

Wexford County Council

Killurin Landfill W0016-02

Annual Environmental Report 2015

1

Quality Control Sheet

Publication title

Address:

Annual Environmental Report for Killurin Landfill 2015

April 2016

Wexford County Council County Hall, Wexford.

Sean Meyler, Facility Manager

Mob 087 6846089 Email <u>sean.meyler@wexfordcoco.ie</u>

Doc No.	lssue No.	Reason for Issue	Author	Approved
Kill16-02_EPA_2015 AER	1	Compliance with Waste Licence W0016-02	Fran Hobbs Facility Technician Billy Byrne Facility Supervisor	Sean Meyler, Executive Engineer, Facility Manager

Contents Page

	Annı	al Environmental Report 2015	1
EXE	ситі	VE SUMMARY	5
1	INTE	RODUCTION	6
	1.1	General Information	6
	1.2	Site information	6
2	MAN	IAGEMENT & STAFFING STRUCTURE	7
	2.1	Management and staffing structure for Killurin Landfill on 31 st December 2015	7
	2.2	Financial provisions	8
	2.3	Environmental Management System	8
3	REP	ORTED INCIDENTS & COMPLAINTS SUMMARIES	12
	3.1	Incidents	12
	3.2	Complaints	12
4		ELOPMENT WORKS UNDERTAKEN DURING THE REPORTING IOD & THOSE PROPOSED FOR THE COMING YEAR	13
	4.1	Landfill Engineering Works	13
	4.2	Restoration and Aftercare	13
5	WAS	STE ACCEPTANCE & HANDLING	15
	5.1	Waste Activities carried out at the Facility	15
	5.2	Total Quantity of Waste Consigned Off Site	15
	5.3	Remaining capacity of the site	15
6	ENV	IRONMENTAL NUISANCES	18
	6.1	Review of environmental nuisance control at the facility for the reporting period	18
7	RES	OURCE & ENERGY CONSUMPTION	19
	7.1	Electricity and Energy Usage	19
	7.2	Water	19
	7.3	Diesel	19
8	ENV	IRONMENTAL MONITORING & EMISSIONS SUMMARY	20
	8.1	Summary report on emissions	20
	8.2	Environmental Monitoring	21
9	WAT	ER BALANCE CALCULATIONS	28

APPENDICES

- A1 PRTR 2015
- A2 Topographical and Monitoring location drawings
- A3 Meteorological Data
- A4 Air emission report
- A5 Water Balance Calculation

EXECUTIVE SUMMARY

This Annual Environmental Report has been prepared for Killurin Landfill, Waste Licence 16-2, for the reporting period from **1 January 2015 to 31 December 2015 inclusive**. The report includes the information specified in Schedule G of the Waste Licence, Content of the Annual Environmental Report, in accordance with Waste Licensing - Draft Guidance on Environmental Management Systems (EMS) and Reporting to the Agency, 1999'. The main topics discussed with this report are as follows:

- General Site Information
- Management and Staffing
- Reported Incidents and Complaints
- Development Works
- Waste Acceptance and Handling
- Emissions Management
- Environmental Nuisances
- Resource and Energy Consumption
- Environmental Monitoring and Emissions

Killurin Landfill was closed to accepting waste on the 07 June 2008. No waste was accepted to landfill in 2015.

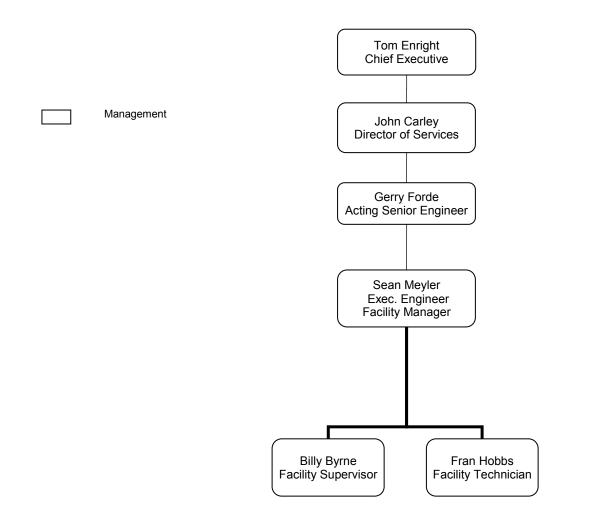
Wexford County Council continued to carry out a comprehensive environmental monitoring programme during 2014, in compliance with the waste licence conditions (Schedule D), to assess the significance of emissions. The monitoring programme included Landfill Gas, Leachate Level & Quality, Surface Water Quality, Groundwater Level & Quality, Odour monitoring and Meteorological monitoring.

1 INTRODUCTION

1.1 General Information

The Annual Environmental Report (AER) for Killurin Landfill includes the information specified in Schedule G of the Waste Licence W0016-2, *Content of Annual Environmental Report* and has been prepared in accordance with the Environmental Protection Agency (EPA) publication 'Waste Licensing – Draft *Guidance on Environmental Management Systems (EMS) and Reporting to the Agency, 1999'.*

The reporting period for this AER is 1st January 2015 to 31st December 2015 inclusive.


1.2 Site information

KILLURIN LANDFILL						
Waste licence register no:	W0016-2					
Name and address of operator:	Wexford County Council County Hall Spawell Road County Wexford					
Name and address of facility:	Killurin Landfill Killurin County Wexford					
Site Description:	Killurin Landfill site is located in the town land of Newtown lower, Killurin, close to Deeps Bridge on a meander of the eastern bank of the River Slaney. The site is approximately 11km from Wexford town and covers an area of 10.7 hectares, of which 4.9 hectares are landfill and the remainder is CA site, buildings, car parking and buffer zones/screening. The facility is located in what once was a sand and gravel quarry. The area surrounding the site is rural with a mixed pattern of highly productive pasture and arable land use, with the River Slaney being the prominent landscape feature. Landfilling and CA site operations ceased in June 2008.					

Table 1 Site information for Killurin Landfill

2 MANAGEMENT & STAFFING STRUCTURE

2.1 Management and staffing structure for Killurin Landfill on 31st December 2015

Killurin Landfill was operated by Wexford County Council during 2015 with support provided by Irish Biotech Services.

2.2 Financial provisions

In accordance with Condition 12.1 Wexford County Council paid a sum of \in 15,699 to the Environmental Protection Agency for the management and monitoring of the waste licence.

2.2.1 **Provision for the Closure, Restoration and Aftercare**

Wexford County Council (WCC), as a Local Authority, has made the necessary provisions, for the development, management, restoration and aftercare of Killurin Landfill. WCC has assigned engineering and technical staff to manage the facility. Wexford County Council is committed to the ongoing provision of funding for all site development works, environmental monitoring costs and restoration and aftercare works at Killurin Landfill for the duration of the Waste Licence.

2.3 Environmental Management System

2.3.1 Environmental Management Programme

The site has an operational environmental management system (EMS) in accordance with the Waste Licence condition 2.3.2.1. Implementation of the EMS continued during this reporting period (January 2015 - December 2015). The Objectives and Targets of the EMS were reviewed and revised for the reporting period 2015.

2.3.2 Environmental objectives and targets.

Table 2 below provides the Objectives and Targets for 2015 and details progress made regarding each objective. Table 3 provides the Objectives and Targets for 2016 and the methods by which they will be achieved.

An environmental management plan (EMP) was prepared as part of the EMS for the facility. The EMP comprises information on the following topics:

- Site description
- Site infrastructure
- Leachate Collection and treatment Leachate Management System
- Landfill Gas Abatement Methods
- Surface water Control Measures
- Environmental Monitoring
- Site Security and Site Offices
- Operational Matters
- Vermin control
- Fires
- Restoration and Aftercare

Table 2 Achievements of Objectives and Targets for 2015

Achievement of Objectives and Targets for 2015									
Comments Date Responsibility									
	Comments	Dale	Responsibility						
Objective No 1:		- 							
1.1 Resolve landfill gas flare issues	Pumping trials ongoing to evaluate current gas yield.	Dec 2015	Facility Manager / Facility Technician						
Objective No 2:									
2.1 Compile enhanced data set in accordance with the leachate management plan	Ongoing. Data discussed in GW Technical Assessment Report, submitted in June 2015	Dec 2015	Facility Manager / Facility Technician						
Objective No 3:		-							
3.1 Complete the Groundwater Technical Assessment and Implement any recommendations	The GWTA report was submitted in June 2015. RFI response report was submitted in December 2015.	June/Dec 2015	Facility Manager / Facility Technician						

Table 3Objectives and Targets for 2016

Objectives and Targets for 2016									
	Comments	Target	Responsibility						
Objective No 1:									
1.1 Resolve	Submit proposals for revised LFG flaring	December	Facility Manager /						
landfill gas flare	infrastructure, and procure infrastructure as	2016	Facility						
issues	appropriate		Technician						
Objective No 2:	1								
2.1 Continued	Interrogate environmental monitoring data	December	Facility Manager /						
monitoring of	and abstracted leachate data to evaluate	2016	Facility						
groundwater data	effectiveness of the perimeter road capping		Technician						
	works and enhanced leachate abstraction								
	system								
Objective No 3:									
3.1 Analysis of	Examine leachate volumes extracted, with a	December	Facility Manager /						
leachate volumes	view to better aligning predicted volumes with	2016	Facility						

Objectives and Targets for 2016		
Comments	Target	Responsibility
extracted volumes		Technician

2.3.3 Corrective action Procedure

Procedures are in place in accordance with Condition 2.3.2.3 of the licence to monitor, measure, audit and record the environmental performance of the environmental management system. These procedures establish how non-conformance within the system is dealt with and how any corrective and preventive action is carried out. A corrective action procedure was prepared in October 2008 (reviewed in 2010) and is included in the overall EMS report.

2.3.4 Awareness and Training Programme

In accordance with Condition 2.3.2.4 of the licence, an awareness and training programme has been developed to increase environmental awareness among staff and identify training needs of all personnel working at Killurin Landfill. The facility manager has overall responsibility for reviewing training needs on an annual basis to ensure that all staff have the necessary skills and level of awareness to carry out their duties to the highest environmental and safety standards. Training records are kept on file at Holmestown Waste Management Facility.

2.3.5 Full title of any procedures developed by the licensee in the year which relates to the facility operation

No additional procedures were developed or submitted during the reporting period.

2.3.6 Report on communication programme

The site's EMS includes a procedure for communication. In addition Wexford County Council provides the following documentation for public viewing at Holmestown Waste Management Facility:

Table 4 List of records available for public access in relation to the landfill

List of records available for public viewing
Waste Licence W0016-2
Waste Licence application
Correspondence with the EPA
Incident / complaints records

Audit records	
Waste acceptance records	
Material acceptance dockets	
All monitoring records	
Leachate removal records	
Vermin control reports	

3 REPORTED INCIDENTS & COMPLAINTS SUMMARIES

3.1 Incidents

No incidents were reported during this reporting period. However ongoing elevated levels of ammonia (which are decreasing over time) are still being recorded in downstream groundwater boreholes. Refer to quarterly monitoring reports and the Leachate Management Plan for further details.

3.2 Complaints

No complaints were received during this reporting period.

4 DEVELOPMENT WORKS UNDERTAKEN DURING THE REPORTING PERIOD & THOSE PROPOSED FOR THE COMING YEAR

4.1 Landfill Engineering Works

4.1.1 Completed Engineering Works 2015

Engineering works for 2015 as detailed in the Leachate Management Plan were progressed as follows:

- Continue the leachate extraction infrastructure maintenance works programme

Also, we commenced a landfill gas pumping trial on 4th December 2015, with a view to ascertaining the actual gas yield from the waste mass. This trial is due for completion in Q1 2016.

4.1.2 Proposed Engineering Works 2016

Proposed engineering works for 2016 as follows:

- Continue the leachate extraction infrastructure maintenance works programme
- Complete landfill gas pumping trial and formulate, seek approval of and implement proposals to improve flaring infrastructure.

4.2 Restoration and Aftercare

A revised restoration and aftercare plan was submitted to the EPA for approval in July 2013.

Restoration works are now complete at the facility.

5 WASTE ACCEPTANCE & HANDLING

5.1 Waste Activities carried out at the Facility

No waste disposal operations took place on site at Killurin Landfill during the reporting period 1st January 2015 to 31st December 2015.

5.2 Total Quantity of Waste Consigned Off Site

A summary of the total quantity of waste consigned off site at Killurin Landfill for the period 1st January 2015 to 31st December 2015 is presented below in Table 5.

The total volume of leachate transported off site for treatment at Wexford Wastewater Treatment Works was 5,322 Tonnes.

5.3 Remaining capacity of the site

Killurin Landfill closed at the end of June 2008. There is no remaining landfill capacity.

Waste Out	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Yearly totals
LEACHATE	465	264	387	279	833	93	622	208	300	370	815	682	5318
Total													5318

Table 5	Waste consigned off-site from Killurin Landfill from 1 st January t	to 31 st December 2015 (tonnes)
---------	--	--

6 ENVIRONMENTAL NUISANCES

6.1 Review of environmental nuisance control at the facility for the reporting period

Nuisances at Killurin Landfill are logged in a monthly tick-box report and action is taken immediately to address any identified issues. Table 7 below summarises the measures implemented on site to combat environmental nuisances during 2015.

Table 6Environmental Nuisance Control during 2015

Nuisance	Mitigation Measures in Place
Vermin	Permanent bait points set up on site (internal and external). Inspections carried out on a monthly basis. If infection found then weekly inspections until rodent free. Monthly reports produced and kept at Holmestown site office.
Litter	Killurin landfill is litter free.
Flies	No flies present.
Odour	No odour emissions

7 RESOURCE & ENERGY CONSUMPTION

7.1 Electricity and Energy Usage

Electricity usage for the reporting period was estimated at 88,499 kWh.

7.2 Water

Domestic water usage data was not recorded.

7.3 Diesel

Total diesel fuel consumption (for operations) is estimated to be 0 litres from 1^{st} January to 31^{st} December 2015.

8.1 Summary report on emissions

EMISSIONS SUMMARY

ENVIRONMENTAL

8

A summary of emissions monitoring at Killurin Landfill carried out during this reporting period (January 2015 – December 2015) is contained in Table 8 below. The E-PRTR Regulation (EC) No. 166/2006 concerning the establishment of a European Pollutant Release and Transfer Register came into force in February 2006 and was brought into Irish law through SI No 123 of 2007. As a result all industries have to annually report environmental emissions and waste transfer data through a web-based form as part of their AER. The PRTR 2015 document is included in Appendix A1.

Table 7	A summary	of	Emissions	monitoring	as	specified	in	Waste	Licence
	W0016-2								

Emission Monitoring	Frequency
Landfill Gas	Continuously (Dwellings adjacent to Landfill, Flare)
	Weekly (Site Accommodation)
	Monthly (Landfill Gas & Leachate extraction Wells)
	Annual (Flare emissions)
Leachate	Monthly (Analysis Note 2)
	Quarterly (Level & Analysis)
	Annually (Analysis)
	Weekly (Visual)
Surface water	Quarterly (Analysis)
	Annually (Analysis)
Groundwater Levels	Quarterly (Borehole Level)
	Quarterly (Analysis) (Note 2)
Groundwater	Annually (Analysis)
Noise	As required (Note 1)
Dust	As required (Note 1)
River Water	Quarterly (Analysis)

Note 1: When specific engineering works are being carried out

Note 2: As detailed in the Leachate Management Plan additional monitoring of groundwater and leachate around and within the Landfill footprint took place during 2015

8.2 Environmental Monitoring

Wexford County Council carries out a comprehensive environmental monitoring programme, in compliance with the waste licence conditions, to assess the significance of emissions. The monitoring programme includes Landfill Gas, Leachate Level & Quality, Surface Water Quality, Groundwater Level & Quality, Noise and Dust monitoring (as required), Odour monitoring and Meteorological monitoring, as well as Flare emission and Topographical.

Monitoring during this reporting period was carried out according to Schedule D of Waste Licence W0016-2, Quarters 1, 2, 3 and 4 results for 2015 are summarised in this chapter. Additional monitoring was also carried out as detailed in the Leachate Management Plan. A monitoring point location plan is provided see Appendix A2.

8.2.1 Landfill gas

In accordance with Schedule D.1 of the Waste Licence W0016-2, the following monitoring has been carried out and reported to the Agency.

- Monitoring boreholes boundary locations GW1, GW9, GW10, GW11, GBH1 and GBH2
- Perimeter boreholes T1, T2, T3, T5, T6, T7, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18 and T19 were monitored on a monthly basis by Wexford County Council site staff.
- In waste landfill gas extraction wells series W, A and LE wells.

The majority of boreholes have varying levels of gas quality over the reporting period and no particular trend could be identified. Gas monitoring details are provided in Table 8 below.

Off site and on site gas boreholes			
CO2 and CH4 levels 20 boundary locations (monthly) 77 in waste locations		Boundary gas monitoring wells T1 –T3, T5- T7, T9- T19 GW1, GW9- GW11. In waste landfill gas extraction wells series W, A & LE wells Resident gas boreholes: GB1 and GB2	
Residential Dwelling gas alarms			
CO2 and CH4 levels (continuously)	2 points	Two closest residences	
CO2 and CH4 levels (As required)	8 points	All site buildings	

Table 8 Gas Monitoring Points

Perimeter boreholes

No exceedences of licence limits were recorded at T17, T18, T19, GBH1 or GBH2 which would indicate that landfill gas migration off site has not taken place.

Carbon Dioxide levels inT2, T3, T5, T6, T9, T11, T12 and T13 are slightly elevated. The most likely cause of the slightly elevated readings is their location in a mature wooded area. The exceedences are low (max 6.8% in T9).

No exceedences of licence limits were recorded at any of the remaining peripheral gas monitoring wells. This indicates that landfill gas migration off site has not taken place.

