Facility Information Summary	,			
AER Reporting Year	2013]	
	W0184-			
Licence Register Number	01			
Name of site		Enva	a Ireland Limited	
Site Location	Clonmina	ın Industri	ial Estate, Portlaoise, Co. Loias	
NACE Code			3832	
	Fourth Schedule - Cla	ss 6, Class	s 7, Class 12, Class 13.	
	Third Schedule - Class	s 2, Class 4	4, Class 5, Class 8, Class 9, Class 11, Class	
	12, Class 13.			
Class/Classes of Activity				
National Grid Reference (6E, 6 N)		24	461 E, 1978 N	
A description of the activities/processes at the site for the reporting year. This should include information such as production increases or decreases on site, any infrastructural changes, environmental performance which was measured during the reporting year and an overview of compliance with your licence <u>listing all exceedances of licence</u> <u>limits (where applicable) and what they</u> relate to e.g. air, water, noise.	contaminated wastes site for recovery or d No ELVs were breach	, and pain isposal. No ed during	o significant change has occurred in the op	ckages (barrels, ASPs, IBCs, etc.) prior to transfer off erations carried out onsite or to site infrastructure. quantities accepted onsite was subject to availability

Declaration:

All the data and information presented in this report has been checked and certified as being accurate. The quality of the

information is assured to meet licence requirements.
Donal Conroy
31.03.2014
Signature
Date
Group/Facility manager
(or nominated, suitably qualified and
experienced deputy)

AIR-summary template	Lic No:	W0184-01	Year	2013
Answer all questions and complete all tables where relevant				
			Additional information	
Does your site have licensed air emissions? If yes please complete table A1 and A2 below for the current reporting year and answer further questions. If you do not have licenced emissions and do not complete a solvent management plan (table A4 and A5) you <u>do not</u> need to complete the tables	Yes			

	Periodic/Non-Continuous Monitoring					
2	Are there any results in breach of licence requirements? If yes plea below	No				
3	Was all monitoring carried out in accordance with EPA guidance note AG2 and using the basic air monitoring checklist?	<u>Basic air</u> monitoring <u>checklist</u>	AGN2	Yes	Yes Wright Environmental Services carry out emission monitoirng based on the AG" standard.	

Table A1: Licensed Mass Emissions/Ambi ent dataperiodic monitoring (noncontinuous)

										Comments - reason for
										change in %
										mass load
										from
			ELV in licence							previous
Emission			or any revision		Measured		Compliant with	Method of		year if
reference no:	Parameter/ Substance	Monitoring	therof	Licence Compliance criteria	value	Unit of measurement	licence limit	analysis	Annual mass load (kg)	applicable
					3					
A-01	Carbon monoxide (CO)	Annually	N/A	No 30min mean can exceed the ELV		mg/Nm3	yes	EN 15058:2004	1.379	N/A
					<5					
A-01	Sulphur oxides (SOx/SO2)	Annually	N/A	No 30min mean can exceed the ELV		mg/Nm3	yes	EN 14791:2005	2.298	8 N/A
					94					
A-01	Nitrogen oxides (NOx/NO2)	Annually	N/A	No 30min mean can exceed the ELV		mg/Nm3	yes	EN 14792:2005	43.22	N/A
					83.6					
A-01	Combustion Efficiency	Annually	N/A	No 30min mean can exceed the ELV		%	ves	I.S. EN 13284		N/A
			Yes - 350		145.08			Method VDI 2119		
DP1	Dust	Quarter 1	mg/m ² /day	Monitoring to occur 4 times a year		mg/m2/Year	yes		0.0529 Kg/m2/Year	N/A
			Yes - 350		67.9		1	Method VDI 2119		,
DP2	Dust	Quarter 1	mg/m ² /day	Monitoring to occur 4 times a year		mg/m2/day	yes		0.0247 Kg/m2/Year	N/A
012	Dust		Yes - 350	Monitoring to occur 4 times a year	49.37		[``	Standara	0.0247 (g/112/168)	11/1
000	D							Method VDI 2119	0.0100 //. (
DP3	Dust	Quarter 1	mg/m²/day	Monitoring to occur 4 times a year	308.95	mg/m2/day	yes	Part 2,	0.0180 Kg/m2/Year	N/A
			Yes - 350					Method VDI 2119		
DP1	Dust	Quarter 2	mg/m²/day	Monitoring to occur 4 times a year		mg/m2/day	yes	Part 2,	0.1127 Kg/m2/Year	N/A
			Yes - 350		90.76			Method VDI 2119		
DP2	Dust	Quarter 2	mg/m ² /day	Monitoring to occur 4 times a year		mg/m2/day	yes	Part 2,	0.0331 Kg/m2/Year	N/A

