Annual Environmental Report 2014

Licence Registration No.: W0198-01

Licencee: Bord na Móna Plc.

Location of Activity: Kilberry, Athy, Co. Kildare.

Attention: Office of Environmental Enforcement

Environmental Protection Agency

P.O. Box 3000 Johnstown Castle

Co. Wexford

CONTENTS

SECTION 1: INTRODUCTION

- 1.1 Introduction
 - 1.1.2 Policy
- 1.2 Site Description
 - 1.2.1 General
 - 1.2.2 Method of Working
 - 1.2.2.1 Composting Process

SECTION 2: DATA

- 2.1 Summary Data
 - 2.1.1 Waste Recovery Data
 - 2.1.2 Summary Reports on Emissions
 - 2.1.3 Summary reports on Environmental Monitoring
 - 2.1.3 (A) Surface Water Analysis Results
 - 2.1.3 (B) Ground Water Analysis Results
 - 2.1.3 (C) Dust Analysis Results
 - 2.1.3 (D) Odour Analysis Results
 - 2.3.1 (E) Noise Emissions
 - 2.1.4 Environmental Incidents and Complaints
 - 2.1.5 Environmental Spending
 - 2.1.6 Resource and Energy Consumption

SECTION 3: ENVIRONMENTAL MANAGEMENT SYSTEM

Objectives and Targets 2015

- 3.1 Environmental Management Programme Review 2014
- 3.2 Environmental Management Programme Description 2015

SECTION 4: OTHER REPORTS

Appendix 1 – Odour Monitoring Location Maps

Appendix 2 – Monthly Analysis of Windrows

Appendix 3 – PRTR Scan

SECTION 1

INTRODUCTION

1.1 <u>INTRODUCTION</u>

The following document represents the Annual Environmental Report (AER) for Bord na Móna Kilberry Compost facility for the period January 2014 - December 2014. Detailed within this report is a summary of all monitoring, and any activities and on-going improvements at the facility during this period that has had an influence on the environmental performance of the company.

Through the continued compliance with the conditions of their Waste licence register No. W0198-01, Bord na Móna continues to express their commitment of environmental improvement through out the site.

An Environmental and Quality Management System is established at the facility, which incorporates procedures of operational activities on site, emergency preparedness and response, reporting, dealing with unacceptable wastes and an public access to the site and site's environmental performance. Through the on-going achievement and reviewing of the objectives and targets, Bord na Móna facilitate on-going environmental improvements.

Bord na Móna's commitment is expressed in the company's Environmental Management policy, as given overleaf.

1.1.2 – Environmental Policy

Environmental Policy

Introduction

A licence from the Environmental Protection Agency (WI 198-1) was granted on the 16th of December 2004. This licence is for the construction and operation of a Composting Facility at Kilberry, Athy, Co. Kildare. The quantity of waste to be accepted is 50,000 tonnes in the first year rising to 96,000 tonnes by the 5th year. Non-hazardous biodegradable wastes (Shredded Green waste, Brewery By-Product, Sawdust, Bark and Cocoa Husk) will be accepted at this facility.

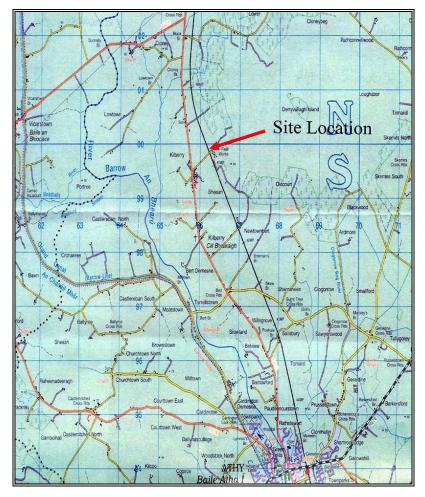
The process leading to the production of usable, composted material will require the completion of a series of stages as follows, acceptance procedures and tipping, mixing and formulation of windrows, turning / composting, screening of stabilised material and shredding and re-use of oversize material. The wastes are combined together to form windrows for composting. The average composting period will be 10 weeks during which time the composting process will stabilise a range of organic waste materials / by-products which will then be incorporated into horticultural growing media produced on the adjoining site.

Policy

Environmental care is a Bord na Móna core value. BnM seeks to be recognised in the compost supply business as a leader in terms of environmental care. Bord na Móna's environmental programmes shall be an integrated approach focused on continuous improvement. The environmental programmes in Bord na Móna will seek to achieve the following:

- Ensure compliance with the requirements of the EPA Waste Licence and National/European legislation.
- Review Environmental performance and establish environmental objectives and targets on an annual basis to improve the environmental performance of our composting facility
- Minimise potential negative environmental impacts through activities that are designed for the prevention of pollution
- Encourage the involvement of employees through training and awareness programmes to promote and ensure an environmentally friendly workplace.
- · Audit practices and programmes to help ensure continuous improvement

The company values and promotes environmental leadership, responsibility and innovation in the management of all company facilities and operations. Management team are expected to provide sound environmental leadership, to maintain appropriate records and demonstrate compliance with programmes and practices.


Authorised as of November 25th 2009

Michael Delaney General Manager

1.2 <u>SITE DESCRIPTION</u>

1.2.1 Site Location

The proposed development is located on the eastern portion of Kilberry townland, approximately 4 km north of Athy, Co. Kildare. It is located along the R417 between Athy and Monasterevin.

Regional Location of Bord na Mona Kilberry Compost Site

The total area the site occupies is ca. 2.5 hectares. The topography of the area is flat peat land and agricultural land with a gradual rise to the north. The land on the site is relatively level with a fall of 1:200 over the total site from south to north. The surrounding land is a mixture of agricultural, forestry and peat land with the southern boundary adjoining the Bord na Móna Moss Peat production site.

1.2.1 General

A licence from the Environmental Protection Agency (W0198-01) was granted on the 16th of December 2004. This licence was for the construction and operation of a Composting Facility at Kilberry, Athy, Co. Kildare. The quantity of waste to be accepted was 50,000 tonnes in the first year rising to 96,000 tonnes by the 5th year. Non-hazardous biodegradable wastes (Shredded Green waste, Brewery By-Product, Sawdust, Bark and Cocoa Husk) were the initial waste types accepted at this facility. In the intervening years a number of additional waste streams have been identified and added to the waste licence with agreement from the EPA. The current waste list is as follows:

Shredded / Unshredded Green Waste

Brewery By-Product

Sawdust

Bark

Cocoa Husk

Spent Mushroom Compost

Christmas Trees

Wood Pulp Sludge

Fruit and Vegetables

Dairy Products Sludge

1.2.2 Method of Working

1.2.2.1 Composting Process

The process leading to the production of usable, composted material requires the completion of a series of stages as follows:

- 1. Acceptance procedures and tipping
- 2. Mixing and formulation of windrows
- 3. Turning / Composting
- 4. Screening of stabilised material
- 5. Shredding and re-use of oversize material

1. Acceptance Procedures:

All vehicles entering the site firstly report to compost coordinator. A delivery note will accompany each vehicle detailing:

- Vehicle registration number
- Driver / Company
- Material type and origin
- Quantity of waste

These details will be entered on to the Bord na Móna MRP system along with the recorded weight of the vehicle. A hard copy of this information will be issued to the driver as a POD (Proof of Delivery).

