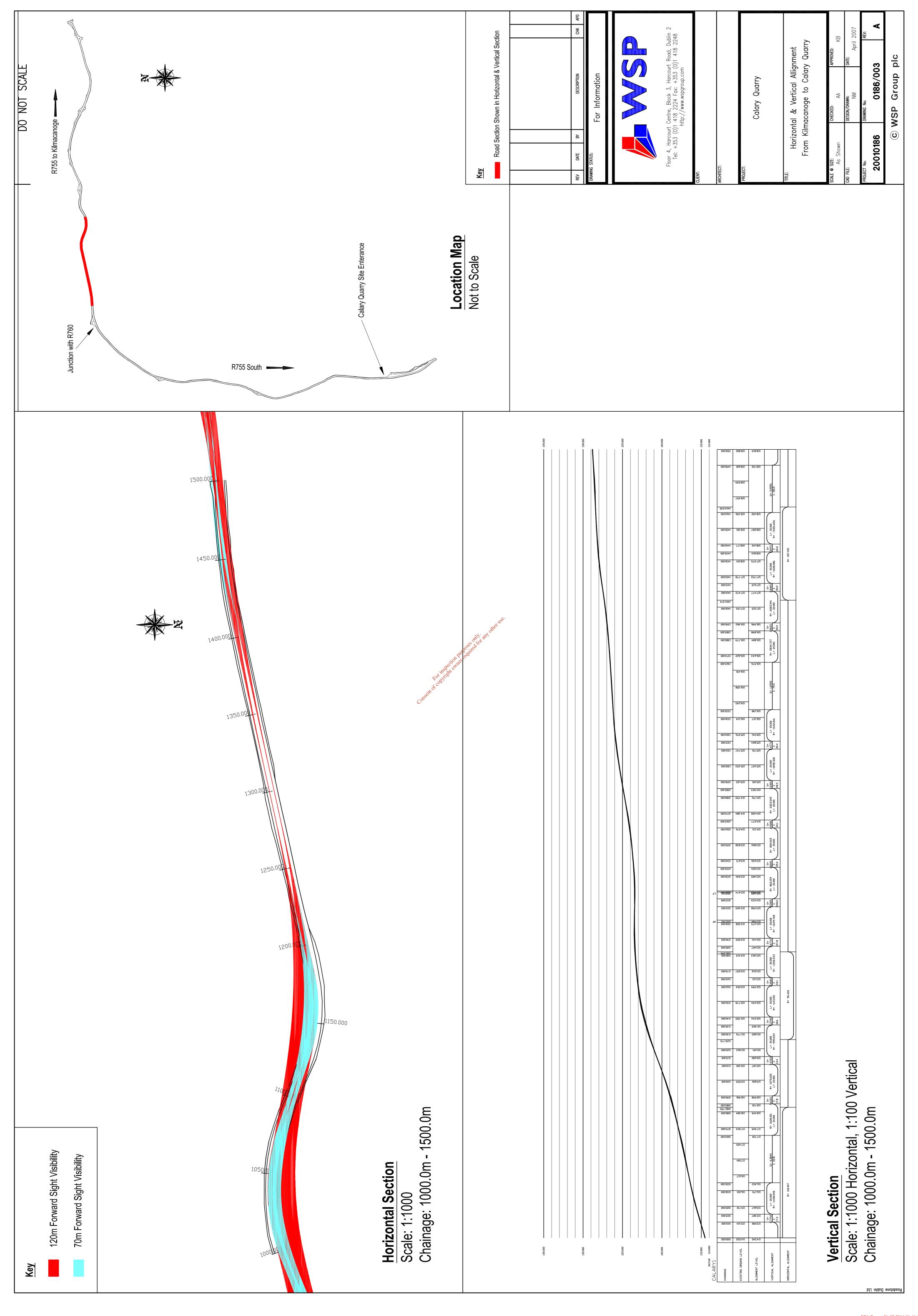
The main conclusions of this report are summarised as follows:

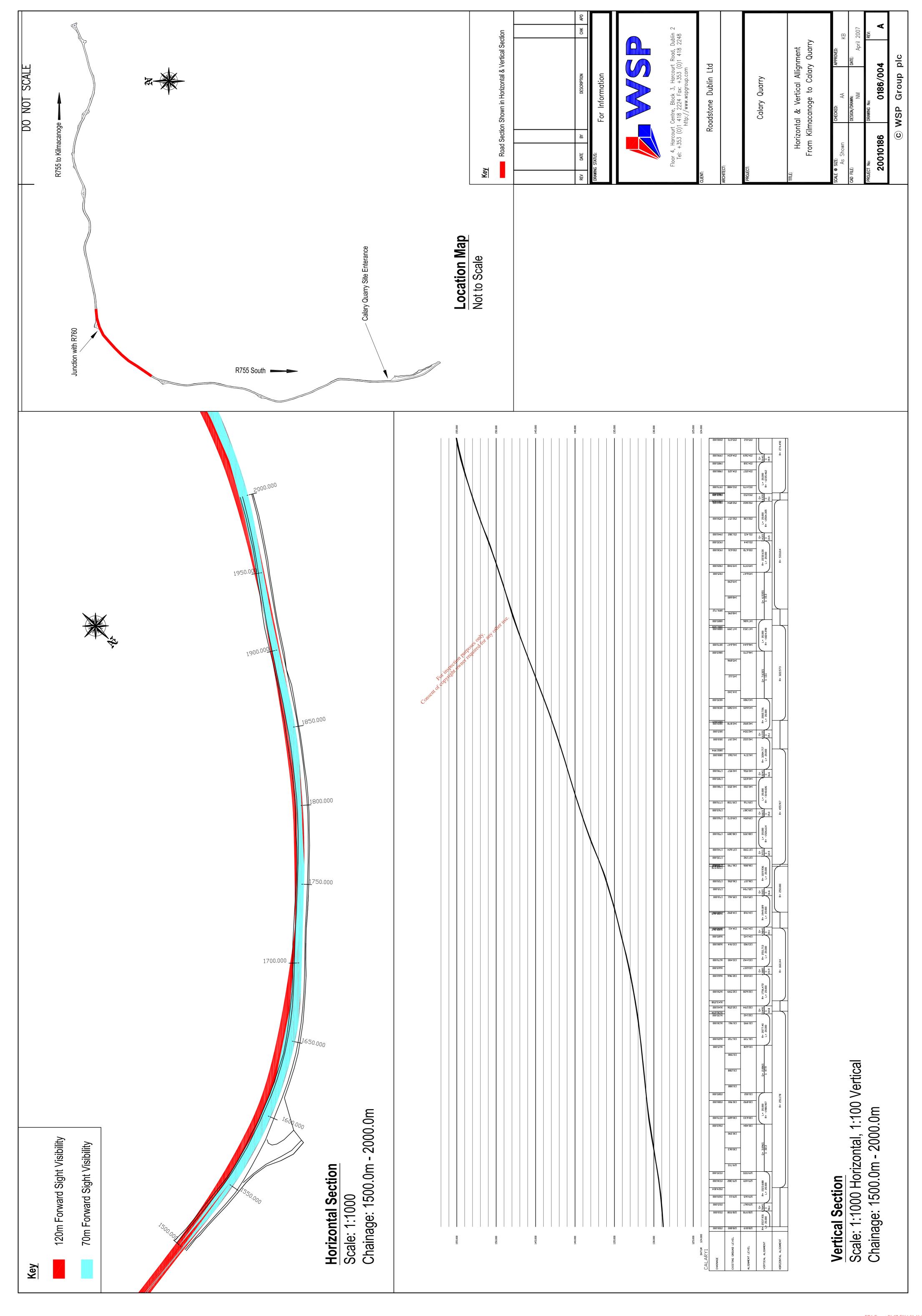
R755 Regional Road Conditions

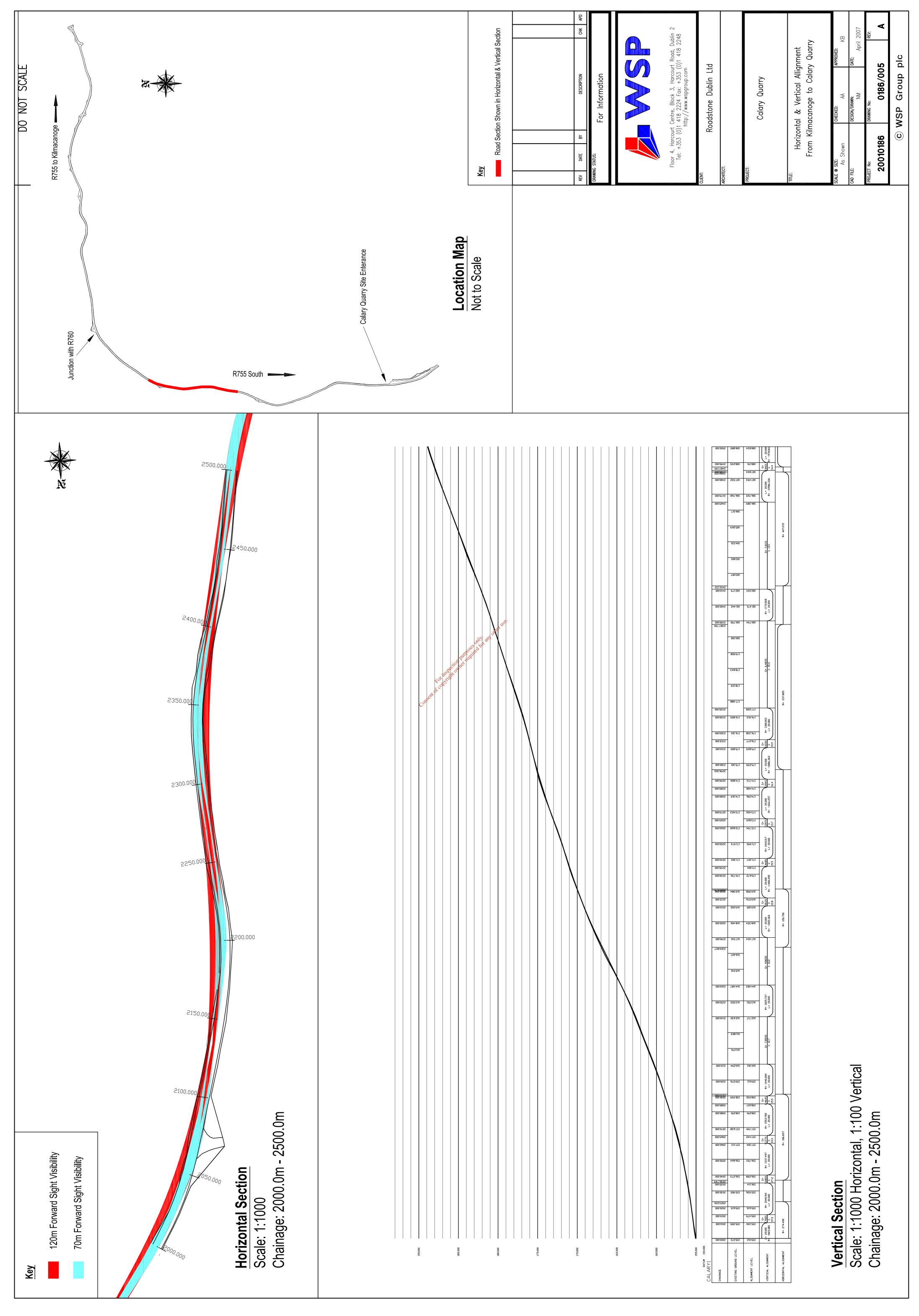
- A pavement condition survey was undertaken along the R755 from the quarry entrance to the N11 junction at Kilmacanogue. In general, the results of the pavement condition survey indicate that there are very few surface defects and that the road pavement is in a good condition for its entire length.
- A comprehensive assessment of the vertical and horizontal alignment of the R755 has been undertaken. At the location (Chainage 2,400) where the 70 metre stopping sight distance cannot be achieved and the prevailing road width is less than 6.0metres, it is recommended that the road be locally widened to achieve satisfactory road width.
- A number of mitigation measures have been recommended on the R755 to improve the safety of road users. These measures include localised widening, repairs to localised pavement defects, erection of signs and trimming of roadside vegetation.
- Roadstone Dublin Ltd is willing to make a reasonable financial contribution under item 4.7 of the Wicklow Development Contribution Scheme for the localized widening or other repairs to the R755 from the quarry entrance to the N11 at Kilmacanogue as outlined in this report. This financial contribution would be in direct proportion to the traffic generated by the quarry in relation to the total volume of traffic on this section of the R755.

