Granary House Rutland Street Cork

Tel. [0 2 1] 4 3 2 1 5 2 1 Fax. [0 2 1] 4 3 2 1 5 2 2

ANNUAL ENVIRONMENTAL REPORT

FOR

KILCULLEN LANDFILL LIMITED

LICENCE NO. W0081-04

JANUARY – DECEMBER 2013

Prepared For: -

Kilcullen Landfill Ltd, Brownstown, Kilcullen, Co Kildare.

.

Prepared By: -

O' Callaghan Moran & Associates, Granary House, Rutland Street, Cork.

13th June 2014

email. info@ocallaghanmoran.com Website: www.ocallaghanmoran.com

Project	Annual Environmental Report 2013			
Client	Kilcullen Landfill Limited W0081-04			
Report No	Date	Status	Prepared By	Reviewed By
2110301	09/05/2014	Draft	Barry Sexton MSc	Jim O'Callaghan MSc
2110301	13/06/2014	Draft	Barry Sexton MSc	Jim O'Callaghan MSc
2110301	13/06/2014	Final	Barry Sexton MSc	Jim O'Callaghan MSc

TABLE OF CONTENTS

PAGE

1.	INTRODUCTION	1
2.	SITE DESCRIPTION	2
2 2 2 2 2 2	 SITE LOCATION & LAYOUT	2 3 3 3 4
3.	ENVIRONMENTAL MONITORING	5
3 3 3 3 3 3 3	.1 GROUNDWATER MONITORING. 3.1.1 Groundwater Levels 3.1.2 Groundwater Quality .2 SURFACE WATER MONITORING 3.2.1 Visual Assessment 3.2.2 Chemical Assessment .3 LEACHATE 3.3.1 Leachate level results during 2013 .3.2.2 Chemical Analysis .3 Leachate level results during 2013 .3.3.1 Leachate level results during 2013 .3.3.2 Chemical Analysis .4 LANDFILL GAS (LFG) .5 NOISE SURVEYS .6 DUST MONITORING .7 FUGITIVE GAS EMISSIONS REPORT 2013 .3.7.1 Locations and Methods .8 METEOROLOGICAL MONITORING	<i>5 5 6 6 6 7 7 7 7 8 8 8 8</i>
4.	SITE DEVELOPMENT WORKS 1	
4	.1 SUMMARY OF RESOURCE & ENERGY CONSUMPTION	2
5 5 0	EMISSIONS 1 .1 LEACHATE 1 .2 LANDFILL GAS 1 .3 ESTIMATED ANNUAL AND CUMULATIVE QUANTITY OF INDIRECT EMISSIONS TO 1 .3 ENDINE 1 .4 SURFACE WATER 1	3 3 3
6.	NUISANCE CONTROL1	5
6	.1 VERMIN CONTROL	5
7.	ENVIRONMENTAL INCIDENTS AND COMPLAINTS 1	6
	.1 INCIDENTS	

8. EN	VIRONMENTAL MANAGEMENT SYSTEM	17
8.1	MANAGEMENT STRUCTURE	17
8.1.	1 Site Management Structure	17
8.1.	2 Responsibilities	17
8.2	EMP	17
8.2.	1 Schedule of Objectives 2013	18
8.2.	2 Schedule of Objectives 2014	27
9. OT	HER REPORTS	30
9.1	FINANCIAL PROVISION	30
9.2	LANDSCAPE PROGRAMME	30
9.3	EUROPEAN POLLUTANT RELEASE AND TRANSFER REGISTER	30
9.4	TANK, DRUM, PIPELINE AND BUND TESTING AND INSPECTION REPORT	30

LIST OF APPENDICES

APPENDIX 1	-	Topographic Survey with Monitoring Locations
APPENDIX 2	-	Monitoring Results Summary 2013
APPENDIX 3	-	European Pollutant Release and Transfer Register

1. INTRODUCTION

This is the 2013 Annual Environmental Report (AER) for the Kilcullen Landfill Limited nonhazardous residual landfill at Brownstown, Kilcullen, County Kildare. It covers the period from the 1st January 2013 to the 31st December 2013.

In March 2014 the Waste Licence was transferred from KTK Landfill Ltd to Kilcullen Landfill Ltd (KLL).

The content is based on Schedule F of the Waste Licence (Reg. No. W0081-04) and the report format follows guidelines set in the "Guidance Note for Annual Environmental Report" issued by the Environmental Protection Agency (Agency)¹. Account is also taken of the AER Draft Guidance Document and AER Information Templates issued by the Agency in January 2013^2 .

¹ EPA (Environmental Protection Agency) 1999 Waste Licensing – Draft Guidance on Environmental Management Systems and Reporting to the Agency

² EPA (Environmental Protection Agency) 2012 Draft AER Guidance Document

2. SITE DESCRIPTION

2.1 Site Location & Layout

The site is located in the Townland of Brownstown approximately 2km to the north east of Kilcullen Town.

The site layout is shown on the topographical survey drawing included in Appendix 1 and includes: -

- Administration Block (offices, stores, canteen, toilets and showers);
- Weighbridges (2 No.);
- Wheel Wash;(De commissioned)
- Capped Landfill Cells
- Security Fencing.
- Landscaped Areas
- Landfill gas utilisation compounds

2.2 Site History

KLL operates the Kilcullen Landfill under Waste Licence Register Number W0081-04. KTK Landfill was granted a Waste Licence (W0081-01) by the Environmental Protection Agency (EPA) in April 1999. In July 2001, KTK Landfill submitted an application for a Review of Waste Licence W0081-01. An amended Licence, No. W0081-02 was granted by the Agency on 8 April 2002. In November 2004 an application for revision of Waste Licence W0081-02 was submitted. An amended Licence, No. W0081-03 was granted on 16 February 2006. This licence was replaced on the 25th of July 2011 by waste Licence W0081-04 In March 2014 the Waste Licence was transferred from KTK Landfill Ltd to Kilcullen Landfill Ltd.

Acceptance of waste material ceased in December 2011. The site entered its closure, restoration and aftercare phase in 2011. During 2012, the final capping works were brought to practical completion and the facility is now managed in an aftercare capacity, while some top soiling and grass seeding remain along with other decommissioning works to be progressed over a phased bases. A detailed site map showing all monitoring locations at the site is presented in Drawing KTK/602, Rev E1, Site Layout plan showing monitoring locations (Appendix 1).

2.3 Waste Activities Carried Out at the Facility

The facility is a full containment landfill, which is designed to accept treated waste for final disposal. The licensed waste activities are summarised in Tables 2.1 and 2.2. The landfill is now closed and fully capped. No waste was accepted on site in 2013.

the waste Management Act 1990 as amenucu	
Class 1	Deposit on, in or under land (including
	landfill).
Class 5	Specially engineered landfill, including
	placement into lined discrete cells, which are
	capped and isolated from one another and the
	environment.
Class 11	Blending or mixture prior to submission to any
	activity referred to in a preceding paragraph of
	this Schedule.
Class 13	Storage prior to submission to any activity
	referred to in a preceding paragraph of this
	Schedule, other than temporary storage,
	pending collection, on the premises where the
	waste concerned is produced.

Table 2.1Licensed Waste Disposal Activities, in accordance with the Third Schedule of
the Waste Management Act 1996 as amended

Table 2.2Licensed Waste Recovery Activities, in accordance with the Fourth Scheduleof the Waste Management Act 1996 as amended

of the Waster Management Het 1990 as amended	
Class 3	Recycling or reclamation of metals and metal
	compounds.
Class 4	Recycling or reclamation of other inorganic
	materials.
Class 9	Storage of waste intended for submission to
	any activity referred to in a preceding
	paragraph of this Schedule, other than
	temporary storage, pending collection, on the
	premises where such waste is produced.

2.4 Waste Received & Consigned

As the site ceased waste acceptance in December 2011 there was no waste received at the facility in 2013.

2.5 Report on Development and Restoration at the Site

There were no development or restoration works undertaken on site in 2013.

2.6 Progress and Implementation of Landscaping Programme

There was no additional tree planting at the facility during the reporting period. There was maintenance carried out on all existing tress planted, in terms of weeding and hedge cutting. Grass was also maintained both on the capped area, entrance and office surrounds.

2.7 **Programme for Public Information**

Kilcullen Landfill pursues an active programme of disseminating information on its operations to interested parties. Kilcullen Landfill's community development fund made significant donations to a number of local groups during the operation of the active landfill and in 2012 the fund ceased dispensing monies as the facility ceased waste acceptance in 2011.

A comprehensive public information programme developed in April 2000 continues to be used however in a scaled down version as the site is now non-operational. The communications programme contains 8 specific objectives:

- To promote public awareness of the Company's activities and environmental policies;
- To maintain an ongoing dialogue with authorities that have direct involvement with waste disposal activities;
- To make available Environmental Performance Data relating to Kilcullen Landfill;
- To disseminate information relating to the operation and management of the site as appropriate;
- To encourage liaison between Kilcullen Landfill, and local residents and those who may be affected by the sites operations;
- To provide general information on Waste Management Issues;
- To ensure all users and customers of the site are conversant with the requirements of the Site Licence; and
- To ensure that all objectives are, where possible, measurable and quantifiable.

The objectives of the programme are met through the following elements as appropriate:

- Personal Contact;
- Residents Meetings/Liaison Groups;
- Information Displays;
- Site Visits;
- Published Information.

3. ENVIRONMENTAL MONITORING

Kilcullen Landfill implements a comprehensive environmental monitoring programme to assess the significance of emissions from site activities. The programme includes groundwater, surface water, leachate, landfill gas, noise, dust. The monitoring locations are shown in Appendix 1.

The monitoring results, including the full laboratory reports, were submitted to the Agency at quarterly intervals in the reporting period. This section presents a summary of the monitoring. A summary of all monitoring data for 2013 is included in Appendix 2.

3.1 Groundwater Monitoring

3.1.1 Groundwater Levels

Groundwater levels were monitored on a monthly basis in accordance with Schedule C of Waste Licence Register No. W0081-04. Due to a slight disruption to the routine monitoring groundwater levels were not recorded in January, February, April or May. The results of groundwater level monitoring were submitted to the Agency in the quarterly groundwater reports. The groundwater movement is from north to south across the site.

3.1.2 Groundwater Quality

During 2013, two (2 No.) private groundwater well samples were collected and analysed. This sampling event took place in December 2013. The results of the analysis were reported in the Q-4 quarterly report. All residents received copies of the results from their respective wells. With the exception of Total and Faecal coliforms at Pri 1 EC and very low Total Coliforms at Pri 2 CK the other parameters were all lower that the IGV or GTV. Groundwater quality in the private wells was good and consistent with previous rounds.

Groundwater quality was monitored in the on-site monitoring wells and reported to the Agency at quarterly intervals. The sampling was carried out in accordance with internationally accepted techniques and control procedures and the analyses were completed by a laboratory using standard and internationally accepted procedures.

The groundwater analysis is compared to the licence specific trigger levels as well as the Interim Guideline Values (IGVs) for groundwater published by the Agency and the

Groundwater Regulations Threshold Value (GTV) which were introduced in 2010 (S.I. 9 of 2010).

The IGV represent typical background or unpolluted conditions; however levels higher than the IGV may occur naturally depending on the local geological and hydrogeological conditions. While the GTV's are more appropriate for large scale abstraction wells used for potable supply, they can be used to assess the significance of contamination where present in non-potable groundwater supplies. Because GTVs have not been established for all of the parameters monitored, the relevant IGV was used for comparative purposes.

The results from the onsite monitoring wells are consistent with previous results. The groundwater quality at the facility is influenced by an ongoing groundwater contamination plume emanating from the adjacent partially lined Silliot Hill landfill.

The quality of the water in both private wells is generally good and shows no impacts associated with the landfill facility. The slightly elevated total and faecal coliforms at Pri 1 EC are not unexpected, given the likelihood of surface water infiltration to the well. Pri EC 1 is not in use.

3.2 Surface Water Monitoring

Surface water monitoring was conducted at the facility in accordance with Schedule C.3 of Waste Licence Register No. W0081-04. Monitoring of surface water at the facility comprised of weekly visual inspections and quarterly sampling and analyses, which are discussed in more detail below.

3.2.1 Visual Assessment

Kilcullen Landfill carries out weekly inspections of the surface water drainage system. The inspections did not identify the presence of any impact on the drainage system associated with site activities.

3.2.2 Chemical Assessment

The surface water monitoring was conducted quarterly at the four monitoring locations specified in the Licence and reported to the Agency on a quarterly basis. The sampling was carried out in accordance with internationally accepted techniques and control procedures, the analyses were completed by a laboratory using standard and internationally accepted procedures. The 2013 results are generally consistent with previous years of monitoring.