2. Discharge/Mixing and formation of windrows.

On completion of acceptance procedures vehicles will be directed to a specific tipping area in the composting facility. Where they will tip the feedstock in such a fashion as to provide a linier strip of material. Unshredded material is directed to the shredder in phase 2.

3. Turning / Composting

The current average composting period is 12 weeks, during which time the piles are turned approximately 20 times as follows:

Week 1 - 2 4 times per week
Week 3 - 6 2 times per week
Week 7-10 1 turn per week

A series of parameters are monitored during the composting cycle as follows:

- Temperature (using deep probes)
- CO₂ evolution (an index of microbial activity)
- Moisture content

The results of ongoing monitoring can trigger a number of interactions such as:

- Increased turning frequency
- Addition of water. Lagoon water is used as the source of this water.

4. Screening

Following the completion of composting the material is transported from the stockpile to the screening area, which is located in Phase 2 using the Volvo loader.

The composted material is screened, material below 10mm will be stockpiled for use in growing media plants, whilst material over this size will be set aside for shredding and composting.

5. Shredding:

Oversized material is collected at the screening plant and is reincorporated into the new windrows.

Working Hours

Composting activities (Turning / Screening) will normally be undertaken during the hours of 08:00 and 18:00; Monday to Friday inclusive.

Delivery hours are confined to the hours of 08:00 to 18:00; Monday to Friday inclusive.

Reduced site activities such as maintenance and cleaning proceed until 22:00 Monday to Friday inclusive.

SECTION 2

DATA

2.1 SUMMARY DATA

2.1.1 Waste Recovery Data:

Waste Type	EWC Code	Annual Intake (Tonnes)
Greenwaste	20 02 01	19760
Bark	03 03 01	388
Brewery by-Product	02 07 01	19726
Dairy Sludge	02 05 02	1638
Brewery Sludge	02 07 05	686

2.1.2 Wastes produced on site

Waste Type	EWC Code	Annual Output (Tonnes)		
Uncomposted Fraction – Plastics etc	19 05 01	30		
Excess Water	19 05 99	255		

2.1.3 Summary Report on Emissions:

There are no emission points within the facility.

2.1.3 Summary Reports on Environmental Monitoring:

2.1.3 (A) <u>Surface Water Analysis Results</u> – Tables A.1 – A.4 below show results of 2014 Surface water analysis. The results are very similar to previous years.

Table A.1 - Surface Water Q1 27 th March 2014								
Parameter	SW1	SW2	SW3	SW4	SW5			
рН	7.4	7.5	7.6	7.5	7.8			
Suspended Solids (mg/l)	<5	6	6	<5	<5			
BOD (mg/l)	<2	<2	<2	<2	<2			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

Table A.1 - Surface Water Q2 6 th June 2014								
Parameter	SW1	SW2	SW3	SW4	SW5			
рН	7.3	7.3	7.3	7.4	7.8			
Suspended Solids (mg/l)	<5	<5	<5	<5	<5			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

Table A.3 - Surface Water Q3 15 th Sept 2014								
Parameter	SW1	SW2	SW3	SW4	SW5			
рН	7.5	7.4	7.5	7.5	8.0			
Suspended Solids (mg/l)	<5	7	<5	<5	<5			
BOD (mg/l)	<2	<2	<2	<2	<2			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

Table A.4 - Surface Water Q4 16 th December 2014								
Parameter	SW1	SW2	SW3	SW4	SW5			
рН	7.3	7.3	7.4	7.3	7.7			
Suspended Solids (mg/l)	<5	<5	<5	10	<5			
BOD (mg/l)	<2	<2	<2	<2	<2			
DRO (mg/l)	<10	<10	<10	<10	<10			
Mineral Oil (mg/l)	<10	<10	<10	<10	<10			

2.1.3 (B) <u>Ground Water Analysis Results</u>

Groundwater results are elevated for a number of parameters most notably Ammonia – these results are consistent with previous years and MW 1,2,3 are in line with results from the EIS. MW 4,5 are both hydraulically up gradient of the site. The trends with regards to the elevated parameters will continue to be assessed during 2015.

Groundwater Results Q1 27 th March 2014								
Laboratory ID.	MW1	MW2	MW3	MW4	MW5			
pН	7.7	7.3	7.2	7.2	7.1			
Conductivity µS/cm	534	543	644	1015	1029			
Ammonia as N mg/l	2.3	6.5	5.7	8.2	10			
Chloride mg/l	17	15	17	34	25			
Sulphate mg/l	1.8	1.6	2.8	12	2.9			
Nickel ug/l	5	12	3	16	7			
Manganese ug/l	6	<2	8	111	305			

Groundwater Results Q2 6 th June 2014							
Laboratory ID.	MW1	MW2	MW3	MW4	MW5		
pН	7.5	7.3	7.2	7.0	7.0		
Conductivity μS/cm 1	633	565	674	1843	1689		
Ammonia as N mg/l	2.0	6.5	5.4	23	14		
Chloride mg/l	30	22	22	40	60		
Sulphate mg/l	20	4.0	< 0.5	3.8	1.2		
Nickel ug/l	9	5	<2	34	10		
Manganese ug/l	415	92	116	924	654		

Groundwater Results Q3 15 th Sept 2014							
Laboratory ID.	MW1	MW2	MW3	MW4	MW5		
рН	7.3	7.2	7.2	6.9	7.1		
Conductivity µS/cm 1	573	755	757	1739	920		
Ammonia as N mg/l	1.6	6.4	5.8	23	9.2		
Chloride mg/l	24	18	18	27	19		
Sulphate mg/l	19	8.2	1.2	1.1	1.9		
Nickel ug/l	7	6	<2	48	27		
Manganese ug/l	487	172	444	989	474		

