TRAFFIC AND TRANSPORTATION 13

CONTENTS

INTRODUCTION 1
Background 1
Existing Development and Location 1
Proposed Development 1
Methodology 1
Consultations 2
THE EXISTING ENVIRONMENT 2
Existing Road Network 2
Existing Traffic Conditions 3
Site Access / Sightlines 4
Road Condition and Geometric Assessment 5
TRAFFIC IMPACT OF THE PROPOSED DEVELOPMENT 6
Development Trip Generation 6
Road Safety 6
Traffic Distribution and Route Assignment 7
PROPOSED MITIGATION MEASURES 7
Conclusion 8

FIGURES

Figure 13.1 Traffic Route/Traffic Survey Locationt
Figure 13.2 Route to N11 from R755
Figure 13.3 Sight Access Sightline Improvernents

APPENDICES

Appendix 13A - Traffic Survey Dåta 2015 and 2007
Appendix 13B - R755 Pavemeñt Condition Survey and Geometric Alignment Report

INTRODUCTION

Background

13.1 This Chapter of the EIS deals with vehicular traffic. It presents an assessment of the expected impact of development related traffic and of the ability of the existing public road network to accommodate the worst-case increase in traffic volumes. NRB Consulting Engineers and SLR Consulting Ireland jointly carried out the required baseline studies and the subsequent transportation impact assessment.

Existing Development and Location

13.2 The application site is a former busy quarry. Activity at the quarry was suspended in 2010 in response to the downturn in the construction industry at the time. In its previous incarnation, the site had long established vehicle and traffic generation characteristics.
13.3 The site is located approximately 7 km from the centre of Bray, on the western flank of the Great Sugar Loaf. It is located along the R755 Regional Road, approximately 3.8 km west of its junction with the N 11 dual carriageway at Kilmacanogue, as shown on Figure 13.1.

Proposed Development

13.4 The proposed development comirises restoration of a quarry void by backfilling to former ground leversing imported inert soil and stones and reestablishing a heathland / grassiland habitat, similar to that which existed prior to quarrying. The proposed development is technically classified as a waste recovery activity and will entâil importation of approximately 3,280,000 tonnes of material by road over an expected minimum operating life of 12 years.
13.5 For the purposes of thils impact assessment, it is assumed that developmentrelated traffic will be generated at the application site for 50 weeks in a working year, over a 5.5 day working week and 10 -hour working day.
13.6 The assumption of a shorter duration, minimum 12 year operation, ensures a robust and onerous assessment of traffic and transport related impacts generated by the proposed development.

Methodology

13.7 NRB Consulting Engineers undertook an appraisal of the existing roads infrastructure based on a visual assessment of the road alignment and structure, and through the use of available topographical and Ordnance Survey mapping.
13.8 An All-Day classified traffic survey of the existing R755 Regional Road at the application site was undertaken in February 2015 in order to establish and validate traffic data obtained from previous surveys. This included a radar speed survey of ambient traffic speeds at the application site in order to establish the current 85% ile passing traffic speed at the site.
13.9 Traffic associated with the development has been assessed based on the anticipated backfilling rate and operational life of the facility. The maximumexpected traffic arising was then assigned to the road network and the ability of

TRAFFIC AND TRANSPORTATION 13

the roads to accommodate these traffic levels, in terms of capacity and road safety was then assessed.
13.10 A comprehensive and complete geometric evaluation of the full length of the Regional Road from the application site to the N11 National Primary Road was undertaken and has been presented herein.

Consultations

13.11 In preparing this EIS Chapter, regard was had to consultations undertaken previously in respect of other development proposals (specifically the planned quarry extension, Planning Ref 06/6189) with the following :

- Wicklow County Council (Roads Section), County Buildings, Wicklow Town;
- Wicklow County Council (Area Engineer) - County Buildings, Greystones.

Informal consultations were also had (via email) specifically in respect of this development proposal with officials from Wicklow County Council Planning Department in June / July 2015.

THE EXISTING ENVIRONMENT

Existing Road Network

13.12 The application site is located approximately 7 km from the centre of Bray. It lies on the eastern side of the R755 Regional Road, approximately 3.8 km west of its junction N11 dual carriageway at Kilmacanogue.
13.13 The N11 Dublin-Wexford Nationaf Primary Road constitutes the main arterial road in the area. It leaves Bublin from the southeast, bypasses to the west of Bray and continues south getween the Great Sugarloaf to the west and the Little Sugarloaf to the east.
13.14 In 2004, the junction of the R755 Regional Road with the N11 was upgraded to provide an overbridge for traffic turning right onto and off the southbound carriageway, and at-grade merge / demerge lanes for traffic turning left onto and off the northbound carriageway. The current configuration of the junction is shown on an aerial photograph in Figure 13.2.
13.15 The R755 Regional Road commences at Kilmacanogue at the N11 junction and proceeds west and then south passing the Great Sugar Loaf Mountain on its western flank. From there, it continues south onwards toward Roundwood and then to Laragh.
13.16 The R760 Regional Road is the main route south from Enniskerry village. It continues south and then east where it terminates at the R755 at Rocky Valley, approximately 2.1 km to the north of the application site. It is the primary access route to both Powerscourt House and Powerscourt Waterfall, two of the leading tourist attractions in north County Wicklow.
13.17 Finally, there is a minor county road which branches south from the R760 approximately 0.7 km west of its intersection with the R755. This road continues south over Long Hill, past Powerscourt Paddock, Glasnomullen and on to a T-junction with the R759 Regional Road crossing the Wicklow Mountains National Park. The configuration of the local road network around the application site is shown on the extract from the 1:50,000 scale Discovery Series map of the area, reproduced in Figure 13.1.