3.3 Leachate

3.3.1 Leachate level results during 2013

Leachate levels have been reported to the Agency in each of the monitoring reports from Quarter 1 to Quarter 4 of 2013. Records from leachate level monitoring conducted at the facility during the reporting period have been reported to the Agency in the quarterly reports; all exceedances of the 1 meter level limit were reported to the Agency at the time of occurrence. A full summary of the leached levels is presented in Appendix 2.

3.3.2 Chemical Analysis

The monitoring programme involves the collection and testing of leachate samples from the collection sumps and the storage tank . The results for 2013 are generally consistent with the previous year's results.

Kilcullen Landfill operates two reverse osmosis treatment plants on site which treats landfill leachate before discharging it to the sewer system. Treated leachate from the reverse osmosis plants is referred to as permeate and the discharge of treated effluent (permeate) limit for Kilcullen Landfill is 150m3/day. Concentrate from the reverse osmosis units is re-circulated within the waste mass, as per the agreement with the Agency. This is a common practice in Europe when reverse osmosis units operate on landfills.

Kilcullen Landfill have also supplied chemical results from the reverse osmosis plants at the site detailing analysis of reverse osmosis leachate input, permeate output and concentrate output. These results are included in Appendix D of the Quarterly Reports 2013 (Q1 to Q4) along with graphical representations of levels of NH4, BOD and COD. A Summary of permeate results for RO 1 and OR 2 are presented in Appendix 2.

3.4 Landfill Gas (LFG)

Landfill Gas Monitoring was conducted at 14 monitoring well locations on a monthly basis during the 2013 reporting period. Kilcullen Landfill staff conducted the landfill gas monitoring. Collated landfill gas emission summary reports were included in the subsequent quarterly monitoring reports for 2013. Category 3 non-urgent incident reports were also forwarded to the Agency not later than 24 hours after a landfill gas emission level value was breeched.

Potential Landfill Gas is monitored at the facility offices and buildings by an on site continuous monitoring system. No measured landfill gas level in any of the facility buildings exceeded the above limits during 2013.

3.5 Noise Surveys

Noise surveys were conducted on four occasions at the locations specified in Table D.1.1 of the Waste Licence. The surveys were carried out in accordance with International Standards Organisation 1996: Acoustics-description and Measurement of Environmental Noise (Parts 1, 2 and 3).

The results at the noise sensitive locations indicate that noise from the site complied with the licence limits.

3.6 Dust Monitoring

Dust monitoring was conducted at six locations on three occasions during the 2013 reporting period as specified in Schedule C.3 of the waste licence. The dust deposition limit of 350 mg/m²/day was exceeded in June 2013 at Jar 5 and in August 2013 at Jar 1. The levels detected were 454.88mg/m²/day in June 2013 and 776mg/m²/day in August 2013. Incident reports were submitted to the Agency following the exceedances. All of the remaining 2013 monitoring results were less than the deposition limit set in the Licence ($350 \text{ mg/m}^2/\text{day}$) and dust is not an issue at the facility.

3.7 Fugitive Gas Emissions Report 2013

3.7.1 Locations and Methods

The licence stipulates that monitoring of any emissions to air is carried out at the enclosed gas Flare No. 1 (HAASE 2500) and No. 2 (HAASE 1500) and at the gas Utilisation Plant Engines GE01, GE02 and GE03 at Kilcullen Landfill. Odour Monitoring Ireland Ltd undertook this monitoring on two occasions, on the 5th June 2013 and 12 December 2012. These reports were submitted to the Agency throughout 2013.

Table 3.1	Emission value results from la	andfill gas flare No. 1 June 2013	(2,500 HAASE)
-----------	--------------------------------	-----------------------------------	---------------

Parameter	Normalised Concentration (mgN/m ³)	Emission Limit Value (mgN/m ³)
-----------	--	---

Nitrogen oxides (NO _x)	99.35	150
Sulphur dioxide (SO _x)	189.42	-

Parameter	Normalised Concentration (mgN/m ³)	Emission Limit Value (mgN/m ³)
Nitrogen oxides (NO _x)	373.88	500
Carbon Monoxide (CO)	813.09	1,400
TNMVOCs	13.14	75
Sulphur dioxide (SO _x)	548.18	-

Table 3.2Emission value results from gas utilisation engine GE01 June 2013

Table 3.3	Emission value results f	rom gas utilisation	engine GE02 June 2013
-----------	--------------------------	---------------------	-----------------------

Parameter	Normalised Concentration (mgN/m ³)	Emission Limit Value (mgN/m ³)
Nitrogen oxides (NO _x)	391.88	500
Carbon Monoxide (CO)	793.16	1,400
TNMVOCs	5.55	75
Sulphur dioxide (SO _x)	602.95	-

Table 3.4Emission value results from gas utilisation engine GE03 June 2013

Parameter	Normalised Concentration (mgN/m ³)	Emission Limit Value (mgN/m ³)
Nitrogen oxides (NO _x)	450	500
Carbon Monoxide (CO)	727.20	1,400
TNMVOCs	15.20	75
Sulphur dioxide (SO _x)	682.23	-

Table 3.5Emission value results from landfill gas flare No. 1 Oct 2013 (2,500 HAASE)

Parameter	Normalised	Emission Limit Value
	Concentration	(mgN/m^3)

	(mgN/m^3)	
Nitrogen oxides (NO _x)	44.12	150
Sulphur dioxide (SO _x)	191.90	-

Parameter	Normalised Concentration (mgN/m ³)	Emission Limit Value (mgN/m ³)
Nitrogen oxides (NO _x)	393.15	500
Carbon Monoxide (CO)	967.24	1,400
TNMVOCs	6.07	75
Sulphur dioxide (SO _x)	625.78	-

Table 3.7Emission value results from gas utilisation engine GE03 Oct 2013

Parameter	Normalised Concentration (mgN/m ³)	Emission Limit Value (mgN/m ³)
Nitrogen oxides (NO _x)	397.97	500
Carbon Monoxide (CO)	953.02	1,400
TNMVOCs	8.89	75
Sulphur dioxide (SO _x)	651.96	-

3.8 Meteorological Monitoring

Rainfall data for 2013 was collected from the synoptic stations at Casement Aerodrome Table 3.1 below details summary monthly data for 2013.

Table 3.1	Rainfall Data: Casement Aerodrome – 20	13
10010 011		

Year	2013
January	69.5

February	45.2	
March	63.3	
April	47.5	
May	52.8	
June	43.2	
July	42.7	
August	62.9	
September	35.1	
October	100.4	
November	21.2	
December	104.7	
Annual	688.5	

4. SITE DEVELOPMENT WORKS

4.1 Summary of Resource & Energy Consumption

The principal energy resources consumed at the site are electricity, water for potable supply, site cleaning and dust suppression, diesel fuel and hydraulic oils. All site vehicles are fuelled by diesel. Table 4.1 presents an estimate of the resources used on-site in 2013 and 2012 for comparison.

Resource	Units	Total Consumption in 2012	Total Consumption in 2013
Electricity	kWh	355,228	272392
Water, potable supply	Litres	140	135
Water mains	Litres	6,850	899
Diesel	Litres	3,317	1,500
Hydraulic Oils	Litres	100	100
Grease	Litres	1	1

Table 4.1	Resources	Used	On-Site
-----------	-----------	------	---------

Kilcullen Landfill gas utilisation plant exported 15,350,000 kWhr of electricity to the national grid during 2013. This is down approximately 30% on 2012 exported energy of 21,713,800kWhr. The main materials recovered at the facility during the reporting period were soil and topsoil. The details are listed in Table 4.2 below.

Table 4.2Material Recovery and Electricity Production 2013

Resource	Units	Total in 2012	Total in 2013
Electricity	kWh	21,713,800	
Waste lubricating oil recovered from landfill gas utilisation engines	Litres	34,000	19,300
Soil and topsoil recovered for final capping	Tonnes	39,578.18	

4.2 Proposed Site Development Works 2014

The facility is closed and not accepting waste. There are no site development works planned for 2014, with the exception of completing the final capping works with the placement of topsoil and grass seeding.

5. EMISSIONS

5.1 Leachate

Kilcullen Landfill operates two reverse osmosis treatment plants on site to treat leachate from the landfill. Kilcullen Landfill discharged treated leachate (permeate) from the reverse osmosis treatment plants directly to sewer. The volume details for 2013 are listed in Table 5.1 below.

Туре	Units	Volume
Permeate to Sewer	m ³	10,978

The entire landfill area is fully capped and lined with a HDPE geomembrane. This means that there is no infiltration of rainfall through the wastes body. The only leachate which is generated within the waste body is residual leachate which is resultant from the breakdown of the waste material within the sealed landfill.

5.2 Landfill Gas

Two enclosed landfill gas flares were installed on site in October 2005. Flare 1 has a capacity of 2,500 m³/hour, flare 2 a capacity of 1,500 m³/hour. Flare 2 a back up flare did not run in 2013. Flare 1 flared a total of 694,341m³ in 2013.

There are three landfill Gas Engines on site. Engine 1 extracted 1,852,420m³, engine 2 extracted 153,358m³ and engine 3 extracted 1,540,914m³ in 2013.

5.3 Estimated Annual and Cumulative Quantity of Indirect Emissions to Groundwater

The potential sources of indirect emissions into groundwater are:

• Landfill Base

The landfill site has a composite base lining system comprising a HDPE geomembrane and one metre thick layer of compacted clay. A leak location survey of the HDPE geomembrane

after placement of the drainage stone layer was completed and defects to the HDPE liner were repaired in accordance with industry standards.

• Surface Water Collection and Treatment System

Surface water from the paved access road and service platform is collected and discharged into a water infiltration area. However, prior to final discharge into the ground, surface water is conveyed to a concrete silt settlement tank and a Class 1 Klargester surface water bypass separator. The quality of the surface water discharge downstream of the separator is measured quarterly at the monitoring manhole identified as SW7.

• Treated Sewage Effluent

There is one BioCycle waste water treatment unit on the site which treats the canteen and office waste water prior to discharge into a percolation area.

In summary as the landfill is fully contained there will be minimal to nil indirect emissions to ground water.

5.4 Surface Water

Rainfall run-off from the capped areas is collected by a series of swale drains and discharges to peculation areas or surface water discharge points .Rainfall on the roads and paned areas is directed to the silt settlement tank before discharge. Rainfall on the leachate treatment area is contained in the bunded area and pumped into the landfill before treatment by revenge osmosis.

6. NUISANCE CONTROL

KLL is committed to operating Kilcullen Landfill in the best possible manner using best available techniques to minimise impacts to the environment and local residential neighbours. KLL welcomes communications from local residents and any interested parties and all reasonable and practical measures will be implemented to eliminate or minimise any issues or nuisances. All nuisance control measures continue to be implemented so as to ensure licence compliance.

6.1 Vermin Control

Site personnel regularly checked for evidence of vermin on-site during regular routine inspections. A qualified contractor was employed throughout the duration of the reporting period in order to control potential nuisance caused by rodents. Continuous baiting was carried out by this contractor and adjusted as necessary to prevent any infestation of vermin. Since the closure of the site the requirement for bird control has ceased.

7. ENVIRONMENTAL INCIDENTS AND COMPLAINTS

7.1 Incidents

In total there were twenty three (23 No.) reportable incidents on site in the reporting period. These were reported to the agency as soon as the licensee was notified and did not cause any environmental impacts. Twelve (12 No.) incident were in relation to breaches of landfill gas carbon dioxide trigger levels, nine (9 No.) in relation to breaches of leachate levels in sumps and two (2 No.) were related to breaches of the dust deposition limit.

7.2 **Register of Complaints**

One odour complaint was received in the reporting period. Site management met with the complainant, identified and resolved the issue to the satisfaction of the complaint.

8. ENVIRONMENTAL MANAGEMENT SYSTEM

8.1 Management Structure

The Management Structure as required by Condition 2.1.1 of the waste licence the licensee employs a suitably qualified and experienced facility. A summary of the management structure is presented below.

8.1.1 Site Management Structure

The day to day management of the facility and supervision of waste activities are the responsibility of Kilcullen landfill LTD the facility Manager, nominated Deputy Manager(s) and the site operatives. The positions and names of the persons who provide management and supervision are set out below: -

- Managing Director, Geoff Bailey
- Landfill Manager, Tomas Fingleton
- Assistant Landfill Manager, Thomas Finnegan
- Site Caretaker, Dominic Talbot

8.1.2 Responsibilities

Tomas Fingleton is the facility manager and he attends the Kilcullen site on a regular and as needs basis. Thomas Finnegan is also Assistant Facility Manager Knockharley landfill and continues to attend the site to conduct site monitoring and other environmental and licence compliance related functions. Dominic Talbot is the site caretaker and attends the site daily.

