COMHAIRLE CHONDAE AN CABHÁIN Cavan County Council

Annual Environmental Report 2014

Ballyjamesduff Landfill WL0093-1

Document Title	Annual Environmental Report 2014								
	Ballyjamesduff Landfill WL0093-1								
Document ID	CCC-03-02-2014	CC-03-02-2014							
Revision	<u>Status</u>	<u>Author</u>	Issue Date						
01	Draft	ВК	07/04/15						
02	Final Issue	BK/CB	07/04/15						

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to prepare the following Annual Environmental Report.

Contents		<u>Page</u>				
1.0 INTROD	UCTION	5				
2.0 REPORT	TING PERIOD	6				
3.0 WASTE ACTIVITIES CARRIED OUT AT THE FACILITY						
4.0 QUANTI	TY AND COMPOSITION OF THE WASTE	6				
5.0 SUMMA	RY REPORT ON EMISSIONS	6				
5.1 S	urface Water	7				
5.2 G	round Water	8				
5.3 L	eachate	14				
5.4 G	as	17				
6.0 RESULT	S SUMMARY & INTERPRETATION OF MONITORING	18				
7.0 RESOUR	RCE & ENERGY CONSUMPTION SUMMARY	18				
8.0 REPORT	ON RESTORATION OF FACILITY	18				
9.0 QUANTI	TIES OF LANDFILL GAS EMITTED FROM FACILITY	18				
10.0 PRO	CEDURES DEVELOPED BY LICENCEE	19				
11.0 REP	ORTED INCIDENTS AND COMPLAINTS SUMMARY	19				
12.0 REV	EW OF NUISANCE CONTROLS	19				
13.0 REP	ORT ON TRAINING STAFF	19				
14.0 ANY	OTHER ITEMS SPECIFIED BY THE EPA	20				
List of Tab	les					
Table 5.1	Surface Water Summary Results	7				
Table 5.2	Groundwater Summary Results	9				
Table 5.3	Leachate Summary Results	14				
Table 5.4	Gas Emissions Summary Results	16				
Table 12.1	Management Structure 2014	20				

List of Graphs

Graph 5.1	Surface Water-Chemical Oxygen Demand	8
Graph 5.2	Ground Water – E.coli	10
Graph 5.3	Groundwater- Total-Coliforms	10
Graph 5.4	Groundwater -Ammonia	11
Graph 5.5	Groundwater –Chloride	11
Graph 5.6	Groundwater –Iron	12
Graph 5.7	Groundwater –Potassium	12
Graph 5.8	Leachate- Ammonia	15
Graph 5.9	Leachate- Conductivity	15
Graph 6.0	Gas-Methane	17
Graph 6.1	Gas- Carbon Dioxide	17

List of Appendices

Appendix A	PRTR Emissions Report, Gas Survey
Appendix B	Site Monitoring Locations Map
Appendix C	Quarter 4 Monitoring Report

1.0 INTRODUCTION

Ballyjamesduff Landfill has been operated as waste disposal facility by Cavan County Council since the late 1960s. It is located off the Derrylurgan road, approximately 600m north of Ballyjamesduff town on the eastern side of the Derrylurgan road. The site is predominantly bog and comprises some 1.62 hectares. The site was operated as a traditional landfill constructed on peat and relies on the properties of the peat bog for attenuation, dilution and dispersal.

A Waste Licence for the facility was issued by the EPA on 7th March 2002, Ref WL 93-1. Condition 11.4 of Waste Licence Ref. 93-1 requires the submission of an Annual Environmental Report (AER) for Ballyjamesduff Landfill facility. This document is produced in order to comply with requirements of Condition 11.4. The reporting period for the purposes of this AER is 1st January 2014 to 31st December 2014.

The site at Ballyjamesduff was closed in early March 2002. Prior to closing the site a temporary cap was placed on site.

The requirements for reporting of Annual Environmental Information arise under individual EPA licences issued under the EPA Acts 1992 – 2008, the Waste Management Acts 1996 – 2008 and other legislation.

This AER will provide information as outlined in Schedule F of the Licence "Content of the Annual Environmental Report".

2.0 REPORTING PERIOD

The reporting period for the purposes of this AER is 1st January 2014 to 31st December 2014.

3.0 WASTE ACTIVITIES CARRIED OUT AT THE FACILITY

There were no waste activities carried out at the facility.

4.0 QUANTITY AND COMPOSITION OF THE WASTE

There is no longer any waste being accepted at the site. The quantity of waste accepted is zero tonnes.

5.0 SUMMARY REPORT ON EMISSIONS

The PRTR Regulations are the European Communities (European Pollutant Release and Transfer Register) Regulation 2007, <u>S.I. No. 123 of 2007</u>), which signed into Irish Law on 22 March 2007 the <u>E-PRTR Regulation</u>, (EC) No 166/2006, concerning the establishment of a European Pollutant Release and Transfer Register. The summary of emissions is detailed in the (PRTR) Report which appears in Appendix A of this report. The PRTR has been uploaded onto the EPA website in accordance with our responsibility as Licensee.

A register of Environmental Monitoring is now established and shall be maintained. Cavan County Council now carries out the full scope of sampling as required by the Licence.

.

5.1 Surface Water

As detailed by table 5.1, there were slight exceedances in the surface water analysis for parameter COD. Sample SW1 is located upstream of the landfill while SW2 is located downstream. All monitoring locations are detailed in the site map which is presented in Appendix B.

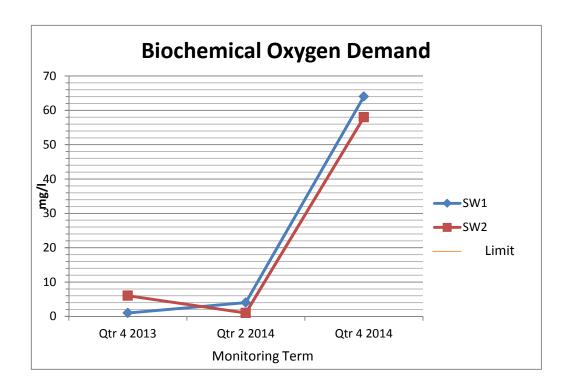

All parameters have been assessed against water limits as outlined in the European Communities (Drinking Water) (No.2) Regulations 2007. Results in Bold Italics indicate where the interim guide value has been exceeded.

Table 5.1 Surface water summary results

	Parameter	Ammonia	рН	Cond	BOD	COD	Total Suspende d Solids	Cl	DO
	Units	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	mg/l	mg/l
SW1	Qtr 4 2014	0.032	7	201	64	2	30	<5	18.9
	Qtr 2 2014	0.668	7.2	270	4	52	24	13.7	9
	Qtr 4 2013	0.081	6.8	189	<1	43	10	14.9	10
SW2	Qtr 4 2014	0.1	6.9	182	58	<1	32	<5	14.6
	Qtr 2 2014	0.184	7.4	281	<1	27	<5	15.9	7
	Qtr 4 2013	0.031	7.2	273	6	41	17	27.3	11
Discharge Cap	Qtr 4 2014	0.072	6.8	200	48	<1	29	<5	14.3
	Qtr 2 2014	0.489	7.7	365	<1	33	<5	15.1	8
	Qtr 4 2013	-	-	-	-	-	-	-	-
S.I No. 294/1989 A1		0.2	≥5.5 and ≤8.5	1000	5		50	250	>60%

A comprehensive report of all results obtained in 2014 is presented in Appendix C.

Graph 5.1

All surface water locations were found to be within limits specified in the above regulations with the exception of BOD. Elevations from these parameters cannot be definitively associated to the landfill due to the presence of increased decaying organic matter in the form of decaying vegetation due to the winter season.

5.2 Groundwater

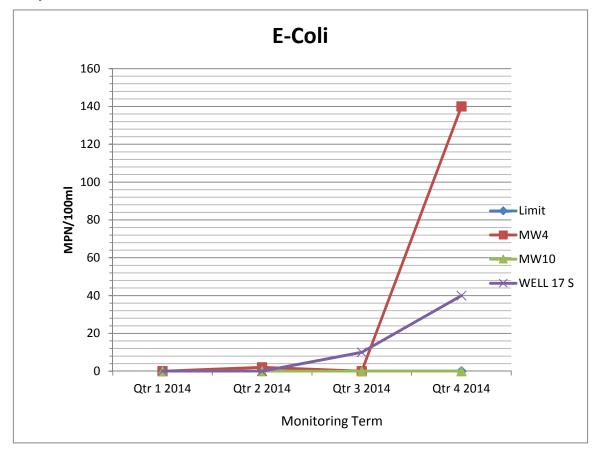
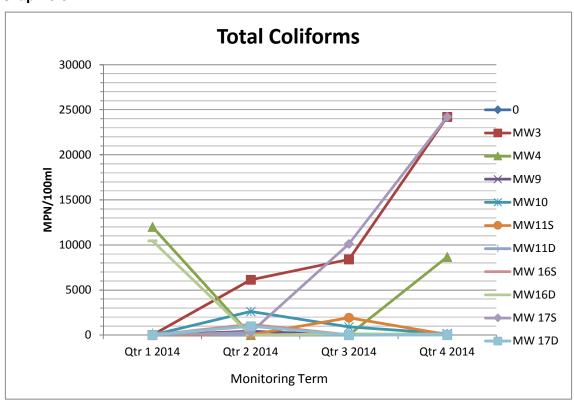
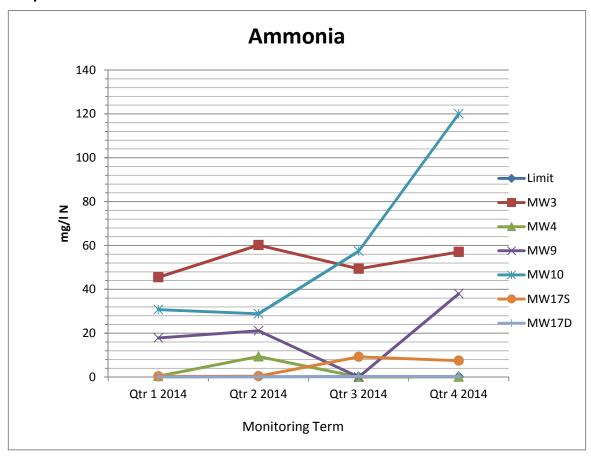
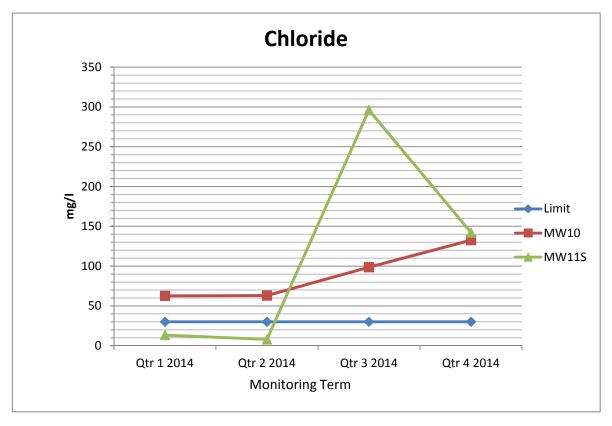

The following table details all reoccurring exceedances at all groundwater wells during 2014. Results in Hatched Red indicate where the interim guide value has been exceeded when compared to limits stipulated by the Environmental Protection Agency.