Methane (CH₄)

Resident's boreholes

The following was recorded at resident's boreholes during this reporting period:

- **GB1 at Carley's:** Methane levels at this monitoring location were seen to be below the 1.0% volume per volume (v/v) trigger-level throughout the reporting period.
- **GB2 at Kelly's:** Methane levels at this monitoring location were seen to be below the 1.0% volume per volume (v/v) trigger-level throughout the reporting period.

The CH₄ trigger level at the gas monitoring wells is 1.0% volume by volume (v/v).

Carbon Dioxide (CO₂)

Resident's boreholes

The following was recorded at resident's boreholes during this reporting period:

- **GB1 at Carley's:** All results were below the 1.5% volume per volume (v/v) trigger-level.
- **GB2 at Kelly's:** All results were below the 1.5% volume per volume (v/v) trigger-level.

The CO_2 trigger level at the gas monitoring wells is 1.5% volume by volume `(v/v).

Monitoring boreholes GBH1 and GBH2 are located on the resident's side of the gas migration cut off trench. The cut off trench consists of an excavated trench along the landfill boundary adjacent to Carley's and Kelly's residents. Installed in this trench is an impermeable geotextile membrane with a series of gas extraction wells installed on the landfill side. The results indicate that the gas migration cut off trench combined with the gas abstraction system is operating as designed. Continuous monitoring for the detection of landfill gas was carried out at Carley's and Kelly's residents. Landfill gas was not detected at either residence in 2015.

Methane and Carbon Dioxide levels (as expected) remain elevated in the dual leachate/Gas extraction wells which are located in the waste body (Series W, A & LE). This gas is being continuously extracted and flared off. The monthly results are available for inspection at the Holmestown waste Management Facility site office.

8.2.2 Flare Emissions

An air emission test of the landfill flare was carried out by Fitz scientific on the 8th August 2015. NO_x , HCL, HF were found to be in compliance with the emission limit values contained in Waste Licence W0016-2 – Schedule C5, the CO emission was found to be not representative at the monitoring location and not reported on. The report is in included in Appendix A4.

8.2.3 Leachate levels and monitoring

Leachate Monitoring			
Level	16 points	LE12-1 to LE12-16	Quarterly
Analysis	1 point 48 points	Leachate storage tanks Series W, A & LE wells	Monthly / Annually Quarterly

Leachate monitoring points

Leachate levels

Leachate levels were taken at 16 leachate boreholes during 2015. Samples for analysis were obtained from the leachate storage tanks in 2015 in compliance with Schedule D.5. The levels were recorded using a dip meter on a quarterly basis by Wexford County Council staff at the landfill. The annual analysis results of the leachate removed from the tanks in 2015 is detailed in Table 10. The quantity exported off-site in 2015 was 5,319 tonnes compared to 5,322 tonnes in 2014.

Leachate is collected from 40 extraction wells located around the site within the waste boundary. This leachate is directed to the three holding tanks located in the northwest of the landfill. It is then removed by road tanker on a routine basis and transported to Wexford Wastewater Treatment Plant (and, since August 2015, to Holmestown leachate treatment plant) for treatment in accordance with Waste Licence Condition 6.6.

Leachate monitoring

Annual monitoring was undertaken on 27th April 2015. A leachate sample was collected from the leachate storage tanks. The sample was analysed for a range of parameters as defined in Table D.5.1 of the Waste Licence 16-2.

The typical characteristics of leachate generated on site are presented in Table 10. The results are similar to those obtained for the last reporting period and are in general indicative of a landfill in the methanogenic stage of decomposition of organic compounds i.e. conversion of organic compounds to landfill gas.

Table 9

Leachate analysis results 2015

Sampling Points		Tanks
Sampling Date		27/04/2015
Parameters	Units	Annual
Temperature	°C	11.5
Ammonia	mg/l N	340
Biochemical Oxygen	ma/l 02	<50
Demand Chemical Oxygen Demand	mg/l 02 mg/l 02	828
Chloride	mg/I CI	678
Conductivity	μS/cm	7510
Fluoride	mg/l F	<1.6
Mercury	µg/l	<0.5
Nitrite	mg/I N	0.421
Ortho-Phosphate	mg/I P	1.1
pH	pH	8.2
	mg/l	0.2
Sulphate	SO4	<16
Total Oxidised		
Nitrogen	mg/l N	0.68
Aluminum	µg/l	250
Antimony	µg/l	3.8
Arsenic	µg/l	34
Barium	µg/l	240
Cadmium	µg/l	<0.020
Calcium	mg/l	120
Chromium	µg/l	nm
Cobalt	µg/l	15
Copper	µg/l	99
Iron	µg/l	3800
Lead	µg/l	<1.0
Magnesium	mg/l	59
Manganese	µg/l	570
Molybdenum	µg/l	2
Nickel	µg/l	74
Potassium	mg/l	320
Selenium	µg/l	1.1
Sodium	mg/l	580
Thallium	μg/l	<1.0
Uranium	µg/l	<1.0
Vanadium	µg/l	11
Zinc	μg/l	250

Additional leachate analysis was undertaken during 2015 from 48 number leachate wells located within the waste body, the results of this analysis is to be submitted as part of the Leachate Management Plan review reports.

Inspection and testing of leachate storage tanks

The leachate tanks were tested in 2014; the tanks passed the integrity test and were assessed as being fit for the storage of leachate. The tanks are due to be re-tested in October 2017.

8.2.4 Surface Water

Under Schedule D.5 of the Waste Licence 16-2, surface water monitoring was required in the locations listed below. SW1 is located upstream of the site, SW2 is situated downstream of the site SW3 is located on the eastern side of the site adjacent to the landfill flare compound and SW4 is located at the southern tip of the facility (see monitoring point location drawing in Appendix A2). The site streams / drains regularly run dry during the drier months of the year and consequently surface water samples cannot be obtained. These are discussed in subsequent sections.

Та	ble	10	
	NIC		

Surface water monitoring locations and frequency

Surface water monitoring locations and frequency			
Parameter Location		Name	Frequency
Visual Inspection/ Odour	Off site (River Slaney)	S1, S2, S3	Quarterly
Chemical analysis	Off site (River Slaney)	S1, S2, S3	Quarterly
Visual inspection	On site	SW1, SW2, SW3 and SW4	Weekly
Chemical analysis	On site	SW1, SW2, SW3 and SW4,	Quarterly and Annual

Visual inspection of surface water

Surface water on site consists of a series of open and piped drains. Weekly visual inspections of surface water were conducted for monitoring points SW1, SW2, SW3 (SW 3 is a surface water manhole that collects surface water from the upper cap subsurface drainage layer and is adjacent to the flare compound, monitoring commenced in Q4, 2012) and SW4, and quarterly at off-site locations (River Slaney) S1, S2 and S3. All surface water details are included in previously submitted monitoring reports for the landfill. No visual abnormalities were recorded for any of the surface water inspection points during the reporting period.

Surface water quality analysis

Results for all surface water monitoring carried out in 2015 will be submitted to the Agency in the annual monitoring report. Due to dry periods it was not always possible to retrieve samples from all of the monitoring points. No sample was obtainable from SW1, SW2, SW3 and SW4 in Q1. No sample was obtainable from SW3 in Q3 or Q4.

All sampling and analysis was carried out in accordance with recognised quality assurance and control procedures. The detailed monitoring results are presented in the annual monitoring report. The range of analysis is as specified in Schedule D.5 of the Waste Licence 16-2 and includes parameters such as ammoniacal nitrogen, BOD, COD, dissolved oxygen, pH, electrical conductivity, suspended solids and temperature. No atypical results were recorded during the quarterly monitoring in 2015.

River water

The river water monitoring results for the river Slaney are presented in the annual monitoring report. Monitoring location S1 is located upstream of the landfill,

monitoring location S2 in the river adjacent to the landfill and monitoring location S3 is located downstream of the landfill and all are located within the tidal zone of the river estuary.

Ammonia results were relatively low. There is no evidence from the upstream and downstream river results that the landfill is impacting negatively on the Slaney.

8.2.5 Groundwater

Groundwater Monitoring Locations		ns
Downgradient	1 point	GW1
Downgradient (border of reed beds)	1 point	GW9
Downgradient (border of reed beds)	1 point	GW10
Upgradient	1 point	GW11
Upgradient	1 point	GBH1
Upgradient	1 point	GBH2

Table 11 Groundwater monitoring locations

Groundwater levels

Groundwater levels were measured on a quarterly basis using a dip meter. The groundwater dip levels are included in the annual monitoring report. Groundwater levels remained relatively constant throughout the monitoring period, with only minor variations in groundwater levels in accordance with prevailing weather conditions. During the drier months the groundwater levels were seen to gradually decrease while during wetter periods where prolonged rain was evident.

Groundwater quality boreholes

No significant variation from historical result trends was noted in 2015. The highest levels of contaminants have been recorded in the boreholes located along the south east side of the landfill. These BH's are on the maximum hydraulic groundwater gradient that falls from the landfill towards the river. Samples were taken from both soil and underlying rock layers. In both cases the distribution of contamination was not even, with certain boreholes recording higher results than others. This may be due to preferential flow paths caused by gravel/sand lenses in the soils and increased permeability due to higher levels of fracturing or faults in the underlying rock. The result trends show that leachate management on site has had a beneficial effect on these wells and Ammonal, Chloride and Conductivity levels have been decreasing since 2006. Boreholes with low contaminant readings have exhibited little change since 2006. This may be due to the lower permeability and recharge in these zones. Further information on the above can be found in the annual monitoring report and the Leachate Management Plan review report.

Private Well water analysis

Table 12 Private well monitoring locations

Drinking water

Private residence	UV treated	Kitchen tap
-------------------	------------	-------------

Quarterly and annually monitoring was carried out on drinking water samples from our neighbour's private well.

Additional private well / groundwater analysis was undertaken during 2015 from 3 number private wells located above the western bank of the river Slaney opposite the landfill, the results of this analysis is to be submitted as part of the Leachate Management Plan review report.

8.2.6 Noise

No noise monitoring was undertaken during 2015.

8.2.7 Meteorological monitoring

All 2015 meteorological monitoring information was obtained from the Met Éireann weather station located at Johnstown Castle, Wexford; this station is within 10km of the Killurin Landfill site. The monitoring data is contained in Appendix A3.

8.2.8 Topographical Survey

The latest topographical survey of the site was carried out by Capital Surveys Ltd in November 2014. The topographical survey drawing is contained in Appendix A2.

Given that the landfill has not accepted waste since 2008, and that the site has been fully capped the enclosed topographical survey was carried out for the purpose of checking settlement in the waste body. There appears to have been very little settlement since the 2013 AER topographical survey was carried out. The maximum observed level for the 2013 AER survey was 30.2 mOD, as compared to a level of 30.5 mOD for the 2014 AER survey. The rise in level appears to be due to local temporary works associated with the recent leachate abstraction wells installation.

There has been some minor changes to levels along the route of the perimeter road due to capping works, but these are inconsequential in relation to settlement or stability.

We propose to carry out the next topographical survey during 2016.

8.2.9 Slope Stability Assessment

Walkover slope stability assessments were conducted weekly in 2015 to check for any visible signs of slippage or instability on the flanks of the waste body. None were noted. It was concluded that the waste body remained stable during 2015.

9 Water Balance Calculations

The objective of the assessment of water balance calculations is to understand and predict the liquid inputs and outputs of the facility. Water balance calculations have been calculated for the period 1st January 2015 to 31st December 2015 to estimate the approximate volume of leachate generated on site. This volume can then be compared to the volume of leachate leaving site, by tanker over the weighbridge.

The water balance addressed the volume of leachate generated at the site including the estimated annual infiltration of rainfall. The water balance methodology is described below and the calculation is shown in Appendix A5.

The water balance calculations are based on the methodology specified in the EPA's Landfill Site Design Manual. The calculation used is as follows: -

Lo = [ER(A) + LW + IRCA + ER(I)] - [aw]

Lo = leachate produced (m^3)

ER = effective rainfall (m) (Use actual rainfall (R) for active cells)

A = area of cell (m^2)

LW = liquid waste (m^3)

IRCA = infiltration through restored and capped areas (m)

I = surface area of lagoon (m²)

a = absorptive capacity of new waste (m^{3}/t)

w = weight of waste deposited (t/a)

An absorptive capacity of 0.025 m³ per tonne was assumed.

The meteorological data used was obtained from the nearby Met Eireann meteorological station at Johnstown Castle. The total rainfall from 1st January 2015 to the 31st December 2015 was approximately 1063 mm. Meteorological data is presented in Appendix A3.

The water balance calculation considers the infiltration types influencing leachate generation:

- Infiltration directly through the permanently capped areas, estimated at 5%
- Infiltration due to run-off from the upper capped areas onto the capped perimeter access road, and infiltration through that capped road. This is treated separately to overall cap filtration as it is a relatively flat surface.

The estimated volume of leachate generated for the period 1st January 2015 to the 31st December 2015 is 2,835 m³ (a calculation summary is included in Appendix A5). During the same period 5,318 m³ of leachate was removed from the site for treatment in the waste water treatment plant at Wexford Town WWTP (January to July) and the leachate treatment plant at Holmestown WMF(August to December). A monthly breakdown of leachate volumes removed is presented in Table 5 above. It is expected that the additional volume of leachate removed over that generated is due to the additional deeper leachate extraction boreholes installed during 2014. While the process of reducing the elevation of the leachate water table is ongoing, a surplus of leachate extracted each year (over that generated) can be expected.

The fact that more leachate was removed off-site than was estimated to be generated in 2015 is a positive development.

APPENDICES

A1 PRTR 2015

| PRTR# : W0016 | Facility Name : Killurin Landfill Site | Filename : Killurin W0016_2015.xls | Return Year : 2015 |

29/04/2016 09:45

Guidance to completing the PRTR workbook

Environmental Protection Agency

PRTR Returns Workbook

REFERENCE YEAR	2015
1. FACILITY IDENTIFICATION	
	Wexford County Council
Facility Name	Killurin Landfill Site
PRTR Identification Number	W0016
Licence Number	W0016-02

Classes of Activity

No. class_name - Refer to PRTR class activities below

Address 1	Newtown Lower
Address 2	Killurin
Address 3	
Address 4	
	Wexford
Country	Ireland
Coordinates of Location	-6.56116 52.3816
River Basin District	IESE
NACE Code	
Main Economic Activity	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	Sean Meyler
AER Returns Contact Email Address	
AER Returns Contact Position	
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number	087 6846089
AER Returns Contact Fax Number	
Production Volume	
Production Volume Units	
Number of Installations	-
Number of Operating Hours in Year	
Number of Employees	3
User Feedback/Comments	Closed landfill no permanent staff presence on site. Leachate collection
	and landfill gas infrastructure maintenance ongoing, leachate tankered off
	site ongoing, general site maintenance ongoing.
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
5(d)	Landfills
5(c)	Installations for the disposal of non-hazardous waste
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 20	02)
Is it applicable?	
Have you been granted an exemption ?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being	
used ?	
4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site

4. WASTE IMPORTED/ACCEPTED UNTO SITE	Guidance on waste imported/accepted onto sit
Do you import/accept waste onto your site for on-	
site treatment (either recovery or disposal	
activities)?	

This question is only applicable if you are an IPPC or Quarry site

4.1 RELEASES TO AIR Link to previous years emissions data

| PRTR# : W0016 | Facility Name : Killurin Landfill Site | Filename : Killurin W0016_2015.xls | Return Year : 2015 |

28

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

	RELEASES TO AIR	Please enter all quantities	in this section in KGs					
POLLUTANT				IETHOD		QUANTITY		
				Method Used	Flare 1			
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
08	Nitrogen oxides (NOx/NO2)	М	EN 14792:2005		81.4	81.4	÷ 0.0	0.0
11	Sulphur oxides (SOx/SO2)	M	EN 14791:2005		2.6		6 0.0	0.0
01	Methane (CH4)	С	ALT		225353.0) 225353.0) 0.0	0.0
					0.0	0.0	0.0	0.0

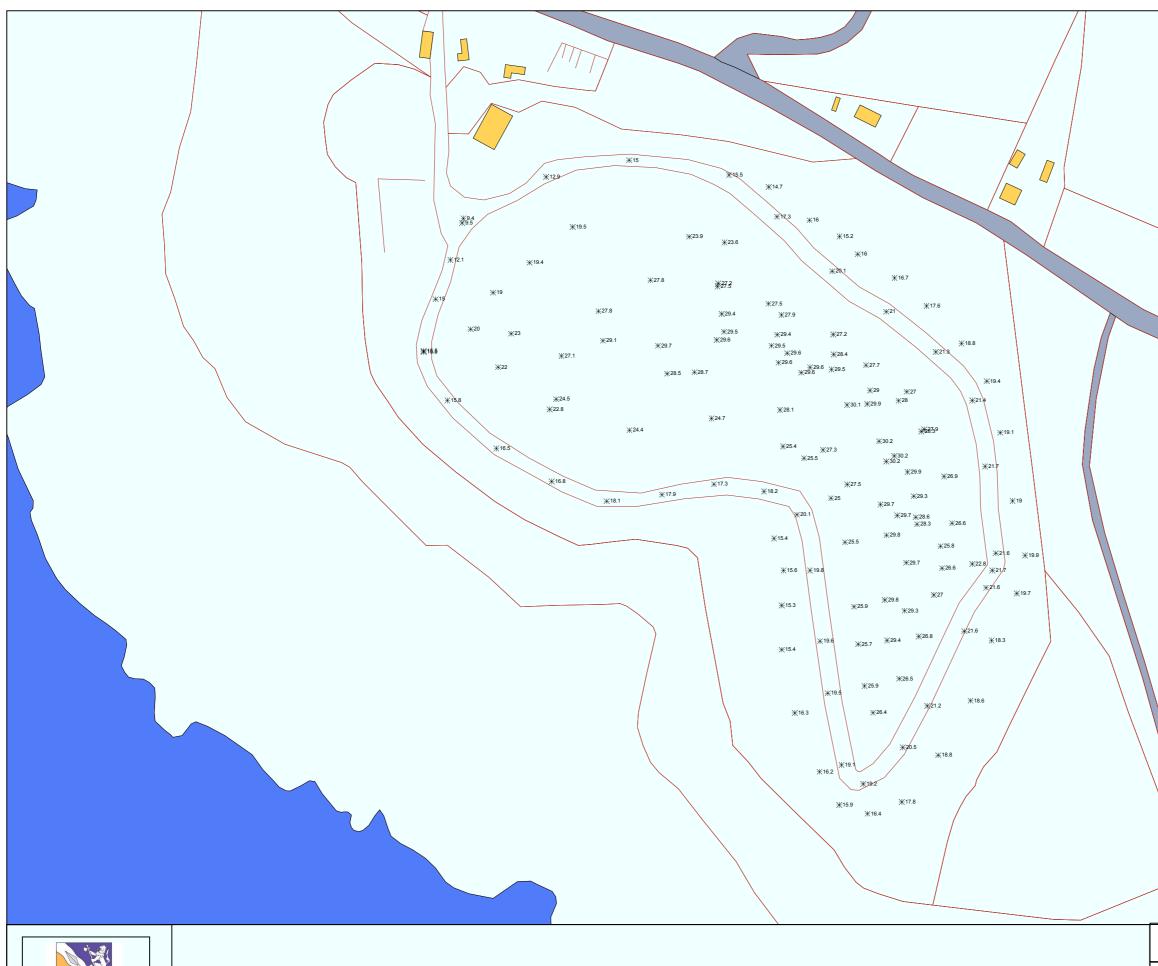
* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO AIR	Please enter all quantities in this section in KGs								
		METH	OD	QUANTITY						
				thod Used	Flare 1					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
84	Fluorine and inorganic compounds (as HF)	М	ISO/DIS 15713:2004		1.4		1.4 0	.0 0.0		
80	Chlorine and inorganic compounds (as HCI)	M	EN 1911-1 to 3:2003		0.6		0.6 0	.0 0.0		
	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button									