TRAFFIC AND TRANSPORTATION 13

Accident Records

13.18 The Road Safety Authority (RSA) maintains a database of recorded accidents on Irish roads. The RSA database for the period 2005 to date (the period for which information is readily available) at www.rsa.ie/RSA/Road-Safety/Our-Research/Collision-Statistics/Ireland-Road-Collisions) reveals that the R755 Regional Road has had a total of 6 minor accidents (i.e. zero reported fatal vehicle accidents) along the entire affected length during this period. This data would suggest that the existing road geometry along the R755 does not present any significant safety concerns.

Existing Traffic Conditions

National Primary Roads

13.19 The only National Primary Route in the immediate vicinity of the application site is the N11 Dublin-Wexford Road. Traffic flow information for the N11 at Kilmacanogue was obtained from Transport Infrastructure Ireland, TII (formerly the National Roads Authority, NRA) and is summarised in Table 13.1 below;-

Table 13.1
Traffic Flow on the N11 at Kilmacanogoe (Source NRA)

Year	AADT	\%HGV	Toxal No. HGV	Other Vehicles
2015	47,984	3.0	1,439	46,545
2104	45,783	$29{ }^{\circ}$	1,328	44,455
2103	45,495	$e^{2} 29$	1,319	44,176

Regional Roads

13.20 To assess the impact of riaffic generated by the proposed development on the local road network, cofirent day traffic conditions were established. A manual classified traffic data survey was carried out on the R755 Regional Road, at the existing entrance to the former quarry and application site, on Thursday 12th February 2015. The classified traffic survey was undertaken in order to;-
(i) Assess the total traffic flow on the R755 (as a validation survey to compare with a previous traffic survey undertaken in February 2007).
(ii) Determine the proportion of Larger Goods vehicles currently using the R755, and
(iii) Establish the available link-capacity of the R755.
13.21 The results of the 2015 validation survey and the associated 85% ambient traffic speed survey are provided in Appendix 13A, together with the results of the original, 2007 survey. Table 13.2 below summarises the results of the 2015 validation survey and also presents the results of the previous 2007 survey (in brackets) for comparison purposes.

Table 13.2
Traffic Flow on the R755 (Source Classified Survey, Feb 2015)

Traffic Survey Location (R755 at Entrance)	Current (Previous 2007)
Total 24 Hour AADT, PCUs - extrapolated.	$3,480(3,982)$
Total 24hr HGV Traffic Volume	$90(111)$
Total HGVs, expressed as a \% of total traffic	$2.6 \%(2.8 \%)$

13.22 Based on the above information, the following conclusions can be drawn; -
(i) the existing traffic volumes using the R755 are relatively low, with the hourly traffic flows at approximately 10% of the free-flow link capacity for a road of this nature;
(ii) Total HGV traffic currently constitutes less than 3\% of the current traffic volume and
(iii) HGV Traffic was previously 23% greater in volume, when the application site operated as a quarry.

Site Access / Sightlines

13.23 At the present time, the current visibility from the proposed access to the application site is approximately 15 m to the north and approximately 30 m to the south, both from a setback distance ef 4.5 m .
13.24 In order to best and accurately dêtermine the sightline requirements in accordance with the NRA Desiendlanual for Roads and Bridges (DMRB), an off-peak 85% radar speed survey was undertaken at the application site. This survey established that theofiveak 85% ile traffic speed is currently 70 kph .
13.25 The general speed limit \&urrently assigned to the R755 is however higher, at 80 kph , as is standard for all regional roads. The lower recorded design speed is largely controlled byy the existing road alignment.
13.26 As the sightlines currently available at the application site access are deficient, it is proposed to upgrade and improve them as part of the proposed development. Planning permission for upgrading of the existing site access to provide improved sightlines and visibility to both the north and south, was previously obtained in 2008 on foot of a planning application for continued operation of Calary Quarry (Planning Permission Ref. No. 06/6189 / An Bord Pleanála Ref. No. PL27.224400).
13.27 As was envisaged by the previous planning permission, the existing screening berm / embankment to the north of the site access will be re-graded to provide a sight distance of 120 m to the north, while that to the south will be lowered slightly and re-graded to provide a sight distance of 120 m to the south.
13.28 The details of the reconfigured site access and the sightlines to be provided at the access are identified in Figure 13.3. The proposed sightlines are appropriate for the recorded road design speed of 70 kph . In this regard, it will be noted that the proposed sightlines satisfy the minimum requirements of recent NRA DMRB design guidance.

Road Condition and Geometric Assessment

13.29 In order to comprehensively assess the suitability of the R755 for vehicle movements to and from the application site and the haulage of bulk materials, a detailed evaluation of the R755, stretching from the existing quarry to the N11 junction at Kilmacanogue, was undertaken in support of previous planning applications for continued operation / extension of the former quarry (Plannng Refs. 06/6189 and 08/1650).
13.30 This evaluation included examination of road carriageway width (cross section), alignment (long section) and non-intrusive structural condition and stability. Road alignment drawings presenting findings of this evaluation and related mitigation measures are presented in Appendix 13B in the most recent evaluation report (which was provided in response to a request for further information at the time of the 2008 planning application, Ref. 08/1650). The evaluation comprised the following; -
(i) A topographic survey of the R755 between the application site and N11 junction at Kilmacanogue;
(ii) A visual pavement condition survey;
(iii) A desk-based assessment of road carriageway width and alignment, based on the detailed topographical survey data and site observations visits.
13.31 Based on the evaluation, a number of conclusions and recommendations were made to improve the R755 between the application site and the N11 junction. These were as outlined below:
(i) A comprehensive assessment of the vertical and horizontal alignment of the R755 was undertaken. At the one location where the DMRBrecommended stoppitissight distance $(70 \mathrm{~m})$ cannot be achieved and the prevailing road yridth is less than 6.0 m (for 30 m around Chainage 2400), it is recominended that the road be locally widened to achieve satisfactory road width. This can be achieved within existing road boundaries;
(ii) In general, the results of the pavement condition survey confirm that there are very few surface defects and that the road pavement is in a good condition over its entire length.
(iii) A number of mitigation measures are recommended on the R755 to improve the safety of road users. These measures include localised widening, repairs to localised pavement defects, erection of signs and trimming of vegetation.
13.32 The R755 evaluation report has been reviewed in terms of current road condition and geometry and it is considered that it remains current and valid. It is intended that the road improvement and mitigation measures recommended in the evaluation report (and summarised above) will be implemented as part of this development proposal.
13.33 The R755 evaluation and proposed road improvement and mitigation measures outlined above were previously submitted to, and approved by, Wicklow County Council (under Planning Ref. No 06/6189).

