Annual Environmental Report 2015

Licence Registration No.: W0198-01

Licencee: Bord na Móna Plc.

Location of Activity: Kilberry, Athy, Co. Kildare.

Attention: Office of Environmental Enforcement

Environmental Protection Agency

P.O. Box 3000 Johnstown Castle

Co. Wexford

CONTENTS

SECTION 1: INTRODUCTION

- 1.1 Introduction
 - 1.1.2 Policy
- 1.2 Site Description
 - 1.2.1 General
 - 1.2.2 Method of Working
 - 1.2.2.1 Composting Process

SECTION 2: DATA

- 2.1 Summary Data
 - 2.1.1 Waste Recovery Data
 - 2.1.2 Summary Reports on Emissions
 - 2.1.3 Summary reports on Environmental Monitoring
 - 2.1.3 (A) Surface Water Analysis Results
 - 2.1.3 (B) Ground Water Analysis Results
 - 2.1.3 (C) Dust Analysis Results
 - 2.1.3 (D) Odour Analysis Results
 - 2.3.1 (E) Noise Emissions
 - 2.1.4 Environmental Incidents and Complaints
 - 2.1.5 Environmental Spending
 - 2.1.6 Resource and Energy Consumption

SECTION 3: ENVIRONMENTAL MANAGEMENT SYSTEM

Objectives and Targets 2016

- 3.1 Environmental Management Programme Review 2015
- 3.2 Environmental Management Programme Description 2016

SECTION 4: OTHER REPORTS

Appendix 1 – Odour Monitoring Location Maps

Appendix 2 – Monthly Analysis of Windrows

Appendix 3 - PRTR Scan

SECTION 1

Introduction

1.1 <u>INTRODUCTION</u>

The following document represents the Annual Environmental Report (AER) for Bord na Móna Kilberry Compost facility for the period January 2015 - December 2015. Detailed within this report is a summary of all monitoring, and any activities and on-going improvements at the facility during this period that has had an influence on the environmental performance of the company.

Through the continued compliance with the conditions of their Waste licence register No. W0198-01, Bord na Móna continues to express their commitment of environmental improvement through out the site.

An Environmental and Quality Management System is established at the facility, which incorporates procedures of operational activities on site, emergency preparedness and response, reporting, dealing with unacceptable wastes and an public access to the site and site's environmental performance. Through the on-going achievement and reviewing of the objectives and targets, Bord na Móna facilitate on-going environmental improvements.

Bord na Móna's commitment is expressed in the company's Environmental Management policy, as given overleaf.

1.1.2 - Environmental Policy

BORD NA MÓNA 🦨

Environmental Policy

Introduction

A licence from the Environmental Protection Agency (W0198-1) was granted on the 16th of December 2004. This licence is for the construction and operation of a Composting Facility at Kilberry, Athy, Co. Kildare. The quantity of waste to be accepted is 50,000 tonnes in the first year rising to 96,000 tonnes by the 5th year. Non-hazardous biodegradable wastes (Shredded Green waste, Brewery By-Product, Sawdust, Bark and Cocoa Husk) will be accepted at this facility.

The process leading to the production of usable, composted material will require the completion of a series of stages as follows, acceptance procedures and tipping, mixing and formulation of windrows, turning / composting, screening of stabilised material and shredding and re-use of oversize material. The wastes are combined together to form windrows for composting. The average composting period will be 12-16 weeks during which time the composting process will stabilise a range of organic waste materials / by-products which will then be incorporated into horticultural growing media produced on the adjoining site.

Policy

Environmental care is a Bord na Móna core value. BnM seeks to be recognised in the compost supply business as a leader in terms of environmental care. Bord na Móna's environmental programmes shall be an integrated approach focused on continuous improvement. The environmental programmes in Bord na Móna will seek to achieve the following:

- Ensure compliance with the requirements of the EPA Waste Licence and National/European legislation.
- Review Environmental performance and establish environmental objectives and targets on an annual basis to improve the environmental performance of our composting facility
- Minimise potential negative environmental impacts through activities that are designed for the prevention of pollution
- Encourage the involvement of employees through training and awareness programmes to promote and ensure an environmentally friendly workplace.
- Audit practices and programmes to help ensure continuous improvement

The company values and promotes environmental leadership, responsibility and innovation in the management of all company facilities and operations. Management team are expected to provide sound environmental leadership, to maintain appropriate records and demonstrate compliance with programmes and practices.

Authorised as of March 29th 2012


Ray Lenehan General Manager

Attachment# 1 to EMSKIL-001 / rev 1

1.2 <u>SITE DESCRIPTION</u>

1.2.1 Site Location

The proposed development is located on the eastern portion of Kilberry townland, approximately 4 km north of Athy, Co. Kildare. It is located along the R417 between Athy and Monasterevin.

Regional Location of Bord na Mona Kilberry Compost Site

The total area the site occupies is ca. 2.5 hectares. The topography of the area is flat peat land and agricultural land with a gradual rise to the north. The land on the site is relatively level with a fall of 1:200 over the total site from south to north. The surrounding land is a mixture of agricultural, forestry and peat land with the southern boundary adjoining the Bord na Móna Moss Peat production site.

1.2.1 General

A licence from the Environmental Protection Agency (W0198-01) was granted on the 16th of December 2004. This licence was for the construction and operation of a Composting Facility at Kilberry, Athy, Co. Kildare. The quantity of waste to be accepted was 50,000 tonnes in the first year rising to 96,000 tonnes by the 5th year. Non-hazardous biodegradable wastes (Shredded Green waste, Brewery By-Product, Sawdust, Bark and Cocoa Husk) were the initial waste types accepted at this facility. In the intervening years a number of additional waste streams have been identified and added to the waste licence with agreement from the EPA. The current waste list is as follows:

Shredded / Unshredded Green Waste

Brewery By-Product

Sawdust

Bark

Cocoa Husk

Spent Mushroom Compost

Christmas Trees

Wood Pulp Sludge

Fruit and Vegetables

Dairy Products Sludge

1.2.2 Method of Working

1.2.2.1 Composting Process

The process leading to the production of usable, composted material requires the completion of a series of stages as follows:

- 1. Acceptance procedures and tipping
- 2. Mixing and formulation of windrows
- 3. Turning / Composting
- 4. Screening of stabilised material
- 5. Shredding and re-use of oversize material

1. Acceptance Procedures:

All vehicles entering the site firstly report to compost coordinator. A delivery note will accompany each vehicle detailing:

- Vehicle registration number
- Driver / Company
- Material type and origin
- Quantity of waste

These details will be entered on to the Bord na Móna MRP system along with the recorded weight of the vehicle. A hard copy of this information will be issued to the driver as a POD (Proof of Delivery).