8.2 EMP

Kilcullen Landfill implemented an Integrated Management System (IMS) in accordance with the requirements of Occupational Health and Safety Assessment Series (OHSAS) 18001:2007 and International Standard Organisation (ISO) 14001:2004 in order to manage the Health, Safety and Environmental performance of their business and to control health and safety risk and to minimise their environmental aspects and impacts.

The IMS has been developed for the achievement of continual improvement taking into the requirements of the Waste Licence Conditions. Kilcullen Landfill has prepared and effectively implemented documented procedures and instructions in accordance with the requirements of both the OHSAS 18001:2007 and ISO 14001:2004.As the site is closed and in its aftercare phase Kill has not pursued re-certification at this time, but continues to maintain the system in place.

The schedule of Objectives and Targets, including their status for 2012 (Table 8.1), as well as the proposed Objectives and Targets for 2014 (Table 8.2) are presented below.

8.2.1 Schedule of Objectives 2013

Table 8.1 describes the implementation of the objectives and targets in the reporting period.

Ref. No.	Objective	Ref. No.	Target	ENV Aspect	Resources Required	Person Responsible	Time Frame for Completion	Progress as of End of 2012.
O - 1	O - 1 Lower the environmental impacts associated with fugitive landfill gas emissions by continually developing the Facility's Gas Utilisation Infrastructure and landfill gas management techniques.	T - 1.1	Undertake quarterly VOC surveys of the waste surface over the next 5 years, to establish the areas were fugitive emissions are most prevalent.	1,9	External Consultant (circa €1,800 per survey)	Site Manager	Completed	Completed
		T - 1.2	Installation of gas extraction boreholes were fugitive emissions have been identified from the VOC surveys.	1,9	Circa €1,700 per borehole.	Site Manager	Completed	Completed

Table 8.1Schedule of Targets and Objectives 2013

T - 1.3	Achieve 70% utilisation of landfill gas extracted by 2012 by undertaking landfill gas modelling of the waste body to establish the most the environmentally beneficial method for managing landfill gas. i.e. By maximising landfill gas utilisation and minimising flaring.	1,9	External Consultant (circa €2,500 per model)	Site Manager	2012	Average annual utilisation 81%
T - 1.4	Support University College Dublin Research Project commissioned to investigate the most effective cover material for achieving maximum odour neutralisation.	1,9	UCD €10,000	GM Landfill Group	Project Completed Dec 2009	Completed

T - 1.5	Monitor and review the effectiveness of the perimeter odour neutralising infrastructure installed in 2005 and maintain record of performance.	1,9	Assistant Site Manager (80 man hours)	Site Manager	Project Completed Removed in 2011	Completed
T – 1.6	Reduce fugitive emissions by completion of final permanent capping. 40% completed in 2009. 65% to be completed by end 2011.	1, 9	Site management, consultants, contractor (est €4M)	Site Manager	Project Completed July 2012	Final capping project reached practical completion July 2012.

0-2	Lower the potential environmental impacts (i.e. risk of spillage, CO ₂	T - 2.1	Divert leachate disposal from tankering offsite to direct discharge to sewer, by on-site treatment with agreement of EPA and <u>KCC</u> Achieve 50% diversion rate by 2010 and a 75% diversion rate by 2012	2	External Consultant (€2,500)	Site Manager	Tankering to WWTP ceased in September 2011	Completed
0-2	emissions) associated with the off-site transport of leachate.	T - 2.2	Design and commission on-site leachate treatment plant to reduce leachate to domestic strength and dissolved methane levels in leachate to below the regulatory requirement of 0.14 mg/l. Increase plant capacity	2	Circa €600,000	Site Manager	Project completed in two parts December 2009 and July 2010	Completed
O - 3	Lower the potential environmental nuisance	T - 3.1	to 150m ³ /day Source road washing/sweeping plant for permanent operation on site	7	Circa €8,000 pa	Site Manager	Complete	Completed

	associated with dust by improving dust management techniques	T - 3.2	Investigate available technology options for dust suppression activities that minimises water usage.	7	Assistant Site Manager (20 man hours)	Site Manager	Complete	
			Complete design, contractor selection, and engineering works associated with stage 1 area of final permanent capping of approx. 70,000m ²				Stage 1 completed June 2010	
O - 4	Implement CRAMP	T – 4.1	Complete design, contractor selection, and engineering works associated with stage 2 area of final permanent capping of approx. 90,000m ²	1, 9	External consultants and contractors	Site Manager		Completed
							Stage 2	
							completed Jul-12	

O - 5 Minimise the amount of natural resources (water,	T - 5.1	Update the existing utilities report on an annual basis so as to identify operational resource consumption	4	External Consultant (circa €1,000 pa)	Assistant Site Manager	Ongoing	To be adapted and incorporated into new time frame	
	T - 5.2	Review Energy Audit of Facility and identify opportunities for improved energy efficiency.	4	Site Manager (20 man hours)	Site Manager	Jan-11	To be adapted and incorporated into new time frame	
	power etc.) consumed at the Facility.	T – 5.3	Carry out assessment of the use of raw material at the Facility and identify opportunities for the improved efficiency in the use of raw materials.	4	Assistant Site Manager (40 man	Site Manager	Dec-10	To be adapted and incorporated into new time frame
					(40 man hours)			

		T - 5.4	Carry out assessment of water usage at the facility and identify opportunities for improved efficiency of water usage.	4	Assistant Site Manager (40 man hours)	Site Manager	Ongoing	To be adapted and incorporated into new time frame
		T – 5.5	Use storm water for dust suppression activities when available.	4	Tanker Trailer and bowser	Site Supervisor	Ceased	N/A
O - 6	Improve Health, Safety and Welfare	T - 6.1	Review and amend site safety statement so that it is consistent with other sites within the Greenstar Landfill Group	8	Assistant Site Manager	Site Manager	Completed	Completed
					(40 man hours)	GM Landfill Group	Jun-10	

		T - 6.2	Reduce lost time injuries by 5% over the next five years	8		All site Personnel	Ongoing	To be adapted and incorporated into new time frame	
		T - 6.3	Develop Accident Prevention Plan	8	Assistant Site Manager	Site Manager	Project Completed	Completed	
					(80 man hours)	GM Landfill Group	Jun-07		
O-7	Training	T - 7.1	Continue to train staff on a regular basis in EMS system, waste licence and Emergency Response.		Assistant Site Manager	Site Manager	Ongoing Annual Basis	To be adapted and incorporated into new time frame	
O-8	Operations	T - 8.1	Encourage all site hauliers to comply fully with the Waste Collection Permit Regulations		Site Manager	Site Manager	Completed	Completed	

8.2.2 Schedule of Objectives 2014

Greenstar has set a schedule of targets and objectives for 2014. These are presented in Table 8.2.

Table 8.2Sche	dule of Targets and	Objectives 2014
---------------	---------------------	-----------------

Ref. No.	Objective	Ref. No.	Target	ENV Aspect	Resources Required	Person Responsible	Time Frame for Completion	Progress as of end of 2013
O - 9 Complete CRAMP		T-9.1	Complete installation of final capping layer - Topsoil, seeding and hedgerows	al capping layer - soil, seeding and 1,9 - source topsoil- plant and labour		Facility Manager	Dec-14	65% completion
	-	T-9.2	Complete installation of Surface Water Management System	1,9	Works programme - plant & labour and materials	Facility Manager	Dec-14	Ongoing
		T-9.3	Removal of surplus equipment and materials etc. on site	1,9	Management time 40 hours	Facility Manager	Dec-14	Ongoing- Removed excess materials and supplies for reuse at BNG landfill

O - 10	Lower the environmental impacts associated with the Landfill in the aftercare phase, Landfill Gas and Leachate Management	T - 10.1	Re-configure gas management plan, extraction, utilisation and recording for the site in aftercare.	1,9	Management time 20 hours	Assistant Manager	Jul-14	Developed new protocols with Gas utilisation company BPS -Ongoing
		T - 10.2	Implement reduced but focused aftercare monitoring regime	1.9	Management time 116 hours	Assistant Manager		
		T - 10.3	Review of best available technology and possible options for the management of landfill gas at decreasing quality and quantity into the future (utilisation and control)	1,9	Management hours 100, consultants 10- 15k.	Assistant Manager	Jan-16	None
		T - 10.4	Review of leachate treatment on site and remaining leachate quality	1,9	Management hours 30.	Assistant Manager	Jul-15	Ongoing
		T - 10.5	Review of possible remote access and operation of leachate management system	1,9	Management hours 40, Consultant 5k	Assistant Manager	Dec-15	Ongoing

0 - 11	Improve Health, Safety and Welfare of site employees, contractors and visitors	T-11.1	Develop system and procedures for working alone and ensure lone worker equipment and responses are working	8	Management time 20 hours, equipment 2k	Assistant Manager	Dec-14	Procedures in place and lone worker alarm in place
		T-11.2	Continue to train staff on a regular basis in EMS system, waste licence and Emergency Response.	8	Works programme - plant & labour and materials	Assistant Manager	Dec-14	Ongoing

9. OTHER REPORTS

9.1 Financial Provision

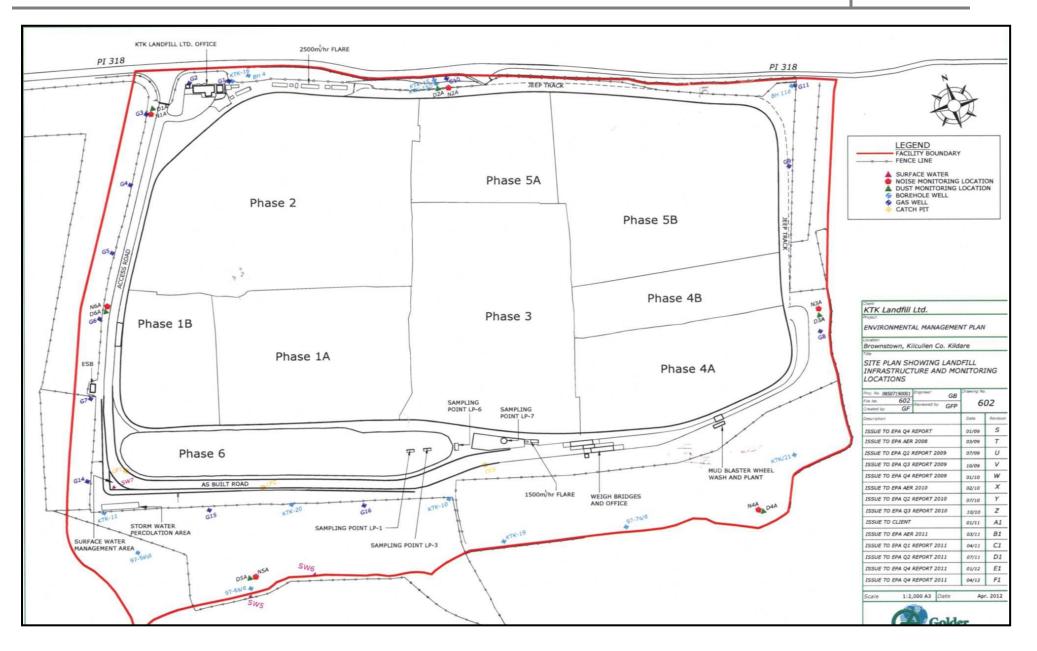
Under condition 12.3.3 of the site licence Kilcullen Landfill is required to maintain a financial provision that is sufficient to cover all liabilities incurred whilst carrying on the activities to which this licence relates. As part of the licence transfer from KTK Landfill Ltd to Kilcullen landfill Ltd, the CRAMP liability was recalculated and agreed with the Office for Environmental Enforcement as being \in 3.42M as at 1 January 2013. Financial provision, to the satisfaction of the Board of the EPA, was then put in place sufficient to cover the cost of this CRAMP liability.

As part of Condition 12.3.2, the Licensee has completed a fully costed Environmental Liabilities Risk Assessment for the site. This document outlines the potential unknown environmental liabilities associated with the landfill and estimates the possible cost of these liabilities. An environmental liability insurance policy has been taken out for \notin 10M which is more than sufficient to cover any unforeseen event contemplated within the ELRA.

The licensee will submit the requested Section 53A Statement to the Agency in Quarter 2 of 2014. Please note that the return will be for the 11 month period ending 28th February 2014 to coincide with the effective date of transfer of the licence. The financial year end for Kilcullen Landfill Ltd is 31 December which will mean the S53 returns for 2014 will be for the ten month period ending 31 December and thereafter will be 12 month periods that will coincide with the licence year.