G	Froundwat	ter Q4 201	4		
Parameter	MW-01	MW-02	MW-03	MW-04	MW-05
рН	7.7	7.4	7.3	7.1	7.0
Conductivity uS/cm	531	547	644	1452	2101
Ammonia as N mg/l	2.2	6.5	5.7	20	11
Chloride mg/l	20	18	18	32	80
Sulphate mg/l	1.6	1.2	1.4	4.7	7.9
Boron μg/l	12	10	8	23	N/A
Antimony μg/l	<2	<2	<2	<2	N/A
Arsenic μg/l	2	10	3	<2	N/A
Aluminium μg/l	<2	<2	<2	<2	N/A
Berylium μg/l	<2	<2	<2	<2	N/A
Barium μg/l	453	310	373	117	N/A
Chromium µg/l	<2	<2	<2	<2	N/A
Cadmium μg/l	<2	<2	<2	<2	N/A
Cobalt µg/l	<2	<2	<2	2	N/A
Copper μg/l	<2	<2	<2	<2	N/A
Iron mg/l	<0.1	<0.1	<0.1	0.3	N/A
Potassium	1.2	1.5	2.0	44	22
Manganese μg/l	290	79	185	1279	922
Silver μg/l	<2	<2	<2	<2	N/A
Nickel µg/l	7	6	<2	15	13
Lead μg/l	<2	<2	<2	<2	N/A
Selenium μg/l	<2	<2	2	<2	N/A
Tin μg/l	2	<2	<2	<2	N/A
Zinc µg/l	<2	12	<2	<2	N/A
Mercury μg/l	<1	<1	<1	<1	N/A
Total Coliforms cfu/100mls	20	4	<1	<1	40
E.Coli cfu/100mls	280	10	9	450	200

Ground	Groundwater Q4 2014-VOC Analysis						
VOC's (μg/l)	MW-01	MW-02	MW-03	MW-04	MW-05		
Dichlorodifluoromethane	<10	<10	<10	<10	<10		
Chloromethane	<10	<10	<10	<10	<10		
Vinyl chloride	<10	<10	<10	<10	<10		
Bromomethane	<10	<10	<10	<10	<10		
Chloroethane	<10	<10	<10	<10	<10		
Trichlorofluoromethane	<10	<10	<10	<10	<10		
1,1-Dichloroethene	<10	<10	<10	<10	<10		
Dichloromethane	<10	<10	<10	<10	<10		
trans-1,2-Dichloroethene	<10	<10	<10	<10	<10		
1,1-Dichloroethane	<10	<10	<10	<10	<10		
2,2-Dichloropropane	<10	<10	<10	<10	<10		
cis-1,2-Dichloroethene	<10	<10	<10	<10	<10		
Bromochloromethane	<10	<10	<10	<10	<10		
Chloroform	<10	<10	<10	<10	<10		
1,1,1-Trichloroethane	<10	<10	<10	<10	<10		
Carbon Tetrachloride	<10	<10	<10	<10	<10		
1,1-Dichloropropene	<10	<10	<10	<10	<10		
Benzene	<10	<10	<10	<10	<10		
1,2-Dichloroethane	<10	<10	<10	<10	<10		
Trichloroethene	<10	<10	<10	<10	<10		
1,2-Dichloropropane	<10	<10	<10	<10	<10		
Dibromomethane	<10	<10	<10	<10	<10		
Bromodichloromethane	<10	<10	<10	<10	<10		
Toluene	<10	<10	<10	<10	<10		
1,1,2-Trichloroethane	<10	<10	<10	<10	<10		
1,1,1,2-Tetrachloroethane	<10	<10	<10	<10	<10		
m,p-Xylene	<10	<10	<10	<10	<10		
Styrene	<10	<10	<10	<10	<10		
Isopropylbenzene	<10	<10	<10	<10	<10		
n-propylbenzene	<10	<10	<10	<10	<10		

Groundwate	r Q4 2014	- Cont'd V	OC Analy	sis	
VOC's (μg/l)	MW-01	MW-02	MW-03	MW-04	MW-05
2-Chlorotoluene	<10	<10	<10	<10	<10
4-Chlorotoluene	<10	<10	<10	<10	<10
1,2,4-Trimethylbenzene	<10	<10	<10	<10	<10
4-Isopropyltoluene	<10	<10	<10	<10	<10
1,4-Dichlorobenzene	<10	<10	<10	<10	<10
1,2-Dichlorobenzene	<10	<10	<10	<10	<10
Naphthalene	<10	<10	<10	<10	<10
1,3-Dichloropropane	<10	<10	<10	<10	<10
cis-1,3-Dichloropropene	<10	<10	<10	<10	<10
trans-1,3-Dichloropropene	<10	<10	<10	<10	<10
Dibromochloromethane	<10	<10	<10	<10	<10
Chlorobenzene	<10	<10	<10	<10	<10
Ethyl Benzene	<10	<10	<10	<10	<10
o-Xylene	<10	<10	<10	<10	<10
Bromoform	<10	<10	<10	<10	<10
1,2,3-Trichloropropane	<10	<10	<10	<10	<10
Bromobenzene	<10	<10	<10	<10	<10
Tert-Butylbenzene	<10	<10	<10	<10	<10
Sec-Butylbenzene	<10	<10	<10	<10	<10
1,3,5-Trimethylbenzene	<10	<10	<10	<10	<10
1,2- Dibromo-3-chloropropane	<10	<10	<10	<10	<10
Hexachlorobutadiene	<10	<10	<10	<10	<10
1,2,3-Trichlorobenzene	<10	<10	<10	<10	<10
1,3-Dichlorobenzene	<10	<10	<10	<10	<10
Tetrachloroethene	<10	<10	<10	<10	<10
n-butylbenzene	<10	<10	<10	<10	<10
1,2,4-Trichlorobenzene	<10	<10	<10	<10	<10

Groundwater Q4 2014 – SVOC Analysis					
SVOC's (μg/l)	MW-01	MW-02	MW-03	MW-04	MW-05
Phenol	<1	<1	<1	<1	<1
2-Chlorophenol	<1	<1	<1	<1	<1
2-Methylphenol	<1	<1	<1	<1	<1
4-Methylphenol	<1	<1	<1	13.2	<1
2-Nitrophenol	<1	<1	<1	<1	<1
4-Nitrophenol	<1	<1	<1	<1	<1
2,4-Dichlorophenol	<1	<1	<1	<1	<1
2,4-Dimethylphenol	<1	<1	<1	<1	<1
4-Chloro-3-methylphenol	<1	<1	<1	<1	<1
2,4,6-Trichlorophenol	<1	<1	<1	<1	<1
2,4,5-Trichlorophenol	<1	<1	<1	<1	<1
Pentachlorophenol	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	<1	<1	<1	<1	<1
1,2,4-Trichlorobenzene	<1	<1	<1	<1	<1
Nitrobenzene	<1	<1	<1	<1	<1
Azobenzene	<1	<1	<1	<1	<1
Hexachlorobenzene	<1	<1	<1	<1	<1
Naphthalene	<1	<1	<1	<1	<1
Acenaphthalene	<1	<1	<1	<1	<1
Acenaphthene	<1	<1	<1	<1	<1
Flourene	<1	<1	<1	<1	<1
Phenanthrene	<1	<1	<1	<1	<1
Anthracene	<1	<1	<1	<1	<1
Fluoranthrene	<1	<1	<1	<1	<1
Pyrene	<1	<1	<1	<1	<1
Benzo(a)anthracene	<1	<1	<1	<1	<1
Chrysene	<1	<1	<1	<1	<1
Benzo(b)fluoranthrene	<1	<1	<1	<1	<1
Benzo(k)fluoranthrene	<1	<1	<1	<1	<1