2. Discharge/Mixing and formation of windrows.

On completion of acceptance procedures vehicles will be directed to a specific tipping area in the composting facility. Where they will tip the feedstock in such a fashion as to provide a linier strip of material. Unshredded material is directed to the shredder in phase 2.

3. Turning / Composting

The current average composting period is 12 weeks, during which time the piles are turned approximately 20 times as follows:

Week 1 - 2 4 times per week
Week 3 - 6 2 times per week
Week 7-10 1 turn per week

A series of parameters are monitored during the composting cycle as follows:

- Temperature (using deep probes)
- CO₂ evolution (an index of microbial activity)
- Moisture content

The results of ongoing monitoring can trigger a number of interactions such as:

- Increased turning frequency
- Addition of water. Lagoon water is used as the source of this water.

4. Screening

Following the completion of composting the material is transported from the stockpile to the screening area, which is located in Phase 2 using the Volvo loader.

The composted material is screened, material below 10mm will be stockpiled for use in growing media plants, whilst material over this size will be set aside for shredding and composting.

5. Shredding:

Oversized material is collected at the screening plant and is reincorporated into the new windrows.

Working Hours

Composting activities (Turning / Screening) will normally be undertaken during the hours of 08:00 and 18:00; Monday to Friday inclusive.

Delivery hours are confined to the hours of 08:00 to 18:00; Monday to Friday inclusive.

Reduced site activities such as maintenance and cleaning proceed until 22:00 Monday to Friday inclusive.

SECTION 2

DATA

2.1 SUMMARY DATA

2.1.1 Waste Recovery Data:

Waste Type	EWC Code	Annual Intake (Tonnes)
Greenwaste	20 02 01	17941
Bark	03 03 01	1915
Brewery by-Product	02 07 01	19184
Dairy Sludge	02 05 02	1852
Brewery Sludge	02 07 05	553

2.1.2 Wastes produced on site

Waste Type	EWC Code	Annual Output (Tonnes)		
Uncomposted Fraction – Plastics etc	19 05 01	30		

2.1.3 Summary Report on Emissions:

There are no emission points within the facility.

2.1.3 Summary Reports on Environmental Monitoring:

2.1.3 (A) <u>Surface Water Analysis Results</u> – Tables A.1 – A.4 below show results of 2015 Surface water analysis. The results are very similar to previous years.

Table A.1 - Surface Water Q1 2 nd April 2015								
Parameter	SW1	SW2	SW3	SW4	SW5			
рН	7.6	7.6	7.7	7.7	6.5			
Suspended Solids (mg/l)	8	16	25	16	118			
BOD (mg/l)	<2	<2	<2	<2	<2			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

Table A.1 - Surface Water Q2 17 th June 2015								
Parameter	Parameter SW1 SW2 SW3 SW4 SW5							
рН	7.5	7.7	7.7	7.6	8			
Suspended Solids (mg/l)	8	27	<5	10	27			
BOD (mg/l)	<2	<2	<2	<2	<2			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

Table A.3 - Surface Water Q3 23 rd Sept 2015								
Parameter	SW1	SW2	SW3	SW4	SW5			
рН	7.2	7.4	7.3	7.4	8.0			
Suspended Solids (mg/l)	27	19	11	10	<5			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

Table A.4 - Surface Water Q4 15 th December 2015								
Parameter	SW1	SW2	SW3	SW4	SW5			
рН	7.2	7.3	7.2	7.3	7.6			
Suspended Solids (mg/l)	<5	<5	6	<5	8			
BOD (mg/l)	<2	<2	<2	<2	3			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

2.1.3 (B) Ground Water Analysis Results

Groundwater results are elevated for a number of parameters most notably Ammonia – these results are consistent with previous years and MW 1,2,3 are in line with results from the EIS. MW 4,5 are both hydraulically up gradient of the site. The trends with regards to the elevated parameters will continue to be assessed during 2016.

Groundwater Results Q1 2 nd April 2015								
Laboratory ID.	MW1	MW2	MW3	MW4	MW5			
pН	7.5	7.3	7.3	8.1	6.8			
Conductivity µS/cm	614	560	638	689	2922			
Ammonia as N mg/l	1.9	6.6	5.8	22	28			
Chloride mg/l	23	18	18	40	116			
Sulphate mg/l	17	1.4	0.92	1.6	0.96			
Nickel ug/l	9	6	<2	24	7			
Manganese ug/l	406	81	120	865	1636			

Groundwater Results Q2 17 th June 2015							
Laboratory ID.	MW1	MW2	MW3	MW4	MW5		
pН	7.5	7.4	7.3	7.1	7.2		
Conductivity µS/cm l	656	596	681	1825	1146		
Ammonia as N mg/l	1.6	6.8	5.8	23	12		
Chloride mg/l	27	21	21	48	32		
Sulphate mg/l	24	4.1	1.5	3.6	1.7		
Nickel ug/l	8	4	3	32	61		
Manganese ug/l	412	104	267	998	3345		

Groundwater Results Q3 23 rd and 30 th Sept 2015								
Laboratory ID.	MW1	MW2	MW3	MW4	MW5			
pН	7.4	7.2	7.0	6.5	6.8			
Conductivity µS/cm l	518	567	729	1696	909			
Ammonia as N mg/l	1.9	6.7	6.2	21	8.9			
Chloride mg/l	22	16	19	46	21			
Sulphate mg/l	7.4	25	0.77	1.8	0.6			
Nickel ug/l	3	3	<2	26	9			
Manganese ug/l	<2	89	410	777	31			

Groun	Groundwater Q4 15th Dec 2015						
Parameter	MW-01	MW-02	MW-03	MW-04	MW-05		
рН	7.7	7.4	7.4	7.2	7.2		
Conductivity uS/cm	471	492	535	772	842		
Ammonia as N mg/l	1.8	7.1	5.7	8.1	11		
Chloride mg/l	24	17	19	34	29		
Sulphate mg/l	7.6	46	0.72	5.6	1.9		
Nitrate mg/l	<0.04	<0.04	<0.04	<0.04	<0.04		
Phosphate	<0.16	<0.16	<0.16	<0.16	<0.16		
Boron µg/l	12	11	8	16	12		
Antimony μg/l	<2	<2	<2	<2	<2		
Arsenic μg/l	4	18	14	<2	20		
Aluminium μg/l	<2	<2	<2	<2	<2		
Berylium μg/l	<2	<2	<2	<2	<2		
Barium µg/l	390	295	320	140	116		
Chromium µg/l	<2	<2	2	<2	<2		
Cadmium µg/l	<2	<2	<2	<2	<2		
Cobalt µg/l	<2	<2	<2	<2	<2		
Copper µg/l	<2	<2	<2	<2	<2		
Iron mg/l	<0.1	<0.1	<0.1	<0.1	<0.1		
Potassium mg/l	1.3	1.6	1.4	4	55		
Sodium mg/l	8.8	9.6	6.8	11	14		
Calcium mg/l	31	87	30	44	80		
Manganese µg/l	25	18	<2	6	334		
Silver µg/l	<2	<2	<2	<2	<2		
Nickel µg/l	6	5	6	9	15		
Lead μg/l	<2	<2	<2	<2	<2		
Selenium μg/l	5	9	15	6	9		
Tin μg/l	<2	<2	<2	<2	<2		
Zinc µg/l	<2	<2	<2	<2	2		
Mercury μg/l	<1	<1	<1	<1	<1		
E.Coli cfu/100mls	19	7	<1	2	34		
Total Coliforms cfu/100mls	19	7	<1	152	40		