AIR-summa	ry template				Lic No:	W0184-01		Year	20	13
			Yes - 350		48.06	6		Method VDI 2119		
DP3	Dust	Quarter 2	mg/m²/day	Monitoring to occur 4 times a year		mg/m2/day	yes		0.0175 Kg/m2/Year	N/A
			Yes - 350		87.52	2		Method VDI 2119		
DP1	Dust	Quarter 3	mg/m²/day	Monitoring to occur 4 times a year		mg/m2/day	yes	Part 2,	0.0319 Kg/m2/Year	N/A
			Yes - 350		66.2			Method VDI 2119		
DP2	Dust	Quarter 3	mg/m²/day	Monitoring to occur 4 times a year		mg/m2/day	yes	Part 2,	0.0241 Kg/m2/Year	N/A
			Yes - 350		149.79			Method VDI 2119		
DP3	Dust	Quarter 3	mg/m²/day	Monitoring to occur 4 times a year		mg/m2/day	yes	Part 2,	0.0546 Kg/m2/Year	N/A
			Yes - 350		63.84	,		Method VDI 2119		
DP1	Dust	Quarter 4	mg/m²/day	Monitoring to occur 4 times a year		mg/m2/day	yes	Part 2,	0.0233 Kg/m2/Year	N/A
			Yes - 350		52.23	5		Method VDI 2119		
DP2	Dust	Quarter 4	mg/m ² /day	Monitoring to occur 4 times a year		mg/m2/day	yes	Part 2,	0.0190 Kg/m2/Year	N/A
			Yes - 350		42.36	5		Method VDI 2119		
DP3	Dust	Quarter 4	mg/m ² /day	Monitoring to occur 4 times a year		mg/m2/day	yes	Part 2,	0.01546 Kg/m2/Year	N/A
	SELECT			SELECT		SELECT	SELECT	SELECT		

Note 1: Volumetric flow shall be included as a reportable parameter

AIR-summary template	Lic No:	W0184-01	Year	2013
Continuous Monitoring				
4 Does your site carry out continuous air emissions monitoring?	No			

N/A

N/A

4 Does your site carry out continuous air emissions monitoring?

If yes please review your continuous monitoring data and report the required fields below in Table A2 and compare it to its relevant Emission Limit Value (ELV)

⁵ Did continuous monitoring equipment experience downtime? If yes please record downtime in table A2 below

6

Do you have a proactive service agreement for each piece of continuous monitoring equipment?

7 Did your site experience any abatement system hynasses? If yes please detail them in table A3 below

	id your site experience any ab nary of average emissions -co		ses? If yes please	detail them in table A3 below	N/A	J				
	· · ·									•
Emission	Parameter/ Substance		Averaging	Compliance Criteria	Units of	Annual Emission	Annual maximum	Monitoring	Number of ELV	Comments
reference no:			Period		measurement			Equipment	exceedences in current	
		ELV in licence or any						downtime (hours)	reporting year	
		revision therof								
	SELECT			SELECT	SELECT					
	SELECT				SELECT					
	SELECT				SELECT					
	SELECT				SELECT					
	SELECT				SELECT					

note 1: Volumetric flow shall be included as a reportable parameter.