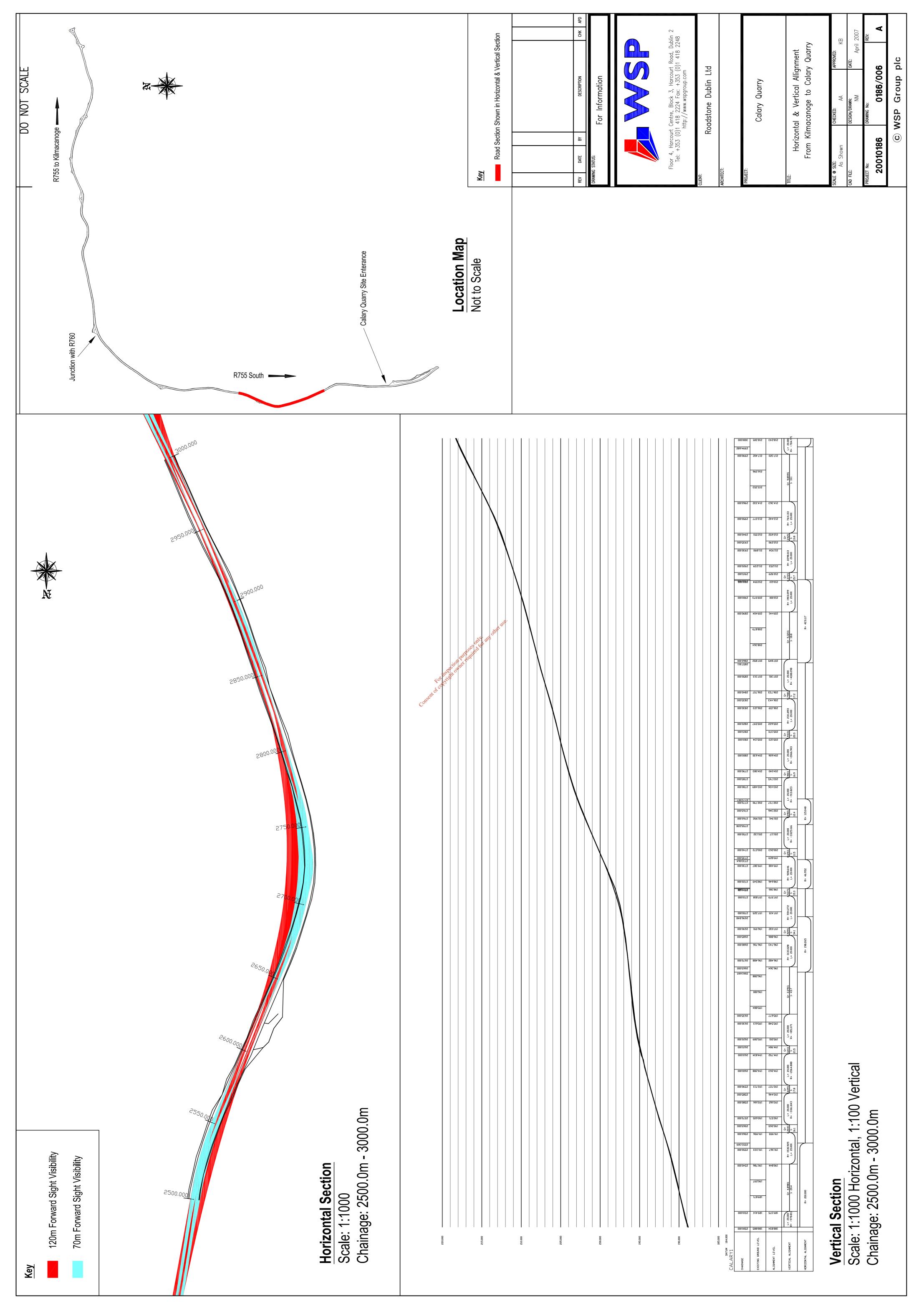

Appendices, Figures & Tables

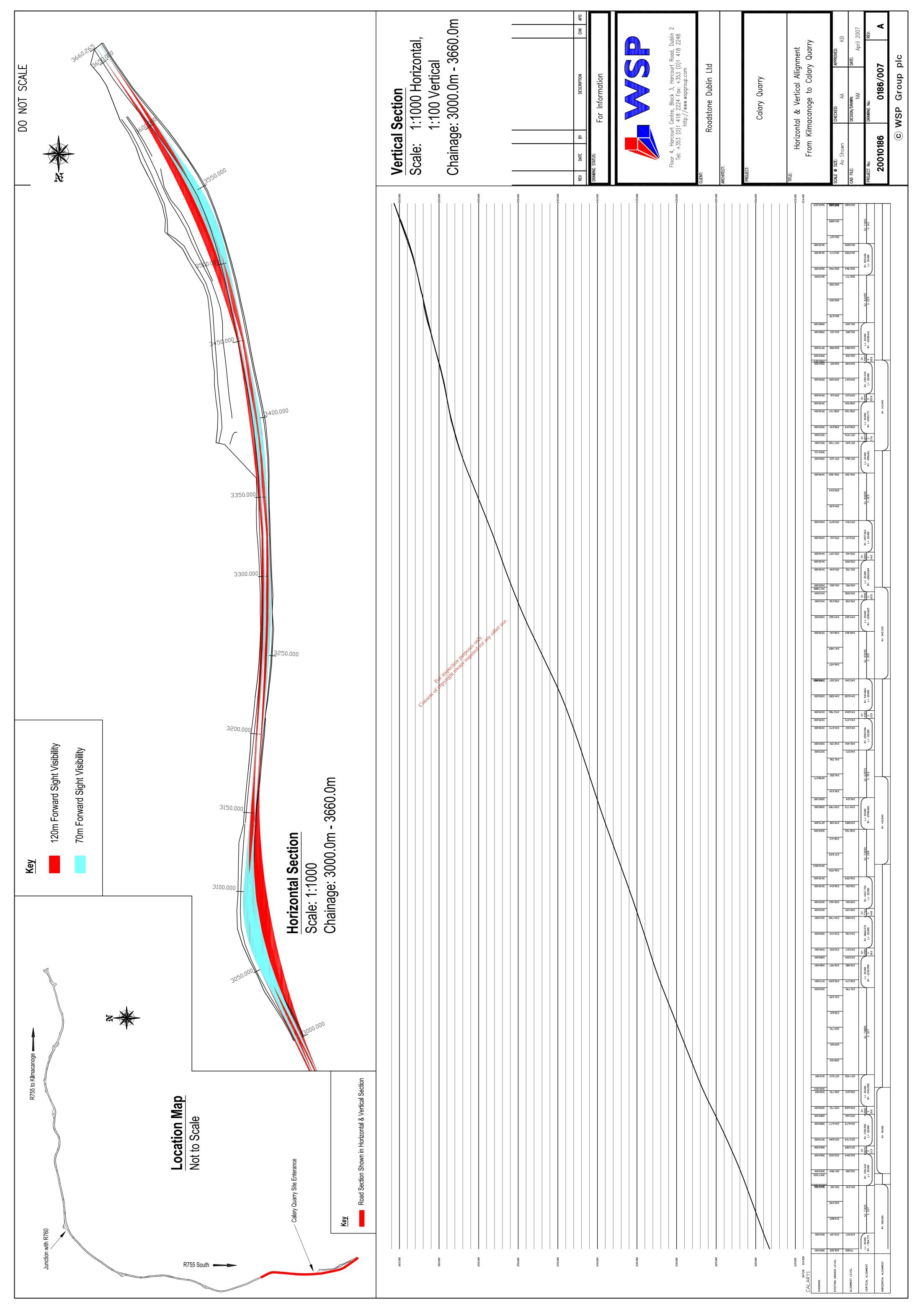

Appendices, Figures & Tables


Expringent purposes and for any business and the consent of confining to the confining to the