Ground	Groundwater Q4 2015-VOC Analysis						
VOC's (μg/l)	MW-01	MW-02	MW-03	MW-04	MW-05		
Dichlorodifluoromethane	<1	<1	<1	<1	<1		
Chloromethane	<1	<1	<1	<1	<1		
Vinyl chloride	<1	<1	<1	<1	<1		
Bromomethane	<1	<1	<1	<1	<1		
Chloroethane	<1	<1	<1	<1	<1		
Trichlorofluoromethane	<1	<1	<1	<1	<1		
1,1-Dichloroethene	<1	<1	<1	<1	<1		
Dichloromethane	<3	<3	<3	<3	<3		
trans-1,2-Dichloroethene	<1	<1	<1	<1	<1		
1,1-Dichloroethane	<1	<1	<1	<1	<1		
2,2-Dichloropropane	<1	<1	<1	<1	<1		
cis-1,2-Dichloroethene	<1	<1	<1	<1	<1		
Bromochloromethane	<1	<1	<1	<1	<1		
Chloroform	<1	<1	<1	<1	<1		
1,1,1-Trichloroethane	<1	<1	<1	<1	<1		
Carbon Tetrachloride	<1	<1	<1	<1	<1		
1,1-Dichloropropene	<1	<1	<1	<1	<1		
Benzene	<1	<1	<1	<1	<1		
1,2-Dichloroethane	<1	<1	<1	<1	<1		
Trichloroethene	<1	<1	<1	<1	<1		
1,2-Dichloropropane	<1	<1	<1	<1	<1		
Dibromomethane	<1	<1	<1	<1	<1		
Bromodichloromethane	<1	<1	<1	<1	<1		
Toluene	<1	<1	<1	<1	<1		
1,1,2-Trichloroethane	<1	<1	<1	<1	<1		
1,1,1,2-Tetrachloroethane	<1	<1	<1	<1	<1		
m,p-Xylene	<1	<1	<1	<1	<1		
Styrene	<1	<1	<1	<1	<1		
Isopropylbenzene	<1	<1	<1	<1	<1		
n-propylbenzene	<1	<1	<1	<1	<1		

Groundwater Q4 2015 - Cont'd VOC Analysis						
VOC's (μg/l)	MW-01	MW-02	MW-03	MW-04	MW-05	
2-Chlorotoluene	<1	<1	<1	<1	<1	
4-Chlorotoluene	<1	<1	<1	<1	<1	
1,2,4-Trimethylbenzene	<1	<1	<1	<1	<1	
4-Isopropyltoluene	<1	<1	<1	<1	<1	
1,4-Dichlorobenzene	<1	<1	<1	<1	<1	
1,2-Dichlorobenzene	<1	<1	<1	<1	<1	
Naphthalene	<1	<1	<1	<1	<1	
1,3-Dichloropropane	<1	<1	<1	<1	<1	
cis-1,3-Dichloropropene	<1	<1	<1	<1	<1	
trans-1,3-Dichloropropene	<1	<1	<1	<1	<1	
Dibromochloromethane	<1	<1	<1	<1	<1	
Chlorobenzene	<1	<1	<1	<1	<1	
Ethyl Benzene	<1	<1	<1	<1	<1	
o-Xylene	<1	<1	<1	<1	<1	
Bromoform	<1	<1	<1	<1	<1	
1,2,3-Trichloropropane	<1	<1	<1	<1	<1	
Bromobenzene	<1	<1	<1	<1	<1	
Tert-Butylbenzene	<1	<1	<1	<1	<1	
Sec-Butylbenzene	<1	<1	<1	<1	<1	
1,3,5-Trimethylbenzene	<1	<1	<1	<1	<1	
1,2- Dibromo-3-chloropropane	<1	<1	<1	<1	<1	
Hexachlorobutadiene	<1	<1	<1	<1	<1	
1,2,3-Trichlorobenzene	<1	<1	<1	<1	<1	
1,3-Dichlorobenzene	<1	<1	<1	<1	<1	
Tetrachloroethene	<1	<1	<1	<1	<1	
n-butylbenzene	<1	<1	<1	<1	<1	
1,2,4-Trichlorobenzene	<1	<1	<1	<1	<1	
MTBE	<1	<1	<1	<1	<1	

Groundwater Q4 2015 – SVOC Analysis					
SVOC's (μg/l)	MW-01	MW-02	MW-03	MW-04	MW-05
Phenol	<1	<1	<1	<1	<1
2-Chlorophenol	<1	<1	<1	<1	<1
2-Methylphenol	<1	<1	<1	<1	<1
4-Methylphenol	<1	<1	<1	<1	<1
2-Nitrophenol	<1	<1	<1	<1	<1
4-Nitrophenol	<1	<1	<1	<1	<1
2,4-Dichlorophenol	<1	<1	<1	<1	<1
2,4-Dimethylphenol	<1	<1	<1	<1	<1
4-Chloro-3-methylphenol	<1	<1	<1	<1	<1
2,4,6-Trichlorophenol	<1	<1	<1	<1	<1
2,4,5-Trichlorophenol	<1	<1	<1	<1	<1
Pentachlorophenol	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	<1	<1	<1	<1	<1
1,2,4-Trichlorobenzene	<1	<1	<1	<1	<1
Nitrobenzene	<1	<1	<1	<1	<1
Azobenzene	<1	<1	<1	<1	<1
Hexachlorobenzene	<1	<1	<1	<1	<1
Naphthalene	<1	<1	<1	<1	<1
Acenaphthalene	<1	<1	<1	<1	<1
Acenaphthene	<1	<1	<1	<1	<1
Flourene	<1	<1	<1	<1	<1
Phenanthrene	<1	<1	<1	<1	<1
Anthracene	<1	<1	<1	<1	<1
Fluoranthrene	<1	<1	<1	<1	<1
Pyrene	<1	<1	<1	<1	<1
Benzo(a)anthracene	<1	<1	<1	<1	<1
Chrysene	<1	<1	<1	<1	<1