Bypass protocol Table A3: Abatement system bypass reporting table

Tubic AS. Abut	ciliciti system sypuss reportin	5 tubic			
Date*	Duration** (hours)	Location	Reason for bypass	Impact magnitude	Corrective action

* this should include all dates that an abatement system bypass occurred

** an accurate record of time bypass beginning and end should be logged on site and maintained for future Agency inspections please refer to bypass protocol link

AIR-summary ter	mplate				Lic No:	W0184-01		Year	2013
So	olvent use and management	on site							
Do you have a to	tal Emission Limit Value of dir	ect and fugitive emissi	ons on site? if yes	please fill out tables A4 and A5					
Table A4: Solven	t Management Plan Summar	v Total VOC Emission	Solvent	Please refer to linked solvent regulations t	o complete table	1	No		
limit value		,	regulations	5 and 6					
Reporting year	Total solvent input on site	Total VOC emissions	Total VOC		Compliance	ł			
Reporting year	(kg)	to Air from entire	emissions as		compliance				
		site (direct and	%of solvent						
		fugitive)	input	Total Emission Limit Value (ELV) in licence					
				or any revision therof					
					SELECT	-			
					SELECT				
Tabl	le A5: Solvent Mass Balance s	summary							
	(I) Inputs (kg)			(O) Outpu	uts (kg)				
Solvent		Organic solvent	Solvents lost in	Collected waste solvent (kg)	Fugitive Organic	Solvent released in	Solvents	Total emission of	•
Sourcent	(I) Inputs (kg)	emission in waste	water (kg)		Solvent (kg)	other ways e.g. by-	destroyed onsite		
									1
									•
					I				
							Total		

		late-WATER/WASTEWATER(SEWER)				Lic No:	W0184-01		Year	20
res	No					Additional information				
	nt reporting year and answ	direct to surface water or direct to sewer er further questions. If you do not have li nd or W2 for storm water analysis and vi	I							
		o carry out visual inspections on any surfa W2 below summarising <u>only any evidence</u>	Ī							
your mer n		water monitoring			No				1	
		water montoring			ELV or trigger			1		
Location reference	Location relative to site activities	PRTR Parameter	Licenced Parameter	Monitoring date	level in licence or any revision thereof*	Licence Compliance criteria	Measured value	Unit of measurement	Compliant with licence	Comments
SW01				04/02/2013	15 mg/L		1210			During a site inspection with Erwa's designated EPA inspector, Ms Joan Fogarty adviced is avoid be asticilizatory to enter the highest result for each parameter required as p Econor W026+01, for the reporting 2021 year. The results have already been submitte a quarterly basis and no breakeds of EVV socurred.
	onsite		Fats, Oils and Greases			All values < ELV		H8/L	yes	
SW01	onsite		eH	04.11.2013	N/A	All values < ELV	9.3	pH units	ves	During a site inspection with Enva's designated EPA inspector, Ms Ioan Fogarty advise it would be satisfactory to enter the highest result for each parameter required as a licence W0184-01, for the reporting 2013 year. The results have already been submitt a quarterly basis and no breaches of ELV's occurred.
SW01	onsibe		COD	02.07.2013	250 mg/L	All values < ELV	244	mg/L	yes	During a site inspection with Enval's designated EPA inspector, Ms Joan Fogarty advise it would be satisfactory to enter the highest nestific for each parameter required as a Ecence W0184-01, for the reporting 2013 year. The results have already been submitts a quarterly basis and no breaktes of ELV's occurred.
SW01	onsite		Suspended Solids	10.12.2013	60 mg/L	All values < ELV	55.66	mg/L	yes	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advise it would be satisfactory to enter the highest result for each parameter required as Econce W0184-01, for the reporting 2013 year. The results have already been submitt a quarterly basis and no breaches of ELV's occurred.
SW01	onsibe		Mineral oils	05.03.2013	5 mg/L	All values < ELV	<1000	HR/L	yes	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advise it would be satisfactory to enter the highest result for each parameter required as Ecence W0184-01, for the reporting 2013 year. The results have already been submitt a quarterly basis and no breaches of ELV's occurred.
SW02	onsite		Fats, Oils and Greases	N/A	N/A	All values < ELV	N/A	N/A	N/A	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advise it would be satisfactory to enter the highest result for each parameter required as licence W0184-01, for the reporting 2013 year. The results have already been submitt a quarterly basis and no breaches of ELV's occurred.
SW02	onsite		eH	23.01.2013	N/A	All values < ELV	8.29	pH units	yes	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advise it would be satisfactory to enter the highest result for each parameter required as licence W0184-01, for the reporting 2013 year. The results have already been submitt a quaterty basis and no breaches of ELV's occurred.
SW02	onsite		COD	26.02.2013	250 mg/L	All values < ELV	173	me/L	VES	During a site inspection with Enval's designated EPA inspector, Ms Joan Fogarty advise it would be satisfactory to enter the highest result for each parameter required as Ecence W0184-01, for the reporting 2013 year. The results have already been submit a quarterly basis and no breaktes of EVs occurred.
SW02	onsite		Suspended Solids	11.11.2013	60 mg/L	All values < ELV	59	me/L	ves	During a site inspection with Enva's designated EPA inspector, Ms Ioan Fogarty advis it would be satisfactory to enter the highest result for each parameter required as Ecence W018-01, for the reporting 2013 year. The results have already been submit a quarterly basis and no breaknes of EV's occurred.
SW02	00588		Mineral oils	05.03.2013	5 mg/L	All values < ELV	<1000	140/L	ves	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advise is would be satisfactory to enter the highest result for each parameter required as Ecence W0184-01, for the reporting 2013 year. The results have already been submit a quarterly basis and no breaches of ELVs occurred.