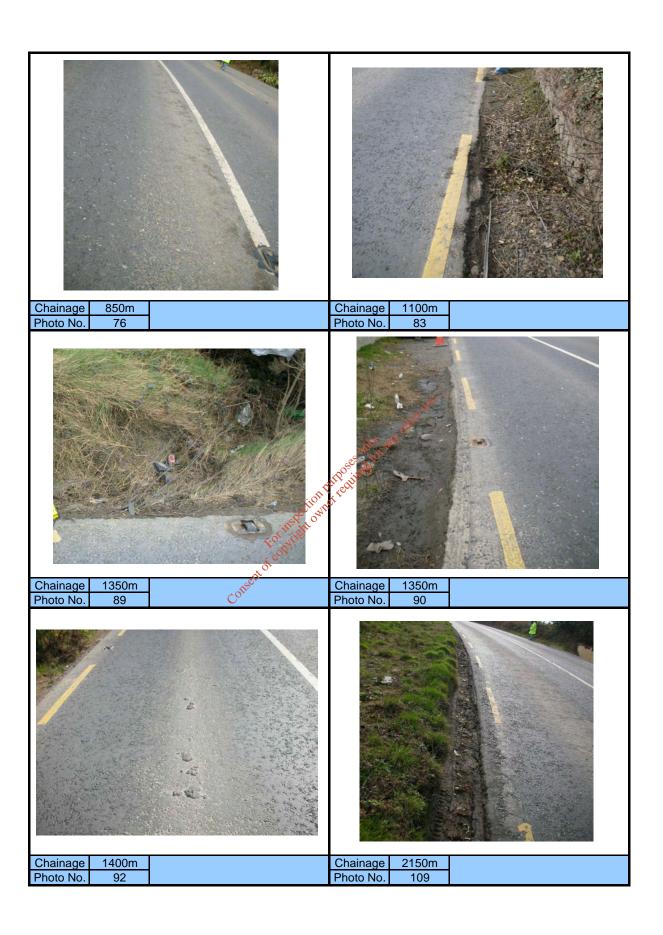

Appendix A Drawings and Mapping



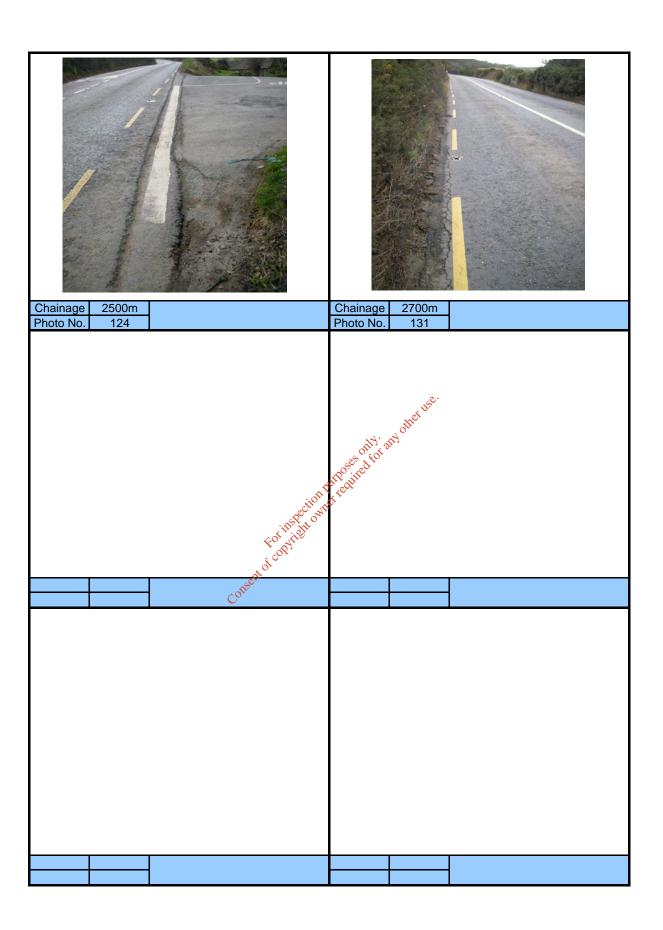


Appendix B Pavement Condition Details

Road No	R755	Starting at:	Chainage	0m	
Inspection Date	12/03/2009	Finishing at:	Chainage	1500m	


