SELECT	cells that are highlighted blue cont
guidance document link	cells that contain underlined text c
Table heading *	table headings followed by a symb
Cells with red indicator in top right corner	cells that have a red indicator in th
Please note an interpretation of resu	ults is still required. This should be e

Please note an interpretation of results is still required. This should be en appropriately to fit your interpretation, if additional space is required plea template should have all cells sized appropri :ain a dropdown menu click to select one option from the list

:lick to access relevant guidance documents for this section

ol have an associated footnote or instructions

ie top right corner contain a comment box with further instructions or clarification

ntered in the additional information/comments boxes within the templates. Please size these boxes se include an appendix to the AER template and merge it as part of the AER PDF document. The excel ately so that all text is readable before it is converted to PDF document.

Facility Information Summary

AER Reporting Year Licence Register Number Name of site Site Location NACE Code Class/Classes of Activity National Grid Reference (6E, 6 N)

A description of the activities/processes at the site for the reporting year. This should include information such as production increases or decreases on site, any infrastructural changes, environmental performance which was measured during the reporting year **and an overview of compliance with your licence** <u>listing all</u> <u>exceedances of licence limits (where</u> <u>applicable) and what they relate to e.g. air,</u> <u>water, noise.</u>

			_		
2014					
W0022-01					
		East Cork	k Landfill		
	Rossm	nore, Carrig	twohill, Co. Co	ork	
		38	21		
		5(c), 5(d	d), 50.1		
		8.25588E	51.8851N		

East Cork Landfill has been closed since February 2007. Final Capping took place in 2008 and was completed in 2009. The environmental performance of the facility has continued to improve in comparison with previous years. One complaint was registered in 2014. The gas extraction system has continued to perform with the enclosed flare burning off the gas generated. Minor exceedences have again been measured in the perimeter gas wells but are explained by the estuarine conditions and limestone bedrock that account for naturally occuring CO2 and CH4. Both Leachate and groundwater results are similar to previous years. The noise survey was compliant for the year as would be expected with no large landfill compacting plant from the site. Overall the site has been compliant with its Licence.

Declaration:

All the data and information presented in this report has been checked and certified as being accurate. The quality of the information is assured to meet licence requirements.

	27/03/2015
Signature	Date
the MCDA	
coperations deputy	

AIR-summary template

Answer all questions and complete all tables where relevant

Lic No: W0022-01 Year

2014

Does your site have licensed air emissions? If yes please complete table A1 and A2 below for the current reporting year and answer further questions. If you do not have licenced emissions and do not complete a solvent management plan (table A4 and A5) you <u>do not</u> need to complete the tables

	Additional information
Voc	
Yes	

	Periodic/Non-Continuous Monitoring		
2	Are there any results in breach of licence requirements? If yes please provide brief details in the comment section TableA1 below	ı of No	
3	Basic air Was all monitoring carried out in accordance with EPA guidance monitoring note AG2 and using the basic air monitoring checklist? checklist AGN2	Yes	

Table A1: Licensed Mass Emissions/Ambient data-periodic monitoring (non-continuous)

Emission reference no:		Frequency of Monitoring	ELV in licence or any revision therof	Licence Compliance criteria	Measured value		Compliant with licence limit	Method of analysis	Annual mass	Comments - reason for change in % mass load from previous year if applicable
					562479					load refers to
Flare Stack	Methane (CH4)	Continuous	N/A	SELECT		m3	yes	МАВ	382486	difference
					401906					load refers to
Flare Stack	Carbon dioxide (CO2)	Continuous	N/A	SELECT		m3	yes	ISO 12039:2001	751564	difference
Flare Stack	Carbon monoxide (CO)	Continuous		No 30min mean can exceed the ELV	1.79		yes	ISO 12039:2001	6.2	
Flare Stack	Nitrogen oxides (NOx/NO2)	Annual		No 30min mean can exceed the ELV	182.71		yes	EN 14792:2005	632.5	
There beack		, undai	1200mg/1110		23.44		1		05215	
Flare Stack	Sulphur oxides (SOx/SO2)	Annual	N/A	SELECT		mg/Nm3	yes	EN 14792:2005	81.14	
	SELECT			SELECT		SELECT	SELECT	SELECT		
	SELECT			SELECT		SELECT	SELECT	SELECT		

Note 1: Volumetric flow shall be included as a reportable parameter

	AIR-summary template	Lic No:	W0022-01	Year	2014
	Continuous Monitoring				
4	Does your site carry out continuous air emissions monitoring?	Yes			
	If yes please review your continuous monitoring data and report the required fields below in Table A2 and compare it to its relevant Emission Limit Value (ELV)				
5	Did continuous monitoring equipment experience downtime? If yes please record downtime in table A2 below	Yes			
6	Do you have a proactive service agreement for each piece of continuous monitoring equipment?	Yes			
7	Did your site experience any abatement system bypasses? If yes please detail them in table A3 below	No			

Table A2: Summary of average emissions -continuous monitoring

Emission	Parameter/ Substance		Averaging Period	Compliance Criteria	Units of	Annual Emission	Annual maximum	Monitoring	Number of ELV	Comments
reference no:					measurement			Equipment	exceedences in	
								downtime (hours)	current	
		ELV in licence or any							reporting year	
		revision therof								
		N/A	12 month					181		Have recorded
										the combined
										annual
										downtime of
										Flare at East
										Cork Landfill Landfill in this
										section. The
										emissions
										totals have
										been submitted
										in the above
										table.
Flare Stack	PRTR			100 % of values < ELV	m3					
	SELECT				SELECT					
	SELECT				SELECT					
	SELECT				SELECT					
	SELECT				SELECT					

note 1: Volumetric flow shall be included as a reportable parameter.

Table A3: Abatement system bypass reporting table Bypass protocol

Date*	Duration** (hours)	Location	Reason for bypass	Impact magnitude	Corrective action

* this should include all dates that an abatement system bypass occurred

** an accurate record of time bypass beginning and end should be logged on site and maintained for future Agency inspections please refer to bypass protocol link

	AIR-summary	template				Lic No:	W0022-01		Year	2014	
	Solvent	t use and manageme	nt on site								
8	8 Do you have a total Emission Limit Value of direct and fugitive emissions on site? if yes please fill out tables A4 and A5 SELECT SELECT										
Table A4: Solvent Management Plan Summary Total VOC Emission limit value				<u>Solvent</u> <u>regulations</u>	Please refer to linked solver complete table 5						
	Reporting year	Total solvent input on site (kg)	Total VOC emissions to Air from entire site (direct and fugitive)	Total VOC emissions as %of solvent input	Total Emission Limit Value (ELV) in licence or any revision therof	Compliance					
						SELECT SELECT	_				
	Table A5:	Solvent Mass Balan	ce summary			SELECT	-				
		(I) Inputs (kg)			(0)	Outputs (kg)					
	Solvent	(I) Inputs (kg)		Solvents lost in water (kg)	Collected waste solvent (kg)	Fugitive Organic Solvent (kg)	Solvent released in other ways e.g. by-	Solvents destroyed onsite through	Total emission of Solvent to air (kg)]	
										-	
								Total			

AER Monitoring returns summary template-WATER/WASTEWATER(SEWER)

Year

2014

Does your site have licensed emissions direct to surface water or direct to sewer? If yes please complete table W2 and W3 below for the current reporting year and answer further questions. If you do not have licenced emissions you <u>only</u> need to complete table W1 and or W2 for storm water analysis and visual inspections

Was it a requirement of your licence to carry out visual inspections on any surface water 2 discharges or watercourses on or near your site? If yes please complete table W2 below summarising only any evidence of contamination noted during visual inspections

Table W1 Storm water monitoring

Location reference	Location relative to site activities	PRTR Parameter	Licenced Parameter	Monitoring date	ELV or trigger level in licence or any revision thereof*	Licence Compliance criteria	Measured value	Unit of measurement	Compliant with licence	Comments
sw1	upstream		рН	Quarterly	No ELV or trigger levels	N/A	8.7	pH units	yes	Median vaule for 2014
sw1	upstream		Temperature	Quarterly	No ELV or trigger levels	N/A		degrees C	yes	Median vaule for 2014
sw1	upstream		Conductivity	Quarterly	No ELV or trigger levels	N/A	44.7	μS/cm @20oC	yes	Median vaule for 2014
sw1	upstream		Dissolved Oxygen	Quarterly	No ELV or trigger levels	N/A		mg/L	yes	Median vaule for 2014
sw1	upstream	Chlorides (as Cl)		Quarterly	No ELV or trigger levels	N/A	13873	mg/L	yes	Median vaule for 2014
sw1	upstream		BOD	Quarterly	No ELV or trigger levels	N/A	<1	mg/L	yes	Median vaule for 2014
sw1	upstream		COD	Quarterly	No ELV or trigger levels	N/A	320	mg/L	yes	Median vaule for 2014
sw1	upstream		Ammonia (as N)	Quarterly	No ELV or trigger levels	N/A	0.54	mg/L	yes	Median vaule for 2014
sw1	upstream		Suspended Solids	Quarterly	No ELV or trigger levels	N/A	187	mg/L	yes	Median vaule for 2014
sw1	upstream	Chromium and compounds (as Cr)		Annual	No ELV or trigger levels	N/A	3.000	μg/L	yes	Annual value for 2014
sw1	upstream	Copper and compounds (as Cu)		Annual	No ELV or trigger levels	N/A	8.000	μg/L	yes	Annual value for 2014
sw1	upstream	Cadmium and compounds (as Cd)		Annual	No ELV or trigger levels	N/A	<0.5	μg/L	yes	Annual value for 2014
	upstream		CALCIUM			N/A	610.000	mg/L	yes	Annual value for 2014
sw1	upstream		Iron	Annual	No ELV or trigger levels	N/A	259.000	μg/L	yes	Annual value for 2014
sw1	upstream	Lead and compounds (as Pb)		Annual	No ELV or trigger levels	N/A	45.000	mg/L	yes	Annual value for 2014
sw1				Annual	No ELV or trigger levels					Annual value for 2014. Elevation due to geology
sw1	upstream		Magnesium			N/A	1475.000	mg/L	yes	of the site
	upstream		Manganese (as Mn)	Annual	No ELV or trigger levels	N/A	49.000	μg/L	yes	Annual value for 2014
sw1	upstream	Mercury and compounds (as Hg)		Annual	No ELV or trigger levels	N/A	<0.05	μg/L	yes	Annual value for 2014
sw1	upstream		Potassium	Annual	No ELV or trigger levels	N/A	162.000	mg/L	yes	Annual value for 2014
sw1	upstream		Sulphate	Annual	No ELV or trigger levels	N/A	2617.000	mg/L	yes	Annual value for 2014. Sample site at estuary
sw1	upstream		Total Oxidised Nitrogen (TON)	Annual	No ELV or trigger levels	N/A	<0.1	mg/L	yes	Annual value for 2014
sw1	upstream	Zinc and compounds (as Zn)		Annual	No ELV or trigger levels	N/A	<5.0	μg/L	yes	Annual value for 2014
sw1	upstream	Total phosphorus		Annual	No ELV or trigger levels	N/A	0.090	mg/L	yes	Annual value for 2014
sw2	upstream		рН	Quarterly	No ELV or trigger levels	N/A	8.6	pH units	yes	Median vaule for 2014
sw2	upstream		Temperature	Quarterly	No ELV or trigger levels	N/A		degrees C	yes	Median vaule for 2014
sw2	upstream		Conductivity	Quarterly	No ELV or trigger levels	N/A	43.65	μS/cm @20oC	yes	Median vaule for 2014
sw2	upstream		Dissolved Oxygen	Quarterly	No ELV or trigger levels	N/A		mg/L	yes	Median vaule for 2014
sw2	upstream	Chlorides (as Cl)		Quarterly	No ELV or trigger levels	N/A	16703	mg/L	yes	Median vaule for 2014
sw2	upstream		BOD	Quarterly	No ELV or trigger levels	N/A	<1	mg/L	yes	Median vaule for 2014
sw2	upstream		COD	Quarterly	No ELV or trigger levels	N/A	40	mg/L	yes	Median vaule for 2014
sw2	upstream		Ammonia (as N)	Quarterly	No ELV or trigger levels	N/A	0.55	mg/L	yes	Median vaule for 2014
sw2	upstream		Suspended Solids	Quarterly	No ELV or trigger levels	N/A	244.5	mg/L	yes	Median vaule for 2014
sw2	upstream	Chromium and compounds (as Cr)		Annual	No ELV or trigger levels	N/A	2.000	μg/L	yes	Annual value for 2014
sw2	upstream	Copper and compounds (as Cu)		Annual	No ELV or trigger levels	N/A	6.000	μg/L	yes	Annual value for 2014
sw2	upstream	Cadmium and compounds (as Cd)		Annual	No ELV or trigger levels	N/A	<0.5	μg/L	yes	Annual value for 2014
sw2	upstream		CALCIUM			N/A	1336.000	mg/L	yes	Annual value for 2014

Lic No:

No

SELECT

W0022-01

Additional information

ER Monitor	ing returns su	mmary template-W/	ATER/WASTEW/	ATER(SEWER)	-	Lic No:	W0022-01		Year	20:
sw2	upstream		Iron	Annual	No ELV or trigger levels	N/A	379.000	μg/L	yes	Annual value for 201
sw2	upstream	Lead and compounds (as Pb)		Annual	No ELV or trigger levels	N/A	31.000	μg/L	yes	Annual value for 201
sw2	upstream		Magnesium	Annual	No ELV or trigger levels	N/A	2848.000	mg/L	yes	Annual value for 201 Elevation due to geole of the site
sw2	upstream		Manganese (as Mn)	Annual	No ELV or trigger levels	N/A	70.000	μg/L	yes	Annual value for 20
sw2	upstream	Mercury and compounds (as Hg)		Annual	No ELV or trigger levels	N/A	<0.05	mg/L	ves	Annual value for 20
sw2	upstream		Potassium	Annual	No ELV or trigger levels	N/A	179.000	mg/L	ves	Annual value for 20
sw2	upstream		Sulphate	Annual	No ELV or trigger levels	N/A	2556.000	mg/L	ves	Annual value for 20
sw2	upstream		Total Oxidised Nitrogen (TON)	Annual	No ELV or trigger levels	N/A	<0.1	mg/L	yes	Annual value for 20
sw2	upstream	Zinc and compounds (as Zn)		Annual	No ELV or trigger levels	N/A	5.000	μg/L	yes	Annual value for 2
sw2	upstream	Total phosphorus		Annual	No ELV or trigger levels	N/A	0.070	mg/L	yes	Annual value for 2
sw3	downstream		рН	Quarterly	No ELV or trigger levels	N/A	8.8	pH units	yes	Median vaule for 2
sw3	downstream		Temperature	Quarterly	No ELV or trigger levels	N/A		degrees C	yes	Median vaule for 2
sw3	downstream		Conductivity	Quarterly	No ELV or trigger levels	N/A	32.9	μS/cm @20oC	yes	Median vaule for 2
sw3	downstream		Dissolved Oxygen	Quarterly	No ELV or trigger levels	N/A		mg/L	yes	Median vaule for 2
sw3	downstream	Chlorides (as Cl)		Quarterly	No ELV or trigger levels	N/A	21650	mg/L	yes	Median vaule for 2
sw3	downstream		BOD	Quarterly	No ELV or trigger levels	N/A	<1	mg/L	yes	Median vaule for 2
sw3	downstream		COD	Quarterly	No ELV or trigger levels	N/A	55	mg/L	yes	Median vaule for 2
sw3	downstream		Ammonia (as N)	Quarterly	No ELV or trigger levels	N/A	0.44	mg/L	yes	Median vaule for 2
sw3	downstream		Suspended Solids	Quarterly	No ELV or trigger levels	N/A	117.5	mg/L	yes	Median vaule for 2
sw3	downstream	Chromium and compounds (as Cr)		Annual	No ELV or trigger levels	N/A	2.000	μg/L	yes	Annual value for 2
sw3	downstream	Copper and compounds (as Cu)		Annual	No ELV or trigger levels	N/A	2.000	μg/L	yes	Annual value for 2
sw3	downstream	Cadmium and compounds (as Cd)		Annual	No ELV or trigger levels	N/A	<0.5	μg/L	ves	Annual value for 2
sw3	downstream		CALCIUM	Annual	No ELV or trigger levels	N/A	856.000	mg/L	ves	Annual value for 2
sw3	downstream		Iron	Annual	No ELV or trigger levels	N/A	446.000	μg/L	yes	Annual value for 2
sw3	downstream	Lead and compounds (as Pb)		Annual	No ELV or trigger levels	N/A	32.000	μg/L	yes	Annual value for 2
sw3				Annual	No ELV or trigger levels					Annual value for 20 Elevation due to get
	downstream		Magnesium			N/A	52.000	mg/L	yes	of the site
sw3	downstream		Manganese (as Mn)	Annual	No ELV or trigger levels	N/A	41.000	μg/L	yes	Annual value for 2
sw3	downstream	Mercury and compounds (as Hg)		Annual	No ELV or trigger levels	N/A	<0.05	mg/L	yes	Annual value for 2
sw3	downstream		Potassium	Annual	No ELV or trigger levels	N/A	317.000	mg/L	yes	Annual value for 2
sw3	downstream		Sulphate	Annual	No ELV or trigger levels	N/A	1416.000	mg/L	yes	Annual value for 2 Site located in estu
sw3	downstream		Total Oxidised Nitrogen (TON)	Annual	No ELV or trigger levels	N/A	<0.1	mg/L	yes	Annual value for 2
sw3	downstream	Zinc and compounds (as Zn)		Annual	No ELV or trigger levels	N/A	7.000	μg/L	yes	Annual value for 2
sw3	downstream	Total phosphorus		Annual	No ELV or trigger levels	N/A	0.100	mg/L	yes	Annual value for 2
	SELECT	SELECT	SELECT			SELECT		SELECT	SELECT	

*trigger values may be agreed by the Agency outside of licence conditions

Table W2 Visual inspections-Please only enter details where contamination was observed.

Location Reference	Date of inspection	Description of contamination	Source of contamination	Corrective action	Comments
			SELECT		
			SELECT		

Licensed Emissions to water and /or wastewater(sewer)-periodic monitoring (non-continuous)

3	Was there any result in breach of licence requirements? If ye	es please provide brie	ef details in the		
-	comment section of Table W3	below		SELECT	Additional information
	Was all monitoring carried out in accordance with EPA				
	guidance and checklists for Quality of Aqueous Monitoring	External /Internal			
	Data Reported to the EPA? If no please detail what areas	Lab Quality	Assessment of		
4	require improvement in additional information box	checklist	results checklist	SELECT	

AER Monitoring returns summary template-WATER/WASTEWATER(SEWER)	Lic No:	W0022-01	Year	2014	

Table W3: Licensed Emissions to water and /or wastewater (sewer)-periodic monitoring (non-continuous)

						ELV or trigger values							Procedural		
Emission reference no:	Emission released to	Parameter/ SubstanceNote 1	Type of sample	Frequency of monitoring		in licence or any		Measured value		Compliant with licence			reference	Annual mass load (kg)	Comments
	SELECT	SELECT	SELECT	Ĭ	SELECT		SELECT		SELECT	SELECT	SELECT	SELECT			

Note 1: Volumetric flow shall be included as a reportable parameter

Note 2: Where Emission Limit Values (ELV) do not apply to your licence please compare results against EQS for Surface water or relevant receptor quality standards

AER Monitoring returns summary template-WATER/WASTEWATER(SEWER)	Lic No:	W0022-01	Year
---	---------	----------	------

	Continuous monitoring	_	
5	Does your site carry out continuous emissions to water/sewer monitoring?	SELECT	
	If yes please summarise your continuous monitoring data below in Table W4 and compare it to its relevant Emission Limit Value (ELV)		
6	Did continuous monitoring equipment experience downtime? If yes please record downtime in table W4 below	SELECT	

 $7\;$ Do you have a proactive service contract for each piece of continuo site?

8 Did abatement system bypass occur during the reporting year? If ye below

Table W4: Summary of average emissions -continue

uous monitorin	g				
f yes please complet		SELECT			
uous monitoring equ		SELECT			
		JELECI			

	Emission released to		Averaging				Number of ELV exceedences in reporting year	Comments
	SELECT	SELECT	SELECT	SELECT	SELECT			
	SELECT	SELECT	SELECT	SELECT	SELECT			

Additional Information

2014

note 1: Volumetric flow shall be included as a reportable parameter.

Table W5: Abatement system bypass reporting table

Date	Duration (hours)	Location	Resultant	Reason for	Corrective	Was a report	When was this report submitted?
			emissions	bypass	action*	submitted to the	
						EPA?	
						SELECT	

*Measures taken or proposed to reduce or limit bypass frequency

Bund/Pipeline testing template	Lic No:	W0022-01		Year	2014	
Bund testing dropdown menu click to see options			Additional information	-		
Are you required by your licence to undertake integrity testing on bunds and containment structures ? if yes plea containment structures on site, in addition to all bunds which failed the integrity test-all bunding structures whi						
the table below, please include all bunds outside the licenced testing period (mobile bunds and chemstore inclu		Yes				
2 Please provide integrity testing frequency period		3 years		1		
Does the site maintain a register of bunds, underground pipelines (including stormwater and foul), Tanks, sump	and containers? (containers refers to "Chemstore"					
3 type units and mobile bunds)		No				
4 How many bunds are on site?		3				
5 How many of these bunds have been tested within the required test schedule?		3				
6 How many mobile bunds are on site?		0				
7 Are the mobile bunds included in the bund test schedule?		No				
8 How many of these mobile bunds have been tested within the required test schedule?		0				
9 How many sumps on site are included in the integrity test schedule?		0				
10 How many of these sumps are integrity tested within the test schedule?		0				
Please list any sump integrity failures in table B1				-		
11 Do all sumps and chambers have high level liquid alarms?		N/A		1		
12 If yes to Q11 are these failsafe systems included in a maintenance and testing programme?		N/A		1		
13 Is the Fire Water Retention Pond included in your integrity test programme?		SELECT				

Г	Table	e B1: Summary details of	bund /containment structure inte	egrity test											
E	Bund/Containment									Integrity reports maintained on		Integrity test failure			Results of retest(if in current
s	structure ID	Туре	Specify Other type	Product containment	Actual capacity	Capacity required*	Type of integrity test	Other test type	Test date	site?	Results of test	explanation <50 words	Corrective action taken	for retest	reporting year)
L	eachate Lagoon	reinforced concrete		leachate	1400	1000	Structural assessment		Nov-08	Yes	Pass		SELECT	2015	
S	Surfacewater Lagoon	reinforced concrete		surfacewater	10000	7500	Structural assessment		Nov-08	Yes	Pass			2015	
s	Surfacewater Lagoon	reinforced concrete		surfacewater	2500	2000	Structural assessment		Nov-08	Yes	Pass		SELECT	2015	
F	las integrity testing bee	en carried out in accordar	nce with licence requirements and	d are all structures tested in	•							•	•	•	
15 li	ine with BS8007/EPA G	uidance?			bunding and storage guideli	ines	Yes								
16 A	Are channels/transfer sy	stems to remote contair	nment systems tested?				SELECT		I						
17 /	Are channels/transfer s	ystems compliant in both	integrity and available volume?				Yes		Ι						

Pipeline/underground structure testing

Г

Are you required by your licence to undertake integrity testing* on underground structures e.g. pipelines or sumps etc ? if yes please fill out table 2 below listing all 1 underground structures and pipelines on site which failed the integrity test and all which have not been tested withing the integrity test period as specified 2 Please provide integrity testing frequency period *please note integrity testing means water tightness testing for process and foul pipelines (as required under your licence)

SELECT	
SELECT	

Table B2: Summary details of pipeline/underground structures integrity test

	Table	B2. Summary details of pr	penne/underground structures in	legitly lest						
Stru	ucture ID	Type system		Does this structure have Secondary containment?	Type of secondary containment		Integrity reports maintained on site?			Results of retest(if in current reporting year)
		SELECT	SELECT	SELECT	SELECT	SELECT	SELECT	SELECT		SELECT

Please use commentary for additional details not answered by tables/ questions above

Year

2014

	Comi	ments
Are you required to carry out groundwater monitoring as part of your licence requirements?	yes	Please provide an interpretation of groundwater monitoring data in the
2 Are you required to carry out soil monitoring as part of your licence requirements?	no	interpretation box below or if you require additional space please
Do you extract groundwater for use on site? If yes please specify use in comment 3 section	no	include a groundwater/contaminated land monitoring results interpretaion as an additional section in this AER
Do monitoring results show that groundwater generic assessment criteria such as GTVs or IGVs are exceeded or is 4 there an upward trend in results for a substance? If yes, please complete the Groundwater Monitoring Guideline Template <u>Groundwater</u> Report (link in cell G8) and submit separately through ALDER as a licensee return AND answer questions 5-12 below. <u>template</u>	no	
5 Is the contamination related to operations at the facility (either current and/or historic)	N/A	
6 Have actions been taken to address contamination issues?If yes please summarise remediation strategies proposed/undertaken for the site	N/A	
7 Please specify the proposed time frame for the remediation strategy	N/A	
8 Is there a licence condition to carry out/update ELRA for the site?	N/A	
9 Has any type of risk assesment been carried out for the site?	N/A	
10 Has a Conceptual Site Model been developed for the site?	N/A	
11 Have potential receptors been identified on and off site?	N/A	The groundwater results at the site are in line with previous years. No
12 Is there evidence that contamination is migrating offsite?	N/A	upward trend has been observed in 2013 compared with previous years.

Table 1: Upgradient Groundwater monitoring results

	10									
Date of sampling	Sample location reference	Parameter/ Substance	Methodology	Monitoring frequency	Maximum Concentration++	Average Concentration+	unit	GTV's*	IGV	Upward trend in pollutant concentration over last 5 years of monitoring data
						7.3				
Quarterly	BH3	рН		Quarterly			units		9.5	no
	BH3	Temp		Quarterly			с			no
	внз	Elec.Conductivity		Quarterly		12.4	mS/cm		1000	no
	BH3	Chlorides		Quarterly		3737	mg/l		250	no
	внз	Ammoniacal Nitorgen		Quarterly		2.7	mg/l		0.02NH3	no
	BH3	Iron		Annual		5.7	ug/l		1.0mg/l	no
	BH3	TON		Quarterly			mg/l			no
	BH3	TOC		Quarterly		105	mg/l			no
Annual	BH3	Cadmium		Annual		2124	ug/l		0.005mg/l	no
	BH3	Chromium (total)		Annual	1	1	ug/l		0.03mg/l	no
	BH3	Copper		Annual	1	1	ug/l		0.03mg/l	no
	BH3	Cyanide (Total)		Annual			ug/l		0.01mg/l	no
	BH3	Lead		Annual	52	52	ug/l		0.01mg/l	no
	BH3	Mangnesium		Annual	877	877	mg/l			no

proundwat	ter/Soil mon	itoring template		Lic No:	W0022-01		Year	2014	1
BH3	3 Mar	nganese	Annual	1303	1303	ug/l		0.3mg/l	no
BH3	3 Mer	rcury	Annual			ug/I		0.001mg/l	no
BH3			Quarterly	631	631	mg/l		5mg/l	no
BH3	3 Sod	lium	Quarterly					•	no
BH3			Annual			mg/l			no
BH3			Annual	<1.0	<1.0	mg/l			no
			, and a		-110				
BHS			Annual	<1.0	<1.0	mg/l			no
BH3		enic	Annual	1	1	ug/l			
BH3		ium, total	Annual	1087	1087	ug/l			
BH3	3 Bor	ron, total	Annual	1.36	1.36	mg/l			
BH3	3 Sele	enium, total	Annual	2	2	ug/l			
BH3	3 Silve	er	Annual	0.0015	0.0015	mg/l			
BH3	3 Tell	lurium, total	Annual	<0.5	<0.5	ug/l			
BH3			Annual	<0.5	<0.5	ug/l			
BH3			Annual	<0.5	<0.5	ug/l			
BH3	3 Phe	enols	Annual	<1.0	<1.0	ug/l		0.5ug/l	no
BHS	3 Ace	naphthylene	Annual	<1.0	<1.0	ug/l			no
BH3	3 Ace	naphthylene	Annual	<1.0	<1.0	ug/l			no
BH3			Annual	<1.0	<1.0	ug/l	1		no
BH3			Annual	<1.0	<1.0	ug/l		10ug/l	no
		modichlorome	/	41.0	41.0	66/1		1006/1	110
BH3	3 that	ne	Annual	<1.0	<1.0	ug/I			no
BH3	3 Bro	moform	Annual	<1.0	<1.0	ug/I			no
BH3	3 Chlo	oroform	Annual	<1.0	<1.0	ug/I		12ug/l	no
BH3	3 Chr	ysene	Annual	<1.0	<1.0	ug/l			no
	Dibi	romochlorome							
BH3			Annual	<2.0	<2.0	ug/l			no
BHS			Annual	<1.0	<1.0	ug/l			no
BHS			Annual	<1.0	<1.0	ug/I			no
BH3			Annual	<1.0	<1.0	ug/I			no
BH3	3 that		Annual	<1.0	<1.0	ug/l			no
BH3		ntachloropheno	Annual	<1.0	<1.0	ug/l		2.0ug/l	no
BH3			Annual	<1.0	<1.0	ug/l			no
BH3			Annual	<1.0	<1.0	ug/l			no
						-01-			
BH3			Annual	<1.0	<1.0	ug/l			no
BH3	Hex	chloroethene kachlorobenzen	Annual	<1.0	<1.0	ug/l			no
BH3	3 e Hex		Annual	<1.0	<1.0	ug/l		0.03ug/l	no
BH3	3 ene		Annual	<1.0	<1.0	ug/l		0.10ug/l	no
BH3	2,4, 3 Tric		Annual	<1.0	<1.0	ug/l			no
	2,4-		,	×1.0	×1.0	5 ₀ / ·			
BH3		hlorophenol	Annual	<1.0	<1.0	ug/l			no
	2,4-	- nethylphenol	Annual	<1.0	<1.0	ug/l			no
BH3									

Groundy	vater/Soil m	onitoring template		Lic No:	W0022-01		Year	2014	
		1,2,4-							
	BH3	trichlorobenzene	Annual	<1.0	<1.0	ug/l		0.40ug/l	no
		1.2							
	внз	1,2- dichlorobenzene	Annual	<1.0	<1.0	ug/l			no
						· or			
	BH3	1,3- dichlorobenzene	Annual	<1.0	<1.0				no
	впэ	dichlorobenzene	Annual	<1.0	<1.0	ug/l			110
		1,4-							
	BH3	dichlorobenzene	Annual	<1.0	<1.0	ug/l			no
		2,4,5-							
	BH3	Trichlorophenol	Annual	<1.0	<1.0	ug/l			no
	BH3	2,4-Dinitrotoluene	Annual	<1.0	<1.0	ug/l			no
	BH3	2,6-Dinitrotoluene	Annual	<1.0	<1.0	ug/l			no
		2- Chloronaphthalen							
	BH3	e	Annual	<1.0	<1.0	ug/l			no
		2- Methylnaphthalen							
	BH3	e	Annual	<1.0	<1.0	ug/l			no
	BH3	2-Methylphenol	Annual	<1.0	<1.0	ugli			20
	BH3	2-Methylphenol 2-Nitrophenol	Annual	<1.0	<1.0	ug/I ug/I			no no
	впэ	4-Bromophenyl	Annual	<1.0	<1.0	ug/i			110
	BH3	Phenyl Ether	Annual	<5.0	<5.0	ug/l			no
	BH3	4-Chloro-3- methylphenol	Annual	<1.0	<1.0	ug/l			no
		4-Chlorophenyl					}		
	BH3	phenyl ether	Annual	<1.0	<1.0	ug/l			no
	BH3	4-Nitrophenol	Annual	<1.0	<1.0	ug/l	ļ		no
	BH3	Acenaphthene Benzo(a)anthrace	Annual	<1.0	<1.0	ug/l			no
	внз	ne	Annual	<1.0	<1.0	ug/l			no
	BH3	Benzo(a)pyrene	Annual	<1.0	<1.0	ug/l			no
		Benzo(b)fluoranth							
	BH3	ene Benzo(g,h,i)peryle	Annual	<1.0	<1.0	ug/I			no
	внз	ne	Annual	<1.0	<1.0	ug/l			no
	BH3	Benzyl Butyl Phthalate	Annual	<1.0	<1.0	ug/l			20
	D13	Phthalate Bis(2-	Annual	<1.0	<1.U	ug/l			no
		chloroethoxy)met							
	BH3	hane	Annual	<5.0	<5.0	ug/l			no
		Bis(2-							
	BH3	chloroethyl)ether	Annual	<1.0	<1.0	ug/l			no
		Bis(2- chloroisopropyl)et							
	BH3	her	Annual	<1.0	<1.0	ug/l			no
		Bis(2- ethylhexyl)phthala							
	BH3	te	Annual	<1.0	<1.0	ug/l			no
		Dibenz(a,h)anthra							
	BH3	cene	Annual	<1.0	<1.0	ug/l			no
	BH3	Dibenzofuran	Annual	<1.0	<1.0	ug/l			no
	BH3	Diethylphthalate	Annual	<1.0	<1.0	ug/l			no
		di-n-			1			i	
	BH3	Butylphthalate	Annual	<1.0	<1.0	ug/l			no

Ground	water/Soil	monitoring temp	ate	Lic No:	W0022-01		Year	2014	
	внз	Di-n- octylphthalate	Annual	<1.0	<1.0	ug/l			no
	внз	Diphenylamine	Annual	<1.0	<1.0	ug/I			no
	BH3	Hexachloroethane	Annual	<1.0	<1.0	ug/I			no
	BH3	Indeno(1,2,3- c,d)pyrene	Annual	<1.0	<1.0	ug/l			no
	BH3	Isophorone	Annual	<1.0	<1.0	ug/l			no
	BH3	Nitrobenzene	Annual	<1.0	<1.0	ug/l			no
		n-Nitrosodi-n-							
	BH3	propylamine	Annual	<1.0	<1.0	ug/I			no
<u> </u>	BH3	Acetone	Annual	<1.0	<1.0	ug/I		-	no
	BH3	Dichloromethane	Annual	<1.0	<1.0	ug/l		10ug/l	no
<u> </u>	BH3	Tetrahydrofuran	Annual	<1.0	<1.0	ug/I		10	no
	BH3 BH3	Toluene	Annual	<1.0	<1.0	ug/l		10ug/l	no
<u> </u>	БНЗ	Xylene -o Dichlorodifluorom	Annual	<1.0	<1.0	ug/l		10ug/l	no
	внз	ethane	Annual	<0.5	<0.5	ug/l			no
	BH3	Chloromethane	Annual	<1.0	<1.0	ug/l			no
		Ethyl Chlorido/Chloroot							
	внз	Chloride/Chloroet hane	Annual	<1.0	<1.0	ug/l			no
	BH3	Vinyl Chloride	Annual	<1.0	<1.0	ug/l			no
	BH3	Bromomethane	Annual	<1.0	<1.0	ug/I			no
		Trichloromonofluo	A I			"			
	BH3	romethane Ethyl	Annual	<1.0	<1.0	ug/I			no
		Ether/Diethyl							
	BH3	Ether	Annual	<1.0	<1.0	ug/I			no
	внз	11 Dichloroethene	Annual	<1.0	<1.0	ug/l			no
		lodomethane/Met							
	BH3	hyl Iodide	Annual	<1.0	<1.0	ug/I			no
	внз	Carbon Disulphide	Annual	<1.0	<1.0	ug/l			no
	BH3	Allyl Chloride	Annual	<1.0	<1.0	ug/I			no
		Chlormethyl							
	внз	Cyanide/Chloroac etonitrile	Annual	<1.0	<1.0	ug/l			no
	BH3	Propanenitrile	Annual	<1.0	<1.0	ug/l			no
		Trans-1,2	741100			-0/		1	
L	BH3	Dichloroethene	Annual	<1.0	<1.0	ug/I			no
	BH3	MtBE 1,1-	Annual	<1.0	<1.0	ug/I			no
	внз	1,1- dichloroethane	Annual	<1.0	<1.0	ug/I			no
				-	-				
	внз	2,2- dichloropropane	Annual	<1.0	<1.0	ug/l			no
	5115	cis-12	Alliludi	×1.0	×1.0	ug/1			
	BH3	Dichloroethene	Annual	<1.0	<1.0	ug/l			no
	BH3	2-Butanone	Annual	<1.0	<1.0	ug/I			no
<u> </u>	BH3	Methyl Acrylate	Annual	<1.0	<1.0	ug/l			no
	BH3	Bromochlorometh ane	Annual	<1.0	<1.0	ug/l			no
						-0/-		+	
	BH3	Methacrylonitrile	Annual	<1.0	<1.0	ug/l			no
	DIIS	-							
	bris	1,1,1-							

Groundw	ater/Soil m	onitoring template		Lic No:	W0022-01		Year	2014	
E	BH3	1-Chlorobutane	Annual	<1.0	<1.0	ug/l			no
ŀ	BH3	Carbon Tetrachloride	Annual	<1.0	<1.0	ug/l			no
	5.10		, unida	-210	-210	-0/-			
	BH3	11 Dichloropropene	Annual	<1.0	<1.0	ug/l			no
	впэ	Dichloropropene	Annual	<1.0	<1.0	ugyi			110
E	BH3	1,2 dicloroethane	Annual	<1.0	<1.0	ug/l		10ug/l	no
		1,2-							
E	BH3	dichloropropane	Annual	<1.0	<1.0	ug/I			no
E	BH3	Dibromomethane	Annual	<1.0	<1.0	ug/l			no
	5112	Methyl							
t	BH3	Methacrylate 13	Annual	<1.0	<1.0	ug/l			no
		Dichloropropene,c							
E	BH3	is MIBK/4 Methyl 2	Annual	<1.0	<1.0	ug/I	-		no
E	BH3	Pentanone	Annual	<1.0	<1.0	ug/l			no
		13 Dicklorenzenen t							
E	BH3	Dichloropropene,t rans	Annual	<1.0	<1.0	ug/l			no
		Ethyl							
E	BH3	Methacrylate	Annual	<1.0	<1.0	ug/l			no
		112							
E	BH3	Trichloroethane	Annual	<1.0	<1.0	ug/I			no
		1,3-							
	BH3	dichloropropane	Annual	<1.0	<1.0	ug/l	-		no
E	BH3	2-Hexanone 1,2-	Annual	<1.0	<1.0	ug/l			no
E	BH3	dibromoethane	Annual	<1.0	<1.0	ug/I			no
E	BH3	Chlorobenzene	Annual	<1.0	<1.0	ug/l		1.0ug/l	no
T		1,1,1,2-							
E	BH3	tetrachloroethane	Annual	<1.0	<1.0	ug/l			no
	BH3	Ethylbenzene	Annual	<1.0	<1.0	ug/l		10ug/l	no
	BH3	Xylene P&M	Annual	<1.0	<1.0	ug/l			no
E	BH3	Styrene	Annual	<1.0	<1.0	ug/l			no
E	BH3	Isopropylbenzene	Annual	<1.0	<1.0	ug/l			no
	BH3	Bromobenzene	Annual	<1.0	<1.0	ug/l			no
		1122							
E	BH3	1,1,2,2- tetrachloroethane	Annual	<1.0	<1.0	ug/l			no
				-	-				
ŧ	BH3	1,2,3- trichloropropane	Annual	<1.0	<1.0	ug/l			no
	-				110				
,	BH3	Trans 14 Dichloro 2 Butene, tran	Annual	<1.0	<1.0	ug/l			no
	BH3	Propylbenzene	Annual	<1.0	<1.0	ug/l			no
E	BH3	2-chlorotoluene	Annual	<1.0	<1.0	ug/l			no
E	BH3	4-chlorotoluene	Annual	<1.0	<1.0	ug/l			no
		1,3,5-							
E	BH3	1,3,5- trimethylbenzene	Annual	<1.0	<1.0	ug/I			no
	כווס	Test Dut d Denzene							20
16	BH3	Tert Butyl Benzene	Annual	<1.0	<1.0	ug/l		1	no

Ground	water/Soil m	nonitoring te	emplate		Lic No:	W0022-01		Year	2014	
		1,2,4-								
	BH3	trimethylbenzene		Annual	<1.0	<1.0	ug/l			no
	внз	sec-butylbenzene		Annual	<1.0	-1.0	ug/l			no
	впр	sec-butyibenzene		Annuai	<1.0	<1.0	ug/i			110
		Р								
 	BH3	Isopropyltoluene		Annual	<1.0	<1.0	ug/l			no
	внз	N Butyl Benzene		Annual	<1.0	<1.0	ug/l			no
	BH3	1,2-dibromo-3- chloropropane		Annual	<1.0	<1.0	ug/l			no
				Annuai	<1.0	<1.0	ug/i			110
	DU2	1,2,3-		Annual	-1.0	-1.0				20
	BH3 BH3	trichlorobenzene VOC		Annual Annual	<1.0	<1.0	ug/l ug/l			no no
	BH3	SVOC		Annual	<2.0	<2.0	ug/l			no
	BH3	OPP		Annual	<0.005	<0.005	ug/l		-	no
	BH3	OCP		Annual	<10	<10	ng/l			
	T	Total			<0.05	<0.05				
	BH3	pesticides		Annual			ug/l			
						7.9				
Quarterly		рН	meter	Quarterly			SELECT		9.5	
	BH4	Temp	meter	Quarterly			SELECT			no
	BH4	Elec.Conductivity	meter	Quarterly		17.1	mS/cm		1000	no
	BH4	Chlorides	titration	Quarterly		7941			250	
	BH4	Ammoniacal	ico motor	Quartarlu		1.9			0.02	
	BH4 BH4	Nitorgen Iron	ise meter	Quarterly Annual		5.5	mg/l		0.02	no
	BH4	TON		Quarterly		<0.1	mg/l		1	no
	BH4	тос	Hach	Quarterly		112	mg/l		-	no
Annual	BH4	Cadmium		Annual	0.9	3074	ug/l		0.005mg/l	no
	DUIA				2	2			0.02	
	BH4 BH4	Chromium (total)		Annual Annual	2 6	2	ug/I ug/I		0.03mg/l 0.03mg/l	no no
	BH4 BH4	Copper Cyanide (Total)		Annual	0	0	ug/l		0.03mg/l	no
	BH4 BH4	Lead		Annual	41	41	ug/l		0.01mg/l	no
	BH4	Mangnesium		Annual	1388	1388	mg/l			no
	BH4	Manganese		Annual	1214	1214	ug/l		0.3mg/l	no
	BH4	Mercury		Annual			ug/l		0.001mg/l	no
	BH4	Potassium		Quarterly	1231	1231	mg/l		5mg/l	no
	BH4	Sodium		Quarterly						no
ļ	BH4	Sulphate		Annual			mg/l		200mg/l	no
	BH4	Total Alkalinity		Annual	<1.0	<1.0	mg/l			no
	BH4	Total Phosphorus		Annual	<1.0	<1.0	mg/l			no
	BH4	Arsenic		Annual	4	4	ug/I			
	BH4	Barium, total		Annual	235	235	ug/l			
	BH4	Boron, total		Annual	2.69	2.69	mg/l			
1	BH4	Selenium, total		Annual	1	1				
	BH4	Silver		Annual	0.004	0.004	mg/l			
				1 A I	< 0.5	<0.5	ug/l	1		
	BH4	Tellurium, total		Annual						
	BH4 BH4	Tellurium, total Thallium, total		Annual	<0.5	<0.5	ug/l			

Groundwat	er/Soil mor	nitoring template		Lic No:	W0022-01		Year	2014	
BH4	4 Phe	enols	Annual	<1.0	<1.0	ug/l		0.5ug/l	no
BH4	1	enaphthylene	Annual	<1.0	<1.0	ug/l			no
BH4		thracene	Annual	<1.0	<1.0	ug/l	-		no
BH4		nzene	Annual	<1.0	<1.0	ug/l		10ug/l	no
	Bro	omodichlorome	Annual			45,1		1006/1	110
BH4		ane	Annual	<1.0	<1.0	ug/I	_		no
BH4		omoform	Annual	<1.0	<1.0	ug/l	_	12ug/l	no
BH4		loroform	Annual	<1.0	<1.0	ug/l		12ug/l	no
BH4		rysene promochlorome	Annual	<1.0	<1.0	ug/l			no
BH4		ane	Annual	<1.0	<1.0	ug/l			no
BH4		ioranthene	Annual	<2.0	<2.0	ug/l			no
BH4		iorene	Annual	<1.0	<1.0	ug/l			no
BH4	4 Na	phthalene	Annual	<1.0	<1.0	ug/l			no
	Dib	promochlorome							
BH4		ane ntachloropheno	Annual	<1.0	<1.0	ug/l			no
BH4	4 I	macmoropheno	Annual	<1.0	<1.0	ug/l		2.0ug/l	no
BH4		enanthrene	Annual	<1.0	<1.0	ug/l	1	<u> </u>	no
BH4		rene	Annual	<1.0	<1.0	ug/l			no
					1.0				
BH4	4 Tet	trachloroethene	Annual	<1.0	<1.0	ug/l			no
BH4	4 Trie	chloroethene	Annual	<1.0	<1.0	ug/l			no
		xachlorobenzen							
BH4		xachlorobutadi	Annual	<1.0	<1.0	ug/l		0.03ug/l	no
BH4			Annual	<1.0	<1.0	ug/l		0.10ug/l	no
BH4	2,4 4 Trio	ł,6- chlorophenol	Annual	<1.0	<1.0	ug/l			no
	2,4			-210	-110	-0/-			
BH4	4 Dic	chlorophenol	Annual	<1.0	<1.0	ug/I			no
	2,4	1-							
BH4	4 Din	methylphenol	Annual	<1.0	<1.0	ug/l			no
BH4	4 2-0	Chlorophenol	Annual	<1.0	<1.0	ug/l			no
	1.2								
BH4	1,2 4 tric	z,4- chlorobenzene	Annual	<1.0	<1.0	ug/l			no
BH4	1,2 4	2- chlorobenzene	Annual	<1.0	<1.0	ug/l			no
504			/	×1.0	~1.0	6 ₀ / ·			
	1,3		A I	.1.0	.1.0				
BH4	4 dic	hlorobenzene	Annual	<1.0	<1.0	ug/l			no
	1,4								
BH4	4 dic	hlorobenzene	Annual	<1.0	<1.0	ug/l			no
	2,4	1.5-							
BH4	4 Trie	chlorophenol	Annual	<1.0	<1.0	ug/l			no
			A I	.1.0	.1.0				
BH4	4 2,4	I-Dinitrotoluene	Annual	<1.0	<1.0	ug/l			no
BH4	4 2,6	5-Dinitrotoluene	Annual	<1.0	<1.0	ug/l			no
	2-	lana a bibalan							
1 1	Chl	loronaphthalen	Annual	<1.0	<1.0		1		no

Groundv	water/Soil m	nonitoring tem	plate	Lic No:	W0022-01		Year	2014	<u> </u>
		2- Methylnaphthalen							
	BH4	e	Annual	<1.0	<1.0	ug/I			no
	BH4	2-Methylphenol	Annual	-10	-10				20
	BH4 BH4	2-Nitrophenol	Annual Annual	<1.0 <1.0	<1.0	ug/l ug/l		-	no no
		4-Bromophenyl							
I	BH4	Phenyl Ether	Annual	<1.0	<1.0	ug/I			no
	BH4	4-Chloro-3- methylphenol	Annual	<5.0	<5.0	ug/l			no
	D 114	4-Chlorophenyl							
	BH4 BH4	phenyl ether 4-Nitrophenol	Annual Annual	<1.0 <1.0	<1.0 <1.0	ug/l ug/l			no no
	BH4 BH4	Acenaphthene	Annual	<1.0	<1.0	ug/I			no
		Benzo(a)anthrace							
	BH4	ne	Annual	<1.0	<1.0	ug/l			no
]	BH4	Benzo(a)pyrene Benzo(b)fluoranth	Annual	<1.0	<1.0	ug/l			no
	BH4	ene	Annual	<1.0	<1.0	ug/l			no
	BH4	Benzo(g,h,i)peryle ne	Annual	<1.0	<1.0	ug/l			no
		Benzyl Butyl	Aiiiudi			ug/1			110
	BH4	Phthalate	Annual	<1.0	<1.0	ug/I			no
ľ		Bis(2- chloroethoxy)met							
	BH4	hane	Annual	<1.0	<1.0	ug/l			no
ł		Bis(2-							
	BH4	chloroethyl)ether	Annual	<5.0	<5.0	ug/I			no
ł		Bis(2- chloroisopropyl)et							
	BH4	her	Annual	<1.0	<1.0	ug/I			no
		Bis(2- ethylhexyl)phthala							
	BH4	te	Annual	<1.0	<1.0	ug/l			no
	BH4	Dibenz(a,h)anthra cene	Annual	<1.0	<1.0	ug/l			no
	BH4	Dibenzofuran	Annual	<1.0	<1.0	ug/l			no
	BH4	Diethylphthalate di-n-	Annual	<1.0	<1.0	ug/l			no
	BH4	Butylphthalate	Annual	<1.0	<1.0	ug/l			no
	BH4	Di-n- octylphthalate	Annual	<1.0	<1.0	ug/l			no
	BH4 BH4	Diphenylamine	Annual	<1.0	<1.0	ug/l			no
	BH4	Hexachloroethane Indeno(1,2,3-	Annual	<1.0	<1.0	ug/l			no
	BH4	c,d)pyrene	Annual	<1.0	<1.0	ug/l			no
	BH4	Isophorone	Annual	<1.0	<1.0	ug/I			no
	BH4	Nitrobenzene	Annual	<1.0	<1.0	ug/l			no
	BH4	n-Nitrosodi-n- propylamine	Annual	<1.0	<1.0	ug/l			no
	BH4	Acetone	Annual	<1.0	<1.0	ug/I			no
	DUA	Dichloromethane	A	.1.0	.1.0			10.00/	
	BH4	Dichloromethane	Annual	<1.0	<1.0	ug/I		10ug/l	no
	BH4	Tetrahydrofuran	Annual	<1.0	<1.0	ug/l			no
	BH4	Toluene	Annual	<1.0	<1.0	ug/I		-	no
	BH4	Xylene -o Dichlorodifluorom	Annual	<1.0	<1.0	ug/I		10ug/l	no

Groundwater/S	Soil monitoring template	e	Lic No:	W0022-01		Year	2014	
BH4	Chloromethane	Annual	<0.5	<0.5	ug/l			no
	Ethyl Chloride/Chloroet							
BH4	hane	Annual	<1.0	<1.0	ug/I			no
BH4	Vinyl Chloride	Annual	<1.0	<1.0	ug/I			no
BH4	Bromomethane	Annual	<1.0	<1.0	ug/I			no
	Trichloromonofluo							
BH4	romethane	Annual	<1.0	<1.0	ug/I			no
	Ethyl Ether/Diethyl							
BH4	Ether	Annual	<1.0	<1.0	ug/I			no
BH4	11 Dichloroethene Iodomethane/Met	Annual	<1.0	<1.0	ug/l		-	no
BH4	hyl lodide	Annual	<1.0	<1.0	ug/I			no
								-
BH4	Carbon Disulphide	Annual	<1.0	<1.0	ug/I			no
BH4	Allyl Chloride	Annual	<1.0	<1.0	ug/I			no
	Chlormethyl Cyanide/Chloroac							
BH4	etonitrile	Annual	<1.0	<1.0	ug/l			no
BH4	Propanenitrile	Annual	<1.0	<1.0	ug/I			no
	Trans-1,2							
BH4	Dichloroethene	Annual	<1.0	<1.0	ug/I		-	no
BH4	MtBE 1,1-	Annual	<1.0	<1.0	ug/l		_	no
BH4	dichloroethane	Annual	<1.0	<1.0	ug/l			no
				-				
BH4	2,2- dichloropropane	Annual	-1.0	-1.0				no
БП4	cis-12	Annual	<1.0	<1.0	ug/l			110
BH4	Dichloroethene	Annual	<1.0	<1.0	ug/I			no
BH4	2-Butanone	Annual	<1.0	<1.0	ug/I			no
BH4	Methyl Acrylate	Annual	<1.0	<1.0	ug/I			no
	Bromochlorometh		4.0					
BH4	ane	Annual	<1.0	<1.0	ug/l		_	no
BH4	Methacrylonitrile	Annual	<1.0	<1.0	ug/l			no
BH4	1,1,1- trichloroethane	Annual	<1.0	<1.0	ug/l			no
BH4 BH4	1-Chlorobutane	Annual	<1.0	<1.0	ug/l			no
	Carbon	Amiudi	×1.0	×1.0				
BH4	Tetrachloride	Annual	<1.0	<1.0	ug/I			no
	11							
BH4	Dichloropropene	Annual	<1.0	<1.0	ug/I			no
							1	
BH4	1,2 dicloroethane	Annual	<1.0	<1.0	ug/I			no
	1,2-							
BH4	dichloropropane	Annual	<1.0	<1.0	ug/I		10ug/l	no
BH4	Dibromomethane	Annual	<1.0	<1.0	ug/I			no
BH4	Methyl Methacrylate	Annual	<1.0	<1.0	ug/l			no
	13							
DUA	Dichloropropene,c	Apresed	-1.0	-1.0				20
BH4	is MIBK/4 Methyl 2	Annual	<1.0	<1.0	ug/I			no
BH4	Pentanone	Annual	<1.0	<1.0	ug/I			no

Ground	water/Soil ı	monitoring template		Lic No:	W0022-01		Year	2014	
		13 Dichloropropene,t							
	BH4	Dichloropropene,t rans	Annual	<1.0	<1.0	ug/l			no
	BH4	Ethyl	Annual					Ī	20
	BH4	Methacrylate	Annual	<1.0	<1.0	ug/l	_		no
		112							
	BH4	Trichloroethane	Annual	<1.0	<1.0	ug/l			no
		1,3-							
	BH4	dichloropropane	Annual	<1.0	<1.0	ug/l	_		no
	BH4	2-Hexanone 1,2-	Annual	<1.0	<1.0	ug/I	-		no
	BH4	dibromoethane	Annual	<1.0	<1.0	ug/l			no
	BH4	Chlorobenzene	Annual	<1.0	<1.0	ug/I		1.0ug/l	no
		1,1,1,2-							
	BH4	tetrachloroethane	Annual	<1.0	<1.0	ug/l			no
	BH4	Ethylbenzene	Annual	<1.0	<1.0	ug/l		10ug/l	no
	BH4	Xylene P&M	Annual	<1.0	<1.0	ug/l			no
	BH4	Styrene	Annual	<1.0	<1.0	ug/l			no
	BH4	Isopropylbenzene	Annual	<1.0	<1.0	ug/l			no
	BH4	Bromobenzene	Annual	<1.0	<1.0	ug/l			no
		1,1,2,2-							
	BH4	tetrachloroethane	Annual	<1.0	<1.0	ug/I			no
		1,2,3-							
	BH4	trichloropropane	Annual	<1.0	<1.0	ug/l			no
	BH4	Trans 14 Dichloro 2 Butene, tran	Annual	<1.0	<1.0	ug/l			no
	BH4	Propylbenzene	Annual	<1.0	<1.0	ug/l			no
	BH4	2-chlorotoluene	Annual	<1.0	<1.0				no
	DN4	z-chlorotoluene	Annual	<1.0	<1.0	ug/l			no
	BH4	4-chlorotoluene	Annual	<1.0	<1.0	ug/I			no
		1,3,5-							
	BH4	trimethylbenzene	Annual	<1.0	<1.0	ug/l			no
	BH4	Tert Butyl Benzene	Annual	<1.0	<1.0	ug/l			no
	-								
	BH4	1,2,4- trimethylbenzene	Annual	<1.0	<1.0	ug/l			no
	BH4	sec-butylbenzene	Annual	<1.0	<1.0	ug/l			no
		Р			1				
	BH4	Isopropyltoluene	Annual	<1.0	<1.0	ug/l		<u> </u>	no
	BH4	N Butyl Benzene	Annual	<1.0	<1.0	ug/l			no
		1,2-dibromo-3-							
	BH4	chloropropane	Annual	<1.0	<1.0	ug/l			no
		1,2,3-							
	BH4	trichlorobenzene	Annual	<1.0	<1.0	ug/l	_		no
	BH4 BH4	voc svoc	Annual Annual	<2.0 <5.0	<u> </u>	ug/l ug/l	-		no no
	0/14	3400	Aiiiuai	<u></u> \5.∪	-		_		110
		OPP	Annual	< 0.005		ug/l			

Groundv	water/Soil m		emplate		Lic No:	W0022-01		Year	2014	
	BH4	Total pesticides		Annual	<0.05		ug/l			no
					Dry	Dry				
Quarterly	BH5	рН		Quarterly	6		SELECT			no
	BH5	Temp		Quarterly	Dry		SELECT		9.5	no
	BH5	Elec.Conductivity		Quarterly	Dry		SELECT		1000	no
	BH5	Chlorides		Quarterly	Dry	Dry			250	no
	BH5	Ammoniacal Nitorgen		Quarterly		Dry	mg/l		0.02	no
	BH5	Iron		Annual	Dry	Dry	ug/l		0.02	no
	BH5	TON		Quarterly	Dry		mg/l			no
	BH5	тос		Quarterly	Dry	Dry	mg/l			no
Annual	BH5	Annual		Annual	NO RESULTS	No Results	ug/l			no
	5.15				Dry	Dry	-0/			
	+				2.,	2.,				
!										
ا ا										
ا ا										
	1	1		İ		İ				
	1	1								
			ļ		<u> </u>					
	ļ									
	1									
	1	1				l				
	1									
	ł	1								
	ł	┨────┤	ļ							
	ł	1								
	ł	1								
		-								
	Į									
	1									
1	1	1		1		İ				
		1								

Image Image <
NMM NMM NMM NMM NMM NMM NMM NMM NMM NMM NMM NMM NMMM NMM NMMM NMM NMM NMM
Image Image
Image: state in the state i
Image Image Image Image Image Image Image Image Image Image
Image: sector of the sector
Image: Problem Imade: Problem Image: Problem Image: Proble
Image: sector
Image Image
Image: ProblemImage:
Image: section of the section of th
Image: series of the series
Image: series of the series
Image: series of the series
Image: series of the series
Image: section of the section of th
Image: section of the section of th
Image: problemImage:
Image: section of the section of th
Image: book book book book book book book boo
Image: series of the series
Image: series of the series
Image: series of the series
Image: series of the series
Image: series of the series
Image: series of the series
Image: state in the state
Image: state in the state
Image: state in the state
Image: state of the state
Image: state of the state
Image: state of the state
Image: state of the state o

Ground	water/Soil m	onitoring to	emplate	 Lic No:	W0022-01	 Year 2014			
L									
	-								
<u> </u>									
<u> </u>									
<u> </u>									
<u> </u>									
	1								
H	1								

Groundwater/Soil	monitoring t	emplate	Lic No:	W0022-01	Year	2014	

.+ where average indicates arithmetic mean

.++ maximum concentration indicates the maximum measured concentration from all monitoring results produced during the reporting year

Table 2: Downgradient Groundwater monitoring results

Date of sampling	Sample location reference	Parameter/ Substance	Methodology	Monitoring frequency	Maximum Concentration	Average Concentration	unit	GTV's*	IGV	Upward trend in yearly average pollutant concentration over last 5 years of monitoring dat
0	DU14		METER	Quantanta			SELECT			
Quarterly	BH1 BH1	рН Temp	METER	Quarterly			SELECT		9.5	no no
	впі	Temp	METER	Quarterly		6.7	SELECT	-	-	110
	BH1	Elec.Conductivity	METER	Quarterly			mS/um		1000	no
	BH1	Chlorides	TITRATION	Quarterly		1948.8	mg/l		250	no
	BH1	Ammoniacal	ISE METER	Quartarly		3.3	mall		0.02	20
	BH1 BH1	Nitorgen TON	ISE IVIETER	Quarterly Quarterly		3	mg/l mg/l		0.02	no
	BH1 BH1	TOC	НАСН	Quarterly	+	<0.1	mg/l		+	no
	BH1	Potassium	ПАСП	Quarterly		57.7			5mg/l	110
	BH1	Sodium		Quarterly		1014.8			5118/1	
Annual	BH1	Iron		Annual		101110	ug/l			
amaan	BH1	Cadmium		Annual	<0.5		ug/l		0.005mg/l	no
	BH1	Chromium (total)		Annual	1		ug/l		0.03mg/l	no
	BH1	Copper		Annual	3		ug/l		0.03mg/l	no
	BH1	Cyanide (Total)		Annual	<0.0009		ug/l		0.01mg/l	no
	BH1	Lead		Annual	80		ug/l		0.01mg/l	no
	BH1	Mangnesium		Annual	983		mg/l		0.01116/1	no
	BH1	Manganese		Annual	6392		ug/l		0.3mg/l	no
	BH1	Mercury		Annual	<0.05		ug/l		0.001mg/l	no
	BH1	Sulphate		Annual	806		mg/l		200mg/l	no
	BH1	Total Alkalinity		Annual	000		mg/l		200116/1	no
	BH1	Total Phosphorus		Annual			mg/l			no
	BH1	Arsenic		Annual	2		ug/l			
	BH1	Barium, total		Annual	1654		ug/l			
	BH1	Boron, total		Annual	1.54		mg/l			
	BH1	Selenium, total		Annual	<0.5		ug/l			
	BH1	Silver		Annual	0.0024		mg/l			
	BH1	Tellurium, total		Annual	<0.5		ug/l			
	BH1	Thallium, total		Annual	<0.5		ug/l			
	BH1	Vanadium, total		Annual	<0.5		ug/l			
	BH1	Phenols		Annual	<1.0		ug/l		0.5ug/l	no
	BH1								0.006/1	
	BH1 BH1	Acenaphthylene Anthracene		Annual Annual	<1.0 <1.0		ug/l ug/l			no no
	BH1 BH1	Benzene		Annual	<1.0		ug/I ug/I		10.00/	no
		Bromodichlorome							10ug/l	-
	BH1	thane		Annual	<1.0		ug/l		10 /	no
	BH1	Bromoform		Annual	<1.0		ug/l		12ug/l	no

	Soil monitoring templa	ate	Lic No:	W0022-01	Year	202	14
BH1	Chloroform	Annual	<1.0	ug/l		12ug/l	no
BH1	Chrysene	Annual	<1.0	ug/l			no
BH1	Dibromochlorome thane	Annual	<1.0	ug/l			no
BH1	Fluoranthene	Annual	<1.0	ug/l			no
BH1	Fluorene	Annual	<1.0	ug/I			no
BH1	Naphthalene	Annual	<2.0	ug/i			no
BH1	Dibromochlorome thane	Annual	<1.0	ug/l			no
BH1	Pentachloropheno	Annual	<1.0	ug/I		2.0ug/l	no
BH1	Phenanthrene	Annual	<1.0	ug/I		2.006/1	no
BH1	Pyrene	Annual	<1.0	ug/I			no
BH1	Tetrachloroethene	Annual	<1.0	ug/I			no
BH1	Trichloroethene	Annual	<1.0	ug/l			no
BH1	Hexachlorobenzen	Annual	<1.0	110/1		0.03ug/l	no
	e Hexachlorobutadi	Annudi	<1.0	ug/l		0.03ug/1	10
BH1	ene	Annual	<1.0	ug/I		0.10ug/l	no
	2,4,6-						
BH1	Trichlorophenol	Annual	<1.0	ug/I			no
BH1	2,4- Dichlorophenol	Annual	<1.0	ug/I			no
	2,4-						
BH1	Dimethylphenol	Annual	<1.0	ug/l			no
BH1	2-Chlorophenol	Annual	<1.0	ug/I			no
	1,2,4-						
BH1	trichlorobenzene	Annual	<1.0	ug/l			no
	1,2-						
BH1	dichlorobenzene	Annual	<1.0	ug/I			no
	1,3-						
BH1	dichlorobenzene	Annual	<1.0	ug/I			no
	1,4-						
BH1	1,4- dichlorobenzene	Annual	<1.0	ug/I			no
	245						
BH1	2,4,5- Trichlorophenol	Annual	<1.0	ug/I			no
BH1	2,4-Dinitrotoluene	Annual	<1.0	ug/I			no
BH1	2,6-Dinitrotoluene	Annual	<1.0	ug/l			no
	2- Chloronaphthalen						
BH1	e	Annual	<1.0	ug/I			no
	2- Methylnaphthalen						
BH1	e	Annual	<1.0	ug/I			no
BH1	2-Methylphenol	Annual	<1.0	ug/l			no
BH1	2-Nitrophenol	Annual	<1.0	ug/I		Ì	no
BH1	4-Bromophenyl Phenyl Ether	Annual	<1.0	ug/l			no
	4-Chloro-3-	The second second second second second second second second second second second second second second second se				1	

B B B B B B B B B B B B B B B B B B B	3H1 3H1 3H1 3H1 3H1 3H1 3H1 3H1 3H1 3H1	4-Chlorophenyl phenyl ether 4-Nitrophenol Acenaphthene Benzo(a)anthrace ne Benzo(b)fluoranth ene Benzo(g,h,i)peryle ne Benzyl Butyl Phthalate Bis(2- chloroethoxy)met hane	Annual Annual Annual Annual Annual Annual Annual Annual	<1.0 <5.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0		ug/1 ug/1 ug/1 ug/1 ug/1			no no no
B B B B B B B B B B B B B B B B B B B	8H1 8H1 3H1 3H1 3H1 3H1 3H1 3H1 3H1	4-Nitrophenol Acenaphthene Benzo(a)anthrace ne Benzo(b)fluoranth ene Benzo(b)fluoranth ene Benzo(g,h.i)peryle ne Benzyl Butyl Phthalate Bis(2- chlorcethoxy)met	Annual Annual Annual Annual Annual Annual	<5.0 <1.0 <1.0 <1.0 <1.0 <1.0		ug/l ug/l ug/l			no no
B B B B B B B B B B B B B B B B B	3H1 3H1 3H1 3H1 3H1 3H1 3H1 3H1	Acenaphthene Benzo(a)anthrace ne Benzo(b)fluoranth ene Benzo(b)fluoranth ene Benzo(g,h,i)peryle ne Benzyl Butyl Phthalate Bis(2 chloroethoxy)met	Annual Annual Annual Annual Annual	<1.0 <1.0 <1.0 <1.0 <1.0		ug/l			no
B B B B B B B B B B B B B B B	3H1 3H1 3H1 3H1 3H1 3H1 3H1	Benzo(a)anthrace ne Benzo(a)pyrene Benzo(b)fluoranth ene Benzo(g,h,i)peryle ne Benzyl Butyl Phthalate Bis(2- chlorcethoxy)met	Annual Annual Annual Annual	<1.0 <1.0 <1.0		ug/l			
B B B B B B B B B B B B	3H1 3H1 3H1 3H1 3H1	ne Benzo(a)pyrene Benzo(b)fluoranth ene Benzo(g,h,i)peryle ne Benzyl Butyl Phthalate Bis(2- chloroethoxy)met	Annual Annual Annual	<1.0 <1.0					20
B B B B B B B B B B B	3H1 3H1 3H1 3H1	Benzo(b)fluoranth ene Benzo(g,h,i)peryle ne Benzyl Butyl Phthalate Bis(2- chloroethoxy)met	Annual Annual	<1.0		ug/l			no
B B B B B B B B	3H1 3H1 3H1	ene Benzo(g,h,i)peryle ne Benzyl Butyl Phthalate Bis(2- chloroethoxy)met	Annual				4	1	no
B B B B B B B B	3H1 3H1 3H1	Benzo(g,h,i)peryle ne Benzyl Butyl Phthalate Bis(2- chloroethoxy)met	Annual					1	no
B B B B B B B	3H1 3H1	ne Benzyl Butyl Phthalate Bis(2- chloroethoxy)met		<1.0		ug/l		·	110
B B B B B	3H1	Phthalate Bis(2- chloroethoxy)met	Annual			ug/l			no
B B B B B	3H1	Bis(2- chloroethoxy)met	Annual	<1.0		ug/l		1	no
B B B B B			1	<1.0		ug/i		ļ	no
B B B B B		hane						1	
B B B		i	Annual	<1.0		ug/l		<u>ا</u>	no
B B B		Bis(2-						1	
B B B	3H1	chloroethyl)ether	Annual	<1.0	'	ug/l		ا ــــــــــــــــــــــــــــــــــــ	no
B B B		Bis(2- chloroisopropyl)et						1	
B	3H1	her	Annual	<1.0		ug/l		1	no
B		Bis(2-						,	
B	3H1	ethylhexyl)phthala te	Annual	<5.0		ug/l		1	no
В		Dibenz(a,h)anthra						·	
	3H1	cene	Annual	<1.0		ug/l			no
В	3H1	Dibenzofuran	Annual	<1.0		ug/I		ا ــــــــــــــــــــــــــــــــــــ	no
	3H1	Diethylphthalate	Annual	<1.0		ug/l		1	no
_		di-n-							
В	3H1	Butylphthalate Di-n-	Annual	<1.0		ug/l		ا ــــــــــــــــــــــــــــــــــــ	no
В	3H1	octylphthalate	Annual	<1.0		ug/l		1	no
В	3H1	Diphenylamine	Annual	<1.0		ug/l			no
В	3H1	Hexachloroethane Indeno(1,2,3-	Annual	<1.0	+	ug/I		·	no
В	3H1	c,d)pyrene	Annual	<1.0		ug/l		1	no
	3H1	Isophorone	Annual	<1.0		ug/l			no
В	3H1	Nitrobenzene	Annual	<1.0		ug/l			no
Б	3H1	n-Nitrosodi-n- propylamine	Annual	<1.0		ug/l		1	no
	3H1	Acetone	Annual	<1.0	+'	ug/I		<u>/</u>	no
	2112		Annua	~1.0	+	····	<u>├</u> ───┤	 ا	
В	3H1	Dichloromethane	Annual	<1.0	'	ug/l		10ug/l	no
D	3H1	Tetrahydrofuran	Annual	<1.0		ug/l		1	no
	3H1	Toluene	Annual	<1.0	+'	ug/I	<u> </u>	<u></u> ا	no
		Xylene -o	Annual	<1.0	+	ug/l	<u>├</u> ───┤	10ug/l	no
		Dichlorodifluorom			+				
	3H1	ethane	Annual	<1.0	'	ug/l		ļ	no
В	3H1	Chloromethane	Annual	<1.0		ug/l			no
		Ethyl Chloride/Chloroet						1	
В		hane	Annual	<1.0		ug/l		1	no
В	3H1	Vinyl Chloride	Annual	<0.5		ug/l			no
В	3H1 3H1	I	Autorial			*			
В		Bromomethane Trichloromonofluo	Annual	<1.0		ug/l			no

Ground	water/Soil m	nonitoring to	emplate		Lic No:	W0022-01		Year	2014	
		Ethyl Ether/Diethyl								
	BH1	Ether		Annual	<1.0		ug/l			no
	BH1	11 Dichloroethene		Annual	<1.0		ug/l			no
		Iodomethane/Met								
	BH1	hyl lodide		Annual	<1.0		ug/l			no
	BH1	Carbon Disulphide		Annual	<1.0		ug/l			no
	BH1	Allyl Chloride		Annual	<1.0		ug/l			no
		Chlormethyl Cyanide/Chloroac								
	BH1	etonitrile		Annual	<1.0		ug/l			no
	BH1	Propanenitrile Trans-1,2		Annual	<1.0		ug/l			no
	BH1	Dichloroethene		Annual	<1.0		ug/l			no
	BH1	MtBE 1,1-	,	Annual	<1.0		ug/l			no
	BH1	dichloroethane		Annual	<1.0		ug/l			no
		2,2-								
	BH1	dichloropropane		Annual	<1.0		ug/l			no
	BH1	cis-12 Dichloroethene		Annual	<1.0		ug/l			no
	BH1	2-Butanone		Annual	<1.0		ug/l			no
	BH1	Methyl Acrylate		Annual	<1.0		ug/l			no
	BH1	Bromochlorometh ane		Annual	<1.0		ug/l			no
	BH1	Methacrylonitrile		Annual	<1.0		ug/l			no
		1,1,1-								
	BH1	trichloroethane		Annual	<1.0		ug/l			no
	BH1	1-Chlorobutane Carbon		Annual	<1.0		ug/l			no
	BH1	Tetrachloride		Annual	<1.0		ug/l			no
		11								
	BH1	Dichloropropene		Annual	<1.0		ug/l			no
	BH1	1,2 dicloroethane		Annual	<1.0		ug/l			no
		1,2-								
	BH1	dichloropropane		Annual	<1.0		ug/l		10ug/l	no
	BH1	Dibromomethane		Annual	<1.0		ug/l			no
	BH1	Methyl Methacrylate		Annual	<1.0		ug/l			no
		13 Dichloropropene,c								
	BH1	is		Annual	<1.0		ug/l			no
	BH1	MIBK/4 Methyl 2 Pentanone		Annual	<1.0		ug/l			no
		13	ĺ		-					
	BH1	Dichloropropene,t rans		Annual	<1.0		ug/I			no
	BH1	Ethyl Methacrylate		Annual	<1.0		ug/l			no
		112								
	DU/A	Trichloroethane		Annual	<1.0		ug/l			no
	BH1	memoroeunane			-					
	BH1	1,3-								

Ground	water/Soil n	nonitoring to	emplate		Lic No:	W0022-01		Year	2014	
	BH1	2-Hexanone		Annual	<1.0		ug/l			no
	BH1	1,2- dibromoethane		Annual	<1.0		ug/l			no
	BH1	Chlorobenzene		Annual	<1.0		ug/I		1.0ug/l	no
	DITI	entorobenzene		Annua	\$1.0		35/1		1.006/1	110
	DUIA	1,1,1,2-								
	BH1 BH1	tetrachloroethane		Annual	<1.0		ug/l ug/l		10	no
	BH1 BH1	Ethylbenzene Xylene P&M		Annual Annual	<1.0 <1.0		ug/I		10ug/l	no no
	BH1	Styrene		Annual	<1.0		ug/i			no
		Styrene		Annual			05/1			110
	BH1	Isopropylbenzene		Annual	<1.0		ug/l			no
	BH1	Bromobenzene		Annual	<1.0		ug/l			no
		1,1,2,2-								
	BH1	tetrachloroethane		Annual	<1.0		ug/l			no
		1,2,3-								
	BH1	trichloropropane		Annual	<1.0		ug/l			no
		Trans 44 Disklass								
	BH1	Trans 14 Dichloro 2 Butene, tran		Annual	<1.0		ug/l			no
	BH1	Propylbenzene		Annual	<1.0		ug/l			no
	DU14	2 shissetshares		A	11.0					
	BH1	2-chlorotoluene		Annual	<1.0		ug/l			no
	BH1	4-chlorotoluene		Annual	<1.0		ug/l			no
		1,3,5-								
	BH1	trimethylbenzene		Annual	<1.0		ug/l			no
	DUIA			Americal	-10					
	BH1	Tert Butyl Benzene		Annual	<1.0		ug/l			no
		1,2,4-								
	BH1	trimethylbenzene		Annual	<1.0		ug/l			no
	BH1	sec-butylbenzene		Annual	<1.0		ug/l			no
	BH1	P Isopropyltoluene		Annual	<1.0		ug/l			no
	BH1	N Butyl Benzene 1,2-dibromo-3-		Annual	<1.0		ug/l			no
	BH1	chloropropane		Annual	<1.0		ug/l			no
	BH1	1,2,3- trichlorobenzene		Annual	<1.0		ug/l			no
	BH1	VOC		Annual	<2.0		ug/l			no
	BH1	SVOC		Annual	<5.0		ug/l			no
	BH1	OPP		Annual	<0.005		ug/l			no
	BH1	OCP		Annual	<10		ng/l			
		Total			<0.05					
	BH1	pesticides		Annual			ug/l			
.						7.4				
Quarterly	BH2 BH2	pH	METER METER	Quarterly			SELECT		9.5	
	DUT	Temp	IVIEIEK	Quarterly		574	SELECT			no
	BH2	Elec.Conductivity	METER	Quarterly			uS/cm		1000	no
	BH2	Chlorides	TITRATION	Quarterly		19.9			250	no
1	BH2	Ammoniacal	ISE METER	Quarterly	1	<0.1			0.02	

Ground	water/Soil monitoring template				Lic No:	Lic No: W0022-01				Year 2014				
	BH2	TON		Quarterly		2.5				no				
	BH2	тос	HACH	Quarterly		1.1	mg/l			no				
	BH2	Potassium		Quarterly		6.8	mg/l		5mg/l					
	BH2	Sodium		Quarterly		20.5								
Annual	BH2	Iron		Annual			ug/l							
	BH2	Cadmium		Annual	<0.5		ug/l		0.005mg/l	no				
	BH2	Chromium (total)		Annual	0.6		ug/l		0.03mg/l	no				
	BH2	Copper		Annual	2		ug/l		0.03mg/l	no				
	BH2	Cyanide (Total)		Annual			ug/l		0.01mg/l	no				
	BH2	Lead		Annual	12		ug/l		0.01mg/l	no				
	BH2	Mangnesium		Annual	65		mg/l		0,	no				
	BH2	Manganese		Annual	14		ug/l		0.3mg/l	no				
	BH2	Mercury		Annual			ug/l		0.001mg/l	no				
	BH2	Sulphate		Annual	10.8		mg/l		200mg/l	no				
	BH2	Total Alkalinity		Annual			mg/l		<u> </u>	no				
	BH2	Total Phosphorus		Annual			mg/l			no				
	BH2 BH2	Arsenic		Annual	<0.5	<0.5	ug/l		1					
	BH2	Barium, total		Annual	1542		ug/l							
	BH2	Boron, total		Annual	0.306		mg/l							
	BH2	Selenium, total		Annual	<0.5				1					
	BH2	Silver		Annual	<0.0007		mg/l							
	BH2	Tellurium, total		Annual	<0.5	<0.5	ug/l		1					
	BH2	Thallium, total		Annual	<0.5	<0.5	ug/l							
									1					
	BH2	Vanadium, total		Annual	<0.5	<0.5								
	BH2	Phenols		Annual	<1.0	_	ug/l		0.5ug/l	no				
	BH2	Acenaphthylene		Annual	<1.0		ug/l			no				
	BH2	Anthracene		Annual	<1.0		ug/I			no				
	BH2	Benzene		Annual	<1.0		ug/I		10ug/l	no				
	BH2	Bromodichlorome thane		Annual	<1.0		ug/l			no				
	BH2 BH2	Bromoform		Annual	<1.0		ug/l		12.00/	no				
	BH2 BH2	Chloroform		Annual	<1.0		ug/l		12ug/l 12ug/l	no				
	BH2 BH2	Chrysene			<1.0		ug/I		12ug/1	no				
	ברוס	Dibromochlorome		Annual	×1.0		ug/1			110				
	BH2	thane		Annual	<1.0		ug/I			no				
	BH2	Fluoranthene		Annual	<1.0		ug/l			no				
	BH2	Fluorene		Annual	<1.0		ug/I			no				
	BH2	Naphthalene		Annual	<2.0		ug/l			no				
	DU 2	Dibromochlorome		Annual	-1.0									
	BH2	thane Pentachloropheno		Annual	<1.0		ug/l			no				
	BH2			Annual	<1.0		ug/l		2.0ug/l	no				
	BH2	Phenanthrene		Annual	<1.0		ug/l			no				
	BH2	Pyrene		Annual	<1.0		ug/l			no				
	BH2	Tetrachloroethene		Annual	<1.0		ug/l			no				
		Tricklossether												
	BH2	Trichloroethene Hexachlorobenzen		Annual	<1.0		ug/l			no				
	BH2	e		Annual	<1.0		ug/l		0.03ug/l	no				
		Hexachlorobutadi												

Groundwater	Soil monitoring tem	plate	Lic No:	W0022-01	Year	2014	
	2,4,6-						
BH2	2,4,6- Trichlorophenol	Annual	<1.0	ug/I			no
BH2	2,4-	المسيحا	11.0				20
вп2	Dichlorophenol	Annual	<1.0	ug/I			no
0112	2,4-		1.0				
BH2 BH2	Dimethylphenol 2-Chlorophenol	Annual Annual	<1.0 <1.0	ug/I ug/I			no no
вп2	2-Chiorophenoi	Annual	<1.0	ug/1			110
5112	1,2,4-		1.0				
BH2	trichlorobenzene	Annual	<1.0	ug/I			no
	1,2-						
BH2	dichlorobenzene	Annual	<1.0	ug/I			no
	1,3-						
BH2	dichlorobenzene	Annual	<1.0	ug/I			no
	1,4-						
BH2	dichlorobenzene	Annual	<1.0	ug/I			no
	2,4,5-						
BH2	Trichlorophenol	Annual	<1.0	ug/I			no
BH2	2,4-Dinitrotoluene	Annual	<1.0	ug/I			no
DUD	2,6-Dinitrotoluene	Annual	-10				20
BH2	2,6-Dinitrotoluene 2-	Annual	<1.0	ug/I			no
5112	Chloronaphthalen		1.0				
BH2	e 2-	Annual	<1.0	ug/I			no
	Methylnaphthalen						
BH2	e	Annual	<1.0	ug/l			no
BH2	2-Methylphenol	Annual	<1.0	ug/I			no
BH2	2-Nitrophenol	Annual	<1.0	ug/l			no
BH2	4-Bromophenyl Phenyl Ether	Annual	<1.0	ug/I			no
	4-Chloro-3-						
BH2	methylphenol 4-Chlorophenyl	Annual	<1.0	ug/I			no
BH2	phenyl ether	Annual	<1.0	ug/l			no
BH2	4-Nitrophenol	Annual	<5.0	ug/I			no
BH2	Acenaphthene	Annual	<1.0	ug/I			no
BH2	Benzo(a)anthrace ne	Annual	<1.0	ug/I			no
BH2	Benzo(a)pyrene	Annual	<1.0	ug/I			no
BH2	Benzo(b)fluoranth	Annual	<1.0				20
	ene Benzo(g,h,i)peryle	Annual	<1.U	ug/I			no
BH2	ne	Annual	<1.0	ug/I			no
BH2	Benzyl Butyl Phthalate	Annual	<1.0	ug/l			no
	Bis(2-						
BH2	chloroethoxy)met hane	Annual	<1.0	ug/l			no
			-2.0	25/1			
BH2	Bis(2- chloroethyl)ether	Annual	<1.0	ug/I			no
0112	Bis(2-	7.1110.01	1.0	agri			
BH2	chloroisopropyl)et her	Annual	<1.0	ug/l			no
вп∠	ner	AIIIudi	<1.0	ug/I			110

iround	water/Soil n	nonitoring te	emplate	 Lic No:	W0022-01		Year	2014	
		Bis(2-							
	BH2	ethylhexyl)phthala te	Annua	<5.0		ug/l			no
		Dibenz(a,h)anthra				-or -			
	BH2	cene	Annua	<1.0		ug/l			no
	BH2	Dibenzofuran	Annua	<1.0		ug/l			no
	BH2	Diethylphthalate	Annua	<1.0		ug/l			no
		di-n-	7411144			-0/			
	BH2	Butylphthalate	Annua	<1.0		ug/l			no
	BH2	Di-n- octylphthalate	Annua	<1.0		ug/l			no
	BH2	Diphenylamine	Annua	<1.0		ug/l			no
	BH2	Hexachloroethane Indeno(1,2,3-	Annua	<1.0		ug/l			no
	BH2	c,d)pyrene	Annua	<1.0		ug/l			no
	BH2	Isophorone	Annua	<1.0		ug/l			no
·	BH2	Nitrobenzene	Annua	 <1.0		ug/l			no
		n-Nitrosodi-n- propylamine	Annua	<1.0		110/1			20
	BH2 BH2	propylamine Acetone	Annua Annua	<1.0 <1.0		ug/l ug/l			no no
	טחב		Annua	N1.0		ug/1			110
	BH2	Dichloromethane	Annua	<1.0		ug/l		10ug/l	no
	BH2	Tetrahydrofuran	Annua	<1.0		ug/l			no
	BH2	Toluene	Annua	<1.0		ug/l			no
	BH2	Xylene -o	Annua	<1.0		ug/l		10ug/l	no
		Dichlorodifluorom							
	BH2	ethane	Annua	<1.0		ug/l			no
	BH2	Chloromethane Ethyl	Annua	<1.0		ug/l			no
		Chloride/Chloroet							
	BH2	hane	Annua	<1.0		ug/l			no
	BH2	Vinyl Chloride	Annua	<0.5		ug/l			no
	BH2	Bromomethane Trichloromonofluo	Annua	<1.0		ug/l			no
	BH2	romethane	Annua	<1.0		ug/l			no
		Ethyl							
	BH2	Ether/Diethyl Ether	Annual	<1.0		ug/l			no
	BH2	11 Dichloroethene	Annua	<1.0		ug/l			no
	BH2	Iodomethane/Met hyl Iodide	Annua	<1.0		ug/l			no
	BH2	Carbon Disulphide	Annua	<1.0		ug/I			no
	BH2	Allyl Chloride Chlormethyl	Annua	<1.0		ug/l			no
		Cyanide/Chloroac							
	BH2	etonitrile	Annua	<1.0		ug/l			no
	BH2	Propanenitrile	Annua	<1.0		ug/l			no
	BH2	Trans-1,2 Dichloroethene	Annua	<1.0		ug/l			no
	BH2	MtBE	Annua	<1.0		ug/l			no
		1,1-							
	BH2	dichloroethane	Annua	<1.0		ug/l			no
		2,2-							
	BH2	dichloropropane cis-12	Annua	<1.0		ug/l			no

roundw	/ater/Soil n	nonitoring ten	nplate	Lic No:	W0022-01	Year	2014	
	BH2	2-Butanone	Annual	<1.0	ug/l			no
	BH2	Methyl Acrylate	Annual	<1.0	ug/I			no
		Bromochlorometh	A	-1.0				
	BH2	ane	Annual	<1.0	ug/I			no
	BH2	Methacrylonitrile	Annual	<1.0	ug/I			no
		1,1,1-						
	BH2	1,1,1- trichloroethane	Annual	<1.0	ug/I			no
	BH2	1-Chlorobutane	Annual	<1.0	ug/I			no
		Carbon						
	BH2	Tetrachloride	Annual	<1.0	ug/l			no
		11						
	BH2	Dichloropropene	Annual	<1.0	ug/I			no
	BH2	1,2 dicloroethane	Annual	<1.0	ug/I			no
	BH2	1,2- dichloropropane	Annual	<1.0	ug/l		10ug/l	no
	БП2	dichloropropane	Annual	<1.0	ug/i		1008/1	no
	BH2	Dibromomethane	Annual	<1.0	ug/l			no
	BH2	Methyl Methacrylate	Annual	<1.0	ug/l			no
	DITZ	13	Annual	<1.0	05/1			110
	0.112	Dichloropropene,c		1.0				
	BH2	IS MIBK/4 Methyl 2	Annual	<1.0	ug/I			no
	BH2	Pentanone	Annual	<1.0	ug/I			no
		13 Disklarenzenene t						
	BH2	Dichloropropene,t rans	Annual	<1.0	ug/l			no
		Ethyl						
	BH2	Methacrylate	Annual	<1.0	ug/l			no
		112						
	BH2	Trichloroethane	Annual	<1.0	ug/I			no
		1,3-						
	BH2	dichloropropane	Annual	<1.0	ug/I			no
	BH2	2-Hexanone	Annual	<1.0	ug/I			no
	BH2	1,2- dibromoethane	Annual	<1.0	ug/l			no
	BH2	Chlorobenzene	Annual	<1.0	ug/l		1.0ug/l	no
				-			<u> </u>	
	BH2	1,1,1,2- tetrachloroethane	Annual	<1.0	ug/l			no
	BH2	Ethylbenzene	Annual	<1.0	ug/l		10ug/l	no
	BH2	Xylene P&M	Annual	<1.0	ug/l			no
	BH2	Styrene	Annual	<1.0	ug/l			no
	BH2	Isopropylbenzene	Annual	<1.0	ug/l			no
	BH2	Bromobenzene	Annual	<1.0	ug/I			no
		1,1,2,2-						
	BH2	tetrachloroethane	Annual	<1.0	ug/l			no
		1,2,3-						
	BH2	trichloropropane	Annual	<1.0	ug/l			no
		Trans 14 Dichloro						
	BH2	2 Butene, tran	Annual	<1.0	ug/I			no

Groundwater/So	oil monitoring template	1	Lic No:	W0022-01	Year	2014	
BH2	2-chlorotoluene	Annual	<1.0	ug/l		no	
BH2	4-chlorotoluene	Annual	<1.0	ug/l		no	
	1,3,5-						
BH2	trimethylbenzene	Annual	<1.0	ug/l		no	
BH2	Tert Butyl Benzene	Annual	<1.0	ug/l		no	
BH2	1,2,4- trimethylbenzene	Annual	<1.0	ug/l		no	
							-
BH2	sec-butylbenzene	Annual	<1.0	ug/l		no	
BH2	P Isopropyltoluene	Annual	<1.0	ug/l		no	
впг	Isopropyitoidene	Annual	<1.0	ug/1		110	
BH2	N Butyl Benzene	Annual	<1.0	ug/I		no	
BH2	1,2-dibromo-3- chloropropane	Annual	<1.0	ug/l		no	
BH2	1,2,3-		1.0				
BH2 BH2	trichlorobenzene VOC	Annual Annual	<1.0	ug/I		no	_
BH2 BH2	SVOC	Annual	<2.0	ug/l ug/l		no	
BH2 BH2	OPP	Annual	<0.005	ug/i		no no	-
BH2 BH2	OCP	Annual	<10	ng/l		110	-
DITZ	Total	Annuar	<0.05	lig/i			_
BH2	pesticides	Annual	10.00	ug/l		SELECT	
trend in results for complete the Grou More information on th	a substance indicates that further ndwater Monitoring Guideline Ter use use of soil and groundwater sta	interpretation of monit mplate Report at the lin otherwise instruc ndards/ generic assessm	oring results is required. Ir k provided and submit sep ted by the EPA. hent	V) or an Interim Guideline Value (IGV) or an up addition to completing the above table, please arately through ALDER as a licensee return or as	<u>Gro</u>	Indwater monitoring template	
criteria (GAC) and risk a (see the link in G31)	ssessment tools is available in the	EPA published guidance	e <u>Guidance on</u>	the Management of Contaminated Land ar	a Groundwater a	at EPA Licensed Sites (EPA 2013).	
				Water Quality standards should be used in add ards (SWEQS), If the site is close to a drinking w		Groundwater Drinking water regulations (private supply)	Drinking water (public Int
							supply) standards Va

Groundwater	/Soil monitoring template
-------------	---------------------------

W0022-01

1

2014

Year

Table 3: Soil results

	Sample						
Date of	location	Parameter/		Monitoring	Maximum	Average	
sampling	reference	Substance	Methodology	frequency	Concentration	Concentration	unit
							SELECT
							SELECT

Where additional detail is required please enter it here in 200 words or less

Lic No:

Environmental Liabilities template Lic No:

Click here to access EPA guidance on Environmental Liabilities and Financial provision

			Commentary
1	ELRA initial agreement status	Submitted and not agreed by EPA;	Closed Feb 2007
2	ELRA review status	SELECT	
3	Amount of Financial Provision cover required as determined by the latest ELRA	Specify	Authority Responsibility as
4	Financial Provision for ELRA status	SELECT	
5	Financial Provision for ELRA - amount of cover	Specify	
6	Financial Provision for ELRA - type	SELECT	
7	Financial provision for ELRA expiry date	Enter expiry date	
8	Closure plan initial agreement status	SELECT	
9	Closure plan review status	SELECT	
10	Financial Provision for Closure status	SELECT	
11	Financial Provision for Closure - amount of cover	Specify	
12	Financial Provision for Closure - type	SELECT	
13	Financial provision for Closure expiry date	Enter expiry date	

Year

Environmental Management Programme/Continuous Improvement Programme	e template	Lic No:	W0022-01	Year	2014
Highlighted cells contain dropdown menu click to view		Additional Informat	tion	_	
Do you maintain an Environmental Mangement System (EMS) for the site. If yes, please detail in additional information	Yes		sections on Use of manual, Site location and ypes of waste accepted and procedures,		
2 Does the EMS reference the most significant environmental aspects and associated impacts on-site	Yes				
Does the EMS maintain an Environmental Management Programme (EMP) as required in accordance with the licence requirements	Yes				
Do you maintain an environmental documentation/communication system to inform the public on environmental performance of the facility, as required by the licence	Yes			_	

Environmental Management Programme	(EMP) report				
Objective Category	Target	Status (% completed)	How target was progressed	Responsibility	Intermediate outcomes
			Improvement of gas		
	Maintain low complaint		extraction system and		
Reduction of emissions to Air	numbers against the facility	100	operation	Site Staff & Management	Reduced emissions
			Improvement of Civic		
			Amenity Site layout and		
	Improve annual recycling		improved maintenance of		Installation of infrastructure
Materials Handling/Storage/Bunding	rate by 5%	95	existing infrastructure	Site Staff & Management	and improved housekeeping
			Liasing with Security		
			Company and An Gardaí		
			Síochana to deter would-be		
			intruders. Infrastructure		Improved Environmental
			positioned to deter would-be		Management Practices &
Additional improvements	Improve Site security	90	intruders	Site Staff & Management	cleaner site
			Reduction of waste intake,		
	To control environmental		improved litter capture and		Increased compliance with
Additional improvements	nuisances at the facilty	90	improved site practices	Site Staff	licence conditions
	Review the closure				
	modifications of the Waste				
	Licence following the		Testing regime inspected to		
	closure of landfill in Feb		make workload more		Increased compliance with
Additional improvements	2007	50	efficient for site staff	Site management	licence conditions

	Noise monitori	ing summary	y report			Lic No:	W0022-01	Year	2014	F
•	1 Was noise monitoring a licence requirement for the AER period? If yes please fill in table N1 noise summary below						Yes]		
2 Was noise monitoring	carried out using the EPA asurement report" inclu noise reduction plan	A Guidance note ded in the guid		•	the	<u>Noise</u> <u>Guidance</u> note NG4	Yes			
Have there been chang	ges relevant to site noise	e emissions (e.g. survey?	. plant or ope	rational cha	nges) since t	he last noise	No			
Table N1: Noise monit	oring summary									Т
		Noise sensitive						If tonal /impulsive noise was	Comments (ex. main noise sources on site,	

Date of monitoring	Time period	Noise location (on site)	Noise sensitive location -NSL (if applicable)	LA _{eq}	LA ₉₀	LA ₁₀	LA _{max}	Tonal or Impulsive noise* (Y/N)	If tonal /impulsive noise was identified was 5dB penalty applied?	Comments (ex. main noise sources on site, & extraneous noise ex. road traffic)	Is <u>site_</u> compliant with noise limits (day/evening/night)?
10/10/2014	30min	N1		40.6	32	42.7	62.6	No	No	No noise from landfill site. Birdsongs, countryside noises and a lawnmover from a nearby house.	Yes
10/10/2014	30min	N3		38.8	32.5	40.9	60	No	No	No noise from landfill site. External noise from road, nature and adjacent quarry	Yes
10/10/2014	30min	N4		52.7	42.1	56.1	74.9	No	No	No noise from landfill site. Civic Amenity Site noises were attributed to cars stopping taking off from the kiosk and waste being dumped. External noise from road, nature and adjacent quarry.	Yes
		een carried out as per c									

*Please ensure that a tonal analysis has been carried out as per guidance note NG4. These records must be maintained onsite for future inspection

If noise limits exceeded as a result of noise attributed to site activities, please choose the corrective action from the following options?

SELECT

** please explain the reason for not taking action/resolution of noise issues?

Site fully compliant with Waste Licance Noise Regulations

Resource Usage/Energy efficiency summary	Lic No:	W0022-01	Year	2014

SEAI - Large

Network (LIEN)

Additional in	formation
---------------	-----------

Enter date of audit

No

SELECT

1 When did the site carry out the most recent energy efficiency audit? Please list the recommendations in table 3 below

Is the site a member of any accredited programmes for reducing energy usage/water conservation such Industry Energy as the SEAI programme linked to the right? If yes please list them in additional information 2

Where Fuel Oil is used in boilers on site is the sulphur content compliant with licence conditions? Please state percentage in 3 additional information

Table R1 Energy usag	e on site			
Energy Use	Previous year		compared to	Energy Consumption +/- % vs overall site production*
Total Energy Used (MWHrs)	68.251	67.102	-2%	
Total Energy Generated (MWHrs)				
Total Renewable Energy Generated (N	/WHrs)			
Electricity Consumption (MWHrs)	68.251	67.102	-2%	
Fossil Fuels Consumption:				
Heavy Fuel Oil (m3)	0.9	0.9	0%	
Light Fuel Oil (m3)	110	96	-13%	
Natural gas (m3)				
Coal/Solid fuel (metric tonnes)				
Peat (metric tonnes)				
Renewable Biomass				
Renewable energy generated on site				

* where consumption of energy can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year.

** where site production information is available please enter percentage increase or decrease compared to previous year

Table R2 Water usage on site					Water Emissions	Water Consumption	
						Volume used i.e not	
			Production +/- %	Energy		discharged to	
			compared to	Consumption +/- %	Volume Discharged	environment e.g.	
	Water extracted	Water extracted	previous reporting	vs overall site	back to	released as steam	
Water use	Previous year m3/yr.	Current year m3/yr.	year**	production*	environment(m ³ yr):	m3/yr	Unaccounted for Water:
Groundwater							
Surface water							
Public supply	224	212	-5%	N/A	212	N/A	0
Recycled water							
Total							

* where consumption of water can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year.

** where site production information is available please enter percentage increase or decrease compared to previous year

Table R3 Waste Stream					
	Total	Landfill	Incineration	Recycled	Other
Hazardous (Tonnes)					
Non-Hazardous (Tonnes)					

Resource	e Usage/Energy efficiency sum	nmary			Lic No:	W0022-01		Year	2014
	Table R4: Energy Audit finding recommendations								
	Date of audit		Description of Measures proposed	Origin of measures	Predicted energy savings %	Implementation date	Responsibility		Status and comments
				SELECT					
				SELECT					
				SELECT					

Table R5: Power Generation: Where power is generated onsite (e.g. power generation facilities/food and drink industry)please complete the following information

	Unit ID	Unit ID	Unit ID	Unit ID	Station Total
Technology					
Primary Fuel					
Thermal Efficiency					
Unit Date of Commission					
Total Starts for year					
Total Running Time					
Total Electricity Generated (GWH)					
House Load (GWH)					
KWH per Litre of Process Water					
KWH per Litre of Total Water used on	Site				

	Complaints and Incidents summary template	Lic No:	W0022-01	Year	2014	
_	Complaints					
		Additional infor	mation			
	Have you received any environmental complaints in the current reporting year? If yes please complete summary					
	details of complaints received on site in table 1 below No					

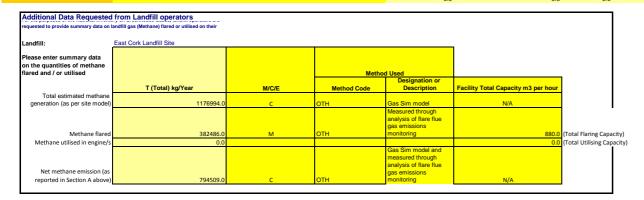
Table	1 Complaints summary						
Date	Category	Other type (please specify)	Brief description of complaint (Free txt <20 words)	Corrective action< 20 words	Resolution status	Resolution date	Further information
	SELECT				SELECT		
	SELECT				SELECT		
	SELECT				SELECT		
	SELECT				SELECT		
	SELECT				SELECT		
Total complaints open at start of reporting year Total new complaints received during reporting year		<u>o</u>					
Total complaints closed during reporting year Balance of complaints end of reporting year		<u>o</u>					

Incidents								
Have any incidents occurred on site in the current report								
year in Tab	year in Table 2 below							

*For information on how to report and what	
constitutes an incident	What is an incident

Table 2 Incidents sur	mmary													
						Other	Activity in				Preventative			
			Incident category*please			cause(please	progress at			Corrective action<20	action <20		Resolution	Likelihood of
Date of occurrence	Incident nature	Location of occurrence	refer to guidance	Receptor	Cause of incident	specify)	time of incident	Communication	Occurrence	words	words	Resolution status	date	reoccurence
	SELECT	SELECT	SELECT	SELECT	SELECT		SELECT	SELECT	SELECT			SELECT		SELECT
	SELECT	SELECT	SELECT	SELECT	SELECT		SELECT	SELECT	SELECT			SELECT		SELECT
	SELECT	SELECT	SELECT	SELECT	SELECT		SELECT	SELECT	SELECT			SELECT		SELECT
	SELECT	SELECT	SELECT	SELECT	SELECT		SELECT	SELECT	SELECT			SELECT		SELECT
	SELECT	SELECT	SELECT	SELECT	SELECT		SELECT	SELECT	SELECT			SELECT		SELECT
Total number of														
incidents current														
year	0													
Total number of														
incidents previous														
year	C													

% reduction/ increase


		RELEASES T	OAIR		Please enter all quanti	ties in this section in KGs			
	POLLUTANT		METHOD				G	QUANTITY	
			N	1ethod Used					
No.									
Anne							A	(Accidental)	
x II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	к	G/Year	F (Fugitive) KG/Year
				Measured through		• • •			
				analysis of flue gas					
				emissions monitoring					
1	Methane (CH4)	С	ОТН	and GasSim model	0.0		794509.0	0.0	794509
				Measured through					
			ISO 12039:2001	analysis of flue gas					
2	Carbon monoxide (CO)	м	150 12039:2001	emissions monitoring Measured through	0.0		6.2	0.0	6
				analysis of flue gas					
				emissions monitoring					
3	Carbon dioxide (CO2)	с	ISO 12039:2001	and GasSim model	0.0		2485171.0	0.0	2485171
Ŭ	0010011 010/000 (0002)	Ŭ,		Measured through	0.0	-		0.0	2100111
				analysis of flue gas					
7	Non-methane volatile organic con	м	EN 13649:2001	emissions monitoring	0.0		19.77	0.0	19.7
	Ť			Measured through					
				analysis of flue gas					
8	Nitrogen oxides (NOx/NO2)	M	EN 14792:2005	emissions monitoring	0.0		632.5	0.0	632
				Measured through					
				analysis of flue gas					
1	Sulphur oxides (SOx/SO2)	M	EN 14791:2005	emissions monitoring	0.0		81.14	0.0	81.1

SECTION B : REMAINING PRTR POLLUTANTS

		RELEASES TO AIR			Please enter all quantities in this section in KGs					
	POLLUTANT		METHOD				QUANTITY			
		Method Used								
No.										
Anne	2						A (Accidental)			
× II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	KG/Year	F (Fugitive) KG/Year		
					0.0	0	0.00	0.0		

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

		RELEASES TO AIR		Please enter all quantities in this section in KGs					
	POLLUTANT		METHOD		QUANTITY				
			Method U	Jsed					
Po	llut								
a	nt						A (Accidental)		
N	o. Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	KG/Year	F (Fugitive) KG/Year	
					0.0	0	0.0	0.0	

WASTE SUMMARY	Lic No:	W0022-01	Year	2014
SECTION A-PRTR ON SITE WASTE TREATMENT AND WASTE TRANSFERS TAB- TO BE COMPLETED	BY ALL IPPC AND WASTE FACILITIES	PRTR facility logon	dropdown li:	st click to see options

NASTE SUMMARY					Lic No:	W0022-01		Year	2014			
Transfer Destination	European Waste Code	Hazardous	Quantity (Tonnes per Year)	Description of Waste	Waste Treatment Operation	M/C/E	Method Used Method Used	Location of Treatment	Haz Waste : Name and Licence/Permit No of Next Destination Facility <u>Non Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	Haz Waste : Address of Next Destination Facility Non Haz Waste: Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address Destination I.e. Recovery / Dis Site (HAZARE WASTE ON
I ransfer Destination	European waste Code	Hazardous		Description of waste	waste Treatment Operation	M/C/E	wiethod Used	Location of Treatment		Clonminam		
Vithin the Country	13 02 08	Yes		other engine, gear and ubricating oils	R9	м	Weighed	Offsite in Ireland	Enva Ltd,W184-01	Industrial Estate,.'',Portlaoi se,Co	Enva Ltd,W184-01	Clonminam Industrial Estate,".",Po . e,Co Laois,Ir
Vithin the Country	15 01 01	No		baper and cardboard backaging	R3	м	Weighed	Offsite in Ireland	greenstar Ltd,W136-02	Corbally North,Srasfields Court,Glanmire, Co Cork,Ireland		
Vithin the Country	15 01 02	No	17.36 p	olastic packaging	R5	м	Weighed	Offsite in Ireland	Green Dragon Recycling Ltd,CK/09/0629/01	Corbally North,Sarsfields Court,Glanmire, Co Cork,Ireland Luddenmore,Gra		
Vithin the Country	15 01 04	Νο	0.78 n	netallic packaging	R4	м	Weighed	Offsite in Ireland	Mr Binman,W0061-01	nge,Kilmallock,C o Limerick,Ireland Luddenmore,Gra		
Vithin the Country	15 01 07	No	26.59 g	glass packaging	R5	м	Weighed	Offsite in Ireland	Mr Binman,W0061-01	nge,Kilmallock,C o Limerick,Ireland		
Vithin the Country	16 06 01	Yes	3.51 le	ead batteries	R6	м	Weighed	Offsite in Ireland	KMK Metals Ltd,W0133-03	Cappincur Industrail Estate,Daingean Rd,Tullamore,Co Offaly,Ireland		Cappincur Industrail Estate,Dain Rd,Tullamo Offaly,Irela
Jithin the Country	16 06 04	No	0.51 (6		R13	м	Weighed	Offsite in Ireland	KMK Metals Ltd,W0133-03	Cappincur Industrail Estate,Daingean Rd,Tullamore,Co Offaly,Ireland		
Vithin the Country	17 01 07	No	b	nixture of concrete, pricks, tiles and ceramics other than hose mentioned in 17 2106	R5	м	Weighed	Offsite in Ireland	Ballineen Skip Hire,WCP-CK-09- 0608-04	Connagh,Balline en ,Co Cork,.,Ireland Wastewater		
Vithin the Country	19 07 03	Νο		andfill leachate other han those mentioned n 19 07 02	D8	М	Weighed	Offsite in Ireland	Carrigtwohill Wastewater Treatment Plant,D0044-01	Treatment Plant,Tullagreen, Carrigtwohill Wastewater Treatment Plant,Co Cork,Ireland		
										Corbally North,Srasfields Court,Glanmire,		

WASTE SUMMARY				Lic No:	W0022-01		Year	201	4	
									41-42 Cookstown Industrial Estate,Tallaght,D ublin,D24,Irelan	
Within the Country	20 01 02	No	19.86 glass	R5	м	Weighed	Offsite in Ireland	MSM Recycling Ltd, W0079-01	d	
Within the Country	20 01 11	No	2.43 textiles	R5	м	Weighed	Offsite in Ireland	Textile Recycling Ltd, WCP-DC- 08-1225-01	Glen Abbey Business Park,Tallaght,Du blin,D24,Ireland	
,										
Within the Country	20 01 23	Yes	discarded equipment containing 0.41 chlorofluorocarbons	R4	м	Weighed	Offsite in Ireland	KMK Metals Ltd,W0133-03	Cappincur Industrail Estate,Daingean Rd,Tullamore,Co KMK Metals Offaly,Ireland Ltd,W0133-03	Cappincur Industrail Estate,Daingean Rd,Tullamore,Co Offaly,Ireland
,			paint, inks, adhesives and resins other than those mentioned in 20						Clonminam Industrial Estate,".",Portla oise,Co	
Within the Country	20 01 28	No	16.64 01 27	R1	м	Weighed	Offsite in Ireland	Enva Ltd,W184-01	Laois,Ireland	
			discarded electrical and electronic equipment other than those mentioned in 20 01 21 and and 20 01 23 containing hazardous						Cappincur Industrail Estate,Daingean Rd,Tullamore,Co KMK Metals	Cappincur Industrail Estate,Daingean Rd,Tullamore,Co
Within the Country	20 01 35	Yes	183.81 components	R4	м	Weighed	Offsite in Ireland	KMK Metals Ltd, W0133-03	Offaly,Ireland Ltd,W0133-03	Offaly,Ireland
Within the Country	20 01 36	Νο	discarded electrical and electronic equipment other than those mentioned in 2001 21, 0.0 2001 23 and 2001 35		м	Weighed	Offsite in Ireland	KMK Metals Ltd,W0133-03	Cappincur Industrail Estate,Daingean Rd,Tullamore,Co Offaly,Ireland	
			discarded electrical and electronic equipment other than those mentioned in 20 01 21,						Cappincur Industrail Estate,Daingean Rd,Tullamore,Co	
Within the Country	20 01 36	No	0.0 20 01 23 and 20 01 35	R4	м	Weighed	Offsite in Ireland	KMK Metals Ltd,W0133-03	Offaly, Ireland Tait's	
Within the Country	20 01 38	No	wood other than that 375.63 mentioned in 20 01 37	R13	М	Weighed	Offsite in Ireland	CTO Environmental Solutions Ltd,CK/09/0018/02	Farm,Rostellan, Midleton,Co Cork,Ireland Pouladuff	
Within the Country	20 01 40	No	130.95 metals	R4	м	Weighed	Offsite in Ireland	Pouladuff Dismantlers Ltd,CK/0584/01	Rd,Togher,Cork, Cork,Ireland	
Within the Country	20 02 01	No	332.08 biodegradable waste	R3	м	Weighed	Offsite in Ireland	greenstar Ltd,W136-02	Corbally North,Srasfields Court,Glanmire, Co Cork,Ireland	
Within the Country	20 03 01	No	796.75 mixed municipal waste	D1	м	Weighed	Offsite in Ireland	Country Clean Recycling Ltd,W0257	Chuchfield Industrial Estate,John F Connolly Road,Cork,Co Cork,Ireland	
Within the Country	20 03 07	No	937.82 bulky waste	D5	м	Weighed	Offsite in Ireland	greenstar Ltd,W136-02	Corbally North,Srasfields Court,Glanmire, Co Cork,Ireland	

WASTE SUMMARY	Lic No:	W0022-01	Year	2014

SECTION B- WASTE ACCEPTED ONTO SITE-TO BE COMPLETED BY ALL IPPC AND WASTE FACILITIES

Were any wastes accepted onto your site for recovery or disposal or treatment prior to recovery or disposal within the boundaries of your facility ?; (waste generated within your boundaries is to be a captured through PRTR reporting) SELECT

If yes please enter details in table 1 below

3

2 Did your site have any rejected consignments of waste in the current reporting year? If yes please give a brief explanation in the additional information

Was waste accepted onto your site that was generated outside the Republic of Ireland? If yes please state the quantity in tonnes in additional information

Table 1 Details of waste accepted onto your site for recovery, disposal or treatment (do not include wastes generated at your site, as these will have been reported in your PRTR workbook)

Licenced annual tonnage limit for your site (total tonnes/annum)	EWC code	accepted	Quantity of waste accepted in current reporting year (tonnes)	Quantity of waste accepted in previous reporting year (tonnes)	Reduction/ Increase over previous year +/ - %	Reason for reduction/ increase from previous reporting year	Disposal/Recovery or treatment operation carried out at yours and the description of this operation	Quantity of waste remaining on site at the end of reporting year (tonnes)	Comments -
-									

SECTION C-TO BE COMPLETED BY ALL WASTE FACILITIES (waste transfer stations, Composters, Material recovery facilities etc) EXCEPT LANDFILL SITES

4 Is all waste processing infrastructure as required by your licence and approved by the Agency in place? If no please list waste processing infrastructure required onsite

5 Is all waste storage infrastructure as required by your licence and approved by the Agency in place? If no please list waste storage infrastructure required on site

6 Does your facility have relevant nuisance controls in place?

7 Do you have an odour management system in place for your facility? If no why?

8 Do you maintain a sludge register on site?

SECTION D-TO BE COMPLETED BY LANDFILL SITES ONLY

Waste types permitted for disposal	Authorised/licenced annual intake for disposal (tpa)	Actual intake for disposal in reporting year (tpa)	Remaining licensed capacity at end of reporting year (m3)	Comments
68,200	0		Site Closed Feb 2007	
21,400	0	0		
13,800	0			
7,800	0			

Table 3 General information-Landfill only

Area ID	Date landfilling commenced	Date landfilling ceased	Currently landfilling	Private or Public Operated	Predicted date to cease landfilling	Licence permits asbestos	Is there a separate cell for asbestos?	ell Accepted asbestos in reporting year	Total disposal area occupied by waste	Lined disposal area occupied by waste	Unlined area
									SELECT UNIT	SELECT UNIT	SELECT UNIT
Site Closed Feb 2007											

SELECT		
SELECT		
SELECT		
SELECT		
SELECT		

Additional Information

SELECT SELECT

WASTE SUMMARY					Lic No:	W0022-01		Year	2014
Table 4 Environmental monitoring-landfill only Landfill Manual-Monitoring Standards									
	Was leachate monitored in compliance	Was Landfill Gas monitored in compliance with LD standard in			Were emission limit values agreed with the Agency (ELVs)	Was topography of the site surveyed in	Has the statement under S53(A)(5) of WMA been submitted in reporting year	Comments	
Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	All license conditions being met under current monitoring regime	

Yes Yes Yes . + please refer to Landfill Manual linked above for relevant Landfill Directive monitoring standards

Table 5 Capping-Landfill only

Area uncapped*	Area with temporary cap	Area with final cap to LD		Area with waste that should be permanently capped to date under		
		Standard m2 ha, a	Area capped other	licence	What materials are used in the cap	Comments
					1mm HDPE welded liner, geotextile	
					drainage layer and protection barrier	
					covered with 1m of suitable, screened	
0	0	65760m2	0	65760m2	soil.	
*please note this includes daily co	over area					

Table 6 Leachate-Landfill only

9 Is leachate from your site treated in a Waste Water Treatment Plant?

10 Is leachate released to surface water? If yes please complete leachate mass load information below

Yes	
No	

Volume of leachate in reporting year(m3)			Leachate (NH4) mass load (kg/annum)	Leachate (Chloride) mass load kg/annum		Specify type of leachate treatment	Comments
						Wastewater	
						Treatment Plant	
						with Mixing tank,	
						Oxidation ditch	
						& Settlement	
7347.93	1093	2454.2	372	3651.7	No	tanks	

Please ensure that all information reported in the landfill gas section is consistent with the Landfill Gas Survey submitted in conjunction with PRTR returns

Table 7 Landfill Gas-Landfill only

Gas Captured&Treated by LFG System m3	Power generated (MW / KWh)	Used on-site or to national grid	Was surface emissions monitoring performed during the reporting year?	Comments
				Gas captured figure is
				Annual Methane burn-
				off in kg/annum. Areas
				of elevated VOC's are
				identified by the
				surveys and are
				attended to by site
562479 kg CH4/annum	0	0	Yes	staff.

