Facility Information Summary

AER Reporting Year

Licence Register Number Name of site Site Location NACE Code Class/Classes of Activity National Grid Reference (6E, 6 N)

A description of the activities/processes at the site for the reporting year. This should include information such as production increases or decreases on site, any infrastructural changes, environmental

2015 W0184-01 Enva Ireland Limited Clonminan Industrial Estate, Portlaoise, Co. Loias 3832 Fourth Schedule - Class 6, Class 7, Class 12, Class 13. 2461 E, 1978 N

Site Performance: The processing activities onsite include waste oil re-processing, treatment of contaminated soil, repacking of oily contaminated wastes, and paint wastes. The site also stores wastes in packages (barrels, ASPs, IBCs, etc.) prior to transfer off site for recovery or disposal. The company continues to demonstrate its commitment towards HSE management standards - the site maintains ISO14001 and OHSAS 18001. This ensures a standard approach is taking to managing activities from an environmental and safety aspect. There were no issues raised during the reporting period regarding maintenance to the standard. Infrastructure / EMP progress: Lightning protection for the tank farm has been installed which further reduces the

operational risk due to adverse weather. Yard integrity is monitored regularly and repaired as required. The EMP has been updated to include programme of works devised for reductionin odour generation from the site Environmental Performance: There were 47 performance which was measured during the reporting year **and an overview of compliance with your licence** <u>listing all</u> <u>exceedances of licence limits (where</u> <u>applicable) and what they relate to e.g. air,</u> <u>water, noise.</u> nom the site.

LINI OILICIALI CIOLINAICE. LICIC WOLCH

complaints received by Enva during the reporting period. As a result of this a Compliance Investigation (Cl001037) was opened by the Agency . Control measures have been implemented as per correspondance uploaded to EDEN and as set out in the EMP attached. Fluctuations in waste quantities accepted onsite was subject to availability from customers rather than an intentional increase/decrease in waste volumes. In December 2015 in Portlaoise District Court, Enva Ireland Ltd pleaded guilty to 4 counts of a failure to comply with Condition 7.2 of IED Licence W0184-01 which condition requires that odours do not give rise to nuisance in the immediate area of its Portlaoise facility. A review of the licence is currently underview.

Declaration:

All the data and information presented in this report has been checked and certified as being accurate. The quality

of the information is assured to meet licence requirements.

Donal Conroy 31.03.16 Signature Date Group/Facility manager (or nominated, suitably qualified and experienced deputy)

AIR-summary template	Lic No:	W0184-01	Year	2015	
• • • • • • • • • • • •					

Answer all questions and complete all tables where relevant

Additional information

Does your site have licensed air emissions? If yes please complete table A1 and A2 below for the current reporting year and answer further questions. If you do not have licenced emissions and do not complete a solvent management plan (table A4 and A5) you <u>do not</u> need to complete the tables

	Periodic/Non-Continuous Monitoring		
2	Are there any results in breach of licence requirements? If yes please provide brief details in the comment section TableA1 below	of No	
3	Basic air Was all monitoring carried out in accordance with EPA guidance note AG2 and using the basic air monitoring checklist? monitoring checklist AGN2	Yes	

Table A1: Licensed Mass Emissions/Ambient data-periodic monitoring (non-continuous)

										Comments -
										change in %
										mass load
			ELV in licence or							from
Emission		Frequency of	any revision			Unit of	Compliant with		Annual mass	previous year
reference no:	Parameter/ Substance	Monitoring	therof	Licence Compliance criteria	Measured value	measurement	licence limit	Method of analysis	load (kg)	if applicable
				No 30min mean can exceed	2.8					
4-01	Carbon monovide (CO)	Annually	Ν/Δ	the FLV		mg/Nm3	Ves	EN 15058-2004	13.18	N/A
A 01	carbon monoxide (co)	Annually	N/A		110.5	ing/iiiio	yes	214 13030.2004	15.10	N/A
	Nitrogen oxides			No 30min mean can exceed						
A-01	(NOx/NO2)	Annually	N/A	the ELV		mg/Nm3	SELECT	EN 14792:2005	520.05	N/A
	Sulphur oxides			No 30min mean can exceed	18.3					
A-01	(SOx/SO2)	Annually	N/A	the FLV		mg/Nm3	SELECT	отн	86.13	N/A
	(***)			No 30min mean can exceed	92	0,		-		,
A-01	Combustion Efficiency	Annually	N/A	the ELV		%	SELECT	ОТН	N/A	N/A
				Monitoring to occur 4 times a	106.59					
DP1	LICENCED	Quarter 1	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	0.3891	N/A
				Monitoring to occur 4 times a	56.1					
DP2	LICENCED	Quarter 1	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	0.0205	N/A
				Monitoring to occur 4 times a	62.27					
DP3	LICENCED	Quarter 1	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	0.0227	N/A
				Monitoring to occur 4 times a	11.5					
DP1	LICENCED	Quarter 2	Yes - 350 mg/m2	year	14	mg/m2/day	yes	Standard Method	0.0042	N/A
0.02		0	Vec. 250 males2	Monitoring to occur 4 times a	14			Characterial & Anthony	0.0054	
DP2	LICENCED	Quarter 2	res - 350 mg/m2	year	62.3	mg/m2/day	yes	Standard Method	0.0051	N/A
590		Quarter 2	Vec - 350 mg/m2	wontoning to occur 4 times a	02.0	mg/m2/day	Vec	Standard Method	0.0227	N/A
DF3	LICENCED	Quarter 2	163 - 350 mg/mz	Monitoring to occur 4 times a	120.7	mg/mz/uay	yes	Standard Method	0.0227	N/A
DP1	LICENCED	Quarter 3	Yes - 350 mg/m2	vear		mg/m2/day	Ves	Standard Method	0.0441	N/A
5.1	LIGENGED	quarters	100 000 110/112	Monitoring to occur 4 times a	34.2		100	Standard Method	0.0111	
DP2	LICENCED	Quarter 3	Yes - 350 mg/m2	year		mg/m2/day	ves	Standard Method	0.0124	N/A
				Monitoring to occur 4 times a	116.1	0, , , , , ,	1			,
DP3	LICENCED	Quarter 3	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	0.0234	N/A
				Monitoring to occur 4 times a	7.55					
DP1	LICENCED	Quarter 4	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	0.0028	N/A
				Monitoring to occur 4 times a	16.83					
DP2	LICENCED	Quareter 4	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	0.0061	N/A

AIR-summary	template				Lic No:	W0184-01		Year	2015		
				Monitoring to occur 4 times a	16.25	i					
DP3	LICENCED	Quareter 4	Yes - 350 mg/m2	year		mg/m2/day	yes	Standard Method	0.0059	N/A	

Note 1: Volumetric flow shall be included as a reportable parameter

	AIR-summary template	Lic No:	W0184-01	Year	2015
	Continuous Monitoring				
4	Does your site carry out continuous air emissions monitoring?	No			
	If yes please review your continuous monitoring data and report the required fields below in Table A2 and compare it to its relevant Emission Limit Value (ELV)				
5	Did continuous monitoring equipment experience downtime? If yes please record downtime in table A2 below	No			
6	Do you have a proactive service agreement for each piece of continuous monitoring equipment?	No			
7	Did your site experience any abatement system bypasses? If yes please detail them in table A3 below	No			

Emission	Parameter/ Substance		Averaging Period	Compliance Criteria	Units of	Annual Emission	Annual maximum	Monitoring	Number of ELV	Comments
reference no:					measurement			Equipment	exceedences in	
								downtime (hours)	current	
		ELV in licence or any	,						reporting year	
		revision therof								
	SELECT			SELECT	SELECT					
	SELECT				SELECT					
	SELECT				SELECT					
	SELECT				SELECT					
	SELECT				SELECT					

note 1: Volumetric flow shall be included as a reportable parameter.

Table A3: Abatement system bypass reporting table Bypass protocol

Date*	Duration** (hours)	Location	Reason for bypass	Impact magnitude	Corrective action

* this should include all dates that an abatement system bypass occurred

** an accurate record of time bypass beginning and end should be logged on site and maintained for future Agency inspections please refer to bypass protocol link

	AIR-summary	template				Lic No:	W0184-01		Year	2015	
	Solvent	use and manageme	nt on site								
8	Do you have a tota	ll Emission Limit Value of d	lirect and fugitive emis	ssions on site? if ye	s please fill out tables A4 and A5			SELECT			
	Table A4: Solv Total VOC Emi	ent Management Pla ssion limit value	an Summary	<u>Solvent</u> regulations	Please refer to linked solve complete table 5	nt regulations to and 6			1		
	Reporting year	Total solvent input on site (kg)	Total VOC emissions to Air from entire site (direct and fugitive)	Total VOC emissions as %of solvent input	Total Emission Limit Value (ELV) in licence or any revision therof	Compliance					
						SELECT					
						SELECT					
ļ	Table A5:	Solvent Mass Balan	ce summary							7	
		(I) Inputs (kg)			(0)	Outputs (kg)					
	Solvent	(I) Inputs (kg)	Organic solvent emission in waste	Solvents lost in water (kg)	Collected waste solvent (kg)	Fugitive Organic Solvent (kg)	Solvent released in other ways e.g. by-	Solvents destroyed onsite through	Total emission of Solvent to air (kg)		
										-	
										-	
										-	
								Total	1		

AER Monitoring returns summary template-WATER/WASTEWATER(SEWER)

Year

2015

1

Does your site have licensed emissions direct to surface water or direct to sewer? If yes please complete table W2 and W3 below for the current reporting year and answer further questions. If **you do not have** licenced emissions you <u>only</u> need to complete table W1 and or W2 for storm water analysis and visual inspections

Inspections on any surface water

No

Was it a requirement of your licence to carry out visual inspections on any surface water discharges or watercourses on or near your site? If yes please complete table W2 below summarising <u>only any evidence of contamination noted during visual inspections</u>

Table W1 Storm water monitoring

Location reference	Location relative to site activities	PRTR Parameter	Licenced Parameter	Monitoring date	ELV or trigger level in licence or any revision thereof*	Licence Compliance criteria	Measured value	Unit of measurement	Compliant with licence	Comments
SW01	onsite	not applicable	Fats, Oils and Greases	05/05/2015	15 mg/L	All values < ELV	2830	µg/L	yes	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0184-01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.
SW01	onsite	not applicable	рН	27/04/2015	N/A	All values < ELV	8.37	pH units	yes	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0184-01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.
SW01	onsite	not applicable	COD	06/07/2015	250 mg/L	All values < ELV	227	mg/L	yes	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0184-01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.
SW01	onsite	not applicable	Suspended Solids	16/03/2015	60 mg/L	All values < ELV	59	mg/L	yes	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0184-01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.
SW01	onsite	not applicable	Mineral oils	02/12/2015	5 mg/L	All values < ELV	500	µg/L	yes	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0184-01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.
SW02	onsite	not applicable	Fats, Oils and Greases	N/A	N/A	All values < ELV	N/A	N/A	N/A	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0184-01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.
SW02	onsite	not applicable	рН	26/01/2015	N/A	All values < ELV	8.35	pH units	yes	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0184-01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.
SW02	oncito	not analicable	<u></u>	12/10/2015	250 mg/L	All values < ELV	168	mc//		During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0184-01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.

AER Monito	oring returns su	immary template-W	ATER/WASTEW/	ATER(SEWER)		Lic No:	W0184-01		Year	2015
SW02	onsite	not applicable	Suspended Solids	21/09/2015	60 mg/L	All values < ELV	50	mg/L	yes	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0184-01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.
SW02	onsite	not applicable	Mineral oils	01/12/2015	5 mg/L	All values < ELV	130	μg/L	yes	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0184-01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.

*trigger values may be agreed by the Agency outside of licence conditions

Table W2 Visual inspections-Please only enter details where contamination was observed.

Location Reference	Date of inspection	Description of contamination	Source of contamination	Corrective action	Comments
		not applicable	SELECT		
			SELECT		

Licensed Emissions to water and /or wastewater(sewer)-periodic monitoring (non-continuous)

Additional information

Table W3: Licensed Emissions to water and /or wastewater (sewer)-periodic monitoring (non-continuous)

Emission reference no:	Emission released to	Parameter/ SubstanceNote 1	Type of sample	Frequency of monitoring	Averaging period	ELV or trigger values in licence or any revision therof ^{Note 2}	Licence Compliance criteria	Measured value	Unit of measurement	Compliant with licence	Method of analysis	Procedural reference source	Procedural reference standard number	Annual mass load (kg)	Comments
FS1	Vastewater/Sewe	рН	composite	15/05/2015	24 hour	6 - 8.5	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	8.41	pH units	no (if no please enter details in comments box)	pH Meter (Electrode)	As per manufactu rers guide	SOP 1134		
FS1	Vastewater/Sewe	Temperature	composite	19/03/2015	24 hour	43	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	44	degrees C	yes	Temperature Probe	SCADA	SCADA		

AER Monitor	ring returns su	mmary template-W	ATER/WASTEW	ATER(SEWER)		Lic No:	W0184-01	Year 2015								
FS1	Vastewater/Sewe	Suspended Solids	composite	19/03/2015	24 hour	400 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	341	mg/L	yes	Gravimetric analysis	APHA / AWWA "Standard Methods"	SOP 1291	383.8		
FS1	Vastewater/Sewe	Ammonia (as N)	composite	02/11/2015	24 hour	80 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	66	mg/L	yes	Spectrophotome try (Colorimetry)	APHA / AWWA "Standard Methods"	SOP 1245	172.40		
FS1	Vastewater/Sewe	Chlorides (as Cl)	composite	04/11/2015	24 hour	6000 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	2940	mg/L	yes	Titration	APHA / AWWA "Standard Methods"	SOP 1028	7417.00		
FS1	Vastewater/Sewe	Copper and compounds (as Cu)	composite	07/01/2015	24 hour	1 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	0.007	mg/L	yes	ICP	TM30 - Determina tion of Trace Metal elements by ICP- OES (Inductivel y Coupled Plasma - Optical Emission Spectrome tra	TM30/PM14	0.0036		
FS1	Wastewater/Sewe	Lead and compounds (as Pb)	composite	30/09/2015	24 hour	0.5 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	0.024	mg/L	yes	ICP	1M30 - Determina tion of Trace Metal elements by ICP- OES (Inductivel y Coupled Plasma - Optical Emission Spectrome	TM30/PM14	0.0608		

AER Monitor	ring returns su	mmary template-WA	TER/WASTEW	ATER(SEWER)		Lic No:	W0184-01		Year	2015					
FS1	Vastewater/Sewe	Zinc and compounds (as Zn)	composite	03/06/2015	24 hour	1 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	0.141	mg/L	yes	ICP	TM30 - Determina tion of Trace Metal elements by ICP- OES (Inductivel y Coupled Plasma - Optical Emission Spectrome	TM30/PM14	0.09	
F51	Vastewater/Sewe	Cadmium and compounds (as Cd)	composite	28/10/2015	24 hour	0.15 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	0.001	mg/L	yes	ICP	TM30 - Determina tion of Trace Metal elements by ICP- OES (Inductivel y Coupled Plasma - Optical Emission Spectrome trai	тм30/Рм14	0.00	
F51	Vastewater/Sewe	COD	composite	04/03/2015	24 hour	280Kg/day	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	5140.0	mg/L	yes	Spectrophotome try (Colorimetry)	APHA / AWWA "Standard Methods"	SOP 1241	17792.72	
F51	Vastewater/Sewe	Phenols (as total C)	composite	11/02/2015	24 hour	50 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	23.5	mg/L	yes	Spectrophotome try (Colorimetry)	APHA / AWWA "Standard Methods"	SOP 1289	60.69	
FS1	Wastewater/Sewe	Sulphate	composite	04/03/2015	24 hour	1000 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	823	mg/L	yes	Spectrophotome try (Colorimetry)	APHA / AWWA "Standard Methods"	500 1023	551.08	

AER Monitor	ing returns su	mmary template-WA	TER/WASTEW/	ATER(SEWER)		Lic No:	W0184-01		Year	2015					
FS1	Vastewater/Sewe	Fats, Oils and Greases	composite	11/02/2015	24 hour	100 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	25	mg/L	yes	EPH with GC-FID	Modified USEPA 8015B method for the determinat ion of solvent Extractable Petroleum Hydrocarb ons (EPH) with	ТМ5/РМ30	10.81	
F52	Vastewater/Sewe	Total phosphorus	composite	22/07/2015	24 hour	150 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	108.5	mg/L	yes	Spectrophotome try (Colorimetry)	APHA / AWWA "Standard Methods"	SOP 1246	398.34	
FS2	Vastewater/Sewe	volumetric flow	composite	03/04/2014	24 hour	50 m3/day	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	49.08	m3/day	yes	SCADA	SCADA	SCADA	5908900	

Note 1: Volumetric flow shall be included as a reportable parameter

Note 2: Where Emission Limit Values (ELV) do not apply to your licence please compare results against EQS for Surface water or relevant receptor quality standards

Continuous monitoring

Does your site carry out continuous emissions to water/sewer monitoring?

If yes please summarise your continuous monitoring data below in Table W4 and compare it to

its relevant Emission Limit Value (ELV)

Did continuous monitoring equipment experience downtime? If yes please record downtime in table W4 below No We do not have continuous monitoring equipment on you have a proactive service contract for each piece of continuous monitoring equipment on table V6 on the vector of the vec

Lic No:

W0184-01

Additional Information

bid abatement system bypass occur during the reporting year? If yes please complete table W5 below

Table W4: Summary of average emissions -continuous monitoring

			ELV or trigger					% change +/- from			
			values in licence					previous reporting	Monitoring		
Emission	Emission		or any revision	Averaging	Compliance	Units of	Annual Emission for current	year	Equipment		
reference no:	released to	Parameter/ Substance	thereof	Period	Criteria	measurement	reporting year (kg)		downtime (hours)	Number of ELV exceedences in reporting year	Comments
	SELECT	SELECT		SELECT	SELECT	SELECT					
	SELECT	SELECT		SELECT	SELECT	SELECT					

Year

note 1: Volumetric flow shall be included as a reportable parameter.

Table W5: Abatement system bypass reporting table

Date	Duration (hours)	Location	Resultant	Reason for	Corrective	Was a report	When was this report submitted?
			emissions	bypass	action*	submitted to the	
						EPA?	
						SELECT	

*Measures taken or proposed to reduce or limit bypass frequency

Bund/Pipeline testing template	Lic No:	W0184-01		Year	2015	
Bund testing dropdown menu click to see options		·	Additional information	_		
Are you required by your licence to undertake integrity testing on bunds and containment structures ? if yes please fill out table B1	below listing all new bunds and					
containment structures on site, in addition to all bunds which failed the integrity test-all bunding structures which failed including r	mobile bunds must be listed in					
the table below, please include all bunds outside the licenced testing period (mobile bunds and chemstore included)		Yes				
2 Please provide integrity testing frequency period		3 years		1		
Does the site maintain a register of bunds, underground pipelines (including stormwater and foul), Tanks, sumps and containers? (c	ontainers refers to "Chemstore"					
3 type units and mobile bunds)		Yes				
4 How many bunds are on site?		9				
5 How many of these bunds have been tested within the required test schedule?		9	They are due in be tested in 2018			
6 How many mobile bunds are on site?		17				
7 Are the mobile bunds included in the bund test schedule?		Yes				
8 How many of these mobile bunds have been tested within the required test schedule?		16	one of these are new			
9 How many sumps on site are included in the integrity test schedule?		12				
10 How many of these sumps are integrity tested within the test schedule?		12				
Please list any sump integrity failures in table B1				_		
11 Do all sumps and chambers have high level liquid alarms?		No				
12 If yes to Q11 are these failsafe systems included in a maintenance and testing programme?		SELECT				
13 Is the Fire Water Retention Pond included in your integrity test programme?		No				
Table B1: Summary details of bund /containment structure integrity test						

														Results of
									Integrity reports					retest(if in
Bund/Containment	t								maintained on		Integrity test failure		Scheduled date	current
structure ID	Type	Specify Other type	Product containment	Actual capacity	Capacity required*	Type of integrity test	Other test type	Test date	site?	Results of test	explanation <50 words	Corrective action taken	for retest	reporting year)
MB 17	other (please specify)	Mobile Bund	Hydrogen Peroxide	300litres	220	Other (please specify)	New bund	Mar-19	No	Pass		SELECT		
	SELECT					SELECT			SELECT	SELECT		SELECT		
* Capacity required shoul	d comply with 25% or 110% containment	t rule as detailed in your licence					Commentary							
Has integrity testin	ng been carried out in accord	ance with licence requirements an	d are all structures tested in											
15 line with BS8007/E	PA Guidance?			bunding and storage guideling	nes	Yes								

N/A N/A

No SELECT

Г

 15 line with BS8007/EPA Guidance?

 16 Are channels/transfer systems to remote containment systems tested?

 17 Are channels/transfer systems compliant in both integrity and available volume?

peline/underground structure testing	
--------------------------------------	--

Are you required by your licence to undertake integrity testing* on underground structures e.g. pipelines or sumps etc ? if yes please fill out table 2 below listing all		
1 underground structures and pipelines on site which failed the integrity test and all which have not been tested withing the integrity test period as specified	Yes	
2 Please provide integrity testing frequency period	3 years	
*please note integrity testing means water tightness testing for process and foul pipelines (as required under your licence)		

Yes	Due in 2016
3 years	

Table B2: Summary details of pipeline/underground structures integrity test

			Door this structure have	Type of secondary containment		Integrity separts		Integrity test	Corrective action	Schodulad data	Deculte of estect/if in surrout
Structure ID	Type system	Material of construction:	Does this structure have	Type of secondary containment	Type integrity testing	Integrity reports	Results of test	Integrity test failure explanation	Corrective action	Scheduled date	Results of retest(if in current
	SELECT	SELECT	SELECT	SELECT	SELECT	SELECT	SELECT				SELECT

Please use commentary for additional details not answered by tables/ questions above

Year

		Comments	
1 Are you required to carry out groundwater monitoring as part of your licence			
requirements?	yes		Please provide an interpretation of groundwater monitoring data in the
2 Are you required to carry out soil monitoring as part of your licence requirements?	no		interpretation box below or if you require additional space please
Do you extract groundwater for use on site? If yes please specify use in comment			include a groundwater/contaminated land monitoring results
³ section	no		interpretaion as an additional section in this AER
Do monitoring results show that groundwater generic			
assessment criteria such as GTVs or IGVs are exceeded or is			
4 there an upward trend in results for a substance? If yes, please		See attached external	
complete the Groundwater Monitoring Guideline Template <u>Groundwater</u>		groundwater	
Report (link in cell G8) and submit separately through ALDER as monitoring		monitoring. These are	
a licensee return AND answer questions 5-12 below. <u>template</u>	yes	also submitted quarterly	
∟ Is the contamination related to operations at the facility (either current and/or			
historic)	ves	Historic	
6 Have actions been taken to address contamination issues? If yes please summarise	ŕ		
remediation strategies proposed/undertaken for the site	yes	Continuous Monitoring	
7			
Please specify the proposed time frame for the remediation strategy	N/A	Continuous Monitoring	
8 Is there a licence condition to carry out/update ELRA for the site?	yes		
0		ELRA approved by	
Has any type of risk assesment been carried out for the site?	yes	Agency	
		Included in hydro	
10		geological review and	
10		assessment report	
Has a Conceptual Site Model been developed for the site?	yes	submitted in May2014	
		Included in hydro	
11		geological review and	Quarterly reports submitted as per licence and interpretation of data is
11		assessment report	included in these. Q 4 includes a summary of the ground water
Have potential receptors been identified on and off site?	yes	submitted in May2014	performance for the year The Hydro-geological assessment for the site
12 Is there evidence that contamination is migrating offsite?	no		was submitted in June 2014

Table 1: Upgradient Groundwater monitoring results

										Upward trend in
										pollutant
	Sample									concentration
Date of	location	Parameter/		Monitoring	Maximum	Average				over last 5 years
sampling	reference	Substance	Methodology	frequency	Concentration++	Concentration+	unit	GTV's*	SELECT**	of monitoring data
							SELECT			SELECT
							SELECT			SELECT

.+ where average indicates arithmetic mean

.++ maximum concentration indicates the maximum measured concentration from all monitoring results produced during the reporting year

Table 2: Downgradient Groundwater monitoring results

Date of sampling	Sample location reference	Parameter/ Substance	Methodology	Monitoring frequency	Maximum Concentration	Average Concentration	unit	GTV's*	SELECT**	Upward trend in yearly average pollutant concentration over last 5 years of monitoring data	
							SELECT			SELECT	
trend in res complete ti	sults for a subs	tance indicates t er Monitoring Gu	that further interpl uideline Template	retation of monitoring Report at the link pro otherwise instructed b	results is required. In a vided and submit separa by the EPA.	ddition to completing ately through ALDER	g the above table, please as a licensee return or as	Grou	ndwater monito	ring template	
lore informatio riteria (GAC) ar see the link in (ion on the use and risk assessn G31)	of soil and groun nent tools is avai	ndwater standards ilable in the EPA pr	/ generic assessment ublished guidance	<u>Guidance on th</u>	e Management of	Contaminated Land and G	roundwater a	t EPA Licensed S	ites (EPA 2013).	

Groundwate	/Soil monitoring	template
------------	------------------	----------

W0184-01

2015

Year

Table 3: Soil results

	Sample						
Date of	location	Parameter/		Monitoring	Maximum	Average	
sampling	reference	Substance	Methodology	frequency	Concentration	Concentration	unit
							SELECT
							SELECT

Where additional detail is required please enter it here in 200 words or less

Lic No:

Environmental Liabilities template

W0184-01

Year

Click here to access EPA guidance on Environmental Liabilities and Financial provision

			Commentary
1	ELRA initial agreement status	Submitted and agreed by EPA	Final financial provision to be agreed with the Agency
2	ELRA review status	Review required and completed	
3	Amount of Financial Provision cover required as determined by the latest ELRA	4,133,343	
4	Financial Provision for ELRA status	Submitted and agreed by EPA	
5	Financial Provision for ELRA - amount of cover	4,133,343	
6	Financial Provision for FLRA - type	nsurance with Environmental Impairmen	t Liability cover.
7	Financial provision for FLRA expiry date	Enter expiry date	Pending agreement of financial provision
8	Closure plan initial agreement status	losure plan submitted and agreed by EP.	Δ
9	Closure plan review status	Review required and completed	
10	Einancial Provision for Closure status	Submitted and agreed by EPA	
11	Financial Provision for Closure - amount of cover	2 255 6/1 3/	
12	Financial Provision for Closure - type	bond	
13	Financial provision for Closure expiry date	N/A	Pending agreement of bond
13	Financial provision for Closure expiry date	N/A	Pending agreement of bond.

Lic No:

	Environmental Management Programme/Continuous Improvement Programme	e template	Lic No:	W0184-01	Year	2015
	Highlighted cells contain dropdown menu click to view		Additional Information		_	
1	Do you maintain an Environmental Mangement System (EMS) for the site. If yes, please detail in additional information	Yes				
2	Does the EMS reference the most significant environmental aspects and associated impacts on-site	Yes				
3	Does the EMS maintain an Environmental Management Programme (EMP) as required in accordance with the licence requirements	Yes				
4	Do you maintain an environmental documentation/communication system to inform the public on environmental performance of the facility, as required by the licence	Yes	EHS management system in	place (ISO 14001 & OHSAS 18001)]	

Environmental Management Programme	(EMP) report				
Objective Category	Target	Status (% completed)	How target was progressed	Responsibility	Intermediate outcomes
Deduction of Fire (Contactor	Reduce risk of lightning	Complete	Installation of a system for channelling lightning	0	Increase safety to prevent
Reduction of Fire/Explosion	strike of oil tanks	Complete	strikes to ground safely thereby reducing risk.	Operations	damage and loss of containment.
			interlocked to the 'high high' level probes which shut		
			on activation of a high level alarm to prevent the		
			overflow of tanks. Equipment purchased, installation		
	Reduction in risk of		date deferred due to other projects ongoing at the		Increase safety to prevent
Overspill protection	overspill from tanks	30%	site.	Operations	damage and loss of containment.
			Performance against EPA intercalibration scheme is		
			reviewed regularly. Currently, all such samples		
			Score within the range -1 to 1. Ammonia has been		
			removed from the Intercalibration scheme as the		
			method ENVA use is within the range of 0.4-50 mg/l,		
			whereas the EPA intercalibration samples are spiked		
	Review outcome of data		in the lower range of 0.4 to 0.8mg/l, ie: the scheme		
Review quality of self-monitoring compliance	generated from EPA		spiked samples did not reflect the range of ENVA		Increased compliance with
data	intercalibration scheme.	Completed	aniysis.	Laboratory & Operations	licence conditions
			One procedure remains to be validated on the WDXRF		
			unit, scheduled for 2016. A mini validation is required		
			for the New Karl Fischer Unit and a validation is		
Review quality of self-monitoring compliance	Determine key tests for		required on the Dean and Stark Method. Validation is		Increased compliance with
data	validation	70%	completed internally for waste water testing.	Laboratory & HSE	licence conditions
			Surface integrities and expansion gaps will be		
			monitored on a regular basis. A log is in place to		
	Roplace damaged		document any repairs that have taken place. A site		
	concrete to ungrade vard		repairs - A monitoring programme has been		
	integrity and reseal		developed to identify and repair surface integrity as		
Improve tank, pipeline, bund integrity, yard	expansion gaps joints as		an ongoing matter. This is a system that will be rolling		Remediation of contamination on
and expansion gap assessments.	required.	Complete	each year.	HSE & Operations	site
	Review the site with				
	regards to tanks and				
	pipelines, in order to draft				
	a register of current				
	bunds and ninelines with				
	their inclusion/exclusion				
	(if required) in the three		90 % completed. One line remains, there is a		
Improve tank, pipeline, bund integrity, yard	yearly bund integrity		programme in place to replace the remaining line that		Remediation of contamination on
and expansion gap assessments.	assessment.	90%	has to be tested.	HSE & Operations	site
Improve tank, pipeline, bund integrity, yard	Review the assessment of				Remediation of contamination on
and expansion gap assessments	reporting requirements.	Complete	All bunds passed integrity test in 2015	HSE & Operations	site
71101 FAURILIAN 01 FRUIRIANE AMUELLIA					
and expansion gap assessments.					
and expansion gap assessments.	Consider additional rain				
and expansion gap assessments.	Consider additional rain water harvesting/storage				
Waste reduction/Raw material usage	Consider additional rain water harvesting/storage for additional use for Enva		Divert rain water from the roof of the export shed to		Improved Environmental
Waste reduction/Raw material usage	Consider additional rain water harvesting/storage for additional use for Enva tankers.	Complete	Divert rain water from the roof of the export shed to the truck power washer.	HSE & Operations	Improved Environmental Management Practices
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in	Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been realaced with Low wattate E/D Bulets but inside and	HSE & Operations	Improved Environmental Management Practices
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where	Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in	HSE & Operations	Improved Environmental Management Practices
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be	Complete	Divert rain water from the roof of the export shed to the truck power washer. Bullss which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed aster to do so. This is an	HSE & Operations	Improved Environmental Management Practices
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to	Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage ED Bights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the	HSE & Operations	Improved Environmental Management Practices
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy	Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion esnors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end	HSE & Operations	Improved Environmental Management Practices Improved Environmental
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life.	HSE & Operations HSE & Operations	Improved Environmental Management Practices Improved Environmental Management Practices
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete	Divert rain water from the roof of the export shed to the truck power washer. Buibs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement enumement for the doing tables and submit for	HSE & Operations HSE & Operations	Improved Environmental Management Practices Improved Environmental Management Practices
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending lirence review	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for aporval to the Agency	HSE & Operations HSE & Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Case Air Sparaging on drying tanks until suitable	HSE & Operations HSE & Operations HSE & Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete	Divert rain water from the roof of the export shed to the truck power washer. Bubs which have ome to their end of life have been replaced with Low wattage LED Bights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the dyning tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed	HSE & Operations HSE & Operations HSE & Operations HSE & Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete	Divert rain water from the roof of the export shed to the truck power washer. Buibs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the degency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed	HSE & Operations HSE & Operations HSE & Operations HSE & Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cases Air Sparaign on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by	HSE & Operations HSE & Operations HSE & Operations HSE & Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete	Divert rain water from the roof of the export shed to the truck power washer. Bubs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours ansing from the tank farm by sealing lids and ducting the vents from the tanks to	HSE & Operations HSE & Operations HSE & Operations HSE & Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence southions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the degency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tank farm by ground level odour abatement filters	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks a ustil suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters	HSE & Operations HSE & Operations HSE & Operations HSE & Operations HSE & Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED Bights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for apprval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours ansing from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour assessments daily	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going	Divert rain water from the roof of the export shed to the truck power washer. Buibs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the degency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours anising from the tank farm by sealing lids and duritig the vents from the tank farm by sealing lids and duritig the vents from the tank farm by sealing lids and duritig the vents from the tank farm by sealing lids and duritig the vents from the tank for ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments dally The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going	Divert rain water from the roof of the export shed to the truck power washer. Bubs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the dyning tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours ansing from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent treatment area is over 20 years oid and becoming past	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going	Divert rain water from the roof of the export shed to the truck power washer. Buibs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the degncy Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sailing lids and ducting the vents from the tank to ground level odour abatement filters Increased odour assessments dally The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent treatment area is over 20 years oid and becoming past its serviceable life. Replace the interceptor in tank the weak the word and the oid.	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments dally The existing interceptor in the tank farm used to separate prevence libeling transferred to the effluent treatment area is over 20 years oid and becoming past farm with improved model with sealed lids. The replacement for sea the	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going	Divert rain water from the roof of the export shed to the truck power washer. Bubs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the dyning tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours anising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent its serviceable life. Replace the interceptor in tank farm with improved model with sealed lids. The reportenent interceptor will also see the irecommissioning of the existing unnot facilitate a	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete	Divert rain water from the roof of the export shed to the truck power washer. Buibs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the degncy Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours anising from the tank farm by sealing lids and ducting the vents from the tank to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent tratement rates io ver 20 years oid and becoming past its serviceable life. Replace the interceptor in tank farm with improved model with sealed lids. The replacement interceptor will also see the recommissioning of the existing pump to facilitate a more controlled dosing of doour abatement chemical.	HSE & Operations HSE & Operations HSE & Operations HSE & Operations HSE Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage ED Bights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent loi being transferred to the effluent treatment area is over 20 years old and becoming past for exportent in the receptor in that farm with improved model with sealed lids. The replacement interceptor will also see the recommissioning of the existing pump to facilitate a more controlled dosing of odour abatement chemical.	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency Energy Efficiency/Utility conservation	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete	Divert rain water from the roof of the export shed to the truck power washer. Buibs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the dyning tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevend hole light farsferred to the effleent treatment area is over 20 years old and becoming past its serviceable life. Replace the interceptor in tank farm with improved model with sealed lids. The replacement interceptor will also see the recommissioning of the existing pump to facilitate a more controlled dosing of odour abatement chemical. An odour abatement system to be installed in the Oil	HSE & Operations HSE & Operations HSE & Operations HSE & Operations HSE Operations HSE Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete Complete	Divert rain water from the roof of the export shed to the truck power washer. Buibs which have ome to their end of life have been replaced with Low wattage LED Bights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for apprval to the dgency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the efflient trastement requery mid also see the recommissioning of the existing pump to facilitate a more controlled dosing of dodur abatement chemical. An odour abatement system to be installed in the OII filter and Centrifuge room. The existing extraction	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On going Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage ED Bights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent treatment area is over 20 years oid and becoming past its serviceable. The Replace the interceptor in tank farm with improved model with sealed lids. The replacement interceptor will also see the recommissioning of the existing pump to facilitate a more controlled dosing of odour abatement chemical. An odour abatement righters the beinsting extraction system will be redeployed. The extraction system	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete	Divert rain water from the roof of the export shed to the truck power washer. Bubs which have ome to their end of life have been replaced with Low wattage LED Bights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours anising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent treatment are a is over 20 years oid and becoming past its serviceable life. Replace the interceptor in tank farm with improved model with saeled lids. The replacement interceptor will also see the recommissioning of the existing pump to facilitate a more controlled dosing of odour abatement chemical. An odour abatement system to be installed in the Oil Filter and Centrifuge room. The existing extraction system will be redeployed. The exist and extra a sing the redeployed in the exist and extra a sing the exist and avertange.	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED Bights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for apprval to the dgency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sailing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the efflient trasement area is over 20 years oil and becoming past its serviceable life. Replace the interceptor in tank farm with improved model with sealed lids. The replacement interceptor will also see the recommissioning of the existing pump to facilitate a more controlled dosing of odour abatement chemical. An odour abatement system to be installed in the OII Filter and Centrifuge room. The existing extraction system will be redeployed. The extraction system employs an electrosatic precipitation filter to remove oil fune present from the extracted airstream	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage ED Bights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent treatment area is over 20 years oid and becoming past it serviceable (The. Replace the interceptor in tank farm with improved model with sealed lids. The replacement interceptor will also see the more controlled dosing of dour abatement chemical. An odour abatement system to be instaling interceptor in the instaled in the Oil lifter and Centrifue room. The existing extraction system will be redeployed. The extraction system employs an electrostatic (precipitation filter to remove oil fune present from the extracted airstream therefore removing odour. Treatment options were revieved, the electrostatic filter did not prove to be	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete	Divert rain water from the roof of the export shed to the truck power washer. Buibs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effleent treatment area is over 20 years old and becoming past its serviceable life. Replace the interceptor in tank farm with improved model with seed life. The replacement interceptor will also see the recommissioning of the existing pump to facilitate a more controlled dosing of odour abatement chemical. An odour abatement system to be installed in the Oil Filter and Centrifuge room. The existing extraction system will be receptoplot. The existing extraction system will be catefolyoed. The existing extraction system therefore removing odour. Treatment options were reviewed, the electrostatic filter di on to prove to be	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE Operations	Improved Environmental Management Practices
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cases Ar Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tank to ground level odour abatement filters Increased odour abatement thererceptor in tank farm with improved model with sealed lids. The replacement interceptor in task there there there in tank farm with improved model with sealed lids. The replacement interceptor will also see the recommissioning of the existing purps to facilitate a more controlled dosing of odour abatement chemical. An odour abatement system to be installed in the Oil filter and Centritige room. The existing extraction system will be redeployed. The extraction system employs an electrostatic precipitation filter to remove oil fume present from the extracted airstream therefore removing odour. Tractment options were reviewed, the electrostatic lifter did not prove to be as effective as a carbon filter. This carbon filter is now	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete Complete Complete	Divert rain water from the roof of the export shed to the truck power washer. Builts which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent treatment area is over 20 years oid and becoming past its servicable life. Replace the interceptor in tank farm with improved model with sealed lids. The replacement interceptor will also see the recommissioning of the existing pump to facilitate a more controlled dosing of dour abatement chemical. An odour abatement servicing existing existing entorys an electrostatic precipitation filter to remove in liber and Centrostatic precipitation filter to remove in gloace. This action is complete however will be decked continuously.	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete Complete	Divert rain water from the roof of the export shed to the truck power washer. Bubs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abstement equipment for the drying tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abstement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent tratement are is over 20 years oid and becoming past its serviceable life. Replace the interceptor in tank farm with improved model with seaded lifs. The replacement interceptor will also see the recommissioning of the existing pump to facilitate a more controlled dosing of odour abatement chemical. An odour abatement system to be installed in the Oil Filter and Centrifuge room. The existing extraction system will be cardophord: The extraction system employs an electrostatic frecipitation filter to remove oil fume present from the extraction system employs an electrostatic filter did not prove to be as effective as a cardon filter. This carbon filter is now in place. This action is complete however will be checked continuously.	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE Operations Operations	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete Complete Complete	Divert rain water from the roof of the export shed to the truck power washer. Bulbs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Casea Ari Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters increased odour asassesments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent treatment area is over 20 years oil and becoming past its servicable life. Replace the interceptor in tank farm with improved model with sealed lids. The replacement interceptor will also see the recommissioning of the existing purpt of facilitate a more controlled dosing of odour abatement chemical. An odour abatement system to be installed in the Oil lifter and Centrifuge room. The existing extraction system will be redeployed. The extraction system employs an electrostatic precipitation filter to remove oil fume present from the extracted airstream therefore removing odour. Treatment options were reviewed, the electrostatic lifter did not prove to be as effective as a carbon filter. This carbon filter is ow in place. This action is complete however will be checked continuously.	HSE & Operations HSE & Operations HSE & Operations HSE & Operations HSE Operations Operations Operations	Improved Environmental Management Practices
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete Complete Complete Complete	Divert rain water from the roof of the export shed to the truck power washer. Builts which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effluent treatment area is over 20 years old and becoming past its servicable life. Replace the interceptor in tank farm with improved model with sealed lids. The replacement interceptor will also see the recommissioning of the existing pump to facilitate a more controlled dosing of dour abatement chemical. An odour abatement system to be installed in the Oil filter and Centrostatic precipitation filter to remove in glace. This action filter. This carbon filter is now in place. This action is complete however will be decked continuously. The engagement of external consultants to carry out ohour assessments has been in lace since January 16. This is an interim while improvement programmes are being incomented.	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations HSE Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions
Waste reduction/Raw material usage efficiency	Consider additional rain water harvesting/storage for additional use for Enva tankers. Review lighting onsite in order to determine where motion sensors can be installed in order to reduce energy consumption.	Complete On-going Pending licence review Complete On-going Complete Complete Complete Complete Complete Complete	Divert rain water from the roof of the export shed to the truck power washer. Buibs which have ome to their end of life have been replaced with Low wattage LED lights but inside and outside. Motion sensors have been installed in areas/rooms where deemed safe to do so. This is an ongoing project as there are numerous lights in the facility, replacements will occur as they come to end of life. Review and determine suitable odour abatement equipment for the drying tanks and submit for approval to the Agency Cease Air Sparaging on drying tanks until suitable odour abatement equipment is installed Reduce potential odours arising from the tank farm by sealing lids and ducting the vents from the tanks to ground level odour abatement filters Increased odour assessments daily The existing interceptor in the tank farm used to separate prevent oil being transferred to the effleent treatment area is over 20 years old and becoming past its serviceable life. Replace the interceptor in tank farm with improved model with sealed lids. The replacement interceptor will also see the recommissioning of the existing pump to facilitate a more controlled dosing of odour abatement chemical. An odour abatement system to be installed in the Oil Filter and Centrifuge room. The existing extraction system will be receptoyed. The existing extraction system wills are achon filter. This carbon filter to remove oil funce present from the extraction system therefore removing odour. Treatment options were reviewed, the electrostatic filter di ont prove to be as effective as a carbon filter. This carbon filter is now in place. This action is complete however will be dodur assessments has been in place since January 16. This is an interim while improvement programmes are being implemented.	HSE & Operations HSE & Operations HSE & Operations HSE & Operations Operations Operations Operations HSE Operations HSE	Improved Environmental Management Practices Improved Environmental Management Practices Increased compliance with licence conditions Increased compliance with licence conditions Increased compliance with licence conditions

Noise monitoring summary report	Lic No:	W0184-01	Year 20
A MARK STATE OF A		Voc	1
1 was note monitoring a licence requirement for the ACR period /		165	1
If yes prease nil in table N1 noise summary below	Maina		1
2 Was noise monitorine carried out using the EPA Guidance note, including completion of the	Guidance	Yes	
"Checklist for noise measurement report" included in the guidance note as table 6?	note NG4		
3 Does your site have a noise reduction plan		No	
4 When was the noise reduction plan last updated?		Enter date	
5 Have there been changes relevant to site noise emissions (e.g. plant or operational changes) since survey?	the last noise	No	

Table N1: Not	se monitorine se	ummary				1					
Date of monitoring	Time period	Noise location (on site)	Noise sensitive location -NSL (if applicable)	LA	LA _{ND}	LA _{CO}	LA _{nan}	Tonal or Impulsive noise* (Y/N)	If tonal /impulsive noise was identified was 5dB penalty applied?	Comments (ex. main noise sources on site, & estraneous noise ex. road traffic)	ts <u>site</u> compliant with noise limits (day/evening/night)?
19.10.15	164	NI	No	53	45	55	62	No		Erwa activity included: webicke movement. Offsite Noise: 3 trains and 4 cars pass neutry, distant traffic noise and construction noise (drilling) in noise failing facility are dominant noise (in absence of vehicle incovernent 4c.)	Yes
21.10.16	11.38	N1	No	52	46	53	60	No		Erwa activity included: webicle movement (3 HGVs in/out), hand held tools being used. Offsite Noise: 1 trains pass nearby, distant traffic noise.	Yes
21 10 16	12.11	NI	No	50	45	52		No		Erva activity included: whicle movement (1 HOV in/out), hand held tools being used. Office Noise: 1 trains pars nearby, distant traffic noise, construction noise (drilling) in naiebhourine farillin.	Yes
10.10.15	2133	NI	No	44	41	46	53	No		Traffic and industrial noise to the south is dominant. Enva activity: very low hum from sorting area	Yes
21.10.16	0.03	N1	No	44	41	45	49	No		Traffic and industrial noise to the south is dominant. Enva activity: very low hum from sorting area	Yes
10.10.16	1914	80	No		10			No		Omile noise/activity: low his from tank farm, vehicle movements (1 HGV). Offike noise/activity: HGV movement and hum from air handling unit in neighbouring facility. Disant traffic noise, train beeps in distance.	Yes
19.10.15	13.14	82	NO	32	30		39	No		Omite noise/activity: whicle movements (1 car, 2 vans, forkift). Offste noise/activity: HOV and car movement and hum from air handling unit in neighbouring facility. Distant traffic noise	Yes
19 10 15	14.15	N2	No					No		Onsite noise/activity: boiler, low hiss from tank farm, webicle movements (2 HSV). Offste noise/activity: HSV movement and hum from air handling unit in neighbouring facilty. Disant harfic noise, helicopter noseneat	Yes
10.10.16		20	No		50			No		Dominant noise industrial facility and distant traffic to the south, helicopter passes overhead. Boiler noise audible south or noise audible south or noise audible	Yes
19.10.15	22.42	N2	No	51	51	52	54	No		Dominant noise industrial facility and distant traffic to the south. Boiler noise audible ornite occasionally.	Yes
19.10 15	14.94	N3	No	,,	34	24		No		Onsite noise/activity: activity in sorting area, forkillt in distance Distant traffic noise, 3 trains nass	Yes
10 10 15	15.15	N3	Na	40	34	43	50	No		Onsite noise/activity: activity in sorting area, forkilft in distance. Distant traffic noise. 2 trains pass. train beams	Yes

19.10.15	15.46	N3	No	45	35	43	58	No		Onsite noise/activity: activity in sorting area, forkift in distance. Distant traffic noise. 2 trains pass.	Yes
19.10.15	22.20	N3	No	37	34	38	42	No		Dominant noise: Distant traffic noise and train passess. No noise audible from from.	Yes
19.10.15	22.50	N3	No	37	34	38	43	No		Dominant noise: Distant traffic noise and train passess. No noise audible from Erwa.	Yes
21.10.16	13.40	144	No	57	48	60	66	No		Dominant noise: crane movement and alarm in train yard, distant traffic is dominant is absence of passing traffic. Traffic: approximately 50 cars, 20 vans pass, 1 MGVs. Erws is not audible at this location.	Yes
21.10.16	141	N4	No	55	47	58	65	No		Dominant noise: crane movement and alarm in train yard, distant traffic is dominant is absence of passing traffic. Traffic: approximately 40 cars, 20 vans pass. Enva is not audible at this location.	Yes
21.10.16	14.41	14	No	56	46	60	66	No		Dominant noise: crane movement and alarm in train yard, distant traffic is dominant is absence of passing traffic. Traffic: approximately 50 cars, 15 vans pass. Enva is not audiole at this location.	Yes
19.10.15	0.15	164	No	39	35	40	45	No		Dominant noise: distant traffic and industrial noise to the south. Enva is not audible at this location.	Yes
19 10 15	0.45	244	No	38		\$	44	No		Dominant noise: distant traffic and industrial noise to the south. Enva is not audible at this location	Yes
19.10.15	16.25	ю	No	53	44	54	62	No		Distant traffic noise and drilling in neighbouring fadilhy dominant noise. 4 cars and 3 trains pass nearby. Audible Enva activity onitie: whicle movement (5 HGVs iv/out).	Yes
21.10.16	10.52	15	No	52	46	53	63	No		Distant traffic noise and drilling in neighbouring facility dominant noise.1 train passes nearby. Audity sonite: forkift, sawing, vehicle movement (3 HOVs in/out).	Yes
21.10.16	11.24	Nő	No	51	47	52	59	Yes		Distant traffic noise and drilling in neighbouring facility dominant noise. 1trains pass nearby. Audble Enva activity onsite: vehicle movement (1 HOVs infout).	Yes
19.10.15	23.34	NS	No	44	40	46	55	No		Industrial noise to the south and traffic to the west dominant, 1 train passes. No noise audible from Enva.	Yes
19.10.15	0.04	NS	No	43	40	40	50	No		Industrial noise to the south and traffic to the west dominan. No noise audible from Enva.	Yes
*Finale encare	that a tonal analysis has b If m	ees carred aut as per p cise limits exceed	sidece rate NGL The	noise attribu	nantaned on	te for future inque	ase choose the	e corrective action from	the following options?	SELECT	

** glasse eqtian the reason for not taking action/vesolution of notes issues? Any additional comments? (see than 200 works)

lesource Usa	age/Energy et	fficiency summary	,
--------------	---------------	-------------------	---

Lic No:	W0184-01
LIC NO.	**010+01

Year

2015

Additional information

1 When did the site carry out the most recent energy efficiency audit? Please list the recommendations in table 3 below

Is the site a member of any accredited programmes for reducing energy usage/water conservation such Industry Energy as the SEAI programme linked to the right? If yes please list them in additional information 2

Where Fuel Oil is used in boilers on site is the sulphur content compliant with licence conditions? Please state percentage 3 additional information

		Additional information
table 3 below	Jan-07	
<u>SEAI - Large</u> Industry Energy		
Network (LIEN)	No	
ite percentage in		
	Yes	

Table R1 Energy usag	e on site			
Energy Use	Previous year	Current year	Production +/- % compared to previous reporting year**	Energy Consumption +/- % vs overall site production*
Total Energy Used (MWHrs)	5243.756	6117.914	16.6704553	
Total Energy Generated (MWHrs)				
Total Renewable Energy Generated (N	/WHrs)			
Electricity Consumption (MWHrs)	475.406	477.312	0.400920476	
Fossil Fuels Consumption:				
Heavy Fuel Oil (m3)				
Light Fuel Oil (m3)	0	41		
Natural gas (m3)	437348.069	471955.3	7.912972173	
Coal/Solid fuel (metric tonnes)				
Peat (metric tonnes)				
Renewable Biomass				
Renewable energy generated on site				

* where consumption of energy can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year.