Groundwater Q4 2015 - Cont'd SVOC Analysis					
SVOC's (µg/l)	MW1	MW2	MW3	MW4	MW-05
Benzo(a)pyrene	<1	<1	<1	<1	<1
Indenol(1,2,3-cd)pyrene	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	<1	<1	<1	<1	<1
Benzo(ghi)perylene	<1	<1	<1	<1	<1
2-Chloronaphthalene	<1	<1	<1	<1	<1
Carbazole	<1	<1	<1	<1	<1
2-Methylnaphthalene	<1	<1	<1	<1	<1
Isophorone	<1	<1	<1	<1	<1
Dibenzofuran	<1	<1	<1	<1	<1
Dimethyl phthalate	<1	<1	<1	<1	<1
Diethyl phthalate	<1	<1	<1	<1	<1
Di-butylphthalete	<1	<1	<1	<1	<1
Di-octylphthalate	<1	<1	<1	<1	<1
Bis(2-ethylhexyl)phthalate	<1	<1	<1	<1	<1
Butylbenzylphthalate	<1	<1	<1	<1	<1
4-Chloroaniline	<1	<1	<1	<1	<1
2-Nitroaniline	<1	<1	<1	<1	<1
3-Nitroaniline	<1	<1	<1	<1	<1
4-Nitroaniline	<1	<1	<1	<1	<1
2,4-Dinitroaniline	<1	<1	<1	<1	<1
2,6-Dinitroaniline	<1	<1	<1	<1	<1
Bis(2-Chloroethyl)ether	<1	<1	<1	<1	<1
4-Bromophenylphenylether	<1	<1	<1	<1	<1
4-Chlorophenylphenylether	<1	<1	<1	<1	<1
Hexachloroethane	<1	<1	<1	<1	<1
Hexachlorobutadiene	<1	<1	<1	<1	<1
Hexachlorocyclopentadiene	<1	<1	<1	<1	<1
Bis(2-chloroethoxy)methane	<1	<1	<1	<1	<1
N-nitrosodi-n-propylamine	<1	<1	<1	<1	<1

Groundw	Groundwater Q4 2015 – Pesticide Suite				
Pesticides (µg/l)	MW-01	MW-02	MW-03	MW-04	MW-05
Dichlorvos	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Mevinphos	<0.01	< 0.01	< 0.01	< 0.01	<0.01
Alpha - HCH	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Diazinon	<0.01	<0.01	< 0.01	< 0.01	<0.01
Gamma - HCH	<0.01	<0.01	< 0.01	< 0.01	<0.01
Beta - HCH	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Methyl Parathion	<0.01	<0.01	< 0.01	< 0.01	<0.01
Malathion	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Heptachlor	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Heptachlor Epoxide	<0.01	<0.01	< 0.01	< 0.01	<0.01
Aldrin	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Fenitrothion	<0.01	<0.01	< 0.01	< 0.01	<0.01
Heptachlor Epoxide	<0.01	<0.01	< 0.01	< 0.01	<0.01
Endosulphan I	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Parathion	< 0.01	<0.01	< 0.01	< 0.01	<0.01
p,p - DDE	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
o,p - DDE	< 0.01	<0.01	< 0.01	< 0.01	<0.01
Endosulphan II	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Azinphos Methyl	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Ethion	< 0.01	<0.01	< 0.01	< 0.01	<0.01
Endrin	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Endosulfan Sulphate	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
p,p - DDT	< 0.01	<0.01	< 0.01	< 0.01	<0.01
o,p - DDT	< 0.01	<0.01	< 0.01	< 0.01	<0.01
p,p – TDE	<0.01	<0.01	<0.01	<0.01	<0.01
o,p – TDE	<0.01	<0.01	<0.01	<0.01	<0.01
p,p - Methoxychlor	<0.01	<0.01	< 0.01	< 0.01	<0.01
o,p - Methoxychlor	<0.01	<0.01	<0.01	<0.01	<0.01

2.1.3 (C) <u>Dust Analysis Results</u>

The 2015 results are typically within the licence limit with the exception of one occasion in Q3 AM01 which were attributed to external influences. The wetting of roadways during dry periods has reduced overall dust levels on site.

2015 Dust Results					
Location	Q1 Dust (mg/m²/day)	Q2 Dust (mg/m²/day)	Q3 Dust (mg/m²/day)	Q4 Dust (mg/m²/day)	
AM-01	77	241	455	77	
AM-02	136	335	306	118	
AM-03	230	229	No Sample	57	
AM-04	No Sample	229	261	44	

2.1.3 (D) Odour Analysis Results 2015 – See Appendix 1 for Sample location maps

The Odour results for 2015 are typical of an open windrow compost facility.

METEOROLOGICAL CONDITIONS Q1 - 10 TH FEB 2015				
Parameter Parameter				
Weather	Dry with light breeze	Wind speed	1.47 m/sec	
Weather	Dry with right breeze	wind speed	(average)	
Temp	3.1	Wind Direction	light breeze from	
Temp	3.1	Wind Direction	NE	
General Air	Good	Bar Pressure	1020.9 mbar	
Quality	Good	Dai i lessure	1020.9 1110a1	

	Odour Sampling Results Q1 - 10 TH FEB 2015				
Locations	On site observations	Results			
OD 1	Intermittant composting adour detected	27 ou _E /m ³			
(Upwind)	Intermittent composting odour detected	27 Oug/III			
OD 2					
(Downwind /	Tetameittant commenting adopt datastad	$27 \text{ ou}_{\text{F}}/\text{m}^3$			
Sensitive	Intermittent composting odour detected	27 OU _E /III			
Receptor)					
OD 3					
(Downwind /	Intermeditions commenting adopted datasted	$23 \text{ ou}_{\text{F}}/\text{m}^3$			
Sensitive	Intermittent composting odour detected	23 OUE/III			
Receptor)					

METEOROLOGICAL CONDITIONS Q2 - 17 TH JUNE 2015				
Parameter Parameter				
Weather	Dry with very light breeze.	Wind speed	2.29 m/sec (average)	
Temp	19°C	Wind Direction	Gentle breeze from north west	
General Air Quality	Good	Bar Pressure	1025 mbar	