	Chainage (metres)	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950 1	000 1	050 11	00 115	0 1200	1250	1300	1350	1400	1450	1500	No. Yes	No. Sections	% Length Affected	Road Rating Calculation	
aht lines	Need Minor Improvement Yes/No	No	No I	No I	No N	o No	No No	No	No	No	No	No	No	(30	0																			
ignt lines	Need Major Improvement Yes/No	No	No I	No I	No N	o No	No No	No	No	No	No	No	No	(30	0																			
V	Vidth of carriageway (m)	7	7	7.3	7.2	7.1	8.5	8.7	8.8	6.6	6.8	6.9	7.3	7.3	7.3	6.7	7.6	8.6	7.3	7.4	7.6	7.9 7.	6 7.2	6.9	7	7.1	6.8	6.8	6.7	6.8	Average \	Width	7.33		
	Surfacing Type																																		
Surface	Loss of chippings (% area)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0			0.00	0	
Related	Ravelling / Lost of Blacktop (% area)	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0		% Areas Total	0.07	21.9	
Defects	Bleeding/Fatting up (% area)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	2	0	0			0.06		
ructurally	Cocodrile cracking (% lenght)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	70	0	0	0	0 0	0	0	0	0	0	0	0	0		% Length	2.33	87.5	
Related Surface	Rutting >20mm (% lenght)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0		% Length Total	0		
Defects	Rutting <20mm (% lenght)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0			0		
avement	LHS (% length)	0	0	0	0	0	0	0	0	0	0	0	10	0	10	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0			0.67	25	
Edge terioration	RHS (% length)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1) 0	0	0	0	0	0	0	5		% Length Total	0.33	12.5	
ability of	Slipagge cracks Yes/No	No	No I	No I	No N	o No	No.	No	No	No	No	No	No	(30	0																			
surface naterials	Shoving Yes/No	No	No	No	No	No	Yes	No	No I	No I	No N	o No	No.	No	No	No	No	No	No	1	30	3.33													
tability of	Heaving Yes/No	No	No I	No I	No N	o No	No.	No	No	No	No	No	No	(30	0	0																		
vement or																																			
soil Other	Reflection cracking Yes/No	No	No I	No I	No N	o No	No.	No	No	No	No	No	No		30	0																			
avement Defects	Potholes	No	No I	No I	No N	o No	No.	No	No	No	No	No	No		30	0	0																		
Delecto	Need Maintenance Yes/No	No	Yes	No	No I	No I	No N	o No	No.	No	NoC	* Yes	No	No	No		30	6.67	•																
Drainage	Need Minor Improvement Yes/No	Yes	No		_	No N			No	No	No	No	No	No	1	30	3.33	20																	
	Need Major Improvement Yes/No	No	No I	No I	No N	o No	No.	No	No	No	No	No	No		30	0.00	0																		
	Need Minor Improvement Yes/No	No	No I	No I	No N	o No	No.	No	No	No	No	No	No		30	0	•																		
oad Signs	Need Major Improvement Yes/No	No		No			No N	_		~		No	No	No	No		30	0																	
	Lines - poor condition Yes/No	No		No		No			No N	0_1N0		No		No	No	No	No		. 20	0	0														
oad Lines	Lines required Yes/No	No	-	No	No	No	No	No	_	No	_	No	No	No	No	No	No					No N	CV.	4			No	No		No		, 30	0	0	
elineator	Need Minor Improvement Yes/No	No		No			No_45N			No		No	No	No	No		, 30	0	Ü																
posts	Need Major Improvement Yes/No	No	_	No		No		No .d	®.™	N		_		No	No	No	No		, 30	0		Ratings													
•	nood major mprovement 163/10	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	0							- 33	× 10	- 1 144	, 140	1 140	140	0				,	30	0		Good=
																				6	V.	SON,												Rating 0.111267	Deficient=: Poor=

Road No	R755	Starting at:	Chainage	1550	m
Inspection Date	12/03/2009	Finishing at:	Chainage	3000	m