Groundwater Q4 2014 - Cont'd SVOC Analysis					
SVOC's (μg/l)	MW1	MW2	MW3	MW4	MW-05
Benzo(a)pyrene	<1	<1	<1	<1	<1
Indenol(1,2,3-cd)pyrene	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	<1	<1	<1	<1	<1
Benzo(ghi)perylene	<1	<1	<1	<1	<1
2-Chloronaphthalene	<1	<1	<1	<1	<1
Carbazole	<1	<1	<1	<1	<1
2-Methylnaphthalene	<1	<1	<1	<1	<1
Isophorone	<1	<1	<1	<1	<1
Dibenzofuran	<1	<1	<1	<1	<1
Dimethyl phthalate	<1	<1	<1	<1	<1
Diethyl phthalate	<1	<1	<1	<1	<1
Di-butylphthalete	<1	<1	<1	<1	<1
Di-octylphthalate	<1	<1	<1	<1	<1
Bis(2-ethylhexyl)phthalate	<1	<1	<1	<1	<1
Butylbenzylphthalate	<1	<1	<1	<1	<1
4-Chloroaniline	<1	<1	<1	<1	<1
2-Nitroaniline	<1	<1	<1	<1	<1
3-Nitroaniline	<1	<1	<1	<1	<1
4-Nitroaniline	<1	<1	<1	<1	<1
2,4-Dinitroaniline	<1	<1	<1	<1	<1
2,6-Dinitroaniline	<1	<1	<1	<1	<1
Bis(2-Chloroethyl)ether	<1	<1	<1	<1	<1
4-Bromophenylphenylether	<1	<1	<1	<1	<1
4-Chlorophenylphenylether	<1	<1	<1	<1	<1
Hexachloroethane	<1	<1	<1	<1	<1
Hexachlorobutadiene	<1	<1	<1	<1	<1
Hexachlorocyclopentadiene	<1	<1	<1	<1	<1
Bis(2-chloroethoxy)methane	<1	<1	<1	<1	<1
N-nitrosodi-n-propylamine	<1	<1	<1	<1	<1

Groundw	Groundwater Q4 2014 – Pesticide Suite				
Pesticides (μg/l)	MW-01	MW-02	MW-03	MW-04	MW-05
Dichlorvos	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Mevinphos	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Alpha - BHC	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Gamma - BHC	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Diazinon	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Delta - BHC	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethyl Parathion	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fenitrothion	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aldrin	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Malathion	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor Epoxide	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Endosulphan I	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dieldrin	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4, 4' - DDE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Endosulphan II	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4, 4' - DDD	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethion	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Endrin	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Endosulfan Sulphate	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4, 4' - DDT	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Methoxychlor	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Azinphos Methyl	<0.01	<0.01	<0.01	<0.01	< 0.01

2.1.3 (C) <u>Dust Analysis Results</u>

The 2014 results are typically within the licence limit with the exception of two occasions which were attributed to external influences. The wetting of roadways during dry periods has reduced overall dust levels on site.

2014 Dust Results					
Location	Q1 Dust (mg/m²/day)	Q2 Dust (mg/m²/day)	Q3 Dust (mg/m²/day)	Q4 Dust (mg/m²/day)	
AM-01	35	147	135	488 **	
AM-02	76	194	59	244	
AM-03	158	335	1128 *	169	
AM-04	88	247	223	209	

^{*} The dust sample appeared to be tampered with. It is located on a public right of way and as such is easily accessible. This has not occurred in the past so no action will be taken at this time. Q4 results will be assessed to see if this trend continues.

^{** -} Bird droppings contaminated the sample.

2.1.3 (D) Odour Analysis Results 2014 – See Appendix 1 for Sample location maps

The Odour results for 2014 are typical of an open windrow compost facility.

METEOROLOGICAL CONDITIONS Q1 - 4 TH OF MARCH 2014					
	Parameter Parameter				
Weather	Dry with light breeze	Wind speed	1.89 m/sec		
weather	Dry with fight breeze	Wind speed	(average)		
Tomn	7.4	Wind Direction	light breeze from		
Temp	7.4	Willa Direction	SE-S-SW		
General Air	Good	Daw Duagguna	990 mbar		
Quality	Good	Bar Pressure	990 moai		

	Odour Sampling Results Q1 - 5 TH OF MARCH 2014				
Locations	On site observations	Results			
OD 1					
(Upwind /	Faint intermittent diesel fume odour	$<30 \text{ ou}_{\text{F}}/\text{m}^3$			
Sensitive	raint intermittent dieser fume odour	SU OUE/III			
Receptor)					
OD 2	Composting adour	$133 \text{ ou}_{\text{F}}/\text{m}^3$			
(Downwind)	Composting odour	133 Ou _E /III			
OD 3					
(Downwind /	Commosting adam	$176 \text{ ou}_{\text{F}}/\text{m}^3$			
Sensitive	Composting odour	1 /O OUE/III			
Receptor)					

METEOROLOGICAL CONDITIONS Q2 - 30 TH OF APRIL 2014					
	Parameter Parameter				
Weather	Dry with gentle breeze	Wind speed	4.17 m/sec		
vv eather	Dry with genue breeze	wind speed	(average)		
			Gentle breeze		
Temp	12.1°C	Wind Direction	movement from		
			south to west		
General Air	Good	Bar Pressure	998 mbar		
Quality	Good	Dar Fressure	996 IIIDai		

	Odour Sampling Results Q2 - 30 th April 2014				
Locations	On site observations	Results			
OD 1	No noticeable adoug	<30 ou _E /m ³			
(Upwind)	No noticeable odours	<30 ou _E /m			
OD 2	Composting adour	216 ou _E /m ³			
(Downwind)	Composting odour	210 oug/III			
OD 3					
(Sensitive	Composting odour	$<30 \text{ ou}_{\text{E}}/\text{m}^3$			
Receptor)					

METEOR	METEOROLOGICAL CONDITIONS Q3 – 22 ND OF SEPTEMBER 2014				
	Parameter Parameter				
Weather	Dry with gentle breeze	Wind speed	4.78 m/sec		
w eather	Dry with gentic breeze	w mu speeu	(average)		
			Gentle breeze		
Temp	14.3 °C	Wind Direction	movement from		
			south to west		
General Air	Good	Bar Pressure	1009 mbar		
Quality	Good	Dai i l'essure	1009 1110a1		

	Odour Sampling Results Q3 – 22 nd of September 2014			
Locations	On site observations	Results		
OD 1				
(Upwind /	No detectable odours	$16 \text{ ou}_{\text{F}}/\text{m}^3$		
Sensitive	No detectable odours	10 Ou _E /III		
Receptor)				
OD 2				
(Upwind /	No detectable adapted	$13 \text{ ou}_{\text{F}}/\text{m}^3$		
Sensitive	No detectable odours	13 Ou _E /m		
Receptor)				
OD 3	Composting odour detected	29 ou _E /m ³		
(Downwind)	Composing odour detected	29 Ou _E /III		