Odour Sampling Results Q2 – 17 TH JUNE 2015				
Locations	On site observations	Results		
OD 1 (Upwind / Sensitive Receptor)	Chimney smoke odour from nearest dwelling & composting odour detected	91 ou _E /m ³		
OD 2 (Upwind / Sensitive Receptor)	Diesel fumes from passing truck & composting odour detected	114 ou _E /m ³		
OD 3 (Downwind)	Moderate Composting odour	166 ou _E /m ³		

METEOROLOGICAL CONDITIONS Q3 – 28 TH JULY 2015					
	Parameter Parameter				
Weather	Dry with gentle breeze	Wind speed	1.37 m/sec (average)		
Temp	14.9 °C	Wind Direction	Very light breeze from NW		
General Air Quality	Good	Bar Pressure	1016 mbar		

Odour Sampling Results Q3 – 28 TH JULY 2015				
Locations	On site observations	Results		
OD 1				
(Upwind /	Establish and analytical and	54 13		
Sensitive	Faint bark mulch odour	$54 \text{ ou}_{\text{E}}/\text{m}^3$		
Receptor)				
OD 2	Typical odour associate4d with	32 ou _F /m ³		
(Downwind)	composting	32 Oug/III		
OD 3	Typical odour associate4d with	23 ou _F /m ³		
(Downwind)	composting	∠3 Ou _E /III		

METEOROLOGICAL CONDITIONS Q4 – 14 TH DECEMBER 2015				
Parameter Parameter				
Weather	Dry with very light breeze	Wind speed	1.14 m/sec (average)	
Temp	13°C	Wind Direction	Very light breeze from SW	
General Air Quality	Good	Bar Pressure	1010 mbar	

Odour Sampling Results Q4 – 14 th December 2015				
Locations	On site observations	Results		
OD 1				
(Upwind /	Vary faint hards a days	(4 13		
Sensitive	Very faint bark odour	$64 \text{ ou}_{\text{E}}/\text{m}^3$		
Receptor)				
OD 2 (Downwind)	Faint typical odour associated with compost	140 ou _E /m ³		
OD 3 (Upwind)	Faint typical odour associated with compost	41 ou _E /m ³		

2.1.4 (E) <u>Air Emissions Results</u>

Air Analysis Q1 2015								
Location	Amines	Ammonia	Hydrogen	Mercaptens				
Location	(ppm)	(ppm)	Sulphide (ppm)	(ppm)				
Downwind on								
north eastern	<3.99	-5	<0.2	<0.5				
boundary next to	\$3.99	< 3	<0.2	<0.3				
lagoon								

Air Analysis Q2 2015								
Location	Amines	Ammonia	Hydrogen	Mercaptens				
Location	(ppm)	(ppm)	Sulphide (ppm)	(ppm)				
Downwind on								
north eastern	<4.22 <5	-5	<0.2	<0.5				
boundary next to		< 3						
lagoon								

Air Analysis Q3 2015								
Location	Amines	Ammonia	Hydrogen	Mercaptens				
Location	(ppm)	(ppm)	Sulphide (ppm)	(ppm)				
Downwind on north								
eastern boundary	<4.18	<5	< 0.2	<0.5				
next to lagoon								

2.3.1 (E) <u>Noise Emissions</u>

Noise:

The annual noise-monitoring programme was carried out on the 20th 23rd and 25th February 2015. The results of same are presented in Table E.1 and E.2.

TABLE E.1: NOISE MEASUREMENT RESULTS (DAYTIME) 15 th and 22 th May 2015							
Location No.	Duration	Date	Start	Leq	L_{10}	L ₉₀	L _{AFMax}
Location No.	(minutes)	Date	Time	dB(A)	dB(A)	dB(A)	dB(A)
	30	20/02/15	08:52	64	68	51	80
N1	30	20/02/15	13:46	66	67	52	86
	30	23/02/15	09:52	61	65	52	81
	30	20/02/15	09:28	47	49	42	77
N2	30	20/02/15	14:19	51	48	42	77
	30	23/02/15	10:26	50	53	32	71
	30	20/02/15	10:01	63	59	44	85
N3	30	20/02/15	15:00	66	69	49	89
	30	25/02/15	11:52	64	67	48	82
	30	20/02/15	10:36	54	55	49	82
N4	30	20/02/15	15:35	49	53	40	67
	30	25/02/15	12:25	55	57	51	76
	30	20/02/15	08:20	58	61	49	78
NSL 1	30	20/02/15	13:14	62	64	48	89
	30	20/02/15	16:09	62	61	49	94

2.1.4 Environmental Incidents & Complaints

All environmental incidents and complaints are recorded and actioned upon in accordance with the specific procedures as outlined in the Bord na Móna Kilberry Compost facility documented environmental management system.

Environmental Complaints	Number of complaints
Complaints received	One
Complaints requiring corrective action	None
Categories of complaint	
Odour	One
Noise	
Water	
Air	
Procedural	
Miscellaneous	

Environmental Incidents	Number of Incidents
Incidents during 2015	One
Incidents requiring corrective action	None
Categories of Incidents	
Odour	One
Noise	
Water	
Air	Cat 1 - Dust ELV breached
Procedural	
Miscellaneous	

2.1.5 Environmental Spending

The itemised spend on environmental issues at Bord na Móna Kilberry are listed below.

January 2015 to December 2015						
		€				
EPA Fees		8000				
Consultancy & Monitoring		30,000				
Training		6,500				
Env Equipment		6,000				
	Total Cost	50,500				

2.1.6 Resource and Energy Consumption

Fuel Usage 2015 – See table below

Machine Type	Engine Type	Total (L)
Komptech Topturn X67 Turner	Cat C9	
Komptech Crambo 6000 Shredder	Cat C16	
Komptech L3 Multistar Screen	Dieselelectric 44KVA	102408.25
L110E Volvo Front Loader	Volvo D7D LB E2	
L110E Volvo Front Loader 2	Volvo D7D LB E2	

Electricity Usage 2015 – recorded at compost site metre.

63,623 KwHr

SECTION 3

ENVIRONMENTAL MANAGEMENT

BORD NA MÓNA KILBERRY COMPOST FACILITY ENVIRONMENTAL OBJECTIVES AND TARGETS 2016

Item No	Objective	Target	Responsible Function
1	Meet Operating Capacity Requirements.	 Increase tonnage entering site – investigate new waste types. Implement new marketing strategies to increase customer base. 	Horticulture (Newbridge)
2	Training / EMS	 Carry out one spill drill. All staff members to receive Environmental training. Carry out annual review of all EMS procedures 	Environmental (Kilberry)
3	Once off Projects	 Investigate site expansion to increase the overall footprint of the site. Assess new conditions of the IED licence and implement any changes. 	Environmental (Kilberry)
4	Carry out monitoring as per Licence 198-1	 Noise – Once per annum Bioaerosols – Once per annum Dust – four times per annum SW - Quarterly GW – Quarterly 	Environmental (Newbridge / Kilberry)

3.1 Environmental Management Programme for 2016.

Review of Objectives and Targets for the period January to December 2015

Tables EMP 1.1 to 1.5 reviews the Objectives and Targets set for 2015. A number of the listed Objectives and their subsequent targets are cyclical as the company attempts to achieve continuous environmental improvement.

