COMHAIRLE CHONDAE AN CABHÁIN Cavan County Council

Annual Environmental Report 2015 Bailieborough Landfill WL0091-1

Comhairle Chontae an Chabháin Teach na Cúirte, An Cabhán Cavan County Council Courthouse, Cavan

cavancoco.ie

\$ +353 (0)49 437 8300

🖾 eolas@cavancoco.ie

Itwitter.com/cavancoco

facebook.com/cavancoco

Declaration

Bailieborough Landfill AER W0091-01

Cavan County Council hereby certifies that the content of the full pdf.AER W0091-012015AER.pdf uploaded to the EPA website is a true copy of the original AER.

Signed Regina Burke

Dated 03/05/2016

Regina Burke Landfill Operations Manager Cavan County Council

0

Tá fáilte romhat gnó a dhéanamh as Gaeilge Cavan County Council ... Working with Diversity in Mind

Document Title	Annual Environm	nental Report 201	5									
	Bailieborough La	andfill WL0091-1										
Document ID	CCC-02-02-2015											
Revision	<u>Status</u>	Author	Issue Date									
01	Draft	BK/CB	05/05/16									
02	Final Issue	BK	05/05/16									

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to prepare the following Annual Environmental Report.

Contents

<u>Page</u>

1.0	INTROD	UCTION	5				
2.0	REPORT		6				
3.0	WASTE	ACTIVITIES CARRIED OUT AT THE FACILITY	6				
4.0	QUANTI	TY AND COMPOSITION OF THE WASTE	6				
5.0	SUMMA	RY REPORT ON EMISSIONS	6				
	5.1 Su	Inface Water	7				
	5.2 Gr	ound Water	13				
	5.3 Le	achate	19				
	5.4 Ga	IS	21				
6.0	RESULT	S SUMMARY & INTERPRETATION OF MONITORING	24				
7.0	RESOUF	RCE & ENERGY CONSUMPTION SUMMARY	24				
8.0	REPORT	ON RESTORATION OF FACILITY	24				
9.0	QUANTI	TIES OF LANDFILL GAS EMITTED FROM FACILITY	24				
10.0 PROCEDURES DEVELOPED BY LICENCEE							
11.0	11.0 REPORTED INCIDENTS AND COMPLAINTS SUMMARY						
12.0) REVIE	W OF NUISANCE CONTROLS	25				
13.0	REPO	RT ON TRAINING STAFF	25				
14.0) FINAN	ICIAL PROVISION	26				
15.0) ANY C	OTHER ITEMS SPECIFIIED BY THE EPA	26				
List	of Table	2 S					
Tab	e 5.1	Surface Water Summary Results	7				
Tab	e 5.2	Groundwater Summary Results	14				
Tab	e 5.3	Leachate Summary Results	19				
Table 5.4		Gas Emissions Summary Results	22				

Table 13.1Management Structure 201525

List of Graphs

Graph 5.1	Surface water- Ammonia	11
Graph 5.2	Surface water- COD	11
Graph 5.3	Surface water-Iron	12
Graph 5.4	Surface water-Manganese	12
Graph 5.5	Surface water-BOD	13
Graph 5.6	Groundwater – Ammonia	15
Graph 5.7	Groundwater – Chloride	15
Graph 5.8	Groundwater –Iron	16
Graph 5.9	Groundwater – Manganese	16
Graph 6.0	Groundwater - pH	17
Graph 6.1	Groundwater – Potassium	17
Graph 6.2	Leachate – Cond	20
Graph 6.3	Leachate – Ammonia	20
Graph 6.4	Leachate – Chloride	21
Graph 6.5	Gas-Methane	23
Graph 6.6	Gas- Carbon Dioxide	23

List of Appendices

- Appendix A PRTR Emissions Report, Gas Survey
- Appendix B Monitoring locations map
- Appendix C Quarter 4 Monitoring Report

1.0 INTRODUCTION

Bailieborough Landfill has been operated as waste disposal facility by Cavan County Council since the late 1960s. The landfill is located on the outskirts of the town of Bailieborough, (c. 1 km from town centre), in the town land of Tanderagee, which was a commercially exploited bog. The site was operated as a traditional landfill constructed on peat and relies on the properties of the peat bog for attenuation, dilution and dispersal. The total area of the site comprises 2.23 hectares.

A Waste Licence for the facility was issued by the EPA on 22nd February 2002, when the site officially closed and was thereafter remediated. Condition 11.6 of Waste Licence Ref. 91-1 requires the submission of an Annual Environmental Report (AER) for Bailieborough Landfill facility. This document is produced in order to comply with requirements of Condition 11.6.

The requirements for reporting of Annual Environmental Information arise under individual EPA licences issued under the EPA Acts 1992 – 2008, the Waste Management Acts 1996 – 2008 and other legislation.

This AER will provide information as outlined in Schedule F of the Licence "Content of the Annual Environmental Report".

2.0 REPORTING PERIOD

The reporting period for the purpose of this AER is 01st January 2015 - 31st December 2015.

3.0 WASTE ACTIVITIES CARRIED OUT AT THE FACILITY

There were no waste activities carried out at the facility.

4.0 QUANTITY AND COMPOSITION OF THE WASTE

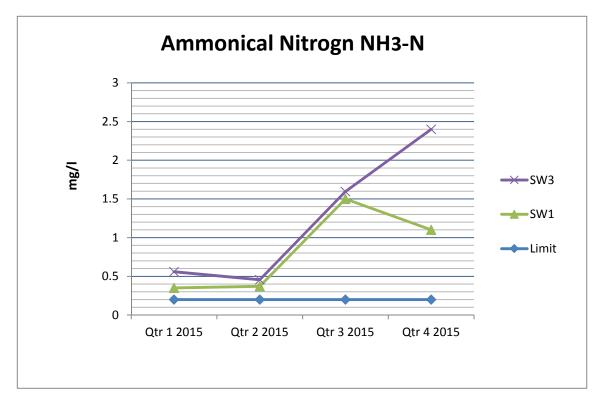
There is no longer any waste being accepted at the site. The quantity of waste accepted is zero tonnes.

5.0 SUMMARY REPORT ON EMISSIONS

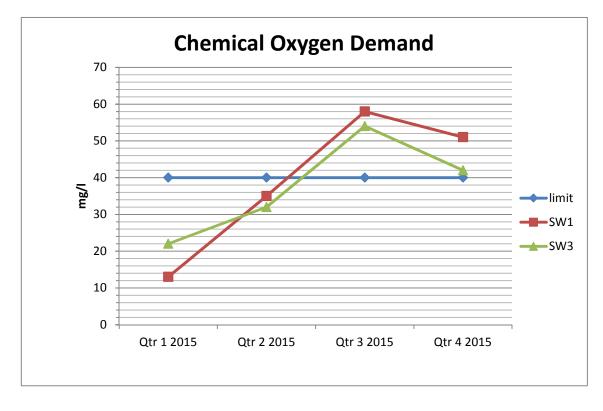
The PRTR Regulations are the European Communities (European Pollutant Release and Transfer Register) Regulation 2007, <u>S.I. No. 123 of 2007</u>), which signed into Irish Law on 22 March 2007 the <u>E-PRTR Regulation, (EC) No 166/2006</u>, concerning the establishment of a European Pollutant Release and Transfer Register. The summary of emissions is detailed in the (PRTR) Report which appears in Appendix A of this report. The PRTR has been uploaded onto the EPA website in accordance with our responsibility as Licensee.

Cavan County Council now carries out the full scope of sampling as required by the Licence. Monitoring had been reduced at the time of the restoration works and the full sampling regime had not been re-established until late 2009 when advised by the Agency.

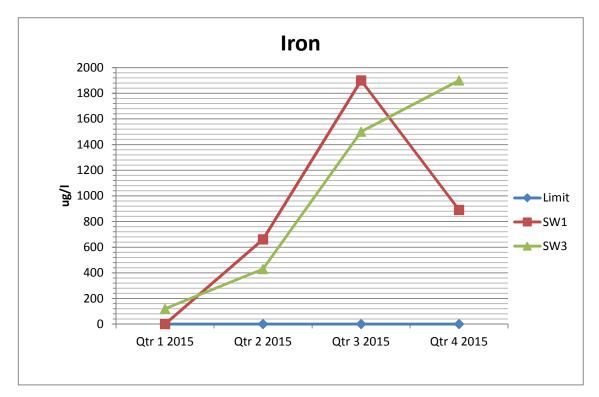
5.1 Surface Water

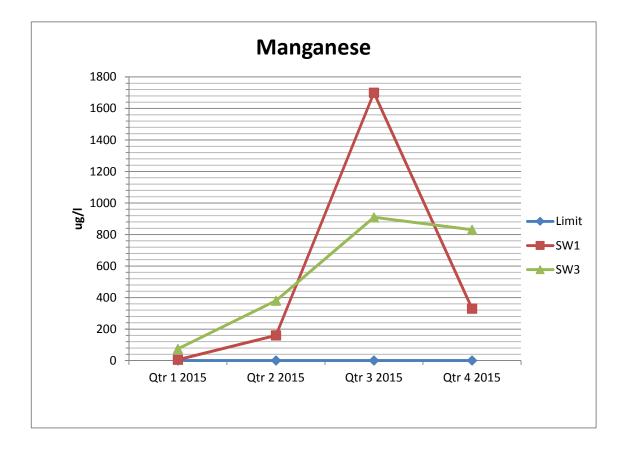

All monitoring locations are detailed in the site map which is presented in Appendix B.

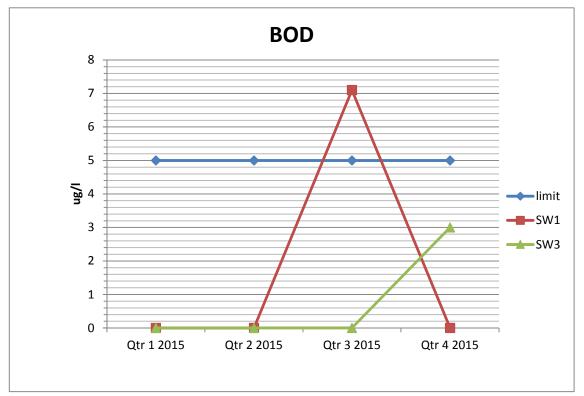
As table 5.1 reveals, there were elevated levels of Ammonia, COD, Iron and Manganese levels recorded in the samples taken at the SW1 and SW3. SW1 is located downstream of the landfill while SW3 is located further downstream at the new monitoring location SW3 "Chapel Lough".