*trigger values may be agreed by the Agency outside of licence conditions

	Table W2 Visual inspections-Please only enter details where contamination was observed.													
Location Reference	Date of inspection	Description of contamination				Source of contamination Corrective action			on Comments					
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				

Licensed Emissions to water and /or wastewater(sewer)-periodic monitoring (non-continuous)

Licensed Emissions to water and /or wastewater(sewer)-periodic monitoring (non-continuous)		
3 Was there any result in breach of licence requirements? If yes please provide brief details in the comment section of Table W3 below	No	Additional information
Was all monitoring carried out in accordance with EPA guidance and checklists External Internal Lab. Assessment of		
4 for Quality of Aqueous Monitoring Data Reported to the EPA? If no please detail Quality checklist results checklist	Yes	
Table W3: Licensed Emissions to water and /or wastewater (sewer)-periodic monitoring (non-continuous)		

Emission reference no:	Emission released to	Parameter/ SubstanceNote 1	Type of sample	Frequency of monitoring	Averaging period	ELV or trigger values in licence or any revision therof ^{Name 2}	Licence Compliance criteria	Measured value	Unit of measurement	Compliant with licence	Method of analysis	Procedural reference source	Procedural reference standard number	Annual mass load (kg)	Comments
FS1	Wastewater/Sewer	рН	composite	12/02/2013	24 hour	6-85	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	8.64	pH units	no (if no please enter details in comments box)	pH Meter (Electrode)	As per manufacturers guide	50P 1134		During a classing control to the involution of the control of the second
FS1	Wastewater/Sewer	Temperature	composite	13/08/2013	24 hour	43	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	41.71	degrees C	yes	Temperature Probe	SCADA	SCADA		During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0384:01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.
FS1	Wastewater/Sewer	Suspended Solids	composite	18/10/2013	24 hour	400 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	385	mg/L	yes	Gravimetric analysis	APHA / AWWA "Standard Methods"	SOP 1291	480.79	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per leaves W0384-01, for the reporting 2013 year. The results have already been submitted on a quartery basis and no breachest of EVA socurred.
FS1	Wastewater/Sewer	Ammonia (as N)	composite	30/10/2013	24 hour	80 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	70.5	mg/L	yes	Spectrophotometry (Colorimetry)	APHA / AWWA "Standard Methods"	SOP 1245	270.15	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per lecence WOI38-01, for the reporting 2013 year. The results have already been submitted on a quartery basis and no breachest of EVX occurred.
FS1	Wastewater/Sewer	Chlorides (as Cl)	composite	28/05/2013	24 hour	6000 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	3080	mg/L	yes	Titration	APHA / AWWA "Standard Methods"	SOP 1028	12147.08	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per leaved WOI38-01, for the reporting 2013 year. The results have abready been submitted on a quarterfy basis and no breachest of EV/s occurred.
FS1	Wastewater/Sewer	Copper and compounds (as Cu)	composite	07/08/2013	24 hour	1 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	0.08	mg/L	yes	AAS (Atomic Absorption Spectroscop	APHA / AWWA "Standard Methods"	SOP 1247	0.1048	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per leaved WOI38-01, for the reporting 2013 year. The results have abready been submitted on a quarterfy basis and no breachest of EV/s occurred.
FS1	Wastewater/Sewer	Lead and compounds (as Pb)	composite	10/04/2013	24 hour	0.5 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	0.2	mg/L	yes	AAS (Atomic Absorption Spectroscop	APHA / AWWA "Standard Methods"	SOP 1247	0.19	During a site inspection with Enva's designated EPA inspector, Ms Jean Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per letence W0184-01, for the reporting 2013 year. The results have abready been submitted on a quarterfy basis and no breachest of EVV occurred.
FS1	Wastewater/Sewer	Zinc and compounds (as Zn)	composite	27/02/2013	24 hour	1 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	0.538	mg/L	yes	AAS (Atomic Absorption Spectroscop	APHA / AWWA "Standard Methods"	SOP 1247	1.111	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per lecence WO184-01, for the reporting 2013 year. The results have already been submitted on a quarterfy basis and no breachest of EVX occurred.
FS1	Wastewater/Sewer	Cadmium and compounds (as Cd)	composite	26/06/2013	24 hour	0.15 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	0.02	mg/L	yes	AAS (Atomic Absorption Spectroscop	APHA / AWWA "Standard Methods"	509 1247	0.0421	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0384:01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.
FS1	Wastewater/Sewer	COD	composite	04/12/2013	24 hour	280Kg/day	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	259	mg/L	yes	Spectrophotometry (Colorimetry)	APHA / AWWA "Standard Methods"	50P 1241	21847.52	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence W0384:01, for the reporting 2013 year. The results have already been submitted on a quarterly basis and no breaches of ELV's occurred.