Tables EMP 2.1 to 2.5 set out the Objectives and Targets for 2016. A number of the listed Objectives and their subsequent targets are cyclical as the company attempts to achieve continuous environmental improvement.

Site Infrastructure EOT 1.1

Objective	Target	Target Date	2015 Review	Dept Responsible
Meet Operating Capacity Requirements.	Increase tonnage entering site – investigate new waste types.	2015	No new waste types added during 2015	Kilberry (Environmental)
	Implement new marketing strategies to increase customer base	2015	Continuous 2015	Horticulture (Newbridge)

Training EOT 1.2

Objective	Target	Target Date	2015 Review	Dept Responsible
	Carry out one spill drill.	2015	Complete	Environmental (Kilberry)
Training / EMS	All staff members to receive Environmental training.	2015	Complete	Environmental (Kilberry)
	Carry out annual review of all EMS procedures.	Q2 2015	Complete April 2015	Environmental (Kilberry)

Once off Projects EOT 1.3

Objective	Target	Target Date	2015 Review	Dept Responsible
Once off projects	Liaise with EPA Re the article 27 notification	Q2 2015	Complete – EPA contacted by phone – advised that a response was due shortly (May 2015)	Kilberry (Environmental)
	Investigate site expansion to increase the overall footprint of the site	2015	Complete Still under discussion with senior management	Kilberry (Environmental)

Licence Compliance EOT 1.4

Objective	Target	Target Date	2015 Review	Person Responsible
Carry out monitoring as per Licence W0198-1	Noise – Once per annum	2015	Complete	Newbridge (Environmental)
	Bioaerosols – Annually	2015	Complete	Newbridge (Environmental)
	Dust - Quarterly	2015	Complete	Kilberry (Environmental)
	Groundwater – Quarterly	2015	Complete	Kilberry (Environmental)
	Surface Water - Quarterly	2015	Complete	Kilberry (Environmental)

Operating Requirements

EOT 2.1

Objective	Target	Target Date	Person Responsible
Meet Operating Capacity Requirements.	Increase tonnage entering site – investigate new waste types	Continuous 2016	Newbridge (Horticulture)
	Implement new marketing strategies to increase customer base	Continuous 2016	Newbridge (Horticulture)

Training / EMS EOT 2.2

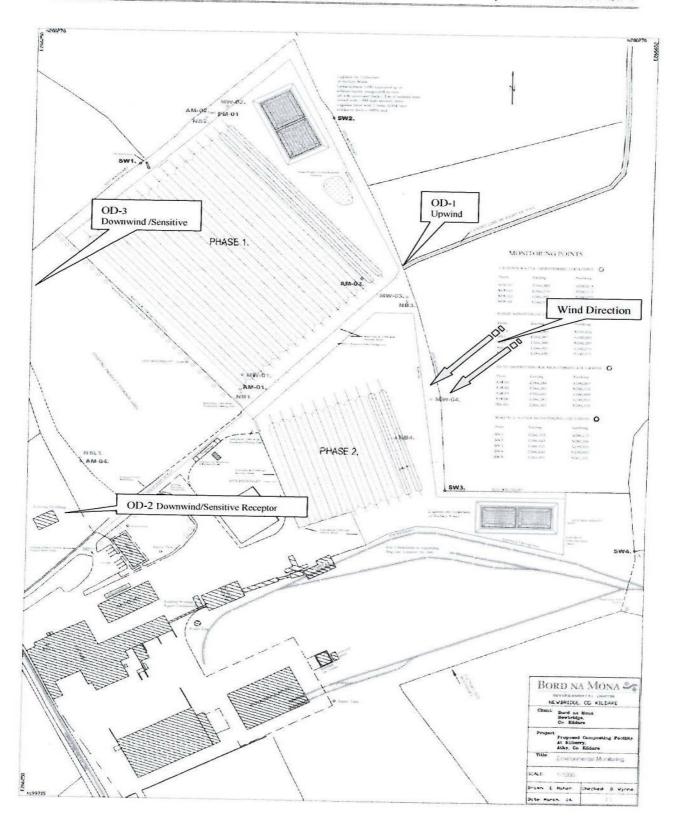
Objective	Target Date		Person Responsible	
	Carry out one spill drill.		Environmental (Kilberry)	
Training / EMS All staff members to receive Environmental training.		Continuous 2016	Environmental (Kilberry)	
	Carry out annual review of all EMS procedures	Fall EMS procedures Q2 2016		