Table 5.1 Surface water summary results

	Parameter	Ammonia	рН	Cond	BOD	COD	CI	SO4	Ortho- Phosphate (MRP)	DO	Fe	Mn	К	Na
	Units	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	mg/l	mg/l P	mg/l	ug/l	ug/l	mg/l	mg/l
Discharge Cap	Qtr 1 2015	0.9	7.2	307	<1	29	53.5	43.8	<0.009	10	220	79	5.5	18.8
	Qtr 2 2015	-	-	-	-	-	-	-	-	-	-	-	-	-
	Qtr 3 2015	0.073	7.2	402	<1	27	5.3	67	0.077	7	84	20	2.7	5.6
	Qtr 4 2015	0.022	7.3	233	<1	24	6.8	40	0.035	9	84	15	3.5	5.3
SW1	Qtr 1 2015	0.15	7.5	272	<1	13	40	40	<0.009	11	<20	5.7	3.2	6.1
	Qtr 2 2015	0.17	7	270	<1	35	17	23	0.011	9	660	160	2.9	15.1
	Qtr 3 2015	1.3	7.3	360	7.1	58	22	3.7	0.073	6	1900	1700	5.3	16.9
	Qtr 4 2015	0.9	7.3	301	<1	51	18	8.6	0.04	9	890	330	5.2	14.4
SW3	Qtr 1 2015	0.21	7.3	329	<1	22	57	46	<0.009	10	120	75	4.2	22.1
	Qtr 2 2015	0.085	7.3	280	<1	32	15.9	26.5	<0.009	10	430	380	1.5	15.2
	Qtr 3 2015	0.095	7.3	326		54	18	44	0.052	9	1500	910	3.5	15.4
	Qtr 4 2015	1.3	6.9	293	3	42	17	26	0.044	7	1900	830	4.1	13.8
S.I No 294/1989		0.2	≥5.5 and ≤8.5	1000	5	40	250	200		NAC	200	50		



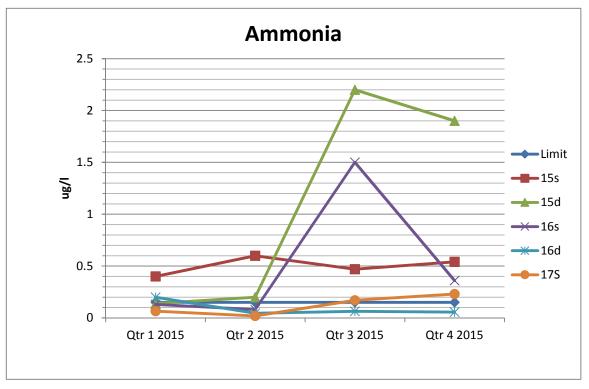

Graph 5.2



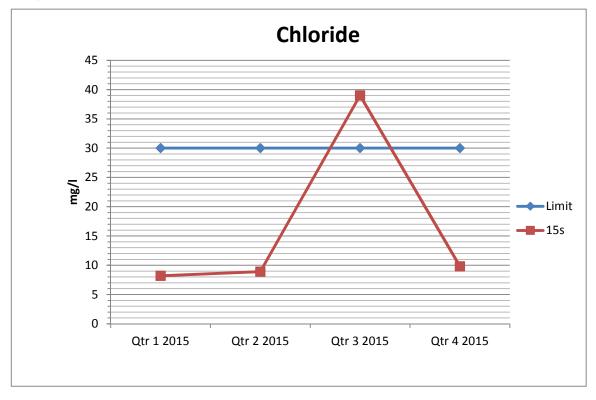
Graph 5.4

Page 12 of 26

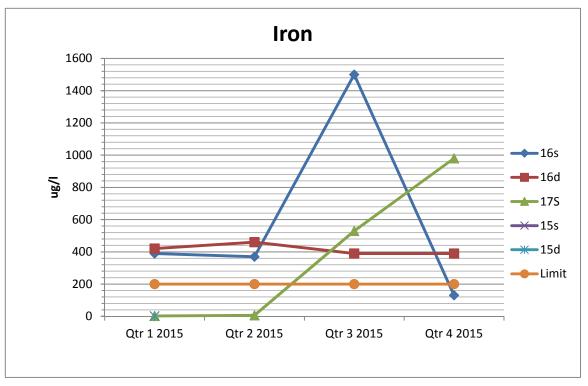
Elevated levels of Iron and Manganese can be attributed to the natural composition of the underlying geology however it is not uncommon to encounter high levels of both parameters in the vicinity of landfills. The elevated levels of Ammonia and COD encountered at SW1 and SW3 are attributed to low flows during which time the water may have become stagnant.

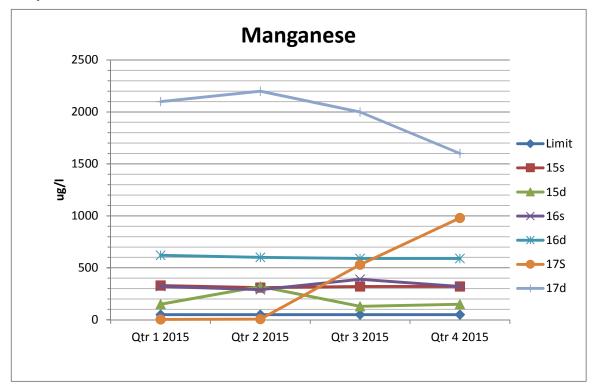

5.2 Groundwater

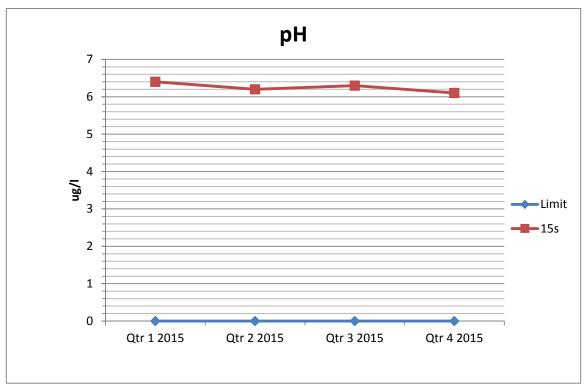
The following table details all reoccurring elevations at groundwater wells during 2015. Results in bold Italics indicate where the interim guide value has been exceeded when compared to limits stipulated by the Environmental Protection Agency.

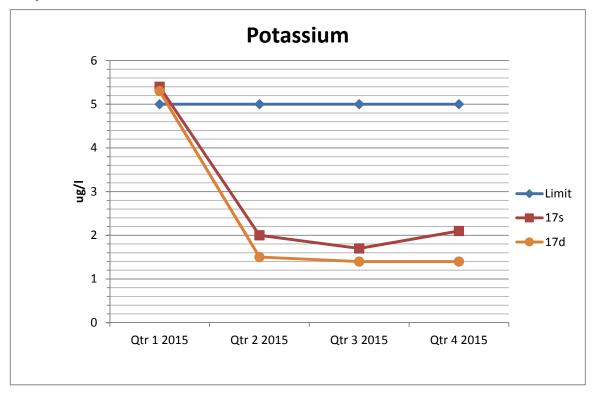

Table 5.2 Groundwater Summary Results

	Parameter	тос	Ammonia	TON	рН	Cond	CI	SO4	DO	Fe	Mn	к	Na
	Units	mg/l	mg/l N	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	ug/l	mg/l	mg/l
WELL 15 S	Qtr 1 2015	8.6	0.4	0.13	6.4	189	8.2	35.5	9	20000	330	4.1	7.5
	Qtr 2 2015	10.02	0.6	<0.138	6.2	184	8.9	30.3	8	14000	310	2.1	7.2
	Qtr 3 2015	11.13	0.47	<0.138	6.3	307	39	47	2	13000	320	2.9	28.2
	Qtr 4 2015	10.35	0.54	0.141	6.1	208	9.8	33	7	7400	320	2.2	53.7
WELL 15 D	Qtr 1 2015	0.64	0.14	<0.12	8.1	302	8.8	21.8	7	61	150	4.2	10.9
	Qtr 2 2015	1.53	0.2	<0.138	7.8	300	8	19.3	8	300	320	1.8	10.9
	Qtr 3 2015	3.3	2.2	<0.138	7.7	317	10	17	3	49	130	1.6	10.7
	Qtr 4 2015	4.26	1.9	<0.138	7.4	315	10	16	<1	<20	150	1.5	10.7
WELL 16 S	Qtr 1 2015	1.84	0.13	<0.12	6.9	251	7.6	25.5	9	390	320	1.3	9.8
	Qtr 2 2015	2.34	0.081	<0.138	6.8	247	6.5	23.6	9	370	290	1.1	9.3
	Qtr 3 2015	2.96	1.5	<0.138	6.8	265	8.6	26	6	1500	390	1.1	9.2
	Qtr 4 2015	4.57	0.36	4.637	7.2	309	11	44	9	130	320	2.6	32.3
WELL 16 D	Qtr 1 2015	0.33	0.2	<0.12	7.4	270	9.1	24.4	8	420	620	2.2	16.6
	Qtr 2 2015	0.47	0.045	<0.138	7.4	270	9.2	26.7	6	460	600	1.2	15.4
	Qtr 3 2015	0.61	0.063	<0.138	7.4	278	10	27	7	390	<i>590</i>	1.1	15.2
	Qtr 4 2015	2.81	0.056	<0.138	7.3	276	11	25	7	390	<i>590</i>	1.2	15.3
MW 17 S	Qtr 1 2015	4.32	0.065	3.68	7.2	450	24.9	57.1	10	<20	2.7	5.4	12.5
	Qtr 2 2015	5.58	0.019	1.971	7.2	419	7	51.9	10	<20	5.9	2	7.1
	Qtr 3 2015	4.49	0.17	0.221	7.1	427	11	62	7	<20	530	1.7	9.5
	Qtr 4 2015	17.27	0.23	2.324	7	431	10	56	10	<20	980	2.1	26
Well 17 D	Qtr 1 2015	3.01	0.1	0.13	7.4	596	7.2	81.7	10	<20	2100	5.3	17.7
	Qtr 2 2015	3.18	0.069	0.297	7.4	615	10.2	92.2	8	30	2200	1.5	14.3
	Qtr 3 2015	3.24	0.11	<0.138	7.5	620	8.5	90	6	<20	2000	1.4	15.2
	Qtr 4 2015	6.82	0.048	<0.138	7.5	603	8.6	87	5	<20	1600	1.4	14.6
Interim Guio	de Value	NAC	0.15	NAC	≥6.5 &≤9.5	1000	30	200	NAC	200	50	5	150




Graph 5.7




Graph 5.9

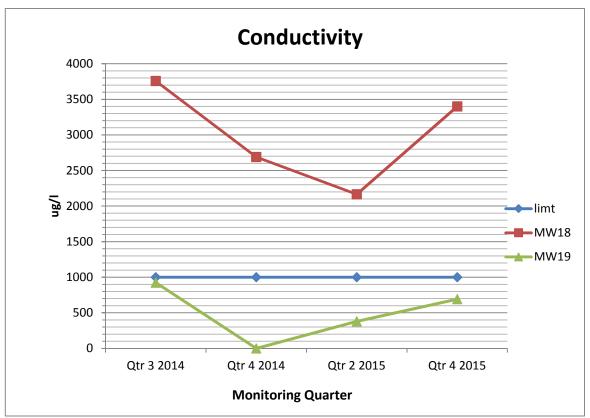
Graph 6.1

As detailed in the above graphs, there were numerous ground water elevations in the vicinity of this landfill during 2015 when results were compared to the Interim Guide Values.

As there are no emission limits for ground water specified by the waste licence, the parameters are compared to the Interim Guide Values, elevatiosn occurred in the following parameters:

- Ammonia: Elevated levels of this parameter were prevalent during 2015. Elevated levels of ammonia are strongly associated with pollution from waste water treatment systems as well as agricultural activates and so contamination of these wells by the landfill cannot be definitively concluded.
- **Iron**: Although increased Iron levels can be attributed to contamination from landfills, it is also strongly associated with the native soils of the Cavan area and therefore cannot be directly linked to the landfill.
- Chloride: This parameter is an indication of contamination from a landfill source. In 2015 there was an elevated level of this parameter encountered at well MW15S. This elevation was reported to the EPA and was attributed to contamination from an external source such as road salt. It can be seen that the level of chloride has shown a sharp decrease from its peak recording in quarter 3.
- **Manganese**: Elevated levels of Manganese can be associated with landfill contamination but in this instance they are attributed to the natural composition of the underlying soils.
- Potassium: There were slight exceedances recorded at wells 17s and 17d in conjunction with interim guideline values, however it must be noted, no limits are specified in the license for groundwater contamination. This parameter will be closely monitored in the next quarter.
- **pH**: Well 15s recorded an exceedance during monitoring in 2015. This reading was minimal and cannot be linked to the landfill.

5.3 Leachate Monitoring


Leachate monitoring is carried out annually in accordance with the licence.

Leachate samples were obtained from new leachate wells which were installed prior to quarter 4 monitoring 2012. The following table details all results obtained from these wells during 2015.

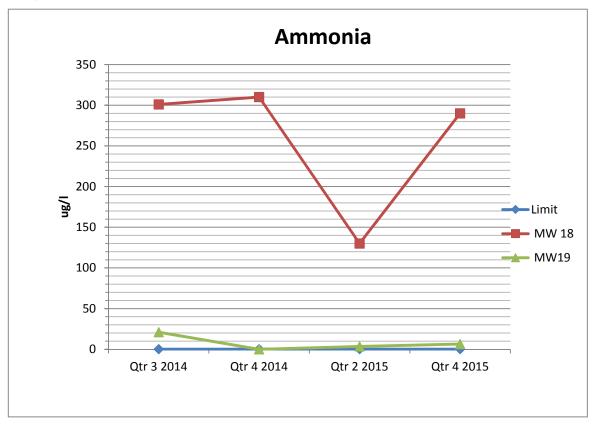
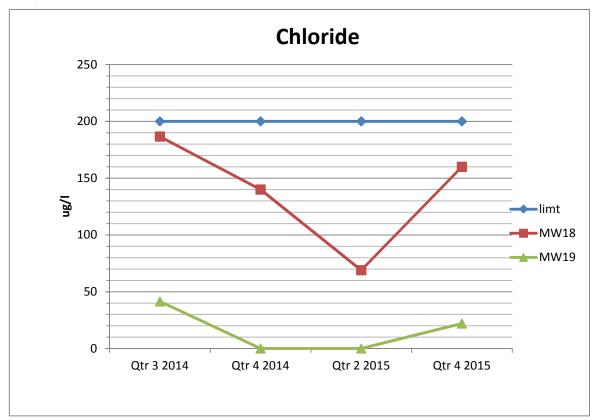

	Parameter	Ammonia	CI	TON	SO4	Cond	рН	COD	BOD
	Units	mg/l N	mg/l	mg/l N	mg/l	us/cm	pH Units	mg/l	mg/l
	Qtr 3 2014	301.058	186.7	<0.69		3757	7.2	531	37
WELL MW 18	Qtr 4 2014	310	140	<0.69	17	2690	7	219	<37
	Qtr 2 2015	130	69	<0.69		2165	7.1	<25	147
	Qtr 4 2015	290	160	<0.69		3399	7.2	214	20
	Qtr 3 2014	21.037	41.5	<0.69		924	6.6	253	29
WELL MW 19	Qtr 4 2014	-	-	-	-	-	-	-	-
	Qtr 2 2015	3.5	<13	<0.69		379	6.8	<7	39
	Qtr 4 2015	6.4	22	<0.69		693	6.8	81	14
Interim Guide	Interim Guide Values		200	NAC	200	1000	≥6.5&≤9.5		

Table 5.3 Leachate Summary Results



Graph 6.3

Graph 6.4

5.4 Gas Emissions

Landfill gas monitoring is conducted at thirteen sampling locations. These locations are situated both inside and outside the landfill mass. Historic results for the period 2015 are displayed below.

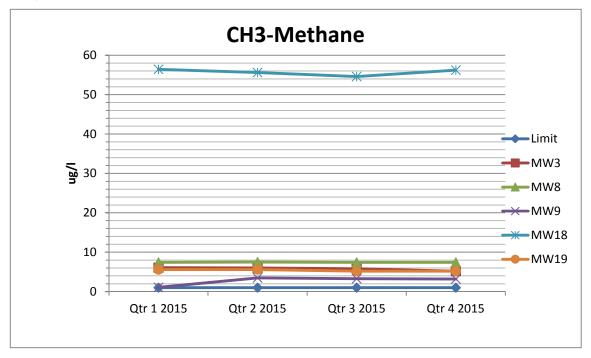
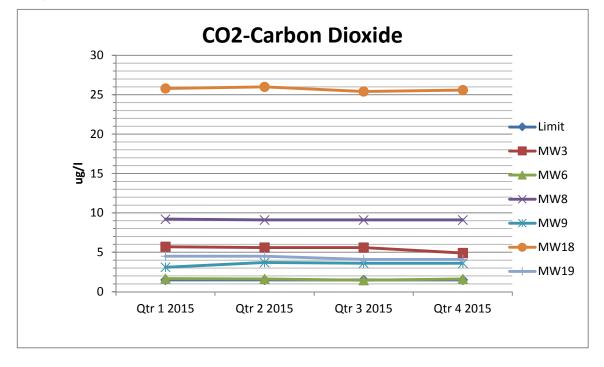

Metho	d	GA 2000	GA 2000	GA 2000	GA 2000	GA 2000		M	ethod	GA 2000	GA 2000	GA 2000	GA 2000	GA 2000				
Paramet	-	CH4	CO2	O2	H ₂ S	Barometric Pressure		Parameter						CH4	CO2	O2	H ₂ S	Barometric Pressure
Units		1% v/v	1.5 % v/v	%	PPM	mb		U	nits	1% v/v	1.5 % v/v	%	PPM	mb				
Client Ref	Qtr	-	-	-	-	-	Client	t Ref	Qtr	-	-	-	-	-				
MW 1	Qtr 1 2015	0	0.2	21.4	0	1008	MW	10S	Qtr 1 2015	0	0.2	20.8	0	1009				
	Qtr 2 2015	0	0.2	21.4	0	1008			Qtr 2 2015	0	0.3	20.8	0	1009				
	Qtr 3 2015	0	0.16	21.4	0	1008			Qtr 3 2015	0	0.2	20.6	0	1009				
	Qtr 4 2015	0	0.16	21.4	0	1008			Qtr 4 2015	0	0.2	20.9	0	1009				
MW 2	Qtr 1 2015	0	1.1	21.7	0	1008	MW 1	10D	Qtr 1 2015	0	0.4	19.5	0	1010				
	Qtr 2 2015	0	1.1	21.7	0	1008			Qtr 2 2015	0	0.4	19.6	0	1010				
	Qtr 3 2015	0	1.1	21.7	0	1008			Qtr 3 2015	0	0.3	20.0	0	1008				
	Qtr 4 2015	0	1.1	21.7	0	1008			Qtr 4 2015	0	0.2	19.7	0	1010				
MW 3	Qtr 1 2015	6.1	5.7	16.1	0	1009	MW :	17S	Qtr 1 2015	0	0	20	0	1008				
	Qtr 2 2015	6	5.6	16.1	0	1009			Qtr 2 2015	0	0	20	0	1008				
	Qtr 3 2015	5.8	5.6	15.7	0	990			Qtr 3 2015	0	0	20.2	0	1008				
	Qtr 4 2015	5.2	4.9	15.8	0	990			Qtr 4 2015	0	0	20.2	0	1008				
MW 6	Qtr 1 2015	0	1.66	20.2	0	1009	MW 1	17D	Qtr 1 2015	0	0	20.5	0	1008				
	Qtr 2 2015	0	1.62	20.2	0	1009			Qtr 2 2015	0	0	20.5	0	1008				
	Qtr 3 2015	0	1.46	19.94	0	1009			Qtr 3 2015	0	0	20.3	0	1008				
	Qtr 4 2015	0	1.62	20.04	0	1009			Qtr 4 2015	0	0	20.3	0	1008				
MW 7	Qtr 1 2015	0	0.2	21.1	0	1008	Mw	18	Qtr 1 2015	56.4	25.8	0	0	1009				
	Qtr 2 2015	0	0.2	21.1	0	1008			Qtr 2 2015	55.6	26	0	0	1009				
	Qtr 3 2015	0	0.2	21.1	0	1008			Qtr 3 2015	54.6	25.4	0	0	1009				
	Qtr 4 2015	0	0.2	21.1	0	1008			Qtr 4 2015	56.2	25.6	0	0	1009				
MW 8	Qtr 1 2015	7.4	9.2	13.2	0	1009	MW	19	Qtr 1 2015	5.6	4.5	17.1	0	1010				
	Qtr 2 2015	7.5	9.1	13.1	0	1009			Qtr 2 2015	5.6	4.5	17.1	0	1010				
	Qtr 3 2015	7.4	9.1	13.4	0	1009			Qtr 3 2015	5.2	4.1	17.1	0	1010				
	Qtr 4 2015	7.4	9.1	13.4	0	1009			Qtr 4 2015	5.2	4.1	17.1	0	1010				
MW 9	Qtr 1 2015	1.1	3.1	19.5	0	1008			Limit	1	1.5							
	Qtr 2 2015	3.5	3.7	16.6	0	1008	1		nt Serial No:	GA 07721								
	Qtr 3 2015	3.3	3.6	16.6	0	1008	2		chedule C2, I	icence								
	Qtr 4 2015	3.2	3.6	16.6	0	1008	1	Excee	dance									
	Limit	1	1.5															

Table 5.4 Gas Emissions Summary


Results

The following graphs show gas monitoring results for 2015. These wells are located inside the waste mass.

Graph 6.5

Graph 6.6

Gas Monitoring on the site reveals typical low levels of Methane & Carbon Dioxide and higher levels of Oxygen. There were some high readings encountered at MW8 and MW18 and which are all located in the centre of the waste body. There was no significant gas migration recorded in monitoring wells outside of the waste body. The results are typical of a closed landfill.

6.0 SUMMARY OF RESULTS & INTERPRETATION OF ENVIRONMENTAL MONITORING

Included in Appendix C is a copy of the 4th quarter monitoring results as reported by Monitoring Company Boylan Engineering. We are satisfied that we are carrying out the environmental monitoring as specified in the Waste Licence. We are also satisfied that there are no major environmental impacts associated with this facility.

7.0 RESOURCE & ENERGY CONSUMPTION SUMMARY

As there is in-sufficient gas produced to run a gas flare or engine there is no use for the gas resource on site. There is no energy consumed on site.

8.0 REPORT ON RESTORATION OF THE FACILITY

The site is fully restored and the cap intact. There was some horse grazing on the site at various times during 2014. Gorse overgrowth was remedied during 2014 and has not required maintenance since.

9.0 ESTIMATED ANNUAL & CUMULATIVE QUANTITIES OF LANDFILL GAS EMITTED FROM THE FACILITY

This information is reported in the PRTR Report attached in Appendix A. The estimated quantity of Methane released is 49,300kgs/yr. Page one from the Annual Gas Survey is also presented in Appendix A.

10.0 FULL TITLE & WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY THE LICENSEE IN THE YEAR WHICH RELATES TOT HE FACILITY OPERATION

There was no change to or development of any procedures undertaken by the licensee or monitoring contractor in 2015. The environmental monitoring contractor 'Boylan Engineering' adhere to all standard practices for environmental monitoring.

11.0 REPORTED INCIDENTS & COMPLAINTS SUMMARY

There were no complaints received by the EPA or the Local Authority regarding this facility in the reporting period 2015.

12.0 REVIEW OF NUISANCE CONTROLS

As there are no known nuisances associated with this site there are no nuisance controls in place for noise or vermin. There is no odour detectable from the site and as these are the main nuisances associated with landfills the licensee has not reviewed the controls. This is substantiated by the absence of complaints regarding the facility. However, if any nuisances arise at the facility, the licensee will deal with them using appropriate measures and procedures.

13.0 REPORT ON TRAINING OF STAFF

Landfill Operations Managers Regina Burke and Sinead Fox- for Cavan County Council deal with in full with any issues identified by the Agency Inspectors or any other party. Sinead Fox has been fully trained in the control of landfill gas, the FAS Waste Management Training Course and carries a Safe Pass.

Position	Name	Duties
Director of Services Environment	Ger Finn	Oversee and assign responsibilities to staff regarding landfill
Acting Senior Engineer	Colm O'Callaghan	Oversee general supervision, monitoring and reporting of the site.
Landfill Operations Managers	Regina Burke/Sinead Fox	Responsible for general supervision, monitoring and reporting of the site.

Table 13.1	Management	Structure 2015
	managomon	

Contact Person for Sanitary Authority for 2015/ 2016:

Colm O'Callaghan Acting Senior Engineer Waste Management Section Cavan County Council Farnham Street, Cavan

14.0 FINANCIAL PROVISION

Provision will be made in Cavan County Council Official Estimates for Charges as required under Condition 12 of Waste Licence Ref. 91-1.

15.0 ANY OTHER ITEMS AS SPECIFIED BY THE AGENCY

As requested by the Agency we have included in Appendix B a copy of the most recent Map of the site showing all Monitoring locations.

| PRTR# : W0091 | Facility Name : Bailieborough Landfill | Filename : W0091_2015 rev 1.xlsm | Return Year : 2015 |

Guidance to completing the PRTR workbook

PRTR Returns Workbook

Version 1.1.19

1. FACILITY IDENTIFICATION	
Parent Company Name	
Facility Name	Bailieborough Landfill
PRTR Identification Number	W0091
Licence Number	W0091-01

Classes of Activity	class name
140.	ciass_name

REFERENCE YEAR 2015

	-	Ref	ert	to I	PR'	ΓR	class	acti	vities	be	low		
--	---	-----	-----	------	-----	----	-------	------	--------	----	-----	--	--

	Tanderagee
Address 2	Bailieborough
Address 3	
Address 4	
	Cavan
Country	
Coordinates of Location	
River Basin District	IEEA
NACE Code	
	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	
AER Returns Contact Email Address	b.keating@boylanengineering.ie
AER Returns Contact Position	
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number	
Production Volume	
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	
Number of Employees	
User Feedback/Comments	None to Report
Web Address	www.boylanengineering.ie

2. PRTR CLASS ACTIVITIES

	2. TRIN OLAGO ACTIVILLO	
		Activity Name
5(c)		Installations for the disposal of non-hazardous waste
	50.1	General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site
used ?	
Is the reduction scheme compliance route being	
Schedule 2 of the regulations) ?	
If applicable which activity class applies (as per	
Have you been granted an exemption ?	
Is it applicable?	No

Do you import/accept waste onto your site for on-		
site treatment (either recovery or disposal		
activities) ?		
	This succession is such	In the second seco

This question is only applicable if you are an IPPC or Quarry site

4.1 RELEASES TO AIR Link to previous years emissions data

| PRTR# : W0091 | Facility Name : Bailieborough Landfill | Filename : W0091_2015 rev 1.xlsm | Return Year : 2015 |

04/05/2016 09:35

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

RELEASES TO AIR			Please enter all quantities in this section in KGs							
POLLUTANT		METHOD				QUANTITY				
				Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
03 - Carbon dioxide (CO2)		С	OTH	GASSIM	0	0 138000.0	0.0	138000.0		
01	Methane (CH4)	С	OTH	GASSIM	0	0 49300.0	0.0	49300.0		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

RELEASES TO AIR			Please enter all quantities in this section in KGs						
POLLUTANT		METHOD			QUANTITY				
				Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accide	ental) KG/Year	F (Fugitive) KG/Year
					0.0)	0.0	0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

RELEASES TO AIR			Please enter all quantities in this section in KGs						
	POLLUTANT	METHOD		QUANTITY					
				Method Used					
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A	(Accidental) KG/Year	F (Fugitive) KG/Year
					0	.0	0.0	0.0	0.0

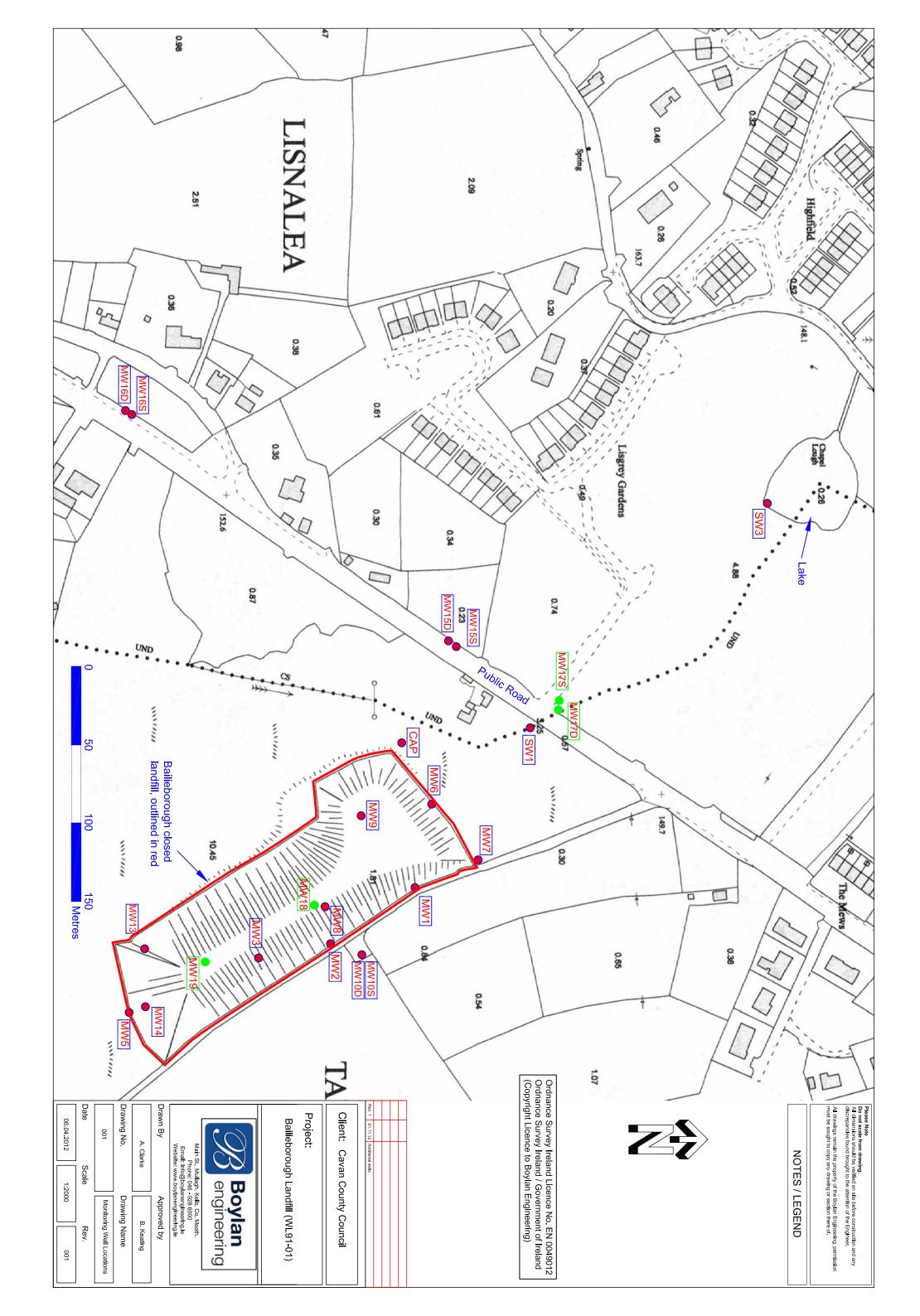
* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Landfill operators								
or utilised on their facilities to accompany the figures for	ise Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flare r total methane generated. Operators should only report their Net methane (CH4) emission to the specific PRTR pollutants above. Please complete the table below:	c						
Landfill:	Bailieborough Landfill		1		7			
Please enter summary data on the								
quantities of methane flared and / or utilised			Meth	od Used				
				Designation or	Facility Total Capacity m3			
	T (Total) kg/Year	M/C/E	Method Code	Description	per hour			
Total estimated methane generation (as per								
site model)	0.0	С	ОТН		N/A			
Methane flared	0.0					(Total Flaring Capacity)		
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)		
Net methane emission (as reported in Section								
A above)	0.0	С	ОТН		N/A			

A survey of landfill sites to determine the quantity of methane flared and or recovered in utilisation plants for 2015

ase choose from the drop down menu the license number for your site		W0091	•	
Please choose from the drop down menu the name of the landfill site		Bailieborough	h Landfill	-
Please enter the number of flares operational at your site in 2015		0	•	
Please enter the number of engines operational at your site in 2015	a	0	▼	
Total methane flared	٥		0 kg/year	
Total methane utilised in en	ngines		0 kg/year	

Please note that the closing date for reciept of completed surveys is 31/03/2016


Introduction

The Office of Environmental Sustainability (OES) of the Environmental Protection Agency acts as the inventory agency in Ireland with responsibility for compiling and reporting national greenhouse gas inventories to the European Commission and the United Nations Framework Convention on Climate Change. In addition to meeting international commitments Ireland's national greenhouse gas inventory informs national agencies and Government departments as they face the challenge to curb emissions and meet Ireland's emission reduction targets under the Effort Sharing Decision (No. 406/2009/EC). The national inventory also informs data suppliers, making them aware of the importance of their contributions to the inventory process and a means of identifying areas where input data may be improved.

It is on this basis that the Environmental Protection Agency is asking landfill operators to partake in this survey so that the most uptodate information on methane flaring and recovery in utilisation plants at landfills sites is used in calculating the contribution of the landfill sector to national greenhouse gas emissions

The Environmental Protection Agency wishes to thank you for partaking in this survey. If you have any questions about the survey and how to complete it please view the "Help sheet" worksheet. If however, your query is not answered by viewing the "Help sheet" worksheet please contact: LFGProject@epa.ie

Once completed please send the completed file as an attachment clearly stating the name and or license number of the landfill site (e.g. W000 Xanadu landfill_2015) to: LFGProject@epa.ie

Eng. & Environmental Consultancy

GROUNDWATER MONITORING REPORT FOR BAILIEBOROUGH LANDFILL W0091-01

Client:	Cavan County Cou	uncil	
Site Location:	Tanderagee, Bailie	eborough	
Report No.:	CCC-02-01-05-04-0	01-GW-Rev 0	
Produced by:	Bróna Keating, B.S	c., M.Sc., CEnv., MC	CIWM
Approved by:	Cathal Boylan, BEn CHARTERED ENG	0. 0.	Date: 24 th February 2015
	Boylan Engineering Company Reg. Address: Phone: Fax: Email: Web:	430482 Main St., Mullagh, I 046 – 928 6000 / 0 046 – 928 6002 info@boylanengine www.boylanengine	87 – 820 5470 ering.ie

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2016)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Environmental Monitoring at Bailieborough Landfill (W0091-01), Tandragee, Co Cavan for quarter three and four 2015.

Brona Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Environmental Sampling
 - 2.2 Laboratory Analysis
 - 2.3 Monitoring Locations
 - 2.4 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

List of Tables

- 1.0 Ground Water 03rd Quarter Monitoring
- 2.0 Ground Water 04th Quarter Monitoring

Appendix

- 1.0 Historical Data
- 2.0 Analysis Methods
- 3.0 Field Sheets

Lab Reports Landfill Map

1. INTRODUCTION

Bailieborough landfill is situated approximately 1 kilometre from Bailieborough town centre in the townland of Tandergee. The site which comprises some 2.23 hectares was originally peat land which was stripped for commercial purposes. The site was then operated as a traditional landfill until its closure in 2002. A waste licence was issued by the Environmental Protection Agency after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the groundwater, sampling programme conducted on site and also summarises findings and analytical results for quarterly three and four 2015.

The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Bailieborough landfill is situated in the R2¹ Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R2¹ Zones are acceptable subject to guidance in the EPA Landfill Design Manual or conditions of a waste licence - (EPA, groundwater protection Responses for Landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of Leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

2. METHODOLOGY

2.1 Environmental Sampling

The following procedure is conducted by Boylan Engineering to ensure accurate groundwater monitoring:

- ISO 5667: Guidance on sampling of groundwaters is adhered to.
- Prior to sampling, the depth of water in groundwater wells is measured by dipping. Dipping the wells before sampling allows for calculation of the volume of water in the well. This data is recorded on the field sheet for volume calculation which is presented in appendix 3.
- Once the volume was calculated the boreholes are purged three times their volume before sampling.
- Sampling is conducted using a Waterra inertial lift pump and associated tubing, pumping water directly from the borehole to the appropriate sampling bottles.
- Designated tubing is used at each location.
- Having obtained a representative sample the following parameters are measured on-site using a Hanna HI 98129 combination waterproof high accuracy.
 - o Conductivity
 - o Temperature
 - o pH
- Boylan Engineering operate a Sample Submission/Chain of Custody form, which accompanies the samples at all times.

2.2 Laboratory Analysis

- Samples are sent to Environmental Laboratory Service (ELS) (Ireland) for analysis of the required parameters in designated cool boxes with ice packs. These boxes insure that samples are maintained at a consistent temperature between 0°C and 4°C on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0°C and 4°C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 2.

2.3 Monitoring Locations

Monitoring		National Grid Co-
Well	Sample Type	Ordinates
MW15S	GW	N296097.36 E267343.36
MW15D	GW	N296092.30 E267344.88
MW16S	GW	N295888.86 E267202.87
MW16D	GW	N295885.59 E267200.97
MW17S	GW & GAS	N296179.25 E267321.30
MW17D	GW & GAS	N296178.68 E267327.22
	Leachate &	
MW18	GAS	N296023.13 E267452.20
	Leachate &	
MW19	GAS	N295954.06 E267499.79

2.4 Weather Report

Date	Rainfall (mm)	Max Temp (°C)	Min Temp (°C)	Grass Min Temp (°C)	Mean Wind Speed (knots)	Maximum Gust (if >= 34 knots)	Sunshine (hours)
13/8/2015	0	21	5.2	4.4	2.7	N/A	N/A

	Date	Rainfall (mm)	Max Temp (°C)	Min Temp (°C)	Grass Min Temp (°C)	Mean Wind Speed (knots)	Maximum Gust (if >= 34 knots)	Sunshine (hours)
4	/11/2015	0	11.7	2.3	0.3	1.6	N/A	N/A

3.0 SUMMARY OF RESULTS

Table 1.0 03rd Quarter Ground water monitoring 2015

Report Num	ber	88194]															
Monitoring D	Date:	13.8.15																
Meth	nod	Site Tests	Site Tests	Site Tests	Site Tests	Site Tests	тос	Ammonia	AQ2-UP1	Titra	alab	AQ2	-UP2	DO		Metals-I	Dissolved	
Method N	Number	Site Tests	Site Tests	Site Tests	Site Tests	Site Tests	EW123	EW003	EW154M	EW138	EW139	EW015	EW015	EW043		EM130		
Param	neter	Sample temperature (to be done onsite)	Cond	рН	Water Level from TOC	Visual Inspection	тос	Ammonia	TON (as N)(calc)	рН	Cond	CI	SO4	DO	Fe	Mn	к	Na
Uni	its	Deg C	us/cm	pH units	Meter's	-	mg/l	mg/l N	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	ug/l	ug/l	mg/l	mg/l
Limit of D	etection	-	-	-	-	-	0.25	0.007	0.138	0.3	25	2.6	1.0	1.0	5	1	0.2	0.5
Date Testin	g Initiated			13.8.15								14.8	3.15					
ELS Ref	Client Ref																	
88194/005	MW 15S	13.5	339	5.9	1.83	Red	11.13	0.47	<0.138	6.3	307	39	47	2	13000	320	2.9	28.2
88194/006	MW 15D	13.5	330	6.87	1.75	Clear	3.3	2.2	<0.138	7.7	317	10	17	3	49	130	1.6	10.7
88194/003	MW 16S	12.9	273	12.90	1.56	Cloudy	2.96	1.5	<0.138	6.8	265	8.6	26	6	1500	390	1.1	9.2
88194/004	MW 16D	12.6	292	12.60	1.31	Clear	0.61	0.063	<0.138	7.4	278	10	27	7	390	590	1.1	15.2
88194/001	MW 17S	14.4	422	6.85	1.6	Clear	4.49	0.17	0.221	7.1	427	11	62	7	<20	530	1.7	9.5
88194/002	MW 17D	12.6	603	6.96	1.58	Clear	3.24	0.11	<0.138	7.5	620	8.5	90	6	<20	2000	1.4	15.2
IG	v		1000	≥6.5 and ≤9.5			NAC	0.15		≥6.5 and ≤9.5	1000	30	200	NAC	200	50	5	150
Exceed	lance																	
NOTES																		
1	Sub-contract analysis denoted by *																	
2	ND - Concentration was below the limit of detection																	
3	NAC- No A	Abnormal Chang	e															
4	IGV - Inter	rim Guide Value																

Table 2.0 04th Quarter Ground water monitoring 2015

Design the set		000040			1				1		1	1			1			
Report Numb		90642																
Monitoring D		04.11.15		Site Tests	<u> </u>	<u> </u>	тос	Ammonia	AQ2-UP1	Titr	ralab	Titralab	AQ2	-UP2	DO	Total Cyanide High (Sub)	Total Phosphorus- TP	PhenolsTotal - Index (Sub1)
Method	Number			Site Tests			DEFAULT	EW003	EW154M		EW153	,	EW1	L54M	EW043	DEFAULT	EW146	DEFAULT
Para	meter	Sample temperature (to be done onsite)	Cond	рН	Water Level from TOC	Visual Inspection	тос	Ammonia	TON (as N)(calc))(calc) pH Cor		Alkalinity Total (R2 pH4.5)	Chloride	Sulphate	Dissolved Oxygen	Total Cyanide High	Total Phosphorus- TP	Phenols-Total
U	nits	Deg C	us/cm	pH units	Meter's	-	mg/l	mg/l N	mg/l N	pH Units	us/cm	mg/L CaCO3	mg/l	mg/l	mg/l	ug/L	mg/l P	mg/L
Limit of	Detection	-	-	-	-	-	0.25	0.007	0.138	0.3	25	10	2.6	1.0	1.0	10	0.01	0.15
Date Testi	ng Initiated			04.11.15								05.1	.1.15					
ELS Ref	Client Ref																	
90642/001	MW 15S	11.5	391	6.45	1.75	Red	10.35	0.54	0.141	6.1	208	69	9.8	33	7	<9	3.68	<0.1
90642/002	MW 15D	10.9	326	6.85	1.65	Clear	4.26	1.9	<0.138	7.4	315	162	10	16	<1	<9	0.3	<0.1
-	MW 16S	11.1	410	6.56	1.42	Clear	4.57	0.36	4.637	7.2	309	109	11	44	9	<9	0.27	<0.1
90642/004	MW 16D	10.6	295	6.65	1.27	Clear	2.81	0.056	<0.138	7.3	276	126	11	25	7	<9	0.08	<0.1
90642/005	MW 175	11.8	496	6.84	1.4	Clear	17.27	0.23	2.324	7	431	157	10	56	10	<9	0.03	<0.1
90642/006	MW 17D	10.7	587	6.72	1.25	Clear	6.82	0.048	<0.138	7.5	603	268	8.6	87	5	<9	0.02	<0.1
IC	GV		1000	≥6.5 and ≤9.5			NAC	0.15	NAC	≥6.5 and ≤9.5	1000	NAC	30	200	NAC	10	-	-
Me	thod	Coliforms	Coliforms	Ion Chromatography	Residue on Evaporation (Tot Solids-TS)	Metals- Total						Metals-I	Dissolved					
Method	Number	MIC13	3	EW137	EW060		J					EM130						
	meter	Total Coliforms	E. Coli	Fluoride	Residue on Evaporation (Tot Solids-TS)	Chromium- Total	Iron Dissolved	Manganese Dissolved	Potassium Dissolved	Sodium Dissolved	Cadmium- Dissolved	Calcium- Dissolved	Copper- Dissolved	Lead- Dissolved	Magnesium- Dissolved	Mercury-Dissolved	Zinc-Dissolved	Boron-Dissolved
Uı	nits	MPN/100ml	MPN/100ml	mg/L	mg/L	ug/L	ug/L	ug/L	mg/l	mg/l	ug/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	mg/L
	Detection	0	,	0.1	10.0	1.0	20.0	0.001	0.2	0.5	0.1	1.0	0.00	-	0.3	0.02	1.0	0.02
Date Testi	ng Initiated			1	1		,		05.11	1	1	1		1		1	1	1
ELS Ref	Client Ref																	
90642/001	MW 15S	110	0	<0.1	446	13.2	7400	320	2.2	53.7	<0.1	21	< 0.003	<0.3	4.6	<0.02	440	<0.02
	MW 15D	2420	21	0.13	170	<3	<20	150	1.5	10.7	<0.1	36	< 0.003	<0.3	13.2	<0.02	5.1	<0.02
	MW 16S	62	0	0.16	188	<3	130	320	2.6	32.3	<0.1	21	< 0.003	<0.3	13.5	<0.02	670	<0.02
	MW 16D	113	1	0.33	158	<3	390	590	1.2	15.3	<0.1	30	< 0.003	<0.3	9.6	<0.02	150	<0.02
	MW 17S	2420	3	0.1	322	<3	<20	980	2.1	26	<0.1	65	0.005	<0.3	13	<0.02	340	0.02
	MW 17D	2420	1	<0.1	268	<3	<20	1600	1.4	14.6	<0.1	77	< 0.003	<0.3	29.4	<0.02	140	<0.02
IC	GV	0	0	1	-	30	200	50	5	150	0.005	200	0.03	10	50	1	100	1
. .																		
	dance																	
NOTES			<u> </u>															
		analysis denoted by																
		ration was below th	ie limit of det	ection														
		ormal Change																
4	IGV - Interim	Guide value																

As there are no limits set in the waste licence for groundwater, results are compared to the Interim Guide Values for the protection of Groundwater in Ireland, where available.

4.0 DISCUSSION

4.1 Ground water

Monitoring of groundwater is a common and necessary event in landfill sites both during their active life and post closure. The significance of such monitoring is so the facilities can demonstrate that there is no potential for the migration of hazardous constituents from the unit into the groundwater systems.

Monitoring was conducted on the 13th August and the 04th November 2015. Results in bold italics indicate where the interim guide value has been exceeded. Results from Quarter three and four 2015 show that there were exceedances at various ground water monitoring locations for parameters; Ammonia, pH, Iron and Manganese, total coliforms, e-coli and Zinc. Previous results detailed in the historical data show that exceedances for Ammonia, Iron and Manganese are on par with previous monitoring events. The exceedance in pH has been noted at location MW 15S on previous monitoring events.

Elevated Iron levels at the remaining wells can be an indication of contamination. However, the hypothesis that is proposed is that the source of this Iron is not the landfill leachate, but the native soils beneath the landfill. Iron can become mobilised due to changing pH and/or redox conditions in the environment underneath the landfill. Alternatively, the Leachate from the non-hazardous waste may produce reducing conditions beneath the landfill, allowing the solution of Iron and Manganese from the underlying deposits. Elevated Iron may also be attributed to the natural composition of this area. All exceedances will be carefully examined in quarter 1 2016 and compared to previous monitoring episodes.

Historical results for comparison purposes are presented in tabular and graphic form in Appendix 1.

5.0 CONCLUSION

The results obtained from environmental monitoring are relatively consistent with previous monitoring events. The levels of exceeded parameters do not show any signs of dramatic exceedances therefore there is no evidence of any major negative environmental impact associated with this landfill.

Approved by:

SURFACE WATER MONITORING REPORT FOR BAILIEBOROUGH LANDFILL W0091-01

- Client: Cavan County Council
- Site Location: Tanderagee, Bailieborough
- **Report No.:** CCC-02-01-05-04-01-SW- Rev0
- Produced by: Bróna Keating, B.Sc., M.Sc., CEnv., MCIWM

Date: 24thth February 2016

Cathal Boylan, BEng, CEng, MIEI CHARTERED ENGINEER

Boylan EngineeringCompany Reg.430482Address:Main St., Mullagh, Kells Co. Meath.Phone:046 – 928 6000 / 087 – 820 5470Fax:046 – 928 6002Email:info@boylanengineering.ieWeb:www.boylanengineering.ie

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2016)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Environmental Monitoring at Bailieborough Landfill (W0091-01), Tandragee, Co Cavan for quarter three and four of 2015.

Brona Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Environmental Sampling
 - 2.2 Laboratory Analysis
 - 2.3 Monitoring Locations
 - 2.4 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

List of Tables

- 1.0 Surface Water 03rd Quarter Monitoring
- 2.0 Surface Water 04th Quarter Monitoring

Appendix

- 1.0 Historical Data
- 2.0 Analysis Methods
- 3.0 Field Sheets
 - Lab Reports Landfill Map

1. INTRODUCTION

Bailieborough landfill is situated approximately 1 kilometre from Bailieborough town centre in the townland of Tandergee. The site which comprises some 2.23 hectares was originally peat land which was stripped for commercial purposes. The site was then operated as a traditional landfill until its closure in 2002. A waste licence was issued by the Environmental Protection Agency after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the surface water sampling programme conducted on site and also summarises findings and analytical results for quarterly three and four of 2015.

The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Bailieborough landfill is situated in the R2¹ Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R2¹ Zones are acceptable subject to guidance in the EPA Landfill Design Manual or conditions of a waste licence - (EPA, groundwater protection Responses for Landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of Leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

2. METHODOLOGY

2.1 Environmental Sampling

The following procedure is conducted by Boylan Engineering to ensure accurate surface water monitoring:

- Surface water samples are taken by grab sample using a Telescoup and Pendulum beaker.
- Having obtained a representative sample the following parameters are measured on-site using a Hanna HI 98129 combination waterproof high accuracy.
 - Conductivity
 - o Temperature
 - o pH
- Boylan Engineering operate a Sample Submission/Chain of Custody form, which accompanies the samples at all times.

2.2 Laboratory Analysis

- Samples are sent to Environmental Laboratory Service (ELS) (Ireland) for analysis of the required parameters in designated cool boxes with ice packs. These boxes insure that samples are maintained at a consistent temperature between 0°C and 4°C on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0°C and 4°C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 2.

2.3 Monitoring Locations

		N296160.79
SW1	SW	E267338.62
		N296312.44
SW3	SW	E267195.10
CAP		N296078.86
Discharge	SW	E267348.65

2.4 Weather Report

REPORTS FR	OM BALLY	HAISE (A)					
Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind Speed	Maximu m Gust	Sunshine
	(mm)	Temp	Temp	(°C)	(knots)	(if >= 34 knots)	(hours)
		(°C)	(°C)				
13/08/2015	0	21	5.2	4.4	2.7		
REPORTS FR	OM BALLY	HAISE (A)					
Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind Speed	Maximu m Gust	Sunshine
	(mm)	Тетр	Тетр	(°C)	(knots)	(if >= 34 knots)	(hours)
		(°C)	(°C)				
04/11/2015	0	11.7	2.3	0.3	1.6		

Report Num	ber	88564/88193				_												
Monitoring		13.8.15																
M	lethod	Site Tests	Site Tests	Site Tests	Site Tests	AQ2	Titra	alab	5-Day	HACH		AQ2		Inolab		ICP	MS	
Metho	od Number	Site Tests	Site Tests	Site Tests	Site Tests	EW003	EW138	EW139	EW001	EW094	EW015	EW015	EW007	EW043	EM130			
Par	rameter	Sample temperature (to be done onsite)	Cond	рН	Visual Inspectio n	Ammoni a	рН	Cond	BOD	COD	CI	SO4	Ortho- Phosphat e (MRP)	DO	Fe	Mn	к	Na
	Units	Deg C	us/cm	pH units	-	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	mg/l	mg/l P	mg/l	ug/l	ug/l	mg/l	mg/l
Limit o	f Detection	-	-	-	-	0.007	0.3	25	1	8	2.6	1	0.009	1	0.005	0	0.2	0.5
Date Tes	ting Initiated		13.8.1	15								14.8.15						
ELS Ref	Client Ref																	
88193/001	SW1	8.8	340	7.3	Mucky	1.3	7.3	360	7.1	58	22	3.7	0.073	6	1900	1700	5.3	16.9
88193/001	SW3 Lake	7.6	404	7.4	Straw	0.095	7.3	326	3	54	18	44	0.052	9	1500	910	3.5	15.4
88564/001	Discharge CAP	14.7	420	6.82	Clear	0.073	7.2	402	<1	27	5.3	67	0.077	7	84	20	2.7	5.6
S.I No.	294/1989					0.2	≥5.5 and ≤8.5	1000	5	40	250	200	-	-	200	50	-	-
Exce	eedance																	
NOTES																		
1	Sub-contract an	alysis denoted	by *															
2	ND - Concentra	tion was below	the limit o	of detectio	n													

Table 1.0 03rd Quarter Surface water monitoring 2015

Table 2.0 04th Quarter Surface water monitoring 2015

Report Number		90645-1																	
Monitoring Date		04.11.15																	
Met	hod	Site Tests	Site Tests	Site Tests	Site Tests	AQ2	Titra	alab	5-Day	HACH		AQ2		Inolab		ICP	MS		
Method	Number	Site Tests	Site Tests	Site Tests	Site Tests	EW003	EW138	EW139	EW001	EW094	EW015	EW015	EW007	EW043	EM130				
Paran	neter	Sample temperat ure (to be done onsite)	Cond	рН	Visual Inspectio n	Ammoni a	рН	Cond	BOD	COD	CI	SO4	Ortho- Phosphat e (MRP)	DO	Fe	Mn	к	Na	
Un	Deg C	us/cm	pH units	-	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	mg/l	mg/l P	mg/l	ug/l	ug/l	mg/l	mg/l		
Limit of D	Detection	-	-	-	-	0.007	0.3	25	1	8	2.6	1	0.009	1	0.005	0	0.2	0.5	
Date Testin	ng Initiated		04.1	1.15								05.11.15							
ELS Ref	Client Ref																		
90645/001	SW1	11.8	332	7.3	Mucky	0.9	7.3	301	<1	51	18	8.6	0.04	9	890	330	5.2	14.4	
90645/001	SW3 Lake	9.8	397	7.2	Straw	1.3	6.9	293	3	42	17	26	0.044	7	1900	830	4.1	13.8	
91089/001	Discharge CAP	9.5	251	7.4	Straw	0.022	7.3	223	<1	24	6.8	40	0.035	9	84	15	3.5	5.3	
S.I No. 29	94/1989					0.2	≥5.5 and ≤8.5	1000	5	40	250	200	-	-	200	50	-	-	
Exceedance																			
NOTES	NOTES																		
1	Sub-contract ar	nalysis den	oted by *																
2	2 ND - Concentration was below the limit of detection																		
3	3 NAC- No Abnormal																		

4.0 DISCUSSION

As there are no limits set in the waste license for surface water, results are compared to the S.I. No. 294/1989 — European Communities (Quality of Surface Water Intended for the Abstraction of Drinking Water) Regulations, 1989 where available.

Surface water samples were taken at SW1 (downstream of landfill), the discharge cap as well as SW3.

With regard to all surface water samples, results in bold italics indicate that limits were exceeded for the following parameters: Ammonia, BOD, COD, Iron and Manganese. The elevated levels of Iron and Manganese are linked to the natural geology of the soils in this area. Previous results detailed in the historical data show that exceedances for each of these parameters is on par with previous monitoring events. The cause of the elevated level of Ammonia in both quarters may be due to stagnant water in the collection ponds.

Historical results for comparison purposes are presented in tabular and graphic form in Appendix 1.

5.0 CONCLUSION

The results obtained from environmental monitoring are relatively consistent with previous monitoring events. The levels of elevated parameters do not show any signs of dramatic exceedances therefore there is no evidence of any major negative environmental impact associated with this landfill.

Eng. & Environmental Consultancy

LEACHATE MONITORING REPORT FOR BAILIEBOROUGH LANDFILL W0091-01

Client:	Cavan County Council
Site Location:	Tanderagee, Bailieborough
Report No.:	CCC-02-01-05- 04-01-WW- Rev 0
Produced by:	Bróna Keating, B.Sc., M.Sc., CEnv., MCIWM
Approved by:	Cathal Boylan, BEng, CEng, MIEI CHARTERED ENGINEER
	Boylan EngineeringCompany Reg.430482Address:Main St., Mullagh, Kells Co. Meath.Phone:046 - 928 6000 / 087 - 820 5470Fax:046 - 928 6002Email:info@boylanengineering.ieWeb:www.boylanengineering.ie

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2016)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Environmental Monitoring at Bailieborough Landfill (W0091-01), Tandragee, Co Cavan for quarter three and four 2015.

Brona Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Environmental Sampling
 - 2.2 Laboratory Analysis
 - 2.3 Monitoring Locations
 - 2.4 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

List of Tables

- 1.0 Leachate 03rd Quarter Monitoring
- 2.0 Leachate 04th Quarter Monitoring

Appendix

1.0 Historical Data

Lab Reports Landfill Map

1. INTRODUCTION

Bailieborough landfill is situated approximately 1 kilometre from Bailieborough town centre in the townland of Tandergee. The site which comprises some 2.23 hectares was originally peat land which was stripped for commercial purposes. The site was then operated as a traditional landfill until its closure in 2002. A waste licence was issued by the Environmental Protection Agency after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the leachate sampling programme conducted on site and also summarises findings and analytical results for quarter three and four 2015.

The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Bailieborough landfill is situated in the R2¹ Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R2¹ Zones are acceptable subject to guidance in the EPA Landfill Design Manual or conditions of a waste licence - (EPA, groundwater protection Responses for Landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of Leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

2. METHODOLOGY

2.1 Environmental Sampling

The following procedure is conducted by Boylan Engineering to ensure accurate surface water monitoring:

- Leachate samples are taken by grab sample using a Telescoup and Pendulum beaker.
- Having obtained a representative sample the following parameters are measured on-site using a Hanna HI 98129 combination waterproof high accuracy.
 - Conductivity
 - o Temperature
 - o pH
- Boylan Engineering operate a Sample Submission/Chain of Custody form, which accompanies the samples at all times.

2.2 Laboratory Analysis

- Samples are sent to Environmental Laboratory Service (ELS) (Ireland) for analysis of the required parameters in designated cool boxes with ice packs. These boxes insure that samples are maintained at a consistent temperature between 0°C and 4°C on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0°C and 4°C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 2.

2.3 Monitoring Locations

	Leachate &	
MW18	GAS	N296023.13 E267452.20
	Leachate &	
MW19	GAS	N295954.06 E267499.79

2.4 Weather Report

r

	REPORTS FROM BALLYHAISE (A)													
Date	Rainfall (mm)	Max Temp (°C)	Min Temp (°C)	Grass Min Temp (°C)	Mean Wind Speed (knots)	Maximum Gust (if >= 34 knots)	Sunshine (hours)							
13/8/2015	0	21	5.2	4.4	2.7									

	REPORTS FROM BALLYHAISE (A)													
Date	Rainfall (mm)	Max Temp (°C)	Min Temp (°C)	Grass Min Temp (°C)	Mean Wind Speed (knots)	Maximum Gust (if >= 34 knots)	Sunshine (hours)							
4/11/2015	0	11.7	2.3	0.3	1.6									

Table 1.0 03rd Quarter Leachate monitoring 2015

Monito	oring Date	13.8.15							
Monitor	Monitoring Report								
Me	ethod	Site Tests	AQ2	AQ2	Titralab		5-Day	HACH	AQ2
Metho	d Number	Site Tests	EW003	EW154M	EW138	EW139	EW001 EW094 EW015		
Para	meter	Visual Inspection	Ammonia	TON	рН	Cond	BOD	COD	Cl
U	nits	-	mg/l N	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l
Limit of	Detection	-	0.007	0.69	0.3	25	1	8	2.6
Date Test	ing Initiated	13.8.15	14.8.15						
ELS Ref	Client Ref								
88191/001	MW18	Black	290	<0.69	7.2	3399	20	214	160
88191/002	MW19	Black	6.4	<0.69	6.8	693	14	81	22
Interim G	uide Values		0.15		≥5.5 and ≤8.5	1000	-	-	30
Exce	edance								
NOTES									
1	1 Sub-contract analysis denoted by *								
2	ND - Concentr	ation was below	the limit of c	detection					
3	NAC- No Abno	ormal Change							

As there are no limits set in the waste licence for leachate, results are compared to the Interim Guide Values for the protection of Groundwater in Ireland, where available.

Table 2.0 04th quarter leachate monitoring 2015

Eng. & Environmental Consultancy

Report Num	nber:	90644														
Monitoring	Date:	04.11.15														
													Ion			
Met	hod	Site Tests	Ammonia	AQ2-UP1	Titralab		AQ2	-UP2	5-Day	HACH	Coliforms			AQ2-UP1		
Method	Number	Site Tests	EW003	EW154M	EW153		EW19	54M-1	EW001	EW094	MIC133		EW137	EW154M		
Paran	neter	Visual Inspection	Ammonia	TON (as N)(calc)	рН	Cond	Sulphate	CI	BOD	COD	E. Coli	Total Coliforms	Fluoride	Phosphate- Ortho(as P) (MRP)		
Un	iits	-	mg/l N	mg/l N	pH Units	us/cm	mg/L	mg/l	mg/l	mg/l	MPN/100 ml	MPN/100m I	mg/L	mg/l P		
Limit of D	Detection	-	0.035	0.69	0.3	25	5	13	1.0	8.0	10	10	0.1	0.045		
Date Testin	ng Initiated	4.11.15														
ELS Ref	Client Ref															
90644/001	MW18	Black	290	1.5	8	598	87	150	<48	308	<10	310	<0.1	<0.045		
90644/002	MW 19	Black	4.9	<0.69	8.2	546	30	16	<69	124	<10	226	<0.1	<0.045		
					≥6.5 and ≤9.5 1000 200 30 200 NAC 0 0 1 -											
IG	ïV		0.15	-	≤9.5											
IG	iV			-	≤9.5											
IG Met		Total Cyanide High (Sub)	Total Phosphor	Metals- Total	≤9.5				N	l Aetals-Disso	blved					
	hod		Total		≤9.5					Aetals-Disso	blved					
Met	hod Number	Cyanide High (Sub) DEFAULT Total Cyanide	Total Phosphor us-TP EW146 Total Phosphor	Total Chromiu	Iron-	Manganese-	Potassium- Dissolved	Sodium- Dissolved	E Cadmium-	M130 Calcium-	Copper-	Lead- Dissolved	Magnesi um- Dissolve d	Mercury- Dissolved	Zinc- Dissolve d	Boron- Dissolve d
Met Method I	hod Number neter	Cyanide High (Sub) DEFAULT Total Cyanide High	Total Phosphor us-TP EW146 Total Phosphor us-TP	Total Chromiu m-Total	lron- Dissolved	Manganese- Dissolved	Dissolved	Dissolved	E Cadmium- Dissolved	M130 Calcium- Dissolved	Copper- Dissolved	Dissolved	um- Dissolve d	Dissolved	Dissolve d	Dissolve d
Meti Method I Paran	hod Number neter	Cyanide High (Sub) DEFAULT Total Cyanide	Total Phosphor us-TP EW146 Total Phosphor	Total Chromiu	Iron-	Manganese-			E Cadmium-	M130 Calcium-	Copper-		um- Dissolve	,	Dissolve	Dissolve
Method I Paran Un	hod Number neter nits Detection	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9	Total Phosphor us-TP EW146 Total Phosphor us-TP mg/I P	Total Chromiu m-Total ug/L	Iron- Dissolved ug/L	Manganese- Dissolved ug/L	Dissolved mg/L	Dissolved mg/L	E Cadmium- Dissolved ug/L	Calcium- Dissolved mg/L	Copper- Dissolved mg/L	Dissolved ug/L	um- Dissolve d mg/L	Dissolved ug/L	Dissolve d ug/L	Dissolve d ug/L
Method I Paran Un Limit of D	hod Number neter nits Detection	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9	Total Phosphor us-TP EW146 Total Phosphor us-TP mg/I P	Total Chromiu m-Total ug/L	Iron- Dissolved ug/L	Manganese- Dissolved ug/L	Dissolved mg/L	Dissolved mg/L	E Cadmium- Dissolved ug/L	Calcium- Dissolved mg/L	Copper- Dissolved mg/L	Dissolved ug/L	um- Dissolve d mg/L	Dissolved ug/L	Dissolve d ug/L	Dissolve d ug/L
Method I Param Un Limit of D Date Testin	hod Number neter nits Detection ng Initiated Client	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9	Total Phosphor us-TP EW146 Total Phosphor us-TP mg/I P	Total Chromiu m-Total ug/L	Iron- Dissolved ug/L	Manganese- Dissolved ug/L	Dissolved mg/L	Dissolved mg/L	E Cadmium- Dissolved ug/L	Calcium- Dissolved mg/L	Copper- Dissolved mg/L	Dissolved ug/L	um- Dissolve d mg/L	Dissolved ug/L	Dissolve d ug/L	Dissolve d ug/L
Method I Method I Paran Un Limit of D Date Testin ELS Ref	hod Number neter neter <u>ng Initiated</u> Client Ref MW18	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9	Total Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.1	Total Chromiu m-Total ug/L 1	Iron- Dissolved ug/L 20	Manganese- Dissolved ug/L 1	Dissolved mg/L 0.2	Dissolved mg/L 0.5	E Cadmium- Dissolved ug/L 0.1	Calcium- Dissolved mg/L 1	Copper- Dissolved mg/L 0.003	Dissolved ug/L 0.3	um- Dissolve d mg/L 0.3	Dissolved ug/L 0.02	Dissolve d ug/L 1	Dissolve d ug/L 0.02
Method I Paran Un Limit of D Date Testin ELS Ref 90644/001	hod Number neter neter its Detection ng Initiated Client Ref MW18 MW19	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9 	Total Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.1	Total Chromiu m-Total ug/L 1 28.8	Iron- Dissolved ug/L 20 310	Manganese- Dissolved ug/L 1 1700	Dissolved mg/L 0.2 125.8	Dissolved mg/L 0.5 173.7	Cadmium- Dissolved ug/L 0.1	Calcium- Dissolved mg/L 1 195.7	Copper- Dissolved mg/L 0.003	Dissolved ug/L 0.3	um- Dissolve d mg/L 0.3 82	Dissolved ug/L 0.02	Dissolve d ug/L 1 520	Dissolve d ug/L 0.02
Method I Method I Paran Un Limit of D Date Testin ELS Ref 90644/001 90644/002	hod Number neter neter its Detection ng Initiated Client Ref MW18 MW19	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9 	Total Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.1	Total Chromiu m-Total ug/L 1 28.8 12.3 30	Iron- Dissolved ug/L 20 310 38000 200	Manganese- Dissolved ug/L 1 1700 550 50	Dissolved mg/L 0.2 125.8 6.6	Dissolved mg/L 0.5 173.7 14.5	Cadmium- Dissolved ug/L 0.1 <0.1 <0.1	Calcium- Dissolved mg/L 1 195.7 71.1	Copper- Dissolved mg/L 0.003 0.005 <0.003	Dissolved ug/L 0.3 <0.3 <0.3	um- Dissolve d mg/L 0.3 82 11.3	Dissolved ug/L 0.02 <0.02 <0.02 <0.02	Dissolve d ug/L 1 520 330	Dissolve d ug/L 0.02 1.04 0.07
Method I Method I Paran Un Limit of D Date Testin ELS Ref 90644/001 90644/002 IG Exceed	hod Number neter neter its Detection ng Initiated Client Ref MW18 MW19 iV	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9 	Total Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.1	Total Chromiu m-Total ug/L 1 28.8 12.3 30	Iron- Dissolved ug/L 20 310 38000	Manganese- Dissolved ug/L 1 1700 550 50	Dissolved mg/L 0.2 125.8 6.6	Dissolved mg/L 0.5 173.7 14.5	Cadmium- Dissolved ug/L 0.1 <0.1 <0.1	Calcium- Dissolved mg/L 1 195.7 71.1	Copper- Dissolved mg/L 0.003 0.005 <0.003	Dissolved ug/L 0.3 <0.3 <0.3	um- Dissolve d mg/L 0.3 82 11.3	Dissolved ug/L 0.02 <0.02 <0.02 <0.02	Dissolve d ug/L 1 520 330	Dissolve d ug/L 0.02 1.04 0.07
Method I Method I Param Un Limit of D Date Testin ELS Ref 90644/001 90644/002 IG <i>Exceed</i> NOTES	hod Number neter neter <u>Detection</u> ng Initiated Client Ref MW18 MW19 iV	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9 	Total Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.1 1.4 0.4 -	Total Chromiu m-Total ug/L 1 28.8 12.3 30 Pg	Iron- Dissolved ug/L 20 310 38000 200	Manganese- Dissolved ug/L 1 1700 550 50	Dissolved mg/L 0.2 125.8 6.6	Dissolved mg/L 0.5 173.7 14.5	Cadmium- Dissolved ug/L 0.1 <0.1 <0.1	Calcium- Dissolved mg/L 1 195.7 71.1	Copper- Dissolved mg/L 0.003 0.005 <0.003	Dissolved ug/L 0.3 <0.3 <0.3	um- Dissolve d mg/L 0.3 82 11.3	Dissolved ug/L 0.02 <0.02 <0.02 <0.02	Dissolve d ug/L 1 520 330	Dissolve d ug/L 0.02 1.04 0.07
Method I Method I Paran Un Limit of D Date Testin ELS Ref 90644/001 90644/002 IG Exceed	hod Number neter neter neter Number neter Number Statiated Number Statiated Number Statiated Number Statiated Number Statiated	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9 	Total Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.1 1.4 0.4 -	Total Chromiu m-Total ug/L 1 28.8 12.3 30 Pa *	Iron- Dissolved ug/L 20 310 38000 200 ge 10 of 12	Manganese- Dissolved ug/L 1 1700 550 50	Dissolved mg/L 0.2 125.8 6.6	Dissolved mg/L 0.5 173.7 14.5	Cadmium- Dissolved ug/L 0.1 <0.1 <0.1	Calcium- Dissolved mg/L 1 195.7 71.1	Copper- Dissolved mg/L 0.003 0.005 <0.003	Dissolved ug/L 0.3 <0.3 <0.3	um- Dissolve d mg/L 0.3 82 11.3	Dissolved ug/L 0.02 <0.02 <0.02 <0.02	Dissolve d ug/L 1 520 330	Dissolve d ug/L 0.02 1.04 0.07

4.0 DISCUSSION

Leachate consists of water that has become contaminated as it passes through a waste disposal site. It contains insoluble waste constituents which have not degraded chemically or biochemically. This leachate can cause a treat to surrounding surface and ground waters. The composition of leachate will vary depending on the age of the landfill. As there are no limits set in the waste licence for leachate, results are compared to the Interim Guide Values for the protection of Groundwater in Ireland, where available. Results in bold italics indicate where the interim guide value has been exceeded. A leachate sample was abstracted from wells MW18 and MW19 during quarters 3 and 4 monitoring periods. Results show that the Interim Guide Value was exceeded for the parameters Ammonia, Chloride, Conductivity, total- coliforms, Manganese, Magnesium, Iron, Sodium, Zinc and Boron. These parameters are all associated with landfill leachate and the results are consistent with those obtained in previous monitoring events.

Historical results for comparison purposes are presented in tabular and graphic form in Appendix 1.

5.0 CONCLUSION

The results obtained from environmental monitoring are relatively consistent with previous monitoring events. The levels of exceeded parameters do not show any signs of dramatic exceedances therefore there is no evidence of any major negative environmental impact associated with this landfill.

GAS MONITORING REPORT FOR BAILIEBOROUGH LANDFILL W0091-01

- Client: Cavan County Council
- Site Location: Tanderagee, Bailieborough
- **Report No.:** CCC-02-01-05-04-01-Rev 0

Produced by: Bróna Keating, B.Sc., M.Sc., CEnv., MCIWM

Approved by:

Standart

Date: 12th April 2016

Cathal Boylan, BEng, CEng, MIEI CHARTERED ENGINEER

 Boylan Engineering
 430482

 Address:
 Main St., Mullagh, Kells Co. Meath.

 Phone:
 046 – 928 6000 / 087 – 820 5470

 Fax:
 046 – 928 6002

 Email:
 info@boylanengineering.ie

 Web:
 www.boylanengineering.ie

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2016)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Gas Monitoring at Bailieborough Landfill (W0091-01), Tandragee, Co Cavan for quarter three and four in 2015.

Brona Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Landfill Gas Analysis
 - 2.2 Monitoring Locations
 - 2.3 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

Tables

- 3.0 Landfill Gas 03rd Quarter Monitoring
- 4.0 Landfill Gas 04th Quarter Monitoring

Appendix

1.0 Historical Data Landfill Map

1. INTRODUCTION

Bailieborough landfill is situated approximately 1 kilometre from Bailieborough town centre in the townland of Tandergee. The site which comprises some 2.23 hectares was originally peat land which was stripped for commercial purposes. The site was then operated as a traditional landfill until its closure in 2002. A waste licence was issued by the Environmental Protection Agency after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the landfill gas sampling programme conducted on site and also summarises findings and analytical results for quarter three and four in 2015.

The purpose of landfill gas monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure that the facility is not causing a nuisance through noise or odours
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Assess the effectiveness of gas control measures installed at the site
- Establish a reliable database of information for the landfill throughout its life

Landfill gas is generated by decomposition of organic materials in waste deposited at landfills. Typically, the gas is a mixture of Methane (up to 65% by volume) Carbon Dioxide (up to 35% per volume). It can also contain minor constituents at low concentrations (typically less than 1% volume contains 120-150 trace constituents). The landfill directive requires that appropriate measures are taken in order to control the accumulation and migration of landfill gas.

2. METHODOLOGY

2.1 Landfill Gas Analysis

The following procedure is employed by Bróna Keating of Boylan Engineering to ensure accurate monitoring:

- EPA, Landfill Manual, landfill monitoring 2nd Edition is adhered to.
- Prior to sampling, a dip meter is used to measure water levels, if present, in the wells.
- GA 2000 landfill gas analyser is used to measure the gas levels.
- The analyser is purged and connected to the sealed well monitoring nozzle.
- The monitoring nozzle is turned to the open position and the analyser measured the gas levels at 60 second intervals for no less than 10 minutes. The analyser is allowed to run for this period of time to allow for a representative average to be obtained.
- All data is recorded on the Gas Analysis field sheet.
- The instrument is removed after 5 minutes and the monitoring nozzle returned to the closed position.
- The GA2000 is switched off between each monitoring location so as to allow the instrument to purge.
- This process is repeated at each monitoring location.
- Data for the GA 2000 was downloaded in the Boylan Engineering office.

Eng. & Environmental Consultancy 2.3 Monitoring Locations

		Qua	rter 3, 2015		
Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co- Ordinates
MW1	GAS	151.55	-	-	N296071.96 E267506.68
MW2	GAS	152.72	-	-	N296018.08 E267540.5
MW3	GAS	159.27	-	-	N295972.19 E267549.6
MW 4	Gas	156.74	-	-	ТВС
MW6	GAS	150.27	-	-	N296082.66 E267451.4
MW8	Gas	160.74	-	-	N296014.48 E267517.1
MW9	Gas	157.94	-	-	N296037.63 E267458.8
MW10S	GAS	154.76	-	-	N296038.12 E267458.8
MW10D	GAS	154.76	-	-	N296038.12 E267458.8
MW15S	GW	150.36	148.54	1.82	N296097.36 E267343.3
MW15D	GW	150.39	148.82	1.57	N296092.30 E267344.8
MW16S	GW	152.6	151.46	1.14	N295888.86 E267202.8
MW16D	GW	152.53	151.12	1.41	N295885.59 E267200.9
MW17S	GW & GAS	149.58	148.33	1.25	N296179.25 E267321.3
MW17D	GW & GAS	149.49	148.31	1.18	N296178.68 E267327.2
MW18	Leachate & GAS	160.98	-	-	N296023.13 E267452.2
MW19	Leachate & GAS	162.12	-	-	N295954.06 E267499.7
SW1	SW	-	-	-	N296160.79 E267338.6
SW3	SW	-	-	-	N296312.44 E267195.1
CAP Discharge	SW	-	-	-	N296078.86 E267348.6

Quarter 4, 2015

Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co- Ordinates
MW1	GAS	151.55	-	-	N296071.96 E267506.68
MW2	GAS	152.72	-	-	N296018.08 E267540.57
MW3	GAS	159.27	-	-	N295972.19 E267549.66
MW 4	Gas	156.74	-	-	TBC
MW6	GAS	150.27	-	-	N296082.66 E267451.47
MW8	Gas	160.74	-	-	N296014.48 E267517.14
MW9	Gas	157.94	-	-	N296037.63 E267458.87
MW10S	GAS	154.76	-	-	N296038.12 E267458.8
MW10D	GAS	154.76	-	-	N296038.12 E267458.87
MW15S	GW	150.36	148.54	1.82	N296097.36 E267343.36
MW15D	GW	150.39	148.82	1.57	N296092.30 E267344.88
MW16S	GW	152.6	151.46	1.14	N295888.86 E267202.87
MW16D	GW	152.53	151.12	1.41	N295885.59 E267200.97
MW17S	GW & GAS	149.58	148.33	1.25	N296179.25 E267321.30
MW17D	GW & GAS	149.49	148.31	1.18	N296178.68 E267327.22
MW18	Leachate & GAS	160.98	-	-	N296023.13 E267452.20
MW19	Leachate & GAS	162.12	-	-	N295954.06 E267499.79
SW1	SW	-	-	-	N296160.79 E267338.62
SW3	SW	-	-	-	N296312.44 E267195.10
CAP Discharge	SW	-	-	-	N296078.86 E267348.65

2.4 Weather Report

REPORTS FR	ROM BALLY	HAISE (A)					
Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind Speed	Maximu m Gust	Sunshine
	(mm)	Тетр	Тетр	(°C)	(knots)	(if >= 34 knots)	(hours)
		(°C)	(°C)				
13/08/2015	0	21	5.2	4.4	2.7		
REPORTS FR	OM BALLY	HAISE (A)					
Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind Speed	Maximu m Gust	Sunshine
	(mm)	Тетр	Тетр	(°C)	(knots)	(if >= 34 knots)	(hours)
		(°C)	(°C)				
04/11/2015	0	11.7	2.3	0.3	1.6		

2.0 SUMMARY OF RESULTS

Method		GA 2000	GA 2000	GA 2000	GA 2000	GA 2000	
						Barometr	Position
Paramete	er	CH ₄	CO ₂	O ₂	H₂S	ic	to waste
						Pressure	mass
Units		% v/v	% v/v	%	PPM	mb	
Date Testing In	itiated			13/08/2015			
C A 2000 D.f	Client						
GA 2000 Ref	Ref						
10	MW 1	0	0.16	21.4	0	1008	Outside
11	MW 2	0	1.1	21.7	0	1008	Outside
6	MW 3	5.8	5.6	15.7	0	990	Inside
3	MW 6	0	1.46	19.94	0	1009	Outside
9	MW 7	0	0.2	21.1	0	1008	Outside
4	MW 8	7.4	9.1	13.4	0	1009	Inside
8	MW 9	3.3	3.6	16.6	0	1008	Inside
2	MW 10 S	0	0.2	20.6	0	1009	Outside
1	MW 10 D	0	0.3	20	0	1008	Outside
12	MW17S	0	0	20.2	0	1008	Outside
13	MW17D	0	0	20.3	0	1008	Outside
5	MW18	54.6	25.4	0	0	1009	Inside
7	MW19	5.2	4.1	17.1	0	1010	Inside
	Limit	1	1.5				
Exceedan	ce,outside	waste ma	ISS				
NOTES							
1	1 Instrument			21			
2	Limit: Sch	edule C2,	Licence				

Table 3.0 03rd Quarter Landfill Gas monitoring 2015

2

		GA 2000	GA 2000	GA 2000	GA 2000	GA 2000	
						Barometr	Position
Paramet	er	CH₄	CO2	O ₂	H₂S	ic	to waste
	-			- 2	2-	Pressure	mass
Units		% v/v	% v/v	%	PPM	mb	
Date Testing I	nitiated			04/11/2015	5		
	Client						
GA 2000 Ref	Ref						
10	MW 1	0	0.16	21.4	0	1008	Outside
11	MW 2	0	1.1	21.7	0	1008	Outside
6	MW 3	5.2	4.9	15.8	0	990	Inside
3	MW 6	0	1.62	20.04	0	1009	Outside
9	MW 7	0	0.2	21.1	0	1008	Outside
4	MW 8	7.4	9.1	13.4	0	1009	Inside
8	MW 9	3.2	3.6	16.6	0	1008	Inside
2	MW 10 S	0	0.2	20.9	0	1009	Outside
1	MW 10 D	0	0.2	19.7	0	1010	Outside
12	MW17S	0	0	20.2	0	1008	Outside
13	MW17D	0	0	20.3	0	1008	Outside
5	MW18	56.2	25.6	0	0	1009	Inside
7	MW19	5.2	4.1	17.1	0	1010	Inside
	Limit	1	1.5				
Exceedar	ce,outside	waste ma	ISS				
NOTES							
1	Instrumor	at Sorial N	o: GA 077	21			

Table 4.0 04th Quarter Landfill Gas monitoring 2015

Limit: Schedule C2, Licence

4.0 DISCUSSION

The rate of gas generation at a landfill site varies through the life of a landfill and is dependent on several factors such as waste type, depths, moisture content, degree of compaction, landfill pH, temperature and the length of time since the waste was deposited. Landfill gas can move in any direction within the waste body and migrate from a site. The potential for gas migration will depend on the gas quality, volume, the site engineering works, geological characteristics of the surrounding strata and on man-made pathways such as sewers and drains.

Results obtained from monitoring during quarter three and four 2015 show that the levels of gas are relatively consistent with previous results in all existing wells. Results obtained from the new well MW18 which is within the waste mass was elevated for Methane and Carbon Dioxide. It is recommended that further gas monitoring is conducted for comparison purposes. Gas analysis of the new wells outside of the waste mass revealed that they did not contain Methane.

5.0 CONCLUSION

The results obtained from landfill gas analysis are also relatively consistent with previous monitoring events and do not show any signs of dramatic exceedances; therefore there is no evidence of any major negative environmental impact associated with this landfill. However, it is important to monitor the trend in exceedance of Methane at this landfill and any dramatic increase in the parameter should be regarded as critical. The Methane content of landfill gas is flammable, forming potentially explosive mixtures in certain conditions, which raises concern about its uncontrolled migration and release. The next environmental and landfill gas monitoring will be conducted in the 01st quarter of 2016.

Me	thod	GA 2000	GA 2000	GA 2000	GA 2000	GA 2000
Para	meter	CH_4	CO ₂	0 ₂	H ₂ S	Barometric Pressure
Uı	nits	1% v/v	1.5 % v/v	%	PPM	mb
Client Ref	Qtr	-	-	-	-	-
MW 1	Qtr 1 2015	0	0.2	21.4	0	1008
	Qtr 2 2015	0	0.2	21.4	0	1008
	Qtr 3 2015	0	0.16	21.4	0	1008
	Qtr 4 2015	0	0.16	21.4	0	1008
MW 2	Qtr 1 2015	0	1.1	21.7	0	1008
	Qtr 2 2015	0	1.1	21.7	0	1008
	Qtr 3 2015	0	1.1	21.7	0	1008
	Qtr 4 2015	0	1.1	21.7	0	1008
MW 3	Qtr 1 2015	6.1	5.7	16.1	0	1009
	Qtr 2 2015	6	5.6	16.1	0	1009
	Qtr 3 2015	5.8	5.6	15.7	0	990
	Qtr 4 2015	5.2	4.9	15.8	0	990
MW 6	Qtr 1 2015	0	1.66	20.2	0	1009
	Qtr 2 2015	0	1.62	20.2	0	1009
	Qtr 3 2015	0	1.46	19.94	0	1009
	Qtr 4 2015	0	1.62	20.04	0	1009
MW 7	Qtr 1 2015	0	0.2	21.1	0	1008
	Qtr 2 2015	0	0.2	21.1	0	1008
	Qtr 3 2015	0	0.2	21.1	0	1008
	Qtr 4 2015	0	0.2	21.1	0	1008
MW 8	Qtr 1 2015	7.4	9.2	13.2	0	1009
	Qtr 2 2015	7.5	9.1	13.1	0	1009
	Qtr 3 2015	7.4	9.1	13.4	0	1009
	Qtr 4 2015	7.4	9.1	13.4	0	1009
MW 9	Qtr 1 2015	1.1	3.1	19.5	0	1008
	Qtr 2 2015	3.5	3.7	16.6	0	1008
	Qtr 3 2015	3.3	3.6	16.6	0	1008
	Qtr 4 2015	3.2	3.6	16.6	0	1008
	Limit	1	1.5			

APPENDIX 1 HISTORICAL DATA-TABLES

Me	thod	GA 2000	GA 2000	GA 2000	GA 2000	GA 2000
Parai	meter	CH_4	CO ₂	0 ₂	H ₂ S	Barometric Pressure
Ur	nits	1% v/v	1.5 % v/v	%	PPM	mb
Client Ref	Qtr	-	-	-	-	-
MW 10S	Qtr 1 2015	0	0.2	20.8	0	1009
	Qtr 2 2015	0	0.3	20.8	0	1009
	Qtr 3 2015	0	0.2	20.6	0	1009
	Qtr 4 2015	0	0.2	20.9	0	1009
MW 10D	Qtr 1 2015	0	0.4	19.5	0	1010
	Qtr 2 2015	0	0.4	19.6	0	1010
	Qtr 3 2015	0	0.3	20.0	0	1008
	Qtr 4 2015	0	0.2	19.7	0	1010
MW 17S	Qtr 1 2015	0	0	20	0	1008
	Qtr 2 2015	0	0	20	0	1008
	Qtr 3 2015	0	0	20.2	0	1008
	Qtr 4 2015	0	0	20.2	0	1008
MW 17D	Qtr 1 2015	0	0	20.5	0	1008
	Qtr 2 2015	0	0	20.5	0	1008
	Qtr 3 2015	0	0	20.3	0	1008
	Qtr 4 2015	0	0	20.3	0	1008
Mw 18	Qtr 1 2015	56.4	25.8	0	0	1009
	Qtr 2 2015	55.6	26	0	0	1009
	Qtr 3 2015	54.6	25.4	0	0	1009
	Qtr 4 2015	56.2	25.6	0	0	1009
MW 19	Qtr 1 2015	5.6	4.5	17.1	0	1010
	Qtr 2 2015	5.6	4.5	17.1	0	1010
	Qtr 3 2015	5.2	4.1	17.1	0	1010
	Qtr 4 2015	5.2	4.1	17.1	0	1010
	Limit	1	1.5			
1	nt Serial No	GA 07721				
2	chedule C2,	Licence				
Excee	dance					