BALLAGHVENY LANDFILL, TIPPERARY COUNTY COUNCIL BALLYMACKEY, NENAGH COUNTY TIPPERARY

ANNUAL ENVIRONMENTAL REPORT

INDUSTRIAL EMISSIONS LICENCE REG. NO. W0078-03

Prepared by:

Tipperary County Council
Environment Section
Civic Office
Clonmel
Co. Tipperary

September 2014

Table of Contents

1	Executive Summary	1
2	Introduction	1
3	Waste Activities	2
4	Waste during the Previous Years	3
5	Remaining Facility Capacity	4
6	Summary Report of Emissions	5
7	Resource and Energy Consumption	6
8	Leachate	6
9	Development Works	8
10	Restoration of Completed Cells / Phases	8
11	Site Survey	8
12	Landfill Gas	8
13	Water Balance	9
14	Procedures	9
15	Environmental Objectives and Targets	10
16	Tank, pipeline and Bund Testing and Inspection report	10
17	Incidents and Complaints	10
18	Nuisance	10
19	Financial provisions, Staffing and Public Information	10

1. **Executive Summary**

This is the thirteenth Annual Environmental Report (AER) produced for Ballaghveny Landfill Site,

Ballymackey, Nenagh, Co. Tipperary and has been complied in accordance with the requirements

of Schedule G of Waste Licence 0078-03.

The purpose of the report is to summarise the interaction of the facility with the local

environment.

The Annual Environmental Report includes where applicable the information specified in

Schedule G of the Waste Licence and in accordance with the various EPA publications on Landfills.

Introduction 2.

Waste Licence Register Number: 0078-03

Name of Operator, Name and Address of Facility in 2013.

North Tipperary County Council,

Ballaghveny Landfill Site,

Ballymackey,

Nenagh,

Co. Tipperary

Reporting period

The reporting period for the purposes of this AER is the 1st January 2013 to the 31st of December

2013.

Site Description

The site is located in a rural area, which is not heavily populated, and its surrounding lands consist of flat open fields screened by dense forestry. Agriculture is the principal land use in the vicinity of the landfill, with pig farming, horses and dairying as the main activities. Access to the site is generally from the Nenagh/Dublin N7 National Primary Route along rural roads.

The landfill is located in the townslands of Ballymackey and Woodville approximately 4km north of Toomevara and 11km north-east of Nenagh. The site is approximately 16.3 Ha in size and is situated on the eastern side of approximately 40 Ha of Land owned by Tipperary County Council (TCC) which also includes Woodville House.

The original site, approximately 5.3 Ha in size, was purchased as a disused quarry by Tipperary County Council following an investigation by An Foras Forbartha in 1985. A total of 5 Cells were developed with cells 3-5 lined. In 2000 TCC bought Woodville House and associated lands to the west and north of the existing landfill.

Three additional lined cells, cells 6, 7, and 8 were developed and filled from September 2001 to June 2005. Cells 9, 10 and 11 were constructed in 2004/2005 and came into operation in June 2005.

Current Status of Ballaghveny Landfill and Civic Amenity Site.

Landfilling of waste in Ballaghveny Landfill ceased on the 26th of February 2011 when a temporary closure of the landfill was initiated.

The Civic Amenity Site was open to the public on Fridays and Saturdays only for recycling and bags of domestic waste but this facility closed on Saturday 30th June 2012.

Waste Activities

No waste was landfilled in Ballaghveny Landfill during 2013.

The Civic Amenity Facility was closed to the public and as such no waste was accepted in 2013 at the Facility.

4. Waste during the Previous Years

Table 1 below illustrates the tonnage of waste landfilled at Ballaghveny Landfill since 2001.

Table 1 Waste Accepted for Disposal at Ballaghveny Landfill

Year	Total tonnage accepted at Ballaghveny Landfill
2001	28,588
2002	35,787
2003	36,612
2004	32,622
2005	26,115
2006	31,802
2007	28,470
2008	25,096
2009	21,442
2010	17,004
2011	7,386
2012	0
2013	0

Total tonnage of materials recycled at the Ballaghveny Landfill Facility are listed in Table 2.

Ballaghveny Landfill constructed its Civic Amenity Site in March 2003. The construction of this facility allowed for the expansion of recycling services. The Facility accepted the following for recycling

- Scrap metal
- Plastic
- Carbboard
- Newspaper and Magazines
- Batteries
- Bottle Banks
- Clothes Bank
- Fridge/Freezers
- WEEE
- Flousescent bulbs
- Gas cyclinders
- Christmas trees

Table 2 Tonnage of material recycled at Ballaghveny Civic Amenity Site since 2001.

Year	Total tonnage recycled at Ballaghveny Landfill and Civic Amenity Site
2001	112
2002	123
2003	101
2004	78
2005	67
2006	272
2007	287
2008	319
2009	265
2010	206
2011	58
2012	10
2013	0

5. Remaining Facility Capacity

The most recent topographical survey of Ballaghveny was carried out in August 2014.

A proposed filling plan was produced in January 2010. See Appendix 1 for the topographical survey and the filling plan.

Cell 10b

The floor plan area of Cell 10b is 3,797m²

This cell has a filling capacity of 46,376m³

The most recent compaction rate was 0.71t/m³

A total of 32,927tonnes of waste can be landfilled in this cell.

Cell 11a

The floor plan area of Cell 11a is 2,992m²

This cell has a filling capacity of 30,441m³

The most recent compaction rate was 0.71t/m³

A total of 21,613 tonnes of waste can be landfilled in this cell.

Cell 11b

The floor plan area of Cell 11b is 3,536m²

This cell has a filling capacity of 34,776m³

The most recent compaction rate was 0.71t/m³

A total of 24,691 tonnes of waste can be landfilled in this cell.

The Wedge

The floor plan area of the Wedge is 2,345m²

This cell has a filling capacity of 70,160m³

The most recent compaction rate was 0.71t/m³

A total of 49,814 tonnes of waste can be landfilled in this cell.

This gives a total void space of 129,045m³.

6. Summary Report of Emissions

The required monitoring programme at Ballaghveny Landfill Facility is specified in Schedule C of Waste Licence W0078/03. The Environmental monitoring period for this AER is 1st January 2013 to the 31st of December 2013.

Drawing DG 0001-01, Rev F06 in Appendix 2 shows the locations of all monitoring points. Appendix 3 has a copy of all relevant reports that relate to:

- Ground water
- Landfill Gas
- Surface water
- Leachate
- PRTR Emission Data

Issues relating to exceedances were reported on EDEN. Refer to Appendix 4 for a list of same.

7. Resource & Energy Consumption

Resource and energy consumption on site can be summarised approximately as follows

Diesel Fuel:

The landfill has a tractor and Quad, which used approximately 500 litres of Diesel in 2013.

Water Consumption:

A total of 14m3 of water was used at the site in 2013.

Energy Audit:

An audit of Tipperary County Council's Ballaghveny Landfill and Civic Amenity Site was carried out by Tipperary Energy Agency in 2009.

Based on this Energy Audit, a number of improvements were carried out at the Site.

8. Leachate

All Leachate is pumped to the Leachate storage lagoon to the north of cells 6-8. The existing Leachate lagoon has a capacity of 1,020m3. Allowing for a free board of 0.5m in accordance with the waste licence, the Leachate storage capacity of the lagoon is 694m3. Leachate volumes removed from the site for treatment in 2013 are included in Appendix 5. An overview of the leachate removed from site for treatment since 2001 is included in Table 3.

Leachate is tankered from the lagoon to

- Nenagh Waste Water Treatment Plant
- Roscrea Waste Water Treatment Plant
- Limerick Main Drainage
- Rilta Treatment Plant, Dublin
- Kilkenny Waste Water Treatment Plant

Table 3 Leachate Removed from Ballaghveny Landfill

Year	Total Leachate removed from Ballaghveny Landfill for treatment at WWTPs
2001	6,210
2002	14,466
2003	12,217
2004	13,273
2005	18,672
2006	16,657
2007	26,016
2008	40,232
2009	22,313
2010	17,203
2011	15,670
2012	6,804
2013	7,112

In accordance with Condition 6.2 of waste licence 0078-03 leachate levels and the freeboard in the leachate storage lagoon are to be monitored continuously. A Scada System is in place and is monitoring same. This system became operational in March 2010. The system records the following:

- Levels of landfill Leachate in the Leachate lagoon
- Levels of Leachate at 20 points in the Landfill including Leachate monitoring boreholes, some dual purpose wells and Leachate pumping chambers.
- Levels and flows in 3 surface water lagoons
- Water quality analysis at the outlet of 3 surface water lagoons.

There were issues with the Scada System at Ballaghveny Landfill during 2012. The original Scada System never gave accurate readings. In 2012, the Council decided to replace the system as the original contractor had gone out of business. Tipperary County Council has employed a new contractor to install new level sensors and has a maintenance contract with this same company to manage same.

Additional date is available in the following appendices

- Details of Leachate composition analysis are given in Appendix 3 –Quarterly analysis
- Leachate monitoring locations are identified in Appendix 2 Monitoring locations reference drawing DG 0001-01 (F06)

9. Development Works

Cells 1 -10a have a final cap in place.

Tipperary County Council initiated a temporary closure at Ballaghveny Landfill on Saturday the 26th of February 2011. No waste has been landfilled in Ballaghveny since March 2011 and all filled cells have been capped. A Temporary Closure Plan was submitted to the Agency in 2011 and subsequently extended to March 2015.

10. Restoration of Completed Cells/Phases

Cells 1-8 of the Landfill have been capped and restored as per waste licence W0078-02. The filling of Cell 9 was completed in November 2009. This cell was capped during 2011. Cell 10a was closed in March 2011 and capped during 2011. All filled cells in Ballaghveny Landfill are now permanently capped. A green protective geotextile is currently covering the liners at the side of cells 6-8 and cell 10a.

A decision will be made regarding the future of Ballaghveny Landfill in later half of 2014 when it will be decided if the facility will reopen for waste disposal of if a permanent closure will be implemented.

11. Site Survey

The topographical survey of Ballaghveny Landfill is included in Appendix 1.

12. Landfill Gas

Gas Collection and Flaring

The Landfill gas flare which was originally installed in 2002 was re-commissioned in June 2008. The enclosed flare has a maximum capacity of 500m3/hr.

Landfill gas is now collected in 34 vertical wells throughout the landfill and directed to the gas flare. A Fugitive VOC survey of the landfill survey was carried out in July 2014 and is attached in Appendix 6.

13. Water Balance

A revised water balance calculation was carried out in March 2011 in accordance with Section 7.2 of the EPA Manual Landfill Site Design. See Appendix 7 attached.

The estimated Leachate generation figure for 2013 was 9,563m3. As referred to in Section 9 above, the actual quantity of Leachate tinkered from the landfill in 2013 was 7,112t.

14. Procedures

The list of procedures developed up to December 2013 are outlined below.

Tipperary North and South Local Authorities are amalgamating in 2014 and as such a new incorporated set of procedures will be developed.

A comprehensive report under this heading can be seen in the Environmental Management Plan (EMP) for Ballaghveny Landfill for 2009/2010.

- Awareness and Training Procedure
- Communications Procedure
- Corrective Action Procedure
- Emergency Response Procedure
- Environmental Incident Procedure
- Fire Control Procedure
- Leachate monitoring procedure
- Leachate handling procedure
- Waste acceptance procedure
- Operation of the facility in Adverse Wind Conditions
- Vermin and Fly infestation Programme
- Procedure for CCTV at the facility
- Procedure for the Landfilling of waste
- Procedure for erecting Litter Netting
- Procedure for litter picking on local roads
- Site safety rules
- Procedure for using the lawnmower
- Weigh in/out procedures for customers using the weighbridge
- Weigh in/out procedures for fixed charge customers
- Procedures for collecting cash at the weighbridge
- Procedure for Landfill Lodgements
- Procedure for end of day closing at the weighbridge/cash desk
- Procedure for daily balance sheet
- Procedure for daily transaction report
- Procedure for setting up a new account

15. Environmental Objectives and Targets

A Temporary Closure Plan is in place for the Ballaghveny Landfill Site and if any works are to be carried out in 2014 the Agency will be notified in advance as per the waste licence.

16. Tank, Pipeline and Bund Testing and Inspection Report

The Leachate rising main from Cell 9 to the Leachate lagoon was pressure tested in 2012 and passed.

17. Incidents and Complaints

Please find a list of same in Appendix 4.

18. Nuisance

The vermin control programme has been scaled back to quarterly as the facility is now closed and the cells have been capped. The latest report from the Pest Control Company is in Appendix 8.

19. Financial Provisions, Staffing and Public Information

Financial Provision

Tipperary County Council has made the necessary provisions to ensure that there is adequate funding for the management, development and restoration of the Ballaghveny Landfill.

An Environmental Liability Risk Assessment (ELRA) has been completed for the Facility and this is available for inspection at the site.

Section 53A reports have been returned to the Agency detailing Financial Provisions for the site.

The Temporary Closure Plan highlights the financial provisions for the site going forward.

Staffing Structure of the Facility in 2013-

Details of Management Structure:

- North Tipperary County Council has overall responsibility for management and operation of the Ballaghveny Landfill Site.
- Senior Executive Engineer, Mr. Michael Woulfe, has overall responsibility for the management of waste in North Tipperary.
- Ms Olga Doyle, Executive Environmental Scientist, and Ms. Justine Haugh, Environmental Technician have divided their time between Landfill, Infrastructure and Enforcement duties for the North of the County.
- Site Caretaker: Mr. Michael Haverty is based at the site for 2.5 days per week.
- RPS Consulting engineers were employed in 2013 by North Tipperary County Council to do some work on the waste licence.

Staffing Structure of the Facility going forward into 2014:

North Tipperary County Council and South Tipperary County Council merged on the 1st of June 2014 to become Tipperary County Council. Following amalgamation staff have been moved into new positions.

The new management structure at the facility will be submitted to the EPA in the coming weeks for review and approval.

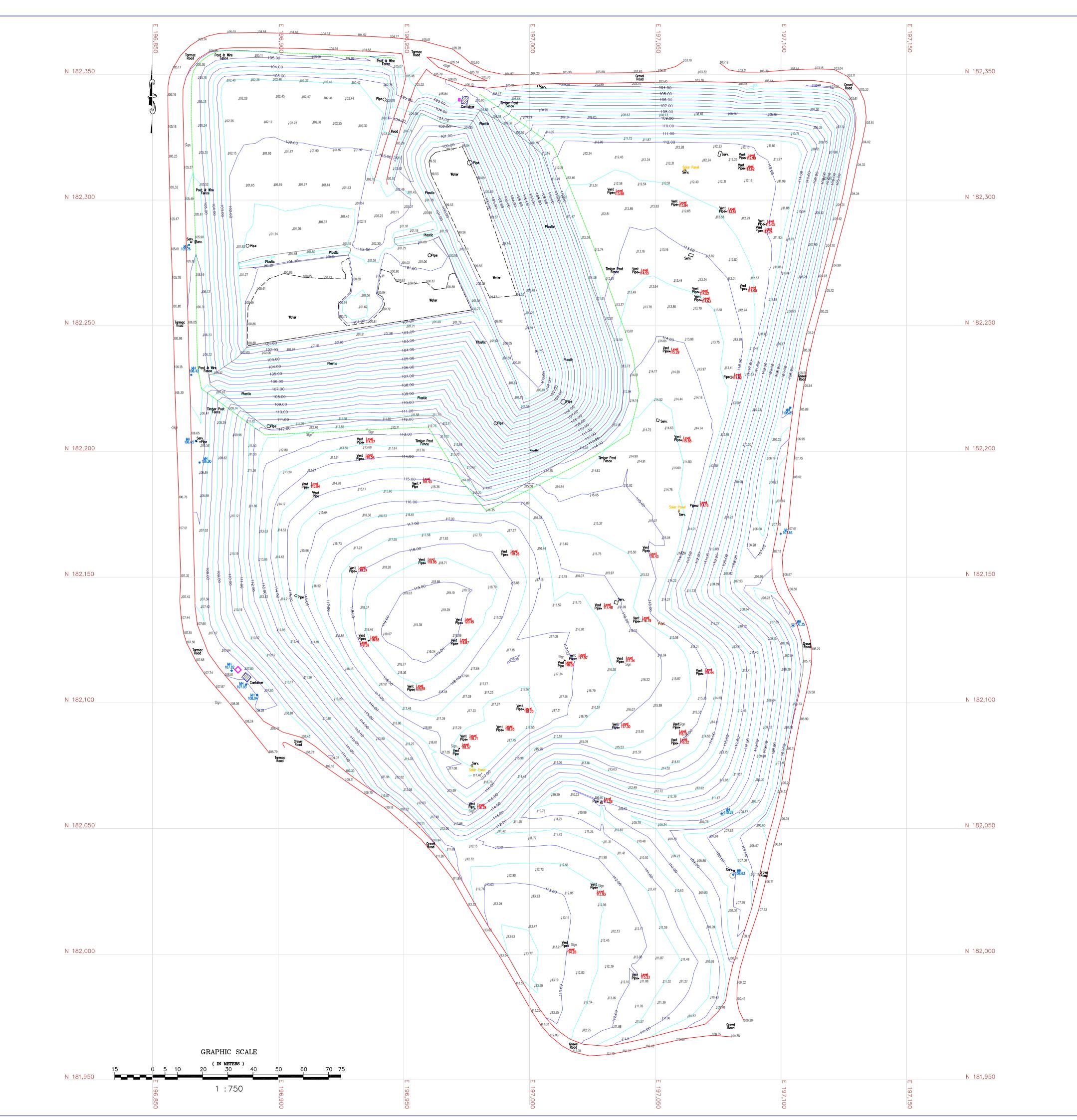
Public Information, Monitoring and Reporting Requirements

North Tipperary County Council submitted a Waste Licence Communications Programme to the Agency and this was subsequently approved.

The following documentation may be viewed by the public at Ballaghveny Landfill, Ballymackey, Nenagh:

Public Information Documentation Index

- Complaints Register
- Corrective Actions Procedure
- Training Records

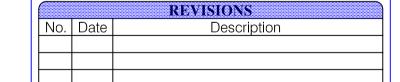

Environmental Monitoring Records

- Monthly Landfill gas composition
- Quarterly surface water composition
- Weekly surface water visual inspections
- Quarterly Leachate composition
- Monthly groundwater levels
- Quarterly groundwater composition
- Annual Biological Assessment for Ballaghveny Stream

Other Monitoring Activity

- Accident/First Aid Report Form
- Leachate Consignment Register
- Waste Licence
- EIS for Landfill Extension Report
- Annual Environmental Report
- Environmental Management Programme
- Management Structure
- Licence requirement Action Plan
- Operational Procedures/Forms
- Document Control
- Calibration Register
- Contingency Plans
- Maintenance Register
- Non conformances

APPENDIX 1

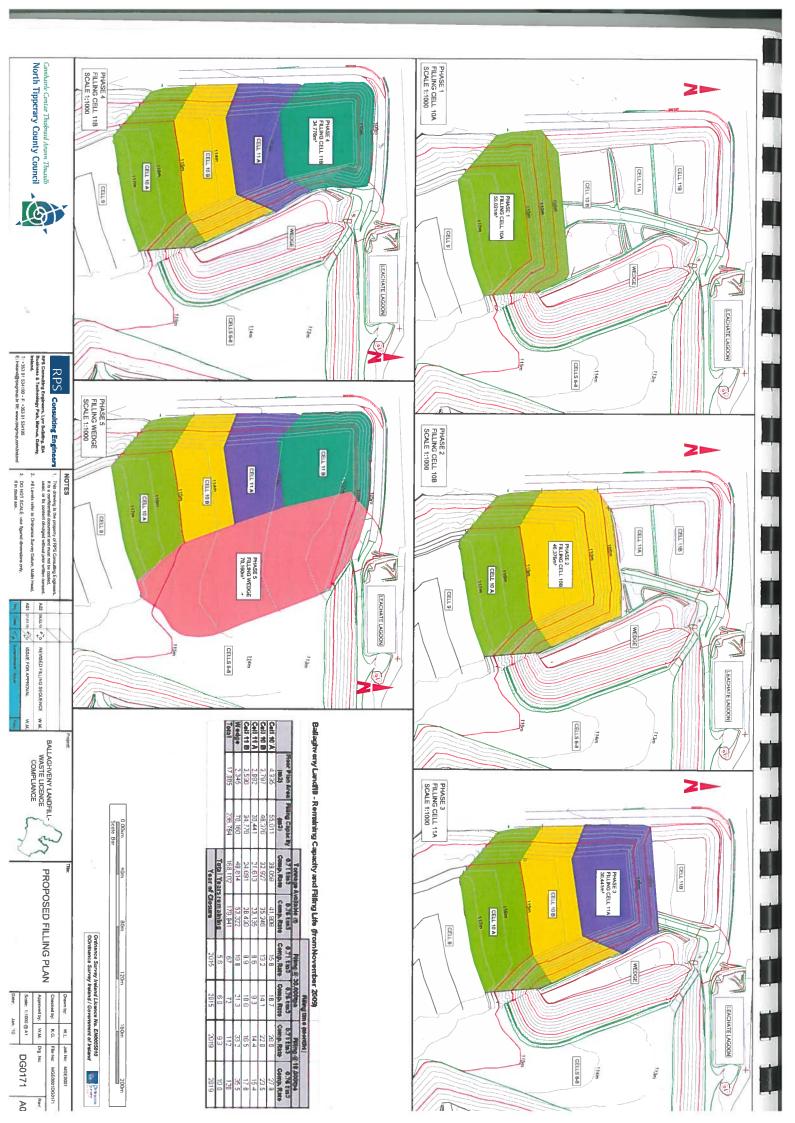


- NOTES: 1. All levels are relative to Ordnance Datum Malin Head
- 2. 50m sq grid relative to Irish Grid (1970)
- Co-ordinate reference system

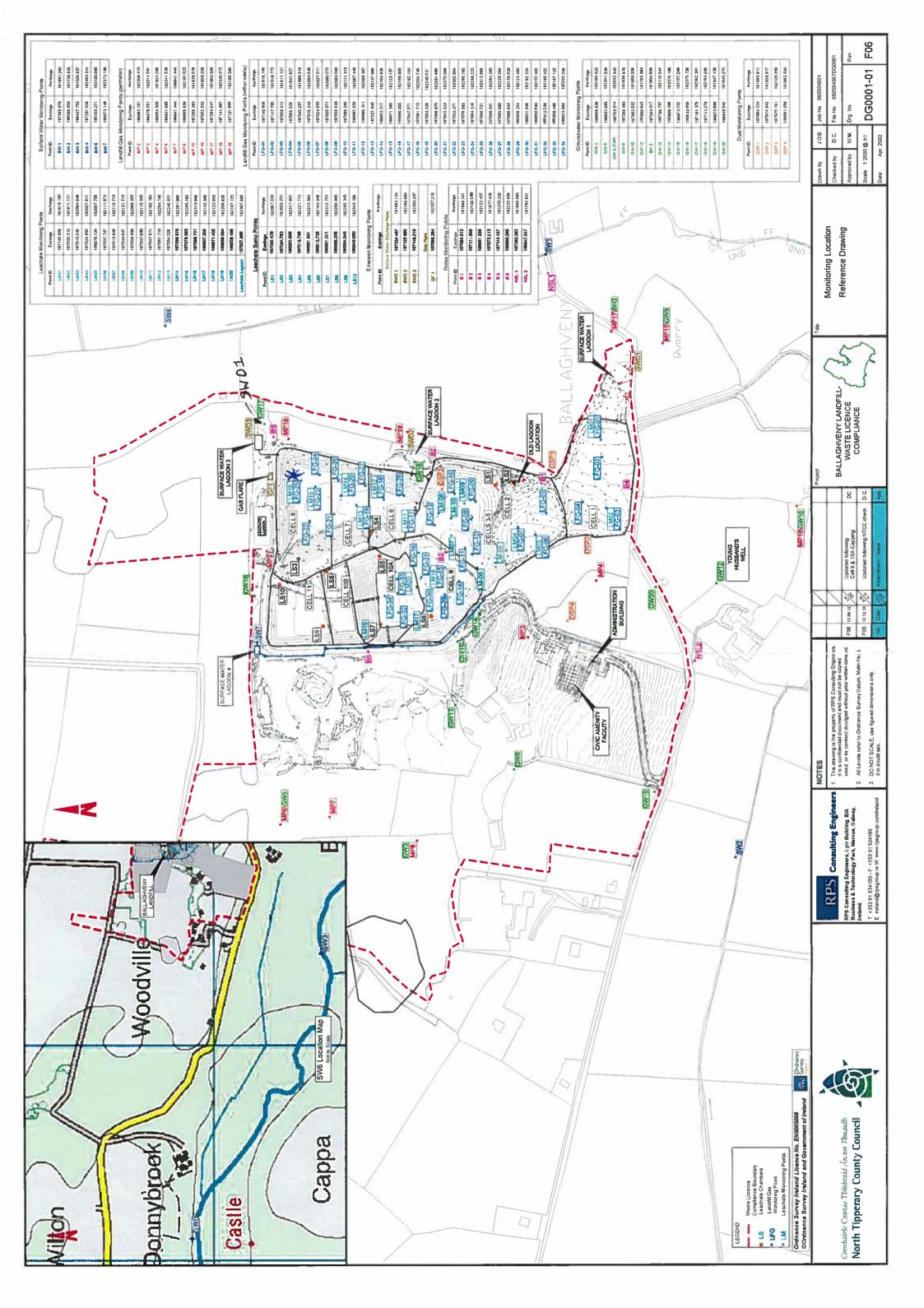
 3. Contours are at 0.50m intervals

	SYMBOL	LEGE	ND
۷A٥	Air Valve	© SV	Sluice Valve
⊕∨	Valve	⊗W∨	Water Valve
■ FH	Fire Hydrant	⊗WM	Water Meter
	Inspection Chamber	⊕Post	Post
□ICTE	Telecom Duct	□ICE	ESB Duct
Box	Telcom Box	ESB Box	ESB Box
0	Tree	• EP	ESB Pole
	Tree Spread	o TP	Telecom Pole
糠	Bush/Shrub		Lamp Standard
Sign	Sign	oT Sign	Traffic Sign
LA • 🔳	Armstrong Junction	■ GY	Gully
□ ER	Earth Rod	⋈ Gas	Gas
■TL	Traffic Light	●B	Bollard
⊜ ■ CATV	Cable TV Duct	Bin	Bin
G	Gate	⊕Stay	Stay
● MH 4.93	Manhole & Cover Level	o□□Serv	Service
10.00	Survey Station	o Pipe	Pipe
Ridge × 8.73	Ridge Height	Coping 8.73 ×	Coping Height
F.F.L. × 8.73 ×	Finished Floor Level	Gutter 8.73	Gutter Height
Eaves _× 8.73	Eaves Height	Roof 8.73 ×	Roof Height
6.78 _×	Boundary Height	₊ 9.55	Spot Height

	LINE TYP	E LÆGI	END	
	Wall		Concrete Edge	
	Fence		Centerline of Trees	
	Footpath	~	Hedge	
	Drain/River		Step	
	Flower Bed		Plinth	
	ESB Line		Telecom Line	
	Mound		Mound Center	
	Kerb		Road	
11.00	Contour Major	10.75	Contour Minor	
<u> </u>	Building		Plinth	
	Bottom of Bank		Top of Bank	
	Yellow Line		White Line	


- Topographical SurveysMeasured Building Surveys

As Built Surveys • GPS Surveys • Legal Mapping


Setting Out •

Tipperary County Council

Topographical Survey of Ballyhveny Landfill, Nenagh, Co. Tipperary.

APPENDIX 2

APPENDIX 3

BIOLOGICAL MONITORING OF WATER QUALITY IN THE VICINITY OF BALLAGHVENY LANDFILL, COUNTY TIPPERARY

August 2013

North Tipperary Co. Council

2 3 SEP 2013

Environment Section

CONTENTS

1.	INTRODUCTION	. 3
	METHODOLOGY2.1. SITE LOCATIONS2.2. HABITAT ASSESSMENT2.3. INVERTEBRATE SAMPLING AND WATER QUALITY ASSESSMENT .	.4 4
	RESULTS	<i>(</i> 8 9 10
4.	SUMMARY OF MONITORING RESULTS 1998 - 2013	12
	CONCLUSIONS	13
6.	REFERENCES	14

APPENDIX 1 HABITAT AT INVERTEBRATE SAMPLING SITES

1. INTRODUCTION

As part of the monitoring of water quality in the vicinity of Ballaghveny Landfill Site, Conservation Services, Ecological & Environmental Consultants have been commissioned by Tipperary N.R. County Council to carry out biological sampling and water quality assessment in accordance with EPA Q-rating methodology at five locations adjacent to the landfill site. The sites were most recently assessed by Conservation Services in July 2012 (Conservation Services 2012).

Sampling was carried out on 9th August 2013.

2. METHODOLOGY

2.1. SITE LOCATIONS

Biological sampling and water quality assessment was carried out at the following sites. Grid references were recorded at all sites using a GPS.

SITE	GRID REFERENCE (GPS)
Site A	R97278 82435*
Site A1	R97402 81948
Site B	R95299 82065
Site 1	R95489 81882
Site 2	R94188 81915

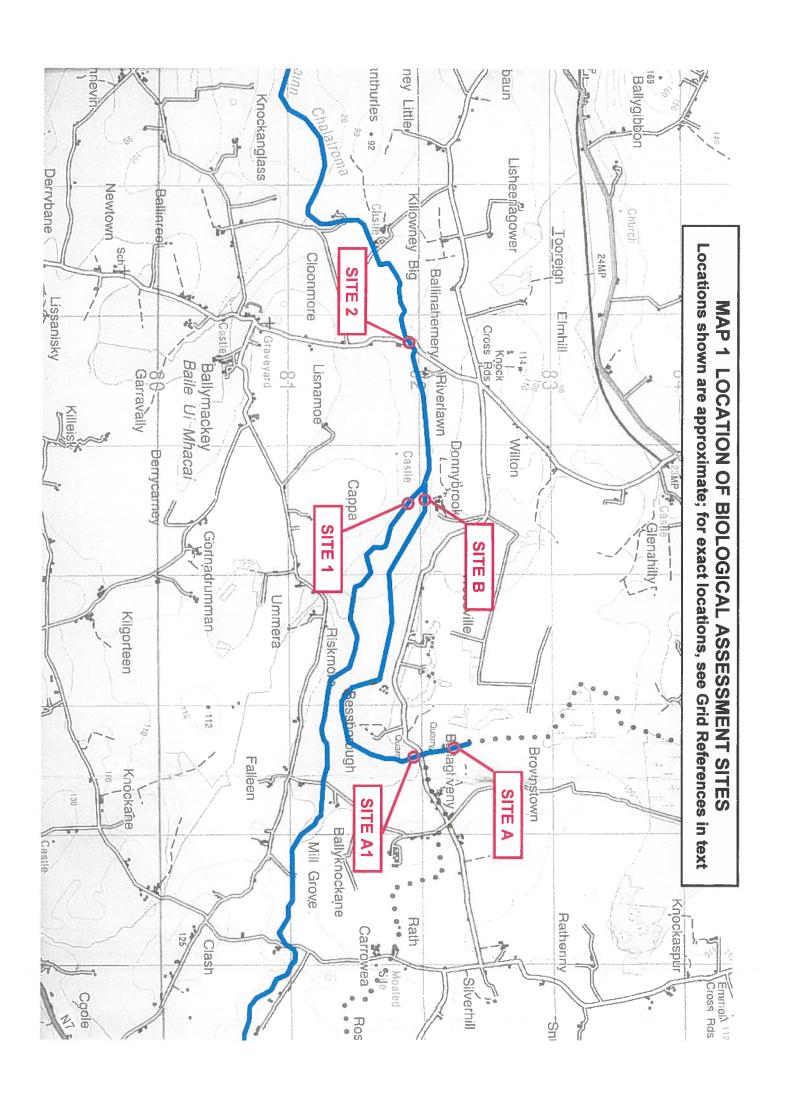
^{*}N.B. Site A is located at the most suitable location which is upstream of the drain from the vicinity of the landfill to the stream. The small size and slow flow at this site renders it suboptimal for the Q-rating method however it is the best that is available.

The location of the sites is shown on Map 1.

2.2. HABITAT ASSESSMENT

Habitat assessment was carried out at each of the five sites selected for invertebrate/water quality assessment. These sites were assessed in terms of:

- Stream width and depth
- Substrate type, listing substrate fractions in order of dominance, i.e. large rocks, cobble, gravel, sand, mud etc.
- Flow type, listing percentage of riffle, glide and pool in the sampling area


- Instream vegetation, listing plant species occurring and their percentage coverage of the stream bottom at the sampling site
- Dominant bankside vegetation, listing the main species overhanging the stream
- Estimated summer cover by bankside vegetation, giving percentage shade of the sampling site
- Rating of the site as habitat for trout adult, nursery and spawning on a scale
 of Poor/Fair/Good/Very Good/Excellent. This rating assesses the physical
 suitability of the habitat; the presence/absence/density of salmonids at the
 site will also depend on present and historical water quality and accessibility
 of the site to fish.