TRAFFIC IMPACT OF THE PROPOSED DEVELOPMENT

Development Trip Generation

13.34 The proposed backfilling operations at the quarry will entail the importation of approximately $3,280,000$ tonnes of material. This translates to approximately 182,200 HGV round-trips (at 18 tonnes per load) over the lifetime of the facility in order to backfill the quarry void.
13.35 Based on the Applicant's experience in operating a similar soil waste recovery facility at Fassaroe, it is considered that the minimum time for completion of the backfilling operations would be of the order of 12 years. In terms of transportation impact on roads infrastructure, the assumption of a 12 year operation therefore represents the most robust and onerous scenario.
13.36 Our traffic impact assessment is based on an assumed upper-bound intake of 300,000 tonnes of inert soil waste per year (with 50 working weeks per year, 5.5 working days per week and a 10 -hour working day). This equates to 6 HGVs, on average, per hour (or 12 HGVs, 2-way); 60 HGV's per day (or 120 per day, both ways). This translates to 36 Passenger Car Units per hour (carequivalents), or an increase in AADT of approximately 360 PCUs.
13.37 This traffic impact should be considered and assessed in light of the fact that the application site operated as a quarry up to relatively recently (2010) and that when it was operating previously, the gevarry generated significant traffic flows across the local road network.

Traffic Impact

13.38 The Traffic Validation survey ederionstrated that the existing R755 currently carries a weekday PM Peak vour 2-way traffic flow of approximately 350 PCUs (2-way), spread eventy per hour over the post-4pm period. An increase in 36 PCUs associated with the subject application site represents approximately a 10% inêrease in the hourly traffic conditions.
13.39 To put this increased traffic in context, it is accepted that the day-to-day variation in traffic volumes on any road network can be as much as 10%. Therefore in these terms, the predicted increase in traffic along the R755 is likely to go unnoticed.
13.40 In addition, the R755 link to the N11 has a maximum traffic-carrying free-flow capacity in excess of 1,000 PCUs each way per hour. The R755 currently carries a maximum 2-way flow of 363 PCUs (based on the 2015 traffic validation survey). In this regard, in link-capacity terms, the R755 is currently operating at approximately 18% of its actual traffic-carrying capacity. The addition of traffic generated by the proposed development can therefore be clearly accommodated on the R755 without any significant effect whatsoever on established traffic flows.

Road Safety

13.41 The application site was operated as a quarry up to 2010. When the quarry was operational, it generated significant volumes of HGV traffic. The R755 carried higher traffic volumes and a larger proportion of HGV traffic without any adverse road safety impact in terms of reported accidents (as referenced in Paragraph 13.18).
13.42 This finding is particularly relevant in light of the fact that the recent quarrying operations and proposed development at the application site would have very similar associated traffic characteristics and vehicle types.

Traffic Distribution and Route Assignment

13.43 Traffic to and from the proposed waste recovery facility will follow the same established route for traffic which previously accessed the former quarry at the application site.
13.44 Southbound traffic will approach the proposed waste recovery facility along the existing N11 National Primary Road from Dublin and Bray, while northbound traffic will approach it along the same road from Ashford and Wicklow. It will turn off the dual carriageway at the existing grade separated junction at Kilmacanogue and onto the R755, before then travelling west for approximately 3.8 km to the application site.

PROPOSED MITIGATION MEASURES

13.45 National road upgrading works at Kilmacanogue, carried out some years ago as part of the N11 Glen of the Downs Project, has been of significant benefit to all traffic users on the R755 Regional Road, jncluding traffic previously generated by operations at Calary Quarry and andy future traffic which may be generated by the proposed quarry backfilligig operations. These benefits include:

- significant reduction in the impacts of HGV turning movements at the R755 / N11 junction, as thisejuntiction is now grade separated for right turning movements (and ategrade for left turning movements);
- Overall improvement in traffic management and safety at the R755 / N11 junction.
- More efficient and timely transport of the inert soil backfill materials to the application site fromiocal / regional construction and development sites
13.46 Ongoing re-surfacing and maintenance works undertaken by Wicklow County Council on the R755 Regional Road have generally ensured that the road pavement along the route to the application site to/from Kilmacanogue is in relatively good condition, with few surface defects. Where any localised pavement defects are identified, these shall be repaired by agreement with the Local Authority.
13.47 Current notices and signs along the R755 provide advance warning to drivers that there is a quarry facility ahead. These signs were placed in accordance with the scheme for the former quarry (previously agreed with the Planning Authority). Where appropriate, existing warning signs will be replaced with signs indicating there is a soil recovery facility ahead.
13.48 Sightlines, geometry, forward stopping distances, road signage and markings along the R755 will be upgraded in accordance with the previously approved planning permission (Wicklow Co Council Ref 06/6189 and An Bord Pleanála Ref PL27.224400). These measures include; -
- A wheel wash facility will be maintained on site and will be utilised by all vehicles to eliminate the risk of mud and dust being transported from the planned recovery facility onto the R755. There is an existing concrete apron all the way into the proposed facility from the existing junction of the site access with the R755;