Bord na Móna 37

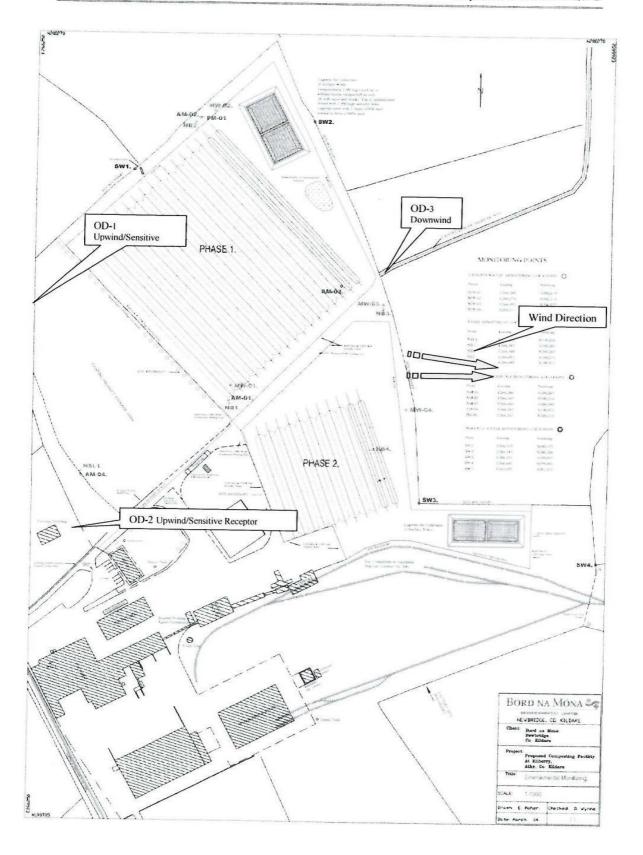
Once Off Projects EOT 2.3

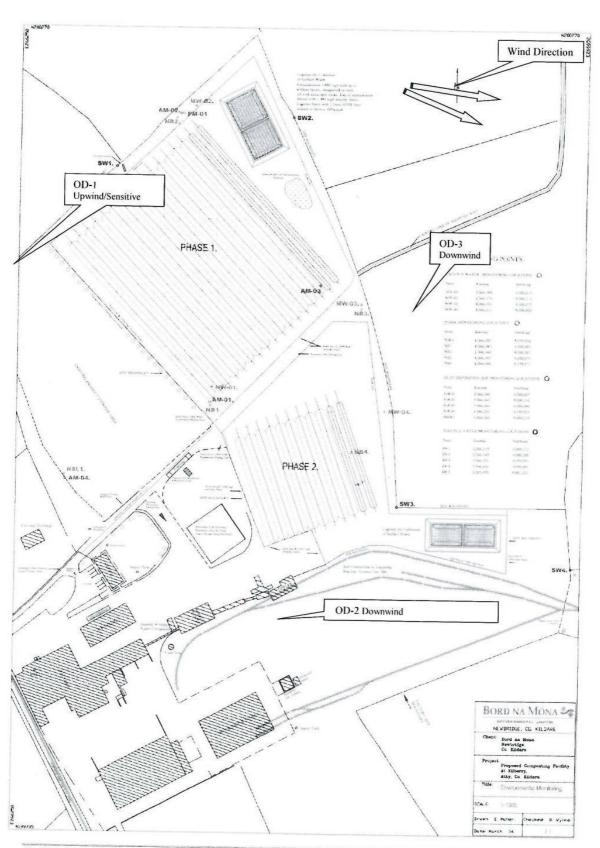
Objective	Target	Target Date	Person Responsible
	Investigate site expansion to increase the overall footprint of the site.	2016	Kilberry (Environmental)
Once off Projects	Assess new conditions of the IED licence and implement any changes.	Q2 2016	Kilberry (Environmental)

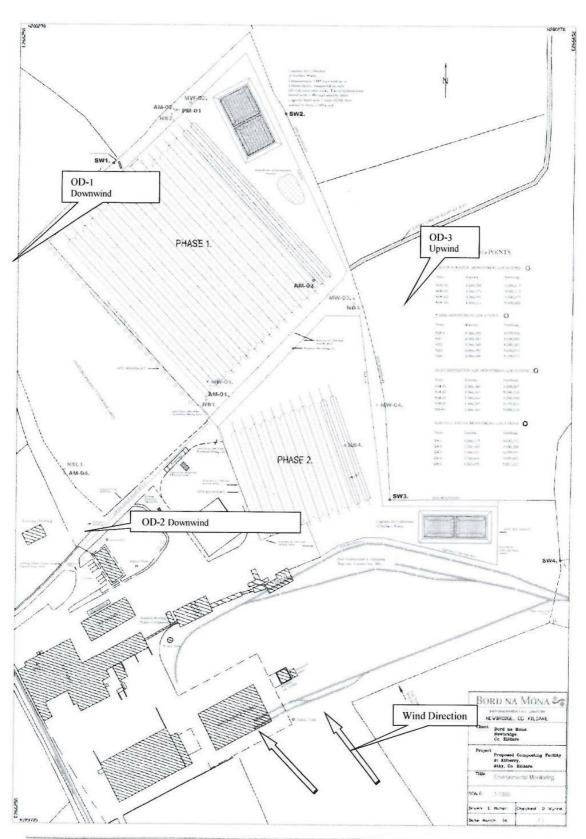
Bord na Móna 38


Licence Compliance EOT 2.4

Objective	Target	Target Date	Person Responsible
	Noise – Once per annum	2016	Environmental (Newbridge)
	Bioaerosols – Once per annum	2016	Environmental (Newbridge)
Carry out monitoring as per Licence 198-1	Dust - Quarterly	2016	Kilberry (Environmental)
	Groundwater – Quarterly	2016	Kilberry (Environmental)
	Surface Water - Quarterly	2016	Kilberry (Environmental)


Bord na Móna 39


APPENDIX 1 Odour Monitoring Location Maps



BnM Kilberry (W0198-01)

BnM Kilberry (W0198-01)

APPENDIX 2 Compost Analysis Report

QM Doc. Name:	Final Compost Results IS441		
QM Doc. Ref.:	QM-GC-01K		
Issue No.:	1		
Revision No.:	1		
Date:	15/08/2012		
Page:	1 OF 7		

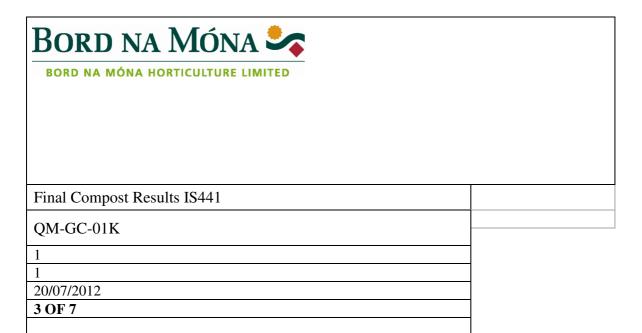
MONTHLY ANALYSIS OF WINDROWS AT KILBERRY
2015

REPORT NO: KILBERRY MONTHLY ANALYSIS 2015

PREPARED BY: Colman Hynes

Bord na Móna ltd.

DATE: 26/02/2016


Bord na Móna 🛰	
BORD NA MÓNA HORTICULTURE LIMITED	
Final Compost Results IS441	
QM-GC-01K	
1	
1	
20/07/2012	
2 OF 7	

Introduction

Samples are collected monthly for analysis according to the EPA licence 198-1 *Schedule F: Standards for Compost Quality* and also I.S. 441:2011

Samples are collected by the Bord na Mona Horticulture lab. Analysis begins on the day of sampling and held in cold storage during analysis.