2.3. INVERTEBRATE SAMPLING AND WATER QUALITY ASSESSMENT

A kick and stone wash invertebrate sample was taken at each site (ISO 7828:1985) using standard methodology employed by EPA. Each sample was retained in a large plastic bag at the sampling site. Sample processing and preservation was carried out under laboratory conditions within 24 hours of sampling. Mud was removed from each sample by sieving under running water through a 500µ sieve. Sieved samples were then live sorted for 30 minutes in a white plastic sorting tray under a bench lamp (ISO 5667-3:1994) and if necessary using a magnifying lens. Macroinvertebrates were stored in 70% alcohol. Preserved invertebrates were identified to the level required for the EPA Q-rating method (McGarrigle et al, 2002) using high-power and low-power binocular microscopes when necessary. The preserved samples were archived for future examination or verification. Based on the relative abundance of indicator species, a biotic index (Q-rating) was determined for each site in accordance with the biological assessment procedure used by the

Environmental Protection Agency (Statutory Instruments No. 258 of 1998) and more detailed unpublished methodology (McGarrigle, Clabby and Lucey pers. comm.)

Biotic Index	Water Framework Directive Ecological Status	Quality Status
Q5	High	
Q4-5	High	Unpolluted Waters
Q4	Good	
Q3-4	Moderate	Slightly Polluted Waters
Q3	Poor	Moderately Polluted
Q2-3	Poor	Waters
Q2	Bad	Seriously Polluted
Q1-2	Bad	Waters
Q1	Bad	

3. RESULTS

Detailed habitat assessment for each sampling site, including aquatic plant assessment, is contained in Appendix 1.

3.1. SITE A

As there was minimal water flow at the site, conditions were not optimal for the Q-rating method and the Q-value is tentative. The invertebrate community tabulated below merits a tentative Q-rating of Q2-3 indicating moderately polluted conditions and poor ecological status, a slight improvement compared with Q2 in 2012.

INDICATOR GROUP	POLLUTION SENSITIVITY/TOLERANCE	TAXON	NUMBER 2013
Α	Very Pollution Sensitive	None recorded	
В	Moderately Pollution Sensitive	Limnephilidae	1
С	Moderately Pollution Tolerant	Corixidae Velia sp.	1 2
		Dytiscidae	4
		Chironomidae (ex. Chironomus)	25
D	Very Pollution Tolerant	Asellus aquaticus	57
		Sphaeriidae	2
E	Most Pollution Tolerant	Chironomus sp.	10

3.2. SITE A1

The invertebrate community tabulated below merits a Q-rating of Q3 indicating moderately polluted conditions and poor ecological status, with no significant change since 2012.

INDICATOR GROUP	POLLUTION SENSITIVITY/TOLERANCE	TAXON	NUMBER 2013
А	Very Pollution Sensitive	Nemurella picteti	1
В	Moderately Pollution Sensitive	Agapetus sp.	1
		Limnephilidae	8
		Sericostoma personatum	4
С	Moderately Pollution Tolerant	Potamopyrgus antipodarum	82
		Gammarus duebeni	43
		Hydracarina	1
		Velia sp.	1
		Dytiscidae	3
		Chironomidae	3
		Tipulidae - Pediciidae	3
		Tipulidae s.s.	2
D	Very Pollution Tolerant	Asellus aquaticus	6
E	Most Pollution T olerant	Tubificidae	1

3.3. SITE B

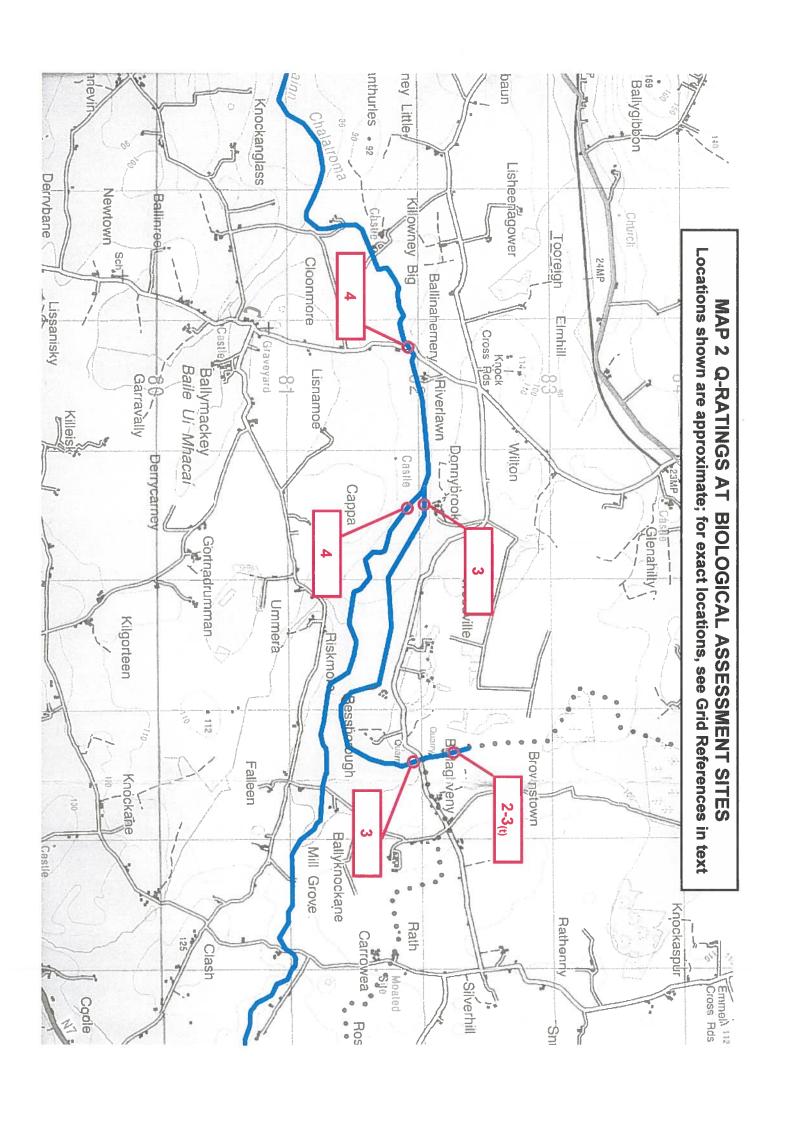
The invertebrate community tabulated below merits a Q-rating of Q3 indicating moderately polluted conditions and poor ecological status, with no significant change in water quality since 2012.

INDICATOR GROUP	POLLUTION SENSITIVITY/TOLERANCE	TAXON	NUMBER 2013
А	Very Pollution Sensitive	None recorded	
В	Moderately Pollution Sensitive	Baetis muticus	1
		Limnephilidae	8
		Sericostoma personatum	2
С	Moderately Pollution Tolerant	Gammarus duebeni	102
		Hydracarina	2
		Baetis rhodani	8
	TI .	Elmidae	6
		Chironomidae (ex. Chironomus)	6
		Tipulidae - Pediciidae	3
D	Very Pollution Tolerant	Glossiphonia sp.	1
E	Most Pollution Tolerant	None recorded	
-	Not assigned to indicator group	Lumbricidae	1
		Lumbriculidae	3

3.4. SITE 1

The invertebrate community tabulated below merits a Q-rating of Q4 indicating unpolluted conditions and good ecological status.

INDICATOR GROUP	POLLUTION SENSITIVITY/TOLERANCE	TAXON	NUMBER 2013
А	Very Pollution Sensitive	Isoperla grammatica (early instar)	1
		Ecdyonurus sp.	45
		Rhithrogena sp.	1
В	Moderately Pollution Sensitive	Leuctra sp.	38
С	Moderately Pollution Tolerant	Gammarus duebeni	33
		Baetis rhodani	64
		Serratella ignita	17
		Hydropsyche sp.	2
		Rhyacophila sp.	5
		Elmidae	64
		Simuliidae	52
		Tipulidae - Pediciidae	5
D	Very Pollution Tolerant	None Recorded	
E	Most Pollution Tolerant	None Recorded	


3.5. SITE 2

The invertebrate community tabulated below merits a Q-rating of Q4 indicating unpolluted conditions and good ecological status.

INDICATOR GROUP	POLLUTION SENSITIVITY/TOLERANCE	TAXON	NUMBER 2013	
Α	Very Pollution Sensitive	Ecdyonurus sp.	20	
В	Moderately Pollution Sensitive	Leuctra sp.	30	
		Baetis muticus	2	
		Agapetus sp.	1	
		Limnephilidae	2	
		Sericostoma personatum	5	
		Silo pallipes	1	
С	Moderately Pollution Tolerant	Potamopyrgus	15	
		antipodarum		
		Gammarus duebeni	53	
		Hydracarina	1	
		Baetis rhodani	26	
		Serratella ignita	20	
		Hydropsyche sp.	20	
	w.	Polycentropus sp.	3	
		Rhyacophila sp.	11	
		Elmidae	37	
		Haliplidae	21	
		Chironomidae	6	
		Simuliidae	1	
		Tipulidae - Pediciidae	4	
		Tipulidae s.s.	1	
D	Very Pollution Tolerant	None Recorded		
Е	Most Pollution Tolerant	Nine Recorded		
-	Not assigned to indicator group	Lumbriculidae	1	

4. SUMMARY OF MONITORING RESULTS 1998 - 2013

	SITE A	SITE A1	SITE B	SITE 1	SITE 2
Aug 1998	3-4	-	3-4	4	4
May 2002	2	-	3	4-5	4-5
March 2003	3/0	3	3-4	4-5	4-5
May 2004	3-4 (tentative)	3-4	3-4	3-4	3-4
June 2005	3 (tentative)	3	3	4	3-4
May 2006	3 or 3-4 (tentative)	3	3	4	4-5
July 2007	3 or 3-4 (tentative)	3	3	4	3-4
May 2008	3-4 (tentative)	3	3	4	4-5
July 2009	3 (tentative)	3	3	3-4	3-4
July 2010	2-3 (tentative)	3	3	4	4-5
July 2011	2-3 (tentative)	3	3	4-5	4-5
July 2012	2 (tentative)	3	3	4	4
Aug 2013	2-3 (tentative)	3	3	4	4

5. CONCLUSIONS

5.1. Ballaghveny Stream

Habitat conditions at Site A upstream of the landfill are less than optimal for Q-

rating assessment. Taking into account the flow and substrate conditions, the

invertebrate data merit a tentative Q2-3 (moderately polluted) rating. The

invertebrate data at Site A1, immediately downstream of the landfill, and at Site

B c.3km downstream of the landfill, indicate Q3 moderately polluted conditions.

The results of the biological assessment contain no evidence of an impact from

the landfill on the water quality of the Ballaghveny stream.

5.2. Ollatrim River

The Ollatrim River upstream and downstream of its confluence with the

Ballaghveny Stream is unpolluted with a Q-value of Q4 at both the upstream

site and the downstream site. The results of the present survey therefore

contain no evidence of an adverse impact on the Ollatrim River from the

Ballaghveny Stream.

Signed on behalf of Conservation Services

Helena Twomey BA(Mod.) PhD

Selena Thomay

19 September 2013

13

6. REFERENCES

Conservation Services (2012) Biological monitoring of water quality in the vicinity of Ballaghveny Landfill, County Tipperary. Unpublished Report to Tipperary North Riding County Council.

McGarrigle *et al* (2002) Water Quality in Ireland 1998-2000. Environmental Protection Agency.

APPENDIX 1

HABITAT ASSESSMENT AT SAMPLING SITES

Site Code A

Site Location Upstream of drain from the landfill area

Grid Reference R97278 82435

Site Photograph

Width 3 m

Depth 40 cm

Substrate Mud

Flow Type Slow glide (almost imperceptible flow)

Instream Vegetation Mentha aquatica 10%

Sparganium erectum 10%

Dominant Bankside

Vegetation

Willow, Grass, Ash

Estimated % Summer Cover of Stream by Bankside Vegetation

15%

Trout Adult Habitat None

Trout Nursery Habitat None

Trout Spawning Habitat None

Site Code A1

Site Location Downstream of road bridge.

Grid Reference R97402 81948

Site Photographs

Width 0.25-1 m

2-10 cm Depth

Substrate Mud, Cobble

Riffle 20% Flow Type

Glide 80%

Instream Vegetation Bryophytes <5% in open section

Apium nodiflorum 10% Mentha aquatica 15%

Dominant Bankside

Vegetation

Ash, Willowherb

Estimated % Summer Cover of Stream by

Bankside Vegetation

35%

Trout Adult Habitat Poor-None

Trout Nursery Habitat Poor-Fair

Trout Spawning Habitat Poor Site Code В

Site Location At Donnybrook House

Grid Reference R95299 82065

Site Photograph

Width 1-2 m

Depth 15-25 cm

Substrate Mud, Cobble (few)

Flow Type Riffle 5%

Glide 95%

Instream Vegetation None

Dominant Bankside

Vegetation

Ash, Beech

Estimated % Summer Cover of Stream by **Bankside Vegetation**

Poor

40%

Trout Adult Habitat

Trout Nursery Habitat Poor

Trout Spawning Habitat None Site Code 1

Site Location On the Ollatrim River at Donnybrook House

upstream of the confluence with Ballaghveny

Stream

Grid Reference R95489 81882

Site Photograph

Width 8-10 m

Depth 8-25 cm

Substrate Gravel, Sand, Cobble

Flow Type Riffle 60%

Glide 40%

Instream Vegetation Filamentous algae <5%

Rorippa nasturtium-aquaticum agg. <5%

Ranunculus sp. <5% Apium nodiflorum <5%

Dominant Bankside

Vegetation

Bramble, Nettle

Estimated % Summer Cover of Stream by Bankside Vegetation

<5%

Trout Adult Habitat Fair

Trout Nursery Habitat Fair

Trout Spawning Habitat Fair-Good

Site Code 2

Site Location Downstream of Ballinahemery Bridge

Grid Reference R94188 81915

Site Photograph

Width 5-6 m

Depth 15-30 cm

Substrate Gravel, Sand, Cobble

Flow Type Riffle 50%

Glide 50%

Instream Vegetation Cladophora sp. 15%

Bryophyta <5%

Ranunculus sp. <5%

Phalaris arundinacea <5% Apium nodiflorum <5%

Dominant Bankside

Vegetation

Grass, Phalaris arundinacea

Estimated % Summer Cover of Stream by

Bankside Vegetation

<5%

Trout Adult Habitat Fair-Good

Trout Nursery Habitat Fair-Good

Trout Spawning Habitat Fair-Good

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 15/03/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 19/02/2013 Date received: 19/02/2013

Report number: KK1300377/1 Page 1 of 3

			Labaratana Dafi	1300858	1300859	1300860	1300861	1300862	1300863	1300864
			Laboratory Ref:	l			1300001	1300002	1300003	1300004
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate
			Location code:	WST-W0078-01-L	WST-W0078-01- LL2	WST-W0078-01- LFG21	WST-W0078-01- LFG22	WST-W0078-01- LM8	WST-W0078-01	WST-W0078-01- LM7
			Sampling point:	clear (slightly brown)	Dark green	No sample, dry	No sample, dry	No sample, dry	No sample, dry	No sample, dry
			Sampled by:	D.Berry/M.Durou	D.Berry/M.Durou	D.Berry/M.Durou	D.Berry/M.Durou	D.Berry/M.Durou	D.Berry/M.Durou	D.Berry/M.Durou
			Time Sampled:	11:55	12:05	12:34	12:32	12:13	12:15	12:18
		Start/End - I	Dates of Analysis:	19-02-13/25-02-13	19-02-13/25-02-13	19-02-13/19-02-13	19-02-13/19-02-13	19-02-13/19-02-13	19-02-13/19-02-13	19-02-13/19-02-13
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Pai	rameter	Units	Limits	,						
F	Depth of Borehole	m		nm	nm	-	-	-	-	-
F	Leachate Level	m		nm	nm	-	-	-	-	-
F	Temperature	°C		9.8	9.1	-	-	-	-	-
F	рН	рН		6.9	7.6	-	-	-	-	-
F	Conductivity @25°C	μS/cm		2950	4070	-	-	-	-	-
L	Biochemical Oxygen Demand	mg/l O2		43.5	39.0	-	-	-	-	-
L	Chemical Oxygen Demand	mg/l O2		106	304	-	-	-	-	-

Report number:KK1300377/1 Page 2 of 3

Comments:

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

Test Reports relate only to the samples tested and as described on the report form.

Chemist

 Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Date: 15/Mar/2013

Caroline Bowden, Regional

Report number: KK1300377/1 Page 3 of 3

Test Report

Report of: Analysis of landfill site sample(s)
Report to: North Tipperary County Council

Report date: 15/03/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 19/02/2013 Date received: 19/02/2013

			Laboratory Ref:	1300865	1300866	
			Type of sample:	Leachate	Leachate	
			Location code:	WST-W0078-01	WST-W0078-01-LM5	
			Sampling point:	Sightly brown. Taken fro mchamber	Not enough for sample	
			D.Berry/M.Durou	D.Berry/M.Durou		
			Time Sampled:	nm	12:20	
		Start/E	nd - Dates of Analysis:	19-02-13/25-02-13	19-02-13/19-02-13	
			Status of results:	Final Report	Final Report	
Pa	rameter	Units	Limits			
F	Depth of Borehole	m		nm	-	
F	Leachate Level	m		nm	-	
F	Temperature	°C		8.4	-	
F	рН	рН		7.5	-	
F	Conductivity @25°C	μS/cm		3820	-	
L	Biochemical Oxygen Demand	mg/l O2		46.0	-	
L	Chemical Oxygen Demand	mg/l O2		205	-	

Report number:KK1300378/1 Page 1 of 2

Comments:

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- 9) Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP	s_L	Dat	e:	15/Mar/2013	

Caroline Bowden, Regional Chemist

Report number: KK1300378/1 Page 2 of 2

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 08/11/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 02/04/2013 Date received: 02/04/2013

Report number: KK1300625/2 Page 1 of 6

			Laboratory Ref:	1301506	1301507	1301508	1301509	1301510	1301511	1301512
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate
			Location code:		WST-W0078-01- LL2	WST-W0078-01- LFG21	WST-W0078-01- LFG22	WST-W0078-01- LM8	WST-W0078-01- LM10	WST-W0078-01- LM7
			Sampling point:	Wedge Chamber LS3	Brown, taken from lagoon	No sample	No sample	No sample	No sample	No sample
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	13:15	13:38	13:40	13:45	13:50	13:52	13:53
		Start/End - D	ates of Analysis:	02-04-13/26-04-13	02-04-13/26-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13
		9	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Pai	ameter	Units	Limits							
F	Depth of Borehole	m		nm	nm	-	-	-	-	-
F	Leachate Level	m		nm	nm	-	-	-	-	-
F	рН	рН		7.0	7.9	-	-	-	-	-
F	Conductivity @25°C	μS/cm		5210	4620	-	-	-	-	-
L	Ammonia	mg/l N		280	240	-	-	-	-	-
L	Chloride	mg/l Cl		410	385	-	-	-	-	-
L	Nitrite (as N)	mg/l N		0.067	0.006	-	-	-	-	-
L	ortho-Phosphate (as P)	mg/l P		0.27	0.07	-	-	-	-	-
L	Total Oxidised Nitrogen (as N)	mg/l N		1.75	0.6	-	-	-	-	-
L	Chemical Oxygen Demand	mg/l O2		268	285	-	-	-	-	-
L	Biochemical Oxygen Demand	mg/l O2		18.0	24.0	-	-	-	-	-
L	Fluoride	mg/l F		<2.5	<2.5	-	-	-	-	-
L	Sulphate	mg/l SO4		150	130	-	-	-	-	-
L	Aluminium	μg/l		24.6	28.1	-	-	-	-	-
L	Antimony	μg/l		1.43	1.24	-	-	-	-	-
L	Arsenic	μg/l		46.5	31.5	-	-	-	-	-
L	Barium	μg/l		421	318	-	-	-	-	-
L	Beryllium	μg/l		<0.5	<0.5	-	-	-	-	-
L	Boron	μg/l		1480	1260	-	-	-	-	-
L	Cadmium	μg/l		<0.5	<0.5	-	-	-	-	-
L	Calcium	mg/l		149	110	-	-	-	-	-
L	Chromium	μg/l		18.6	17.6	-	-	-	-	-

Report number: KK1300625/2

			Laboratory Ref:	1301506	1301507	1301508	1301509	1301510	1301511	1301512
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate
			Location code:	WST-W0078-01-L	WST-W0078-01- LL2	WST-W0078-01- LFG21	WST-W0078-01- LFG22	WST-W0078-01- LM8	WST-W0078-01- LM10	WST-W0078-01- LM7
			Sampling point:	Wedge Chamber LS3	Brown, taken from lagoon	No sample	No sample	No sample	No sample	No sample
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	13:15	13:38	13:40	13:45	13:50	13:52	13:53
		Start/End - D	ates of Analysis:	02-04-13/26-04-13	02-04-13/26-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13
	Status of results:			Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Par	ameter	Units	Limits							
L	Cobalt	μg/l		10.1	7.76	-	-	-	-	-
L	Copper	μg/l		7.03	3.73	-	-	-	-	-
L	Iron	μg/l		6740	3820	-	-	-	-	-
L	Lead	μg/l		1.35	0.57	-	-	-	-	-
L	Magnesium	mg/l		62.1	60	-	-	-	-	-
L	Manganese	μg/l		1610	1250	-	-	-	-	-
L	Mercury	μg/l		<0.5	<0.5	-	-	-	-	-
L	Molybdenum	μg/l		1.87	1.15	-	-	-	-	-
L	Nickel	μg/l		50.4	48.1	-	-	-	-	-
L	Potassium	mg/l		158	151	-	-	-	-	-
L	Selenium	μg/l		13.9	12.6	-	-	-	-	-
L	Sodium	mg/l		333	334	-	-	-	-	-
L	Thallium	μg/l		<0.5	<0.5	-	-	-	-	-
L	Uranium	μg/l		1.46	0.7	-	-	-	-	-
L	Vanadium	μg/l		7.28	5.72	-	-	-	-	-
L	Zinc	μg/l		18.8	23.3	-	-	-	-	-
L	1,1,1,2-Tetrachloroethane	μg/l		<0.5	<0.5	-	-	-	-	-
L	1,1,1-Trichloroethane	μg/l		<0.5	<0.5	-	-	-	-	-
	1,1,2,2-Tetrachloroethane	μg/l		<1	<1	-	-	-	-	-
L	1,1,2-Trichloroethane	μg/l		<0.5	<0.5	-	-	-	-	-
L	1,1-Dichloroethane	μg/l		<0.5	<0.5	-	-	-	-	-
L	1,1-Dichloroethene	μg/l		<0.5	<0.5	-	-	-	-	-
L	1,1-Dichloropropene	μg/l		<0.5	<0.5	-	-	-	-	-

Report number: KK1300625/2

			Laboratory Ref:	1301506	1301507	1301508	1301509	1301510	1301511	1301512
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate
			Location code:	WST-W0078-01-L	WST-W0078-01- LL2	WST-W0078-01- LFG21	WST-W0078-01- LFG22	WST-W0078-01- LM8	WST-W0078-01- LM10	WST-W0078-01- LM7
			Sampling point:	Wedge Chamber LS3	Brown, taken from lagoon	No sample	No sample	No sample	No sample	No sample
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	13:15	13:38	13:40	13:45	13:50	13:52	13:53
		Start/End -	Dates of Analysis:	02-04-13/26-04-13	02-04-13/26-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Pai	ameter	Units	Limits							
L	1,2,3-Trichlorobenzene	μg/l		<0.4	<0.4	-	-	-	-	-
L	1,2,3-Trichloropropane	μg/l		<0.6	<0.6	-	-	-	-	-
L	1,2,4-Trichlorobenzene	μg/l		<0.4	<0.4	-	-	-	-	-
L	1,2,4-Trimethylbenzene	μg/l		2.6	<0.5	-	-	-	-	-
L	1,2-Dibromo-3-Chloropropane	μg/l		<1.3	<1.3	-	-	-	-	-
L	1,2-Dibromoethane	μg/l		<0.5	<0.5	-	-	-	-	-
L	1,2-Dichlorobenzene	μg/l		<0.5	<0.5	-	-	-	-	-
L	1,2-Dichloroethane	μg/l		<0.5	<0.5	-	-	-	-	-
L	1,2-Dichloropropane	μg/l		<0.5	<0.5	-	-	-	-	-
L	1,3,5-Trimethylbenzene	μg/l		<0.5	<0.5	-	-	-	-	-
L	1,3-Dichlorobenzene	μg/l		1.2	<0.5	-	-	-	-	-
L	1,3-Dichloropropane	μg/l		<0.5	<0.5	-	-	-	-	-
L	1,4-Dichlorobenzene	μg/l		1.2	<0.5	-	-	-	-	-
L	2,2-Dichloropropane	μg/l		<0.5	<0.5	-	-	-	-	-
L	2-Chlorotoluene	μg/l		<0.5	<0.5	-	-	-	-	-
L	4-Chlorotoluene	μg/l		<0.5	<0.5	-	-	-	-	-
L	4-Isopropyltoluene	μg/l		<0.5	<0.5	-	-	-	-	-
L	Benzene	μg/l		2.3	<0.5	-	-	-	-	-
L	Bromobenzene	μg/l		<0.5	<0.5	-	-	-	-	-
L	Bromochloromethane	μg/l		<0.5	<0.5	-	-	-	-	-
L	Bromodichloromethane	μg/l		<0.5	<0.5	-	-	-	-	-
L	Bromoform	μg/l		<0.5	<0.5	-	-	-	-	-
L	Bromomethane	μg/l		<0.5	<0.5	-	-	-	-	-

Report number:KK1300625/2

			Laboratory Ref:	1301506	1301507	1301508	1301509	1301510	1301511	1301512
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate
			Location code:	WST-W0078-01-L	WST-W0078-01- LL2	WST-W0078-01- LFG21	WST-W0078-01- LFG22	WST-W0078-01- LM8	WST-W0078-01- LM10	WST-W0078-01- LM7
			Sampling point:	Wedge Chamber LS3	Brown, taken from lagoon	No sample	No sample	No sample	No sample	No sample
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	13:15	13:38	13:40	13:45	13:50	13:52	13:53
		Start/End - D	ates of Analysis:	02-04-13/26-04-13	02-04-13/26-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Par	rameter	Units	Limits							
L	c-1,2-Dichloroethene	μg/l		<0.5	<0.5	-	-	-	-	-
L	c-1,3-Dichloropropene	μg/l		<0.5	<0.5	-	-	-	-	-
L	Carbon Tetrachloride	μg/l		<0.5	<0.5	-	-	-	-	-
L	Chlorobenzene	μg/l		0.9	<0.5	-	-	-	-	-
L	Chloroform	μg/l		<0.5	<0.5	-	-	-	-	-
L	Dibromochloromethane	μg/l		<0.5	<0.5	-	-	-	-	-
L	Dibromomethane	μg/l		<0.5	<0.5	-	-	-	-	-
L	Dichlorodifluoromethane	μg/l		<0.5	<0.5	-	-	-	-	-
L	Dichloromethane	μg/l		<0.5	<0.5	-	-	-	-	-
L	Ethylbenzene	μg/l		1.2	<0.5	-	-	-	-	-
L	Hexachlorobutadiene	μg/l		<0.1	<0.1	-	-	-	-	-
L	Isopropylbenzene	μg/l		<0.5	<0.5	-	-	-	-	-
L	m,p-Xylene	μg/l		1.5	<0.5	-	-	-	-	-
L	Naphthalene	μg/l		<0.5	<0.5	-	-	-	-	-
L	n-Butylbenzene	μg/l		<0.5	<0.5	-	-	-	-	-
L	n-Propylbenzene	μg/l		<0.5	<0.5	-	-	-	-	-
	o-Xylene	μg/l		1.8	<0.5	-	-	-	-	-
L	sec-Butylbenzene	μg/l		<0.5	<0.5	-	-	-	-	-
L	Styrene	μg/l		<0.5	<0.5	-	-	-	-	-
L	t-1,2-Dichloroethene	μg/l		<0.5	<0.5	-	-	-	-	-
L	t-1,3-Dichloropropene	μg/l		<0.5	<0.5	-	-	-	-	-
L	tert-Butylbenzene	μg/l		<0.5	<0.5	-	-	-	-	-
L	Tetrachloroethene	μg/l		<0.5	<0.5	-	-	-	-	-

Report number: KK1300625/2

				1001500	1001507	1001500	1001500	1001510	1001511	1001510
			Laboratory Ref:	1301506	1301507	1301508	1301509	1301510	1301511	1301512
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate
			Location code:	WST-W0078-01-L	WST-W0078-01- LL2	WST-W0078-01- LFG21	WST-W0078-01- LFG22	WST-W0078-01- LM8	WST-W0078-01- LM10	WST-W0078-01- LM7
			Sampling point:	Wedge Chamber LS3	Brown, taken from lagoon	No sample	No sample	No sample	No sample	No sample
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	13:15	13:38	13:40	13:45	13:50	13:52	13:53
		Start/End - D	ates of Analysis:	02-04-13/26-04-13	02-04-13/26-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13	02-04-13/02-04-13
		:	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
					· ·	I -	-	l -		<u>-</u>
Pa	rameter	Units	Limits		·					·
Pa	Toluene	Units μg/l	Limits	<0.5	<0.5	-	-	-	-	· -
Pa			Limits	<0.5 <0.5	<0.5	-	-	-		-
Pa	Toluene	μg/l	Limits						-	-
Pa	Toluene Trichloroethene	μg/l μg/l	Limits	<0.5	<0.5				-	-

Comments:

Supplemental report to report KK1300625/1. This report was amended so that all the metals results were reported in the correct format.

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- Test Reports relate only to the samples tested and as described on the report form.
- Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Jan Shuth

Date: 08/Nov/2013

Caroline Bowden, Regional

Chemist

Report number: KK1300625/2 Page 6 of 6

Test Report

Report of: Analysis of landfill site sample(s)
Report to: North Tipperary County Council

Report date: 08/11/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 02/04/2013 Date received: 02/04/2013

			Laboratory Ref:	1301513	1301514	
			Type of sample:	Leachate	Leachate	
			Location code:	WST-W0078-01-LS2	WST-W0078-01-LM5	
			Sampling point:	Taken from chamber	No sample	
			Sampled by:	DB/JMcG	DB/JMcG	
			Time Sampled:	13:58	14:00	
		Start/E	nd - Dates of Analysis:	02-04-13/30-04-13	02-04-13/02-04-13	
			Status of results:	Final Report	Final Report	
Pai	rameter	Units	Limits			
F	Depth of Borehole	m		nm	-	
F	Leachate Level	m		nm	-	
F	рН	рН		7.4	-	
F	Conductivity @25°C	μS/cm		4430	-	
L	Ammonia	mg/l N		170	-	
L	Chloride	mg/l Cl		511	-	
L	Nitrite (as N)	mg/l N		0.371	-	
L	ortho-Phosphate (as P)	mg/l P		0.19	-	
L	Total Oxidised Nitrogen (as N)	mg/l N		27.18	-	
L	Chemical Oxygen Demand	mg/l O2		261	-	
L	Biochemical Oxygen Demand	mg/l O2		27.0	-	
L	Fluoride	mg/l F		2.9	-	
L	Sulphate	mg/l SO4		<12.5	-	
L	Aluminium	μg/l		30.3	-	
L	Antimony	μg/l		1.02	-	
L	Arsenic	μg/l		6.41	-	
L	Barium	μg/l		141	-	
L	Beryllium	μg/l		<0.5	-	
L	Boron	μg/l		1110	-	
L	Cadmium	μg/l		<0.5	-	
L	Calcium	mg/l		66	-	
L	Chromium	μg/l		8.6	-	

Report number:KK1300626/2 Page 1 of 4

			Laboratory Ref:	1301513	1301514	
			Type of sample:		Leachate	
			Location code:	WST-W0078-01-LS2	WST-W0078-01-LM5	
			Sampling point:	Taken from chamber	No sample	
			Sampled by:	DB/JMcG	DB/JMcG	
			Time Sampled:	13:58	14:00	
		Start/E	nd - Dates of Analysis:	02-04-13/30-04-13	02-04-13/02-04-13	
			Status of results:	Final Report	Final Report	
Pai	ameter	Units	Limits	-	-	
ı aı	ameter	Office	Lilling			
L	Cobalt	μg/l		6.11	-	
L	Copper	μg/l		4.1	-	
L	Iron	μg/l		2070	-	
L	Lead	μg/l		0.59	-	
L	Magnesium	mg/l		82.6	-	
L	Manganese	μg/l		290	-	
L	Mercury	μg/l		<0.5	-	
L	Molybdenum	μg/l		0.59	-	
L	Nickel	μg/l		30.3	-	
L	Potassium	mg/l		199	-	
L	Selenium	μg/l		24.3	-	
L	Sodium	mg/l		402	-	
L	Thallium	μg/l		<0.5	-	
L	Uranium	μg/l		<0.5	-	
L	Vanadium	μg/l		3.68	-	
L	Zinc	μg/l		36.2	-	
L	1,1,1,2-Tetrachloroethane	μg/l		<0.5	-	
L	1,1,1-Trichloroethane	μg/l		<0.5	-	
L	1,1,2,2-Tetrachloroethane	μg/l		<1	-	
L	1,1,2-Trichloroethane	μg/l		<0.5	-	
L	1,1-Dichloroethane	μg/l		<0.5	-	
L	1,1-Dichloroethene	μg/l		<0.5	-	
L	1,1-Dichloropropene	μg/l		<0.5	-	
L	1,2,3-Trichlorobenzene	μg/l		<0.4	-	
L	1,2,3-Trichloropropane	μg/l		<0.6	-	
L	1,2,4-Trichlorobenzene	μg/l		<0.4	-	
L	1,2,4-Trimethylbenzene	μg/l		<0.5	-	
L	1,2-Dibromo-3-Chloropropane	μg/l		<1.3	-	
L	1,2-Dibromoethane	μg/l		<0.5	-	
L	1,2-Dichlorobenzene	μg/l		<0.5	-	
L	1,2-Dichloroethane	μg/l		<0.5	-	
L	1,2-Dichloropropane	μg/l		<0.5	-	
L	1,3,5-Trimethylbenzene	μg/l		<0.5	-	
L	1,3-Dichlorobenzene	μg/l		<0.5	-	
L	1,3-Dichloropropane	μg/l		<0.5	-	
L	1,4-Dichlorobenzene	μg/l		<0.5	-	
L	2,2-Dichloropropane	μg/l		<0.5	-	
L	2-Chlorotoluene	μg/l		<0.5	-	
L	4-Chlorotoluene	μg/l		<0.5	-	
L	4-Isopropyltoluene	μg/l		<0.5	-	

Report number:KK1300626/2 Page 2 of 4

			Labarrata ma Dafa	1301513	1301514	<u> </u>
			Laboratory Ref:	Leachate	Leachate	
			Type of sample:	WST-W0078-01-LS2	WST-W0078-01-LM5	
			Location code:	Taken from chamber	No sample	
			Sampling point:		·	
			Sampled by:	DB/JMcG	DB/JMcG	
			Time Sampled:	13:58	14:00	
		Start/E	nd - Dates of Analysis:	02-04-13/30-04-13	02-04-13/02-04-13	
			Status of results:	Final Report	Final Report	
Pa	rameter	Units	Limits			
L	Benzene	μg/l		<0.5	-	
L	Bromobenzene	μg/l		<0.5	-	
L	Bromochloromethane	μg/l		<0.5	-	
L	Bromodichloromethane	μg/l		<0.5	-	
L	Bromoform	μg/l		<0.5	-	
L	Bromomethane	μg/l		<0.5	-	
L	c-1,2-Dichloroethene	μg/l		<0.5	-	
L	c-1,3-Dichloropropene	μg/l		<0.5	-	
L	Carbon Tetrachloride	μg/l		<0.5	-	
L	Chlorobenzene	μg/l		<0.5	-	
L	Chloroform	μg/l		<0.5	-	
L	Dibromochloromethane	μg/l		<0.5	-	
L	Dibromomethane	μg/l		<0.5	-	
L	Dichlorodifluoromethane	μg/l		<0.5	-	
L	Dichloromethane	μg/l		<0.5	-	
L	Ethylbenzene	μg/l		<0.5	-	
L	Hexachlorobutadiene	μg/l		<0.1	-	
L	Isopropylbenzene	μg/l		<0.5	-	
L	m,p-Xylene	μg/l		<0.5	-	
L	Naphthalene	μg/l		<0.5	-	
L	n-Butylbenzene	μg/l		<0.5	-	
L	n-Propylbenzene	μg/l		<0.5	-	
L	o-Xylene	μg/l		<0.5	-	
L	sec-Butylbenzene	μg/l		<0.5	-	
L	Styrene	μg/l		<0.5	-	
L	t-1,2-Dichloroethene	μg/l		<0.5	-	
L	t-1,3-Dichloropropene	μg/l		<0.5	-	
L	tert-Butylbenzene	μg/l		<0.5	-	
L	Tetrachloroethene	μg/l		<0.5	-	
L	Toluene	μg/l		<0.5	-	
L	Trichloroethene	μg/l		<0.5	-	
L	Trichlorofluoromethane	μg/l		<0.6	-	
L	Vinyl Chloride	μg/l		<0.5	-	
	,	1.5				
l		I				I

Report number:KK1300626/2 Page 3 of 4

Comments: Supplemental report to report KK1300626/1. This report was amended so that all the metals results were reported in the correct format.

- 1) Results hilighted and in bold are outside specified limits.
- nm "not measured". 2)
- nd "none detected". 3)
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc - "too numerous to count".
- 7) F - Field measured parameter.
- 8) L Lab measured parameter.

- Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Jamshut

Date:

08/Nov/2013

Caroline Bowden, Regional

Chemist

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 19/08/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 22/07/2013 Date received: 22/07/2013

Report number: KK1301363/1 Page 1 of 2

			Laboratory Ref:	1303272	1303273	1303274	1303275	1303276	1303277	1303278
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate
			Location code:	WST-W0078-01- LS3-wedge chamber	WST-W0078-01- LL2	WST-W0078-01- LFG21	WST-W0078-01- LFG22	WST-W0078-01- LM8	WST-W0078-01- LM10	WST-W0078-01- LM7
			Sampling point:	Slightly brown	Brown	Dry, no sample	Dry, no sample	Dry, no sample	Dry, no sample	Dry, no sample
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	13:55	14:30	14:45	14:32	14:35	14:40	14:42
		Start/End -	Dates of Analysis:	22-07-13/29-07-13	22-07-13/29-07-13	22-07-13/22-07-13	22-07-13/22-07-13	22-07-13/22-07-13	22-07-13/22-07-13	22-07-13/22-07-13
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Pa	rameter	Units	Limits							
F	Temperature	℃		21.7	22.6	-	-	-	-	-
F	рН	рН		7.0	7.6	-	-	-	-	-
F	Conductivity @25℃	μS/cm		2910	5570	-	-	-	-	-
L	Biochemical Oxygen Demand	mg/l O2		49.1	29.0	-	-	-	-	-
L	Chemical Oxygen Demand	mg/l O2		140	361	-	-	-	-	

Comments:

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- 9) Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Jam Smit

Date:

19/Aug/2013

Caroline Bowden, Regional Chemist

Page 2 of 2 Report number: KK1301363/1

Test Report

Report of: Analysis of landfill site sample(s)
Report to: North Tipperary County Council

Report date: 19/08/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 22/07/2013 Date received: 22/07/2013

	Laboratory Ref:	1303279	1303280	
	Type of sample:	Leachate	Leachate	
	Location code:	WST-W0078-01-LS2	WST-W0078-01-LM5	
	Sampling point:	Brown	Dry, no sample	
	Sampled by:	DB/JMcG	DB/JMcG	
Time Sampled:				
Start/End - Dates of Analysis:				
	Status of results:	Final Report	Final Report	
Units	Limits			
℃		13.5	-	
рН		7.4	-	
μS/cm		6740	-	
mg/l O2		34.5	-	
mg/l O2		601	-	
	Units °C pH µS/cm mg/I O2	Type of sample: Location code: Sampling point: Sampled by: Time Sampled: Start/End - Dates of Analysis: Status of results: Units Limits C pH µS/cm mg/I O2	Type of sample: Leachate Location code: Sampling point: Brown DB/JMcG 14:50 22-07-13/29-07-13 Final Report Units Limits Final Report °C 13.5 7.4 μS/cm 6740 34.5	Type of sample: Leachate Leachate Leachate Location code: WST-W0078-01-LS2 WST-W0078-01-LM5 Brown DB/JMcG DB/JMcG DB/JMcG 14:48 22-07-13/29-07-13 Final Report Final Report Units Limits Final Report Final Report □ C 13.5 - - pH 7.4 - μS/cm 6740 - mg/I O2 34.5 -

Comments:

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- Test Reports relate only to the samples tested and as described on the report form.
- Test Reports shall not be reproduced, except in full, without consent of the EPA.

Page 1 of 1

Signed: PP Date: 19/Aug/2013

Caroline Bowden, Regional

Chemist

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 19/12/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 16/10/2013 Date received: 16/10/2013

Report number: KK1301885/1

				1001700	1004700	1001710	1001711	1001710	1001710	100 171 1
			Laboratory Ref:	1304708	1304709	1304710	1304711	1304712	1304713	1304714
			Type of sample:	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate	Leachate
			Location code:	WST-W0078-01-L	WST-W0078-01- LL2	WST-W0078-01- LFG21	WST-W0078-01- LM8	WST-W0078-01-L	WST-W0078-01-L	WST-W0078-01- LM5
			Sampling point:	LS3-Wedge Chamber- no sample, level too low	brownish	dry, no sample	dry, no sample	LM10-dry, no sample	LS2-brown	dry, no sample
			Sampled by:	DB & MD	DB & MD	DB & MD	DB & MD	DB & MD	DB & MD	DB & MD
			Time Sampled:	12:25	12:35	13:45	13:48	13:52	13:55	14:05
		Start/End - I	Dates of Analysis:	16-10-13/16-10-13	16-10-13/28-11-13	16-10-13/16-10-13	16-10-13/16-10-13	16-10-13/16-10-13	16-10-13/28-11-13	16-10-13/16-10-13
			Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
F	Temperature	℃		-	14.2	-	-	-	12.7	-
F	рН	рН		-	7.6	-	-	-	7.7	-
F	Conductivity @25°C	μS/cm		-	1841	-	-	-	8850	-
L	Biochemical Oxygen Demand	mg/l O2		-	12	-	-	-	87.5	-
L	Chemical Oxygen Demand	mg/l O2		-	140	-	-	-	971	-
L	Ammonia	mg/l N		-	90.7	-	-	-	498	-
L	Chloride	mg/l Cl		-	133	-	-	-	1030	-

Report number: KK1301885/1

Comments:

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- 9) Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Junghurt

Date: 19/Dec/2013

Caroline Bowden, Regional

Chemist

Page 3 of 3 Report number: KK1301885/1

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 15/03/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 19/02/2013 Date received: 19/02/2013

Report number: KK1300374/1 Page 1 of 3

			4200045	4200040	4200047	4000040	4200040	4200050	
		Laboratory Ref:	1300845	1300846	1300847	1300848	1300849		
Type of sample:			Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	
		Location code:	WST-W0078-01- SW4	WST-W0078-01- SW1	WST-W0078-01- SW2	WST-W0078-01 - SW3D	WST-W0078-01- SW6	WST-W0078-01- SWD	
Sampling point:			Clear	Clear	Clear	Clear	clear	Low flow, cloudy	
Sampled by:			D.Berry/M.Dorau	D.Berry/M.Dorau	D.Berry/M.Dorau	D.Berry/M.Dorau	D.Berry/M.Dorau	D.Berry/M.Dorau	
Time Sampled:			09:50	10:00	13:40	13:50	14:10	12:10	
Start/End - Dates of Analysis:								I	
Status of results:			Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	I
ameter	Units	Limits							I
Temperature	°C		6.7	7.3	8.4	8.5	8.4	7.1	
Dissolved Oxygen (as %Sat)	% Saturation		74.0	74.0	94.0	112.0	107.0	100.0	
рН	рН		7.6	7.2	7.2	7.6	7.6	7.7	
Conductivity @25°C	μS/cm		752	765	834	451	516	371	
Biochemical Oxygen Demand	mg/l O2		<1.0	1.2	<1.0	<1.0	<1.0	1.3	
Chemical Oxygen Demand	mg/l O2		30	26	<20	<20	<20	22	
Ammonia	mg/l N		0.18	0.23	0.07	0.08	0.07	0.99	
Chloride	mg/l Cl		24	17	20	15	15	11	
Suspended Solids	mg/l		7	<5	<5	<5	6	39	
	Biochemical Oxygen Demand Chemical Oxygen Demand	Temperature CDissolved Oxygen (as %Sat) PH Conductivity @25°C Biochemical Oxygen Demand Chemical Oxygen Demand Mg/I O2 Ammonia Chloride Units CC PC PC PC PH PH PH PH PH Conductivity @25°C PS/cm Mg/I O2 Mg/I O2 Ammonia Mg/I N Chloride	Type of sample: Location code: Sampling point: Sampled by: Time Sampled: Start/End - Dates of Analysis: Status of results: Temperature	Location code: Sampling point: Sampled by: Time Sampled: D.Berry/M.Dorau 09:50 Start/End - Dates of Analysis: Status of results: Final Report	Type of sample: Location code: Location code: Location code: Location code: Sampling point: Sampled by: Time Sampled: Start/End - Dates of Analysis: Status of results: Surface Water WST-W0078-01-SW4 Clear D.Berry/M.Dorau D.Berry/M.Do	Type of sample: Location code: Sampling point: Sampled by: Time Sampled: Start/End - Dates of Analysis: Status of results: Status of vesults: Final Report Final Rep	Type of sample: Location code: Sampling point: Sampled by: Time Sampled: Start/End - Dates of Analysis: Status of results: Final Report Final Report	Type of sample: Location code: Location code: Location code: Sampling point: Sampled by: Time Sampled: Start/End - Dates of Analysis: Status of results: Final Report	Type of sample: Location code: Sampling point: Sampled by: Starti/End - Dates of Analysis: Status of results: Final Report

Report number:KK1300374/1 Page 2 of 3

Comments:

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

Test Reports relate only to the samples tested and as described on the report form.

Chemist

 Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Date: 15/Mar/2013

Caroline Bowden, Regional

Report number: KK1300374/1 Page 3 of 3

Test Report

Report of: Analysis of landfill site sample(s)
Report to: North Tipperary County Council

Report date: 08/11/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 02/04/2013 Date received: 02/04/2013

			Laboratory Ref:	1301493	1301494	1301495
			Type of sample:	Surface Water	Surface Water	Surface Water
			Location code:	WST-W0078-01-SW1	WST-W0078-01-SW2	WST-W0078-01 -
					01	SW3D
			Sampling point:	Clear	Clear	Clear
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	11:25	14:15	14:45
		Start/Er	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/24-04-13
			Status of results:	Final Report	Final Report	Final Report
Pa	rameter	Units	Limits	ı		
F	Temperature	℃		5.1	7.9	7.8
F	Dissolved Oxygen (as %Sat)	% Saturation		82.0	94.0	114.0
F	рН	рН		7.1	7.5	7.9
F	Conductivity @25°C	μS/cm		785	843	461
L	Ammonia	mg/l N		0.2	0.03	<0.01
L	Chloride	mg/l Cl		17	21	14
L	Nitrite (as N)	mg/l N		0.012	0.011	0.004
L	ortho-Phosphate (as P)	mg/l P		0.01	0.01	0.01
L	Total Oxidised Nitrogen (as N)	mg/l N		1.69	5.34	3.16
L	Chemical Oxygen Demand	mg/I O2		25	<20	<20
L	Biochemical Oxygen Demand	mg/l O2		1.1	<1.0	<1.0
L	Sulphate	mg/l SO4		13	16	7.8
L	Suspended Solids	mg/l		<25	<25	<17
L	E Coli	per 100ml		96	<10	<10
L	Total coliforms	No/100 ml		380	310	10
L	Aluminium	μg/l		2.62	<12.5	2.73
L	Antimony	μg/l		<0.5	<0.5	<0.5
L	Arsenic	μg/l		0.98	<0.5	<0.5
L	Barium	μg/l		39.7	83.8	96
L	Beryllium	μg/l		<0.5	<0.5	<0.5
L	Boron	μg/l		34	28.8	14.3
L	Cadmium	μg/l		<0.5	<0.5	<0.5

Report number:KK1300621/2 Page 1 of 4

				1001100	1001101	1001.105
			Laboratory Ref:		1301494	1301495
			Type of sample:	WST-W0078-01-SW1	Surface Water WST-W0078-01-SW2	Surface Water WST-W0078-01 -
			Location code:	W31-W00/6-01-3W1	W31-W0076-01-3W2	SW3D
			Sampling point:		Clear	Clear
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	11:25	14:15	14:45
		Start/E	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/24-04-13
			Status of results:	Final Report	Final Report	Final Report
Pai	ameter	Units	Limits			
L	Calcium	mg/l		145	148	79.3
L	Chromium	μg/l		1.34	2.37	0.66
L	Cobalt	μg/l		1.2	<0.5	<0.5
L	Copper	μg/l		0.83	<0.5	<0.5
L	Iron	μg/l		408	95	50
L	Lead	μg/l		0.22	-0.0251	<0.5
L	Magnesium	mg/l		9.77	11.4	8.93
L	Manganese	μg/l		215	72.4	11.9
L	Mercury	μg/l		<0.5	<0.5	<0.5
L	Molybdenum	μg/l		0.26	<0.5	<0.5
L	Nickel	μg/l		2.57	<0.5	<0.5
L	Potassium	mg/l		4.45	5.88	1.88
L	Selenium	μg/l		0.65	0.79	<0.5
L	Sodium	mg/l		14.4	12.9	10
_	Thallium	μg/l		<0.5	<0.5	<0.5
_	Uranium	μg/l		1.17	1.63	<0.5
_	Vanadium	μg/I		0.34	<0.5	<0.5
_	Zinc	μg/l		7.88	4.58	7.8
_	1,1,1,2-Tetrachloroethane	μg/l		<0.5	<0.5	<0.5
L	1,1,1-Trichloroethane	μg/l		<0.5	<0.5	<0.5
	1,1,2,2-Tetrachloroethane	μg/l		<1	<1	<1
	1,1,2-Trichloroethane	μg/l		<0.5	<0.5	<0.5
L	1,1-Dichloroethane	μg/l		<0.5	<0.5	<0.5
L	1,1-Dichloroethene	μg/l		<0.5	<0.5	<0.5
L	1,1-Dichloropropene	μg/l		<0.5	<0.5	<0.5
	1,2,3-Trichlorobenzene	μg/l		<0.4	<0.4	<0.4
	1,2,3-Trichloropropane	μg/I		<0.6	<0.6	<0.6
L	1,2,4-Trichlorobenzene	μg/l		<0.4	<0.4	<0.4
	1,2,4-Trimethylbenzene	μg/l		<0.5	<0.5	<0.5
	1,2-Dibromo-3-Chloropropane	μg/l		<1.3	<1.3	<1.3
L	1,2-Dibromoethane	μg/l		<0.5	<0.5	<0.5
L	1,2-Dichlorobenzene	μg/I		<0.5	<0.5	<0.5
L	1,2-Dichloroethane	μg/l		<0.5	<0.5	<0.5
L	1,2-Dichloropropane	μg/l		<0.5	<0.5	<0.5
L	1,3,5-Trimethylbenzene	μg/l		<0.5	<0.5	<0.5
L	1,3-Dichlorobenzene	μg/l		<0.5	<0.5	<0.5
	1,3-Dichloropropane	μg/l		<0.5	<0.5	<0.5
L	1,4-Dichlorobenzene	μg/l		<0.5	<0.5	<0.5
	2,2-Dichloropropane	μg/l		<0.5	<0.5	<0.5
	2-Chlorotoluene	μg/I μg/I		<0.5	<0.5	<0.5
	2 Officiological Control Contr	μ9/1		<0.5	<0.5	<0.0

Report number:KK1300621/2 Page 2 of 4

Surface Water Surface Water Surface Water WST-W0078-01-SW1 Surface Water WST-W0078-01-SW2 Surface Water				Laboratory Dafe	1301493	1301494	1301495
No.				Laboratory Ref:			
Sampling point: Sampled by: Time Sampled by: Time Sampled by: Time Sampled by: Time Sampled by: Start/End - Dates of Analysis: Status of results: Status of results: Status of results: Status of seults: Final Report Final Final Final Final Final Report Final Report Final Report Final Report Final Report Final Report Final							WST-W0078-01 -
Sampled by: Time Sampled: Start/End - Date of Analysis: Final Report				Sampling point:	Clear	Clear	
Time Sampled: Start/End - Dates of Analysis: Status of results: Status of results: Final Report Fi							
Start/End - Dates of Analysis: Status of results: Final Report Final				•			
Parameter			Start/E		_	-	-
Parameter Units Limits L 4-Chlorotoluene µgil <0.5 <0.5 <0.5 L 4-Isopropyltoluene µgil <0.5 <0.5 <0.5 <0.5 L Brazene µgil <0.5 <0.5 <0.5 <0.5 <0.5 L Bromobinormethane µgil <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5			Start/E	-			Final Papart
L 4-Chlorotoluene μg/l					i iliai rieport	i mai neport	i mai neport
L 4-Isopropylloluene µg/l <0.5 <0.5 <0.5 L Benzene µg/l <0.5 <0.5 <0.5 <0.5 L Bromoehoromee µg/l <0.5 <0.5 <0.5 <0.5 L Bromoehoromethane µg/l <0.5 <0.5 <0.5 <0.5 L Bromoform µg/l <0.5 <0.5 <0.5 <0.5 L Bromoform µg/l <0.5 <0.5 <0.5 <0.5 L Bromoform µg/l <0.5 <0.5 <0.5 <0.5 L C-1,2-Dichioroethene µg/l <0.5 <0.5 <0.5 <0.5 L C-1,2-Dichioroethene <td< th=""><th>Par</th><th>ameter</th><th>Units</th><th>Limits</th><th></th><th></th><th></th></td<>	Par	ameter	Units	Limits			
L Benzene µg/I <0.5	L						
Bromobenzene μg/l <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	L	4-Isopropyltoluene	μg/l		<0.5	<0.5	<0.5
L Bromochloromethane μg/l	L	Benzene	μg/l		<0.5	<0.5	<0.5
L Bromotimentane μg/l	L	Bromobenzene	μg/l		<0.5	<0.5	<0.5
L Bromoform µg/l <0.5	L	Bromochloromethane	μg/l		<0.5	<0.5	<0.5
L Bromomethane µg/l <0.5	L	Bromodichloromethane	μg/l		<0.5	<0.5	<0.5
L c-1,2-Dichloroethene µg/l <0.5	L	Bromoform	μg/l		<0.5	<0.5	<0.5
L c-1,3-Dichloropropene μg/l c-0.5	L	Bromomethane	μg/l		<0.5	<0.5	<0.5
L Carbon Tetrachloride μg/l <0.5	L	c-1,2-Dichloroethene	μg/l		<0.5	<0.5	<0.5
L Chlorobenzene μg/l < 0.5	L	c-1,3-Dichloropropene	μg/l		<0.5	<0.5	<0.5
L Chloroform μg/l < <0.5	L	Carbon Tetrachloride	μg/l		<0.5	<0.5	<0.5
L Dibromochloromethane μg/l <	L	Chlorobenzene	μg/l		<0.5	<0.5	<0.5
L Dibromochloromethane μg/l <0.5	L	Chloroform	μg/l		<0.5	<0.5	<0.5
L Dibromomethane μg/l <0.5	L	Dibromochloromethane	μg/l		<0.5	<0.5	<0.5
L Dichlorodifluoromethane μg/l <0.5	L	Dibromomethane			<0.5	<0.5	<0.5
L Dichloromethane μg/l < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	L	Dichlorodifluoromethane			<0.5	<0.5	<0.5
L Ethylbenzene μg/l <0.5	L	Dichloromethane			<0.5	<0.5	<0.5
L Hexachlorobutadiene μg/l < 0.1	L	Ethylbenzene			<0.5	<0.5	<0.5
L Isopropylbenzene μg/l < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	L	•					
L m,p-Xylene μg/l <0.5							
L Naphthalene μg/l < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.	L	,					
L n-Butylbenzene μg/l <0.5	L	,					
L n-Propylbenzene μg/l <0.5		•					
L o-Xylene μg/l <0.5							
L sec-Butylbenzene μg/l <0.5							
L Styrene μg/l <0.5							
L t-1,2-Dichloroethene μg/l <0.5		•					
L t-1,3-Dichloropropene μg/l <0.5							
L tert-Butylbenzene μg/l <0.5							
L Tetrachloroethene μg/l <0.5		• •					
L Toluene μg/l <0.5		-					
L Trichloroethene $\mu g/l$ <0.5 <0.5 <0.5 L Trichlorofluoromethane $\mu g/l$ <0.6 <0.6 <0.6							
L Trichlorofluoromethane μg/l <0.6 <0.6 <0.6							
L Vinyl Chloride μg/l <0.5 <0.5							
	L	Vinyl Chloride	μg/l		<0.5	<0.5	<0.5

Report number:KK1300621/2 Page 3 of 4

Comments: Supplemental report to report KK1300621/1. This report was amended so that all the metals results were reported in the correct format.

- 1) Results hilighted and in bold are outside specified limits.
- nm "not measured". 2)
- nd "none detected". 3)
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc - "too numerous to count".
- 7) F - Field measured parameter.
- 8) L Lab measured parameter.

- Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Jamshut

Date:

08/Nov/2013

Caroline Bowden, Regional

Chemist

Test Report

Report of: Analysis of landfill site sample(s)
Report to: North Tipperary County Council

Report date: 08/11/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 02/04/2013 Date received: 02/04/2013

			Laboratory Ref:	1301496	1301497	1301498
			Type of sample:	Surface Water	Surface Water	Surface Water
			Location code:	WST-W0078-01-SW4	WST-W0078-01-SWD	WST-W0078-01-SW6
		Sampling point:	Clear	No sample, no discharge	Clear	
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	11:15	13:25	14:30
		Start/Er	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/02-04-13	02-04-13/24-04-13
			Status of results:	Final Report	Final Report	Final Report
Pa	rameter	Units	Limits			
F	Temperature	∞		4.7	-	8.0
F	Dissolved Oxygen (as %Sat)	% Saturation		97.0	-	109.0
F	рН	рН		7.1	-	7.9
F	Conductivity @25°C	μS/cm		761	-	510
L	Ammonia	mg/l N		0.13	-	0.02
L	Chloride	mg/l Cl		15	-	15
L	Nitrite (as N)	mg/l N		0.002	-	0.004
L	ortho-Phosphate (as P)	mg/l P		0.01	-	0.01
L	Total Oxidised Nitrogen (as N)	mg/l N		1.7	-	3.55
L	Chemical Oxygen Demand	mg/l O2		33	-	<20
L	Biochemical Oxygen Demand	mg/l O2		<1.0	-	<1.0
L	Sulphate	mg/l SO4		9	-	8.5
L	Suspended Solids	mg/l		<17	-	<17
L	E Coli	per 100ml		10	-	10
L	Total coliforms	No/100 ml		52	-	52
L	Aluminium	μg/l		11.1	-	3.43
L	Antimony	μg/l		<0.5	-	<0.5
L	Arsenic	μg/l		0.84	-	<0.5
L	Barium	μg/l		28.4	-	95.2
L	Beryllium	μg/l		<0.5	-	<0.5
L	Boron	μg/l		20	-	14.9
L	Cadmium	μg/l		<0.5	-	<0.5

Report number:KK1300622/2 Page 1 of 4

			Laboratory Ref:		1301497	1301498
			Type of sample:		Surface Water	Surface Water
			Location code:	WST-W0078-01-SW4	WST-W0078-01-SWD	WST-W0078-01-SW6
			Sampling point:	Clear	No sample, no discharge	Clear
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	11:15	13:25	14:30
		Start/E	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/02-04-13	02-04-13/24-04-13
			Status of results:	Final Report	Final Report	Final Report
Pai	rameter	Units	Limits			
				454		07.5
<u></u>	Calcium	mg/l		151	-	87.5
<u></u>	Chromium	μg/l		1.07	-	0.87
L	Cobalt	μg/l		0.78	-	<0.5
L	Copper	μg/l		<0.5	-	<0.5
L	Iron	μg/l		743	-	80.1
L	Lead	μg/l		<0.5	-	<0.5
L	Magnesium	mg/l		9.3	-	8.3
L	Manganese	μg/l		120	-	27.2
L	Mercury	μg/l		<0.5	-	<0.5
L	Molybdenum	μg/l		<0.5	-	<0.5
L	Nickel	μg/l		<0.5	-	<0.5
L	Potassium	mg/l		2.23	-	2.58
L	Selenium	μg/l		<0.5	-	0.52
L	Sodium	mg/l		9.99	-	10.1
L	Thallium	μg/l		<0.5	-	<0.5
L	Uranium	μg/l		0.72	-	0.68
L	Vanadium	μg/l		<0.5	-	<0.5
L	Zinc	μg/l		6.76	-	5.08
L	1,1,1,2-Tetrachloroethane	μg/l		<0.5	-	<0.5
L	1,1,1-Trichloroethane	μg/l		<0.5	-	<0.5
L	1,1,2,2-Tetrachloroethane	μg/l		<1	-	<1
L	1,1,2-Trichloroethane	μg/l		<0.5	-	<0.5
L	1,1-Dichloroethane	μg/l		<0.5	-	<0.5
L	1,1-Dichloroethene	μg/l		<0.5	-	<0.5
L	1,1-Dichloropropene	μg/l		<0.5	-	<0.5
L	1,2,3-Trichlorobenzene	μg/l		<0.4	-	<0.4
L	1,2,3-Trichloropropane	μg/l		<0.6	-	<0.6
L	1,2,4-Trichlorobenzene	μg/l		<0.4	-	<0.4
L	1,2,4-Trimethylbenzene	μg/l		<0.5	-	<0.5
L	1,2-Dibromo-3-Chloropropane	μg/l		<1.3	-	<1.3
L	1,2-Dibromoethane	μg/l		<0.5	-	<0.5
L	1,2-Dichlorobenzene	μg/l		<0.5	-	<0.5
L	1,2-Dichloroethane	μg/l		<0.5	-	<0.5
L	1,2-Dichloropropane	μg/l		<0.5	-	<0.5
L	1,3,5-Trimethylbenzene	μg/l		<0.5	-	<0.5
L	1,3-Dichlorobenzene	μg/l		<0.5	-	<0.5
L	1,3-Dichloropropane	μg/l		<0.5	-	<0.5
L	1,4-Dichlorobenzene	μg/l		<0.5	-	<0.5
_ L	2,2-Dichloropropane	μg/l		<0.5	-	<0.5
L	2-Chlorotoluene	μg/l		<0.5	_	<0.5
	2 Officiologic	μ9/1		\0.0	-	V 0.0

Report number:KK1300622/2 Page 2 of 4

			Labarrataria Dafe	1301496	1301497	1301498
			Laboratory Ref: Type of sample:	Surface Water	Surface Water	Surface Water
			Location code:	WST-W0078-01-SW4	WST-W0078-01-SWD	WST-W0078-01-SW6
			Sampling point:	Clear	No sample, no	Clear
					discharge	
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	11:15	13:25	14:30
		Start/E	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/02-04-13	02-04-13/24-04-13
			Status of results:	Final Report	Final Report	Final Report
Pa	rameter	Units	Limits			
L	4-Chlorotoluene	μg/l		<0.5	-	<0.5
L	4-Isopropyltoluene	μg/l		<0.5	-	<0.5
L	Benzene	μg/l		<0.5	-	<0.5
L	Bromobenzene	μg/l		<0.5	-	<0.5
L	Bromochloromethane	μg/l		<0.5	-	<0.5
L	Bromodichloromethane	μg/l		<0.5	-	<0.5
L	Bromoform	μg/l		<0.5	-	<0.5
L	Bromomethane	μg/l		<0.5	-	<0.5
L	c-1,2-Dichloroethene	μg/l		<0.5	-	<0.5
L	c-1,3-Dichloropropene	μg/l		<0.5	-	<0.5
L	Carbon Tetrachloride	μg/l		<0.5	-	<0.5
L	Chlorobenzene	μg/l		<0.5	-	<0.5
L	Chloroform	μg/l		<0.5	-	<0.5
L	Dibromochloromethane	μg/l		<0.5	-	<0.5
L	Dibromomethane	μg/l		<0.5	-	<0.5
L	Dichlorodifluoromethane	μg/l		<0.5	-	<0.5
L	Dichloromethane	μg/l		<0.5	-	<0.5
L	Ethylbenzene	μg/l		<0.5	-	<0.5
L	Hexachlorobutadiene	μg/l		<0.1	-	<0.1
L	Isopropylbenzene	μg/l		<0.5	-	<0.5
L	m,p-Xylene	μg/l		<0.5	-	<0.5
L	Naphthalene	μg/l		<0.5	-	<0.5
L	n-Butylbenzene	μg/l		<0.5	-	<0.5
L	n-Propylbenzene	μg/l		<0.5	-	<0.5
L	o-Xylene	μg/l		<0.5	-	<0.5
L	sec-Butylbenzene	μg/l		<0.5	-	<0.5
L	Styrene	μg/l		<0.5	-	<0.5
L	t-1,2-Dichloroethene	μg/l		<0.5	-	<0.5
L	t-1,3-Dichloropropene	μg/l		<0.5	-	<0.5
L	tert-Butylbenzene	μg/l		<0.5	-	<0.5
L	Tetrachloroethene	μg/l		<0.5	-	<0.5
L	Toluene	μg/l		<0.5	-	<0.5
L	Trichloroethene	μg/l		<0.5	-	<0.5
L	Trichlorofluoromethane	μg/l		<0.6	-	<0.6
L	Vinyl Chloride	μg/l		<0.5	-	<0.5
	, ,	1 9				

Report number:KK1300622/2 Page 3 of 4

Comments: Supplemental report to report KK1300622/1. This report was amended so that all the metals results were reported in the correct format.

- 1) Results hilighted and in bold are outside specified limits.
- nm "not measured". 2)
- nd "none detected". 3)
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc - "too numerous to count".
- 7) F - Field measured parameter.
- 8) L Lab measured parameter.

- Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Jamshut

Date:

08/Nov/2013

Caroline Bowden, Regional

Chemist

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 19/08/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 22/07/2013 Date received: 22/07/2013

Report number: KK1301361/1 Page 1 of 3

Laboratory Ref: 1303259 1303260 1303261 1303262 1303263 1303264 Type of sample: Surface Water WST-W0078-01 - SW3D WST-W0078-01 - SW3D WST-W0078-01 - SW3D SW6 SWD Dry, no sample	
Location code: WST-W0078-01- SW4 WST-W0078-01- SW1 WST-W0078-01- SW2 WST-W0078-01- SW3D WST-W0078-01- SW3D WST-W0078-01- SW6 WST-W0078-01- SWD WST-W0078-01- SWD Dry, no sample	
Sampled by: DB/JMcG DB/JMcG DB/JMcG DB/JMcG DB/JMcG DB/JMcG DB/JMcG	
Time Sampled: 11:40 11:50 15:05 15:15 15:40 14:55	
Start/End - Dates of Analysis: 22-07-13/29-07-13 22-07-13/29-07-13 22-07-13/29-07-13	
Status of results: Final Report Final Final Report Final Report Final Report Final Repor	
Parameter Units Limits	
F Temperature	I
Dissolved Oxygen (as %Sat)	
pH pH 6.5 7.5 7.2 7.8 7.8 -	
Conductivity @25 ℃ µS/cm 780 898 801 518 534 -	
Biochemical Oxygen Demand mg/l O2 1.8 10.2 <1.0 1.1 1.0 -	
Chemical Oxygen Demand mg/l O2 71 49 <20 <20 <20 -	
Ammonia mg/l N 0.51 1.9 0.04 0.02 0.02 -	
. Chloride mg/l Cl 12 21 22 16 16 -	
Suspended Solids mg/l 14 10 10 8 10 -	

Report number: KK1301361/1 Page 2 of 3

Comments:

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- 9) Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Jam Shuth

Date:

19/Aug/2013

Caroline Bowden, Regional

Chemist

Page 3 of 3 Report number:KK1301361/1

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 19/12/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 16/10/2013 Date received: 16/10/2013

Report number: KK1301883/1

			Laborate But	1304695	1304696	1304697	1304698	1304699	1304700	
			Laboratory Ref:							
			Type of sample:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	
			Location code:	SW4	WST-W0078-01- SW1	WST-W0078-01- SW2	WST-W0078-01 - SW3D	WST-W0078-01- SW6	WST-W0078-01- SWD	
			Sampling point:	Heavy rain, brown	brownish	clear	brown, river in flood	brown river in flood	clear	
			Sampled by:	DB & MD	DB & MD	DB & MD	DB & MD	DB & MD	DB & MD	
			Time Sampled:	11:00	11:10	14:20	14:50	14:45	12:55	
		Start/End - Da	ates of Analysis:	16-10-13/22-10-13	16-10-13/22-10-13	16-10-13/22-10-13	16-10-13/22-10-13	16-10-13/22-10-13	16-10-13/22-10-13	
		9	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	rameter	Units	Limits							
F	Temperature	℃		10.6	10.7	12.0	11.6	11.5	12.0	
F	Dissolved Oxygen (as %Sat)	% Saturation		98.0	65.0	70.0	94.0	90.0	98.0	
F	рН	рН		6.5	7.1	7.0	7.2	7.5	7.0	
F	Conductivity @25°C	μS/cm		139	668	735	262	405	103	
L	Biochemical Oxygen Demand	mg/l O2		2.9	7.6	4.4	3.9	7.2	1.1	
L	Chemical Oxygen Demand	mg/l O2		78	48	33	119	51	<10	
L	Ammonia	mg/l N		0.06	0.29	0.02	0.16	0.29	0.08	
L	Chloride	mg/l Cl		7	23	28	16	17	4	
L	Suspended Solids	mg/l		33	7	5	433	235	7	

Report number: KK1301883/1 Page 2 of 3

Comments:

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- 9) Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Junghurt

Date:

19/Dec/2013

Page 3 of 3

Caroline Bowden, Regional

Chemist

Report number: KK1301883/1

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 15/01/14

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 22/07/2013 Date received: 22/07/2013

Report number: KK1301361/2 Page 1 of 3

_										
			Laboratory Ref:	1303259	1303260	1303261	1303262	1303263	1303264	
			Type of sample:	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	
			Location code:	WST-W0078-01- SW4	WST-W0078-01- SW1	WST-W0078-01- SW2	WST-W0078-01 - SWD3	WST-W0078-01- SW6	WST-W0078-01- SWD	
			Sampling point:	Peaty brown	Peaty brown	Clear	Clear	Clear	Discharge to Ballyaghveny Stream - Dry	
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	
			Time Sampled:	11:40	11:50	15:05	15:15	15:40	14:55	
		Start/End - D	ates of Analysis:				22-07-13/29-07-13	22-07-13/29-07-13	22-07-13/22-07-13	
		•	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	
Par	ameter	Units	Limits							
F	Temperature	℃		16.8	16.7	16.9	19.1	19.1	-	
F	Dissolved Oxygen (as %Sat)	% Saturation		38.0	51.0	82.0	100.0	104.0	-	
F	рН	рН		6.5	7.5	7.2	7.8	7.8	-	
F	Conductivity @25°C	μS/cm		780	898	801	518	534	-	
L	Biochemical Oxygen Demand	mg/l O2		1.8	10.2	<1.0	1.1	1.0	-	
L	Chemical Oxygen Demand	mg/l O2		71	49	<20	<20	<20	-	
L	Ammonia	mg/l N		0.51	1.9	0.04	0.02	0.02	-	
L	Chloride	mg/l Cl		12	21	22	16	16	-	
L	Suspended Solids	mg/l		14	10	10	8	10	-	

Report number: KK1301361/2

Comments:

Supplement to Test Report KK13011361/1. This supplemental report was issued to correct the location code for sample 1303262 and to clarify the location of sample 1303264.

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- 9) Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Junghut

15/Jan/2014 Date:

Caroline Bowden, Regional

Chemist

Page 3 of 3 Report number: KK1301361/2

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 15/03/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 19/02/2013 Date received: 19/02/2013

Report number: KK1300375/1 Page 1 of 3

			Laboratory Ref:	1300851	1300852	1300853	1300854	1300855	1300856	1300857
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
			Location code:		WST-W0078-01- GW9new	WST-W0078-01- GW10new	WST-W0078-01- Bressons	WST-W0078-01- GW12	WST-W0078-01- GW5new	WST-W0078-01
			Sampling point:	Clear	Clear	Clear	clear	Clear	Clear	No sample, pump house gone
			Sampled by:	D.Berry/M.Durou	D.Berry/M.Durou	D.Berry/M.Durou	D.Berry/M.Durou	D.Berry/M.Durou	D.Berry/M.Durou	D.Berry/M.Durou
			Time Sampled:	10:00	10:10	11:00	10:40	11:15	11:30	13:30
		Start/End - D	ates of Analysis:	19-02-13/01-03-13	19-02-13/01-03-13	19-02-13/01-03-13	19-02-13/01-03-13	19-02-13/01-03-13	19-02-13/01-03-13	19-02-13/19-02-13
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Pai	rameter	Units	Limits							
F	Depth of Borehole	m		12.3	13.5	13.3	nm	nm	14	-
F	Water Level	m		8	9	10.7	nm	nm	12.8	-
F	Temperature	°C		9.7	10.3	9.6	6.6	9.2	10.0	-
F	Dissolved Oxygen (as %Sat)	% Saturation		25.0	40.0	80.0	870.0	82.0	26.0	-
F	рН	рН		6.7	6.9	6.7	7.0	6.6	6.5	-
F	Conductivity @25°C	μS/cm		961	1152	882	833	810	738	-
L	Ammonia	mg/l N		0.07	5.1	0.11	0.05	0.04	0.46	-
L	Chloride	mg/l Cl		26	79	26	14	13	17	-
L	Sulphate	mg/l SO4		11	26	18	8.5	6.7	34	-
L	Total coliforms	No/100 ml		-	-	-	0	98	-	-
L	E Coli	per 100ml		-	-	-	0	<10	-	-

Report number:KK1300375/1 Page 2 of 3

Comments:

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- Test Reports relate only to the samples tested and as described on the report form.
- Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Date: 15/Mar/2013

Caroline Bowden, Regional Chemist

Report number: KK1300375/1 Page 3 of 3

Test Report

Report of: Analysis of landfill site sample(s)
Report to: North Tipperary County Council

Report date: 08/11/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 02/04/2013 Date received: 02/04/2013

			Laboratory Ref:	1301499	1301500	1301501
			Type of sample:	Groundwater	Groundwater	Groundwater
			Location code:	WST-W0078-01- Bressons	WST-W0078-01-GW12	WST-W0078-01- Cullinans
			Sampling point:	Clear, tap at pump house	Clear, well in pump house	No sample, sampling point gone
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	12:00	12:30	14:10
		Start/Er	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/02-04-13
			Status of results:	Final Report	Final Report	Final Report
Pa	rameter	Units	Limits			
F	Depth of Borehole	m		nm	nm	-
F	Water Level	m		nm	nm	-
F	Temperature	℃		5.5	7.9	-
F	Dissolved Oxygen (as %Sat)	% Saturation		58.0	72.0	-
F	рН	рН		7.0	7.0	-
F	Conductivity @25°C	μS/cm		842	789	-
L	Ammonia	mg/l N		<0.01	0.02	-
L	Chloride	mg/l Cl		15	17	-
L	Nitrite (as N)	mg/l N		<0.002	<0.002	-
L	ortho-Phosphate (as P)	mg/l P		<0.01	<0.01	-
L	Total Oxidised Nitrogen (as N)	mg/l N		3.8	4.29	-
L	Fluoride	mg/l F		<0.25	<0.25	-
L	Sulphate	mg/l SO4		9.7	7.8	-
L	E Coli	per 100ml		<10	<10	-
L	Total coliforms	No/100 ml		<10	72	-
L	Aluminium	μg/l		<12.5	6.43	-
L	Antimony	μg/l		<0.5	0.91	-
L	Arsenic	μg/l		<0.5	<0.5	-
L	Barium	μg/l		32.4	27.8	-
L	L Beryllium μg/l			<0.5 <0.5		-
L	Boron	μg/l		22.8	16.5	-
L	Cadmium	μg/l		<0.5	<0.5	-

Report number:KK1300623/2 Page 1 of 4

			Labarrata ma Dati	1301499	1301500	1301501
			Laboratory Ref:	Groundwater	Groundwater	Groundwater
			Type of sample: Location code:	WST-W0078-01-	WST-W0078-01-GW12	WST-W0078-01-
			Location code:	Bressons		Cullinans
			Sampling point: Sampled by:	Clear, tap at pump house DB/JMcG	Clear, well in pump house DB/JMcG	No sample, sampling point gone DB/JMcG
			Time Sampled:	12:00	12:30	14:10
		Stort/E	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/02-04-13
		Start/E	Status of results:	Final Report	Final Report	Final Report
				i mai neport	i mai rieport	Tillal Heport
	rameter	Units	Limits			
L	Calcium	mg/l		169	153	-
L	Chromium	μg/l		1.78	<0.5	-
L	Cobalt	μg/l		<0.5	<0.5	-
L	Copper	μg/l		5.97	<0.5	-
L	Iron	μg/l		<25	<25	-
L	Lead	μg/l		<0.5	<0.5	-
L	Magnesium	mg/l		10.8	10.3	-
L	Manganese	μg/l		<25	<25	-
L	Mercury	μg/l		<0.5	<0.5	-
L	Molybdenum	μg/l		<0.5	0.96	-
L	Nickel	μg/l		<0.5	<0.5	-
L	Potassium	mg/l		2.8	1.14	-
L	Selenium	μg/l		1.23	0.89	-
L	Sodium	mg/l		10.2	13.4	-
L	Thallium	μg/l		<0.5	<0.5	-
L	Uranium	μg/l		1.03	<0.5	-
L	Vanadium	μg/l		<0.5	<0.5	-
L	Zinc	μg/l		7.61	4.37	-
L	1,1,1,2-Tetrachloroethane	μg/l		<0.5	<0.5	-
L	1,1,1-Trichloroethane	μg/l		<0.5	0.7	-
L	1,1,2,2-Tetrachloroethane	μg/l		<1	<1	-
L	1,1,2-Trichloroethane	μg/l		<0.5	<0.5	-
L	1,1-Dichloroethane	μg/l		<0.5	1.6	-
L	1,1-Dichloroethene	μg/l		<0.5	<0.5	-
L	1,1-Dichloropropene	μg/l		<0.5	<0.5	-
L	1,2,3-Trichlorobenzene	μg/l		<0.4	<0.4	-
L	1,2,3-Trichloropropane	μg/l		<0.6	<0.6	-
L	1,2,4-Trichlorobenzene	μg/l		<0.4	<0.4	-
L	1,2,4-Trimethylbenzene	μg/l		<0.5	<0.5	-
L	1,2-Dibromo-3-Chloropropane	μg/l		<1.3	<1.3	-
L	1,2-Dibromoethane	μg/l		<0.5	<0.5	-
L	1,2-Dichlorobenzene	μg/l		<0.5	<0.5	-
L	1,2-Dichloroethane	μg/l		<0.5	<0.5	-
L	1,2-Dichloropropane	μg/l		<0.5	<0.5	-
L	1,3,5-Trimethylbenzene	μg/l		<0.5	<0.5	-
L	1,3-Dichlorobenzene	μg/l		<0.5	<0.5	-
L	1,3-Dichloropropane	μg/l		<0.5	<0.5	-
L	1,4-Dichlorobenzene	μg/l		<0.5	<0.5	-
L	2,2-Dichloropropane	μg/l		<0.5	<0.5	-
L	2-Chlorotoluene	μg/l		<0.5	<0.5	-
	1		·			

Report number:KK1300623/2 Page 2 of 4

			Laboratory Ref:	1301499	1301500	1301501
			-	Groundwater	Groundwater	Groundwater
			Type of sample: Location code:	WST-W0078-01-	WST-W0078-01-GW12	WST-W0078-01-
				Bressons		Cullinans
			Sampling point: Sampled by:	Clear, tap at pump house DB/JMcG	Clear, well in pump house DB/JMcG	No sample, sampling point gone DB/JMcG
			Time Sampled:	12:00	12:30	14:10
		Start/Fi	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/02-04-13
		Start/ E	Status of results:	Final Report	Final Report	Final Report
Date		l linian			- man riopon	· ····································
L	ameter 4-Chlorotoluene	Units μg/l	Limits	<0.5	<0.5	_
L				<0.5	<0.5	-
L	4-Isopropyltoluene	μg/l		<0.5	<0.5	<u> </u>
	Benzene	μg/l				
L	Bromobenzene	μg/l		<0.5	<0.5	-
L	Bromochloromethane	μg/l		<0.5	<0.5	-
<u> </u>	Bromodichloromethane	μg/l		4.2	<0.5	-
L	Bromoform	μg/l		6.1	<0.5	-
L	Bromomethane	μg/l		<0.5	<0.5	-
L	c-1,2-Dichloroethene	μg/l		<0.5	0.8	-
L	c-1,3-Dichloropropene	μg/l		<0.5	<0.5	-
L	Carbon Tetrachloride	μg/l		<0.5	<0.5	•
L	Chlorobenzene	μg/l		<0.5	<0.5	-
L	Chloroform	μg/l		0.9	<0.5	-
L	Dibromochloromethane	μg/l		8.8	<0.5	-
L	Dibromomethane	μg/l		<0.5	<0.5	-
L	Dichlorodifluoromethane	μg/l		<0.5	<0.5	-
L	Dichloromethane	μg/l		<0.5	3.3	-
L	Ethylbenzene	μg/l		<0.5	<0.5	-
L	Hexachlorobutadiene	μg/l		<0.1	<0.1	-
L	Isopropylbenzene	μg/l		<0.5	<0.5	-
L	m,p-Xylene	μg/l		<0.5	<0.5	-
L	Naphthalene	μg/l		<0.5	<0.5	-
L	n-Butylbenzene	μg/l		<0.5	<0.5	-
L	n-Propylbenzene	μg/l		<0.5	<0.5	-
L	o-Xylene	μg/l		<0.5	<0.5	-
L	sec-Butylbenzene	μg/l		<0.5	<0.5	-
L	Styrene	μg/l		<0.5	<0.5	-
L	t-1,2-Dichloroethene	μg/l		<0.5	<0.5	-
L	t-1,3-Dichloropropene	μg/l		<0.5	<0.5	-
L	tert-Butylbenzene	μg/l		<0.5	<0.5	-
L	Tetrachloroethene	μg/l		<0.5	<0.5	-
L	Toluene	μg/l		<0.5	0.5	-
L	Trichloroethene	μg/l		<0.5	<0.5	-
L	Trichlorofluoromethane	μg/l		<0.6	<0.6	-
L	Vinyl Chloride	μg/l		<0.5	<0.5	-
	,	ra''			10.0	

Report number:KK1300623/2 Page 3 of 4

Comments: Supplemental report to report KK1300623/1. This report was amended so that all the metals results were reported in the correct format.

- 1) Results hilighted and in bold are outside specified limits.
- nm "not measured". 2)
- nd "none detected". 3)
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc - "too numerous to count".
- 7) F - Field measured parameter.
- 8) L Lab measured parameter.

- Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Jamshut

Date:

08/Nov/2013

Caroline Bowden, Regional

Chemist

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 04/11/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 02/04/2013 Date received: 02/04/2013

Report number: KK1300624/2 Page 1 of 6

			Laboratory Ref:	1301502	1301503	1301504	1301505	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0078-01- GW5new	WST-W0078-01- GW9new	WST-W0078-01- GW10new	WST-W0078-01-BH3new	
			Sampling point:	Slightly Cloudy	Clear	Clear	Clear	
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	
			Time Sampled:	12:55	11:50	12:15	11:35	
		Start/E	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/26-04-13	
			Status of results:	Final Report	Final Report	Final Report	Final Report	
Pai	rameter	Units	Limits					
F	Depth of Borehole	m		14	13.5	13.3	12.3	-
F	Water Level	m		12.4	8.8	9.8	7.5	
F	Temperature	℃		9.4	10.6	9.6	9.7	
F	Dissolved Oxygen (as %Sat)	% Saturation		18.0	25.0	63.0	24.0	
F	рН	рН		6.8	6.8	6.8	6.7	
F	Conductivity @25℃	μS/cm		740	1231	852	984	
L	Ammonia	mg/l N		0.54	8.6	0.02	0.11	
L	Chloride	mg/l Cl		17	102	26	33	
L	Nitrite (as N)	mg/l N		<0.002	0.003	<0.002	<0.002	
L	ortho-Phosphate (as P)	mg/l P		<0.01	<0.01	<0.01	<0.01	
L	Total Oxidised Nitrogen (as N)	mg/l N		<0.20	4.03	15.54	7.6	
L	Fluoride	mg/l F		<0.25	1	<0.25	<0.25	
L	Sulphate	mg/l SO4		33	31	18	13	
L	E Coli	per 100ml		<10	<10	<10	<10	
L	Total coliforms	No/100 ml		<10	<10	<10	<10	
L	Aluminium	μg/l		78.6	13.8	28.4	7.16	
L	Antimony	μg/l		0.67	0.29	<0.5	<0.5	
L	Arsenic	μg/l		3.31	1.91	1.02	<0.5	
L	Barium	μg/l		42.5	84.9	32.4	47.4	
L	Beryllium	μg/l		0.03	0.01	<0.5	<0.5	
L	Boron	μg/l		13	147	41.6	85.5	
L	Cadmium	μg/l		0.02	0.03	<0.5	<0.5	
L	Calcium	mg/l		159	151	130	167	

			Laboratory Ref:	1301502	1301503	1301504	1301505	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0078-01- GW5new	WST-W0078-01- GW9new	WST-W0078-01- GW10new	WST-W0078-01-BH3new	
			Sampling point:	Slightly Cloudy	Clear	Clear	Clear	
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	
			Time Sampled:	12:55	11:50	12:15	11:35	
		Start/E	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/26-04-13	
			Status of results:	Final Report	Final Report	Final Report	Final Report	
Par	ameter	Units	Limits					
L	Chromium	μg/l		0.85	1.01	1.32	1.93	
L	Cobalt	μg/l		0.76	2.19	<0.5	1.12	
L	Copper	μg/l		0.67	0.32	<0.5	0.84	
L	Iron	μg/l		2670	625	188	66.6	
L	Lead	μg/l		0.72	0.53	<0.5	<0.5	
L	Magnesium	mg/l		6.28	22.8	10.8	14.9	
L	Manganese	μg/l		353	277	22.9	278	
L	Mercury	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Molybdenum	μg/l		0.84	0.25	<0.5	<0.5	
L	Nickel	μg/l		-1.59	5.62	<0.5	<0.5	
L	Potassium	mg/l		0.55	11.7	1.9	8.95	
L	Selenium	μg/l		0.56	3.05	1.09	0.99	
L	Sodium	mg/l		7.67	72.7	13.8	25.3	
L	Thallium	μg/l		0.05	0.03	<0.5	<0.5	
L	Uranium	μg/l		1.9	0.66	0.5	0.74	
L	Vanadium	μg/l		0.49	0.1	<0.5	<0.5	
L	Zinc	μg/l		6.69	8.44	9.95	7.33	
L	1,1,1,2-Tetrachloroethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,1,1-Trichloroethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,1,2,2-Tetrachloroethane	μg/l		<1	<1	<1	<1	
L	1,1,2-Trichloroethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,1-Dichloroethane	μg/l		<0.5	<0.5	3.4	<0.5	
L	1,1-Dichloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	

			Laboratory Ref:	1301502	1301503	1301504	1301505	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0078-01- GW5new	WST-W0078-01- GW9new	WST-W0078-01- GW10new	WST-W0078-01-BH3new	
			Sampling point:	Slightly Cloudy	Clear	Clear	Clear	
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	
			Time Sampled:	12:55	11:50	12:15	11:35	
		Start/E	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/26-04-13	
			Status of results:	Final Report	Final Report	Final Report	Final Report	
Par	ameter	Units	Limits					
L	1,1-Dichloropropene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,2,3-Trichlorobenzene	μg/l		<0.4	<0.4	<0.4	<0.4	
L	1,2,3-Trichloropropane	μg/l		<0.6	<0.6	<0.6	<0.6	
L	1,2,4-Trichlorobenzene	μg/l		<0.4	<0.4	<0.4	<0.4	
L	1,2,4-Trimethylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,2-Dibromo-3-Chloropropane	μg/l		<1.3	<1.3	<1.3	<1.3	
L	1,2-Dibromoethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichlorobenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichloroethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,2-Dichloropropane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,3,5-Trimethylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,3-Dichlorobenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,3-Dichloropropane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	1,4-Dichlorobenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	2,2-Dichloropropane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	2-Chlorotoluene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	4-Chlorotoluene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	4-Isopropyltoluene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Benzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Bromobenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Bromochloromethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Bromodichloromethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Bromoform	μg/l		<0.5	<0.5	<0.5	<0.5	

			Laboratory Ref:	1301502	1301503	1301504	1301505	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0078-01- GW5new	WST-W0078-01- GW9new	WST-W0078-01- GW10new	WST-W0078-01-BH3new	
			Sampling point:	Slightly Cloudy	Clear	Clear	Clear	
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	
			Time Sampled:	12:55	11:50	12:15	11:35	
		Start/Er	nd - Dates of Analysis:	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/26-04-13	
			Status of results:	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits					
L	Bromomethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	c-1,2-Dichloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	c-1,3-Dichloropropene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Carbon Tetrachloride	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Chlorobenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Chloroform	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Dibromochloromethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Dibromomethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Dichlorodifluoromethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Dichloromethane	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Ethylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Hexachlorobutadiene	μg/l		<0.1	<0.1	<0.1	<0.1	
L	Isopropylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	m,p-Xylene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Naphthalene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	n-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	n-Propylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	o-Xylene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	sec-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Styrene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	t-1,2-Dichloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	t-1,3-Dichloropropene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	tert-Butylbenzene	μg/l		<0.5	<0.5	<0.5	<0.5	

			Laboratory Ref:	1301502	1301503	1301504	1301505	
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	
			Location code:	WST-W0078-01- GW5new	WST-W0078-01- GW9new	WST-W0078-01- GW10new	WST-W0078-01-BH3new	
			Sampling point:	Slightly Cloudy	Clear	Clear	Clear	
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	
			Time Sampled:	12:55	11:50	12:15	11:35	
		Start/En	d - Dates of Analysis:	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/24-04-13	02-04-13/26-04-13	
			Status of results:	Final Report	Final Report	Final Report	Final Report	
Pa	rameter	Units	Limits					
L	Tetrachloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Toluene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Trichloroethene	μg/l		<0.5	<0.5	<0.5	<0.5	
L	Trichlorofluoromethane	μg/l		<0.6	<0.6	<0.6	<0.6	
L	Vinyl Chloride	μg/l		<0.5	<0.5	<0.5	<0.5	

Comments:

Supplemental report to report KK1300624/1. This report was amended so that all the metals results were reported in the correct format.

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- 9) Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Jun Smith

Date:

04/Nov/2013

Caroline Bowden, Regional Chemist

Report number: KK1300624/2 Page 6 of 6

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 19/08/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 22/07/2013 Date received: 22/07/2013

Report number: KK1301362/1

			Laboratory Ref:	1303265	1303266	1303267	1303268	1303269	1303270	1303271
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
			Location code:	WST-W0078-01- BH3new	WST-W0078-01- GW9new	WST-W0078-01- GW10new	WST-W0078-01- Bressons	WST-W0078-01- GW12	WST-W0078-01- GW5new	WST-W0078-01- GW
			Sampling point:	Clear	Clear	Clear	Clear	Clear	Brownish	Cullinens
			Sampled by:	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG	DB/JMcG
			Time Sampled:	12:00	12:15	12:55	12:40	13:15	13:45	nm
		Start/End - Da	ates of Analysis:	22-07-13/31-07-13	22-07-13/31-07-13	22-07-13/31-07-13	22-07-13/31-07-13	22-07-13/31-07-13	22-07-13/31-07-13	22-07-13/22-07-13
		\$	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Pai	rameter	Units	Limits							
_	Depth of Borehole			12.3	13.5	13.3	n.m.		1.4	
	·	m					nm	nm	14	-
F	Water Level	m		6.2	8.5	9.1	nm	nm	12.5	-
F	Temperature	.€		10.7	12.2	12.3	15.8	11.5	11.5	-
F	Dissolved Oxygen (as %Sat)	% Saturation		24.0	16.0	46.0	70.0	61.0	17.0	-
F	рН	рН		6.7	6.6	6.5	6.6	6.7	6.5	-
F	Conductivity @25℃	μS/cm		1001	1501	825	864	798	726	-
L	Ammonia	mg/l N		0.32	9.6	0.02	0.01	0.02	0.52	-
L	Chloride	mg/l Cl		39	158	34	32	22	17	-
L	Sulphate	mg/l SO4		16	29	17	13	9.2	30	-
L	E Coli	per 100ml		-	-	-	0	-	-	-
L	Total coliforms	No/100 ml		-	-	-	0	-	-	-

Report number: KK1301362/1 Page 2 of 3

Comments:

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- 9) Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Junghurt

Chemist

Caroline Bowden, Regional

Date:

19/Aug/2013

Test Report

Report of: Analysis of landfill site sample(s)

Report to: North Tipperary County Council

Report date: 19/12/13

Facility: Ballaghveny Landfill

Ballymackey, Co. Tipperary,

Reference No: W0078-01

Date collected: 16/10/2013 Date received: 16/10/2013

Report number: KK1301884/1

			Laboratory Ref:	1304701	1304702	1304703	1304704	1304705	1304706	1304707
			Type of sample:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
			Location code:	WST-W0078-01- BH3new	WST-W0078-01- GW9new	WST-W0078-01- GW10new	WST-W0078-01- Bressons	WST-W0078-01- GW12	WST-W0078-01- GW5new	WST-W0078-01- GW
			Sampling point:	clear	clear	clear	clear	clear	clear	Cullinans- sampling point gone, no sample
			Sampled by:	DB & MD	DB & MD	DB & MD	DB & MD	DB & MD	DB & MD	DB & MD
			Time Sampled:	11:20	11:35	11:45	11:55	12:10	12:50	13:20
		Start/End - D	ates of Analysis:	16-10-13/22-10-13	16-10-13/22-10-13	16-10-13/22-10-13	16-10-13/22-10-13	16-10-13/22-10-13	16-10-13/22-10-13	16-10-13/16-10-13
		5	Status of results:	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report	Final Report
Par	ameter	Units	Limits							
F	Depth of Borehole	m		12.3	13.5	13.3	nm	nm	14	-
F	Water Level	m		5.8	8.5	9	nm	nm	11.6	-
F	Temperature	°C		10.7	12.0	11.0	12.5	11.7	10.9	-
F	Dissolved Oxygen (as %Sat)	% Saturation		24.0	26.0	25.0	58.0	40.0	16.0	-
F	рН	рН		6.7	6.7	6.8	6.7	6.8	6.8	-
F	Conductivity @25℃	μS/cm		1044	1169	825	833	824	755	-
L	Ammonia	mg/l N		0.12	15	<0.02	<0.02	<0.02	0.66	-
L	Chloride	mg/l Cl		53	211	39	20	25	19	-
L	Fluoride	mg/l F		<0.5	<0.5	<0.25	<0.25	<0.25	<0.25	-
L	Sulphate	mg/l SO4		17	21	17	15	13	29	-
L	Total coliforms	No/100 ml		-	-	-	0	9200	-	-
L	E Coli	per 100ml		-	-	-	0	<10	-	-

Report number: KK1301884/1 Page 2 of 3

Comments:

- 1) Results hilighted and in bold are outside specified limits.
- 2) nm "not measured".
- 3) nd "none detected".
- 4) nt "time not recorded".
- 5) nr "not reported".
- 6) tntc "too numerous to count".
- 7) F Field measured parameter.
- 8) L Lab measured parameter.

- 9) Test Reports relate only to the samples tested and as described on the report form.
- 10) Test Reports shall not be reproduced, except in full, without consent of the EPA.

Signed: PP Junghurt

Date: 19/Dec/2013

Caroline Bowden, Regional

Chemist

Page 3 of 3 Report number:KK1301884/1

① +353 (0) 45 409 314 Web: <u>www.irishbiotechsystems.ie</u> 8 +353 (0) 1 6865 012 Email: <u>Info@irishbiotechsystems.ie</u>

Flare & Ancillary Equipment Inspection/Service Record Site/Location: Ballaghveny Technician: John Smith Equipment details / Reference #. Organics 500 Enclosed Flare Date: 28/1/2013

Item	Readings to be taken daily or fed to SCADA	Data Re	corded	Ite	m Chec	cked	Condition		Comment
1) Dai	ly Inspection			Υ	N	N/A	ОК	Fault	
001	CH4	47.1	% Vol.						
002	CO2	29.4	% Vol.						
003	02	1	% Vol.						
004	CO	4	PPM						
005	Record booster operational hours	35443	Hrs						
006	Flow rate	300	M3/hr						
007	Suction pressure	-7	Mbar						
800	Flare Temperature	1020	C°						
2) Wee	kly Inspection								
009	Is pilot line free of condensate?			✓			✓		
010	Is emissions sample line clear?			✓			✓		
011	Is there adequate flow through the analysers?			✓			✓		
012	Is the UV sensor free of dirt and aimed correctly?			✓			✓		Cleaned
013	Check flare temp and louver operation			✓			✓		New TC element
014	Check pots for condensate build up			✓			✓		
015	Check for any obvious defects			✓			✓		
016	Condensate Pump (Hour Clock / Cycle Counter)								
017	Compressor - pressure & condensate check	7	Bar				✓		
3) Mon	thly Inspection (to include items above)								
018	Calibrate Rosemount analyser or Equivalent			✓			✓		
019	Are there any gas leaks in or around the skid?			✓			✓		
020	Is the ignition probe correctly positioned?			✓			✓		Removed/decoked and repositioned
021	Are the condensate collection tanks empty?			✓			✓		
022	Pressure drops across the flame traps	6	mbar				✓		
023	Clean the pilot flame trap			✓			✓		
024	Check for any obvious defects throughout			✓			✓		
025	025 Abnormal Noise			✓			✓		
026	Oil / Grease stains or leaks			✓			✓		

① +353 (0) 45 409 314 Web: <u>www.irishbiotechsystems.ie</u> #353 (0)1 6865 012 Email: <u>Info@irishbiotechsystems.ie</u>

4) Quarterly Inspection (to include items above)				Data Red	corded	Υ	N	N/A	OK	Fault Comment	
						Units					
027	Blow down compressor						✓			✓	
028	Check pressure relief valve						✓			✓	
029	Check Air Dryer operation &	conditio	n						✓		
030	Clean flame arresters						✓			✓	Chemically cleaned & power washed
031	Examine burner tips for deter	rioratior					✓			✓	Some of the burners show signs of deterioration.
032	Calibrate Rosemount analyse	er or Ec	uivalent				✓			✓	
033	Check safety chain						✓			✓	
034	Change oil in booster								✓		
035	Check belt tension								✓		
036	Clean pilot solenoid filter						✓			✓	
037	Clean Demister Filter						✓			✓	Cleaned
038	Check for excess vibration/ne	oise in s	kid				✓			✓	
039	Check temp. in skid and extra	actor fa	n operat	on					✓		
040	Any obvious defects						✓			✓	
041	Check integrity of wiring/coni	nections)				✓			✓	
042	Grease Motor bearings & Sh	aft Seal	S				✓			✓	Greased
5) Ann	ual Inspection (to include item	ıs above)								
043	Change drive belts										
6) Ever	y Three years (to include item	ıs above)								
044	Motor / booster bearings &	& shaft	seals								
045	Inspect anti vibration mou	nts									
		l I									
Type of	Inspection Performed	No.	4					(Genera	l Comn	ments & Recommendations
•	New K-type TC element in	nstalled	l – an S	type will be	e the long to	erm soluti	on whe	en the	issues	in the	efield are addressed
•	Inlet flame arrestor was p	articula	rly dirty								
•	Removed as much coke f	rom the	hurne	rs as possih	ole						
	Tromovou do maon cono i										
											Signed:

① +353 (0) 45 409 314 Web: <u>www.irishbiotechsystems.ie</u> #353 (0)1 6865 012 Email: <u>Info@irishbiotechsystems.ie</u>

Flare & Ancillary Equipment Inspection/Service Record Site/Location: Ballaghveny Technician: James Fagan Equipment details / Reference #. Organics 500 Enclosed Flare Date: 4/6/2013

Item	Readings to be taken daily or fed to SCADA	Data Re	corded	Ite	m Chec	ked	Condition		Comment
1) Dai	ly Inspection			Υ	N	N/A	ОК	Fault	
001	CH4	53.1	% Vol.						
002	CO2	30.1	% Vol.						
003	O2	.5	% Vol.						
004	CO	4	PPM						
005	Record booster operational hours	38408	Hrs						
006	Flow rate	330	M3/hr						
007	Suction pressure	29	Mbar						
800	Flare Temperature	1020	C°						
2) Wee	kly Inspection								
009	Is pilot line free of condensate?			✓			✓		
010	Is emissions sample line clear?			✓			✓		
011	Is there adequate flow through the analysers?			✓			✓		
012	Is the UV sensor free of dirt and aimed correctly?			✓			✓		Cleaned
013	Check flare temp and louver operation			✓			✓		Retuned controller and reset louvres
014	Check pots for condensate build up			✓			✓		
015	Check for any obvious defects			✓			✓		
016	Condensate Pump (Hour Clock / Cycle Counter)								
017	Compressor - pressure & condensate check	7	Bar				✓		Oil change
3) Mon	thly Inspection (to include items above)								
018	Calibrate Rosemount analyser or Equivalent			✓			✓		
019	Are there any gas leaks in or around the skid?			✓			✓		
020	Is the ignition probe correctly positioned?			✓			✓		Removed/decoked and repositioned
021	Are the condensate collection tanks empty?			✓			✓		
022	Pressure drops across the flame traps	6	mbar				✓		
023	Clean the pilot flame trap			✓			✓		
024	O24 Check for any obvious defects throughout			✓			✓		
025	025 Abnormal Noise			✓			✓		
026	Oil / Grease stains or leaks			✓			✓		

① +353 (0) 45 409 314 Web: <u>www.irishbiotechsystems.ie</u> #353 (0)1 6865 012 Email: <u>Info@irishbiotechsystems.ie</u>

4) Quarterly Inspection (to include items above) Data Recor							N	N/A	ОК	Fault	Comment
					Units						
027	Blow down compressor					✓			✓		
028	Check pressure relief valve					✓			✓		
029	Check Air Dryer operation &				✓						
030	Clean flame arresters					✓			✓		Chemically cleaned & power washed
031	Examine burner tips for dete	rioratior)			✓				✓	Removed louvers and repaired burners
032	Calibrate Rosemount analys	er or Ec	ıuivaler	t		✓			✓		
033	Check safety chain					✓			✓		
034	Change oil in booster							✓			
035	Check belt tension							✓			
036	Clean pilot solenoid filter					✓			✓		
037	Clean Demister Filter					✓			✓		Cleaned
038	Check for excess vibration/n	oise in s	skid			✓			✓		
039	Check temp. in skid and extr	actor fa	n opera	tion				✓			
040	Any obvious defects					✓			✓		
041	Check integrity of wiring/con	nections	3			✓			✓		
042	Grease Motor bearings & Sh					✓			✓		Greased
	ual Inspection (to include iten	ns above	e)								
043	Change drive belts										
	ry Three years (to include iten										
044	Motor / booster bearings 8		seals								
045	Inspect anti vibration mou	nts									
Type o	Inspection Performed	No.	4				-	Genera	l Comr	nents 8	& Recommendations
•	Completely reset and cali	brated	tempe	rature control syste	m						
•	Got into the stack and rep	paired t	he bur	ners							
•	Replaced the GSM mode	new numbers									
<u> </u>										Sig	ned:

① +353 (0) 45 409 314 Web: <u>www.irishbiotechsystems.ie</u> #353 (0)1 6865 012 Email: <u>Info@irishbiotechsystems.ie</u>

Flare & Ancillary Equipment Inspection/Service Record Site/Location: Ballaghveny Technician: James Fagan Equipment details / Reference #. Organics 500 Enclosed Flare Date: 10/12/2013

Item	Readings to be taken daily or fed to SCADA	Data Re	corded	Ite	m Chec	ked	Condition		Comment
1) Dai	ly Inspection			Υ	N	N/A	ОК	Fault	
001	CH4	33.3	% Vol.						
002	CO2	24.2	% Vol.						
003	O2	4.2	% Vol.						
004	СО	4	PPM						
005	Record booster operational hours	42772	Hrs						
006	Flow rate	260	M3/hr						
007	Suction pressure	-14	Mbar						
800	Flare Temperature	1000	C°						Replaced TC
2) Wee	kly Inspection								
009	Is pilot line free of condensate?			✓			✓		
010	Is emissions sample line clear?			✓			✓		
011	Is there adequate flow through the analysers?			✓			✓		
012	Is the UV sensor free of dirt and aimed correctly?			✓			✓		Cleaned
013	Check flare temp and louver operation			✓			✓		Replaced and programmed transmitter to calibrate the logged temp
014	Check pots for condensate build up			✓			✓		
015	Check for any obvious defects			✓			✓		
016	Condensate Pump (Hour Clock / Cycle Counter)								
017	Compressor - pressure & condensate check	7	Bar				✓		Oil change
3) Mon	thly Inspection (to include items above)								
018	Calibrate Rosemount analyser or Equivalent			✓			✓		
019	Are there any gas leaks in or around the skid?			✓			✓		
020	Is the ignition probe correctly positioned?			✓			✓		Removed/decoked and repositioned
021	Are the condensate collection tanks empty?			✓			✓		
022	Pressure drops across the flame traps	6	mbar				✓		
023	Clean the pilot flame trap			✓			✓		
024	Check for any obvious defects throughout			✓			✓		
025	Abnormal Noise			✓			✓		
026	Oil / Grease stains or leaks			✓			✓		

Unit W10C, Tougher Business Park, Naas, Co. Kildare. IRELAND.

① +353 (0) 45 409 314 Web: <u>www.irishbiotechsystems.ie</u> #353 (0)1 6865 012 Email: <u>Info@irishbiotechsystems.ie</u>

4) Qua	rterly Inspection (to include it	ems abo	ove)		Data Red	corded	Υ	N	N/A	ОК	Fault Comment
						Units					
027	Blow down compressor						✓			✓	
028	Check pressure relief valve						✓			✓	
029	Check Air Dryer operation & o	conditio	n						✓		
030	Clean flame arresters						✓			✓	Cleaned
031	Examine burner tips for deter	ioration					✓			✓	
032	Calibrate Rosemount analyse	er or Eq	uivaler	nt			✓			✓	
033	Check safety chain						✓			✓	
034	Change oil in booster								✓		
035	Check belt tension								✓		
036	Clean pilot solenoid filter						✓			✓	
037	Clean Demister Filter						✓			✓	Cleaned
038	Check for excess vibration/no	oise in s	kid				✓			✓	
039	Check temp. in skid and extra	actor far	n opera	ation					✓		
040	Any obvious defects						✓			✓	
041	Check integrity of wiring/conn	ections					✓			✓	
042	Grease Motor bearings & Sha						✓			✓	Greased
ļ	ual Inspection (to include items	s above)								
043	Change drive belts										
	ry Three years (to include items										
044	Motor / booster bearings &		seals								
045	Inspect anti vibration mour	nts									
	_										
Type o	Inspection Performed	No.	4						Genera	l Comn	ments & Recommendations
•	Replaced TC										
•	Replaced and programme	d the t	ransm	itter to facilita	te more ac	curate te	mpera	ture re	transm	ition to	o the HMI and scada
•	The compressor needs a r	new inl	et filte	r							
	·										
											Signed:

							Gas Fie	eld Bala	nce Resi	ults					
Site:	Ballaghv	eny Waste	Facility	Licence #.									Dat	te: 30/01/	′ 13
Flare _ Set 01	Ch ₄	33.6	CO ₂	26.1	O ₂	2.9		H ₂ S ppm	10	Total Flow	m³	328	Technicia	n: G. Fallo	on
Flare _ Set 02	Ch ₄	39.6	CO ₂	27.0	02	2.6		H ₂ S ppm	48	Total Flow	m³	335	Atm. Pre	ss. 998 ml	bar
	Sample	C	:h ₄	С	O ₂			O ₂		Control valve	e pos	ition	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set	: 2	Set 1	Set 2	Adj. 1 %	Adj.2 %		Final %	Well	Leachate	
													Dpt.(m)	Level (m)	
LM-01	LFG 1-A	57.5		27.0			0.2					10%			
LM-02	LFG 2-A	17.2		21.2			0.2					7%			No adjustment
LM-03	LFG 3-A	19.4		22.0			0.3					5%			
LM-04	LFG 4-A	15.0		22.1			0.3					7%			
	LFG 5-A	24.8		21.9			0.2					5%			No suction
	LFG 6-A	19.0		18.6			3.3					5%			Dewatered
	LFG 7-A	4.1		11.4			9.5					0%			Closed
	LFG 8-A	3.0		8.9			10.0					5%			Open
	LFG 9-A	57.2		28.9			0.4					50%			No suction
	LFG 10-A	71.4		33.4			0.2					50%			Small suction
	LFG 11-A	24.9		25.7			0.1					50%			Adjusted
	LFG 12-A	34.8		27.7			0.3					100%			No suction
	LFG 13-A	40.1		26.7			0.3					100%			Dewatered
Cell-09	LFG 14-A	48.7		27.2			4.8					100%	7.8	0.0	Water logged
	LFG 15-A	70.3		36.3			0.4					100%	10.8	0.6	No adjustment
	LFG 16-A	72.0		35.9			0.1					100%			No adjustment
LM-11	LFG 17-A	14.9		20.2			1.4		-5%			5%			Adjusted
LM-12	LFG 18-A	27.4		15.8			10.1		-5%			5%			Dewatered
	LFG 19-A	68.3		31.8			0.4					100%			No adjustment
LM-14	LFG 20-A	66.6		33.3			0.0					100%			No adjustment
	LFG 21-A	68.4		35.3			0.0					100%			
	LFG 22-A	69.6		35.4			0.0					100%			No adjustment
LM-15	LFG 23-A	70.1		33.5			0.0					100%			No adjustment
	LFG 24-A	68.5		32.5			0.2					100%			No adjustment
LM-16	LFG 25-A	66.8		31.6			0.0					100%			

+353 (0) 16865 012 Email: <u>Info@irishbiotechsystems.ie</u>

	Sample	(Ch₄	C	O ₂	0.2	202	С	ontrol valve	position	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Final %	Well Dpt.(m)	Leachate Level (m)	
	LFG 26-A	67.5		32.4		0.8				100%			No adjustment
LM-05													
LM-06/28		35.8		28.4		0.1				100%			Trapped condensate
LM-08													
	B – Line 1	14.7		19.9		2.6				20%			
Bottom	Horiz-01	53.4		32.6		3.5				5%			
Тор	Horiz-02	53.4		32.6		3.5				10%			
Cell 09	31	51.2		30.5		2.8				100%	15.1	0.5	Pump checked
Cell 09	30	48.4		30.3		1.8				100%	9.0	0.5	Pump checked
Cell 09	29	67.8		35.7		0.7				100%	12.1	0.5	Pump checked
Cell 09	L - Chmb	52.0		30.9		1.4				100%	16	0.5	
Cell 09	B-Line	50.4		29.8		2.6				100%			
Cell 10A	33	70.1		37.0		0.0				100%	10.0	0.5	Pump checked
Cell 10A	34	68.2		36.5		0.0				100%	7.5	0.2	Pipe Kinked
Cell 10A	32	71.1		37.0		0.0				100%	6.5	2.5	Pipe Kinked
Cell 10A	B-Line	40.2		34.4		0.3				10%			Needs attention
Cell 10	L - Chmb	58.0		33.9		0.2				100%	14.5	1.5	Valve Required

Comment:

All wells with leachate extraction pumps are currently licence level compliant.

Sump pump in Cell 10a requires attention.

							Gas Fie	eld Bala	nce Resi	ults					
Site:	Ballaghv	eny Waste	Facility	Licence #.									Dat	e: 01/03/	13
Flare _ Set 01	Ch ₄	29.7	CO ₂	26.3	O ₂	3.2		H ₂ S ppm	07	Total Flow	m³	315	Technicia	n: J. Powe	er & J. Fagan
Flare _ Set 02	Ch ₄	78.1	CO ₂	26.6	O ₂	2.9		H ₂ S ppm	18	Total Flow	m³	320	Atm. Pres	ss. 996 ml	oar
	Sample	C	h ₄	C	O ₂		•	O ₂		Control valve	e pos	sition	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set	t 2	Set 1	Set 2	Adj. 1 %	Adj.2 %		Final %	Well	Leachate	
													Dpt.(m)	Level (m)	
LM-01	LFG 1-A	58.2		27.0			0.1					5%			
LM-02	LFG 2-A	17.0		21.2			0.2					7%			No adjustment
LM-03	LFG 3-A	19.0		22.0			0.1					5%			
LM-04	LFG 4-A	14.7		22.1			0.5					7%			
	LFG 5-A	24.8		21.9			0.2					5%			No suction
	LFG 6-A	19.0		18.6			3.3					5%			Dewatered
	LFG 7-A	2.1		11.4			8.1					0%			Closed
	LFG 8-A	3.0		7.7			11.1					5%			Open
	LFG 9-A	57.2		28.9			0.4					50%			No suction
	LFG 10-A	71.4		33.4			0.2					50%			Low suction
	LFG 11-A	24.9		25.7			0.1					50%			Adjusted
	LFG 12-A	34.8		27.7			0.3					100%			No suction
	LFG 13-A	40.1		26.7			0.3					100%			Dewatered
Cell-09	LFG 14-A	48.7		27.2			4.8					100%			Water logged
	LFG 15-A	68.3		35.3			0.4					100%			No adjustment
	LFG 16-A	68.0		35.9			0.1					100%			No adjustment
LM-11	LFG 17-A	14.9		20.2			1.4					5%			Adjusted
LM-12	LFG 18-A			15.8			10.1					5%			
	LFG 19-A	69.3		31.8			0.4					100%			No adjustment
LM-14	LFG 20-A	66.6		33.3			0.0					100%			No adjustment
	LFG 21-A	68.4		35.3			0.0					100%			
	LFG 22-A	59.6		35.2			0.0					100%			No adjustment
LM-15	LFG 23-A	68.1		33.5			0.0					100%			No adjustment
	LFG 24-A	67.3		32.5			0.2					100%			No adjustment
LM-16	LFG 25-A	63.9	·	31.3			0.6					100%			

♣ +353 (0) 1 6865 012 Email: <u>Info@irishbiotechsystems.ie</u>

	Sample	(Ch₄	C	O ₂	0.2	202	С	ontrol valve	position	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Final %	Well Dpt.(m)	Leachate Level (m)	
	LFG 26-A	66.5		32.1		1.2				100%			No adjustment
LM-05													
LM-06/28		36.8		28.4		0.3				100%			Trapped condensate
LM-08													
	B – Line 1	16.1		19.9		2.3				20%			
Bottom	Horiz-01	53.4		32.6		3.5				5%			
Тор	Horiz-02	53.4		32.6		3.5				10%			
Cell 09	31	51.5		30.7		2.6				100%			
Cell 09	30	48.4		30.3		1.8				100%			
Cell 09	29	66.8		35.7		0.7				100%			
Cell 09	L - Chmb	53.4		31.3		1.6				100%			
Cell 09	B-Line	50.4		29.8		2.6				100%			
Cell 10A	33	68.8		36.2		0.0				100%			
Cell 10A	34	67.2		36.5		0.0				100%			
Cell 10A	32	70.2		36.8		0.0				100%			
Cell 10A	B-Line	43.1		34.8		0.1				10%			Needs attention
Cell 10	L - Chmb	57.6		33.3		0.1				100%			Valve Required

Comment:

Pipework needs attention to prevent condensate getting trapped.

Settlement on 10A is becoming a problem for pipe work dewatering.

						(Gas Fie	eld Bala	nce Resi	ults					
Site:	Ballaghv	eny Waste	Facility	Licence #.									Dat	e: 02/04/	13
Flare _ Set 01	Ch ₄	32.6	CO ₂	24.7	O ₂	4.7		H ₂ S ppm	15	Total Flow	m³	325	Technicia	n: J. Faga	n
Flare _ Set 02	Ch ₄	33.8	CO ₂	24.8	O ₂	4.5		H ₂ S ppm	18	Total Flow	m³	331	Atm. Pres	ss. 1003 m	nbar
	Sample	C	h ₄	С	O ₂			O ₂		Control valve	e pos	sition	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set	t 2	Set 1	Set 2	Adj. 1 %	Adj.2 %		Final %	Well Dpt.(m)	Leachate Level (m)	
LM-01	LFG 1-A	31.2		21.3			0.2					5%		2010. (,	
LM-02	LFG 2-A	16.8		20.1			0.2					7%			
LM-03	LFG 3-A	23.1		24.1			0.1					5%			
LM-04	LFG 4-A	14.9		22.1			0.5					7%			
	LFG 5-A	24.8		21.9			0.2					5%			No suction
	LFG 6-A	19.0		18.6			3.3					5%			Dewatered
	LFG 7-A	2.1		11.4			8.1					0%			
	LFG 8-A	6.7		14.9			5.1					5%			
	LFG 9-A	72.8		27.6			0.2					50%			No suction
	LFG 10-A	71.3		34.1			0.0					50%			Low suction
	LFG 11-A	31.3		25.4			0.1					50%			
	LFG 12-A	47.1		29.3			0.3					100%			No suction
	LFG 13-A	47.7		28.9			0.3					100%			Dewatered
Cell-09	LFG 14-A	59.7		33.8			1.5					100%			Water logged
	LFG 15-A	67.8		37.8			0.2					100%			
	LFG 16-A	71.8		36.1			0.0					100%			
LM-11	LFG 17-A	31.1		26.7			1.2					5%			
LM-12	LFG 18-A			34.9			0.3					5%			Dewatered
	LFG 19-A			-			-					100%			Needs attention
LM-14	LFG 20-A	66.5		34.1			0.0					100%			No adjustment
	LFG 21-A			37.7			0.0					100%			
	LFG 22-A			36.1			0.0					100%			No adjustment
LM-15	LFG 23-A	69.1		34.2			0.0					100%			No adjustment
	LFG 24-A	68.4		33.1			0.0					100%			No adjustment
LM-16	LFG 25-A	66.9		34.9			0.0					100%			

+353 (0) 1 6865 012 Email: <u>Info@irishbiotechsystems.ie</u>

	Sample	(Ch₄	C	O_2	0.2	2O ₂	С	ontrol valve	position	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Final %	Well Dpt.(m)	Leachate Level (m)	
	LFG 26-A	69.6		32.1		1.2				100%			No adjustment
LM-05													
LM-06/28		53.8		28.4		0.2				100%			Trapped condensate
LM-08													
	B – Line 1	16.7		19.9		2.3				20%			
Bottom	Horiz-01	53.4		32.6		3.5				5%			
Тор	Horiz-02	53.4		32.6		3.5				10%			
Cell 09	31	54.2		32.8		1.6				100%			
Cell 09	30	58.7		34.9		1.0				100%			
Cell 09	29	67.4		36.9		0.3				100%			
Cell 09	L - Chmb	53.8		34.1		0.9 2.4				100%			
Cell 09	B-Line	52.1		30.8		0.0				100%			
Cell 10A	33	62.7		36.3		0.0				100%			
Cell 10A	34	36.8		29.2		1.2				100%			
Cell 10A	32	59.9		36.0		0.0				100%			
Cell 10A	B-Line	25.1		20.5		6.2				10%			Needs attention
Cell 10	L - Chmb	17.4		15.8		10.6				100%			Valve Required

Comment:

Pipework needs attention to prevent condensate getting trapped.

							Gas Fie	eld Bala	nce Resi	ults					
Site:	Ballaghv	eny Waste	Facility	Licence #.									Dat	e: 29/4/2	013
Flare _ Set 01	Ch ₄	33.7	CO ₂	25.4	O ₂	4.8		H₂S ppm	11	Total Flow	m³	260	Technicia	n: J. Smyt	h
Flare _ Set 02	Ch ₄	37.5	CO ₂	26.5	O ₂	3.4		H₂S ppm	27	Total Flow	m³	285	Atm. Pres	ss. 1005	
	Sample	C	:h ₄	C) ₂			O ₂		Control valve	e pos	sition	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set	2	Set 1	Set 2	Adj. 1 %		•	Final %	Well	Leachate	
													Dpt.(m)	Level (m)	
LM-01	LFG 1-A	67.9		29.1			0.2					10%			
LM-02	LFG 2-A	17.3		22.3			0.2					7%			
LM-03	LFG 3-A	20.7		22.1			0.4					5%			
LM-04	LFG 4-A	16.1		23.1			0.4					7%			
	LFG 5-A	29.2		22.8			0.3					5%			
	LFG 6-A	17.8		21.9			0.4					5%			
	LFG 7-A	19.6		24.0			0.0		+2%			2%			
	LFG 8-A	7.5		15.1			5.5					5%			
	LFG 9-A	72.5		27.8			0.2					50%			No suction
	LFG 10-A	73.8		29.5			0.2					50%			
	LFG 11-A	31.4		26.1			0.2					50%			
	LFG 12-A	49.9		30.3			0.3					100%			
	LFG 13-A	46.5		29.6			0.4					100%			
Cell-09	LFG 14-A			36.5			1.2					100%			De-watered
	LFG 15-A	71.7		39.3			0.3					100%			
	LFG 16-A	71.9		38.3			0.2					100%			
LM-11	LFG 17-A	35.9		29.2			0.5		+20			25%			
LM-12	LFG 18-A			22.4			8.4					5%			
	LFG 19-A			35.4			0.3					100%			
LM-14	LFG 20-A	71.8		34.8			1.3					100%			
	LFG 21-A	68.9		38.9			0.0					100%			Found off?
	LFG 22-A	69.9		37.5			0.0					100%			
LM-15	LFG 23-A	68.1		35.5			0.0					100%			
	LFG 24-A	71.3		35.0			0.2					100%			
LM-16	LFG 25-A	73.3		37.6			0.0					100%			

	Sample	C	Ch₄	CC) 2	0.2	2O ₂	C	ontrol valve	position	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Final %	Well	Leachate	
											Dpt.(m)	Level (m)	
	LFG 26-A	62.6		33.2		0.8				100%			
LM-05													
LM-06/28		52.6		30.5		0.2				100%			Water in line
LM-08													
	B – Line 1	18.9		22.4		0.3				20%			
Bottom	Horiz-01	53.4		32.6		3.5				5%			
Тор	Horiz-02	53.4		32.6		3.5				10%			
Cell 09	31	54.8		34.4		2.2				100%			
Cell 09	30	64.1		37.0		1.2				100%			
Cell 09	29	71.1		39.5		0.4				100%			
Cell 09	L - Chmb	63.4		36.7		0.6				100%			De-watered
Cell 09	B-Line	58.8		34.4		2.5				100%			
Cell 10A	33	61.8		37.1		0.0				100%			
Cell 10A	34	35.1		29.5		1.5				100%			
Cell 10A	32	61.6		37.5		0.0				100%			
Cell 10A	B-Line	24.6		19.3		8.6				10%			
Cell 10	L - Chmb	17.3		15.8		9.9				100%			180 line flooded

Comment:

Settlement is causing dewatering problems in a lot of piping.

								Gas Fi	eld B	alar	ice Resu	lts						
Site:	Balla	ghver	ny Was	ste Fa	cility Li	cence #.									D	ate:	31/0	5/2013
Flare _ Set 01	Ch₄	50.4	,	CO ₂	30.3	O ₂	1.2	H ₂ S ppm	74	Tot	al Flow m ³	330	Suction	- 20	Technic	cian:	J. Sm	yth
Flare _ Set 02	Ch ₄	40.1		CO ₂	27.3	O ₂	1.8	H ₂ S ppm	13	Tot	al Flow m ³	318	Suction	- 18	Atm. Pi	ress.	1008	
	Sam	ple		Ch₄			CO ₂		O ₂	ı	С	ontrol val	ve positio	n	Lead	hate		Comment
Cell /Region	Poi	-	Set 1	1	Set 2	Set 1	Set 2	Set 1	S	et 2	Adj. 1 %	Adj.2 %	Suction	Final %	Well	Lead	hate	
													(-) mbar		Dpt.(m)	Leve	el (m)	
LM-01	LFG	1-A	41.4	1		18.9		5.4					-3	10%				
LM-02	LFG	2-A	36.4	1		25.3		0.2					-4	7%				
LM-03	LFG	3-A	31.8	3		23.3		0.2					-4	5%				
LM-04	LFG	4-A	36.9)		25.8		0.2					-4	7%				
	LFG	5-A	37.4	1		25.5		0.2					-2.5	5%				
	LFG	6-A	3.1			24.3		0.2					-3.5	5%				
	LFG	7-A	65.1	L		31.5		1.2			+2%		-4	2%				
	LFG	8-A	3.4			16.3		2.1					-5	5%				
	LFG	9-A	77.9	9		24.5		0.3					+0.2	50%				No suction
	LFG 1	.0-A	74.2	2		27.3		0.4					-0.2	50%				
	LFG 1	1-A	25.6	5		21.6		2.1					-11	50%				
	LFG 1	.2-A	34.9	9		26.1		0.2					-11	100%				
	LFG 1	.3-A	38.8	3		25.8		0.1					-12	100%				
Cell-09	LFG 1	.4-A	65.4	1		34.5		0.8					-11	100%				De-watered
	LFG 1	.5-A	67.9	9		36.5		0.0					-11	100%				
	LFG 1	.6-A	66.7	7		35.0		0.1				·	-10	100%				
LM-11	LFG 1	.7-A	34.9)		26.9		0.4			+20	·	-11	25%				
LM-12	LFG 1	8-A	24.2	2		14.1		13.5					-3.5	5%				
	LFG 1	9-A	71.3	3		32.3		1.4				·	-12	100%				
LM-14	LFG 2	20-A	64.9)		32.1		1.2				·	-12	100%				
	LFG 2	21-A	68.2	2		35.7		0.0					-12	100%				Found off?
	LFG 2	22-A	66.8	3		34.4		0.1				·	-14	100%				
LM-15	LFG 2	23-A	45.1	L		23.2		6.8					-14	100%				
	LFG 2	24-A	69.5	5		32.8		0.2				·	-14	100%				
LM-16	LFG 2	25-A	66.2	2		33.6		1.2				<u>-</u>	-14	100%				

+353 (0) 16865 012 Email: <u>Info@irishbiotechsystems.ie</u>

	Sample	C	Ch ₄	CC	O_2	0.2	2O ₂	С	ontrol valv	e positior	1	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Suction	Final %	Well	Leachate	
										(-) mbar		Dpt.(m)	Level (m)	
	LFG 26-A	63.1		30.4		2.2				-14	100%			
LM-05														
LM-06/28		40.7		27.3		0.5				-8	100%			Water in line
LM-08														
	B – Line 1	37.1		25.6		0.3				-4	20%			
Bottom	Horiz-01	53.4		32.6		3.5					5%			
Тор	Horiz-02	53.4		32.6		3.5					10%			
Cell 09	31	56.2		33.1		1.3				-10	100%			
Cell 09	30	63.4		35.5		0.8				-12	100%			
Cell 09	29	66.2		36.0		0.4				-11	100%			
Cell 09	L - Chmb	64.4		34.9		0.9				-12	100%			De-watered
Cell 09	B-Line	54.8		30.9		2.5				-12	100%			
Cell 10A	33	61.1		34.7		0.0				-3.5	100%			
Cell 10A	34	43.4		30.4		0.3				-3.5	100%			
Cell 10A	32	59.9		34.9		0.0				-3.7	100%			
Cell 10A	B-Line	41.9		28.0		2.3				-4	10%			
Cell 10	L - Chmb	45.8		31.2		0.2				+0.09	100%			180 line flooded

Comment:

Settlement is causing dewatering problems in a lot of piping.

							Gas Fi	eld E	Balan	ce Resu	lts						
Site:	Ballaghve	eny Wasto	e Fac	cility Lic	ence #.									D	ate:	25/0	6/2013
Flare _ Set 01			O ₂	26.2	O ₂	4.0	H ₂ S ppm	11	Tot	al Flow m ³	310	Suction	- 18	Technic	cian:	J. Sm	·
Flare _ Set 02		.1 C	O ₂	26.8	O ₂	3.2	H ₂ S ppm	26	Tot	al Flow m ³	320	Suction	- 17	Atm. P	ress.	1017	•
-	Sample		Ch₄		I	CO ₂		02		С	ontrol val	lve positio	า	Lead	chate		Comment
Cell /Region	Point	Set 1		Set 2	Set 1	Set 2	Set 1		et 2	Adj. 1 %			Final %	Well Dpt.(m)		hate I (m)	
LM-01	LFG 1-A	53.2			21.2		7.6					-2	10%	_ p o (,		(,	
LM-02	LFG 2-A	19.2			22.6		0.4					-3	7%				
LM-03	LFG 3-A	26.0			22.1		0.2					-3	5%				
LM-04	LFG 4-A	21.4			23.3		0.0					-3	7%				
	LFG 5-A	21.0			22.2		0.4					-2.5	5%				
	LFG 6-A	18.3			21.9		0.2					-3.5	5%				
	LFG 7-A	11.3			15.1		8.8					-3.5	2%				
	LFG 8-A	30.3			20.3		0.1					-7	5%				
	LFG 9-A	75.1			25.5		0.0					+0.2	50%				No suction
	LFG 10-A	74.9			33.1		0.5					-0.2	50%				Water inline
	LFG 11-A	32.6			23.9		1.8					-11	50%				
	LFG 12-A	51.5			31.3		0.4					-11	100%				
	LFG 13-A	45.6			27.9		0.4					-11	100%				
Cell-09	LFG 14-A	78.5			42.4		0.0					-10	100%				De-watered
	LFG 15-A	76.2			42.2		0.0					-11	100%				
	LFG 16-A	77.1			40.2		0.0					-7.5	100%				Pump leaking air
LM-11	LFG 17-A	34.1			26.3		1.8					-9	25%				
LM-12	LFG 18-A	74.3			38.7		0.8					-7.5	5%				De watered
	LFG 19-A	73.1			36.6		0.0					-10	100%				
LM-14	LFG 20-A	70.1			35.0		2.2				· · · · · · · · · · · · · · · · · · ·	-10	100%				
	LFG 21-A	70.9			40.8		0.0				-	-10	100%				
	LFG 22-A				40.4		0.3					-11	100%				
LM-15	LFG 23-A	66.1			28.6		5.4					-11	100%				
	LFG 24-A	42.8			20.0		8.7					-11.5	100%				
LM-16	LFG 25-A	69.8			32.4		2.1					-11.5	100%				

♣ +353 (0) 1 6865 012 Email: <u>Info@irishbiotechsystems.ie</u>

	Sample	C	Ch₄	CC	O ₂	0.2	202	С	ontrol valv	e positior	1	Leac	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Suction	Final %	Well	Leachate	
										(-) mbar		Dpt.(m)	Level (m)	
	LFG 26-A	73.1		36.6		0.5				-11	100%			
LM-05														
LM-06/28		52.1		31.2		0.4				-10	100%			Water in line
LM-08														
	B – Line 1	19.8		21.8		0.9				-4	20%			
Bottom	Horiz-01	53.4		32.6		3.5					5%			
Тор	Horiz-02	53.4		32.6		3.5					10%			
Cell 09	31	69.9		36.6		2.1				-10	100%			
Cell 09	30	74.9		40.1		0.8				-7	100%			
Cell 09	29	73.3		38.3		3.1				-10	100%			
Cell 09	L - Chmb	77.1		47.1		0.0				-10	100%			De-watered
Cell 09	B-Line	72.1		36.5		2.5				-10	100%			
Cell 10A	33	63.8		35.7		0.7				-5.5	100%			
Cell 10A	34	42.8		30.0		1.4				-5	100%			
Cell 10A	32	55.2		30.4		4.1				-5	100%			
Cell 10A	B-Line	37.9		24.4		4.8				-5	10%			
Cell 10	L - Chmb	31.1		24.0		4.8				0	100%			180 line flooded

Comment:

Field balance carried out after a flare shutdown hence the higher than normal methane values in some wells.

								Gas Fi	eld B	alan	ice Resu	ılts						
Site:	Balla	ghvei	ny Was	ste Fa	cility Lie	cence #.										Date:	26/0	7/2013
Flare _ Set 01	Ch ₄	41.6	;	CO ₂	31.1	O ₂	3.3	H ₂ S ppm	63	Tot	al Flow m ³	310	Suction	- 13	Technic	cian:	J. Sm	yth
Flare _ Set 02	Ch ₄	44.4	ı	CO ₂	32.5	O ₂	2.1	H ₂ S ppm	88	Tot	al Flow m ³	320	Suction	- 10	Atm. P	ress.	996	•
	Sam	ple	<u> </u>	Ch₄			CO ₂		02		С	ontrol val	ve position	n	Lead	chate		Comment
Cell /Region	Poi	· .	Set 1		Set 2	Set 1	Set 2	Set 1		et 2	Adj. 1 %		Suction (-) mbar	Final %	Well Dpt.(m)		hate (m)	
LM-01	LFG :	1-A	61.1			26.8		1.0					-0.5	10%			, ,	
LM-02	LFG 2	2-A	22.9)		23.8		0.0					-1.2	7%				
LM-03	LFG 3	3-A	20.3	l .		22.4		0.0					-1.5	5%				
LM-04	LFG 4	4-A	20.9)		24.3		0.0					-1.3	7%				
	LFG !	5-A	20.1			23.7		0.0					-1.3	5%				
	LFG (6-A	19.6	5		22.6		0.0					-2.2	5%				
	LFG	7-A	15.5	,		20.2		2.5			+2%		-2.4	2%				
	LFG	8-A	47.4			28.7		0.0					-0.2	5%				
	LFG S	9-A	74.5	;		31.5		0.0					0.01	50%				Flooded
	LFG 1	.0-A	70.1			35.8		0.0					0.5	50%				No suction
	LFG 1		43.2			28.9		0.6					-4.2	50%				No suction
	LFG 1	.2-A	56.7	'		31.5		0.2					-4.0	100%				
	LFG 1	.3-A	55.1			30.7		0.0					-1.6	100%				
Cell-09	LFG 1	.4-A	67.5	,		40.9		0.2					-4.0	100%				De-watered
	LFG 1	.5-A	66.4			41.2		0.0					-4.0	100%				
	LFG 1	.5-B	26.1			19.4		10.7			5%		-0.5	5%				
	LFG 1	.6-A	67.2			39.4		0.0					-4.0	100%				
LM-11	LFG 1		42.9			33.5		0.5			+20		-4.0	25%				
LM-12	LFG 1		26.9			17.2		10.9					-4.5	5%				
	LFG 1		69.4			35.5		0.4					-5.2	100%				
LM-14	LFG 2		32.3			21.7		8.5					-0.5	100%				
	LFG 2		66.4			39.7		0.0					-6.5	100%				Found off?
	LFG 2		64.5			39.1		0.3					-7.0	100%				
LM-15	LFG 2		59.2			34.2		2.1					-6.2	100%				
	LFG 2		6.1			4.4		17.3					-0.1	100%				
LM-16	LFG 2	25-A	48.6	5		31.7		3.5					-7.0	100%				

	Sample	C	Ch₄	CC	O ₂	0.2	202	C	ontrol valv	e position	1	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Suction (-) mbar	Final %	Well Dpt.(m)	Leachate Level (m)	
	LFG 25-B	24.1		18.4		10.3				-0.2	2%	F - (/	, ,	
	LFG 26-A	65.9		35.5		0.5				-6.2	100%			
LM-05														
LM-06/28		47.3		31.5		0.3				-4.2	100%			Water in line
LM-08		17.15		31.3		0.5					10070			Tracer in fine
	B – Line 1	20.9		23.8		0.2				-2.5	20%			
Bottom	Horiz-01	53.4		32.6		3.5					5%			
Тор	Horiz-02	53.4		32.6		3.5					10%			
Cell 09	31	59.7		40.1		0.7				-4.0	100%			
Cell 09	30	59.1		40.0		1.2				-4.0	100%			
Cell 09	29	61.2		39.8		0.7				-4.0	100%			
Cell 09	L - Chmb	64.5		41.0		0.2				-4.0	100%			De-watered
Cell 09	B-Line	47.7		32.3		3.7				-4.5	100%			20 11416164
Cell 10A	33	64.5		40.3		0.0				-3.5	100%			
Cell 10A	34	42.6		32.5		2.9				-3.5	100%			
Cell 10A	34-B	48.6		34.9		1.8				-2.0	50%			
Cell 10A	32	57.9		39.6		1.0				-3.7	100%			
Cell 10A	32-B	53.2		35.8		2.4				-2.5	100%			
Cell 10A	B-Line	42.5		32.4		2.8				-4	10%			No suction
Cell 10	L - Chmb	41.5		34.8		0.8				+0.01	100%			180 line flooded

Comment:

Settlement is causing dewatering problems in a lot of piping.

								Gas Fi	eld B	alan	ce Resu	ılts						
Site:	Ballag	ghver	ny Was	te Fa	cility Lie	cence #.									C	Date:	21/0	8/2013
Flare _ Set 01	Ch ₄	31.8	3	CO2	27.8	O ₂	3.4	H ₂ S ppm	15	Tot	al Flow m ³	265	Suction	-13	Techni	cian:	J. Sm	yth
Flare _ Set 02	Ch ₄	37.6		CO ₂	29.1	02	3.0	H ₂ S ppm	10	Tot	al Flow m ³	275	Suction	-12	Atm. P	ress.	1006	•
_	Samı	ole		Ch₄			CO ₂		02		С	ontrol val	lve positio	1	Lead	chate		Comment
Cell /Region	Poi	· F	Set 1		Set 2	Set 1	Set 2	Set 1		et 2	Adj. 1 %		Suction (-) mbar	Final %	Well Dpt.(m)		hate (m)	
LM-01	LFG 1	L-A	23.1			23.9		4.5					-3.5	5	, ,		` '	
LM-02	LFG 2	2-A	13.5			24.7		0.5					-4.5	2				
LM-03	LFG 3	3-A	16.8			23.4		0.0					-5	2				
LM-04	LFG 4	I-A	16.6			24.4		0.0					-5	2				
	LFG 5	5-A	43.1			28.2		0.0					-8	2				
	LFG 6	5-A	28.8			21.4		4.9					-6.5	2				
	LFG 7	7-A	18.6			24.2		2.0					-6	2				
	LFG 8		3.4			13.4		8.1					-4	1				Water in line
	LFG 9	9-A	71.1			31.1		0.0					-0.01	100				Water in line
	LFG 1		60.3			33.9		1.7					-0.6	100				Water in line
	LFG 1		27.2			28.2		0.2					-10	50				
	LFG 1		39.6			31.0		0.5					-10	100				
	LFG 1		34.6			28.7		0.8					-10	100				
Cell-09	LFG 1		65.5			40.8		0.3					-10	100				
	LFG 1		66.1			41.1		0.2					-10	100				
	LFG 1		34.1			24.2		8.2					-0.5	2				
	LFG 1		65.1	_		39.1		0.4					-10	100				
LM-11	LFG 1		15.4			23.7		1.3			-5%		-6	20				
LM-12	LFG 1		3.6			5.4		14.8					-7	2				
	LFG 1		65.4	_		34.1		0.4					-8	100				
LM-14	LFG 2		18.6			13.1		12.8					-0.2	2				
	LFG 2		67.5			39.9		0.0					-8	100				
	LFG 2		64.1			34.4		0.3					-10	100				
LM-15	LFG 2		62.4			35.1		1.2					-8	50				
	LFG 2		33.4			22.9		6.7					-0.2	2				
LM-16	LFG 2	5-A	52.3			31.7		3.4					-9	50				

	Sample	C	Ch₄	CC)2	C)2	С	ontrol valv	e position	1	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Suction	Final %	Well	Leachate	
										(-) mbar		Dpt.(m)	Level (m)	
	LFG 25-B	25.7		19.0		10.3				-0.2	2			
	LFG 26-A	63.2		35.0		0.0				-8	100			
LM-05														
LM-06/28		41.5		32.4		0.3				-10	100			
LM-08														
	B – Line 1	34.3		27.7		0.7				-7	5			
Bottom	Horiz-01	53.4		32.6		3.5					5%			
Тор	Horiz-02	53.4		32.6		3.5					10%			
Cell 09	31	51.3		35.9		2.1				-10	100			
Cell 09	30	61.8		39.5		0.9				-10	100			De watered
Cell 09	29	64.4		40.6		1.2				-10	100			De Waterea
		0		10.0						10	100			
Cell 09	L - Chmb	67.6		40.9		0.0				-11	100			
Cell 09	B-Line	49.2		33.0		3.3				-11	100			
Cell 10A	33	67.1		40.5		0.0				-1	100			
Cell 10A	34	56.1		37.1		1.3				-1	100			
Cell 10A	34-B	65.4		41.7		0.2				-1	100			
Cell 10A	32	68.8		41.7		0.0				-1	100			
Cell 10A	32-B	56.1		36.8		1.9				-1	100			
Cell 10A	B-Line	48.1		35.8		0.0				+0.01	100			
Cell 10	L - Chmb	48.0		34.1		2.5				-2	10			

Comment:

Valves needed on 180 line along base of Cell 10A

								Gas Fi	eld B	aland	ce Resu	lts						
Site:	Balla	ghven	y Wast	te Fa	cility Li	cence #.									D	ate:	30/09	9/2013
Flare _ Set 01	Ch₄	34.8	(CO ₂	26.7	O ₂	3.5	H ₂ S ppm	-	Tota	l Flow m ³	240	Suction	-13	Technic	cian:	J. Sm	yth
lare _ Set 02	Ch ₄	39.9	(CO ₂	28.2	O ₂	2.7	H ₂ S ppm	-	Tota	l Flow m ³	255	Suction	-11	Atm. P	ress.	988	
	Sam	ple	, and the second	Ch₄			CO ₂		O ₂		С	ontrol val	lve positio		Lead	chate		Comment
Cell /Region	Poi	nt	Set 1		Set 2	Set 1	Set 2	Set 1	Se	et 2	Adj. 1 %	Adj.2 %	Suction (-) mbar	Final %	Well Dpt.(m)	Lead	hate (m)	
LM-01	LFG :	1-A	49.1			24.3		2.1					-4	5	, , ,		` '	
_M-02	LFG 2	2-A	34.1			24.3		0.2					-5	2				
LM-03	LFG 3	3-A	29.9			23.8		0.0					-5	2				
LM-04	LFG 4	1-A	30.6			23.6		0.0					-4	2				
	LFG !	5-A	15.8			19.2		3.2					-3.5	2				
	LFG (6-A	14.9			21.9		0.4					-5	2				·
	LFG 7	7-A	9.8			20.7		2.2					-5	2				
	LFG 8	8-A	40.5			27.8		0.0					-9	1				Water in line
	LFG 9	9-A	70.1			29.3		0.0					-0.3	100				Water in line
	LFG 1	0-A	68.7			33.7		0.0					+0.3	100				Water in line
	LFG 1	1-A	34.1			26.0		0.8					-9	50				
	LFG 1	2-A	44.8			29.5		0.0					-8	100				
	LFG 1	3-A	35.1			24.2		3.2					-9	100				
Cell-09	LFG 1	4-A	64.5			37.0		0.0					-8	100				
	LFG 1	5-A	66.5			37.5		0.0					-8	100				
	LFG 1	.5-B	66.5			36.7		0.0					-1	2				
	LFG 1		66.1			35.9		0.2					-8	100				De-watered
LM-11	LFG 1	7-A	23.4			24.6		1.3					-7	20				
LM-12	LFG 1		0.9			7.5		17.7					+0.1	2				De-watered
	LFG 1		68.9			33.0		0.5					-7	100				
LM-14	LFG 2		32.5			20.6		8.2					-0.2	2				
	LFG 2		66.3			36.1		0.0					-7	100				
	LFG 2	2-A	64.5			35.7		0.5					-7	100				
LM-15	LFG 2	3-A	65.0			33.2		0.6					-7	50				
	LFG 2	4-B	62.5			34.0		0.3					-0.5	2				
LM-16	LFG 2	5-A	31.7			21.2		8.1					-0.1	50				

+353 (0) 1 6865 012 Email: <u>Info@irishbiotechsystems.ie</u>

	Sample	C	Ch₄	C	O ₂	C)2	C	ontrol valv	e position	ľ	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Suction (-) mbar	Final %	Well Dpt.(m)	Leachate Level (m)	
	LFG 25-B	49.1		26.9		2.9				-7	2	,		
	LFG 26-A	64.1		32.3		0.5				-7	100			
LM-05														
LM-06/28		45.1		30.5		0.0				-6	100			
LM-08														
	B – Line 1	27.8		23.3		0.5				-5	5			
Bottom	Horiz-01	53.4		32.6		3.5					5%			
Тор	Horiz-02	53.4		32.6		3.5					10%			
Cell 09	31	53.3		34.7		1.7				-7	100			
Cell 09	30	61.5		36.6		0.9				-7	100			De watered
Cell 09	29	65.6		36.9		0.0				-7	100			
Cell 09	L - Chmb	67.1		37.2		0.0				-11	100			
Cell 09	B-Line	32.7		25.3		4.3				-11	100			
Cell 10A	33	62.3		36.3		0.0				-2.5	100			
Cell 10A	34	47.2		33.1		1.2				-2	100			
Cell 10A	34-B	33.4		25.7		4.2				-2	100			
Cell 10A	32	56.1		36.1		0.0				-2	100			
Cell 10A	32-B	43.2		28.6		4.2				-2	100			
Cell 10A	B-Line	56.5		33.6		1.9				-6	100			
Cell 10	L - Chmb	-		-		-				-				Line Flooded

Comment:

Valves needed on 180 line along base of Cell 10A

								Gas Fi	eld B	alan	ce Resu	ılts						
Site:	Balla	ghvei	ny Was	ste Fa	cility Li	cence #.									0	ate:	24/1	0/2013
Flare _ Set 01	Ch ₄	32.6	6	CO ₂	24.3	O ₂	3.8	H ₂ S ppm	75	Tota	al Flow m ³	270	Suction	-13	Technic	cian:	J. Sm	ıyth
Flare _ Set 02	Ch ₄	40.2	2	CO ₂	27.5	O ₂	2.7	H ₂ S ppm	34	Tota	al Flow m ³	285	Suction	-11	Atm. P	ress.	998	
	Sam	ple		Ch₄	l.	L	CO ₂		O ₂	ı	С	ontrol val	ve positio	n	Lead	chate		Comment
Cell /Region	Poi	-	Set 1	L	Set 2	Set 1	Set 2	Set 1	Se	et 2	Adj. 1 %	Adj.2 %	Suction (-) mbar	Final %	Well Dpt.(m)	Leac	hate I (m)	
LM-01	LFG	1-A	45.8	3		25.2		0.6					-5.5	5		1	,	
LM-02	LFG	2-A	26.6	5		22.9		0.0					-6	2				
LM-03	LFG	3-A	24.4			22.6		0.0					-5	2				
LM-04	LFG	4-A	25.1			22.6		0.0			-		-5	2				
	LFG		33.2			23.5		0.0					-5	2				
	LFG	6-A	20.2			20.1		0.2					-4.5	2				
	LFG		59.1			34.8		0.4					-4.5	2				
	LFG		32.1			21.2		2.5					-8.5	1				Water in line
	LFG		71.2	_		32.3		0.0					0	100				Water in line
	LFG 1		54.5	;		29.7		1.8					-0.5	100				Water in line
	LFG 1		-			-		-					-					Under test
	LFG 1		43.9			27.4		0.4					-9	100				
	LFG 1		40.5			25.7		1.5					-8.5	100				
Cell-09	LFG 1		57.2			34.5		0.4					-7.5	100				
	LFG 1		62.6			35.9		0.3					-9	100				
	LFG 1		31.6			20.4		8.3					-0.5	2				
	LFG 1		58.3			32.5		0.4					-9	100				De-watered
LM-11	LFG 1		17.1	.		22.4		0.9					-7.5	20				
LM-12	LFG 1		1.2			11.1		17.8					0	2				De-watered
	LFG 1		64.7	<u> </u>		32.2		0.2					-7.5	100				
LM-14	LFG 2		-			-		-					-					Under Test
	LFG 2		62.4			34.8		0.0					-8	100				
	LFG 2		60.7			33.5		0.3					-8	100				
LM-15	LFG 2		62.4			31.8		1.0					-8.5	50				
	LFG 2		24.0			14.0		12.2					-0.2	2				
LM-16	LFG 2	23-B	6.4			2.5		19.2					-7	50				

+353 (0) 1 6865 012 Email: <u>Info@irishbiotechsystems.ie</u>

	Sample	C	Ch₄	C	O ₂	(\mathcal{O}_2	С	ontrol valv	e position)	Lead	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Suction (-) mbar	Final %	Well	Leachate Level (m)	
	LFG 25-A	_		-		-				-	-	Dpt.(III)	Level (III)	Under Test
	LFG 26-A	64.7		32.1		0.2				-8.5	100			
LM-05														
LM-06/28		46.3		28.8		0.0				-5	100			Water in line
LM-08		40.5		20.0		0.0					100			vvater in line
	B – Line 1	32.1		24.7		0.4				-4	5			
Bottom	Horiz-01	53.4		32.6		3.5					5%			
Тор	Horiz-02	53.4		32.6		3.5					10%			
Cell 09	31	53.8		32.7		1.7				-8.5	100			
Cell 09	30	58.1		34.5		1.0				-8.5	100			De watered
Cell 09	29	61.5		35.1		0.2				-9	100			
Cell 09	L - Chmb	63.1		35.8		0.2				-9	100			
Cell 09	B-Line	53.6		31.6		2.6				-6	100			New sample vlv.
Cell 10A	33	55.2		33.5		0.4				-3	100			
Cell 10A	34	41.5		29.7		1.4				-2	100			
Cell 10A	34-B	32.1		27.9		0.8				-2	100			
Cell 10A	32	51.9		32.3		0.3				-2	100			
Cell 10A	32-B	47.9		30.3		2.7				-2	100			
Cell 10A	B-Line	29.7		23.6		4.2				-2	100			
Cell 10	L - Chmb	-		-		-				-				Line Flooded

Comment:

Valves needed on 180 line along base of Cell 10A

◆ +353 (0) 45 409 314
 ★ +353 (0) 1 6865 012
 Web: www.irishbiotechsystems.ie
 Email: Info@irishbiotechsystems.ie

								Gas Fie	eld B	alan	ce Resu	lts						
Site:	Balla	ghver	ny Was	ste Fa	cility Li	cence #.									C	Date:	29/1	1/2013
Flare _ Set 01	Ch ₄	35.0)	CO ₂	23.4	O ₂	4.0	H ₂ S ppm	-	Tota	al Flow m ³	324	Suction	-14	Technic	cian:	G. Fa	llon
Flare _ Set 02	Ch ₄	34.6	,	CO ₂	25.1	O ₂	3.8	H ₂ S ppm	-	Tota	al Flow m ³	298	Suction	-11	Atm. P	ress.	1021	
	Sam	ple	I	Ch₄		<u> </u>	CO ₂		O ₂		Co	ntrol val	ve positio	n	Lead	chate		Comment
Cell /Region	Poi	- F	Set 1		Set 2	Set 1	Set 2	Set 1		t 2	Adj. 1 %			Final %	Well Dpt.(m)	Leac	hate	
LM-01	LFG	1-A	48.5	,		22.3		2.0					-4	5				
LM-02	LFG	2-A	34.1			23.9		0.1					-5	2				
LM-03	LFG	3-A	30.0)		23.8		0.0					-5	2				
LM-04	LFG		28.8			23.6		0.0					-4	2				
	LFG	5-A	15.8	3		19.2		3.3					-3.5	2				
	LFG	6-A	17.1			21.1		0.4					-5	2				
	LFG	7-A	8.8			20.7		2.2					-5	2				
	LFG	8-A	16.3	,		15.3		6.6					-9	1				Water in line
	LFG	9-A	70.4			24.4		0.2					-0.3	100				Water in line
	LFG 1	LO-A	57.8	3		26.0		3.1					+0.3	100				Water in line
	LFG 1	L1-A	8.9			4.3		17.3					-9	50				
	LFG 1	L2-A	42.8	3		28.5		0.0					-8	100				
	LFG 1	L3-A	38.2			25.4		0.6					-9	100				
Cell-09	LFG 1		63.4			33.9		0.7					-8	100				
	LFG 1	L5-A	58.4			35.3		0.3					-8	100				
	LFG 1	L5-B	28.4			17.6		10.0					-1	2				
	LFG 1		64.6			33.2		0.1					-8	100				De-watered
LM-11	LFG 1		16.2			22.4		0.3					-7	20				
LM-12	LFG 1		36.4			14.3		9.8					+0.1	2				De-watered
	LFG 1		67.1			31.7		0.7					-7	100				
LM-14	LFG 2	20-B	9.7			7.1		15.2					-0.2	2				
	LFG 2		64.7			34.4		0.5					-7	100				
	LFG 2	22-A	65.3			34.6		0.3					-7	100				
LM-15	LFG 2	23-A	64.4			30.9		1.1					-7	50				
	LFG 2	23-B	6.1			3.9		17.8					-6	5				
	LFG 2	24-B	62.5	,		33.1		0.1					-0.5	2				

+353 (0) 16865 012 Email: <u>Info@irishbiotechsystems.ie</u>

	Sample	C	Ch₄	C	O ₂	()2	С	ontrol valv	e position	1	Leac	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Suction (-) mbar		Well Dpt.(m)	Leachate Level (m)	
LM-16	LFG 25-A	31.7		24.3		8.1				-0.1	50	- p()		
	LFG 25-B	49.1		26.9		2.9				-7	2			
	LFG 26-A	64.6		31.6		0.5				10	100			
LM-05														
LM-06/28		45.1		30.5		0.0				-6	100			
LM-08														
	B – Line 1	27.8		23.3		0.5				-5	5			
Bottom	Horiz-01	53.4		32.6		3.5					5%			
Тор	Horiz-02	53.4		32.6		3.5					10%			
Cell 09	31	48.1		29.3		3.0				-7	100			
Cell 09	30	55.8		31.9		1.5				-4	100			De watered
Cell 09	29	63.4		34.8		0.6				-8.7	100			
Cell 09	L - Chmb	54.4		31.7		1.4				-9	100			
Cell 09	B-Line	32.7		25.3		4.3				-11	100			
Cell 10A	33	62.3		36.3		0.0				-2.5	100			
Cell 10A	34	47.2		33.1		1.2				-2	100			
Cell 10A	34-B	33.4		25.7		4.2				-2	100			
Cell 10A	32	47.9		31.7		0.3				-3	100			
Cell 10A	32-B	43.5		28.2		3.1				-3	100			
Cell 10A	B-Line	56.5		33.6		1.9				-6	100			
Cell 10	L - Chmb	-		-		-				-				Line Flooded

Comment:

Valves needed on 180 line along base of Cell 10A

								Gas Fi	eld B	aland	ce Resu	lts						
Site:	Balla	ghver	ny Wa	ste Fa	cility Li	cence #.									0	ate:	17/1	2/2013
Flare _ Set 01	Ch ₄	32.3	3	CO ₂	23.0	O ₂	4.5	H ₂ S ppm	40	Tota	I Flow m ³	290	Suction	-13	Technic	cian:	J. Sm	yth
Flare _ Set 02		36.8	}	CO ₂	25.3	O ₂	3.4	H ₂ S ppm	68	Tota	I Flow m ³	310	Suction	-16	Atm. P	ress.	1007	-
_	Sam	ple	L	Ch₄	l		CO ₂		O ₂		С	ontrol val	ve positio	n	Lead	hate		Comment
Cell /Region	Poi	· -	Set :		Set 2	Set 1	Set 2	Set 1		et 2	Adj. 1 %			Final %	Well Dpt.(m)	Leac Leve		
LM-01	LFG	1-A	58.4	1		24.1		0.7					-0.2	5	. , ,		` '	
LM-02	LFG	2-A	20.5	5		20.8		0.2					-4	2				
LM-03	LFG	3-A	26.6	5		22.5		0.2					-3.5	2				
LM-04	LFG	4-A	27.7	7		23.1		0.1					-3.5	2				
	LFG	5-A	26.8	3		21.8		0.2					-3	2				
	LFG	6-A	24.8	3		20.8		0.2					-3	2				
	LFG	7-A	13.4	1		19.5		3.2					-3	2				
	LFG	8-A	24.4	1		22.7		0.2					-8	1				Water in line
	LFG	9-A	37.2	2		16.6		1.4					-0.7	100				Water in line
	LFG 1	.0-A	61.7	7		26.4		0.6					0	100				Water in line
	LFG 1		22.2	2		16.4		6.9					-9	50				
	LFG 1	.2-A	37.8	3		26.1		0.2					-9	100				
	LFG 1	.3-A	41.5	5		26.2		0.4					-8	100				
Cell-09	LFG 1	4-A	58.7	7		33.6		0.8					-9	100				
	LFG 1	.5-A	63.9)		36.0		0.1					-9	100				
	LFG 1	L5-B	34.3	3		21.6		7.5					-0.3	2				
	LFG 1		57.7			32.5		0.2					-8	100				De-watered
LM-11	LFG 1		14.7			22.2		0.2					-7	20				
LM-12	LFG 1		35.7			12.9		10.3					0.1	2				De-watered
	LFG 1		63.6			31.6		0.2					-7	100				
LM-14	LFG 2		60.5			34.1		0.0					-0.2					
	LFG 2		63.6			34.1		0.2					-7	100				
	LFG 2		64.7			34.3		0.3					-7	100				
LM-15	LFG 2	23-A	63.8			31.4		1.2					-7	50				
	LFG 2	23-B	7.9			3.2		18.3					-6	0				
LM-16	LFG 2	24-B	10.1	L		5.4		17.4					-0.5	1				

	Sample	C	Ch ₄	CC	O_2	C)2	С	ontrol valv	e position		Leac	hate	Comment
Cell /Region	Point	Set 1	Set 2	Set 1	Set 2	Set 1	Set 2	Adj. 1 %	Adj.2 %	Suction (-) mbar	Final %	Well Dpt.(m)	Leachate Level (m)	
	LFG 25-A	65.4		34.1		0.1				-12	50		, ,	Under Test
	LFG 26-A	63.6		31.2		0.5				-12	100			
LM-05														
LM-06/28		43.6		27.9		0.0				-5	100			Water in line
LM-08														
	B – Line 1	25.1		21.2		0.9				-4	5			
Bottom	Horiz-01	53.4		32.6		3.5					5%			
Тор	Horiz-02	53.4		32.6		3.5					10%			
Cell 09	31	51.6		31.3		1.7				-9	100			
Cell 09	30	57.3		33.4		0.9				-8	100			De watered
Cell 09	29	62.7		35.2		0.3				-9	100			
Cell 09	L - Chmb	53.1		31.3		1.9				-8	100			
Cell 09	B-Line	51.5		30.4		2.5				-9	100			
Cell 10A	33	54.5		32.7		0.6				-3.5	100			
Cell 10A	34	46.3		31.2		1.5				-3	100			
Cell 10A	34-B	28.1		26.3		0.4				-2	100			
Cell 10A	32	47.5		32.4		0.2				-3	100			
Cell 10A	32-B	46.9		30.1		2.3				-3	100			
Cell 10A	B-Line	28.1		21.8		5.3				-3	5			
Cell 10	L - Chmb	-		-		-				-				Line Flooded

Comment:

Valves needed on 180 line along base of Cell 10A

Environmental Protection Agency

| PRTR# : W0078 | Facility Name : Ballaghveny Landfill | Filename : Appendix 3 PRTR W0078_2013.xls | Return Year : 2013 |

19/09/2014 14:44

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2013 1. FACILITY IDENTIFICATION Parent Company Name Tipperary County Council
Facility Name Ballaghveny Landfill

DDTD II 20 2 N I	Macaza
PRTR Identification Number	
Licence Number	W0078-03
Waste or IPPC Classes of Activity	
No.	class_name
	Specially engineered landfill, including placement into lined discrete
	cells which are capped and isolated from one another and the
	environment.
	Deposit on, in or under land (including landfill).
	Blending or mixture prior to submission to any activity referred to in
	preceding paragraph of this Schedule.
	Repackaging prior to submission to any activity referred to in a
3.12	preceding paragraph of this Schedule.
	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
3.13	collection, on the premises where the waste concerned is produced
	Land treatment, including biodegradation of liquid or sludge discard
	in soils.
	Surface impoundment, including placement of liquid or sludge
	discards into pits, ponds or lagoons.
	The treatment of any waste on land with a consequential benefit for
	an agricultural activity or ecological system.
	Use of waste obtained from any activity referred to in a preceding
	paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred to
	in a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
4.13	produced.
	Recycling or reclamation of organic substances which are not used
	as solvents (including composting and other biological
4.2	transformation processes).
	Recycling or reclamation of metals and metal compounds.
	Recycling or reclamation of other inorganic materials.
	Ballymackey
Address 2	
Address 3	
Address 4	
7.001000 1	
	Tipperary
Country	
Coordinates of Location	
River Basin District	
NACE Code	
	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	,
AEN Neturns Contact Name	Louise Hyan
AER Returns Contact Email Address	louisam ryan@tinnararyeasa ia
AER Returns Contact Email Address AER Returns Contact Position	
AER Returns Contact Fosition AER Returns Contact Telephone Number	
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number AER Returns Contact Fax Number	007 0030032
Production Volume	0.
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	
Number of Operating Hours in Year Number of Employees	
Number of Operating Hours in Year Number of Employees User Feedback/Comments	www.tipperarycoco.ie

Web Address	www.tipperarycoco.ie
O DDTD OLAGO ACTIVITIES	
2. PRTR CLASS ACTIVITIES	
Activity Number	Activity Name
5(d)	Landfills
5(c)	Installations for the disposal of non-hazardous waste
5(d)	Landfills
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 200	02)
Is it applicable?	No
Have you been granted an exemption?	No
If applicable which activity class applies (as per	
Schedule 2 of the regulations)?	
Is the reduction scheme compliance route being	
used?	

4. WASTE IMPORTED/ACCEPTED ONTO SITE Guidance on waste imported/accepted onto site Do you import/accept waste onto your site for on-site treatment (either recovery or disposal activities) ? No

This question is only applicable if you are an IPPC or Quarry site

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

	RELEASES TO AIR	Please enter all quantities in this section in KGs								
	METHOD				QUANTITY					
				Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
01 - Methane (CH4)	Methane	С	ESTIMATE	Gassim	435817.49	435817.49	0.0	0.0		
02	Carbon monoxide (CO)	С	ESTIMATE	Gassim	486.36	486.36	0.0	0.0		
03	Carbon dioxide (CO2)	С	ESTIMATE	Gassim	449620.12	449620.12	0.0	0.0		

19/09/2014 14:44

10

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO AIR	Please enter all quantities in this section in KGs							
	POLLUTANT	M	ETHOD			QUANTITY			
			Method Used						
No. Annex II	Name	M/C/E Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
				0.0	1	0.0	0 0 0		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES TO AIR		Please enter all quantities in this section in KGs							
PO	DLLUTANT		M.	ETHOD			QUANTITY			
				Method Used						
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KG/yr for Section A: Sector specific PRTR pollutants above. Please complete the table below:

Landfill:	Ballaghveny Landfill				1	
Please enter summary data on the quantities of methane flared and / or utilised			Meth	nod Used		
				Designation or	Facility Total Capacity m3	
	T (Total) kg/Year	M/C/E	Method Code	Description	per hour	
Total estimated methane generation (as pe	r					
site model	1142371.28			Gassim model	N/A	
Methane flared	706553.79	С	EPA Landfill Gas Survey	EPA Landfill Gas Survey	500.0	(Total Flaring Capacity)
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)
Net methane emission (as reported in Section A	A Company of the Comp					
above	435817.49	Е	Gassim and EPA Landfil	Gassim and EPA Landfill Ga	N/A	

					all quantities on this sheet in Tonnes								9
Ţ	ransfer Destination	European Waste Code	Hazardous	Quantity (Tonnes per Year)	Description of Waste	Waste Treatment		Method Used Method Used	Location of Treatment	Haz Waste: Name and Licence/Permit No of Next Destination Facility Non Haz Waste: Name and Licence/Permit No of Recover/Disposer	Haz Waste: Address of Next Destination Facility Non Haz Waste: Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
-	Tanoror Dootmation		i iazaraoao		2 coonpact of tracto	Operation	111,7 0,7 2	moniou occu	Trodunon		Thurles WWTP,Thurles		
					landfill leachate other than those mentioned						WWTP,Co		
V	ithin the Country	19 07 03	No		in 19 07 02	D8	M	Weighed	Offsite in Ireland	Thurles WWTP,D0026-01	Tipperary,,,Ireland		
	,										New Nenagh WWTP,Old Birr		
V	ithin the Country	19 07 03	No	1107.78	Leachate	D8	M	Weighed	Offsite in Ireland	Treatment Plant ,D0027-01	Road, Nenagh,., Ireland		
	·				landfill leachate other than those mentioned						Roscrea WWTP,Roscrea		
V	ithin the Country	19 07 03	No	49.62	in 19 07 02	D8	M	Weighed	Offsite in Ireland	Roscrea WWTP,D0025-01	,Co. Tipperary,.,Ireland		
	•										Kilkenny City		
					landfill leachate other than those mentioned					Kilkenny City WWTP, W0018-	WWTP,Kilkenny ,Co.		
V	ithin the Country	19 07 03	No	55.72	in 19 07 02	D8	M	Weighed	Offsite in Ireland	01	Kilkenny,.,Ireland	.,.,,,,,,Ireland	.,,,,,,Ireland
										WEEE Recycling Ireland	Cappincur Industrial		
										,Waste Collection Permit No.	Estate, Daingean		
V	ithin the Country	20 01 35	Yes	0.0	WEEE	R4	M	Weighed	Offsite in Ireland		Rd.,Tullamore,.,Co. Offaly	.,.,,,,,,Ireland	.,.,.,Ireland
										Advanced Environmental			
					Domestic & Commercial, Local Authority						Springfort Cross, Nenagh, Co.		
V	ithin the Country	20 03 01	No	0.0	Commercial Waste & Reception Skip	D5	M	Weighed	Offsite in Ireland	,WCP/OY/0/601/08/0	Tipperary,.,Ireland		

^{*} Select a row by double-clicking the Description of Waste then click the delete button

Link to previous years waste data
Link to previous years waste summary data & percentage change
Link to Waste Guidance

APPENDIX 4

BALLAGHVENY LANDFILL INCIDENT SUMMARY 2013

Incident No.	Incident Nature	Category 1	Raised By	Status	CI Refs	Incident Date	Date Submitted	Date Closed
INC1000778	Trigger Level Reached	Category 1	Justine Haugh	Closed	n/a	07/02/2013 15:00	08/02/2013 14:32	25/02/2013 17:05
INC1000800	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	07/02/2013 14:00	12/02/2013 16:58	30/07/2013 14:44
INCI000816	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00	14/02/2013 16:53	30/07/2013 14:45
INC1000823	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00	15/02/2013 16:51	30/07/2013 14:45
INC1000882	Trigger Level Reached	Category 1	Justine Haugh	Closed	CI000136	14/02/2013 10:00	25/02/2013 16:38	30/07/2013 14:45
INC1000892	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00	26/02/2013 17:27	30/07/2013 14:45
INC1000906	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00	27/02/2013 16:21	30/07/2013 15:39
INCI000914	Trigger Level Reached	Category 1	Justine Haugh	Closed	CI000136	14/02/2013 10:00	28/02/2013 14:47	30/07/2013 15:38
INC1000925	Trigger Level Reached	Category 1	Justine Haugh		Cl000136	14/02/2013 10:00	01/03/2013 15:36	30/07/2013 15:37
INC1000933	Trigger Level Reached	Category 1	Justine Haugh		Cl000136		04/03/2013 17:02	
INC1000945	Trigger Level Reached	Category 1	Justine Haugh		CI000136		05/03/2013 17:19	
INC1000947	Trigger Level Reached	Category 1	Justine Haugh		n/a		05/03/2013 17:44	
INC1000966	Trigger Level Reached	Category 1	Justine Haugh		Cl000136		07/03/2013 17:29	
INC1000987	Trigger Level Reached	Category 1	Justine Haugh		CI000136		11/03/2013 15:25	
INCI000987	Trigger Level Reached	Category 1	Justine Haugh		CI000136	14/02/2013 10:00		
INCI001026	Trigger Level Reached	Category 1	Justine Haugh		CI000136		14/03/2013 17:32	
INCI001052	Trigger Level Reached	Category 1						30/07/2013 15:31
	Trigger Level	0 3	Justine Haugh		<u>CI000136</u>			
INCI001061	Reached Trigger Level	Category 1	Justine Haugh		CI000136	14/02/2013 10:00		
INC1001064	Reached Trigger Level	Category 1	Justine Haugh		<u>CI000136</u>			30/07/2013 15:25
INCI001093	Reached Trigger Level	Category 1	Justine Haugh		<u>Cl000136</u>		26/03/2013 15:05	
INCI001107	Reached Trigger Level	Category 1	Justine Haugh		<u>Cl000136</u>			30/07/2013 15:20
INCI001135	Reached Trigger Level	Category 1	Justine Haugh		<u>Cl000136</u>	14/02/2013 10:00		
INCI001168	Reached Trigger Level	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00	04/04/2013 17:21	30/07/2013 15:17
INCI001213	Reached Monitoring	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00	09/04/2013 15:35	30/07/2013 15:16
INCI001219	Equipment offline	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00	10/04/2013 15:35	30/07/2013 15:15
INCI001276	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00	16/04/2013 17:01	30/07/2013 14:42
INCI001288	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00	17/04/2013 16:48	30/07/2013 14:42
INCI001299	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00	18/04/2013 15:21	30/07/2013 14:43
INCI001300	Trigger Level Reached	Category 1	Justine Haugh	Closed	n/a	18/04/2013 13:00	18/04/2013 16:02	27/11/2013 10:19
INCI001333	Trigger Level Reached	Category 1	Justine Haugh		<u>CI000136</u>		24/04/2013 17:08	
INCI001345	Trigger Level Reached	Category 1	Justine Haugh		CI000136			30/07/2013 14:44
INCI001383	Trigger Level Reached	Category 1	Justine Haugh		Cl000136	14/02/2013 10:00	02/05/2013 16:39	29/07/2013 16:09
INCI001416	Trigger Level Reached	Category 1	Justine Haugh		Cl000136	14/02/2013 10:00	07/05/2013 17:04	29/07/2013 16:10
INCI001423	Trigger Level Reached	Category 1	Justine Haugh		<u>Cl000136</u>			29/07/2013 16:10
INCI001431	Trigger Level Reached	Category 1	Justine Haugh		<u>Cl000136</u>			29/07/2013 16:10
INCI001463	Trigger Level Reached	Category 1	Justine Haugh		Cl000136		15/05/2013 15:25	
INCI001503	Trigger Level Reached	Category 1	Justine Haugh		<u>Cl000136</u>			30/07/2013 14:38
INCI001513	Trigger Level Reached	Category 1	Justine Haugh				22/05/2013 16:33	
	Trigger Level	<u> </u>			CI000136			
INCI001526	Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00	24/05/2013 16:36	30/07/2013 14:38

INCI001558	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 30/05/2013 14:28 30/07/2013 14:39
INCI001577	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 04/06/2013 16:57 30/07/2013 14:39
INCI001585	Trigger Level Reached	Category 1	Justine Haugh	Closed	CI000136	14/02/2013 10:00 05/06/2013 16:30 30/07/2013 14:40
INCI001614	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 07/06/2013 15:33 30/07/2013 14:40
INCI001647	Trigger Level Reached	Category 1	Justine Haugh	Closed	CI000136	14/02/2013 10:00 12/06/2013 15:04 30/07/2013 14:40
INCI001657	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 13/06/2013 16:51 30/07/2013 14:41
INCI001667	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 14/06/2013 16:00 30/07/2013 14:41
INCI001670	Trigger Level Reached	Category 1	Justine Haugh	Closed	n/a	14/06/2013 10:00 14/06/2013 16:50 27/11/2013 10:19
INCI001695	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 19/06/2013 17:15 30/07/2013 14:41
INCI001710	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 21/06/2013 15:33 30/07/2013 14:41
INCI001729	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 25/06/2013 14:18 30/07/2013 14:42
INCI001757	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 27/06/2013 13:04
INCI001783	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>CI000136</u>	14/02/2013 10:00 01/07/2013 12:43 30/07/2013 15:06
INCI001813	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 03/07/2013 15:53 30/07/2013 15:05
INCI001828	Trigger Level Reached	Category 1	Justine Haugh	Closed	CI000136	14/02/2013 10:00 05/07/2013 15:05 30/07/2013 15:04
INCI001866	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>CI000136</u>	14/02/2013 10:00 10/07/2013 12:30
INCI001878	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 11/07/2013 16:45 30/07/2013 15:02
INCI001885	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>CI000136</u>	14/02/2013 10:00 12/07/2013 16:13 30/07/2013 15:01
INCI001908	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 16/07/2013 15:12 30/07/2013 15:00
INCI001925	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 18/07/2013 13:29 30/07/2013 14:58
INCI001943	Trigger Level Reached	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	14/02/2013 10:00 19/07/2013 15:17 30/07/2013 14:55
INCI001972	Trigger Level Reached Trigger Level	Category 1	Justine Haugh	Closed	<u>CI000136</u>	14/02/2013 10:00 24/07/2013 17:08
INC1002092	Reached Trigger Level	Category 1	Justine Haugh	Closed	<u>CI000136</u>	05/08/2013 09:00 07/08/2013 12:20 27/09/2013 15:18
INC1002100	Reached Trigger Level	Category 1	Justine Haugh	Closed	<u>CI000136</u>	05/08/2013 09:00 08/08/2013 15:41 27/09/2013 15:23
INCI002108	Reached Trigger Level	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	05/08/2013 09:00 09/08/2013 15:34 27/09/2013 15:23
INCI002132	Reached Trigger Level	Category 1	Justine Haugh	Closed	n/a	05/08/2013 09:00 13/08/2013 17:07 15/08/2013 09:16
INCI002140	Reached Trigger Level	Category 1	Justine Haugh	Closed	<u>Cl000136</u>	05/08/2013 09:00 14/08/2013 16:48 27/09/2013 15:25
INC1002277	Reached Trigger Level	Category 1	Justine Haugh	Closed	n/a	22/07/2013 13:00 06/09/2013 16:58 27/11/2013 10:19
INC1002278	Reached Trigger Level	Category 1	Justine Haugh	Open	n/a	22/07/2013 14:00 06/09/2013 17:31
INC1002288	Reached Trigger Level	Category 1	Justine Haugh Margaret	Closed	n/a	06/09/2013 12:00 10/09/2013 12:29 27/09/2013 15:28
INC1002708	Reached Trigger Level	Category 1	O'Sullivan Margaret	Open-CI	Cl000136	05/11/2013 00:00 06/11/2013 14:43
INC1002709	Reached Trigger Level	Category 1	O'Sullivan Margaret	Open-CI	<u>Cl000136</u>	05/11/2013 00:00 06/11/2013 15:03
INCI002711	Reached Trigger Level	Category 1	O'Sullivan Margaret	Open-CI	<u>Cl000136</u>	06/11/2013 00:00 06/11/2013 15:16
INCI002712	Reached	Category 1	O'Sullivan Margaret	Open	n/a	30/10/2013 00:00 06/11/2013 15:52
INC1002964	Other Trigger Level	Category 1	O'Sullivan Margaret	Closed	n/a	10/12/2013 00:00 11/12/2013 13:04 07/03/2014 16:25
INC1003065	Reached Trigger Level	Category 1	O'Sullivan Margaret	Open-CI	<u>CI000136</u>	20/12/2013 00:00 23/12/2013 09:19
INCI003131	Reached	Category 1	O'Sullivan	Open-CI	CI000136	31/12/2013 00:00 03/01/2014 14:33

APPENDIX 5

LEACHATE REGISTER

Date: 02/01/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:50:13	11.24	NENAGH WWTP
JOHN MACKEY	06TN2718	11:15:51	11.74	NENAGH WWTP
JOHN MACKEY	06TN2718	12:53:31	12.58	NENAGH WWTP
JOHN MACKEY	06TN2718	14:16:27	11.70	NENAGH WWTP
JOHN MACKEY	06TN2718	15:41:55	12.26	NENAGH WWTP

Total Volume : 59.52

Date: 03/01/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination	
JOHN MACKEY	06TN2718	09:12:29	12.40	NENAGH WWTP	
JOHN MACKEY	06TN2718	10:53:51	12.56	NENAGH WWTP	
JOHN MACKEY	06TN2718	12:23:38	11.72	NENAGH WWTP	

Total Volume :

36.68

Date:

08/01/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:16:42	12.56	NENAGH WWTP
JOHN MACKEY	06TN2718	10:47:07	11.36	NENAGH WWTP
JOHN MACKEY	06TN2718	12:15:57	11.62	NENAGH WWTP
JOHN MACKEY	06TN2718	14:33:25	9.58	NENAGH WWTP
JOHN MACKEY	06TN2718	16:05:11	10.98	NENAGH WWTP

Total Volume : 56.10

Date:

09/01/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:13:14	11.34	NENAGH WWTP
HOGANS	10TN771	10:23:50	12.64	ROSCREA WWTP
JOHN MACKEY	06TN2718	10:40:31	12.36	NENAGH WWTP
HOGANS	10TN771	11:43:07	12.34	ROSCREA WWTP
HOGANS	10TN771	13:11:14	12.22	ROSCREA WWTP
JOHN MACKEY	06TN2718	13:17:16	11.86	NENAGH WWTP

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

LEACHATE REGISTER

Date: 09/01/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	15:09:49	10.80	NENAGH WWTP
JOHN MACKEY	06TN2718	17:00:06	6.38	NENAGH WWTP

Total Volume : ______ 89.94

Date: 10/01/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:10:33	11.74	NENAGH WWTP
JOHN MACKEY	06TN2718	10:57:49	11.06	NENAGH WWTP

Total Volume : 22.80

Date: 15/01/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:16:29	12.48	NENAGH WWTP
JOHN MACKEY	06TN2718	10:28:52	12.36	NENAGH WWTP
JOHN MACKEY	06TN2718	12:07:45	12.46	NENAGH WWTP
JOHN MACKEY	06TN2718	14:09:50	12.34	NENAGH WWTP
JOHN MACKEY	06TN2718	15:50:31	12.64	NENAGH WWTP

Total Volume : 62.28

Date: 16/01/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:19:34	11.64	NENAGH WWTP
JOHN MACKEY	06TN2718	10:30:22	12.54	NENAGH WWTP
JOHN MACKEY	06TN2718	11:50:16	12.58	NENAGH WWTP
JOHN MACKEY	06TN2718	13:54:36	7.68	NENAGH WWTP
JOHN MACKEY	06TN2718	15:36:09	12.46	NENAGH WWTP

Total Volume :

56.90

Date: 17/01/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

LEACHATE REGISTER

Date: 17/01/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	08:58:23	12.60	NENAGH WWTP
JOHN MACKEY	06TN2718	10:18:11	12.50	NENAGH WWTP
JOHN MACKEY	06TN2718	11:56:56	12.24	NENAGH WWTP

Total Volume : _____

37.34

Date:

05/02/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:24:32	11.48	NENAGH WWTP
JOHN MACKEY	06TN2718	11:03:34	12.74	NENAGH WWTP
JOHN MACKEY	06TN2718	12:34:20	10.94	NENAGH WWTP
JOHN MACKEY	06TN2718	14:36:02	12.78	NENAGH WWTP
JOHN MACKEY	06TN2718	15:56:45	12.32	NENAGH WWTP

Date:

13/02/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:05:29	12.56	NENAGH WWTP
JOHN MACKEY	06TN2718	10:39:12	12.54	NENAGH WWTP
JOHN MACKEY	06TN2718	12:29:53	12.62	NENAGH WWTP
JOHN MACKEY	06TN2718	13:52:49	12.76	NENAGH WWTP
JOHN MACKEY	06TN2718	15:36:22	12.24	NENAGH WWTP

Total Volume : 62.72

Date:

14/02/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:06:36	12.48	NENAGH WWTP
JOHN MACKEY	06TN2718	10:15:51	12.74	NENAGH WWTP
JOHN MACKEY	06TN2718	11:34:43	12.58	NENAGH WWTP
JOHN MACKEY	06TN2718		12.60	NENAGH WWTP
JOHN MACKEY	06TN2718		12.60	NENAGH WWTP
JOHN MACKEY	06TN2718		12.60	NENAGH WWTP

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

LEACHATE REGISTER				
			Date:	14/02/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
Total Volume : 75.60				
Date: 19/02/2013				
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:29:53	12.74	NENAGH WWTP
JOHN MACKEY	06TN2718	10:50:01	12.46	NENAGH WWTP
JOHN MACKEY	06TN2718	13:01:19	12.62	NENAGH WWTP
JOHN MACKEY	06TN2718	14:29:30	12.60	NENAGH WWTP
JOHN MACKEY	06TN2718	15:56:08	12.82	NENAGH WWTP
Total Volume : 63.24				
	Date: 26/02/2013			
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:16:58	12.08	NENAGH WWTP
JOHN MACKEY	06TN2718	11:44:48	11.90	NENAGH WWTP
JOHN MACKEY	06TN2718	13:34:47	12.06	NENAGH WWTP
JOHN MACKEY	06TN2718	15:13:07	12.58	NENAGH WWTP
JOHN MACKEY	06TN2718	16:50:14	12.64	NENAGH WWTP
Total Volume : 61.26				
	Date: 05/03/2013			
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	06TN2718	09:04:38	12.54	NENAGH WWTP
JOHN MACKEY	12TN345	12:33:03	12.42	NENAGH WWTP
JOHN MACKEY	12TN345	14:09:25	12.40	NENAGH WWTP
JOHN MACKEY	12TN345	15:30:31	12.68	NENAGH WWTP
JOHN MACKEY	12TN345	16:43:22	12.70	NENAGH WWTP
Total Volume: 62.74				
Name and Address of Wastewater Treatment Plant to which the Leachate was transported				
Any Incidents or Spillages of Leachate during Removal or Transport				
<u> </u>				

Date: 13/03/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	12TN345	09:37:33	12.92	NENAGH WWTP
JOHN MACKEY	12TN345	10:54:09	12.18	NENAGH WWTP
JOHN MACKEY	12TN345	12:12:34	12.36	NENAGH WWTP
JOHN MACKEY	12TN345	13:33:54	12.42	NENAGH WWTP
JOHN MACKEY	12TN345	15:03:26	12.62	NENAGH WWTP

Total Volume : 62.50

Date: 19/03/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	07TN733	09:38:50	10.74	NENAGH WWTP
JOHN MACKEY	07TN733	10:59:46	12.22	NENAGH WWTP
JOHN MACKEY	07TN733	12:28:30	12.24	NENAGH WWTP
JOHN MACKEY	07TN733	14:11:24	12.28	NENAGH WWTP

Total Volume : 47.48

Date:

26/03/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	12TN345	09:25:49	12.64	NENAGH WWTP
JOHN MACKEY	12TN345	10:38:44	12.56	NENAGH WWTP
JOHN MACKEY	12TN345	12:17:11	12.66	NENAGH WWTP
JOHN MACKEY	12TN345	13:45:20	13.00	NENAGH WWTP
JOHN MACKEY	12TN345	15:27:12	12.50	NENAGH WWTP

Total Volume : 63.36

Date:

02/04/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
JOHN MACKEY	12TN345	09:42:01	12.54	NENAGH WWTP
JOHN MACKEY	12TN345	10:54:53	12.82	NENAGH WWTP
JOHN MACKEY	12TN345	12:07:28	12.64	NENAGH WWTP
JOHN MACKEY	12TN345	13:21:42	12.64	NENAGH WWTP
JOHN MACKEY	12TN345	14:51:40	12.46	NENAGH WWTP

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

Date: 02/04/2013 Haulier Name Vehicle Reg Romoval Time Volume M3 Destination Total Volume: 63.10 Date: 04/04/2013 Haulier Name Vehicle Reg Romoval Time Volume M3 Destination HOGANS 02D861 12:53:37 32.44 THURLES S T P Total Volume : ____ 32.44 Date: 09/04/2013 Haulier Name Vehicle Reg Romoval Time Volume M3 Destination HOGANS 02D861 10:00:39 30.22 THURLES S T P JOHN MACKEY 06TN2718 11:10:11 11.84 **NENAGH WWTP** HOGANS 02D861 13:02:11 31.54 THURLES S T P JOHN MACKEY 06TN2718 13:18:04 12.62 NENAGH WWTP JOHN MACKEY NENAGH WWTP 06TN2718 14:42:34 12.34 JOHN MACKEY 06TN2718 16:04:51 12.62 **NENAGH WWTP** JOHN MACKEY 06TN2718 12.36 **NENAGH WWTP** Total Volume: 123.54 10/04/2013 Date: Haulier Name Vehicle Reg Romoval Time Volume M3 Destination **HOGANS** 02D861 09:48:06 30.60 THURLES S T P HOGANS 02D861 12:58:56 30.42 THURLES S T P Total Volume: 61.02 Date: 16/04/2013 Haulier Name Vehicle Reg Romoval Time Volume M3 Destination JOHN MACKEY 06TN2718 09:10:05 12.60 **NENAGH WWTP HOGANS** 02D861 10:07:18 32.40 THURLES S T P JOHN MACKEY 06TN2718 10:30:07 12.60 NENAGH WWTP **HOGANS** 02D861 13:25:35 28.90 THURLES S T P Name and Address of Wastewater Treatment Plant to which the Leachate was transported Any Incidents or Spillages of Leachate during Removal or Transport

			Date:	16/04/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
	Total Vol	ume :	86.50	
			Date:	17/04/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	02D861	09:25:57	30.80	THURLES S T P
HOGANS	02D861	13:00:21	30.10	THURLES S T P
	Total Vol	ume :	60.90	
			Date:	18/04/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	02D861	09:26:20	32.04	THURLES S T P
	Total Vol	ume :	32.04	
			Date:	23/04/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	02D861	10:03:04	32.74	THURLES S T P
HOGANS	02D861	13:41:41	28.16	THURLES S T P
	Total Vol	ume :	60.90	
			Date:	24/04/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	02D861	09:30:11	31.50	THURLES S T P
HOGANS	02D861	12:48:59	26.98	THURLES S T P
	Total Vol	lume :	58.48	
			Date:	25/04/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	02D861	09:53:07	27.48	THURLES S T P
	•			
Name and Address of Wastewate	er Treatment Plan	it to which the Lea	achate was tra	nsported
Any Incidente or Spillages of Lea	ohoto during Dom	acycl or Transport		
Any Incidents or Spillages of Lea	criate during Rem	iovai or Transpor		
				, , , , , , , , , , , , , , , , , , ,
Consignment I	oggad Day			

LEACHAIE RE	LGISTER .				
			Date:	25/04/2013	
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination	
	Total Vo	lume :	27.48		
			Date:	30/04/2013	
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination	
HOGANS	02D861	09:27:06	28.62	THURLES S T P	
HOGANS	02D861	12:58:32	28.58	THURLES S T P	
Total Volume : 57.20					
Date: 01/05/2013					
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination	
HOGANS	02D861	09:36:01	27.48	THURLES S T P	
HOGANS	02D861	13:17:16	30.66	THURLES S T P	
	Total Vol	lume :	58.14		
			Date:	02/05/2013	
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination	
HOGANS	02D861	09:22:07	27.72	THURLES S T P	
	Total Vol	lume :	27.72		
			Date:	07/05/2013	
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination	
HOGANS	02D861	11:11:57	31.76	THURLES S T P	
HOGANS	02D861	15:01:47	25.32	THURLES S T P	
	Total Vol	lume :	57.08		
			Date:	09/05/2013	
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination	
HOGANS	02D80835	09:24:42	29.18	THURLES S T P	
HOGANS	02D80835	12:51:02	29.82	THURLES S T P	
Name and Address of Wa	astowator Trootmont Blan	et to which the Loc	abata waa too		
Name and Address of Wa	astewater Treatment Flan	it to writer the Lea	chate was trai	isported	
Any Incidents or Spillage	s of Leachate during Rem	noval or Transport			
, molective of opinage	o or Loudinate during INGII	iovai oi Transport			

			Date:	22/05/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	16:19:41	31.88	THURLES S T P
	Total Vol	ume :	94.84	
			Date:	28/05/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:36:20	31.62	THURLES S T P
HOGANS	131TN892	12:57:43	31.80	THURLES S T P
	Total Vol	lume :	63.42	
			Date:	29/05/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:29:09	31.68	THURLES S T P
HOGANS	131TN892	12:24:03	31.90	THURLES S T P
HOGANS	131TN892	15:42:49	30.98	THURLES S T P
	Total Vol	lume :	94.56	
			Date:	30/05/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892		31.64	THURLES S T P
	Total Vol	lume :	31.64	
			Date:	04/06/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892		31.42	THURLES S T P
HOGANS	131TN892	13:51:20	31.84	THURLES S T P
	Total Vol	lume :	63.26	
			Date:	05/06/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
Name and Address of W	Vastewater Treatment Plar	nt to which the Lea	achate was tra	nsported
Any Incidents or Spillage	es of Leachate during Ren	noval or Transport	t	
Tary including or opinage	co or Ecaonate during Neri	noval of Transport		
Cons	signment Logged Bv:			
Cons	signment Logged By:			

			Date:	09/05/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
	Total Vol	ume :	59.00	
			Date:	14/05/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:37:05	32.18	THURLES S T P
HOGANS	131TN892	13:47:14	31.12	THURLES S T P
	Total Vol	ume :	63.30	
			Date:	15/05/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:34:53	32.00	THURLES S T P
HOGANS	131TN892	12:59:08	31.98	THURLES S T P
	Total Vol	ume :	63.98	
			Date:	16/05/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:33:04	31.06	THURLES S T P
	Total Vol	ume :	31.06	24/07/2012
			Date:	21/05/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:32:52	31.40	THURLES S T P
HOGANS	131TN892	13:05:39	31.84	THURLES S T P
	Total Vol	ume :	63.24	
			Date:	22/05/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:30:29	31.60	THURLES S T P
HOGANS	131TN892	12:59:58	31.36	THURLES S T P
Name and Address of Wastewate	r Treatment Plant	to which the Lea	chate was trai	nsported
Any Incidents or Spillages of Lead	-	oval or Transport		
Consignment L	ogged By:			

Date: 05/06/2013

Haulier Name	Vehicle R	eg Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:07:09	31.72	THURLES S T P
HOGANS	131TN892	12:01:24	32.00	THURLES S T P
HOGANS	131TN892	15:04:55	31.90	THURLES S T P

Total Volume : 95.62

Date: 06/06/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:09:55	31.58	THURLES S T P
HOGANS	131TN892	12:22:29	31.50	THURLES S T P

Total Volume :

63.08

Date: 07/06/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:10:48	31.76	THURLES S T P
HOGANS	131TN892	12:05:29	31.70	THURLES S T P

Total Volume :

63.46

Date: 11/06/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:13:57	23.34	THURLES S T P
HOGANS	131TN892	11:58:06	23.28	THURLES S T P
HOGANS	131TN892	15:36:49	23.28	THURLES S T P

Total Volume :

69.90

Date: 12/06/2013

					_
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination	
HOGANS	131TN892	09:14:33	23.34	THURLES S T P	
HOGANS	131TN892	12:00:00	23.36	THURLES S T P	
HOGANS	131TN892	15:09:23	23.32	THURLES S T P	

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

			Date:	12/06/2013		
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination		
	Total Vol	ume :	70.02			
			Date:	13/06/2013		
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination		
HOGANS	131TN892	10:09:37	31.82	THURLES S T P		
HOGANS	131TN892	12:47:08	32.06	THURLES S T P		
	Total Vol	ume :	63.88			
			Date:	14/06/2013		
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination		
HOGANS	131TN892	09:12:43	31.84	THURLES S T P		
HOGANS	131TN892	12:06:20	31.98	THURLES S T P		
	Total Vol	ume :	63.82			
			Date:	18/06/2013		
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination		
HOGANS	131TN892	09:11:32	31.32	THURLES S T P		
HOGANS	131TN892	11:52:15	31.68	THURLES S T P		
HOGANS	131TN892	14:43:41	31.62	THURLES S T P		
	Total Volume : 94.62					
			Date:	19/06/2013		
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination		
HOGANS	131TN892	09:13:19	31.54	THURLES S T P		
HOGANS	131TN892	12:12:46	31.76	THURLES S T P		
	Total Vol	ume :	63.30			
			Date:	25/06/2013		
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination		
Name and Address of Wastewate	r Treatment Plant	to which the Lea	chate was trar	nsported		
	N- 41					
		·				
Any Incidents or Spillages of Lead	chate during Rem	oval or Transport				
_						
Consignment L	and D.					

Date:	25/06/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:20:20	31.92	THURLES S T P
HOGANS	131TN892	12:15:51	31.70	THURLES S T P
HOGANS	131TN892	15:06:24	31.58	THURLES S T P

Total Volume : 95.20

Date: 26/06/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:17:25	31.90	THURLES S T P

Total Volume : 31.90

Date: 27/06/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	10:57:22	31.36	THURLES S T P

Total Volume : 31.36

Date: 02/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:10:44	31.34	THURLES S T P
HOGANS	131TN892	11:57:51	31.80	THURLES S T P
HOGANS	131TN892	14:53:39	31.82	THURLES S T P

Total Volume : 94.96

Date: 03/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:18:39	31.92	THURLES S T P
HOGANS	131TN892	12:03:54	31.86	THURLES S T P
HOGANS	131TN892	15:00:38	31.90	THURLES S T P

Total Volume : 95.68

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

Date: 04/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:21:20	. 31.88	THURLES S T P
HOGANS	131TN892	12:16:36	32.20	THURLES S T P
HOGANS	131TN892	14:58:01	31.94	THURLES S T P

Total Volume : 96.02

Date: 05/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:22:07	31.96	THURLES S T P

Total Volume : 31.96

Date: 09/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:13:56	32.00	THURLES S T P
HOGANS	131TN892	12:38:01	32.08	THURLES S T P
HOGANS	131TN892	15:22:31	31.96	THURLES S T P

Total Volume : 96.04

Date: 10/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:17:52	31.98	THURLES S T P
HOGANS	131TN892	12:13:48	32.26	THURLES S T P
HOGANS	131TN892	15:15:35	32.20	THURLES S T P

Total Volume : 96.44

Date: 11/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:09:52	32.44	THURLES S T P
HOGANS	131TN892	12:01:28	32.08	THURLES S T P

Total Volume : 64.52

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

o	T 1 T		
Consignment	Logged By:		

Date: 12/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:11:37	31.70	THURLES S T P
HOGANS	131TN892	11:56:53	32.08	THURLES S T P

Total Volume :

63.78

Date: 16/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:18:41	31.54	THURLES S T P
HOGANS	131TN892	12:00:55	31.98	THURLES S T P
HOGANS	131TN892	14:56:05	31.90	THURLES S T P

Total Volume :

95.42

Date: 17/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:17:04	32.38	THURLES S T P
HOGANS	131TN892	12:00:28	32.14	THURLES S T P
HOGANS	131TN892	15:01:41	32.18	THURLES S T P

Total Volume :

96.70

Date:

18/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:20:16	32.06	THURLES S T P
HOGANS	131TN892	12:04:55	32.22	THURLES S T P

Total Volume :

64.28

Date: 19/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:12:38	32.00	THURLES S T P

Total Volume : 32.00

Name and Address of Wastewater Treatment Plant to which the Leachate was transported	

Any Incidents or Spillages of Leachate during Removal or Transport

Date: 24/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:12:54	32.20	THURLES S T P
HOGANS	131TN892	12:05:23	32.50	THURLES S T P
HOGANS	131TN892	15:13:46	32.50	THURLES S T P

Total Volume : 97.20

77.20

Date: 25/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:19:58	32.12	THURLES S T P
HOGANS	131TN892	12:00:32	32.40	THURLES S T P

Total Volume :

64.52

Date: 26/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	12:38:04	32.10	THURLES S T P

Total Volume :

32.10

Date:

30/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:17:58	32.42	THURLES S T P
HOGANS	131TN892	12:00:29	32.14	THURLES S T P
HOGANS	10TN771	13:09:48	12.42	ROSCREA WWTP
HOGANS	10C6587	15:22:09	14.18	NENAGH WWTP

Total Volume :

91.16

Date: 31/07/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:09:29	32.08	THURLES S T P
HOGANS	10C6587	09:35:49	16.00	THURLESSTP
HOGANS	10TN771	11:45:19	12.68	THURLES S T P
HOGANS	131TN892	12:11:18	32.12	THURLES S T P

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

Consignment:	Logged By:	

			Date:	31/07/2013			
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination			
	Total Vol	ume :	92.88				
			Date:	01/08/2013			
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination			
HOGANS	131TN892	09:14:56	32.32	THURLES S T P			
Total Volume : 32.32							
			Date:	09/08/2013			
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination			
HOGANS	131TN892	09:33:48	32.26	THURLES S T P			
HOGANS	131TN892	12:17:35	32.06	THURLES S T P			
	Total Vol	ume :	64.32				
			Date:	13/08/2013			
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination			
HOGANS	131TN892	09:28:43	28.40	THURLES S T P			
HOGANS	131TN892	12:09:38	32.52	THURLES S T P			
HOGANS	131TN892	15:10:40	32.56	THURLES S T P			
	Total Vol	lume :	93.48				
			Date:	14/08/2013			
Haulier Name	Vehicle Reg	Romoval Time	Date:	14/08/2013 Destination			
Haulier Name HOGANS	Vehicle Reg 131TN892	Romoval Time 09:15:05					
			Volume M3	Destination			
HOGANS	131TN892	09:15:05	Volume M3 32.44	Destination THURLES S T P			
HOGANS HOGANS	131TN892 131TN892	09:15:05 12:00:16 14:55:24	Volume M3 32.44 32.00	Destination THURLES S T P THURLES S T P			
HOGANS HOGANS	131TN892 131TN892 131TN892	09:15:05 12:00:16 14:55:24	Volume M3 32.44 32.00 32.60	Destination THURLES S T P THURLES S T P			
HOGANS HOGANS	131TN892 131TN892 131TN892	09:15:05 12:00:16 14:55:24	Volume M3 32.44 32.00 32.60 97.04	Destination THURLES S T P THURLES S T P THURLES S T P			
HOGANS HOGANS HOGANS	131TN892 131TN892 131TN892 Total Vo	09:15:05 12:00:16 14:55:24 lume :	Volume M3 32.44 32.00 32.60 97.04 Date:	Destination THURLES S T P THURLES S T P THURLES S T P 15/08/2013			
HOGANS HOGANS HOGANS	131TN892 131TN892 131TN892 Total Vo	09:15:05 12:00:16 14:55:24 lume :	Volume M3 32.44 32.00 32.60 97.04 Date: Volume M3	Destination THURLES S T P THURLES S T P THURLES S T P THURLES S T P 15/08/2013 Destination			
HOGANS HOGANS HOGANS HAulier Name	131TN892 131TN892 131TN892 Total Vo	09:15:05 12:00:16 14:55:24 lume :	Volume M3 32.44 32.00 32.60 97.04 Date: Volume M3	Destination THURLES S T P THURLES S T P THURLES S T P THURLES S T P 15/08/2013 Destination			
HOGANS HOGANS HOGANS HAulier Name	131TN892 131TN892 131TN892 Total Vo	09:15:05 12:00:16 14:55:24 lume :	Volume M3 32.44 32.00 32.60 97.04 Date: Volume M3	Destination THURLES S T P THURLES S T P THURLES S T P THURLES S T P 15/08/2013 Destination			
HOGANS HOGANS HOGANS HAulier Name	131TN892 131TN892 Total Vo. Vehicle Reg tewater Treatment Plan	09:15:05 12:00:16 14:55:24 lume : Romoval Time	Volume M3 32.44 32.00 32.60 97.04 Date: Volume M3	Destination THURLES S T P THURLES S T P THURLES S T P THURLES S T P 15/08/2013 Destination			
HOGANS HOGANS HOGANS Haulier Name Name and Address of Wast	131TN892 131TN892 Total Vo. Vehicle Reg tewater Treatment Plan	09:15:05 12:00:16 14:55:24 lume : Romoval Time	Volume M3 32.44 32.00 32.60 97.04 Date: Volume M3	Destination THURLES S T P THURLES S T P THURLES S T P THURLES S T P 15/08/2013 Destination			
HOGANS HOGANS HOGANS Haulier Name Name and Address of Wast	131TN892 131TN892 Total Vo. Vehicle Reg tewater Treatment Plan	09:15:05 12:00:16 14:55:24 lume : Romoval Time	Volume M3 32.44 32.00 32.60 97.04 Date: Volume M3	Destination THURLES S T P THURLES S T P THURLES S T P THURLES S T P 15/08/2013 Destination			

Date:	15/08/2013
-------	------------

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:20:22	32.08	THURLES S T P
HOGANS	131TN892	12:01:26	32.50	THURLES S T P

Total Volume : 64.58

Date: 16/08/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:20:46	32.28	THURLES S T P
HOGANS	131TN892	12:03:38	31.96	THURLES S T P

Total Volume : 64.24

Date: 20/08/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:20:22	31.88	THURLES S T P
HOGANS	131TN892	12:08:44	31.86	THURLES S T P
HOGANS	131TN892	15:08:54	32.56	THURLES S T P

Total Volume : 96.30

Date: 21/08/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:09:46	32.06	THURLES S T P
HOGANS	131TN892	11:57:15	32.00	THURLES S T P
HOGANS	131TN892	14:50:24	31.86	THURLES S T P

Total Volume : 95.92

Date: 22/08/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:12:55	31.96	THURLES S T P
HOGANS	131TN892	12:03:33	32.04	THURLES S T P

Total Volume : 64.00

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

Date: 23/08/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:14:50	32.28	THURLES S T P
HOGANS	131TN892	12:10:43	32.34	THURLES S T P

Total Volume : 64.62

Date: 27/08/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:20:43	31.98	THURLES S T P
HOGANS	131TN892	12:13:36	32.00	THURLES S T P
HOGANS	131TN892	15:03:26	32.44	THURLES S T P

Total Volume :

Date: 28/08/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:14:51	32.14	THURLES S T P
HOGANS	131TN892	13:32:42	32.58	THURLES S T P

Total Volume : 64.72

Date: 29/08/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:13:56	31.74	THURLES S T P
HOGANS	131TN892	12:14:11	32.00	THURLES S T P

Total Volume : 63.74

Date: 03/09/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:23:40	32.06	THURLES S T P
HOGANS	131TN892	12:13:42	32.06	THURLESSTP
HOGANS	131TN892	15:06:14	32.04	THURLES S T P

Total Volume : 96.16

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

Date:	04/09/2013
Date.	OTIONIEULO

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:14:57	32.00	THURLES S T P
HOGANS	131TN892	12:02:32	31.98	THURLES S T P
HOGANS	131TN892	15:05:04	32.14	THURLES S T P

Total Volume : 96.12

Date: 05/09/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:13:44	31.92	THURLES S T P
HOGANS	131TN892	12:37:06	32.54	THURLES S T P

Total Volume : 64.46

Date: 06/09/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	10:30:37	31.42	THURLES S T P

Total Volume :

31.42

Date: 10/09/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:24:31	32.38	THURLES S T P
HOGANS	131TN892	12:10:29	32.40	THURLES S T P
HOGANS	131TN892	15:02:21	32.36	THURLES S T P

Total Volume : 97.14

Date: 11/09/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:20:35	32.36	THURLES S T P
HOGANS	131TN892	12:36:27	31.70	THURLES S T P

Total Volume : 64.06

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

Date: 17/09/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:20:31	32.26	THURLES S T P
HOGANS	131TN892	12:13:41	32.42	THURLES S T P
HOGANS	131TN892	15:10:16	32.42	THURLES S T P

Total Volume : 97.10

Date: 18/09/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:18:05	31.92	THURLES S T P
HOGANS	131TN892	12:06:00	32.08	THURLES S T P

Total Volume : 64.00

Date: 24/09/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	11:56:35	29.18	THURLES S T P
HOGANS	131TN892	14:46:51	29.70	THURLES S T P

Total Volume : 58.88

Date: 02/10/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:21:39	30.72	THURLES S T P
HOGANS	131TN892	12:10:00	30.32	THURLES S T P

Total Volume : 61.04

Date: 03/10/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892		30.36	THURLES S T P
HOGANS	131TN892	12:08:24	28.96	THURLES S T P

Total Volume : 59.32

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

			Date:	09/10/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:17:12	29.88	THURLES S T P
HOGANS	131TN892	15:56:20	30.00	THURLES S T P
	Total Vo	lume :	59.88	
			Date:	15/10/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:19:47	29.96	THURLES S T P
HOGANS	131TN892	12:02:39	29.68	THURLES S T P
HOGANS	131TN892	14:53:30	29.84	THURLES S T P
	Total Vo	lume :	89.48	
			Date:	16/10/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	12:04:49	29.98	THURLES S T P
	Total Vol	lume :	29.98	
			Date:	17/10/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	11:17:45	29.48	THURLES S T P
	Total Vol	lume :	29.48	
			Date:	22/10/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:17:53	29.54	THURLES S T P
HOGANS	131TN892	12:15:34	29.70	THURLES S T P
	Total Vol	lume :	59.24	
			Date:	23/10/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
Name and Address of W	astewater Treatment Plan	t to which the Lea	chate was trar	nsported
	- ·			

			Date:	23/10/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:10:28	29.66	THURLES S T P
HOGANS	131TN892	12:10:13	29.52	THURLES S T P
	Total Vol	ume :	59.18	
			Date:	24/10/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:38:40	30.04	THURLES S T P
	Total Vol	ume :	30.04	
			Date:	31/10/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
	484551000	09:19:31	20.70	
HOGANS	131TN892	09.19.31	29.78	THURLES S T P
HOGANS HOGANS	131TN892 131TN892	12:09:03	29.78 29.74	THURLES S T P THURLES S T P
		12:09:03		
	131TN892	12:09:03	29.74 59.52	
HOGANS	131TN892	12:09:03	29.74 59.52	THURLES S T P
HOGANS Haulier Name	131TN892 Total Vol	12:09:03 lume :	29.74 59.52 Date:	THURLES S T P 06/11/2013
Haulier Name HOGANS	Total Vol	12:09:03	29.74 59.52 Date: Volume M3	THURLES S T P 06/11/2013 Destination
	Total Vol Vehicle Reg 131TN892	12:09:03 lume :	29.74 59.52 Date: Volume M3 29.70	THURLES S T P 06/11/2013 Destination THURLES S T P
Haulier Name HOGANS	Vehicle Reg 131TN892 131TN892	12:09:03 lume :	29.74 59.52 Date: Volume M3 29.70 30.24 59.94	THURLES S T P 06/11/2013 Destination THURLES S T P
Haulier Name HOGANS	Vehicle Reg 131TN892 131TN892	12:09:03 lume :	29.74 59.52 Date: Volume M3 29.70 30.24 59.94	O6/11/2013 Destination THURLES S T P THURLES S T P
Haulier Name HOGANS HOGANS HOGANS	Vehicle Reg 131TN892 131TN892 Total Vo	12:09:03 lume :	29.74 59.52 Date: Volume M3 29.70 30.24 59.94 Date:	THURLES S T P 06/11/2013 Destination THURLES S T P THURLES S T P 07/11/2013
Haulier Name HOGANS HOGANS	Vehicle Reg 131TN892 131TN892 131TN892 Total Vo	Romoval Time	29.74 59.52 Date: Volume M3 29.70 30.24 59.94 Date: Volume M3	THURLES S T P 06/11/2013 Destination THURLES S T P THURLES S T P 07/11/2013 Destination
Haulier Name HOGANS HOGANS HAULIER Name HAULIER Name	Total Vol Vehicle Reg 131TN892 131TN892 Total Vol Vehicle Reg 131TN892	Romoval Time 09:09:13 11:50:11 lume: Romoval Time 09:09:13 11:50:11	29.74 59.52 Date: Volume M3 29.70 30.24 59.94 Date: Volume M3 30.00	THURLES S T P 06/11/2013 Destination THURLES S T P THURLES S T P 07/11/2013 Destination THURLES S T P
Haulier Name HOGANS HOGANS HAULier Name Haulier Name HOGANS	Vehicle Reg 131TN892 131TN892 Total Vo Vehicle Reg 131TN892 131TN892 131TN892 131TN892	Romoval Time 09:09:13 11:50:11 lume: Romoval Time 09:09:13 11:50:11	29.74 59.52 Date: Volume M3 29.70 30.24 59.94 Date: Volume M3 30.00 30.28	THURLES S T P 06/11/2013 Destination THURLES S T P THURLES S T P 07/11/2013 Destination THURLES S T P

			Date:	12/11/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:12:47	30.22	THURLES S T P
HOGANS	131TN892	12:18:41	30.20	THURLES S T P
	Total Vol	ume :	60.42	
			Date:	14/11/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:14:37	29.88	THURLES S T P
HOGANS	131TN892	11:50:09	30.20	THURLES S T P
	Total Vol	ume :	60.08	
			Date:	19/11/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	09:17:45	29.52	THURLES S T P
11001210	131TN892	13:31:37	29.52	THURLES S T P
HOGANS				
HOGANS	Total Vol		59.04	
HOGANS				20/11/2013
Haulier Name				20/11/2013 Destination
	Total Vol	lume :	Date:	<u> </u>
Haulier Name	Total Vol	Romoval Time 09:02:01	Date:	Destination
Haulier Name	Total Vol Vehicle Reg 131TN892	Romoval Time 09:02:01	Date: Volume M3 30.42 30.42	Destination
Haulier Name	Total Vol Vehicle Reg 131TN892	Romoval Time 09:02:01	Date: Volume M3 30.42 30.42	Destination THURLES S T P
Haulier Name HOGANS	Total Vol	Romoval Time 09:02:01	Date: Volume M3 30.42 30.42 Date:	Destination THURLES S T P 21/11/2013
Haulier Name HOGANS Haulier Name	Vehicle Reg 131TN892 Total Vol Vehicle Reg	Romoval Time 09:02:01 lume: Romoval Time 12:25:21	Volume M3 30.42 30.42 Date: Volume M3	Destination THURLES S T P 21/11/2013 Destination
Haulier Name HOGANS Haulier Name	Vehicle Reg 131TN892 Total Vol Vehicle Reg 131TN892	Romoval Time 09:02:01 lume: Romoval Time 12:25:21	Date: Volume M3 30.42 30.42 Date: Volume M3 30.06 30.06	Destination THURLES S T P 21/11/2013 Destination
Haulier Name HOGANS Haulier Name	Vehicle Reg 131TN892 Total Vol Vehicle Reg 131TN892	Romoval Time 09:02:01 lume: Romoval Time 12:25:21	Date: Volume M3 30.42 30.42 Date: Volume M3 30.06 30.06	Destination THURLES S T P 21/11/2013 Destination THURLES S T P

Consignment l	Logged By:	

			Date:	19/12/2013
Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
	m . 1 x z 1		20.64	

Total Volume : 28.64

Date: 20/12/2013

Haulier Name	Vehicle Reg	Romoval Time	Volume M3	Destination
HOGANS	131TN892	07:46:03	27.08	KILKENNY S T P

Total Volume : 27.08

Name and Address of Wastewater Treatment Plant to which the Leachate was transported

Any Incidents or Spillages of Leachate during Removal or Transport

APPENDIX 6

Unit 32 De Granville Court, Dublin Rd, Trim, Co. Meath

Tel: +353 46 9437922 Mobile: +353 87 6829011

E-mail: info@odourireland.com john@odourireland.ie Website: www.odourireland.com

W0078-03-VOC/SURFACEEMISSIONS/2014/1 LANDFILL GAS SURFACE EMISSIONS SURVEY AT BALLAGHVENY LANDFILL, BALLYMACKEY, CO. TIPPERARY

PERFORMED BY ODOUR MONITORING IRELAND ON BEHALF OF TIPPERARY COUNTY COUNCIL

PREPARED BY:	Dr. John Casey
ATTENTION:	Ms. Olga Doyle
LICENCE NUMBER:	WL0078-3
LICENCE HOLDER:	Tipperary County Council
FACILITY NAME:	Ballaghveny Landfill Facility
DATE OF MONITORING VISIT:	30 th Jul. 2014
NAME AND ADDRESS OF CLIENT ORGANISATION:	Ballaghveny Landfill, Ballymackey, Co. Tipperary
NAME AND ADDRESS OF MONITORING ORGANISATION:	Odour Monitoring Ireland, Unit 32 DeGranville Court, Dublin Road, Trim, Co. Meath
DATE OF REPORTING:	13 th Aug. 2014
NAME AND THE FUNCTION OF THE PERSON APPROVING THE REPORT:	Dr. Brian Sheridan, Managing Partner, Odour Monitoring Ireland
REPORT NUMBER:	2014327
REVIEWERS:	Dr. Brian Sheridan

TABLE OF CONTENTS

Sectio	on	Page number
Docu Reco	E OF CONTENTS MENT AMENDMENT RECORD RD SHEET JTIVE SUMMARY	i ii iii iv
1.	Introduction	1
1.1.	Background to work	1
1.2.	Task completed during inspection	1
2.	Techniques used	2
2.1.	"Odour hog" monitoring within the landfill	2
2.2.	Meteorological conditions	2
3.2.	Current landfill gas collection infrastructure on the facility	3
3.	Results	4
3.1.	Volatile organic compound surface emissions locations identified within Ballaghveny Landfill	ו 4
3.2.	Close out meeting with landfill manager	7
3.2.	Close out meeting with landiii manager	,
4.	Conclusions	8
5.	References	8
6.	Appendix I-Volatile organic compound surface emission contour map & Cell capping outline map	s 9
7.	Appendix II-Calibration certificates and procedures	13

i

DOCUMENT AMENDMENT RECORD

Client: Tipperary County Council

<u>Title:</u> W0078-03-VOC/SurfaceEmissions/2014/1 Landfill Gas Surface emissions Survey at Ballaghveny Landfill, Ballymackey, Co. Tipperary.

Drojoet Number	. 2014227		Document	Reference:	W0078-03-
Project Number: 2014327			VOC/SurfaceEmissions/2014/1		
2014327(1)	Document for review	JWC	BAS	JWC	13/08/2014
Revision	Purpose/Description	Originated	Checked	Authorised	Date
		O D O U R monitoring			

Executive Summary

Tipperary County Council commissioned Odour Monitoring Ireland to perform a landfill gas surface emissions survey of Ballaghveny landfill facility (i.e. Waste licence number W0078-03) in order to ascertain any likely sources of landfill gas surface emissions from the operating landfill. Landfill gas surface emissions are the predominant source of odour emissions from landfills in Ireland. The survey was carried out on the 30th July 2014.

During the surface emissions survey, the following tasks were performed on site:

- 1. Identification the key mechanisms that lead to the release of landfill gas surface emissions from the site.
- 2. Identify geographically on a site map, the locations of landfill gas surface emissions in order to perform remediation of the identified surface emissions areas.

The following conclusions were drawn from survey:

- Three zones of surface emissions were identified within the landfill facility that exceeded recommended trigger levels. These zones are identified geographically on a site map contained in *Appendix I* of this report.
- There were 2 surface emissions zones greater than or equal to 500 ppm around identified features. There was 1 surface emissions zone greater than or equal to 100 ppm instantaneous reading on open surfaces within the landfill footprint.
- Seven zones of surface emissions were identified within the landfill facility that exceeded recommended trigger levels on the 21st Feb. 2013. There were 7 surface emissions zones greater than or equal to 500 ppm around identified features. There was 0 surface emissions zone greater than or equal to 100 ppm instantaneous reading on open surfaces within the landfill footprint.

1. Introduction

1.1. Background to work

Odour Monitoring Ireland was commissioned by Tipperary County Council to perform a specified independent Volatile organic compound surface emissions survey at Ballaghveny landfill facility. The assessment involved a Volatile organic compound (VOC) surface emissions survey of the landfill facility in order to ascertain the VOC emission points and mark them upon a map for remediation. This report presents a summary of the findings of a VOC surface emissions survey at Ballaghveny Landfill, Ballymackey, Co. Tipperary. The report is based on scientific measurements and observations made during a site visit conducted on the 30th July 2014.

1.2. Scope of work

The main aims of the survey included:

- Surface emissions monitoring in accordance with AG6 requirements.
- Discussion meeting with landfill manager once survey was complete in order to communicate main surface emissions areas for immediate remediation, where necessary.

2. Techniques used

This section describes the techniques used throughout the study. The surface emissions surveying and reporting was performed by Dr. John Casey, Odour Monitoring Ireland. Dr. John Casey has preformed surface emissions monitoring survey's on behalf of Odour Monitoring Ireland for regulatory bodies in Ireland and Northern Ireland, local authorities in Ireland, private waste operators in Ireland and borough councils in Northern Ireland. A full documented list of previous survey's is available upon request.

2.1. "Odour hog" monitoring within the landfill

The "Odour hog" (i.e. Version 2, 4 years old with less than 3.5 second response time for the FID) VOC analyser is a portable, intrinsically safe, survey VOC dual monitor, which provides fast and accurate readings of organic and inorganic vapours. A Photo ionisation detector (PID) uses an Ultraviolet (UV) light source (*photo*) to ionise a gas sample and detect its concentration. Ionisation occurs when a molecule absorbs the high energy UV light, ejecting a negatively charged electron and forming of positively charged molecular ion. The gas becomes electrically charged. These charged particles produce a current that is easily measured at the sensor electrodes. Only a small fraction of the VOC molecules are ionised. A PID does not respond to methane. A FID is similar to a flame thermocouple detector, but measures the ions from the flame instead of the heat generated. The FID detects the methane fraction, which provides greater sensitivity in terms of methane surface emissions detection but not necessarily odour hence why the PID data is also interpreted. The FID/PID analyser was calibrated with certified reference material isobutylene and methane before commencement of the survey, see calibration certificates for gases used in Appendix II. The calibration readings were rechecked in accordance with AG6 requirements.

Using the continuous kinematic "Odour hog" with integrated GPS (i.e Magellan Professional with sub centimetre accuracy post processed), the capping of the landfill was surveyed for potential surface emissions areas. Those areas identified were geo-referenced and highlighted for remediation. This technique is useful for comparison in surface emissions area within the same landfill facility on different survey's. The surface emissions maps generated for the particular facility can be used to assess the effectiveness of implemented mitigation techniques and to qualitatively assess the nature of surface emissions from the facility. All surface emissions surveying was carried out in accordance with "Surface VOC Emissions Monitoring on Landfill Facilities (AG6).

Efforts should be made to attain surface emissions <100 ppm from open surfaces and <500 ppm around features such as vertical wells, leachate collection sumps, leachate slope risers and other projections out of the waste body (Casey et al., 2008). These are minimum standards, which should lead to greater landfill collection efficiencies thus reducing the impact on the general environment.

2.2. Meteorological conditions

Table 2.1 illustrates the predominant wind direction during the monitoring exercise. The meteorological conditions were characterised for the day of monitoring and were as follows:

Table 2.1. Meteorological conditions during Ballaghveny landfill facility TVOC survey.

30 th Jul. 2014				
Average wind speed 3 m s ⁻¹	Wind direction SW			
Temperature 25°C	1025 mbar			
Dry weather	Capping moisture content low			

During the TVOC and gas field survey, wind deviated from an southerly direction. Capping moisture content was very low.

2.3 Current landfill gas collection infrastructure on the facility

There are a total of 26 vertical wells, 3 horizontal lines and 4 pumped / 4 gravity condensate knock out pots on the facility. Horizontal and Vertical landfill gas abstraction is employed in the facility. There is one operational installed landfill gas enclosed flare. The flare was in operation on the date of the survey. The facility is permanently capped see Figure 6.1.

3. Results

3.1. Volatile organic compound surface emissions locations identified within Ballaghveny landfill facility

Figure 6.2 and Table 3.1 illustrates the results obtained for the capping surface emissions survey. A total of 3 individual surface emissions zones were identified. Each surface emissions zone is discussed separately in this manner in order to allow for the development of remediation strategies to mitigate the individual surface emissions areas.

Document No. 2014327(ver.1)

Visit No: 01 Year: 2014 WL0078-03 Tipp County Council Ballaghveny Landfill Facility

Table 3.1. Capping VOC surface emissions locations results with source identities correlating with *Figure 6.2* (see Appendix I).

Location ID	Easting (m)	Northing (m)	Max VOC conc. (ppm)	Identification and Mitigation	Recommended trigger levels
B1	197049	182326	129	Discrete Location: Permanent Cap, Surface Area. Landfill gas leakage from area in the vicinity of the flank. Investigate and remediate the cause of the surface emissions.	<100ppm
B2	197034	182302	724	Discrete Feature: Permanent Cap, Gas Well LFG22. Landfill gas leakage from area in the vicinity of the vertical well. Investigate and remediate the cause of the surface emissions.	<500ppm
В3	197069	182261	1,085	Discrete Feature: Permanent Cap, Gas Well LFG20. Landfill gas leakage from area in the vicinity of the vertical well. Investigate and remediate the cause of the surface emissions.	<500ppm

www.odourireland.com 5

WL0078-03 Tipp County Council Ballaghveny Landfill Facility

Three sources of landfill gas surface emissions were identified (see Figures 6.2 and Table 3.1) within the landfill.

There were 2 surface emissions zones greater than or equal to 500 ppm around identified features. There was 1 surface emissions zone greater than or equal to 100 ppm instantaneous reading on open surfaces within the landfill footprint.

3.2. Close out meeting with landfill manager

Following completion of the surface emissions survey, the surface emissions team and the landfill management discussed all aspects and general conclusions of the survey. The landfill management was informed of the potential areas of surface emissions.

4. Conclusions

The following conclusions were drawn from the survey of Ballaghveny landfill facility:

- The surface emissions contour map generated from the kinematic Volatile organic compound (VOC) survey illustrated surface areas of landfill gas surface emissions.
- There were 2 surface emissions zones greater than or equal to 500 ppm around identified features. There was 1 surface emissions zone greater than or equal to 100 ppm instantaneous reading on open surfaces within the landfill footprint.


5. References

 Casey, J.W., Sheridan, B.A., Henry, M., Reynolds, K., (2008). Effective tools for managing odours from landfill facilities. International Conference on Environmental Odour Monitoring and Control, Rome, Italy, July 6-8, 2008.

www.odourireland.com

6. Appendix I- Volatile organic compound surface emissions contour map & Cell capping outline & LFG infrastructure map

Figure 6.1. Cell capping outline & LFG infrastructure on the facility.

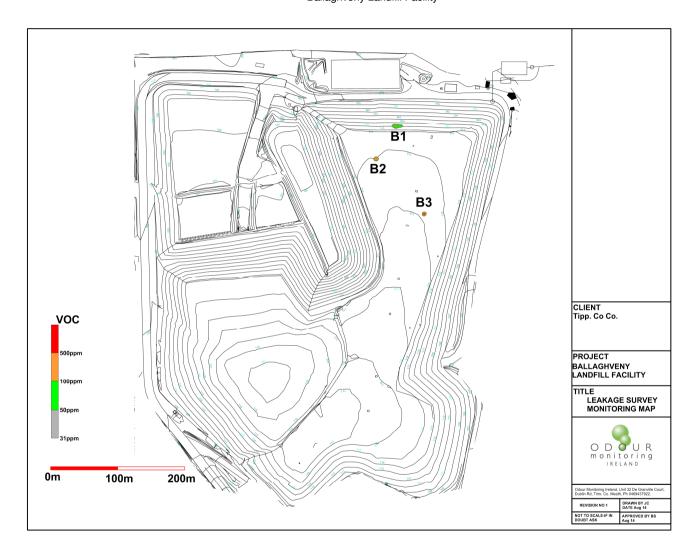
0m

200m

100m

O D O U R monitoring

Odour Monitoring Ireland, Unit 32 De Granville Court Dublin Rd, Trim, Co. Meath, Ph 0469437922.


WL0078-03 Tipp County Council Ballaghveny Landfill Facility

Document No. 2014327(ver.1) Visit No: 01 Year: 2014

Figure 6.2. Landfill gas surface emissions monitoring within the operating landfill facility (colour scale area indicating TVOC gas colour scale).

10

Visit No: 01 Year: 2014

www.odourireland.com 11

7. Appendix II-Calibration certificates and procedures.

7.1 Span & Calibration procedure

Necessary Calibration gases: Zero gas (0ppm), 100ppm and 500ppm methane (Calibration certificates below).

Calibration is carried out in accordance with manufacturers guidelines.

Location: Zero span instrument onsite.

Frequency: Before, midway through, and after the surface emissions survey, typically therefore at 3-4 hour intervals. If the survey only last 2 to 3 hours the instrument is checked before and after the event.

Instrument settling: The FID is switched on and left to settle for a period of 30 minutes minimum.

Span Procedure: The zero and span gases shall be introduced under the same flow and pressure conditions using the sample probe at the end of the sample line. The adjustment procedure shall be as follows:

- a) Feed the zero gas (0ppm) into the FID and set the zero;
- b) Feed the span gas (100ppm) and adjust the instrument accordingly;
- c) Feed the zero gas into the FID once more and check that the reading returns to zero; if not repeat steps a) to c).
- d) repeat procedure A to C to verify

Equipment is maintained and operated as specified by the manufacturer.

WL0078-03 Tipp County Council Ballaghveny Landfill Facility

Scientific & Technical Gases Ltd

Certificate of Composition 29485-6-2

Order No E-MAIL Cylinder No Customer ODOUR MONITORING I

Cylinder Valve C10 Our Ref 29485 Cylinder Size 112DA Nett Wt

(Kg) 0.12 Gross Wt (Kg) 1.2

Component Requested Value Certified Value

METHANE 500PPM 500PPM AIR (ZERO GRADE) BALANCE BALANCE

Pressure 1000PSI Volume 112LTR Valid Until February 2015

Please note all units are in MOL% and accuracy is +/-2%. Relative mixtures traceable to standards calibrated at the National Physics Labratory, Teddington, Middlesex, England

Certified by S. Banks UN NO 1956 Date 10/02/2013

WL0078-03 Tipp County Council Ballaghveny Landfill Facility

Scientific & Technical Gases Ltd

Certificate of Composition 29485-1-2

Order No E-MAIL Cylinder No Customer ODOUR MONITORING I Cylinder Valve C10 Our Ref 29485 Cylinder Size 112DA Nett Wt (Kg) 0.12 Gross Wt (Kg) 1.2

Component Requested Value Certified Value AIR ZERO GRADE ZERO GRADE

Pressure 1000PSI Volume 1000PSI Valid Until February 2015

Please note all units are in MOL% and accuracy is +/-2%. Relative mixtures traceable to standards calibrated at the National Physics Labratory, Teddington, Middlesex, England

Certified by S. Banks UN NO 1002 Date 10/02/2013

WL0078-03 Tipp County Council Ballaghveny Landfill Facility

Scientific & Technical Gases Ltd

Certificate of Composition 29485-5-8

Order No E-MAIL Cylinder No Customer ODOUR MONITORING I
Cylinder Valve C10 Our Ref 29485 Cylinder Size 112DA Nett Wt
(Kg) 0.12 Gross Wt (Kg) 1.2

Component Requested Value Certified Value

METHANE 100PPM 100PPM AIR (ZERO GRADE) BALANCE BALANCE

Pressure 1000PSI Volume 112LTR Valid Until February 2015

Please note all units are in MOL% and accuracy is +/-2%. Relative mixtures traceable to standards calibrated at the National Physics Labratory, Teddington, Middlesex, England

Certified by S. Banks UN NO 1956 Date 10/02/2013

APPENDIX 7

													181
	Arthus area Rainfall		u	П	Effective	Active area	Restored Phase No.	Liquid	Restored area	Infiltration to restored area	Restored area infiltration	Annual Leachate	Cumulative leachate
	Acuve area i		Ī,	(mm)	(mm)	(m ₃)		(m ₃)	(m ²)	(%)	(m ₃)	(m ₃)	(m ₃)
A 7 0 0 10 W	50 459	804	7		0 804		40.569 3.4.5						
-1 -	40 468	804	0				3,4,5 (50% 6,7,8)	0					
0,1,0) 3,10,88	30,426	804	0				24,503 3,4,5,6,7,8	0				5 29,818	
9,10,W	30.476	804	0		804		3,4,5,6,7,8,	0					
9 10 (50%)	19.738	804	0		0 804		15,869 3,4,5,6,7,8, W	0	55,417				
10 (50%)	4 056	804	0				3,261 3,4,5,6,7,8,9, W	0					
2(30/8)	C	804	0				0 3,4,5,6,7,8,9,10 (50%), W	0					
2000		804	0				0 3,4,5,6,7,8,9,10 (50%), W	0					
9000		804					0 3,4,5,6,7,8,9,10 (50%), W	0		20			
D 0		804	0				0 3.4.5.6.7.8.9.10 (50%), W	0					
none		808					0 3.4.5.6.7.8.9.10 (50%), W	0	59,473		9,563		
HOUR		208					0 3 4 5 6.7.8.9.10 (50%). W	0					
ale Sign		100	0				0 3 4 5 6 7 8 9 10 (50%). W	0			9,563	3 9,563	
none		804	0				013.4.5.6.7.8.9.10 (50%). W	0					
riorie		100					0 3 4 5 6 7 8 9 10 (50%) W	0			9,563		318,715
none		804						0	59,473	3	9,563	9,563	
riore	5 0	804					0 3.4.5.6.7.8.9.10 (50%). W						
HOUSE		804					0 3.4.5.6.7.8.9.10 (50%), W	0					347,404
one.		808	0				0 3.4.5.6.7.8.9.10 (50%). W	0					
none		804	0				0 3.4.5.6.7.8.9.10 (50%). W		59,473			3 9,563	
none		100						ľ					376,094
none		100											385,657
lone		808					0 3 4 5 6 7 8 9 10 (50%). W				9,563	3 9,563	395,221
Hone		100	0								9,563	3 9,563	404,784
DOI G		804	0									6	
200		804	0				0 3.4.5.6.7.8.9.10 (50%). W		59,473		9,563	3 9,563	423,910
Pond	0	804	0					0		3 20	6	6	
0000	-	BO4	C						59,473		6	3 9,563	
none	0	804	0			14	0 3,4,5,6,7,8,9,10 (50%), W		59,473			3 9,563	452,600
							Cell Areas (measured in plan)	2					
	804	mm					Cell 3,4,5	13,070 m ²	m ²				
							Cells 6,7,8	19,983 m²	m²				
e calculat	The above Water Balance calculation has been updated to take account of the temporary closure	pdated to take	accour	it of the temp	orary closure		Cell 9	15,682 m ²	m ²				
ary 2011 a	of the landfill in February 2011 and assumes no filling of waste after this date. Should a landfilling	filling of was	te after t	hls date. Sho	ould a landfillin	5	Cell 10	8,112 m ²	· m²				
nce this w	programme recommence, this water balance calculation will be updated accordingly	Icujation will	be upda	ted accordin	qlv		Cell 11	6,849 m²	· m ₂				
î							Modes Area (M)	6 600 002	2				

APPENDIX 8

Curtin Pest Control Ballysimon Road, Limerick

Olga Doyle Facility Manager Ballaghveney Landfill Site. 8th September 2014

Olga,

The following is a progress report on the Pest Management Plan at Ballaghveney Landfill facility for the previous twelve months.

The service agreement provides for:

- Eight rodent control service visits per year at regular intervals the facility and three adjoining properties.
- Any emergency calls to be responded to on the day at no extra charge.
- Each service visit to be documented in a service report folder, which will also contain a computer generated plan of all bait points and material safety data sheets for each product used.
- A signed copy of each service report and an annual report on the performance of the pest management plan.

The products used to control rodent activity are "Sakarat" a warfarin based anticoagulant rodenticide used in external tamper resistant bait stations and "Klerat" a brodificoum based anticoagulant in tamper resistant bait stations used only in the main office.

Annual update:

Since the closure and sealing of the landfill in 2012, there has been a general decline in the levels of rodent activity experienced in previous years.

Fly activity has generally declined except when the weather is particularly warm, the sealing of the landfill and strategic treatment sprays have also significantly helped control high levels of this activity.

There was a slight increase in mouse activity in the compound area and two of the adjoining properties towards the end of 2013 and this was dealt with by increasing the amount of bait and carrying out follow up servicing until control was maintained. We have again this year installed new replacement external tamper resistant bait stations. Two at the covered landfill area and one at the lagoon area where there had bait stations had been accidently damaged.

Low levels of rat activity were also evident on occasion at the lagoon area and on the adjoining properties but were effectively controlled by increasing and refreshing rodent bait.

Rodent activity continues to be controlled by the regular servicing and the service reports show that where activity occurs, it is dealt with before an infestation develops and is quickly controlled.

The pest management plan at this facility is working well and the effective cooperation between site staff and pest control technicians ensure this.

Qualifications:

Curtin Pest Control is a founder member of the Irish Pest Control Association and each technician holds an IPCA diploma.

We hold a Diploma in Environmental Pest Management from UCC..

We also offer a presentation to staff on practical pest management precautions. If you have any further queries please contact me at 061 419901 or 087 6484119 or email curtinpestcontrol@gmail.com

John Roche Managing Director, Sean Curtin Pest Control Ltd.