Table 5.2 Groundwater Summary Results

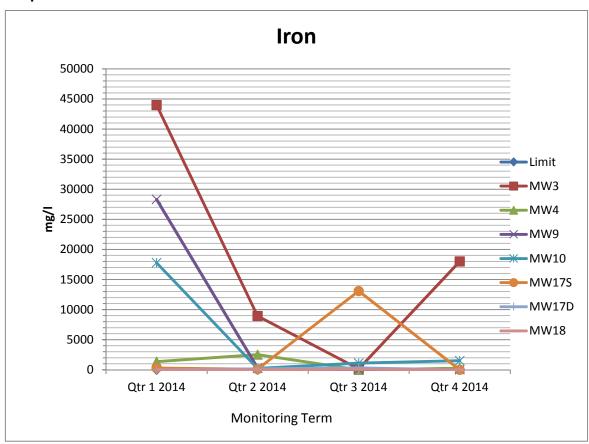

			1			1								
	Paramete	TOC	E.Coli	Ammonia	TON	Tot Coliforms	pН	Cond	Cl	DO	Total Phenols	Fe	K	Na
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
MW 3	Qtr 4 2014	18.41	0	57	0.151	24201	7.1	948	26.9	<1	3.97	18000	14.3	35.2
	Qtr 3 2014	95.7	0	49.354	<0.138	8400	7	964	22.5	<1	<0.15	159.7	15.8	29.7
	Qtr 2 2014	20.37	0	60.165	0.377	6130	7.2	1069	43.3	2	<0.15	8922.1	18.4	27.8
	Qtr 1 2014	35.66	0	45.476	<0.138	0	6.9	1002	28.3	2	<0.15	43978.4	17.1	25.8
MW 4	Qtr 4 2014	12.44	140	0.13	0.609	8660	7.6	220	14.9	8	0.58	260	4.3	10
	Qtr 3 2014	-	-	-	-	-	-	-	-	-	-	-	-	-
	Qtr 2 2014	17.91	2	9.377	<0.138	-	6.7	593	22.6	3	<0.15	2517.5	11	22.2
	Qtr 1 2014	10.52	0	0.376	0.338	12000	7.1	217	14.8	7	<0.15	1339.7	7.9	11.4
MW9	Qtr 4 2014	13.51	0	38	<0.138	120	6.9	958	14.8	<1	0.58	26	12.6	22
	Qtr 3 2014	-	-	-	-	-	-	-	-	-	-	-	-	-
	Qtr 2 2014	14.16	430	21.125	3.18	430	7	1029	71.3	8	<0.15	302.2	15.9	24.7
\A/a \A/\A/	Qtr 1 2014	10.62	0	17.802	<0.138	0	7	961	19.4	6	<0.15	28329.5	14.6	20.4
Well MW	Qtr 4 2014	22.01	0	120	0.154	160	6.9	1611	132.6	<1	0.53	1500	36.8	76.8
	Qtr 3 2014	23.74	0	57.398	0.276	900	6.8	1560	98.6	<1	<0.15	1106.4	33.6	72.9
	Qtr 2 2014	19.19	0	28.829	0.295	2610	7.1	1030	63	7	<0.15	229.8	21.7	32
	Qtr 1 2014 Qtr 4 2014	13.15 1.67	20	30.775 0.084	<0.138 0.67	60	6.9 7	1145 686	62.6 142.1	9	<0.15 0.03	17776	22.1	38.3 31.2
W/FII 11 S	Qtr 4 2014 Qtr 3 2014	1.82	40	0.084	1.256	1920	7.1	1252	296.2	6	<0.15	<20 24.3	1.6 3.2	46
WELL II S	Qtr 2 2014	1.89	0	0.051	0.47	40	7.1	412	7.9	7	<0.15	29.5	4.1	21.8
	Qtr 1 2014	1.25	0	0.066	<0.138	0	7.5	487	13.3	5	<0.15	274.8	4.1	29.3
	Qtr 4 2013 R	1.47	200	0.041	<0.138	20300	7.1	1266	270	6	<0.15	38.9	4.7	44.9
	Qtr 4 2014	0.76	120	0.043	0.357	190	7.7	396	9.2	8	0.05	<20	1.3	22.9
WELL 11D	-	0.76	0	0.024	<0.138	10	7.5	397	6.7	4	<0.15	<20	2.4	22.5
	Qtr 2 2014	2.02	0	0.152	0.333	10	7.7	472	19.1	9	<0.15	<20	5.3	22.8
	Qtr 1 2014	1.53	10	0.025	0.217	260	7.6	485	18	11	<0.15	<20	4.3	23.7
	Qtr 4 2013 R	1.83	0	0.068	0.663	100	7.4	412	10.1	8	<0.15	85.1	3.8	21.2
WELL 16 S	Qtr 4 2014	1.61	10	0.042	0.273	90	7.7	477	21.3	9	0.03	<20	1.7	32.4
	Qtr 3 2014	1.21	0	0.196	<0.138	20	7.7	490	17.4	8	<0.15	<20	3.7	23
	Qtr 2 2014	1.36	0	0.107	0.194	1203	7.4	507	21.4	6	<0.15	<20	5	20.9
	Qtr 1 2014	0.69	0	0.037	<0.138	0	7.5	492	20.2	7	<0.15	79.6	3.7	21.5
WELL 16 D	Qtr 4 2014	0.27	10	0.089	2.111	50	7.5	485	22.9	8	0.02	<20	1.7	25.9
	Qtr 3 2014	0.56	0	0.106	<0.138	148	7.4	490	18.3	9	<0.15	80.3	3.3	21.9
	Qtr 2 2014	4.08	0	7.386	<0.138	-	7	497	21.4	6	<0.15	8672	5.9	25
	Qtr 1 2014	2.98	0	7.394	0.227	10460	6.9	476	13.9	8	<0.15	8557.8	4.5	27.7
WELL 17 S	Qtr 4 2014	4.62	40	7.5	0.541	24201	7	397	16.4	8	1.4	<20	4.7	26.6
	Qtr 3 2014	4.89	10	9.21	<0.138	10110	6.9	506	14.1	2	<0.15	13083	7.6	29.3
	Qtr 2 2014	1.56	0	0.381	4.502	291	7.6	482	16	6	<0.15	96.8	2.4	28.5
\A/FI! 47.5	Qtr 1 2014	1.04	0	0.283	<0.138	10	7.4	503	17.4	9	<0.15	296.6	4.4	28.3
VVELL 1/L	Qtr 4 2014	0.57	0	0.32	0.25	0	7.4	492	17.4	7	0.05	<20	2.1	29.7
	Qtr 3 2014	0.62	0	0.28	<0.138	4	7.5	509	15.4	9	<0.15	305.4	3.6	30
	Qtr 2 2014	1.04	0	0.067	<0.138	980	7.6	492	14.4	8	<0.15	157.2	5	29.3
WELL 18	Qtr 1 2014 Qtr 4 2014	1.49	0	0.045	0.161	0	7.1	674	84.5	8	<0.15	<20	2.7	32.7
WALLE TO		0.48	0	0.046 0.048	0.139	0 50	7.4	474	16.4	8 9	0.02	<20	2.1	30
	Qtr 3 2014 Qtr 2 2014	2.39	0	0.048	<0.138	687	7.7 7.3	495 781	12.4 125.2	8	<0.15 <0.15	72.1 <20	4.6	30.4 35.7
	Qtr 1 2014	0.91	0	0.038	<0.138	50	7.5	394	7.2	9	<0.15	<20	3.4	22.4
IGV	Q(1 1 2014	NAC	0	0.15	NAC	0	7.5	1000	30	NAC	0.0005	0.200	5	150
Excee	dance													
NOTES														
1	Sub-contr	act analysi	s denoted	by *										
2				the limit o	f detectio	n								
3	NAC- No	Abnorma	l Change											

The following graphs detail all groundwater exceedances.


Graph 5.2


Graph 5.3

Graph 5.4



Graph 5.5

Page 11 of 20

Graph 5.6

Graph 5.7

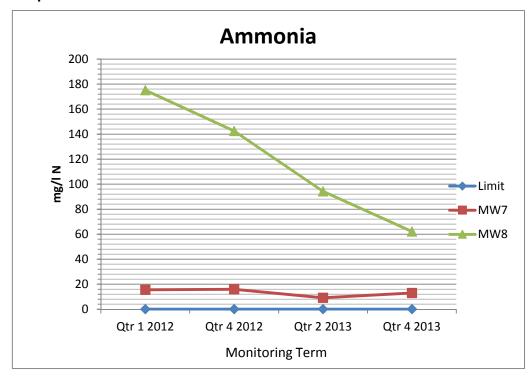
Page 12 of 20

As detailed in the above graphs, there were numerous ground water exceedances at this landfill during 2014.

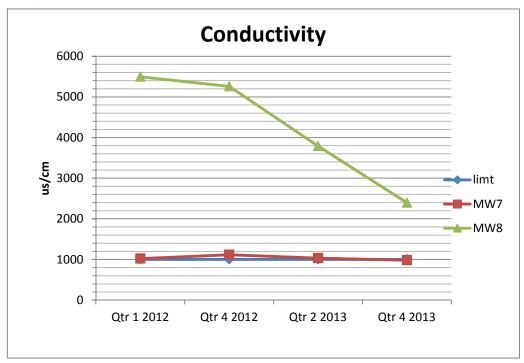
Exceedances occurred in the following parameters:

- Escherichia coli: Elevated levels of this parameter were found in samples MW3, MW4, MW11S, MW11D, MW16S, MW16D & MW17S. It is not uncommon for wells in the vicinity of a landfill to be contaminated with *E. coli*. It is also attributed to influx of contamination from other sources such as septic tanks, slurry spreading and animal faecal contaminations. It should be noted that there were numerous horses present on the landfill for the most part of 2014 and as such the E.Coli contamination cannot be solely attributed to the landfill itself.
- Ammonia: Elevated levels of this parameter were prevalent during 2014. Elevated levels of ammonia are strongly associated with pollution from waste water treatment systems and so contamination of these wells by the landfill cannot be definitively concluded.
- Total Coliforms: elevated levels of this parameter can be attributed to contamination from organic matter; therefore exceedances in this parameter may not be directly linked to the landfill.
- Iron: Although increased iron levels can be attributed to contamination from landfills,
 it is also strongly associated with the native soils of the Cavan area and therefore
 cannot be directly linked to the landfill.
- Chloride: Historical results obtained from this parameter show frequent exceedances. However, Contamination of well 11S from the landfill is impossible due to MW11S being located up gradient of the landfill. Therefore an alternative source of chloride contamination should be investigated in this instance.
- Potassium: Elevated levels of potassium can be associated with landfill
 contamination but it can also be associated with contamination from agricultural
 sources such as fertilizers. Therefore direct contamination from the landfill cannot be
 concluded.
- Cyanide: An exceedance in this parameter was encountered in quarter 3 2014 at well MW11D, MW17S and MW17D. Again contamination of well MW11D form the landfill is not possible as this well is situated up gradient from the landfill and so cannot be attributed to the landfill. Repeat analysis of all landfill groundwater wells revealed that there were no exceedances.

5.3 Leachate Monitoring


Leachate monitoring is carried out biannually in accordance with the licence.

Re-occurring exceedances are displayed below. Results in Hatched Red indicate where the interim guide value has been exceeded when compared to limits stipulated by the Environmental Protection Agency.


Table 5.3 Leachate Summary Results

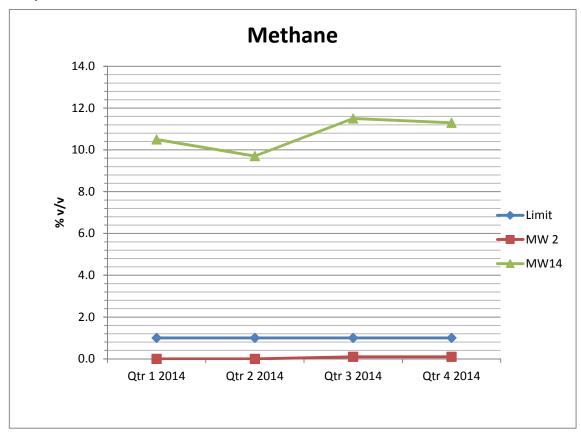
	Parameter	Ammoni a	TON	рН	Cond	BOD	COD	CI
	Units	mg/l N	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l
WELL MW 7	Qtr 4 2014	13	<0.69	6.9	980	7	136	19.9
	Qtr 2 2014	9.238	<0.690	7	1031	11	115	14.9
	Qtr 4 2013	15.956	0.717	6.7	1117	20	225	15.4
	Qtr 2 2013	15.597	<0.69	7	1022	7	225	<13
WELL MW 8	Qtr 4 2014	62	< 0.69	7.2	1397	64	151	45
	Qtr 2 2014	32.119	<0.690	7.3	1393	36	203	29.4
	Qtr 4 2013	48.217	<0.69	7.3	1467	40	215	27
	Qtr 2 2014	32.78	<0.69	7.5	1237	27	342	24.7
Interim Guide Values		0.15	NAC		1000			200

Graph 5.8

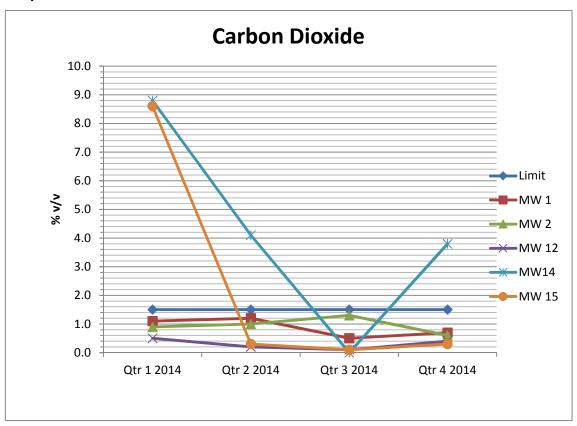
Graph 5.9

As can be seen from the above figures the conductivity reading at this landfill remain steady and are typical of those associated with a mature landfill.

Results obtained for ammonia at these wells are elevated in comparison to Interim Guide Values for groundwater. Although ammonia is associated with leachate, it is also strongly associated with agricultural activities such as manure spreading, an activity which is prevalent in the surrounding area. As such the elevated levels cannot be solely attributed to the landfill at this time.


5.4 Gas Emissions

Landfill gas was monitored at five locations both within and outside the landfill mass. The following table details all results during 2014.


Table 5.4 Gas Emissions Summary Results

М	ethod	GA 2000	GA 2000	GA 2000	GA 2000	GA 2000	
Dar	ameter	СП	CO		цc	Barometric	
Pal	ameter	CH ₄	CO ₂	02	H ₂ S	Pressure	
ι	Jnits	% v/v	% v/v	%	PPM	mb	
Client							
Ref Qtr		-	-	-	-	-	
MW 1	Qtr 1 2014	0	1.1	20	0	995	
	Qtr 2 2014	0	1.2	19.3	0	999	
	Qtr 3 2014	0.1	0.5	20	996	0	
	Qtr 4 2014	0.1	0.7	19.8	0	999	
MW 2	Qtr 1 2014	0	0.9	20.1	0	995	
	Qtr 2 2014	0	0.8	19.7	0	999	
	Qtr 3 2014	0.1	0.4	20.6	996	0	
	Qtr 4 2014	0.1	0.4	20.6	0	999	
MW 12	Qtr 1 2014	0	0.5	20.5	0	995	
	Qtr 2 2014	0	0.3	20.9	0	999	
	Qtr 3 2014	1.1	1.2	20.3	994	0	
	Qtr 4 2014	1.4	1.3	20.3	0	999	
MW 14	Qtr 1 2014	10.5	8.8	15.3	0	995	
	Qtr 2 2014	9.7	8.4	15.6	0	999	
	Qtr 3 2014	11.5	9.9	13.3	995	0	
	Qtr 4 2014	11.3	10	14.1	0	999	
MW 15	Qtr 1 2014	9.2	8.6	16	0	995	
	Qtr 2 2014	9.7	8.4	15.6	0	999	
	Qtr 3 2014	12.6	14.5	9.6	994	0	
	Qtr 4 2014	12.7	15.4	10.4	0	999	

Graph 6.0

Graph 6.1

Gas Monitoring on the site reveals typical low levels of Methane & Carbon Dioxide and higher levels of Oxygen. There were no exceedances in licence limits for wells located outside the waste mass. The results are typical of a closed landfill.