	Chainage (metres)	1550	1600	1650	1700	1750	1800	1850	1900	1950	2000	2050	2100	2150 2	200 2	250	2300	2350	2400	2450 25	00 255	0 2600	2650	2700	2750	2800	2850	2900 2	950 3	000	No. Yes No. Section	s % Length Affected	Road Rating Calculation	
Sight lines	Need Minor Improvement Yes/No	No	No I	No	No	No	No	No	No N	lo No	No	No	No	No	No	No	No I	No I	No	0	0 0													
Signt lines	Need Major Improvement Yes/No	No	No I	No	No	No	No	No	No N	lo No	No	No	No	No	No	No	No I	No I	No	0	0 0													
1	Vidth of carriageway (m)	7.5	8.2	6.9	6.5	6.2	6.5	6.5	6.5	6.1	6.2	6.2	6.6	6.3	5.9	6.1	6.1	6.1	5.7	5.9 6	.2 6.5	6.3	6.2	6.1	6.1	6.1	6.2	6.4	6.5	6 A	verage Width	6.35		
	Surfacing Type																																	
Surface	Loss of chippings (% area)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0		0.00	0	
Related	Ravelling / Lost of Blacktop (% area)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	% Areas To	al 0.00	0	
Defects	Bleeding/Fatting up (% area)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	2	0	0		0.07		
Structurally	Cocodrile cracking (% lenght)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	% Length	0	0	
Related Surface	Rutting >20mm (% lenght)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	Total	0		
Defects	Rutting <20mm (% lenght)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0	0	0	0	0	0	0	0	0		0		
Pavement Edge	LHS (% length)	0	0	10	0	5	0	0	0	0	0	0	0	10	2	5	0	0	0	0 (0 0	0	20	0	0	0	0	0	0	0	% Length	1.33	50	
deterioration	RHS (% length)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0 (0 0	0	0	20	0	0	10	0	0	5	Total	1.33	50	
Stability of surface	Slipagge cracks Yes/No	No	No I	No	No	No	No	No	No N	lo No	No	No	No	No	No	No	No I	No I	No	0	0													
materials	Shoving Yes/No	No	No I	No	No	No	No	No	No N	lo No	No	No	No	No	No	No	No I	No I	No	0	0													
Stability of pavement or	Heaving Yes/No	No	No I	No	No	No	No	No	No N	lo No	No	No	No	No	No	No	No I	No I	No	0	0	0												
Soil Other Pavement	Reflection cracking Yes/No	No	No	No	No	No	No	No N	lo No	No	No	No	No	No	No	No I	No I	No	0	0 0	Ī													
Defects	Potholes	No	Yes	No	No	No	No	No	No N	lo No	No	No	No	No	No	No	No I	No I	No	1	0 3.33	75												
	Need Maintenance Yes/No	No	Yes	No '	Yes	No	No	Yes	Yes N	lo No	No	No	No	No	Noc	* No	No I	No I	No	4	0 13.33													
Drainage	Need Minor Improvement Yes/No	No	No I	No	No	No	No	No	No N	lo No	No	No	No	No	Wo	No	No I	No I	No	0	0	0												
	Need Major Improvement Yes/No	No	No I	No	No	No	No	No	No N	lo No	No	No	No	Me	No	No	No I	No I	No	0	0	0												
Road Signs	Need Minor Improvement Yes/No	No	No I	No	No	No	No	No	No N	lo No	No	No	No	ONo	No	No	No I	No I	No	0	0													
Hoad Signs	Need Major Improvement Yes/No	No	No I	No	No	No	No	No	No N	lo No	No	No	ND	No	No	No	No I	No I	No	0	0													
Road Lines	Lines - poor condition Yes/No	No	No I	No	No	No	No	No	No N	lo No	No	No	. Wo	No	No	No	No I	No I	No	0	0	0												
Hoad Lilles	Lines required Yes/No	No	No I	No	No	No	No	No	No N	lo No	No	NO.	No	No	No	No	No I	No I	No	0	0	0												
Delineator	Need Minor Improvement Yes/No	No	No I	No	No	No	No	No	No N	lo No	S No	No	No	No	No	No	No I	No I	No	0	0 0													
posts	Need Major Improvement Yes/No	No	No I	No	No	No	No	No	No N	lo 🚜	No	No	No	No	No	No	No I	No I	No	0	0 0	1	Ratings											
																				ioi	Pill	SOL											Rating 0.116667	Good= <1 Deficient= >1 & <3 Poor= >3

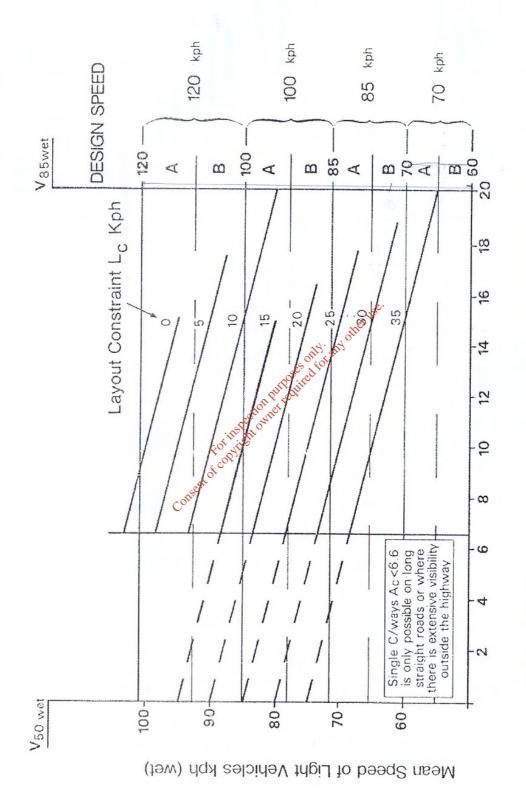
Appendix C Pavement Condition Photographs