9.2 Landscape Programme

9.3 European Pollutant Release and Transfer Register


Under the European Pollutant Release and Transfer Register Regulation (EC) No. 166/2006 Kilcullen Landfill is required to submit information annually to the Agency. A copy of the information submitted to the Agency via the web-based data reporting system is included in Appendix 3.


9.4 Tank, drum, pipeline and bund testing and inspection report

All integrity testing is carried out on site every three years. Testing was not required in 2013.

APPENDIX 1

Topographic Survey with Monitoring Locations

APPENDIX 2

Monitoring Results 2013

Groundwater Data 2013

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	Units	BH11D							
Dissolved Arsenic	μg/1	<2.5	<2.5			6.7			9.3
Dissolved Barium	μg/1	50	52			52			50
Dissolved Boron	μg/1	<12	<12			<12			<12
Dissolved Cadmium	μg/1	<0.5	< 0.5			< 0.5			< 0.5
Dissolved C	μg/1	120.5	128.6			116.8			114.4
Total Dissolved Chromium	μg/l	<1.5	<1.5			<1.5			<1.5
Dissolved Copper	μg/1	<7	<7			<7			<7
Total Dissolved Iron	μg/1	<20	<20			<20			<20
Dissolved Lead	μg/1	8	5			<5			<5
Dissolved Magnesium	mg/l	16.6	16			16.2			16.5
Dissolved Manganese	μg/1	<2	<2			<2			<2
Dissolved Mercury	μg/1	<1	<1			<1			0.001
Dissolved Nickel	μg/1	<2	<2			<2			<2
Dissolved Potassium	mg/l	0.8	0.8			0.9			0.7
Dissolved Sodium	mg/l	7.9	8.3			7.1			5.9
Dissolved Zinc	μg/l	<3	<3			4			<3
T Phosphorus	mg/l	51	43			25			45
Total Phenols	μg/1	<0.1	<0.1			<0.1			< 0.1
Fluoride	mg/l	< 0.3	< 0.3			< 0.3			< 0.3
Sulphate	mg/l	11.8	11.8			10.29			10.49
Chloride	mg/l	11.8	11.8			12			10.5
Nitrate as NO3	mg/l	19.8	19.8			17.8			19.6
Nitrite as NO2	μg/1	< 0.02	< 0.02			< 0.02			< 0.02
Ortho Phosphate	mg/l	< 0.06	< 0.06			< 0.06			< 0.06
Ammoniacal Nitrogen as N	mg/l	< 0.03	<0.03			0.3			0.03
Total Alkalinity as CaCO3	mg/l	406	358			340			380
DO	mg/l	10	9			9			8
Electrical Conductivity	Us/cm	764	745			704			735
TOC	mg/l	<2	<2			<2			<2
VOCs (TICs)	μg/l								ND
Semi - VOCs	μg/l								ND
Pesticides MS	μg/l								ND
Total Coliform	μg/1								3.1
Faecal Coliform	μg/l								<1

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	Units	KTK15d							
Dissolved Arsenic	μg/l	<2.5	5.2			12.4			17.3
Dissolved Barium	μg/l	-	166			158			247
Dissolved Boron	μg/l	-	52			34			54
Dissolved Cadmium	μg/l	< 0.5	< 0.5			< 0.5			< 0.5
Dissolved C	μg/l	254.5	264.2			206.2			300.2
Total Dissolved Chromium	μg/l	<1.5	<1.5			<1.5			<1.5
Dissolved Copper	μg/l	<7	<7			<7			<7
Total Dissolved Iron	μg/l	-	<20			<20			<20
Dissolved Lead	μg/l	6	<5			<5			<5
Dissolved Magnesium	mg/l	28.6	28.6			26.9			31.2
Dissolved Manganese	μg/l	-	3			<2			1412
Dissolved Mercury	μg/l	<1	<1			<1			0.004
Dissolved Nickel	μg/l	8	<2			<2			18
Dissolved Potassium	mg/l	14	12.6			11.6			25
Dissolved Sodium	mg/l	18.4	20.4			16.9			15.1
Dissolved Zinc	μg/l	17	39			9			32
T Phosphorus	mg/l	28	45			22			26
Total Phenols	μg/l	<0.1	< 0.1			<0.1			< 0.1
Fluoride	mg/l	< 0.3	< 0.3			< 0.3			< 0.3
Sulphate	mg/l	56.58	10.06			53.7			81.71
Chloride	mg/l	29.2	11.7			32.1			35.1
Nitrate as NO3	mg/l	34.1	18.8			33.1			27.6
Nitrite as NO2	μg/l	< 0.02	< 0.02			< 0.02			< 0.02
Ortho Phosphate	mg/l	< 0.06	< 0.06			< 0.06			< 0.06
Ammoniacal Nitrogen as N	mg/l	< 0.03	0.09			0.07			0.05
Total Alkalinity as CaCO3	mg/l	738	662			602			716
DO	mg/l	6	8			8			6
Electrical Conductivity	Us/cm	1456	1414			1242			1,496
TOC	mg/l	<2	8			<2			6
VOCs (TICs)	μg/l								ND
Semi - VOCs	μg/l								ND
Pesticides MS	μg/l								ND
Total Coliform	μg/l								26.9
Faecal Coliform	μg/l								1

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	Units	KTK16							
Dissolved Arsenic	μg/l	25.7		27	<0.9	28.3	11.4	40.5	16.2
Dissolved Barium	μg/l	515		478.6	461.1	445	459	432	429
Dissolved Boron	μg/l	1,072		1015	1098	1032	1035	1029	940
Dissolved Cadmium	μg/l	< 0.5		< 0.03	< 0.03	< 0.5	< 0.5	< 0.5	< 0.5
Dissolved C	μg/l	54.9		55.7	45.3	37.7	48.9	48.4	44.2
Total Dissolved Chromium	μg/l	4.3		4.3	4	3.2	2	4	<1.5
Dissolved Copper	μg/1	39		9	9	<7	8	17	<7
Total Dissolved Iron	μg/l	60		499.9	50.7	49	49	151	<20
Dissolved Lead	μg/1	8		< 0.4	1.3	<5	<5	<5	<5
Dissolved Magnesium	mg/l	20.5		19.5	22.4	18.8	23.3	25.6	23.3
Dissolved Manganese	μg/l	104		122.8	119.7	93	111	111	103
Dissolved Mercury	μg/1	<1		<0.5	< 0.5	<1	<1	<1	<1
Dissolved Nickel	μg/1	87		78.4	85.9	74	78	80	73
Dissolved Potassium	mg/l	95.9		102.6	94.3	82.4	110.2	129.2	125.9
Dissolved Sodium	mg/l	302.1		265.5	340.1	299	300.2	337	344.7
Dissolved Zinc	μg/l	15		20.9	12.3	6	5	22	15
T Phosphorus	mg/l	386		-	-	97			88
Total Phenols	μg/l	<0.1		<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
Fluoride	mg/l	<0.3		<0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Sulphate	mg/l	< 0.05		0.64	< 0.05	< 0.05	< 0.05	0.18	< 0.05
Chloride	mg/l	271		264.7	269	257	257.8	259.5	240.2
Nitrate as NO3	mg/l	1.9		0.2	20.3	20	68.6	4.7	6.2
Nitrite as NO2	μg/l	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.62
Ortho Phosphate	mg/l	< 0.06		< 0.06	< 0.06	0.07	< 0.06	< 0.06	< 0.06
Ammoniacal Nitrogen as N	mg/l	203.89		213.56	200.25	188.53	185.72	212.19	202.14
Total Alkalinity as CaCO3	mg/l	1526		1314	1310	1286	1240	1332	1,290
DO	mg/l	7		7	6	9	5	11	8
Electrical Conductivity	Us/cm	3470		3,317	3,306	3179	3,141	3,216	3,329
TOC	mg/l	29		44	37	26			63
VOCs (TICs)	μg/l								ND
Semi - VOCs	μg/l								ND
Pesticides MS	μg/l								ND
Total Coliform	μg/l								>2419.6
Faecal Coliform	μg/l								87

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	Units	97-4	97-4	97-4	97-4	97-4	97-4	97-4	97-4
Dissolved Arsenic	μg/1	<2.5	<2.5			5.9			11.2
Dissolved Barium	μg/l	44	45			54			39
Dissolved Boron	μg/l	24	21			<12			12
Dissolved Cadmium	μg/1	< 0.5	< 0.5			< 0.5			< 0.5
Dissolved C	μg/l	136.6	143.1			126.6			138.5
Total Dissolved Chromium	μg/l	<1.5	<1.5			<1.5			<1.5
Dissolved Copper	μg/l	<7	<7			<7			<7
Total Dissolved Iron	μg/1	<20	<20			<20			<20
Dissolved Lead	μg/1	8	<5			<5			<5
Dissolved Magnesium	mg/l	7.9	7.9			8.4			7.2
Dissolved Manganese	μg/l	<2	<2			482			<2
Dissolved Mercury	μg/l	<1	<1			<1			2
Dissolved Nickel	μg/l	<2	<2			3			<2
Dissolved Potassium	mg/l	<0.1	0.2			0.6			< 0.1
Dissolved Sodium	mg/l	2.6	3.4			3.5			3
Dissolved Zinc	μg/l	3	<3			5			<3
T Phosphorus	mg/l	<5	20			19			0.02
Total Phenols	μg/l	< 0.1	<0.1			<0.1			<0.1
Fluoride	mg/l	< 0.3	< 0.3			< 0.3			< 0.3
Sulphate	mg/l	2.18	3.26			0.76			2.32
Chloride	mg/l	1.7	2.6			3.3			1.8
Nitrate as NO3	mg/l	0.8	0.5			33.1			0.5
Nitrite as NO2	μg/l	< 0.02	< 0.02			< 0.02			< 0.02
Ortho Phosphate	mg/l	< 0.06	< 0.06			< 0.06			< 0.06
Ammoniacal Nitrogen as N	mg/l	<0.03	0.03			0.32			< 0.03
Total Alkalinity as CaCO3	mg/l	424	392			374			364
DO	mg/l	8	6			5			5
Electrical Conductivity	Us/cm	737	725			665			651
TOC	mg/l	4	<2			<2			<2
VOCs (TICs)	μg/l								ND
Semi - VOCs	μg/l								ND
Pesticides MS	μg/l								ND
Total Coliform	μg/l								35.9
Faecal Coliform	μg/l								<1

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	Units	97-5D							
Dissolved Arsenic	μg/l	4.9	<2.5	6.1	<0.9	6.9	<2.5	6.4	4.5
Dissolved Barium	μg/l	127	87	92.3	91.4	91	144	158	163
Dissolved Boron	μg/l	144	62	69	72	51	91	97	90
Dissolved Cadmium	μg/l	< 0.5	< 0.5	< 0.03	< 0.03	< 0.5	< 0.5	< 0.5	< 0.5
Dissolved C	μg/l	148.5	143.8	136.9	139.2	149.2	159.2	149.3	168.5
Total Dissolved Chromium	µg/l	<1.5	<1.5	<0.2	<0.2	<1.5	<1.5	<1.5	<1.5
Dissolved Copper	μg/l	<7	<7	<3	<3	<7	<7	<7	<7
Total Dissolved Iron	μg/l	<20	<20	<4.7	<4.7	<20	<20	<20	<20
Dissolved Lead	μg/l	<5	<5	< 0.4	< 0.4	<5	<5	<5	<5
Dissolved Magnesium	mg/l	18.5	16.9	15.6	16.1	17.1	16	16	15.1
Dissolved Manganese	μg/l	<2	<2	104.6	<1.5	<2	498	603	586
Dissolved Mercury	μg/1	<1	<1	< 0.5	< 0.5	<1	<1	<1	<1
Dissolved Nickel	μg/l	4	<2	2.4	2	<2	6	7	6
Dissolved Potassium	mg/l	5.9	2.1	2.8	1.7	2	2.3	2.2	2.6
Dissolved Sodium	mg/l	53.1	28.8	27.7	26.1	29.1	35.4	32.6	31.6
Dissolved Zinc	μg/l	3	<3	8.7	3.2	4	4	7	7
T Phosphorus	mg/l	12	26	-	-	20			0.125
Total Phenols	μg/l	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Fluoride	mg/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Sulphate	mg/l	49.2	14.95	17.18	12.19	17.81	99.66	97.09	110.62
Chloride	mg/l	52.8	35	36.7	38.3	37.5	42	40.9	38.4
Nitrate as NO3	mg/l	6.8	10.8	8.9	10	10.9	3.8	1.6	0.8
Nitrite as NO2	μg/1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Ortho Phosphate	mg/l	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Ammoniacal Nitrogen as N	mg/l	2.17	0.1	0.11	0.05	0.05	0.23	0.16	0.23
Total Alkalinity as CaCO3	mg/l	472	394	444	424	420	420	392	386
DO	mg/l	8	6	7	7	7	7	5	7
Electrical Conductivity	Us/cm	1094	894	949	913	912	972	972	997
TOC	mg/l	<2	<2	<2	<2	<2	-		<2
VOCs (TICs)	μg/l							ND	
Semi - VOCs	μg/l							ND	
Pesticides MS	μg/l							ND	
Total Coliform	μg/l							298.7	
Faecal Coliform	μg/l							1	