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

		RELEASES TO AIR				Please enter all quantities in this section in KGs QUANTITY						
		POLLUTANT			METHOD							
					Method Used	Flare 1						
	Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) I	(G/Year	F (Fugitive) KG/Year		
1	151	Total Organic Carbon (as C)	М	ALT		19.8		19.8	0.0	0.0		
		* Colored a serve build available all objects and the Dally datest Manus (Colored D) there all of the datasts builded										

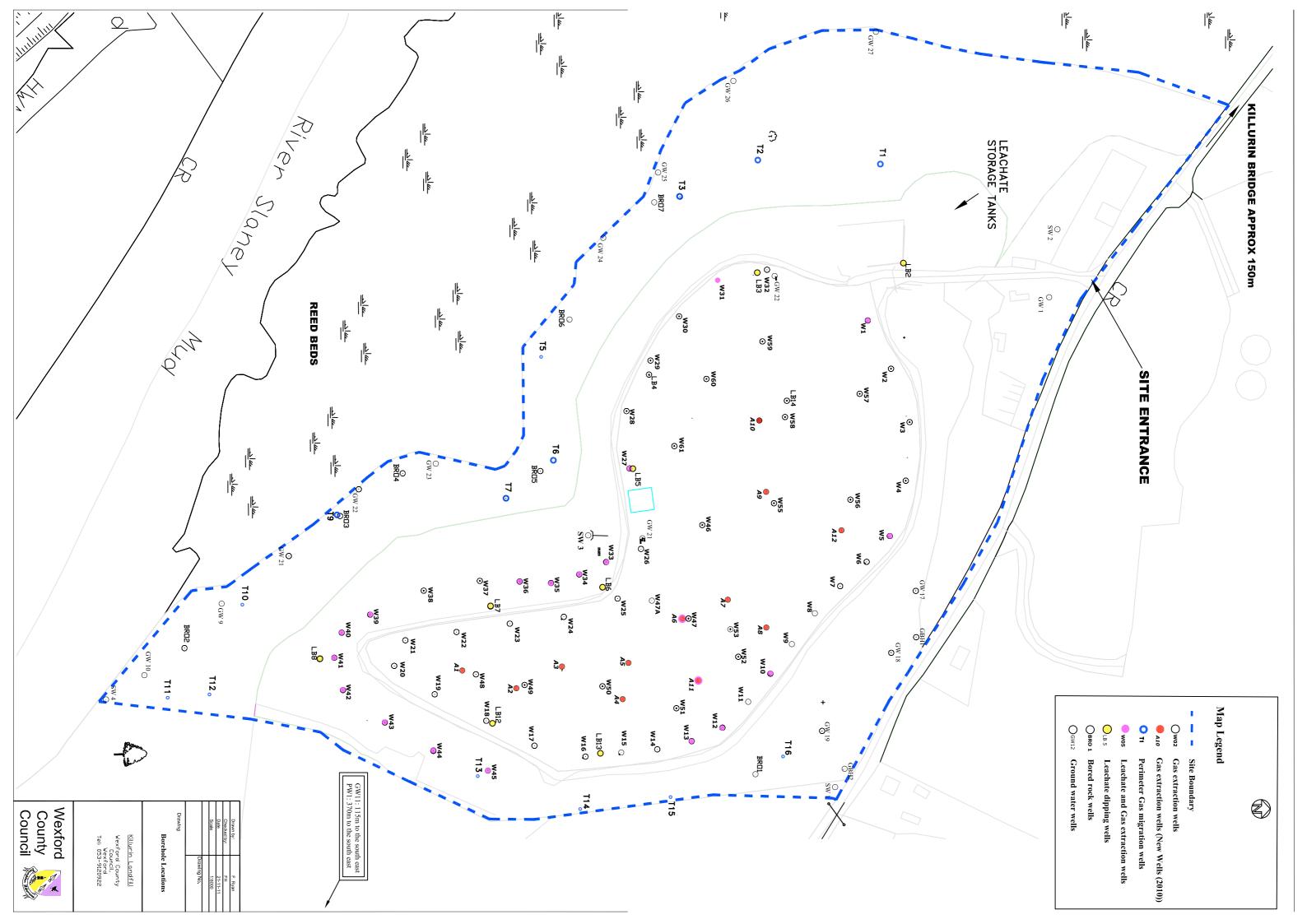

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

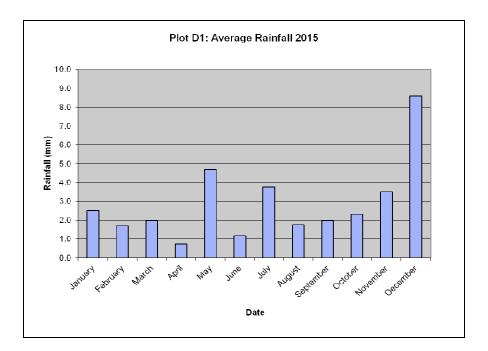
Additional Data Requested from Landfill operators												
For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) fared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KGlyr for Section A: Sector specific PRTR pollutants above. Please complete the table below:												
Landfill:	Killurin Landfill Site											
Please enter summary data on the												
quantities of methane flared and / or utilised			Meth	od Used								
				Designation or	Facility Total Capacity m3							
additional_pollutant_no	T (Total) kg/Year	M/C/E	Method Code	Description	per hour							
Total estimated methane generation (as per												
site model)					N/A							
Methane flared	0.0					(Total Flaring Capacity)						
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)						
Net methane emission (as reported in Section A												
above)	0.0				N/A							

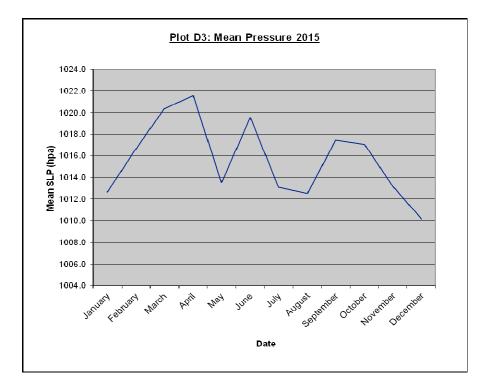
5. ONSITE TREATMI	ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE PRT# : W0016 Fadility Name : Killurin Landfill Site Filename : Killurin W0016_2015.xls Return Year : 2015 Please enter all quantities on this sheet in Tonnes 29/04/											
			Quantity (Tonnes per Year)		Waste		Method Used		Haz Waste : Name and Licence/Permit No of Next Destination Facility <u>Non</u> <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	Haz Waste : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
	European Waste				Treatment			Location of				
Transfer Destination		Hazardous		Description of Waste	Operation	M/C/E	Method Used	Treatment				
				•					Waterford Proteins Ltd. ,Dept	Ferrybank,.,Waterford		
Within the Country	02 02 02	No	0.0	animal-tissue waste	D10	M	Weighed	Offsite in Ireland	of Agriculture R919	,.,Ireland		
				landfill leachate other than those mentioned					Wexford WWTP Wexford	Pumping Station., Trinity		
Within the Country	19 07 03	No	2944.0	in 19 07 02	D9	M	Volume Calculation	Offsite in Ireland	County Council,"."	Street ,Wexford,.,Ireland		
										Mulligan Dismantling and		
										Salvage Ltd,Lower		
									Mulligan Dismantling and	Inch,Gorey,County		
Within the Country	20 01 40	No	0.0	metals	R4	M	Weighed	Offsite in Ireland	Salvage Ltd,WP/05/20	Wexford., Ireland		
									Holmestown Waste	Wexford County		
				landfill leachate other than those mentioned					Management Facility,W0191-	Council, Holmestown, Barnto		
Within the Country	19 07 03	No	2375.0	in 19 07 02	D9	M	Volume Calculation	Offsite in Ireland	02	wn,Co. Wexford,Ireland		
		* Select a row	by double-clicking t	he Description of Waste then click the delete button								

Link to previous years waste data Link to previous years waste summary data & percentage change Link to Waste Guidance

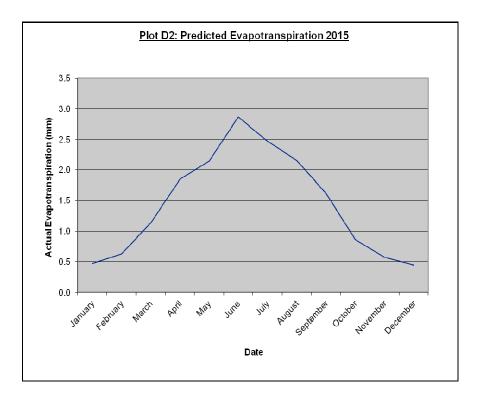
A2Topographical and Monitoring location drawings

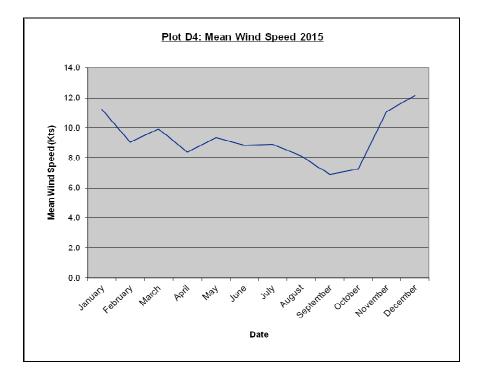


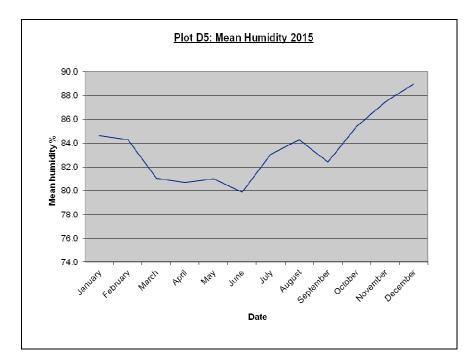

Killurin Landfill Mar 2014 Elevation surevy


© Ordnance Survey Ireland. All rights reserved. Licence number 2010/34/CCMA/Wexford Local Authority

Title: DESCRIPTION OF C	ONTENT
Drawn by: EL	Checked by:SM
Date: 26 Mar 2014	Map No: 1




Appendix D – Meteorological Graphs



Appendix D – Meteorological Graphs

Appendix D – Meteorological Graphs

A4Air emission report

Wexford County Council

Holmestown Landfill, Castlebridge, Killurin, Co. Wexford.

Emissions to Atmosphere Report No: 2140/M02

Industrial Emissions W0016-02 Licence

Report Date: 14/08/2015

Monitoring and Testing Services

Fitz Scientific Unit 35, Boyne Business Park, Drogheda, Co Louth Phone: +353 41 98 45440

Report for the Periodic Monitoring of Emissions to Air

Executive Summary

Licence / Permit Number:	W0016-02
Job Quote Number:	Y15Q16039
Operator Name:	Wexford County Council
Installation:	Holmestown Landfill, Castlebridge, Killurin, Co. Wexford.
Contact Name:	Fran Hobbs
Phone:	087 9141105

Monitoring Organisation:	Fitz Scientific
	Unit 35, Boyne Business Park, Drogheda, Co. Louth, Ireland
	Phone: +353 41 98 45440 / Fax: +353 41 98 46171
	email: air@fitzsci.ie
	2002

UKAS Registration number 2802

Report Date: 14/08/2015

Report created using QRSys version 3.1 May 2015

Written By:	Victor Olmos	Approved By:	Geoff Fitzpatrick
MCERTS Reg:	MM08 919	MCERTS Reg:	MM07 801
Competency:	Level 2	Competency:	Level 2
Function:	Field Services Manager	Function:	Manager
Endorsements:	TE1, TE2, TE3, TE4	Endorsements:	TE1, TE2, TE3, TE4

Signed: _____ Signed: _____

Accredited to ISO/IEC 17025:2005

Contents

1.- Part 1

- **1.1.- Monitoring Objectives**
- **1.2.- Special Monitoring Requirements**
- **1.3.- Monitoring Results**
- 1.4.- Operational Information
- **1.5.-** Monitoring Deviations
- **1.6.-** Monitoring Procedures and Deviations

2.- Part 2

Appendix 1: General Information

Appendix 2: Monitoring Information

1.- Part 1

1.1.- Monitoring Objectives

The monitoring was carried out as requested by the management of the company above mentioned. The customer has chosen to sample to the requirements of BS EN 15259:2007 for the substances monitored at the emission points listed below.

Flare Killurin				
Parameter	Result			
Hydrogen Chloride	<1.1 mg/m3			
Hydrogen Fluoride	1.23 mg/m3			
NOx	75.6 mg/m3			
02	15.75 %			
SO2	2.4 mg/m3			
TVOC	18.37 mg/m3			

1.2.- Special Monitoring Remarks

Due to close proximity to the exhaust an alternative sampling port was used. This port is not suitable for velocity, temperature or pressure measurements. CO emissions are not representative at this location and are not reported

NOx conversion efficiency: 97.1% tested on 20/04/2015

Opinions and interpretations expressed in this report are outside the scope of any claimed UKAS accreditation. EPA requirements AG1 (Safety) and AG2 (Monitoring Guidance Note) were applied during the monitoring.

All the sampling points were obtainable Yes

All parameters were sampled No

Additional information

1.3.- Monitoring Results

Emission Point Reference	Substance to be Monitored	ELV	Result	Uncert (+/-)	LOD	Units	Flow rate (m/s)	Date of sampling	Start - End Times	Reference Method	Accr.
Flare Killurin	Hydrogen Chloride	50 mg/m3	<1.1	0.1	0.9	mg/m3		06/08/2015	11:30- 12:00	BS EN 1911:2010	MCERTS
Flare Killurin	Hydrogen Fluoride	5 mg/m3	1.23	0.106	0.04	mg/m3	n/a	06/08/2015	13:23- 13:53	BS EN 15713:2006	MCERTS
Flare Killurin	NOx	150 mg/m3	75.6	127.2	0.04	mg/m3	n/a	06/08/2015	11:20- 11:50	BS EN 14792:2005	MCERTS
Flare Killurin	02	n/a	15.75	2.79	0.01	%		06/08/2015	11:20- 11:50	BS EN 14789:2005	MCERTS
Flare Killurin	SO2	0 mg/m3	2.4	0.2	0.2	mg/m3		06/08/2015	12:24- 12:54	BS EN 14791:2005	MCERTS
Flare Killurin	TVOC	10 mg/m3	18.37	11.67	0.27	mg/m3		06/08/2015	13:02- 13:32	BS EN 12619:2013	MCERTS
Flare Killurin	Hydrogen Chloride-blank		<0.7	0.1	0.9	mg/m3		06/08/2015	11:07- 11:09	BS EN 1911:2010	MCERTS
Flare Killurin	Hydrogen Fluoride-blank		<0.05	0.004	0.04	mg/m3		06/08/2015	12:55- 12:57	BS EN 15713:2006	MCERTS
Flare Killurin	SO2-blank		1.4	0.1	0.2	mg/m3		06/08/2015	12:05- 12:07	BS EN 14791:2005	MCERTS

No*: Sampling stage carried out as per MCERTS requirements

Analysis information

Hydrogen Chloride	Fitz Scientific
Hydrogen Fluoride	Fitz Scientific
NOx	Fitz Scientific
02	Fitz Scientific
SO2	Fitz Scientific
TVOC	Fitz Scientific

Additional information

* The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%

** Results reported at following Reference Conditions

Reference Conditions

Emission Point	Monitoring Result Reference Conditions					
Reference	Temperature (K)	Pressure (KPa)	Moisture (%)	Oxygen (%)		
Flare Killurin	273	101.3	0	5		

Abatement system and process load

Location	Abatement system	In Operation	Fuel typ	e and Load
Flare Killurin	None	n/a	Landfill gas	As normal