Appendix D NRA Tables

Road Type				S2			W	WS2	,1	D2AP		D3	D3AP	D2M	M	D3M
Carriageway Width (ex. hard strips)		6m	7.(7.0m	7.3m	3m	10	10m	Dual 7.0m		Dual 7.5m	D ₁ 0.5	Dual 10.5m or 11.25m	Dual 7.0m	Dual 7.5m	Dual 10.5m or 11.25m
Degree of Access and Junctions	Н	M	M	Г	Corre	L) gent of G	M	Г	M	J	M	L	Т	L	Г	П
With hard shoulders					21	10 Opyris	inspectory of	15	10	6	∞	7	5	5	4	0
Without hard shoulders:	houlde	TS:					it is colding	ooses only								
With 3.0m Verge	(29)	(26)	25	23	(23)	(21)	(19)	(19) (19) (17) (19) (19) (19) (19) (19) (19) (19) (19	(12)		(11) (10) (9) (6)	6	(9)			
With 1.5m Verge	(31)	(28)	(27)	(25)	(25)	(23)	O: No	(23) (): Non-standard cross-section	ard cro	ss-secti	on					
With 0.5m Verge	(33)	(30)	E y s	There is no research data available for 4 lane Single Carriageway roads between 12 a width (S4). In the limited circumstances for their use described in this document, Designould be estimated assuming a normal D2AP with a Layout Constraint of 15 - 13km/h	no rese 4). In the e estima	arch da te limite ted assu	ta availa ed circur iming a	ible for nstances normal I	4 lane s for the D2AP	Single eir use with a	Carria descril Layout	agewa bed ir Con	ty roac this d	ls betwoocumer	een 12 nt, Desig 13km/h	There is no research data available for 4 lane Single Carriageway roads between 12 and 15m width (S4). In the limited circumstances for their use described in this document, Design Speed should be estimated assuming a normal D2AP with a Layout Constraint of 15 - 13km/h

Table 1: Layout Constraint, Lc km/h

DESIGN SPEED (km/h)	120	100	85	70	09	50	V^2/R
STOPPING SIGHT DISTANCE m							
Desirable Minimum	295	215	160	120	90	70	
One Step below Desirable Minimum	215	160	120	06	70	50	
Two Steps below Desirable Minimum	160	120	06	70	20	50	
HORIZONTAL CURVATURE m							
Minimum R* without elimination of Adverse Camber and							
Transitions	2880	2040		1020	720	510	5
Minimum R* with Superelevation of 2.5%	2040	1440	1020	720	510	360	7.07
Minimum R with Superelevation of 3.5%	1440	1020		510	360	255	10
Desirable Minimum R with Superelevation of 5%	1020	720		360	255	180	14.14
One Step below Desirable Min R with Superele Agion of 7%	720	510		255	180	127	20
Two Steps below Desirable Min R with Superelevation of 7%	510	360		180	127	06	28.28
٠ ٢ ٢							
VERTICAL CURVATURE - CREST							
Desirable Minimum* Crest K Value	182	100		30	17	10	
One Step below Desirable Min Crest K Value	100	55	30	17	10	6.5	
Two Steps below Desirable Min Crest K Value	100 Ses	30		10	6.5	6.5	
VERTICAL CURVATURE - SAG	of joi						
Desirable Minimum Sag K Value	S. C.	37		20	13	6	
One Step below Desirable Min Sag K Value	37	official Septic	20	13	6	6.5	
Two Steps below Desirable Min Sag K Value	26	14 5 20	13	6	6.5	6.5	
OVERTAKING SIGHT DISTANCES							
Full Overtaking Sight Distance FOSD m	NIA	280	400	710	215	000	
FOSD Overtaking Creet K Value	VIN	700	205	200	145	100	
Topic of the state	TANI	400	607	7007	741	100	


Notes

* Not to be used in the design of single carriageways (see Paragraphs 7.25 to 7.30)

The V²/R values simply represent a convenient means of identifying the relative levels of design parameters, irrespective of Design Speed.

K Value = Curve length divided by algebraic change of gradient %. See Paragraph 4.5.

Table 3: Design Speed Related Parameters

Single C/ways=12-ViSI/60+ 2B/45 ALIGNMENT CONSTRAINT Ac kph for Dual C/ways=6.6+B/10

Figure 1: Selection of Design Speed (Rural Roads)

Appendix E R755 Road widths

Appendix E R755 Road Widths

Chainage (m)	Road Width (m)
0.0	7.0
75.0	7.0
150.0	7.3
225.0	7.1
300.0	8.5
375.0	8.8
450.0	6.6
525.0	6.9
600.0	7.3
675.0	7.3
750.0	6.7
825.0	8.6
900.0	7.3
975.0	7.6
1050.0	7.9
1125.0	7.2
1200.0	6.9
1275.0	7.1
1350.0	6.8
1425.0	6.7
1500.0	6.8
1575.0	8.2
1650.0	6.9
1725.0	6.2
1800.0	6.9 6.2 6.5

Chainage (m)	Road Width (m)
1875.0	6.5
1950.0	6.1
2025.0	6.2
2100.0	6.6
2175.0	5.9
2250.0	6.1
2325.0	6.1
2400.0	5.70
2475.0	6.2
2550.0	6.5
2625.0	6.2
2700.0	6.1
2775.0	6.1
2850.0	6.2
2925.0	6.5
3000.0	6.0
30 7 5.0	7.0
<u>3</u> . 3150.0	6.0
on 3225.0	6.0
3300.0	6.0
3375.0	6.8
3450.0	6.2
3525.0	6.1
3600.0	6.00
3675.0	6.00

Table E.1: Road Widths along the R755

Note: Chainage runs from 115m after the Roundabout at the N11 towards the quarry to an end chainage of 3675m.