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	97-6D	97-6D	97-6D	97-6D	97-6D	97-6D	97-6D	97-6D	97-6D
Dissolved Arsenic	μg/1	<2.5	<2.5			7.9			5.4
Dissolved Barium	μg/1	108	104			101			98
Dissolved Boron	μg/1	65	59			40			47
Dissolved Cadmium	μg/1	< 0.5	0.5			< 0.5			< 0.5
Dissolved C	μg/1	144.6	153.4			143.8			147.8
Total Dissolved Chromium	μg/l	<1.5	<1.5			<1.4			<1.5
Dissolved Copper	μg/l	<7	<7			<7			<7
Total Dissolved Iron	μg/1	<20	30			<20			<20
Dissolved Lead	μg/l	<5	<5			<5			<5
Dissolved Magnesium	mg/l	18.8	18.6			17.8			18.4
Dissolved Manganese	μg/1	<2	<2			<2			<2
Dissolved Mercury	μg/l	<1	<1			<1			<1
Dissolved Nickel	μg/1	<2	<2			<2			<2
Dissolved Potassium	mg/l	1.9	1.6			1.6			1.5
Dissolved Sodium	mg/l	25.8	23.8			18.6			19.2
Dissolved Zinc	μg/1	<3	<3			<3			3
T Phosphorus	mg/l	8	24			10			0.015
Total Phenols	μg/l	<0.1	< 0.1			<0.1			< 0.1
Fluoride	mg/l	< 0.3	< 0.3			< 0.3			< 0.3
Sulphate	mg/l	16.11	16.49			17.96			18.95
Chloride	mg/l	32.5	27.1			26.8			25.9
Nitrate as NO3	mg/l	10.5	9.9			10.7			9.6
Nitrite as NO2	μg/1	< 0.02	< 0.02			< 0.02			< 0.02
Ortho Phosphate	mg/l	< 0.06	< 0.06			< 0.06			< 0.06
Ammoniacal Nitrogen as N	mg/l	0.13	0.3			0.23			0.26
Total Alkalinity as CaCO3	mg/l	464	422			440			422
DO	mg/l	7	8			7			7
Electrical Conductivity	Us/cm	964	916			888			863
TOC	mg/l	4	<2			>2			<2
VOCs (TICs)	μg/l								ND
Semi - VOCs	μg/l								ND
Pesticides MS	μg/l								ND
Total Coliform	μg/l								488.4
Faecal Coliform	μg/l								<1

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	Units	97-7	97-7	97-7	97-7	97-7	97-7	97-7	97-7
Dissolved Arsenic	μg/1	<2.5	<2.5			7.2			5.8
Dissolved Barium	μg/l	70	76			73			79
Dissolved Boron	μg/l	14	16			<12			13
Dissolved Cadmium	μg/1	<0.5	< 0.5			< 0.5			< 0.5
Dissolved C	μg/1	100.5	141.7			127.7			109.5
Total Dissolved Chromium	μg/l	2.7	<1.5			<1.5			<1.5
Dissolved Copper	μg/1	<7	<7			<7			<7
Total Dissolved Iron	μg/1	<20	<20			<20			<20
Dissolved Lead	μg/1	7	<5			<5			<5
Dissolved Magnesium	mg/l	15.3	17.3			16			16.8
Dissolved Manganese	μg/l	<2	<2			<2			<2
Dissolved Mercury	μg/l	<1	<1			<1			2
Dissolved Nickel	μg/l	3	<2			<2			<2
Dissolved Potassium	mg/l	<0.1	0.6			0.6			0.5
Dissolved Sodium	mg/l	8.3	10.7			8.3			7.9
Dissolved Zinc	μg/l	<3	4			<3			<3
T Phosphorus	mg/l	32	27			9			0.021
Total Phenols	μg/l	<0.1	<0.1			<0.1			< 0.1
Fluoride	mg/l	< 0.3	< 0.3			< 0.3			< 0.3
Sulphate	mg/l	13.39	16.34			17.69			18.76
Chloride	mg/l	14.9	17.5			17.4			14.3
Nitrate as NO3	mg/l	17.8	17.5			19.9			13.3
Nitrite as NO2	μg/l	< 0.02	< 0.02			< 0.02			< 0.02
Ortho Phosphate	mg/l	< 0.06	< 0.06			< 0.06			< 0.06
Ammoniacal Nitrogen as N	mg/l	< 0.03	<0.03			0.09			< 0.03
Total Alkalinity as CaCO3	mg/l	396	380			398			370
DO	mg/l	10	8			8			7
Electrical Conductivity	Us/cm	751	818			830			744
TOC	mg/l	<2	<2			<2			<2
VOCs (TICs)	μg/l								ND
Semi - VOCs	μg/l								ND
Pesticides MS	μg/l								ND
Total Coliform	μg/l								<1
Faecal Coliform	μg/l								<1

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	Units	KTK-10							
Dissolved Arsenic	μg/1	2.7	<2.5			3.1			6.2
Dissolved Barium	μg/l	67	63			40			44
Dissolved Boron	μg/l	16	15			<12			12
Dissolved Cadmium	μg/1	< 0.5	< 0.5			< 0.5			< 0.5
Dissolved C	μg/l	131.8	131.8			87.9			72.9
Total Dissolved Chromium	μg/l	<1.5	<1.5			<1.5			<1.5
Dissolved Copper	μg/l	<7	<7			<7			<7
Total Dissolved Iron	μg/l	<20	<20			<20			<20
Dissolved Lead	μg/l	<5	<5			<5			<5
Dissolved Magnesium	mg/l	14.3	12.1			7.9			8.2
Dissolved Manganese	μg/l	<2	<2			<2			<2
Dissolved Mercury	μg/l	<1	<1			<1			<1
Dissolved Nickel	μg/l	<2	<2			<2			<2
Dissolved Potassium	mg/l	0.9	0.2			0.4			0.2
Dissolved Sodium	mg/l	16.4	12.8			12.8			26.4
Dissolved Zinc	μg/l	<3	4			12			<3
T Phosphorus	mg/l	6	55			18			0.018
Total Phenols	μg/l	<0.1	< 0.1			<0.1			< 0.1
Fluoride	mg/l	< 0.3	< 0.3			< 0.3			< 0.3
Sulphate	mg/l	34.89	15.96			36.1			59.88
Chloride	mg/l	23	16.1			14.3			30
Nitrate as NO3	mg/l	5.9	4.1			4.3			4.7
Nitrite as NO2	μg/l	< 0.02	< 0.02			< 0.02			< 0.02
Ortho Phosphate	mg/l	< 0.06	< 0.06			< 0.06			< 0.06
Ammoniacal Nitrogen as N	mg/l	<0.03	0.04			0.03			<0.03
Total Alkalinity as CaCO3	mg/l	402	348			242			220
DO	mg/l	12	9			8			9
Electrical Conductivity	Us/cm	820	731			540			603
TOC	mg/l	3	3			<2			<2
VOCs (TICs)	μg/l								ND
Semi - VOCs	μg/l								ND
Pesticides MS	μg/l								ND
Total Coliform	μg/l								>2419
Faecal Coliform	μg/l								4

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	Units	KTK-11							
Dissolved Arsenic	μg/l	<2.5	<2.5	6.7	<0.9	8.4	<2.5	11.8	7.3
Dissolved Barium	μg/l	145	137	121.7	122.4	115	95	101	112
Dissolved Boron	μg/l	302	246	223	220	188	138	11	152
Dissolved Cadmium	μg/l	< 0.5	0.6	0.25	0.5	<0.5	0.5	0.7	0.6
Dissolved C	μg/l	145	153.1	126.8	134.5	136.3	155.7	163.4	186.8
Total Dissolved Chromium	µg/l	<1.5	<1.5	<0.2	1	<1.5	<1.5	2.3	1.6
Dissolved Copper	μg/l	<7	<7	<3	4	<7	<7	<7	<7
Total Dissolved Iron	μg/l	<20	<20	8.7	<4.7	<20	<20	<20	<20
Dissolved Lead	μg/l	6	7	1.4	2.7	<5	<5	<5	<5
Dissolved Magnesium	mg/l	14.8	16	13.4	13.2	12.2	23.3	14.4	15.4
Dissolved Manganese	μg/l	2514	1521	1595	1825	2243	2130	2210	1995
Dissolved Mercury	μg/l	<1	<1	< 0.5	< 0.5	<1	<1	<1	<1
Dissolved Nickel	μg/l	25	15	16	16.3	16	10	11	12
Dissolved Potassium	mg/l	19	13.3	16.9	14.1	15.4	12.8	10	9.8
Dissolved Sodium	mg/l	57.4	68.4	58.7	50.1	34.5	31.8	36.4	42.2
Dissolved Zinc	μg/1	6	5	8	7.3	8	4	7	6
T Phosphorus	mg/l	15	22	-	-	21			0.021
Total Phenols	μg/l	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
Fluoride	mg/l	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Sulphate	mg/l	112.16	112.16	60.89	85.25	96.02	80.4	87.62	82.92
Chloride	mg/l	65.8	65.8	81.5	66	49	43.2	48	50.8
Nitrate as NO3	mg/l	< 0.2	< 0.2	1.7	1.2	3.8	8.6	12	4
Nitrite as NO2	μg/1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Ortho Phosphate	mg/l	< 0.06	< 0.06	0.24	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Ammoniacal Nitrogen as N	mg/l	26.95	15.77	26.49	17.57	19.91	8.25	5.72	6.28
Total Alkalinity as CaCO3	mg/l	514	514	472	430	406	394	420	442
DO	mg/l	8	9	6	7	7		5	6
Electrical Conductivity	Us/cm	1331	1286	1,300	1,182	1127	980	1,069	1156
TOC	mg/l	8	8	<2	7	<2			<2
VOCs (TICs)	μg/l								ND
Semi - VOCs	μg/l								ND
Pesticides MS	μg/l								ND
Total Coliform	μg/l								<1
Faecal Coliform	μg/l								<1

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	Units	KTK-19							
Dissolved Arsenic	μg/l	<2.5	<2.5			5.9			2.9
Dissolved Barium	μg/l	140	152			137			141
Dissolved Boron	μg/l	37	34			23			34
Dissolved Cadmium	μg/l	<0.5	< 0.5			< 0.5			< 0.5
Dissolved C	μg/l	81.9	86.8			82.3			83.9
Total Dissolved Chromium	μg/l	<1.5	<1.5			<1.5			<1.5
Dissolved Copper	μg/l	<7	<7			<7			<7
Total Dissolved Iron	μg/1	<20	<20			<20			<20
Dissolved Lead	μg/l	11	6			<5			<5
Dissolved Magnesium	mg/l	23.3	23.8			22.4			24
Dissolved Manganese	μg/1	<2	342			<2			574
Dissolved Mercury	μg/l	<1	<1			<1			<1
Dissolved Nickel	μg/l	<2	<2			<2			<2
Dissolved Potassium	mg/l	1	1.5			1.5			1.5
Dissolved Sodium	mg/l	14.4	16.7			14.2			17.5
Dissolved Zinc	μg/l	<3	3			<3			4
T Phosphorus	mg/l	128	152			66			0.054
Total Phenols	μg/l	<0.1	<0.1			<0.1			< 0.1
Fluoride	mg/l	0.4	0.5			0.5			0.4
Sulphate	mg/l	23.13	22.5			25.55			27.78
Chloride	mg/l	10.2	10.4			10.9			10
Nitrate as NO3	mg/l	<0.2	0.4			<0.2			< 0.2
Nitrite as NO2	μg/l	< 0.02	< 0.02			< 0.02			< 0.02
Ortho Phosphate	mg/l	< 0.06	< 0.06			< 0.06			< 0.06
Ammoniacal Nitrogen as N	mg/l	0.18	0.18			0.19			0.17
Total Alkalinity as CaCO3	mg/l	368	468			322			320
DO	mg/l	8	8			7			7
Electrical Conductivity	Us/cm	640	626			605			634
TOC	mg/l	6	2			<2			<2
VOCs (TICs)	μg/l								ND
Semi - VOCs	μg/l								ND
Pesticides MS	μg/l								ND
Total Coliform	μg/l								5.1
Faecal Coliform	μg/l								<1