METEOF	METEOROLOGICAL CONDITIONS Q4 - 2 ND OF DECEMBER 2014				
	Parameter Parameter				
Weather	Dry, Calm	Wind speed	0.54 m/sec		
vv cather	ther Dry, Cann wind speed	(average)			
			Calm, light air		
Temp	9.9°C	Wind Direction	movement from SW,		
			S, SE & E		
General Air	Good	Bar Pressure	1004.3 mbar		
Quality	Good	Dai i ressure	1004.3 111081		

	Odour Sampling Results Q4 - 2 nd of December 2014				
Locations	On site observations	Results			
OD 1 (Upwind					
/ Sensitive	No detectable odours	$11 \text{ ou}_{\text{E}}/\text{m}^3$			
Receptor)					
OD 2					
(Downwind)	Composting odour detected	$215 \text{ ou}_{\text{E}}/\text{m}^3$			
OD 3	Intermittent composting adour detected	$19 \text{ ou}_{\text{F}}/\text{m}^3$			
(Downwind)	Intermittent composting odour detected	19 Ou _E /III			

2.1.4 (E) <u>Air Emissions Results</u>

Air Analysis Q1 2014							
Lagation	Amines	Ammonia	Hydrogen	Mercaptens			
Location	(ppm)	(ppm)	Sulphide (ppm)	(ppm)			
Downwind on							
north western	< 4.10	∠F	<0.2	<0.5			
boundary of	<4.18	<5	<0.2	<0.5			
phase 1							

Air Analysis Q2 2014								
Location	Amines	Ammonia	Hydrogen	Mercaptens				
Location	(ppm)	(ppm)	Sulphide (ppm)	(ppm)				
Downwind on								
north western	<4.21	~F	<0.2	<0.5				
boundary of	<4.21 <5	\sim	<0.2	<0.5				
phase 1								

Air Analysis Q3 2014							
Logotion	Amines	Ammonia	Hydrogen	Mercaptens			
Location	(ppm)	(ppm)	Sulphide (ppm)	(ppm)			
Downwind on north							
eastern boundary of	<4.20	<5	< 0.2	< 0.5			
phase 1							

Air Analysis Q4 2014							
Location	Amines	Ammonia	Hydrogen	Mercaptens			
Location	(ppm)	(ppm)	Sulphide (ppm)	(ppm)			
Downwind on north							
eastern boundary of	<4.02	<5	< 0.2	< 0.5			
phase 1							

2.3.1 (E) <u>Noise Emissions</u>

Noise:

The annual noise-monitoring programme was carried out on the 15th and 22nd Sept 2014. The results of same are presented in Table E.1 and E.2.

TABLE E.1: NOISE MEASUREMENT RESULTS (DAYTIME) 15 th and 22 th May 2014							
Location No.	Duration	Date	Start	L _{eq}	L_{10}	L ₉₀	L _{AFMax}
Location No.	(minutes)	Date	Time	dB(A)	dB(A)	dB(A)	dB(A)
	30	15/9/14	09:31	56	61	44	69
N1	30	15/9/14	11:45	56	61	44	67
	30	15/9/14	15:40	56	59	42	80
	30	15/9/14	10:06	44	42	30	74
N2	30	15/9/14	12:17	37	40	28	61
	30	22/9/14	10:15	42	45	31	66
	30	15/9/14	10:38	42	44	32	72
N3	30	15/9/14	12:39	46	46	29	71
	30	15/9/14	16:12	45	48	31	67
	30	15/9/14	11:12	45	48	36	62
N4	30	15/9/14	15:07	44	47	39	60
	30	22/9/14	11:08	60	63	54	69
NSL 1	30	15/9/14	08:58	48	49	39	69
	30	15/9/14	14:00	49	52	38	64
	30	15/9/14	14:34	53	56	48	68

2.1.4 Environmental Incidents & Complaints

All environmental incidents and complaints are recorded and actioned upon in accordance with the specific procedures as outlined in the Bord na Móna Kilberry Compost facility documented environmental management system.

Environmental Complaints	Number of complaints
Complaints received	One
Complaints requiring corrective action	None - New Odour Management
	Plan commenced August 2010
Categories of complaint	
Odour	One
Noise	
Water	
Air	
Procedural	
Miscellaneous	

2.1.5 Environmental Spending

The itemised spend on environmental issues at Bord na Móna Kilberry are listed below.

January 2014 to December 2014					
		€			
EPA Fees		8000			
Consultancy & Monitoring		30,000			
Training		5,000			
Env Equipment		5,000			
	Total Cost	48000			

2.1.6 Resource and Energy Consumption

Fuel Usage 2014 – See table below

Machine Type	Engine Type	Total (L)
Komptech Topturn X67 Turner	Cat C9	
Komptech Crambo 6000 Shredder	Cat C16	
Komptech L3 Multistar Screen	Dieselelectric 44KVA	107988
L110E Volvo Front Loader	Volvo D7D LB E2	
L110E Volvo Front Loader 2	Volvo D7D LB E2	

Electricity Usage 2014 – recorded at compost site metre.

81220 KwHr

SECTION 3

ENVIRONMENTAL MANAGEMENT

BORD NA MÓNA KILBERRY COMPOST FACILITY ENVIRONMENTAL OBJECTIVES AND TARGETS 2015

Item No	Objective	Target	Responsible Function
1	Meet Operating Capacity Requirements.	 Increase tonnage entering site – investigate new waste types. Implement new marketing strategies to increase customer base. 	Horticulture (Newbridge)
2	Training / EMS	 Carry out one spill drill. All staff members to receive Environmental training. Carry out annual review of all EMS procedures 	Environmental (Kilberry)
3	Once off Projects	 Liaise with EPA RE the article 27 notification. Investigate site expansion to increase the overall footprint of the site. 	Environmental (Kilberry)
4	Carry out monitoring as per Licence 198-1	 Noise – Once per annum Bioaerosols – Once per annum Dust – four times per annum SW - Quarterly GW – Quarterly 	Environmental (Newbridge / Kilberry)

3.1 Environmental Management Programme for 2015.

Review of Objectives and Targets for the period January to December 2014

Tables EMP 1.1 to 1.5 reviews the Objectives and Targets set for 2014. A number of the listed Objectives and their subsequent targets are cyclical as the company attempts to achieve continuous environmental improvement.

Tables EMP 2.1 to 2.5 set out the Objectives and Targets for 2015. A number of the listed Objectives and their subsequent targets are cyclical as the company attempts to achieve continuous environmental improvement.

Site Infrastructure EOT 1.1

Objective	Target	Target Date	2014 Review	Dept Responsible
Meet Operating Capacity	Increase tonnage entering site – investigate new waste types.	2014	No new waste types added during 2014	Kilberry (Environmental)
Requirements.	Implement new marketing strategies to increase customer base	2014	Continuous 2014	Horticulture (Newbridge)

Training EOT 1.2

Objective	Target	Target Date	2014 Review	Dept Responsible
	Carry out one spill drill.	2014	Complete	Environmental (Kilberry)
Emergency Response, Health and Safety and Training	All staff members to receive Environmental training.	2014	Complete	Environmental (Kilberry)
	Review emergency response procedure.	Q2 2014	Complete	Environmental (Kilberry)

Once off Projects EOT 1.3

Objective	Target	Target Date	2014 Review	Dept Responsible
Once off projects	Prepare Article 27 Notification form for oversize material	Q1 2014	Complete - sent June 2014	Kilberry (Environmental)
	Liaise with Agency RE using Kilberry site as sample site for preparation of BREF notes under terms of IED legislation	Q2 2014	Complete	Kilberry (Environmental)

Licence Compliance EOT 1.4

Objective	Target	Target Date	2014 Review	Person Responsible
Carry out monitoring as per Licence W0198-1	Noise – Once per annum	2014	Complete	Newbridge (Environmental)
	Bioaerosols – Annually	2014	Complete	Newbridge (Environmental)
	Dust - Quarterly	2014	Complete	Kilberry (Environmental)
	Groundwater – Quarterly	2014	Complete	Kilberry (Environmental)
	Surface Water - Quarterly	2014	Complete	Kilberry (Environmental)

Operating Requirements

EOT 2.1

Objective	Target	Target Date	Person Responsible
Meet Operating Capacity Requirements.	Increase tonnage entering site – investigate new waste types	Continuous 2015	Newbridge (Horticulture)
	Implement new marketing strategies to increase customer base	Continuous 2015	Newbridge (Horticulture)

Training / EMS EOT 2.2

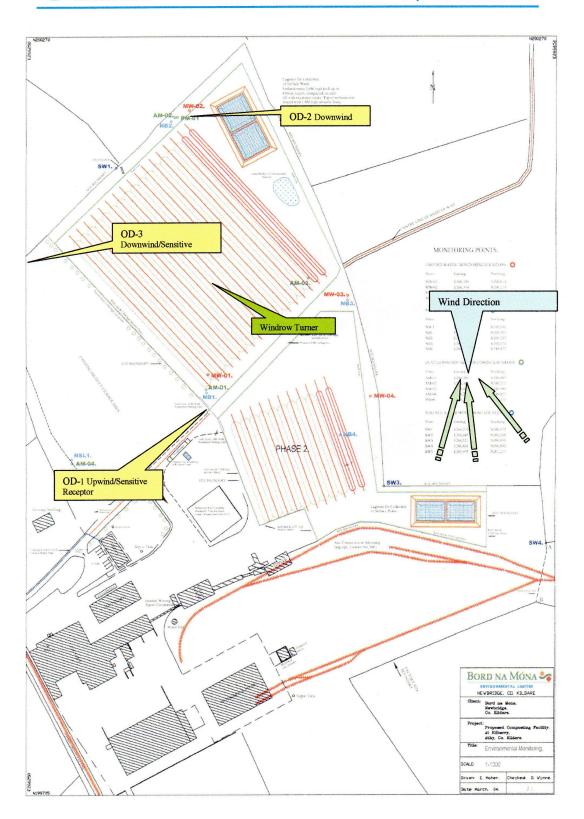
Objective	Target Date		Person Responsible
	Carry out one spill drill.	Q3 2015	Environmental (Kilberry)
Training / EMS	All staff members to receive Environmental training.	Continuous 2015	Environmental (Kilberry)
	Carry out annual review of all EMS procedures Q2 2015		Environmental (Kilberry)

Bord na Móna 37

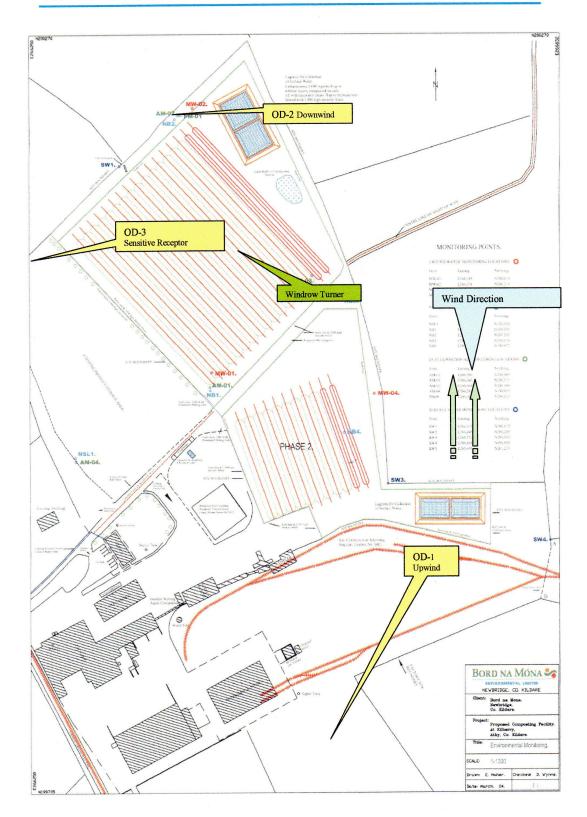
Once Off Projects EOT 2.3

Objective	Target	Target Date	Person Responsible	
	Liaise with EPA RE the article 27 notification.	Q2 2015	Kilberry (Environmental)	
Once off Projects	Investigate site expansion to increase the overall footprint of the site.	2015	Kilberry (Environmental)	

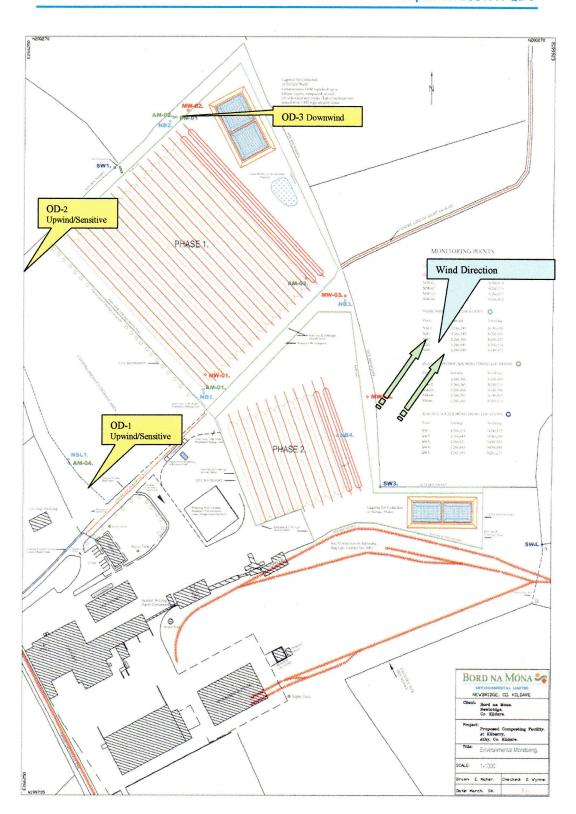
Bord na Móna 38

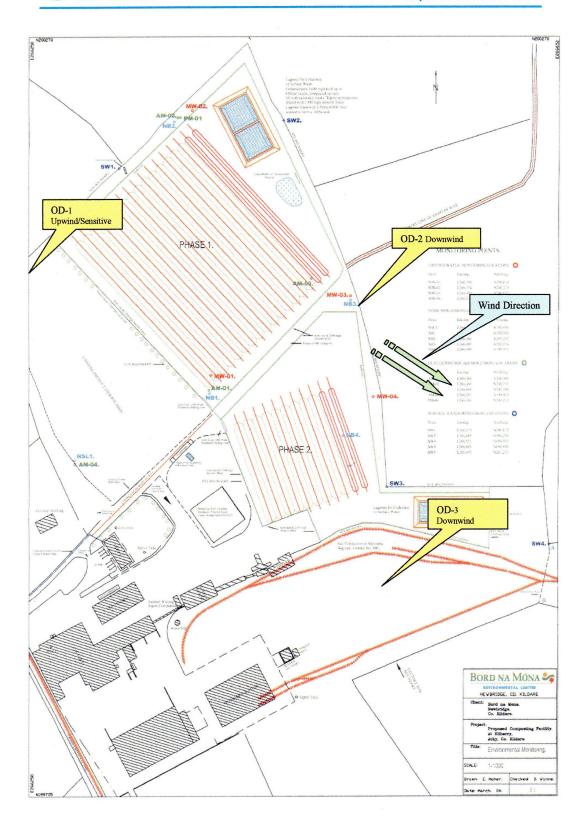

Licence Compliance EOT 2.4

Objective	Target Date		Person Responsible
Carry out monitoring as per Licence 198-1	Noise – Once per annum	2015	Environmental (Newbridge)
	Bioaerosols – Once per annum	2015	Environmental (Newbridge)
	Dust - Quarterly	2015	Kilberry (Environmental)
	Groundwater – Quarterly	2015	Kilberry (Environmental)
	Surface Water - Quarterly	2015	Kilberry (Environmental)


Bord na Móna 39

APPENDIX 1 Odour Monitoring Location Maps





APPENDIX 2 Compost Analysis Report

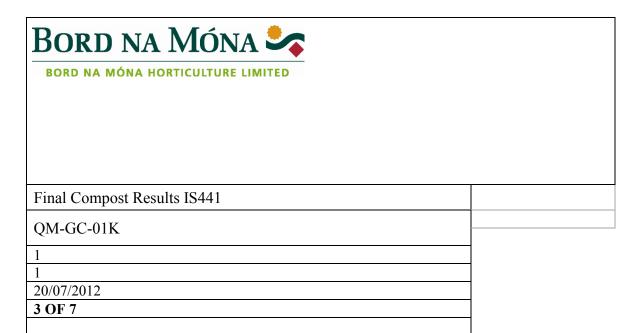
QM Doc. Name:	Final Compost Results IS441	
QM Doc. Ref.:	QM-GC-01K	
Issue No.:	1	
Revision No.:	1	
Date:	15/08/2012	
Page:	1 OF 7	

MONTHLY ANALYSIS OF WINDROWS AT KILBERRY
2014

REPORT NO: KILBERRY MONTHLY ANALYSIS 2014

PREPARED BY: Colman Hynes

Bord na Móna ltd.


DATE: 09/03/2015

Bord na Móna 🔩					
BORD NA MÓNA HORTICULTURE LIMITED					
Final Compost Results IS441					
QM-GC-01K					
1					
1					
20/07/2012					
2 OF 7					

Introduction

Samples are collected monthly for analysis according to the EPA licence 198-1 *Schedule F: Standards for Compost Quality* and also I.S. 441:2011

Samples are collected by the Bord na Mona Horticulture lab. Analysis begins on the day of sampling and held in cold storage during analysis.

Compost Testing and Analysis Service

Report ref: KC13

Results

Sample matrix: Composted greenwaste and spent grain/Sludges

PLANT Nutrient, CAT Soluble Nutrients, and Physical Analysis

TEST Method	I.S. EN13037	I.S.EN13038	I.S.EN13651	I.S.EN13651	I.S.EN13651	I.S.EN13651	I.S.EN13040
2014	pН	EC	NH ₄ -N	NO ₃ -N	PO ₄ -P	K	M/C %
		μS.cm ⁻¹	mg.L ⁻¹	mg.L ⁻¹	$mg.L^{-1}$	mg.L ⁻¹	
Jan	7.1	580	7	86	204	1010	64.3
Feb	7.5	540	66	52	13	642	74.1
Mar	7.40	318	10	17	139	548	68.0
Apr	7.50	689	15	25	90	890	53.0
May	7.30	642	46	67	225	927	59.0
Jun	6.90	707	19	96	176	924	54.0
July	8.30	599	115	4	28	620	48.0
Aug	7.40	617	85	2	109	1010	49.5
Sep	7.90	1137	302	6	133	1230	52.7
Oct	6.70	897	76	140	42	823	64.2
Nov	6.77	615	4.5	15	62.25	832.5	63.5
Dec	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Final Compost Results IS441
QM-GC-01K
1
1
20/07/2012
4 OF 7

Maturity

Germination of Cress

Method IS EN 16086-2 201	11 % AGR	RI %
Jan	100	108
Feb	100	76
Mar	93	134
Apr	100	48
May	97	84
June	93	88
July	87	78
Aug	100	68
Sept	114	93
Oct	100	58
Nov	100	104
Dec	n/a	n/a
% AGR %Average G	Germination	•
Rate		
RI % Root Inde	x %	

C:N Ratio

Test Method Sample no (month)	% Organic Matter	I.S.EN13039 C:N Ratio
Jan	64	9
Feb	76	13
Mar	83	18
Apr	80	12
May	67	12
Jun	65	14
July	69	10
Aug	72	13
Sep	66	11
Oct	66	15
Nov	77	13
Dec	n/a	n/a

Final Compost Results IS441
QM-GC-01K
1
1
20/07/2012
5 OF 7

Foreign Matter over 2mm

	Foreign Matter > 2mm	Stones >4mm	%N	%P	%K
Method			Based on I.S EN		
	PAS 100:2005		13654-1	ISEN13650	ISEN13650
Jan	0	1.12	3.83	0.59	0.77
Feb	0.38	2.78	3.21	0.67	0.61
Mar	1.55	0.84	2.60	0.54	0.47
Apr	0.07	0	3.80	0.53	0.74
May	1.9	5.63	3.20	0.50	0.60
Jun	1.19	2.44	2.50	0.50	0.60
July	0	0	3.70	0.50	0.50
Aug	0	2.64	3.10	0.50	0.70
Sep	1.520	.34	3.30	0.62	0.84
Oct	0	0	3.62	0.57	0.71
Nov	0	0	3.33	0.48	0.63
Dec	n/a	n/a	n/a	n/a	n/a

^{*}Based on BP PAS100:2005

Final Compost Results IS441
QM-GC-01K
1
1
20/07/2012
6 OF 7

Heavy Metals (Dry weight basis)

Sample no	Cu mg.kg ⁻¹	Zn mg.kg ⁻¹	Pb mg.kg ⁻¹	Cd mg.kg ⁻¹	Hg mg.kg ⁻¹	Ni mg.kg ⁻¹	Cr mg.kg ⁻¹
Method used		I.S.EN	13650		ISO167 72	I.S.EN	13650
Standard	100	350	150	1.5	1	50	100
Jan	29.8	158	29.6	0.46	0.11	8.03	7.16
Feb	41.4	183	37.8	0.41	0.09	9.12	9.97
Mar	34.6	125	140	0.41	0.11	10	7.06
Apr	31.2	234	33.9	0.63	0.12	7.6	5.57
May	48	179	91.6	0.71	0.08	59.5	189
Jun	30.1	127	39.5	0.51	0.07	9.36	6.87
July	34.6	153	43.4	0.62	0.08	9.89	6.99
Aug	29.6	141	42.3	0.5	0.09	9.11	7.84
Sep	43.6	180	42	0.72	0.12	11.3	9.51
Oct	37.9	156	42.5	0.61	0.08	16.3	51.1
Nov	28.6	128	23.7	0.5	0.07	17.6	56.9
Dec	n/a						

Microbiological Analysis

Sample no	E Coli CFU/g)	Salmonella (spp/25g)
Method used	Based on ISO 16649-2 (2001)	RayAL ELISA OPTIMA
Jan	<10	Absent
Feb	<10	Absent
Mar	<10	Absent
Apr	<10	Absent
May	60	Absent
Jun	20	Absent
July	70	Absent
Aug	<10	Absent
Sep	<10	Absent
Oct	60	Absent
Nov	<10	Absent
Dec	n/a	n/a

^{*} Repeats May14 Ni =7.06, Cr=7.35

Final Compost Results IS441
QM-GC-01K
1
1
20/07/2012
7 OF 7

Stability Analysis

Method prEN16087-1

Sample no	Mmol/O ₂ /kg OS/h
Standard	
Jan	5.3
Feb	2.2
Mar	6.4
Apr	14.2
May	8
Jun	7.5
July	8.7
Aug	10.6
Sep	5.6
Oct	11.2
Nov	10
Dec	n/a

^{*} Repeat of individual piles in brackets

Weed Test

Method BGKe.V2006

Michiga Dorc. V 2000	
Sample no	Weeds/L
Standard	
Jan	<.05
Feb	<.05
Mar	<0.5
Apr	<0.5
May	<0.05
Jun	0.67
July	<0.5
Aug	<0.5
Sep	<0.5
Oct	<0.5
Nov	<0.5
Dec	n/a

APPENDIX 3 PRTR Scans

Sheet: Facility ID Activities

| PRTR# : W0198 | Facility Name : Bord na Móna Plc (Kilberry) | Filename : W0198_2014.xls | Return Year : 2014 |

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2014

						-
4	EACH	ITV	IDEN	ITIE	$\cap \Delta$	TION

1. FACILITY IDENTIFICATION	
Parent Company Name	Bord na Mona Public Limited Company
Facility Name	Bord na Móna Plc (Kilberry)
PRTR Identification Number	
Licence Number	W0198-01

Classes of Activity

Classes of Activity	
	class_name
	Refer to PRTR class activities below

Address 1	
Address 2	Athy
Address 3	
Address 4	
	Kildare
Country	Ireland
Coordinates of Location	-7.0108 53.0473
River Basin District	IESE
NACE Code	3832
Main Economic Activity	Recovery of sorted materials
AFR Returns Contact Name	Craig Mallinson
AER Returns Contact Email Address	craigmallinson@inbox.com
AER Returns Contact Position	Consultant
AER Returns Contact Telephone Number	087 2886848
AER Returns Contact Mobile Phone Number	087 2886848
AER Returns Contact Fax Number	
Production Volume	0.0
Production Volume Units	
Number of Installations	
Number of Operating Hours in Yea	<u> </u>
Number of Employees	5
User Feedback/Comments	
Oser reedback comment	
Web Address	
TOD Addition	

2 PRTR CLASS ACTIVITIES

Activity Number	Activity Name
50.1	General
50.1	General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)	
Is it applicable?	
Have you been granted an exemption?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	

Is the reduction scheme compliance route being	
used?	

4. WASTE IMPORTED/ACCEPTED ONTO SITE Guidance on waste imported/accepted onto site

Do you import/accept waste onto your site for onsite treatment (either recovery or disposal activities) ? No

| PRTR# : W0198 | Facility Name : Bord na Móna Plc (Kilberry) | Filename : W0198_2014.xls | Return Year : 2946 2 of 2

Within the Country 19 05 99	Within the Country 19 05 01		Transfer Destination								5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE
19 05 99	19 05 01		Code	European Waste							ENT & OFFSITE TRA
ĕ	No.		Hazardous								NSFERS OF
255.0	30.0					Year)	Quantity			Please enter:	
255.0 wastes not otherwise specified	30.0 similar wastes	non-composted fraction of municipal and	Description of Waste							Please enter all quantities on this sheet in Tonnes	PRTR#: W0198 Facility Name : Bord na Mona Plc (Kilberry) Filename : W0198_2014.36 Return Year : 2014
R3	2		Operation	Treatment	Waste						(liberry) Filenar
Z	m		M/C/E								SELOW: ad
Weighed	Weighed		Operation M/C/E Method Used			Method Used					2014 305 Neturn Year 1 20
Offsite in Ireland 008-002	Offsite in Ireland		Treatment	Location of							1.0
008-002	Offsite in Ireland Kyletalesha WTS, W0194-01 , ", ", Laois, ", Ireland Rathcon Farm, WFP-WW-09- Rathcon Farm, Grange					Recover/Disposer	Name and	Destination Facility Non Next	Haz Waste : Name and		
Con,Co. Wicklow,".", Ireland	Rathcon Farm, Grange	Kyletalesha					Destination Facility	Haz Waste: Address of Next			
						ONLY)	Address of Final Recoverer / Actual Address of Final Destination	Name and License / Permit No. and			
						(HAZARDOUS WASTE ONLY)	Address of Final Recoverer / Actual Address of Final Destination				

* Select a row by double-clicking the Description of Waste then alick the delete button

| PRTR# : W0198 | Facility Name : Bord na Môna Pic (Kilberry) | Filename : W0188_2014.xls | Return Year : 2014 |