TRAFFIC AND TRANSPORTATION 13

- The area between the existing road carriageway and the sightline set back boundary (Refer to Figure 13.3) will be levelled and grassed in accordance with the requirements of the Local Authority;
- A road sweeper will be used on a regular basis as necessary to maintain the entrance clean and free from debris;
- In the unlikely event that a spillage occurs on the public roads, any such material will be removed in a timely manner;
- Strategically placed advance warning signage will be placed on approach roads, close to sharp bends and/or concealed junctions to improve driver awareness of potential traffic risks.
- Any roadside vegetation at bends which regularly impede driver visibility will be regularly trimmed to maintain / improve stopping sight distances;
- The R755 will be subject to some geometric improvements (local road widening around Chainage 2400) to enhance road safety and capacity characteristics, all as previously proposed and as set out on the previously submitted and approved planning submissions (in respect of planning applications $06 / 6189$ and 08/1650), copies of which are reproduced in Appendix 13B.
13.49 Roadstone Limited is willing to make a reasonable financial contribution in the form of a Special Contribution for any required improvements to the R755. The amount of the financial contribution would be in proportion to the volume of traffic generated by the proposed oievelopment relative to the total volume and would be agreed with the bocal Authority.

CONCLUSION

13.50 It is anticipated that, taken together, the access improvements, the internal vehicle management measures and the R755 road improvements will ameliorate any potentiakroad capacity or road safety implications associated with any additional traffic generated by the proposed recovery facility at the application site.

FIGURES

Figure 13-1
Traffic Route/Traffic Sunvertocation
Figuresiz-2

- Ef igure 13-3

Site Access Sightline Improvements

APPENDICES

	Movement 1 (Up)			Movement 2 (Down)		
Weekday PM	Cars	Hgvs*	Total	Cars	Hgvs*	Total
300-315	24	0	24	23	1	26
315-330	39	1	42	36	3	45
330-345	29	1	32	28	1	31
345-400	24	1	27	17	0	17
400-415	45	1	48	24	0.05	24
415-430	56	4	68	23	${ }^{\circ} 2$	29
430-445	50	0	50	32 ${ }^{2}$	2	38
445-500	53	1	56	-34	3	43
500-515	48	2	54	25	0	25
515-530	62	1	65	17	0	17
530-545	59	15	- 62	20	1	23
545-600	60	$00^{\circ} 0^{\circ}$	60	9	0	9

* includes >2 Axle Vehicles

The Above Assessment Confirms that the Original EiS Traffic Data is Robust and Remains Valid. In Addition, the Radar Speed Survey confirms that the current 85% ile Speed is 70 kph (as previously demondatrated as being adequate by WSP)

INTRODUCTION

Count On Us was commissioned by WSP Ireland to undertake an automatic traffic count on the R755, County Wicklow.

SITE LOCATIONS

ATC $1 \quad$ R755, approximately 2 kilometres south of junction with R760

AUTOMATIC TRAFFIC COUNT

A count was undertaken at the site detailed above between midnight on Friday $23^{\text {rd }}$ February and midnight on Saturday $24^{\text {th }}$ February 2007.

To undertake the count, a set of parallel pneumatic road tubes were installed at the location. The tubes were then connected to a Metro Count automatic traffic counter which was set to obtain the direction, the classification and the speed of traffic flows in hourly intervals.

NOTES

The technician had no problems to report.

COUNT ON US

WICKLOW
AUTOMATIC TRAFFIC COUNT

CLASSIFICATION, DATA AND TOTALS

A 13-fold classification was used

MCL	Motorcycles
CAR	Cars
LGV	Light Goods Vehicles
PSV	Buses and Coaches
2R	2-Axle Rigid Heavy Goods Vehicles
3R	3-Axle Rigid Heavy Goods Vehicles
4R	4-Axle Rigid Heavy Goods Vehicles
4A	3 \& 4-Axle Articulated Heavy Goods Vehicles
5A	5-Axle Articulated Heavy Goods Vehicles
6A	6-Axle Articulated Heavy Goods Vehicles
5M	5-Axle Multiple Section Heavy Goods Vehicles
6M	6-Axle Multiple Section Heavy Goods Vehicles
7/+	Heavy Goods Vehicles of any format with 7 or more axles

Other Data Types

Mean Average speed of vehicles for the period
85th\% $\quad 85^{\text {th }}$ percentile speed of vehicles for the period s^{s}
$>$ PSL\% Percentage of vehicles exceeding the posted speed limit for the period

Totals

07-19 12 hour total for the period 07:00 19:00 hours
06-22 $\quad 16$ hour total for the period $06: 00$ to 22:00 hours
06-00 $\quad 18$ hour total for the period $06: 00$ to 00:00 hours the next day
00-00 24 hour total for the periof 00:00 to 00:00 hours the next day

SURVEY RESULTS

AUTOMATIC COUNT

WICKLOW
AUTOMATIC TRAFFIC COUNT

Site:
Filter time:
Direction:
Speed limit:

- R755, approximately 2 kilometres south of junction with R760 00:00 23 February 2007 => 00:00 24 February 2007
North (bound)
80 km/h
* 23 February 2007 Date and Time 23/02/2007 00:00 23/02/2007 01:00 23/02/2007 02:00 23/02/2007 02:00 23/02/2007 03:00 23/02/2007 04:00 23/02/2007 05:00 23/02/2007 06:00 23/02/2007 07:00 23/02/2007 08:00 23/02/2007 09:00 23/02/2007 10:00 23/02/2007 11:00 23/02/2007 12:00 23/02/2007 12:00 23/02/2007 13:00 23/02/2007 14:00 23/02/2007 15:00 23/02/2007 16:00 23/02/2007 17:00 23/02/2007 18:00 23/02/2007 19:00 23/02/2007 20:00 23/02/2007 21:00 23/02/2007 22.00 23/02/2007 23:00

20	20	2	
$07-19$	0	22	1
$06-22$	7	1488	102
$06-00$	7	1768	114
$00-00$	7	1807	117
			120

\qquad CAR L $\begin{array}{llll}-00 & 7 & 1807 & 120\end{array}$
\qquad

WICKLOW
 AUTOMATIC TRAFFIC COUNT

FEBRUARY 2007

Site: $\quad 1$ - R755, approximately 2 kilometres south of junction with R760
Filter time: 00:00 23 February $2007=>$ 00:00 24 February 2007
Direction: North (bound)
Speed limit: $80 \mathrm{~km} / \mathrm{h}$

Speed km/h	MCL	CAR	LGV	PSV	2R	3R	$\begin{gathered} \hline \hline \text { Class } \\ 4 R \end{gathered}$	4A	5A	6A	5M	6M	7/+	Speed Totals	
0-5	0	0.0\%
5-10	0	0.0\%
10-15	.	1	®.	.	.	.	1	0.1\%
15-20	- ${ }^{0}$	0	0.0\%
20-25	\bigcirc	0	0.0\%
25-30	0		0	0.0\%
30-35	.	4	.	1	1	1	.	- ${ }^{0}$		7	0.4\%
35-40	.	18	1	.	.	6		i?	1	1	.	.	.	27	1.4\%
40-45	.	21	2	1	1	6	¢		.	1	.	.	.	32	1.6\%
45-50	.	42	5	1	3	.	O. ${ }^{0}$	1	52	2.6\%
50-55	.	76	5	.	5			86	4.3\%
55-60	.	163	10	1	3	4		1	182	9.1\%
60-65	.	287	18	.	8	(0) 0)		1	314	15.7\%
65-70	1	358	26	.	3	${ }^{0}$ cor	388	19.4\%
70-75	2	346	18	.			.	2	372	18.6\%
75-80	1	247	23	.	$3{ }^{\text {c }}$	274	13.7\%
80-85	1	130	7	.	C2	1	141	7.1\%
85-90	1	69	2	.	1	73	3.7\%
90-95	.	32	2	34	1.7\%
95-100	.	8	1	.	1	10	0.5\%
100-105	.	2	2	0.1\%
105-110	1	2	3	0.2\%
110-115	.	1	1	0.1\%
115-120	0	0.0\%
120-125	0	0.0\%
125-130	0	0.0\%
130-135	0	0.0\%
135-140		0	0.0\%
Totals	7	1807	120	4	35	18	0	5	1	2	0	0	0	1999	
	0.4\%	90.4\%	6.0\%	0.2\%	1.8\%	0.9\%	0.0\%	0.3\%	0.1\%	0.1\%	0.0\%	0.0\%	0.0\%		

Count On Us

```
WICKLOW
AUTOMATIC TRAFFIC COUNT
AUTOMATIC TRAFFIC COUNT
Site: \(\quad 1-\) R755, approximately 2 kilometres south of junction with R760
Filter time: 00:00 23 February 2007 => 00:00 24 February 2007
Direction: North (bound)
Speed limit: 80 km/h
```

Vehicles = 1999
Posted speed limit $=80 \mathrm{~km} / \mathrm{h}$, Exceeding $=1612$ (80.64%), Mean Exceeding $=72.38 \mathrm{~km} / \mathrm{h}$
Maximum $=112.7 \mathrm{~km} / \mathrm{h}$, Minimum $=14.8 \mathrm{~km} / \mathrm{h}$, Mean $=68.5 \mathrm{~km} / \mathrm{h}$
85% Speed $=78.8 \mathrm{~km} / \mathrm{h}, 95 \%$ Speed $=86.0 \mathrm{~km} / \mathrm{h}$, Median $=68.8 \mathrm{~km} / \mathrm{h}$
$20 \mathrm{~km} / \mathrm{h}$ Pace $=59-79$, Number in Pace $=1364(68.23 \%)$
Variance $=125.85$, Standard Deviation $=11.22 \mathrm{~km} / \mathrm{h}$
Speed Bins