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	Units	KTK-20							
Dissolved Arsenic	μg/l	<2.5	<2.5			8.3			7.7
Dissolved Barium	μg/l	244	245			237			223
Dissolved Boron	μg/l	16	19			<12			15
Dissolved Cadmium	μg/l	<0.5	< 0.5			<0.5			< 0.5
Dissolved C	μg/l	130.1	147.7			130			121.4
Total Dissolved Chromium	μg/l	<1.5	<1.5			<1.5			<1.5
Dissolved Copper	μg/l	<7	<7			<7			<7
Total Dissolved Iron	μg/l	<20	<20			<20			<20
Dissolved Lead	μg/l	11	6			<5			5
Dissolved Magnesium	mg/l	27	28.2			25.4			28.5
Dissolved Manganese	μg/l	<2	643			77			705
Dissolved Mercury	μg/l	<1	<1			<1			2
Dissolved Nickel	μg/l	3	<2			<2			<2
Dissolved Potassium	mg/l	0.8	1.2			1.3			1.2
Dissolved Sodium	mg/l	12.4	12.9			11.4			13.1
Dissolved Zinc	μg/l	<3	<3			<3			3
T Phosphorus	mg/l	38	76			72			0.472
Total Phenols	μg/l	<0.1	< 0.1			<0.1			< 0.1
Fluoride	mg/l	0.4	0.4			0.4			0.4
Sulphate	mg/l	48.14	52.51			50.87			53.78
Chloride	mg/l	13.7	14.7			15.6			14.2
Nitrate as NO3	mg/l	<0.2	0.3			0.6			< 0.2
Nitrite as NO2	μg/l	< 0.02	< 0.02			< 0.02			< 0.02
Ortho Phosphate	mg/l	< 0.06	< 0.06			0.65			< 0.06
Ammoniacal Nitrogen as N	mg/l	0.12	0.16			0.12			0.16
Total Alkalinity as CaCO3	mg/l	450	420			432			708
DO	mg/l	11	6			7			4
Electrical Conductivity	Us/cm	888	884			884			856
TOC	mg/l	<2	3			<2			<2
VOCs (TICs)	μg/l								ND
Semi - VOCs	μg/l								ND
Pesticides MS	μg/l								ND
Total Coliform	μg/l								<1
Faecal Coliform	μg/l								<1

		Mar-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
	Units	KTK 21							
Dissolved Arsenic	μg/1	<2.5	<2.5			7.1			9.9
Dissolved Barium	μg/1	63	92			73			68
Dissolved Boron	μg/1	17	14			<12			<12
Dissolved Cadmium	μg/1	< 0.5	< 0.5			< 0.5			< 0.5
Dissolved C	μg/1	112	141.8			125.7			127.9
Total Dissolved Chromium	μg/l	<1.5	<1.5			<1.5			<1.5
Dissolved Copper	μg/1	<7	<7			<7			<7
Total Dissolved Iron	μg/l	<20	<20			<20			<20
Dissolved Lead	μg/l	5	<5			<5			<5
Dissolved Magnesium	mg/l	12	12.4			16.5			11.9
Dissolved Manganese	μg/1	<2	<2			<2			<2
Dissolved Mercury	μg/1	<1	<1			<1			1
Dissolved Nickel	μg/1	<2	<2			<2			<2
Dissolved Potassium	mg/l	<0.1	0.3			0.6			0.2
Dissolved Sodium	mg/l	3.2	3.6			8.6			2.5
Dissolved Zinc	μg/1	<3	<3			<3			<3
T Phosphorus	mg/l	1526	635			10			0.3
Total Phenols	μg/1	< 0.1	<0.1			<0.1			<0.1
Fluoride	mg/l	< 0.3	< 0.3			< 0.3			< 0.3
Sulphate	mg/l	2.64	3.37			12.7			10.49
Chloride	mg/l	2.6	3.1			17.9			10.5
Nitrate as NO3	mg/l	0.5	1.1			21.1			19.6
Nitrite as NO2	μg/l	< 0.02	< 0.02			< 0.02			< 0.02
Ortho Phosphate	mg/l	< 0.06	< 0.06			< 0.06			< 0.06
Ammoniacal Nitrogen as N	mg/l	<0.03	0.05			<0.03			0.03
Total Alkalinity as CaCO3	mg/l	466	358			366			380
DO	mg/l	7	7			9			8
Electrical Conductivity	Us/cm	745	740			769			735
TOC	mg/l	5	3			<2			<2
VOCs (TICs)	μg/l								ND
Semi - VOCs	μg/l								ND
Pesticides MS	μg/l								ND
Total Coliform	μg/l								74.8
Faecal Coliform	μg/l								22

h			1
		Pri 1 EC	Pri 2 CK
	Units	Dec-13	Dec-13
Dissolved Arsenic	μg/l	6.8	3.2
Dissolved Barium	μg/l	24	22
Dissolved Boron	μg/l	19	<12
Dissolved Cadmium	μg/l	< 0.5	< 0.5
Dissolved Calcium	μg/l	106	46.4
Total Dissolved		<1.5	<1.5
Chromium	μg/l	<1.5	<1.5
Dissolved Copper	μg/l	29	11
Total Dissolved Iron	μg/l	<20	<20
Dissolved Lead	μg/l	<5	<5
Dissolved Magnesium	mg/l	4.7	4.6
Dissolved Manganese	μg/l	8	6
Dissolved Mercury	μg/l	1	2
Dissolved Nickel	μg/l	<2	<2
Dissolved Potassium	mg/l	1.9	0.5
Dissolved Sodium	mg/l	2	5.7
Dissolved Zinc	μg/l	<3	41
Total Phosphorus	mg/l	0.161	0.047
Total Phenols HPLC	μg/l	<0.1	<0.1
Fluoride	mg/l	< 0.3	0.6
Sulphate	mg/l	12.29	20.86
Chloride	mg/l	1.7	9.9
Nitrate as NO3	mg/l	< 0.2	1.7
Nitrite as NO2	μg/l	< 0.02	< 0.02
Ortho Phosphate as PO4	mg/l	<0.06	<0.06
Ammoniacal Nitrogen as N	mg/l	0.03	<0.03
Total Alkalinity as CaCO3	mg/l	306	128
Dissolved Oxygen	mg/l	5	10
Electrical Conductivity @25C	Us/cm	564	323
Total Organic Carbon	mg/l	<2	<2

Surface Water Data 2013

SW4	Units	Q1	Q2	Q3	Q4
CBODS	mg/l	<2	2	2	7
Zinc	ug/l	18	< 0.2	10	3
Mercury	ug/l	0.092	< 0.0001	< 0.013	< 0.013
Nickel	ug/l	6	< 0.2	3	5
Manganese	ug/l	108	0.4	5480	43
Magnesium	ug/l	13.3	11.2	12.7	7.1
Lead	ug/l	1.5	< 0.2	1.7	
Iron	ug/l	849	< 0.2	3327	207
Copper	ug/l	18	< 0.2	17	36
Chromium	ug/l	2	< 0.2	1	2
Cadmium	ug/l	0.5	< 0.2	0.7	0.2
Boron	ug/l	140	94	105	<50
Ortho-Phosphate	mg/l	< 0.025	< 0.025	0.073	0.03
Sulphate	mg/l	21.2	28		<20
Sodium	mg/l	38.3	35.8	26.8	15.3
Potassium	mg/l	2.8	3.8		3
Phosphorous	mg/l	< 0.05	<2		< 0.05
Chloride	mg/l	<10	<50	27.76	22.5
Calcium	mg/l	146	133	241	150
Ammonia	mg/l	0.02	<1		0.05
TOC	mg/l	4	7.04	8.48	14.29
Nitrate	mg/l	2.48	<4.8	<2	<2
Nitrite	mg/l	0.06	0.04	0.01	0.01
Akalinity	mg/l	<30	45		276
TSS	mg/l	13	10	26	15
Dissolved Oxygen	mg/l	10.4	10.4	2	9.8
Conductivity	us/cm	971	987	1050	638
COD	mg/l	21	32	43	46
pН	pH units	7.5	7.31		7.5

SW5	Units	Q1	Q2	Q3	Q4
CBODS	mg/l	<2	20		4
Zinc	ug/l	11	< 0.2		32
Mercury	ug/l	< 0.0130	< 0.0001		< 0.013
Nickel	ug/l	2	< 0.2		4
Manganese	ug/l	237	0.4		0.9
Magnesium	ug/l	6.6	7.1		6.7
Lead	ug/l	1	< 0.2		2.1
Iron	ug/l	9360	4.9		21.1
Copper	ug/l	24	< 0.2		34
Chromium	ug/l	1	< 0.2		1
Cadmium	ug/l	0.9	<0.2		1
Boron	ug/l	<50	<50		<50
Ortho-Phosphate	mg/l	0.032	0.3		0.052
Sulphate	mg/l	<20	<20		<20
Sodium	mg/l	8	7.9		9
Potassium	mg/l	<0.4	<0.4		4.6
Phosphorous	mg/l	0.68	<2		0.59
Chloride	mg/l	<10	<50		16.1
Calcium	mg/l	107	118		111
Ammonia	mg/l	<0.01	<1		0.09
TOC	mg/l	8.1	11.37		32.95
Nitrate	mg/l	2.52	<4.8		<2
Nitrite	mg/l	< 0.005	< 0.01		0.01
Akalinity	mg/l	229	298		192
TSS	mg/l	11	36		60
Dissolved Oxygen	mg/l	9.6	9		9.5
Conductivity	us/cm	612	629		453
COD	mg/l	36	54		
рН	pH units	7.33	7.42		7.35

SW6	Units	Q1	Q2	Q3	Q4
CBODS	mg/l	2	22		5
Zinc	ug/l	4	< 0.2		11
Mercury	ug/l	< 0.0130	< 0.0001		< 0.013
Nickel	ug/l	1	< 0.2		3
Manganese	ug/l	432	0.3		384
Magnesium	ug/l	4.9	5.9		6.1
Lead	ug/l	1.2	< 0.2		1
Iron	ug/l	5578	1.3		1.9
Copper	ug/l	27	< 0.2		31
Chromium	ug/l	1	< 0.2		1
Cadmium	ug/l	0.6	< 0.2		0.5
Boron	ug/l	<50	<50		<50
Ortho-Phosphate	mg/l	< 0.025	< 0.025		0.062
Sulphate	mg/l	<20	<20		<20
Sodium	mg/l	7.1	8		9.1
Potassium	mg/l	<0.4	<0.4		3.6
Phosphorous	mg/l	0.36	<2		0.15
Chloride	mg/l	12.32	<50		16.18
Calcium	mg/l	95.4	109		100
Ammonia	mg/l	< 0.01	<1		0.07
TOC	mg/l	12	11.73		24.54
Nitrate	mg/l	<2	<4.8		<2
Nitrite	mg/l	< 0.005	< 0.01		0.1
Akalinity	mg/l	187	266		162
TSS	mg/l	20	36		16
Dissolved Oxygen	mg/l	9.5	9.1		8.8
Conductivity	us/cm	503	597		381
COD	mg/l	69	53		55
рН	pH units	7.04	7.05		7.03

SW7	Units	Q1	Q2	Q3	Q4
CBODS	mg/l	<2	2		2
Zinc	ug/l 2 <0.2			2	
Mercury	ug/l	0.015	0.0004		< 0.013
Nickel	ug/l	4	< 0.2		3
Manganese	ug/l	111	1.1		22
Magnesium	ug/l	12.4	9.8		9.4
Lead	ug/l	1.7	< 0.2		2
Iron	ug/l	74	< 0.2		76
Copper	ug/l	17	< 0.2		27
Chromium	ug/l	1	< 0.2		1
Cadmium	ug/l	0.4	< 0.2		0.5
Boron	ug/l	<50	<50		<50
Ortho-Phosphate	mg/l	< 0.025	< 0.025		< 0.025
Sulphate	mg/l	137.8	98.3		145
Sodium	mg/l	31.7	23.3		23.3
Potassium	mg/l	3.3	3.2		2.6
Phosphorous	mg/l	< 0.05	<2		< 0.05
Chloride	mg/l	68.36	50		39.09
Calcium	mg/l	179	163		207
Ammonia	mg/l	0.04	1.31		0.65
TOC	mg/l	7.1	6.39		7.13
Nitrate	mg/l	<2	<4.8		<2
Nitrite	mg/l	0.04	0.03		0.01
Akalinity	mg/l	247	274		247
TSS	mg/l	5	18		<2
Dissolved Oxygen	mg/l	10.5	10.4		11.6
Conductivity	us/cm	1124	957		797
COD	mg/l	23	25		15
pH	pH units	7.86	7.73		787

Leachate Data 2013

LP1	units	Q1	Q2	Q3	Q4
CBODS	mg/l	237	544	220	186
Zinc	ug/l	0.41	< 0.2	< 0.2	< 0.2
Mercury	ug/l	< 0.0001	0.00031	< 0.00006	0.00035
Nickel	ug/l	0.2	0.2	0.2	0.2
Manganese	ug/l	0.2	0.3	0.2	0.2
Magnesium	ug/l	42.8	46.4	44.4	74.2
Lead	ug/l	<0.2	< 0.2	< 0.2	<0.2
Iron	ug/l	10.8	2.6	10	1.8
Copper	ug/l	0.8	0.7	0.5	< 0.2
Chromium	ug/l	0.3	0.4	0.3	0.3
Cadmium	ug/l	< 0.2	< 0.2	<0.2	< 0.2
Boron	ug/l	9930	13600	11100	14500
Ortho-Phosphate	mg/l	13.528	17.272	0.21	11.016
Sulphate	mg/l	160.9	54.8	83.9	1120
Sodium	mg/l	1700	1560	1620	2100
Potassium	mg/l	709	440	649	746
Phosphorous	mg/l	15.35	12.45	16.1	20.2
Chloride	mg/l	6066	2455	1702	189
Calcium	mg/l	33	37.1	34.1	46.5
Ammonia	mg/l	2113.74	1717.98	1732.45	1782.56
TOC	mg/l				
Nitrate	mg/l				
Nitrite	mg/l				
Akalinity	mg/l				
TSS	mg/l	128	20	52	8
Dissolved Oxygen	mg/l				
Conductivity	us/cm	19340	30200	25100	22800
COD	mg/l	4780	5160	4810	4870
pН	pH units	7.7	7.78	7.83	7.55
cyanide	mg/l	0.025	0.051	< 0.050	<0.2

LP3	units	Q1	Q2	Q3	Q4
CBODS	mg/l	219	565	219	179
Zinc	ug/l	< 0.2	< 0.2	<.2	< 0.2
Mercury	ug/l	< 0.0001	0.0002	< 0.00006	0.00023
Nickel	ug/l	0.2	0.2	< 0.2	0.23
Manganese	ug/l	0.2	0.3	0.2	0.2
Magnesium	ug/l	41.4	49.6	30.1	61.5
Lead	ug/l	<0.2	< 0.2	<0.2	< 0.2
Iron	ug/l	3.6	1.7	1	0.8
Copper	ug/l	< 0.2	0.2	< 0.2	< 0.2
Chromium	ug/l	0.3	0.3	0.3	0.3
Cadmium	ug/l	<0.2	< 0.2	<0.2	< 0.2
Boron	ug/l	8430	13300	9660	13600
Ortho-Phosphate	mg/l	12.867	16.398	0.239	8.908
Sulphate	mg/l	139.1	<20	72	88.9
Sodium	mg/l	1540	1770	1090	1550
Potassium	mg/l	554	569	416	568
Phosphorous	mg/l	13.25	9.9	14.1	16.5
Chloride	mg/l	5138	2249	1600	1586
Calcium	mg/l	31.3	40.9	20	40.7
Ammonia	mg/l	2050.41	1740.61	189.17	1614.09
TOC	mg/l	1500		1005.84	
Nitrate	mg/l	<4.8	<4.8	<4.8	
Nitrite	mg/l				
Akalinity	mg/l				
TSS	mg/l	100	4	32	4
Dissolved Oxygen	mg/l				
Conductivity	us/cm	21300	27200	26300	20180
COD	mg/l	4080	4660	5110	4720
pН	pH units	7.61	7.72	7.86	7.61
cyanide	mg/l	0.056	0.07	0.05	< 0.2

LP6	units	Q1	Q2	Q3	Q4
CBODS	mg/l	146	139	135	139
Zinc	ug/l	< 0.2	< 0.2	< 0.2	< 0.2
Mercury	ug/l	< 0.0001	0.00007	< 0.00006	0.00031
Nickel	ug/l	< 0.2	0.2	0.2	< 0.2
Manganese	ug/l	0.4	0.5	0.5	0.5
Magnesium	ug/l	44.8	54.2	41.4	71.3
Lead	ug/l	< 0.2	< 0.2	< 0.2	< 0.2
Iron	ug/l	0.8	0.5	0.3	0.3
Copper	ug/l	< 0.2	< 0.2	< 0.2	< 0.2
Chromium	ug/l	0.3	0.3	0.3	0.3
Cadmium	ug/l	< 0.2	< 0.2	< 0.2	<0.2
Boron	ug/l	7720	12100	10600	13100
Ortho-Phosphate	mg/l	11.421	14.782	0.276	8.764
Sulphate	mg/l	189.3	<20	78.7	87.7
Sodium	mg/l	1220	1620	1160	1550
Potassium	mg/l	512 515		483	623
Phosphorous	mg/l	11.5	10.85	15.2	13.9
Chloride	mg/l	1549	2191	1836	1586
Calcium	mg/l	66.1	62	54.7	101
Ammonia	mg/l	1598.42	1584.51	1844.15	1438.78
TOC	mg/l				
Nitrate	mg/l				
Nitrite	mg/l				
Akalinity	mg/l				
TSS	mg/l	276	60	64	42
Dissolved Oxygen	mg/l				
Conductivity	us/cm	2560	27900	24500	16000
COD	mg/l	3610	4530	4400	3480
pН	pH units	7.81	7.8	7.76	7.47
cyanide	mg/l	0.031	0.069	< 0.050	<0.20
Flouride	mg/l	0.7	0.9	1	0.9
TON	mg/l	<5	<5	<5	6.64

LP7	units	Q1	Q2	Q3	Q4
CBODS	mg/l	172	149	224	218
Zinc	ug/l	< 0.2	< 0.2	< 0.2	< 0.2
Mercury	ug/l	< 0.0001	0.00015	< 0.00006	0.00019
Nickel	ug/l	0.2	0.2	0.2	0.2
Manganese	ug/l	0.3	0.3	0.2	0.2
Magnesium	ug/l	43.9	48.9	40.5	68.1
Lead	ug/l	< 0.2	< 0.2	< 0.2	< 0.2
Iron	ug/l	1	0.8	1	1.4
Copper	ug/l	< 0.2	< 0.2	0.5	< 0.2
Chromium	ug/l	0.3	0.3	0.3	0.3
Cadmium	ug/l	< 0.2	< 0.2	< 0.2	< 0.2
Boron	ug/l	8910	12900	12300	14900
Ortho-Phosphate	mg/l	13.011	16.928	0.296	8.42
Sulphate	mg/l	143.1	<20	85.1	84.5
Sodium	mg/l	1370	1590	1450	1910
Potassium	mg/l	626 531		570	680
Phosphorous	mg/l	7.9	11.45	15.1	18.6
Chloride	mg/l	5959	2284	1860	1394
Calcium	mg/l	48.6	38	27.9	49.9
Ammonia	mg/l	1913.83	1843.56	1970.15	1445.46
TOC	mg/l	1500		1137.01	
Nitrate	mg/l	<4.8		<4.8	6.24
Nitrite	mg/l				
Akalinity	mg/l				
TSS	mg/l	140	3	20	<2
Dissolved Oxygen	mg/l				
Conductivity	us/cm	21700	23700	25600	19240
COD	mg/l	3950	4720	5120	4420
pН	pH units	7.78	7.89	7.98	7.76
cyanide	mg/l	0.016	0.044	< 0.050	< 0.2
Flouride	mg/l	0.9	1.2	1.3	1.4
TON	mg/l	<5	<5	<5	6.68

Week No	Average	B.LP1 Level	B.LP3 Level	B.LP6 Level
		m(Ave)	m(Ave)	m(Ave)
1	Average	0.82	0.72	0.53
2	Average	0.77	0.66	0.43
3	Average	0.88	0.78	0.44
4	Average	0.7	0.61	0.6
5	Average	0.7	0.62	0.23
6	Average	0.8	0.73	0.53
7	Average	0.93	0.84	0.88
8	Average	0.92	0.84	0.73
9	Average	0.96	0.9	0.94
10	Average	1.01	0.93	0.98
11	Average	0.83	0.78	0.6
12	Average	0.68	0.65	0.48
13	Average	0.72	0.68	0.51
14	Average	0.65	0.61	0.49
15	Average	0.76	0.71	0.71
16	Average	0.74	0.67	0.64
17	Average	0.76	0.73	0.7
18	Average	0.69	0.67	0.76
19	Average	0.75	0.73	0.67
20	Average	0.76	0.74	0.65
21	Average	0.77	0.75	0.78
22	Average	0.89	0.82	0.81
23	Average	0.99	0.92	0.71
24	Average	1.04	0.63	0.87
25	Average	1.04	0.25	0.74

		B.LP1 Level	B.LP3 Level	B.LP6 Level
Week No	Average	m(Ave)	m(Ave)	m(Ave)
26	Average	1.03	0.25	0.76
27	Average	1.08	0.9	0.92
28	Average	1.09	0.93	0.9
29	Average	0.98	0.9	0.87
30	Average	0.96	0.89	0.89
31	Average	0.996	0.91	0.91
32	Average	0.97	0.88	0.8
33	Average	1.06	0.98	0.99
34	Average	1.11	1.04	0.83
35	Average	1.15	1.08	1
36	Average	1.18	1.1	0.71
37	Average	1.14	1.05	1.08
38	Average	1.07	1	0.89
39	Average	1.05	0.999	0.91
40	Average	0.97	0.95	0.76
41	Average	0.9	0.87	0.65
42	Average	0.96	0.93	0.71
43	Average	0.91	0.89	0.93
44	Average	0.9	0.88	0.71
45	Average	0.88	0.86	0.57
46	Average	0.59	0.6	0.58
47	Average	0.49	0.51	0.36
48	Average	0.6	0.61	0.54
49	Average	0.59	0.6	0.44
50	Average	0.51	0.53	0.43
51	Average	0.64	0.67	0.6
52	Average	0.88	0.9	0.85

Landfill Gas Data 2013

	Jan-13	Feb-13	Mar-13	Apr-13	May-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
CH4	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)				
G1	0.1	0	0	0	0	0	0	0	0	0	0	0
G2	0.2	0	0	0	0	0	0	0	0	0	0	0
G3	0	0	0	0	0	0	0	0	0	0	0	0
G4	0	0	0.1	0	0	0	0	0	0	0	0	0
G5	0	0	0	0	0	0	0	0	0	0	0	0
G6	0	0	0	0	0	0	0	0	0	0	0	0
G7	0	0	0	0	0	0	0	0	0	0	0	0
G8	0	0	0	0	0	0	0.1	0	0	0	0	0
G9	0	0	0	0	0.1	0	0.1	0	0	0	0	0
G10	0	0	0	0	0	0	0	0	0	0	0	0
G11	0	0	0	0	0	0	0.1	0	0	0	0	0
G14	0	0	0	0	Inaccessible	0	0	0	0	0	0	0
G15	0	0	0	0	Inaccessible	0	0	0	0	0	0	0
G16	0	0	0	0	Inaccessible	0	0	0	0	0	0	0

	Jan-13	Feb-13	Mar-13	Apr-13	May-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
CO2	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)				
G1	0	0.1	0.01	0.1	0	0.1	2.8	3.8	0	0.2	0.1	10.5
G2	0.3	0.2	0.9	0.5	0.1	0.1	0	2.1	0.1	0	0.4	0
G3	7.7	5.1	5.5	5.3	3.8	4.4	3.2	2.9	4	3.7	2.3	4.8
G4	8.1	5	6.4	0.3	3.5	3.47	3.7	2.8	4.2	3.6	3.3	4.7
G5	1.5	1.8	2.4	1.2	0.1	0.1	2.4	1.6	2.5	2.1	1.1	2.5
G6	6.2	3.5	6	1.8	1.5	1.7	3.7	2	2	2.4	2	3.7
G7	3.3	3	4.1	2.5	1.6	1.5	3.4	4.1	0.9	1.5	0.4	5.9
G8	5.4	4.6	3.8	3.2	0	0	4.6	4.3	1.4	0.6	1.6	4.7
G9	12.7	1.4	1	1.2	0.1	0.3	3.3	1.7	0.4	3.1	1.2	6.1
G10	13	2.9	5	0.3	0.1	0.1	0.2	0.3	0	0	0.2	0.6
G11	2.7	0.1	2.3	0	0	0	2.5	2.5	0	2	0.1	2.7
G14	4.8	4.4	4.5	2.7	Inaccessible	1.8	3.5	2.7	2.3	3.7	2.7	4.4
G15	1.3	2.6	2.3	1.8	Inaccessible	2	1.6	1.7	1.5	1	2.1	1.9
G16	1.1	0.7	0.7	0.5	Inaccessible	0.5	2.2	0.5	0.3	0.9	0.4	0.5