8

دهم الجام الحالي الحالي												
composite	23/12/2013	24 hour	50 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	36.7	mg/L	yes	Spectrophotometry (Colorimetry)	APHA / AWWA "Standard Methods"	SOP 1289	96.272	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per Konce W038-01, for the reporting 2023 year. The results have advance been solutified on a quarterly basis and no breaches do EUV occurred.
composite	22/05/2013	24 hour	1000 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	420	mg/L	yes	Spectrophotometry (Colorimetry)	APHA / AWWA "Standard Methods"	SOP 1032	495.33	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per leance W0284-01, for the resporting 2023 year. The results have alwaped bees submitted on a quarterly basis and no breakshed EVL's occurred.
composite	09/01/2013	24 hour	100 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	88.8	mg/L	yes	Soxhiet Extraction Apparatus	APHA / AWWA "Standard Methods"	SOP 1050	90.283	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per licence WOIS4-03, for the reporting 2023 year. The rolits have abready been submitted on a quarterly basis and no breachest of LV's occurred.
composite	27/02/2013	24 hour	150 mg/L	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	134	mg/L	yes	Spectrophotometry (Colorimetry)	APHA / AWWA "Standard Methods"	SOP 1246	512	During a site inspection with Enw3's designated EPA inspector, Ms Joan Fogurty advised that it would be satisfactory to enter the highest result for each parameter required as per leave WDIS8-01, for the reporting 2013 year. The results have abready been submitted on a quarterly basis and no breachest of EV/s occurred.
composite		24 hour	50 m3/day	All results < 1.2 times ELV, plus 8 from ten results must be < ELV	48.85	m3/day	yes	SCADA	APHA / AWWA "Standard Methods"	SCADA	6678100	During a site inspection with Enva's designated EPA inspector, Ms Joan Fogarty advised that it would be satisfactory to enter the highest result for each parameter required as per leaved WO38-01, for the reporting 2013 year. The results have already been submitted on a quarterly holicit and no breachest of EVVs occurred.
	composite composite composite	composite 22/05/2013 composite 09/05/2013 composite 27/02/2013	Companie 2.4 to Control 2.4 to Control Compacitie 2.205/2013 2.4 hour Compacitie 06/01/2013 2.4 hour Compacitie 2.702/2013 2.4 hour	Companie 2 K unicol 2 Max A may be compacie 22/05/213 24 Near 300 mg/L compacie 00/02/2013 24 Near 300 mg/L compacie 02/02/2013 24 Near 300 mg/L compacie 02/02/2013 24 Near 300 mg/L	compacing 21/12/2013 24 Nort Somple Efforts the result must be city compacing 22/05/2013 24 Nort 3000 mg/L Afforts 12 Sees EU (b) Efforts the result must be city compacing 00/01/2013 24 Nort 3000 mg/L Afforts 12 Sees EU (b) Efforts the result must be city compacing 00/01/2013 24 Nort 300 mg/L Afforts 12 Sees EU (b) Efforts the result must be city compacing 27/02/2013 24 Nort 150 mg/L Afforts 12 Sees EU (b) Efforts the result must be city compacing 27/02/2013 24 Nort 90.01/02 Afforts 14 2 Sees EU (b) Efforts the result must be city compacing 21/02/2013 24 Nort 90.01/02 Afforts 14 2 Sees EU (b) Efforts the result must be city	Companie 24/12/2013 24 Noor Stimulty Bit tool the result, must be rice v 36.7 Companie 22/05/2013 24 Noor 1000 mg/L Affrests 1:32 thensit 1:24 thensit 4:EV 400 Companie 00(01/2013 24 Noor 300 mg/L Affrests 1:32 thensit 1:24 thensit 4:EV 68.8 Companie 00(01/2013 24 Noor 300 mg/L Affrests 1:32 thensit 1:24	composite 24/12/2013 24 Novi Storm y/L Encomposite Storm y/L Bit on the result must be etcly Stor mg/L composite 22/05/2013 24 Novi 2000 mg/L Affress to results to assess V/L galax 4400 mg/L composite 09/01/2013 24 Novi 2000 mg/L Affress to results to assess V/L galax 88.3 mg/L composite 09/01/2013 24 Novi 100 mg/L Affress to results to assess V/L galax 88.3 mg/L composite 29/01/2013 24 Novi 100 mg/L Affress to results to assess V/L galax 88.3 mg/L composite 29/01/2013 24 Novi 100 mg/L Affress to results to assess to a sector to assess to a sector to assess to a sector to assessments to a sector to assessto to assessments to a sector to assessments to a se	Companie 24 /12/2011 24 Nort Storm (L) Bit on an unuul mut to etc. Stor mg/L wys Companie 20/05/2011 24 Nort 2000 mg/L Affresster, 42 zmest V/g in Bit hom in unuul mut to etc. 4500 mg/L wys Companie 09(01/2013 24 Nort 3000 mg/L Affresster, 42 zmest V/g in Bit hom in unuul mut to etc. 68.9 mg/L wys Companie 09(01/2013 24 Nort 300 mg/L Affresster, 42 zmest V/g in Bit hom in unuul mut to etc. 68.9 mg/L wys Companie 29(02/2013 24 Nort 150 mg/L Affresster, 42 zmest V/g in Bit hom in unuul mut to etc. 68.9 mg/L wys Companie 29(02/2013 24 Nort 150 mg/L Affresster, 42 zmest V/g in Bit hom in unuul mut to etc. 154 mg/L wys	Compositie 24 Y02001 24 Nort Storm (1) Bit IDM must be cetted 35.7 mg/L mg/L per standbolument (2) Compositie 20/022011 24 Nort Storm (2) Storm (2) <t< td=""><td>Compositie 21/12/2011 All Not Compositie Filter the source much with W Size mg/L <thmg l<="" th=""> mg/L mg/L <t< td=""><td>Companie 241/2021 24 Nor Solution <</td><td>Company 2V12/201 AMode Solution (Second) Amode (Second) Solution (Second) Montol (Second) <th< td=""></th<></td></t<></thmg></td></t<>	Compositie 21/12/2011 All Not Compositie Filter the source much with W Size mg/L mg/L <thmg l<="" th=""> mg/L mg/L <t< td=""><td>Companie 241/2021 24 Nor Solution <</td><td>Company 2V12/201 AMode Solution (Second) Amode (Second) Solution (Second) Montol (Second) <th< td=""></th<></td></t<></thmg>	Companie 241/2021 24 Nor Solution <	Company 2V12/201 AMode Solution (Second) Amode (Second) Solution (Second) Montol (Second) <th< td=""></th<>

AER Monitoring returns summary	template-WATER/WASTEWATER(SEWER)				Lic No:	W0184-01		Year	2013	I contraction of the second
Continuous monitoring Does your site carry out continuo	us emissions to water/sewer monitoring?			No	Additional Inform	tion		т		
If yes please summarise your con	Rease summarise your continuous monitoring data below in Table W4 and compare it to its relevant Emission Limit Value									
	nent experience downtime? If yes please reco		v	No						
	ntract for each piece of continuous monitorin			No				1		
	ur during the reporting year? If yes please cor	nplete table W5 below		No						
Table W4: Summary of average en	nissions -continuous monitoring									
			1					1		
Emission		ELV or trigger values in					% change +/- fro	ⁿ Monitoring		
Emission										
reference no: Emission released to	Parameter/ Substance	licence or any revision	Averaging Period	Compliance Criteria	Units of measurement	Annual Emission for current reporting year (kg)	previous reporti year	8 Equipment downtime (hours)	Number of ELV exceedences in reporting year	Comments
reference	Parameter/ Substance N/A	licence or any revision	Averaging Period N/A		Units of measurement N/A		year N/A			Comments N/A
reference no: Emission released to		licence or any revision thereof		Criteria		reporting year (kg)	year	downtime (hours)	Number of ELV exceedences in reporting year	

Table WS: Ab	Table WS: Abstement system bypass reporting table										
Date	Duration (hours)	Location	Resultant emissions				When was this report				
					action*		submitted?				
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Whenever takes or annound to under a Takit human framenau											

*Measures taken or proposed to reduce or limit bypass frequency

Bund/Pipeline testing template				Lic No:	W0184-01		Year	2013				
Bund testing	dropdown menu	u click to see options				Additional information						
Are you required by your licence to undertake	integrity testing on hunds and contain	nmont structures 2 if use places fill	out table D1 below listing all									
structures on site, in addition to all bunds wh												
nclude all bunds outside the licenced testin			s mobile bullus must be list	ted in the table below, please								
		2 melded)			Yes							
Please provide integrity testing frequency per	od				3 years							
Does the site maintain a register of bunds, un	derground pipelines (including stormv	water and foul), Tanks, sumps and c	ontainers? (containers refer	rs to "Chemstore" type units								
d mobile bunds)					Yes							
low many bunds are on site?						9						
w many of these bunds have been tested within the required test schedule?						8						
How many mobile bunds are on site?					1	7						
						Visual inspection and 6 hour hydrostatic test will be carried						
Are the mobile bunds included in the bund tes	t schedule?				No	out by Enva personnel in 2014.						
low many of these mobile bunds have been t	ested within the required test schedul	ie?				0						
low many sumps on site are included in the in	rtegrity test schedule?				1	2						
low many of these sumps are integrity tested	within the test schedule?					0 Sumps scheduled for inspection in February and March 2014						
Please list any sump integrity failures in tabl	e B1						_					
Do all sumps and chambers have high level liq	uid alarms?				No							
If yes to Q11 are these failsafe systems includ	ed in a maintenance and testing progr	amme?			N/A							
Is the Fire Water Retention Pond included in y	our integrity test programme?				No							
			-									
Table B1: Summary de	etails of bund /containment structure i	integrity test										
								Integrity reports				
Bund/Containment								maintained on		Integrity test failure		Scheduled date
structure ID Type	Specify Other type	Product containment	Actual capacity	Capacity required*	Type of integrity test	Other test type	Test date	site?	Results of test	explanation <50 words	Corrective action taken	for retest
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	opean) a men type			and a second sec	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
* Capacity required should comply with 25% or 110% containm						Commentary	1	1				
Has integrity testing been carried out in accor	Jance with licence requirements and a	are all structures tested in line with										
BS8007/EPA Guidance?			bunding and storage guide	elines	Yes							
Are channels/transfer systems to remote con					N/A							
Are channels/transfer systems compliant in b	oth integrity and available volume?				N/A							
Pipeline/underground structure testing												
Pipeline/underground structure testing							1					
Are you required by your licence to undertake	integrity testing* on underground str	uctures e.g. pipelines or sumps etc.	? if ves please fill out table 2	below listing all underground								
structures and pipelines on site which failed t					Yes							
Please provide integrity testing frequency per					3 years							
*please note integrity testing means water tig	ntness testing for process and foul pir	pelines (as required under your licer	nce)				1					
			-									
	ails of pipeline/underground structure	s integrity test						1			1	
Table B2: Summary det												
Table B2: Summary det												
Table B2: Summary det			Type of secondary									
Table B2: Summary det			Type of secondary									
Table B2: Summary det			containment				Integrity test					
Table B2: Summary det		Does this structure have			Integrity reports		Integrity test failure explanation	Corrective action	Scheduled date	Results of retest/if in current		
Structure ID Type system	Material of construction:	Does this structure have Secondary containment?		Type integrity testing	Integrity reports maintained on site?			Corrective action	Scheduled date for retest	Results of retest(if in current reporting year)		