Note – No piles passed in March 2015

Compost Testing and Analysis Service

Report ref: KC15

Results

Sample matrix: Composted greenwaste and spent grain/Sludges

PLANT Nutrient, CAT Soluble Nutrients, and Physical Analysis

TEST Method	I.S. EN13037	I.S.EN13038	I.S.EN13651	I.S.EN13651	I.S.EN13651	I.S.EN13651	I.S.EN13040
2015	pН	EC	NH ₄ -N	NO ₃ -N	PO ₄ -P	K	M/C %
		μS.cm ⁻¹	mg.L ⁻¹	mg.L ⁻¹	mg.L ⁻¹	mg.L ⁻¹	
Jan	7.41	592	0	2	22	686	61.3
Feb	7.15	468	181	7	50	545	65.6
Mar							
Apr	6.91	687	6	2	54	748	57.1
May	7.64	618	79	16	24	910	53.4
Jun	7.36	566	96	1	55	689	58.7
July	6.69	626	2	0	47	766	49.7
Aug	7.39	621	1	47	27	1180	50.6
Sep	7.58	653	39	91	22	77	45.2
Oct	6.94	754	4	71	30	1060	57.8
Nov	6.68	557	186	1	65	888	54.0
Dec	6.51	227	277 11	277 11	15	266	64.0

Final Compost Results IS441
QM-GC-01K
1
1
20/07/2012
4 OF 7

Maturity

Germination of Cress

OUTHINIMETOR OF CIUSS		
Method IS EN 16086-2 2011	% AGR	RI %
Jan	100	139.9
Feb	100	104
Mar		
Apr	100	115.1
May	100	85.8
June	100	102.9
July	100	91.6
Aug	100	88.9
Sept	100	85.3
Oct	100	96
Nov	100	85.3
Dec	100	101.1
% AGR %Average Germin	nation	
Rate		
RI % Root Index %		

C:N Ratio

Test Method Sample no (month)	% Organic Matter	I.S.EN13039 C:N Ratio
Jan	71	13
Feb	82	12
Mar		
Apr	74	15
May	72	20
Jun	73	11
July	73	13
Aug	59	13
Sep	50	17
Oct	55	13
Nov	73	14
Dec	71	12

Final Compost Results IS441	
QM-GC-01K	
1	
1	
20/07/2012	
5 OF 7	

Foreign Matter over 2mm

	Foreign Matter > 2mm	Stones >4mm	% N	%P	% K
Method			Based on I.S EN		
	PAS 100:2005		13654-1	ISEN13650	ISEN13650
Jan	0	0	2.91	0.47	0.73
Feb	0	0	3.73	0.50	0.52
Mar					
Apr	0	0	2.65	0.40	0.55
May	0	0	2.01	0.54	0.81
Jun	0	0	3.57	0.56	0.55
July	0	0	3.11	0.45	0.62
Aug	0	0	2.43	0.51	0.72
Sep	0	0	1.65	0.53	0.69
Oct	0	0	2.40	0.65	0.85
Nov	0	0	2.92	0.38	0.67
Dec	0	0	3.20	0.36	0.28

^{*}Based on BP PAS100:2005

Final Compost Results IS441
QM-GC-01K
1
1
20/07/2012
6 OF 7

Heavy Metals (Dry weight basis) Sample no Pb Cd Ni Cu Zn Hg \mathbf{Cr} mg.kg⁻¹ mg.kg⁻¹ mg.kg⁻¹ mg.kg⁻¹ mg.kg⁻¹ mg.kg⁻¹ mg.kg⁻¹ **ISO167** Method I.S.EN13650 I.S.EN13650 72 used 100 Standard **350 150** 1.5 **50** 100 28 135 27.8 0.53 < 0.05 19.6 48.9 Jan 26.8 125 21.1 0.45 < 0.05 6.18 5.5 Feb Mar 41.8 136 34.1 0.55 0.09 10.9 Apr 11.6 43.2 198 47.5 0.67 0.11 9.56 7.82 May 31.6 159 38.5 0.5 0.07 6.35 8.09 Jun July 28.5 153 35.9 0.52 0.07 13.3 11.8 43 156 47 0.72 15.5 9.91 0.11 Aug 39 160 41.1 0.73 0.12 14.4 11.3 Sep Oct 34.8 168 33.2 0.76 0.1 13 10 0.06 11.5 29.9 112 46 0.46 8.32 Nov Dec 32.2 166 40.6 .77 .07 12.6 11.6

Microbiological Analysis

Sample no	E Coli CFU/g)	Salmonella (spp/25g)
Method used	Based on ISO 16649-2 (2001)	RayAL ELISA OPTIMA
Jan	<10	Absent
Feb	<10	Absent
Mar		
Apr	630	Absent
May	<10	Absent
Jun	<10	Absent
July	250	Absent
Aug	230	Absent
Sep	<10	Absent
Oct	60	Absent
Nov	<10	Absent
Dec	n/a	n/a

Final Compost Results IS441	
QM-GC-01K	
1	
1	
20/07/2012	
7 OF 7	

Stability Analysis

Method prEN16087-1

Michiou prizmious/-1	
Sample no	Mmol/O ₂ /kg OS/h
Standard	
Jan	3.4
Feb	4.2
Mar	
Apr	12.7
May	9.3
Jun	11.2
July	13.1
Aug	12.7
Sep	5.42
Oct	4.64
Nov	7.95
Dec	13.2

^{*} Repeat of individual piles in brackets

Weed Test

Method BGKe.V2006

Sample no	Weeds/L
Standard	
Jan	<0.5
Feb	<0.5
Mar	
Apr	<0.5
May	<0.5
Jun	<0.5
July	<0.5
Aug	<0.5
Sep	<0.5
Oct	<0.5
Nov	< 0.5
Dec	

APPENDIX 3 PRTR Scans

| PRTR# : W0198 | Facility Name : Bord na Môna Plc (Kilberry) | Filename : W0198_2015 xls | Return Year : 2015 |

Guidance to completing the PRTR workbook

PRTR Returns Workbook

REFERENCE YEAR 2015 1. FACILITY IDENTIFICATION Parent Company Name Bord na Mona Public Limited Company Facility Name Bord na Móna Plc (Kilberry) PRTR Identification Number W0198 Licence Number W0198-01 Classes of Activity No. class_name - Refer to PRTR class activities below Address 1 Kilberry Address 2 Athy Address 3 Address 4 Kildare Country Ireland Coordinates of Location -7.0108 53.0473 River Basin District IESE NACE Code 3832 Main Economic Activity Recovery of sorted materials AER Returns Contact Name Craig Mallinson AER Returns Contact Email Address craigmallinson@inbox.com AER Returns Contact Position Env Consultant AER Returns Contact Telephone Number 0872886848 AER Returns Contact Mobile Phone Number 0872886848 **AER Returns Contact Fax Number Production Volume Production Volume Units** Number of Installations **Number of Operating Hours in Year** Number of Employees **User Feedback/Comments** Web Address 2. PRTR CLASS ACTIVITIES **Activity Number Activity Name** 50.1 General 50.1 General 3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002) Is it applicable? Have you been granted an exemption ? If applicable which activity class applies (as per Schedule 2 of the regulations)? Is the reduction scheme compliance route being used ?

ERROR: stackunderflow OFFENDING COMMAND: ~

STACK: