SELECT	cells that are highlighted blue contain a dropdown menu click to select one option from the list
guidance document link	cells that contain underlined text click to access relevant guidance documents for this section
Table heading *	table headings followed by a symbol have an associated footnote or instructions
Cells with red indicator in top right corner	cells that have a red indicator in the top right corner contain a comment box with further instructions or clarification

Please note an interpretation of results is still required. This should be entered in the additional information/comments boxes within the templates. Please size these boxes appropriately to fit your interpretation, if additional space is required please include an appendix to the AER template and merge it as part of the AER PDF document. The excel template should have all cells sized appropriately so that all text is readable before it is converted to PDF document.

AER Reporting Year 2014 Licence Register Number W0041-01 Name of site Smithstown Industrial Estate, Shannon, Co. Clare NACE Code E138 Class 5: Biological treatment not referred to elsewhere in this Schedule which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this schedule. Class 7: Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination) which results in final compounds or mixtures which are disposed of by means of any activity referred to in a preceding paragraph of this Schedule. Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 22: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of other inorganic materials. Class 4: Recycling or reclamation of other inorganic materials.	Facility Information Sum	imary	1						
Licence Register Number Name of site Site Location NACE Code Utass 6: Biological treatment not referred to elsewhere in this Schedule which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule. Class 7: Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination) which results in final compounds or mixtures which are disposed of by means of any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of metals and metal compounds. Class 3: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of other inorganic materials.	AER Reporting Year	2014							
Name of site Enva Ireland Ltd Site Location Smithstown Industrial Estate, Shannon, Co. Clare NACE Code E38 Class b: Biological treatment not referred to elsewhere in this Schedule which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this schedule. Class 7: Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination) which results in final compounds or mixtures which are disposed of by means of any activity referred to in a paragraphs 1 to 10 of this Schedule. Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of other inorganic materials. Clas	Licence Register Number	W0041-01		•					
Site Location NACE Code Site Location NACE Code Site Location Site Locat	Name of site			Enva Ireland Ltd					
NACE Code E38 Class 6: Biological treatment not referred to elsewhere in this Schedule which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this schedule. Class 7: Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination) which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule. Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of	Site Location	Smithstown Industrial Estate, Shannon, Co. Clare							
Class 6: Biological treatment not referred to elsewhere in this Schedule which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this schedule. Class 7: Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination) which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule. Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 4: Recycling or reclamation of other inorganic materials.	NACE Code			E38					
compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this schedule. Class 7: Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination) which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule. Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of ortex inorganic matherials.		Class 6: Biological treatment not referred to elsewhere in this Schedule which results in final							
paragraphs 1 to 10 of this schedule. Class 7: Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination) which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule. Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 4: Recycling or reclamation of other inorganic materials.		comp	ounds or m	ixtures which are disposed of by means of any activity referred to in					
Class 7: Physico-chemical treatment not referred to elsewhere in this Schedule (including evaporation, drying and calcination) which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule. Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 4: Recycling or reclamation of ther inorganic materials.				paragraphs 1 to 10 of this schedule.					
evaporation, drying and calcination) which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule. Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 4: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of metals and metal compounds.		Class 7:	Physico-ch	emical treatment not referred to elsewhere in this Schedule (including					
 which are disposed of by means of any activity referred to in paragraphs 1 to 10 of this Schedule. Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of other inorganic materials. Class 4: Recycling or reclamation of other inorganic materials. 		eva	poration, di	rying and calcination) which results in final compounds or mixtures					
this Schedule. Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 4: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of metals and metal compounds.		whi	ch are dispo	osed of by means of any activity referred to in paragraphs 1 to 10 of					
Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 4: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of organic nuterials.		this Schedule.							
paragraph of this Schedule. Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 4: Recycling or reclamation of other inorganic materials.		Class 11: Blending or mixture prior to submission to any activity referred to in a preceding							
Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of ther inorganic materials.		paragraph of this Schedule.							
of this Schedule. Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of ther inorganic materials.		Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph							
Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of other inorganic materials.		of this Schedule.							
this Schedule, other than temporary storage, pending collection, on the premises where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of other inorganic materials.		Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of							
where the waste concerned is produced. Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of other inorganic materials.		this	Schedule, o	other than temporary storage, pending collection, on the premises					
Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of other inorganic materials.				where the waste concerned is produced.					
of the Waste Management Act, 1996 Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of other inorganic materials.			Licensed wa	aste recovery activities, in accordance with the Fourth Schedule					
Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes). Class 3: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of other inorganic materials.				of the Waste Management Act, 1996					
(including composting and other biological transformation processes). Class 3: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of other inorganic materials.		Class	2: Recycling	or reclamation of organic substances which are not used as solvents					
Class 3: Recycling or reclamation of metals and metal compounds. Class 4: Recycling or reclamation of other inorganic materials.			(including	g composting and other biological transformation processes).					
Class 4: Recycling or reclamation of other inorganic materials.			Class 3:	Recycling or reclamation of metals and metal compounds.					
Class (Classes of Activity		Class 4: Recycling or reclamation of other inorganic materials.							
	Class/Classes of Activity	Class 8: Oil re-refining or other re-uses of oil.							
National Grid Reference (6E, 6 N) 140778.83E, 163241.64N	National Grid Reference (6E, 6 N)			140778.83E, 163241.64N					
	scription of the activities/processes at								

Site Performance: The company continues to demonstrate its commitment towards HSE management standards - ISO14001 re-certification achieved in 2014, with no non-conformances raised.

for storage and reuse of reject mains water from deionisation units. This water is used on site in the preparation of lime slurry for use in physical chemical treatment processing. Yard integrity improvement works have continued throughout the year, and focused primarily on the rear yard area, further works focusing on the lower yard area are scheduled for 2015. CCTV cameras have been installed in bulk storage areas, providing remote access to monitor the area during out of hours. All licence required testing continues to be carried out by accredited laboratories. <u>Environmental Performance</u>: A non-conformance was issued in November for over 6 months stock on site. This stock is primarily made up of old legacy waste and requires specialised projects to dispose of. Stock levels on site continue to be analysed and monitored closely, performance continues to be reported monthly to the Agency, and two full-scale stock audits are carried out per year. There were 3 incidents in 2014 which were reported to the EPA in timely fashion and corrective and preventative actions implemented to address the incidents.

Declaration:

water, noise.

the site for the reporting year. This should include information such as production

increases or decreases on site, any

infrastructural changes, environmental

the reporting year and an overview of

compliance with your licence listing all

applicable) and what they relate to e.g. air,

exceedances of licence limits (where

performance which was measured during

All the data and information presented in this report has been checked and certified as being accurate. The quality of the information is assured to meet

	licence re	quireme
Signature Group/Facility manager	Date	
(or nominated, suitably qualified and experienced deputy)		

	AIR-summary template	Lic No:		W0041-01	Year	2014		
	Answer all questions and complete all tables where relevant							
		Additional information						
1	Does your site have licensed air emissions? If yes please complete table A1 and A2 below for the current reporting year and answer further questions. If you do not have licenced emissions and do not complete a solvent management plan (table A4 and A5) you <u>do not</u> need to complete the tables	,	/es	Air monitoring is c compliance with a set	completed quaterly to demonstrate of emission limit values as specified in our site licence.			
	Periodic/Non-Continuous Monitoring							
2	Are there any results in breach of licence requirements? If use please provide brief details in the comment section of							
2	TableA1 below	No						
	Basic air_							
3	Was all monitoring carried out in accordance with EPA guidance monitoring							
	note AG2 and using the basic air monitoring checklist? <u>checklist</u> <u>AGN2</u>	Yes						

Table A1: Licensed Mass Emissions/Ambient data-periodic monitoring (non-continuous)

Emission reference no:	Parameter/ Substance	Frequency of Monitoring	ELV in licence or any revision therof	Licence Compliance criteria	Measured value	Unit of measurement	Compliant with licence limit	Method of analysis	Annual mass load (kg)	Comments - reason for change in % mass load from previous year if applicable
	Hydrogen Chloride	Monthly	10	100 % of values < ELV		mg/Nm3	yes	EN 1911-1 to 3:2003	2.1	
	Sulphur oxides (SOx/SO2)	Quaterly	300 mg/m3	100 % of values < ELV		mg/Nm3	yes	TGN 21	24.9	
	Nitrogen oxides (NOx/NO2)	Quaterly	300 mg/m3	100 % of values < ELV		mg/Nm3	yes	EN 14792:2005	0.5	
	Ammonia (NH3)	Monthly	30 mg/m3	100 % of values < ELV		mg/Nm3	yes	EN 14791:2005	2.1	
	Volumetric Flow	Monthly	4000	100 % of values < ELV		Nm3/hour	yes	EN 13284 - 1:2002	12,265	
	TA Luft organic substances class 3	Monthly	50 mg/m3	100 % of values < ELV		mg/Nm3	yes	EN 13649:2001	29.9	

Note 1: Volumetric flow shall be included as a reportable parameter

	AIR-summary template	Lic No:	W0041-01	Year	2014
	Continuous Monitoring				
4	Does your site carry out continuous air emissions monitoring?	No			
	If yes please review your continuous monitoring data and report the required fields below in Table A2 and compare it to its relevant Emission Limit Value (ELV)				
5	Did continuous monitoring equipment experience downtime? If yes please record downtime in table A2 below	No			
6	Do you have a proactive service agreement for each piece of continuous monitoring equipment?	No			
7	Did your site experience any abatement system bypasses? If yes please detail them in table A3 below Table A2: Summary of average emissions -continuous monitoring	No			

Emission	Parameter/ Substance		Averaging Period	Compliance Criteria	Units of	Annual Emission	Annual maximum	Monitoring	Number of ELV	Comments
reference no:					measurement			Equipment	exceedences in	
								downtime (hours)	current	
		ELV in licence or any							reporting year	
		revision therof								
	SELECT			SELECT	SELECT					
	SELECT				SELECT					
	SELECT				SELECT					
	SELECT				SELECT					
	SELECT				SELECT					

note 1: Volumetric flow shall be included as a reportable parameter.

Table A3: Abatement system bypass reporting table Bypass protocol

Date*	Duration** (hours)	Location	Reason for bypass	Impact magnitude	Corrective action

* this should include all dates that an abatement system bypass occurred

** an accurate record of time bypass beginning and end should be logged on site and maintained for future Agency inspections please refer to bypass protocol link

AIR-summary t	emplate				Lic No:	W0041-01		Year	2014
Solvent	use and manageme	nt on site							
Do you have a total	Emission Limit Value of d	irect and fugitive emis	sions on site? if yes	please fill out tables A4 and A5			SELECT		
Table A4: Solve Total VOC Emis	ent Management Pla ssion limit value	n Summary	<u>Solvent</u> <u>regulations</u>	Please refer to linked solver complete table 5	nt regulations to and 6				
Reporting year	Total solvent input on site (kg)	Total VOC emissions to Air from entire site (direct and fugitive)	Total VOC emissions as %of solvent input	Total Emission Limit Value (ELV) in licence or any revision therof	Compliance				
					SELECT				
					SELECT				
Table A5:	Solvent Mass Baland	ce summary							7
	(I) Inputs (kg)			(0)	Outputs (kg)				
Solvent	(I) Inputs (kg)	Organic solvent emission in waste	Solvents lost in water (kg)	Collected waste solvent (kg)	Fugitive Organic Solvent (kg)	Solvent released in other ways e.g. by-	Solvents destroyed onsite through	Total emission of Solvent to air (kg)	
									4
							Total		

AER Monitoring returns summary template-WATER/WASTEWATER(SEWER)		Lic No:	W0041-01		Year	2014	l de la constante de
			Additional information				
Does your site have licensed emissions direct to surface water or direct to sewer? If yes please complete table W2 and W3 below for the current reporting year and answer further questions. If you do not have licenced emissions you <u>only</u> need to complete table W1 and or W2 for storm water analysis and visual inspections	Yes	stormwater discha underground storage tested historically. Th from the site this o area and	arges. As the majority of stormwa e tanks and treated on site, storm here is only small percentage of st originates from rainwater run-off from guttering on some buildings	ter is collected in water has not been tormwater released from the car-park s on site.			
Was it a requirement of your licence to carry out visual inspections on any surface water							
2 discharges or watercourses on or near your site? If yes please complete table W2 below							
summarising only any evidence of contamination noted during visual inspections	No						
Table W1 Storm water monitoring							
	ELV or trigger						

1

Location reference	Location relative to site activities	PRTR Parameter	Licenced Parameter	Monitoring date	ELV or trigger level in licence or any revision thereof*	Licence Compliance criteria	Measured value	Unit of measurement	Compliant with licence	Comments
	SELECT	SELECT	SELECT			SELECT		SELECT	SELECT	
	SELECT	SELECT	SELECT			SELECT		SELECT	SELECT	

*trigger values may be agreed by the Agency outside of licence conditions

Table W2 Visual inspections-Please only enter details where contamination was observed.

Location Reference	Date of inspection	Description of contamination	Source of contamination	Corrective action	Comments
			SELECT		
			SELECT		

Licensed Emissions to water and /or wastewater(sewer)-periodic monitoring (non-continuous)

z	Was there any result in breach of licence requirements? If yes plea	ease provide brief details in the			
2	comment section of Table W3 below	w	Yes	See complaints-incidents section.	
	Was all monitoring carried out in accordance with EPA				
	guidance and checklists for Quality of Aqueous Monitoring Extern	rnal /Internal			
	Data Reported to the EPA? If no please detail what areas Lab Qu	Quality Assessment of			
4	require improvement in additional information box check	klist results checklist	Yes		

Table W3: Licensed Emissions to water and /or wastewater (sewer)-periodic monitoring (non-continuous)

						ELV or trigger values in licence or							Procedural		
Emission	Emission	Parameter/		Frequency of		any revision			Unit of	Compliant with		Procedural	reference	Annual mass load	
reference no:	released to	SubstanceNote 1	Type of sample	monitoring	Averaging period	therof ^{Note 2}	Licence Compliance criteria	Measured value	measurement	licence	Method of analysis	reference source	standard number	(kg)	Comments
W1	Vastewater/Sewe	SELECT	SELECT		SELECT		SELECT		SELECT	SELECT	SELECT	SELECT			
	Wastewater/Sewe	volumetric flow	composite	Daily		250m3	No flow value shall exceed the specific limit.		m3/day	yes	Flow meter			65527	
	Wastewater/Sewe	COD	composite	Daily		3000mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV		mg/L	yes	Spectrophotometry (Colorimetry)			67075.2	
	Wastewater/Sewe	BOD	composite	Monthly		2000mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV		mg/L	yes	Titration			9983.65	
	Wastewater/Sewe	Suspended Solids	composite	3/Week		400mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV		mg/L	yes	Gravimetric analysis			5391.197	
	Wastewater/Sewe	Sulphate	composite	Monthly		1500mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV		mg/L	yes	Spectrophotometry (Colorimetry)			10695.6	
	Wastewater/Sewe	Sulphides	composite	Monthly		10mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV		mg/L	yes	Spectrophotometry (Colorimetry)			8.22196	
	Wastewater/Sewe	Detergents (as MBAS)	composite	Monthly		80mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV		mg/L	yes	Spectrophotometry (Colorimetry)			21.5146	
	Wastewater/Sewe	Phenols (as total C)	composite	Monthly		3mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV		mg/L	yes	HPLC			2.78488	
	Wastewater/Sewe	Phosphorous	composite	3/Week		50mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV		mg/L	yes	Spectrophotometry (Colorimetry)			243.721999	
	Wastewater/Sewe	Ammonia (as N)	composite	3/Week		250mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV		mg/L	yes	Spectrophotometry (Colorimetry)			7641.87	
	Wastewater/Sewe	Nitrate (as N)	composite	Monthly		100mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV		mg/L	yes	Spectrophotometry (Colorimetry)			55.4028	
	Wastewater/Sewe	Silver	composite	Monthly		2mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV		mg/L	yes	AAS (Atomic Absorption Spectroscopy)			2.73246	

AER Monitoring returns su	mmary template-W	ATER/WASTEW	ATER(SEWER	र)	Lic No:	W0041-01	Year	2014				
Wastewater/Sewe	Aluminium	composite	Monthly		10mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	ICP / ICPMS (Inductively Coupled Plasma - Mass Spectrometry)		3.122645	
Wastewater/Sewe	Cobalt	composite	Monthly		10mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	AAS (Atomic Absorption Spectroscopy)		3.22278	
Wastewater/Sewe	Cadmium and compounds (as Cd)	composite	Monthly		0.5mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	AAS (Atomic Absorption Spectroscopy)		0.36695	
Wastewater/Sewe	Chromium and compounds (as Cr)	composite	Monthly		1mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	AAS (Atomic Absorption Spectroscopy)		3.649018106	
Wastewater/Sewe	Copper and compounds (as Cu)	composite	Monthly		10mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	AAS (Atomic Absorption Spectroscopy)		8.81826	
Wastewater/Sewe	Iron	composite	Monthly		20mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	AAS (Atomic Absorption Spectroscopy)		94.007	

AER Monitor	ring returns su	Immary template-W	ATER/WASTEW	VATER(SEWER	t)	Lic No:	W0041-01	Year	2014				
v	Wastewater/Sewe	Mercury and compounds (as Hg)	composite	Monthly		.05mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	AFS		0.71794984	
5	Wastewater/Sewe	Nickel and compounds (as Ni)	composite	Monthly		20mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	AAS (Atomic Absorption Spectroscopy)		52.354	
v	Wastewater/Sewe	Lead and compounds (as Pb)	composite	Monthly		.5mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	AAS (Atomic Absorption Spectroscopy)		4.52318	
6 V	Wastewater/Sewe	Tin	composite	Monthly		2mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	ICP / ICPMS (Inductively Coupled Plasma - Mass Spectrometry)		2.39679	
7 V	Wastewater/Sewe	Zinc and compounds (as Zn)	composite	Monthly		20mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	AAS (Atomic Absorption Spectroscopy)		105.4	
8 V	Wastewater/Sewe	Arsenic and compounds (as As)	composite	Monthly		1mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	ICP / ICPMS (Inductively Coupled Plasma - Mass Spectrometry)		0.56085	
v	Wastewater/Sewe	Cyanides (as total CN)	composite	Monthly		0.5mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	Spectrophotometry (Colorimetry)		3.27634	
v	Wastewater/Sewe	Chlorides (as Cl)	composite	Monthly		3000mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	Spectrophotometry (Colorimetry)		24212.7	
v	Wastewater/Sewe	Fluorides (as total F)	composite	Monthly		10mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	Spectrophotometry (Colorimetry)		56.8593	
v	Wastewater/Sewe	Halogenated organic compounds (as AOX)	composite	Weekly		50mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	GCMS (Gas Chromatography Mass Spectroscopy)		1.931165459	
v	Wastewater/Sewe	Fats, Oils and Greases	composite	Monthly		.15mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	IR		467.7787296	
v	Wastewater/Sewe	Chromium III	composite	Monthly		10mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	Spectrophotometry (Colorimetry)		3.649018106	
v	Wastewater/Sewe	Chromium VI	composite	Monthly		0.5mg/l	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	mg/L	yes	Spectrophotometry (Colorimetry)		1.965801	

Table W5: Abatement system bypass reporting table

Date	Duration (hours)	Location	Resultant	Reason for	Corrective	Was a report	When was this report
			emissions	bypass	action*	submitted to the	submitted?
						EPA?	
						SELECT	

*Measures taken or proposed to reduce or limit bypass frequency

Bund/Pipeline testing template	ic No:	W0041-01		Year	2014	
Bund testing dropdown menu click to see options			Additional information	-		
Are you required by your licence to undertake integrity testing on bunds and containment structures ? if yes please fill out table B1 below	listing all new bunds					
and containment structures on site, in addition to all bunds which failed the integrity test-all bunding structures which failed including mo	obile bunds must be					
listed in the table below, please include all bunds outside the licenced testing period (mobile bunds and chemstore included)		Yes				
2 Please provide integrity testing frequency period		3 years		1		
Does the site maintain a register of bunds, underground pipelines (including stormwater and foul), Tanks, sumps and containers? (contain	ers refers to					
3 "Chemstore" type units and mobile bunds)		Yes				
4 How many bunds are on site?		30				
5 How many of these bunds have been tested within the required test schedule?		10	Completed in 2014			
6 How many mobile bunds are on site?		27	· · · · · · · · · · · · · · · · · · ·			
7 Are the mobile bunds included in the bund test schedule?		Yes				
8 How many of these mobile bunds have been tested within the required test schedule?			Completed in 2014			
9 How many sumps on site are included in the integrity test schedule?		6				
10 How many of these sumps are integrity tested within the test schedule?		(
Please list any sump integrity failures in table B1						
11 Do all sumps and chambers have high level liquid alarms?		No		1		
12 If yes to Q11 are these failsafe systems included in a maintenance and testing programme?		N/A		I		
13 Is the Fire Water Retention Pond included in your integrity test programme?		N/A		1		
Table B1: Summary details of bund /containment structure integrity test						

1

nment								Integrity reports maintained on		Integrity test failure		Scheduled date	Results of retest(if in current
Type	Specify Other type	Product containment	Actual capacity	Capacity required*	Type of integrity test	Other test type	Test date	site?	Results of test	explanation <50 words	Corrective action taken	for retest	reporting year)
		Localised bunding of mixed plastic IBC/Containers containing liquid and solid waste substances (Additional remote										17/03/2015. Retest	Awaiting
reinforced concrete		bunding provided on site)	5.627 m3	1.1 m3 (110% largest ves	Other (please specify)	Visual and hydrostatic test	08/08/2014	Yes	Fail	Failed hydrostatic test	Other (please describe)	complete.	report.
SELECT					SELECT	i i i i i i i i i i i i i i i i i i i		SELECT	SELECT		SELECT		-
d should comply with 25% or 110% containment r testing been carried out in accord	rule as detailed in your licence ance with licence requirements an	nd are all structures tested in				Commentary	ľ						
	reinforced concrete SELECT d bold comply with 25% or 110% containment testing been carried out in accord	Imment Type Specify Other type reinforced concrete	nment Type Specify Other type Product containment Localised bunding of mixed plastic IBC/Containers containing liquid and solid waste substances (Additional remote Bunding provided on site) SELECT dibuld comply with 25% or 130% companyment rule as detailed in your literate testing been carried out in accordance with linearce requirements and are all structures tested in	Imment Type Product containment Actual capacity Localised bunding of mixed plastic IBC/Containers containing liquid and solid waste substances (Additional remote bunding provided on site) 5.627 m3 SELECT 5.627 m3 5.627 m3	nment Type Specify Other type Product containment Actual capacity Capacity required* Localised bunding of mixed plastic IBC/Containers containing liquid and solid waste substances (Additional remote bunding provided on site) 5.627 m3 1.1 m3 (10% largest ves 5.627 m3 dibuid compt with 25% or 15% containers rule as detailed in your lenner	nment Type Specify Other type Product containment Actual capacity Capacity required* Type of integrity test Localised bunding of mixed plastic IBC/Containers containing liquid and solid waste substances (Additional remote bunding provided on site) 5.627 m3 1.1 m3 (110% largest vess/Other (please specify) SELECT SELECT SELECT SELECT	nment Type Specify Other type Product containment Actual capacity Capacity required* Type of integrity test Other test type Localised bunding of mixed plastic IBC/Containers containing liquid and solid waste substances (Additional remote bunding provided on site) 5.627 m3 1.1 m3 (110% largest ves/Other (please specify) Visual and hydrostatic test SELECT SelECT Commentary	nment Type Specify Other type Product containment Actual capacity Capacity required* Type of integrity test Other test type Test date Localised bunding of mixed plastic IBC/Containers containing liquid and solid waste substances (Additional remote bunding provided on site) 5.627 m3 1.1 m3 (110% largest vesgOther (please specify) Visual and hydrostatic test 08/08/2014 SELECT SELECT Commentary Commentary Commentary	nment Type Specify Other type Product containment Actual capacity Capacity required* Type of integrity test Other test type Test date Integrity reports maintained on site? reinforced concrete Localised bunding of mixed plastic IB/C/Ontainers containing liquid and solid waste substances Localised bunding provided on site) 5.627 m3 1.1 m3 (110% largest ves/Other (please specify) Visual and hydrostatic test 08/08/2014 Yes SELECT SELECT Commentary SELECT Commentary	nment Type Specify Other type Product containment Actual capacity Capacity required* Type of integrity test Other test type Test date Integrity reports maintained on site? Localised bunding of mixed plastic IBC/Containers containing liquid and solid waste substances [Additional remote bunding provided on site] 5.627 m3 1.1 m3 (110% largest vesoOther (please specify) Visual and hydrostatic test 08/08/2014 Yes Fail SELECT SELECT Commentary SELECT Commentary	nment Type Specify Other type Product containment Actual capacity Capacity required* Type of integrity test Other test type Test date Integrity reports maintained on site? Integrity test failure Localised bunding of mixed plastic IBC/Containers containing liquid and solid waste substances Localised bunding of mixed plastic IBC/Containers Localised bunding of mixed plastic IBC/Containers Second Visual and hydrostatic test 08/08/2014 Yes Fail SELECT SELECT SELECT SELECT SELECT SELECT SELECT	nment Type Specify Other type Product containment Actual capacity Capacity required* Type of integrity test Other test type Test date Integrity reports maintained on site? Integrity test failure Integrity test failure Localised bunding of mixed plastic IBC/Containers containing liquid and solid waste substances Localised bunding of mixed plastic IBC/Containers Corrective action taken reinforced concrete Localised bunding of mixed plastic IBC/Containers 1.1 m3 (110% largest ves/Other (please specify) Visual and hydrostatic test 08/08/2014 Yes Fail Failed hydrostatic test Other (please describe) SELECT SELECT SELECT SELECT SELECT SELECT SELECT	nment Type Specify Other type Product containment Actual capacity Capacity required* Type of integrity test Other test type Test date Integrity reports maintained on site? Integrity test failure explanation <50 words Corrective action taken Scheduled date for retest understand Localised bunding of mixed plastic IBC/Containers containing liquid and solid waste substances (Additional remote bunding provided on site) 5.627 m3 1.1 m3 (110% largest veso) Other (please specify) Visual and hydrostatic test 08/08/2014 Yes Fail Failed hydrostatic test Other (please describe) I7/03/2015. Retest SELECT SELECT SELECT SELECT SELECT SELECT SELECT SELECT

Yes

Yes

15 line with BS8007/EPA Guidance?

16 Are channels/transfer systems to remote containment systems tested?

17 Are channels/transfer systems compliant in both integrity and available volume?

Pipeline/underground structure testing

Are you required by your licence to undertake integrity testing* on underground structures e.g. pipelines or sumps etc? if yes please fill out table 2 below listing 1 all underground structures and pipelines on site which failed the integrity test and all which have not been tested withing the integrity test period as specified 2 Please provide integrity testing frequency period

*please note integrity testing means water tightness testing for process and foul pipelines (as required under your licence)

Yes Other (please specify) Every 5 years

Table	B2: Summary details of pi	peline/underground structures ir	ntegrity test								
Structure ID	Type system	Material of construction:	Does this structure have Secondary containment?	Type of secondary containment	Type integrity testing	Integrity reports maintained on site?	Results of test	Integrity test failure explanation <50 words	Corrective action taken	Scheduled date for retest	Results of retest(if in current reporting year)
	SELECT	SELECT	SELECT	SELECT	SELECT	SELECT	SELECT				SELECT

Please use commentary for additional details not answered by tables/ questions above

bunding and storage guidelines

2014

Year

		Comments	
Are you required to carry out groundwater monitoring as part of your licence requirements?	yes		Please provide an interpretation of groundwater monitoring data in the
2 Are you required to carry out soil monitoring as part of your licence requirements?	no		interpretation box below or if you require additional space please
Do you extract groundwater for use on site? If yes please specify use in comment		For use in treatment	include a groundwater/contaminated land monitoring results
³ section	yes	process and flushing	interpretaion as an additional section in this AER
Do monitoring results show that groundwater generic assessment criteria such as GTVs or IGVs are exceeded or is there 4 an upward trend in results for a substance? If yes, please complete the Groundwater Monitoring Guideline Template Report (link in cell G8) and submit separately through ALDER as a licensee return AND answer questions 5-12 below. template	no		
5 Is the contamination related to operations at the facility (either current and/or historic)	no		
6 Have actions been taken to address contamination issues? If yes please summarise		Groundwater extracted	
remediation strategies proposed/undertaken for the site	yes	24/7 and filtered through	
7 Please specify the proposed time frame for the remediation strategy	N/A		Based on the fourth round of quaterly groundwater monitoring, the key
8 Is there a licence condition to carry out/update ELRA for the site?	yes		VOC concentrations continue to decline across the site. VOC
9 Has any type of risk assesment been carried out for the site?	yes		concentrations were broadly low throughout 2014 from MW 3. The four
10 Has a Conceptual Site Model been developed for the site?	no		quaterly monitoring results for total VOC concentrations are the lowest
11 Have potential receptors been identified on and off site?	yes		reported since monitoring began. Hydrocarbons also continue to decline
12 Is there evidence that contamination is migrating offsite?	no		since 2013.

Table 1: Upgradient Groundwater monitoring results

										Upward trend in
										pollutant
	Sample									concentration over
Date of	location	Parameter/		Monitoring	Maximum	Average				last 5 years of
sampling	reference	Substance	Methodology	frequency	Concentration++	Concentration+	unit	GTV's*	SELECT**	monitoring data
10/12/2014	mw5	VOC's		Quarterly	204	109.66	ug/l			no
							SELECT			SELECT

.+ where average indicates arithmetic mean

.++ maximum concentration indicates the maximum measured concentration from all monitoring results produced during the reporting year

Table 2: Downgradient Groundwater monitoring results

										Upward trend in yearly average pollutant
Date of	Sample	Parameter/		Monitoring	Maximum	Average				last 5 years of
sampling	reference	Substance	Methodology	frequency	Concentration	Concentration	unit	GTV's*	SELECT**	monitoring data
10/12/2014	mw6	VOC's		Quarterly	5411	4011	ug/l			no
							SELECT			SELECT

Lic No: W0041-01 Year 2014 uch as a Groundwater Threshold Value (GTV) or an Interim Guideline Value (IGV) or an upward on of monitoring results is required. In addition to completing the above table, please complete hk provided and submit separately through ALDER as a licensee return or as otherwise instructed by the EPA.						
uch as a Groundwater Threshold Value (GTV) or an Interim Guideline Value (IGV) or an upward on of monitoring results is required. In addition to completing the above table, please complete k provided and submit separately through ALDER as a licensee return or as otherwise instructed by the EPA.		Lic No:	W0041-01	Year	2014	
	uch as a Groun on of monitorin Ik provided and by the	dwater Threshold Value Ig results is required. In a I submit separately throu e EPA.	(GTV) or an Interim Guideline Value (IGV ddition to completing the above table, p gh ALDER as a licensee return or as othe	/) or an upward Jease complete <u>Groundwa</u> erwise instructed	er monitoring template	

More information on the use of soil and groundwater standards/ generic assessment criteria (GAC) and risk assessment tools is available in the EPA published guidance (see the link in G31)

Groundwater/Soil monitoring template
*please note exceedance of generic assessment criteria (GAC) s
trend in results for a substance indicates that further interpretat
the Groundwater Monitoring Guideline Template Report at the li

**Decending on location of the site and proximity to other sensitive receptors alternative Receptor based Water Quality standards should be	used in addition to <u>Groundwater</u> <u>Drinking water</u>	
the GTV e.g. if the site is close to surface water compare to Surface Water Environmental Quality Standards (SWEQS), If the site is close to a dr	inking water supply <u>Surface</u> regulations (private supply) <u>Drinking water (public</u> Interim Guid	leline
compare results to the Drinking Water Standards (DWS)	water EQS GTV's standards supply) standards Values (IGV)	

Groundwater/Soil monitoring template					Lic No:	W0041-01		Year	2014
Table 3: So	il results								
Date of sampling	Sample location reference	Parameter/ Substance	Methodology	Monitoring frequency	Maximum Concentration	Average Concentration	unit		
							SELECT		
							SELECT		

Where additional detail is required please enter it here in 200 words or less

URS

Enva Ireland Limited

Shannon Hydrogeological Review and Assessment

22 May 2014

47092526 CKRP<u>0006</u>

IRELAND

Prepared for: Enva Ireland Limited

Issue	Date	Details	Prepared by	Checked by	Approved by
1	22 May2014	Draft Issue for Client Review	Fergus O'Regan Environmental Scientist	Kevin Forde Principal Hydrogeologist	Kevin Forde Principal Hydrogeologist

URS Ireland Limited Acorn Business Campus Mahon Industrial Park, Blackrock Cork, Ireland Tel: +353 (0)21 453 6136/7 Fax: +353 (0)21 435 0666 www.urs.com

Limitations

URS Ireland Limited ("URS") has prepared this Report for the sole use of **Enva Ireland Limited** ("Client") in accordance with the Agreement under which our services were performed **(URS Proposal No. 3134294, dated 22 November 2013)**. No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by URS. This Report is confidential and may not be disclosed by the Client nor relied upon by any other party without the prior and express written agreement of URS.

The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by URS has not been independently verified by URS, unless otherwise stated in the Report.

The methodology adopted and the sources of information used by URS in providing its services are outlined in this Report. The work described in this Report was undertaken on 17 December 2013 and is based on the conditions encountered and the information available during the said period of time. The scope of this Report and the services are accordingly factually limited by these circumstances.

Where assessments of works or costs identified in this Report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

URS disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to URS' attention after the date of the Report.

Certain statements made in the Report that are not historical facts may constitute estimates, projections or other forward-looking statements and even though they are based on reasonable assumptions as of the date of the Report, such forward-looking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. URS specifically does not guarantee or warrant any estimate or projections contained in this Report.

Unless otherwise stated in this Report, the assessments made assume that the sites and facilities will continue to be used for their current purpose without significant changes.

Where field investigations are carried out, these have been restricted to a level of detail required to meet the stated objectives of the services. The results of any measurements taken may vary spatially or with time and further confirmatory measurements should be made after any significant delay in issuing this Report.

Copyright

© This Report is the copyright of URS Ireland Limited. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

TABLE OF CONTENTS	1.	INTRODUCTION	5
	1.1	Background	.5
	1.2	Objective	6
	1.3	Scope of Work	6
	2.	REVIEW OF PUBLIC DATA	7
	2.1	Data Sources	.7
	2.2	Site Location and Setting	. 7
	2.3	Topography	. 8
	2.4	Historic Landuse	8
	2.4.1	1829-1841	. 8
	2.4.2	1897 - 1913	8
	2.4.3	1995	8
	2.4.4	2000	9
	2.4.5	2005	.9
	2.5	Geology	9
	2.5.1	Subsoils	9
	2.5.2	Bedrock	.9
	2.6	Hydrology1	0
	2.6.1	Surface Water Features 1	0
	2.6.2	Surface Water Quality 1	0
	2.7	Hydrogeology1	0
	2.8	Water Framework Directive1	11
	2.8.1	Protected Areas1	1
	2.8.2	Status and Objectives1	1
	3.	REVIEW OF SITE DATA 1	2
	3.1	Site History and Description1	2
	3.2	Site Investigations 1	2
	3.3	Wells, Boreholes and Groundwater Monitoring Network.1	12
	3.4	Site Geology1	15
	3.5	Site Hydrogeology1	15
	3.6	Groundwater Monitoring Data 1	16
	3.6.1	Field Measurements1	17
	3.6.2	Major lons1	17
	3.6.3	Dissolved Heavy Metals1	8
	3.6.4	Polycyclic Aromatic Hydrocarbons1	19
	3.6.5	Volatile Organic Compounds 1	19
	3.7	Conceptual Site Model (CSM)2	21
	4.	ASSESSMENT OF GROUNDWATER STATUS 2	23
	4.1	Introduction2	23
	4.2	Quantitative Status Assessment 2	23
	4.2.1	Test 1 – Saline or Other Intrusions Test 2	23
	4.2.2	Test 2 – Impact of Groundwater on Surface Water	20
	400	Ecology	20
	4.2.J	Test 4 Water Palance Test	20 70
	4.2.4	rest 4 – vvaler dalarice rest 2	<u> </u>

ENVA SHANNON\47092526/HYDROGEOLOGICAL REVIEW AND ASSESSMENT 2013\CKRP0006/FO/FO Issue 1 Draft 22 May 2014

4.2.5	Qua	antitative Status Assessment Summary	'
4.3	Qua	alitative Status Assessment27	,
4.3.1	Tes	st 1 – Saline or Other Intrusions Test 27	'
4.3.2	Tes	st 2 - Impact of Groundwater on Associated Surface	
4.3.3	Wa Tes	ter Bodies)
4.3.4	Too	st 4. Dhinking Water Frotected Area	
4.3.6		alitative Status Assessment Summary	,
4.4	Ass	sessment of Groundwater Status Summary)
5.	SU	MMARY AND CONCLUSIONS41	
FIGURES			
APPENDIX	K A	ENVA BOREHOLE DRILLING SUMMARY	
APPENDIX	ΚВ	PH AND EC TREND DATA	
APPENDIX	< C	MAJOR IONS TREND DATA	
APPENDIX	(D	DISSOLVED HEAVY METALS TREND DATA	
APPENDIX	ΚE	POLYCYCLIC AROMATIC HYDROCARBONS TREND DATA	
APPENDIX	K F	VOLATILE ORGANIC COMPOUNDS TREND DATA	
APPENDIX	(G	DECEMBER 2013 GROUNDWATER MONITORING DATA	
APPENDIX	ΚН	FULL REPORT FOR TULLANEWMARKET_2 GROUNDWATER BODY	

TABLE OF FIGURES	FIGURE 1 – Site Location Map
	FIGURE 2 – Site Layout and Borehole Locations
	FIGURE 3 - Groundwater Contour Map – 14 March 2013
	FIGURE 4 - Groundwater Contour Map – 30 September 2013
	FIGURE 5 – Conceptual Site Model Illustration

1. INTRODUCTION

URS Ireland Limited (URS) is pleased to present this report to Enva Ireland Limited (Enva) detailing a hydrogeological review and assessment for the Enva site in Shannon, Co. Clare. This report has been prepared in accordance with URS proposal reference 3134294, dated 22 November 2013; and authorised by Enva under purchase order number 13145.

1.1 Background

Enva provide waste management and environmental solutions covering areas such as treatment and disposal of oil, contaminated soil and hazardous waste, as well as water and effluent treatment. Enva's facility in Shannon is the leading integrated waste chemical treatment and recovery facility in Ireland.

The site operates under a Waste licence (W0041-1) issued by the Environmental Protection Agency (EPA) in 2000.

Licensed waste disposal activities, in accordance with the Third Schedule of the Waste Management Act, 1996 are as follows:

- Class 6: Biological treatment not referred to elsewhere in Schedule 3 which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of Schedule 3
- Class 7: Physico-chemical treatment not referred to elsewhere in Schedule 3 (including evaporation, drying and calcination) which results in final compounds or mixtures which are disposed of by means of any activity referred to in paragraphs 1 to 10 of Schedule 3
- Class 11: Blending or mixture prior to submission to any activity referred to in a preceding paragraph of Schedule 3
- Class 12: Repackaging prior to submission to any activity referred to in a preceding paragraph of Schedule 3
- Class 13: Storage prior to submission to any activity referred to in a preceding paragraph of Schedule 3, other than temporary storage, pending collection, on the premises where the waste concerned is produced

Licensed waste recovery activities, in accordance with the Fourth Schedule of the Waste Management Act, 1996 are:

- Class 2: Recycling or reclamation of organic substances which are not used as solvents (including composting and other biological transformation processes)
- Class 3: Recycling or reclamation of metals and metal compounds
- Class 4: Recycling or reclamation of other inorganic materials
- Class 8: Oil re-refining or other re-uses of oil
- Class 13: Storage of waste intended for submission to any activity referred to in a preceding paragraph of Schedule 4, other than temporary storage, pending collection, on the premises where such waste is produced

On 14 January 2013, Technical Amendment E was issued to the site's waste licence and requires Enva to conduct a review of hydrogeological data for the site:

Condition 9.12 - Within eighteen months of the date of this technical amendment, the licensee shall, in line with the criteria set out in the Guidance on the Authorisation of Discharges to Groundwater, published by the Environmental Protection Agency, review the most relevant hydrogeological assessment report for the installation or where relevant, arrange for an assessment of the installation, by an appropriately qualified consultant / professional, to demonstrate compliance with the European Communities Environmental Objectives (Groundwater) Regulations 2010, as amended. A report on the review or assessment report with recommendations shall be included in the next AER. Further to the hydrological review or assessment, any actions (including the setting of groundwater compliance values, if appropriate) required to demonstrate compliance with the European Communities Environmental Objectives (Groundwater) Regulations 2010, as amended shall be implemented before 22nd December 2015.

1.2 Objective

The objective of this hydrogeological review and assessment is to comply with Condition 9.12 of waste licence 41-1.

1.3 Scope of Work

The following tasks have been completed to address requirements of Condition 9.12:

- Task 1 review of publically available hydrogeological data pertinent to the Enva Shannon site and environs
- Task 2 review of available site specific hydrogeological data for the Enva Shannon site
- Task 3 assessment of groundwater monitoring data for the Enva Shannon site in the context of S.I. No. 9 of 2010

2. REVIEW OF PUBLIC DATA

2.1 Data Sources

This section presents information collated from the following sources:

- Ordnance Survey of Ireland (OSI), www.osi.ie
- Geological Survey of Ireland (GSI), <u>www.gsi.ie</u>
- EPA, http://gis.epa.ie/Envision
- Water Maps, http://watermaps.wfdireland.ie/
- National Parks and Wildlife Services, http://webgis.npws.ie/npwsviewer/
- Shannon Town and Environs Local Area Plan 2012–2018, Written Statement

2.2 Site Location and Setting

The site is situated in the Smithstown Industrial Estate, Shannon, Co. Clare, approximately 1 km north of Shannon town centre and 3 km north-east of Shannon airport. The site is located at national grid reference (NGR) R 409 633.

The site can be accessed via a small access road from either the N18 road to the east of the site or from the N19 road to the west.

Land use in the immediate area of the site is a light industrial estate, with agricultural land surrounding the estate to the west and north, with scattered residential properties.

The site is bounded to the north by industrial units including Cleanwell (a distributor of cleaning materials and equipment), Smithstown Light Engineering and Modular Automation. Galvotech (International) Limited, an Industrial Emissions (IE) licensed site (P0292-01) is also located north of the site. Further north are agricultural fields and the M18, which links Shannon to Gort.

Directly south of the site are industrial units occupied by Tammdek Tooling and Shannon Christian Church. Land between the access road and the R471 is predominantly used for agricultural purposes. South of the R471 road is Shannon town, a residential and commercial area. Shannon town is County Clare's second largest town. Much of the town was built in the 1960s as part of the development of the regional economy.

Enva is located at the western boundary of the Smithstown Industrial Estate. Industries located in the estate to the east of the site include Hassett Precision Engineering, Four JS Development Tools and the Beech Park logistics centre. The N18 road is located 1,250 m west of the site, with agricultural land and residential properties beyond the N18 road.

Chemifloc (who manufacture and supply water treatment products) bound the site to the west. Chemifloc operate under IE licence (P0076-01) granted by the EPA. The N19 road is located 200 m west of Chemifloc, with agricultural land and dispersed residential properties beyond.

Shannon Industrial Estate is located 2 km southwest of the Enva site. There are eight EPA licensed facilities in and around the industrial estate and Shannon Airport, which is situated 3 km southwest of Enva. The Shannon Estuary bounds the airport to the south.

A site location plan is presented in Figure 1.

2.3 Topography

The site is at an elevation of approximately 10 m above Ordnance Datum (aOD) (Malin). The area slopes very gently to the south and southeast, to the Shannon Estuary, approximately 3 km from the site. The topography rises to between 20 and 30 m aOD within 500 m north of the site.

2.4 Historic Landuse

Information pertaining to the history of the site and surrounding area was obtained following a review of available historical maps and aerial photographs from the OSI. The following maps and aerial photographs were available for review:

- 6 inch mapping series (1:10,560) colour 1829-1841
- 25 inch mapping series (1:2,500) greyscale 1897-1913
- Aerial photography for the years 1995, 2000 and 2005

2.4.1 1829-1841

The site and area surrounding appear to be predominantly undeveloped and in agricultural use.

The existing access roads to the south and east of the site are shown on the map. Smithstown House is located 950 m north of the site. Smithstown Castle (in ruins) is present 350 m east of the existing eastern site boundary. Knockaun House is located 750 m west of the site.

There are no other developments of significance mapped within a 1 km radius of the site.

2.4.2 1897 - 1913

Little appears to have changed from the previous map. The site still appears to have been in agricultural use.

Smithstown House and Knockaun House are still in existence and there appears to have been some additional development around Knockaun House, including the development of a gravel pit. Smithstown Castle (in ruins) is still shown to be present.

2.4.3 1995

Significant development of the Shannon area is shown on the 1995 aerial photograph. Large numbers of residential properties were developed in Shannon in the 1960's.

The Smithstown Industrial Estate was originally developed by Shannon Development as a location for subcontract and service activities supporting companies located within the Shannon Free Zone¹. Smithstown Industrial Estate currently comprises around 150 firms across a diverse range of sectors. Practically all of the estate is developed, with a building

¹ Shannon Free Zone (SFZ) is a 243 hectare industrial area with more than 7,000 people working in over 100 companies

footprint of approximately 75,000 $m^2 - 90\%$ of which is owned by the private sector and the other 10% by Shannon Development.

Smithstown House and Knockaun House are still present but it is difficult to determine what condition they are in. The land around Smithstown Castle has been developed on and now incorporates the Smithstown Industrial Estate.

2.4.4 2000

The Smithstown Industrial Estate expanded significantly between 1995 and 2000. Substantial development is noted to the north and east of the Enva site.

One of the main developments between 1995 and 2000 in the area is the construction of the Beech Park Logistics centre east of the Enva site.

2.4.5 2005

Very few changes appear to have taken place at the site between 2000 and 2005. There appears to have been only minor alterations to the layout of the Enva site. The N19 road to the west of the site was constructed between 2000 and 2005. The N19 links the N18/M18 at Ballycasey Beg to Shannon Airport.

2.5 Geology

2.5.1 Subsoils

The subsoils mapped across the Smithstown Industrial Estate by the GSI are identified as 'made ground'. A zone of limestone till is mapped in all directions surrounding the estate. The tills are generally thin (1 to 5 m thick) and clayey in the area around Shannon. No sand or gravel deposits have been mapped in the Shannon area.

Since the end of glaciation (approximately 10,000 years ago) extensive estuarine muds have been deposited along the Shannon Estuary coast.

2.5.2 Bedrock

The GSI website indicates (Bedrock Geology of Ireland, 1:100,000 scale) that the bedrock geology beneath the site consists of Dinantian Lower Limestone Shale, close to the contact with the older, underlying Old Red Sandstone Group of Devonian age. The Old Red Sandstone rocks in the area are typically white, yellow or pale brown, coarse grained sandstones, pebbly sandstones and conglomerates.

The Lower Limestone Shales are composed of low permeability rocks which have been folded into major east-west trending open folds with associated pervasive fracturing and shearing of the strata. No major fault structures are mapped within 5 km of the site.

The Lower Limestone Shales form part of an inlier of older rock, approximately 2.5 km in diameter, surrounded by the younger Ballymartin and Ballysteen Formation of fossiliferous, dark grey, muddy limestones and calcareous shales.

2.6 Hydrology

2.6.1 Surface Water Features

The nearest surface water body to the site is a small stream, which rises 1 km north of the Smithstown Industrial Estate and flows southwards. It is diverted around the industrial estate in a man-made drainage ditch along the eastern boundary of Smithstown Industrial Estate, approximately 200 m east of the site. It then flows south-eastwards towards Shannon town and becomes culverted at the N19, approximately 500 m southeast of the site. It discharges to the River Shannon Estuary at Ballycasey Creek, 2.5 km south of the Enva site.

Two other streams exist within a 1 km radius of the Smithstown Industrial Estate, one 750 m to the east near Ballycasey Cross and the other 750 m to the west near Ballymurtagh. Both flow in a generally southerly direction and terminate at or south of the N19 road, presumably entering the drainage network below Shannon town.

Glonloghan River is the nearest river, located approximately 750 m south west of the site. The river flows in a southerly direction and enters the Shannon Estuary at Drumgeely Creek.

The most significant surface water feature in the wider area is the Shannon Estuary, which flows from east to west and is located 3 km south of the site.

2.6.2 Surface Water Quality

Estuarine water quality in Upper Shannon Estuary, a transitional waterbody, is classified as *'Unpolluted'* by the EPA.

Due to their small size, the water quality in the three unnamed streams, within 1 km of the site has not been classified.

2.7 Hydrogeology

According to GSI online maps, the Lower Limestone Shale bedrock aquifer in the region is classified as a *Locally Important Aquifer*, which is Moderately Productive only in Local Zones. Groundwater vulnerability in the Smithstown area is assessed as *Extreme* by the GSI, due to the generally thin overlying soils (<3 m clayey soil).

There is little groundwater abstraction for private or industrial use as the area is supplied by Council mains water, which is abstracted from a lake near Sixmilebridge. None of the other industrial units in Smithstown Industrial Estate abstract groundwater and there are no known private wells in the immediate vicinity of the site. According to the GSI website, there are no groundwater wells located within 1 km of the site. The nearest known industrial abstraction is for cooling water at the UCB Manufacturing Ireland facility (formerly SIFA), over 1.5 km to the west of Enva site.

It should be noted that there is no permitting system to govern well drilling or any requirement to register wells in Ireland. Therefore, publically available well records in Ireland are not complete; wells used for domestic and other purposes are often not recorded by the owners or authorities.

Based on the general topography, the regional groundwater flow is likely to be towards the Shannon Estuary to the south and south-east. The gentle topographic gradient suggests low hydraulic gradients and therefore slow overall groundwater movement. Groundwater may move more rapidly in fracture zones.

Groundwater beneath the Enva site is present within 2 to 4 m of the surface and may discharge either to local watercourses or may flow beneath Shannon town to the Shannon Estuary.

2.8 Water Framework Directive

2.8.1 Protected Areas

Groundwater beneath Enva site as a whole is classed as a *Protected Area* under the WFD in terms of *Groundwater for Drinking Water* use.

The Lower River Shannon (Shannon Estuary) (located approximately 3 km south of the site) is designated as a *Proposed Natural Heritage Area* (site code 002048), a Special Protected Area (site code 004077) and a *Special Area of Conservation* (SAC No. 002165).

The Lower River Shannon has been classified as a SAC on the basis that the site is a candidate SAC selected for lagoons and alluvial wet woodlands, both habitats listed on Annex I of the E.U. Habitats Directive.

2.8.2 Status and Objectives

Groundwater beneath the site is part of the TullaNewmarket_2 Groundwater Body (IE_SH_G_231) whose overall status is classified as *Good*, with the objective of *Protect*.

The closest classified River Waterbody under the WFD is Clenagh River Waterbody, Tributary of Shannon Estuary North (IE_SH_27_1147). This River Waterbody is classed as *High*, with the overall objective of *Protect*.

Status of the Upper Shannon Estuary, a transitional waterbody (IE_SH_060_0800) is classified as *Good*, with the overall objective of *Protect*.

3. REVIEW OF SITE DATA

3.1 Site History and Description

The Enva site occupies approximately 3 acres (1.1 ha) in area and comprises a waste management facility, with associated administration buildings, laboratory, stores and car parking.

The Enva site was developed as a hazardous waste processing and transfer facility in 1986. Prior to 1986 the eastern half of the site was a bus depot for tour buses (Jackson's Coaches). The site was purchased by Chemifloc in 1985 and was acquired from them by Shannon Environmental Services (SES) in 1986. In January 2003, Enva acquired SES.

3.2 Site Investigations

There have been several phases of site assessment and investigation conducted with regard to assessing soil and groundwater quality beneath the site. As part of this assessment, the following reports have been reviewed for the site:

- URS, 2002, Final Report On Soil and Groundwater Remediation Programme for Shannon Environmental Services, Shannon, Co. Clare, URS/Dames and Moore Ref. 49802\001\Report\Final
- URS, 2002, Soil Gas Monitoring Results for Shannon Environmental Services and Adjacent Areas, July/August 2002, URS Ref: 49802/001/447
- URS, 2005, February 2005 MNA and Waste Licence Monitoring, URS Ref. 45078332/0205
- URS, 2008, Groundwater Monitoring and Monitored Natural Attenuation Review, URS Ref. 49341578/CKRP0002

Discussion in the following sections draws on data from the above reports, routine groundwater monitoring events and site experience.

3.3 Wells, Boreholes and Groundwater Monitoring Network

Enva has a network of nine on-site groundwater monitoring wells and three off-site wells. The off-site wells are located to the southeast in a parking area. Enva also has access to two wells located on an adjacent site (Chemifloc) to the west.

Under the terms of the site's Waste licence (W0041-01), Enva are required to monitor the quality of groundwater in monitoring wells MW3, MW4S and MW5 at quarterly intervals for a range of organic and inorganic parameters.

Wells are screened at various depths but all within the limestone bedrock. A site layout map illustrating well locations is presented as Figure 2.

There has been three previous significant groundwater or ground contamination investigations carried out at the site. These were a hydrogeological investigation conducted in 1998 as part of the application to the EPA for a waste licence, and a subsequent soil investigation in the area of well MW4S in the first half of 2001. Both investigations were performed by K.T. Cullen & Co. Limited, (KTC, 1998 and KTC, 2001b). URS/Dames and Moore completed the third significant investigation, a soil and groundwater remediation assessment in 2001/2002.

MW3, MW4 and MW5 were drilled and installed on the Enva site, during the 1998 K.T.C site investigation. MW1 and MW2 were installed on the adjacent Chemifloc site during the same investigation. The boreholes were installed as 50 mm internal diameter groundwater monitoring wells.

Boreholes MW4D to MW10 were drilled using the air rotary drilling method in July and August 2001. Boreholes MW11 to MW13 were drilled using the air rotary drilling method in December 2001.

MW6, MW7 and MW8, were drilled at 150 mm diameter and installed with 50 mm uPVC standpipes. These boreholes were drilled to between 12 and 16 m bgl.

MW9 and MW10 were drilled at 200 mm diameter with a 100 mm uPVC standpipe installed. These boreholes were drilled to 18 and 20 m bgl respectively.

MW4D, was considered to be close to the source area for volatile organic contamination (VOC) and was "double drilled" to prevent contamination from the vicinity of MW4S migrating deeper into the bedrock aquifer via the borehole itself. MW4D was targeted at the lower part of the aquifer (i.e. deeper than MW4S) in order to get information on the vertical extent of contamination in the aquifer.

The three off-site boreholes (MW11 to MW13) were drilled at 150 mm diameter with 50 mm diameter HDPE standpipe installed. Each of the off-site boreholes was drilled to approximately 13 m bgl.

In all of the boreholes drilled under the supervision of Dames & Moore/URS, the bottom 5 m of each standpipe was screened with a 50 mm internal diameter slotted screen to allow water entry.

The Enva site is supplied with process water from a production well located in the centre of the site. The well is 80 m deep and can sustain pumping rates of up at 120 m³/d, which is an uncharacteristically high yield for wells in the Lower Limestone Shales. This suggests that the well intersects a fracture zone in the shales or the underlying Old Red Sandstone (if intersected). Well drilling logs and installation details are not available for this well.

Anecdotal evidence (from SES/Enva staff) report that when the production well was initially developed there were hydrogen sulphide odours from the water and the water had a high iron content. The water was also brackish. All of these conditions are consistent with the reported groundwater quality issues in the general Shannon area. The water was deemed unsuitable for potable use and the site is supplied with drinking water from the Council mains supply.

A brief summary of drilling and monitoring well installation is provided in the table below, with a more detailed description, and available logs, provided in Appendix A.

Table 1: Monitoring	Well Summary
---------------------	--------------

Location	Year	Monitoring Well	Screened Unit	Comments
MW1	1998	Yes	Limestone	Present, on Chemifloc site
MW2	1998	Yes	Limestone	Present, on Chemifloc site
MW3	1998	Yes	Limestone	Present, routinely sampled
MW4S	1998	Yes	Limestone	Present, routinely sampled
MW4D	2001	Yes	Limestone	Present, last sampled in December 2007
MW5	1998	Yes	Limestone	Present, routinely sampled
MW6	2001	Yes	Limestone	Present, last sampled in December 2007
MW7	2001	Yes	Limestone	Present, last sampled in December 2007
MW8	2001	Yes	Limestone	Present, last sampled in December 2007
MW9	2001	Yes	Limestone	Present, last sampled in May 2013
MW10	2001	Yes	Limestone	Present, last sampled in May 2013
MW11	2001	Yes	Limestone	Present, last sampled in December 2007
MW12	2001	Yes	Limestone	Present, last sampled in December 2007
MW13	2001	Yes	Limestone	Present, last sampled in December 2007
Enva Production Well	Pre 2002	No, production well	Limestone	Production well, sampled annually, usually in Round 2
WS-101	2002	No, soil vapour point	Sand	Present, last sampled in October 2003
WS-102	2002	No, soil vapour point	Sand	Present, last sampled in April 2004
WS-103	2002	No, soil vapour point	Fill	Present, last sampled in May 2006
WS-104	2002	No, soil vapour point	Clay	Present, last sampled in November 2006
WS-105	2002	No, soil vapour point	Clay	Present, last sampled in January 2008

Location	Year	Monitoring Well	Screened Unit	Comments
WS-106	2002	No, soil vapour point	Clay	Present, last sampled in January 2008

3.4 Site Geology

Depth to bedrock varies only slightly across site. Drilling logs indicted that limestone bedrock was encountered at between 1.3 (MW4D) and 4.5 m (MW6) bgl in all boreholes. The overburden sediments above the bedrock consisted of soft to firm, brown gravelly clay with cobbles, which is inferred to be a stony glacial till. The moisture content of the clay ranged from dry to damp.

3.5 Site Hydrogeology

The site is underlain by a fractured limestone aquifer with relatively low permeability, although groundwater flow through fracture zones can be more rapid. All boreholes were drilled into predominantly low permeability argillaceous limestone. The overburden is considered dry, with groundwater residing in the limestone bedrock aquifer beneath the site.

During the 2001 site investigation, a series of falling/rising head tests were undertaken across the site.

The hydraulic conductivity was found to vary by two orders of magnitude between monitoring wells, confirming the heterogeneity in the bedrock aquifer.

The lowest permeability was recorded from well MW7 ($4.28 \times 10^{-3} \text{ m/d}$), while the highest permeability's were recorded in wells MW8 and MW4D ($3.97 \text{ and } 7.56 \times 10^{-1} \text{ m/d}$, respectively). A linear fracture zone was interpreted to exist running from north-west to southeast through the Enva production well and wells MW8 and MW4D/S.

The direction of groundwater flow under natural gradient conditions is considered to follow the topographic gradient of the area and be toward the south and south-east, eventually discharging to the Shannon Estuary. However, abstraction from Enva's Production Well modifies the natural gradient.

In January 2005 Chemifloc began abstracting groundwater from a new production well located next to their monitoring well MW2. This resulted in a change in groundwater flow across the two sites, creating a groundwater divide close to Enva's western site boundary when the Chemifloc well is pumping.

Enva's Production Well continues to draw groundwater from the north, south and east (depending on the pumping regime), but its influence to the west was lessened by the influence of the Chemifloc Production Well. Enva's Production well was pumped at a moderately low rate throughout 2013, with an average abstraction rate of 3 m^3 /day.

Figures 3 and 4 illustrate groundwater flow at the Enva site under March and September 2013 conditions.

3.6 Groundwater Monitoring Data

URS groundwater monitoring data are available dating back to 2001. Waste licence requirements include monitoring of groundwater on a quarterly basis across the site from selected wells.

Quarterly groundwater monitoring is required from the following three on-site groundwater monitoring wells:

- MW3
- MW4S
- MW5

The suite of parameters analysed in each monitoring round generally includes:

- Volatile organic compounds (VOCs) (including chlorinated hydrocarbons)
- Semi volatile organic compounds (SVOCs), including polycyclic aromatic hydrocarbons (PAHs)
- Total petroleum hydrocarbons including diesel and petrol range organics
- Major ions (chloride, sodium, sulphate, potassium, ammoniacal nitrogen)
- Total oxidised nitrogen (TON)
- Total organic carbon (TOC)
- Cyclohexane extractable matter (CEM/SEM)

The following suite of parameters are analysed on an annual basis as part of the Waste licence monitoring:

- Phosphate
- Total alkalinity
- Total dissolved solids
- Total cyanide
- Total phenols
- Dissolved heavy metals (arsenic, cadmium, chromium, copper, mercury, nickel, lead, iron, manganese, calcium and magnesium)

A five-year monitored natural attenuation (MNA) remediation program was completed between 2002 and 2007 which demonstrated that VOC concentrations in groundwater underlying the Enva site are declining and that there are no sensitive receptors located in the vicinity of the site. Given the long timescales involved for the degradation of chlorinated solvents, it was recommended that MNA remediation program be undertaken on a reduced scope following the completion of the five-year MNA program.

As such, the EPA also requires that Enva monitor groundwater quality in five on-site wells (MW4S, MW8, MW9, MW10 and the on-site Production Well) for VOCs and a range of redox indicator compounds on an annual basis.

The following suite of parameters are analysed on an annual basis as part of the MNA monitoring:

- VOCs
- Redox indicators (chloride, sulphate, manganese, total alkalinity, nitrate, nitrite)

During the most recent monitoring round (December 2013), additional parameters specified in S.I. No. 9 of 2010 were included in the analytical suite, specifically:

- Major ions: molybdate reactive phosphorus, nitrate and nitrite
- Dissolved heavy metals: aluminium and boron
- Pesticides

Historic results, where available for selected parameters, are presented in Appendices B to F, with all results from December 2013 in Appendix G.

3.6.1 *Field Measurements*

Field measurements of pH and electrical conductivity (EC) have been routinely measured in groundwater at the Enva site and are specified in the site's Waste licence.

Tabulated field measurements and trend graphs of pH and EC from 2008 to 2013 are presented in Appendix B.

рΗ

Groundwater pH across the site is generally slightly alkaline, which is typical of a limestone aquifer and within the normal range for groundwater in Ireland (6.0 to 8.0). There is no apparent trend in pH measurements over time. There is no GTV defined for pH.

Electrical Conductivity

With the exception of well MW4S, EC readings in groundwater from wells beneath the site fall within a relatively narrow range of values, from ~500 μ S/cm to ~2,500 μ S/cm. Generally, groundwater EC readings are close to 1,000 μ S/cm. The lower GTV for EC is 800 μ S/cm and is usually exceeded in groundwater from the licensed monitoring wells. The higher GTV for EC is 1,875 μ S/cm, which is consistently exceeded at well MW4S (average EC value of 4,020 μ S/cm). The consistently elevated EC readings from well MW4S are interpreted to indicate the presence of organic contamination in the well.

3.6.2 *Major lons*

Selected major ion results from 2008 to 2013 have been tabulated and graphed in Appendix C.

• The highest concentrations of sodium and chloride are detected in groundwater from well MW4S. Average concentrations for well MW4S are: 665 mg/L sodium and 1,120 mg/L chloride. Higher major ion concentrations for well MW4S correspond to elevated EC

readings in groundwater from this well. Sulphate concentrations are also elevated in groundwater from well MW4S (average of 544 mg/L)

- Sodium and chloride concentrations are generally low in groundwater from wells MW3 (<75 mg/L and <115 mg/L, respectively), MW5 (<35 mg/L and <75 mg/L, respectively), and the Enva Production Well (both <40 mg/L). Sodium is consistently below the GTV of 150 mg/L; while chloride concentrations are generally close to the Upper GTV of 187.5 mg/L
- Sulphate concentrations are generally below the GTV of 187.5 mg/L in groundwater from wells MW3 and MW5
- Nitrate has not been regularly monitored for in groundwater at the site. When analysed, nitrate concentrations are low in the three licensed site wells, with the highest average concentration recorded at well MW3 (16 mg/L). Well MW3 has also had some of the highest dissolved oxygen concentrations, suggesting more aerobic groundwater conditions in the north of the site. Nitrate would not be typically detected in reducing groundwater conditions. The GTV for nitrate is 37.5 mg/L
- Between 2008 and 2013, nitrite has only been analysed for on six occasions in groundwater from the licensed wells. Nitrite has not been detected above the laboratory method detection limit (MDL) during any of the monitoring rounds. The GTV for nitrite is 0.375 mg/L
- Ammoniacal nitrogen concentrations in groundwater from MW5 are generally below the lower GTV of 0.065 mg/L. Concentrations of ammoniacal nitrogen have increased throughout 2013 in groundwater from well MW3 to a maximum of 2 mg/L in December 2013, exceeding the Upper GTV of 0.175 mg/L. Ammoniacal nitrogen concentrations in groundwater from well MW4S have fluctuated between 2008 and 2013, up to a maximum of 31 mg/L in May 2010. Ammoniacal nitrogen concentrations at well MW4S are normally greater than the Upper GTV
- Ortho phosphate as P was analysed for in groundwater from the three licensed wells on an annual basis between August 2008 and August 2012. Ortho phosphate was detected above the MDL in groundwater from wells MW3 (0.04 mg/L) and MW5 (0.03 mg/L) only in August 2010. Molybdate reactive phosphorus (as PO₄) was analysed for in December 2013 and was not detected above the MDL in any of the three groundwater samples
- Cyanide has been analysed for in groundwater from the three licensed wells on an annual basis between August 2008 and September 2013. Cyanide had not been detected above the MDL in groundwater from the three licensed onsite wells. The GTV for cyanide is 0.0375 mg/L

3.6.3 Dissolved Heavy Metals

Between 2008 and 2013 dissolved heavy metals have been routinely monitored on an annual basis at the Enva site. Tabulated metal results for the three licensed wells, from September 2008 to September 2013, for which there are GTVs, are presented in Appendix D.

The majority of metals are generally either present at low concentrations or are below MDLs.

Lead, mercury, cadmium, chromium and copper have not been detected above their respective GTVs in any of the groundwater monitoring rounds.

Arsenic is commonly detected above the MDL in groundwater from well MW4S, but has not been detected at concentrations greater that the GTV (7.5 μ g/L) since September 2009 (29 μ g/L). Arsenic was detected marginally above the GTV in groundwater from well MW3 on a single occasion (September 2013, 8.2 μ g/L). Between 2008 and 2013, arsenic has only been detected above the MDL in groundwater from well MW5 on a single occasion (September 2009, 1 μ g/L).

Chromium was detected above the GTV (37.5 μ g/L) on a single occasion, in September 2010, in groundwater from well GW06 (59 μ g/L). All other chromium concentrations, when detected, are <20 μ g/L.

Aluminium has previously been detected at elevated concentrations and above the GTV (150 μ g/L) in groundwater from wells GW04 (up to 240 μ g/L), GW05 (up to 360 μ g/L) and GW08 (up to 367 μ g/L). Since September 2010, aluminium concentrations have remained low (<35 μ g/L) in groundwater from the three licensed wells.

Arsenic was detected in groundwater from well MW3 on three occasions, and was marginally above the GTV (7.5 μ g/L) on two occasions. Arsenic was detected at concentrations of 9.2 μ g/L and 9.5 μ g/L in November 2011 and February 2012, respectively. In 2013, arsenic concentrations were below the MDL in groundwater from all three wells sampled.

Nickel is detected at elevated concentrations in groundwater from well MW4S (up to 1,540 μ g/L) and to a lesser extent MW3 (up to 55 μ g/L) and MW5 (up to 40 μ g/L). The GTV for nickel is 15 μ g/L, which is consistently exceeded in groundwater from the three monitoring wells. The presence of elevated concentrations of nickel in wells MW3 and MW5 suggest a naturally occurring source. Elevated nickel concentrations of between 22 mg/kg to 30 mg/kg have been mapped in the Shannon area and are associated with the impure limestone geology². Elevated concentrations of nickel in groundwater from well MW4s may be related either to site processes or be associated with an upgradient source in the industrial estate.

Aluminium and boron were analysed in December 2013 only. Aluminium was not detected above the MDL in any of the three samples analysed. Boron was detected above the MDL in the three groundwater samples in December 2013, at concentrations of between 19 μ g/L (MW5) and 272 μ g/L (MW4S), all results are significantly below the GTV (750 μ g/L).

3.6.4 Polycyclic Aromatic Hydrocarbons

PAHs are analysed as part of a larger SVOC suite and selected PAH results are tabulated and presented in Appendix E.

Between 2008 and 2013, benzo(a)pyrene, benzo(bk)fluoranthene, benzo(ghi)perylene and indeno(1,2,3-cd)pyrene have not been detected above MDLs in groundwater from the three licensed wells on the Enva site.

3.6.5 Volatile Organic Compounds

A wide variety of VOCs are detected in groundwater at the Enva site. The VOCs detected can be broken down into the following categories:

² Teagasc and the Environmental Protection Agency, 2007, Soil Geochemical Atlas of Ireland

Typical chlorinated ethenes detected in groundwater at the Enva site are:

- Tetrachloroethene (PCE)
- Trichloroethene (TCE)
- Dichloroethene (DCE)
- Vinyl Chloride (VC)

Typical chlorinated ethanes detected in groundwater at the Enva site are:

- Trichloroethane (TCA)
- Dichloroethane (DCA)
- Chloroethane (CA)

Typical chlorinated methanes detected in groundwater at the Enva site are:

- Tetrachloromethane (TCM)
- Trichloromethane, or chloroform (CFM)
- Dichloromethane (DCM)
- Chloromethane (CM)

Other non-chlorinated VOCs: including BTEX hydrocarbons (benzene, toluene, ethyl benzene and xylene), trimethylbenzenes and various other VOCs.

A summary of total VOC concentrations trend data is presented in Appendix F for monitoring wells MW3, MW4S, MW5 and the Enva Production Well.

Between 1998 and 2013, an overall decreasing trend in total VOC concentrations is generally observed in the wells sampled.

MW3

MW3 is located on the up-gradient northern site boundary. Since January 2001, total VOC concentrations are relatively low in groundwater from this well, typically fluctuating between 200 and 600 μ g/L (see Appendix F1). In general, the detected compounds are dominated by chlorinated ethanes.

Concentrations of VOCs were broadly similar during Q1, Q2 and Q3 2013 (<300 μ g/L), with higher total concentrations being detected in Q4 (~600 μ g/L). The most noted increase in VOC concentrations during 2013 was for DCM from <MDL in Q1, Q2 and Q3 to 496 μ g/L in Q4 2013.

MW4S

MW4S is located in the southern part of the site near the processing and storage areas. Since 2000, total VOC concentrations in MW4S have generally decreased from 40,000 μ g/L to approximately 10,000 μ g/L (or lower).

More recently, a decrease in total VOC concentrations at well MW4S is noted between May 2012 (10,785 μ g/L) and the most recent monitoring round completed in December 2013 (6,683 μ g/L) was reported.

Groundwater samples collected from this well have both the highest total VOC concentrations and the greatest variety of organic compounds detected. During 2013, an overall slight increasing trend in VOC concentrations is apparent, with increases noted for VC, cDCE and 1,1,1-TCA. In 2013, the highest concentrations of VOCs were reported in Q4 (December).

MW5

MW5 is located next to Enva's western site boundary with Chemifloc. The lowest total VOC concentrations are reported in groundwater samples collected at this well, usually less than 10 μ g/L, but the highest was 206 μ g/L in February 1998, as such, an overall decreasing trend is apparent.

In 2013, VOCs were not detected in groundwater from well MW5 above MDLs.

Production Well

The Enva Production Well is located in the middle of the site. Between August 2001 and May 2006, total VOC concentrations fluctuated between 2,000 μ g/L and 3,000 μ g/L. However, since November 2006 the total VOC concentrations remained relatively stable at approximately 2,000 μ g/L. More recently a significant decrease in total VOC concentrations was noted between May 2011 (2,230 μ g/L) and May 2012 (403 μ g/L). However, an increase in total VOCs is observed between May 2012 and June 2013 (924 μ g/L) at this location. The most notable increase is in concentrations of cDCE reported, increasing from 113 μ g/L (May 2012) and 535 μ g/L (June 2013).

3.7 Conceptual Site Model (CSM)

A schematic representation of the CSM is presented in Figure 5.

Depth to bedrock across the site ranges from \sim 1.5 m to 4.5 m bgl, with overburden consisting of limestone till. The overburden is generally dry with groundwater residing in the bedrock aquifer beneath the site. The bedrock aquifer is fractured limestone.

At the Enva site it is expected that the direction of groundwater flow under natural gradient conditions is to the south and south east. However, groundwater flow is influenced by the pumping of both the Enva and Chemifloc Production Wells.

The main contaminants of concern are chlorinated solvents primarily in groundwater from well MW4S.

The site investigation undertaken by URS and reported in 2002 identified three sources of chlorinated solvents:

- 1. One up-gradient to the north of the site; consisting predominantly of chloroethanes
- 2. One historic source in the centre of the site, immediately up-gradient of the on-site production well; consisting predominantly of chloroethenes
- 3. One historic source close to, and possibly up-gradient of, the southern site boundary, and consisting of a varied suite of chlorinated solvents including chloroethenes, chloroethanes and chloromethanes

It has been shown (via redox potential and dissolved oxygen measurements and iron and manganese analytical results) that groundwater conditions across the site are reducing (anaerobic) and facilitate the in-situ, natural breakdown of chlorinated solvents through reductive dechlorination. Through reductive dechlorination heavily chlorinated solvents are broken-down sequentially into less chlorinated solvents and finally into non-chlorinated gases.

When the well is pumped at a sufficient rate, all three plumes are hydraulically contained by the Enva Production Well. Groundwater from the Enva Production Well is used for production purposes only and is not used for potable supply. There are no identified potential off-site groundwater receptors.

4. ASSESSMENT OF GROUNDWATER STATUS

4.1 Introduction

The following documents have been reviewed in completing this section:

- 2010, S.I. No. 9 of 2010, European Communities Environmental Objectives (Groundwater) Regulations
- 2010, EPA, Methodology for Establishing Groundwater Threshold Values and the Assessment of Chemical and Quantitative Status of Groundwater, Including and Assessment of Pollutant Trends and Trend Reversal
- 2011, EPA, Guidance on the Authorisation of Discharges to Groundwater
- 2011, EPA, Groundwater Status Report May 2011 Appendix 1 (GW_1_Status_May2011_Appendix1.xls, downloaded from www.epa.ie on 20 February 2014)

S.I. No. 9 of 2010 established a strengthened regime for the protection of groundwater in Ireland. This regime is in line with the requirements of the WFD (2000/60/EC) and the Groundwater Directive (2006/118/EC).

S.I. No. 9 of 2010 identifies the conditions for assessing the status of a groundwater body. Tests are defined relating to the quantitative status of the groundwater body and to the qualitative (or chemical) status of the groundwater body. Each test is applied independently and the overall groundwater body status is the worst result from all tests.

The GTVs presented in S.I. No. 9 of 2010 are to be used as triggers to assist with determining whether conditions for good qualitative status have been met. Exceedance of a GTV triggers further investigation of whether the impact is localised or sufficient to prevent the groundwater body as a whole achieving good status. It is noted that this report considers only groundwater beneath the Enva site and does not consider the TullaNewmarket_2 Groundwater Body as a whole.

4.2 Quantitative Status Assessment

4.2.1 Test 1 – Saline or Other Intrusions Test

The Saline (or Other) Intrusions Test is intended to identify groundwater bodies where there is intrusion of poor quality water as a result of groundwater abstraction. Trends in EC and other indicators (such as chloride) are assessed to identify whether an intrusion of poor quality water into the groundwater body is occurring due to groundwater abstraction. The 'poor quality intrusion' could be from either saline water (if in a coastal setting); or the drawing-in of poor quality water from a deeper water body, or an adjacent water body.

The GTVs for EC and chloride in this instance are 800 μ S/cm and 24 mg/L, respectively.

Where EC and chloride concentrations are above natural background levels and there is either a significant upward trend in concentration of that parameter, or there is already an impact on a point of abstraction (e.g. where a water supply has been decommissioned due to saline intrusion), then the groundwater body will be at *Poor* status. Otherwise it will be at *Good* status.

EC concentrations above the GTV of 800 μ S/cm are frequently recorded in groundwater beneath the site. Long term average EC concentrations exceed the Lower GTV of 800 μ S/cm in groundwater from all three licensed wells.

The highest long-term average EC concentration is recorded in groundwater from well MW4S (4,019 μ S/cm). Elevated EC concentrations in groundwater from well MW4S are attributed to elevated concentrations of organic contaminants in the well.

Long term average chloride concentrations exceed the Lower GTV of 24 mg/L in groundwater from all three licensed wells. The highest long-term average chloride concentration is recorded in groundwater from well MW4S (1,167 mg/L).

Assessment of Status

In assessing the impact of saline intrusion on groundwater, the presence of a statistically significant upward trend in <u>both</u> chloride and EC at any individual monitoring point results in the groundwater body status being classified as *Poor*. Monitoring locations with significant upward trends in chloride, but not in EC or vice versa, remain at *Good* status, but are at risk of failing to meet WFD objectives in the future.

Annual concentration trends for both EC and chloride in groundwater from the three licensed wells from 2008 to 2013 have been assessed using MAKESENS (Mann-Kendall test for trend and Sen's slope estimates) as recommended by the Agency. As the number of values for both time series is equal to 9, the Mann-Kendall test is performed using the S statistics and the confidence interval for the Sen's slope estimate is not determined.

Graph 2: EC Trend Analysis for Well MW4S

Graph 3: EC Trend Analysis for Well MW5

There are no statistically significant upward trends in EC in the three licensed wells. Therefore the groundwater status in relation to the test is classified as *Good*.

The WFD indicates that confidence in the status assessment must also be reported. The overall assessment approach is outlined in the following table. For the Enva site, as there are exceedances of the GTVs for EC and chloride, however there are no sustained rising trends. The status is described as *Good* with low confidence.

Status	Confidence	Example Criteria
	High	No exceedance of the TV levels, OR Exceedance of TV levels not caused by abstraction
Good	Low	Exceedance of TV levels but further investigation has determined there are no sustained rising trends OR Possible risk identified but no monitoring available
	Low	Exceedance of TV levels caused by abstraction with sustained rising trends OR Exceedance of TV levels caused by abstraction AND impacted abstraction
POUR	High	Exceedance of TV levels with sustained rising trends caused by abstraction AND The Intrusions have caused a significant impact on abstraction(s)

Table 2: Summary of Criteria to Determine Status and Confidence

Test 1: Passed

Status: Good, Low Confidence

4.2.2 Test 2 – Impact of Groundwater on Surface Water Ecology

This test is required to assess whether the ecology of a surface water body is damaged due to groundwater abstraction impacting groundwater flow from the groundwater body to the surface water receptor.

This test is only required where the surface water body is classified as less than *Good* status due to a failure of surface water body flow standards, which are caused by abstraction.

There are no significant rivers or streams in close proximity down-gradient of the site. The nearest surface water body is Upper Shannon Estuary (IE_SH_060_800). The Upper Shannon Estuary is a transitional waterbody whose status is classified as *Good*.

Test 2: Not Applicable

4.2.3 Test 3 – Groundwater Dependent Terrestrial Ecosystems

This test is required to assess whether groundwater abstractions are reducing the contribution from groundwater to groundwater-dependent terrestrial ecosystems. Groundwater dependent terrestrial ecosystems (GWDTE) are wetlands which critically depend on groundwater flows and/or chemistries.

This test is only applied to wetlands that have been formally identified as protected areas under Regulation 8 of S.I. No. 722 of 2003. Groundwater from the site could possibly discharge to the Shannon Estuary (~3 km south of the site). The Lower River Shannon has been identified as a SAC (No. 002165).

The ecological status of Upper Shannon Estuary (IE_SH_060_800) is classified as *Good*. Given the distance from site to the Lower River Shannon (~3 km), it is considered unlikely that localised abstraction on the Enva site, would impact on the hydrological conditions of the Estuary.

Status	Confidence	Example Criteria
Good	High	No ecological damage to GWDTE OR Ecology of GWDTE damaged, but no associated significant groundwater abstractions in the GWB
	Low	Ecology of GWDTE damaged, but further investigation indicates groundwater abstractions not impacting on the wetland
	Low	Ecology of GWDTE damaged, and further investigation indicates groundwater abstractions are impacting on the wetland
Poor	High	Ecology of GWDTE damaged, and further investigation indicates groundwater abstractions are impacting on the wetland AND Detailed site-specific studies identify and quantify direct connection between groundwater and GWDTE.

Test 3: Passed

Status: Good, High Confidence

4.2.4 Test 4 – Water Balance Test

This test is conducted at the Groundwater Body scale and assesses whether groundwater abstraction over the body as a whole is resulting in insufficient water being left to support surface water ecologies or groundwater-dependent terrestrial ecosystems, or if it is resulting in declining groundwater elevations.

As this assessment considers the TullaNewmarket_2 Groundwater Body only in so far as it is present beneath the Enva site, this Groundwater Body scale test is beyond the scope of this assessment.

Test 4: Not Applicable

4.2.5 Quantitative Status Assessment Summary

Quantitative classification of groundwater bodies is split into the above four tests. The tests are designed to assess whether the objectives of the WFD are being met. The worst case is reported for a groundwater body, so "failure" of one or more of the tests causes a groundwater body to be at *Poor* status.

Only two of quantitative status assessment tests (Test 1 and Test 3) are applicable to groundwater in the TullaNewmarket_2 Groundwater Body, in so far as it is present beneath the Enva site. As groundwater data for the site passes Test 1 and Test 3 of the Quantitative Assessment, the overall quantitative status is considered *Good*.

Overall Quantitative Status: Good

4.3 Qualitative Status Assessment

Monitoring data from the three licensed monitoring wells located across the Enva site are considered in the qualitative status assessment.

4.3.1 Test 1 – Saline or Other Intrusions Test

This test mirrors Quantitative Status Test 1.

In assessing the impact of saline intrusion on groundwater, the presence of a statistically significant upward trend in both EC and chloride at any individual monitoring point, as a result of abstraction, results in the groundwater body status being classified as *Poor*.

Monitoring locations with significant upward trends in chloride, but not in EC or vice versa, remain at *Good* status, but are at risk of failing to meet WFD objectives in the future.

There are no statistically significant upward trends in chloride in groundwater from the three licensed wells.

Graph 4: Chloride Trend Analysis for Well MW3

Graph 5: Chloride Trend Analysis for Well MW4S

ENVA SHANNON\47092526/HYDROGEOLOGICAL REVIEW AND ASSESSMENT 2013\CKRP0006/FO/FO Issue 1 Draft 22 May 2014

Graph 6: Chloride Trend Analysis for Well MW5

Table 3: Summary of Criteria to Determine Status and Confidence

Risk assessment								
Abstraction in GWB	Abstraction <20km from the coast	Concentration at Monitoring Point >TV	Elevated Concentration Caused by Abstraction	Upward Trend in Concentration	Confidence			
No	-	2	L.	-	Good-HC			
Yes	No	2			Good-HC			
Yes	Yes	No	-	-	Good-HC			
Yes	Yes	Yes	No		Good-LC			
Yes	Yes	Yes	Yes	No	Good-LC			
Yes	Yes	Yes	Yes	Yes	Poor-LC			
Yes	Yes	Yes	Yes	Yes	Poor-HC*			

*Evidence of impacts of saline intrusion on nearby receptors

As discussed in Section 4.2.1, there are exceedances of the GTVs for EC and chloride in groundwater from the licensed wells. However, there are no sustained upward trends. Therefore, the groundwater status is *Good* with low confidence.

Test 1: Passed

Status: Good, Low Confidence

4.3.2 Test 2 - Impact of Groundwater on Associated Surface Water Bodies

This test is required to assess whether the ecology of an associated surface water body is damaged due to the quality of groundwater discharging to it.

It is possible that groundwater from the site to discharges to the Upper Shannon Estuary (IE_SH_060_800), albeit at a considerable distance from the site (3 km); therefore, this test is considered somewhat applicable to the Enva site.

As per the EPA 2010 guidance document, two parameters are considered in this test:

- Ammonium (as nitrogen), with a GTV of 0.065 mg/L
- Molybdate reactive phosphorous (MRP), with a GTV of 0.035 mg/L

The overall status of the Upper Shannon Estuary is classified as *Good*, with the classification related to MRP as *High*; no surface water EQS is defined for ammonium as nitrogen in a *transitional water body*.

The overall assessment approach is outlined in the following table. As the status of Upper Shannon Estuary with regard to MRP is *High*, the groundwater status is *Good* with high confidence.

Status	Confidence	Example Criteria
	High	No surface water body at less than Good Status OR Surface water body at less than Good Status, but groundwater concentrations < 50% of EQS and therefore Groundwater unable to contribute > 50% of the load to surface water.
Good	Low	Surface water body at less than Good Status, but further investigation indicates groundwater loading < 50% of loading required to breach EQS OR Elevated pollution concentrations in groundwater unlikely to impact on the associated surface water body, e.g. where MRP is likely to be bound or attenuated by the overlying subsoil
	Low	Surface water body at less than Good Status, and further investigation indicates groundwater loading > 50% of loading required to breach EQS
Poor	High	Surface water body at less than Good Status, and further investigation indicates groundwater loading > 50% of loading required to breach EQS AND Detailed site specific studies (e.g. groundwater tracing) identify and quantify direct connection between groundwater and surface water.

Table 4: Summary of Criteria to Determine Status and Confidence

Test 2: Passed

Status: Good, High Confidence

4.3.3 Test 3 - Groundwater Dependent Terrestrial Ecosystems

This test is required to assess whether groundwater quality is damaging the ecology of groundwater dependent terrestrial ecosystems. This test is only applied to wetlands that have been formally identified as protected areas under Regulation 8 of S.I. No. 722 of 2003.

As discussed in Section 4.2.3, groundwater from the site could potentially discharge to the Shannon Estuary. The Lower River Shannon has been identified as a Special Area of Conservation (SAC - 002165).

The ecological status of the Upper Shannon Estuary (Lower River Shannon) is classified under the WFD as *Good*. Given the distance from the site to the Lower River Shannon (~3 km), it is considered unlikely that localised contamination in groundwater beneath the Enva site would impact on the ecological status of the Estuary.

Status	Confidence	Example Criteria
Good	High	No ecological damage to GWDTE OR Ecology of GWDTE damaged, but groundwater concentrations < wetland trigger action value/concentration
	Low	Ecology of GWDTE damaged, but further investigation indicates groundwater loading < loading required to breach wetland trigger action value/concentration
	Low	Ecology of GWDTE damaged, and further investigation indicates groundwater loading > loading required to breach wetland trigger action value/concentration
Poor	High	Ecology of GWDTE damaged, and further investigation indicates groundwater loading > loading required to breach wetland trigger action value/concentration AND Detailed site-specific studies identify and quantify direct connection between groundwater and GWDTE.

Test 3: Passed

Status: Good, High Confidence

4.3.4 Test 4: Drinking Water Protected Area

To minimise the requirement for purification treatment, groundwater intended for human consumption at the point of abstraction should be of *Good* qualitative status. The guidance specifically states that this test is applicable "at a representative selection of drinking water abstractions". While groundwater from beneath the Enva site is not currently abstracted for human consumption, this test is applicable as a "Protected Area" under the WFD in terms of Groundwater for Drinking Water use.

The following parameters are considered in this test:

- Boron, with a GTV of 750 μg/L
- Individual pesticides, with individual GTVs of 0.075 μg/L
- Total pesticides, with a GTV of 0.375 μg/L
- Nitrate (as NO₃), with a GTV of 37.5 mg/L
- Nitrite (as NO2), with a GTV of 0.375 mg/L
- Electrical conductivity, with a GTV of 1,875 μS/cm
- Chloride, with a GTV of 187.5 mg/L
- Sulphate, with a GTV of 187.5 mg/L
- Sodium, with a GTV of 150 mg/L
- Ammonium (as N), with a GTV of 0.175 mg/L³

Many of these parameters are included in routine groundwater monitoring analysis, with some additional analyses included in December 2013.

³ GTV is given as 0.175 mg/L for ammonium as nitrogen, which is equivalent to 0.225 mg/L of ammoniacal Nitrogen as NH₄

The following table outlines the rationale in determining the status of the groundwater for this test.

Statistically significant trend in data	Mean concentration currently below TV	Mean concentration currently above TV
Down	Good (also not at risk)	Good (at risk)
No trend	Good (also not at risk)	Good (at risk)
Up	Gcod (at risk where predicted concentration in 2021 > TV, otherwise not at risk)	Poor (at risk)

Boron

Boron concentrations in December 2013 were low and less than half the Drinking Water Standard of 1 mg/L (DWS, S.I. No. 278 of 2007). No individual boron result exceeded the GTV. Therefore, groundwater status in relation to boron is considered *Good (also not at risk).*

Pesticides

Pesticides were all below MDLs in groundwater from the three licensed monitoring wells in December 2013. Groundwater status in relation to pesticides is considered *Good (also not at risk).*

Nitrate and Nitrite

Long term average concentrations for nitrate and nitrite in groundwater from all three wells are less than half the relevant DWS. Therefore, groundwater status in relation to nitrate and nitrite is considered *Good (also not as risk).*

EC

The long term annual average EC concentration in groundwater from well MW4S is above the GTV of 1,875 μ S/cm. However, there is a no statistically significant trend (see Graph 2). Therefore, groundwater status in relation to EC is considered *Good* (also not at risk).

Chloride

The long term annual average chloride concentration in groundwater from well MW4S is above the GTV of 187.5 mg/L. However, there is no statistically significant trend (see Graph 5). Therefore, groundwater status in relation to chloride is considered *Good* (also not at risk).

Sulphate

The long term annual average sulphate concentration in groundwater from well MW4S is above the GTV of 187.5 mg/L. However, as there is no statistically significant trend, the groundwater status in relation to sulphate is considered *Good* (also not at risk).

Graph 7: Sulphate Trend Analysis for Well MW4S

Sodium

The long term annual average sodium concentration in groundwater from well MW4S is above the GTV of 187.5 mg/L. However, as there is no statistically significant trend; the groundwater status in relation to sodium is considered *Good* (also not at risk).

Graph 8: Sulphate Trend Analysis for Well MW4S

Ammonium

Long term average ammoniacal nitrogen concentrations in groundwater from wells MW3 and MW4S exceed the GTV (0.175 mg/L).

For well MW3, there is no statistically significant trend for ammoniacal nitrogen; therefore, groundwater status in relation to ammoniacal nitrogen is considered *Good* (also not at risk).

Graph 9: Ammonium Trend Analysis for Well MW3

Concentrations of ammoniacal nitrogen are highest in groundwater from well MW4S and are consistently in excess of the GTV. However, there is no statistically significant trend for ammoniacal nitrogen; therefore, groundwater status in relation to ammoniacal nitrogen is considered Good (also not at risk).

Graph 10: Ammonium Trend Analysis for Well MW3

ENVA SHANNON\47092526/HYDROGEOLOGICAL REVIEW AND ASSESSMENT 2013\CKRP0006/FO/FO Issue 1 Draft 22 May 2014

Test 4: Passed

Status: Good (also not at risk)

4.3.5 Test 5 – General Chemical Assessment

This test identifies whether there is "deterioration in groundwater quality at a scale which will compromise its future use for existing or planned human consumption and/or other potential purposes" (EPA, 2010, Section 3.5.2).

The EPA guidance specifically states that "the test is not intended to identify local pollution impacts", therefore this test is intended to assess the groundwater body as a whole, although it further states that "significant point sources, e.g. mining activities and contaminated land" are to be included. While this test is not strictly applicable at the scale of the Enva site, it is being undertaken to assess the general groundwater quality in the TullaNewmarket_2 Groundwater Body (IE_SH_G_231) in so far as it is present beneath the Enva site.

The following parameters are considered in this test:

- Nitrate (as NO₃), with a GTV of 37.5 mg/L
- Ammonium as nitrogen, with a GTV of 0.175 mg/L
- EC, with a GTV of 1,875 μS/cm
- Nitrite (as NO₂), with a GTV of 0.375 mg/L
- Chloride, with a GTV of 187.5 mg/L
- Sulphate, with a GTV of 187.5 mg/L
- Sodium, with a GTV of 150 mg/L
- Individual pesticides, with individual GTVs of 0.075 μ g/L
- Total pesticides, with a GTV of 0.375 μg/L
- Boron, with a GTV of 750 µg/L
- Chromium, with a GTV of 37.5 μ g/L
- Arsenic, with a GTV of 7.5 μg/L
- Lead, with a GTV of 18.75 μ g/L
- Nickel, with a GTV of 15 µg/L
- Mercury, with a GTV of 0.75 μ g/L
- Cadmium, with a GTV of 3.75 μ g/L
- Copper, with a GTV of 1,500 µg/L
- Aluminium, with a GTV of 150 μ g/L

- Cyanide, with a GTV of 37.5 μg/L
- 1,2-Dichloroethane, with a GTV of 2.25 μg/L
- Vinyl Chloride, with a GTV of 0.375 μg/L
- Tetrachloroethene and Trichloroethene, with a GTV of 7.5 μ g/L
- Benzene, with a GTV of 0.75 μg/L
- Benzo(a)pyrene, with a GTV of 0.0075 μg/L
- Total PAHs⁴, with a GTV of 0.075 μ g/L
- Total Trihalomethanes, with a GTV of 75 μ g/L

Most of these parameters are included in routine groundwater monitoring analysis. Pesticides, aluminium, boron were added to the analytical suite in the December 2013 monitoring round. Results for these parameters in December 2013 were below their respective GTVs. While the long term average for these parameters can't be calculated the groundwater status in relation to them is considered *Good*, albeit based on a single round of data.

Where six years' of monitoring data (2008-2013) were available from Enva's three licensed wells, the long term average parameter concentrations were calculated. The aggregated long term average concentrations of the following parameters did not exceed the GTVs in groundwater from any groundwater monitoring well:

- Nitrate
- Nitrite
- Pesticides
- Chromium
- Lead
- Mercury
- Cadmium
- Copper
- Cyanide
- 1,2-Dichloroethane
- Total Trihalomethanes

Therefore, groundwater status in relation to these parameters is considered Good.

⁴ Total PAHs is taken as the sum of benzo(ghi)perylene, benzo(b,k)flouranthene and indeno(1,2,3-cd)pyrene

Ammonium as Nitrogen

The long term average concentration for ammoniacal nitrogen in groundwater from wells MW3 and MW4S between 2008 and 2013 is 0.39 mg/L and 16.74 mg/L respectively. Both long term averages exceed the GTV for ammoniacal nitrogen of 0.175 mg/L. The long term average concentration for ammonium (0.14 mg/L) in groundwater from well MW5 is below the GTV.

The aggregated long term average for ammoniacal nitrogen for the three licensed wells is 5.76 mg/L, which is above the GTV. A weighting factor has been applied to the aggregated long term average to determine whether monitoring data are representative of groundwater quality across the site.

Area-Weighted Average Concentration = ((Polluted area x Estimated average concentration in polluted area) + (Area of the remainder of the GWB x Estimated average concentration in this area)) / Total GWB area

As this test is being conducted for the TullaNewmarket_2 Groundwater Body only in so far as it is present beneath the Enva site, the site area has been used in the calculation rather than the area of the TullaNewmarket_2 Groundwater Body as a whole.

The weighted average concentration is 0.60 mg/L and is above the GTV (0.175 mg/L). Therefore, site-wide groundwater status in relation to ammoniacal nitrogen is considered *Poor*.

EC

The long term average concentration for EC in groundwater from well MW4S between 2008 and 2013 is 4,019 μ s/cm and exceeds the GTV of 1, 875 μ s/cm. The long term average concentrations for EC in groundwater from the other two licensed wells are less than the GTV (1,044 μ s/cm and 891 μ s/cm, respectively).

The aggregated long term average for the three licensed wells is 1,984 μ s/cm, which is marginally above the GTV. A weighting factor, as outlined above (for ammonium) has been applied to the aggregated long term EC average to determine whether monitoring data are representative of groundwater quality across the site.

The weighted average EC concentration is 1,164 μ s/cm and is below the GTV for EC (1,875 μ s/cm). Therefore, site-wide groundwater status in relation to EC is considered *Good*.

Chloride

The long term average concentration for chloride in groundwater from well MW4S between 2008 and 2013 is 1,167 mg/L, which exceeds the GTV of 187.5 mg/L. The long term average concentration for chloride in groundwater from the other two licensed monitoring wells is less than the GTV (106 mg/L and 68 mg/L). The aggregated long term average for chloride for the three licensed wells is 447 mg/L, which is above the GTV.

The weighted average chloride concentration is 162 mg/L and is below the GTV (187.5 mg/L). Therefore, site-wide groundwater status in relation to chloride is considered *Good*.

Sulphate

The long term average concentration for sulphate in groundwater from well MW4S between 2008 and 2013 is 599 mg/L and exceeds the GTV of 187.5 mg/L. The long term average concentrations for sulphate in groundwater from wells MW3 and MW4 are less than the GTV

(156 mg/L and 137 mg/L respectively). The aggregated long term average for sulphate for the three licensed wells is 297 mg/L, which is above the GTV.

The weighted average concentration is 177 mg/L and is below the GTV (187.5 mg/L). Therefore, site-wide groundwater status in relation to sulphate is considered Good.

Sodium

The long term average concentration for sodium in groundwater from well MW4S between 2008 and 2013 is 704 mg/L and exceeds the GTV of 150 mg/L. The long term average concentrations for sodium in groundwater from wells MW3 and MW5 are less than the GTV (74 mg/L and 31 mg/L respectively). The aggregated long term average for sodium for the three licensed wells is 269 mg/L, which is above the GTV.

The weighted average concentration is 101 mg/L and is below the GTV (150 mg/L). Therefore, site-wide groundwater status in relation to sodium is considered Good.

Arsenic

The long term average concentration for arsenic in groundwater from well MW4S between 2008 and 2013 is 9 μ g/L and marginally exceeds the GTV of 7.5 μ g/L. The long term average concentrations for arsenic in groundwater from the other two licensed wells MW3 and MW5 are less than the GTV (2 μ g/L and 1 μ g/L respectively). The aggregated long term average for arsenic for the three licensed wells is 4 μ g/L, which is below the GTV. Therefore, site-wide groundwater status in relation to arsenic is considered Good.

Nickel

The long term average nickel concentration in groundwater from well MW4S between 2008 and 2013 is 1,041 μ g/L and significantly exceeds the GTV of 15 μ g/L. The long term average concentrations for nickel in groundwater from wells MW3 and MW5 are also greater than the GTV (39 μ g/L and 22 μ g/L respectively). The aggregated long term average for nickel for the three licensed wells is 367 μ g/L.

Elevated nickel concentrations of between 22 mg/kg to 30 mg/kg have been mapped in the Shannon area and are associated with the impure limestone geology. Arsenic concentrations in groundwater are considered to reflect background conditions. Therefore, groundwater status in relation to nickel is considered *Good*.

Vinyl Chloride

The long term average concentrations for VC in groundwater from wells MW3 and MW4S between 2008 and 2013 are 9 μ g/L and 606 μ g/L respectively. Both long term averages exceed the GTV of 7.5 μ g/L. VC has not been detected above MDLs in groundwater from well MW05 and as such is below the GTV. The aggregated long term average for the three licensed wells for VC is 205 μ g/L, which is above the GTV.

The weighted average concentration is 78 μ g/L and is above the GTV (7.5 μ g/L). Therefore, site-wide groundwater status in relation to VC is considered *Poor*.

Trichloroethene and Tetrachloroethene

Long term average TCE and PCE concentrations in groundwater samples collected from monitoring wells MW3 and MW4S between 2008 and 2013 exceeded the combined GTV of

7.5 μ g/L. The long term average combined concentrations of TCE and PCE in groundwater monitoring well MW5 is less than the GTV.

The aggregated long term average for TCE and PCE for the three licensed wells is 21 μ g/L, which is above the GTV. A weighting factor has been applied to the aggregated long term average to determine whether monitoring data are representative of groundwater quality across the site.

The weighted average concentration for TCE is 150 μ g/L and is above the GTV.

The weighted average concentration for PCE is 70 μ g/L and is above the GTV.

Therefore, site-wide groundwater status in relation to TCE and PCE is considered Poor.

Benzo(a)pyrene

It is not possible to assess groundwater status in relation to benzo(a)pyrene, as the GTV is 0.0075 μ g/L and the detection limit ranges between 1 μ g/L and 10 μ g/L.

Total PAHs

It is not possible to assess groundwater status in relation to total polycyclic aromatic hydrocarbon (sum of benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(ghi)perylene and indeno (1,2,3-cd)pyrene), as the GTV 0.075 μ g/L is below the individual MDLs for these substances.

Summary

The chemical status of groundwater beneath the Enva is considered to be Poor with low confidence, as outlined in the table below.

Status	Confidence	Example Criteria
	High	No individual site concentrations higher than TV(s)
Good	Low	Aggregated pollutant concentration < TV(s), but individual site concentrations higher than TV(s) OR Aggregated pollutant concentration > TV(s), but aggregated pollutant concentrations lower than Natural Background concentrations OR Evidence of remediation causing a significant reduction in pollutant concentrations
	Low	Aggregated pollutant concentration > TV(s)
Poor	High	Aggregated pollutant concentration > TV(s) and individual sample concentrations greater than Drinking Water Standard OR Aggregated pollutant concentration > TV(s) and evidence of impact on drinking water abstractions, surface watercourses or wetlands

Test: Failed (for ammonium, vinyl chloride and TCE/PCE)

Status: Poor, Low Confidence

4.3.6 Qualitative Status Assessment Summary

The qualitative status assessment from Test 1 (Saline or Other Intrusions Test) is Good.

The qualitative status assessment from Test 2 (Impact of Groundwater on Surface Water Ecological/Chemical Status Test) is not applicable to the site and consequently the status defaults to *Good*.

Test 3 (Groundwater Dependent Terrestrial Ecosystems – Chemical Assessment Test) is *Good*.

The groundwater status in relation to Test 4 (Drinking Water Protected Area) is Poor.

The qualitative status assessment from Test 5 (General Chemical Assessment Test) is *Poor* in relation to ammonium, VC and TCE/PCE. However, Test 5 is strictly only applicable to widespread groundwater issues affecting entire water bodies (i.e. the entire TullaNewmarket_2 Groundwater Body) and therefore not appropriate to a site-scale assessment.

Overall Qualitative Status: Poor

4.4 Assessment of Groundwater Status Summary

The overall groundwater status is *Poor*, as summarised in the table below.

	Test	Applicable	Status	Overall Status	Groundwater Body Status				
	1	Yes	Good						
Quantitative	2	No	Defaults to Good	Good					
Quantitative	3	Yes	Good	9000					
	4 No Defaults		Defaults to Good						
	1	Yes	Good		Poor				
	2	No	Defaults to Good						
	3	Yes	Good						
Qualitative	4	Yes	Good	Poor					
	5	Yes	Poor (for ammonium, VC, TCE and PCE) Test 5 not strictly applicable.						

5. SUMMARY AND CONCLUSIONS

The Enva facility occupies approximately 1 ha in area and is situated in the Smithstown Industrial Estate; 1 km north of Shannon town centre. The site operates as a licensed waste facility. Land use surrounding the site is zoned for industrial use.

Depth to bedrock across the site ranges from approximately 1 m to 4.5 m bgl. The overburden consists of soft to firm, brown gravelly clay with cobbles, which is inferred to be a stony glacial till. The overburden is considered dry with groundwater residing in the limestone bedrock aquifer beneath the site.

The limestone bedrock aquifer in the region is classified as a Locally Important Aquifer, which is Moderately Productive only in Local Zones. Groundwater vulnerability in the Smithstown area is assessed as *Extreme*.

The aquifer beneath the site is fractured argillaceous limestone with relatively low permeability, although groundwater flow through fracture zones can be more rapid. Groundwater flow direction beneath the site, under natural gradient conditions, is expected to be to the south and south-west. The aquifer is part of the TullaNewmarket_2 Groundwater Body.

The main contaminants of concern are chlorinated solvents primarily in groundwater from well MW4S. Total VOC concentrations have declined significantly in groundwater from well MW4S (from up to 48,000 μ g/L) in recent years, generally 5,000 μ g/L throughout 2013.

Review of groundwater data indicates that there are no sustained elevated concentrations of organic contaminants. Major ion and dissolved metal concentrations in groundwater are generally low (especially in groundwater from wells MW3 and MW4) and below the relevant GTVs.

An assessment of groundwater status beneath the site, in line with requirements of S.I. No. 9 of 2010, and only in so far as the TullaNewmarket_2 Groundwater Body is present beneath the site, was completed. The assessment considers both quantitative and qualitative status.

Only two of quantitative status assessment tests (Test 1 and Test 3) are applicable to groundwater in the TullaNewmarket_2 Groundwater Body, in so far as it is present beneath the Enva site. As groundwater data for the site passes Test 1 and Test 3 of the Quantitative Assessment, the overall quantitative status is considered *Good*.

Four of the five qualitative tests were applicable to groundwater beneath the Enva site. The qualitative status assessment from Test 5 is *Poor* in relation to ammonium, VC and TCE and PCE However, Test 5 is strictly only applicable to widespread groundwater issues affecting entire water bodies (i.e. the TullaNewmarket_2 Groundwater Body) and, therefore, not appropriate to a site-scale assessment. The overall status of the groundwater beneath the site is *Poor*.

This finding does not concur with that of the 2011 EPA Groundwater Status report for the entire TullaNewmarket_2 Groundwater Body (IE_SH_G_231), which was assigned *Good* status. However, it should be borne in mind that the tests are applied to the TullaNewmarket_2 Groundwater Body only in so far as it is present beneath the Enva site and the tests presented in this report, especially Qualitative Test 5, do not consider the status of the groundwater body as a whole.

Consequently, there are no specific actions or recommendations (other than continuing the current routine groundwater monitoring programme) proposed or recommended to achieve

compliance with the European Communities Environmental Objectives (Groundwater) Regulations 2010, as amended.

FIGURES

Approximate Scale

0.5 km

0.25 km

CLIENT

ENVA IRELAND LIMITED

PROJECT LOCATION

0 km

SMITHSTOWN INDUSTRIAL ESTATE, SHANNON

DRAWING TITLE

FIGURE 1 - SITE LOCATION PLAN

Contains Ordnance Survey Data Crown Copyright and data base right 2012. Reproduced from Ordnance Survey dig ital map data. Crown copyright 2012. All rights reserved. Licence number 0100031673. Copyright Natural England 2012. Material is reproduced with the permission of Natural England 2012. Copyright English Heritage 2012. Reproduced under the terms of the Click-Use Licence. (C) URS 2012.

ACORN BUSINESS CAMPUS, MAHON IND PK, CORK FAX +353 21 4530 666 TEL +353 21 4536 136/7

DRAWN	TRACED	CHECKED	APPROVED	DATE
FO'R		FO'R	KF/COR	MAR 2014
SCALE	Job No.	1300050		
AS SHOWN	· ·	4/09252	A	

APPENDIX A ENVA BOREHOLE DRILLING SUMMARY

Hydrogeological & Environmental Consultants

K.T.Cullen & Co. Ltd. Hydrogeological & Environmental Consultants

	ISTRUCTION	IBER SAMPLE		Reading in air (ppm)	DUNDWATER	DEPTH (m)	GEOLOGY	BOREHOLE NUMBER DRILLING DATES: 31 July a DRILLER: Glovers Site In	R: MW 4D PAGE 1 of 2 & 1 August 01 DRILLING METHOD: AIR ROTARY Investigation BOREHOLE DIAMETER: 200mm Newlands SCREEN TYPE & DIAMETER: PVC + 500				
٥		NUM	≿	DIA	GR(CHECKED BY:	Newlanus	SCREEN SLOT	SIZE:	1mm	1111
		<u> </u>	<u> </u>		بسل	┝───┘	Ч	DI	SCRIPTION	J		COMMENTS	
\sim			Т	Γ		0 -	F			<u> </u>			0 -
		1			']	EEI]
					'		E	Drv soft to firm brown	CI AY with s	ome fine to coar	SA		
					'	₂ _		grained gravel of mixe	d lithology		00		ے ا
					'		لظ						
					'	_	臣						
					'		Ê₽₽"	Hard dry light grey LIME					
					'	4 -	Ē	Fidio ory light grey chine	10 IVE				4
					']	臣						
					'	_	臣						_]
					'		E						
		1		*0	'	6 _	臣						6 -
H					'		臣	Possible damp area but	t water being	used whilst drill	ing.		
Gro		1			'	'		Returns become slight	y darker in co	olour then rever	t to		
ent		1			'		Ē	light grey.					
eme					'	° ⊣ _	臣						× –
te C		1			']							
toni		1			'		Ē						
Ben					'	10 -	臣	Colour changes to dark	grey.				10
					'	<u> </u>	E	Light grey LIMESTONE with softer weathered					
		1			'	_	Ē						
		1			ĮΫ́	_	Ė₽"	areas					
		1		*0	'	12 -	臣					Water airlifted	12-
		1			'		Ē						
		1			'	'	Ê#					could be existing	
					']	臣	Dark grey LIMESTONE	Dark grey LIMESTONE with some wet brown mud				
		1			'	14 _	Ē						14_
		1			']	Ē#						
					'	_	臣						_]
		1			'		臣	Drilling stopped overnigh	to allow arc	out in the annulu	s to	Drilled at	
					'	10 -	É#	harden. Drilling recomm	enced next m	norning.	0.0	140mm diameter below 16m	16
·•/		l			'	_	臣						
it; it;		1			'	!	臣	Dry light grey weathered	1 LIMESTON	NE. (Colour ack to light grev	again)		
el, et		l		*0	'		É#			doix to light give,	agani,	Hard rock, not much returns	
		l		٦U	'	- 10	臣						
889					']	臣]]
	၀ို၀ို၀ို				'	_	E#						_]
<u>600</u>						20 -	臣						20
	LOC	ATION	/ NC)TES:				LEGEND		BOREH	OLE	LOG	
Loc	cated 3m to	the eas	st of	MW4S		ļ		Disturbed Sample	Job Title	Phase II Gro	undwa	ter Investigation	
PIC) readings r	epreser	nt ma	onitoring	J	-		Undisturbed Sample	Location	SHANN	ION, C	O CLARE	
insi wei	de borehoie re changed.	 cavity Contir 	whe านal	air mon	g roa itorin	is Ia	+	Headspace Analysis	Client SH	ANNON ENVI	RONN		CES
by	PID was car	rried ou	t and	d did no	t rise	;		Groundwater Table			DC	Dames & Moore	3
abo	ve 0 ppm.					ļ		Perched Water Table	Ref.	`	Dame	7 Anglesed Terro Cork	ice
Wet mud noted at 11.5m				Ť		Date AUGU	JST 2001	O'Brier Thorbi	n Kreitzberg urn Colguhoun www.urscore	431 9193			

											/		
Z	Ē	1	air	ËR			BOREHOLE NUMBER	₹: MW 4D		PAGE	- 2 of 2		ļ
OLE CTIC	NAS		ا تو ا	WAT	(<u>)</u>	ğ[DRILLING DATES: 31 July	& 1 August 01	DRILLING ME	THOD:	AIR ROT	ARY	
H H H H H H H H H H H H H H H H H H H	L K	, T.,,	∋adir (ppn	Ĩ	Ë		DRILLER: Glovers Site In	vestigation	BOREHOLE [DIAMETEF	₹: 15	0mm	
NS.	IMBI	JPF	DR	ß	B	3	LOGGED BY: Antonia	Newlands	SCREEN TYP	'E & DIAM	ieter: pv	C + 50r	nm
ŭ	۲ ۲			σ	<u> </u>	Ш	CHECKED BY:]	SCREEN SLC)T SIZE:	1mm		-
	<u> </u>					_	DE	SCRIPTION	1			ENTS	20
	1				207	Ħ	Soft dry light grey LIME	STONE					20-
	1				_	国	1				Brown m water	uddy	_
	4			Ţ		国	1					1	
	4				22 -	国	1					1	22-
					_	剧	1					1	_
	1					国	1					1	
	1		*0		24-	国	1					1	24_
<u>````</u> _```	1					国	1					1	
0_0_4 Para	1												
	1				26 _		Borehole terminated at 2	25m				1	26
	1						1					1	_
	1				_	11	1					1	_
	1						1					1	
	1				28_		1					1	28_
	1				_' 		1					1	_ +
	1					1	l					1	
	1				30 _		1					1	30 _
	1						1					1	
	1						1					1	
	1				 		1					1	32_
	1						1					1	
	1				_		1					1	
	1					1	l					1	
	1				³⁴		1					1	34_
	1				لـ 	11	1					1	
	1				 -		1					1	
	1				36 -		1					1	36-
	1					11	1					1	
	1					4	1					1	-
	1				38-	4	l					1	38-
	1					11	1					1	-
1	1				_	11	l					1	_
	1					1	l					1	10
					40 -	┢━┛			TOPET		- 20		40
	AHUN	<u>/ NU</u>	<u>)152</u>		1				BUKER	IOLE	LOG		
Water indres	-ing at	01 F	durin	~ dri	"ind		Undisturbed Sample	Job Title	Phase II Gr	oundwat	ter Investi	gation	
Water ingress	ing at a	21.5	m aurini	gam	ling	*	Headspace Analysis	Location	SHAN	NON, CO	O CLAR	E	
At 24m, PID *	0 but l	_EL [°]	*2		I	†	Down Borehole Analysis	Client SH	IANNON ENV	VIRONM	IENTAL S	SERVI(CES
					I	Į ₹	Groundwater Table	TI App'd	T	RS	P	James & Moore Anglesea House 7 Anglesea Terr	e e e e e
1					1	Į¥	Perched Water Table	Rer. Date <u>AUGU</u>	JST 200 <u>1</u>	Dame: O'Brie	s & Moore In Kreitzberg	Cork reland Tel: + 353 (0) 2	1 431 9193
					,	1	,	Job No. 49807	2-001	Thorbu	urn Colquhoun	·0X: + 353 (U) ∠ www.uiscorp.cc	יצוע 1431 ידי. סייט מייט מייט

			1	T										·
z			l air	ËR I			BOREHOLE NUMBER	: MW 6		PA	AGE	1 of 1		
			g (M	Ξ	ğ	DRILLING DATES: 31 July	y 01	DRILLING N	IETHOD): A	IR ROTA	RY	
	<u> </u>	, T	ppr	NO Z	Ë	Ы	DRILLER: Glovers Site Inv	vestigation	BOREHOLE	DIAME	TER:	150	mm	
NS ¹	MBE	۲Ľ	Land	١ <u>گ</u>	B	Ъ	LOGGED BY: Antonia N	Vewlands	SCREEN TY	/PE & DI	IAMET	ER: PVC	; + 50n	nm
-8	Ī	–۱	E	б			CHECKED BY:		SCREEN SL	OT SIZI	E:	1mm		
							DE	SCRIPTION	1			COMME	NTS	
\bigotimes		Ι			0 _	\boxtimes	MADE GROUND of con	crete						0 -
						\bigotimes			1 Pol C		_			_=
					=	\bigotimes	coarse grained gravel of	brown ciay a mixed litholo	and a little fine	e to				=
ite i					2 _	X					_			2 -
	1				=									
	1				_		Brown CLAY with much fi of mixed lithology	ine to coarse	e grained grav	vel				_
					4 -									4 _
			*0		=									3
	1						sand.	ONE and a li	ittle coarse g	rained				
			*0		6 -									6 -
					=		Light grev LIMESTONE	with a little fi	rm drv red					=
				Ţ			brown clay							
					=									=
					8 _		Light grey LIMESTONE colour)	(sometimes	dark grey in					8 _
000 18 × - 000					=		,							1
					-									-
888- <i>8</i> -688			10 -		Colour changes to blue	arev limesto	ne and back	to				10 -		
					=		light grey	grey intestor		10				
							Colour changes to light h	arown and b	ack to light g					_=
					=		Colour changes to light t		ack to light gi	Cy				=
			*0		12 _									12-
					=		Borehole terminated at 1	2m						=
					_									-
					¹⁴ –									14_
					=									=
					16 -									16-
					=									=
														_
														=
					18_									18
					20 =									20
LOC	ATION	/ NC	DTES:	8			<u>LEGEND</u>		BORE	HOL	EL	OG		
Located to the	e west o	f the	export	area			Disturbed Sample	Job Title	Phase II G	Fround	water	· Investig	ation	
PID readings	represe	ent m	nonitorin	g			Undisturbed Sample	Location	SHA	NNON.	, CO	CLARE		
inside boreho	le cavity	/ wh	en drillir	ng ro	ds	* +	neadspace Analysis	Client SH	ANNON FN	IVIRO	NMF	NTAL S	ERVI	CES
by PID was c	arried o	ut ar	nd alway	ntorii /S	ng	🚽	Groundwater Table	TI App'd				Da	mes & Moore	
read 0 ppm.						🛓	Perched Water Table	Ref.			ames &	7 A Co Moore	Inglesea Terro Inglesea Terro Inglesea Terro	ice
Chalky water at 7m after well left to settle for 1 hour after installation.			Ì		Date AUGU	IST 2001	O	Brien Kn	eitzberg Tel:	+ 353 (0) 21 c + 353 (0) 2	1 431 9193 21 431 9197 2m			

	T			—						1		
Z		SAMPLE		ЧШ			BOREHOLE NUMBER	R: MW 7		PAGE	- 1 of 1	
H H H H H H H H H H H H H H H H H H H				ÅT	Ē	∑	DRILLING DATES: 31 Ju	lv 01	DRII LING MET	HOD;	AIR ROTARY	
H) T	n di	₫	臣	121	DRILLING METHOD. AIR ROTART					
ISTI ISTI		ШШ	Rea C	5	山	[읎]		Newlanda				~~~
CON PID - GRC			N N N			CHECKED BV: Antonia Newlands SCREEN TIPE & DIA		CI7E.	1mm			
			Ľ	\vdash	\Box		JILL.					
	\downarrow						DE	ESCRIPTION	1		COMMENTS	
						\bigotimes	MADE GROUND of concrete					
	ł					\bowtie	MADE GROUND of dark grey medium to coarse grained subangular gravel				1	
	1]	Ē]
K/X K//	1				2 _	E==						2
	1]	Ē						
K/A K//	1			Dry soft to firm brown CLAY and much fine to medium				m				
					1	====	graineu gravei.]		
e/	1				43	E==1						
ite interest											Ţ]]
	1				_]		Light grev LIMESTONE					EI
	1				1					1		
	1				6 -				6 -			
K/X			*0		1							1
	1				_]							
K/A K//	1				1							
	1				8 _	╞╤╤┫						
	1											
	9											
600 600	d				_]							
831 <u>83</u> 3	Very soft, pale gr											
liùi iiii							Very soft, pale grey white LIMESTONE					10 -
88 <u>1</u> 88												
လိုင်္ခါ မြင့်သို့												
	9]							
000- <u>-</u> 600									12_			
<u>Cotte too</u>	9				1	<u></u> <u> </u> <u> </u>						
ĕŏġ⊢ŏ-Ĕŏŏ	4				-]							
Kõ <u>t</u> iõõ	<u>d</u>				1	₽÷‡						
800 - F00								14_				
					Ì	₽÷₽						
									-			
]		Ŭ]	1	Borehole terminated at 15m				=	
					16 -							16-
]]
					E							<u> </u>
					1							=
					18							18
					1							_
					_1							
					20 🗆							20 -
LOCATION / NOTES:							LEGEND		BOREHOLE LOG			
Located to the	ne north	east	of the			lп	Disturbed Sample	lob Title	bo Title Phase II Croundwater Investigation			
quarantine area.							Undisturbed Sample		Fllase II GIV	unuwa	ler mvesugauon	
PID readings represent monitoring inside borehole cavity when drilling rods						*	Headspace Analysis	Location	SHANN	ON, C	O CLARE	
were changed. Continual air monitoring						†	Down Borehole Analysis	Client SH	ANNON ENVI	RONM	IENTAL SERVI	CES
by PID was carried out and always							Groundwater Table	TI App'd		RS	Dames & Moor Anglesea Hous	re je
No water detected during drilling or						∇	Perched Water Table	Ref.		Dame	7 Anglesea Ten Cork Ireland	/ace
installation.								Date AUGU	IST 2001	O'Brier	n Kreitzberg urn Colguboun Fax: + 353 (0) 2 Fax: + 353 (0) 2	1 431 9193 21 431 9197

z		SAMPLE		air	Ř		Ğ	BOREHOLE NUMBER: MW 8 PAG			GF 1 of ^r	1		
CTIC H				ig in	VATI	Ê		DRILLING DATES: 31 Jul	ly 01	DRILLING M	IETHOD:	AIR RO	TARY	
			adin ppm	NDN N	PTH	or or	DRILLER: Glovers Site Investigation BOREHOLE DIAMET			ER: 150mm				
BOR CONST NUMBE PID Re ((()			No l	DE	В	LOGGED BY: Antonia	Newlands	SCREEN TY	'PE & DIA	METER: P	VC + 50m	าฑ		
				CHECKED BY:		SCREEN SL	OT SIZE:	1mm						
				-				DE	SCRIPTION	l		COM	MENTS	
iter 0.0000000 ide 0.00000 ide 0.00000 Pellets				*0	▼	0 2 4 6 10 11 12		DE MADE GROUND of cor MADE GROUND of sub and a little soft to firm sl Colour changes to brow dry brown clay can be Light blue/ grey chalky L Colour changes to dark Small pocket of dry firm Light grey LIMESTONE	ESCRIPTION Increte angular coar ightly damp of which then back seen in the back seen in the ro- IMESTONE grey then back light brown C	se grained gr grey brown cl to light blue to blue grey eturn ck to light blu CLAY	avel ay grey (alittle e grey		<u>AENTS</u>	0 - 2 - 4 - 6 - - 10 - 12 -
					Colour changes to brown then back to light grey Slightly damp light brown grey weathered LIMESTONE. Borehole terminated at 16.5 m. Well installed to 16m depth						14_ 16			
						18 20								18
LOCATION / NOTES:							LEGEND		BOREHOLE LOG					
								Disturbed Sample	Job Title	Phase II Groundwater Investigation				
PID readings represent monitoring								Undisturbed Sample	Location	SHANNON CO CLARE				
inside borehole cavity when drilling rods						ls	*	Headspace Analysis		ANNON ENVIDONMENTAL SEDVICE			CES	
by PID was carried out and always					ıg	🕹	Groundwater Table	TI App'd				Dames & Moore	- LO	
read 0 ppm.							₹	Perched Water Table	Ref.			mes & Moore	7 Anglesea House 7 Anglesea Terrac Cork	ice
At 14:10 water level = 7.82m after drilling At 15:30 water level = 3.7m after drilling						ing a	÷		Date		O'B	rien Kreitzberg	Tel: + 353 (0) 21 4 Fax: + 353 (0) 21	431 9193
						5	1		JOD INO.				www.uiscorp.com	
	_	Ш	l	L	~									
---	------------------------------------	----------	--------	-----------------------	-------------	----------	--------------	--------------------------	------------------	----------------	--------------	-----------------------------	--------------------------------------	-------------------
ш		IdM		n n	臣		_	BOREHOLE NUMBEI	R: MW 9		PAG	E 1 of 2		
ģ		SAI	; ;	j j j j j	NA N	L E	ю Ю	DRILLING DATES: 1 Aug	just 01	DRILLING M	ETHOD:	AIR ROT	ARY	
	TRU	ER		ead (ppi	Ę	E E		DRILLER: Glovers Site Ir	vestigation	BOREHOLE	DIAMETE	R: 20)0 mm	
BO	SNO	MB	ΥPI	N N N	N N N	B	ច	LOGGED BY: Antonia	Newlands	SCREEN TY	PE & DIA	METER: P\	/C + 100)mm
	00	NN		E	Ū			CHECKED BY:		SCREEN SL	OT SIZE:	1mm		
								D	ESCRIPTION	1		COMM	IENTS	
\bigotimes	\otimes					0 =	\bigotimes	MADE GROUND of cor	ncrete					0 -
							\bigotimes		urse grained a	subangular gr	avel	-		
						=				sabangalar gi				
						2 _		Brown CLAY with some	e fine to coars	se grained gra	avel of			2 –
\mathbb{N}						=		mixed lithology						
V/A						_		\				-		
						=								
				*0		4 -		Light grey LIMESTONE						4
VA						=								
\mathbb{N}														
Jite						6 -								6 -
						=								
۲ä´ä														
				*0		8 _								8 _
						=								
$V \land$						_								
						-								
						10 _								10_
\mathbb{N}				*0		=								
V/λ														
				*0		12 -		Dark grev LIMESTONE a	and a little lig	ht brown clav				12-
									ind a nuie ng.					
¦õõj₌														
						=								
i de la compañía de la compa						14 _								14_
89														
				*0										
Filte	_ရွှ_ြ်လိုလ်				1	16 -								16-
is and the second se					1	_								
₿õ‡					1	_ =								
					1	_								
Kõ -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			*0	1	18_								18
Kõ,					1	_								
88) 1						20 -								20
0.0.1	1.00									DODE				20
PIC	readings (represe	nt m	ionitorin	g			Disturbed Sample						
insi we	ide borehol	e cavity	/ who	en drillir air mor	ng ro	ds na		Undisturbed Sample		Phase II G	roundwa	ater Invest	igation	
by	PID was ca	arried o	ut an	nd alway	/S	.9	*	Headspace Analysis	Location	SHA	NNON, (CO CLAR	<u>Е</u>	
rea	u u ppm.	otod d.	urine	drilling	or		†	Down Borehole Analysis	Client SH	ANNON EN	VIRON	MENTAL	SERVI	CES
inst	tallation.	ciea al	uing	uniing	Uľ		Ţ	Groundwater Table	TI App'd Rof	I	URS		Anglesea House 7 Anglesea Terro	;) JCe
							ĮŸ	Perched Water Table	Date AUGU	UST 2001	Dam O'Bri	es & Moore en Kreitzberg	сотк Ireland Tel: + 353 (0) 21	1 431 9193
									Job No. 49802	2-001	Thor	burn Colquhoun	+ax: + 353 (0) 2 www.urscorp.co	:i 431 9197 xm

OLE	AMPLE		g in air	ATER	(m)	GY	BOREHOLE NUMBER	: MW 9			2 of 2	2 TARY	
	2 2 2		b m m m	₽ 2	Ę	2	DRILLENCE BATES: Hitege	vestigation	BORFHOLF		<u></u> 2	00mm	
IS N		ЦЦ	Res	٦ ٥	Ш	ы	LOGGED BY: Antonia N	Vewlands	SCREEN TY	PE & DIAN	" IETER: P	VC + 50r	nm
^m ő	≧	≿	E E	S R	_		CHECKED BY:	tomanao	SCREEN SI	OT SIZE:	1mm	10100	
	~					Ч	DE	SCRIPTION					
			<u> </u>		20_		DL						20_
					 22		Dark grey LIMESTONE a	a little lig	ht brown cla	у			22_
							Borehole terminated at 2	22m					=
					_								_
					-								=
					24								24
													=
					-								-
					26 -								26 -
					=								-
													_
					=								-
					28 _								28_
													_
					30 _								30 _
					=								=
					-								
					32 -								32_
					=								=
					_								_
					=								=
					34 _								34_
				1	36 -								36-
				1									
				1									_
				1	-								-
				1	38_								38_
					_								_
					40 =								40 -
LOC	ATION /	/ NC	TES:				LEGEND		BORE	HOLE	LOG		
							Disturbed Sample	Job Title	Phase II G	Froundwa	ter Inves	tigation	
						*	Undisturbed Sample Headspace Analysis	Location	SHA	NNON, C	O CLAH	RE	
						+	Down Borehole Analysis	Client SH	ANNON EN	VIRONN	IENTAL	SERVI	CES
						¥	Groundwater Table	TI App'd		URS		Dames & Moore Anglesea House	e e
						I ⊈	Perched Water Table	Ref.	ST 2001	Dame	s & Moore	/ Anglesea Terra Cork Ireland	
								Date AUGU Job No. 49802	-001	O'Brie Thorb	n Kreitzberg urn Colquhour	Iel: + 353 (0) 2 Fax: + 353 (0) 2 www.urscorp.co	1 431 9193 1 431 9197 m

OLE			g in air)	VATER	(m)	Ğ	BOREHOLE NUMBE	R: MW 10	DRILLING ME	PAGI	E 1 of 1 AIR ROT	ARY	
EHG RUO	2) 	adin pm)	ND ND	ΗT	2	DRILLER: Glovers Site Ir	vestigation	BOREHOLE I	DIAMETE	R: 20)0mm	
BOR NST	MBE	YPE		l 00	DEI	Ш Ш	LOGGED BY: Antonia	Newlands	SCREEN TYP	PE & DIAN	IETER: PV	/C + 100)mm
-0	N		PI	ß			CHECKED BY:		SCREEN SLO	ot size:	1 mm		
							D	ESCRIPTION	J		COMM	ENTS	
	4				0 -	\boxtimes	MADE GROUND of co	ncrete					0 -
							MADE GROUND of co	arse grained	subangular gr	avel			
					2 _		Brown CLAY with a litt subangular gravel	e fine to coa	rse grained		1		2 _
							Dark grey LIMESTON	Ξ					
ntonite lets					4 -		Soft white LIMESTON	Ξ					4 -
Bei							Harder white grey LIME	STONE					
			*0					-					
					8		Soft white LIMESTONE	=					8
					10 _		Grey hard LIMESTON	E					 10
							·						
			*0		- 12 -								12_
Cooler Cooler Cooler							Light brown white LIN	ESTONE					
					14 <u>-</u>								 14
					16 <u>-</u>		Colour changes to ligh	t grey then b	ack to light bro	own			16-
							Colour changes to dar	k grey					
	1		*0		18_		Borehole terminated at a	18 m					18
					20 _								20 -
	ATION	<u>/ NC</u>	<u>) TES:</u>				LEGEND		BOREH	IOLE	LOG		
PID readings inside boreho	represe le cavit	ent m y wh	ionitorin en drillir	g ng ro	ds		Disturbed Sample	Job Title	Phase II G	oundwa	ter Invest	igation	
were change	d. Cont	inual ut ar	air mor	nitorii vs	ng	*	Undisturbed Sample	Location	SHAN	NON, C	O CLAR	E	
read 0 ppm.		acui	arway	2		+	Down Borehole Analysis	Client SH	ANNON EN	VIRONN	IENTAL	SERVI	CES
No water det	ected du	uring	drilling	or			Groundwater Table	TI App'd		JRS		Dames & Moore Anglesea House 7 Anglesea Torr	e e oce
						ĮΫ	Perched Water Table	Ref. Date AUGU	JST 2001	Dame	es & Moore	Cork Ireland Tel: + 353 (0) 21	431 9193
								Job No. 49802	2-001	Thorb	urn Colquhoun	Fax: + 353 (0) 2 www.urscorp.co	1 431 9197 m

	T		ī	1								
Z			air	ER			BOREHOLE NUMBER	R: MW 11		PAGE	1 of 1	
UCTICE CTICE	MA MA		g in	VAT	(E)	ğ	DRILLING DATES: 1st D	ecember 01	DRILLING MET	HOD:	AIR ROTARY	
HE HOUR	<u>د</u>	T	adin	NDV	ЧЦ	5	DRILLER: Hilliard Ltd		BOREHOLE D	AMETER	R : 200 + 150m	m
NST	ABE	۲L		ION I	DEI	Ш	LOGGED BY: Edel O'H	lannelly	SCREEN TYPE	E & DIAM	ETER: HDPE 50 r	nm
ΞÖ	D Z	٦Ì		В В			CHECKED BY:		SCREEN SLO	SIZE:	1.5 mm & SOC	ĸ
							DI	SCRIPTION			COMMENTS	
\otimes					0 -	\otimes	MADE GROUND of tar	mac.				0 -
			*0				MADE GROUND of brow pale grey gravel.	vn/grey sand a	and gravel fill be	ecoming	Dry to damp.	
			0		2 –		Light brown very gravelly at 1m.	y silt and clay	. Limestone bo	oulder		2 _
							Hard LIMESTONE bedro return. At 3 m some fine	ock creamy/gi er black mater	rey chippings a rial.	nd dust	Wet.	
te			*0		4 –		Pale and dark grey, alm Some rusty bands visible	ost black, fine in rock chipp	ely crystalline lir pings.	nestone	H₂S odour at 3.5m	4 -
entoni			†o				Yellow, grey/brown limes	tone.				
					6 _		At 5.6 m colour changes lighter creamy grey/brow	to grey/dark I n by 5.8 m.	blue, returning	o a		6_
							Dark grey limestone.				Slight H.S	
					8 _		Pale grey limestone.				odour	8 -
633 633					-		Dark grey limestone.				No H ₂ S odour	-
							Creamy grey limestone v	vith a slight or	range hue.			
							Becomes dark grey at 9.3	3 m, possible	cavity - drill sto	pped		
					10 _		momentarily, returns to c	reamey grey	colour at 3.4 m	•		10 _
							Dand of dark grav limest	ono ot 11 6 m				
			*0		12		Band of dark grey innest	one at 11.0 h	1.			12
			0									12-
							Borehole completed at 1	3 m.				
					14 _							14_
					-							
					16 -							16-
					18_							18_
					20							20
LOC	ATION	/ NC	TES:	•			LEGEND		BOREH	OLE	LOG	
PID readings inside boreho	represe le cavity	nt m / who	onitorin en drillir	g ig ro	ds		Disturbed Sample	Job Title	Phase II Gro	oundwat	er Investigation	
were changed	d. Conti	nual	air mor		ng	- -	Undisturbed Sample	Location	SHAN	NON, C	O CLARE	
above 0 ppm.		ui ai		119		+	Down Borehole Analysis	Client SH	ANNON ENV	IRONM	IENTAL SERVI	CES
Air lifted and	surged	or 3	0 mins p	orior	to		Groundwater Table	TI App'd		RS	Dames & Moore Anglesea House	
installation.						ĮŢ	Perched Water Table	Ref.		Dame	7 Anglesea Terro Cork Iretand	ace
								Date DECEN Job No. 49802	VIBER 2001	O'Brier Thorbu	rn Colquhoun Kreitzberg Tel: + 353 (0) 21 Fax: + 353 (0) 2 www.urscorp.co	1 431 9193 1 431 9197 m

_	<u>ل</u> ان	1	L	~								l
шĘ			in ai	臣	<u>ि</u>	_	BOREHOLE NUMBEI	R: MW 12		PAG	E 1 of 1	
L L L	N N	5	ing E	NA N	E T	ю Ю	DRILLING DATES: 1st +	2nd Dec '01	DRILLING MET	HOD:	AIR ROTARY	
TRL TRL	L H		ead (ppr	Z	E		DRILLER: Hilliard Lt	id.	BOREHOLE D	AMETE	R: 200 + 150m	nm
NS NS	BB	ΥΡ	N N N	N N N	ä	ច	LOGGED BY: Edel O'H	lannelly	SCREEN TYPE	E & DIAN	IETER: HDPE 50n	nm
8	N Z		đ	Ū			CHECKED BY:		SCREEN SLO	SIZE:	1.5 mm & SOC	К
							DI	ESCRIPTION	I		COMMENTS	
\boxtimes \boxtimes					0 =	\bigotimes	Tarmac on grey/brown s	and and grav	el FILL.			0 =
							Orange brown boulder o	lay, a lot of s	mall and mediu	m	Damp, no	
]						sub-angular gravel, SIL	I and CLAY w	with some sand.		odour	
			*0		2 _		BEDROCK, white/grey, Pale grey limestone at 2	limestone chi m, slightly ve	ppings and dus	t. ·.	Dry	2 –
					=	Ħ						=
VA $V/$												
	1						Vellow/arev/beige limest	one				
lite					4 _		renow/grey/beige innest	one.			vvet.	4 -
					=	臣	Grey returns.				No sheen, no	
											odour.	
			*0		6 -	臣	0 6 11 1 6 1					6 -
					=	H	Some fine black particles	s in the return	is at 6 m.		odour.	=
						臣	Paler grey returns altern	ating with dar	ker arev return	2 00		
	1				=		more black particles.	ang war da	Kei grey return.	5, 110		
					8 _		Creamy grey returns.					8 _
					=							
666 666					10 =	日						
							No returns twice between	10 and 11 m	n, possible cavit	ies.		
					=	臣						=
			*0		12	臣						12
			Ŭ			Ħ						'
<u> 2020 - 1222</u>						臣						
					=		Borehole completed at	13 m.				
					14 _							14_
					-							
					16 -							16-
					18_							18
					-							
					20 -							20
1.00					20 _			1	DODEU			20
PID readings	represe	nt m	ionitorin	a		_	LEGENU Disturbed Samela		BOKEH	ULE	LUG	
inside boreho	le cavity	/ wh	en drillir	ig ro	ds		Undisturbed Sample	Job Title	Phase II Gro	oundwa	ter Investigation	
by PID was ca	arried o	ut ar	nd did no	ntorii ot ris	e e	*	Headspace Analysis	Location	SHANN	ION, C	O CLARE	
above 0 ppm.						†	Down Borehole Analysis	Client SH	ANNON ENV	IRONN	IENTAL SERVI	CES
Air lifted and s	surged	for 3	0 mins p	orior	to	₹	Groundwater Table	TI App'd	Ū	RS	Dames & Moor Anglesea House 7 Anglesea Tor	e e
installation.						¥	Perched Water Table	Ref.	MBER 2001	Dame	s & Moore Ireland	1 431 0102
								Job No. 49802	2-001	Thorb	urn Colquhoun	21 431 9197 om

	لبلبار		Ι.									
Z			air	L H			BOREHOLE NUMBEI	R: MW 13		PAGI	E 1 of 1	
CTE	MAN		ja i	¥	Ш.	ğ	DRILLING DATES: 2nd +	3rd Dec '01	DRILLING ME	THOD:	AIR ROTARY	
EHO NO	<u> </u>		ppr	1 2 2	H	الح الح	DRILLER: Hilliard Lt	:d.	BOREHOLE D	IAMETEI	R: 200 + 145m	m
NST NST	1BE	ЦЦ	Re	۱ <u>۵</u>	DEF	ы	LOGGED BY: Edel O'H	lannellv	SCREEN TYP	E & DIAN	METER: HDPE 50m	nm
BOS		٦Ì		В В			CHECKED BY:		SCREEN SLO	T SIZE:	1.5 mm & SOC	K
	~						וס	SCRIPTION	1			
					0 -	\propto	Tarmac on vellow/orang		- al FILL with sor	no clav		0 -
						$\sum_{i=1}^{n}$	Brown CLAY with a little	fine to coore		ne ciay.		
						!	subangular gravel		e grameu		Damp no odour.	
							Bedrock pale grev LIME	STONE chin	ninas		Dry	
					2 _		Bearbork, pare grey Livit		pings			2 _
							Returns become slightly	darker grey a	at 2.8 m.			
							Yellow grey returns at 3	m.				
							Reverts to dark grey, wit	h less dust a	t 3.4 m.			
s lite					4 -						Wet at 4 m.	4 -
					=							=
m d												
					6 -		Creamy/grey/beige return	ns, not so ma	iny colour chan	ges as		6 -
			*0				in MW11 and Mw12.					
					=						Returns are only	=
					8 _						damp below 6 m	8 -
(;;;;;)- <u>ş</u> -0000					10 _							10 _
					=							=
			*0		12 _							12_
					<u> </u>		Borebole completed at 1	3 m				<u> </u>
							Dorenoie completed at it					
					''-							'4_
					=							
					16 -							16-
					18_							18
					20 _			1				20
LOC.	ATION	/ NC	DTES:	~			LEGEND		BOREH	OLE	LOG	
inside borehol	e cavity	who	en drillir	y ig ro	ds		Disturbed Sample	Job Title	Phase II Gr	oundwa	ter Investigation	
were changed by PID was ca	. Conti arried ou	nual ut an	∣air mor nd alwav	nitoriı 's	ng	*	Headspace Analysis	Location	SHAN	NON, C	O CLARE	
read 0 ppm.				-		+	Down Borehole Analysis	Client SH	ANNON ENV	IRONN	IENTAL SERVI	CES
Air lifted and s	surged f	or 3	0 mins p	orior	to		Groundwater Table	TI App'd	T	RS	Dames & Moore Anglesea House	- •
installation.	-					$ \overline{\nabla}$	Perched Water Table	Ref.		Dame	7 Anglesea Terro Cork Ireland	ace
								Date DECE	MBER 2001	O'Brie Thorb	rn Kreitzberg urn Colquhoun Www.urscorp.co	1 431 9193 1 431 9197 m
								100 NU. 470U2	-001	ALC: NO.	www.uiscoip.co	

APPENDIX B PH AND EC TREND DATA

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	7.27	6.90	7.06	6.11	7.49	7.40	7.11	7.09	6.73	8.01	7.74	7.63	7.30	7.24	7.27	7.79	7.51	6.55	7.33	7.17	7.20	7.26	7.87	7.21	7.47
MW4S	7.06	7.61	7.47	6.21	7.33	7.30	7.07	6.30	5.76	6.60	6.92	7.46	6.80	6.53	7.97	7.90	6.80	6.94	7.00	7.36	6.66	7.04	7.84	7.46	7.03
MW5	7.29	6.79	7.28	6.55	7.61	7.70	7.20	7.20	7.25	7.80	7.01	7.34	7.60	7.22	6.94	7.50	7.91	6.81	7.24	7.41	7.80	7.23	7.70	7.05	6.78
P.W	7.63	ns	ns	ns	ns	ns	ns	7.30	ns	ns	7.85	ns	ns	ns	7.73	ns	7.73	ns	7.33	ns	ns	ns	7.85	ns	ns

Notes: ns: Indicates well not sampled na: Indicates sample not analysed P.W: Production Well

GTV: None Draft IGV: >6.5 and <9.5 Underline indicates results above IGV

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Mar-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	1,044	1,117	1,037	1,141	1,123	963	983	866	711	990	590	846	520	675	1,214	2,510	926	1,271	950	1,120	969	1,383	1,006	1,091	1,042
MW4S	4,019	5,524	4,560	4,000	4,806	4,704	nm	>4000	>4000	875	4,580	3,338	7,210	4,882	2,075	3,928	3,382	6,455	2,400	3,333	3,136	5,916	3,357	2,870	3,102
MW5	891	926	1,094	599	677	878	928	960	715	990	775	1,114	710	998	967	1,970	590	706	708	681	587	992	932	888	993
P.W	762	ns	ns	ns	ns	ns	ns	697	ns	ns	514	ns	ns	ns	714	ns	ns	ns	1.100	ns	ns	ns	785	ns	ns

Notes: ns: Indicates well not sampled na: Indicates sample not analysed nm: Indicates not measured accurately P.W: Production Well

GTV: 800 - 1,875 μS/cm Draft IGV: 1,000 μS/cm

Bold Indicates results above GTV Underline Indicates results above Draft IGV

J:\Cork-Jobs\Enva Ireland Ltd\47092526 Enva Shannon GW Mon 2013\Technical\Technical Amendment\Report Attachments\

APPENDIX C MAJOR IONS TREND DATA

				rug 2012	Way-2012	Feb-2012	NOV-2011	Aug-2011	May-2011	Feb-2011	Nov-2010	Aug-2010	May-2010	Feb-2010	Dec-2009	Sep-2009	Jun-2009	Apr-2009	Nov-2008	Aug-2008	Jun-2008	Apr-2008	Average	Well
81 68	58	96	110	127	106	102	110	127	93	47	46	54	71	75	38	47	na	68	53	35	41	40	74	MW3
590 52	494	662	907	638	573	924	907	638	326	425	456	666	847	933	828	1,140	na	870	764	636	730	718	704	MW4S
46 59	35	47	39	28	28	35	39	28	28	35	30	25	30	27	21	25	na	24	16	17	22	21	31	MW5
ns ns	na	ns	ns	ns	na	ns	na	ns	36	ns	ns	ns	na	ns	ns	na	ns	ns	ns	ns	ns	ns	36	P.W
	35 na	47 ns	39 ns	28 ns	28 na	35 ns	39 na	28 ns	28 36	35 ns	30 ns	25 ns	30 na	27 ns	21 ns	25 na	na ns	24 ns	16 ns	17 ns	22 ns	21 ns	31 36	MW5 P.W

Notes:	GTV:	150 mg/L	Bold Indicates results above GTV
ns: Indicates well not sampled	Draft IGV:	150 mg/L	Underline Indicates results above Draft IGV
na: Indicates sample not analysed	DWS:	200 mg/L	

Prepared by: FO'R Checked by: EO'H

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	<u>106</u>	<u>85</u>	<u>86</u>	<u>71</u>	<u>84</u>	<u>80</u>	na	<u>73</u>	<u>66</u>	123	<u>102</u>	80	<u>72</u>	<u>94</u>	<u>165</u>	<u>189</u>	<u>132</u>	<u>166</u>	<u>116</u>	<u>160</u>	132	<u>110</u>	<u>76</u>	109	<u>65</u>
MW4S	1,167	1,040	721	1,330	1,090	1,000	na	2,050	na	2,941	1,642	814	2,615	1,322	461	510	1,162	1,639	465	1,209	1,162	1,146	454	419	474
MW5	68	30	33	22	28	38	na	44	46	76	97	90	97	120	100	95	75	52	84	41	75	72	77	81	92
P.W	<u>40</u>	ns	ns	ns	ns	ns	ns	42	ns	ns	39	ns	ns	ns	36	ns	ns	ns	<u>42</u>	ns	ns	ns	41	ns	ns

ns: Indicates well not sampled na: Indicates sample not analysed GTV: 24 - 187.5 mg/L Draft IGV: 30 mg/L DWS: 250 mg/L Bold Indicates results above GTV Underline Indicates results above Draft IGV

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	156	150	149	150	173	165	na	154	160	156	16	134	192	139	141	221	208	209	180	185	208	182	126	99	96
MW4S	599	396	574	495	450	702	na	921	712	671	581	460	382	255	203	629	969	1016	670	495	969	535	583	556	543
MW5	137	190	323	55	66	253	na	270	215	218	184	201	144	171	87	111	62	55	88	64	62	63	89	86	89
P.W	82	ns	ns	ns	ns	ns	ns	84		ns	77	ns	ns	ns	72	ns	na	ns	89	ns	ns	ns	90	ns	ns

Notes: ns: Indicates well not sampled na: Indicates sample not analysed

GTV: Draft IGV: DWS: 187.5 mg/L 200 mg/L 250 mg/L Bold Indicates results above GTV Underline Indicates results above Draft IGV

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	10.93	na	na	na	na	30	na	3	na	-															
MW4S	0.26	na	na	na	na	-	na	-	na	na	-	na	na	na	-	na	na	na	0.3	na	na	na	1	na	-
MW5	3.97	na	na	na	na	-	na	3	na	9															
P.W	0.56	ns	ns	ns	ns	ns	ns	-	ns	ns	-	ns	ns	ns	-	ns	ns	ns	1.5	ns	ns	ns	1	ns	ns

Notes: Notes: ns: Indicates well not sampled na: Indicates sample not analysed -: indicates result is <method detection limit

Bold Indicates results above GTV Underline Indicates results above Draft IGV

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 0.2 mg/L

GTV: Draft IGV: DWS:

37.5 mg/L 25 mg/L 50 mg/L

Monitorin Well	g Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	0.27	-	-	-	-	-	na	-	<u>0.80</u>	0.22	<u>0.15</u>	-	<u>0.14</u>	0.05	<u>0.13</u>	0.22	0.22	0.23	<u>0.19</u>	<u>0.17</u>	<u>0.15</u>	0.12	0.28	<u>1.16</u>	1.96
MW4S	16.74	18.50	<u>9.95</u>	<u>25.10</u>	27.00	17.20	na	<u>29.70</u>	<u>3.60</u>	<u>0.14</u>	<u>31.31</u>	15.52	0.39	25.03	14.19	8.48	20.76	28.52	10.46	25.09	17.89	25.70	11.56	8.70	10.25
MW5	0.05	0.60	-	-	-	-	na	-	-	0.03	0.13	0.06	-	0.09	0.03	-	-	-	-	-	-	-	-	0.04	-
P.W	0.02	ns	ns	ns	ns	ns	ns	-	ns	ns	na	ns	ns	ns	na	ns	na	ns	na	ns	ns	ns	na	ns	ns

ns: Indicates well not sampled na: Indicates sample not analysed -: indicates result is <MDL
 GTV:
 0.065 - 0.175 mg/L
 Bold Indicates results above GTV

 Draft IGV:
 0.12 mg/L
 <u>Undertine</u> Indicates results above Draft IGV

 DWS:
 0.25 mg/L

Draft IGV given as mg/L NH₄, converted to equivalent mg/L N Drinking Water Standard for ammonium as NH₄ = 0.30 mg/L, this converts to an equivalent of 0.23 mg/L as N

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 0.03 mg/L

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	<u>1.34</u>	na	na	na	na	na	na	-	4	na	-														
MW4S	0.01	na	na	na	na	na	na	-	-	na	-	na	na	na	-	na	na	na	-	na	na	na	-	na	-
MW5	1.01	na	na	na	na	na	na	-	3	na	-														
P.W	0.01	ns	ns	ns	ns	ns	ns	-	ns	ns	-	ns	ns												

Notes: Notes:

ns: Indicates well not sampled na: Indicates sample not analysed

-: indicates result is <MDL

GTV: 0.375 mg/L Bold Indicates results above GTV Draft IGV: 0.1 mg/L Underline Indicates results above Draft IGV DWS: 0.5 mg/L

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 0.02 mg/L

Monitoring Well	Average	Aug-2008	Sep-2009	Aug-2010	Aug-2011	Aug-2012	Sep-2013
MW3	<u>0.015</u>	-	-	0.04	-	-	-
MW4S	0.010	-	-	-	-	-	-
MW5	<u>0.013</u>	-	-	0.03	-	-	-
P.W	-	ns	ns	ns	ns	ns	ns

ns: Indicates well not sampled

na: Indicates sample not analysed

GTV:	0.035 mg/L
Draft IGV:	0.01 mg/L

Bold Indicates results above GTV <u>Underline</u> Indicates results above IGV Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in September 2013, 0.06 mg/L PO₄ equivalent to 0.02 mg/L as P

IGV is given as 0.03 mg/L for orthophosphate as PO₄, which is equivalent to 0.01 mg/L of orthophosphate as P

Monitoring Well	Average	Aug-2008	Sep-2009	Aug-2010	Aug-2011	Aug-2012	Sep-2013
MW3	0.005	-	-	-	-	-	-
MW4S	0.005	-	-	-	-	-	-
MW5	0.005	-	-	-	-	-	-
P.W	-	ns	ns	ns	ns	ns	ns

ns: Indicates well not sampled

na: Indicates sample not analysed

GTV:	0.0375 mg/L
Draft IGV:	0.01 mg/L

Bold Indicates results above GTV <u>Underline</u> Indicates results above IGV

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in September 2013, 0.01 mg/L

APPENDIX D DISSOLVED HEAVY METALS TREND DATA

Monitoring Well	Average	Aug-2008	Sep-2009	Aug-2010	Aug-2011	Aug-2012	Sep-2013
MW3	2	1	-	-	-	-	8
MW4S	9	15	29	7	-	-	3
MW5	1	-	1	-	-	-	-
P.W	-	ns	ns	ns	ns	ns	ns

ns: Indicates well not sampled

na: Indicates sample not analysed

GTV:	7.5	μg/L
Draft IGV:	10	μg/L

Bold Indicates results above GTV <u>Underline</u> Indicates results above Draft IGV

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in September 2013, 2.5 μ g/L

Monitoring Well	Average	Aug-2008	Sep-2009	Aug-2010	Aug-2011	Aug-2012	Sep-2013
MW3	2.5	-	-	-	-	-	-
MW4S	3.4	-	8	-	-	-	-
MW5	2.5	-	-	-	-	-	-
P.W	-	ns	ns	ns	ns	ns	ns

ns:	Indicates well	not sample	ed	Bold	Indicates results above GTV
na:	Indicates sam	ple not ana	Ilysed	<u>Underline</u>	Indicates results above Draft IGV
	GTV: Draft IGV:	18.75 10	μg/L μg/L	Where detect a concentration	ions are below the MDL, the average has been calculated using on equal to half the MDL in September 2013, 5 $\mu g/L$

Monitoring Well	Average	Aug-2008	Sep-2009	Aug-2010	Aug-2011	Aug-2012	Sep-2013
MW3	39	48	33	25	32	40	55
MW4S	1,041	1,360	1,540	927	993	667	759
MW5	22	12	40	30	18	3	27
P.W	-	ns	ns	ns	ns	ns	ns

Bold

Notes:

ns: Indicates well not sampled na: Indicates sample not analysed

GTV:	15	μg/L
Draft IGV:	None	μg/L

Indicates results above GTV

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in September 2013, 2 μ g/L

Monitoring Well	Average	Aug-2008	Sep-2009	Aug-2010	Aug-2011	Aug-2012	Sep-2013
MW3	0.52	-	0.6	-	-	-	-
MW4S	0.50	-	-	-	-	-	-
MW5	0.50	-	-	-	-	-	-
P.W	-	ns	ns	ns	ns	ns	ns

ns: na:

Indicates well not sampled		Bold	Indicates results above GTV	
Indicates sample not analysed		<u>Underline</u>	Indicates results above Draft IGV	
GTV:	0.75	μg/L	Where detect	tions are below the MDL, the average has been calculated using on equal to half the MDL in September 2013, 1 μ g/L
Draft IGV:	1	μg/L	a concentration	

Monitoring Well	Average	Aug-2008	Sep-2009	Aug-2010	Aug-2011	Aug-2012	Sep-2013
MW3	0.8	-	-	-	-	-	-
MW4S	4.8	-	2	5	2	17	3
MW5	0.8	-	-	-	-	-	-
P.W	-	ns	ns	ns	ns	ns	ns

ns: na:	Indicates well Indicates sam	not sample ple not ana	ed alysed	Bold <u>Underline</u>	Indicates results above GTV Indicates results above Draft IGV
	GTV: Draft IGV:	1500 30	μg/L μg/L	Where detec a concentrati	tions are below the MDL, the average has been calculated using on equal to half the MDL in September 2013, 1.5 $\mu g/L$

Monitoring Well	Average	Aug-2008	Sep-2009	Aug-2010	Aug-2011	Aug-2012	Sep-2013
MW3	0.25	-	-	-	-	-	-
MW4S	0.53	-	-	-	-	1.9	-
MW5	0.25	-	-	-	-	-	-
P.W	-	ns	ns	ns	ns	ns	ns

ns: Indicates well	not sample	ed	Bold	Indicates results above GTV
na: Indicates sam	ple not and	alysed	<u>Underline</u>	Indicates results above Draft IGV
GTV: Draft IGV:	3.75 5	μg/L μg/L	Where detect	tions are below the MDL, the average has been calculated using on equal to half the MDL in September 2013, 0.5 μ g/L

Monitoring Well	Average	Aug-2008	Sep-2009	Aug-2010	Aug-2011	Aug-2012	Sep-2013
MW3	18	20	27	9	24	26	-
MW4S	4	-	-	-	-	-	-
MW5	4	-	6	-	-	-	-
P.W	-	ns	ns	ns	ns	ns	ns

ns: na:

Indicates well not sampled		Bold	Indicates results above GTV	
Indicates sample not analysed		<u>Underline</u>	Indicates results above Draft IGV	
GTV:	1500	μg/L	Where detec	tions are below the MDL, the average has been calculated using on equal to half the MDL in September 2013, 7 μ g/L
Draft IGV:	30	μg/L	a concentrati	

APPENDIX E POLYCYCLIC AROMATIC HYDROCARBONS TREND DATA

Monitoring Well	Average	Aug-2008	Aug-2010	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	<u>5</u>	-	-	-	-	-	-	-	-
MW4S	5	-	-	-	-	-	-	-	-
MW5	<u>5</u>	-	-	-	-	-	-	-	-
P.W	-	ns							

ns: Indicates well not sampled	GTV:	0.0075 μg/L	Bold Indicates results above GTV
na: Indicates sample not analysed	Draft IGV:	0.01 μg/L	Underline Indicates results above Draft IGV

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in September 2013, 10 μ g/L

Monitoring Well	Average	Aug-2008	Aug-2010	Aug-2011	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	<u>5</u>	-	-	-	-	-	-	-	-	-
MW4S	<u>5</u>	-	-	-	-	-	-	-	-	-
MW5	<u>5</u>	-	-	-	-	-	-	-	-	-
P.W	-	ns								

ns: Indicates well not sampled

na: Indicates sample not analysed

GTV^{*:} 0.075 μg/L

Bold Indicates results above GTV

Draft IGV: 0.05 μg/L <u>Underline</u> Indicates results above Draft IGV

* GTV is for the sum of benzo(ghi)perylene, benzo(b) and benzo(k)fluoranthene and indeno(123cd)pyrene

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 10 μ g/L

Monitoring Well	Average	Aug-2008	Aug-2010	Aug-2011	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	<u>5</u>	-	-	-	-	-	-	-	-	-
MW4S	5	-	-	-	-	-	-	-	-	-
MW5	<u>5</u>	-	-	-	-	-	-	-	-	-
P.W	-	ns								

ns: Indicates well not sampled

na: Indicates sample not analysed

GTV^{*:} 0.075 μg/L

Draft IGV: 0.05 µg/L benzo(k)fluoranthene

Bold Indicates results above GTV Underline Indicates results above

0.5 μg/L benzo(b)fluoranthene
 TV is for the sum of benzo(ghi)perylene, benzo(b) and benzo(k)fluoranthene and indeno(123cd)pyrene

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 10 μ g/L

Monitoring Well	Average	Aug-2008	Aug-2010	Aug-2011	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	<u>5</u>	-	-	-	-	-	-	-	-	-
MW4S	5	-	-	-	-	-	-	-	-	-
MW5	<u>5</u>	-	-	-	-	-	-	-	-	-
P.W	_	ns								

ns: Indicates well not sampled

na: Indicates sample not analysed

GTV^{*:} 0.075 μg/L

Bold Indicates results above GTV

Draft IGV: 0.05 μg/L <u>Underline</u> Indicates results above Draft IGV

* GTV is for the sum of benzo(ghi)perylene, benzo(b) and benzo(k)fluoranthene and indeno(123cd)pyrene

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, $10 \mu g/L$

APPENDIX F VOLATILE ORGANIC COMPOUNDS TREND DATA

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW4S	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW5	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P.W	1	ns	-	ns	ns	ns	-	ns	535	ns	ns														

Notes: ns: Indicates well not sampled na: Indicates sample not analysed

GTV: 2.25 µg/L Bold Indicates results above GTV Draft IGV: 3 µg/L <u>Underline</u> Indicates results above IGV Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 2 µg/L

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	9	25	27	18	10	-	6	-	5	4	-	6	-	11	7	-	4	61	7	3	-	3	7	13	6
MW4S	606	496	535	346	669	-	2	433	273	502	1,461	278	424	nr	324	530	619	2,198	908	298	1,177	389	658	811	722
MW5	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P.W	12	ns	ns	ns	ns	ns	ns	-	ns	ns	15	ns	ns	ns	14	ns	ns	ns	20	ns	ns	ns	14	ns	ns

ns: Indicates well not sampled na: Indicates sample not analysed nr: Indicates February 2011 ommited due to possible lab error

GTV: 0.375 µg/L Bold Indicates results above GTV Draft IGV: none Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 0.1 µg/L

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	17	27	<u>17</u>	25	33	26	21	22	24	12	21	27	30	22	7	8	10	22	19	<u>17</u>	24	15	6	-	- 1
MW4S	23	-	91	45	30	-	-	-	27	26	59	21	7	nr	5	24	39	49	48	30	12	13	6	10	19
MW5	2	-	-	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P.W	349	ns	ns	ns	ns	ns	ns	662	ns	ns	431	ns	ns	ns	477	ns	ns	ns	80	ns	ns	ns	97	ns	ns

Notes: ns: Indicates well not sampled na: Indicates sample not analysed nr: Indicates February 2011 ommited due to possible lab error

 7.5 μg/L
 Bold
 Indicates results above GTV

 10 & 40° μg/L
 Underline
 Indicates results above IGV

 * Two draft IGVs are defined for Trichloroethene
 Fractional State

Draft IGV:

GTV:

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 3 µg/L

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	<u>11</u>	2	2	2	10	16	27	21	22	20	18	13	18	15	9	-	8	10	10	-	12	9	8	-	-
MW4S	7	-	-	20	-	-	-	-	-	11	14	7	-	-	4	-	10	11	43	-	9	7	6	9	9
MW5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P.W	693	ns	ns	ns	ns	ns	ns	835	ns	ns	1,054	ns	ns	ns	1,186	ns	ns	ns	173	ns	ns	ns	217	ns	ns

Notes: ns: Indicates well not sampled na: Indicates sample not analysed nr: Indicates February 2011 ommited due to possible lab error

GTV: 7.5 μg/L Bold Indicates results above GTV Draft IGV: 10 & 40° μg/L <u>Underline</u> Indicates results above IGV * Two draft IGVs are defined for Tetrachloroethene

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 3 µg/L

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	0.32	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-	-
MW4S	10	-	-	24	24	-	-	-	-	17	16	12	10	nr	3	9	17	14	18	10	12	13	10	12	13
MW5	0.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P.W	0.25	ns	ns	ns	ns	ns	ns	-	ns	ns	-	ns	ns												

ns: Indicates well not sampled na: Indicates sample not analysed nr: Indicates February 2011 ommited due to possible lab error

 $\begin{array}{cccc} \text{GTV:} & 0.75 \ \mu g/L & \textbf{Bold} & \text{Indicates results above GTV} \\ \text{Draft IGV:} & 1 \ \mu g/L & \underline{\text{Underline}} & \text{Indicates results above IGV} \\ \text{Where detections are below the MDL, the average has been calculated using a concentration equal to half} \\ \text{the MDL in December 2013, 0.5 \ \mu g/L} \end{array}$

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	1	1	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-
MW4S	58	-	129	92	83	-	5	-	72	95	78	58	31	nr	18	40	99	96	108	49	80	50	40	51	-
MW5	3	2	-	3	3	-	1	-	-	-	-	-	-	-	-	-	20	10	-	21	-	-	-	-	-
P.W	1	ns	ns	ns	ns	ns	ns	-	ns	ns	-	ns	ns												

Notes: ns: Indicates well not sampled na: Indicates sample not analysed nr: Indicates February 2011 ommited due to possible lab error

 V:
 75* μg/L
 Bold
 Indicates results above GTV

 W:
 12 μg/L
 <u>Underline</u>
 Indicates results above IGV

 * Guideline Threshold Value is for the sum of trihalomethanes
 Indicates results above IGV
 GTV:

Draft IGV:

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 2 µg/L

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW4S	0.5	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW5	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P.W	0.5	ns	ns	ns	ns	ns	ns	-	ns	ns	-	ns	ns												

GTV: Draft IGV: ns: Indicates well not sampled na: Indicates sample not analysed

75* µg/L Bold Indicates results above GTV None * Guideline Threshold Value is for the sum of trihalomethanes

Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 1 μ g/L

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW4S	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW5	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P.W	0.5	ns	ns	ns	ns	ns	ns	-	ns	ns	-	ns	ns												

ns: Indicates well not sampled na: Indicates sample not analysed

 $\begin{array}{ccc} GTV: & 75^{\star}\,\mu g/L & \textbf{Bold} & \mbox{Indicates results above GTV} \\ Draft IGV: & None & \\ & ^{\star} Guideline Threshold Value is for the sum of trihalomethanes \\ Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 1 <math display="inline">\mu g/L \end{array}$

Monitoring Well	Average	Apr-2008	Jun-2008	Aug-2008	Nov-2008	Apr-2009	Jun-2009	Sep-2009	Dec-2009	Feb-2010	May-2010	Aug-2010	Nov-2010	Feb-2011	May-2011	Aug-2011	Nov-2011	Feb-2012	May-2012	Aug-2012	Nov-2012	Mar-2013	Jun-2013	Sep-2013	Dec-2013
MW3	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
MW4S	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW5	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
P.W	0.5	ns	ns	ns	ns	ns	ns	-	ns	ns	-	ns	ns	ns	-	ns	ns	ns	-	ns	ns	ns		ns	ns

Notes: ns: Indicates well not sampled na: Indicates sample not analysed

GTV: 75* mg/L Bold Indicates results above GTV

Draft IGV: None Guideline Threshold Value is for the sum of trihalomethanes Where detections are below the MDL, the average has been calculated using a concentration equal to half the MDL in December 2013, 1 µg/L

mdl

1

0.5 0.5 0.5

Total VOC Concentration - MW3 (Maximum Total VOC Concentration = 605 μg/L in February 2012)

URS Ireland Limited

J:\Cork-Jobs\Enva Ireland Ltd\47092526 Enva Shannon GW Mon 2013\Technical\Technical Amendment\Report Attachments\

Total VOC Concentration - MW4S (Maximum Total VOC Concentration = 48,749 μg/L in August 2000)

URS Ireland Limited

J:\Cork-Jobs\Enva Ireland Ltd\47092526 Enva Shannon GW Mon 2013\Technical\Technical Amendment\Report Attachments\

Total VOC Concentration - MW5 (Maximum Total VOC Concentration = $206 \mu g/L$ in Febraury 1998)

APPENDIX G DECEMBER 2013 GROUNDWATER MONITORING DATA

Compound	Groundwater Regs	EPA Draft Interim	Monitoring Well				
Compound	2010	(IGV)	MW3	MW4S	MW5		
Ammoniacal Nitrogen as N	0.065 - 0.175	0.12*	1.96	10.25	< 0.03		
Total Oxidised Nitrogen as N	nv	No abnormal change	<0.2	<0.2	2.1		
Total Organic Carbon	nv	No abnormal change	3	21	<2		
Chloride	187.5	250	65	474	92		
Sodium	150	150	68	526	59		
Sulphate	187.5	200	96	543	89		
Potassium	nv	5	9	10	3		
Cyclohexane Extractable Matter	nv	nv	11	<1	<1		
Nitrate as NO ₃	25	37.5	<0.2	<0.2	9.3		
Nitrite as NO ₂	0.10	0.375	<0.02	<0.02	<0.02		
MRP as PO ₄	0.03	0.035	<0.06	<0.06	<0.06		
Aluminium	0.20	0.150	<20	<20	<20		
Boron	1	1	144	272	19		

Exceeds GTV

Exceeds Draft IGV

no value

nv *

BOLD

Italics

IGV given as mg/L NH₄, converted to equivalent mg/L N

Appendix G - Table 7: Pesticide Results (mg/L) - Enva Shannon, December 2013

Postiaida			М	onitoring W	ell
Festicide	MDL (µg/L)	GTV (μg/L)	MW3	MW4S	MW5
Atrazine	0.05	0.075	-	-	-
Simazine	0.05	0.075	-	-	-
MCPA	0.05	0.075	-	-	-
Lindane	0.05	0.075	-	-	-
4,4-DDT	0.05	0.075	-	-	-
Diuron	0.05	0.075	-	-	-
Dieldrin	0.05	0.075	-	-	-
Cypermethrin	0.05	0.075	-	-	-
Glyphosate	2*	0.075	-	-	-
Chlortoluron	0.05	0.075	-	-	-
Bentazone	0.05	0.075	-	-	-
Mecoprop	0.05	0.075	-	-	-
Isoproturon	0.05	0.075	-	-	-
2,4 Dichlorophen-oxyacetic acid	0.05	0.075	-	-	-

APPENDIX H FULL REPORT FOR TULLANEWMARKET_2 GROUNDWATER BODY

Full Report for Waterbody TullaNewmarket_2

River Basin Management Plans (RBMPs) have been published for all River Basin Districts in Ireland in accordance with the requirements of the Water Framework Directive. The WaterMaps viewer is an integral part of the River Basin Management Plan and provides access to information at individual waterbody level and at Water Management Unit level for all the River Basin Districts in Ireland.

The following report provides summary plan information about the selected waterbody (indicated by the pin in the map above) relating to its status, risks, objectives, and measures proposed to retain status where this is adequate, or improve it where necessary. Waterbodies can relate to surface waters (these include rivers, lakes, estuaries [transitional waters], and coastal waters), or to groundwaters. Other relevant information not included in this report can be viewed using the WaterMaps viewer, including areas listed in the Register of Protected Areas.

You will find brief notes at the bottom of some of the individual report sheets that will help you in interpreting the information presented. More detailed information can be obtained in relation to all aspects of the RBMPs at www.wfdireland.ie.

water matters		
Summary Information:		
Water Management Unit:	N/A	-
WaterBody Category:	Groundwater Waterbody	shannon river basin district
WaterBody Name:	TullaNewmarket_2	
WaterBody Code:	IE_SH_G_231	
Overall Status:	Good	
Overall Objective:	Protect	
Overall Risk:	2a Probably Not At Risk	
Heavily Modified:	No	
	Report data based upon final RBMP, 2	2009-2015.

The information provided above is a summary of the principal findings related to the selected waterbody. Further details and explanation of individual elements of the report are outlined in the following pages.

water matters

Chemical and Quantitative Status Report

Water Management Unit:	N/A	
WaterBody Category:	Groundwater Waterbody	shannon 🔬
WaterBody Name:	TullaNewmarket_2	river basin district
WaterBody Code:	IE_SH_G_231	-
Overall Status Result:	Good	
Heavily Modified:	No	

Con Stal

	Status Element Description	Result
	Status information	
INS	Status associated with saline intrusion into groundwater	GS-HC
DWS	Status associated with exceedances of water quality above specific standards	GS-HC
DS	Chemical status of groundwater due to pressure from diffuse sources of pollution	GS-HC
CLS	Chemical status of groundwater due to pressure from contaminated soil or land.	GS-HC
MS	Chemical status of groundwater due to pressure from mine sites (active or closed).	GS-HC
UAS	Chemical status of groundwater due to pressures from urban areas	GS-HC
GWS	General groundwater quality status	GS-HC
RPS	Status associated with MRP loading to rivers	GS-HC
TNS	Status associated with nitrate loading to transitional and coastal waters	GS-HC
SWS	Overall status associated with nutrient loadings to rivers and transitional and coastal waters	GS-HC
SQS	Status associated with dependant surface water quantitative status	GS-HC
GDS	Groundwater dependant terrestrial ecosystems status	GS-HC
QSO	Quantitative status overall	GS-HC
CSO	Chemical status overall	GS-HC
OS	Overall status	Good

GS -HC : Good status High Confidence GS- LC : Good status Low Confidence

n/a - not assessed

Status

By 'Status' we mean the condition of the water in the waterbody. It is defined by its chemical status and quantitative status, whichever is worse. Groundwaters are ranked in one of 2 status classes: Good or Poor.

You can read more about status and how it is measured in our RBMP Document Library at www.wfdireland.ie (Directory 15 Status).

14/2	tor matters	The states	
wa	'our Plan'		
Ris	k Report		
Wat	ter Management Unit:	N/A	
Wat	terBody Category:	Groundwater Waterbody	shannan 🌧
Wat	terBody Name:	TullaNewmarket 2	river basin district
Wat	terBody Code:		
		Drokokly Not At Diely	
Ove		2a Prodadly Not At Risk	
Hea	avily Modified:	No	
	Risk Test Description		Risk
	Groundwater Dependent	Terrestrial Ecosystems	
TE	GWDTE Risk		N/A
	Groundwater Quality		
DIF	Diffuse Elements (General)	Risk	N/A
DW	Drinking Waters Risk		N/A
INT	Intrusions Risk		N/A
WB	Water Balance Risk		N/A
	Groundwater Quality (Ge	neral)	
GQ	General Groundwater Qual	ity Risk	N/A
	Groundwater Quality (Po	int Risk)	
CL	Contaminated Land Risk		N/A
LF	Landfill Risk		N/A
MI	Mine Risk		N/A
QY	Quarry Risk		N/A
UR	Urban Risk		N/A
UW	UWWT Risk		N/A
	GW Diffuse Risk Sources		
WB3	Mobile Nutrients (NO3)		N/A
WB4	Mobile Chemicals		N/A
WB5	Clustered OSWTSs and lea	king urban sewerage systems	N/A
	GW Hydrology		
WB1	Water balance - Abstraction	1	N/A
WB2	Abstraction - Intrusion		N/A

water matters

	GW Point Risk Sources		
WB10	Risk from Point sources of pollution - Contaminated Land		N/A
WB11	Risk from Point sources of pollution - Trade Effluent Discharges		N/A
WB12	Risk from Point sources of pollution - Urban Wastewater Discharges		N/A
WB6	Risk from Point sources of pollution - Mines		N/A
WB7	Risk from Point sources of pollution - Quarries		N/A
WB8	Risk from Point sources of pollution - Landfills		N/A
WB9	Risk from Point sources of pollution - Oil Industry Infrastructure		N/A
	Overall Risk		
RA	Groundwater Overall - Worst Case		N/A
	Risk information		
CLR	Contaminated land risk		Not At Risk
DR	Risk of groundwater due to pressure from diffuse sources of pollution	2a	Probably Not At Risk
DWR	Risk associated with exceedances of water quality above specific standards	2b	Not At Risk
GDR	Groundwater dependant terrestrial ecosystems risk		Not At Risk
GWR	General groundwater quality risk	2a	Probably Not At Risk
INR	Risk associated with saline intrusion into groundwater		Not At Risk
LR	Risk due to landfills sites/old closed dump sites		Not At Risk
MR	Mines risk		Not At Risk
NULL	Diffuse nitrates from agriculture risk		N/A
QR	Risk due to quarries		Not At Risk
RA	Revised risk assessment	2a	Probably Not At Risk
RPR	Risk associated with MRP loading to rivers		Not At Risk
SQR	Risk associated with dependant surface water quantitative status		Not At Risk
SWR	Overall risk associated with nutrient loadings to rivers and transitional and coastal waters		Not At Risk
TNR	Risk associated with nitrate loading to transitional and coastal waters		Not At Risk
UAR	Risk of groundwater due to pressures from urban areas		Not At Risk
UWR	Risk due to direct discharges of urban wastewater		Not At Risk

19 18 A

Risk

By 'risk' we mean the risk that a waterbody will not achieve good ecological or good chemical status/potential at least by 2015. To examine risk the various pressures acting on the waterbody were identified along with any evidence of impact on water status. Depending on the extent of the pressure and its potential for impact, and the amount of information available, the risk to the water body was placed in one of four categories: 1a at risk; 1b probably at risk; 2a probably not at risk; 2b not at risk. Note that '2008' after the risk category means that the risk assessment was revised in 2008. All other risks were determined as part of an earlier risk assessment in 2005.

You can read more about risk assessment in our 'WFD Risk Assessment Update' document in the RBMP document library, and other documents at www.wfdireland.ie (Directory 31 Risk Assessments).

Date Reported to Europe: July 2010 Date Report Created 11/03/2014

wat	er matters		
Obje	ectives Report		
Wate	er Management Unit:	N/A	-
Wate	erBody Category:	Groundwater Waterbody	shannon river basin district
Wate	erBody Name:	TullaNewmarket_2	
Wate	erBody Code:	IE_SH_G_231	
Over	all Objective:	Protect	
Heav	vily Modified:	No	
	Objectives Descripti	on	Result
	Extended timescale in	nformation	
E1	Extended deadlines due t	No Status	
E2	Extended deadlines due t	o agricultural N	No Status
E3	Extended deadlines due t	o mines	No Status
E4	Extended deadlines due t	o urban areas	No Status
E5	Extended deadlines due t	o contaminated lands	No Status
EO	Extended deadlines - ove	rall	No Status
	Objectives information	on	
OB1	Prevent deterioration obje	ective	Protect
OB2	Restore at least good stat	tus objective	No Status
OB3	Reduce chemical pollution	n objective	No Status
OB4	Protected areas objective		No Status
OBO	Overall objectives - objec	tive	Protect

Extended timescales

Extended timescales have been set for certain waters due to technical, economic, environmental or recovery constraints. Extended timescales are usually of one planning cycle (6 years, to 2021) but in some cases are two planning cycles (to 2027).

Objectives

In general, we are required to ensure that our waters achieve at least good status/potential by 2015, and that their status does not deteriorate. Having identified the status of waters (this is given earlier in this report), the next stage is to set objectives for waters. Objectives consider waters that require protection from deterioration as well as waters that require restoration and the timescales needed for recovery. Four default objectives have been set initially:-

Prevent Deterioration Restore Good Status Reduce Chemical Pollution Achieve Protected Areas Objectives

These objectives have been refined based on the measures available to achieve them, the latter's likely effectiveness, and consideration of cost-effective combinations of measures. Where it is considered necessary extended deadlines have been set for achieving objectives in 2021 or 2027.

Date Reported to Europe: July 2010 Date Report Created 11/03/2014

water matters

Meas	sures Report		
Wate	r Management Unit:	N/A	
Wate	rBody Category:	Groundwater Waterbody	shannon ver basin district
Wate	rBody Name:	TullaNewmarket 2	
Wate	rBody Code:	- IE SH C 231	
Hoov	ily Modified:	No	
Пеач			
	Measures Description	n	Applicable
BC	Total number of basic mea	asures which apply to this waterbody	24
BW	Directive - Bathing Waters	Directive	No
BIR	Directive - Birds Directive		No
HAB	Directive - Habitats Directi	ve	No
DW	Directive - Drinking Water	s Directive	Yes
MAE	Directive - Major Accidents	s and Emergencies Directive	Yes
EIA	Directive - Environmental	Impact Assessment Directive	Yes
SS	Directive - Sewage Sludge	Directive	Yes
UWT	Directive - Urban Waste W	later Treatment Directive	Yes
PPP	Directive - Plant Protection	n Products Directive	Yes
NIT	Directive - Nitrates Directive	ve	Yes
IPC	Directive - Integrated Poll	ution Prevention Control Directive	Yes
CR	Other Stipulated Measure	- Cost recovery for water use	Yes
SUS	Other Stipulated Measure	- Promotion of efficient and sustainable water use	Yes
DWS	Other Stipulated Measure	- Protection of drinking water sources	Yes
ABS	Other Stipulated Measure	- Control of abstraction and impoundment	Yes
POI	Other Stipulated Measure	- Control of point source discharges	Yes
DIF	Other Stipulated Measure	- Control of diffuse source discharges	Yes
GW	Other Stipulated Measure	- Authorisation of discharges to groundwaters	Yes
PS	Other Stipulated Measure	- Control of priority substances	Yes
MOD	Other Stipulated Measure	- Controls on physical modifications to surface wat	ers Yes
OA	Other Stipulated Measure	- Controls on other activities impacting on water s	tatus Yes
AP	Other Stipulated Measure pollution incidents	- Prevention or reduction of the impact of accident	al Yes
OTS	On-site waste water treatm	nent systems	Yes
FPM	Freshwater Pearl Mussel s	ub-basin plan	No
SHE	Shellfish Pollution Reduction	on Plan	No
IPR	IPPC licences requiring rev	/iew	Yes
WPR	Water Pollution Act licence	es requiring review	Yes
FOR	Forestry guidelines and re	gulations	Yes

Date Reported to Europe: July 2010

Date Report Created 11/03/2014

Measures

Measures are necessary to ensure that we meet the objectives set out in the previous page of this report. Many measures are already provided for in national legislation and must be implemented. Other measures have been recently introduced or are under preparation. A range of additional potential measures are also being considered but require further development. Any agreed additional measures can be introduced through the update of Water Management Unit Action Plans during the implementation process.

You can read more about Basic Measures in 'River Basin Planning Guidance' and in other documents in our RBMP Document Library at www.wfdireland.ie.

Environmental Liabilities template	
------------------------------------	--

Click here to access EPA guidance on Environmental Liabilities and Financial

<u>provision</u>

Lic No:

W0041-01

Year

2014

1

			Commentary
1	ELRA initial agreement status	Submitted and agreed by EPA	
2	ELRA review status	Review required and completed	Currently under review
3	Amount of Financial Provision cover required as determined by the latest ELRA	€426,875	
4	Financial Provision for ELRA status	Submitted and agreed by EPA	
5	Financial Provision for ELRA - amount of cover	€426,875	
6	Financial Provision for ELRA - type	bond	
7	Financial provision for ELRA expiry date	Continuous gurantee	
8	Closure plan initial agreement status	losure plan submitted and agreed by EP	A
9	Closure plan review status	Review required and not completed	Currently under review
10	Financial Provision for Closure status	Submitted and agreed by EPA	
11	Financial Provision for Closure - amount of cover	56,500	
12	Financial Provision for Closure - type	bond	
13	Financial provision for Closure expiry date	Continuous gurantee	

	Environmental Management Programme/Continuous Improvement Programm	e template	Lic No:	W0041-01	Year	2014
	Highlighted cells contain dropdown menu click to view		Additional Information		_	
1	Do you maintain an Environmental Mangement System (EMS) for the site. If yes, please detail in additional information	Yes				
2	Does the EMS reference the most significant environmental aspects and associated impacts on-site	Yes				
3	Does the EMS maintain an Environmental Management Programme (EMP) as required in accordance with the licence requirements	Yes				
4	Do you maintain an environmental documentation/communication system to inform the public on environmental performance of the facility, as required by the licence	Yes				

(EMP) report				
Target	Status (% completed)	How target was progressed	Responsibility	Intermediate outcomes
Consider additional roofing remaining chemical storage bunds (front yard) if appropriate.	50	No additional roofing installed in the reporting year.	Section Head	Improved Environmental Management Practices
Provide local bunding for bulk waste storage tanks (i.e tank farm bund).	C	Pending financial approval.	Section Head	Installation of infrastructure
Install pH probe in underground tank.	50	Works ongoing. To be included in Pat Twomey site upgrade. Monitored in site initiatives.	Individual	Increased compliance with licence conditions
Improve yard integrity in areas for loading and unloading of waste	90	Cracks have been sealed in the export yard.	Individual	Improved Environmental Management Practices
Install system for storage and reuse of DIW reject water, for use in lime slurry batches	100	This is completed	Section Head	Improved Environmental Management Practices
Continue to implement the agreed plan with a view to eliminating all pre-	90	Performance continues to be reported monthly to the Agency, and two full-scale stock audits are carried out per year. Specialised projects are underway to eliminate those wastes which are proving more difficult to deal with	Section Head	Increased compliance with
	(EMP) report Target Consider additional roofing remaining chemical storage bunds (front yard) if appropriate. Provide local bunding for bulk waste storage tanks (i.e tank farm bund). Install pH probe in underground tank. Improve yard integrity in areas for loading and unloading of waste Install system for storage and reuse of DIW reject water, for use in lime slurry batches Continue to implement the agreed plan with a view to eliminating all pre- accuistion waste	(EMP) report Target Status (% completed) Consider additional roofing remaining chemical storage bunds (front yard) if appropriate. 50 Provide local bunding for bulk waste storage tanks (i.e tank farm bund). 0 Install pH probe in underground tank. 50 Improve yard integrity in areas for loading and unloading of waste 90 Install system for storage and reuse of DIW reject water, for use in lime slurry batches 100 Continue to implement the agreed plan with a view to eliminating all pre-acruistion waste 90	(EMP) report Target Status (% completed) How target was progressed Consider additional roofing remaining chemical storage bunds (front yard) if appropriate. No additional roofing installed in the reporting year. Provide local bunding for bulk waste storage tanks (i.e tank farm bund). 0 Pending financial approval. Works ongoing. To be included in Pat Twomey site upgrade. Monitored in site underground tank. Works ongoing. To be included in Pat Twomey site upgrade. Monitored in site Improve yard integrity in areas for loading and unloading of waste Cracks have been sealed in the export yard. Install system for storage and reuse of DIW reject water, for use in lime slurry batches 100 This is completed Performance continues to be reported monthly to the Agency, and two full-scale stock audits are carried out per year. Specialised projects are underway to eliminate those wastes which are proving more difficult to deal arcuition waste	(EMP) report Target Status (% completed) How target was progressed Responsibility Consider additional roofing remaining chemical storage bunds (front yard) if appropriate. No additional roofing installed in the reporting Provide local bunding for bulk waste storage tanks (i.e tank farm bund). 0 Pending financial approval. Section Head Works ongoing. To be included in Pat Twomey site upgrade. Monitored in site included in Pat Twomey site upgrade. Monitored in site intratives. Individual Improve yard Integrity in areas for loading and unloading of waste Cracks have been sealed in 90 the export yard. Individual Install system for storage and reuse of DIW reject water, for use in lime slurry batches 100 This is completed Section Head Performance continues to be reported monthly to the Agency, and two full-scale stock audits are carried out per year. Specialised projects are underway to eliminate those wastes which are proving more difficult to deal Section Head

En	vironmental Management Progra	mme/Continuous Imp	Lic No:	W0041-01	Year	2014		
				Hyrogeological review				
		Review the Agency's		assessment carried out in				
		guidance document and		May 2014 and No further				
		implement additional		action deemed necessary.				
		groundwater monitoring		Pending agreement with		Increased compliance with		
Gro	oundwater protection	studies if required	95	agency	Section Head	licence conditions		
SEL	ECT		SELECT		SELECT	SELECT		

Noise monitoring summary report Lic No: W0041-01 Year	
---	--

1 Was noise monitoring a licence requirement for the AER period? If yes please fill in table N1 noise summary below

2 Was noise monitoring carried out using the EPA Guidance note, including completion of the "Checklist for noise measurement report" included in the guidance note as table 6?

3 Does your site have a noise reduction plan

4 When was the noise reduction plan last updated?

Have there been changes relevant to site noise emissions (e.g. plant or operational changes) since the last 5 noise survey?

Table N1: No	Table N1: Noise monitoring summary										
Date of monitoring	Time period	Noise location (on site)	Noise sensitive location -NSL (if applicable)	LA _{eq}	LA ₉₀	LA ₁₀	LA _{max}	Tonal or Impulsive noise* (Y/N)	If tonal /impulsive noise was identified was 5dB penalty applied?	Comments (ex. main noise sources on site, & extraneous noise ex. road traffic)	Is <u>site c</u> ompliant with noise limits (day/evening/night)?
05/12/2014	30 MINS	N1		63.4	58.6		87.7	No	No	Main source of noise from construction activities off site.	Yes
05/12/2014	30 MINS	N4		63.1	52.6		77.7	No	No	Main source of noise from a pump operating in the ADVOX building	Yes
05/12/2014	30 MINS	N5		62.3	50.6		91.6	Yes	No	Main source of noise was from forklifts and pumps operating on site	Yes
05/12/2014	30 MINS	N6		58	50.6		87.6	No	No	Main source of noise from traffic entering and exiting the site- HGCs etc. Unloading operations also were taking place at the time of the suvey. Traffic in the industrial estate, neighbouring facilities and on the M18. Aircrafts overhead.	Yes
05/12/2014	30 MINS	N8		64.3	56.5		81.7	No	No	No significant noise at the time of the survey.	Yes

Noise Guidance Yes note NG4 No N/A

Yes

No

2014

1

-	
~	
_	

*Please ensure that a tonal analysis has been carried out as per guidance note NG4. These records must be maintained onsite for future inspection

If noise limits exceeded as a result of noise attributed to site activities, please choose the corrective action from the following options?

SELECT

** please explain the reason for not taking action/resolution of noise issues?

Any additional comments? (less than 200 words)

ł	Resource Usage/Energy efficiency summary	Lic No:	W0041-01	Year	
					-

Additional information

1 When did the site carry out the most recent energy efficiency audit? Please list the recommendations in table 3 below

Is the site a member of any accredited programmes for reducing energy usage/water conservation such as the SEAI programme linked to the right? If yes please list them in additional information

 2
 such as the SEAI programme linked to the right? If yes please list them in additional information
 Network (LIEN)

 Where Fuel Oil is used in boilers on site is the sulphur content compliant with licence conditions? Please state percentage in additional information
 3

n table 3 below	Enter date of audit	
SEAI - Large		
Industry Energy		
Network (LIEN)	No	
tate percentage in		
	No	

Table R1 Energy usag	e on site			
Energy Use	Previous year	Current year	Production +/- % compared to previous reporting year**	Energy Consumption +/- % vs overall site production*
Total Energy Used (MWHrs)				
Total Energy Generated (MWHrs)				
Total Renewable Energy Generated (MWHrs)			
Electricity Consumption (MWHrs)	503.154	610.113		
Fossil Fuels Consumption:				
Heavy Fuel Oil (m3)		9.285		
Light Fuel Oil (m3)				
Natural gas (m3)		2.244		
Coal/Solid fuel (metric tonnes)				
Peat (metric tonnes)				
Renewable Biomass				
Renewable energy generated on site				

* where consumption of energy can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year.

** where site production information is available please enter percentage increase or decrease compared to previous year

Table R2 Water usage on site					Water Emissions	Water Consumption	
						Volume used i.e not	
			Production +/- %	Energy		discharged to	
			compared to	Consumption +/- %	Volume Discharged	environment e.g.	
	Water extracted	Water extracted	previous reporting	vs overall site	back to	released as steam	
Water use	Previous year m3/yr.	Current year m3/yr.	year**	production*	environment(m ³ yr):	m3/yr	Unaccounted for Water:
Groundwater							
Surface water							
Public supply	11,371	12,121			12,121		
Recycled water							
Total							

* where consumption of water can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year.

** where site production information is available please enter percentage increase or decrease compared to previous year

Table R3 Waste Stream Summary					
	Total	Landfill	Incineration	Recycled	Other
Hazardous (Tonnes)					
Non-Hazardous (Tonnes)		1860.8		91.14	

2014
Resource	e Usage/Energy efficiency sur		Lic No:	W0041-01		Year	2014		
	Table R4: Energy Audit finding recommendations								
	Date of audit Recommendations Measures proposed C			Origin of measures	Predicted energy savings %	Implementation date	Responsibility	Completion date	Status and comments
				SELECT					
				SELECT					
				SELECT					

Table R5: Power Generation: Where power is generated onsite (e.g. power generation facilities/food and drink industry)please complete the following information

	Unit ID	Unit ID	Unit ID	Unit ID	Station Total
Technology					
Primary Fuel					
Thermal Efficiency					
Unit Date of Commission					
Total Starts for year					
Total Running Time					
Total Electricity Generated (GWH)					
House Load (GWH)					
KWH per Litre of Process Water					
KWH per Litre of Total Water used on	Site				

Complaints and Incidents summary template		Lic No:	W0041-01	Year	2014	
Complaints						
		Additional inforn	nation			
Have you received any environmental complaints in the current reporting year? If yes please complete						
summary details of complaints received on site in table 1 below	No					

Table 1	L Complaints summary						
			Brief description of				
			complaint (Free txt <20	Corrective action< 20			Further
Date	Category	Other type (please specify)	words)	words	Resolution status	Resolution date	information
	SELECT				SELECT		
	SELECT				SELECT		
	SELECT				SELECT		
	SELECT				SELECT		
	SELECT				SELECT		
Total complaints							
open at start of							
reporting year							
Total new							
complaints received							
during reporting							
year							
Total complaints							
closed during							
reporting year							
Balance of							
complaints end of							
reporting year							

Incidents											
				Additional informatio							
Have any incidents occurred on site in the current repo	rting year? Please list all incid	lents for current reporting									
year in Tab	le 2 below	_	Yes								
*For information on how to report and what											
constitutes an incident	What is an incident										

Table 2 Incidents summary														
						Other	Activity in				Preventative			
			Incident category*please			cause(please	progress at time			Corrective action<20	action <20		Resolution	Likelihood of
Date of occurrence	Incident nature	Location of occurrence	refer to guidance	Receptor	Cause of incident	specify)	of incident	Communication	Occurrence	words	words	Resolution status	date	reoccurence
										Replaced PH and	Regular			
										temp probes and PH	maintenance			
										& temperature	on PH probes-			
										checked in the lab	monthly PH			
20/01/2014	Monitoring equipment offline	Licenced discharge point (ty	1. Minor	Sewer	Plant or equipment	nt issues	Normal activities	EPA	New	daily	checks	Complete	21/01/2014	Low
											Regular			
											cleaning of			
											the v point			
										Regular cleaning of	and metal			
										the v point and metal	plate point			
										plate point around	around the v			
15/05/2014	Breach of ELV	Licenced discharge point (ty	1. Minor	Sewer	Plant or equipment	nt issues	Normal activities	EPA	New	the v point.	point	Complete	16/05/2014	Low
											Scada can			
											only now be			
										Scada can only now	manually			
										be manually switched	switched off		1	
01/12/2014	Monitoring equipment offline	Licenced discharge point (ty	1. Minor	Sewer	Plant or equipment	nt issues	Normal activities	EPA	New	off in lab office	in lab office	Complete	08/12/2014	Low

Complaints and	Incidents summary templa	te	Lic No:	W0041-01	Year
Fotal number of					
ncidents current	2				
Total number of					L
incidents previous					
year	2	2			
% reduction/					
increase	50% increase				

WASTE SUMMARY	Lic No:	W0041-01	Year	2014
SECTION A-PRTR ON SITE WASTE TREATMENT AND WASTE TRANSFERS TAB- TO BE COMPLETED BY	ALL IPPC AND WASTE FACILITIES	PRTR facility logon	dropdown	list click to see options

n the PRTR and the National waste report	t.
Quantity of Comments -	
t waste remaining	
ii u	in the PRTR and the National waste report

tonnage limit for your		accepted	accepted in current	previous reporting year (tonnes)	Increase over	reduction/ increase	only applies if the waste	treatment operation carried out	waste remaining	
site (total		Please enter an accu	rate reporting year (tonnes)		previous year +/ ·	from previous	has a packaging	at your site and the description	on site at the	
tonnes/annum)		and detailed descrip	tion		%	reporting year	component	of this operation	end of reporting	
		- which applies to							year (tonnes)	
		relevant EWC code								
	European Waste Catalogue EWC codes	European Waste								
		Catalogue EWC code	<u>s</u>							
				1						

SECTION C-TO BE COMPLETED BY ALL WASTE FACILITIES (waste transfer stations, Composters, Material recovery facilities etc) EXCEPT LANDFILL SITES

4 Is all waste processing infrastructure as required by your licence and approved by the Agency in place? If no please list waste processing infrastructure required onsite

5 Is all waste storage infrastructure as required by your licence and approved by the Agency in place? If no please list waste storage infrastructure required on site

6 Does your facility have relevant nuisance controls in place? 7 Do you have an odour management system in place for your facility? If no why? 8 Do you maintain a sludge register on site?

SECTION D-TO BE COMPLETED BY LANDFILL SITES ONLY

Table 2 Waste typ	e and tonnage-landfill only			
Waste types permitted for disposal	Authorised/licenced annual intake for disposal (tpa)	Actual intake for disposal in reporting year (tpa)	Remaining licensed capacity at end of reporting year (m3)	Comments
			Ī	

Table 3 General information-Landfill only

Area ID	Date landfilling commenced	Date landfilling ceased	Currently landfilling	Private or Public Operated	Inert or non-hazardous	Predicted date to cease landfilling	Licence permits asbestos	Is there a separate cell for asbestos?	Accepted asbestos in reporting year	Total disposal area occupied by waste	Lined disposal area occupied by waste	Unlined area	Comments on liner type
										SELECT UNIT	SELECT UNIT	SELECT UNIT	
Cell 8													

WASTE SUMMARY					Lic No:	W0041-01		Year
Table 4 Environme	ntal monitoring-landfill only	Landfill Manual-Monitoring Standards						
Was meterological								
monitoring in							Has the statement	
compliance with			Was SW monitored in			Was topography	under S53(A)(5) of	
Landfill Directive (LD)		Was Landfill Gas monitored in	compliance with LD			of the site	WMA been	
standard in reporting	Was leachate monitored in compliance	compliance with LD standard in	standard in reporting	Have GW trigger levels	Were emission limit values agreed with	surveyed in	submitted in	
year +	with LD standard in reporting year	reporting year	year	been established	the Agency (ELVs)	reporting year	reporting year	Comments
.+ please refer to Landfill Manual linked above for relevant Landfill Directive monitoring standards								

SELECT SELECT

Table 5 Capping-Landfill only

				A man midda mar af alland		
Area uncanned*	Area with temporary cap			should be permanently		
SELECT UNIT		Area with final cap to LD		capped to date under		
	SELECT UNIT	Standard m2 ha, a	Area capped other	licence	What materials are used in the cap	Comments

*please note this includes daily cover area Table 6 Leachate-Landfill only

9 Is leachate from your site treated in a Waste Water Treatment Plant?

10 Is leachate released to surface water? If yes please complete leachate mass load information below

 Volume of leachate in reporting year(m3)
 Leachate (BOD) mass load (kg/annum)
 Leachate (COD) mass load (kg/annum)
 Leachate (NH4) mass load (kg/annum)
 Leachate (Chloride) mass load kg/annum
 Specify type of leachate
 Specify type of leachate

 Volume of leachate (BOD) mass load (kg/annum)
 Leachate (COD) mass load (kg/annum)
 Leachate (NH4) mass load (kg/annum)
 Leachate (Chloride) mass load kg/annum
 Leachate treatment on-site
 Leachate

Please ensure that all information reported in the landfill gas section is consistent with the Landfill Gas Survey submitted in conjunction with PRTR returns Table 7 Landfill Gas-Landfill only

Gas Captured&Treated by LFG System m3	Power generated (MW / KWh)	Used on-site or to national grid	Was surface emissions monitoring performed during the reporting vear?	Comments				
	1		SELECT					