** where site production information is available please enter percentage increase or decrease compared to previous year

Table R2 Water usag				Water Emissions	Water Consumption		
						Volume used i.e not	
			Production +/- %	Energy		discharged to	
			compared to	Consumption +/- %	Volume Discharged	environment e.g.	
	Water extracted	Water extracted	previous reporting	vs overall site	back to	released as steam	
Water use	Previous year m3/yr.	Current year m3/yr.	year**	production*	environment(m ³ yr):	m3/yr	Unaccounted for Water:
Groundwater							
Surface water							
Public supply	19579	15458	-21.0480617				
Recycled water							
Total							

* where consumption of water can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year.

** where site production information is available please enter percentage increase or decrease compared to previous year

Table R3 Waste Stream					
	Total	Landfill	Incineration	Recycled	Other
Hazardous (Tonnes)					
Non-Hazardous (Tonnes)					

Resource	e Usage/Energy efficiency sum	nmary			Lic No:	W0184-01		Year	2015
	Table R4: Energy Au	dit finding recommenda	tions						
	Date of audit	Recommendations	Description of Measures proposed	Origin of measures	Predicted energy savings %	Implementation date	Responsibility	Completion date	Status and comments
	Jan-07	Decrease MIC level.	Reduce the MIC to 200 KVA.	energy audit	N/A	Jan-07	Operations	Complete	Complete
	Jan-07	Power Factor Correction.	Eliminate excess wattless charges.	energy audit	N/A	Jan-07	Operations	Complete	Complete
		Optimise Compressed	Reduce Compressed					The compressed air was reduced, however this delayed the process and increased processing costs, i.e. more energy was	
	Jan-07	Air Systems.	Air.	energy audit	7	Jan-07	Operations	required.	Obsolete
			Locate outside the building in order to reduce the temperature of the air, in order to						
	lan-07	Relocation of new air compressor and air receiver	increase the compressor efficiency	energy audit	N/A	lan-07	Operations	Complete	Complete
	Jan-07	Lighting Controls.	Install PIR sensors through-out the site in order to reduce electricity usage.	energy audit	N/A	Jan-07	Operations	Complete	Complete
	Jan-07	Good energy housekeeping.	Improve efficiency.	energy audit	N/A	Jan-07	Operations	Installed lagging, heat tracing on oil and on water lines.	Complete
	Jan-07	Steam Pressure Reduction.	Reduce steam pressure form 10 bar to 6 bar.	energy audit	2	Jan-07	Operaions	Steam pressure was reduced to 6 bars, but due to the process inefficiency, the steam pressure was increased to 7.5 bars.	Complete

Table R5: Dower Concration: Where newer is generated ensite (e.g. newer generation)	tacilities (tood and drink industry) place complete the following information
TAVIE IN, FUWEL GENELATION, WHELE DOWEL IS SELECTIED UTSILE TES, DOWEL SELECATION	יוויטווועבא/וטטע מווע עוווא ווועעאנדעזעכמאב נטווועובנב נווב וטווטאוווצ ווווטווומנוטוו

	Unit ID	Unit ID	Unit ID	Unit ID	Station Total
Technology					
Primary Fuel					
Thermal Efficiency					
Unit Date of Commission					
Total Starts for year					
Total Running Time					
Total Electricity Generated (GWH)					
House Load (GWH)					
KWH per Litre of Process Water					
KWH per Litre of Total Water used on	Site				

Resource Usage/Energy efficiency summary	Lic No:	W0184-01	Year	2015

Complaints and Incidents summary template	Lic No:	W0184-01	Year	2015
 Complaints				
	mation			

Yes

Have you received any environmental complaints in the current reporting year? If yes please complete summary details of complaints received on site in table 1 below

Table 1 Complaints summary	
Brief description of	
complaint (Free txt <20 Corrective action< 20	Further
Date Category Other type (please specify) words) words Resolution status Resolution	date information
The Agency opened	
Compliance Investigation	
Cl001037 in relation to	
odours emitting from	
Enva Ireland Portlaoise.	
Enva have indentified	
odour sources on site	
Complaints have been and have implemented	
received in relation to controls to mitigate	
odurs emitting from odour nuisances.	
Enva ireland's Portlaoise information in relation	
Tacility. The first of these to corrective actions	
04.06.15 to complaints was reveived have been uploaded to	
31.12.15 Udour On 04.06.15 EDEN under Cl001037 Ongoing This is pro	ority
SELECT SELECT	
CELECT SLEEC	
Total complaints	
open at start of	
reporting year U	
Total new constraints	
Complements considered during	
received during	
Total conditions	
losed during All complaints remain onen as	
coold during an complete statement open as	
Ralance of	
complaints end of All complaints remain open as	
reporting year part of CI001037	

	Incidents				Ι
				Additional inform	ation
Have any incidents occurred on site in the current rep year in Ta	orting year? Please list all incid ble 2 below	lents for current reporting	Yes]
*For information on how to report and what constitutes an incident	What is an incident				-
Table 2 Incidents summary					
			1		Other

						Other	Activity in				Preventative			
			Incident category*please			cause(please	progress at time			Corrective action<20	action <20		Resolution	Likelihood of
Date of occurrence	Incident nature	Location of occurrence	refer to guidance	Receptor	Cause of incident	specify)	of incident	Communication	Occurrence	words	words	Resolution status	date	reoccurence

Complaints and	Incidents summary templat	e			Lic No:	W0184-01		Year	2015	,				
Complaints and	Other(please specify)	e 5W-01	1. Minor	Water	Ut No: Other (add details)	W0184-01 Trigger level breach not reported to Agency at time of incident.	Normal activities	Year EPA	2015 New	The limit values are recorded on all worksheets to highlight exceedances of the limits The site was evacuated and Gardai were called. Ordinace was called and the suspicious package was made safe. (This was investigate and the	The limit values are recorded on all worksheets to highlight any exceedance of the limits and the procedure is updated for lab staff to report any exceedance to operations manager The site was evacuated and Gardai were called. Ordinace was called and the suspicious package was made safe. (This was investigate and the device was used for	Complete	12.01.16	Low
		Other location (plance			Other (add	located in a				device was used for	practice drills		ļ	
10.00 45	Other (allow and if)	Other location (please	4 440.00	Crownel	Other (add	located in a wheelie bin			N	device was used for practice drills at the this sector	practice drills at the ship	Complete	16.06.16	1

Complaints and	Incidents summary templa	te			Lic No:	W0184-01		Year	2015			
	SELECT	SELECT	SELECT	SELECT	SELECT		SELECT	SELECT	SELECT		SELECT	SELECT
	SELECT	SELECT	SELECT	SELECT	SELECT		SELECT	SELECT	SELECT		SELECT	SELECT
otal number of												
ncidents current												
ear	2											
otal number of												
ncidents previous												
ear	2											
6 reduction/												
ncrease	0											

WASTE SUMMARY	Lic No:	W0184-01	Year	2015
SECTION A-PRTR ON SITE WASTE TREATMENT AND WASTE TRANSFERS TAB- TO BE COMPLETED BY	ALL IPPC AND WASTE FACILITIES	PRTR facility logon	dropdown li	ist click to see options

SECTION B- WASTE ACCEPTED ONTO SITE-TO BE COMPLETED BY ALL IPPC AND WASTE FACILITIES		
		Additional Information
Were any wastes accepted onto your site for recovery or disposal or treatment prior to recovery or disposal within the boundaries of your facility ?; (waste generated within your boundaries is 1 to be captured through PRTR reporting)	Yes	
If yes please enter details in table 1 below		
 y = preserve and example a consignments of wasta in the current reporting war? If we place give a brief avalanation in the additional information 	No	
	110	

3 Was waste accepted onto your site that was generated outside the Republic of Ireland? If yes please state the quantity in tonnes in additional information Table 1 Details of waste accepted onto your site for recovery, disposal or treatment (do not include wastes generated at your site, as these will have been reported in your PRTR workbook)

	, ,	<i>n</i> 1			v	,					
Licenced annual	EWC code	Source of waste accepted	Description of waste	Quantity of waste	Quantity of waste accepted in	Reduction/	Reason for	Packaging Content (%)-	Disposal/Recovery or	Quantity of	Comments -
tonnage limit for your			accepted	accepted in current	previous reporting year (tonnes)	Increase over	reduction/ increase	only applies if the	treatment operation carried out	waste	
site (totai			Please enter an	reporting year (tonnes)		previous year +/ -	from previous	waste has a packaging	at your site and the description	remaining on	
tonnes/annum)			description which			/6	reporting year	component	of this operation	of reporting	
			applies to relevant FWC							vear (tonnes)	
			code							year (connes)	
	European Waste Catalogue EWC codes		European Waste							1	
	<u> </u>		Catalogue EWC codes							1	
-											
										1	
							Increase/decrease in			1	
							the tonnages of			1	
							waste accepted in			1	
							2015 compared to			1	
							2014, was subject to			1	
							the quantity of			1	
							waste made			1	
							available to Enva			1	
							Ireland. In some			1	
							mistances some			1	Enva Ireland does
							excented onsite that			1	not currently
							were not accepted			1	record the
		13- OIL WASTES AND WASTES					in previous years.			1	packaging
		of LIQUID FUELS (except								1	content of waste
110.000 tons	13 02 08	chapters 05, 12 and 19)	Waste oil	17852.46	16047.13	11.25017371		N/A	R9-Oil re-refining or other reuses	3359.35	site
										1	
							Increase/decrease in			1	
							the tonnages of			1	
							2015 compared to			1	
							2013 compared to 2014, was subject to			1	
							the quantity of			1	
				70.40			waste made			1	
				72.12			available to Enva			1	
							Ireland. In some			1	
							instances some			1	Enva Ireland does
							wastes were			1	not currently
	1					1	excepted onsite that	1		1	record the
	1	13- OIL WASTES AND WASTES				1	were not accepted	1		1	packaging
	1	OF LIQUID FUELS (except				1	in previous years.	1		1	content of waste
		edible oils, and those in				1				1	as it arrives on-
1	13 07 01	chapters 05, 12 and 19)	Diesel and Fuel oil	1	663.68	-89.13271456	1	N/A	R9-Oil re-refining or other reuses	0	site

WASTE SUMMARY	1			-	Lic No:	W0184-01		Year	2015	
		13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in		398.52			Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives on-
	13 05 03	chapters 05, 12 and 19)	Interceptor sludges		132.69	200.3391363		N/A	R9-Oil re-refining or other reuses	721.89 site
	13 08 02	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Other emulsions	234.76	33.64	597.8596908	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R9-Oil re-refining or other reuses	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
	13.05.01	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters (5-12 and 19)	Solids from grit chambers and oil/water senantions	366.8	180.06	-3 539683375	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R5-Recurling/reclamation or othe	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0, site

WASTE SUMMARY	1			-	Lic No:	W0184-01		Year	2015	-
		13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in	Woste not oherwise	11.26			Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives on-
	13 08 99	chapters 05, 12 and 19)	specified		1.26	793.5714286		N/A	R13-Storage of waste pending an	0 site
	13 01 13	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Other hydraulic oils	5.43	4.51	20.31042129	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R9-Oil re-refining or other reuses	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
	13.05.08	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Mixtures of waste from grit chambers and oil / water semantors	75.91	10.04	593 8756856	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	NA	R9-Oil re-refining or other reuses	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site

WASTE SUMMAR	Y				Lic No:	W0184-01		Year	2015	
	13 02 05	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Mineral based non- chlorinated engine, gear and lubricatina oils	0	5.48	-100	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R9-Oil re-refining or other reuses	Enva Ireland da not currently record the packaging content of was as it arrives on- 0 site
	08 01 13	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARINSHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	Sludges from paint or varnish containing organic solvents or ather dangerous substances	18.15	18.28	-0.711159737	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	Enva Ireland da not currently record the packaging content of was as it arrives on- 0 site
	08 04 13	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	Aqueous sludges containing adhesive or sealants containing arganic solvents or other dangerous substances		3.77	-100	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pendina an	Enva Ireland da not currently record the packaging content of was as it arrives on- 0 site

WASTE SUMMARY		-			Lic No:	W0184-01		Year	2015	
		20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTONAL WASTES) INCLUDING SEPARATELY					Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the pockaging content of waste as it arrives on-
	20 01 21	COLLECTED FRACTIONS 16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	Fluorescent tubes	2.52	641.62	38.46153846 8.603223092	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	0.15 site Enva Ireland does not currently record the packaging content of waste os it arrives on- 27.16 site
	17.05.03	17- CONSTRUCTION AND DEMOLITION WASTES (INCLUDING EXCAVATED SOIL FROM CONTAMINATEP SIFE)	Soil and stone containing	5,745.00	1583 92	262 7079019	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	85-Recurling/reclamation or othe	Enva Ireland does not currently record the packaging content of waste as it arrives on- 6014 68 size

WASTE SUMMAR	Y		-		Lic No:	W0184-01		Year	2015		
				686.75			Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.				Enva Ireland does not currently record the packaging content of waste
	16 06 01	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	Lead batteries		995.79	-31.0346559		N/A	R13-Storage of waste pending an	25.71	as it arrives on- site
	15 02 02	15- WASTE PACKAGING; ABSORBENTS, WIPING CLOTHS, FILTER MATERIALS AND PROTECTIVE CLOTHING NOT OTHERWISE SPECIFIED	Absorbents, filter materials (including oil filters not otherwise specified), wiping cloths, protective clothing contaminated by dangerous substances	436.179	420.452	3.740498321	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	37.2	Enva Ireland does not currently record the packaging content of waste as it arrives on- site
	16 07 08	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	Waste containina oil	34.568	40.219	-14.05057311	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending on	,	Enva Ireland does not currently record the pockaging content of waste as it arrives on- site

WASTE SUMMAR	RΥ				Lic No:	W0184-01		Year	2015		
				8.91			Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Envi not recc paci coni	va Ireland does t currently cord the ckaging thent of waste
	16.01.13	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	Brake fluids		7.99	11 47684606		N/4	R13-Storage of waste pending on	as it O site	it arrives on-
	13 07 03	13- OIL WASTES AND WASTES OF I/QUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Other fuels (including mixtures)	127.50	166.79	-23.55596858	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	Envv not recc com as it 38.5 site	va Ireland does t currently cord the ckaging ntent of waste it ar over some e
	13.07.02	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05–12 and 19)	Petrol	19.68	656	200	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	Envi not recc paci coni a sit 0 site	va Ireland does t currently cord the ckaging thent of waste it arrives on-

WASTE SUMMA	ARY		•	-	Lic No:	W0184-01	•	Year	2015		
	16 05 04	16- WASTES NOT OTHERWISE SPECIFIED IN THE INT	Gases in pressure containers (including halons) containing danaerous substances	31.12	21 55	44 39907/193	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Stanage of waste pending on	Ε η η ρ ο ο ο	Enva Ireland does not currently ecord the backaging content of waste ns it arrives on- ite
	08 01 11	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARIISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	Waste paint and varnish containing organic solvents or other dangerous substances	657.84	462.68	42.17925996	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R5-Recycling/reclamation or othe	E F C 225.65 S	Enva Ireland does not currently ecord the packaging sontent of waste ss it arrives on- ite
	09.01.02	09- WASTES FROM THE PHOTOGRAPHIC INDIVESTOR	Water-based offset	1.71	1.65	3 636362626	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	D15-Storage pending any of the c	Ε η η ο ο ο	Enva Ireland does not currently ecord the sackaging ontent of waste ss it arrives on- ite

WASTE SUMMAR	ſ				Lic No:	W0184-01		Year	2015	
		15- WASTE PACKAGING; ABSORBENTS, WIPING CLOTHS, FILTER MATERIALS AND PROTECTIVE CLOTHING NOT	Packaging containing residues of or containing	128.68			Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives on-
	20 01 27	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	dangerous substances Paint, inks, adhesives and resins containing dangerous substances	20.35	0.82	2382.073171	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	NA	R13-Storage of waste pending an	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
	08 04 09	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARIISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	Waste adhesives and sealants containing organic solvents or other dangerous substances	0.199	3.01	-93.38870432	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
WASTE SUMMARY	1	•		-	Lic No:	W0184-01	•	Year	2015	
---------------	----------	---	---	-------	---------	--------------	--	------	---------------------------------	--
	16.05.06	16- WASTES NOT OTHERWISE	Laboratory chemicals, consisting of or containing dangerous substances, including mixtures of dangerous chemical	11.82		6 114796714	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	NA	813 Storage of warts panding an	Enva Ireland does not currently record the packaging content of waste as it arrives on-
	16 05 08	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	Discarded organic chemicals consisting of or containing dangerous substances	22.62	6.9	-0.214283714	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	Enva Ireland does not currently record the packaging content of waste as it arrives on- 8 site
	17.02.04	17- CONSTRUCTION AND DEMOLITION WASTES (INCLUDING EXCAVATED SOIL FROM CONTAMINATED STFE)	Glass, plastic and wood containing or contaminated with danaerous substances		0.13	-100	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Stanage of waste pending on	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site

WASTE SUMMARY	1		•		Lic No:	W0184-01		Year	2015	-
		08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MRSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND	Waste ink containing				Increase/decrease in the tonnages of waste accepted in 2015, compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives on-
	08 03 12	PRINTING INKS	dangerous substances	17.924	18.624	-3.758591065	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	<u>N/A</u>	R13-Storage of waste pending an	0 site Enva Ireland does not currently record the packaging content of waste as it arrives on-
	20.01.19	CHEMICAL PROCESSES 20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTE PRACTIONS	hydroxide Pesticides	0.66	2.029	2175.862069	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	<u>N/A</u>	D15-Storage pending any of the o	0.66 site Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site

WASTE SUMMAR	ſ				Lic No:	W0184-01		Year	2015	
		10- WASTES FROM THERMAL					Increase/decrease in the tonnages of waste accepted in 2015, compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives on-
	10 01 04 06 03 15	PROCESSES 06- WASTES FROM INORGANIC CHEMICAL PROCESSES	Oil fly ash and boiler dust	0.37	6.35	-99.86879433	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	<u>N/A</u>	R5-Recycling/reclamation or othe	0 site Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
	16 01 14	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	Antifreeze fluids containing dangerous fluids	10.26	41.17	-75,07894098	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste gending on	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site

WASTE SUMMAR	Y				Lic No:	W0184-01		Year	2015	
	2001.14	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY OUI FOTE PERCTIONS	Acids	661	0.54	686 9047619	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	813-Stange of waste pending on	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
	13 01 10	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Mineral based non- chlorinated hydraulic oils	2.75	4.02	-31.5920398	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R9-Oil re-refining or other reuses	Enva Ireland does not currently record the packaging content of waste as it arrives an- 0 site
	19 11 05	19- WASTES FROM WASTE MANAGEMENT FACILITIES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE PREPARATION OF WATER INTENDED FOR HUMAN CONSUMPTION AND WATER FOR INDUSTRIAL USE	Sludges from onsite effluent treatment containing dangerous substances	o	4	-100	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pendina an	Enva Ireland does not currently record the packaging content of waste as it arrives an- 0 site

WASTE SUMMAR	Y				Lic No:	W0184-01		Year	2015	
	08 03 13	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARIISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	Waste ink other than those mentioned in 08.03.12	13.53	3.45	292.1449275	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending on	Enva Ireland does not currently record the packaging content of waste as it arrives an- 0 site
	08 03 08	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARVISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	Aqueous liquid waste containing ink	11.37	6.39	77.91862285	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	NA	R13-Storage of waste pending on	Enva Ireland does not currently record the packaging content of waste as it arrives an- 0 site
	16 01 12	16- WASTES NOT OTHERWISE SPECIFIED IN THE INT	Brake pads other than those mentioned in 16.01.11	17.983	22 428	-19,81897628	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending on	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site

WASTE SUMMARY		-			Lic No:	W0184-01		Year	2015	
		20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY		62.077			Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives an-
	20 01 25	COLLECTED FRACTIONS	edible oil and fat aqueous liquid wastes other than those mentioned in 16 10 01	3.96	69.47	-10.64200374 -10.64200374 	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	11 site Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
	08.01.12	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITROUS ENAMELS, ADHESIVES, SEALANTS AND PRINTING INKS	waste paint and varnish ather than those mentioned in 88.01.11	20.63	16.05	21,71091445	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	813-Storage of waste pending on	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site

WASTE SUMMAR	Y				Lic No:	W0184-01		Year	2015	
		16- WASTES NOT OTHERWISE	antifreeze fluids other than those mentioned in	184.28			Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives an-
	16 01 15 16 05 05	SPECIFIED IN THE LIST 16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	gases in pressure containers other than those mentioned in 16 05 04			-100	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an	0 site Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
	16.05.05	16- WASTES NOT OTHERWISE SPECIFIED IN THE UST	other batteries and	0.425	0.388	9.536082474	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	813-Storage of waste pending on	Enva Ireland does not currently record the packaging content of waste as it arrives on- 738 size

WASTE SUMMAR	Y			-	Lic No:	W0184-01	-	Year	2015	
		16- WASTES NOT OTHERWISE	discarded chemicals other than those mentioned in 16 05 06,				Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives on-
	20 01 40	SPECIFIED IN THE LIST 20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	16 05 07 or 16 05 08 Metals	0.04	2.11	-98.1042654 -1.63213947	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	<u>N/A</u>	R13-Storage of waste pending an R13-Storage of waste pending an	0 site Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
	17.05.04	17- CONSTRUCTION AND DEMOLITION WASTES (INCLUDING EXCAVATED SOIL FROM CONTAMINATED SIFF)	soil and stones other than those mentioned in 1705 03		80.54	-100	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R5-Recycling/reclamation or othe	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site

WASTE SUMMARY				-	Lic No:	W0184-01		Year	2015	
		16- WASTES NOT OTHERWISE	components not				Increase/decrease in the tonnages of waste accepted in 2015, compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives on-
	16 01 22 19 09 04	19- WASTES FROM WASTE MANAGEMENT FACILITIES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE PREPARATION OF WATER INTENDED FOR HUMAN CONSUMPTION AND WATER FOR INDUSTRIAL USE	otherwise specified	0.22	0.47	-53.19148936 -53.52322738	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva instances some wastes were excepted onsite that were not accepted in previous years.	<u>N/A</u>	R13-Storage of waste pending an	0 site Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
	13 03 10	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chaoters 05, 12 and 19)	other insulating and heat transmission oik		392	-100	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	NA	R9-Oil re-refining or other reuses	Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site

WASTE SUMMARY	ſ				Lic No:	W0184-01		Year	2015	
		13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in	sludges from oil/water				Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives on-
	13 05 02	chapters 05, 12 and 19) 13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	separators oily water from oil/water separators	22.36		-77.90513834 #DIV/01	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	NA	R5-Recycling/reclamation or othe	0 site Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
	13 03 07	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	mineral-based non- chlorinated insulating and heat transmission oil	2 04	a	#DIV/01	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	NA	R9-Oil re-refining or other reuses	Enva Ireland does nat currently record the packaging content of waste as it arrives on- 0 site

WASTE SUMMAR	Y				Lic No:	W0184-01		Year	2015	
		13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in					Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Enva Ireland does not currently record the packaging content of waste as it arrives on-
	08 01 17	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	synthetic hydraulic oils waste from paint or varnish removal containing organic solvents or other dangerous substances	1.45	0	#DIV/01 #DIV/01	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	NA	R13-Storage of waste pending an R13-Storage of waste pending an	0 site Enva Ireland does not currently record the packaging content of waste as it arrives on- 0 site
	07.05.11	07- WASTES FROM ORGANIC CHEMICAL PROCESSES	sludges from onsite effluent treatment containing dangerous substances	3.96	0	#DIV/01	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Stanage of waste pending on	Enva Ireland does not currently record the packaging content of waste as it arrives an- 3.9 6 size

WASTE SUMMAR	Y		-		Lic No:	W0184-01		Year	2015	
		16- WASTES NOT OTHERWISE	alkaline batteries				Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quanity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.			Enva Ireland d not currently record the packaging content of was as it arrives on-
	16 06 04	SPECIFIED IN THE LIST 18- WASTES FROM HUMAN OR ANIMAL HEALTH CARE AND/OR RELATED RESEARCH (except kitchen and restaurant wastes not arising from immediate RESEARCH (except kitchen and restaurant wastes not arising from immediate health care)	(except 16 06 03) medicines other than those mentioned in 18 01 08	0.1	0	#DIV/01 #DIV/01	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending an R13-Storage of waste pending an	0 site Enva Ireland da not currently record the packaging content of was as it arrives on- 0 site
	20 01 28	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTE PRACTIONS	paint, inks, adhesives and resins other than those mentioned in 20 0127	0.28	0	#DIV/01	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	NA	R13-Storage of waste gending on	Enva Ireland da not currently record the packaging content of was a si to arrives on- 0 site

WASTE SUMMARY					Lic No:	W0184-01		Year	2015		
	20 03 03	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	Streat cleaning residues	15.14		#DIV/0!	Increase/decrease in the tonnages of waste accepted in 2015 compared to 2014, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R5-Recycling/reclamation or athe	0	Enva Ireland does not currently record the packaging content of waste as it arrives on- site

SECTION C-TO BE COMPLETED BY ALL WASTE FACILITIES (waste transfer stations, Composters, Material recovery facilities etc) EXCEPT LANDFILL SITES

4 is all waste processing infrastructure as required by your licence and approved by the Agency in place? If no please list waste processing infrastructure required onsite

5 Is all waste storage infrastructure as required by your licence and approved by the Agency in place? If no please list waste storage infrastructure required on site

6 Does your facility have relevant nuisance controls in place?

7 Do you have an odour management system in place for your facility? If no why?

8 Do you maintain a sludge register on site?

SECTION D-TO BE COMPLETED BY LANDFILL SITES ONLY

Table 2 Waste type and tonnage-landfill only

Waste types permitted for disposal	Authorised/licenced annual intake for disposal (tpa)	Actual intake for disposal in reporting year (tpa)	Remaining licensed capacity at end of reporting year (m3)	Comments

Table 3 General information-Landfill only

Area ID	Date landfilling commenced	Date landfilling ceased	Currently landfilling	Private or Public Operated	Inert or non-hazardous	Predicted date to cease landfilling	Licence permits asbestos	Is there a separate cell for asbestos?	Accepted asbestos in reporting year	Total disposal area occupied by waste	Lined disposal area occupied by waste	Unlined area
										SELECT UNIT	SELECT UNIT	SELECT UNIT
Cell 8												

and a constraint of the state o	WASTE SUMMARY				Lic No:	W0184-01		Year
interological interview in the second	Table 4 Environmental monitoring-landfill	ly Landfill Manual-Monitoring Sta	ndards				•	•
	Was meterological monitoring in compliance with Landfill Directive (LD) standard in reporting year + with LD standard in reporting y	Was Landfill Gas monitored in compliance with LD standard ir r reporting year	Was SW monitored in compliance with LD standard in reporting year	Have GW trigger levels been established	Were emission limit values agreed with the Agency (ELVs)	Was topography of the site surveyed in reporting year	Has the statement under S53(A)(5) of WMA been submitted in reporting year	Comments

SELECT

.+ please refer to Landfill Manual linked above for relevant Landfill Directive monitoring standards

Table 5 Capping-Landfill only

				Area with waste that		
Area uncapped*	Area with temporary cap			should be permanently		
SELECT UNIT	SELECT UNIT	Area with final cap to LD		capped to date under		
SELECTONII	SELECT ONT	Standard m2 ha, a	Area capped other	licence	What materials are used in the cap	Comments

*please note this includes daily cover area

Table 6 Leachate-Landfill only

9 Is leachate from your site treated in a Waste Water Treatment Plant?

10 Is leachate released to surface water? If yes please complete leachate mass load information below

Volume of leachate in reporting year(m3)	Leachate (BOD) mass load (kg/annum)	Leachate (COD) mass load (kg/annum)	Leachate (NH4) mass load (kg/annum)	Leachate (Chloride) mass load kg/annum	Leachate treatment on-site	Specify type of leachate treatment	Comments

Please ensure that all information reported in the landfill gas section is consistent with the Landfill Gas Survey submitted in conjunction with PRTR returns

Table 7 Landfill Gas-Landfill only

Gas Captured&Tr by LFG System	rated n3 Pow	er generated (MW / KWh)	Used on-site or to national grid	Was surface emissions monitoring performed during the reporting year?	Comments
				SELECT	

Appendix 1

Enva Portlaoise

2015 Groundwater Compliance Monitoring Ouarter 1 (Jan – Mar 2015) Document Control Sheet

Client:	Enva Ireland Ltd.
Project Title:	Enva Portlaoise 2015 Groundwater Compliance Monitoring
Document Title:	Quarter 1 (Jan – Mar 2015)
Document No:	MDE0973Rp0022

Text Pages: 35 Appendices: -

Rev.	Status	Date	Author(s)		Reviewed By		Approved By	
D01	Draft	12 th March 2015	ZJ	Zuzane Jamrichora	MR	Pallahel	РС	Pallahel
A01	Client Approval	8 th April 2015	ZJ	Zuzane Jamrichora	CR	Cabron Rally	РС	Pallahel

This report takes into account the particular instructions and requirements of the Client. It is provided for sole use of the Client and its professional advisors. Information disclosed should be treated as being strictly private and confidential. Any use which a third party makes of this document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. No responsibility is accepted by RPS for the use of this Document, in whole or in part, for any other purpose.

TABLE OF CONTENTS

1		INTRODUCTION1
	1.1	BACKGROUND
	1.2	OBJECTIVES & SCOPE OF WORK
2		REVIEW OF PREVIOUS DATA
	2.1	INFORMATION SOURCES
	2.2	SITE SETTING
	2.3	REGIONAL SETTING
		2.3.1 Geology
		2.3.2 Hydrogeology
	2.4	SITE GROUND CONDITIONS
		2.4.1 Licence Conditions
3		METHODOLOGY
	3.1	LABORATORY ANALYSIS
	3.2	PRESENTATION & INTERPRETATION OF RESULTS
4		QUARTER 1 RESULTS MARCH 20159
5		DISCUSSION OF QUARTER 1 RESULTS
5	5.1	DISCUSSION OF QUARTER 1 RESULTS
5	5.1 5.2	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20
5	5.1 5.2 5.3	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21
5	5.1 5.2 5.3 5.4	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21
5	5.1 5.2 5.3 5.4 5.5	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21
5	5.1 5.2 5.3 5.4 5.5 5.6	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME24
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2	DISCUSSION OF QUARTER 1 RESULTS.20FIELD PARAMETERS.20RESULTS OF BTEX & MTBE.20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS.21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS.21RESULTS OF VOLATILE ORGANIC COMPOUNDS.22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME.27
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME276.2.1 Phenols27
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 1 RESULTS.20FIELD PARAMETERS.20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME276.2.1 Phenols276.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)28
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME276.2.1 Phenols276.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)286.2.3 Petroleum Hydrocarbons (TPH)32

LIST OF TABLES

Table 2.1 - Ground Conditions	4
Table 2.2 - Licence Parameters	5
Table 3.1 - Analytical Methodologies - I2 Analytical	6
Table 4.1 - Groundwater Levels (Quarter 1, 2015)	10
Table 4.2 - Results of Field Parameters Measured at each Groundwater Monitoring We	ll (Quarter 1,
2015)	11
Table 4.3 - Results of BTEX and MTBE	12
Table 4.4 - Results of Speciated PAHs	12
Table 4.5 - Results of Total Phenols	13
Table 4.6 - Results of Speciated Phenols	14
Table 4.7 - Results of Semi-Volatile Organic Compounds (SVOCs)	15
Table 4.8 - Results of Volatile Organic Compounds (VOCs)	17
Table 4.9 - Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)	19
Table 6.1 - Monthly Rainfall Data for Year 2009 for Oak Park, Carlow	26
Table 6.2 - Monthly Rainfall Data for Year 2010 for Oak Park, Carlow	26
Table 6.3 - Monthly Rainfall Data for Year 2011 for Oak Park, Carlow	26
Table 6.4 - Monthly Rainfall Data for Year 2012 for Oak Park, Carlow	26
Table 6.5 - Monthly Rainfall Data for Year 2013 for Oak Park, Carlow	26
Table 6.6 - Monthly Rainfall Data for Year 2014 for Oak Park, Carlow	26
Table 6.7 - Monthly Rainfall Data for Year 2015 for Oak Park, Carlow	26

LIST OF FIGURES

Figure 3.1 - Site Layout Plan with Groundwater Monitoring Locations	7 4
Figure C.1. Crowed Elevation (mAOD) in all Manitaring Malla	4
Figure 6.1 - Ground Elevation (mAOD) in all Monitoring Wells	÷.
Figure 6.2 - Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells	5
Figure 6.3 - Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells	5
Figure 6.4 - Phenol Concentrations in all Monitoring Wells	7
Figure 6.5 - PAH (Total) Concentrations in all Monitoring Wells	8
Figure 6.6 - Fluoroanthene Concentrations in all Monitoring Wells	9
Figure 6.7 - Naphthalene Concentrations in all Monitoring Wells	9
Figure 6.8 - Benzo (g,h,i) perylene Concentrations	0
Figure 6.9 - Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03)3	1
Figure 6.10 - Benzo (a) pyrene Concentrations in all Monitoring Wells	2
Figure 6.11 - TPH (Carbon Range C5-C44) in all Monitoring Wells	2

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd (Enva) to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence, Register No. W0184-01.

Enva Ireland has been operating under Waste Licence Register No. W0184-01 since January 2004. The licence was amended by the Environmental Protection Agency in December 2013 to conform with the provisions and requirements of the Council Directive 2010/75/EU (Industrial Emissions Directive) and as such is deemed an Industrial Emissions Licence. Enva is required to submit a report to the EPA on a quarterly basis, outlining the existing groundwater quality underlying the site.

A suitably qualified environmental consultant from RPS, collected groundwater samples from a series of 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) within the site boundary on the 12th February 2015. The samples underwent laboratory analysis for the suite of parameters specified in Schedule 4(ii) of Industrial Emissions Licence W0184-01. This report outlines the results of the Quarter 1 monitoring for 2015 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 1 2015 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Industrial Emissions Licence W0184-01 and any available EPA documents from the EPA website
- Quarterly Groundwater Monitoring Reports (Quarter 1 2004 to Quarter 4 2005), URS
- Quarterly Groundwater Monitoring Reports (Quarter 1 2006 to Quarter 4 2013), RPS
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007)
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008)
- Hydrogeological Review and Assessment Report, Ref MDE0973Rp0017F01, RPS (2014)
- Quarter 1 Groundwater Monitoring Report, RPS (2014)
- Quarter 2 Groundwater Monitoring Report, RPS (2014)
- Quarter 3 (Annual) Groundwater Monitoring Report, RPS (2014)
- Quarter 4 Groundwater Monitoring Report, RPS (2014)

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1.5 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 2.1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 3.1**. The site is largely covered in hardstanding with some open areas in the far north and northeast of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

Figure 2.1 – Site Location

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoils in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological Survey of Ireland (GSI) as a Locally Important Karstified Aquifer (LI). Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising three groundwater abstraction well fields comprising of two abstraction wells in each well field. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends to within 3.2 km of the Enva site but does not encompass the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk, the accuracy of this location is also 1 km so it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2.1**.

Strata	Extent	Thickness	Description
Made Ground	BH104	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium,

Table 2.1 - Ground Conditions

Strata	Extent	Thickness	Description
			well rounded gravels.
Sand and Gravel	Confined to south east corner of site (BH101, BH104 and MW03)	0-2 m	In general the transition from boulder clay to sand is gradual with changes from gravel, to sandy gravel, to sand.
Limestone Bedrock	Encountered in MW01, MW02 and MW03	Top of limestone ranges from 7.7m to 9m below ground level.	Pale grey, fine-grained bedrock, differentiated from boulders by its un- weathered nature.

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

2.4.1 Licence Conditions

The Industrial Emissions Licence requires the regular monitoring and sampling of boreholes BH101, BH102, BH103, BH104B, MW01, MW02, MW03 and MW04. The parameters requiring measurement or analysis are presented in **Table 2.2**.

Table 2.2 - Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement		
	Groundwater Level	Groundwater Level		
	рН	рН		
Field Parameters	Temperature	Temperature		
Field Parameters	Dissolved Oxygen	Dissolved Oxygen		
	Electrical Conductivity	Electrical Conductivity		
	Visual Inspection	Visual Inspection		
	Mineral Oil	Mineral Oil		
	BTEX & MTBE	BTEX & MTBE		
Organias	PAH's	PAH's		
Organics	Phenols	Phenols		
	VOC's	VOC's		
	SVOC's	SVOC's		
Inorganics	-	Total Alkalinity, Calcium, Manganese, Sulphate, Cyanide (Total), Chloride, Sodium,		

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04), (Figure 3.1) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.

Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, I2 Analytical Ltd for the suite of analyses listed in **Table 3.1**. **Table 3.1** also indicates the analytical techniques used by the laboratory.