Speed	Bin		Below		Above	
0-5	0	0.0\%	0	0.0\%	1999	100.0\%
5-10	0	0.0\%	0	0.0\%	1999	100.0\%
10-15	1	0.1\%	1	0.1\%	1998	99.9\%
15-20	0	0.0\%	1	0.1\%	1998	99.9\%
20-25	0	0.0\%	1	0.1\%	1998	99.9\%
25-30	0	0.0\%	1	0.1\%	1998	99.9\%
30-35	7	0.4\%	8	0.4\%	1991	99.6\%
35-40	27	1.4\%	35	1.8\%	1964	98.2\%
40-45	32	1.6\%	67	3.4\%	1932	96.6\%
45-50	52	2.6\%	119	6.0\%	1880	94.0\%
50-55	86	4.3\%	205	10.3\%	1794	89.7\%
55-60	182	9.1\%	387	19.4\%	1612	80.6\%
60-65	314	15.7\%	701	35.1\%	1298	64.9\% ${ }^{\text {e }}$
65-70	388	19.4\%	1089	54.5\%	910	45.5\%
70-75	372	18.6\%	1461	73.1\%	538	269\%
75-80	274	13.7\%	1735	86.8\%		(913.2\%
80-85	141	7.1\%	1876	93.8\%		6.2\%
85-90	73	3.7\%	1949	97.5\%	\square_{50}	2.5\%
90-95	34	1.7\%	1983	99.2\%	, 16	0.8\%
95-100	10	0.5\%	1993	99.7\%	6	0.3\%
100-105	2	0.1\%	1995	99.2 \%	4	0.2\%
105-110	3	0.2\%	1998	99:9\%	1	0.1\%
110-115	1	0.1\%	1999	- 9000%	0	0.0\%
115-120	0	0.0\%	1999	100.0\%	0	0.0\%
120-125	0	0.0\%	1999 of	c. 100.0%	0	0.0\%
125-130	0	0.0\%	1999 ${ }^{2}$	100.0\%	0	0.0\%
130-135	0	0.0\%	1999	100.0\%	0	0.0\%
135-140	0	0.0\%	C1999	100.0\%	0	0.0\%

Hour Bins

Time	Bin		Min		Max		Mean		Median	
0000	14	0.7%	56.0	85.9	73.7	72.4	85%	95%	>PSL	
0100	3	0.2%	58.5	62.4	60.7	60.8	62.3	62.3	3	21.4%
0200	2	0.1%	69.5	86.4	77.9	69.1	86.0	86.0	1	50.0%
0300	3	0.2%	67.6	88.1	78.5	79.6	87.8	87.8	1	33.3%
0400	4	0.2%	67.0	87.1	80.4	80.3	86.8	86.8	3	75.0%
0500	16	0.8%	61.1	90.2	76.1	76.7	81.4	90.0	5	31.3%
0600	86	4.3%	63.4	112.7	78.2	77.0	86.0	92.5	32	37.2%
0700	217	10.9%	50.6	95.1	74.0	73.4	83.5	88.2	61	28.1%
0800	247	12.4%	14.8	100.0	69.4	70.2	79.6	85.7	34	13.8%
0900	162	8.1%	33.8	106.8	67.8	69.1	78.1	90.4	20	12.3%
1000	146	7.3%	36.1	90.5	66.2	67.3	76.7	82.4	13	8.9%
1100	120	6.0%	33.2	90.5	65.2	66.6	74.9	78.8	6	5.0%
1200	124	6.2%	39.8	90.5	67.3	66.2	77.0	81.7	8	6.5%
1300	105	5.3%	38.5	85.8	65.9	66.6	75.2	80.3	8	7.6%
1400	112	5.6%	37.7	90.4	66.5	65.9	77.0	82.1	10	8.9%
1500	106	5.3%	37.6	89.7	63.9	63.7	74.5	78.8	5	4.7%
1600	107	5.4%	32.8	104.5	66.0	65.9	78.1	83.9	11	10.3%
1700	101	5.1%	43.1	101.5	67.9	67.3	77.0	81.7	9	8.9%
1800	111	5.6%	42.4	88.6	64.1	63.0	71.6	77.0	4	3.6%
1900	59	3.0%	47.8	94.3	70.5	69.1	83.5	8.1	13	22.0%
2000	74	3.7%	43.2	108.9	68.7	67.7	76.3	79.2	3	4.1%
2100	33	1.7%	44.3	90.1	69.7	70.9	79.6	85.0	5	15.2%
2200	22	1.1%	42.3	109.1	71.3	67.3	85.0	90.0	5	22.7%
2300	25	1.3%	49.1	98.9	66.9	64.1	75.2	86.4	4	16.0%
Totals	1999	100.0%	14.8	112.7	68.5	68.8	78.8	86.0	264	13.2%

Count On Us

AUTOMATIC TRAFFIC COUNT

$\begin{array}{ll}\text { Site: } & 1-\text { R755, approximately } 2 \text { kilometres south of junction with R760 } \\ \text { Fiter time: } & 00: 0023 \text { February } 2007 \Rightarrow 00: 0024 \text { February } 2007\end{array}$
$\begin{array}{ll}\text { Direction: } & \begin{array}{l}\text { South (bo } \\ \text { Speed limit: }\end{array} \\ 80 \mathrm{~km} / \mathrm{h}\end{array}$