1.4.- Operating Information

Emission Point Reference	Date	Process Type	Process Duration	Substance	CEMS	PR	Units
Flare Killurin	06/08/2015	Combustion	Continuous	Hydrogen Chloride	n/a	<1.1	mg/m3
Flare Killurin	06/08/2015	Combustion	Continuous	Hydrogen Fluoride	n/a	1.23	mg/m3
Flare Killurin	06/08/2015	Combustion	Continuous	NOx	n/a	75.6	mg/m3
Flare Killurin	06/08/2015	Combustion	Continuous	02	n/a	15.75	%
Flare Killurin	06/08/2015	Combustion	Continuous	SO2	n/a	2.4	mg/m3
Flare Killurin	06/08/2015	Combustion	Continuous	TVOC	n/a	18.37	mg/m3

* CEMS: Continuous Emission Monitoring System Results

* PR: Periodic Monitoring Results

1.5.- Monitoring Deviations

Emission Daint	Elava Killuvin
Emission Point	Flare Killurin

Parameter Hydrogen Chloride

Emission monitoring point does not have required number of ports as per AG1 section 2.1/2.2 (per M1 Figure A2.5). Sampling port size is too small for velocity, temperature and pressure measurements to be carried out as per AG1 section 2.1/2.2 (M1 Annex 1). Emission point does not meet the requirements of BS EN 15259:2007 Section 6.2.1 NOTE 4 and AG1 section 2.1/2.2 (per M1 Annex 1) - The measurement plane is not in a section of duct that is at least 5 hydraulic diameters of straight duct upstream of the sampling plane and 2 hydraulic diameters downtream (5 hydraulic diameters from the top of the stack) Negative flow was found (BS EN 13284-1 section 5.2 b). The stack flow direction doesn't meet the minimum requirement of 15 degrees with regard the axis of the stack. (BS EN 13284-1 section 5.2 a). The ratio of highest to lowest local gas velocity is outside (higher than 3:1) of BS EN 13284-1 section 5.2 d) requirements. Differential pressure lower than 5Pa measured with pitot tube (BS EN 13284-1 section 5.2 c). □ Isokinetic conditions were outside the requirements of BS EN 13282-1 section 10.4. Due to the high velocity in the duct a smaller nozzle size was used than required by BS EN 13282-1 section 5.2.4 (6mm) to carry out isokinetic sampling. The blank reading does not meet the required target of <10% of the daily limit value (for ELV >10 mg/m3) (BS EN 12384-1 section 10.6) The ELV is such that the LOD for the analysis does not allow for the requirement of >10% ELV to be achieved (for ELV >5 mg/m3) (MID 13248-1 section 10.6) The ELV is such that the LOD for the analysis does not allow for the requirement of >20% ELV to be achieved (for ELV <5 mg/m3) (MID 13248-1 section 10.6) NOx overall uncertainty calculated is outside requirement of <10% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.1 BS EN 14789:2005 CO overall uncertainty calculated is outside requirement of <6% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.3 BS EN 15058:2006. O2 overall uncertainty calculated is outside requirement of <6% of the value expressed on dry basis as per 7.3 BS EN 14789:2005 Nox calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6) CO calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6) O2 calibration drift is higher than 2% of the span value. Results are corrected to drift. (EN 14789:2005 Section 8.4.2.3) TVOC calibration drift is higher than 2% of the span value. Results are corrected to drift. (BS EN 12619:2013 Section 6.2.3) SO2 Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 14791:2005 section 6.6.1) \checkmark HCI Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 1911:2010 section 5.2.1.2.2) HF Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS ISO 15713:2006 section 6.4). Homogeneity test is required for this stack as per BS EN 15259:2007 but customer did not require it in the Confirmation Form

Low HCl levels detected. Impinger efficiency NOT relevent. Due to small port no externally heated probe was used

Parameter Hydrogen Fluoride

- Emission monitoring point does not have required number of ports as per AG1 section 2.1/2.2 (per M1 Figure A2.5).
- Sampling port size is too small for velocity, temperature and pressure measurements to be carried out as per AG1 section 2.1/2.2 (M1 Annex 1).
- Emission point does not meet the requirements of BS EN 15259:2007 Section 6.2.1 NOTE 4 and AG1 section 2.1/2.2 (per M1 Annex 1) The measurement plane is not in a section of duct that is at least 5 hydraulic diameters of straight duct upstream of the sampling plane and 2 hydraulic diameters downtream (5 hydraulic diameters from the top of the stack)
- Negative flow was found (BS EN 13284-1 section 5.2 b).
- The stack flow direction doesn't meet the minimum requirement of 15 degrees with regard the axis of the stack. (BS EN 13284-1 section 5.2 a).
- The ratio of highest to lowest local gas velocity is outside (higher than 3:1) of BS EN 13284-1 section 5.2 d) requirements.
- Differential pressure lower than 5Pa measured with pitot tube (BS EN 13284-1 section 5.2 c).
- \square Isokinetic conditions were outside the requirements of BS EN 13282-1 section 10.4.
- Due to the high velocity in the duct a smaller nozzle size was used than required by BS EN 13282-1 section 5.2.4 (6mm) to carry out isokinetic sampling.
- The blank reading does not meet the required target of <10% of the daily limit value (for ELV >10 mg/m3) (BS EN 12384-1 section 10.6)
- The ELV is such that the LOD for the analysis does not allow for the requirement of >10% ELV to be achieved (for ELV >5 mg/m3) (MID 13248-1 section 10.6)
- The ELV is such that the LOD for the analysis does not allow for the requirement of >20% ELV to be achieved (for ELV <5 mg/m3) (MID 13248-1 section 10.6)
- NOx overall uncertainty calculated is outside requirement of <10% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.1 BS EN 14789:2005
- CO overall uncertainty calculated is outside requirement of <6% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.3 BS EN 15058:2006.</p>
- O2 overall uncertainty calculated is outside requirement of <6% of the value expressed on dry basis as per 7.3 BS EN 14789:2005
- NOx calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6)
- CO calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6)
- O2 calibration drift is higher than 2% of the span value. Results are corrected to drift. (EN 14789:2005 Section 8.4.2.3)
- TVOC calibration drift is higher than 2% of the span value. Results are corrected to drift. (BS EN 12619:2013 Section 6.2.3)
- SO2 Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 14791:2005 section 6.6.1)
- HCl Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 1911:2010 section 5.2.1.2.2)
- HF Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS ISO 15713:2006 section 6.4).
- Homogeneity test is required for this stack as per BS EN 15259:2007 but customer did not require it in the Confirmation Form

Due to small port no externally heated probe was used

Parameter NOx

Emission monitoring point does not have required number of ports as per AG1 section 2.1/2.2 (per M1 Figure A2.5).

Sampling port size is too small for velocity, temperature and pressure measurements to be carried out as per AG1 section 2.1/2.2 (M1 Annex 1).

- Emission point does not meet the requirements of BS EN 15259:2007 Section 6.2.1 NOTE 4 and AG1 section 2.1/2.2 (per M1 Annex 1) The measurement plane is not in a section of duct that is at least 5 hydraulic diameters of straight duct upstream of the sampling plane and 2 hydraulic diameters downtream (5 hydraulic diameters from the top of the stack)
- Negative flow was found (BS EN 13284-1 section 5.2 b).
- The stack flow direction doesn't meet the minimum requirement of 15 degrees with regard the axis of the stack. (BS EN 13284-1 section 5.2 a).
- The ratio of highest to lowest local gas velocity is outside (higher than 3:1) of BS EN 13284-1 section 5.2 d) requirements.
- Differential pressure lower than 5Pa measured with pitot tube (BS EN 13284-1 section 5.2 c).
- □ Isokinetic conditions were outside the requirements of BS EN 13282-1 section 10.4.
- Due to the high velocity in the duct a smaller nozzle size was used than required by BS EN 13282-1 section 5.2.4 (6mm) to carry out isokinetic sampling.
- The blank reading does not meet the required target of <10% of the daily limit value (for ELV >10 mg/m3) (BS EN 12384-1 section 10.6)
- The ELV is such that the LOD for the analysis does not allow for the requirement of >10% ELV to be achieved (for ELV >5 mg/m3) (MID 13248-1 section 10.6)
- The ELV is such that the LOD for the analysis does not allow for the requirement of >20% ELV to be achieved (for ELV <5 mg/m3) (MID 13248-1 section 10.6)
- ✓ NOx overall uncertainty calculated is outside requirement of <10% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.1 BS EN 14789:2005</p>
- CO overall uncertainty calculated is outside requirement of <6% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.3 BS EN 15058:2006.
- O2 overall uncertainty calculated is outside requirement of <6% of the value expressed on dry basis as per 7.3 BS EN 14789:2005
- NOx calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6)
- CO calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6)
- O2 calibration drift is higher than 2% of the span value. Results are corrected to drift. (EN 14789:2005 Section 8.4.2.3)
- TVOC calibration drift is higher than 2% of the span value. Results are corrected to drift. (BS EN 12619:2013 Section 6.2.3)
- SO2 Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 14791:2005 section 6.6.1)
- HCl Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 1911:2010 section 5.2.1.2.2)
- HF Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS ISO 15713:2006 section 6.4).
- Homogeneity test is required for this stack as per BS EN 15259:2007 but customer did not require it in the Confirmation Form

Parameter 02

- Emission monitoring point does not have required number of ports as per AG1 section 2.1/2.2 (per M1 Figure A2.5).
- Sampling port size is too small for velocity, temperature and pressure measurements to be carried out as per AG1 section 2.1/2.2 (M1 Annex 1).
- Emission point does not meet the requirements of BS EN 15259:2007 Section 6.2.1 NOTE 4 and AG1 section 2.1/2.2 (per M1 Annex 1) The measurement plane is not in a section of duct that is at least 5 hydraulic diameters of straight duct upstream of the sampling plane and 2 hydraulic diameters downtream (5 hydraulic diameters from the top of the stack)
- Negative flow was found (BS EN 13284-1 section 5.2 b).
- The stack flow direction doesn't meet the minimum requirement of 15 degrees with regard the axis of the stack. (BS EN 13284-1 section 5.2 a).
- The ratio of highest to lowest local gas velocity is outside (higher than 3:1) of BS EN 13284-1 section 5.2 d) requirements.
- Differential pressure lower than 5Pa measured with pitot tube (BS EN 13284-1 section 5.2 c).
- □ Isokinetic conditions were outside the requirements of BS EN 13282-1 section 10.4.
- Due to the high velocity in the duct a smaller nozzle size was used than required by BS EN 13282-1 section 5.2.4 (6mm) to carry out isokinetic sampling.
- The blank reading does not meet the required target of <10% of the daily limit value (for ELV >10 mg/m3) (BS EN 12384-1 section 10.6)
- The ELV is such that the LOD for the analysis does not allow for the requirement of >10% ELV to be achieved (for ELV >5 mg/m3) (MID 13248-1 section 10.6)
- The ELV is such that the LOD for the analysis does not allow for the requirement of >20% ELV to be achieved (for ELV <5 mg/m3) (MID 13248-1 section 10.6)
- NOx overall uncertainty calculated is outside requirement of <10% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.1 BS EN 14789:2005
- CO overall uncertainty calculated is outside requirement of <6% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.3 BS EN 15058:2006.
- O2 overall uncertainty calculated is outside requirement of <6% of the value expressed on dry basis as per 7.3 BS EN 14789:2005
- NOx calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6)
- CO calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6)
- O2 calibration drift is higher than 2% of the span value. Results are corrected to drift. (EN 14789:2005 Section 8.4.2.3)
- TVOC calibration drift is higher than 2% of the span value. Results are corrected to drift. (BS EN 12619:2013 Section 6.2.3)
- SO2 Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 14791:2005 section 6.6.1)
- HCl Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 1911:2010 section 5.2.1.2.2)
- HF Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS ISO 15713:2006 section 6.4).
- Homogeneity test is required for this stack as per BS EN 15259:2007 but customer did not require it in the Confirmation Form

Monitoring carried out as per Standard Methods. No deviations were recorded

Parameter SO2

Emission monitoring point does not have required number of ports as per AG1 section 2.1/2.2 (per M1 Figure A2.5).

Sampling port size is too small for velocity, temperature and pressure measurements to be carried out as per AG1 section 2.1/2.2 (M1 Annex 1).

- Emission point does not meet the requirements of BS EN 15259:2007 Section 6.2.1 NOTE 4 and AG1 section 2.1/2.2 (per M1 Annex 1) The measurement plane is not in a section of duct that is at least 5 hydraulic diameters of straight duct upstream of the sampling plane and 2 hydraulic diameters downtream (5 hydraulic diameters from the top of the stack)
- Negative flow was found (BS EN 13284-1 section 5.2 b).
- The stack flow direction doesn't meet the minimum requirement of 15 degrees with regard the axis of the stack. (BS EN 13284-1 section 5.2 a).
- The ratio of highest to lowest local gas velocity is outside (higher than 3:1) of BS EN 13284-1 section 5.2 d) requirements.
- Differential pressure lower than 5Pa measured with pitot tube (BS EN 13284-1 section 5.2 c).
- □ Isokinetic conditions were outside the requirements of BS EN 13282-1 section 10.4.
- Due to the high velocity in the duct a smaller nozzle size was used than required by BS EN 13282-1 section 5.2.4 (6mm) to carry out isokinetic sampling.
- The blank reading does not meet the required target of <10% of the daily limit value (for ELV >10 mg/m3) (BS EN 12384-1 section 10.6)
- The ELV is such that the LOD for the analysis does not allow for the requirement of >10% ELV to be achieved (for ELV >5 mg/m3) (MID 13248-1 section 10.6)
- The ELV is such that the LOD for the analysis does not allow for the requirement of >20% ELV to be achieved (for ELV <5 mg/m3) (MID 13248-1 section 10.6)
- NOx overall uncertainty calculated is outside requirement of <10% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.1 BS EN 14789:2005
- CO overall uncertainty calculated is outside requirement of <6% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.3 BS EN 15058:2006.
- O2 overall uncertainty calculated is outside requirement of <6% of the value expressed on dry basis as per 7.3 BS EN 14789:2005
- NOx calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6)
- CO calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6)
- O2 calibration drift is higher than 2% of the span value. Results are corrected to drift. (EN 14789:2005 Section 8.4.2.3)
- TVOC calibration drift is higher than 2% of the span value. Results are corrected to drift. (BS EN 12619:2013 Section 6.2.3)
- SO2 Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 14791:2005 section 6.6.1)
- HCI Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 1911:2010 section 5.2.1.2.2)
- HF Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS ISO 15713:2006 section 6.4).
- Homogeneity test is required for this stack as per BS EN 15259:2007 but customer did not require it in the Confirmation Form

Low SO2 levels detected. Impinger efficiency NOT relevent. Due to small port no externally heated probe was used

Parameter **TVOC**

- Emission monitoring point does not have required number of ports as per AG1 section 2.1/2.2 (per M1 Figure A2.5).
- Sampling port size is too small for velocity, temperature and pressure measurements to be carried out as per AG1 section 2.1/2.2 (M1 Annex 1).
- Emission point does not meet the requirements of BS EN 15259:2007 Section 6.2.1 NOTE 4 and AG1 section 2.1/2.2 (per M1 Annex 1) The measurement plane is not in a section of duct that is at least 5 hydraulic diameters of straight duct upstream of the sampling plane and 2 hydraulic diameters downtream (5 hydraulic diameters from the top of the stack)
- Negative flow was found (BS EN 13284-1 section 5.2 b).
- The stack flow direction doesn't meet the minimum requirement of 15 degrees with regard the axis of the stack. (BS EN 13284-1 section 5.2 a).
- The ratio of highest to lowest local gas velocity is outside (higher than 3:1) of BS EN 13284-1 section 5.2 d) requirements.
- Differential pressure lower than 5Pa measured with pitot tube (BS EN 13284-1 section 5.2 c).
- □ Isokinetic conditions were outside the requirements of BS EN 13282-1 section 10.4.
- Due to the high velocity in the duct a smaller nozzle size was used than required by BS EN 13282-1 section 5.2.4 (6mm) to carry out isokinetic sampling.
- The blank reading does not meet the required target of <10% of the daily limit value (for ELV >10 mg/m3) (BS EN 12384-1 section 10.6)
- The ELV is such that the LOD for the analysis does not allow for the requirement of >10% ELV to be achieved (for ELV >5 mg/m3) (MID 13248-1 section 10.6)
- The ELV is such that the LOD for the analysis does not allow for the requirement of >20% ELV to be achieved (for ELV <5 mg/m3) (MID 13248-1 section 10.6)
- NOx overall uncertainty calculated is outside requirement of <10% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.1 BS EN 14789:2005
- CO overall uncertainty calculated is outside requirement of <6% at the daily ELV expressed on dry basis before correction to O2 reference concentration as per 7.3 BS EN 15058:2006.
- O2 overall uncertainty calculated is outside requirement of <6% of the value expressed on dry basis as per 7.3 BS EN 14789:2005
- NOx calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6)
- CO calibration drift is higher than 2% of the span value. Results are corrected to drift. (TGN M22 Section 6)
- O2 calibration drift is higher than 2% of the span value. Results are corrected to drift. (EN 14789:2005 Section 8.4.2.3)
- TVOC calibration drift is higher than 2% of the span value. Results are corrected to drift. (BS EN 12619:2013 Section 6.2.3)
- SO2 Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 14791:2005 section 6.6.1)
- HCI Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS EN 1911:2010 section 5.2.1.2.2)
- HF Impinger efficiency is lower than the requirements of 95% total of concentration in the first impinger (BS ISO 15713:2006 section 6.4).
- Homogeneity test is required for this stack as per BS EN 15259:2007 but customer did not require it in the Confirmation Form

Monitoring carried out as per Standard Methods. No deviations were recorded

2.- Part 2

Supporting information

W0016-02
Y15Q16039
Wexford County Council
Holmestown Landfill, Castlebridge, Killurin, Co. Wexford.
Fran Hobbs
087 9141105

Monitoring Dates:

06/08/2015

Monitoring Organisation:	Fitz Scientific
	Unit 35, Boyne Business Park, Drogheda, Co. Louth, Ireland
	Phone: +353 41 98 45440 / Fax: +353 41 98 46171
	email: air@fitzsci.ie