	Jan-13	Feb-13	Mar-13	Apr-13	May-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
02	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)	(% v/v)				
G1	19	21	20.7	20.7	20.9	20.7	17.1	16.3	20.9	20.5	21	6.9
G2	8.1	20.9	18	18	20.2	20.8	18.1	18.4	20.8	20.7	19.7	20.6
G3	13.2	18	16.7	16.7	15.3	17.4	15.6	18.5	16.1	15.6	18.4	14.8
G4	14	18	15.2	15.2	18	18.2	15.7	18.2	16.5	16.7	18.6	17.3
G5	19	19.2	18.4	18.4	20.8	20.6	16.8	18.9	18	18.3	19.2	18
G6	15	18.1	15.7	15.7	19.5	19.4	15.7	18.8	18.9	18.3	19.4	17.1
G7	18.8	19.5	18.2	18.2	20.1	19.8	15.8	14.2	19.8	19.2	20.7	17.6
G8	16.1	17.1	17.5	17.5	20.8	20.8	15.6	16.5	11.5	19.7	19.7	18.6
G9	17	19.8	20.4	20.4	21	20.7	16.4	18.6	20.5	13.7	20.3	15.5
G10	9.1	18.6	16.1	16.1	20.7	20.7	15.1	20.2	20.8	20.6	21	19.5
G11	17.7	20.9	18	18	20.8	20.8	16.6	17.5	20.8	18.2	21	18.3
G14	19.6	16.5	17	17	Inaccessible	19.5	16.4	18.1	19.1	19	18	16.4
G15	20.2	19.6	19.5	19.5	Inaccessible	19.5	18.7	18.4	19.7	20.1	19.5	19.5
G16	20.2	20.6	20.6	20.6	Inaccessible	20.5	17.1	20.2	20.2	20.2	20.8	20.7

Noise Data 2013

Station	Time	L _{Aeq 30 min} dB	L _{AF10 30 min} dB	L _{AF90 30 min} dB	Specific level* dB	Noise audible
N1A	1120- 1150	54	51	45	44	Gas engines continuously audible at low level, with audible hum, codominant with distant road traffic to SW. Sporadic road traffic outside entrance. Occasional bangs audible to NW at 1- 200 m. Bird song/calls, lightly rustling trees and aircraft. Local car movement through landfill entrance 1136-1137.
N2A	1008- 1038	51	47	44	44	Gas engines continuously audible at low level, with audible hum, not intrusive. No other site emission audible. Distant traffic noise generally masked by gas engines. Sporadic local road traffic outside boundary dominant when present. Bird song/calls, aircraft and lightly rustling vegetation.
N3A	0932- 1002	43	46	38	<38	No site emissions audible. Rustling trees significant. Bird song/calls, aircraft, distant dog barking and distant traffic all variously significant. Agri-machinery or quarry plant audible from time to time in distance to SW.
N4A	0857- 0927	45	48	39	<39	No facility emissions audible. Distant road traffic noise to SW continuously audible, codominant with local rustling vegetation. Intermittent traffic to S and SE also audible. Bird song/calls, aircraft and distant dog barking.
N5A	0818- 0848	44	46	42	<42	No facility emissions audible. Distant traffic noise to SW continuously audible and dominating noise environment. Dog barking audible at several locations to SE. Bird song/calls, aircraft and rustling vegetation.
N6A	1047- 1117	50	54	41	<41	Gas engines faintly discernible, almost entirely masked by continuously dominant road traffic noise to SW. Bird song/calls, aircraft, rustling vegetation and occasional agri-machinery or quarry emissions or similar in distance. Tractor in field outside site boundary dominant 1053-1110.
N8A	1155- 1225	61	53	43	<43	No facility emissions audible. Road traffic continuously audible to SW, W and NW, and dominant. Bird song/calls, aircraft and rustling vegetation. Sporadic local road traffic dominant when present. Emissions slightly audible occasionally from quarry to W and/or or NW.
N12A	1341- 1411	61	57	41	<41	No facility emissions audible. Rustling trees occasionally dominant as local area is heavily wooded. Distant road traffic noise to W continuously audible at low level. Sporadic local traffic dominant when present. Bird song/calls. Occasional banging noise emissions audible to NW, most likely quarry related or similar.
N14A	1305- 1335	49	49	39	<39	No site emissions audible. Sporadic local road traffic dominant when present. Traffic on distant roads audible at low level. Rustling vegetation significant at times. Bird song/calls and aircraft. Distant quarry noise or similar slightly audible. Strimmer audible at several hundred metres from time to time.
N16A	1230- 1300	54	50	43	<43	No site emissions audible. Noise audible from distant traffic, rustling trees, bird song/calls, distant dog barking and distant agri-machinery or similar. Sporadic local traffic dominant when present.

Dust Data 2013

Sample Location	Units	June	August	November
Jar 1	Mg/m2/day	116.7	776	5.36
Jar 2	Mg/m2/day	39.94	69	21.97
Jar 3	Mg/m2/day	49.79	122	303.32
Jar 4	Mg/m2/day	76.24	*	167.74
Jar 5	Mg/m2/day	454.88	91	84.67
Jar 6	Mg/m2/day	*	154	90.03

* Jar Damaged

APPENDIX 3

E-PRTR Returns

Guidance to completing the PRTR workbook

AER Returns Workbook

Version 1.1.18

REFERENCE YEAR 2013

1. FACILITY IDENTIFICATION

ſ

1. FACILITY IDENTIFICATION	
Parent Company Name	Kilcullen Landfill Limited
Facility Name	
PRTR Identification Number	W0081
Licence Number	W0081-04
	· ····
Waste or IPPC Classes of Activity	
	class name
	Specially engineered landfill, including placement into lined discrete
	cells which are capped and isolated from one another and the
3.5	environment.
	Deposit on, in or under land (including landfill).
0.1	Blending or mixture prior to submission to any activity referred to in a
3.11	preceding paragraph of this Schedule.
3.11	preceding paragraph of this Schedule.
	Storage prior to submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending
0.10	
3.13	collection, on the premises where the waste concerned is produced.
	Storage of waste intended for submission to any activity referred to in
	a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
-	produced.
	Recycling or reclamation of metals and metal compounds.
	Recycling or reclamation of other inorganic materials.
	Brownstown and Carnalway
Address 2	
	Co. Kildare
Address 4	
	Kildare
Country	
Coordinates of Location	
River Basin District	
NACE Code	
	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	
AER Returns Contact Email Address	
AER Returns Contact Position	
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number	
Production Volume	0.0
Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	
Number of Employees	3
User Feedback/Comments	
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
5(d)	Landfills
5(c)	Installations for the disposal of non-hazardous waste
5(d)	Landfills
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 200	02)
Is it applicable?	No
Have you been granted an exemption ?	
If applicable which activity class applies (as per	
Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being	
used ?	
4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site

4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site
Do you import/accept waste onto your site for on-	
site treatment (either recovery or disposal	
activities) ? No	0

This question is only applicable if you are an IPPC or Quarry site

4.1 RELEASES TO AIR Link to previous years emissions data

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

		RELEASES TO AIR	Please enter all quantities in this section in KGs								
		POLLUTANT	METHOD					QUANTITY			
				N	lethod Used	Flare 1 2,500	Engines GE 01, 02 & 03				
	No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	Emission Point 2		A (Accidental) KG/Year	F (Fu KG/Y	ugitive) Year
					Gas sim model 2011					-	
C	03	Carbon dioxide (CO2)	С	OTH	figures	0.0	0.0	3200000.0	0	.0	32000000.0
					Gas sim model 2011						
C)1	Methane (CH4)	С	OTH	figures	0.0	0.0	4300000.0	0	.0	4300000.0
C	2	Carbon monoxide (CO)	М	EN 15058:2004	horiba 250	77.55	7635.94	7713.49	0	.0	0.0
C	8	Nitrogen oxides (NOx/NO2)	М	EN 14792:2005	horiba 250	71.11	3142.93	3214.04	0	.0	0.0
1		Sulphur oxides (SOx/SO2)	М	EN 14792:2005	horiba 250	1759.0	5070.71	6829.71	0	.0	0.0
					Signal FID 3030PM and						
C	17	Non-methane volatile organic compounds (NMVOC)	М	ALT	TNMHC analyser	0.0	58.67	58.67	0	.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

		Please enter all quantities in this section in KGs							
POLLUTANT			N	NETHOD	QUANTITY				
			Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Ye	ar F (Fugitive) KG/Year	
					0.0		0.0	0.0 0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	Please enter all quantities in this section in KGs							
	METHOD			QUANTITY				
				Method Used				
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0)	0.0 0.0	0.0

Additional Data Requested from Land	fill operators					
or utilised on their facilities to accompany the figures for t	Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared ola methane generated. Operators should only report their Net methane (CH4) emission to the celfic PRTR pollutants above. Please complete the table below:					
Landfill:						
Please enter summary data on the quantities of methane flared and / or						
utilised			Met	hod Used		
				Designation or	Facility Total Capacity m3	
	T (Total) kg/Year	M/C/E	Method Code	Description	per hour	
Total estimated methane generation (as per				Gas Sim model 2011		
site model)	430000.0	С	other	figures	N/A	
Methane flared	479407.0	С	calculated	EPA-Bernard hyde model	2500.0	(Total Flaring Capacity)
Methane utilised in engine/s	2448811.0	С	calculated	EPA-Bernard hyde model	1800.0	(Total Utilising Capacity)
Net methane emission (as reported in Section						
	430000.0	С	other	Gas Sim model 2011 figures	N/A	

4.2 RELEASES TO WATERS

Link to previous years emissions data

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS Data on ambient monitoring of storm/surface water or groundwater, conducted as part of your licence requirements, should NOT be submitted under AER / PRTR Reporting as this or this section in KG RELEASES TO WATERS POLLUTANT QUANTITY Method Used No. Annex II Name M/C/E Method Code Designation or Description Emission Point 1 T (Total) KG/Year A (Accidental) KG/Year F (Fugitive) KG/Year 0.0 0.0 0.0 0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

RELEASES TO WATERS					Please enter all quantities in this section in KGs					
POLLUTANT					QUANTITY					
				Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
					0.0	0 0.	0 0.0) 0.0		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RELEASES TO WATERS		Please enter all quantities in this section in KGs QUANTITY								
POLLUTANT											
				Method Used							
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year			
					0.	0 0	0.0 0.0	0.0			

4.3 RELEASES TO WASTEWATER OR SEWER

Link to previous years emissions data

| PRTR# : W0081 | Facility Name : | Filename : W0081_2013.xls | Return Year : 2013 |

13/06/2014 12:02

SECTION A : PRTR POLLUTANTS

OFFSITE T	RANSFER OF POLLUTANTS DESTINED FOR WASTE-W	ATER TRE	EATMENT OR SEWER		Please enter all quantities in this section in KGs					
POLLUTANT			METHO	OD	QUANTITY					
			Me	thod Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Yea	F (Fugitive) KG/Year		
					0.0)	0.0 0	.0 0.0		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR	ATMENT OR SEV	VER	Please enter all quantities in this section in KGs						
POLLUTANT			M	ETHOD	QUANTITY					
				Method Used						
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
						0.0	0.0 0.0	0.0		

4.4 RELEASES TO LAND

Link to previous years emissions data

SECTION A : PRTR POLLUTANTS

				Please enter all quantities	is				
POLLUTANT		METHOD						QUANTITY	
			Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Ac	ccidental) KG/Year	
					0.0)	0.0	0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

		RELEASES TO LAND				Please enter all quant	Gs		
POLLUTANT				METHO	D		QUANTITY	QUANTITY	
			Method Used						
Pollutant No.	Name	M/C	C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accident	tal) KG/Year
							0.0	0.0	0.0

5. ONSITE TREATMENT & OFFSITE TRANSFERS OF WASTE PRTR# : W0081 Facility Name : Filename : W0081_2013.xis Return Year : 2013 13/06/2014 12:02 Please enter all quantities on this sheet in Tonnes 3												
Transfer Destination	European Waste Code	Hazardous	Quantity (Tonnes per Year)	Description of Waste	Waste Treatment Operation		Method Used	Location of Treatment	<u>Haz Waste</u> : Name and Licence/Permit No of Next Destination Facility <u>Non</u> <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	<u>Haz Waste</u> : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZAROUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
	•									Kildare County Council Headquarters		
Within the Country	19 07 03	No		landfill leachate other than those mentioned in 19 07 02	D8	с	Volume Calculation			, , , ,Aras Chill Dara Devoy Park Naas Co. Kildare		

* Select a row by double-clicking the Description of Waste then click the delete button

Link to previous years waste data Link to previous years waste summary data & percentage change Link to Waste Guidance