Parameter	Analytical Methodology
Phenols	GC-MS
Speciated PAHs	GC-MS
BTEX & MTBE	Headspace GC-MS
Petroleum Hydrocarbons	Headspace GC-MS
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS

Figure 3.1 - Site Layout Plan with Groundwater Monitoring Locations

Shallow Monitoring Well locations

Deep Monitoring Well locations

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 1 2015 results are tabulated in **Section 4** and discussed with respect to previous results. Results are compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

Previous monitoring reports (as listed in **Section 2.1**) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in **Section 6** and include the results of this Quarter 1 2015 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 1 RESULTS MARCH 2015

The results of all field measurements and laboratory analysis are presented in this section. Results are primarily compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

The results are discussed in relation to appropriate guideline values in **Section 5**. Results that are shown to be above the relevant threshold or guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Table 4.1 - Groundwate	· Levels	(Quarter	1, 2015)
------------------------	----------	----------	----------

Monitoring Well	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04
Depth (mbgl)	6.69	6.45	4.43	4.62	22.9	31	14.82	6.3
Static Water Level (mbgl)	4.16	3.22	1.75	0.96	2.52	3.77	4	3.89
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	98.9	99.33	99.41	100.56	99.58	99.35	98.77	-
Free Phase Oil (mm)	No detection							

mbgl = metres below ground level

Monitoring Well	pH (pH Units)	Temperature (°C)	Conductivity (μS/cm)	Dissolved O ₂ (ppm)	Observations
BH101	7.40	11.1	941	2.27	Cloudy white colour, odourless.
BH102	6.40	10.7	1088	3.22	Clear after purging, slight H2S odour detected on purging.
BH103	7.29	9.6	879	6.88	Very small sheen on surface, slightly cloudy, odourless.
BH104B	7.59	11.7	1174	2.32	Dark grey, cloudy, a lot of small fine sediment, strong sweet odour, sheen on surface.
MW01	-	-	-	-	Difficult to purge at this location, insufficient amount of water to record required values.
MW02	7.43	11.2	739	8.89	Clear, odourless.
MW03	7.40	11.1	1637	3.39	Clear, slight hydrocarbon sheen on surface, no odour.
MW04	7.16	11.8	1440	1.64	Grey/brown, cloudy, sediment in sample, no odour.
Groundwater Threshold Value	-	-	>800 & <1875	-	-
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25°C	1000	No abnormal change	-

Table 4.2 - Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 1, 2015)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Table 4.3 - Results of BTEX and MTBE

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.75	1.0
Toluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
Ethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10 Note 1
o-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10 ^{Note 1}
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	2.9	2.7	-	30

Note 1: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Table 4.4 - Results of Speciated PAHs

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Naphthalene	μg/l	0.01	<0.01	<0.01	0.04	0.05	<0.01	<0.01	<0.01	0.18	-	1.0
Acenaphthylene	μg/l	0.01	<0.01	<0.01	0.022	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Acenaphthene	μg/l	0.01	<0.01	<0.01	<0.01	0.027	<0.01	<0.01	0.022	<0.01	-	-
Fluorene	μg/l	0.01	<0.01	<0.01	<0.01	0.041	<0.01	<0.01	<0.01	<0.01	-	-
Phenanthrene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.014	<0.01	<0.01	<0.01	-	-
Anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	10,000
Fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.016	<0.01	<0.01	<0.01	-	1.0
Pyrene	μg/l	0.01	<0.01	<0.01	<0.01	0.028	0.021	<0.01	<0.01	<0.01	-	-
Benzo(a)anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Chrysene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Benzo(b)fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.010	<0.01	<0.01	<0.01	-	0.5
Benzo(k)fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.05

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.011	<0.01	<0.01	<0.01	-	0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.011	<0.01	<0.01	<0.01	-	0.05
Dibenz(a,h)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.010	<0.01	<0.01	<0.01	-	-
Benzo(g,h,i)perylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	0.010	<0.01	<0.01	<0.01	-	0.05
Total EPA-16 PAH's	µg/l	0.1	< 0.01	< 0.01	0.022	0.096	0.106	< 0.01	<0.01	< 0.01	0.075	0.1

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.5 - Results of Total Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Total Phenols (monohydric)	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	0.5
Total Phenols (GC-MS)	μg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	0.5

Table 4.6 - Results of Speciated Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	µg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	0.5
2,4,6-Trichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4-Dichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2-Methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chloro-3-methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	1.37	<1.0	<1.0	<1.0	<1.0	-	-
4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Aniline	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Phenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
2-Chlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
Bis(2-chloroethyl)ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-Dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroisopropyl)ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Nitrobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Isophorone	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroethoxy)methane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Naphthalene	μg/l	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	1.0
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobutadiene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4,6-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4,5-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylnaphthalene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chloronaphthalene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Table 4.7 - Results of Semi-Volatile Organic Compounds (SVOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Dimethylphthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,6-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dibenzofuran	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Diethyl phthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Fluorene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.03
Phenanthrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10,000
Pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Butyl benzyl phthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(a)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chrysene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(b)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
Benzo(k)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Benzo(a)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.01
Indeno(1,2,3-cd)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Dibenz(a,h)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(g,h,i)perylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	

Note: Results above the relevant IGV are highlighted in bold. Note: Results above the GTV are highlighted in bold and shaded.

Table 4.8 - Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Chloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	9.6	-	-
Bromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Vinyl Chloride	μg/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	0.9	0.375	-
Trichlorofluoromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,1-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8	6.6	-	30
1,1,2-Trichloro 1,2,2- Trifluoroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Cis-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1.0	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	2.9	2.7	-	30
2,2-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trichloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	12
1,1,1-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	500
1,2-dichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.25	-
1,1-Dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trans-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	1.0
1,2-dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	70
Dibromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromodichloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Cis-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Trans-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Toluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
---------------------------	-------	----------------------------------	-------	-------	-------	--------	------	------	------	------	-----	-----
1,1,2-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dibromochloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Tetrachloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	40
1,2-Dibromoethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	1.0
1,1,1,2-Tetrachloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Ethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
p & m-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
Styrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Tribromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
o-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
Isopropylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
N-Propylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3,5-Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Tert-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-Trimethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Sec-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
P-Isopropyltoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
1,2-Dibromo-3-chloropropane	µg/l	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	-
1,2,4-Trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Hexachlorobutadiene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10
1,2,3-Trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.9 - Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Aliphatic > C10-C12	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aliphatic > C12-C16	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aliphatic > C16-C35	μg/l	10	<10	<10	54	11	<10	<10	46	<10	-	-
Aliphatic > C35-C44	μg/l	10	<10	<10	<10	<10	<10	<10	12	<10	-	-
Aliphatic > C10-C44	μg/l	10	<10	<10	54	11	<10	<10	58	<10	-	10
Aromatic > C10-C12	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aromatic > C12-C16	μg/l	10	<10	<10	<10	27	<10	<10	14	15	-	-
Aromatic > C16-C21	μg/l	10	<10	<10	<10	15	<10	<10	<10	<10	-	-
Aromatic > C21-C35	μg/l	10	<10	<10	14	<10	<10	<10	<10	<10	-	-
Aromatic > C35-C44	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aromatic > C10-C44	μg/l	10	<10	<10	14	42	<10	<10	14	15	-	10

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

5 DISCUSSION OF QUARTER 1 RESULTS

The results of the Quarter 1 monitoring event for 2015 are presented in **Table 4.1** to **4.9** of this report. For the purpose of this report, the results are compared against the Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations (S.I. No. 9 of 2010) where available. Where GTVs are not available results are compared against the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in **Table 4.2**. Groundwater samples recorded pH levels ranging between 6.4 and 7.59. One pH measurement was outside the EPA Interim guideline range of \geq 6.5 to \leq 9.5 at BH102. Temperature measurements ranged from 9.6°C to 11.8°C and were within the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 739 μ S/cm and 1637 μ S/cm. Four measurements of Electrical Conductivity were above the IGV of 1000 μ S/cm at MH102 (1088 μ S/cm), BH104B (1174 μ S/cm), MW03 (1637 μ S/cm) and MW04 (1440 μ S/cm) however all measurement were within the GTV range of ≥800 to ≤1875 μ S/cm. As the GTVs supersede the IGVs all Electrical Conductivity levels measured are compliant with the groundwater regulations.

Dissolved oxygen levels ranged between 1.64 and 8.89 ppm. Factors such as climate, nutrients in the water, suspended solids; organic wastes and groundwater inflow can all influence the dissolved oxygen values.

Observations relating to colour and odour varied from well to well as detailed in **Table 4.2**.

5.2 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in **Table 4.3**. BTEX concentrations are below the laboratory limit of detections and associated IGV's at all locations. MTBE analysis detected exceedances of laboratory limit at BH103 (1.2 μ g/l), MW03 (2.9 μ g/l) and MW04 (2.7 μ g/l), however values do not exceed the IGV limit of 30 μ g/l.

The previous detection of MTBE was in the Quarter 1 monitoring event of 2012 and recorded a concentration above the laboratory limit of detection of 280 μ g/l at BH104B. This was the only recorded exceedance in Quarter 1 2012.

Monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at BH103 at a concentration of 16 μ g/l. Subsequent monitoring in 2010 recorded concentrations below the laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at BH103 were recorded at 63 μ g/l in December 2009.

5.3 RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)

The results of the Speciated PAH analysis during this monitoring period are presented in **Table 4.4**.

The laboratory limit of detection for Total EPA-16 PAH's is 0.2 μ g/l. This laboratory limit of detection is above the EPA GTV of 0.075 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l. The laboratory has confirmed that the detection limit for total EPA-16 PAH's can be lowered to 0.1 μ g/l for comparison with the EPA IGV of 0.1 μ g/l; however this will not be accredited.

Total Polyaromatic Hydrocarbons were detected above the GTV limits at MW01 (0.106 μ g/l). There is no historic record of any PAH's detections at MW01. This is expected to be once off event and it will be verified in next quarter. The results of the speciated polycyclic aromatic hydrocarbon analysis detected a concentration of Benzo(a) pyrene in MW01 at a concentration of 0.011 μ g/l which is above the IGV of 0.01 μ g/l during the current monitoring event. Other compounds detected above the laboratory limit of detection were within their respective GTV and IGV's.

5.4 **RESULTS OF SPECIATED PHENOLS**

The results of Total Phenol analysis are presented in **Table 4.5**. All samples detected concentrations of monohydric phenol below the laboratory limit of detection of 10 μ g/l. It should be noted that the laboratory limit of detection is above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in **Table 4.6**. The speciated phenol analysis reduces the laboratory limit of detection to $1.0 \,\mu$ g/l for individual parameters.

The results of the current Quarter 1 2015 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 1.0 μ g/l at all locations, with the exception of 4-Chloro-3-methylphenol level being 1.37 μ g/l at BH104B. Available guidelines do not specify a limit value for this substance. The results are consistent with the results from the previous 2013 quarterly monitoring events and the 2014 monitoring events with the exception of 4-Chloro-3-methylphenol.

5.5 RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.7.

There are no GTVs for individual SVOC parameters. No SVOC's were detected above the relevant IGV's during this monitoring period, same as in the Quarter 4 2014. The Quarter 3 2013 monitoring event detected two SVOC compounds, Acenaphthene (1.1 μ g/l) and Fluorene (1.5 μ g/l) in MW03. Prior to this detection the Quarter 2 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene in MW03 at concentrations of 2.4 μ g/l and 0.12 μ /l respectively.

The results of the Volatile Organic Compound analysis are presented in **Table 4.8**. The results of the current Quarter 1 2015 monitoring event indicate that there was an exceedance Vinyl Chloride at MW03 at 0.8 μ g/l and MW04 at 0.9 μ g/l, while the GTV limit is 0.375 μ g/l.

Chloroethane was detected at MW04 with the value of 9.6 μ g/l, however there is no GTV or IGV value specified for this substance.

Historic groundwater monitoring events detected some parameters above the laboratory limit of detection in November 2009, corresponding to Quarter 4 of 2009. 1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene were detected above the laboratory limits of detection. No VOC's were detected above the relevant GTVs or IGV's.

The results of the Quarter 3 and Quarter 4 monitoring events of 2009 and all subsequent monitoring events indicate that there were no exceedances of the GTVs or IGVs for specific parameters.

5.7 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in **Table 4.9**.

The EPA IGV of 10 μ g/l for the Total Hydrocarbons is deemed comparable with the results for Total Petroleum Hydrocarbons. Some detections of TPH above the laboratory limit in both the aliphatic and aromatic range were observed during the current monitoring event Quarter 1 2015. The TPH concentration in the aromatic range was detected at two deep groundwater wells MW03 (14 μ g/l) MW04 (15 μ g/l) and two shallow groundwater wells BH103 (14 μ g/l) and BH104B (42 μ g/l). The TPH concentration in the aliphatic range was detected at MW03 (58 μ g/l), BH103 (54 μ g/l) and BH104B (11 μ g/l).

No detections of TPH in the aliphatic or aromatic range were observed in any shallow or deep monitoring well locations during the previous Quarter 4 monitoring event of 2014.

The Quarter 3 monitoring event of 2014 detected TPH concentrations in the aliphatic range at the shallow groundwater well BH104B. The TPH concentration detected was 410 μ g/l. The speciated TPH ranges that contributed to the value of 410 μ g/l were C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C31-C35 (10 μ g/l).

The Quarter 3, 2013 monitoring event detected TPH in the aliphatic range in one deep groundwater well, MW03. TPH of the range C10-C12 and C12-C16 were detected at concentrations of 200 μ g/l and 190 μ g/l respectively.

The Quarter 1 2013 monitoring event detected aliphatic TPH of the range C12-C16, C16-C21 and C21-C35. TPH in the mid to high aromatic ranges were detected in BH103, BH104B and MW04 during the

previous Quarter 1 2013 monitoring event. Aromatic TPH of the ranges C12-C16, C16-C21 and C21-C35 were detected in BH103, the ranges C10-C12, C12-C16 and C16-C21 were detected in BH104B and aromatic TPH of the ranges C10-C12 and C12-C16 were detected in MW04.

The Quarter 2 monitoring event of 2012 detected elevated TPH of the aliphatic range C12-C16, C16-C21 and C21-C25 in BH103. Hydrocarbons have been detected in borehole MW03 during Quarter 1 2010, in borehole BH104B during the Quarter 2 2010 monitoring event and in borehole BH104B and MW03 during the Quarter 3 2010 monitoring events. Hydrocarbons have also been detected in BH103, BH104B and MW03 in the Quarter 2 2011 monitoring event and in MW03 in the Quarter 3 and Quarter 4 2011. These detections are discussed further in **Section 6.2.3**.

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 1 2015 monitoring round. As the monitoring continues in accordance with the Industrial Emissions Licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

6.1 GROUNDWATER LEVELS OVER TIME

Figure 6.1 to **Figure 6.3** below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 6.2 illustrates groundwater elevations (mAOD) in shallow groundwater wells (BH101 to BH104B) ranging between approximately 98 mAOD and 101 mAOD.

Figure 6.3 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (MW01 to MW03). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 99 mAOD to approximately 100 mAOD.

Figure 6.1 - Ground Elevation (mAOD) in all Monitoring Wells

Figure 6.2 - Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells

Figure 6.3 - Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; however, the general direction of flow in the shallow and deeper groundwater bearing unit is in an easterly or north easterly direction however there have been some occasional historic cases of groundwater flowing in a south-easterly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Éireann to examine the relationship between compounds and rainfall events. The data from Oak Park was

chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in **Tables 6.1** to **6.7**.

Table 6.1 - Month	ly Rainfall Da	ta for Year	2009 for Oak	Park, Carlow
-------------------	----------------	-------------	--------------	--------------

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	113.4	29.2	32.6	102.4	69.0	65.4	152.4	100.9	41.8	127.8	215.5	73.7

Table 6.2 - Monthly Rainfall Data for Year 2010 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	71.5	48.0	80.7	49.0	51.4	37.7	93.6	25.5	108.7	68.9	87.7	52.2

Table 6.3 - Monthly Rainfall Data for Year 2011 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	50.6	121.9	16.0	19.5	51.2	72.7	46.4	25.5	93.9	93.9	89.2	55.5

Table 6.4 - Monthly Rainfall Data for Year 2012 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	70.8	24.5	18.0	56.3	50.2	155.8	76.2	127.7	37.9	63.4	80.9	68.1

Table 6.5 - Monthly Rainfall Data for Year 2013 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.8	57.6	44.4	35.6	37.5	32.3	85.6	24.4	170.0	27.7	0.9

Table 6.6 - Monthly Rainfall Data for Year 2014 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	147.2	176.7	65.0	52.6	78.6	61.9	24.6	122.1	18.2	138.2	165.6	47.7

Table 6.7 - Monthly Rainfall Data for Year 2015 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr
Rainfall (mm)	66.0	36.3	53.5	6.9

Note: Data for the most recent months are provisional.

6.2 GROUNDWATER CONCENTRATIONS OVER TIME

Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.

The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

Phenols have been detected historically in all boreholes with the highest concentrations recorded in BH103. However concentrations in BH103 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

2,4-Dimethylphenol was detected at a concentration of 0.12 μ g/l during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the current Quarter 1 2015 monitoring event.

Figure 6.4 - Phenol Concentrations in all Monitoring Wells

6.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)

Figure 6.5 below illustrates that PAH's (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within MW03 and BH104B, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. In addition, a range of PAH's including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Napthalene have previously been detected in MW03 with **Figures 6.6** to **6.10** illustrating some of the PAH compounds which were detected above their respective IGV's.

Since 2007 concentrations of PAH have shown a marked decrease and since 2010 detections of PAH have been confined to MW03, MW02 and BH104B. Concentrations of Total PAH above the IGV in 2010 were detected during the Quarter 1 monitoring event in MW03 (0.3 μ g/l), Quarter 2 monitoring event in BH104B (1.2 μ g/l) and Quarter 3 monitoring event in MW02 (2.0 μ gl) and BH104B (0.2 μ gl). There were no elevated concentrations of Total PAH during the Quarter 4 2010 monitoring event.

No Total PAH detections were recorded throughout 2011 and in Q1 of 2012. Total PAH was detected above the IGV in MW03 in the Q2 2012 monitoring event. No Total PAH exceedances were detected from Quarter 3 2012 to Quarter 4 2013 inclusive. Total PAH was detected at a concentration of 2.62 μ g/l in MW03 during the Q3 2013 monitoring event however; no detections above the laboratory limit were noted during the subsequent monitoring events up to and including the current monitoring event; with the only exception of Benzo(a) pyrene in well MW01 at 0.011 μ g/l above the IGV limit of 0.01 μ g/l during the Quarter 1 2015 monitoring event.

Figure 6.5 - PAH (Total) Concentrations in all Monitoring Wells

Figure 6.6 illustrates that **Fluoroanthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells BH104B (October 2007, 1.33 μ g/l) and MW03 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l.

Figure 6.7 - Naphthalene Concentrations in all Monitoring Wells

A similar trend to Fluoroanthene has been noted in **Figure 6.7**, with concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in BH104B and MW03 only. 4 no. exceedances of the IGV were noted in BH104B in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in BH104B have decreased below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in MW03, with the highest concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were

slightly above the laboratory limit of detection of 0.01 μ g/l at BH104B (0.08 μ g/l) and MW03 (0.05 μ g/l); however these levels are deemed low. Concentrations of Naphthalene were below the EPA IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 and 2012 quarterly monitoring events and the Quarter 1 to Quarter 3 2014 monitoring periods, inclusive. No detections of Naphthalene were noted in the Quarter 4 2014 monitoring event. Three detections of Naphthalene above the laboratory testing limit were noted during the current Quarter 1 2015 monitoring event, while all below the EPA IGV limit of detection (1.0 μ g/l).

Figure 6.8 illustrates the concentrations of **Benzo(g,h,i)perylene** in all monitoring wells over time. Elevated concentrations above the IGV were recorded at BH104B (0.087 μ g/l) on one occasion in March 2006.

Figure 6.9 illustrates elevated concentrations above the IGV recorded at MW03 on 5 no. occasions with the most recent elevated concentration detected in December 2009 (0.26 μ g/l). The results of subsequent monitoring events from 2010 to the current Quarter 4 2014 events recorded concentrations below the laboratory limit of detection of 0.01 μ g/l at all locations.

Figure 6.9 - Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03)

Figure 6.10 illustrates the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicates that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 μ g/l. Similarly with the above mentioned trends, the highest concentrations have been detected in MW03 and BH104B. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 μ g/l was detected in MW03, however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in BH101, BH103 and MW01 during this same period.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGV's.

The results of all monitoring events from 2010 to the current Quarter 1 2015 monitoring event did not detect any concentrations above the GTV or IGV; with the only exception in current monitoring event where Benzo(a)pyrene was detected at 0.011 μ g/l in MW01 which is slightly above the IGV of 0.01 μ g/l.

Figure 6.10 - Benzo (a) pyrene Concentrations in all Monitoring Wells

6.2.3 Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within BH103, BH104B and MW03. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12 – C16, C16 – C21 and C21 – C35. **Figure 6.11** illustrates the TPH analysis for the total TPH analysis from C5 – C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells MW03, BH104B and BH103 respectively.

Figure 6.11 - TPH (Carbon Range C5-C44) in all Monitoring Wells

During the Quarter 1, 2010 monitoring event, hydrocarbons were detected in borehole MW03. The predominant aliphatic carbon range in MW03 comprised of C16-C21 (1000 μ g/l), C21-C35 (2300 μ g/l) and C25-C44 (990 μ g/l). The predominant aromatic carbon range in MW03 comprised of C16-C21 (220 μ g/l) and C21-C35 (620 μ g/l). No detections were observed at other locations.

During the Quarter 2 and Quarter 3, 2010 monitoring event, hydrocarbons were detected in borehole BH104B, with the predominant aliphatic carbon range comprising C12-C16 (130 μ g/l and 12 μ g/l) and C16-C21 (130 μ g/l and 19 μ g/l). The predominant aliphatic carbon range in MW03 during Quarter 3 2010 comprised of C16-C21 (35 μ g/l) and C21-C34 (46 μ g/l). The predominant aromatic carbon range detected during Quarter 2 2010 comprised of C12-C16 (21 μ g/l) and C16-C21 (47 μ g/l) at BH104B. No aromatic carbons were detected above the laboratory limit of detection at any wells in Quarter 3 2010.

During the Quarter 4, 2010 and Quarter 1, 2011 monitoring event, there were no detections of TPH concentrations above the laboratory limit of detection of 10 μ g/l at any location. No aliphatic or aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 2, 2011 monitoring event, hydrocarbons were detected in borehole BH103, BH104B and MW03. The predominant aliphatic carbon range comprised of C16-C21 (340 μ g/l, 20 μ g/l and 46 μ g/l) and C21-C35 (420 μ g/l, 96 μ g/l and 150 μ g/l in BH103, BH104B and MW03 respectively). The predominant aromatic carbon range also comprised of C16-C21 (78 μ g/l, 52 μ g/l and 50 μ g/l) and C21-C35 (110 μ g/l, 49 μ g/l and 93 μ g/l in BH103, BH104B and MW03 respectively).

During the Quarter 3 and Quarter 4 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised of C10-C12 (18 μ g/l and 22 μ g/l), C12-C16 (57 μ g/l and 51 μ g/l), C16-C21 (35 μ g/l and 85 μ g/l) and C21-C35 (210 μ g/l and 110 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (42 μ g/l and 16 μ g/l), C16-C21 (66 μ g/l and 14 μ g/l) and C21-C35 (45 μ g/l and 91 μ g/l).

During the Quarter 1, 2012 monitoring event, hydrocarbons were detected in borehole BH103 only. The predominant aliphatic carbon range comprised C10-C12 (13 μ g/l), C12-C16 (270 μ g/l), C16-C21 (690 μ g/l) and C21-C35 (980 μ g/l). The predominant aromatic carbon range comprised of C16-C21 (250 μ g/l) and C21-C25 (680 μ g/l). No hydrocarbons were detected in MW03 during the current Quarter 1 monitoring event.

During the Quarter 2, 2012 monitoring event, hydrocarbons were detected in BH103 only. The detected aliphatic carbon range comprised C12-C16 (98 μ g/l), C16-C21 (230 μ g/l) and C21-C25 (170 μ g/l). No detections of aromatic carbons were measured during the Quarter 2 2012 monitoring event.

No hydrocarbons were detected at any location during the Quarter 3 and Quarter 4, 2012 monitoring events.

During the Quarter 1, 2013 monitoring event aromatic hydrocarbons were detected in BH103, BH104B and MW04. The predominant aromatic carbon range comprised C12-C16 ($30 \mu g/I$), C16-C21 (280 $\mu g/I$) and C21-C35 ($100 \mu g/I$) in BH103, C10-C12 ($30 \mu g/I$), C12-C16 ($110 \mu g/I$) and C16-C21 ($80 \mu g/I$) in BH104B and C10-C12 ($20 \mu g/I$) and C12-C16 ($80 \mu g/I$) in MW04. Aliphatic hydrocarbons were detected in BH103 in the ranges C12-C16 ($70 \mu g/I$), C16-C21 ($100 \mu g/I$) and C21-C35 ($90 \mu g/I$).

During the Quarter 2, 2013 monitoring event no aliphatic or aromatic hydrocarbons were detected at any location.

During the Quarter 3, 2013 monitoring event, hydrocarbons of the aliphatic range were detected in MW03 only. The detected aliphatic carbon range comprised C10-C16 (290 μ g/l) and C12-C16 (190 μ g/l). No detections of aromatic carbons were measured during the Quarter 3 2013 monitoring event.

Total Petroleum Hydrocarbons were not detected at any monitoring location during the Quarter 4, 2014 monitoring event. During the monitoring event for Quarter 3 2014 following ranges of the aliphatic hydrocarbons were recorded for BH104B; C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C21-C35 (10 μ g/l).

Some detections of TPH in both the aliphatic and aromatic range were observed during the current Quarter 1 2015 monitoring event. The TPH concentration in the aromatic range was detected at two deep groundwater wells MW03 (14 μ g/l) and MW04 (15 μ g/l) and in two shallow groundwater wells BH103 (14 μ g/l) and BH104B (42 μ g/l). The TPH concentration in the aliphatic range was detected at BH103 (54 μ g/l), BH104B (11 μ g/l) and MW03 (58 μ g/l).

7 CONCLUSIONS

- In accordance with the criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence Register No. W0184-01, groundwater monitoring was carried out at the ENVA Ireland site on the 12th February 2015 corresponding to Quarter 1 of 2015. Samples were collected at 8 groundwater monitoring wells during this event.
- The results presented have been referenced against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. no 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.
- Results of the BTEX and MTBE demonstrate that the levels of Benzene, Toluene, Ethylbenzene and Xylene were below the recommended EPA IGV's.
- The Quarter 1, 2015 results of the speciated polycyclic aromatic hydrocarbons indicate that Total PAH's has been detected above the EPA IGV of 0.1 μg/l in MW01 (0.106 μg/l).
- There were no exceedances of the GTV or IGV for VOC's or SVOC's in the current monitoring event with the exception of Vinyl Chloride which was detected in MW01 (0.8 μ g/l) and in MW04 (0.9 μ g/l) which is above the GTV of 0.375 μ g/l.
- The results of the phenol analysis detected concentrations below the laboratory limit of detection of 5.0 μ g/l however the laboratory limit of detection is above the IGV of 0.5 μ g/l for phenols. Samples were subsequently also analysed for phenols to include chlorophenols and the results indicate that there were no detections above the laboratory limit of detection with the exception of 4-Chloro-3-methylphenol which recorded a concentration of 1.37 μ g/l in BH104B.
- Hydrocarbons in both aliphatic and aromatic range were observed during the current Quarter 1 2015 monitoring event. The TPH concentration in the aromatic range was detected at two deep groundwater wells MW03 (14 μg/l) and MW04 (15 μg/l) and in two shallow groundwater wells BH103 (14 μg/l) and BH104B (42 μg/l). The TPH concentration in the aliphatic range was detected at MW03 (58 μg/l), BH103 (54 μg/l) and BH104B (11 μg/l). Hydrocarbons were not detected in any monitoring location during the Quarter 4 2014 monitoring event. Hydrocarbons were detected in BH104B in the aliphatic carbon ranges C12-C16, C16-C21 and C21-C35 during the Quarter 3, 2014 event. Previous to these events hydrocarbons were detected in boreholes BH104B and MW03 in the aliphatic carbon ranges during the Quarter 3, 2010 monitoring event.
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Enva Portlaoise

2015 Groundwater Compliance Monitoring Quarter 2 (Apr – Jun 2015) Document Control Sheet

Client:	Enva Ireland Ltd.		
Project Title:	Enva Portlaoise 2015 Ground	water Compliance Monitoring	
Document Title:	Quarter 2 (Apr – Jun 2015)		
Document No:	MDE0973Rp0023		
Text Pages:	35	Appendices:	-

Rev.	Status	Date	Author(s)	Reviewed By		Approved By	
D01	Draft	22 nd June 2015	D. Chadwick	CR	Cabron Rally	РС	Pallahel
A01	Client Approval	3 rd July 2015	D. Chadwick	CR	Cabron Rally	РС	Pallahil
F01	Final	13 th July 2015	D. Chadwick	CR	Cabron Rally	РС	Pallahil

This report takes into account the particular instructions and requirements of the Client. It is provided for sole use of the Client and its professional advisors. Information disclosed should be treated as being strictly private and confidential. Any use which a third party makes of this document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. No responsibility is accepted by RPS for the use of this Document, in whole or in part, for any other purpose.

TABLE OF CONTENTS

1		INTRODUCTION1
	1.1	BACKGROUND
	1.2	OBJECTIVES & SCOPE OF WORK
2		REVIEW OF PREVIOUS DATA2
	2.1	INFORMATION SOURCES
	2.2	SITE SETTING
	2.3	REGIONAL SETTING
		2.3.1 Geology
		2.3.2 Hydrogeology
	2.4	SITE GROUND CONDITIONS
		2.4.1 Licence Conditions
3		METHODOLOGY
	3.1	LABORATORY ANALYSIS
	3.2	PRESENTATION & INTERPRETATION OF RESULTS
4		QUARTER 2 RESULTS MAY 20159
5		DISCUSSION OF QUARTER 1 RESULTS
5	5.1	DISCUSSION OF QUARTER 1 RESULTS
5	5.1 5.2	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20
5	5.1 5.2 5.3	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21
5	5.1 5.2 5.3 5.4	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21
5	5.1 5.2 5.3 5.4 5.5	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21
5	5.1 5.2 5.3 5.4 5.5 5.6	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME24
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME24GROUNDWATER CONCENTRATIONS OVER TIME27
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME276.2.1 Phenols27
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME276.2.1 Phenols276.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)28
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 1 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME276.2.1 Phenols276.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)286.2.3 Petroleum Hydrocarbons (TPH)32

LIST OF TABLES

Table 2.1 - Ground Conditions	4
Table 2.2 - Licence Parameters	5
Table 3.1 - Analytical Methodologies – ALS Environmental	6
Table 4.1 - Groundwater Levels (Quarter 2, 2015)	10
Table 4.2 - Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 2015)	er 2, 11
Table 4.3 - Results of BTEX and MTBE	12
Table 4.4 - Results of Speciated PAHs	12
Table 4.5 - Results of Speciated Phenols	14
Table 4.6 - Results of Semi-Volatile Organic Compounds (SVOCs)	15
Table 4.7 - Results of Volatile Organic Compounds (VOCs)	17
Table 4.8 - Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)	19
Table 6.1 - Monthly Rainfall Data for Year 2009 for Oak Park, Carlow	26
Table 6.2 - Monthly Rainfall Data for Year 2010 for Oak Park, Carlow	26
Table 6.3 - Monthly Rainfall Data for Year 2011 for Oak Park, Carlow	26
Table 6.4 - Monthly Rainfall Data for Year 2012 for Oak Park, Carlow	26
Table 6.5 - Monthly Rainfall Data for Year 2013 for Oak Park, Carlow	26
Table 6.6 - Monthly Rainfall Data for Year 2014 for Oak Park, Carlow	26
Table 6.7 - Monthly Rainfall Data for Year 2015 for Oak Park, Carlow	26

LIST OF FIGURES

Figure 2.1 – Site Location	3
Figure 3.1 - Site Layout Plan with Groundwater Monitoring Locations	7
Figure 6.1 - Ground Elevation (mAOD) in all Monitoring Wells	24
Figure 6.2 - Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells	25
Figure 6.3 - Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells	25
Figure 6.4 - Phenol Concentrations in all Monitoring Wells	27
Figure 6.5 - PAH (Total) Concentrations in all Monitoring Wells	28
Figure 6.6 - Fluoroanthene Concentrations in all Monitoring Wells	29
Figure 6.7 - Naphthalene Concentrations in all Monitoring Wells	29
Figure 6.8 - Benzo (g,h,i) perylene Concentrations	30
Figure 6.9 - Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03	31
Figure 6.10 - Benzo (a) pyrene Concentrations in all Monitoring Wells	32
Figure 6.11 - TPH (Carbon Range C5-C44) in all Monitoring Wells	32

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd (Enva) to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence, Register No. W0184-01.

Enva Ireland has been operating under Waste Licence Register No. W0184-01 since January 2004. The licence was amended by the Environmental Protection Agency in December 2013 to conform with the provisions and requirements of the Council Directive 2010/75/EU (Industrial Emissions Directive) and as such is deemed an Industrial Emissions Licence. Enva is required to submit a report to the EPA on a quarterly basis, outlining the existing groundwater quality underlying the site.

A suitably qualified environmental consultant from RPS, collected groundwater samples from a series of 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) within the site boundary on the 20th May 2015. The samples underwent laboratory analysis for the suite of parameters specified in Schedule 4(ii) of Industrial Emissions Licence W0184-01. This report outlines the results of the Quarter 2 monitoring for 2015 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 2 2015 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Industrial Emissions Licence W0184-01 and any available EPA documents from the EPA website
- Quarterly Groundwater Monitoring Reports (Quarter 1 2004 to Quarter 4 2005), URS
- Quarterly Groundwater Monitoring Reports (Quarter 1 2006 to Quarter 4 2013), RPS
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007)
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008)
- Hydrogeological Review and Assessment Report, Ref MDE0973Rp0017F01, RPS (2014)
- Quarter 1 Groundwater Monitoring Report, RPS (2014)
- Quarter 2 Groundwater Monitoring Report, RPS (2014)
- Quarter 3 (Annual) Groundwater Monitoring Report, RPS (2014)
- Quarter 4 Groundwater Monitoring Report, RPS (2014)
- Quarter 1 Groundwater Monitoring Report, RPS (2015)

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1.5 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 2.1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 3.1**. The site is largely covered in hardstanding with some open areas in the far north and northeast of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

Figure 2.1 – Site Location

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoils in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological Survey of Ireland (GSI) as a Locally Important Karstified Aquifer (LI). Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising three groundwater abstraction well fields comprising of two abstraction wells in each well field. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends to within 3.2 km of the Enva site but does not encompass the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk, the accuracy of this location is also 1 km so it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2.1**.

Strata	Extent	Thickness	Description
Made Ground	BH104	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium,

Table 2.1 - Ground Conditions

Strata	Extent	Thickness	Description
			well rounded gravels.
Sand and Gravel	Confined to south east corner of site (BH101, BH104 and MW03)	0-2 m	In general the transition from boulder clay to sand is gradual with changes from gravel, to sandy gravel, to sand.
Limestone Bedrock	Encountered in MW01, MW02 and MW03	Top of limestone ranges from 7.7m to 9m below ground level.	Pale grey, fine-grained bedrock, differentiated from boulders by its un- weathered nature.

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

2.4.1 Licence Conditions

The Industrial Emissions Licence requires the regular monitoring and sampling of boreholes BH101, BH102, BH103, BH104B, MW01, MW02, MW03 and MW04. The parameters requiring measurement or analysis are presented in **Table 2.2**.

Table 2.2 - Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement		
	Groundwater Level	Groundwater Level		
	рН	рН		
Field Daramators	Temperature	Temperature		
Field Parameters	Dissolved Oxygen	Dissolved Oxygen		
	Electrical Conductivity	Electrical Conductivity		
	Visual Inspection	Visual Inspection		
	Mineral Oil	Mineral Oil		
	BTEX & MTBE	BTEX & MTBE		
Organics	PAH's	PAH's		
Organics	Phenols	Phenols		
	VOC's	VOC's		
	SVOC's	SVOC's		
Inorganics	-	Total Alkalinity, Calcium, Manganese, Sulphate, Cyanide (Total), Chloride, Sodium,		

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04), (Figure 3.1) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.

Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, ALS Environmental for the suite of analyses listed in **Table 3.1**. **Table 3.1** also indicates the analytical techniques used by the laboratory.

Parameter	Analytical Methodology
Phenols	GC-MS
Speciated PAHs	GC-MS
BTEX & MTBE	Headspace GC-MS
Petroleum Hydrocarbons	Headspace GC-MS
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS

Figure 3.1 - Site Layout Plan with Groundwater Monitoring Locations

Shallow Monitoring Well locations

Deep Monitoring Well locations

•

4

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 2 2015 results are tabulated in **Section 4** and discussed with respect to previous results. Results are compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

Previous monitoring reports (as listed in **Section 2.1**) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in **Section 6** and include the results of this Quarter 2 2015 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 2 RESULTS MAY 2015

The results of all field measurements and laboratory analysis are presented in this section. Results are primarily compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

The results are discussed in relation to appropriate guideline values in **Section 5**. Results that are shown to be above the relevant threshold or guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Monitoring Well	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04
Depth (mbgl)	7.13	6.40	4.46	4.82	22.89	31.45	14.48	6.55
Static Water Level (mbgl)	4.35	2.41	1.73	0.55	2.60	3.88	4.20	3.91
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	98.71	100.14	99.43	100.97	99.50	99.24	98.57	-
Free Phase Oil (mm)	No detection							

mbgl = metres below ground level

Monitoring Well	pH (pH Units)	Temperature (°C)	Conductivity (μS/cm)	Dissolved O ₂ (ppm)	Observations
BH101	7.10	11.5	864	8.87	Slight brown colour, some fine sediment, little suspended solids, no odour.
BH102	7.35	10.8	491	3.13	Clear on purging, no odour, very little sediment or suspended solids
BH103	7.19	10.6	752	4.89	Slightly dirty brown colour, H ₂ S odour detected.
BH104B	7.72	9.9	700	1.95	H ₂ S odour on purging, clear in colour, some very fine sediment.
MW01	7.40	12.3	658	6.60	H ₂ S odour on purging, dirty colour, small amount of sediment.
MW02	7.38	11.1	633	2.81	Clear on purging, slight H ₂ S odour, no sediment.
MW03	7.39	11.9	1469	3.16	Slight sheen on surface, H_2S odour, sandy sediment, clear colour.
MW04	7.24	11.7	1509	7.69	Dirty brown in colour, some suspended solids and sandy sediment, no odour.
Groundwater Threshold Value	-	-	>800 & <1875	-	-
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25°C	1000	No abnormal change	-

Table 4.2 - Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 2, 2015)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Table 4.3 - Results of BTEX and MTBE

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	0.75	1.0
Toluene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	10
Ethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	10 Note 1
o-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	10 Note 1
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	1.2	<2.0	<1.0	<1.0	<2.0	<10.0	-	30

Note: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.4 - Results of Speciated PAHs

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Naphthalene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	1.0
Acenaphthylene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Acenaphthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Fluorene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Phenanthrene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	10,000
Fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	1.0
Pyrene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.015	<0.01	-	-
Benzo(a)anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Chrysene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Benzo(b)fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.5

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzo(k)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.05
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.05
Dibenz(a,h)anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-
Benzo(g,h,i)perylene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.05
Total EPA-16 PAH's	μg/l	0.1	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	0.015	< 0.01	0.075	0.1

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.
Table 4.5 - Results of Speciated Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	μg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	0.5
2,4,6-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.6 - Results of Semi-Volatile Organic Compounds (SVOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Aniline	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Phenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
2-Chlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
Bis(2-chloroethyl)ether	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroisopropyl)ether	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Nitrobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
4-Methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Isophorone	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroethoxy)methane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Naphthalene	µg/l	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	1.0
2,4-Dichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobutadiene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10
4-Chloro-3-methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4,6-Trichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4,5-Trichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylnaphthalene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chloronaphthalene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Dimethylphthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,6-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dibenzofuran	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Diethyl phthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Fluorene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.03
Phenanthrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10,000
Pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Butyl benzyl phthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(a)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chrysene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(b)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
Benzo(k)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Benzo(a)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.01
Indeno(1,2,3-cd)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Dibenz(a,h)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(g,h,i)perylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Table 4.7 - Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Chloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Chloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Bromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Vinyl Chloride	μg/l	0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<1.0	<5.0	0.375	-
Trichlorofluoromethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
1,1-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	30
1,1,2-Trichloro 1,2,2- Trifluoroethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Cis-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1.0	<1.0	<1.0	1.2	<2.0	<1.0	<1.0	<2.0	<10.0	-	30
2,2-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Trichloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	12
1,1,1-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	500
1,2-dichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	2.25	-
1,1-Dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Trans-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	1.0
1,2-dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Trichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	70
Dibromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Bromodichloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Cis-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Trans-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Toluene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	10

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
1,1,2-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
1,3-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Dibromochloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Tetrachloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	40
1,2-Dibromoethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Chlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	1.0
1,1,1,2-Tetrachloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Ethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	10
Styrene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Tribromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
o-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	10
Isopropylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Bromobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
N-Propylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
2-Chlorotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
4-Chlorotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
1,3,5-Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Tert-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
1,2,4-Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Sec-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
1,3-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
P-Isopropyltoluene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
1,2-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	10
1,4-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-
Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
1,2-Dibromo-3-chloropropane	μg/l	2.0	<2.0	<2.0	<2.0	<4.0	<2.0	<2.0	<4.0	<20.0	-	-
1,2,4-Trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	0.40
Hexachlorobutadiene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	0.10
1,2,3-Trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<2.0	<1.0	<1.0	<2.0	<10.0	-	-

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Aliphatic > C10-C12	μg/l	10	<10	<10	<200	<200	<10	<10	<20	<40	-	-
Aliphatic > C12-C16	μg/l	10	<10	<10	<200	225	<10	<10	<20	<40	-	-
Aliphatic > C16-C35	μg/l	10	<10	<10	1760	332	<10	<10	<20	<40	-	-
Aliphatic > C35-C44	μg/l	10	<10	<10	<200	<200	<10	<10	<20	<40	-	-
Aliphatic > C10-C44	μg/l	10	<10	<10	1760	557	<10	<10	<20	<40	-	10
Aromatic > C10-C12	μg/l	10	<10	<10	<200	<200	<10	<10	<20	<40	-	-
Aromatic > C12-C16	μg/l	10	<10	<10	<200	<200	<10	<10	<20	<40	-	-
Aromatic > C16-C21	μg/l	10	<10	<10	<200	<200	<10	<10	<20	<40	-	-
Aromatic > C21-C35	μg/l	10	<10	<10	509	<200	<10	<10	<20	<40	-	-
Aromatic > C35-C44	μg/l	10	<10	<10	<200	<200	<10	<10	<20	<40	-	-
Aromatic > C10-C44	μg/l	10	<10	<10	509	<200	<10	<10	<20	<40	-	10

Table 4.8 - Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

5 DISCUSSION OF QUARTER 1 RESULTS

The results of the Quarter 2 monitoring event for 2015 are presented in **Table 4.1** to **4.8** of this report. For the purpose of this report, the results are compared against the Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations (S.I. No. 9 of 2010) where available. Where GTVs are not available results are compared against the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in **Table 4.2**. Groundwater samples recorded pH levels ranging between 7.10 and 7.72, all within the EPA Interim guideline range of \geq 6.5 to \leq 9.5. Temperature measurements ranged from 9.9°C to 12.3°C and were within the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 491 μ S/cm and 1509 μ S/cm. Two measurements of Electrical Conductivity were above the IGV of 1000 μ S/cm at MW03 (1469 μ S/cm) and MW04 (1509 μ S/cm), but were however within the GTV range of >800 & <1875 μ S/cm.

Dissolved oxygen levels ranged between 1.95 and 8.87 ppm. Factors such as climate, nutrients in the water, suspended solids; organic wastes and groundwater inflow can all influence the dissolved oxygen values.

Observations relating to colour and odour varied from well to well as detailed in Table 4.2.

5.2 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in **Table 4.3**. BTEX concentrations are below the laboratory limit of detections and associated IGV's at locations BH101, BH102, BH103, MW01 and MW02. The laboratory limits of detection were raised for analysis of samples at BH104B, MW03 and MW04 due to the nature of the sample matrix. However, the new limits of detection were still below the associated IGV's, with the exception of Benzene. MTBE analysis detected a concentration above the laboratory limit at BH103 ($1.2 \mu g/l$), however this value does not exceed the IGV limit of 30 $\mu g/l$.

The previous detection of MTBE was in the Quarter 1 monitoring event of 2012 and recorded a concentration above the laboratory limit of detection of 280 μ g/l at BH104B. This was the only recorded exceedance in Quarter 1 2012.

Monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at BH103 at a concentration of 16 μ g/l. Subsequent monitoring in 2010 recorded concentrations below the laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at BH103 were recorded at 63 μ g/l in December 2009.

5.3 RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)

The results of the Speciated PAH analysis during this monitoring period are presented in **Table 4.4**.

The laboratory limit of detection for Total EPA-16 PAH's is 0.1 μ g/l and has been lowered for comparison with the EPA IGV of 0.1 μ g/l; however this is not accredited. This laboratory limit of detection is above the EPA GTV of 0.075 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l.

Total Polyaromatic Hydrocarbons were below the GTV limits at all locations. Total PAH's were detected above the GTV limit for MW01 in Quarter 1 2015 but are below the GTV limit for the current Quarter 2 2015 monitoring event and there is no historic record of any PAH's detections at MW01. The results of the speciated polycyclic aromatic hydrocarbon analysis detected Pyrene in MW03 at a concentration of 0.015 μ g/l, which is above the laboratory limit of detection of 0.01 μ g/l. However there are no GTV or IGV limits for Pyrene. No other compounds were detected above the laboratory limit of detection.

5.4 **RESULTS OF SPECIATED PHENOLS**

During previous quarterly monitoring events and sample analysis total monohydric phenol was determined and historically have been below the laboratory limit of detection of 10 μ g/l since December 2008. It should be noted that the laboratory limit of detection was however above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in **Table 4.5**. The speciated phenol analysis reduces the laboratory limit of detection to $1.0 \mu g/l$ for individual parameters.

The results of the current Quarter 2 2015 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 1.0 μ g/l at all locations. 4-Chloro-3-methylphenol was detected at BH104B above the laboratory limit of detection for the previous Quarter 1 2015 analysis. With the exception of this, all other results are consistent with the results from the previous 2013 quarterly monitoring events and the 2014 monitoring events.

5.5 RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.6.

There are no GTVs for individual SVOC parameters. No SVOC's were detected above the relevant IGV's during this monitoring period, same as in the Quarter 4 2014 and Quarter 1 2015 periods. The Quarter 3 2013 monitoring event detected two SVOC compounds, Acenaphthene (1.1 μ g/l) and Fluorene (1.5 μ g/l) in MW03. Prior to this detection the Quarter 2 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene in MW03 at concentrations of 2.4 μ g/l and 0.12 μ /l respectively.

5.6 RESULTS OF VOLATILE ORGANIC COMPOUNDS

The results of the Volatile Organic Compound analysis are presented in **Table 4.7**. The results of the current Quarter 2 2015 monitoring event indicate that MTBE at BH103 was detected at 1.2 μ g/l, which is above the laboratory limit of detection of 1.0 μ g/l. There is no GTV for MTBE and it is below the IGV of 30 μ g/l. All other compounds were below their respective laboratory limits of detection; however the limits of detection were raised for samples from BH104B, MW03 and MW04.

Historic groundwater monitoring events detected some parameters above the laboratory limit of detection in November 2009, corresponding to Quarter 4 of 2009. 1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene were detected above the laboratory limits of detection. No VOC's were detected above the relevant GTVs or IGV's.

The results of the Quarter 3 and Quarter 4 monitoring events of 2009 and all subsequent monitoring events indicate that there were no exceedances of the GTVs or IGVs for specific parameters.

5.7 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in **Table 4.8**.

The EPA IGV of 10 μ g/l for the Total Hydrocarbons is deemed comparable with the results for Total Petroleum Hydrocarbons. Due to the nature of the sample matrix, the laboratory limits of detection were raised for samples from well locations BH103, BH104B, MW03 and MW04. Some detections of TPH above the laboratory limit in both the aliphatic and aromatic range were observed during the current monitoring event Quarter 2 2015. The TPH concentration in the aromatic range (C21-C35) was detected at one shallow groundwater wells BH103 (509 μ g/l). The TPH concentration in the aliphatic TPH of the range C16-C35 was detected at BH103 (1760 μ g/l). BH104B detected aliphatic TPH in the ranges C12-C16 (225 μ g/l) and C16-C35 (337 μ g/l).

The previous Quarter 1 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 at wells MW03 (14 μ g/l), MW04 (15 μ g/l) and BH104B (27 μ g/l), C16-C21 at BH104B (15 μ g/l), and C21-C35 (14 μ g/l). TPH concentrations were detected in the aliphatic ranges C16-C35 at MW03 (46 μ g/l), BH103 (54 μ g/l) and BH104B (11 μ g/l), and C35-C44 at MW03 (46 μ g/l).

No detections of TPH in the aliphatic or aromatic range were observed in any shallow or deep monitoring well locations during the Quarter 4 monitoring event of 2014.

The Quarter 3 monitoring event of 2014 detected TPH concentrations in the aliphatic range at the shallow groundwater well BH104B. The TPH concentration detected was 410 μ g/l. The speciated TPH ranges that contributed to the value of 410 μ g/l were C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C31-C35 (10 μ g/l).

The Quarter 3, 2013 monitoring event detected TPH in the aliphatic range in one deep groundwater well, MW03. TPH of the range C10-C12 and C12-C16 were detected at concentrations of 200 μ g/l and 190 μ g/l respectively.

The Quarter 1 2013 monitoring event detected aliphatic TPH of the range C12-C16, C16-C21 and C21-C35. TPH in the mid to high aromatic ranges were detected in BH103, BH104B and MW04 during the previous Quarter 1 2013 monitoring event. Aromatic TPH of the ranges C12-C16, C16-C21 and C21-C35 were detected in BH103, the ranges C10-C12, C12-C16 and C16-C21 were detected in BH104B and aromatic TPH of the ranges C10-C12 and C12-C16 were detected in MW04.

The Quarter 2 monitoring event of 2012 detected elevated TPH of the aliphatic range C12-C16, C16-C21 and C21-C25 in BH103. Hydrocarbons have been detected in borehole MW03 during Quarter 1 2010, in borehole BH104B during the Quarter 2 2010 monitoring event and in borehole BH104B and MW03 during the Quarter 3 2010 monitoring events. Hydrocarbons have also been detected in BH103, BH104B and MW03 in the Quarter 2 2011 monitoring event and in MW03 in the Quarter 3 and Quarter 4 2011. These detections are discussed further in **Section 6.2.3**.

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 2 2015 monitoring round. As the monitoring continues in accordance with the Industrial Emissions Licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

6.1 GROUNDWATER LEVELS OVER TIME

Figure 6.1 to **Figure 6.3** below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 6.2 illustrates groundwater elevations (mAOD) in shallow groundwater wells (BH101 to BH104B) ranging between approximately 98 mAOD and 101 mAOD.

Figure 6.3 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (MW01 to MW03). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 99 mAOD to approximately 100 mAOD.

Figure 6.1 - Ground Elevation (mAOD) in all Monitoring Wells

Figure 6.2 - Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells

Figure 6.3 - Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; the general direction of flow in the shallow and deeper groundwater bearing unit is in an easterly or north easterly direction however there have been some occasional historic cases of groundwater flowing in a south-easterly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Éireann to examine the relationship between compounds and rainfall events. The data from Oak Park was chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in **Tables 6.1** to **6.7**.

Table 6.1 - Monthly Rainfall Data for Year 2009 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	113.4	29.2	32.6	102.4	69.0	65.4	152.4	100.9	41.8	127.8	215.5	73.7

Table 6.2 - Monthly Rainfall Data for Year 2010 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	71.5	48.0	80.7	49.0	51.4	37.7	93.6	25.5	108.7	68.9	87.7	52.2

Table 6.3 - Monthly Rainfall Data for Year 2011 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	50.6	121.9	16.0	19.5	51.2	72.7	46.4	25.5	93.9	93.9	89.2	55.5

Table 6.4 - Monthly Rainfall Data for Year 2012 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	70.8	24.5	18.0	56.3	50.2	155.8	76.2	127.7	37.9	63.4	80.9	68.1

Table 6.5 - Monthly Rainfall Data for Year 2013 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.8	57.6	44.4	35.6	37.5	32.3	85.6	24.4	170.0	27.7	0.9

Table 6.6 - Monthly Rainfall Data for Year 2014 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	147.2	176.7	65.0	52.6	78.6	61.9	24.6	122.1	18.2	138.2	165.6	47.7

Table 6.7 - Monthly Rainfall Data for Year 2015 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	Jun
Rainfall (mm)	66.0	36.3	53.5	26.3	89.4	29.7

Note: Data for the most recent months are provisional.

6.2 GROUNDWATER CONCENTRATIONS OVER TIME

Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.

The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

Phenols have been detected historically in all boreholes with the highest concentrations recorded in BH103. However concentrations in BH103 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

2,4-Dimethylphenol was detected at a concentration of 0.12 μ g/l during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the current Quarter 2 2015 monitoring event.

Figure 6.4 - Phenol Concentrations in all Monitoring Wells

6.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)

Figure 6.5 below illustrates that PAH's (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within MW03 and BH104B, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. In addition, a range of PAH's including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Naphthalene have previously been detected in MW03 with **Figures 6.6** to **6.10** illustrating some of the PAH compounds which were detected above their respective IGV's.

Since 2007 concentrations of PAH have shown a marked decrease and since 2010 detections of PAH have been confined to MW03, MW02 and BH104B. Concentrations of Total PAH above the IGV in 2010 were detected during the Quarter 1 monitoring event in MW03 (0.3 μ g/l), Quarter 2 monitoring event in BH104B (1.2 μ g/l) and Quarter 3 monitoring event in MW02 (2.0 μ gl) and BH104B (0.2 μ gl). There were no elevated concentrations of Total PAH during the Quarter 4 2010 monitoring event.

No Total PAH detections were recorded throughout 2011 and in Q1 of 2012. Total PAH was detected above the IGV in MW03 in the Q2 2012 monitoring event. No Total PAH exceedances were detected from Quarter 3 2012 to Quarter 4 2013 inclusive. Total PAH was detected at a concentration of 2.62 μ g/l in MW03 during the Q3 2013 monitoring event however; no detections above the laboratory limit were noted during the subsequent monitoring events up to and including the current monitoring event.

Figure 6.5 - PAH (Total) Concentrations in all Monitoring Wells

Figure 6.6 illustrates that **Fluoroanthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells BH104B (October 2007, 1.33 μ g/l) and MW03 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l.

Figure 6.7 - Naphthalene Concentrations in all Monitoring Wells

A similar trend to Fluoroanthene has been noted in **Figure 6.7**, with concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in BH104B and MW03 only. 4 no. exceedances of the IGV were noted in BH104B in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in BH104B have decreased below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in MW03, with the highest concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were

slightly above the laboratory limit of detection of 0.01 μ g/l at BH104B (0.08 μ g/l) and MW03 (0.05 μ g/l); however these levels are deemed low. Concentrations of Naphthalene were below the EPA IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 and 2012 quarterly monitoring events and the Quarter 1 to Quarter 3 2014 monitoring periods, inclusive. No detections of Naphthalene were noted in the Quarter 4 2014 monitoring event. No detections of Naphthalene were noted during the current Quarter 2 2015 monitoring event.

Figure 6.8 - Benzo (g,h,i) perylene Concentrations

Figure 6.8 illustrates the concentrations of **Benzo(g,h,i)perylene** in all monitoring wells over time. Elevated concentrations above the IGV were recorded at BH104B (0.087 μ g/l) on one occasion in March 2006.

Figure 6.9 illustrates elevated concentrations above the IGV recorded at MW03 on 5 no. occasions with the most recent elevated concentration detected in December 2009 (0.26 μ g/l). The results of subsequent monitoring events from 2010 to the current Quarter 2 2015 monitoring event recorded concentrations below the laboratory limit of detection of 0.01 μ g/l at all locations.

Figure 6.9 - Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03

Figure 6.10 illustrates the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicates that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 μ g/l. Similarly with the above mentioned trends, the highest concentrations have been detected in MW03 and BH104B. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 μ g/l was detected in MW03, however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in BH101, BH103 and MW01 during this same period.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGV's.

The results of all monitoring events from 2010 to the current Quarter 2 2015 monitoring event did not detect any concentrations above the GTV or IGV.

Figure 6.10 - Benzo (a) pyrene Concentrations in all Monitoring Wells

6.2.3 Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within BH103, BH104B and MW03. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12 – C16, C16 – C21 and C21 – C35. **Figure 6.11** illustrates the TPH analysis for the total TPH analysis from C5 – C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells MW03, BH104B and BH103 respectively.

Figure 6.11 - TPH (Carbon Range C5-C44) in all Monitoring Wells

During the Quarter 1, 2010 monitoring event, hydrocarbons were detected in borehole MW03. The predominant aliphatic carbon range in MW03 comprised of C16-C21 (1000 μ g/I), C21-C35 (2300 μ g/I) and C25-C44 (990 μ g/I). The predominant aromatic carbon range in MW03 comprised of C16-C21 (220 μ g/I) and C21-C35 (620 μ g/I). No detections were observed at other locations.

During the Quarter 2 and Quarter 3, 2010 monitoring event, hydrocarbons were detected in borehole BH104B, with the predominant aliphatic carbon range comprising C12-C16 (130 μ g/l and 12 μ g/l) and C16-C21 (130 μ g/l and 19 μ g/l). The predominant aliphatic carbon range in MW03 during Quarter 3 2010 comprised of C16-C21 (35 μ g/l) and C21-C34 (46 μ g/l). The predominant aromatic carbon range detected during Quarter 2 2010 comprised of C12-C16 (21 μ g/l) and C16-C21 (47 μ g/l) at BH104B. No aromatic carbons were detected above the laboratory limit of detection at any wells in Quarter 3 2010.

During the Quarter 4, 2010 and Quarter 1, 2011 monitoring event, there were no detections of TPH concentrations above the laboratory limit of detection of 10 μ g/l at any location. No aliphatic or aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 2, 2011 monitoring event, hydrocarbons were detected in borehole BH103, BH104B and MW03. The predominant aliphatic carbon range comprised of C16-C21 (340 μ g/l, 20 μ g/l and 46 μ g/l) and C21-C35 (420 μ g/l, 96 μ g/l and 150 μ g/l in BH103, BH104B and MW03 respectively). The predominant aromatic carbon range also comprised of C16-C21 (78 μ g/l, 52 μ g/l and 50 μ g/l) and C21-C35 (110 μ g/l, 49 μ g/l and 93 μ g/l in BH103, BH104B and MW03 respectively).

During the Quarter 3 and Quarter 4 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised of C10-C12 (18 μ g/l and 22 μ g/l), C12-C16 (57 μ g/l and 51 μ g/l), C16-C21 (35 μ g/l and 85 μ g/l) and C21-C35 (210 μ g/l and 110 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (42 μ g/l and 16 μ g/l), C16-C21 (66 μ g/l and 14 μ g/l) and C21-C35 (45 μ g/l and 91 μ g/l).

During the Quarter 1, 2012 monitoring event, hydrocarbons were detected in borehole BH103 only. The predominant aliphatic carbon range comprised C10-C12 (13 μ g/l), C12-C16 (270 μ g/l), C16-C21 (690 μ g/l) and C21-C35 (980 μ g/l). The predominant aromatic carbon range comprised of C16-C21 (250 μ g/l) and C21-C25 (680 μ g/l). No hydrocarbons were detected in MW03 during the current Quarter 1 monitoring event.

During the Quarter 2, 2012 monitoring event, hydrocarbons were detected in BH103 only. The detected aliphatic carbon range comprised C12-C16 (98 μ g/l), C16-C21 (230 μ g/l) and C21-C25 (170 μ g/l). No detections of aromatic carbons were measured during the Quarter 2 2012 monitoring event.

No hydrocarbons were detected at any location during the Quarter 3 and Quarter 4, 2012 monitoring events.

During the Quarter 1, 2013 monitoring event aromatic hydrocarbons were detected in BH103, BH104B and MW04. The predominant aromatic carbon range comprised C12-C16 ($30 \mu g/I$), C16-C21 (280 $\mu g/I$) and C21-C35 ($100 \mu g/I$) in BH103, C10-C12 ($30 \mu g/I$), C12-C16 ($110 \mu g/I$) and C16-C21 ($80 \mu g/I$) in BH104B and C10-C12 ($20 \mu g/I$) and C12-C16 ($80 \mu g/I$) in MW04. Aliphatic hydrocarbons were detected in BH103 in the ranges C12-C16 ($70 \mu g/I$), C16-C21 ($100 \mu g/I$) and C21-C35 ($90 \mu g/I$).

During the Quarter 2, 2013 monitoring event no aliphatic or aromatic hydrocarbons were detected at any location.

During the Quarter 3, 2013 monitoring event, hydrocarbons of the aliphatic range were detected in MW03 only. The detected aliphatic carbon range comprised C10-C16 (290 μ g/l) and C12-C16 (190 μ g/l). No detections of aromatic carbons were measured during the Quarter 3 2013 monitoring event.

Total Petroleum Hydrocarbons were not detected at any monitoring location during the Quarter 4, 2014 monitoring event. During the monitoring event for Quarter 3 2014 following ranges of the aliphatic hydrocarbons were recorded for BH104B; C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C21-C35 (10 μ g/l).

During the Quarter 1 2015 monitoring event, hydrocarbons were detected in MW03, MW04, BH103 and BH104B. The predominant aromatic carbon range comprised C21-C35 (14 μ g/l) in BH103, C12-C16 (27 μ g/l) and C16-C21 (15 μ g/l) in BH104B, C12-C16 (14 μ g/l) in MW03 and C12-C16 (15 μ g/l) in MW04. Aliphatic hydrocarbons were detected in the ranges C16-C35 (54 μ g/l) in BH103, C16-C35 (11 μ g/l) in BH104B and C16-C35 (46 μ g/l) and C35-C44 (12 μ g/l) in MW03.

Some detections of TPH in both the aliphatic and aromatic range were observed during the current Quarter 2 2015 monitoring event. The TPH concentration in the aromatic C21-C35 range was detected at one shallow groundwater wells BH103 (509 μ g/l). The TPH concentration in the aliphatic range was detected at C16-C35 (1760 μ g/l) in BH103 and C12-C16 (225 μ g/l) and C16-C35 (11 μ g/l) in BH104B.

7 CONCLUSIONS

- In accordance with the criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence Register No. W0184-01, groundwater monitoring was carried out at the ENVA Ireland site on the 20th May 2015 corresponding to Quarter 2 of 2015. Samples were collected at 8 groundwater monitoring wells during this event.
- The results presented have been referenced against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. no 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.
- Results of the BTEX and MTBE demonstrate that the levels of Toluene, Ethylbenzene and Xylene were below the recommended EPA IGV's. Benzene was also below the laboratory limit of detection at all locations; however this limit of detection was raised above the EPA IGV for samples from locations BH104B, MW03 and MW04
- The Quarter 2 2015 results of the speciated polycyclic aromatic hydrocarbons indicate that Total PAH's were below the EPA IGV of 0.1 μg/l all monitoring wells.
- There were no detections of VOC's or SVOC's in the current monitoring event above the laboratory limits of detection, with the exception of MTBE which was detected in BH103 (1.2 μg/l); however this is still below the GTV of 30 μg/l. The laboratory limits of detection were raised for samples from locations BH104B, MW03 and MW04 due to the nature of the sample matrix and all compounds analysed were below these new limits.
- Samples were analysed for speciated phenols to include chlorophenols and the results indicate that there were no detections above the laboratory limits of detection.
- Hydrocarbons in both aliphatic and aromatic range were observed during the current Quarter 2 2015 monitoring event. The TPH concentration in the aromatic range was detected in one shallow groundwater well, BH103 (509 µg/l). The TPH concentration in the aliphatic range was also detected at BH103 (1760 µg/l) and BH104B (557 µg/l). Hydrocarbons were detected at MW04 in the aromatic range and BH103, BH104B and MW03 in both the aromatic and aliphatic ranges during the Quarter 1 2015 monitoring event. Hydrocarbons were not detected in any monitoring location during the Quarter 4 2014 monitoring event. Hydrocarbons were detected in BH104B in the aliphatic carbon ranges C12-C16, C16-C21 and C21-C35 during the Quarter 3, 2014 event. Previous to these events hydrocarbons were detected in boreholes BH104B and MW03 in the aliphatic carbon ranges during the Quarter 3, 2010 monitoring event.
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Enva Portlaoise

2015 Groundwater Compliance Monitoring Quarter 3 (Jul – Sep 2015)

Document Control Sheet

Client:	Enva Ireland Ltd.				
Project Title:	Enva Portlaoise 2015 Groundwater Compliance Monitoring				
Document Title:	Quarter 3 (Jul – Sep 2015)				
Document No:	MDE0973Rp0024				
•					
Text Pages:	37	Appendices:	-		

Rev.	Status	Date	Author(s)		Reviewed By		Approved By	
D01	Draft	21 st September 2015	D.C.	DouChler	C.R.	Cabron Rally	C.R.	Cabron Rally
A01	Client Approval	6 th October 2015	D.C.	DouChler	C.R.	Catum Rally	C.R.	Cabron Rally

Copyright RPS Group Limited. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by RPS Group Limited no other party may use, make use of or rely on the contents of this report.

The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS Group Limited for any use of this report, other than the purpose for which it was prepared.

RPS Group Limited accepts no responsibility for any documents or information supplied to RPS Group Limited by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made.

RPS Group Limited has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy. No part of this report may be copied or reproduced, by any means, without the written permission of RPS Group Limited

rpsgroup.com/ireland

TABLE OF CONTENTS

1		INTRODUCTION1
	1.1	BACKGROUND
	1.2	OBJECTIVES & SCOPE OF WORK
2		REVIEW OF PREVIOUS DATA
	2.1	INFORMATION SOURCES
	2.2	SITE SETTING
	2.3	REGIONAL SETTING
		2.3.1 Geology
		2.3.2 Hydrogeology
	2.4	SITE GROUND CONDITIONS
		2.4.1 Licence Conditions
3		METHODOLOGY
	3.1	LABORATORY ANALYSIS
	3.2	PRESENTATION & INTERPRETATION OF RESULTS
4		QUARTER 3 RESULTS AUGUST 20159
5		DISCUSSION OF QUARTER 3 RESULTS
	5.1	FIELD PARAMETERS
	5.2	RESULTS OF INORGANIC ANALYSIS
	5.3	RESULTS OF BTEX & MTBE
	5.4	RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)
	5.5	RESULTS OF SPECIATED PHENOLS
	5.6	RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS
	5.7	RESULTS OF VOLATILE ORGANIC COMPOUNDS
	5.8	RESULTS OF TOTAL PETROLEUM HYDROCARBONS
6		HISTORICAL RESULTS & TRENDS
	6.1	GROUNDWATER LEVELS OVER TIME
	6.2	GROUNDWATER CONCENTRATIONS OVER TIME
		6.2.1 Phenols
		6.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)
		6.2.3 Petroleum Hydrocarbons (TPH)
7		CONCLUSIONS

APPENDICES

Appendix A Title

LIST OF FIGURES

Figure 2.1 – Site Location	3
Figure 3.1 – Site Layout Plan with Groundwater Monitoring Locations	7
Figure 6.1 - Ground Elevation (mAOD) in all Monitoring Wells	26
Figure 6.2 - Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells	27
Figure 6.3 - Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells	27
Figure 6.4 - Phenol Concentrations in all Monitoring Wells	29
Figure 6.5 - PAH (Total) Concentrations in all Monitoring Wells	30
Figure 6.6 - Fluoroanthene Concentrations in all Monitoring Wells	31
Figure 6.7 - Naphthalene Concentrations in all Monitoring Wells	31
Figure 6.8 - Benzo (g,h,i) perylene Concentrations	32
Figure 6.9 - Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03	33
Figure 6.10 - Benzo (a) pyrene Concentrations in all Monitoring Wells	34
Figure 6.11 - TPH (Carbon Range C5-C44) in all Monitoring Wells	34

LIST OF TABLES

Table 2.1 – Ground Conditions	4
Table 2.2 – Licence Parameters	5
Table 3.1 – Analytical Methodologies – ALS Environmental	6
Table 4.1 - Groundwater Levels (Quarter 3, 2015)	10
Table 4.2 - Results of Field Parameters Measured at each Groundwater Monitoring Well (Qu	uarter 3,
2015)	11
Table 4.3 – Results of Inorganic Analysis	12
Table 4.4 - Results of BTEX and MTBE	13
Table 4.5 - Results of Speciated PAHs	13
Table 4.6 - Results of Speciated Phenols	15
Table 4.7 - Results of Semi-Volatile Organic Compounds (SVOCs)	16
Table 4.8 - Results of Volatile Organic Compounds (VOCs)	18
Table 4.9 - Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)	20
Table 6.1 - Monthly Rainfall Data for Year 2009 for Oak Park, Carlow	28
Table 6.2 - Monthly Rainfall Data for Year 2010 for Oak Park, Carlow	28
Table 6.3 - Monthly Rainfall Data for Year 2011 for Oak Park, Carlow	28
Table 6.4 - Monthly Rainfall Data for Year 2012 for Oak Park, Carlow	28
Table 6.5 - Monthly Rainfall Data for Year 2013 for Oak Park, Carlow	28
Table 6.6 - Monthly Rainfall Data for Year 2014 for Oak Park, Carlow	28
Table 6.7 - Monthly Rainfall Data for Year 2015 for Oak Park, Carlow	28

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd (Enva) to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence, Register No. W0184-01.

Enva Ireland has been operating under Waste Licence Register No. W0184-01 since January 2004. The licence was amended by the Environmental Protection Agency in December 2013 to conform to the provisions and requirements of the Council Directive 2010/75/EU (Industrial Emissions Directive) and as such is deemed an Industrial Emissions Licence. Enva is required to submit a report to the EPA on a quarterly basis, outlining the existing groundwater quality underlying the site.

A suitably qualified environmental consultant from RPS, collected groundwater samples from a series of 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) within the site boundary on the 26th August 2015. The samples underwent laboratory analysis for the suite of parameters specified in Schedule 4(ii) of Industrial Emissions Licence W0184-01. This report outlines the results of the Quarter 3 monitoring for 2015 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 3 2015 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Industrial Emissions Licence W0184-01 and any available EPA documents from the EPA website
- Quarterly Groundwater Monitoring Reports (Quarter 1 2004 to Quarter 4 2005), URS
- Quarterly Groundwater Monitoring Reports (Quarter 1 2006 to Quarter 4 2014), RPS
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007)
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008)
- Hydrogeological Review and Assessment Report, Ref MDE0973Rp0017F01, RPS (2014)
- Quarter 1 Groundwater Monitoring Report, RPS (2015)
- Quarter 2 Groundwater Monitoring Report, RPS (2015)

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1.5 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 2.1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 3.1**. The site is largely covered in hardstanding with some open areas in the far north and northeast of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

Figure 2.1 – Site Location

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoils in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological Survey of Ireland (GSI) as a Locally Important Karstified Aquifer (LI). Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising three groundwater abstraction well fields comprising of two abstraction wells in each well field. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends to within 3.2 km of the Enva site but does not encompass the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk; the accuracy of this location is also 1 km so it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2.1**.

Strata	Extent	Thickness	Description
Made Ground	BH104	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium,

Table 2.1 – Ground Conditions

Strata	Extent	Thickness	Description
			well rounded gravels.
Sand and Gravel	Confined to south east corner of site (BH101, BH104 and MW03)	0-2 m	In general the transition from boulder clay to sand is gradual with changes from gravel, to sandy gravel, to sand.
Limestone Bedrock	Encountered in MW01, MW02 and MW03	Top of limestone ranges from 7.7m to 9m below ground level.	Pale grey, fine-grained bedrock, differentiated from boulders by its un- weathered nature.

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

2.4.1 Licence Conditions

The Industrial Emissions Licence requires the regular monitoring and sampling of boreholes BH101, BH102, BH103, BH104B, MW01, MW02, MW03 and MW04. The parameters requiring measurement or analysis are presented in **Table 2.2**.

Table 2.2 – Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement
	Groundwater Level	Groundwater Level
	рН	рН
Field Daramators	Temperature	Temperature
Field Parameters	Dissolved Oxygen	Dissolved Oxygen
	Electrical Conductivity	Electrical Conductivity
	Visual Inspection	Visual Inspection
	Mineral Oil	Mineral Oil
	BTEX & MTBE	BTEX & MTBE
Organics	PAH's	PAH's
Organics	Phenols	Phenols
	VOC's	VOC's
	SVOC's	SVOC's
Inorganics	-	Total Alkalinity, Calcium, Manganese, Sulphate, Cyanide (Total), Chloride, Sodium,

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04), (Figure 3.1) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.

Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, ALS Environmental for the suite of analyses listed in **Table 3.1**. **Table 3.1** also indicates the analytical techniques used by the laboratory.

_	
Parameter	Analytical Methodology
Phenols	GC-MS
Speciated PAHs	GC-MS
BTEX & MTBE	Headspace GC-MS
Petroleum Hydrocarbons	Headspace GC-MS
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS

Table 3.1 – Analytical Methodologies – ALS Environmental

Shallow Monitoring Well locations Deep Monitoring Well locations

• •

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 3 2015 results are tabulated in **Section 4** and discussed with respect to previous results. Results are compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

Previous monitoring reports (as listed in **Section 2.1**) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in **Section 6** and include the results of this Quarter 3 2015 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 3 RESULTS AUGUST 2015

The results of all field measurements and laboratory analysis are presented in this section. Results are primarily compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

The results are discussed in relation to appropriate guideline values in **Section 5**. Results that are shown to be above the relevant threshold or guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Monitoring Well	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04
Depth (mbgl)	6.77	6.40	4.28	4.36	20.05	31.01	10.77	6.41
Static Water Level (mbgl)	4.36	2.03	1.64	0.40	3.08	4.06	4.24	3.96
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	98.70	100.52	99.52	101.12	99.02	99.06	98.53	-
Free Phase Oil (mm)	No detection							

mbgl = metres below ground level

Monitoring Well	рН (рН Units)	Temperature (°C)	Conductivity (μS/cm)	Dissolved O ₂ (ppm)	Observations	
BH101	7.27	13.5	897	4.55	Slight cloudy colour, clearer after 10L. Small amount of sediment and suspended solids	
BH102	7.46	11.5	713	2.02	Clear on purging, no odour, some sediment and suspended solids	
BH103	6.80	14.0	844	2.63	Dark, cloudy colour, H_2S odour detected, small amount of sediment	
BH104B	7.70	13.4	561	2.55	Clear in colour, slight H ₂ S odour, some fine sediment	
MW01	7.62	12.3	732	4.41	Slightly cloudy, some suspended solids, no odour, samples also cloudy	
MW02	7.10	13.2	595	4.34	Cloudy in colour, clearer after 20L, some suspended solids and ${\rm H}_2 S$ odour	
MW03	7.11	12.2	1623	2.89	Clear but with slight sheen and H ₂ S odour	
MW04	7.16	13.7	1655	5.19	Dirty brown in colour, no odour, some suspended solids and sediment. Samples also dirty in colour	
Groundwater Threshold Value	-	-	>800 & <1875	-	-	
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25°C	1000	No abnormal change	-	

Table 4.2 - Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 3, 2015)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results outside the GTV are highlighted in bold and shaded.
Table 4.3 – Results of Inorganic Analysis

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Total Alkalinity	mg/l	10	288	226	341	202	298	295	261	523	-	No abnormal change
Calcium	mg/l	0.2	89	89.5	130	66	67.4	58.9	132	153	-	200
Manganese	mg/l	0.007	<0.007	0.876	1.03	0.0703	0.0685	0.0115	0.337	1.73	-	0.05
Sulphate	mg/l	0.1	28.2	25.5	19.6	22.4	24.1	19.4	18.6	<4.4	187.5	200
Cyanide (Total)	mg/l	0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009	0.375	0.01
Chloride	mg/l	4	55.9	7	28.8	20.1	16.2	13.8	241	267	24 -187.5	30
Sodium	mg/l	0.1	60.5	6.04	14.4	31.1	18.2	20.3	110	126	150	150

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Table 4.4 - Results of BTEX and MTBE

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	0.75	1.0
Toluene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	10
Ethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	10
p & m-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	10 Note 1
o-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	10 Note 1
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	3.1	<10.0	<1.0	<1.0	<10.0	<10.0	-	30

Note: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.5 - Results of Speciated PAHs

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Naphthalene	µg/l	0.01	0.011	<0.01	<0.14	<0.07	<0.01	<0.01	0.031	<0.10	-	1.0
Acenaphthylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	-	-
Acenaphthene	µg/l	0.01	<0.01	<0.01	0.071	0.042	<0.01	<0.01	0.095	<0.10	-	-
Fluorene	µg/l	0.01	<0.01	<0.01	0.022	0.07	<0.01	<0.01	0.125	<0.10	-	-
Phenanthrene	µg/l	0.01	<0.01	<0.01	<0.01	0.011	<0.01	<0.01	<0.01	<0.10	-	-
Anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	-	10,000
Fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.015	<0.10	-	1.0
Pyrene	µg/l	0.01	<0.01	<0.01	<0.01	0.036	<0.01	<0.01	0.1	<0.10	-	-
Benzo(a)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.038	<0.10	-	-
Chrysene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.025	<0.10	-	-
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.025	<0.10	-	0.5

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzo(k)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.10	-	0.05
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.052	<0.10	-	0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.05
Dibenz(a,h)anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.012	<0.10	-	-
Benzo(g,h,i)perylene	μg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.053	<0.10	-	0.05
Total EPA-16 PAH's	μg/l	0.1	0.011	< 0.01	0.093	0.159	<0.01	< 0.01	0.586	< 0.10	0.075	0.1

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.6 - Results of Speciated Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	μg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	0.5
2,4,6-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.7 - Results of Semi-Volatile Organic Compounds (SVOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
2-Chlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
Bis(2-chloroethyl)ether	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroisopropyl)ether	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Nitrobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
4-Methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Isophorone	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroethoxy)methane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-trichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Naphthalene	μg/l	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	1.0
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobutadiene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4,6-Trichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4,5-Trichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylnaphthalene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chloronaphthalene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dimethylphthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
2,6-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dibenzofuran	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Diethyl phthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Fluorene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.03
Phenanthrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10,000
Pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Butyl benzyl phthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(a)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chrysene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(b)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
Benzo(k)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Benzo(a)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.01
Indeno(1,2,3-cd)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Dibenz(a,h)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(g,h,i)perylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

RPS

Table 4.8 - Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Chloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Chloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	12.6	-	-
Bromomethane	μg/l	1.0	<2.0	<1.0	<2.0	<20.0	<2.0	<2.0	<20.0	<10.0	-	-
Vinyl Chloride	μg/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<5.0	0.375	-
Trichlorofluoromethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
1,1-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	30
1,1,2-Trichloro 1,2,2- Trifluoroethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Cis-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1.0	<1.0	<1.0	3.1	<10.0	<1.0	<1.0	<10.0	<10.0	-	30
2,2-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Trichloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	12
1,1,1-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	500
1,2-dichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	2.25	-
1,1-Dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Trans-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	1.0
1,2-dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Trichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	70
Dibromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Bromodichloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Cis-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Trans-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Toluene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	10

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
1,1,2-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
1,3-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Dibromochloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Tetrachloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	40
1,2-Dibromoethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Chlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	1.0
1,1,1,2-Tetrachloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Ethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	10
p & m-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	10
Styrene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Tribromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
o-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	10
Isopropylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Bromobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
N-Propylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
2-Chlorotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
4-Chlorotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
1,3,5-Trimethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Tert-Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
1,2,4-Trimethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Sec-Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
1,3-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
P-Isopropyltoluene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
1,2-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	10
1,4-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-
Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
1,2-Dibromo-3-chloropropane	µg/l	2.0	<2.0	<2.0	<2.0	<20.0	<2.0	<2.0	<20.0	<20.0	-	-
1,2,4-Trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	0.40
Hexachlorobutadiene	µg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	0.10
1,2,3-Trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<10.0	<1.0	<1.0	<10.0	<10.0	-	-

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Aliphatic > C10-C12	μg/l	10	<10	<10	<10	13	<10	<10	<10	<10	-	-
Aliphatic > C12-C16	μg/l	10	<10	<10	<10	40	<10	<10	<10	<10	-	-
Aliphatic > C16-C35	μg/l	10	<10	<10	72	62	<10	<10	14	<10	-	-
Aliphatic > C35-C44	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aliphatic > C10-C44	μg/l	10	<10	<10	72	116	<10	<10	14	<10	-	10
Aromatic > C10-C12	μg/l	10	<10	<10	<10	<10	<10	<10	<10	18	-	-
Aromatic > C12-C16	μg/l	10	<10	<10	<10	39	<10	<10	<10	29	-	-
Aromatic > C16-C21	μg/l	10	<10	<10	<10	37	<10	<10	<10	<10	-	-
Aromatic > C21-C35	μg/l	10	<10	<10	17	28	<10	<10	<10	<10	-	-
Aromatic > C35-C44	μg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-	-
Aromatic > C10-C44	μg/l	10	<10	<10	17	103	<10	<10	<10	47	-	10

Table 4.9 - Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

5 DISCUSSION OF QUARTER 3 RESULTS

The results of the Quarter 3 monitoring event for 2015 are presented in **Table 4.1** to **4.9** of this report. For the purpose of this report, the results are compared against the Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations (S.I. No. 9 of 2010) where available. Where GTVs are not available results are compared against the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in **Table 4.2**. Groundwater samples recorded pH levels ranging between 6.80 and 7.70, all within the EPA Interim guideline range of \geq 6.5 to \leq 9.5. Temperature measurements ranged from 11.5°C to 14.0°C and were below the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 561 μ S/cm and 1655 μ S/cm. Two measurements of Electrical Conductivity were above the IGV of 1000 μ S/cm at MW03 (1623 μ S/cm) and MW04 (1655 μ S/cm), but were however within the GTV range of >800 & <1875 μ S/cm.

Dissolved oxygen levels ranged between 2.02 and 5.19 ppm. Factors such as climate, nutrients in the water, suspended solids; organic wastes and groundwater inflow can all influence the dissolved oxygen values.

Observations relating to colour and odour varied from well to well as detailed in Table 4.2.

5.2 RESULTS OF INORGANIC ANALYSIS

The results of the inorganic analysis are presented in **Table 4.3**. The following inorganic parameters are required to be analysed on an annual basis in accordance with Schedule D of the Industrial Emissions Licence W0184-01; Total Alkalinity, Calcium, Manganese, Sulphate, Cyanide (Total), Chloride and Sodium.

The results of the inorganic analysis for this monitoring event indicate that Manganese and Chloride were recorded above their respective recommended GTVs or IGV's. The remaining parameters were below their GTV's and IGV's at all locations.

Concentrations of Manganese exceeded the IGV of 0.05 mg/l at 6 no. locations (BH102, BH103, BH104B, MW01, MW03 and MW04) ranging between 0.337 mg/l and 1.73 mg/l. Manganese is a naturally occurring metal and the levels of Manganese detected during the Quarter 3 2015 monitoring event are likely to be naturally occurring.

Concentrations of Chloride were recorded above the upper GTV limit of 187.5 mg/l at 2 no. locations (MW03 and MW04) ranging between 241 mg/l and 267 mg/l. Chloride concentrations were detected at MW03 and MW04 in Quarter 3 2014 at levels of 220 mg/l and 240 mg/l. Chloride concentrations

at these locations are not suspected to be related to current activities. Chloride concentrations will continue to be measured to verify the consistency of these results.

5.3 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in **Table 4.4**. BTEX concentrations are below the laboratory limit of detections and associated IGV's at locations BH101, BH102, BH103, MW01 and MW02. The laboratory limits of detection were raised for analysis of samples at BH104B, MW03 and MW04 due to the nature of the sample matrix. However, the new limits of detection were still below the associated IGV's, with the exception of Benzene. MTBE analysis detected a concentration above the laboratory limit at BH103 ($3.1 \mu g/l$), however this value does not exceed the IGV limit of $30 \mu g/l$.

The previous detection of MTBE was in the Quarter 2 monitoring event of 2015 and recorded a concentration above the laboratory limit of detection of 1.2 μ g/l at BH103. This is still well below the IGV limit. Prior to this there was a detection of MTBE at BH104B in the Quarter 1 monitoring event of 2012 with a recorded concentration of 280 μ g/l at BH104B which is above the laboratory limit of detection. This was the only recorded exceedance in Quarter 1 2012.

Monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at BH103 at a concentration of 16 μ g/l. Subsequent monitoring in 2010 recorded concentrations below the laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at BH103 were recorded at 63 μ g/l in December 2009.

5.4 RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAH'S)

The results of the Speciated PAH analysis during this monitoring period are presented in **Table 4.5**.

The laboratory limit of detection for Total EPA-16 PAH's is 0.1 μ g/l and has been lowered for comparison with the EPA IGV of 0.1 μ g/l; however this is not accredited. This laboratory limit of detection is above the EPA GTV of 0.075 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l.

Total Polyaromatic Hydrocarbons were above the IGV limit of 0.1 μ g/l at BH104B (0.159 μ g/l) and MW03 (0.586 μ g/l). Total PAH's were above the GTV of 0.075 μ g/l at BH103 (0.093 μ g/l) but below the IGV. Total PAH's were below the GTV limits at all locations during the previous Quarter 2 2015 monitoring event.

The results of the speciated polycyclic aromatic hydrocarbon analysis detected a number of different compounds in BH101, BH103, BH104B and MW03 above the laboratory limit of detection. However only Benzo(a)pyrene (0.052 μ g/l) and Benzo(g,h,i)perylene (0.053 μ g/l) in well MW03 were above their respective IGV limits of 0.01 μ g/l and 0.05 μ g/l.

5.5 **RESULTS OF SPECIATED PHENOLS**

During previous quarterly monitoring events and sample analysis, total monohydric phenol was determined and historically has been below the laboratory limit of detection of 10 μ g/l since

December 2008. It should be noted that the laboratory limit of detection was however above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in **Table 4.6**. The speciated phenol analysis reduces the laboratory limit of detection to $1.0 \mu g/l$ for individual parameters.

The results of the current Quarter 3 2015 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 1.0 μ g/l at all locations.

4-Chloro-3-methylphenol was detected at BH104B (1.37 μ g/l) above the laboratory limit of detection for the Quarter 1 2015 analysis. With the exception of this, all other results are consistent with results since the 2012 quarterly monitoring events.

5.6 **RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS**

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.7.

There are no GTVs for individual SVOC parameters. No SVOC's were detected above the relevant IGV's during this monitoring period, consistent with the Quarter 1 and Quarter 2 2015 periods.

The Quarter 3 2013 monitoring event detected two SVOC compounds, Acenaphthene (1.1 μ g/l) and Fluorene (1.5 μ g/l) in MW03. Prior to this detection the Quarter 2 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene in MW03 at concentrations of 2.4 μ g/l and 0.12 μ /l respectively.

5.7 RESULTS OF VOLATILE ORGANIC COMPOUNDS

The results of the Volatile Organic Compound analysis are presented in **Table 4.8**. The results of the current Quarter 3 2015 monitoring event indicate that MTBE at BH103 was detected at 3.1 μ g/l, which is above the laboratory limit of detection of 1.0 μ g/l. There is no GTV for MTBE and it is below the IGV of 30 μ g/l. Chloroethane was also detected above the laboratory limit of detection in well MW04 at 12.6 μ g/l. There is no GTV or IGV limit for Chloroethane.

All other compounds were below their respective laboratory limits of detection; however the limits of detection were raised for samples from BH104B, MW03 and MW04.

Historic groundwater monitoring events detected some parameters above the laboratory limit of detection in November 2009, corresponding to Quarter 4 of 2009. 1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene were detected above the laboratory limits of detection. No VOC's were detected above the relevant GTVs or IGV's.

The results of the Quarter 3 and Quarter 4 monitoring events of 2009 and all subsequent monitoring events indicate that there were no exceedances of the GTVs or IGVs for specific parameters.

5.8 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in **Table 4.9**.

The EPA IGV of 10 μ g/l for the Total Hydrocarbons is deemed comparable with the results for Total Petroleum Hydrocarbons. Some detections of TPH in both the aliphatic and aromatic range were observed during the current Quarter 3 2015 monitoring event. Detections in samples from the well BH104B were in the aliphatic ranges C10-C12 (13 μ g/l), C12-C16 (40 μ g/l) and C16-C35 (62 μ g/l), as well as in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l). TPH concentrations were also recorded in the aliphatic range C16-C35 at BH103 (72 μ g/l) and MW03 (14 μ g/l), and in the aromatic ranges C21-C35 at BH103 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at MW04 .

The previous Quarter 2 monitoring event of 2015 detected TPH in the aromatic range C21-C35 at BH03 (509 μ g/l). TPH concentrations were detected in the aliphatic ranges C16-C35 at BH103 (1760 μ g/l) and BH104B (337 μ g/l), and C12-C16 at BH104B (225 μ g/l).

The Quarter 1 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 at wells MW03 (14 μ g/l), MW04 (15 μ g/l) and BH104B (27 μ g/l), C16-C21 at BH104B (15 μ g/l), and C21-C35 (14 μ g/l) at BH103. TPH concentrations were detected in the aliphatic ranges C16-C35 and C35-C44 at MW03 (46 μ g/l and 12 μ g/l respectively), BH103 (54 μ g/l) and BH104B (11 μ g/l.

No detections of TPH in the aliphatic or aromatic range were observed in any shallow or deep monitoring well locations during the Quarter 4 monitoring event of 2014.

The Quarter 3 monitoring event of 2014 detected TPH concentrations in the aliphatic range at the shallow groundwater well BH104B. The TPH concentration detected was 410 μ g/l. The speciated TPH ranges that contributed to the value of 410 μ g/l were C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C31-C35 (10 μ g/l).

The Quarter 3, 2013 monitoring event detected TPH in the aliphatic range in one deep groundwater well, MW03. TPH of the range C10-C12 and C12-C16 were detected at concentrations of 200 μ g/l and 190 μ g/l respectively.

The Quarter 1 2013 monitoring event detected aliphatic TPH of the range C12-C16, C16-C21 and C21-C35. TPH in the mid to high aromatic ranges were detected in BH103, BH104B and MW04 during the previous Quarter 1 2013 monitoring event. Aromatic TPH of the ranges C12-C16, C16-C21 and C21-C35 were detected in BH103, the ranges C10-C12, C12-C16 and C16-C21 were detected in BH104B and aromatic TPH of the ranges C10-C12 and C12-C16 were detected in MW04.

The Quarter 2 monitoring event of 2012 detected elevated TPH of the aliphatic range C12-C16, C16-C21 and C21-C25 in BH103. Hydrocarbons have been detected in borehole MW03 during Quarter 1 2010, in borehole BH104B during the Quarter 2 2010 monitoring event and in borehole BH104B and MW03 during the Quarter 3 2010 monitoring events. Hydrocarbons have also been detected in

BH103, BH104B and MW03 in the Quarter 2 2011 monitoring event and in MW03 in the Quarter 3 and Quarter 4 2011. These detections are discussed further in **Section 6.2.3**.

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 3 2015 monitoring round. As the monitoring continues in accordance with the Industrial Emissions Licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

6.1 GROUNDWATER LEVELS OVER TIME

Figure 6.1 to **Figure 6.3** below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 6.2 illustrates groundwater elevations (mAOD) in shallow groundwater wells (BH101 to BH104B) ranging between approximately 98 mAOD and 102 mAOD.

Figure 6.3 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (MW01 to MW03). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 97.5 mAOD to approximately 100 mAOD.

Figure 6.1 - Ground Elevation (mAOD) in all Monitoring Wells

Figure 6.2 - Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells

Figure 6.3 - Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; the general direction of flow in the shallow and deeper groundwater bearing unit is in an easterly or north easterly direction however there have been some occasional historic cases of groundwater flowing in a south-easterly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Éireann to examine the relationship between compounds and rainfall events. The data from Oak Park was chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in **Tables 6.1** to **6.7**.

29.2

32.6

Rainfall

(mm)

113.4

Dec

73.7

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov

69.0

Table 6.1 - Monthly Rainfall Data for Year 2009 for Oak Park, Carlow

102.4

Table 6.2 - Monthly Rainfall Data for Year 2010 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	71.5	48.0	80.7	49.0	51.4	37.7	93.6	25.5	108.7	68.9	87.7	52.2

65.4

152.4

100.9

41.8

127.8

215.5

Table 6.3 - Monthly Rainfall Data for Year 2011 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	50.6	121.9	16.0	19.5	51.2	72.7	46.4	25.5	93.9	93.9	89.2	55.5

Table 6.4 - Monthly Rainfall Data for Year 2012 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	70.8	24.5	18.0	56.3	50.2	155.8	76.2	127.7	37.9	63.4	80.9	68.1

Table 6.5 - Monthly Rainfall Data for Year 2013 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.8	57.6	44.4	35.6	37.5	32.3	85.6	24.4	170.0	27.7	0.9

Table 6.6 - Monthly Rainfall Data for Year 2014 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	147.2	176.7	65.0	52.6	78.6	61.9	24.6	122.1	18.2	138.2	165.6	47.7

Table 6.7 - Monthly Rainfall Data for Year 2015 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep
Rainfall (mm)	66.0	36.3	53.5	26.3	89.4	29.7	79.4	83.0	17.9

Note: Data for the most recent months are provisional.

6.2 GROUNDWATER CONCENTRATIONS OVER TIME

Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.

The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

Phenols have been detected historically in all boreholes with the highest concentrations recorded in BH103. However concentrations in BH103 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

2,4-Dimethylphenol was detected at a concentration of 0.12 μ g/l during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the current Quarter 3 2015 monitoring event.

Figure 6.4 - Phenol Concentrations in all Monitoring Wells

6.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)

Figure 6.5 below illustrates that PAH's (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within MW03 and BH104B, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. In addition, a range of PAH's including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Naphthalene have previously been detected in MW03 with **Figures 6.6** to **6.10** illustrating some of the PAH compounds which were detected above their respective IGV's.

Since 2007 concentrations of PAH have shown a marked decrease and since 2010 detections of PAH have been confined to MW03, MW02 and BH104B. Concentrations of Total PAH above the IGV in 2010 were detected during the Quarter 1 monitoring event in MW03 (0.3 μ g/l), Quarter 2 monitoring event in BH104B (1.2 μ g/l) and Quarter 3 monitoring event in MW02 (2.0 μ gl) and BH104B (0.2 μ gl). There were no elevated concentrations of Total PAH during the Quarter 4 2010 monitoring event.

No Total PAH detections were recorded throughout 2011 and in Q1 of 2012. Total PAH was detected above the IGV in MW03 in the Q2 2012 monitoring event. No Total PAH exceedances were detected from Quarter 3 2012 to Quarter 4 2013 inclusive. Total PAH was detected at a concentration of 2.62 μ g/l in MW03 during the Q3 2013 monitoring event however; no detections above the laboratory limit were noted during the subsequent monitoring events up to and including the previous Quarter 2 2015 monitoring event. For the current Quarter 3 2015 monitoring event, total PAH detections were above the IGV limit at BH104B (0.159 μ g/l) and MW03 (0.586 μ g/l) and were above the GTV of 0.075 μ g/l at BH103 (0.093 μ g/l) but below the IGV.

Figure 6.5 - PAH (Total) Concentrations in all Monitoring Wells

Figure 6.6 illustrates that **Fluoroanthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells BH104B (October 2007, 1.33 μ g/l) and MW03 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l.

Figure 6.7 - Naphthalene Concentrations in all Monitoring Wells

A similar trend to Fluoroanthene has been noted in **Figure 6.7**, with concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in BH104B and MW03 only. 4 no. exceedances of the IGV were noted in BH104B in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in BH104B have decreased below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in MW03, with the highest concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were

slightly above the laboratory limit of detection of 0.01 μ g/l at BH104B (0.08 μ g/l) and MW03 (0.05 μ g/l); however these levels are deemed low. Concentrations of Naphthalene were below the EPA IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 and 2012 quarterly monitoring events and the Quarter 1 to Quarter 3 2014 monitoring periods, inclusive. No detections of Naphthalene were noted from the Quarter 4 2014 monitoring event to the Quarter 2 2015 monitoring event. During the current Quarter 3 monitoring event in 2015 Naphthalene was detected at BH101 (0.011 μ g/l) and MW03 (0.031 μ g/l), however both these detections were below the IGV limit of detection of 1.0 μ g/l.

Figure 6.8 - Benzo (g,h,i) perylene Concentrations

Figure 6.8 illustrates the concentrations of **Benzo(g,h,i)perylene** in all monitoring wells over time. Elevated concentrations above the IGV were recorded at BH104B (0.087 μ g/l) on one occasion in March 2006.

Figure 6.9 illustrates elevated concentrations above the IGV recorded at MW03 on 5 no. occasions with the most recent elevated concentration recorded during the current Quarter 3 2015 monitoring event (0.053 μ g/l). The previous elevated concentration detected was in December 2009 (0.26 μ g/l). The results of subsequent monitoring events from 2010 to the current Quarter 3 2015 monitoring event recorded concentrations below the laboratory limit of detection of 0.01 μ g/l at all locations.

Figure 6.9 - Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03

Figure 6.10 illustrates the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicates that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 μ g/l. Similarly with the above mentioned trends, the highest concentrations have been detected in MW03 and BH104B. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 μ g/l was detected in MW03, however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in BH101, BH103 and MW01 during this same period.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGV's.

Benzo(a)pyrene was detected above the IGV limit of 0.01 μ g/l at MW03 (0.052 μ g/l)during the current Quarter 3 2015 monitoring event. All other results of all monitoring events from 2010 to the current Quarter 3 2015 monitoring event did not detect other concentrations above the IGV.

Figure 6.10 - Benzo (a) pyrene Concentrations in all Monitoring Wells

6.2.3 Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within BH103, BH104B and MW03. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12 – C16, C16 – C21 and C21 – C35. **Figure 6.11** illustrates the TPH analysis for the total TPH analysis from C5 – C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells MW03, BH104B and BH103 respectively.

Figure 6.11 - TPH (Carbon Range C5-C44) in all Monitoring Wells

During the Quarter 1, 2010 monitoring event, hydrocarbons were detected in borehole MW03. The predominant aliphatic carbon range in MW03 comprised of C16-C21 (1000 μ g/I), C21-C35 (2300 μ g/I) and C25-C44 (990 μ g/I). The predominant aromatic carbon range in MW03 comprised of C16-C21 (220 μ g/I) and C21-C35 (620 μ g/I). No detections were observed at other locations.

During the Quarter 2 and Quarter 3, 2010 monitoring event, hydrocarbons were detected in borehole BH104B, with the predominant aliphatic carbon range comprising C12-C16 (130 μ g/l and 12 μ g/l) and C16-C21 (130 μ g/l and 19 μ g/l). The predominant aliphatic carbon range in MW03 during Quarter 3 2010 comprised of C16-C21 (35 μ g/l) and C21-C34 (46 μ g/l). The predominant aromatic carbon range detected during Quarter 2 2010 comprised of C12-C16 (21 μ g/l) and C16-C21 (47 μ g/l) at BH104B. No aromatic carbons were detected above the laboratory limit of detection at any wells in Quarter 3 2010.

During the Quarter 4, 2010 and Quarter 1, 2011 monitoring event, there were no detections of TPH concentrations above the laboratory limit of detection of 10 μ g/l at any location. No aliphatic or aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 2, 2011 monitoring event, hydrocarbons were detected in borehole BH103, BH104B and MW03. The predominant aliphatic carbon range comprised of C16-C21 (340 μ g/l, 20 μ g/l and 46 μ g/l) and C21-C35 (420 μ g/l, 96 μ g/l and 150 μ g/l in BH103, BH104B and MW03 respectively). The predominant aromatic carbon range also comprised of C16-C21 (78 μ g/l, 52 μ g/l and 50 μ g/l) and C21-C35 (110 μ g/l, 49 μ g/l and 93 μ g/l in BH103, BH104B and MW03 respectively).

During the Quarter 3 and Quarter 4 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised of C10-C12 (18 μ g/l and 22 μ g/l), C12-C16 (57 μ g/l and 51 μ g/l), C16-C21 (35 μ g/l and 85 μ g/l) and C21-C35 (210 μ g/l and 110 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (42 μ g/l and 16 μ g/l), C16-C21 (66 μ g/l and 14 μ g/l) and C21-C35 (45 μ g/l and 91 μ g/l).

During the Quarter 1, 2012 monitoring event, hydrocarbons were detected in borehole BH103 only. The predominant aliphatic carbon range comprised C10-C12 (13 μ g/l), C12-C16 (270 μ g/l), C16-C21 (690 μ g/l) and C21-C35 (980 μ g/l). The predominant aromatic carbon range comprised of C16-C21 (250 μ g/l) and C21-C25 (680 μ g/l). No hydrocarbons were detected in MW03 during the current Quarter 1 monitoring event.

During the Quarter 2, 2012 monitoring event, hydrocarbons were detected in BH103 only. The detected aliphatic carbon range comprised C12-C16 (98 μ g/l), C16-C21 (230 μ g/l) and C21-C25 (170 μ g/l). No detections of aromatic carbons were measured during the Quarter 2 2012 monitoring event.

No hydrocarbons were detected at any location during the Quarter 3 and Quarter 4, 2012 monitoring events.

During the Quarter 1, 2013 monitoring event aromatic hydrocarbons were detected in BH103, BH104B and MW04. The predominant aromatic carbon range comprised C12-C16 ($30 \mu g/I$), C16-C21 (280 $\mu g/I$) and C21-C35 ($100 \mu g/I$) in BH103, C10-C12 ($30 \mu g/I$), C12-C16 ($110 \mu g/I$) and C16-C21 ($80 \mu g/I$) in BH104B and C10-C12 ($20 \mu g/I$) and C12-C16 ($80 \mu g/I$) in MW04. Aliphatic hydrocarbons were detected in BH103 in the ranges C12-C16 ($70 \mu g/I$), C16-C21 ($100 \mu g/I$) and C21-C35 ($90 \mu g/I$).

During the Quarter 2, 2013 monitoring event no aliphatic or aromatic hydrocarbons were detected at any location.

During the Quarter 3, 2013 monitoring event, hydrocarbons of the aliphatic range were detected in MW03 only. The detected aliphatic carbon range comprised C10-C16 (290 μ g/l) and C12-C16 (190 μ g/l). No detections of aromatic carbons were measured during the Quarter 3 2013 monitoring event.

Total Petroleum Hydrocarbons were not detected at any monitoring location during the Quarter 4, 2014 monitoring event. During the monitoring event for Quarter 3 2014 following ranges of the aliphatic hydrocarbons were recorded for BH104B; C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C21-C35 (10 μ g/l).

During the Quarter 1 2015 monitoring event, hydrocarbons were detected in MW03, MW04, BH103 and BH104B. The predominant aromatic carbon range comprised C21-C35 (14 μ g/l) in BH103, C12-C16 (27 μ g/l) and C16-C21 (15 μ g/l) in BH104B, C12-C16 (14 μ g/l) in MW03 and C12-C16 (15 μ g/l) in MW04. Aliphatic hydrocarbons were detected in the ranges C16-C35 (54 μ g/l) in BH103, C16-C35 (11 μ g/l) in BH104B and C16-C35 (46 μ g/l) and C35-C44 (12 μ g/l) in MW03.

During the Quarter 2 2015 monitoring event, the TPH concentration in the aromatic C21-C35 range was detected at one shallow groundwater wells BH103 (509 μ g/l). The TPH concentration in the aliphatic range was detected at C16-C35 (1760 μ g/l) in BH103 and C12-C16 (225 μ g/l) and C16-C35 (11 μ g/l) in BH104B.

Some detections of TPH in both the aliphatic and aromatic range were observed during the current Quarter 3 2015 monitoring event. Detections in samples from the well BH104B were in the aliphatic ranges C10-C12 (13 μ g/l), C12-C16 (40 μ g/l) and C16-C35 (62 μ g/l), as well as in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l). TPH concentrations were also recorded in the aliphatic range C16-C35 at BH103 (72 μ g/l) and MW03 (14 μ g/l), and in the aromatic ranges C21-C35 at BH103 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at MW04.

7 CONCLUSIONS

- In accordance with the criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence Register No. W0184-01, groundwater monitoring was carried out at the ENVA Ireland site on the 26th August 2015 corresponding to Quarter 3 of 2015. Samples were collected at 8 groundwater monitoring wells during this event.
- The results presented have been referenced against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. no 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.
- Results of the BTEX and MTBE demonstrate that the levels of Toluene, Ethylbenzene and Xylene were below the recommended EPA IGV's. Benzene was also below the laboratory limit of detection at all locations; however the laboratory limit of detection was raised above the EPA IGV for samples from locations BH104B, MW03 and MW04.
- The Quarter 3 2015 results of the speciated polycyclic aromatic hydrocarbons indicate that Total PAH's were below the EPA IGV of 0.1 µg/l at all monitoring wells with the exception of MW03 (0.586 µg/l) and BH104B (0.159 µg/l).
- There were no detections of VOC's or SVOC's in the current monitoring event above the laboratory limits of detection, with the exception of MTBE which was detected in BH103 (1.2 μg/l); however this is still below the GTV of 30 μg/l. The laboratory limits of detection were raised for samples from locations BH104B, MW03 and MW04 due to the nature of the sample matrix and all compounds analysed were below these new limits.
- Samples were analysed for speciated phenols to include chlorophenols and the results indicate that there were no detections above the laboratory limits of detection.
- Hydrocarbons in both aliphatic and aromatic range were observed during the current Quarter 3 2015 monitoring event. Detections in samples from the well BH104B were in the aliphatic ranges C10-C12 (13 μg/l), C12-C16 (40 μg/l) and C16-C35 (62 μg/l), as well as in the aromatic ranges C12-C16 (39 μg/l), C16-C21 (37 μg/l) and C21-C35 (28 μg/l). TPH concentrations were also recorded in the aliphatic range C16-C35 at BH103 (72 μg/l) and MW03 (14 μg/l), and in the aromatic ranges C21-C35 at BH103 (17 μg/l) and C10-C12 (18 μg/l) and C12-C16 (29 μg/l) at MW04 . Hydrocarbons were detected at BH104B in the aliphatic range and BH103 in both the aromatic range and BH103, BH104B and MW03 in both the aromatic range and BH103, BH104B and MW03 in both the aromatic and aliphatic ranges during the Quarter 2 2015 monitoring location during the Quarter 4 2014 monitoring event. Hydrocarbons were detected in BH104B in the aliphatic ranges C12-C16, C16-C21 and C21-C35 during the Quarter 3, 2014 event. Previous to these events hydrocarbons were detected in boreholes BH104B and MW03 in the aliphatic carbon ranges during the Quarter 3, 2010 monitoring event.
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Enva Portlaoise

2015 Groundwater Compliance Monitoring Quarter 4 (Oct – Dec 2015)

Document Control Sheet

Client:	Enva Ireland Ltd.						
Project Title:	Enva Portlaoise 2015 Grou	Enva Portlaoise 2015 Groundwater Compliance Monitoring					
Document Title:	Quarter 4 (Oct – Dec 2015)						
Document No:	MDE0973Rp0025						
Text Pages:	36 Appendices: -						

Rev.	Status	Date		Author(s)	R	eviewed By	A	oproved By
D01	Draft	18 th January 2016	D.C.	DouChler	C.R.	Cabron Rally	C.R.	Cabron Rally
A01	Client Approval	19 th January 2016	D.C.	DouChler	C.R.	Catum Rally	C.R.	Cature Rally

Copyright RPS Group Limited. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by RPS Group Limited no other party may use, make use of or rely on the contents of this report.

The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS Group Limited for any use of this report, other than the purpose for which it was prepared.

RPS Group Limited accepts no responsibility for any documents or information supplied to RPS Group Limited by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made.

RPS Group Limited has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy. No part of this report may be copied or reproduced, by any means, without the written permission of RPS Group Limited

TABLE OF CONTENTS

1		INTRODUCTION1
	1.1	BACKGROUND
	1.2	OBJECTIVES & SCOPE OF WORK
2		REVIEW OF PREVIOUS DATA2
	2.1	INFORMATION SOURCES
	2.2	SITE SETTING
	2.3	REGIONAL SETTING
		2.3.1 Geology
		2.3.2 Hydrogeology
	2.4	SITE GROUND CONDITIONS
		2.4.1 Licence Conditions
3		METHODOLOGY
	3.1	LABORATORY ANALYSIS
	3.2	PRESENTATION & INTERPRETATION OF RESULTS
4		QUARTER 4 RESULTS DECEMBER 20159
5		DISCUSSION OF QUARTER 4 RESULTS
5	5.1	DISCUSSION OF QUARTER 4 RESULTS
5	5.1 5.2	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20
5	5.1 5.2 5.3	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21
5	5.1 5.2 5.3 5.4	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21
5	5.1 5.2 5.3 5.4 5.5	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21
5	5.1 5.2 5.3 5.4 5.5 5.6	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME24
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME27
5	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME276.2.1 Phenols27
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME276.2.1 Phenols276.2.2 Polycyclic Aromatic Hydrocarbons (PAHs)28
6	 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 	DISCUSSION OF QUARTER 4 RESULTS20FIELD PARAMETERS20RESULTS OF BTEX & MTBE20RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)21RESULTS OF SPECIATED PHENOLS21RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS21RESULTS OF VOLATILE ORGANIC COMPOUNDS22RESULTS OF TOTAL PETROLEUM HYDROCARBONS22HISTORICAL RESULTS & TRENDS24GROUNDWATER LEVELS OVER TIME276.2.1 Phenols276.2.2 Polycyclic Aromatic Hydrocarbons (PAHs)286.2.3 Petroleum Hydrocarbons (TPH)32

LIST OF FIGURES

Figure 2.1 – Site Location	3
Figure 3.1 – Site Layout Plan with Groundwater Monitoring Locations	7
Figure 6.1 – Ground Elevation (mAOD) in all Monitoring Wells	24
Figure 6.2 – Ground Elevation (mAOD) in Shallow Groundwater Monitoring Wells	25
Figure 6.3 – Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells	25
Figure 6.4 – Phenol Concentrations in all Monitoring Wells	27
Figure 6.5 – PAH (Total) Concentrations in all Monitoring Wells	28
Figure 6.6 – Fluoroanthene Concentrations in all Monitoring Wells	29
Figure 6.7 – Naphthalene Concentrations in all Monitoring Wells	29
Figure 6.8 – Benzo (g,h,i) perylene Concentrations	30
Figure 6.9 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03	31
Figure 6.10 – Benzo (a) pyrene Concentrations in all Monitoring Wells	32
Figure 6.11 – TPH (Carbon Range C5-C44) in all Monitoring Wells	33

LIST OF TABLES

Table 2.1 – Ground Conditions	4
Table 2.2 – Licence Parameters	5
Table 3.1 – Analytical Methodologies – ALS Environmental	6
Table 4.1 – Groundwater Levels (Quarter 4, 2015)	10
Table 4.2 – Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarte	er 4,
2015)	11
Table 4.3 – Results of BTEX and MTBE	12
Table 4.4 – Results of Speciated PAHs	12
Table 4.5 – Results of Speciated Phenols	14
Table 4.6 – Results of Semi-Volatile Organic Compounds (SVOCs)	15
Table 4.7 – Results of Volatile Organic Compounds (VOCs)	17
Table 4.8 – Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)	19
Table 6.1 – Monthly Rainfall Data for Year 2009 for Oak Park, Carlow	26
Table 6.2 – Monthly Rainfall Data for Year 2010 for Oak Park, Carlow	26
Table 6.3 – Monthly Rainfall Data for Year 2011 for Oak Park, Carlow	26
Table 6.4 – Monthly Rainfall Data for Year 2012 for Oak Park, Carlow	26
Table 6.5 – Monthly Rainfall Data for Year 2013 for Oak Park, Carlow	26
Table 6.6 – Monthly Rainfall Data for Year 2014 for Oak Park, Carlow	26
Table 6.7 – Monthly Rainfall Data for Year 2015 for Oak Park, Carlow	26

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd (Enva) to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence, Register No. W0184-01.

Enva Ireland has been operating under Waste Licence Register No. W0184-01 since January 2004. The licence was amended by the Environmental Protection Agency in December 2013 to conform to the provisions and requirements of the Council Directive 2010/75/EU (Industrial Emissions Directive) and as such is deemed an Industrial Emissions Licence. Enva is required to submit a report to the EPA on a quarterly basis, outlining the existing groundwater quality underlying the site.

A suitably qualified environmental consultant from RPS, collected groundwater samples from a series of 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) within the site boundary on the 8th December 2015. The samples underwent laboratory analysis for the suite of parameters specified in Schedule 4(ii) of Industrial Emissions Licence W0184-01. This report outlines the results of the Quarter 4 monitoring for 2015 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 4 2015 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Industrial Emissions Licence W0184-01 and any available EPA documents from the EPA website
- Quarterly Groundwater Monitoring Reports (Quarter 1 2004 to Quarter 4 2005), URS
- Quarterly Groundwater Monitoring Reports (Quarter 1 2006 to Quarter 4 2014), RPS
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007)
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008)
- Hydrogeological Review and Assessment Report, Ref MDE0973Rp0017F01, RPS (2014)
- Quarter 1 Groundwater Monitoring Report, RPS (2015)
- Quarter 2 Groundwater Monitoring Report, RPS (2015)
- Quarter 3 Groundwater Monitoring Report, RPS (2015)

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1.5 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 2.1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 3.1**. The site is largely covered in hardstanding with some open areas in the far north and northeast of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

Figure 2.1 – Site Location

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoils in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological Survey of Ireland (GSI) as a Locally Important Karstified Aquifer (LI). Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising three groundwater abstraction well fields comprising of two abstraction wells in each well field. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends to within 3.2 km of the Enva site but does not encompass the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk; the accuracy of this location is also 1 km so it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2.1**.

Strata	Extent	Thickness	Description
Made Ground	BH104	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium,

Table 2.1 – Ground Conditions

Strata	Extent	Thickness	Description
			well rounded gravels.
Sand and Gravel	Confined to south east corner of site (BH101, BH104 and MW03)	0-2 m	In general the transition from boulder clay to sand is gradual with changes from gravel, to sandy gravel, to sand.
Limestone Bedrock	Encountered in MW01, MW02 and MW03	Top of limestone ranges from 7.7m to 9m below ground level.	Pale grey, fine-grained bedrock, differentiated from boulders by its un- weathered nature.

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

2.4.1 Licence Conditions

The Industrial Emissions Licence requires the regular monitoring and sampling of boreholes BH101, BH102, BH103, BH104B, MW01, MW02, MW03 and MW04. The parameters requiring measurement or analysis are presented in **Table 2.2**.

Table 2.2 – Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement
Field Parameters	Groundwater Level	Groundwater Level
	рН	рН
	Temperature	Temperature
	Dissolved Oxygen	Dissolved Oxygen
	Electrical Conductivity	Electrical Conductivity
	Visual Inspection	Visual Inspection
	Mineral Oil	Mineral Oil
	BTEX & MTBE	BTEX & MTBE
Organics	PAHs	PAHs
Organics	Phenols	Phenols
	VOCs	VOCs
	SVOCs	SVOCs
Inorganics	-	Total Alkalinity, Calcium, Manganese, Sulphate, Cyanide (Total), Chloride, Sodium,

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04), (Figure 3.1) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.

Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, ALS Environmental for the suite of analyses listed in **Table 3.1**. **Table 3.1** also indicates the analytical techniques used by the laboratory.

Table 3.1 – Analy	tical Methodologies -	- AIS Environmental
Table J.1 Allal	rical methodologies	ALS LINI OIIIICIII

Parameter	Analytical Methodology
Phenols	GC-MS
Speciated PAHs	GC-MS
BTEX & MTBE	Headspace GC-MS
Petroleum Hydrocarbons	Headspace GC-MS
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS

Shallow Monitoring Well locations Deep Monitoring Well locations

• 🕈 🔶

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 4 2015 results are tabulated in **Section 4** and discussed with respect to previous results. Results are compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

Previous monitoring reports (as listed in **Section 2.1**) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in **Section 6** and include the results of this Quarter 4 2015 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 4 RESULTS DECEMBER 2015

The results of all field measurements and laboratory analysis are presented in this section. Satisfactory calibration of the Dissolved Oxygen meter was unable to be achieved on the day of monitoring. This resulted in a lack of field measurements. Results are primarily compared against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. No 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.

The results are discussed in relation to appropriate guideline values in **Section 5**. Results that are shown to be above the relevant threshold or guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Table 4.1 – Groundwater	Levels	(Quarter	4, 2015)
-------------------------	--------	----------	----------

Monitoring Well	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04
Depth (mbgl)	7.10	6.33	4.33	4.59	22.60	30.94	9.43	6.42
Static Water Level (mbgl)	4.08	2.18	1.58	0.38	2.47	3.13	3.95	3.67
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	98.98	100.37	99.58	101.14	99.63	99.99	98.82	-
Free Phase Oil (mm)	No detection							

mbgl = metres below ground level

Monitoring Well	рН (рН Units)	Temperature (°C)	Conductivity (μS/cm)	Dissolved O ₂ (ppm)	Observations
BH101	6.89	12.1	888	-	Samples cloudy, some suspended solids, little sediment
BH102	7.08	11.9	558	-	Slightly cloudy on purging, no suspended solids or sediment, slight $\rm H_2S$ odour, samples clear
BH103	7.68	11.6	741	-	Dark in colour on purging, some suspended solids and sediment, very slight sheen
BH104B	7.20	10.3	414	-	Slightly yellow colour, H ₂ S odour, very little suspended solids
MW01	7.73	9.7	638	-	Cloudy on purging, slightly clearer after 30L, very little sediment or suspended solids
MW02	7.59	12.1	623	-	Samples clear, very little sediment or suspended solids
MW03	6.94	12.6	1457	-	Strong H ₂ S smell, cloudy colour, lots of suspended solids, slight oil sheen
MW04	7.09	12.5	1337	-	Very cloudy in colour, high amount of sediment and suspended solids
Groundwater Threshold Value	-	-	1875	-	-
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25°C	1000	No abnormal change	-

Table 4.2 – Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 4, 2015)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Table 4.3 – Results of BTEX and MTBE

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	0.75	1.0
Toluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	10
Ethylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	10
p & m-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	10 Note 1
o-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	10 Note 1
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	30

Note: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.4 – Results of Speciated PAHs

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Naphthalene	μg/l	0.01	<0.01	<0.01	0.095	<0.10	<0.01	<0.01	<0.01	0.067	-	1.0
Acenaphthylene	μg/l	0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.01	<0.01	-	-
Acenaphthene	μg/l	0.01	<0.01	<0.01	0.062	<0.10	<0.01	<0.01	0.052	<0.01	-	-
Fluorene	μg/l	0.01	<0.01	<0.01	0.022	<0.10	<0.01	<0.01	0.08	0.013	-	-
Phenanthrene	μg/l	0.01	<0.01	<0.01	0.014	<0.10	<0.01	<0.01	<0.01	<0.01	-	-
Anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	<0.03	<0.01	-	10,000
Fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	0.029	<0.01	-	1.0
Pyrene	μg/l	0.01	<0.01	<0.01	0.018	<0.10	<0.01	<0.01	0.226	<0.01	-	-
Benzo(a)anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	0.084	<0.01	-	-
Chrysene	μg/l	0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	0.147	<0.01	-	-
Benzo(b)fluoranthene	μg/l	0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	0.065	<0.01	-	0.5

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Benzo(k)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	0.012	<0.01	-	0.05
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	0.108	<0.01	-	0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	0.026	<0.01	-	0.05
Dibenz(a,h)anthracene	μg/l	0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	0.030	<0.01	-	-
Benzo(g,h,i)perylene	μg/l	0.01	<0.01	<0.01	<0.01	<0.10	<0.01	<0.01	0.131	<0.01	-	0.05
Total EPA-16 PAHs	μg/l	0.1	0.011	< 0.01	0.21	<0.10	<0.01	< 0.01	0.986	0.079	0.075	0.1

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.5 – Results of Speciated Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	μg/l	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	0.5
2,4,6-Trichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Table 4.6 – Results of Semi-Volatile Organic Compounds (SVOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Phenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
2-Chlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
Bis(2-chloroethyl)ether	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,3-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
1,4-Dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroisopropyl)ether	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Nitrobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10
4-Methylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Isophorone	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Nitrophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dimethylphenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bis(2-chloroethoxy)methane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2,4-trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.40
Naphthalene	µg/l	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	1.0
2,4-Dichlorophenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobutadiene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.10
4-Chloro-3-methylphenol	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4,6-Trichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	200
2,4,5-Trichlorophenol	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Methylnaphthalene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2-Chloronaphthalene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dimethylphthalate	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
2,6-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Acenaphthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
2,4-Dinitrotoluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dibenzofuran	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
4-Chlorophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Diethyl phthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Fluorene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromophenyl phenyl ether	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Hexachlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.03
Phenanthrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	10,000
Pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Butyl benzyl phthalate	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(a)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chrysene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(b)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.5
Benzo(k)fluoranthene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Benzo(a)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.01
Indeno(1,2,3-cd)pyrene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	0.05
Dibenz(a,h)anthracene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Benzo(g,h,i)perylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Table 4.7 – Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Chloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Chloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	7.8	-	-
Bromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Vinyl Chloride	μg/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	0.375	-
Trichlorofluoromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
1,1-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	4.1	-	30
1,1,2-Trichloro 1,2,2- Trifluoroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Cis-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	30
2,2-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Trichloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	12
1,1,1-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	500
1,2-dichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	2.25	-
1,1-Dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Trans-1,2-dichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Benzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	1.0
1,2-dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Trichloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	70
Dibromomethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Bromodichloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Cis-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Trans-1,3-dichloropropene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Toluene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	10

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
1,1,2-Trichloroethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
1,3-Dichloropropane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Dibromochloromethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Tetrachloroethene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	40
1,2-Dibromoethane	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Chlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	1.0
1,1,1,2-Tetrachloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Ethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	10
Styrene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Tribromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
o-xylene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	10
Isopropylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Bromobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
N-Propylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
2-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
4-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
1,3,5-Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Tert-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
1,2,4-Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Sec-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
1,3-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
P-Isopropyltoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
1,2-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	10
1,4-dichlorobenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-
Butylbenzene	μg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
1,2-Dibromo-3-chloropropane	µg/l	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<8.0	<8.0	-	-
1,2,4-Trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	0.40
Hexachlorobutadiene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	0.10
1,2,3-Trichlorobenzene	µg/l	1.0	<1.0	<1.0	1.0	<1.0	<1.0	<1.0	<4.0	<4.0	-	-

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	GTV	IGV
Aliphatic > C10-C12	μg/l	10	<10	<10	<10	495	<10	<10	<10	<10	-	-
Aliphatic > C12-C16	μg/l	10	<10	<10	<10	3080	<10	<10	<10	<10	-	-
Aliphatic > C16-C35	μg/l	10	<10	<10	231	3360	<10	<10	<10	<10	-	-
Aliphatic > C35-C44	μg/l	10	<10	<10	14	<200	<10	<10	<10	<10	-	-
Aliphatic > C10-C44	μg/l	10	<10	<10	244	6930	<10	<10	<10	<10	-	10
Aromatic > C10-C12	μg/l	10	<10	<10	<10	<200	<10	<10	<10	13	-	-
Aromatic > C12-C16	μg/l	10	<10	<10	<10	879	<10	<10	<10	21	-	-
Aromatic > C16-C21	μg/l	10	<10	<10	<10	1380	<10	<10	<10	<10	-	-
Aromatic > C21-C35	μg/l	10	<10	<10	60	694	<10	<10	<10	<10	-	-
Aromatic > C35-C44	μg/l	10	<10	<10	<10	<200	<10	<10	<10	<10	-	-
Aromatic > C10-C44	μg/l	10	<10	<10	60	2960	<10	<10	<10	35	-	10

Table 4.8 – Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Note: Results above the relevant IGV are highlighted in bold.

Note: Results above the GTV are highlighted in bold and shaded.

Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

5 DISCUSSION OF QUARTER 4 RESULTS

The results of the Quarter 4 monitoring event for 2015 are presented in **Table 4.1** to **4.8** of this report. For the purpose of this report, the results are compared against the Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations (S.I. No. 9 of 2010) where available. Where GTVs are not available results are compared against the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in **Table 4.2**. Groundwater samples recorded pH levels ranging between 6.89 and 7.73, all within the EPA Interim guideline range of \geq 6.5 to \leq 9.5. Temperature measurements ranged from 9.7°C to 12.6°C and were below the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 414 μ S/cm and 1457 μ S/cm. Two measurements of Electrical Conductivity were above the IGV of 1000 μ S/cm at MW03 (1457 μ S/cm) and MW04 (1357 μ S/cm), but all however were below the upper GTV limit of 1875 μ S/cm.

Satisfactory calibration of the Dissolved Oxygen meter was unable to be achieved on the day of monitoring. This resulted in a lack of field measurements.

Observations relating to colour and odour varied from well to well as detailed in Table 4.2.

5.2 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in **Table 4.3**. BTEX concentrations are below the laboratory limit of detections and associated GTVs and IGVs at all locations. MTBE was also below the laboratory limit of detection and IGV at all locations.

The previous detection of MTBE was in the Quarter 3 monitoring event of 2015 and recorded a concentration above the laboratory limit of detection of $3.1 \,\mu$ g/l at BH103. This is still well below the IGV limit. Prior to this there was a detection of MTBE at BH104B in the Quarter 1 monitoring event of 2012 with a recorded concentration of 280 μ g/l at BH104B which is above the laboratory limit of detection. This was the only recorded exceedance in Quarter 1 2012.

Monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at BH103 at a concentration of 16 μ g/l. Subsequent monitoring in 2010 recorded concentrations below the laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at BH103 were recorded at 63 μ g/l in December 2009.

5.3 RESULTS OF SPECIATED POLYAROMATIC HYDROCARBONS (PAHS)

The results of the Speciated PAH analysis during this monitoring period are presented in Table 4.4.

The laboratory limit of detection for Total EPA-16 PAHs is 0.1 μ g/l and has been lowered for comparison with the EPA IGV of 0.1 μ g/l; however this is not accredited. This laboratory limit of detection is above the EPA GTV of 0.075 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l.

Total Polyaromatic Hydrocarbons were above the IGV limit of 0.1 μ g/l at BH103 (0.21 μ g/l) and MW03 (0.986 μ g/l). Total PAHs were above the GTV of 0.075 μ g/l at MW04 (0.079 μ g/l) but below the IGV. Total PAHs were also above the GTV at BH103 (0.093 μ g/l), BH104B (0.159 μ g/l) and MW03 (0.586 μ g/l) during the previous Quarter 3 2015 monitoring event. However, PAHs were below the GTV limits at all locations during the previous Quarter 2 2015 monitoring event.

The results of the speciated polycyclic aromatic hydrocarbon analysis detected a number of different compounds in BH103, MW03 and MW04 above the laboratory limit of detection. However only Benzo(a)pyrene (0.108 μ g/l) and Benzo(g,h,i)perylene (0.131 μ g/l) in well MW03 were above their respective IGV limits of 0.01 μ g/l and 0.05 μ g/l.

5.4 **RESULTS OF SPECIATED PHENOLS**

During previous quarterly monitoring events and sample analysis, total monohydric phenol was determined and historically has been below the laboratory limit of detection of 10 μ g/l since December 2008. It should be noted that the laboratory limit of detection was however above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in **Table 4.5**. The speciated phenol analysis reduces the laboratory limit of detection to $1.0 \,\mu$ g/l for individual parameters.

The results of the current Quarter 4 2015 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 1.0 μ g/l at all locations.

4-Chloro-3-methylphenol was detected at BH104B (1.37 μ g/l) above the laboratory limit of detection for the Quarter 1 2015 analysis. With the exception of this, all other results are consistent with results since the 2012 quarterly monitoring events.

5.5 RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.6.

There are no GTVs for individual SVOC parameters. No SVOCs were detected above the relevant IGVs during this monitoring period, consistent with the results from the previous 2015 monitoring periods.

The Quarter 3 2013 monitoring event detected two SVOC compounds, Acenaphthene (1.1 μ g/l) and Fluorene (1.5 μ g/l) in MW03. Prior to this detection the Quarter 2 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene in MW03 at concentrations of 2.4 μ g/l and 0.12 μ /l respectively.

5.6 RESULTS OF VOLATILE ORGANIC COMPOUNDS

The results of the Volatile Organic Compound analysis are presented in **Table 4.7**. The results of the current Quarter 4 2015 monitoring event indicate that Chloroethane (7.8 μ g/l) and 1,1-dichloroethene (4.1 μ g/l) were detected in monitoring well MW04. However, the results are below the IGV for 1,1-dichloroethene (30 μ g/l) and there is no GTV or IGV limit for Chloroethane. All other compounds were below their respective laboratory limits of detection.

Historic groundwater monitoring events detected some parameters above the laboratory limit of detection in November 2009, corresponding to Quarter 4 of 2009. 1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene were detected above the laboratory limits of detection. No VOCs were detected above the relevant GTVs or IGVs.

The results of the Quarter 3 and Quarter 4 monitoring events of 2009 and all subsequent monitoring events indicate that there were no exceedances of the GTVs or IGVs for specific parameters.

5.7 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in **Table 4.8**.

The EPA IGV of 10 μ g/l for the Total Hydrocarbons is deemed comparable with the results for Total Petroleum Hydrocarbons. Some detections of TPH in both the aliphatic and aromatic range were observed during the current Quarter 4 2015 monitoring event. Detections in samples from the well BH104B were in the aliphatic ranges C10-C12 (495 μ g/l), C12-C16 (3080 μ g/l) and C16-C35 (3360 μ g/l), as well as in the aromatic ranges C12-C16 (879 μ g/l), C16-C21 (1380 μ g/l) and C21-C35 (694 μ g/l). TPH concentrations were also recorded in the aliphatic ranges C16-C35 (231 μ g/l) and C35-C44 (14 μ g/l) at BH103. TPH concentrations were also recorded in the aromatic ranges C21-C35 at BH103 (60 μ g/l) and C10-C12 (13 μ g/l) and C12-C16 (21 μ g/l) at MW04.

The previous Quarter 3 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l) at BH104B, C21-C35 at BH103 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges C10-C12 (13 μ g/l), C12-C16 (40 μ g/l) and C16-C35 (62 μ g/l) at BH104B and C16-C35 at BH103 (72 μ g/l) and MW03 (14 μ g/l).

The Quarter 2 monitoring event of 2015 detected TPH in the aromatic range C21-C35 at BH03 (509 μ g/l). TPH concentrations were detected in the aliphatic ranges C16-C35 at BH103 (1760 μ g/l) and BH104B (337 μ g/l), and C12-C16 at BH104B (225 μ g/l).

The Quarter 1 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 at wells MW03 (14 μ g/l), MW04 (15 μ g/l) and BH104B (27 μ g/l), C16-C21 at BH104B (15 μ g/l), and C21-C35 (14 μ g/l) at BH103. TPH concentrations were detected in the aliphatic ranges C16-C35 and C35-C44 at MW03 (46 μ g/l and 12 μ g/l respectively), BH103 (54 μ g/l) and BH104B (11 μ g/l.

No detections of TPH in the aliphatic or aromatic range were observed in any shallow or deep monitoring well locations during the Quarter 4 monitoring event of 2014.

The Quarter 3 monitoring event of 2014 detected TPH concentrations in the aliphatic range at the shallow groundwater well BH104B. The TPH concentration detected was 410 μ g/l. The speciated TPH ranges that contributed to the value of 410 μ g/l were C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C31-C35 (10 μ g/l).

The Quarter 3, 2013 monitoring event detected TPH in the aliphatic range in one deep groundwater well, MW03. TPH of the range C10-C12 and C12-C16 were detected at concentrations of 200 μ g/l and 190 μ g/l respectively.

The Quarter 1, 2013 monitoring event detected aliphatic TPH of the range C12-C16, C16-C21 and C21-C35. TPH in the mid to high aromatic ranges were detected in BH103, BH104B and MW04 during the previous Quarter 1 2013 monitoring event. Aromatic TPH of the ranges C12-C16, C16-C21 and C21-C35 were detected in BH103, the ranges C10-C12, C12-C16 and C16-C21 were detected in BH104B and aromatic TPH of the ranges C10-C12 and C12-C16 were detected in MW04.

The Quarter 2 monitoring event of 2012 detected elevated TPH of the aliphatic range C12-C16, C16-C21 and C21-C25 in BH103. Hydrocarbons have been detected in borehole MW03 during Quarter 1 2010, in borehole BH104B during the Quarter 2 2010 monitoring event and in borehole BH104B and MW03 during the Quarter 3 2010 monitoring events. Hydrocarbons have also been detected in BH103, BH104B and MW03 in the Quarter 2 2011 monitoring event and in MW03 in the Quarter 3 and Quarter 4 2011. These detections are discussed further in **Section 6.2.3**.

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 4 2015 monitoring round. As the monitoring continues in accordance with the Industrial Emissions Licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

6.1 GROUNDWATER LEVELS OVER TIME

Figure 6.1 to **Figure 6.3** below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 6.2 illustrates groundwater elevations (mAOD) in shallow groundwater wells (BH101 to BH104B) ranging between approximately 98 mAOD and 102 mAOD.

Figure 6.3 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (MW01 to MW03). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 97.5 mAOD to approximately 100 mAOD.

Figure 6.1 – Ground Elevation (mAOD) in all Monitoring Wells

Figure 6.3 – Ground Elevation (mAOD) in Deep Groundwater Monitoring Wells

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; the general direction of flow in the shallow and deeper groundwater bearing unit is in an easterly or north easterly direction however there have been some occasional historic cases of groundwater flowing in a south-easterly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Éireann to examine the relationship between compounds and rainfall events. The data from Oak Park was chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in **Tables 6.1** to **6.7**.

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	113.4	29.2	32.6	102.4	69.0	65.4	152.4	100.9	41.8	127.8	215.5	73.7

Table 6.2 – Monthly Rainfall Data for Year 2010 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	71.5	48.0	80.7	49.0	51.4	37.7	93.6	25.5	108.7	68.9	87.7	52.2

Table 6.3 – Monthly Rainfall Data for Year 2011 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	50.6	121.9	16.0	19.5	51.2	72.7	46.4	25.5	93.9	93.9	89.2	55.5

Table 6.4 – Monthly Rainfall Data for Year 2012 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	70.8	24.5	18.0	56.3	50.2	155.8	76.2	127.7	37.9	63.4	80.9	68.1

Table 6.5 – Monthly Rainfall Data for Year 2013 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.8	57.6	44.4	35.6	37.5	32.3	85.6	24.4	170.0	27.7	0.9

Table 6.6 – Monthly Rainfall Data for Year 2014 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	147.2	176.7	65.0	52.6	78.6	61.9	24.6	122.1	18.2	138.2	165.6	47.7

Table 6.7 – Monthly Rainfall Data for Year 2015 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
Rainfall (mm)	66.0	36.3	53.5	26.3	89.4	29.7	79.4	83.0	17.9	56.8	110.0	270.9

Note: Data for the most recent months are provisional.

6.2 GROUNDWATER CONCENTRATIONS OVER TIME

Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.

The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

Phenols have been detected historically in all boreholes with the highest concentrations recorded in BH103. However concentrations in BH103 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

2,4-Dimethylphenol was detected at a concentration of 0.12 μ g/l during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the current Quarter 4 2015 monitoring event.

Figure 6.4 – Phenol Concentrations in all Monitoring Wells

6.2.2 Polycyclic Aromatic Hydrocarbons (PAHs)

Figure 6.5 below illustrates that PAHs (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within MW03 and BH104B, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. In addition, a range of PAHs including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Naphthalene have previously been detected in MW03 with **Figures 6.6** to **6.10** illustrating some of the PAH compounds which were detected above their respective IGVs.

Since 2007 concentrations of PAH have shown a marked decrease and since 2010 detections of PAH have been confined to MW03, MW02 and BH104B. Concentrations of Total PAH above the IGV in 2010 were detected during the Quarter 1 monitoring event in MW03 (0.3 μ g/l), Quarter 2 monitoring event in BH104B (1.2 μ g/l) and Quarter 3 monitoring event in MW02 (2.0 μ gl) and BH104B (0.2 μ gl). There were no elevated concentrations of Total PAH during the Quarter 4 2010 monitoring event.

No Total PAH detections were recorded throughout 2011 and in Q1 of 2012. Total PAH was detected above the IGV in MW03 in the Q2 2012 monitoring event. No Total PAH exceedances were detected from Quarter 3 2012 to Quarter 4 2013 inclusive. Total PAH was detected at a concentration of 2.62 μ g/l in MW03 during the Q3 2013 monitoring event however; no detections above the laboratory limit were noted during the subsequent monitoring events up to and including the Quarter 2 2015 monitoring event. Total PAHs were also above the GTV at BH103 (0.093 μ g/l), BH104B (0.159 μ g/l) and MW03 (0.586 μ g/l) during the previous Quarter 3 2015 monitoring event. Similarly, during the current Quarter 4 monitoring event, Total Polyaromatic Hydrocarbons were above the IGV limit of 0.1 μ g/l at BH103 (0.21 μ g/l) and MW03 (0.986 μ g/l). Total PAHs were above the GTV of 0.075 μ g/l at MW04 (0.079 μ g/l) but below the IGV.

Figure 6.6 – Fluoroanthene Concentrations in all Monitoring Wells

Figure 6.6 illustrates that **Fluoranthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells BH104B (October 2007, 1.33 μ g/l) and MW03 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l.

Figure 6.7 – Naphthalene Concentrations in all Monitoring Wells

A similar trend to Fluoroanthene has been noted in **Figure 6.7**, with concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in BH104B and MW03 only. 4 no. exceedances of the IGV were noted in BH104B in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in BH104B have decreased below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in MW03, with the highest concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were slightly above the laboratory limit of detection of 0.01 μ g/l at BH104B (0.08 μ g/l) and MW03 (0.05 μ g/l); however these levels are deemed low. Concentrations of Naphthalene were below the EPA

IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 and 2012 quarterly monitoring events and the Quarter 1 to Quarter 3 2014 monitoring periods, inclusive. No detections of Naphthalene were noted from the Quarter 4 2014 monitoring event to the Quarter 2 2015 monitoring event. During the previous Quarter 3 monitoring event in 2015 Naphthalene was detected at BH101 (0.011 μ g/l) and MW03 (0.031 μ g/l), however both these detections were below the IGV limit of detection of 1.0 μ g/l. Naphthalene was also detected during the current Quarter 4 2015 monitoring event at BH103 (0.095 μ g/l) and at MW04 (0.067 μ g/l). These detections were however also below the IGV limit.

Figure 6.8 illustrates the concentrations of **Benzo(g,h,i)perylene** in all monitoring wells over time. Elevated concentrations above the IGV were recorded at BH104B (0.087 μ g/l) on one occasion in March 2006.

Figure 6.9 illustrates elevated concentrations above the IGV recorded at MW03 on 6 no. occasions with the most recent elevated concentration recorded during the current Quarter 4 2015 monitoring event (0.131 μ g/l). The previous elevated concentration detected was in Quarter 3 2015 (0.053 μ g/l). The results of all monitoring events from 2010 to the Quarter 2 2015 monitoring event recorded concentrations below the laboratory limit of detection of 0.01 μ g/l at all locations.

Figure 6.9 – Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03

Figure 6.10 illustrates the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicates that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 μ g/l. Similarly with the above mentioned trends, the highest concentrations have been detected in MW03 and BH104B. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 μ g/l was detected in MW03, however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in BH101, BH103 and MW01 during this same period.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGVs.

Benzo(a)pyrene was detected above the IGV limit of 0.01 μ g/l at MW03 (0.108 μ g/l) during the current Quarter 4 2015 monitoring event. Benzo(a)pyrene was also detected above the IGV at MW03 (0.052 μ g/l) during the previous Quarter 3 2015 monitoring event. All other results of all monitoring events from 2010 to the current Quarter 4 2015 monitoring event did not detect other concentrations above the IGV.

Figure 6.10 – Benzo (a) pyrene Concentrations in all Monitoring Wells

6.2.3 Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within BH103, BH104B and MW03. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12 – C16, C16 – C21 and C21 – C35. **Figure 6.11** illustrates the TPH analysis for the total TPH analysis from C5 – C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells MW03, BH104B and BH103 respectively.

During the Quarter 1, 2010 monitoring event, hydrocarbons were detected in borehole MW03. The predominant aliphatic carbon range in MW03 comprised of C16-C21 (1000 μ g/l), C21-C35 (2300 μ g/l) and C25-C44 (990 μ g/l). The predominant aromatic carbon range in MW03 comprised of C16-C21 (220 μ g/l) and C21-C35 (620 μ g/l). No detections were observed at other locations.

During the Quarter 2 and Quarter 3, 2010 monitoring event, hydrocarbons were detected in borehole BH104B, with the predominant aliphatic carbon range comprising C12-C16 (130 μ g/l and 12 μ g/l) and C16-C21 (130 μ g/l and 19 μ g/l). The predominant aliphatic carbon range in MW03 during Quarter 3 2010 comprised of C16-C21 (35 μ g/l) and C21-C34 (46 μ g/l). The predominant aromatic carbon range detected during Quarter 2 2010 comprised of C12-C16 (21 μ g/l) and C16-C21 (47 μ g/l) at BH104B. No aromatic carbons were detected above the laboratory limit of detection at any wells in Quarter 3 2010.

During the Quarter 4, 2010 and Quarter 1, 2011 monitoring event, there were no detections of TPH concentrations above the laboratory limit of detection of 10 μ g/l at any location. No aliphatic or aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 2, 2011 monitoring event, hydrocarbons were detected in borehole BH103, BH104B and MW03. The predominant aliphatic carbon range comprised of C16-C21 (340 μ g/l, 20 μ g/l and 46 μ g/l) and C21-C35 (420 μ g/l, 96 μ g/l and 150 μ g/l in BH103, BH104B and MW03 respectively). The predominant aromatic carbon range also comprised of C16-C21 (78 μ g/l, 52 μ g/l and 50 μ g/l) and C21-C35 (110 μ g/l, 49 μ g/l and 93 μ g/l in BH103, BH104B and MW03 respectively).

During the Quarter 3 and Quarter 4 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised of C10-C12 (18 μ g/l and 22 μ g/l), C12-C16 (57 μ g/l and 51 μ g/l), C16-C21 (35 μ g/l and 85 μ g/l) and C21-C35 (210 μ g/l and 110 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (42 μ g/l and 16 μ g/l), C16-C21 (66 μ g/l and 14 μ g/l) and C21-C35 (45 μ g/l and 91 μ g/l).

During the Quarter 1, 2012 monitoring event, hydrocarbons were detected in borehole BH103 only. The predominant aliphatic carbon range comprised C10-C12 (13 μ g/l), C12-C16 (270 μ g/l), C16-C21 (690 μ g/l) and C21-C35 (980 μ g/l). The predominant aromatic carbon range comprised of C16-C21 (250 μ g/l) and C21-C25 (680 μ g/l). No hydrocarbons were detected in MW03 during the current Quarter 1 monitoring event.

During the Quarter 2, 2012 monitoring event, hydrocarbons were detected in BH103 only. The detected aliphatic carbon range comprised C12-C16 (98 μ g/l), C16-C21 (230 μ g/l) and C21-C25 (170 μ g/l). No detections of aromatic carbons were measured during the Quarter 2 2012 monitoring event.

No hydrocarbons were detected at any location during the Quarter 3 and Quarter 4, 2012 monitoring events.

During the Quarter 1, 2013 monitoring event aromatic hydrocarbons were detected in BH103, BH104B and MW04. The predominant aromatic carbon range comprised C12-C16 ($30 \mu g/I$), C16-C21 (280 $\mu g/I$) and C21-C35 ($100 \mu g/I$) in BH103, C10-C12 ($30 \mu g/I$), C12-C16 ($110 \mu g/I$) and C16-C21 ($80 \mu g/I$) in BH104B and C10-C12 ($20 \mu g/I$) and C12-C16 ($80 \mu g/I$) in MW04. Aliphatic hydrocarbons were detected in BH103 in the ranges C12-C16 ($70 \mu g/I$), C16-C21 ($100 \mu g/I$) and C21-C35 ($90 \mu g/I$).

During the Quarter 2, 2013 monitoring event no aliphatic or aromatic hydrocarbons were detected at any location.

During the Quarter 3, 2013 monitoring event, hydrocarbons of the aliphatic range were detected in MW03 only. The detected aliphatic carbon range comprised C10-C16 (290 μ g/l) and C12-C16 (190 μ g/l). No detections of aromatic carbons were measured during the Quarter 3 2013 monitoring event.

Total Petroleum Hydrocarbons were not detected at any monitoring location during the Quarter 4, 2014 monitoring event. During the monitoring event for Quarter 3 2014 following ranges of the aliphatic hydrocarbons were recorded for BH104B; C12-C16 (150 μ g/l), C16-C21 (250 μ g/l) and C21-C35 (10 μ g/l).

During the Quarter 1 2015 monitoring event, hydrocarbons were detected in MW03, MW04, BH103 and BH104B. The predominant aromatic carbon range comprised C21-C35 (14 μ g/l) in BH103, C12-C16 (27 μ g/l) and C16-C21 (15 μ g/l) in BH104B, C12-C16 (14 μ g/l) in MW03 and C12-C16 (15 μ g/l) in MW04. Aliphatic hydrocarbons were detected in the ranges C16-C35 (54 μ g/l) in BH103, C16-C35 (11 μ g/l) in BH104B and C16-C35 (46 μ g/l) and C35-C44 (12 μ g/l) in MW03.

During the Quarter 2 2015 monitoring event, the TPH concentration in the aromatic C21-C35 range was detected at one shallow groundwater wells BH103 (509 μ g/l). The TPH concentration in the aliphatic range was detected at C16-C35 (1760 μ g/l) in BH103 and C12-C16 (225 μ g/l) and C16-C35 (11 μ g/l) in BH104B.

The previous Quarter 3 monitoring event of 2015 detected TPH in the aromatic ranges C12-C16 (39 μ g/l), C16-C21 (37 μ g/l) and C21-C35 (28 μ g/l) at BH104B, C21-C35 at BH103 (17 μ g/l) and C10-C12 (18 μ g/l) and C12-C16 (29 μ g/l) at MW04. TPH concentrations were detected in the aliphatic ranges

C10-C12 (13 $\mu g/l)$, C12-C16 (40 $\mu g/l)$ and C16-C35 (62 $\mu g/l)$ at BH104B and C16-C35 at BH103 (72 $\mu g/l)$ and MW03 (14 $\mu g/l).$

Some detections of TPH in both the aliphatic and aromatic range were observed during the current Quarter 4 2015 monitoring event. Detections in samples from the well BH104B were in the aliphatic ranges C10-C12 (495 μ g/l), C12-C16 (3080 μ g/l) and C16-C35 (3360 μ g/l), as well as in the aromatic ranges C12-C16 (879 μ g/l), C16-C21 (1380 μ g/l) and C21-C35 (694 μ g/l). TPH concentrations were also recorded in the aliphatic ranges C16-C35 (231 μ g/l) and C35-C44 (14 μ g/l) at BH103. TPH concentrations were also recorded in the aromatic ranges C21-C35 at BH103 (60 μ g/l) and C10-C12 (13 μ g/l) and C12-C16 (21 μ g/l) at MW04.

7 CONCLUSIONS

- In accordance with the criteria set out in Schedule 4(ii) of the site's Industrial Emissions Licence Register No. W0184-01, groundwater monitoring was carried out at the ENVA Ireland site on the 8th December 2015 corresponding to Quarter 4 of 2015. Samples were collected at 8 groundwater monitoring wells during this event.
- The results presented have been referenced against Groundwater Threshold Values (GTVs) outlined in the European Communities Environmental Objectives (Groundwater) Regulations 2010 (S.I. no 9 of 2010), where available. Where GTVs are not available for parameters, results are compared against the Interim Guideline Values (IGVs) set out in the Environmental Protection Agency interim report, 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland'.
- Results of the BTEX and MTBE demonstrate that the levels of Toluene, Ethylbenzene and Xylene, Benzene and MTBE were all below the recommended EPA IGVs.
- The Quarter 4 2015 results of the speciated polycyclic aromatic hydrocarbons indicate that Total PAHs were below the EPA IGV of 0.1 µg/l at all monitoring wells with the exception of BH103 (0.21 µg/l) and MW03 (0.986 µg/l).
- There were no detections of VOCs or SVOCs in the current monitoring event above the laboratory limits of detection, with the exception of Chloroethane (7.8 µg/l) and 1,1dichloroethene (4.1 µg/l) which were detected in MW04; however this is still below the IGV of 30 µg/l for 1,1-dichloroethene and there is no GTV nor IGV for Chloroethane.
- Samples were analysed for speciated phenols to include chlorophenols and the results indicate that there were no detections above the laboratory limits of detection.
- Hydrocarbons in both aliphatic and aromatic range were observed during the current Quarter 4 2015 monitoring event. C10-C12 (495 µg/l), C12-C16 (3080 µg/l) and C16-C35 (3360 µg/l), as well as in the aromatic ranges C12-C16 (879 µg/l), C16-C21 (1380 µg/l) and C21-C35 (694 µg/l). TPH concentrations were also recorded in the aliphatic ranges C16-C35 (231 µg/l) and C35-C44 (14 µg/l) at BH103. TPH concentrations were also recorded in the aromatic ranges C21-C35 at BH103 (60 µg/l) and C10-C12 (13 µg/l) and C12-C16 (21 µg/l) at MW04. Hydrocarbons were detected at BH104B and BH103 in both the aliphatic and aromatic ranges, as well as in the aliphatic range at MW03 and aromatic range at MW04. Hydrocarbons were detected at BH104B in the aliphatic range and BH103 in both the aromatic range and BH103, BH104B and MW03 in both the aromatic range and BH103, BH104B and MW03 in both the aromatic range and BH103, BH104B and MW03 in both the aromatic range and BH103, BH104B and MW03 in both the aromatic range sc12-C16, C16-C21 and C21-C35 during the Quarter 3, 2014 event. Previous to these events hydrocarbons were detected in boreholes BH104B and MW03 in the aliphatic carbon ranges during the Quarter 3, 2010 monitoring event.
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Appendix 2

| PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : Copy of W0184_2015.xls | Return Year : 2015 |

30/03/2016 16:21

Guidance to completing the PRTR workbook

Environmental Protection Agency

PRTR Returns Workbook

REFERENCE YEAR 2015

1. FACILITY IDENTIFICATION	
Parent Company Name	Enva Ireland Limited
Facility Name	Enva Ireland Limited (Portlaoise)
PRTR Identification Number	W0184
Licence Number	W0184-01

Classes of Activity

No.	class_name
-	Refer to PRTR class activities below

Address 1	Clonminam Industrial Estate
Address 2	Portlaoise
Address 3	
Address 4	
	Laois
Country	Ireland
Coordinates of Location	-7.31391 53.0294
River Basin District	IESE
NACE Code	3832
Main Economic Activity	Recovery of sorted materials
AER Returns Contact Name	Kevin Coll
AER Returns Contact Email Address	kcoll@enva.ie
AER Returns Contact Position	HSE Coordinator
AER Returns Contact Telephone Number	057867600
AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number	0578678699
Production Volume	0.
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	
Number of Employees	
User Feedback/Comments	
Web Address	www.enva.ie

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
5(a)	Installations for the recovery or disposal of hazardous waste
5(c)	Installations for the disposal of non-hazardous waste
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 200)2)
Is it applicable?	
Have you been granted an exemption ?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being	
used ?	

4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site
Do you import/accept waste onto your site for on-	
site treatment (either recovery or disposal	
activities) ?	

This question is only applicable if you are an IPPC or Quarry site

4.1 RELEASES TO AIR Link to previous years emissions data

| PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : Copy of W0184_2015.xls | Return Year : 2015 |

30/03/2016 16:21

10

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

		RELEASES TO AIR				Please enter all quantities	in this section in KGs		
		POLLUTANT		ME	THOD			QUANTITY	
					Method Used				
	No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
02		Carbon monoxide (CO)	С	EN 15058:2004	Non Dispersive Infra Red	13.18	13.18	0.0	0.0
08		Nitrogen oxides (NOx/NO2)	С	EN 14792:2005	Chemiluminescence	520.05	520.05	0.0	0.0
					NDIR AG2 Non Dispersive				
11		Sulphur oxides (SOx/SO2)	С	OTH	Infra Red	86.13	86.13	0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO AIR				Please enter all quantities	s in this section in KG	5	
	POLLUTANT			METHOD			QUANTITY	
				Method Used				1
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0)	0.0 0.0	.) 0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES TO AIR				Please enter all quantities	s in this section in KG	S	
	POLLUTANT			METHOD			QUANTITY	
				Method Used				
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0		0.0 0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Lane	dfill operators					
For the purposes of the National Inventory on Greenhor flared or utilised on their facilities to accompany the fig to the environment under T(total) KG/yr for Section A: S Landfill:	use Gases, landfill operators are requested to provide summary data on landfill gas (Methane) ures for total methane generated. Operators should only report their Net methane (CH4) emission actor specific PRT pollutants above. Please complete the table below: Enva Ireland Limited (Portlaoise)					
Please enter summary data on the					1	
quantities of methane flared and / or						
utilised			Meth	od Used		
				Designation or	Facility Total Capacity	
	T (Total) kg/Year	M/C/E	Method Code	Description	m3 per hour	
Total estimated methane generation (as per						
site model)	0.0				N/A	
Methane flared	0.0				0.0	(Total Flaring Capacity)
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)
Net methane emission (as reported in Section						
A above)	0.0				N/A	

26

4.3 RELEASES TO WASTEV	WATER OR SEWER	Link to p	previous years emission	ons data	PRTR# : W0184 Facility Name : E	nva Ireland Limited (Portlaoise)	Filename : Copy of W0184_2015	30/03/2016 16:21
SECTION A : PRTR POLLUT	TANTS OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR V	VASTE-WATER TREATMENT OF	R SEWER		Please enter all quantities	in this section in KGs		
	POLLUTANT		M	ETHOD			QUANTITY	
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
NG	Ammonia (NH2)	C	отн	APHA /AWWA Standard Methods	172.4	172.4	0.0	0.0
	Aminonia (Ni is)	U C	om	APHA /AWWA Standard	172.4	172.4	0.0	0.0
9	Chlorides (as Cl)	c	OTH	Methods	7417.0	7417.0	0.0	0.0
				APHA /AWWA Standard				
1	Phenols (as total C)	C	OTH	Methods	60.69	60.69	0.0	0.0
<u>,</u>	Tatalaharahara	0	OTU	APHA /AWWA Standard	000.04	000.04		
•	Total phosphorus	C	ОІН	Methods TM20 Determination of	398.34	398.34	0.0	0.0
				Trace Metal elements by				
				ICP-OFS (Inductively				
				Coupled Plasma - Optical				
				Emission Spectrometry).				
				Modified US EPA Method				
.0	Copper and compounds (as Cu)	C	OTH	200.7	0.0036	0.0036	0.0	0.0
				TM30 - Determination of				
				I race Metal elements by				
				Coupled Plasma Optical				
				Emission Spectrometry).				
				Modified US EPA Method				
8	Cadmium and compounds (as Cd)	С	OTH	200.10	0.0	0.0	0.0	0.0
				TM30 - Determination of				
				Trace Metal elements by				
				ICP-OES (Inductively				
				Coupled Plasma - Optical				
				Emission Spectrometry).				
	Zine and compounds (as Zo)	C	ОТН	200.9	0.00	0.00	0.0	0.0
	Zino and compounds (ds Zil)	U U	0	TM30 - Determination of	0.09	0.09	0.0	0.0
				Trace Metal elements by				
				ICP-OES (Inductively				
				Coupled Plasma - Optical				
				Emission Spectrometry).				
				Modified US EPA Method				
				000 0	0.0000	0.0000		0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATI	MENT OR S	EWER		Please enter all quantities	in this section in KGs		
	POLLUTANT		METI	IOD			QUANTITY	
			N	ethod Used				
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
				Modified USEPA 8015B				
				method for the				
				determination of solvent				
				Extractable Petroleum				
				Hydrocarbons (EPH) with				
				carbon banding within the				
314	Fats, Oils and Greases	С	OTH	range C8-C40 GC-FID.	10.81	10.81	0.0	0.0
				APHA /AWWA Standard				
240	Suspended Solids	С	OTH	Methods	383.8	383.8	0.0	0.0
				APHA /AWWA Standard				
343	Sulphate	С	OTH	Methods	551.08	551.08	0.0	0.0
				APHA /AWWA Standard				
306	COD	С	OTH	Methods	17792.72	17792.72	0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

	ANTER TREATMENT & PREVENT PLANTERS AF BANK												
				d accelling on this sheet in Tanang					Har Water Name and Linearce Period No. of Sect				
			Quantity (Turnes per				Mehorither		Destruction Facility Net Har Water, Nermanni Licenses Participant	New York: Address of New Devicement Pacificy New York Pacific Address of	Name and Literate / Parrie No. and Julians of Prod Resource / Depress (NULL/ROUG WALTE ONLY)	Annual Address of Final Destination in: Final Resource / Depend Title (HE2040)	
Databa Destantion	European Masie			Personal Advances	Make Sealnest	MC.	Mahar Ibar	Location of					
	-									Rue de Couriere de Zoning Industrial de Peluy	Oscilla 18 187885 Rive		
To Other Countries				wade part and wroth containing organic				Record	Cessyste	A 7181 Seads	de Courses de Zorang Industrie de Peluy	Rue de Cautiere de Zaring Industriel de PelayB 1181 Secelle Belance	
										Termsheet behaving arrive	Lindenschendt , 04714		
TODA De Courtry	08 01 11	Yes	0.83	wade pant and wroods containing organic		м	Tragent	Offsite in Inland	Room MPARTS	"Shavon "Co Cross Indexed Multinar Indexes	42-86	Kuntacher Stasse (2-6) Kuntur PETTT Parmer Milmar batress	
Million the Country	08 01 11	Yes	2.4	wade pand and wroth containing organic colouries or other danamous substances.	ю	м	Tesperi	Offsite in Inland	Balles Lik W2041-01	path.Matingar, .Westmath.) related Results Counters 45, Toolog	Salles Lid W0021-01	path,Mulinger, .32estmeath.3 reland	
									Course In	Industrial de Pelay			
To Other Caustiles	08 01 12	84	9.82	walke pand and wrinth after than those	-	м	Tragent	Abroad	to to the	A 7181 Zevelle			
To Other Caustiles	08 01 12	84	37.71	walke pand and wrinth after than those	-	м	Tragent	Abroad	8.4.320041080%0PED/20	Name Industrial d'Ellerin,B- ANN Process Reduces			
										Impaire build ever	Lindenacherall , 04714 BRZER Kumbacher Zhosse 62-85 - Kimilizik DS7223	Kuntater State D-B	
William the Country	09 01 04	Yes	1.0	hand a children	~		-	Plane in Reland	Room MPGPL1	Price Indexed Run de Courtere de Zoning Industrie de Peluy	Autom	Vanish PETPIS Parmen	
									Georgele	a risi zeele	Gewyde 38.1528P, Rue de Coutere 69 Zoning Induitie de PeturB	Rue de Courtere de Zoring Indexidié de Pelor	
To Other Caustres	13 06 03	Yes	10.26	alaatadad ahalaa				Marcal	10.1010	Rue de Courtere de Zoning Industrial de Pelay	THE Bacada Balance	THE BANK BANK	
				studges from physical heroical instiment					Gewysle	A TISI Sevela	Gescycle 38.152/8P, Rue de Courtere 09 Zorang Industrial de Peluy8	Nue de Courtere 89 Zoning Industried de Pelay	
To Other Caustres	19 22 28	Yes	76.71	contentna danamisus substances	-		Theghed	Abroad	.38.35239	Enterum Num die Counterie die Zanderg Industriel die Perlum	7181 Zerefle Belsium	Titl Broth Jacun	
				aqueous studyes containing paint or sample containing organic softwirds or other					Gewycle	A THE Beach	Descycle 38.1628P, Rue de Couriere de Zoring Industrial de Peluy	Rue de Cautiere de Zaring Industriel de Pelay	
To Other Caustres	08 01 15	Tes	16.14	Annance intellected	81	M	Tragent	Abrical		JYX Road News Road, Dality Dality	Eva, W0180-01, JPK Road Name Road, Duble, Dubles	JPK Road, Name Road, Duble, Duble.	
Million the Country	13 06 07	Tes	20.12	an and the state of the	~			Pillana in Baland	Para Arrian	Zi Award & Put	Therese Exat Librianne, "21 Avenue de Pari	Zi Arenae de Piol	
To Other Caustres	13 05 07	Yes	86.76	nte under Kras officiellar secondores	-	•		Marcal	Kill Recycling 12 183	Jacona, 76170 I Ballouanalada 38, D	Antonio /10170.LileborroeFr Antonio K28 Recipilling12 100	Second, NUTO, Libelance, Jr. Mallenamorale 38, D	
To Other Countries	13 67 68	Yes	180.34	aller beir herbeiter mich and	-		-	Marcal	19882079078	Philip Rockards Prantises Rue de Coutiere de Zaning Industrial de Peluy	T SALA POT MAN	2760 Suchark Passac	
									Gewycle	A THE Beach	Descycle 38.1628P, Rue de Couriere de Zoring Industrial de Peluy	Rue de Cautiere de Zaring Industriel de Pelay	
To Other Countries	13674	Tes		alter faits (miladina ministeria)	81	M	Trained	Abrical	38.10389	Jinteres JYX Road Nees Road, Dalite Dalite	71E Savalla Balanan Evia, W0180-21, JFK Road Nami Road, Dubin Dubin	7121 Benefite - Belaure JPK Road - Name Road - Duble, Duble	
weblin the Country	1000	-	14.01					- dene to baland		Emiliation Industrial estate ,Shawan ,Co	Refund	Southease Industrial estate "Shareon "Ca	
month the Causity			2.0	and the second s				- and the too Restand	Reighei	Infant	Netter Only & Cally, A- 4187 HHLauto Kinger-	Louis Kinges Statle	
To Other Countries	18 61 10	Yes	62.4	incredual contracted sectores of a	80		Thegreed	Abroad	A.A. JOINT CONTROL OF	And Passes Relation	Participant , Barrison, DORDET	Carrier D 2007	
				packaging containing resolutes of or	_			_		Emiliation Industrial estate ,	Lindenachmail, 04 714 BR285 Kumbacher Zhosse 42-86 , Kimilaid, 067223	Kuntahe Stasse (248	
and a capacity								CREAT IN STREET		Emiliation Industrial estate , , Shawan , Co.		Smithdown Industrial estate "Shareon "Ca.	
ment of Cabley				absorberds, Eller materials (recluding of							Linderscheidl , 06716		
TERM Re Country	11 62 62	Yes	0.88	clubs, protective clubing contantinated by	813		Tesper	Officite in Ireland	Room MARKED	"Shawan "Ca Pina haland	42-8 "Kwizik 067223 Research	Kunhaher Stasse ID-68 Vanised PETRY Passan	
To Other Countries	16 CT C7	Yes	490.84	of Nam				Marcal	RD Recycling /Dam scores	Centrum Zuel 3017 WWW.Rateries	approved Centrum Zuid 3017 1979) Roboten	Centrum Zaid 3217 1979: Balances	
TERM Re Country	11 01 10	86	2.0	chalges and Mercalies offer than those methods in 11 Ct 09	RES	м	Tragent	Offsite in Inland	Ena 300011 VI Receiptor 12.101	, Shaven , Co Clam Johand Externational N			
To Other Countries	16.01.15	No	148.3	makers of spaces have set chardens and	10	м	Thegreed	Abroad	THEFT	JPK Road Nees Road, Date: Date:		Southease Inducted estate	
William the Country	13 05 08	Yes	7.67			м	Thegreed	Offsite in Inland	Room Witten. 1	TT Baland	End MARTIN	Place Select	
To Other Caustiles	16 05 06	Yes	25.98	pases in pressure containers (including	-	м	Tesper	Abroad		Australie 5,DNI238 Vision Research	SDRIDA	Australie 5	
William the Country	13 67 68	Yes	7.82	allier faels (includes mictures) laboratory chemicals, considing of or		м	Tested	Officite in Ireland	Ena W21991	Riad, "Dalith Dalith 12 Jeland Smithalism Industrial estate	Ena .3062-1	"Sharen "Ca Clav.Inland	
Million the Country	16 05 0E	Yes	7.0	contentral dargence substances, including minimum of Monitors channels			Tesped	Offsite in Iteland	Room MARKED	, Jhaven , Co Pine Island Emiliation Industrial estate	Lindenacheralit , 06716	Kunhahe State D-B Vanish PETRI Ramon Shihdun Inhalisi esise	
TOBIN the Country	16 05 CF	Yes	6.1	desarded integens disensate concerning of or contribute disensate industries		м	Tesperi	Offsite in Inland	Room MPATLY	Chan Indexed	Runa 100471.7	Casharen Ca	
THEM BE CANTON	14 05 08	794	10.	decarded organic chemicals consisting of	813		Transit	Officia in Referat	Rea 1997.1	Emiliation Industrial estate 	BRZES Kourdon Jer 714 62-88	Kuntader State (2-6)	
										Nijerheidustasi 2 Erden - B-200 Perse	Canyone Dann Approved, Nijenhendsstand 2 Entergen - Br 2000 Present	Nijerheidustas 2 Betaum - B- 2007-mil	
To Other Caustres	16 06 01	Yes	727.68	and kollarian	-	*	-	Marcal	Commo Proc. Annual	Ramon Capping Industrial Escale Damage	Real Property lies and the second sec	Anton a second	
Million the Country	16 06 06	16	148	alkalina haliadaa haasaati 18.08.09				Photo in Astron	KNK Metals Recycling	Road Tullances Co. Piller Indexed			
									Gravite	Industrial de Peluy	Descycle 38,1028P, Rue de Courtere 69, Zurgen	Rue de Caustere de Annes	
To Other Caustiles	16 CT 08	Yes	146.02		-			Marcal		Ji 7181 Zenelle Materia JYK Road Nam	Industrial de Petry	Industrial de Pelay	
Million the Country	16 10 01	796	12.66	aqueous liquid makins containing dangerous ministrations		м	Tragent	Officie in Inland	B	Road, Dality, Dality		Distor	
									Heads Plant New	Pollage	Healt Plant have	Particular	
Million the Country	17 05 04	16	2874.28	soil and shares after than those mentioned in 17 05 EB	-	м	Tesperi	Offsite in Reland	W79-L3-09-002-01	Colons Jordend Multinger Institutes	W19-CE-09-002-01	Co Loon Johand	
Million the Country	20 61 13	796	6.18		-	•		-	Bullet 114 WHAT AT	path, Malingar, , Weakneakh, I seland			
				ligat contratible wates containing					Regisel 3.4.320410090702020	Name Industries of Descale	Linderscheidl , 55 715 BR25 Kunikacher Scisse 47-B , Kimical 05723	Kumbacher Statuse (2-68	
To Other Causties	19 C2 C8	Yes	60.00	danaerius substances subd combustible wades containing	80	м	Weighted	Abroad	0823APPU Regisel 3.A.32034108090P8D20	Add Ener. Belane	Cemary Relyted S.A. 300 K1080R0PE020	Kendual DE7223 Germany Normy Industriel differently	
To Other Countries	19 22 08	Yes	366.74	water pant and writed sortaning argent	80	м	Weighted	Abroad	Reguel 3.4.32004108090P8020	Maring Industries of Descale	Linderschrieft , 04 714	Kumbacher Statute (2-44	
To Other Countries	08 01 11	Yes	445.95	other wastes (milading michaes of materials) from mechanical livelinent of	80	м	Weighted	Abroad		Contain 25		Galles 25	
Other Countries		05	203.6	www.collarine.denience.sdistances other wastes (mitaling michaes of materials) has mechanical treatment of	310		respect	- anal	Lindenschmaß , 06 716	Kantader Since (2-8	Linderscheidl , 06716	Kaha-Gelfal (Bernary Kranisacher Stasse (2-6)	
no Other Cauchies		05	186.54		-			-weined		Rue de Cautiere de Zaning Industrial de Peluy		And a fair of the second	
				other wastes (notating excluses of materials) from mechanical implement of					Georgele	a rist Seads	de Courtere de Zoning Industrial de Peloy	Rue de Courtere (8 Zoning Industriel de Pelay8	
Total Bachine			10	and a second design of the later				Citeria da la com	Real MODAL	Emiliation Industrial estate	Total March	Enthelises Industriel estate "Shareon "Ca.	
Country			1.44				Trades.	Charles of Belland	the world	Emiliation Industrial estate 	tea mart	Embeliese Industrial estate "Sharmon "Ca	
meets the Caulty			0.34	Supercent lides and other messary-					Stat Larp Recycling JEPP	Weaklash Industrial Extense	Inth Lamp Recycling . WPP	Wandsink Industrie Exists	
meets the Caulty	20121		2.54		~			ceste in tetand		Balynasi Dise Balynasi bissiai		and the William Second	
Million the Country	20 01 26	No	6.02		-	•	-	Planta in Astron		Public Public 17 Indust Emiliation Industrial entate Theorem 7			
Million the Country Million the Country	20 01 28	No. No.	0.87	many contractions are many able that	813		Weighted	Officie in Infand	Road 1000111	Place Related Antheniburn, Thates, Topperar - Related			
To Other Caustine	20 01 27	794	0.24	part, tria, adhesives and resins containing	813		Transit	Arost	Respirat 3.A. 3230 61080 WDP8 D/20	Name Industries of Deco.dl	Linderscheidl , 06716	Kuntader State (2-6)	
To Other Causting	20 01 28	No	26.04	part, rds., adhesives and resins other than from manifold in 70 00 VF	-		Traped	Abraul	Reigheil 3.4.,320 61080 WDPE D/20 76 718 6.411	Name Industrial of Description			
Wilkin the Country	20 01 40	84	326.26	alas de la contrata d	-	•	-	Western Server	MIM Recycles MPP-79-11-	Arragh, Bir,Co Rosena Materi			
To Other Caustres	1100	-	41.06	Mess nat otherware specified), wijing clubs, protective challing contantinated by danaerical subsciences.	-		Tesperi	Abroad	Reighel 3.4.320341080902020 0823874U	Naring Industriet d'Elword- 6680 Erwiss Behaven			
				other washes (mitading exchans of materials) from mechanical (material)					Regisel 3.4.32014108090PED20	Name Industries of Descale			
To Differ Countries	19 12 11	Yes	2.31	and a contained decemps in the lateral	81	м	Weighted	Abrial	00000000	Additional Relation			

The billing of the state of the

Appendix 3

Unit 5 Caherdavin Business Centre, Ennis Road, Limerick.

Enva (Ireland) Limited Clonminam Industrial Estate, Portlaoise, County Laois, Laois.

Bund Integrity Report 2015

Waste Licence Number: W0184-01

Report Reference Number: Version: Date of Issue: **Report Compiled by:**

3520-15-01 2 03-09-2015 Mark McGarry
1.0 Introduction

Enva (Ireland) Limited, Clonminam Industrial Estate, Portlaoise, Co. Laois are required as part of Waste Licence number W0184-01, Condition 3.13.5 and Schedule E to have their bunds tested for the protection of ground and surface water.

The bunds were tested in accordance with BS 8007: Design of Concrete Structures for Retaining Aqueous Liquids and documented guidance from the EPA entitled Storage and Transfer of Materials for Scheduled Activities.

The test was carried out in two stages, firstly to inspect the bund visually for cracks, weak spots or if the bund required any remedial work. The integrity of the bund was then tested for water tightness over a 72 hour period. The reduced timeframe from the BS 8007 standard for testing was applied as the bunds were in use and were required for the operation of the site.

2.0 Licence Conditions

The following conditions have been taken from the current licence applicable to this site:

- 3.12.5 The drainage system, bunds, silt traps and oil separators shall be inspected weekly, desludged as necessary and properly maintained at all times. All sludge and drainage from these operations shall be collected for safe disposal. A written record shall be kept of the inspections, desludging, cleaning, disposal of associated waste products, maintenance and performance of the interceptors, bunds and drains.
- 3.13.2 All tank and drum storage areas shall, as a minimum, be bunded, either locally or remotely, to a volume not less than the greater of the following:
 - a) 110% of the capacity of the largest tank or drum within the bunded area; orb) 25% of the total volume of substance which could be stored within the bunded area
- 3.13.5 The integrity and water tightness of all the bunds and their resistance to penetration by water or other materials stored therein shall be confirmed by the licensee and shall be reported to the Agency within 12 months of the date of grant of this licence. This confirmation shall be repeated at least once every three years thereafter and reported to the Agency on each occasion

3.0 Summary of Methodology

A visual inspection was carried out on the bund to determine if there were any cracks, fissures or unacceptable surface continuity between the bund walls.

The hydrostatic test was completed by filling the bund to a fill level using clean water, in line with the procedure outlined in BS8007:1987. Liquid levels were allowed to stabilise for 24 hours. After stabilisation a depth reading was recorded and marked at a preset suitable location. The water level was re-recorded after remaining in the bund for 72 hours.

A water level meter was placed in situ to determine the impact of rainfall and evaporation in the bund. When this statistic was accounted for the bund was verified as passed or failed in line with the criteria set out in the standard.

4.0 Summary of Results

Bund Identity	Pass / Fail	Comments
Bund 1 Section A	Pass	This storage area is too large to complete a hydrostatic test. The building was split into 3 sections to allow for movement of material in order to complete visual assessments thoroughly. The bund was deemed to pass the visual inspection.
Bund 2		This bund passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements
Bund 5 Section 1		This bund passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements
Bund 6		This bund passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements
Bund 8		This bund passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements

Project Manager	KQ. LOCary	Date of Report	07-07-2015
Client	Enva Ireland Limited	Contact	Kevin Coll

Bund Number 5 Section 1

Company	ENVA Ireland	Waste Reference No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
Bund Reference No	Bund 5 (Section 1)	Bund Type: Local/ Remote / Combined	Local
Bund Location	Storage Area	Bund Risk Classification: 0, 1, 2, 3	2
Bund Dimensions	4210 x 8280 x 220mm	Primary Vessel Material	Steel Tanks
Bund Materials of Construction	Reinforced Concrete	Primary Vessel Storage Volume	c. 13m ³ full
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel	14.3 m ³
Bund Retention Volume (local/ Remote)	76 m ³ (Local)	Primary Vessel 25% Total Volume	-
Practical to Conduct Hydrostatic Test	Yes	Date of Visual Inspection	11-06-2015
Visual Description:			

Visual inspection was carried out on the walls, joints and floor both internally and externally. The walls and floors were deemed acceptable and therefore the bund passed through to the hydrostatic test. Water was filled to a height of 125mm from the floor of the bund – this bund could not be filled much higher due to the risk of damage to in line equipment and damage to the storage vessel controls. A visual inspection was completed on the remainder of the bund walls which has not been submerged for the test. There were no cracks, fissures or weak spots identified above the water line with the exception of a pipe connected through the wall. The seals around the pipe are finished and deemed appropriate to retain water. This pipe is above the level of water in the tank and therefore did not form part of the hydrostatic test but has been deemed to pass the visual inspection.

Date Bunds Filled	11-06-2015	Date of Hydrostatic Test	12 to 15-06-15
Start Time	10:00	End Time	11:00
Start Level of Water	125 mm	End of Test Level of Water	124 mm
Status & Recommendations:			

• Bund Passes Hydrostatic Test to the level of water filled.

• Hydrostatic retest required in 2018 unless bund is damaged or repaired in the meantime.

Notes:

Signed: "Cong	Date: 07-07-2015	Title: Project Manager
Signed: Noel Harrington	Date: 07-07-2015	Title: Chartered Engineer

Bund Number 6

Company	ENVA Ireland	Waste Refe	erence No	W0184-01
Site	Clonminam Industrial Estate	Waste Cate	Gory	Hazardous
Sile	Portlaoise			Waste Facility
Bund Reference No	Bund 6	Local/ Rem	ote / Combined	Local
Bund Location	Effluent Discharge Tank	Bund Risk 0, 1, 2, 3	Classification:	1
Bund Dimensions	1200 x 410 x 144mm	Primary Ve	ssel Material	Steel Tanks
Bund Materials of Construction	Reinforced Concrete	Primary Ve Volume	ssel Storage	c. 130 m ³ full
Bund Lining materials	N.a	Primary Ve Largest Ve	ssel 110% ssel	55 m ³
Bund Retention Volume (local/ Remote)	71 m ³ (Local)	Primary Ve Volume	ssel 25% Total	32.5 m ³
Practical to Conduct Hydrostatic Test	Yes	Date of Vis	ual Inspection	11-06-2015
Visual Description:				
Visual inspection was carried out or were deemed acceptable and there 92 mm from the floor of the bund – 1	n the walls, joints and floor both fore the bund passed through t this bund could not be filled high	internally and to the hydrost her due to the	d externally. The wall atic test. Water was risk of damage to ele	s, joints and floors filled to a height of ectrical equipment.
A visual inspection was completed There were no cracks, fissures or through the wall. The seals around level of water in the tank and theref inspection.	on the remainder of the bunc weak spots identified above th the pipe are finished and deem ore did not form part of the hyd	I walls which e water line v ed appropriate rostatic test b	has not been subm vith the exception of e to retain water. This ut has been deemed	erged for the test. a pipe connected s pipe is above the to pass the visual
The bund is fitted with a screw cork	to allow for emptying purpose -	- this connecti	on was included in th	ne hydrostatic test.
Date Bunds Filled	11-06-2015 Da	ate of Hydros	tatic Test	12 to 15-06-15
Start Time	10:35 Er	nd Time		11:05
Start Level of Water	92 mm Er	nd of Test Le	vel of Water	91 mm
Status & Recommendations:				
 Bund Passes Hydrostatic Test to the level of water filled. Hydrostatic retest required in 2018 unless bund is damaged or repaired in the meantime. 				
Notes:				
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46,	R50, R51, R52, R53, R54, R55,	, R56, R58, R	61, R63	
Signed: Actology	Date: 07-07-201	15	Title: Projec	ct Manager
Signed: Noel Harrington	Date: 07-07-201	15	Title: Charter	ed Engineer

Bund Number 1 Section 1 of 3

Note: This store was sectioned into 3 parts for this visual inspection. The reason for only completing 1/3rd of the building was to allow for stored materials to be moved into the other sections leaving one completely free for visual observation. There were no materials in this section for the visual observation therefore allowing a complete and comprehensive assessment of the section. This store is far too large of floor area to be deemed suitable for a hydrostatic test.

Company	ENVA Ireland	Waste Refe	erence No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Cate	egory	Hazardous Waste Facility
Bund Reference No	Bund 1 Section 1	Bund Type Local/ Ren	: note / Combined	Local
Bund Location	Export Storage	Bund Risk	Classification:	2
Bund Dimensions	c. 322 m ² for Section 1	Primary Ve	ssel Material	IBC's, Plastic and Metal Barrells
Bund Materials of Construction	Reinforced Concrete	Primary Ve Volume	ssel Storage	Variable – max 100 m³
Bund Lining materials	N.a	Primary Ve Largest Ve	essel 110% ssel	1.1 m ³
Bund Retention Volume (local/ Remote)	Total c. 57 m ³ (Local)	Primary Ve Volume	ssel 25% Total	25 m ³
Practical to Conduct Hydrostatic Test	No	Date of Vis	ual Inspection	11-06-2015
Visual Description:				
Visual inspection was carried out of with this section would be 22mm. volume of this export store was calc	n the walls and floor both inter Above this level liquid would ulated at c. 40 m ³ .	nally and ext overflow the	ernally. The maximu bund lip. Therefore	m retention height the total retention
A visual inspection was completed fissures or weak spots identified. constitute a failure of visual inspecti	on section 1 of the store floor There was evidence of weak on as they were very minor.	, joints and v surface cor	valls. There were no acrete in places how	significant cracks, vever this did not
Date Bunds Filled	N/a Da	te of Hydros	tatic Test	N/a
Start Time	N/a Er	d Time		N/a
Start Level of Water	N/a Er	d of Test Le	vel of Water	N/a
Status & Recommendations:				
 Bund Section 1 passed the visual inspection. This should be inspected every three years or in the event of damage caused as per the licence requirement. 				
Notes:				
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46, R50, R51, R52, R53, R54, R55, R56, R58, R61, R63				
Signed: All Charge	Date: 07-07-201	5	Title: Projec	ct Manager
Signed: Noel Harrington	Date: 07-07-201	5	Title: Charter	ed Engineer

Bund Number 2

Company	ENVA Ireland	Waste Reference No	W0184-01	
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility	
Bund Reference No	Bund 2	Bund Type: Local/ Remote / Combined	Local & Remote	
Bund Location	Mixed Fuels Bay	Bund Risk Classification: 0, 1, 2, 3	3	
Bund Dimensions	8680 x 8260 x avg 220mm	Primary Vessel Material	IBC, Plastic and Steel Barrels	
Bund Materials of Construction	Reinforced Concrete	Primary Vessel Storage Volume	Variable max 50 m³ full	
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel	1.1 m ³	
Bund Retention Volume (local/ Remote)	15 m ³ (Local)	Primary Vessel 25% Total Volume	12 m ³	
Practical to Conduct Hydrostatic Test	Yes	Date of Visual Inspection	11-06-2015	
Visual Description:				
Visual inspection was carried out on the walls and floor both internally and externally of the bund. The walls, joints and floors were deemed acceptable and therefore the bund passed through to the hydrostatic test. Water was filled to a				

A visual inspection was completed on the remainder of the bund walls which has not been submerged for the test. There were no cracks, fissures or weak spots identified above the water line with the exception of a bung connected through the wall to another bund. This bung was below the level of water in the bund and therefore did form part of the hydrostatic test.

Date Bunds Filled	11-06-2015	Date of Hydrostatic Test	12 to 15-06-15
Start Time	10:55	End Time	11:10
Start Level of Water	161 mm	End of Test Level of Water	159 mm

Status & Recommendations:

height of 161 mm from the floor of the bund.

- Bund Passes Hydrostatic Test to the level of water filled.
- Hydrostatic retest required in 2018 unless bund is damaged or repaired in the meantime.

Notes:

Signed: 10. Com	Date: 07-07-2015	Title: Project Manager
Signed: Noel Harrington	Date: 07-07-2015	Title: Chartered Engineer

Bund Number 8

Company	ENVA Ireland	Waste Reference No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
Bund Reference No	Bund 8	Bund Type: Local/ Remote / Combined	Local
Bund Location	Chemical Dosing Area	Bund Risk Classification: 0, 1, 2, 3	2
Bund Dimensions	6260 x 5190 x 1020mm	Primary Vessel Material	Steel Tanks
Bund Materials of Construction	Reinforced Concrete	Primary Vessel Storage Volume	20 m ³ full
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel	11 m ³
Bund Retention Volume (local/ Remote)	33 m ³ (Local)	Primary Vessel 25% Total Volume	5 m ³
Practical to Conduct Hydrostatic Test	Yes	Date of Visual Inspection	11-06-2015
Visual Description:			

Visual inspection was carried out on the walls, joints and floor both internally and externally of the bund. The walls, joints and floors were deemed acceptable and therefore the bund passed through to the hydrostatic test. Water was filled to a height of 64 mm from the floor of the bund. There was electrical equipment in the bund restricting the height of the hydrostatic test to this level.

A visual inspection was completed on the reminder or the wall which was not submerged. There were no cracks, fissures or weak spots identified above the water line. The hydrostatic test was completed and passed.

Date Bunds Filled	11-06-2015	Date of Hydrostatic Test	12 to 15-06-15
Start Time	11:20	End Time	11:20
Start Level of Water	64 mm	End of Test Level of Water	64 mm

Status & Recommendations:

- Bund Passes Hydrostatic Test to the level of water filled.
- Hydrostatic retest required in 2018 unless bund is damaged or repaired in the meantime.

Notes:

```
Low Risk - WGK 0 or 1
High Risk – WGK 2 or 3 R45, R46, R50, R51, R52, R53, R54, R55, R56, R58, R61, R63
```

Signed: 10.00mg	Date: 07-07-2015	Title: Project Manager
Signed: Noel Harrington	Date: 07-07-2015	Title: Chartered Engineer

Unit 5 Caherdavin Business Centre, Ennis Road, Limerick.

Enva (Ireland) Limited Clonminam Industrial Estate, Portlaoise, County Laois, Laois.

Bund Integrity Report 2015

Waste Licence Number: W0184-01

Report Reference Number: Version: Date of Issue: **Report Compiled by:**

3520-15-02 4 03-09-2015 Mark McGarry

1.0 Introduction

Enva (Ireland) Limited, Clonminam Industrial Estate, Portlaoise, Co. Laois are required as part of Waste Licence number W0184-01, Condition 3.13.5 and Schedule E to have their bunds tested for the protection of ground and surface water.

The bunds were tested in accordance with BS 8007: Design of Concrete Structures for Retaining Aqueous Liquids and documented guidance from the EPA entitled Storage and Transfer of Materials for Scheduled Activities.

The test was carried out in two stages, firstly to inspect the bund visually for cracks, weak spots or if the bund required any remedial work. The integrity of the bund was then tested for water tightness over a 24 hour period. The reduced timeframe from the BS 8007 standard for testing was applied as the bunds were in use and were required for the operation of the site.

2.0 Licence Conditions

The following conditions have been taken from the current licence applicable to this site:

- 3.12.5 The drainage system, bunds, silt traps and oil separators shall be inspected weekly, desludged as necessary and properly maintained at all times. All sludge and drainage from these operations shall be collected for safe disposal. A written record shall be kept of the inspections, desludging, cleaning, disposal of associated waste products, maintenance and performance of the interceptors, bunds and drains.
- 3.13.2 All tank and drum storage areas shall, as a minimum, be bunded, either locally or remotely, to a volume not less than the greater of the following:
 - a) 110% of the capacity of the largest tank or drum within the bunded area; orb) 25% of the total volume of substance which could be stored within the bunded area
- 3.13.5 The integrity and water tightness of all the bunds and their resistance to penetration by water or other materials stored therein shall be confirmed by the licensee and shall be reported to the Agency within 12 months of the date of grant of this licence. This confirmation shall be repeated at least once every three years thereafter and reported to the Agency on each occasion

3.0 Summary of Methodology

A visual inspection was carried out on the bund to determine if there were any cracks, fissures or unacceptable surface continuity between the bund walls.

The hydrostatic test was completed by filling the bund to a fill level using clean water, in line with the procedure outlined in BS8007:1987. Liquid levels were allowed to stabilise for 24 hours. After stabilisation a depth reading was recorded and marked at a preset suitable location. The water level was re-recorded after remaining in the bund for 24 hours.

A water level meter was placed in situ to determine the impact of rainfall and evaporation in the bund. When this statistic was accounted for the bund was verified as passed or failed in line with the criteria set out in the standard.

4.0 Summary of Results

Bund Identity	Pass / Fail	Comments
Area 7 – Water Treatment	Pass	This bund passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements
Bund 4 Sump	Pass	This sump passed the Hydrostatic Integrity test.
Bund 4	Pass	This bund passed the visual inspection. It was not deemed practical to complete a hydrostatic test in this bund due to the size of floor area that needed to be covered and large volumes of water required.

Project Manager	KQ. LOCary	Date of Report	12-08-2015
Client	Enva Ireland Limited	Contact	Kevin Coll

Water Treatment Area 7

Company	ENVA Ireland	Waste Reference No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
Bund Reference No	Area 7	Bund Type: Local/ Remote / Combined	Local
Bund Location	Wastewater treatment area	Bund Risk Classification: 0, 1, 2, 3	2
Bund Dimensions	1112 x 1153 x 220mm	Primary Vessel Material	Steel Tanks
Bund Materials of Construction	Reinforced Concrete	Primary Vessel Storage Volume	c. 20m³ full
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel	22 m ³
Bund Retention Volume (local/ Remote)	28 m ³ (Local)	Primary Vessel 25% Total Volume	5 m ³
Practical to Conduct Hydrostatic Test	Yes	Date of Visual Inspection	20-07-2015
Visual Description:			
Visual inspection was carried out on the walls, joints and floor both internally and externally. The walls and floors were deemed acceptable and therefore the bund passed through to the hydrostatic test. Water was filled to a height of 99mm from the floor of the bund – this bund could not be filled much higher due to the risk of damage to in line equipment and damage to the storage vessel controls. A visual inspection was completed on the remainder of the bund floor and walls which has not been submerged for the test. There were no cracks, fissures or weak spots identified above the water line with the exception of a pipe connected through the wall. The seals around the pipe are finished and deemed appropriate to retain water. This pipe is above the level of water in the tank and therefore did not form part of the hydrostatic test but has been deemed to pass the visual inspection. The bund floor is sloped and raised in the middle – numerous measurements were made across the bund to get an overview of the entire structure.			
Date Bunds Filled	17-07-2015 Da	ate of Hydrostatic Test	20 - 21-07-15
Start Time	10:30 E	nd Time	11:00
Start Level of Water	Side 1 99 mm Ei Side 2 104 mm	nd of Test Level of Water	Side 1 98 mm Side 2 104 mm
Status & Recommendations:			
	 Bund Passes Hydro Hydrostatic retest re in the meantime. 	estatic Test to the level of water fille equired in 2018 unless bund is dam	ed. naged or repaired
Notes:			

Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46, R50, R51, R52, R53, R54, R55, R56, R58, R61, R63			
Signed: Alexand	Date: 12-08-2015	Title: Project Manager	
Signed: Noel Harrington	Date: 12-08-2015	Title: Chartered Engineer	

Company	ENI/A Ireland	Waste Ref	erence No	W/0184-01
Sito	Clonminam Industrial Estate	Waste Cot		Hazardous
Site	Portlaoise	Pund Type	egory	Waste Facility
Bund Reference No	Press	Local/ Ren	note / Combined	Local
Bund Location	Filter Press	Bund Risk 0, 1, 2, 3	Classification:	1
Bund Dimensions	1840 x 6060 x 1790mm	Primary Ve	essel Material	Filter Press
Bund Materials of Construction	Reinforced Concrete	Primary Ve Volume	essel Storage	-
Bund Lining materials	N.a	Primary Ve Largest Ve	essel 110% ssel	-
Bund Retention Volume (local/ Remote)	20 m ³ (Local)	Primary Ve Volume	essel 25% Total	-
Practical to Conduct Hydrostatic Test	Yes	Date of Vis	ual Inspection	20-07-2015
Visual Description:				
Visual inspection was carried out of limited visual inspection that could a height of 1570 mm from the floor of	n the walls where possible – the carried out. The sump passes of the sump.	ne sump is lo ed through to	cated below the filte the hydrostatic test.	r press so there is Water was filled to
Date Bunds Filled	17-07-2015 D a	ate of Hydros	static Test	20 - 21-07-15
Start Time	10:00 E r	nd Time		11:10
Start Level of Water	1570 mm Er	nd of Test Le	vel of Water	1569 mm
Status & Recommendations:				
 Sump Passes Hydrostatic Test to the level of water filled. Hydrostatic retest required in 2018 unless bund is damaged or repaired in the meantime. 				
Notes:				
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46,	R50, R51, R52, R53, R54, R55	, R56, R58, R	61, R63	
Signed: KQ. Clary	Date: 12-08-201	5	Title: Proje	ct Manager
Signed: Noel Harrington	Date: 12-08-201	15	Title: Charter	red Engineer

Bund Number 4 – Sump under Filter Press

Bund Number 4 – Filter Press

Signed: Noel Harrinaton	Date: 12-08-201	5	Title: Charter	red Engineer
Signed: AQ Con	Date: 12-08-201	5	Title: Proje	ct Manager
Low Risk - WGK 0 or 1 High Risk – WGK 2 or 3 R45, R46,	R50, R51, R52, R53, R54, R55,	R56, R58, R	61, R63	
Notes:				
 Bund passed the visual inspection. This should be inspected every three years or in the event of damage caused as per the licence requirement. 				
Status & Recommendations:				
Start Level of Water	- En	d of Test Le	vel of Water	-
Start Time	- En	End Time -		-
Date Bunds Filled	- Da	te of Hydros	tatic Test	-
A visual inspection was completed weak spots identified. There was a	on of the bund floor, joints and nole in one wall which was plug	walls. There ged and deen	were no significant ned watertight.	cracks, fissures or
Visual Description: Visual inspection was carried out of with this section would be 250mm 155m ²) that is was not deemed pra means of emptying and disposal of put out of commission while the test	n the walls and floor both inter . Above this level liquid would ctical to conduct a hydrostatic to this liquid afterwards and the si was underway.	nally and ext overflow the est due to the ze of floor sp	ernally. The maximu bund lip. The bund volumes of water re ace that would need	Im retention height d was so large (c. equired, the limited to be covered and
Visual Description:				20 07 2010
Practical to Conduct	No	Date of Vis	ual Inspection	20-07-2015
Bund Retention Volume (local/ Remote)	38.8 m ³ (Local)	Primary Ve Volume	ssel 25% Total	-
Bund Lining materials	N.a	Primary Ve Largest Ve	ssel 110% ssel	-
Bund Materials of Construction	Reinforced Concrete	Primary Ve Volume	ssel Storage	-
Bund Dimensions	18180 x 8540 x 250mm	Primary Ve	ssel Material	Filter Press
Bund Location	Filter Press	Bund Risk 0, 1, 2, 3	Classification:	2
Bund Reference No	Bund 4 – Bund Surrounding Filter Press	Bund Type Local/ Rem	: ote / Combined	Local
Site	Clonminam Industrial Estate Portlaoise	Waste Cate	egory	Hazardous Waste Facility

Unit 5 Caherdavin Business Centre, Ennis Road, Limerick.

Enva (Ireland) Limited Clonminam Industrial Estate, Portlaoise, County Laois, Laois.

Bund Integrity Report 2015

Waste Licence Number: W0184-01

Report Reference Number: Version: Date of Issue: **Report Compiled by:**

3520-15-03 1 02-10-2015 Mark McGarry

1.0 Introduction

Enva (Ireland) Limited, Clonminam Industrial Estate, Portlaoise, Co. Laois are required as part of Waste Licence number W0184-01, Condition 3.13.5 and Schedule E to have their bunds tested for the protection of ground and surface water.

The bunds were tested in accordance with BS 8007: Design of Concrete Structures for Retaining Aqueous Liquids and documented guidance from the EPA entitled Storage and Transfer of Materials for Scheduled Activities.

The test was carried out in two stages, firstly to inspect the bund visually for cracks, weak spots or if the bund required any remedial work. The integrity of the bund was then tested for water tightness over a 24 hour period. The reduced timeframe from the BS 8007 standard for testing was applied as the bunds were in use and were required for the operation of the site.

Bunds which could not be tested hydrostatically were visually inspected.

2.0 Licence Conditions

The following conditions have been taken from the current licence applicable to this site:

- 3.12.5 The drainage system, bunds, silt traps and oil separators shall be inspected weekly, desludged as necessary and properly maintained at all times. All sludge and drainage from these operations shall be collected for safe disposal. A written record shall be kept of the inspections, desludging, cleaning, disposal of associated waste products, maintenance and performance of the interceptors, bunds and drains.
- 3.13.2 All tank and drum storage areas shall, as a minimum, be bunded, either locally or remotely, to a volume not less than the greater of the following:

a) 110% of the capacity of the largest tank or drum within the bunded area; orb) 25% of the total volume of substance which could be stored within the bunded area

3.13.5 The integrity and water tightness of all the bunds and their resistance to penetration by water or other materials stored therein shall be confirmed by the licensee and shall be reported to the Agency within 12 months of the date of grant of this licence. This confirmation shall be repeated at least once every three years thereafter and reported to the Agency on each occasion

3.0 Summary of Methodology

A visual inspection was carried out on the bund to determine if there were any cracks, fissures or unacceptable surface continuity between the bund walls.

Where applicable the hydrostatic test was completed by filling the bund to a fill level using clean water, in line with the procedure outlined in BS8007:1987. Liquid levels were allowed to stabilise for 24 hours. After stabilisation a depth reading was recorded and marked at a preset suitable location. The water level was re-recorded after remaining in the bund for 24 hours.

A water level meter was placed in situ to determine the impact of rainfall and evaporation in the bund. When this statistic was accounted for the bund was verified as passed or failed in line with the criteria set out in the standard.

4.0 Summary of Results

Bund Identity	Pass / Fail	Comments
Stores Area Section 2 (Bund No 5)	Pass	This bund passed the visual inspection. This bund also passed the Hydrostatic Integrity test and had sufficient storage volume to meet the licence requirements
Export Section 2 (Bund No 1)	Pass	This bund passed the visual inspection. It was not deemed practical to complete a hydrostatic test in this bund due to the size of floor area that needed to be covered and large volumes of water required.
Export Section 3 (Bund No 1)	Pass	This bund passed the visual inspection. It was not deemed practical to complete a hydrostatic test in this bund due to the size of floor area that needed to be covered and large volumes of water required.
Main Tank Farm (Bund No 3)	Pass	This bund passed the visual inspection. It was not deemed practical to complete a hydrostatic test in this bund due to the size of floor area that needed to be covered and large volumes of water required.

Project Manager	KQ. LOCary	Date of Report	02-10-2015
Client	Enva Ireland Limited	Contact	Kevin Coll

Stores Area Section 2 – Bund No. 5

Company	ENVA Ireland	Waste Reference No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
Bund Reference No	Bund No 5	Bund Type: Local/ Remote / Combined	Local
Bund Location	Stores Area	Bund Risk Classification: 0, 1, 2, 3	2
Bund Dimensions	1600 x 700 x 170mm	Primary Vessel Material	IBC / 200 L steel barrels
Bund Materials of Construction	Reinforced Concrete walls, concrete floor	Primary Vessel Storage Volume	Total storage c. 64m ³
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel	1.1 m ³ IBC's
Bund Retention Volume (local/ Remote)	19 m ³ (Local)	25% Total Volume	c. 12 m ³
Practical to Conduct Hydrostatic Test	Yes	Date of Visual Inspection	20-09-2015
Visual Description:			
Visual inspection was carried out on the walls, joints and floor both internally and externally. The walls and floors were deemed acceptable and therefore the bund passed through to the hydrostatic test. Water was filled to a height of 35 and 47mm from the floor of the bund at 2 separate locations – this bund could not be filled much higher due to the room being used by employees for access to the stores. A visual inspection was completed on the remainder of the bund			

deemed acceptable and therefore the bund passed through to the hydrostatic test. Water was filled to a height of 35 and 47mm from the floor of the bund at 2 separate locations – this bund could not be filled much higher due to the room being used by employees for access to the stores. A visual inspection was completed on the remainder of the bund floor and walls which had not been submerged for the test. There were no cracks, fissures or weak spots identified above the water line. The bund floor is sloped and raised in the middle – numerous measurements were made across the bund to get an overview of the entire structure.

Date Bunds Filled	20-09-2015	Date of Hydrostatic Test	21/22-09-2015
Start Time	14:20	End Time	15:00
Start Level of Water	Side 1 35 mm Side 2 47 mm	End of Test Level of Water	Side 1 35 mm Side 2 47 mm

Status & Recommendations:

- Bund Passes Hydrostatic Test to the level of water filled.
- Hydrostatic retest required in 2018 unless bund is damaged or repaired in the meantime.

Notes:

Signed: Alend Clang	Date: 02-10-2015	Title: Project Manager
Signed: Noel Harrington	Date: 02-10-2015	Title: Chartered Engineer

Export Storage – Bund No. 1 Section 2

Note: This store was sectioned into 3 parts for this visual inspection. The reason for only completing 1/3rd of the building was to allow for stored materials to be moved into the other sections leaving one completely free for visual observation. There were no materials in this section for the visual observation therefore allowing a complete and comprehensive assessment of the section. This store is far too large of floor area to be deemed suitable for a hydrostatic test.

Company	ENVA Ireland	Waste Reference No	W0184-01			
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility			
Bund Reference No	Bund 1 Section 2	Bund Type: Local/ Remote / Combined	Local			
Bund Location	Export Storage	Bund Risk Classification: 0, 1, 2, 3	2			
Bund Dimensions	c. 320 m ² for Section 2	Primary Vessel Material	IBC's, Plastic and Metal Barrels			
Bund Materials of Construction	Reinforced Concrete walls and concrete floors	Primary Vessel Storage Volume	1.0 m ³ IBC			
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel	1.1 m ³			
Bund Retention Volume (local/ Remote)	Total c. 57 m ³ (Local)	25% Total Volume	25 m ³			
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	21-09-2015			
Visual Description:						
Visual inspection was carried out on the walls and floor both internally and externally. The maximum retention height with this section would be 22mm. Above this level liquid would overflow the bund lip. Therefore the total retention						

A visual inspection was completed on section 2 of the store floor, joints and walls. There were no significant cracks, fissures or weak spots identified. There was evidence of weak surface concrete in places however this did not constitute a failure of visual inspection as they were very minor. There were 2 sumps in this bay which have been

previously tested and passed hydrostatically by Kavanagh Ryan & Associates.

Date Bunds Filled	N/a	Date of Hydrostatic Test	N/a
Start Time	N/a	End Time	N/a
Start Level of Water	N/a	End of Test Level of Water	N/a

Status & Recommendations:

volume of this export store was calculated at c. 57 m³.

• Bund Section 2 passed the visual inspection.

• This should be inspected every three years or in the event of damage caused as per the licence requirement.

Notes:

Signed: AGACCO	Date: 02-10-2015	Title: Project Manager
Signed: Noel Harrington	Date: 02-10-2015	Title: Chartered Engineer

Export Storage – Bund No. 1 Section 3

Note: This store was sectioned into 3 parts for this visual inspection. The reason for only completing 1/3rd of the building was to allow for stored materials to be moved into the other sections leaving one completely free for visual observation. There were no materials in this section for the visual observation therefore allowing a complete and comprehensive assessment of the section. This store is far too large of floor area to be deemed suitable for a hydrostatic test.

Company	ENVA Ireland	Waste Reference No	W0184-01
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility
Bund Reference No	Bund 1 Section 3	Bund Type: Local/ Remote / Combined	Local
Bund Location	Export Storage	Bund Risk Classification: 0, 1, 2, 3	2
Bund Dimensions	c. 280 m ² for Section 3	Primary Vessel Material	IBC's, Plastic and Metal Barrels
Bund Materials of Construction	Reinforced Concrete walls and concrete floors	Primary Vessel Storage Volume	1.0 m ³
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel	1.1 m ³
Bund Retention Volume (local/ Remote)	Total c. 57 m ³ (Local)	25% Total Volume	25 m ³
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	02-10-2015
Visual Description:			

Visual inspection was carried out on the walls and floor both internally and externally. The maximum retention height with this section would be 22mm. Above this level liquid would overflow the bund lip. Therefore the total retention volume of this export store was calculated at c. 57 m³.

A visual inspection was completed on section 3 of the store floor, joints and walls. There were no significant cracks, fissures or weak spots identified. There was evidence of weak surface concrete in places however this did not constitute a failure of visual inspection as they were very minor. There was 1 sump in this bay which have been previously tested and passed hydrostatically by Kavanagh Ryan & Associates.

Date Bunds Filled	N/a	Date of Hydrostatic Test	N/a
Start Time	N/a	End Time	N/a
Start Level of Water	N/a	End of Test Level of Water	N/a

Status & Recommendations:

• Bund Section 3 passed the visual inspection.

• This should be inspected every three years or in the event of damage caused as per the licence requirement.

Notes:

Signed: AGACCO	Date: 02-10-2015	Title: Project Manager
Signed: Noel Harrington	Date: 02-10-2015	Title: Chartered Engineer

Tank Farm – Bund No. 3

Company	ENVA Ireland	Waste Reference No	W0184-01			
Site	Clonminam Industrial Estate Portlaoise	Waste Category	Hazardous Waste Facility			
Bund Reference No	Bund 3	Bund Type: Local/ Remote / Combined	Local			
Bund Location	Tank Farm	Bund Risk Classification: 0, 1, 2, 3	2			
Bund Dimensions	c. 1880 m ² x 2 m high Primary Vessel Mate		Large Steel Tanks			
Bund Materials of Construction	Reinforced Concrete walls and concrete floors	Primary Vessel Storage Volume	180 m ³			
Bund Lining materials	N.a	Primary Vessel 110% Largest Vessel	200 m ³			
Bund Retention Volume (local/ Remote)	Total c. 4066 m ³ (Local)	25% Total Volume	1,850 m ³			
Practical to Conduct Hydrostatic Test	No	Date of Visual Inspection	21-09-2015			
Visual Description:						
Visual inspection was carried out on the walls and floor both internally and externally. The maximum retention height with this section would be 2000mm. Above this level liquid would overflow the bund at its lowest point. A visual inspection was completed on floor, joints and walls. There were no significant cracks, fissures or weak spots identified. There was evidence of weak surface concrete in places however this did not constitute a failure of visual inspection as they were very minor. The bund consists of 45 tanks totalling 7,400 m ³ . Boiler condensate is discharged into the bund through permanent pipes which could not be ceased without shutting down production. This fact rendered a hydrostatic						

test impractical to complete on top of the excessive volumes of water that would be required to cover the base of the bund.

Date Bunds Filled	N/a	Date of Hydrostatic Test	N/a
Start Time	N/a	End Time	N/a
Start Level of Water	N/a	End of Test Level of Water	N/a

Status & Recommendations:

- Bund 3 passed the visual inspection.
- This should be inspected every three years or in the event of damage caused as per the licence requirement.

Notes:

Signed: Karchard	Date: 02-10-2015	Title: Project Manager
Signed: Noel Harrington	Date: 02-10-2015	Title: Chartered Engineer

A:: C14013	K. Ryan	f Test: 10.02.14	vy: Waste	unber: W0184-1	ments/Recommendations		Passed	Passed	Passed	Passed	Passed	Passed	Passed
Job No	By:	Date of	Catego	Ref Nu	Comi					_			
					ence .	Time (mins)	58	58	32	32	47	45	45
MITED.	Vicklow. vanaghryan.com	est.			Diffe	Height (mm)	-5	-5	0	0	0	0	0
ATES LI	I, Bray, Co. V eb site: <u>www.kn</u>	ion T		Co. Laois.	d Dip	Time	11.25	11.25	11.15	11.15	11.18	11.20	11.20
& ASSOCI	, Dargle Road	iltrati		ortlaoise, (Secon	Height (mm)	1135	1165	1710	1820	725	440	360
H RYAN	e Egan Centre E-mail: kmrvan	p Exf		Estate, Po	Dip	Time	10.27	10.27	10.43	10.43	10.31	10.35	10.35
AVANAG	Unit 48, The 01-2765661	Sum	mited.	ndustrial	Initia	Height (mm)	1140	1170	1710	1820	725	440	360
STRUCIA K	R NO TEL:	SUTANTS	" Enva Ireland li	Clonminham II	Sump Dimensions	(mm)	1060 x 1400 x 1440(Dp)	1050 x 1400 x 1410(Dp)	1290 x 1270 x 1710(Dp)	1300 x 1270 x 1820(Dp)	4900 x 1200 x 830(Dp)	660 x 660 x 460(Dp)	560 x 570 x 440(Dp)
Charles CON	K. DES.	NIME	Company	Site:	Sump	Ref.	1	2	3	4	5	11	12

Signed: 24

Kevin Ryan BEng MIEI APEA

Exfiltration Test based on recommended methodology given in EPA Guidance Note on storage and transfer of materials for scheduled activities section 2.3.5.2. This test involves filling the chamber with clean water to the required test level. The test level for shallow (less than 1.5m depth) manholes and inspection chambers shall be underside of cover level. Note:

The chamber shall be filled with clean water and allowed to stand for an absorption period, topping up as necessary. The absorption period shall be determined by the supervising engineer and will depend on the condition of the manhole. After the absorption period, the drop in water level shall be measured over a 30 minute period and if the drop is less than 5mm, the chamber shall be deemed to have passed the leak tightness test.

Site: Clonminham Industrial Estate, Po	Company: Enva Ireland limited.	Sump Ext	$K R_{s}^{F}$ Unit 48, The Egan Centre Tel: 01-2765661 E-mail: kmryan	KAVANAGH KYAN
tlaoise, Co. Laois. Ref Number:	Category:	tration Test. Date of Test:	argle Koad, Bray, Co. Wicklow. <u>ircom.net</u> web site: <u>www.kavanaghryan.com</u> <u>By:</u>	ASSOCIATES LIMITED.
W0184-1	Waste	10.03.14	K. Ryan	C14022

7 670 x 1430 ; 6 760 x 1880 ;	7 670 x 1430 ;		10 900 x 2700 x	9 640 x 1500 ;	8 650 x 1470 ;	Ref. (mr	Sump Sump Din
x 555(Dp) x 680(Dp)	x 555(Dp)	ALL ADDRESS OF ALL AD	: 1040(Dp)	x 735(Dp)	x 875(Dp)	n)	nensions
680		555	1040	735	875	Height (mm)	Initia
	10.20	10.18	10.15	10.06	10.04	Time	l Dip
	680	555	1040	735	875	Height (mm)	Secon
	10.52	10.50	10.46	10.43	10.42	Time	d Dip
	0	0	0	0	0	Height (mm)	Diffe
	32	32	31	37	38	Time (mins)	rence
	Passed	Passed	Passed	Passed	Passed		Comments/Recommendations

Signed:-Kevin Ryan BEnd MIEI APEA

Note: shall be underside of cover level. The chamber shall be filled with clean water and allowed to stand for an absorption period, topping up as necessary. The absorption period shall be determined by Exfiltration Test based on recommended methodology given in EPA Guidance Note on storage and transfer of materials for scheduled activities section 2.3.5.2. This test involves filling the chamber with clean water to the required test level. The test level for shallow (less than 1.5m depth) manholes and inspection chambers

period and if the drop is less than 5mm, the chamber shall be deemed to have passed the leak tightness test. the supervising engineer and will depend on the condition of the manhole. After the absorption period, the drop in water level shall be measured over a 30 minute Appendix 4

CONFIDENTIAL REPORT

Client Enva Ireland Ltd Clonminam Industrial Estate Portlaoise Co. Laois Attn. Mr. Kevin Coll

Title

Annual Environmental Noise Survey 2015 Enva Ireland Ltd. – Portlaoise EPA Waste Licence Reg. No. 184-1

Report Ref:	1530	Survey and Report by:	Frances Wright Trances Wight LFOH, BSc, PgDip Phy, Dip SHWW
Date recd:		Approved by:	Paddy Wright Paddy Ung It. BSc, PgDip ChemEng, CertOH
Copies to:		Date:	29 th January 2016

	CONTENTS	PAGE
1. IN	TRODUCTION	3
2. SU	JMMARY	4
3. M	ONITORING RESULTS AND DISCUSSION	5
APPEND M	IX I ethodology	12
APPEND Ins	IX II strumentation and External Calibration Details	15
APPENDI Sit	X III The Plan showing Noise Monitoring Positions	17
APPENDI 1/3	IX IV 3 Octave Band Analysis (OBA)	19

1. INTRODUCTION:

Enva Ireland Ltd. (Enva) operate a waste recovery facility at Clonminam Industrial Estate, Portlaoise which is licensed under the EPA Waste Licence (Reg. No. 184-1). Schedule D of the company's licence requires an annual Environmental Noise Survey to be undertaken.

At the request of Mr. Kevin Coll of Enva Ireland Ltd., Wright Environmental Services carried out this Noise Survey on the 19th (day and night) and 21st October (day) 2015.

This report presents and interprets the results of the survey with reference to the company's Waste Licence noise criteria. The methodology used for the survey is described in Appendix I. Instrumentation and calibration is described in Appendix II. Monitoring locations are shown in the site map in Appendix III. Appendix IV presents the 1/3 octave band analysis of the noise at monitoring locations.

2. SUMMARY

Enva are required by their EPA Waste Licence (Reg. No. 184-1) to have an annual Environmental Noise Survey undertaken. Wright Environmental Services carried out this survey on the 19th (day and night) and 21st October (day) 2015. The following noise monitoring was carried out.

	N1 boundary location	N2 boundary location	N3 boundary location	N4 noise sensitive location	N5 abandoned noise sensitive location
Day Time Survey	3 sampling periods	3 sampling periods	3 sampling periods	3 sampling periods	3 sampling periods
Night Time Survey	2 sampling periods	2 sampling periods	2 sampling periods	2 sampling periods	2 sampling periods

Noise levels were above the criterion levels at N2 (boundary location) during the night time survey. Neighbouring industrial noise and distant traffic were the dominant noise sources at this location during the survey. The Enva boiler came on occasionally however this was much quieter than the extraneous noise. It is therefore concluded that the elevated noise levels at this location was attributable to extraneous noise and not Enva.

The noise was perceived at each of the monitoring locations to investigate the presence of tones. No tones were subjectively identified from Enva. Using the sound level meter, one third octave band analysis of the noise was also carried out at the boundary locations. No tones were identified using the one third octave band analysis method.

It is therefore concluded that Enva Ireland Ltd. are in compliance with the noise criteria set out in their EPA Waste Licence (Reg. No. 184-1).

3. MONITORING RESULTS AND DISCUSSION:

Wright Environmental Services carried out the day and night Environmental Noise Survey. The monitoring locations are described below and are shown in the site map in Appendix III.

Location **N1**:Along the mid western site boundary.

Location N2: In the corner of the site, along the south eastern boundary
Location N3: In the corner of the site, along the north eastern boundary.
Location N4: Nearby residential area, east/south east of Enva, on the corner of Knockmay
Road and Marian Avenue. The railway yard is the main land use between Enva in this monitoring location.

Location N5:North west of Enva site, on the corner with access road for Rowan halting site (currently deserted). Note access to this point is now restricted, therefore monitoring was carried out at the barrier, blocking access to this point (see map in Appendix III).

The following "A-Weighted" data was determined for each discrete sampling period.

L _{eq}	:	The equivalent continuous noise level for the measurement period.
		(This is defined as the sound level of a steady sound having the same energy
		as a fluctuating sound over the specified measuring period).
L_1	:	The noise level exceeded for 1% of the measurement period.
		(This parameter gives a good indication of typical maximum levels.)
L 10	:	The noise level exceeded for 10% of the measurement period.
L 90	:	The noise level exceeded for 90% of the measurement period.
		(This is taken to represent the background noise level).

Detailed results are presented in Table 1 to 5 below along with appropriate comments regarding noise in the monitoring environment.

Date	Start Time t = 30mins	L _{eq} (dBA)	L ₁ (dBA)	L ₁₀ (dBA)	L ₉₀ (dBA)	Comments	
19.10.2015	16:40	53	62	55	45	Enva activity included: vehicle movement. Offsite Noise: 3 trains and 4 cars pass nearby, distant traffic noise and construction noise (drilling) in neighbouring facility are dominant noise (in absence of vehicle movement etc).	
21.10.2015	11:38	52	60	53	46	Enva activity included: vehicle movement (3 HGVs in/out), hand held tools being used. Offsite Noise: 1 trains pass nearby, distant traffic noise.	DAY
21.10.2015	12:11	50	55	52	46	Enva activity included: vehicle movement (1 HGVs in/out), hand held tools being used. Offsite Noise: 1 trains pass nearby, distant traffic noise, construction noise (drilling) in neighbouring facility.	
19.10.2015	23:33	44	53	46	41	Traffic and industrial noise to the south is dominant. Enva activity: very low hum from sorting area	NIGHT
20.10.2015	00:03	44	49	45	41	Traffic and industrial noise to the south is dominant. Enva activity: very low hum from sorting area	

N1 - Monitoring Location

N2 -	Monitorin	g Location
------	-----------	------------

Date	Start Time t = 30mins	L _{eq} (dBA)	L ₁ (dBA)	L ₁₀ (dBA)	L ₁₉ (dBA)	Comments	
19.10.2015	13:14	52	59	53	50	Onsite noise/activity: low hiss from tank farm, vehicle movements (1 HGV). Offsite noise/activity: HGV movement and hum from air handling unit in neighbouring facility. Distant traffic noise, train beeps in distance.	
19.10.2015	13:44	55	64	58	50	Onsite noise/activity: vehicle movements (1 car, 2 vans, forklift). Offsite noise/activity: HGV and car movement and hum from air handling unit in neighbouring facility. Distant traffic noise.	DAY
19.10.2015	14:15	56	68	58	51	Onsite noise/activity: boiler, low hiss from tank farm, vehicle movements (2 HGV). Offsite noise/activity: HGV movement and hum from air handling unit in neighbouring facility. Distant traffic noise, helicopter overhead.	
19.10.2015	22:12	52	58	52	50	Dominant noise industrial facility and distant traffic to the south, helicopter passes overhead. Boiler noise audible onsite occasionally.	NIGHT
19.10.2015	22:42	51	54	52	51	Dominant noise industrial facility and distant traffic to the south. Boiler noise audible onsite occasionally.	

Date	Start Time t = 30mins	L _{eq} (dBA)	L ₁ (dBA)	L ₁₀ (dBA)	L ₉₀ (dBA)	Comments	
19.10.2015	14:35	45	58	46	36	Onsite noise/activity: activity in sorting area, forklift in distance. Distant traffic noise. 3 trains pass.	
19.10.2015	15:15	49	54	43	34	Onsite noise/activity: activity in sorting area, forklift in distance. Distant traffic noise. 2 trains pass. train beeps.	DAY
19.10.2015	15:46	45	58	43	35	Onsite noise/activity: activity in sorting area, forklift in distance. Distant traffic noise. 2 trains pass.	
19.10.2015	22:20	37	42	38	34	Dominant noise: Distant traffic noise and train passess. No noise audible from Enva.	NIGHT
19.10.2015	22:50	37	43	38	34	Dominant noise: Distant traffic noise and train passess. No noise audible from Enva.	

N3 - Monitoring Location

Date	Start Time t = 30mins	L _{eq} (dBA)	L ₁ (dBA)	L ₁₀ (dBA)	L ₉₀ (dBA)	Comments	
21.10.2015	13:40	57	66	60	48	Dominant noise: crane movement and alarm in train yard, distant traffic is dominant is absence of passing traffic. Traffic: approximately 50 cars, 20 vans pass, 1 HGVs. Enva is not audible at this location.	
21.10.2015	14:10	55	65	58	47	Dominant noise: crane movement and alarm in train yard, distant traffic is dominant is absence of passing traffic. Traffic: approximately 40 cars, 20 vans pass. Enva is not audible at this location.	DAY
21.10.2015	14:41	56	66	60	46	Dominant noise: crane movement and alarm in train yard, distant traffic is dominant is absence of passing traffic. Traffic: approximately 50 cars, 15 vans pass. Enva is not audible at this location.	
19.10.2015	00:15	39	45	40	35	Dominant noise: distant traffic and industrial noise to the south. Enva is not audible at this location.	NIGHT
19.10.2015	00:45	38	44	39	34	Dominant noise: distant traffic and industrial noise to the south. Enva is not audible at this location.	

N4 - Monitoring Location

Date	Start Time t = 30mins	L _{eq} (dBA)	L ₁ (dBA)	L ₁₀ (dBA)	L ₉₀ (dBA)	Comments	
19.10.2015	16:25	53	62	54	44	Distant traffic noise and drilling in neighbouring facility dominant noise. 4 cars and 3 trains pass nearby. Audible Enva activity onsite: vehicle movement (5 HGVs in/out).	
21.10.2015	10:52	52	63	53	46	Distant traffic noise and drilling in neighbouring facility dominant noise.1 train passes nearby. Audible Enva activity onsite: forklift, sawing, vehicle movement (3 HGVs in/out).	DAY
21.10.2015	11:24	51	59	52	47	Distant traffic noise and drilling in neighbouring facility dominant noise. 1trains pass nearby. Audible Enva activity onsite: vehicle movement (1 HGVs in/out).	
19.10.2015	23:34	44	55	46	40	Industrial noise to the south and traffic to the west dominant, 1 train passes. No noise audible from Enva.	NIGHT
19.10.2015	00:04	43	50	45	40	Industrial noise to the south and traffic to the west dominan. No noise audible from Enva.	

N5 - Monitoring Location
In accordance with their waste licence, Enva are required to comply with maximum noise limit values. Criterion noise levels are set for day and night time, for noise measured at Noise Sensitive Locations (NSLs). The criterion noise levels are presented in Schedule C of the licence as follows:

Day55dB(A) LAeq(30 minutes)Night45dB(A) LAeq(30 minutes)

Section 7.7.1 states that noise from the facility should not exceed this level by more than 2dB(A).

7.1.1 Noise from the activity shall not give rise to sound pressure levels (LAeq 30min) measured at noise sensitive locations which exceed the limit value(s) by more than 2dB(A).

Noise levels were above the criterion levels at N2 (boundary location) during the night time survey. Neighbouring industrial noise and distant traffic were the dominant noise sources at this location during the survey. The Enva boiler came on occasionally however this was much quieter than the extraneous noise. It is therefore concluded that the elevated noise levels at this location was attributable to extraneous noise and not Enva.

Section 6.7 of the company's licence states that

"There shall be no clearly audible tonal component or impulsive component in the noise emissions from the activity at the noise sensitive locations."

The noise was perceived at each of the monitoring locations to investigate the presence of tones. No tones were subjectively identified from Enva. Using the sound level meter, one third octave band analysis of the noise was also carried out at the boundary locations. No tones were identified using the one third octave band analysis method. The one third octave band analysis is presented in Appendix IV.

APPENDIX I Methodology

METHODOLOGY

The methodology of the survey was based upon procedures set out in the International Standard, ISO 1996-2:2007 (Acoustics – description, measurement and assessment of environmental noise Part 2: Determination of Environmental Noise Levels.). The survey was carried out in accordance with EPA published document (*NG4*) Guidance Note for Noise: Licence Applications, Surveys and Assessments in Relation to Scheduled Activities.

Environmental noise levels were determined by using a Pulsar Model 33, Type 1 Real Time Sound Level Meter, with half inch condenser microphone. The instrumentation was calibrated directly before and after the noise measurements. Details of the instrumentation and external calibration are presented in Appendix II of this report. A series of 1/3 Octave Band level measurements were simultaneously taken using the Sound Level Analyser and this data was used to evaluate the presence of tones. This analysis is presented in Appendix IV.

Results reported were determined using the fast response, A-Weighting (ref. 20 μ Pa) and are rounded off to the nearest whole decibel. Monitoring was conducted in relatively calm, dry weather conditions during the day (08:00 – 22:00) and night (22:00 – 08:00). Throughout the monitoring, the microphone was situated 1.5 m above ground level, away from any reflective surfaces. The monitoring equipment was manned throughout the sampling intervals and comments were recorded in order to aid the interpretation of the results.

During the survey air temperature and humidity measurements were undertaken using a Delta Ohm Hygrometer HD 8501 H. Wind speed measurements were taken using a TSI VelociCalc and the wind direction was noted using a compass. Details of the weather conditions are presented in the Table below.

Date/Time	Air Temperature °C	Relative Humidity %	Wind Direction	Wind Speed m/s	General Conditions
19.10.2015	11	92	W	2.1	Dry – no
19.10.2015					Dry – no
16:00	12	88	W	3.6	precipitation.
19.10.2015	6	95	SW	3.6	Dry – no
23:00					Dry no
12:30	14	94	W/SW	4.6	precipitation.

Summary of Weather Conditions

The Inverse Square Law can be used to calculate the expected reduction in noise levels as one moves away from a given noise source, which is assumed to radiate uniformly in all directions. The Inverse Square Law states that as one doubles the distance from a source, a reduction of 6 dB is achieved as follows:

$$L_{p2} = L_{p1} - 20 \text{ Log} (^{R2}/_{R1})$$

where:

L_{p1} is the measured reference Sound Pressure Level (SPL) at a distance of R1 metres from the source.

 $-\ L_{p2}$ is the calculated SPL at a distance of R2 metres from the source.

APPENDIX II

Instrumentation and External Calibration Details

INSTRUMENTATION AND EXTERNAL CALIBRATION DETAILS

Instrumentation:

Pulsar Model 33, Type 1 Real Time Sound Level Meter, with half inch condenser microphone, Serial Number T223417. On-site calibrations were carried out before and after sampling with a Pulsar Calibrator – model 100B, Serial Number: 42171.

B&K Type 2250 Light, Type 1 Real Time Sound Level Meter, with half inch condenser microphone, Serial Number 2754170. On-site calibrations were carried out before and after sampling with a Pulsar Calibrator – model 100B, Serial Number: 42171.

External Calibration:

External Calibration of instrumentation was undertaken by Pulsar Instruments Plc:

Unit	Calibration Date	Calibration Certificate Number
Pulsar Model 33 Sound Level Meter Serial No. T223417	10 th February 2015	225812
B&K Type 2250 Light Sound Level Meter SLM - Serial No. 3001350 Microphone – Serial No. 2778447	10 th October 2014	CDK1131010
Calibrator – Serial No. 42171	10 th February 2015	225813

APPENDIX III

Site Plan showing Noise Monitoring Positions

APPENDIX IV

1/3 Octave Band Analysis (OBA)

Enva Ireland Ltd, Portlaoise - Annual Environmental Noise Survey - 2015

Figure 4: N 5 – Day time

Appendix 5

Report Title	Air Emissions Compliance Monitoring Emissions Report		
Company address	Air Scientific Ltd., 40 Coolraine Heights, Old Cratloe Road, Limerick		
Stack Emissions Testing Report Commissioned by	Enva Portlaoise		
Facility Name	Enva Ireland Ltd, Clonminam Industrial Estate, Portlaoise		
Contact Person	Frances Wright		
EPA Licence Number	W0184-01		
Licence Holder	Enva Ireland Limited		
Stack Reference Number	Boiler 1		
Dates of the Monitoring Campaign	19-10-215		
Job Reference Number	ENVATL6191015		
Report Written By	Mr Gregory Dempsey		
Report Approved by	Mr Mark McGarry		
Stack Testing Team	Danial Mullins		
Report Date	24-11-2015		
Report Type	Test Report Compliance Monitoring		
Version	1		
Signature of Approver	AQ Claury Operations Manager		

Opinions and interpretations expresses herein will be outside the scope of Air Scientific Limited INAB accreditation. This test report shall not be reproduced, without the written approval of Air Scientific Limited. All sampling and reporting is completed in accordance with Environmental Protection Agency Air Guidance Note 2 requirements.

Monitoring Objectives

Overall Aim of the monitoring Campaign

The aim of the monitoring campaign was to determine emission concentrations from the boiler.

Special Requirements

There were no special requirements.

Target Parameters

Carbon Monoxide (CO)
Oxides of Nitrogen (NOx) as NO ₂
Sulphur Dioxide (SO ₂)
Stack Gas Temperature
Boiler Efficiency

Emission Limit Values

A01	mg.m ⁻³
СО	-
NOx as NO ₂	-
SO ₂	-
Stack Gas Temperature	-
Boiler Efficiency	-

Reference Conditions

Reference Conditions	Value
Oxygen Reference %	3
Temperature K	273.15
Total Pressure kPa	101.3
Moisture %	Dry

Overall Results

A01	Concentration					
Parameter	Units	Result	MU +/-	Limit	Compliant	
Carbon Monoxide (CO)	mg.m ⁻³	2.8	2.2	-	-	
Oxides of Nitrogen (NOx) as NO ₂	mg.m ⁻³	110.5	8.5	-	-	
Sulphur Dioxide (SO ₂)	mg.m ⁻³	18.3	9.9	-	-	
Boiler Efficiency	%	92	-	-	-	

Accreditation details				
Air Scientific Limited	INAB Number: 319T			

Process details

Stack Name	Boiler 1
Process status	Normal
Capacity (per/hour) (if applicable)	90% Capacity
Continuous or Batch Process	Continuous
Feedstock	Natural Gas
Abatement System	No
Abatement Systems Running Status	N/a
Fuel	Natural Gas
Plume Appearance	No
Other information	No

Monitoring, Equipment & Analytical Methods

Parameter	Standard	Technical Procedure	Accredited Testing	Analytical Technique	Equipment / Media	Equipment ID Used on Site
Carbon Monoxide (CO)	EN15058:2006	2004	Yes	Non Dispersive Infra Red	Horiba	
Oxides of Nitrogen (NOx) as NO ₂	EN14792:2006	2002	Yes	Chemiluminescence	Horiba	ASLLK12EQ526
Sulphur Dioxide (SO2)	NDIR AG2	2003	Yes	Non Dispersive Infra Red	Horiba	ASLLK12EQ536 ASLLK14EQ511 ASLLK14EQ514
Oxygen (%)	EN14789	2008	Yes	Paramagnetic/ Zirconia	Horiba	ASLLK14EQ517
Stack Gas Temperature	EN 16911:2013	2005	Yes	Thermocouple	Thermocouple	

Sampling Deviations

Parameter	Deviation
Carbon Monoxide (CO)	None
Oxides of Nitrogen (NOx) as NO ₂	None
Sulphur Dioxide (SO2)	None
Oxygen (%)	None

Reference Documents

Risk Assessment (RA)	SOP 1011
Site Review (SR)	SOP 1015
Site Specific Protocol (SSP)	SOP 1015

Suitability of Sample Location

General Information	A01
Permanent/Temporary	Permanent
Inside/ Outside	Inside

Platform Details	3	
Irish EPA Technical Guidance Note AG1 / BS EN 15259 Platform Requirements	Value	Comment
Sufficient Working area to manipulate probe and measuring instruments	Yes	-
Platform has 2 handrails (approx. 0.5m & 1.0 m high)	N/a	-
Platform has vertical base boards (approx. 0.25 m high)	N/a	-
Platform has chains / self-closing gates at top of ladders	N/a	-
There are no obstructions present which hamper insertion of sampling equipment	Yes	-
Safe Access Available	Yes	-
Easy Access Available	Yes	-

Sampling Location / Platform Improvement Recommendations

None

BSEN 15259 Homogeneity Test Requirements 1.

Select Option :

- 1: There is no requirement to perform a BSEN15259 Homogeneity Test on this stack
- 2: Test results were obtained from previous Homogeneity test carried out by ASL
- 3: Test results were obtained from previous Homogeneity test carried out by Alternative contractor
- 4: Homogeneity Test is required on this stack and the client has been informed of this requirement.

Stack Diagram

1. APPENDICES

Appendix I Monitoring Personnel & Equipment

Stack Emissions Monitoring Personnel

Team Leader	Name	Daniel Mullins
	System approval	ASL Team Leader Approved

Appendix II

Stack Raw Data

The: Dub Gassas Method: TGN M21 Cilent: Env 4/192 / ENv 14789 / EN 12039 / TGN M21 Test Date: 19/10/2015 Stack Name A01 Reference Conditions 3 Messured Oxygen 5.1 %. Reference Conditions 3 Parameter CO NO SO, O, Emission Limit Values mg.m ⁻¹ ref 0 1000 25 Span Gas Value ppm 157 361 666 20.9 Acceptable Gas Range - Yes Yes Yes Yes Calibration Gas Uncertainty % 0.4 0.4 0.8 0.5 Quality Assurance Units C 2 2 2 2 Alovable Temperature - Yes Yes Yes Yes Yes Promp Itor rate Umin 0.5 0.5 0.5 0.5 Cost Cost Cost Cost Cost Cost Cost Cost	T :410.	Determination of Combustion				
Method: TCN M21 Client: Eva a Test Date: 19/10/2015 Stack Name A01 Reference Conditions Measured Oxygen 5.1 Reference Conditions 3 Parameter CO NO SO, O, Emission Limit Values mg.m ⁻³ ref . . . Instrument Range ppm 200 500 1000 25 Span Gas Value ppm 157 361 666 20.9 Conditioning Unit Temperature C 2 2 2 2 Average Temperature - Yes Yes Yes Yes Verse Verse Verse Yes Yes Yes Yes Average Temperature - Yes Yes Yes Yes Pump flow rate Units Zero Drift Units 	nue:	EN 14792 / EN 14789 / EN 12039 /				
Client: Erva Erva Erva Erva Erst Date: 19/10/2015 Stack Name A01 Reference Conditions Measured Oxygen 5.1 % Reference Oxygen 3 % Parameter C O NO SO, O, Emission Limit Values mg.m ⁻³ ref Instrument Range ppm 200 500 1000 26 Span Gas Value ppm 157 361 666 20.9 Acceptable Gas Range - Yes Yes Yes Yes Conditioning Unit Temperature C 2 2 2 2 2 Average Temperature C 4 4 4 4 Temperature Acceptable - Yes Yes Yes Yes Pum flow rate Umits Zero Orift Less than) ppm 7,255 18.05 33.3 1.045 Zero Drift Loss than) ppm 7,255 18.05 33.3 1.045 Zero Drift Umits Zero Drift Uses than) ppm 7,255 18.05 33.3 1.045 Zero Drift Acceptable - Vers Yes Yes Yes Yes Yes Span Drift Umits Zero Drift Umits Zero Drift (Less than) ppm 7,255 18.05 33.3 1.045 Zero Drift Acceptable - Vers Yes Yes Yes Yes Yes Yes Span Drift Umits Zero Drift (Less than) ppm 154 356 659 20.6 Span Drift Acceptable Ppm 7,255 18.05 33.3 1.045 Zero Drift Acceptable Ppm 155 358 663 20.7 Recorded Conc. dwn Line ppm 7,255 18.05 33.3 1.045 Span Drift Acceptable Ppm 3,144 7,22 13.32 0.418 Span Drift Acceptable Ppm 3,24 7,22 13.32 0.418 Span Drift Acceptable Ppm 4,25 358 663 20.6 Span Drift Acceptable Ppm 4,25 358 663 20.	Method:	TGN M21				
Test Date: 19/10/2015 Stack Name A01 Reference Conditions Measured Oxygen 5.1 % Parameter CO NO SO2 O2 Emission Limit Values mg.m ³ ref . . . Instrument Range ppm 200 600 1000 26 Span Gas Value ppm 157 361 666 20.9 Calibration Gas Uncertainty % 0.4 0.4 0.8 0.5 Quality Assurance Units C 2 2 2 2 Alorego Temperature <c< td=""> 2 2 2 2 2 Alorego Temperature <c< td=""> 2 2 0.1 2 0.1 Zero (Pret) ppm 1 1.2 2 0.1 Zero drit Units S 3.3 1.045 Zero drit ppm 3.14 7.22 3.3.3 1.045 Zero drit Acceptable<!--</td--><td>Client:</td><td>Enva</td><td></td><td></td><td></td><td></td></c<></c<>	Client:	Enva				
Stack Name A01 Reference Conditions	Test Date:	19/10/2015				
Selection of the sense	Stack Name	A01				
Measured Oxygen Reference Oxygen 5.1 % 3 Parameter CO NO SO2 O2 Emission Limit Values mg.m ⁻³ ref 000 500 1000 25 Span Gas Value ppm 157 361 666 20.9 Acceptable Gas Range - Yes Yes Yes Yes Calibration Gas Uncertainty % 0.4 0.4 0.4 0.5 Cuality Assurance Units - 2 2 2 2 Average Temperature Acceptable - Yes	Reference Conditions					
Reference Oxygen 3 % Parameter CO NO SO2 O2 Emission Limit Values ppm 200 500 1000 225 Span Gas Value ppm 200 500 1000 225 Calibration Gas Uncertainty % 0.4 0.4 0.8 0.5 Quality Assurance Units C 2 2 2 2 Conditioning Unit Temperature C 2 2 2 2 Allovable Temperature C 2 2 2 2 Allovable Temperature C 2 2 2 2 Allovable Temperature 0.5 0.5 0.5 0.5 Zero Offit Units 2 0.1 1.1 2 0.1 Zero Offit Units 3.3 1.045 2 0.1 Adjustable Zero Drift (Less than) ppm 7.85	Measured Oxygen	5.1	%			
Parameter CO NO SO2 O, Emission Limit Values ppm 200 500 1000 25 Span Gas Value ppm 157 361 666 20.9 Acceptable Gas Range - Yes Yes Yes Yes Calibration Gas Uncertainty % 0.4 0.4 0.8 0.5 Quality Assurance Units C 2 2 2 2 Average Temperature - 4 4 4 4 Temperature Acceptable - Yes Yes Yes Yes Pump flow rate Umin. 0.5 0.5 0.5 0.5 Zero Drift Units Zero (Pes) ppm 0 0 0 0 Zero Drift (Less than) ppm 1 1.2 2 0.1 1.42 2 0.1 Aljostable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 2.5 2.5 <td>Reference Oxygen</td> <td>3</td> <td>%</td> <td></td> <td></td> <td></td>	Reference Oxygen	3	%			
Emission Limit Values mg.m ³ ref Instrument Range ppm 200 500 1000 25 Span Gas Value ppm 157 361 666 20.9 Acceptable Gas Range - Yes Yes Yes Yes Calibration Gas Uncertainty % 0.4 0.4 0.8 0.5 Quality Assurance Units - 2 10 3 3 3 3 3 3 3 3 3 3 3	Parameter		СО	NO	SO ₂	O ₂
Instrument Range ppm 200 500 1000 25 Span Gas Value ppm 157 361 666 20.9 Acceptable Gas Range - Yes Yes Yes Yes Calibration Gas Uncertainty % 0.4 0.4 0.8 0.5 Quality Assurance Units 2 2 2 2 2 Conditioning Unit Temperature C 2 2 2 2 2 Allowable Temperature - Yes Yes Yes Yes Yes Pump flow rate //min. 0.5 0.5 0.5 0.5 0.5 Zero Drift Units Zero (Pre) ppm 1 1.2 2 0.1 Allowable Zero Drift (Less than) ppm 3.14 7.22 13.32 0.418 Allowable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Yes Span Dawn (Pre) ppm 7.85 18.05<	Emission Limit Values	mg.m ⁻³ ref				
Span Gas Value ppm 157 361 666 20.9 Acceptable Gas Range - Yes Yes Yes Yes Calibration Gas Uncertainty % 0.4 0.4 0.8 0.5 Quality Assurance Units 2 2 2 2 Conditioning Unit Temperature C 2 2 2 2 2 Average Temperature - 4 4 4 4 Temperature Acceptable - Yes Yes Yes Yes Pump flow rate I/min. 0.5 0.5 0.5 0.5 Zero Drift Units Zero (Pre) ppm 1 1.2 2 0.1 Zero Orift (Less than) ppm 3.14 7.22 13.32 0.418 Adjustable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Span Down (Pre) ppm 155 358 663 20.7 <t< td=""><td>Instrument Range</td><td>ppm</td><td>200</td><td>500</td><td>1000</td><td>25</td></t<>	Instrument Range	ppm	200	500	1000	25
Acceptable Gas Range - Yes Yes Yes Yes Yes Calibration Gas Uncertainty % 0.4 0.4 0.4 0.8 0.5 Quality Assurance Units 2	Span Gas Value	ppm	157	361	666	20.9
Calibration Gas Uncertainty % 0.4 0.4 0.4 0.8 0.5 Quality Assurance Units C 2 2 2 2 2 2 Conditioning Unit Temperature C 2 1 2 2 0 1	Acceptable Gas Range	-	Yes	Yes	Yes	Yes
Quality Assurance Units Conditioning Unit Temperature C 2 2 2 2 Average Temperature < C	Calibration Gas Uncertainty	%	0.4	0.4	0.8	0.5
Conditioning Unit Temperature C 2 2 2 2 2 Average Temperature - 4 4 4 4 4 Allowable Temperature Acceptable - Yes Yes Yes Yes Yes Pump flow rate I/min. 0.5 0.5 0.5 0.5 0.5 Zero Drift Units Zero (Pre) ppm 0 0 0 0 Zero drift ppm 1 1.2 2 0.1 1.4 2.5 3.3 1.045 Zero drift ppm 3.14 7.22 13.32 0.418 Adjustable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Units Yes Yes Yes Yes Yes Yes Span Down (Pre) ppm 1.55 358 663 20.7 Span Down (Post) ppm 7.85 18.05 33.3 1.045 Span Down (Pre) ppm 7.85 18.05 33.3 1.045 Span Drift 2 4.4 4.1 </td <td>Quality Assurance</td> <td>Units</td> <td></td> <td></td> <td></td> <td></td>	Quality Assurance	Units				
Average Temperature < C	Conditioning Unit Temperature	С	2	2	2	2
Allowable Temperature - 4 4 4 4 Temperature Acceptable - Yes Yes Yes Yes Pump flow rate I/min. 0.5 0.5 0.5 0.5 Zero Drift Units 2 0.1 Zero (Pre) ppm 0 0 0 0 Zero drift ppm 1 1.2 2 0.1 Allowable Zero Drift (Less than) ppm 3.14 7.22 13.32 0.418 Allowable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Span Down (Pre) ppm 155 358 663 20.7 Span Down (Pre) ppm 154 356 659 20.6 Span Drift Units - Yes Yes Yes Yes Allowable Span Drift (less than) ppm 7.85 18.05 33.3 1.045 Span Drift Cless than) ppm 7.85 18.05	Average Temperature	< C	2	2	2	2
Temperature Acceptable - Yes Yes Yes Yes Yes Pump flow rate //min. 0.5 0.5 0.5 0.5 0.5 Zero Drift Units Zero (Pre) ppm 0 0 0 0 0 0 0 Zero Orift ppm 1 1.2 2 0.1 2 0.1 Zero drift ppm 3.14 7.22 13.32 0.418 Adjustable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Yes Span Drift Units S 3.56 663 20.7 5 Span Down (Pre) ppm 154 356 663 20.7 5 3.3 1.045 Span Drift Units 154 356 663 <	Allowable Temperature	-	4	4	4	4
Pump flow rate I/min. 0.5 0.5 0.5 0.5 Zero Drift Units 0 0 0 0 0 2 0.1 Zero (Pre) ppm 1 1.2 2 0.1 2 0.1 Zero (Post) ppm 1 1.2 2 0.1 Allowable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Cereater than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Yes Span Down (Pre) ppm 155 358 663 20.7 Span Down (Pres) ppm 154 356 659 20.6 Span Down (Pres) ppm 154 356 659 20.6 Span Drift ppm 1.4 7.22 13.32 0.418 Adjustable Span Drift (Less than) ppm 7.85 18.05<	Temperature Acceptable	-	Yes	Yes	Yes	Yes
Zero Drift Units Zero (Pre) ppm 0 0 0 Zero (Post) ppm 1 1.2 2 0.1 Zero drift ppm 1 1.2 2 0.1 Allowable Zero Drift (Less than) ppm 3.14 7.22 13.32 0.418 Adjustable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Span Drift Units - Yes Yes Yes Span Down (Pre) ppm 154 356 659 20.6 Span Drift Units -<	Pump flow rate	l/min.	0.5	0.5	0.5	0.5
Zero (Pre) ppm 0 0 0 0 Zero (Post) ppm 1 1.2 2 0.1 Zero drift ppm 1 1.2 2 0.1 Allowable Zero Drift (Less than) ppm 3.14 7.22 13.32 0.418 Adjustable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Span Drift Units - Yes Yes Yes Span Down (Pre) ppm 154 356 659 20.6 Span Drift ppm 1.4 7.22 13.32 0.418 Allowable Span Drift (less than) ppm 1.4 7.22 13.32 0.414 Allowable Span Drift (less than) ppm 3.14 7.22 13.33 1.045 Span Ban Sonc. ppm 7.85 18.05 33.3 1.045 Span Drift Less than) ppm 7.85	Zero Drift	Units				
Zero (Post) ppm 1 1.2 2 0.1 Zero drift ppm 1 1.2 2 0.1 Allowable Zero Drift (Less than) ppm 3.14 7.22 13.32 0.418 Adjustable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Yes Span Drift Units Yes Yes Yes Yes Yes Span Down (Pre) ppm 154 356 659 20.6 Span Drift Ppm -1 -2 -4 -0.1 Allowable Span Drift (less than) ppm 3.14 7.22 13.32 0.418 Adjustable Span Drift (less than) ppm 7.85 18.05 33.3 1.045 Span Drift Acceptable (Y/N) - Yes Yes Yes Yes Yes	Zero (Pre)	ppm	0	0	0	0
Zero drift ppm 1 1.2 2 0.1 Allowable Zero Drift (Less than) ppm 3.14 7.22 13.32 0.418 Adjustable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Yes Span Drift Units Yes Yes Yes Yes Span Down (Pre) ppm 155 358 663 20.7 Span Down (Post) ppm 154 356 659 20.6 Span Drift Units -1 -2 -4 -0.1 Allowable Span Drift (Less than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Gas Conc. ppm 157 361 6666 20.7	Zero (Post)	ppm	1	1.2	2	0.1
Allowable Zero Drift (Less than) ppm 3.14 7.22 13.32 0.418 Adjustable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Yes Span Down (Pre) ppm 155 358 663 20.7 Span Down (Pre) ppm 154 356 659 20.6 Span Down (Pre) ppm -1 -2 -4 -0.1 Allowable Span Drift (less than) ppm 7.85 18.05 33.3 1.045 Span Drift Cless than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Gas Conc. ppm 157 361 666 20.7 Recorded Conc. down Line ppm 155 358 663 20.6 Leak Check 155 358 663	Zero drift	ppm	1	1.2	2	0.1
Adjustable Zero Drift (Less than) ppm 7.85 18.05 33.3 1.045 Zero Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Yes Span Down (Pre) ppm 155 358 663 20.7 Span Down (Pre) ppm 154 356 659 20.6 Span Drift ppm -1 -2 -4 -0.1 Allowable Span Drift (less than) ppm 3.14 7.22 13.32 0.418 Adjustable Span Drift (less than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Gas Conc. ppm 157 361 666 20.7 Recorded Conc. down Line ppm 155 358 663 20.6 Leak Detected ppm -2 -3 -3 -0	Allowable Zero Drift (Less than)	ppm	3.14	7.22	13.32	0.418
Zero Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Zero Drift Acceptable - Yes Yes Yes Yes Yes Span Drift Units 155 358 663 20.7 Span Down (Pre) ppm 154 356 659 20.6 Span Drift ppm -1 -2 -4 -0.1 Allowable Span Drift (less than) ppm 3.14 7.22 13.32 0.418 Adjustable Span Drift (less than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Drift Acceptable (Y/N) - Yes Yes Yes Yes Leak Check Yes Yes Yes Yes Span Gas Conc. ppm 157 361 666 20.7 Recorded Conc. down Line ppm -2 -3 -3 -0.1 Leak Check yes Yes Yes Yes	Adjustable Zero Drift (Less than)	ppm	7.85	18.05	33.3	1.045
Zero Drift Acceptable - Yes Yes Yes Yes Yes Span Drift Units 155 358 663 20.7 Span Down (Pre) ppm 154 356 659 20.6 Span Drift ppm -1 -2 -4 -0.1 Allowable Span Drift (less than) ppm 3.14 7.22 13.32 0.418 Adjustable Span Drift (less than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Drift Acceptable (Y/N) - Yes Yes Yes Yes Leak Check Yes Yes Yes Yes Span Gas Conc. ppm 155 358 663 20.6 Leak Detected ppm -2 -3 -3 -0.1 Leak Check acceptable (< 2%)	Zero Drift Failure (Greater than)	ppm	7.85	18.05	33.3	1.045
Span Drift Units Span Down (Pre) ppm 155 358 663 20.7 Span Down (Post) ppm 154 356 659 20.6 Span Drift ppm -1 -2 -4 -0.1 Allowable Span Drift (less than) ppm 3.14 7.22 13.32 0.418 Adjustable Span Drift (Less than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Drift Acceptable (Y/N) - Yes Yes Yes Yes Leak Check E E E E Span Gas Conc. ppm 155 358 663 20.6 Leak Detected ppm -2 -3 -3 -0.1 Leak check acceptable (< 2%)	Zero Drift Acceptable		Yes	Yes	Yes	Yes
Span Down (Pre) ppm 155 358 663 20.7 Span Down (Post) ppm 154 356 659 20.6 Span Drift ppm -1 -2 -4 -0.1 Allowable Span Drift (less than) ppm 3.14 7.22 13.32 0.418 Adjustable Span Drift (Less than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Drift Acceptable (Y/N) - Yes Yes Yes Yes Leak Check 157 361 666 20.7 Recorded Conc. down Line ppm 155 358 663 20.6 Leak Check - Yes Yes Yes Span Gas Conc. ppm 155 358 663 20.6 20.6 Leak Detected ppm -2 -3 -3 -0.1 <	Span Drift	Units				
Span Down (Post) ppm 154 356 659 20.6 Span Drift ppm -1 -2 -4 -0.1 Allowable Span Drift (less than) ppm 3.14 7.22 13.32 0.418 Adjustable Span Drift (Less than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Drift Acceptable (Y/N) - Yes Yes Yes Yes Leak Check Span Gas Conc. ppm 157 361 666 20.7 Recorded Conc. down Line ppm -2 -3 -3 -0.1 Leak check acceptable (<2%)	Span Down (Pre)	mad	155	358	663	20.7
Span Drift ppm -1 -2 -4 -0.1 Allowable Span Drift (less than) ppm 3.14 7.22 13.32 0.418 Adjustable Span Drift (Less than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Drift Acceptable (Y/N) - Yes Yes Yes Yes Yes Leak Check Span Gas Conc. ppm 157 361 666 20.7 Recorded Conc. down Line ppm 155 358 663 20.6 Leak Check acceptable (ppm -2 -3 -3 -0.1 Leak Check acceptable (ppm 155 358 663 20.6 Leak Detected ppm -2 -3 -3 -0.1 Leak check acceptable (< 2%)	Span Down (Post)	ppm	154	356	659	20.6
Allowable Span Drift (less than) ppm 3.14 7.22 13.32 0.418 Adjustable Span Drift (Less than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Drift Acceptable (Y/N) - Yes Yes Yes Yes Yes Leak Check - Yes Yes Yes Yes Yes Yes Span Gas Conc. ppm 157 361 666 20.7 Recorded Conc. down Line ppm 155 358 663 20.6 Leak Detected ppm -2 -3 -3 -0.1 Leak check acceptable (< 2%)	Span Drift	ppm	-1	-2	-4	-0.1
Adjustable Span Drift (Less than) ppm 7.85 18.05 33.3 1.045 Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Drift Acceptable (Y/N) - Yes Yes Yes Yes Yes Leak Check - Yes Yes Yes Yes Yes Yes Span Gas Conc. ppm 157 361 666 20.7 Recorded Conc. down Line ppm 155 358 663 20.6 Leak Detected ppm -2 -3 -3 -0.1 Leak check acceptable (< 2%)	Allowable Span Drift (less than)	ppm	3.14	7.22	13.32	0.418
Span Drift Failure (Greater than) ppm 7.85 18.05 33.3 1.045 Span Drift Acceptable (Y/N) - Yes Yes Yes Yes Yes Leak Check Span Gas Conc. ppm 157 361 666 20.7 Recorded Conc. down Line ppm 155 358 663 20.6 Leak Detected ppm -2 -3 -3 -0.1 Leak check acceptable (< 2%)	Adjustable Span Drift (Less than)	ppm	7.85	18.05	33.3	1.045
Span Drift Acceptable (Y/N) - Yes Yes Yes Yes Yes Leak Check	Span Drift Failure (Greater than)	ppm	7.85	18.05	33.3	1.045
Leak Check ppm 157 361 666 20.7 Span Gas Conc. ppm 155 358 663 20.6 Leak Detected ppm -2 -3 -3 -0.1 Leak check acceptable (< 2%)	Span Drift Acceptable (Y/N)		Yes	Yes	Yes	Yes
Span Gas Conc. ppm 157 361 666 20.7 Recorded Conc. down Line ppm 155 358 663 20.6 Leak Detected ppm -2 -3 -3 -0.1 Leak check acceptable (< 2%)	Leak Check					
Recorded Conc. down Lineppm15535866320.6Leak Detectedppm-2-3-3-0.1Leak check acceptable (< 2%)	Span Gas Conc.	mag	157	361	666	20.7
Leak Detected ppm -2 -3 -3 -0.1 Leak check acceptable (< 2%)	Recorded Conc. down Line	ppm	155	358	663	20.6
Leak check acceptable (< 2%)ppm3.147.2213.320.418Pass(Y/N)YesTest ConditionsUnitsRun Ambient Temperature RangeC101010	Leak Detected	ppm	-2	-3	-3	-0.1
Pass(Y/N)YesTest ConditionsUnitsRun Ambient Temperature RangeC101010	Leak check acceptable (< 2%)	ppm	3.14	7.22	13.32	0.418
Test ConditionsUnitsRun Ambient Temperature RangeC101010	Pass	(Y/N)	Yes	_		
Run Ambient Temperature Range C 10 10 10 10	Test Conditions	Units				
	Run Ambient Temperature Range	C	10	10	10	10

Raw Data

Date	e/Time	Data source	со	CO ₂	NOx	O ₂	SO ₂
			ppm	vol%	ррт	vol%	ррт
	19/10/2015 15:10		2.050	8.553	48.200	5.093	11.750
	19/10/2015 15:11		2.017	8.577	47.925	5.101	10.333
	19/10/2015 15:12		2.625	8.592	47.850	5.094	9.083
	19/10/2015 15:13		2.183	8.595	47.850	5.088	8.417
	19/10/2015 15:14		1.700	8.593	47.650	5.088	7.833
	19/10/2015 15:15		1.958	8.608	47.525	5.093	7.083
	19/10/2015 15:16		1.733	8.606	47.608	5.079	6.833
	19/10/2015 15:17		2.142	8.600	47.583	5.080	6.083
	19/10/2015 15:18		2.017	8.615	47.650	5.076	6.000
	19/10/2015 15:19		2.083	8.612	47.475	5.077	6.000
	19/10/2015 15:20		1.775	8.624	47.475	5.076	5.917
	19/10/2015 15:21		1.783	8.619	47.292	5.078	5.083
	19/10/2015 15:22		1.817	8.617	47.108	5.088	5.000
	19/10/2015 15:23		1.900	8.618	47.475	5.078	5.000
	19/10/2015 15:24		1.983	8.616	47.458	5.085	5.000
	19/10/2015 15:25		2.200	8.627	47.483	5.081	5.000
	19/10/2015 15:26		2.483	8.624	47.508	5.079	4.917
	19/10/2015 15:27		2.392	8.624	47.358	5.087	4.917
	19/10/2015 15:28		2.183	8.641	47.517	5.078	4.417
	19/10/2015 15:29		1.300	8.617	47.617	5.088	4.500
	19/10/2015 15:30		1.775	8.619	47.483	5.080	4.167
	19/10/2015 15:31		1.833	8.628	47.475	5.088	4.083
	19/10/2015 15:32		1.917	8.619	47.450	5.089	4.000
	19/10/2015 15:33		2.083	8.627	47.483	5.082	4.000
	19/10/2015 15:34		1.917	8.629	47.483	5.081	4.000
	19/10/2015 15:35		1.583	8.630	47.525	5.085	4.000
	19/10/2015 15:36		2.000	8.635	47.550	5.088	4.000
	19/10/2015 15:37		1.500	8.618	47.525	5.088	4.000
	19/10/2015 15:38		1.833	8.618	47.483	5.093	4.000
	19/10/2015 15:39		2.250	8.630	47.675	5.085	4.000
Average			1.967	8.614	47.558	5.085	5.647

Referenced Data

	СО	NOx	SO ₂
	mg/Nm³ R	eference O ₂	
19/10/2015 15:10	2.9	112.1	38.1
19/10/2015 15:11	2.9	111.5	33.5
19/10/2015 15:12	3.7	111.3	29.4
19/10/2015 15:13	3.1	111.2	27.3
19/10/2015 15:14	2.4	110.7	25.4
19/10/2015 15:15	2.8	110.5	22.9
19/10/2015 15:16	2.5	110.6	22.1
19/10/2015 15:17	3.0	110.5	19.7
19/10/2015 15:18	2.9	110.7	19.4
19/10/2015 15:19	2.9	110.3	19.4
19/10/2015 15:20	2.5	110.3	19.1
19/10/2015 15:21	2.5	109.8	16.4
19/10/2015 15:22	2.6	109.5	16.2
19/10/2015 15:23	2.7	110.3	16.2
19/10/2015 15:24	2.8	110.3	16.2
19/10/2015 15:25	3.1	110.3	16.2
19/10/2015 15:26	3.5	110.4	15.9
19/10/2015 15:27	3.4	110.1	15.9
19/10/2015 15:28	3.1	110.4	14.3
19/10/2015 15:29	1.8	110.7	14.6
19/10/2015 15:30	2.5	110.3	13.5
19/10/2015 15:31	2.6	110.3	13.2
19/10/2015 15:32	2.7	110.3	13.0
19/10/2015 15:33	2.9	110.3	12.9
19/10/2015 15:34	2.7	110.3	12.9
19/10/2015 15:35	2.2	110.4	12.9
19/10/2015 15:36	2.8	110.5	13.0
19/10/2015 15:37	2.1	110.5	13.0
19/10/2015 15:38	2.6	110.4	13.0
19/10/2015 15:39	3.2	110.8	12.9
Average	2.8	110.5	18.3
Uncertainty of Measurement	2.2	8.5	9.9
Uncertainty as % of ELV	-	-	-
Standard Requirement	<6%	<10%	<10%

Appendix 6

Quarterly Effluent Metal Screen

The metal screen for Q1 2015 is shown in the table below.

			Jones Environme Reference	ental No	Report No: 15/2451
Detection Me	Method Detection	ISO 17025 Acc	Sample Ide	ntity	Quarterly Effluent
sthod	on Limit	redited	Other II)	PO: 19619
ICP OES	<0.2	>	Dissolved Calcium	l/gm	508.4
ICP OES	<0.1	>	Dissolved Magnesium	l/gm	81.2
ICP OES	<0.5	>	Dissolved Cadmium	l/ɓn	<0.5
ICP OES	<1.5	>	Dissolved Chromium	l/ɓn	2.2
ICP OES	<7	>	Dissolved Copper	l/ɓn	<7
ICP OES	<20	>	Total Dissolved Iron	l/ɓn	550
ICP OES	<2	>	Dissolved Manganese	l/6n	225
ICP OES	<2	>	Dissolved Nickel	l/6n	32
ICP OES	ç	>	Dissolved Zinc	l/ɓn	12
ICP OES	<1	>	Dissolved Mercury	l/ɓn	7
ICP OES	<5	>	Dissolved Lead	l/6n	п

Table 4: Quarterly Effluent Metal Screen

Quarterly Effluent Metal Screen

ICP MS	<5ug/l	1	Dissolved Lead Low Level	l/ɓn	16
ICP MS	<1ug/l	1	Dissolved Mercury Low Level	l/ɓn	1>
ICP MS	<3ug/1	>	Dissolved Zinc Low Level	l/6n	10
ICP MS	<2ug/1	>	Dissolved Nickel Low Level	l/bn	28
ICP MS	<2ug/l	1	Dissolved Manganese Low Level	l/bn	127
ICP MS	<20ug/ I	1	Dissolved Iron Low Level	l/bn	66
ICP MS	l/bn/>>	1	Dissolved Copper Low Level	l/6n	⊳
ICP MS	<1.5ug/l	/	Dissolved Chromium Low Level	l/bn	8.2
ICP MS	<0.5ug/l	1	Dissolved Cadmium Low Level	l/bn	0.6
ICP MS	<0.1mg/l	 	Dissolved Magnesium	l/gm	59.7
ICP MS	<0.2mg /I	1	Dissolved Calcium	l/gm	346.5
thod	on Limit	redited	Other ID		PO: 23022
Detection Me	Method Detection	ISO 17025 Acc	Sample Iden	tity	Effluent Metal Screen
			Jones Reference	•	Report No: 15/8647

Quarterly Effluent Metal Screen

The metal screen for Q3 2015 is shown in the table below.

A CONTRACTOR	のないので、		Jones Environme Reference	ntal No	Report No:15/11568
Detection Me	Method Detecti	ISO 17025 Acc	Sample Ide	ntity	Quarterly Effluent
ethod	on Limit	redited	Other II)	PO: 23044
ICP OES	<0.2	1	Dissolved Calcium	l/gm	166.6
ICP OES	<0.1	1	Dissolved Magnesium	l/gm	50.6
ICP OES	<0.5	1	Dissolved Cadmium	l/ɓn	0.7
ICP OES	<1.5	1	Dissolved Chromium	l/ɓn	8.7
ICP OES	<7	>	Dissolved Copper	l/ɓn	<7
ICP OES	<20	>	Total Dissolved Iron	l/ɓn	203
ICP OES	<2	>	Dissolved Manganese	l/ɓn	42
ICP OES	<2	>	Dissolved Nickel	l/ɓn	27
ICP OES	ŝ	>	Dissolved Zinc	l/ɓn	ø
ICP OES	<1	>	Dissolved Mercury	l/ɓn	41
ICP OES	<5	1	Dissolved Lead	l/ɓn	9

Quarterly Effluent Metal Screen

The metal screen for Q4 2015 is shown in the table below.

	Detection N	Method	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	_	ICP OES
	Method Detect	tion Limit	<0.2mg/l	<0.1mg/l	<0.4ug/l	<0.5ug/l	l/bn/>>	<20ug/I	<2ug/l	<2ug/l		<3ug/l	<3ug/l <1ug/l
	UKAS Accre	edited					•		48. 44				
Jones Reference	Sample Iden	Other ID	Dissolved Calcium	Dissolved Magnesium	Dissolved Cadmium Low Level	Dissolved Chromium Low Level	Dissolved Copper Low Level	Dissolved Iron Low Level	Dissolved Manganese Low Level	Dissolved Nickel Low Level	Level	Dissolved Zinc Low	Dissolved Mercury Low Level Dissolved Zinc Low
•	tity		l/gm	mg/l	l/bn	l/bn	l/bn	l/bn	l/6n	l/6n		l/bn	l/6n l/6n
Report No: 15/15617	Quarterly Effluent	PO: 24773	383.3	76.5	1.0	9.9	<7	579	339	33		12	12 <1
Appendix 7

Enva Ireland Ltd Raffeen Ind Est, Ringaskiddy, Co.Cork

Tel: 021 438 7200 Fax: 021 438 7299 Email: cork@enva.ie Web: www.enva.ie

RESPIROMETRY REPORT

ENVA PORTLAOISE

One sample was received on the 11/06/2015 for evaluation of their effect on activated sludge micro organisms at given dilutions. The methodology for this is by respirometry, which assesses the oxygen uptake of a standard activated sludge versus sludge containing the samples for evaluation, over a 30 minute period. The samples submitted were as follows:

Effluent	Enva Portlaoise	
10.06.14		

The results were as follows: (all results mg/l 0₂)

Sample Time/Mins.	Control	¹ / ₅ Dilution	¹ / ₁₀ Dilution
0	9.2	9.1	9.3
1	8.7	8.5	8.7
2	7.6	7.5	7.7
3	6.3	6.4	6.4
4	5.7	5.8	5.6
5	4.4	4.6	4.8
10	3.7	4.0	4.1
15	2.7	3.3	3.3
20	2.3	2.9	2.7
25	1.8	2.4	2.3
30	1.4	1.9	1.7
% Inhibition		8 %	3 %

Only samples showing +30% or greater inhibition are considered to have a negative effect on the activated sludge.

As we can see all of the samples proved lower than this in inhibition terms. This indicates that there was no inhibition of the activity of the activated sludge micro organisms from the samples at their respective dilutions.

Signed:

f.h.

Date: 21/1/1,5

Enva Ireland Ltd Raffeen Ind Est, Ringaskiddy, Co.Cork

Tel: 021 438 7200 Fax: 021 438 7299 Email: cork@enva.ie Web: www.enva.ie

RESPIROMETRY REPORT

ENVA PORTLAOISE

One sample was received on the 11/11/2015 for evaluation of their effect on activated sludge micro organisms at given dilutions. The methodology for this is by respirometry, which assesses the oxygen uptake of a standard activated sludge versus sludge containing the samples for evaluation, over a 30 minute period. The samples submitted were as follows:

Effluent	Enva Portlaoise
10.11.15	

The results were as follows: (all results $mg/l 0_2$)

Sample Time/Mins.	Control	¹ / ₅ Dilution	¹ / ₁₀ Dilution
0	9.1	9.2	9.1
1	8.3	8.6	8.6
2	7.5	7.3	7.5
3	6.0	6.4	6.3
4	5.2	5.4	5.8
5	4.0	4.7	4.7
10	3.3	4.5	4.1
15	2.5	3.8	3.0
20	2.0	3.1	2.2
25	1.5	2.4	1.6
30	0.9	1.7	1.2
% Inhibition		9 %	4 %

Only samples showing +30% or greater inhibition are considered to have a negative effect on the activated sludge.

As we can see all of the samples proved lower than this in inhibition terms. This indicates that there was no inhibition of the activity of the activated sludge micro organisms from the samples at their respective dilutions.

Signed:

f 4

Date: 23/10/15

Appendix 8

Appendix 9

Enva Ireland: Monitoring locations

NOTES:

1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT KAVANAGH RYAN & ASSOCIATES DRAWINGS AND SPECIFICATIONS.

2. ALL DIMENSIONS TO BE CONFIRMED. DO NOT SCALE DRAWING.

NO	REVISION		
Unit 44 Dargle Co. W	vanagh k 8, The Egan Cent e Road, Bray, icklow.	Ryan & Assoc re, Tel. 2765661. Fax. 27 E-mail. kmryan@eircor	ciates. Sunt sconstruction of the seconstruction of the seconstr
CLIEN	τ ste Storage /	Areas.	enva
TITLE			ENVA LIMITED, CLONMINAM IND. EST., PORTLAOISE, Co. LAOIS.
DRAW	^N A.C.	SCALE 1:400.	DRAWING No.
JOB. N	^{/o.} C02104,	DATE Aug. '08.	At-WSA 1.