Laboratory details

Hydrogen Chloride					
	Address	Contact	email	Phone	Acc. Number
Fitz Scientific	Unit 35, Boyne Business Park, Drogheda, Co. Louth, Ireland	Geoff Fitzpatrick	info@fitzsci.ie	+353 41 45440 - e	
Hydrogen Fluoride					
	Address	Contact	email	Phone	Acc. Number
Fitz Scientific	Unit 35, Boyne Business Park, Drogheda, Co. Louth, Ireland	Geoff Fitzpatrick	info@fitzsci.ie	+353 41 45440 - e	
NOx					
	Address	Contact	email	Phone	Acc. Number
Fitz Scientific	Unit 35, Boyne Business Park, Drogheda, Co. Louth, Ireland	Geoff Fitzpatrick	info@fitzsci.ie	+353 41 45440 - e	
02					
	Address	Contact	email	Phone	Acc. Number

					,
Fitz Scientific	Unit 35, Boyne Business Park, Drogheda, Co. Louth, Ireland	Geoff Fitzpatrick	info@fitzsci.ie	+353 41 98 45440 - ext	
S02					
	Address	Contact	email	Phone	Acc. Number
Fitz Scientific	Unit 35, Boyne Business Park, Drogheda, Co. Louth, Ireland	Geoff Fitzpatrick	info@fitzsci.ie	+353 41 98 45440 - ext	
туос					
	Address	Contact	email	Phone	Acc. Number
Fitz Scientific	Unit 35, Boyne Business Park, Drogheda, Co. Louth, Ireland	Geoff Fitzpatrick	info@fitzsci.ie	+353 41 98 45440 - ext	

Appendix 1:

Sampling personnel used

06/08/2015	Technician Name	Position	Qualification	TEs	MCERTS nc
	Victor Olmos	Team Leader	Level 2	TE1, TE2, TE3, TE4	MM08 919
	Jason McGuirk	Technician	Level 1	-	MM14 1320
Substances M	Ionitored				
Substance			Method used fo	or Monitoring	Fitz SOP
Hydrogen Flu	oride		BS EN 15713:200	6	129
NOx			BS EN 14792:200	15	161
02			BS EN 14789:200	15	161
SO2			BS EN 14791:200	15	167
TVOC			BS EN 12619:201	.3	155

As an accredited organisation Fitz scientific have implemented procedures to ensure that the requirements of TPS 63 (UKAS Policy on Deviating Samples) are met with regard to samples taken and tested for chemical analysis. As such all samples, when applicable, have been transported in containers, and in an environment, that meet the relevant standard requirements where applicable

Stack:	Flare Killurin	l			
Parameter:	TVOC				
TCR	n/a	Weights	n/a	FTIR	n/a
Nozzles	n/a	Caliper	n/a	Filters	n/a
Impingers	n/a	Testo	n/a	Gases	53145
Probe	n/a	Horiba	n/a	Handheld pumps	n/a
Pitot tube	n/a	FID	EM211	Tubes	n/a
Parameter:	SO2				
TCR	EM333	Weights	EM200	FTIR	n/a
Nozzles	n/a	Caliper	n/a	Filters	n/a
Impingers	Set D	Testo	n/a	Gases	n/a
Probe	n/a	Horiba	n/a	Handheld pumps	n/a
Pitot tube	n/a	FID	n/a	Tubes	n/a
Parameter:	02				
TCR	n/a	Weights	n/a	FTIR	n/a
Nozzles	n/a	Caliper	n/a	Filters	n/a
Impingers	n/a	Testo	n/a	Gases	n/a
Probe	n/a	Horiba	EM365	Handheld pumps	n/a
Pitot tube	n/a	FID	n/a	Tubes	n/a
i itot tube	ny a	110	nya	Tubeo	nya

Equipment Checklist References

Parameter:	NOx				
TCR	n/a	Weights	n/a	FTIR	n/a
Nozzles	n/a	Caliper	n/a	Filters	n/a
Impingers	n/a	Testo	n/a	Gases	2035794
Probe	n/a	Horiba	EM365	Handheld pumps	n/a
Pitot tube	n/a	FID	n/a	Tubes	n/a
Parameter:	Hydrogen Fl	uoride			
TCR	EM333	Weights	EM200	FTIR	n/a
Nozzles	n/a	Caliper	n/a	Filters	n/a
Impingers	EM088	Testo	n/a	Gases	n/a
Probe	n/a	Horiba	n/a	Handheld pumps	n/a
Pitot tube	n/a	FID	n/a	Tubes	n/a
Parameter:	Hydrogen Ch	nloride			
TCR	EM333	Weights	EM200	FTIR	n/a
Nozzles	n/a	Caliper	n/a	Filters	n/a
Impingers	Set D	Testo	n/a	Gases	n/a
Probe	n/a	Horiba	n/a	Handheld pumps	n/a
Pitot tube	n/a	FID	n/a	Tubes	n/a

Appendix 2:

Monitoring Information

Stack	Flare Killurin	P	Parameter: NOx, O2, SO2, HCl, HF	
Number o	f Ports	1	Dry Flow rate at STP, Ref O2 (m3/h)	n/a
Number o	of Points	1	Max Flow Rate in Licence (m3/h):	3000
Average V	/elocity v'a (m/s)	n/a	T reference (Deg K)	273
Average F	Pressure (KPa)	n/a	P reference (KPa)	101.3
Average T	Cemperature (°C)	n/a	Isokinetic condition (%)	n/a
Stack Dia	meter (m)	n/a	Oxygen measured (%)	15.75
Actual Mo	pisture Flow rate (m3/h)	n/a	Water vapor (%)	2.10
Moisture	Flow rate at STP (m3/h)	n/a	Wet Stack (yes/no)	No
Size of No	ozzle	n/a	Probe Temperature (°C)	n/a
			Impinger efficiency (%)	HCL58.8%) SO2(77.5%) HF(97.1%)

Monitoring result calculations and uncertainty calculations

Fitz Scientific 2140/M02 Year: 2015 Visit no: 1

	Moisture Cor	tont							BS EN 14790:2
	Company	nom		Wexford County Cou	uncil			Date of Test	06/08/2015
	Site			Holmestown Landfill		Killurin. Ci 🥿	T7scientific	Reference No	M02
	Plant Identifi	cation		Flare Killurin	,			Operator Id	MM08 919
	Test carried			Victor Olmos		Monitoria	ng and Testing Services	TE's	TE1, TE2, TE3,
	Report Numb			2140/M02					
	Dry at Gas M	eter: (Vg)		0.08	<mark>64</mark> m3		Correction	Factors for Volume:	
		emperature: (tg)		21.		к	TCR EM No.		Calibration Da
	Ambient Pres	ssure Measured:(I	Pa)	100.1	78 kPa		EM036	0.5 1.0028	18/11/2
	Gas Volume	STP (Vgn)		0.0797435	03 m3			1 1.0055	
	Gas Volume	Factor Correction	:	0.98	98 taken from t	his table>		1.5 1.0104	
	Corrected Vo	olume STP		0.0789301	19 m3			2 1.0141	
					_			2.5 1.018	
	Before						EM003	0.5 0.9993	03/12/2
Readings:	Line	Impinger 1	Impinger 2	Impinger 3	Impinger 4	Sum:	1	1 1.0035	
	1 472.0	491.6	510.5	361.6	535.8	2371.5	1	1.5 1.0086	
	2 472.0	491.6	510.6	361.8	535.8	2371.8		2 1.0156	
	3 472.0	491.7	510.6	361.7	535.8	2371.8		2.5 1.0288	
	4 472.2	491.7	510.6	361.7	535.9	2372.1	EM207	0.5 1.0049	11/05/2
	5 472.1	491.9	510.6	361.7	535.9	2372.2	1	1 0.9946	
	6 472.1	491.8	510.6	361.7	535.9	2372.1	1	1.5 0.9955	
	7 472.1	491.8	510.6	361.7	535.9	2372.1	1	2 0.9974	
	8 472.1	491.8	510.6	361.7	535.9	2372.1		2.5 1.006	
	9 472.1	491.8	510.6	361.7	535.9	2372.1	EM333	0.5 0.9898	15/04/2
	0 472.1	491.8	510.6	361.7	535.9	2372.1		1 0.9908	
Standard Deviation:	0.1	0.1	0.0	0.0	0.0	0.2		1.5 0.9931	
Average:	472.1	491.8	510.6	361.7	535.9	2372.0	1	2 0.9951	
	After:							2.5 1.0013	
Readings:	Line	Impinger 1	Impinger 2	Impinger 3	Impinger 4	Sum:			
	1 472.2	492.6	510.5	362.1	535.7	2373.1			
	2 472.2	492.6	510.5	362.2	535.7	2373.2			
	3 472.3	492.6	510.5	362.2	535.7	2373.3			
	4 472.3	492.6	510.5	362.2	535.7	2373.3			
	5 472.3	492.7	510.5	362.2	535.7	2373.4			
	6 472.3	492.7	510.6	362.2	535.6	2373.4			
	7 472.3	492.7	510.6	362.2	535.6	2373.4			
	8 472.3	492.7	510.6	362.2	535.6	2373.4			
	9 472.3	492.7	510.6	362.3	535.6	2373.5			
1	0 472.3	492.7	510.6	362.3	535.6	2373.5			
Standard Deviation:	0.0	0.1	0.1	0.1	0.1	0.1			
Average:	472.3	492.7	510.6	362.2	535.7	2373.4			
Difference in weigh of impin	gers after and b	efore measurement	ts:		1.4	g			
	Water vapou	r content on STP	basis:		17.23	g/m3			
	Referenced of	xvaen:			3.00	%			
	Meas oxyger					%			
	Water vapou	r content in % on	wet basis:		2.1	%			
	Corrected to				7.3				
	Weights:	E	lefore Sampling:	After Sampling:	Difference:				
	Silca trap:		535	5.9 535	5.7 -0.22 100.0				

Air Monitoring\AirCalculationsRev37

Page 20 of 41

Fitz Scientific 2140/M02 Year: 2015 Visit no: 1

_

Measured concentration	2.1	% (at STP)				
leasured Quantities	Symbol	Value Stand	ard uncertainty		Units	
Sampled Volume	Vm	0.078930119	uVm	0.001	m3	
Sampled gas Temperature	Tm	273	uTm	2	k	
Sampled gas Pressure	ρm	101.3	upm	1	kPa	
Efficiency	3	100.04			%	
Dxygen content	O2,m	15.75	uO2,m	0.1	% by volume	
Vater collected in condensa	tion stage	535.90				
Water collected in adsorption	n stage	-0.22				
Wate collected in addidional	unit	-0.22				
Water collected in trapping	m	535.68	um	0.00	g	
ntermediate calculations						
/wc	107.893012		^2			
	0.0		0.0		Efficiency uncertain	0.0
	-0.1		0.0		support	0.0
	-1.3		1.8		calculations	-0.1
		\checkmark				
		water in trapping unit	23.1			
		water in adsorption stage	#NUM!			
Uncertainty Efficiency^2			#NUM!			
Volume ^2			0.3			
ensityvity coefficiency			#NUM!			
Incertainty efficiency					#NUM!	
		Repatability standard dev				
Weight in the field st		0.2			0.1	
Sampled Volume		0.002			0.0	
Sampled gas Temperature		0.02			0.0	
Sampled gas Pressure		0.3			0.2	
					#NUM! %	
combined measurement unc	ertainty				#NUM! %	

Air Monitoring\AirCalculationsRev37

Overall uncertainty should be less than +/-20% of the measured concentration.

Page 21 of 41

Fitz Scientific 2140/M02 Yar: 2015 Visit no: 1

F

O2 BS EN 14789:2005, NOx BS EN 14792:2005, CO BS EN 15058:2006, CO2 ISO 120 Date of Test O6 ridge, Kill Scientific Reference No Operator Id M Mentforing and Testing Services TE's TE'1, TE2, T Flue gases Company Vexford County Council Holmestown Landfill, Castlebridge, Kill SFITZ scientific Flare Killurin Victor Olmos 2140/M02 00/08/2018 M02 MM08 919 TE1, TE2, TE3, TE4 Site Plant Identifi ntification ed out by NOx ppm SO2 ppm 10.61 02 % CO2 % CO ppm No. Flue Gas param Ref O2 Value Meas O2 Value Uncertainty Concen Unit Unit 3.00 % 15.75 % 2.79 % 10.61 ppm 21.7 Nmg/m3 75.6 Nmg/m3 127.2 Nmg/m3 0.0 kg/hr no correction for oxygen use the same value as for measured oxygen. 02 NOx Convert to NO2 mg/Nm3 Corrected to ref. O2 % Uncertainty Mass co-NOx tration STP, dry, Ref O2 Flow Rate STP,dry,RefO2 0.00 m3/hr Calibration Cylinder No: Concentration ppm Concentration mg/m3 2035794 90.87 186.2535 Concentration% Ambient Air 20.9 NO O2 Drift Calculations 02 % 30 NO ppm 30 CO ppm SO2 ppm CO2 Sampling time Span expected Value Zero expected result Zero reading before 1 Span reading before measurement Zero reading before 2 Zero reading after Span reading after measurement 20.9 -0.02 Span adjustment Span Check Deviation Drift/Min 0.999 0.993 -0.005 -0.000181889 1.000 1.004 0.004 0.00014416 Zero adjustment 1 Zero Adjustment 2 Zero Check 1 Zero Check 2 Deviation 1 Deviation 2 Driff/min 1 Driff/min 2 0.020086 0.020086 -0.020086 -0.020086 0.000669 Drift Actual measured Concentration -0.545667447 10.61 10.61 Т 15.75 15.75 Corrected concentration for drift

If the span or zero are higher than 2% of the spar value, it is necessary to correct result for zero and span drifts. The results shal be rejected if the drift in zero or span gas is higher than 5%

Calculation spreadsheet v.37

Page 22 of 41

Fitz Scientific 2140/M02 Yar: 2015 Visit no: 1

Uncertainty calculation for Gaseous Measurement Oxygen EN14789 V2.2 Jul-08 Limit value Measured concentration Calibration gas Full Scale 20.9 %vol 25 %vol %vol %vol 15.75 Performance characteristic Response time Value specification < 200 s 60 seconds Effect of drif
 Response time

 Logger sampling interval

 Measurement period

 Number of readings in measurement
 60 30 30 seconds minutes Assuming 1 minute co 0.00 % vol 0.00 % value ected over epeatability at zero 0 % by volume <0.2 % range Repeatability at span level Deviation from linearity Zero drift (during measurement period) Span drift (during measurement period) volume or pressure flow dependence atmospheric pressure dependence ambient temperature dependence <0.4 % range
 <0.4 % range
 <0.3 % volume
 <2% of volume / 24hr
 <2% volume/24hr
 <1% range
 <1.5 % range
 <0.3 % valume 10 K 0.1 % by volume stdev % vol % vol at zero level % vol at span level % of fs / 10l/h % of fs/kPa 0.13 0.000144161 0.000144161 range of variation from conditions at ca min max value at calib calib 10 l/h 100 kPa 285 K 0 % vol 0 mg/m3 0 mg/m3 110 V flow pressure temp CO2 range NO2 range NO2 range Voltage +- 5 l/h +- 2kPa 15 101 285 15 150 7.5 115 5 99.00 280 8 100 5 105 NO (mg/m3) 300 Continued interference Dependence on voltage Losses in the line (leak) Uncertainty of calibration gas -0.07 0.07 0.02 by volume /10K +- 15K 0.3% volume 10 K % by volume per % by volume per % range % by volume /10V % of value % of value by volume per 15 300 30 0.56 <2% range < 0.1%vol /10 volt < 2% of value +- 5% 0.1 0.5 Performance characteristic Standard deviation of repeatability at zero Standard deviation of repeatability at span level Lack of fit Value of uncertainty quantity Uncertainty % vol 0.02 0.08 uru urs ufit for mea 0.0 olume or pressure flow dependence tmospheric pressure dependence 0.00 0.04 -0.02 0.05 0.01 0.00 uspres uapres utemp mbient temperature dependence Use largest of sum of all po 0.06 all +ves 0 all -ves all negative influence Criteria sum <2% value 0.315044 ombined interference (from mcerts) 0.08 0.03 0.18 ence uncertainty lue to use for inter ependence on voltage sses in the line (leak) uvolt ncertainty of calibration gas ucalib easurement uncertainty combined uncertainty 6 of value coverage factor k = xpanded uncertainty %vol % 0.22 expressed with a level of confidence of 95% expressed with a level of confidence of 95% 2.79 % of value 0.44 % vol cpanded uncertainty ement for SRM is that Uncertaitny should be < 6% of value, on a dry gas basis

Calculation spreadsheet v.37

Page 23 of 41

	150	mg/m3 (corrected) S	o cai gas conc	186.2835	ing.in-o		00110011011101	reference co				
												Temper
leasured concentration		mg/m3	Full Scale		mg/m3			ref	3.00	0.00	101.30	273
leasured concentration	75.6	mg/m3 (Corrected)						measured	15.75	2.10	101.30	273
								Uncert	0.35	1.00	0.00	
							Factors		3.48	1.02	1.00	1
							Uncertainty in		0.24	0.01	0.00	(
							Correction Fa	ctor	3.55	IT	0.24	
Performance characteristic	Valu	16			specification	1	Effect of drift		I			
Response time		160	seconds		180.000		0.00	mg/m3	0			
Logger sampling interval		60	seconds				0.00	% value				
Measurement period		30	minutes									
Number of readings in measure	urement	30										
Repeatability at zero		0.25	% full scale		<1 % range							
Repeatability at span level		0.15	% full scale		<2 % range							
Deviation from linearity		0.7	% of value		<2 % range							
Zero drift		0.7	% full scale		<2% range / 24hr		ranges					
Span drift		-0.000181889	% full scale		<2% range/24hr		min	max	value at calib			
volume or pressure flow dep	endence	0.02	% of full scale/3 kPa		<2 % / 3 kPa	flow	0.3			/hr		
atmospheric pressure depen		0.02	% of full scale/2 kPa		<3% / 2 kPa	pressure	100.76	100.92	100.88			
ambient temperature depend		0.01	% full scale/10K		<3% range / 10 K	temp	287	288.5	287.5	(
N2O (mg/m3)	40	9.0	ma/m3		overange / To R	N2O range	0			ng/m3		
CO2 (% vol)	15	9.0	mg/m3			CO2 range	0			%vol		
CH4 (mg/m3)	57	9.0	ma/m3			CH4 range	0			na/m3		
H2O (% vol)	30	9.0	mg/m3			H2O range	0			%vol		
dependence on voltage		0.1	% full scale/10V		<2% range	Voltage	93		110			
losses in the line (leak)		1	% of value		< 0.1%vol /10 volt							
Uncertainty of calibration gas	3	1.07	% of value		< 2% of value			_				
Performance characteristic			Uncertainty	va	lue of uncertainty quar	ntity						
Standard deviation of repeat Standard deviation of repeat			ur0 urs		for mean for mean		use rep at span 0.03					
Lack of fit	ability at spart level		uis		tor mean		0.03					
Lack of IIL Drift			ulit u0dr				0.00					
volume or pressure flow dep	ndonco		uspres				0.00					
atmopsheric pressure depen			uapres				0.00					
ambient temperature depend			utemp				0.00					
N2O (mg/m3)		1	uinterf	1	1		0.00	Use largest	of sum of all po	sitive or a	Il negative	influer
CO2 (% vol)		1	uinterf	1	1		13.86		all +ves		Criteria	
CH4 (mg/m3)			uinterf	İ	t i		5.20		all -ves		sum <4% ra	nae
H2O (% vol)			uinterf	İ	t i		0.17		largest		0.434896	3-
Dependence on voltage			uvolt				0.00		for intereference	e uncertain		
losses in the line (leak)			uleak	İ	t i		0.44	uint	19.23		·	
Uncertainty of calibration gas	3	1	ucalib	1	1		0.47					
Uncertianty in factor			uf				17.90					
					-			-				
Measurement uncertainty			75.61	mg/m3								
Combined uncertainty		0	17.91	mg/m3								
Expanded uncertainty	k =	2	35.82	mg/m3	-							
	conds		127.21	mg/m3								
Uncertainty corrected to std		confidence of 95%		% ELV	1							
Uncertainty corrected to std (Expanded uncertainty	expressed with a level of a											
	expressed with a level of expressed with a level of		127.21	mg.m-3								
Expanded uncertainty		confidence of 95%		mg.m-3 % value								

168.2 % value Requirement in standard is for uncertainty to be < 10% at ELV at standard conditions

Calculation spreadsheet v.37

Fitz Scientific 2140/M02 Yar: 2015 Visit no: 1

Uncertainty calculation for Gaseous Measurement NOx $_{V2}$ $_{\rm Jul-08}$

Page 24 of 41

Wexford County Council Industrial Emissions Licence W0016-02

re, K

•••••		
Date / Time	NOx (ppm)	O2 (%)
06/08/2015 11:20	9.97	16.11
06/08/2015 11:20	10.57	15.97
06/08/2015 11:20	10.83	15.66
06/08/2015 11:20	12.00	15.33
06/08/2015 11:21	10.10	15.78
06/08/2015 11:21	9.40	16.46
06/08/2015 11:21	12.07	15.08
06/08/2015 11:21		16.01
	10.00	
06/08/2015 11:22	10.50	15.79
06/08/2015 11:22	9.70	16.18
06/08/2015 11:22	11.40	15.58
06/08/2015 11:22	10.60	15.81
06/08/2015 11:23	8.83	16.31
06/08/2015 11:23	9.83	16.13
06/08/2015 11:23	10.67	15.78
06/08/2015 11:23	11.13	15.48
06/08/2015 11:24		
	11.07	15.40
06/08/2015 11:24	10.57	15.82
06/08/2015 11:24	9.67	16.02
06/08/2015 11:24	10.60	15.83
06/08/2015 11:25	10.37	15.74
06/08/2015 11:25	9.83	15.98
06/08/2015 11:25	7.63	16.77
06/08/2015 11:25	10.13	16.08
06/08/2015 11:26	10.07	16.01
06/08/2015 11:26	9.90	15.93
06/08/2015 11:26	10.43	16.05
06/08/2015 11:26	9.73	16.11
06/08/2015 11:27	8.80	16.44
06/08/2015 11:27	10.13	16.17
06/08/2015 11:27	11.03	15.65
06/08/2015 11:27	10.43	15.84
06/08/2015 11:28	10.77	15.78
06/08/2015 11:28	9.43	16.24
06/08/2015 11:28	10.27	16.05
06/08/2015 11:28	9.73	16.12
06/08/2015 11:29	9.97	16.17
06/08/2015 11:29	10.47	15.88
06/08/2015 11:29	10.47	15.95
06/08/2015 11:29	11.13	15.63
06/08/2015 11:30	10.67	15.73
06/08/2015 11:30	10.57	16.08
06/08/2015 11:30	13.87	14.60
06/08/2015 11:30	13.30	14.58
06/08/2015 11:31	10.87	15.69
06/08/2015 11:31	12.47	15.12
06/08/2015 11:31	13.27	14.71
06/08/2015 11:31	11.60	15.36
06/08/2015 11:32	13.93	14.56
06/08/2015 11:32	13.77	14.69
06/08/2015 11:32	12.37	15.06
06/08/2015 11:32	12.57	15.49
06/08/2015 11:33	10.60	15.79
06/08/2015 11:33	10.97	15.73
06/08/2015 11:33	10.33	15.99
06/08/2015 11:33	11.33	15.56
06/08/2015 11:34	11.33	15.35
06/08/2015 11:34	10.57	15.92
06/08/2015 11:34	11.20	15.65
06/08/2015 11:34	10.10	16.09
06/08/2015 11:35	11.43	15.34
06/08/2015 11:35	9.83	16.15
06/08/2015 11:35	10.67	15.97
06/08/2015 11:35	11.50	15.36
06/08/2015 11:36	10.37	15.91

Date / Time NOx (ppm) O2 (%) 06/08/2015 11:36 13.50 14.83 06/08/2015 11:36 14.30 14.03 06/08/2015 11:37 11.67 15.13 06/08/2015 11:37 11.67 15.36 06/08/2015 11:37 11.10 15.42 06/08/2015 11:38 11.17 15.65 06/08/2015 11:38 11.93 15.02 06/08/2015 11:38 11.00 15.59 06/08/2015 11:38 11.00 15.59 06/08/2015 11:39 12.00 15.35 06/08/2015 11:39 11.80 15.06 06/08/2015 11:39 10.03 15.94 06/08/2015 11:40 9.27 16.38 06/08/2015 11:40 9.57 16.38 06/08/2015 11:41 12.17 15.04 06/08/2015 11:41 9.57 16.38 06/08/2015 11:41 9.57 16.38 06/08/2015 11:41 9.57 15.35 06/08/2015 11:42 10.00 15.91 06/08/2015 11:41 9.57			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		NOx (ppm)	O2 (%)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:36	13.50	14.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
06/08/2015 11:37 9.80 15.95 06/08/2015 11:37 12.00 15.36 06/08/2015 11:37 11.10 15.42 06/08/2015 11:38 11.17 15.65 06/08/2015 11:38 11.93 15.02 06/08/2015 11:38 11.00 15.35 06/08/2015 11:39 12.00 15.35 06/08/2015 11:39 9.40 16.21 06/08/2015 11:39 9.40 16.21 06/08/2015 11:39 9.40 16.21 06/08/2015 11:40 9.20 16.28 06/08/2015 11:40 9.57 16.38 06/08/2015 11:40 9.57 16.38 06/08/2015 11:41 9.57 15.97 06/08/2015 11:41 9.60 16.22 06/08/2015 11:41 9.57 15.97 06/08/2015 11:42 9.60 16.22 06/08/2015 11:42 9.60 16.22 06/08/2015 11:42 10.33 15.64 06/08/2015 11:42 10.33 15.64 06/08/2015 11:43 10.27 <t< td=""><td>06/08/2015 11:36</td><td>14.30</td><td>14.03</td></t<>	06/08/2015 11:36	14.30	14.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:37	11.67	15.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:37	9.80	15.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:37	12.00	15.36
06/08/2015 11:38 11.70 15.28 06/08/2015 11:38 11.93 15.02 06/08/2015 11:39 12.00 15.35 06/08/2015 11:39 11.80 15.06 06/08/2015 11:39 11.80 15.06 06/08/2015 11:39 9.40 16.21 06/08/2015 11:40 9.20 16.28 06/08/2015 11:40 9.57 16.38 06/08/2015 11:40 9.57 16.38 06/08/2015 11:40 12.00 15.35 06/08/2015 11:41 12.17 15.04 06/08/2015 11:41 12.17 15.04 06/08/2015 11:41 9.57 16.38 06/08/2015 11:41 10.03 15.84 06/08/2015 11:42 10.33 15.84 06/08/2015 11:42 10.33 15.64 06/08/2015 11:42 10.33 15.64 06/08/2015 11:43 10.20 15.84 06/08/2015 11:43 10.20 15.84 06/08/2015 11:43 10.77 15.67 06/08/2015 11:43 10.77	06/08/2015 11:37	11.10	15.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:38	11.17	15.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:38	11.70	15.28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:38	11.93	15.02
06/08/201511:3911.8015.0606/08/201511:399.4016.2106/08/201511:409.2016.2806/08/201511:409.8016.1306/08/201511:409.5716.3806/08/201511:4112.0015.3506/08/201511:4112.1715.0406/08/201511:4110.0315.8406/08/201511:419.5715.9706/08/201511:419.5715.9706/08/201511:429.6016.2206/08/201511:4210.0015.9106/08/201511:4210.3315.6406/08/201511:4210.3315.6406/08/201511:4310.2015.8406/08/201511:4310.2015.8406/08/201511:4310.2015.8406/08/201511:437.0717.2706/08/201511:437.0717.2706/08/201511:4410.7715.6706/08/201511:449.1716.2306/08/201511:449.1716.2306/08/201511:4510.3315.9906/08/201511:4510.3315.9906/08/201511:459.5016.1406/08/201511:459.5016.1406/08/201511:459.5016.1406/08/201511:469.7316.0706/08/201511:4711.2715.2406/08/2015	06/08/2015 11:38	11.00	15.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:39	12.00	15.35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:39	11.80	15.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:39	9.40	16.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:39	10.03	15.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:40	9.20	16.28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06/08/2015 11:40	9.80	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
06/08/2015 11:469.1716.4006/08/2015 11:469.7316.0706/08/2015 11:4610.3715.8006/08/2015 11:469.9016.1206/08/2015 11:479.5016.0506/08/2015 11:4711.8715.2406/08/2015 11:4711.2715.2106/08/2015 11:4710.4715.5406/08/2015 11:4710.4715.5406/08/2015 11:4811.0715.4506/08/2015 11:488.9316.1106/08/2015 11:4810.5015.8806/08/2015 11:4810.7715.6006/08/2015 11:4910.2015.5606/08/2015 11:4910.2015.5606/08/2015 11:498.8316.3906/08/2015 11:499.3316.08			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
06/08/2015 11:469.9016.1206/08/2015 11:479.5016.0506/08/2015 11:4711.8715.2406/08/2015 11:4711.2715.2106/08/2015 11:4710.4715.5406/08/2015 11:4811.0715.4506/08/2015 11:4811.0715.4506/08/2015 11:4810.5015.8806/08/2015 11:4810.5015.8806/08/2015 11:4910.7715.6006/08/2015 11:4910.2015.5606/08/2015 11:498.8316.3906/08/2015 11:499.3316.08			
06/08/2015 11:479.5016.0506/08/2015 11:4711.8715.2406/08/2015 11:4711.2715.2106/08/2015 11:4710.4715.5406/08/2015 11:4811.0715.4506/08/2015 11:4810.5015.8806/08/2015 11:4810.5015.8806/08/2015 11:4910.7715.6006/08/2015 11:4910.2015.5606/08/2015 11:4910.2015.5606/08/2015 11:498.8316.3906/08/2015 11:499.3316.08			
06/08/201511:4711.8715.2406/08/201511:4711.2715.2106/08/201511:4710.4715.5406/08/201511:4811.0715.4506/08/201511:488.9316.1106/08/201511:4810.5015.8806/08/201511:488.6716.5006/08/201511:4910.7715.6006/08/201511:4910.2015.5606/08/201511:498.8316.3906/08/201511:499.3316.08			
06/08/2015 11:4711.2715.2106/08/2015 11:4710.4715.5406/08/2015 11:4811.0715.4506/08/2015 11:488.9316.1106/08/2015 11:4810.5015.8806/08/2015 11:488.6716.5006/08/2015 11:4910.7715.6006/08/2015 11:4910.2015.5606/08/2015 11:498.8316.3906/08/2015 11:499.3316.08			
06/08/201511:4710.4715.5406/08/201511:4811.0715.4506/08/201511:488.9316.1106/08/201511:4810.5015.8806/08/201511:488.6716.5006/08/201511:4910.7715.6006/08/201511:4910.2015.5606/08/201511:498.8316.3906/08/201511:499.3316.08			
06/08/2015 11:4811.0715.4506/08/2015 11:488.9316.1106/08/2015 11:4810.5015.8806/08/2015 11:488.6716.5006/08/2015 11:4910.7715.6006/08/2015 11:4910.2015.5606/08/2015 11:498.8316.3906/08/2015 11:499.3316.08			
06/08/201511:488.9316.1106/08/201511:4810.5015.8806/08/201511:488.6716.5006/08/201511:4910.7715.6006/08/201511:4910.2015.5606/08/201511:498.8316.3906/08/201511:499.3316.08			
06/08/2015 11:4810.5015.8806/08/2015 11:488.6716.5006/08/2015 11:4910.7715.6006/08/2015 11:4910.2015.5606/08/2015 11:498.8316.3906/08/2015 11:499.3316.08			
06/08/2015 11:488.6716.5006/08/2015 11:4910.7715.6006/08/2015 11:4910.2015.5606/08/2015 11:498.8316.3906/08/2015 11:499.3316.08			
06/08/2015 11:4910.7715.6006/08/2015 11:4910.2015.5606/08/2015 11:498.8316.3906/08/2015 11:499.3316.08			
06/08/2015 11:4910.2015.5606/08/2015 11:498.8316.3906/08/2015 11:499.3316.08			
06/08/2015 11:498.8316.3906/08/2015 11:499.3316.08			
06/08/2015 11:49 9.33 16.08			
Average 10.61 15.75			
	Average	10.61	15.75

Wexford County Council Industrial Emissions Licence W0016-02

TVOC by FID Calculations (Con						BS EN 12619:2013	
Company	Wexford County Council	C.1.			Date of Test	06/08/2015	
Site	Holmestown Landfill, Castlebridge, Killurin, Co. Wexford.		scientific		Reference No	M02	
Plant Identification	Flare Killurin		10 No. 11		Operator Id MM		
Test carried out by	Victor Olmos	Monitoring and Ter	ting Services		TE's	TE1, TE2, TE3, TE4	
Report Number:	2140/M02						
Zero Gas Concentration:		0	ppm				
Span Gas Concentration:		90.01	ppm				
Calibration records:				7			
Zero Gas Results:	Zero Gas Results:	Span Gas Result	t				
Before	After	Before	After				
-0.04	-0.34	87.9	87.9				
Readings:	Concentration						
	ppm	1					
1	3.22]					
		_		Span expected Value		90.01	
Sample Time	30			Span reading before measurement		87.9	
Average Conc	3.22			Span reading after measurement		87.9	
		-		Sampling time		30	
IVOC Results	TVOC			Zero expected result		0.00	
TVOC @ STP,	5.17	mgC/M3		Zero reading before		-0.04	
TVOC @ STP, Dry	5.28	mgC/M3		Zero reading after		-0.34	
TVOC @ STP, Ref Oxygen, Dry	18.37	mgC/M3					
Uncertainty	11.67	mgC/M3		Span adjustment		1.024	
Mass Emission (STP,dry, refO2)	0.00	mg/hr		Span Check		1.020	
Mass Emission (STP, dry, refO2)	0.00	Kg/hr		Deviation		-0.003	
				Drift/Min		-0.000115995	
	Reference	Measured		Zero adjustment		-0.040941551	
Oxygen (%)	3.00	15.8	1	Zero check		-0.346820036	
Moisture (%)	0	2.1	1	Deviation		0.305878485	
			_	Drift/min		0.01019595	
Volumetric Flow rate	0.0	m3/hr		Drift		-0.01	
			_	Actual measured Concentration		3.22	
				Corrected concentration for drift		3.22	

Fitz Scientific 2140/M02 Yar: 2015 Visit no: 1

Page 27 of 41

Uncertainty calculation TV	00		
Limit value	10 mg/m3 (corrected)Cal gas conc	144.6589 mg.m-3	Correction for

Limit value	10 mg/m3 (corrected)Cal gas conc 144.6589 mg.m-3				Correction for reference conditions							
									O2, %	Moisture, %		Temperature, K
Measured concentration		ppm	Full Scale		mg/m3			ref		3.00 0.0		273.0
Measured concentration	18.4	mg/m3 (Corrected	d)			l		measured		15.75 2.1		273.0
								Uncert		0.13 1.0		1.0
							Factors			3.48 1.0		1.00
							Uncertainty in fa			0.09 0.0		0.0
							Correction Facto	r		3.55 uf	0.09	
Performance characteristics	Value				specification		Effect of drift					
Response time		160	seconds		180.000			mg/m3				
Logger sampling interval		60	seconds				0.06	% value				
Measurement period		30	minutes									
Number of readings in measurement	nt	30										
Repeatability at zero		0.25	% full scale		<1 % range							
Repeatability at span level		0.15	% full scale		<2 % range							
Deviation from linearity		0.7	% of value		<2 % range							
Zero drift		0.01019595	% full scale		<2% range / 24	ır	ranges					
Span drift		-0.000115995	% full scale		<2% range/24h		min	max	value at calib			
volume or pressure flow dependence	æ	0	% of full scale/3 k	Pa	<2 % / 3 kPa	flow	0.3			0.4 l/hr		
atmospheric pressure dependence		0	% of full scale/2 k		<3% / 2 kPa	pressure	100.76	100.9		00.88 kPa		
ambient temperature dependence		0	% full scale/10K		<3% range / 10		287			287.5 K		
N2O (mg/m3)	40	9.0	mg/m3			N2O range			0	0 mg/m3		
CO2 (% vol)	15	9.0	mg/m3			CO2 range	0	4	0	0 %vol		
CH4 (mg/m3)	57	9.0	mg/m3			CH4 range	0	5	7	0 mg/m3		
H2O (% vol)	30	9.0	mg/m3			H2O range	e 0		1	0 %vol		
dependence on voltage		0.1	% full scale/10V		<2% range	Voltage	93	12	1	110 V		
losses in the line (leak)		1	% of value		< 0.1%vol /10 v	olt						
Uncertainty of calibration gas		1.07	% of value		< 2% of value							
Performance characteristic			Uncertainty	Value	of uncertainty o	uantity						
Standard deviation of repeatability a			ur0		for mean		use rep at span					
Standard deviation of repeatability a	at span level		urs		for mean		0.03					
Lack of fit			ufit				0.00					
Drift			u0dr				0.01					
volume or pressure flow dependence	2e		uspres				0.00					
atmopsheric pressure dependence			uapres				0.00					
ambient temperature dependence			utemp				0.00					
N2O (mg/m3)			uinterf				0.00	Use largest of sum of		all negative influence		
CO2 (% vol)			uinterf				13.86		3 all +ves		Criteria	
CH4 (mg/m3)			uinterf	1			5.20		0 all -ves		sum <4% range	
H2O (% vol)			uinterf				0.17		3 largest		0.06436	
Dependence on voltage			uvolt				0.00	Value to use for interefe				
losses in the line (leak)			uleak	1			0.11	uint		19.23		
Uncertainty of calibration gas			ucalib				0.11	1				
Uncertianty in factor			uf	-	-		1.63]				
Measurement uncertainty			18.37	mg/m3								
Combined uncertainty		_	1.64	mg/m3								
Expanded uncertainty	k =	2	3.29	mg/m3								
Uncertainty corrected to std conds			11.67	mg/m3								
	expressed with a level of confidence of 95%			8 % ELV								
Expanded uncertainty	expressed with a level of confidence of 95%		11.6	7 mg.m-3								
			_		l							
Expanded uncertainty	expressed with a level of confidence of 95%		63.	5 % value								

Wexford County Council Industrial Emissions Licence W0016-02

Calculation spreadsheet v.37

Fitz Scientific 2140/M02 Yar: 2015 Visit no: 1

Page 28 of 41

		-
Date	Time	TVOC (ppm)
06/08/2015	13:02:13	5.00
06/08/2015	13:02:27	3.21
06/08/2015		1.35
06/08/2015		1.14
06/08/2015	13:03:12	4.55
06/08/2015	13:03:27	1.35
06/08/2015		0.97
06/08/2015	13:03:57	0.85
06/08/2015	13:04:12	0.81
06/08/2015	13:04:27	0.88
06/08/2015		1.07
06/08/2015		1.06
06/08/2015	13:05:13	0.80
06/08/2015	13:05:27	0.69
06/08/2015		0.65
06/08/2015		0.77
06/08/2015	13:06:12	0.44
06/08/2015	13:06:28	0.44
06/08/2015		0.73
06/08/2015	13:06:58	1.03
06/08/2015	13:07:12	0.80
06/08/2015	13:07:27	0.98
06/08/2015		0.76
06/08/2015	13:07:58	1.63
06/08/2015	13:08:13	1.93
06/08/2015	13:08:28	0.44
06/08/2015		0.63
06/08/2015		0.47
06/08/2015	13:09:13	0.53
06/08/2015	13:09:28	0.55
06/08/2015		0.74
06/08/2015		0.52
06/08/2015	13:10:13	0.55
06/08/2015	13:10:28	0.75
06/08/2015	13:10:43	0.76
06/08/2015		0.62
06/08/2015		0.64
06/08/2015	13:11:28	0.91
06/08/2015	13:11:43	0.63
06/08/2015	13:11:58	0.70
06/08/2015		0.69
06/08/2015	13:12:28	0.72
06/08/2015	13:12:43	0.63
06/08/2015		0.55
06/08/2015		0.61
06/08/2015	13:13:28	0.58
06/08/2015	13:13:43	0.60
06/08/2015	13:13:58	0.59
06/08/2015		56.50
06/08/2015	13:14:28	0.93
06/08/2015	13:14:43	4.36
06/08/2015	13:14:58	0.69
06/08/2015		0.56
06/08/2015	13:15:28	0.35
06/08/2015	13:15:43	0.69
06/08/2015		0.86
06/08/2015		0.77
06/08/2015		206.00
06/08/2015	13:16:43	0.82
06/08/2015	13:16:58	0.63
06/08/2015		0.38
06/08/2015		0.31
06/08/2015		0.80
06/08/2015	13:17:58	0.32
06/08/2015		0.57
00.00.2010	. 5. 15. 10	0.07

Date	Time	TVOC (ppm)
06/08/2015	13:18:28	0.56
06/08/2015 06/08/2015	13:18:43 13:18:58	0.57 0.51
06/08/2015	13:18:58	9.13
06/08/2015	13:19:13	0.38
06/08/2015	13:19:20	0.49
06/08/2015	13:19:58	0.38
06/08/2015	13:20:13	0.47
06/08/2015	13:20:28	0.56
06/08/2015	13:20:43	0.73
06/08/2015	13:20:58	0.58
06/08/2015	13:21:13	0.45
06/08/2015	13:21:28	0.44
06/08/2015	13:21:43	0.50
06/08/2015	13:21:58	0.60
06/08/2015	13:22:13	0.47
06/08/2015	13:22:28	0.57
06/08/2015	13:22:43	0.52
06/08/2015	13:22:58	0.79
06/08/2015	13:23:13	2.62
06/08/2015	13:23:28	1.01
06/08/2015	13:23:43	0.80
06/08/2015 06/08/2015	13:23:58 13:24:13	0.68 1.14
06/08/2015	13:24:13	0.57
06/08/2015	13:24:43	3.58
06/08/2015	13:24:58	23.45
06/08/2015	13:25:13	0.29
06/08/2015	13:25:28	0.46
06/08/2015	13:25:43	0.52
06/08/2015	13:25:58	0.23
06/08/2015	13:26:13	0.24
06/08/2015	13:26:28	0.12
06/08/2015	13:26:43	0.63
06/08/2015	13:26:58	0.46
06/08/2015	13:27:13	0.31
06/08/2015	13:27:28	0.40
06/08/2015	13:27:43	0.62
06/08/2015	13:27:58	0.27
06/08/2015	13:28:13	0.23
06/08/2015	13:28:28	0.17
06/08/2015	13:28:43	0.31
06/08/2015 06/08/2015	13:28:58 13:29:13	0.06 0.06
06/08/2015	13:29:13	0.00
06/08/2015	13:29:43	0.30
06/08/2015	13:29:58	0.37
06/08/2015	13:30:13	0.42
06/08/2015	13:30:28	0.44
06/08/2015	13:30:43	0.31
06/08/2015	13:30:58	0.57
06/08/2015	13:31:13	0.41
06/08/2015	13:31:28	0.38
06/08/2015	13:31:43	0.74
06/08/2015	13:31:58	0.28
	average	3.22

Wexford County Council Industrial Emissions Licence W0016-02

SO2				BS EN 14791:2005
Company:	Wexford County Council	F :4-	Date of test:	06/08/2015
Site:	Holmestown Landfill, Castlebridge, Kil		Reference No:	M02
Plant Identification	Flare Killurin	Monitoring and Testing Services	Operator Id	MM08 919
Test Carried out by:	Victor Olmos		TE's	TE1, TE2, TE3, TE4
Report Number:	2140/M02			

	Run					
Laboratory Results:	mgSO4/L	Cert Number:	Laboratory	Accredtation	Analytical Meth	Date of Analysis
LOD	0.029		Fitz Scientific	MCERTS	IC	14/08/2015
Impinger 1	0.521	4450/030/01	Fitz Scientific	MCERTS		
Impinger 2	0.174	4450/030/02	Fitz Scientific	MCERTS		
Line Wash			Fitz Scientific	MCERTS		
	Blank					
Impinger 1	0.196	4450/030/03	Fitz Scientific	MCERTS		
Impinger 2	0.184	4450/030/04	Fitz Scientific	MCERTS		
Line Wash			Fitz Scientific	MCERTS		
					-	
Run		Blank				
Sample Volumes						
ml	L	ml	L			
115.2	0.1152	122.3	0.1223			

Sample Volumes			
ml	L	ml	L
115.2	0.1152	122.3	0.1223
132.2	0.1322	127.4	0.1274
	0		0

Dry at Gas Meter: (Vg) Gas Meter Temperature: (tg) Ambient Pressure Measured:(Pa) Gas Volume STP (Vgn) Gas Volume Factor Correction: Corrected Volume STP

0.0872 m3 27 300 100.78 0.512 0.078944665 Nm3 0.8898 0.078930119 Nm3

	SO4 mg	mgSO2/m3 at STP,Dry	mgSO2/m3 at Reference Conditions	Uncertainty mgSO2/m3	kg/hr
LOD	0.01	0.1	0.2	n/a	3.31924E-06
Run	0.08	0.7	2.4	0.2	3.84091E-05
Blank	0.05	0.4	1.4	0.1	2.19348E-05

Г

77.5 %

к

Reference oxygen: Measured oxygen:

0.00 m3/hr

3.0 % 15.8 %

Absorption efficiency(Impinger 1 should absorb 95% of total sulphate): or result in second absorber should be <LOD

Low SO2 levels detected. Impinger efficiency NOT relevent

Page 31 of 41

Calculation spreadsheet v.37

Flow Rate at reference conditions

Wexford County Council Industrial Emissions Licence W0016-02

Calculation spreadsheet v.37

Page 32 of 41

Wexford County Council Industrial Emissions Licence W0016-02

Uncertainty calculation for EN 14791 Determination of mass concentration of sulphur dioxide, Reference method

Limit value (ELV)	0 mc	1.m-3 R	Reference oxygen	3	% by volume	1	<i>m</i> .		
Measured concer			rence conditions)		, by rolanic		$c = \frac{m}{V} f_c$		
		,	,			-			
Measured Quanti Symbol	Va	lue S	tandard uncertain	ty	Units		Uncertainty as pe	r Uncertainty at Iv	Requirement of st
Sampled Volume	Vm (0.078930119	uVm	0.001	m3		1.2	,	<=2%
Sampled gas Ten	Tm	273	uTm	2	k		2.00)	<2.5 k
Sampled gas Pre	ρm	101.3	upm		kPa		0.99)	<=1%
Sampled gas Hui		2.099219336	uHm		% by volume		47.64		<=1%
Oxygen content	O2,m	0	uO2,m	0.1	% by volume		#DIV/0!		<=5%
Concentration in	С	0.7	uC	0.02085	mg/l		3.00)	<5%
Impinger solution	VS	247.4	uVS	0.001	1		0.0)	<1%
Mass SO2	m	0.1	um	0.00	mg		3.00) #DIV/0!	<5% of limit value
Note - Sampled gas humidit	y, temperature	and pressure a	are values at the ga	as meter					
Leak	L	2			%		2.00)	<=2%
ntermediate calculations								1	
Factor for std cor	fs	0.98							
uncertainty comp	symbol en:	sitivity coeff	ι	u (in units of fs)					
	ρm	0.010		0.010					
	Hm	0.010		0.010		$f_s = \frac{(100 - H)}{100}$	$(m) 273 \rho_m$		
	Tm	0.004		0.007		J _x = 100	T_ 101.3		
	ufs			0.016			1.60)	
Corrected volum	V	0.08	uV	0.002	m3	$V = V_m f$, 2.00	5	
Factor for O2 coi	fc	0.86							
uncertainty comp		sitivity coeff	ι	1		$f_c = \frac{21 - 21}{21 - 21}$	O 2, ref		
	O2,m	0.04		0.004		J c = 21 -	0 2.0		
Factor for O2 Co	ufc	0.86		0.004			0.48	5	
								-	
Parameter		Value U	Jnits S	Sensitivity coeff	Uncertainty co	ntribution	Uncertainty as %		
Corrected Volume	V	0.08 n		31.55		5 mg.m-3	#VALUE!	%	
Mass	m	0.08 n	ng	29.37		' mg.m-3	#VALUE!	%	
Factor for O2 Corn	fc	0.86		2.85		mg.m-3	#VALUE!	%	
_eak	L	0.03 n	ng.m-3	1.00	0.03	8 mg.m-3	#VALUE!	%	
Combined uncertainty					0.09	mg.m-3			
Expanded uncertainty as per	centage of mea	asured value	7.69	% measured of	value		vith a level of confid verage factor k=2)	ence of 95%	
Expanded uncertainty in unit	s of measurem	ient	0.19 r	ng.m-3		(00g a cov	0.030 100101 K-2)		
Evended uncertainty as ass	continue of live	tualua E	#DIV/0!	% ELV					
Expanded uncertainty as per	centrye of limi	it value	#DIV/0!						

Calculation spreadsheet v.37

Page 33 of 41

Uncertainty calculation for EN 14791 Determination of mass concentration of sulphur dioxide, Reference method Blank

Limit value (ELV)	0 mg.	m-3 R	eference oxygen	3 % by v	olume	m c		
Measured concer	1.4 mg.		ence conditions)			$c = \frac{m}{V} f_c$		
Measured Quanti Symbol	Valu		tandard uncertainty	Units		Uncertainty as per	Uncertainty at Iv	Requirement of
Sampled Volume	Vm	0.1	uVm	0.001 m3		1.27		<=2%
Sampled gas Ten	Tm	273	uTm	2 k		2.00		<2.5 k
Sampled gas Pre	ρm	101.3	upm	1 kPa		0.99		<=1%
Sampled gas Hui		099219336	uHm	1 % by v		47.64		<=1%
Oxygen content	O2,m	15.75	uO2,m	0.1 % by v	olume	0.63		<=5%
Concentration in	С	0.4	uC	0.0114 mg/l		3.00		<5%
Impinger solution	VS	249.7	uVS	0.001 I		0.00		<1%
Mass SO2	m	0.0	um	0.00 mg		3.00	#DIV/0!	<5% of limit value
Note - Sampled gas humidit	y, temperature a	nd pressure a	are values at the gas i	meter				
Leak	L	2		%		2.00		<=2%
Intermediate calculations								
Factor for std cor	fs	0.98						
uncertainty comp	symbol ensi		u (i	n units of fs)				
	ρm	0.010		0.010				
	Hm	0.010		0.010	$f = \frac{(100 - E)}{100}$	I_{m}) 273 ρ_{m}		
	Tm	0.004		0.007	$J_{s} = \frac{100}{100}$	$\frac{I_m}{T_m} \frac{273}{T_m} \frac{\rho_m}{101.3}$		
	ufs			0.016		1.60		
Corrected volum	V	0.08	uV	0.002 m3	$V = V_m f$, 2.06		
Factor for O2 coi	fc	3.48						
uncertainty comp	symbol ensi		u		$f_c = \frac{21}{21} - \frac{1}{21}$	0 2,nf		
	O2,m	0.68		0.068	^J ^c 21 -			
Factor for O2 Co	ufc	3.48		0.068		1.94		
Parameter		Value U	nits Ser	sitivity coeff Uncer	ainty contribution	Uncertainty as %		_
Corrected Volume	V	0.08 m		18.02	0.03 mg.m-3		%	
Mass	m	0.05 m		29.37	0.04 mg.m-3		%	
Factor for O2 Corr	fc	3.48	.9	0.40	0.03 mg.m-3		%	
Leak	L	0.02 m	na m-3	1.00	0.02 mg.m-3		%	
_oun	-	0.02 11	ig.iii-o	1.00	0.02 mg.m=5	#VALUE!	/0	
Combined uncertainty					0.06 mg.m-3			
Expanded uncertainty as per	centage of meas	ured value	8.56 % I	measured of value	expressed v	vith a level of confide	nce of 95%	
					(Using a cov	/erage factor k=2)		
Expanded uncertainty in unit	ts of measureme	nt	0.12 mg.	.m-3				
			•					

Calculation spreadsheet v.37

Page 34 of 41

Wexford County Council Industrial Emissions Licence W0016-02

Wexford County Council Industrial Emissions Licence W0016-02

HCI				BS EN 1911:2010
Company	Wexford County Council	F :4-	Date of Test	06/08/2015
Site	Holmestown Landfill, Castlebridge, I		Reference No	M02
Plant Identification	Flare Killurin	Monitoring and Testing Services	Operator Id	MM08 919
Test carried out by	Victor Olmos		TE's	TE1, TE2, TE3, TE4
Report Number :	2140/M02			

	Run					
Laboratory Result	smgHCl/L	Cert Number:	Laboratory	Accredtation	Analytical Method	Date of Analysis
LOD	0.069		Fitz Scientific	MCERTS	IC	14/08/2015
Impinger 1	0.096	4450/030/05	Fitz Scientific	MCERTS		
Impinger 2	0.069	4450/030/06	Fitz Scientific	MCERTS		
Line Wash			Fitz Scientific	MCERTS		
	Blank					
Impinger 1	0.069	4450/030/07	Fitz Scientific	MCERTS		
Impinger 2	0.069	4450/030/08	Fitz Scientific	MCERTS		
Line Wash			Fitz Scientific	MCERTS		
Run		Blank				
Sample Volumes						
ml	L	ml	L			
151.5	0.1515	125.0	0.125			
155.3	0.1553	105.6	0.1056]		
	0		0	1		

Sampled Volume corrected to reference conditions 0.078930119 Nm3 STP, Dry

				mgHCl/m3 at			
			mgCl/m3 at	Refernce	Uncertainty		Uncertainty HCI
	HCI mg	mgHCl/m3 at STP,Dry	STP	Conditions	mgHCl/mg	HCI kg/hr	kg/hr
LOD	0.02	0.3	0.3	0.9	n/a	0	n/a
Run	0.03	0.3	0.3	1.1	0.1	0	1.50557E-06
Blank	0.02	0.2	0.2	0.7	0.1	0	9.50477E-07

Reference oxygen:	3.0 %
Measured oxygen:	15.8 %
at reference conditions	0.00 m3/hr

Flow Rate at reference conditions

Absorption efficiency(Impinger 1 should absorb 95% of total HCI): or result in second absorber should be <LOD

Low HCI levels detected. Impinger efficiency NOT relevent

Calculation spreadsheet v.37

Page 35 of 41

Wexford County Council Industrial Emissions Licence W0016-02

Uncertainty calculation for Determination of mass concentration of HCI, Reference method (taken from SO2 uncertainty STA website)

v2								
Run						Measurement Equation	n	
Limit value (ELV)	50	mg.m-3	Reference oxygen	3.0	% by volume			
Measured concen	1.1	mg.m-3 (at refere	ence conditions)					
Measured Quantit Symb		Value	Standard uncertainty		Units	Uncertainty as pe Un		
Sampled Volume	Vm	0.078930119	uVm	0.001	m3	1.27		<=2%
Sampled gas Ten	Tm	273	uTm		k	2.00		<2.5 k
Sampled gas Pres	ρm	101.3	upm	1	kPa	0.99		<=1%
Sampled gas Hur	Hm	2.099219336	uHm	1	% by volume	47.64		<=1%
Oxygen content	O2,m	15.8	uO2,m	0.1	% by volume	0.63		<=5%
Concentration in	С	0.1650	uC	0.00495	mg/l	3.00		<5%
Impinger solution	VS	0.3068	uVS	0.001	1	0.33		<1%
Mass HCl	m	0.0	um	0.00	mg	3.02	0.07	<5% of limit value
Note - Sampled gas hu	midity, temp	erature and press	ure are values at the ga	s mete				
Leak	L	2			%	2.00		<=2%
Intermediate calculatio	ns							
Factor for std con	fs	0.98						
uncertainty comp	symbol	sensitivity coeff	F	u (in units of f	5)			
	ρm	0.010		0.010				
	Hm	0.010		0.010				
	Tm	0.004		0.007				
	ufs			0.016		1.60		
Corrected volume	V	0.08	uV	0.002	m3	2.06		
Factor for O2 cor	fc	3.48						
uncertainty comp	symbol	sensitivity coeff	F	u				
. 1	Ó2,m	0.68		0.068				
Factor for O2 Co	ufc	3.48		0.068		1.94		

Parameter		Value Units	Sensitivity coe Uncert	ainty contribution	Uncertainty as %			
Corrected Volume	V	0.08 m3	14.40	0.02 mg.m-3	#DIV/0! %			
Mass	m	0.03 mg	44.05	0.03 mg.m-3	#DIV/0! %			
Factor for O2 Corre	fc	3.48	0.32	0.02 mg.m-3	#DIV/0! %			
Leak	L	0.01 mg.m-3	1.00	0.01 mg.m-3	#DIV/0! %			
Expanded uncertainty as p	ercentage of m	easured val 8.59	% measured of value	expressed wit	h a level of confidence of 95%			
Expanded uncertainty as percentage of measured val 8.59 % measured of value expressed with a level of confidence of 95% (Using a coverage factor k=2) Expanded uncertainty in units of measurement 0.10 mg.m-3								
Expanded uncertainty as p	ercentqge of lir	nit value 0.2	% ELV					

Requirement in standard is for uncertainty to be < 20% at ELV at standard conditions

Calculation spreadsheet v.37

Page 36 of 41

Wexford County Council Industrial Emissions Licence W0016-02

Uncertainty calculation for Determination of mass concentration of HCl, Reference method (taken from SO2 uncertainty STA website) Blank

Limit value (ELV)	5	mg.m-3	Reference oxygen	3.0	% by volume			
Measured concen	0.7	mg.m-3 (at refere	ence conditions)					
Measured Quantit Symb		Value	Standard uncertainty		Units		Incertainty a	t Iv Requirement of std
Sampled Volume	Vm	0.078930119				1.27		<=2%
Sampled gas Ten	Tm	273		-	k	2.00		<2.5 k
Sampled gas Pres	ρm	101.3			kPa	0.99		<=1%
Sampled gas Hun	Hm	2.099219336			% by volume	47.64		<=1%
Oxygen content	O2,m	15.75222219	uO2,m		% by volume	0.63		<=5%
Concentration in	С	0.1380	uC	0.00414	mg/l	3.00		<5%
Impinger solution	VS	0.2	uVS	0.001	I	0.43		<1%
Mass NH3	m	0.0		0.00	mg	3.03	0.42	<5% of limit value
Note - Sampled gas hur	nidity, temp	erature and press	ure are values at the ga	s mete				
Leak	L	2			%	2.00		<=2%
Intermediate calculation								
Factor for std con	fs	0.98						
uncertainty comp	symbol			u (in units of f	5)			
	ρm	0.010		0.010				
	Hm	0.010		0.010				
	Tm	0.004		0.007				
	ufs			0.016		1.60		
Corrected volume	V	0.08	uV	0.002	m3	2.06		
Factor for O2 cor	fc	3.48						
uncertainty comp	symbol	sensitivity coeff		u				
	O2,m	0.68		0.068				
Factor for O2 Co	ufc	3.48		0.068		1.94		

Parameter		Value Units	Sensitivity coe Uncer	rtainty contribution	Uncertainty as %
Corrected Volume	V	0.08 m3	9.07	0.01 mg.m-3	#DIV/0! %
Mass	m	0.02 mg	44.05	0.02 mg.m-3	#DIV/0! %
Factor for O2 Corre	fc	3.48	0.20	0.01 mg.m-3	#DIV/0! %
Leak	L	0.01 mg.m-3	1.00	0.01 mg.m-3	#DIV/0! %
Combined uncertainty				0.03 mg.m-3	
Expanded uncertainty as	percentage of n	neasured val 8.61	% measured of value	e de la construcción de la construcción de la construcción de la construcción de la construcción de la constru	th a level of confidence of 95% grage factor k=2)
Expanded uncertainty in	units of measur	ement 0.06	mg.m-3	(11)	,
Expanded uncertainty as	percentqge of li	mit value 1.2	% ELV		

Calculation spreadsheet v.37

Page 37 of 41

HF BS ISO 15713:2006 Company Wexford County Council Date of Test 06/08/2015 Site Holmestown Landfill, Castlebridge, I Fitz Scientific Reference No M02 Plant identification Flare Killurin Menitoring and Testing Services Operator Id MM08 919 Test carried out by Victor Olmos Menitoring and Testing Services TE's TE1, TE2, TE3, TE4 Report Number : 2140/M02 2140/M02 TE's TE1, TE2, TE3, TE4

	Run					
Laboratory Results	mgHF/L	Cert Number:	Laboratory	Accredtation	Analytical Method	Date of Analysis
LOD	0.004		Fitz Scientific	MCERTS	IC	14/08/2015
Impinger 1	0.2540	4450/030/09	Fitz Scientific	MCERTS		
Impinger 2	0.0070	4450/030/10	Fitz Scientific	MCERTS		
Line Wash			Fitz Scientific	MCERTS		
	Blank					
Impinger 1	0.0050	4450/030/11	Fitz Scientific	MCERTS		
Impinger 2	0.0040	4450/030/12	Fitz Scientific	MCERTS		
Line Wash			Fitz Scientific	MCERTS		
Run		Blank				
Sample Volumes						
ml	L	ml	L			
107.2	0.1072	130.5	0.1305	1		
99.3	0.0993	106.4	0.1064	1		
	0		0	1		

Dry at Gas Meter: (Vg)
Gas Meter Temperature: (tg)
Ambient Pressure Measured:(Pa)
Gas Volume STP (Vgn)
Gas Volume Factor Correction:
Corrected Volume STP

0.0868 m3 27.83 300.83 100.78 0.512 0.078365722 Nm3 0.9898 0.078930119 Nm3

			mgF/m3 at	mgHF/m3 at Refernce	Uncertainty		Uncertainty HF
	HF mg	mgHF/m3 at STP,Dry	STP	Conditions	mgHF/mg	HF kg/hr	kg/hr
LOD	0.0	0.01	0.01	0.04	n/a	5.73208E-07	n/a
Run	0.0	0.35	0.34	1.23	0.106	1.9378E-05	1.67014E-06
Blank	0.0	0.01	0.01	0.05	0.004	7.48155E-07	6.43838E-08

к

Reference oxygen:	3.0 %
Measured oxygen:	15.8 %
Flow Rate at reference conditions	0.00 m3/hr

Г

Absorption efficiency(Impinger 1 should absorb 95% of total HF): or result in second absorber should be <LOD

Page 38 of 41

97.1 %

Calculation spreadsheet v.37

Wexford County Council Industrial Emissions Licence W0016-02

Wexford County Council Industrial Emissions Licence W0016-02

Calculation spreadsheet v.37

Page 39 of 41

Wexford County Council Industrial Emissions Licence W0016-02

Uncertainty calculation for Determination of mass concentration of HF, Reference method (taken from SO2 uncertainty STA website)

v2									
Run						-	Measurement Equation	n	
imit value (ELV)		mg.m-3	Reference oxygen	3.0	% by volume				
Measured concen	1.2	mg.m-3 (at refere	ence conditions)						
Measured Quantit Symbol		Value	Standard uncertainty		Units			certainty a	t Iv Requirement of st
Sampled Volume	Vm	0.078930119		0.001			1.27		<=2%
Sampled gas Tem	Tm	273		2	k		2.00		<2.5 k
Sampled gas Pres	ρm	101.3	upm	1	kPa		0.99		<=1%
Sampled gas Hun	Hm	2.099219336			% by volume		47.64		<=1%
Oxygen content	O2,m	15.8			% by volume	1	0.63		<=5%
Concentration in	С	0.2610	uC	0.00783	mg/l		3.00		<5%
Impinger solution	VS	0.2065	uVS	0.001			0.48		<1%
Mass HCl	m	0.0	um	0.00	mg		3.04	0.75	<5% of limit value
Note - Sampled gas humic	lity, temper	rature and pressu	re are values at the gas r	nete		1			
Leak	Ĺ	2			%		2.00		<=2%
Intermediate calculations									
Factor for std con	fs	0.98							
uncertainty comp	symbol	sensitivity coeff	f i	u (in units of fs)				
	ρm	0.010		0.010					
	Ĥm	0.010		0.010					
	Tm	0.004		0.007					
	ufs			0.016			1.60		
Corrected volume	V	0.08	uV	0.002	m3		2.06		
Factor for O2 cor	fc	3.48							
uncertainty comp		sensitivity coef		u					
incertainty comp	O2,m	0.68		0.068					
Factor for O2 Cor	ufc	3.48		0.068			1.94		
10101 02 001	uic	5.40		0.000			1.34		

Parameter	١	/alue Units	Sensitivity coe Uncerta	ainty contribution	Uncertainty as %
Corrected Volume	V	0.08 m3	15.92	0.03 mg.m-3	#DIV/0! %
Mass	m	0.03 mg	44.05	0.04 mg.m-3	#DIV/0! %
Factor for O2 Corre	fc	3.48	0.35	0.02 mg.m-3	#DIV/0! %
Leak	L	0.01 mg.m-3	1.00	0.01 mg.m-3	#DIV/0! %
Combined uncertainty				0.05 mg.m-3	
Expanded uncertainty as	percentage of me	asured valu 8.62	% measured of value	expressed with (Using a cover	a level of confidence of 95%
Expanded uncertainty in	units of measuren	nent 0.11	mg.m-3	(Using a cover	age factor K-2)

Requirement in standard is for uncertainty to be < 20% at ELV at standard conditions

Calculation spreadsheet v.37

Page 40 of 41

Wexford County Council Industrial Emissions Licence W0016-02

Uncertainty calculation for Determination of mass concentration of HF, Reference method (taken from SO2 uncertainty STA website) Blank

Limit value (ELV) Measured concen		mg.m-3 mg.m-3 (at refer	Reference oxygen ence conditions)	3.0 % by volun	ie		
Measured Quantit Symbol	,	Value	Standard uncertainty	Units	Uncertainty as pe	Uncertainty a	at Iv Requirement of sto
Sampled Volume	Vm	0.078930119	uVm	0.001 m3	1.27		<=2%
Sampled gas Tem	Tm	273		<mark>2</mark> k	2.00		<2.5 k
Sampled gas Pres	ρm	101.3	upm	1 kPa	0.99		<=1%
Sampled gas Hun	Hm	2.099219336		1 % by volum			<=1%
Oxygen content	O2,m	15.75222219	uO2,m	0.1 % by volum	le 0.63		<=5%
Concentration in	С	0.0040	uC	0.00012 mg/l	3.00		<5%
Impinger solution	VS	0.2	uVS	0.001	0.42		<1%
Mass NH3	m	0.0	um	0.00 mg	3.03	0.29	<5% of limit value
Note - Sampled gas humid	ity, tempe	rature and pressu	ire are values at the gas m	ete			
Leak	L	2		%	2.00		<=2%
Intermediate calculations Factor for std con	fs	0.98					
uncertainty comp		sensitivity coef		(in units of fs)			
uncertainty comp	ρm	0.010		0.010			
	Hm	0.010		0.010			
	Tm	0.004		0.007			
	ufs	0.004		0.016	1.60		
Corrected volume	V	0.08	uV	0.002 m3	2.06		
Factor for O2 con	fc	3.48					
uncertainty comp	symbol	sensitivity coef	f u				
incertainty comp							
incertainty comp	Ó2,m	0.68		0.068			

Parameter	1	/alue Units	Sensitivity coe Uncerta	ainty contribution	Uncertainty as %						
Corrected Volume	V	0.08 m3	0.61	0.00 mg.m-3	#DIV/0! %						
Mass	m	0.00 mg	44.05	0.00 mg.m-3	#DIV/0! %						
Factor for O2 Corre	fc	3.48	0.01	0.00 mg.m-3	#DIV/0! %						
Leak	L	0.00 mg.m-3	1.00	0.00 mg.m-3	#DIV/0! %						
Combined uncertainty				0.00 mg.m-3							
Expanded uncertainty as	Expanded uncertainty as percentage of measured vala 8.61 % measured of value expressed with a level of confidence of 95% (Using a coverage factor k=2)										
Expanded uncertainty in u	units of measurem	nent 0.00	mg.m-3	(comg a coron	.go idoloi k 2)						
Expanded uncertainty as	percentqge of limi	it value 0.8	% ELV								

Calculation spreadsheet v.37

Page 41 of 41

Appendix A5

Water Balance Calculation for Killurin Landfill 2015

Month	Rainfall	Evaporation	Effective Rainfall	Capped Area (above road)	Capped Area (Below road)	Capped Area (Haul Road)	Additional runoff to haul road (effective area)	Capped Infiltration	Infiltration through incident rain on haul road	Infiltration from runoff to haul road	Total Leachate Production	Cumulative Leachate Production	Leachate Tankered Offsite
	(mm)	(mm)	(mm)	(m ²)	(m²)	(m²)	(m ²)	(m ³)	(m ³)	(m ³)	(m ³)	(m ³)	(m ³)
Jan-15	77.7	14.5	63.2	39,282	15,340	6,600	39,282	172.6	41.7	74.5	288.8	288.8	465.0
Feb-15	47.2	17.6	29.6	39,282	15,340	6,600	39,282	80.8	19.5	34.9	135.3	424.1	263.5
Mar-15	61.8	35.4	26.4	39,282	15,340	6,600	39,282	72.1	17.4	31.1	120.6	544.7	387.0
Apr-15	21.9	55.3	0	39,282	15,340	6,600	39,282	-	-	-	-	544.7	279.0
May-15	145	66.7	78.3	39,282	15,340	6,600	39,282	213.8	51.7	92.3	357.8	902.5	833.5
Jun-15	35	86	0	39,282	15,340	6,600	39,282	-	-	-	-	902.5	93.0
Jul-15	116.6	76.4	40.2	39,282	15,340	6,600	39,282	109.8	26.5	47.4	183.7	1,086.2	622.0
Aug-15	54.2	66.8	0	39,282	15,340	6,600	39,282	-	-	-	-	1,086.2	207.8
Sep-15	59.8	48.6	11.2	39,282	15,340	6,600	39,282	30.6	7.4	13.2	51.2	1,137.4	299.9
Oct-15	72	27	45	39,282	15,340	6,600	39,282	122.9	29.7	53.0	205.6	1,343.0	369.6
Nov-15	105.2	17.2	88	39,282	15,340	6,600	39,282	240.3	58.1	103.7	402.1	1,745.1	815.2
Dec-15	266.9	13.8	253.1	39,282	15,340	3,960	39,282	691.2	100.2	298.3	1,089.7	2,834.9	682.0
Total	1,063	525	635					1,734	352	748	2,835		5,318

Date

Notes: The calculation was carried out using MS Excel following the method from the EPA Landfill Manual on Landfill Site Design, as shown:

where:	Lo =	leachate produced(m ³)
	ER =	effective rainfall, [(ER) is defined as Total Rainfall (R) minus Actual Evapotranspiration (AE) i.e. ER=R-AE]
	A =	area of cell (m ²)
	LW =	liquid waste (m ³)
	IRCA =	infiltration through restored and capped areas (m ²)
	=	surface area of lagoons (m ²)
	a =	absorptive capacity of waste (m ³ /t)
	W =	weight of waste deposited (t/a)

* Infiltration Rates (%)

Look to Design Criteria for exact figures (Ranges from 5% to 100%)