* 23 February 2007																	
Date and Time	MCL	CAR	LGV	PSV	2 R	3R	4R	4A	5A	6A	5M	6 M	7/+	Total	Mean	85th\% >	SL\%
23/02/2007 00:00	0	26	0	0	0	0	0	0	0	0	0	0	0	26	59.9	67.3	0.0
23/02/2007 01:00	0	3	0	0	0	0	0	0	0	0	0	0	0	3	55.4		0.0
23/02/2007 02:00	0	3	0	0	0	0	0	0	0	0	0	0	0	3	64.4	-	0.0
23/02/2007 03:00	0	3	1	0	0	0	0	0	0	0	0	0	0	4	57.4		0.0
23/02/2007 04:00	0	2	0	0	0	0	0	0	0	0	0	0	0	2	51.8		0.0
23/02/2007 05:00	0	2	2	0	0	0	0	0	0	0	0	0	0	4	60.7		25.0
23/02/2007 06:00	0	5	0	0	0	0	0	2	0	0	0	0	0	7	51.6	-	0.0
23/02/2007 07:00	0	35	3	0	1	1	0	0	0	0	0	0	0	40	42.4	54.0	0.0
23/02/2007 08:00	3	54	6	0	0	0	0	1	0	0	0	0	0	64	40.9	54.7	1.6
23/02/2007 09:00	5	69	7	0	3	3	0	0	0	0	0	0	0	87	41.3	58.0	0.0
23/02/2007 10:00	1	81	7	0	4	4	0	0	0	0	0	0	0	97	43.3	54.4	0.0
23/02/2007 11:00	0	110	6	0	0	0	0	0	0	0	0	0	0	116	46.6	61.9	0.0
23/02/2007 12:00	0	115	8	0	3	1	1	0	0	0	0	0	0	128	42.0	56.5	0.0
23/02/2007 13:00	3	129	5	0	2	2	2	0	0	0	0	0	0	143	46.9	59.4	
23/02/2007 14:00	0	116	8	0	4	3	1	0	0	0	0	0	0	132	42.8		0.8
23/02/2007 15:00	0	165	10	0	2	2	0	0	0	1	0	0	0	180	42.4		
23/02/2007 16:00	0	187	12	0	0	3	1	0	1	0	0	0	0	204	50.6	g3.4	
23/02/2007 17:00	2	209	11	1	0	0	0	0	0	0	0	0	0	223		O44	0.0
23/02/2007 18:00	1	152	8	0	1	0	0	0	0	0	0	0	0	162			0.0
23/02/2007 19:00	2	132	7	0	0	0	0	0	0	0	0	0	0	141		${ }^{6} 63.7$	0.7
23/02/2007 20:00	2	73	1	0	1	0	0	0	0	0	0	0	0		57	66.6	2.6
23/02/2007 21:00	0	59	3	0	0	0	0	0	0	0	0	0	0		\$59.2	64.1	3.2
23/02/2007 22:00	0	35	2	0	0	0	0	0	0	0	0	0	0.		60.3	69.1	2.7
23/02/2007 23:00	0	40	1	0	0	0	0	0	0	0	0	0		. 59	58.3	63.7	0.0
07-19	15	1422	91	1	20	19	5	1	1	1	0	0			47.7	61.6	0.1
06-22	19	1691	102	1	21	19	5	3	1	1	0	0		1863	49.2	62.3	0.4
06-00	19	1766	105	1	21	19	5	3	1	1	0	0	8^{6}	1941	49.6	62.6	0.4
00-00	19	1805	108	1	21	19	5	3	1	1	0	0		1983	49.8	62.6	0.5

COMBINED
HRS

PEAK	PEAK	total
0	0	0
1	0	0
2	0	0
3		0
4	0	0
5	0	0
6	0	2
7	4	2
8	2	1
9	6	6
10	9	8
11	10	0
12	3	5
13	4	6
14	9	8
15	5	5
16	5	5
17	2	1
18	3	1
19	0	0
20	0	1
21	1	0
22		0
	2	0

wicklow
AUTOMATIC TRAFFIC COUNT
Site:

- R755, approximately 2 kilometres south of junction with R760

Filter time: 00:00 23 February 2007 => 00:00 24 February 2007
Direction: South (bound)
Speed limit: $80 \mathrm{~km} / \mathrm{h}$

Speed km/h	MCL	CAR	LGV	PSV	2R	3R	$\begin{gathered} \hline \hline \text { Class } \\ 4 R \end{gathered}$	4A	5A	6A	5M	6M	7/+	Speed Totals	
0-5	0	0.0\%
5-10	0	0.0\%
10-15	.	2	®.	.	.	.	2	0.1\%
15-20	.	9	.	.	1	2	.	.	not	12	0.6\%
20-25	.	35	4	.	.	2	.		\bigcirc	41	2.1\%
25-30	5	118	8	.	4	2	.	10		138	7.0\%
30-35	2	173	11	.	1	2	2	co. ${ }^{0}$	1	1	.	.	.	193	9.7\%
35-40		139	6	.	3	3			152	7.7\%
40-45	4	102	13	.	.	1	c		121	6.1\%
45-50	1	161	13	.	8	.	ciose	186	9.4\%
50-55	2	284	22	1	3	4	-	316	15.9\%
55-60	2	330	13	.	1	3		349	17.6\%
60-65	.	267	12	.	.	*0.0)	279	14.1\%
65-70	1	117	6	.		${ }^{\circ} \mathrm{C}$	124	6.3\%
70-75	1	46	47	2.4\%
75-80	.	14	.	.	00°	14	0.7\%
80-85	.	6	.	.	Co	6	0.3\%
85-90	.	1	1	0.1\%
90-95	0	0.0\%
95-100	.	1	1	0.1\%
100-105	1	1	0.1\%
105-110	0	0.0\%
110-115	0	0.0\%
115-120	0	0.0\%
120-125	0	0.0\%
125-130	0	0.0\%
130-135	0	0.0\%
135-140		0	0.0\%
Totals	19	1805	108	1	21	19	5	3	1	1	0	0	0	1983	
	1.0\%	91.0\%	5.4\%	0.1\%	1.1\%	1.0\%	0.3\%	0.2\%	0.1\%	0.1\%	0.0\%	0.0\%	0.0\%		

Count On Us

WICKLOW
AUTOMATIC TRAFFIC COUNT
Site: $\quad 1-$ R755, approximately 2 kilometres south of junction with R760
Filter time: $\quad 00: 0023$ February $2007=>00: 0024$ February 2007
Direction: \quad South (bound)
Speed limit: $80 \mathrm{~km} / \mathrm{h}$