6.0 SUMMARY OF RESULTS AND INTERPRETATION OF ENVIRONMENTAL MONITORING

As reported in section 4 there were a number of elevations recorded in 2014. Included in Appendix C is a copy of the quarter 4 monitoring results as reported by Monitoring Company Boylan Engineering. We are satisfied that we are carrying out the environmental monitoring as specified in the Waste Licence. We are also satisfied that there are no major environmental impacts associated with this facility. We will continue to monitor and report as per the licence requirement.

7.0 RESOURCE & ENERGY CONSUMPTION SUMMARY

As there is in-sufficient gas produced to run a gas flare or engine there is no use for the gas resource on site. There is no energy consumed on site.

8.0 REPORT ON RESTORATION OF FACILITY

The site is fully restored and the cap intact. There were horses grazing on the site during 2014.

9.0 ESTIMATED ANNUAL & CUMULATIVE QUANTITIES OF LANDFILL GAS EMITTED FROM THE FAICILITY

This information is reported in the PRTR Report attached in Appendix A. The estimated quantity of Methane released is 33,700kgs/yr. Page one from the Annual Gas Survey is also presented in Appendix A.

10.0 FULL TITLE & WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY THE LICENSEE IN THE YEAR WHICH RELATES TO THE FACILITY OPERATION

There was no change to or development of any procedures undertaken by the licensee or monitoring contractor in 2014.

11.0 REPORTED INCIDENTS AND COMPLAINTS SUMMARY

There were no incidences in the reporting period 2014. There were no complaints received by the EPA or the Local Authority regarding this facility in the reporting period 2014.

12.0 REVIEW OF NUISANCE CONTROLS

As there are no known nuisances associated with this site there are no nuisance controls in place for parameters such as noise or vermin. There is no odour detectable from the site and as these are the main nuisances associated with landfills the licensee has not reviewed the controls. This is backed up by the absence of any complaints regarding the facility. However if any nuisances arise at the facility the licensee will deal with them using appropriate measures and procedures.

13.0 REPORT ON TRAINING OF STAFF

Landfill Operations Manager Sinead Fox- for Cavan County Council deals with in full with any issues identified by the Agency Inspectors or any other party. Sinead has been fully trained by the FAS Waste Management Training Course, carries a Safe Pass and has been trained in Landfill Gas Management.

Table 13.1 Management Structure 2014

Position	Name	Duties
Director of Services, Environment	Eoin Doyle	Oversee and assign responsibilities to staff regarding landfill
Senior Executive Officer	John Brannigan	Oversee general supervision, monitoring and reporting of the site.
Landfill Operations Manager	Sinead Fox	Responsible for general supervision, monitoring and reporting of the site.

Contact Person for Sanitary Authority for 2014/2015:

John Brannigan
Senior Executive Officer
Waste Management Section
Cavan County Council
Farnham Street
Cavan

14.0 ANY OTHER ITEMS SPECIFIED BY THE AGENCY

As per the licence we have included in Appendix B a copy of the most recent Map of the site showing all Monitoring locations.

| PRTR# : W0093 | Facility Name : Ballyjamesduff Landfill | Filename : Copy of W0093_2014.xls | Return Year : 2014 |

09/04/2015 14:34

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2014 1. FACILITY IDENTIFICATION Parent Company Name | Cavan County Council Facility Name | Ballyjamesduff Landfill |
PRTR Identification Number | W0093 |
Licence Number | W0093-01 Classes of Activity

No. | class_name |
- | Refer to PRTR class activities below Address 1 Derrylurgan Address 2 Ballyjamesduff Address 3 Address 4 Cavan Country Ireland
Coordinates of Location -7.20884 53.8687
River Basin District IEGBNISH
NACE Code 3821 NACE Code | 3821

Main Economic Activity | Treatment and disposal of non-hazardous waste

AER Returns Contact Name | Sinead Fox

AER Returns Contact Email Address | stox@cavancoco.ie

AER Returns Contact Position | Landfill Operations Manager

AER Returns Contact Telephone Number | 049-4378418

AER Returns Contact Fax Number | AER Returns Contact Fax Number | Production Volume | Prod Production volume
Production Volume Units
Number of Installations
Number of Operating Hours in Year
Number of Employees
User Feedback/Comments Web Address 2. PRTR CLASS ACTIVITIES
Activity Number
5(c)
50.1 **Activity Name** Installations for the disposal of non-hazardous waste General 3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

Is it applicable? No
Have you been granted an exemption?

If applicable which activity class applies (as per
Schedule 2 of the regulations)?

Is the reduction scheme compliance route being WASTE IMPORTED/ACCEPTED ONTO SITE
 Do you import/accept waste onto your site for onsite treatment (either recovery or disposal Guidance on waste imported/accepted onto site

y or disposal activities) ? No This question is only applicable if you are an IPPC or Quarry site

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

RELEASES TO AIR				Please enter all quantities in this section in KGs							
	POLLUTANT				METHOD		QUANTITY				
					Method Used						
	No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
	03	Carbon dioxide (CO2)	С	OTH	GASSIM	0.0	93600.0	0.0	93600.0		
	01	Methane (CH4)	С	OTH	GASSIM	0.0	33700.0	0.0	33700.0		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

SECTION B. REMAINING FRIR FOLLOTANT	3						
	Please enter all quantities in this section in KGs						
		METHOD	QUANTITY				
			Method Used				
No. Annex II	Name	M/C/E Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
				0.0		0.0	0 00

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

RELEASES TO AIR				Please enter all quantities in this section in KGs				
POLLUTANT			METHOD			QUANTITY		
			Method Used					
Pollutant No.	Name	M/C/E Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
				0.0		0.0) 0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their clinities to accompany the fligures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KGby for Sciction A: Sector specific PRTR pollutains above. Please complete the table only the complete of table by the complete of table on the complete of table of table of the complete of table of table of table of table of the complete of table of ta

Link to previous years emissions data

andfill:	Rallyiamesduff Landfill

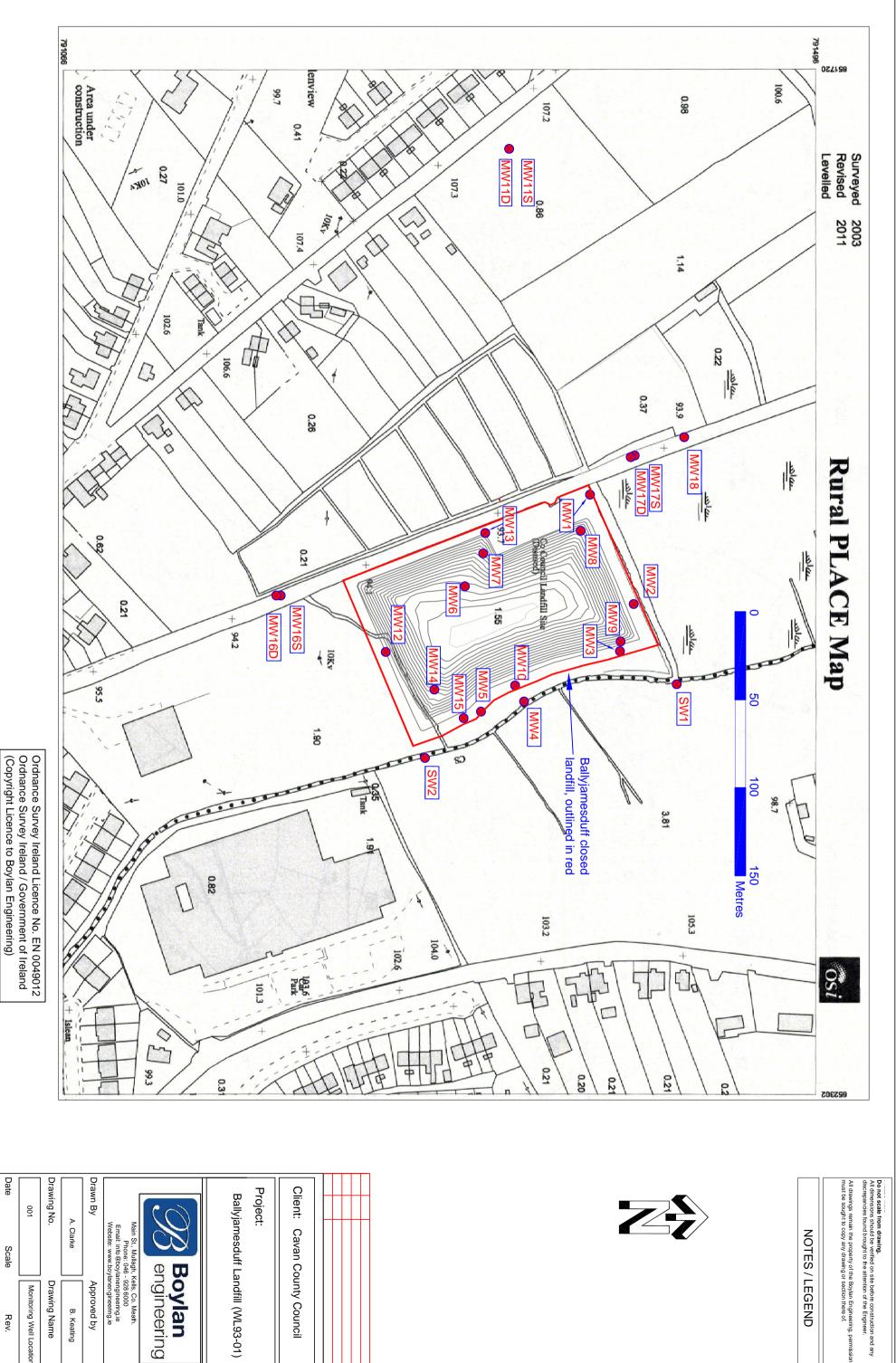
Lanum.	Dailyjamesuun Lanuliii					
Please enter summary data on the quantities of methane flared and / or utilised			Meti	hod Used		
				Designation or	Facility Total Capacity m3	l .
	T (Total) kg/Year	M/C/E	Method Code	Description	per hour	l .
Total estimated methane generation (as per						
site model)	33700.0	С	OTH	GASSIM	N/A	
Methane flared	0.0					(Total Flaring Capacity)
Methane utilised in engine/s					0.0	(Total Utilising Capacity)
Net methane emission (as reported in Section A						
above)	33700.0	С	OTH	GASSIM	N/A	1

A survey of landfill sites to determine the quantity of methane flared and or recovered in utilisation plants for 2014

Please choose from the drop down menu the license number for your site	W0093 ▼	
Please choose from the drop down menu the name of the landfill site	Ballyjamesduff Landfill	-
Please enter the number of flares operational at your site in 2014	0 🔻	
Please enter the number of engines operational at your site in 2014	a 🔻	
Total methane flared	0 kg/year	
Total methane utilised in engines	s 0 kg/year	

Please note that the closing date for reciept of completed surveys is 31/03/2015

Introduction


The Office of Climate Licensing and Resource Use (OCLR) of the Environmental Protection Agency acts as the inventory agency in Ireland with responsibility for compiling and reporting national greenhouse gas inventories to the European Commission and the United Nations Framework Convention on Climate Change. In addition to meeting international commitments Ireland's national greenhouse gas inventory informs national agencies and Government departments as they face the challenge to curb emissions and meet Ireland's targets under the Kyoto Protocol. The national inventory also informs data suppliers, making them aware of the importance of their contributions to the inventory process and a means of identifying areas where input data may be improved.

It is on this basis that the Environmental Protection Agency is asking landfill operators to partake in this survey so that the most uptodate information on methane flaring and recovery in utilisation plants at landfills sites is used in calculating the contribution of the waste sector to national greenhouse gas emissions

The Environmental Protection Agency wishes to thank you for partaking in this survey. If you have any questions about the survey and how to complete it please view the "Help sheet" worksheet. If however, your query is not answered by viewing the "Help sheet" worksheet please contact:

LFGProject@epa.ie

Once completed please send the completed file as an attachment clearly stating the name and or license number of the landfill site (e.g. W000 Xanadu landfill_2014) to: LFGProject@epa.ie

Ballyjamesduff Landfill (WL93-01)

06.04.2012

1:2000

000

001

Monitoring Well Locations

Rev.

A. Clarke

B. Keating

Drawing Name

in St., Mullagh, Kells, Co. Meath. Phone: 046 - 928 6000 mall: info @boylanengineering.le bsite: www.boylanengineering.le

Approved by

engineering Boylan

NOTES / LEGEND

GROUND WATER MONITORING REPORT FOR BALLYJAMESDUFF LANDFILL W0093-01

Client: Cavan County Council

Site Location: Derrylurgan, Ballyjamesduff

Report No.: CCC-03-01-04-04-Rev 0

Produced by: Brona Keating, BSc, P.Grad.Dip. Environmental Eng.