Speed limit: 80 km/h

Vehicles = 1983
Posted speed limit $=80 \mathrm{~km} / \mathrm{h}$, Exceeding $=1612$ (80.64%), Mean Exceeding $=72.38 \mathrm{~km} / \mathrm{h}$
Maximum $=103.0 \mathrm{~km} / \mathrm{h}$, Minimum $=10.0 \mathrm{~km} / \mathrm{h}$, Mean $=49.8 \mathrm{~km} / \mathrm{h}$
85% Speed $=62.6 \mathrm{~km} / \mathrm{h}, 95 \%$ Speed $=68.8 \mathrm{~km} / \mathrm{h}$, Median $=52.6 \mathrm{~km} / \mathrm{h}$
$20 \mathrm{~km} / \mathrm{h}$ Pace $=45-65$, Number in Pace $=1148$ (57.89\%)
Variance $=178.86$, Standard Deviation $=13.37 \mathrm{~km} / \mathrm{h}$
Speed Bins

Speed	Bin		Below		Above	
0-5	0	0.0\%	0	0.0\%	1983	100.0\%
5-10	0	0.0\%	0	0.0\%	1983	100.0\%
10-15	2	0.1\%	2	0.1\%	1981	99.9\%
15-20	12	0.6\%	14	0.7\%	1969	99.3\%
20-25	41	2.1\%	55	2.8\%	1928	97.2\%
25-30	138	7.0\%	193	9.7\%	1790	90.3\%
30-35	193	9.7\%	386	19.5\%	1597	80.5\%
35-40	152	7.7\%	538	27.1\%	1445	72.9\%
40-45	121	6.1\%	659	33.2\%	1324	66.8\%
45-50	186	9.4\%	845	42.6\%	1138	57.4\%
50-55	316	15.9\%	1161	58.5\%	822	41.5\%
55-60	349	17.6\%	1510	76.1\%	473	23.9\% へ
60-65	279	14.1\%	1789	90.2\%	194	9.8\%
65-70	124	6.3\%	1913	96.5\%	70	3.5\%
70-75	47	2.4\%	1960	98.8\%	23	172\%
75-80	14	0.7\%	1974	99.5\%		¢0.0.5\%
80-85	6	0.3\%	1980	99.8\%		0.2\%
85-90	1	0.1\%	1981	99.9\%	8	0.1\%
90-95	0	0.0\%	1981	99.9\%	2	0.1\%
95-100	1	0.1\%	1982	99.9\%	1	0.1\%
100-105	1	0.1\%	1983	100.6%	0	0.0\%
105-110	0	0.0\%	1983	100.09	0	0.0\%
110-115	0	0.0\%	1983	-900.0\%	0	0.0\%
115-120	0	0.0\%	1983	100.0\%	0	0.0\%
120-125	0	0.0\%	1983 of	¢ 100.0%	0	0.0\%
125-130	0	0.0\%	1983	100.0\%	0	0.0\%
130-135	0	0.0\%	1983	100.0\%	0	0.0\%
135-140	0	0.0\%	C1983	100.0\%	0	0.0\%

Hour Bins

Time	Bin		Min	Max	Mean	Median	85\%	95\%	>PS	
0000	26	1.3\%	43.3	70.5	59.9	59.8	67.3	69.5	0	0.0\%
0100	3	0.2\%	43.1	63.2	55.4	59.8	63.0	63.0	0	0.0\%
0200	3	0.2\%	61.4	66.9	64.4	64.8	66.6	66.6	0	0.0\%
0300	4	0.2\%	44.4	79.7	57.4	51.1	54.0	79.6	0	0.0\%
0400	2	0.1\%	46.7	56.9	51.8	46.4	56.9	56.9	0	0.0\%
0500	4	0.2\%	38.0	80.7	60.7	61.6	62.3	80.6	1	25.0\%
0600	7	0.4\%	38.4	72.7	51.6	54.4	59.0	72.4	0	0.0\%
0700	40	2.0\%	19.2	63.8	42.4	40.3	54.0	58.7	0	0.0\%
0800	64	3.2\%	10.0	95.0	40.9	35.3	54.7	65.2	1	1.6\%
0900	87	4.4\%	23.6	69.5	41.3	36.4	58.0	65.2	0	0.0\%
1000	97	4.9\%	17.0	67.5	43.3	45.4	54.4	58.0	0	0.0\%
1100	116	5.8\%	24.4	77.0	46.6	47.2	61.9	64.4	0	0.0\%
1200	128	6.5\%	17.6	72.3	42.0	42.1	56.5	61.9	0	0.0\%
1300	143	7.2\%	25.5	71.5	46.9	47.2	59.4	67.0	0	0.0\%
1400	132	6.7\%	21.7	73.8	42.8	40.3	58.3	66.2	0	0.0\%
1500	180	9.1\%	12.8	79.6	42.4	39.2	57.2	65.2	0	0.0\%
1600	204	10.3\%	25.0	81.0	50.6	52.2	63.4	67.7	1	0.5\%
1700	223	11.2\%	18.2	77.3	56.5	57.2	64.1	69.1	0	0.0\%
1800	162	8.2\%	40.1	77.6	57.7	57.6	64.1	70.2	0	0.0\%
1900	141	7.1\%	39.5	103.0	56.8	56.2	63.7	67.7	1	0.7\%
2000	77	3.9\%	42.0	83.2	57.6	57.2	66.6	73.8	2	2.6\%
2100	62	3.1\%	45.7	85.3	59.2	58.0	64.1	74.5	2	3.2\%
2200	37	1.9\%	40.2	83.3	60.3	58.7	69.1	77.4	1	2.7\%
2300	41	2.1\%	39.9	70.3	58.3	57.6	63.7	68.8	0	0.0\%
Totals	1983	100.0\%	10.0	103.0	49.8	52.6	62.6	68.8	9	0.5\%

Traffic Count 23 / 24 February 2007 (Location 1)