Approved by: Date: 24th January 2015

Cathal Boylan, BEng, CEng, MIEI

CHARTERED ENGINEER

Boylan Engineering

Company Reg. 430482

Address: Main St., Mullagh, Kells Co. Meath. **Phone:** 046 – 928 6000 / 087 – 820 5470

Fax: 046 – 928 6002

Email: info@boylanengineering.ie **Web:** www.boylanengineering.ie

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2015)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Environmental Monitoring at Ballyjamesduff Landfill (W0093-01), Derrylurgan, Ballyjamesduff, Co Cavan for quarter three and four 2014.

Brona Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Environmental Sampling
 - 2.2 Laboratory Analysis
 - 2.3 Monitoring Locations
 - 2.4 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

List of Tables

- 1.0 Ground Water 03rd Quarter Monitoring
- 2.0 Ground Water 04th Quarter Monitoring

Appendix

- 1.0 Historical Data
- 2.0 Analysis Methods
- 3.0 Field Sheets
- Lab Reports
- Landfill Map

1. 0 INTRODUCTION

Ballyjamesduff landfill is situated approximately 600m from Ballyjamesduff town centre in the town land of Derrylurgan. The site was in operation from the 1960's and comprises some 1.62 hectares. The site was originally peat land which was stripped for commercial purposes and was then operated as a traditional landfill until its closure in March 2002. A waste licence was issued by the Environmental Protection Agency after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the groundwater, sampling programme conducted on site and also summarises findings and analytical results for quarter three and four 2014.

The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Bailieborough landfill is situated in the R2¹ Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R2¹ Zones are acceptable subject to guidance in the EPA Landfill Design Manual or conditions of a waste licence - (EPA, groundwater protection Responses for Landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of Leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

2. 0 METHODOLOGY

2.1 Environmental Sampling

The following procedure is conducted by Boylan Engineering to ensure accurate groundwater monitoring:

- ISO 5667: Guidance on sampling of groundwaters is adhered to.
- Prior to sampling, the depth of water in groundwater wells is measured by dipping.
 Dipping the wells before sampling allows for calculation of the volume of water in the well. This data is recorded on the field sheet for volume calculation which is presented in appendix 3.
- Once the volume was calculated the boreholes are purged three times their volume before sampling.
- Sampling is conducted using a Waterra inertial lift pump and associated tubing, pumping water directly from the borehole to the appropriate sampling bottles.
- Designated tubing is used at each location.
- Having obtained a representative sample the following parameters are measured on-site using a Hanna HI 98129 combination waterproof high accuracy.
 - Conductivity
 - Temperature
 - o pH
- Boylan Engineering operate a Sample Submission/Chain of Custody form, which accompanies the samples at all times. These forms are located in the appendix 4.

2.2 Laboratory Analysis

- Samples are sent to Environmental Laboratory Service (ELS) (Ireland) for analysis
 of the required parameters in designated cool boxes with ice packs. These boxes
 insure that samples are maintained at a consistent temperature between 0 °C and
 4°C on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0 °C and 4 °C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 3.

2.3 Monitoring Locations

		Q	uarter 3 2014		
Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co-Ordinates
MW1	Gas	94.92	91.72	3.2	N291352.31 E252020.68
MW2	Gas	92.92	90.82	2.1	N291377.38 E252082.84
MW3	GW	94.39	92.99	1.4	N291369.28 E252109.44
MW4	GW	93.65	#VALUE!	-	N291309.78 E252129.14
MW5	Gas	92.84	-	n/a	TBC
MW6	Leachate	100.71	-	-	TBC
MW 7	Leachate	97.54	-	-	TBC
MW8	Leachate	96.56	-	-	N291346.99 E252041.22
MW9	GW	95.69	#VALUE!	-	N291369.67 E252103.93
MW10	GW	93.95	91.99	2.0	N291314.86 E252138.12
MW11S	GW	TBC	-	3.7	TBC
MW11D	GW	TBC	-	12.6	TBC
MW12	Gas	94.38	-	n/a	N291236.30 E252110.10
MW13	Gas	94.69	-	n/a	TBC
MW14	Gas	98.77	-	n/a	N291263.92 E252131.54
MW15	Gas	93.11	-	n/a	TBC
MW16S	GW	94.02	93.02	1.0	N252076.89 E291174.65
MW16D	GW	94.16	93.86	0.3	N252077.36 E291173.27
MW17S	GW	93.59	92.34	1.3	N251997.04 E291377.19
MW17D	GW	93.63	93.27	0.4	N251997.80 E291376.00
MW18	GW	93.5	93.5	0.0	N251986.57 E291425.39
SW1	SW	n/a	-	n/a	TBC
SW2	SW	n/a	-	n/a	TBC
Сар	SW	n/a	-	n/a	TBC

			uarter 4 2014		
Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co-Ordinates
MW1	Gas	94.92	91.72	3.2	N291352.31 E252020.68
MW2	Gas	92.92	90.82	2.1	N291377.38 E252082.84
MW3	GW	94.39	92.91	1.5	N291369.28 E252109.44
MW4	GW	93.65	92.45	1.2	N291309.78 E252129.14
MW5	Gas	92.84	-	n/a	TBC
MW6	Leachate	100.71	-	-	TBC
MW 7	Leachate	97.54	-	-	TBC
MW8	Leachate	96.56	-	-	N291346.99 E252041.22
MW9	GW	95.69	92.37	3.3	N291369.67 E252103.93
MW10	GW	93.95	91.92	2.0	N291314.86 E252138.12
MW11S	GW	TBC	-	3.3	TBC
MW11D	GW	TBC	-	10.8	TBC
MW12	Gas	94.38	-	n/a	N291236.30 E252110.10
MW13	Gas	94.69	-	n/a	TBC
MW14	Gas	98.77	-	n/a	N291263.92 E252131.54
MW15	Gas	93.11	-	n/a	TBC
MW16S	GW	94.02	93.12	0.9	N252076.89 E291174.65
MW16D	GW	94.16	93.86	0.3	N252077.36 E291173.27
MW17S	GW	93.59	92.78	0.8	N251997.04 E291377.19
MW17D	GW	93.63	93.43	0.2	N251997.80 E291376.00
MW18	GW	93.5	93.5	0.0	N251986.57 E291425.39
SW1	SW	n/a	-	n/a	TBC
SW2	SW	n/a	-	n/a	TBC
Сар	SW	n/a	-	n/a	TBC

2.4 Weather Report

Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind	Maximum Gust	Sunshine
	(mm)	Temp	Temp	(°C)	Speed (knots)	(if >= 34 knots)	(hours)
		(°C)	(°C)		,	,	
23/09/2014	4.8	14.5	11.2	8.1	5		
REPORTS FR	OM BALLY	HAISE (A)					
Date	Rainfall	Max	Min	G rass Min	Mean	Maximum	Sunshine
				Temp	Wind	Gust	
	(mm)	Temp	Temp	(°C)	Speed (knots)	(if >= 34 knots)	(hours)
		(°C)	(°C)				
18/11/2014	0.1	12.2	5.2	0.1	3.6		

3.0 SUMMARY OF RESULTS

Table 1.0 03rd Quarter Ground water monitoring 2014

	4010 110						_											
Report Number		79056																
Monitoring Da	ite:	23.09.14																
Meth	nod		:	Site Tests			тос	Ammonia	AQ2-UP1	Titr	ralab	Titralab	AQ2	-UP2	DO	Total Cyanide High	Total Phosphorus- TP	PhenoisTot al
Method N	lumber			Site Tests			DEFAULT	EW003	EW154M		EW153		EW1	L54M	EW043	DEFAULT	EW146	DEFAULT
Param	eter	Sample temperature (to be done onsite)	Cond	рН	Water Level from TOC	Visual Inspection	тос	Ammonia	TON (as N)(calc)	рН	Cond	Alkalinity Total (R2 pH4.5)	Chloride	Sulphate	Dissolved Oxygen	Total Cyanide High	Total Phosphorus- TP	Phenols- Total
Uni	ts	Deg C	us/cm	pH units	Meter's	-	mg/l	mg/l N	mg/l N	pH Units	us/cm	mg/L CaCO3	mg/l	mg/l	mg/l	ug/L	mg/l P	mg/L
Limit of De	etection	-	-	-	-	-	0.25	0.007	0.138	0.3	25	10	2.6	1.0	1.0	10	0.01	0.15
Date Testing				23.9.14								24.9.	.14					
ELS Ref	Client Ref																	
79056/001	GW 3	-	968	7.1	1.4	Heavy Silt	95.7	49.354	<0.138	7	964	439	22.5	18.3	<1	<10	3.37	<0.15
79056/002	GW 10	-	1575	6.89	1.96	Heavy Silt	23.74	57.398	0.276	6.8	1560	616	98.6	32.8	<1	<10	2.66	<0.15
79056/003	GW 11S	12.7	1263	7.15	3.7	Straw	1.82	0.051	1.256	7.1	1252	256	296.2	39.3	6	<10	0.6	<0.15
79056/004	GW 11D	11.9	406	7.6	12.6	Clear	0.76	0.024	<0.138	7.5	397	202	6.7	15.5	4	19	0.04	<0.15
79056/006	GW 16 S	13	502	7.82	1	Straw	1.21	0.196	<0.138	7.7	490	192	17.4	57	8	<10	1	<0.15
79056/007	GW 16D	10.5	507	7.49	0.3	Clear	0.56	0.106	<0.138	7.4	490	193	18.3	67.3	9	<10	0.03	<0.15
79056/008	GW 17S	13.2	523	7.26	1.25	Straw	4.89	9.21	<0.138	6.9	506	235	14.1	21.6	2	15	2.39	<0.15
79056/009	GW 17D	10.9	528	7.66	0.36	Clear	0.62	0.28	<0.138	7.5	509	241	15.4	27.1	9	30	0.05	<0.15
79056/005	GW 18	11	509	7.81	0	Clear	0.91	0.048	<0.138	7.7	495	237	12.4	30	9	<10	0.05	<0.15
IG\	/		1000	≥6.5 and ≤9.5			NAC	0.15	NAC	≥6.5 and ≤9.5	1000	NAC	30	200	NAC	10	-	-
Meth	nod	Coliforms	Coliforms	Ion Chromatogr aphy	Residue on Evaporation	Metals- Total						Metals-Di	issolved					
Method N	lumber	MIC13	33	EW137	EW060		,					EM130						
Param	eter	Total Coliforms	E. Coli	Fluoride	Residue on Evaporation	Chromium- Total	Iron Dissolved	Manganese Dissolved	Potassium Dissolved	Sodium Dissolved	Cadmium- Dissolved	Calcium- Dissolved	Copper- Dissolved	Lead- Dissolved	Magnesium- Dissolved	Mercury- Dissolved	Zinc- Dissolved	Boron- Dissolved
Uni	ts	MPN/100ml	MPN/100ml	mg/L	mg/L	ug/L	ug/L	ug/L	mg/l	mg/l	ug/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	mg/L
Limit of De	etection	0	,	0.1	10.0	1.0	20.0	0.001	0.2	0.5	0.1	1.0	0.00		0.3	0.02	1.0	0.02
Date Testing	gInitiated			!		!	!	!		24.09.14			!	!				
	Client Ref																	
79056/001	GW 3	8400	0	0.11	4432	94.5	159.7	414.5	15.8	29.7	0.1	113.3	<0.003	<0.3	18.3	<0.02	4.9	0.63
79056/002	GW 10	900	0	<0.1	2596	109.1	1106.4	1332	33.6	72.9	0.1	174.8	<0.003	<0.3	32.6	<0.02	4.3	0.42
79056/003	GW 11S	1920	40	<0.1	2734	100.2	24.3	70.3	3.2	46	0.2	155.4	<0.003	<0.3	45.4	<0.02	10.9	<0.02
79056/004	GW 11D	10	0	0.21	268	<3	<20	149.6	2.4	22.5	0.1	54.3	<0.003	<0.3	12.2	<0.02	14.1	<0.02
79056/006	GW 16 S	20	0	0.19	2500	235.5	<20	1033.1	3.7	23	0.1	67.9	<0.003	<0.3	12.1	<0.02	7.6	<0.02
79056/007	GW 16D	148	0	0.19	368	<3	80.3	955.9	3.3	21.9	0.1	69	<0.003	<0.3	12.4	<0.02	10.3	<0.02
79056/008	GW 17S	10110	10	<0.1	4174	785.8	13083	784.1	7.6	29.3	0.1	59.7	<0.003	0.4	11.6	<0.02	13.3	0.02
79056/009	GW 17D	4	0	0.11	372	<3	305.4	1193	3.6	30	0.1	66.3	<0.003	<0.3	15.5	<0.02	19.9	0.02
79056/005	GW 18	50	0	<0.1	374	6.3	72.1	600.6	3	30.4	0.1	57.7	<0.003	<0.3	13.6	<0.02	17.1	0.02
IG\		0	0	1	-	30	200	50	5	150	0.005	200	0.03	10	50	1	100	1
Exceed																		
NOTES																		
	Sub-contra	ct analysis denote	d bv *	1	İ													
	Jub Continu																	
2		ntration was below		detection														
	ND - Conce			detection														
2	ND - Conce NAC- No Al	ntration was below		detection														

Table 1.0 04th Quarter Ground water monitoring 2014

		70400																
Report Number		76483 18.11.14																
Monitoring Da		18.11.14	Site	Tests			тос	Coliforms	Ammonia	AQ2-UP1	Coliforms	Titra	alab	AQ2-UP2	DO	Total Phosphorus- TP	AQ2-UP2	Titralab
Method	Number		Site	Tests			DEFAULT	MIC133	EW003	EW154M	MIC133	EW	153	EW154M	EW043	EW146	EW154M	EW153
Parar	neter	Sample temperature (to be done onsite)	Cond	рН	Water Level from TOC	Visual Inspection	тос	E. Coli	Ammonia	TON (as N)(calc)	Total Coliforms	рН	Cond	Chloride	Dissolved Oxygen	Total Phosphorus- TP	I Sulnhate I	Alkalinity Total (R2 pH4.5)
Un	nits	Deg C	us/cm	pH units	Meter's	-	mg/l	MPN/100ml	mg/l N	mg/l N	MPN/100ml	pH Units	us/cm	mg/l	mg/l	mg/l P	mg/l	mg/L CaCO3
Limit of [Detection	-	-	-	-	-	0.25		0.007	0.138	0	0.3	25	2.6	1.0	0.01	1.0	10
Date Testin	ng Initiated		18.1	11.14							,	19	.11.14					
ELS Ref	Client Ref																	
76483/001	MW 3	11.4	965	7.15	1.48	Heavy Silt	18.41	0	57	0.151	24201	7.1	948	26.9	<1	3.97	35.1	509
76483/002	MW 4	11.6	529	7.68	1.2	Heavy Silt	12.44	140	0.13	0.609	8660	7.6	220	14.9	8	0.58	25.3	94
76483/003	MW 9	11.2	962	7.05	3.32	Heavy Silt	13.51	0	38	<0.138	120	6.9	958	14.8	<1	0.58	12.9	547
76483/004	MW 10	11	1623	5.06	2.03	Heavy Silt	22.01	0	120	0.154	160	6.9	1611	132.6	<1	0.53	47.4	787
76483/005	MW 11S	11.4	690	7.16	3.3	Straw	1.67	20	0.084	0.67	60	7	686	142.1	9	0.03	28.2	210
76483/006	MW 11D	10.8	405	7.81	10.8	Clear	0.76	120	0.043	0.357	190	7.7	396	9.2	8	0.05	16.4	202
76483/007	MW 16S	11.2	489	7.83	0.9	Straw	1.61	10	0.042	0.273	90	7.7	477	21.3	9	0.03	57.5	194
76483/008	MW 16D	10.1	494	7.55	0.3	Clear	0.27	10	0.089	2.111	50	7.5	485	22.9	8	0.02	72.3	178
76483/009	MW 17S	10.8	404	7.16	0.81	Straw	4.62	40	7.5	0.541	24201	7	397	16.4	8	1.4	27.8	177
76483/010	MW 17D	10.5	501	7.49	0.2	Clear	0.57	0	0.32	0.25	0	7.4	492	17.4	7	0.05	31.6	233
76483/011	MW 18	10.3	478	7.51	0	Clear	0.48	0	0.046	0.139	0	7.4	474	16.4	8	0.02	32.5	223
IG	βV		1000	≥6.5 and ≤9.5			NAC	0	0.15	NAC	0	≥6.5 and ≤9.5	1000	30	NAC	-	200	NAC
		Ion Chromatography Residue on Metals-																
Met	thod	Ion Chromatography	Evaporation	Metals- Total						Metals-	Dissolved						Phenols- Total	Total Cyanide High
Met Method		Ion Chromatography EW137		1							Dissolved						1	1 ' 1
Method			Evaporation	Total	lron Dissolved	Manganese Dissolved	Potassium Dissolved	Sodium Dissolved	Cadmium- Dissolved			Lead- Dissolved	Magnesium- Dissolved	Mercury- Dissolved	Zinc- Dissolved	Boron- Dissolved	Total	High
Method	Number	EW137 Fluoride mg/L	Ewo60 Residue on Evaporation mg/L	Total EM130 Chromium- Total ug/L	Dissolved ug/L	1 ~	1	Dissolved mg/l	Dissolved ug/L	EN Calcium-	Copper-Dissolved	Dissolved ug/L	1 -	1 '	Dissolved ug/L	Dissolved mg/L	Total Default Phenols-	High Default Total Cyanide
Method Parar Ur Limit of I	Number neter nits Detection	EW137 Fluoride	Ewo60 Residue on Evaporation	Total EM130 Chromium- Total	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Calcium- Dissolved	Copper- Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Default Phenols- Total	High Default Total Cyanide High
Method Parar Ur Limit of I Date Testin	Number meter nits Detection ng Initiated	EW137 Fluoride mg/L	Ewo60 Residue on Evaporation mg/L	Total EM130 Chromium- Total ug/L	Dissolved ug/L	Dissolved ug/L	Dissolved mg/l	Dissolved mg/l	Dissolved ug/L	Calcium- Dissolved mg/L	Copper-Dissolved	Dissolved ug/L	Dissolved mg/L	Dissolved ug/L	Dissolved ug/L	Dissolved mg/L	Default Phenois- Total mg/l	High Default Total Cyanide High ug/L
Method Parar Ur Limit of I Date Testin ELS Ref	Number meter nits Detection ng Initiated Client Ref	Fluoride mg/L 0.1	Ewaporation EW060 Residue on Evaporation mg/L 10.0	Total EM130 Chromium- Total ug/L 1.0	Dissolved ug/L 20.0	Dissolved ug/L 0.001	Dissolved mg/l 0.2	Dissolved mg/l 0.5	Dissolved ug/L 0.1	Calcium- Dissolved mg/L 1.0	Copper- Dissolved mg/L 0.00	Dissolved ug/L 0.3	Dissolved mg/L 0.3	Dissolved ug/L 0.02	Dissolved ug/L 1.0	Dissolved mg/L 0.02	Default Phenols- Total mg/l 0.15	High Default Total Cyanide High ug/L 10
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001	Number meter nits Detection ng Initiated	Fluoride mg/L 0.1	Evaporation EW060 Residue on Evaporation mg/L 10.0	Total EM130 Chromium- Total ug/L 1.0	Dissolved ug/L 20.0	Dissolved ug/L 0.001	Dissolved mg/l 0.2	Dissolved mg/l 0.5	Dissolved ug/L 0.1	Calcium- Dissolved mg/L 1.0	Copper- Dissolved mg/L 0.00	Dissolved ug/L 0.3	Dissolved mg/L 0.3	Dissolved ug/L 0.02 <0.02	Dissolved ug/L 1.0	Dissolved mg/L 0.02	Phenols- Total mg/l 0.15	High Default Total Cyanide High ug/L 10
Method Parar Ur Limit of I Date Testir ELS Ref 76483/001 76483/002	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4	EW137 Fluoride mg/L 0.1 <0.1 <0.1	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1	Dissolved ug/L 20.0	Dissolved ug/L 0.001 690 4.6	Dissolved mg/l 0.2 14.3 4.3	Dissolved mg/l 0.5 35.2 10	Dissolved ug/L 0.1 <0.1 <0.1	Calcium- Dissolved mg/L 1.0	Copper- Dissolved mg/L 0.00 <0.003	Dissolved ug/L 0.3 0.4 0.8	Dissolved mg/L 0.3 17.8 3.7	Dissolved ug/L 0.02 <0.02 <0.02	Dissolved ug/L 1.0 4.5 9.9	Dissolved mg/L 0.02 0.62 0.02	Phenois- Total mg/l 0.15	High Default Total Cyanide High ug/L 10 22 <10
Method Parar Ur Limit of I Date Testir ELS Ref 76483/001 76483/002 76483/003	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9	EW137 Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5	Dissolved ug/L 20.0 18000 260 26	Dissolved ug/L 0.001 690 4.6 1700	Dissolved mg/l 0.2 14.3 4.3 12.6	Dissolved mg/l 0.5 35.2 10 22	Dissolved ug/L 0.1 <0.1 <0.1 <0.1 <0.1	Calcium- Dissolved mg/L 1.0 105.9 29.5 126.8	Copper- Dissolved mg/L 0.00 <0.003 0.003 <0.003	Dissolved ug/L 0.3 0.4 0.8 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8	Dissolved ug/L 0.02 <0.02 <0.02 <0.02 <0.02	Dissolved ug/L 1.0 4.5 9.9 8.5	Dissolved mg/L 0.02 0.62 0.02 0.08	Total Default PhenoIs-Total mg/I 0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.1	High Default Total Cyanide High ug/L 10 22 <10 <10
Method Parar Ur Limit of I Date Testir ELS Ref 76483/001 76483/002 76483/003	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9	Dissolved ug/L 20.0 18000 260 26 1500	Dissolved ug/L 0.001 690 4.6 1700 2400	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8	Dissolved mg/l 0.5 35.2 10 22 76.8	Ug/L 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Calcium- Dissolved mg/L 1.0 105.9 29.5 126.8 181.3	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003	0.4 0.8 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1	Dissolved ug/L 0.02 <0.02 <0.02 <0.02 <0.02 <0.02	ug/L 1.0 4.5 9.9 8.5 4	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38	Total Default PhenoIs-Total mg/I 0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.1	High Default Total Cyanide High ug/L 10 22 <10 <10 <10
Method Parar Ur Limit of I Date Testir ELS Ref 76483/001 76483/002 76483/003 76483/004 76483/005	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.17	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0	Dissolved ug/L 20.0 18000 260 26 1500 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2	Dissolved ug/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	Calcium- Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1	Copper-Dissolved mg/L 0.00 <0.003	0.4 0.3 0.3 0.4 0.8 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6	Dissolved ug/L 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Ug/L 1.0 4.5 9.9 8.5 4 8.2	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02	Total Default PhenoIs-Total mg/I 0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0	High Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10
Method Parar Ur Limit of I Date Testir ELS Ref 76483/001 76483/002 76483/003 76483/004 76483/005 76483/006	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S MW 11S MW 11D	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.3	Dissolved mg/l 0.5 0.5 35.2 10 22 76.8 31.2 22.9	Dissolved ug/L 0.1	Calcium- Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.	0.4 0.8 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9	Dissolved ug/L 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02	Total Default PhenoIs-Total mg/I 0.15 0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <	High Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001 76483/002 76483/004 76483/005 76483/006 76483/007	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S MW 11D MW 16S	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19 0.17	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185 270	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0 35.2	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150 <1	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.3 1.7	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2 22.9 32.4	Dissolved ug/L 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Calcium-Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6 65.5	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.003 <0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 0.003 <0.003 0.003	0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9 13.1	Dissolved ug/L 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 <	Dissolved ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7 5.3	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02 <0.02	Total Default PhenoIs-Total mg/I 0.15 0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <	High Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001 76483/002 76483/003 76483/005 76483/006 76483/007 76483/008	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S MW 11D MW 16S MW 16D	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19 0.17 0.18	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185 270 140	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0 35.2 <3.0	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20 <20 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150 <1 790	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.3 1.7 1.7	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2 22.9 32.4 25.9	O.1	Calcium-Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6 65.5 68.2	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003	0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9 13.1 13.8	Dissolved ug/L 0.02	Dissolved ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7 5.3 9.6	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.	Total Default PhenoIs-Total mg/I 0.15 0.15	High Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001 76483/002 76483/004 76483/005 76483/006 76483/007 76483/008 76483/009	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S MW 11D MW 16S MW 16D MW 17S	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19 0.17 0.18 <0.1	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185 270 140 435	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0 35.2 <3.0 19.9	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20 <20 <20 <20 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150 <1 790 410	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.3 1.7 1.7	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2 22.9 32.4 25.9 26.6	Dissolved ug/L 0.1 0.1	Calcium-Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6 65.5 68.2 47.7	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003	Dissolved ug/L 0.3 0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9 13.1 13.8 8.3	Dissolved ug/L 0.02	Dissolved ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7 5.3 9.6 6.8	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.	Total Default Phenois-Total mg/l 0.15 0.15	#igh Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001 76483/002 76483/004 76483/005 76483/006 76483/007 76483/008 76483/009 76483/010	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S MW 11D MW 16S MW 16D MW 17S MW 17D	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19 0.17 0.18 <0.1 0.1	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185 270 140 435 265	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0 35.2 <3.0 19.9 <3.0	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20 <20 <20 <20 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150 <1 790 410 1000	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.7 1.7 4.7 2.1	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2 22.9 32.4 25.9 26.6 29.7	Dissolved ug/L 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Calcium-Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6 65.5 68.2 47.7 61.5	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 0.003 <0.003 0.003 <0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9 13.1 13.8 8.3 15.3	Dissolved ug/L 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 <	Dissolved ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7 5.3 9.6 6.8 5	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02 <0.02 0.02 0.02 0.02 0.03	Total Default Phenois-Total mg/l 0.15 0.15	#igh Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001 76483/002 76483/005 76483/006 76483/007 76483/008 76483/009 76483/010 76483/011	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 115 MW 11D MW 16S MW 16D MW 17S MW 17D MW 18	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19 0.17 0.18 <0.1 0.1 <0.1 <0.1 <0.1	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185 270 140 435	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0 35.2 <3.0 19.9 <3.0 <3.0 <3.0	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20 <20 <20 <20 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150 <1 790 410 1000 640	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.7 1.7 2.1 2.1	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2 22.9 32.4 25.9 26.6 29.7 30	Dissolved ug/L 0.1 0.1	Calcium-Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6 65.5 68.2 47.7 61.5 56.9	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9 13.1 13.8 8.3 15.3 14.9	Dissolved ug/L 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Dissolved ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7 5.3 9.6 6.8 5	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02 <0.02 0.02 0.02 0.03 0.02	Total Default Phenois-Total mg/l 0.15 0.15	#igh Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001 76483/002 76483/005 76483/006 76483/007 76483/009 76483/010 76483/011 IG	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S MW 11D MW 16S MW 16D MW 17S MW 17D MW 17D MW 18	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19 0.17 0.18 <0.1 0.1	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185 270 140 435 265	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0 35.2 <3.0 19.9 <3.0	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20 <20 <20 <20 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150 <1 790 410 1000	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.7 1.7 4.7 2.1	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2 22.9 32.4 25.9 26.6 29.7	Dissolved ug/L 0.1 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Calcium-Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6 65.5 68.2 47.7 61.5	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 0.003 <0.003 0.003 <0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9 13.1 13.8 8.3 15.3	Dissolved ug/L 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 <	Dissolved ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7 5.3 9.6 6.8 5	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02 <0.02 0.02 0.02 0.02 0.03	Total Default Phenois-Total mg/l 0.15 0.15	#igh Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001 76483/002 76483/005 76483/005 76483/006 76483/008 76483/010 76483/011 Excee	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S MW 11D MW 16S MW 16D MW 17S MW 17D MW 17D MW 18	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19 0.17 0.18 <0.1 0.1 <0.1 <0.1 <0.1	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185 270 140 435 265	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0 35.2 <3.0 19.9 <3.0 <3.0 <3.0	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20 <20 <20 <20 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150 <1 790 410 1000 640	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.7 1.7 2.1 2.1	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2 22.9 32.4 25.9 26.6 29.7 30	Dissolved ug/L 0.1 0.1	Calcium-Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6 65.5 68.2 47.7 61.5 56.9	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9 13.1 13.8 8.3 15.3 14.9	Dissolved ug/L 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Dissolved ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7 5.3 9.6 6.8 5	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02 <0.02 0.02 0.02 0.03 0.02	Total Default Phenois-Total mg/l 0.15 0.15	#igh Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001 76483/002 76483/005 76483/006 76483/007 76483/008 76483/010 76483/011 IG Exceen NOTES	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S MW 11D MW 16S MW 16D MW 17S MW 17D MW 17S MW 17D MW 18 GV dance	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19 0.17 0.18 <0.1 0.1 <1.1 1	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185 270 140 435 265 265	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0 35.2 <3.0 19.9 <3.0 <3.0 <3.0	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20 <20 <20 <20 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150 <1 790 410 1000 640	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.7 1.7 2.1 2.1	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2 22.9 32.4 25.9 26.6 29.7 30	Dissolved ug/L 0.1 0.1	Calcium-Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6 65.5 68.2 47.7 61.5 56.9	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9 13.1 13.8 8.3 15.3 14.9	Dissolved ug/L 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Dissolved ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7 5.3 9.6 6.8 5	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02 <0.02 0.02 0.02 0.03 0.02	Total Default Phenois-Total mg/l 0.15 0.15	#igh Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001 76483/002 76483/005 76483/006 76483/007 76483/008 76483/010 76483/011 IG Exceen NOTES 1	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S MW 11D MW 16S MW 16D MW 17S MW 17D MW 18 BY dance Sub-contract	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19 0.17 0.18 <0.1 0.1 <0.1 1 analysis denoted by **	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185 270 140 435 265 265 -	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0 35.2 <3.0 19.9 <3.0 3.0 33.0 33.0	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20 <20 <20 <20 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150 <1 790 410 1000 640	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.7 1.7 2.1 2.1	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2 22.9 32.4 25.9 26.6 29.7 30	Dissolved ug/L 0.1 0.1	Calcium-Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6 65.5 68.2 47.7 61.5 56.9	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9 13.1 13.8 8.3 15.3 14.9	Dissolved ug/L 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Dissolved ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7 5.3 9.6 6.8 5	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02 <0.02 0.02 0.02 0.03 0.02	Total Default Phenois-Total mg/l 0.15 0.15	#igh Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001 76483/002 76483/005 76483/005 76483/007 76483/008 76483/010 76483/011 IG Exceen NOTES 1 2	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S MW 11D MW 16S MW 16D MW 17S MW 17D MW 18 SV dance Sub-contract ND - Concent	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19 0.17 0.18 <0.1 0.1 <1.1 1 analysis denoted by *ration was below the li	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185 270 140 435 265 265 -	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0 35.2 <3.0 19.9 <3.0 3.0 33.0 33.0	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20 <20 <20 <20 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150 <1 790 410 1000 640	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.7 1.7 2.1 2.1	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2 22.9 32.4 25.9 26.6 29.7 30	Dissolved ug/L 0.1 0.1	Calcium-Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6 65.5 68.2 47.7 61.5 56.9	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9 13.1 13.8 8.3 15.3 14.9	Dissolved ug/L 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Dissolved ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7 5.3 9.6 6.8 5	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02 <0.02 0.02 0.02 0.03 0.02	Total Default Phenois-Total mg/l 0.15 0.15	#igh Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
Method Parar Ur Limit of I Date Testin ELS Ref 76483/001 76483/002 76483/005 76483/006 76483/007 76483/008 76483/010 76483/011 IG Exceen NOTES 1	Number meter nits Detection ng Initiated Client Ref MW 3 MW 4 MW 9 MW 10 MW 11S MW 11D MW 16S MW 16D MW 17S MW 17D MW 18 SV dance Sub-contract ND - Concent	Fluoride mg/L 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.17 0.19 0.17 0.18 <0.1 0.1 1 analysis denoted by *ration was below the litormal Change	Evaporation EW060 Residue on Evaporation mg/L 10.0 1135 790 895 1035 13540 185 270 140 435 265 265 -	Total EM130 Chromium- Total ug/L 1.0 8.5 36.1 11.5 5.9 <3.0 <3.0 35.2 <3.0 19.9 <3.0 3.0 33.0 33.0	Dissolved ug/L 20.0 18000 260 26 1500 <20 <20 <20 <20 <20 <20 <20	Dissolved ug/L 0.001 690 4.6 1700 2400 46 150 <1 790 410 1000 640	Dissolved mg/l 0.2 14.3 4.3 12.6 36.8 1.6 1.7 1.7 2.1 2.1	Dissolved mg/l 0.5 35.2 10 22 76.8 31.2 22.9 32.4 25.9 26.6 29.7 30	Dissolved ug/L 0.1 0.1	Calcium-Dissolved mg/L 1.0 105.9 29.5 126.8 181.3 76.1 51.6 65.5 68.2 47.7 61.5 56.9	Copper-Dissolved mg/L 0.00 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 <0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.4 0.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Dissolved mg/L 0.3 17.8 3.7 36.8 32.1 26.6 12.9 13.1 13.8 8.3 15.3 14.9	Dissolved ug/L 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Dissolved ug/L 1.0 4.5 9.9 8.5 4 8.2 6.7 5.3 9.6 6.8 5	Dissolved mg/L 0.02 0.62 0.02 0.08 0.38 0.02 <0.02 <0.02 0.02 0.02 0.03 0.02	Total Default Phenois-Total mg/l 0.15 0.15	#igh Default Total Cyanide High ug/L 10 22 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10

4.0 DISCUSSION

Monitoring of groundwater is a common and necessary event in landfill sites both during their active life and post closure. The significance of such monitoring is so the facilities can demonstrate that there is no potential for the migration of hazardous constituents from the unit into the groundwater systems.

Monitoring was conducted on the 23rd September and 18th November 2014. Results in Hatched Red indicate where the interim guide value has been exceeded. Results from the third and fourth quarters 2014 show that there were exceedances at various ground water monitoring locations for parameters; Iron, Ammonia, Total Coliforms, E-coli, Potassium, Chloride, Manganese, Conductivity and Cyanide. Cyanide is a parameter that is measured on an annual basis but due to the occurrence of exceedance at three locations in quarter 3 it was analysed again at all locations in quarter 4. Results form quarter 4 reveal elevated levels similar to that of quarter 3 and historical readings. Cyanide was found to be present again at one location during this monitoring event. This location was MW 3 and is located on the peripheries of the waste mass. Cyanide analysis will continue into quarter 1 2015. If further elevations are found outside the landfill boundaries in quarter 1, further remedial actions will be taken.

Elevated Iron levels can be an indication of contamination. The hypothesis that is proposed is that the source of this Iron is not the landfill leachate, but the native soils beneath the landfill. Iron can become mobilised due to changing pH and/or redox conditions in the environment underneath the landfill. Alternatively, the leachate from the non-hazardous waste may produce reducing conditions beneath the landfill, allowing the solution of Iron from the underlying deposits. Elevated Iron may also be attributed to the natural composition of this area.

Historical results for comparison purposes are presented in tabular and graphic form in Appendix 1.

5.0 CONCLUSION

The groundwater results obtained are relatively consistent with previous monitoring events and do not show any signs of dramatic exceedances. The presence of cyanide in the last two quarters warrants careful monitoring and so will again be analysed in quarter 1 2015. Information relating to previous results can be seen in the historical data tables in Appendix 1.

SURFACE WATER MONITORING REPORT FOR BALLYJAMESDUFF LANDFILL W0093-01

Client: Cavan County Council

Site Location: Derrylurgan, Ballyjamesduff

Report No.: CCC-03-01-04-04-Rev 0

Produced by: Brona Keating, BSc, P.Grad.Dip. Environmental Eng.

Approved by: Date: 24th January 2015

Cathal Boylan, Beng, CEng, MIEI

CHARTERED ENGINEER

Boylan Engineering

Company Reg. 430482

Address: Main St., Mullagh, Kells Co. Meath. **Phone:** 046 – 928 6000 / 087 – 820 5470

Fax: 046 – 928 6002

Email: info@boylanengineering.ie **Web:** www.boylanengineering.ie

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2015)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Environmental Monitoring at Ballyjamesduff Landfill (W0093-01), Derrylurgan, Ballyjamesduff, Co Cavan for quarter three and four 2014.

Brona Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Environmental Sampling
 - 2.2 Laboratory Analysis
 - 2.3 Monitoring Locations
 - 2.4 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

List of Tables

1.0 Surface Water 04th Quarter Monitoring

Appendix

- 1.0 Historical Data
- 2.0 Analysis Methods
- 3.0 Field Sheets

Lab Reports

Landfill Map

1. 0 INTRODUCTION

Ballyjamesduff landfill is situated approximately 600m from Ballyjamesduff town centre in the town land of Derrylurgan. The site was in operation from the 1960's and comprises some 1.62 hectares. The site was originally peat land which was stripped for commercial purposes and was then operated as a traditional landfill until its closure in March 2002. A waste licence was issued by the Environmental Protection Agency after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the surface water sampling programme conducted on site and also summarises findings and analytical results for quarter four 2014.

The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Ballyjamesduff landfill is situated in the R2¹ Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R2¹ Zones are acceptable subject to guidance in the EPA Landfill Design Manual or conditions of a waste licence- (EPA, groundwater protection responses for landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of Leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

2. 0 METHODOLOGY

2.1 Environmental Sampling

The following procedure is conducted by Boylan Engineering to ensure accurate surface water monitoring:

- Surface water samples are taken by grab sample using a Telescoup and Pendulum beaker.
- Having obtained a representative sample the following parameters are measured on-site using a Hanna HI 98129 combination waterproof high accuracy.
 - Conductivity
 - o Temperature
 - o pH
- Boylan Engineering operate a Sample Submission/Chain of Custody form, which accompanies the samples at all times.

2.2 Laboratory Analysis

- Samples are sent to Environmental Laboratory Service (ELS) (Ireland) for analysis
 of the required parameters in designated cool boxes with ice packs. These boxes
 insure that samples are maintained at a consistent temperature between 0 °C and
 4°C on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0 °C and 4 °C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 2.

2.3 Monitoring Locations

-		Q	uarter 4 2014		
		Cover Level M	Water Level M	Water Depth M	
Monitoring Well	Sample Type	(OD Malin Head)	(OD Malin Head)	(Top of Casing)	National Grid Co-Ordinates
MW1	Gas	94.92	91.72	3.2	N291352.31 E252020.68
MW2	Gas	92.92	90.82	2.1	N291377.38 E252082.84
MW3	GW	94.39	92.91	1.5	N291369.28 E252109.44
MW4	GW	93.65	92.45	1.2	N291309.78 E252129.14
MW5	Gas	92.84	-	n/a	TBC
MW6	Leachate	100.71	-	-	TBC
MW 7	Leachate	97.54	-	-	TBC
MW8	Leachate	96.56	-	-	N291346.99 E252041.22
MW9	GW	95.69	92.37	3.3	N291369.67 E252103.93
MW10	GW	93.95	91.92	2.0	N291314.86 E252138.12
MW11S	GW	TBC	-	3.3	TBC
MW11D	GW	TBC	-	10.8	TBC
MW12	Gas	94.38	-	n/a	N291236.30 E252110.10
MW13	Gas	94.69	-	n/a	TBC
MW14	Gas	98.77	-	n/a	N291263.92 E252131.54
MW15	Gas	93.11	-	n/a	TBC
MW16S	GW	94.02	93.12	0.9	N252076.89 E291174.65
MW16D	GW	94.16	93.86	0.3	N252077.36 E291173.27
MW17S	GW	93.59	92.78	0.8	N251997.04 E291377.19
MW17D	GW	93.63	93.43	0.2	N251997.80 E291376.00
MW18	GW	93.5	93.5	0.0	N251986.57 E291425.39
SW1	SW	n/a	-	n/a	TBC
SW2	SW	n/a	-	n/a	TBC
Сар	SW	n/a	-	n/a	TBC

2.4 Weather Report

Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind Speed	Maximum Gust	Sunshine
	(mm)	Temp	Temp	(°C)	(knots)	(if >= 34 knots)	(hours)
		(°C)	(°C)				
18/11/2014	0.1	12.2	5.2	0.1	3.6		

3.0 SUMMARY OF RESULTS

Table 1.0 04th Quarter Surface water monitoring 2014

Report Numbe	r	80724											
Monitoring Dat	e	18/11/2014											
Method Method Number			Site Tests Site Tests Site	Site Tests	Site Tests	Ammonia	Titralab EW138	Titralab EW139	BOD	COD EW094	Suspended Solids EW013	AQ2-UP2 EW015	Dissolved Oxygen EW043
			Site Tests	Site Tests	Site Tests	EW003			EW001				
Parameter		Sample temperature (to be done onsite)	Cond	рН	Visual Inspection	Ammonia	рН	Cond	BOD	COD	Suspended Solids	Cl	DO
Units		Deg C	us/cm	pH units	-	mg/l N	pH Units	uscm- 1@20	mg/L	mg/L	mg/L	mg/L	mg/L
Limit of Detection		-	-	-	-	0.007	0.3	25	1	8	5	2.6	1.0
Date T	esting Initiated		18.11.14				19.11.14						
ELS Ref	Client Ref												
80723/001	SW 1	8.7	227	7.05	Clear	0.032	7	201	2	30	<5	18.9	9
80723/002	SW 2	8.5	189	9.02	Clear	0.1	6.9	182	<1	32	< 5	14.6	9
80723/003	Discharge Cap	9.5	208	7.01	Clear	0.072	6.8	200	<1	29	<5	14.3	9
S.I N	lo. 294/1989					0.2	≥5.5 and ≤8.5	1000	5	40	-	250	-
E	xceedance												
NOTES													
1	Sub-contract analysis denoted by *												
2	ND - Concentration was below the limit of detection												
3	NAC- No Abnormal (Change											

As there are no limits set in the waste licence for surface water, results are compared to S.I. No. 294/1989 — European Communities (Quality of Surface Water Intended for the Abstraction of Drinking Water) Regulations, 1989.

4.0 DISCUSSION

As there are no limits set in the waste license for surface water, results are compared to the S.I. No. 294/1989 — European Communities (Quality of Surface Water Intended for the Abstraction of Drinking Water) Regulations, 1989 where available.

Surface water samples were taken at SW1 and at SW2 and at the discharge cap.

With regard to all surface water samples, there were some minor exceedances for parameters COD and ammonia which are attributed to stagnation as a result of the prolonged dry weather at the time of monitoring. All remaining results were within specified limits.

Historical results for comparison purposes are presented in tabular form in Appendix 1.

5.0 CONCLUSION

The surface results obtained are relatively consistent with previous monitoring events and do not show any signs of concerning exceedances. Therefore there is no evidence of any major negative environmental impact associated with this landfill. Information relating to previous results can be seen in the historical data tables in Appendix 1.

LEACHATE MONITORING REPORT FOR BALLYJAMESDUFF LANDFILL W0093-01

Client: Cavan County Council

Site Location: Derrylurgan, Ballyjamesduff

Report No.: CCC-03-01-04-04-Rev 0

Produced by: Brona Keating, BSc, P.Grad.Dip. Environmental Eng.

Approved by: Date: 24th January 2015

Cathal Boylan, Beng, CEng, MIEI

CHARTERED ENGINEER

Boylan Engineering

Company Reg. 430482

Address: Main St., Mullagh, Kells Co. Meath. **Phone:** 046 – 928 6000 / 087 – 820 5470

Fax: 046 – 928 6002

Email: info@boylanengineering.ie **Web:** www.boylanengineering.ie

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2015)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Environmental Monitoring at Ballyjamesduff Landfill (W0093-01), Derrylurgan, Ballyjamesduff, Co Cavan for quarter four 2014.

Brona Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Environmental Sampling
 - 2.2 Laboratory Analysis
 - 2.5 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

List of Tables

1.0 Leachate 04th Quarter Monitoring

Appendix

- 1.0 Historical Data
- 2.0 Analysis Methods
- 3.0 COC/Sample Submission form

Lab Reports

Landfill Map

1. 0 INTRODUCTION

Ballyjamesduff landfill is situated approximately 600m from Ballyjamesduff town centre in the town land of Derrylurgan. The site was in operation from the 1960's and comprises some 1.62 hectares. The site was originally peat land which was stripped for commercial purposes and was then operated as a traditional landfill until its closure in March 2002. A waste licence was issued by the Environmental Protection Agency after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following reports give details of leachate sampling programme conducted on site and also summarises findings and analytical results for quarter four 2014.

The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Assess the effectiveness of gas control measures installed at the site
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Ballyjamesduff landfill is situated in the R2¹ Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R2¹ Zones are acceptable subject to guidance in the EPA Landfill Design Manual or conditions of a waste licence- (EPA, groundwater protection responses for landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of Leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

2. 0 METHODOLOGY

2.1 Environmental Sampling

The following procedure is conducted by Boylan Engineering to ensure accurate leachate monitoring:

- ISO 5667: Guidance on sampling of groundwaters is adhered to.
- Prior to sampling, the depth of water in wells is measured by dipping.
- Sampling is conducted using a Waterra inertial lift pump and associated tubing,
 pumping water directly from the borehole to the appropriate sampling bottles.
- Designated tubing is used at each location.
- Having obtained a representative sample the following parameters are measured on-site using a Hanna HI 98129 combination waterproof high accuracy analyser and a Hanna 9164 meter, respectively.
 - Conductivity
 - Temperature
 - o pH
- Boylan Engineering operate a Sample Submission/Chain of Custody form, which accompanies the samples at all times.

2.2 Laboratory Analysis

- Samples are sent to Environmental Laboratory Service (ELS) (Ireland) for analysis
 of the required parameters in designated cool boxes with ice packs. These boxes
 insure that samples are maintained at a consistent temperature between 0 °C and
 4°C on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0 °C and 4 °C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 2.

2.3 Monitoring Locations

		Q	uarter 4 2014		
		Cover Level M	Water Level M	Water Depth M	
Monitoring Well	Sample Type	(OD Malin Head)	(OD Malin Head)	(Top of Casing)	National Grid Co-Ordinates
MW1	Gas	94.92	91.72	3.2	N291352.31 E252020.68
MW2	Gas	92.92	90.82	2.1	N291377.38 E252082.84
MW3	GW	94.39	92.91	1.5	N291369.28 E252109.44
MW4	GW	93.65	92.45	1.2	N291309.78 E252129.14
MW5	Gas	92.84	-	n/a	TBC
MW6	Leachate	100.71	-	-	TBC
MW 7	Leachate	97.54	-	-	TBC
MW8	Leachate	96.56	-	-	N291346.99 E252041.22
MW9	GW	95.69	92.37	3.3	N291369.67 E252103.93
MW10	GW	93.95	91.92	2.0	N291314.86 E252138.12
MW11S	GW	TBC	-	3.3	TBC
MW11D	GW	TBC	-	10.8	TBC
MW12	Gas	94.38	-	n/a	N291236.30 E252110.10
MW13	Gas	94.69	-	n/a	TBC
MW14	Gas	98.77	-	n/a	N291263.92 E252131.54
MW15	Gas	93.11	-	n/a	TBC
MW16S	GW	94.02	93.12	0.9	N252076.89 E291174.65
MW16D	GW	94.16	93.86	0.3	N252077.36 E291173.27
MW17S	GW	93.59	92.78	0.8	N251997.04 E291377.19
MW17D	GW	93.63	93.43	0.2	N251997.80 E291376.00
MW18	GW	93.5	93.5	0.0	N251986.57 E291425.39
SW1	SW	n/a	-	n/a	TBC
SW2	SW	n/a	-	n/a	TBC
Сар	SW	n/a	-	n/a	TBC

2.4 Weather Report

REPORTS FR	REPORTS FROM BALLYHAISE (A)									
Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind	Maximum Gust	Sunshine			
	(mm)	Temp	Temp	(°C)	Speed (knots)	(if >= 34 knots)	(hours)			
		(°C)	(°C)							
18/11/2014	0.1	12.2	5.2	0.1	3.6					

2.0 SUMMARY OF RESULTS

Table 1.0 04th Quarter Leachate monitoring 2014

Report Nur	nhar	80725							
Monitoring		18/11/2014							
	Method Number		EW154M	EW154M	EW153	EW153	EW001	EW096	EW154M-1
Paran		Visual Inspection	Ammonia (as N)	TON (as N)(Calc)	pH	Conductivity @20 DegC	BOD	COD	Chloride
Un	its		mg/l N	mg/l N	pH Units	uscm-1@20	mg/L	mg/L	mg/L
Limit of D	etection	-	0.007	0.138	0.3	25	1	8	2.6
Date Testin	Date Testing Initiated 18.6.14		19.11.14						•
ELS Ref	Client Ref								
80725/001	MW7	Heavy Silt	13	<0.69	6.9	980	7	136	19.9
80725/002	MW8	Heavy Silt	62	<0.69	7.2	1397	64	151	45
Inerim Gu	ide Value		0.15	-	≥6.5&≤9.5	1000	-	-	30
Exceed	lance								
NOTES									
1	Sub-contract analysis deno		noted by *						
2	ND = Conc	entration was	below the lim	nit of detect	ion				

As there are no limits set in the waste licence for leachate, results are compared to the Interim Guide Values for the protection of Groundwater in Ireland, where available.

4.0 DISCUSSION

Leachate consists of water that has become contaminated as it passes through a waste disposal site. It contains insoluble waste constituents which have not degraded chemically or biochemically. This leachate can cause a treat to surrounding surface and ground waters. The composition of leachate will vary depending on the age of the landfill. As there are no limits set in the waste licence for leachate, results are compared to the Interim Guide Values for the protection of Groundwater in Ireland, where available. Results in bold italics indicate where the interim guide value has been exceeded. A leachate sample was abstracted from wells MW7 and MW8 during quarter three monitoring. Results show that the Interim Guide Value was exceeded at on this occasion for the parameters Ammonia, conductivity & chloride. These results are consistent with those obtained in previous monitoring events.

Historical results for comparison purposes are presented in tabular and graphic form in Appendix 1.

.

5.0 CONCLUSION

5.1 Environmental Monitoring

The leachate results obtained are relatively consistent with previous monitoring events and do not show any signs of dramatic exceedances. Therefore there is no evidence of any major negative environmental impact associated with this landfill. Information relating to previous results can be seen in the historical data tables in Appendix 1.

GAS MONITORING REPORT FOR BALLYJAMESDUFF LANDFILL W0093-01

Client: Cavan County Council

Site Location: Derrylurgan, Ballyjamesduff

Report No.: CCC-03-01-04-03&04-Rev 0

Produced by: Bróna Keating, B.Sc., Dip. Environmental Eng., M.Sc., MCIWM

Approved by: Date: 07th April 2015

Cathal Boylan, Beng, CEng, MIEI

CHARTERED ENGINEER

Boylan Engineering

Company Reg. 430482

Address: Main St., Mullagh, Kells Co. Meath. **Phone:** 046 – 928 6000 / 087 – 820 5470

Fax: 046 – 928 6002

Email: info@boylanengineering.ie **Web:** www.boylanengineering.ie

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2014)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Environmental Monitoring at Ballyjamesduff Landfill (W0093-01), Derrylurgan, Ballyjamesduff, Co Cavan for quarter three and four 2014.

Bróna Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Landfill Gas Analysis
 - 2.2 Monitoring Locations
 - 2.3 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

Tables

- 3.0 Landfill Gas 03rd Quarter Monitoring
- 4.0 Landfill Gas 04th Quarter Monitoring

Appendix

- 1.0 Historical Data
- 2.0 Landfill Gas Breakdown
- 3.0 Calibration Certificate GA 2000

Landfill Map

1. 0 INTRODUCTION

Ballyjamesduff landfill is situated approximately 600m from Ballyjamesduff town centre in the town land of Derrylurgan. The site was in operation from the 1960's and comprises some 1.62 hectares. The site was originally peat land which was stripped for commercial purposes and was then operated as a traditional landfill until its closure in March 2002. A waste licence was issued by the Environmental Protection Agency after the closure of the site and remedial works were completed.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the landfill gas sampling programme conducted on site and also summarises findings and analytical results for quarter three and four 2014.

The purpose of landfill gas monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure that the facility is not causing a nuisance through noise or odors
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Assess the effectiveness of gas control measures installed at the site
- Establish a reliable database of information for the landfill throughout its life

Landfill gas is generated by decomposition of organic materials in waste deposited at landfills. Typically, the gas is a mixture of Methane (up to 65% by volume) Carbon Dioxide (up to 35% per volume). It can also contain minor constituents at low concentrations (typically less than 1% volume contains 120-150 trace constituents). The landfill directive requires that appropriate measures are taken in order to control the accumulation and migration of landfill gas.

2. 0 METHODOLOGY

2.1 Landfill Gas Analysis

The following procedure is employed by Bróna Keating of Boylan Engineering to ensure accurate monitoring:

- EPA, Landfill Manual, landfill monitoring 2nd Edition is adhered to.
- Prior to sampling, a dip meter is used to measure water levels, if present, in the wells.
- GA 2000 landfill gas analyser is used to measure the gas levels.
- The analyser is purged and connected to the sealed well monitoring nozzle.
- The monitoring nozzle is turned to the open position and the analyser measured the gas levels at 60 second intervals for no less than 10 minutes. The analyser is allowed to run for this period of time to allow for a representative average to be obtained.
- All data is recorded on the Gas Analysis field sheet.
- The instrument is removed after 10 minutes and the monitoring nozzle returned to the closed position.
- The GA2000 is switched off between each monitoring location so as to allow the instrument to purge.
- This process is repeated at each monitoring location.
- Data for the GA 2000 was downloaded in the Boylan Engineering office.

2.2 Monitoring Locations

		Q	uarter 3 2014		
Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co-Ordinates
MW1	Gas	94.92	91.72	3.2	N291352.31 E252020.68
MW2	Gas	92.92	90.82	2.1	N291377.38 E252082.84
MW3	GW	94.39	92.99	1.4	N291369.28 E252109.44
MW4	GW	93.65	#VALUE!	-	N291309.78 E252129.14
MW5	Gas	92.84	-	n/a	TBC
MW6	Leachate	100.71	-	-	TBC
MW 7	Leachate	97.54	-	-	TBC
MW8	Leachate	96.56	-	-	N291346.99 E252041.22
MW9	GW	95.69	#VALUE!	-	N291369.67 E252103.93
MW10	GW	93.95	91.99	2.0	N291314.86 E252138.12
MW11S	GW	TBC	-	3.7	TBC
MW11D	GW	TBC	-	12.6	TBC
MW12	Gas	94.38	-	n/a	N291236.30 E252110.10
MW13	Gas	94.69	-	n/a	TBC
MW14	Gas	98.77	-	n/a	N291263.92 E252131.54
MW15	Gas	93.11	-	n/a	TBC
MW16S	GW	94.02	93.02	1.0	N252076.89 E291174.65
MW16D	GW	94.16	93.86	0.3	N252077.36 E291173.27
MW17S	GW	93.59	92.34	1.3	N251997.04 E291377.19
MW17D	GW	93.63	93.27	0.4	N251997.80 E291376.00
MW18	GW	93.5	93.5	0.0	N251986.57 E291425.39
SW1	SW	n/a	-	n/a	TBC
SW2	SW	n/a	-	n/a	TBC
Сар	SW	n/a	-	n/a	TBC

		Q	uarter 4 2014		
Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co-Ordinates
MW1	Gas	94.92	91.72	3.2	N291352.31 E252020.68
MW2	Gas	92.92	90.82	2.1	N291377.38 E252082.84
MW3	GW	94.39	92.94	1.5	N291369.28 E252109.44
MW4	GW	93.65	92.85	0.8	N291309.78 E252129.14
MW5	Gas	92.84	-	n/a	TBC
MW6	Leachate	100.71	-	-	TBC
MW 7	Leachate	97.54	-	-	TBC
MW8	Leachate	96.56	-	-	N291346.99 E252041.22
MW9	GW	95.69	92.43	3.3	N291369.67 E252103.93
MW10	GW	93.95	91.94	2.0	N291314.86 E252138.12
MW11S	GW	TBC	-	2.9	TBC
MW11D	GW	TBC	-	12.7	TBC
MW12	Gas	94.38	-	n/a	N291236.30 E252110.10
MW13	Gas	94.69	-	n/a	TBC
MW14	Gas	98.77	-	n/a	N291263.92 E252131.54
MW15	Gas	93.11	-	n/a	TBC
MW16S	GW	94.02	93.15	0.9	N252076.89 E291174.65
MW16D	GW	94.16	93.66	0.5	N252077.36 E291173.27
MW17S	GW	93.59	92.78	0.8	N251997.04 E291377.19
MW17D	GW	93.63	93.43	0.2	N251997.80 E291376.00
MW18	GW	93.5	93.5	0.0	N251986.57 E291425.39
SW1	SW	n/a	-	n/a	TBC
SW2	SW	n/a	-	n/a	TBC

2.3 Weather Report

REPORTS FR	OM BALLY	HAISE (A)					
Date	Rainfall	Max Temp	Min	(°C)	Mean Wind Speed (knots)	Maximum Gust	Sunshine (hours)
	(mm)		Temp			(if >= 34 knots)	
		(°C)	(°C)				
30/09/2014	2	19.3	12	10.9	7.5		
REPORTS FR	OM BALLY	HAISE (A)					
Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind	Maximum Gust	Sunshine
	(mm)	Temp	Temp	(°C)	Speed (knots)	(if >= 34 knots)	(hours)
		(°C)	(°C)		<u> </u>		
25/11/2014	0.4	8.5	4.1	3.2	2.8		

3.0 SUMMARY OF RESULTS

Table 1.0 03rd Quarter Landfill Gas monitoring 2014

Met	Method		GA 2000	GA 2000	GA 2000	GA 2000	
Parameter		CH₄	CO ₂	O ₂	H ₂ S	Barometric Pressure	Position to waste mass
Un	its	% v/v	% v/v	%	PPM	mb	
Date T	esting		•	30/09/20	14		
GA 2000	Client						
Ref	Ref						
1	MW 1	0.1	0.5	20	996	0	Outside
3	MW 2	0.1	0.4	20.6	996	0	Outside
7	MW5	0	0.1	21	0	999	Outside
6	MW 12	1.1	1.2	20.3	994	0	Inside
2	MW 13	0.1	0.1	20.7	996	0	Outside
4	MW 14	11.5	9.9	13.3	995	0	Inside
5	MW 15	12.6	14.5	9.6	994	0	Outside
	Limit	1	1.5				

Table 1.0 04th Quarter Landfill Gas monitoring 2014

Met	hod	GA 2000	GA 2000	GA 2000	GA 2000	GA 2000	
Parameter		CH ₄	CO ₂	O ₂	O ₂ H ₂ S Barometric Pressure		Position to waste mass
Un	its	% v/v	% v/v	%	PPM	mb	
Date T	esting	60	55.7	25/11/20	14		
GA 2000 Ref	Client Ref				8	3	
1	MW 1	0.1	0.7	19.8	0	999	Outside
3	MW 2	0.1	0.4	20.6	0	999	Outside
7	MW5	0.2	0.1	21	0	999	Outside
6	MW 12	1.4	1.3	20.3	0	999	Inside
2	MW 13	0.1	0.2	20.6	0	999	Outside
4	MW 14	11.3	10	14.1	0	999	Inside
5	MW 15	12.7	15.4	10.4	0	999	Outside
	Limit	1	1.5		8		

4.0 DISCUSSION

The rate of gas generation at a landfill site varies through the life of a landfill and is dependent on several factors such as waste type, depths, moisture content, degree of compaction, landfill pH, temperature and the length of time since the waste was deposited. Landfill gas can move in any direction within the waste body and migrate from a site. The potential for gas migration will depend on the gas quality, volume, the site engineering works, geological characteristics of the surrounding strata and on man-made pathways such as sewers and drains.

Results obtained from monitoring during quarter three and four are relatively consistent with previous results and as the well is within the waste mass it is not observed as being an exceedance. It is preferable that the results are within the limits stipulated within the licence.

5.0 CONCLUSION

The results obtained from landfill gas analysis are also relatively consistent with previous monitoring events and do not show any signs of dramatic exceedances; therefore there is no evidence of any major negative environmental impact associated with this landfill. However, it is important to monitor the trend in exceedance of Methane at this landfill and any dramatic increase in the parameter should be regarded as critical. The Methane content of landfill gas is flammable, forming potentially explosive mixtures in certain conditions, which raises concern about its uncontrolled migration and release. The next environmental and landfill gas monitoring will be conducted in the first quarter of 2015.

APPENDIX 2- LANDFILL GAS BREAKDOWN

Quarter 3

MW1

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
30/09/2014 13:16	0.1	0.8	19.6	996	0
30/09/2014 13:17	0.1	0.5	20.1	996	0
30/09/2014 13:18	0.1	0.5	20.1	996	0
30/09/2014 13:19	0.1	0.4	20.2	996	0
30/09/2014 13:20	0.1	0.4	20.2	996	0

MW 2

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
30/09/2014 13:31	0.1	0.4	20.6	996	0
30/09/2014 13:32	0.1	0.4	20.6	996	0
30/09/2014 13:33	0.1	0.4	20.6	996	0
30/09/2014 13:34	0.1	0.4	20.6	996	0
30/09/2014 13:35	0.1	0.4	20.6	996	0

MW 5

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
30/09/2014 14:06	0	0.1	21	0	999
30/09/2014 14:07	0	0.1	21	0	999
30/09/2014 14:08	0	0.1	21	0	999
30/09/2014 14:09	0	0.1	21	0	999
30/09/2014 14:10	0	0.1	21	0	999

MW 12

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
30/09/2014 13:58	0.9	0.9	20.4	994	0
30/09/2014 13:59	1.4	1.4	20.4	994	0
30/09/2014 14:00	0.8	0.7	20.6	994	0
30/09/2014 14:01	1.2	1.3	20.3	994	0
30/09/2014 14:02	1.3	1.5	20.1	994	0

					Barometric Pressure
DATE	CH4	CO2	02	H2S	(mb)
30/09/2014 13:23	0.1	0.1	20.7	996	0
30/09/2014 13:24	0.1	0.1	20.8	996	0
30/09/2014 13:25	0.1	0.1	20.8	996	0
30/09/2014 13:26	0.1	0.1	20.7	996	0
30/09/2014 13:27	0.1	0.1	20.7	996	0

MW 14

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
30/09/2014 13:38	11.6	9.1	14	995	0
30/09/2014 13:39	11.6	10.1	13.1	995	0
30/09/2014 13:40	11.5	10.1	13.1	995	0
30/09/2014 13:41	11.5	10.1	13.1	995	0
30/09/2014 13:42	11.5	10.1	13.1	995	0

MW 15

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
30/09/2014 13:49	12.4	14.4	9.7	994	0
30/09/2014 13:50	12.7	14.5	9.6	994	0
30/09/2014 13:51	12.6	14.5	9.6	994	0
30/09/2014 13:52	12.6	14.5	9.6	994	0
30/09/2014 13:53	12.6	14.5	9.6	994	0

Quarter 4

MW1

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
25/11/2014 10:18	0.1	0.8	19.6	0	999
25/11/2014 10:19	0.1	0.7	19.7	0	999
25/11/2014 10:20	0.1	0.7	19.8	0	999
25/11/2014 10:21	0.1	0.6	19.9	0	999
25/11/2014 10:22	0.1	0.5	20.1	0	999

MW 2

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
25/11/2014 10:39	0.1	0.4	20.6	0	999
25/11/2014 10:40	0.1	0.4	20.6	0	999
25/11/2014 10:41	0.1	0.4	20.5	0	999
25/11/2014 10:42	0.1	0.4	20.6	0	999
25/11/2014 10:43	0.1	0.4	20.6	0	999

MW 5

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
25/11/2014 11:42	0.2	0.1	21	0	999
25/11/2014 11:43	0.2	0.1	21	0	999
25/11/2014 11:44	0.3	0.1	21	0	999
25/11/2014 11:45	0.2	0.1	21	0	999
25/11/2014 11:46	0.3	0.1	21	0	999

MW 12

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
25/11/2014 11:35	1.3	1.3	20.3	0	999
25/11/2014 11:36	1.3	0.8	20.5	0	999
25/11/2014 11:37	1.4	1.3	20.3	0	999
25/11/2014 11:38	1.4	1.2	20.4	0	999
25/11/2014 11:39	1.3	1.4	20.2	0	999

MW 13

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
25/11/2014 10:27	0.1	0.2	20.4	0	999
25/11/2014 10:28	0.1	0.2	20.5	0	999
25/11/2014 10:29	0.1	0.2	20.6	0	999
25/11/2014 10:30	0.1	0.1	20.7	0	999
25/11/2014 10:31	0.1	0.1	20.8	0	999

MW 14

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
25/11/2014 11:18	11.2	9.1	14	0	999
25/11/2014 11:19	11.2	10.2	14	0	999
25/11/2014 11:20	11.3	10.2	14.1	0	999
25/11/2014 11:21	11.4	10.1	14.2	0	999
25/11/2014 11:22	11.5	10.2	14.3	0	999

MW 15

DATE	CH4	CO2	02	H2S	Barometric Pressure (mb)
25/11/2014 11:29	12.8	15.6	10.2	0	999
25/11/2014 11:30	12.8	15.5	10.3	0	999
25/11/2014 11:31	12.7	15.5	10.5	0	999
25/11/2014 11:32	12.7	15.3	10.5	0	999
25/11/2014 11:33	12.6	15.3	10.6	0	999

APPENDIX 3 – CALIBRATION CERTIFICATE-GA 2000

Commissioning Services Limited Deerpark Business Complex,

Dublin Road, Carlow. Tel +(0)59 9143464 Fra: +(0)59 9143469 firmel: info@cstd.ie Web: www.cstd.ie

CALIBRATION CERTIFICATE

MAKE:

Geotechnical Ins.

CERT NO:

11345

MODEL

GA2000

SERIAL No. CUSTOMER: 5.361 CSL

CALIBRATION DATE:

30/1/14

NEXT CALIBRATION DUE

30/7/14

Callbration Method

Test gases of known concentrations are directed past the instrument sensors. Instrument allowed to stabilise and readings taken.

TEST RESULTS

GAS/CONCENTRATION	INITIAL READING	FINAL READING
60% Vol. Methana	60.6	60.0
40% Vol. Carbon Dioxide	39.2	40.0
20.9% Vol. Oxygen	18.3	20.9
0.0% Vol. Oxygen	0.0	0.0
200 ppm Carbon Monoxide	174	200
25 ppm Hydrogen Sulphide	14	25

Instrument Passed as fit for Service

Tested By:

Service, Instrumentation and Telemetry solutions for the water industry

Company Registration No.: 906032