Please use commentary for additional details not answered by tables/ questions above

Year

2013

		Comments	
Are you required to carry out groundwater monitoring as part of your licence requirements?	yes		Please provide an interpretation of groundwater monitoring data in the
2 Are you required to carry out soil monitoring as part of your licence requirements?	no		interpretation box below or if you require additional space please include a
Do you extract groundwater for use on site? If yes please specify use in comment			groundwater/contaminated land monitoring results interpretaion as an
⁵ section	no		additional section in this AER
Do monitoring results show that groundwater generic assessment criteria such as GTVs or IGVs are exceeded or is 4 there an upward trend in results for a substance? If yes, please complete the Groundwater Monitoring Guideline Template Report (link in cell G8) and submit separately through ALDER as a licensee return AND answer questions 5-12 below.	no		
5 Is the contamination related to operations at the facility (either current and/or historic)	SELECT		
6 Have actions been taken to address contamination issues? If yes please summarise			
remediation strategies proposed/undertaken for the site	SELECT		
7 Please specify the proposed time frame for the remediation strategy	SELECT		
8 Is there a licence condition to carry out/update ELRA for the site?	SELECT		
9 Has any type of risk assessment been carried out for the site?	yes		
10 Has a Conceptual Site Model been developed for the site?	SELECT		
11 Have potential receptors been identified on and off site?	SELECT		
12 Is there evidence that contamination is migrating offsite?	SELECT		Please find attached the Quarterly Reports carried out by RPS for 2013.

Table 1: Upgradient Groundwater monitoring results

Date of sampling	Sample location reference	Parameter/ Substance		Monitoring frequency	Maximum Concentration++	Average Concentration+	unit	GTV's*		Upward trend in pollutant concentration over last 5 years of monitoring data
N/A	N/A	N/A	N/A	N/A	N/A	N/A	SELECT	N/A	N/A	SELECT
N/A	N/A	N/A	N/A	N/A	N/A	N/A	SELECT	N/A	N/A	SELECT

.+ where average indicates arithmetic mean

.++ maximum concentration indicates the maximum measured concentration from all monitoring results produced during the reporting year

Table 2: Downgradient Groundwater monitoring results

Date of sampling	Sample location reference	Parameter/ Substance		Monitoring frequency	Maximum Concentration	Average Concentration	unit	GTV's*		Upward trend in yearly average pollutant concentration over last 5 years of monitoring data
sampling	Telefence	Substance	weinodology	irequericy	COncentration	Concentration	unit	6175	SELECT	of monitoring data
N/A	N/A	N/A	N/A	N/A	N/A	N/A	SELECT	N/A	N/A	SELECT
N/A	N/A	N/A	N/A	N/A	N/A	N/A	SELECT	N/A	N/A	SELECT

Groundwater/Soil monitoring template	Lic No:	W0184-01	Ŷ	ear	2013	3	
*please note exceedance of generic assessment criteria (GAC) such as a Groundu trend in results for a substance indicates that further interpretation of monitoring the Groundwater Monitoring Guideline Template Report at the link provided and s by the	results is requir ubmit separatel	ed. In addition to completing the above	able, please complete	<u>Grou</u>	ndwater monitc	oring template	
More information on the use of soil and groundwater standards/ generic assessme criteria (GAC) and risk assessment tools is available in the EPA published guidance (see the link in G31)		lance on the Management of Contar	ninated Land and Grour	ndwater at	EPA Licensed Sil	tes (EPA 2013).	
**Depending on location of the site and proximity to other sensitive receptors alter the GTV e.g. if the site is close to surface water compare to Surface Water Environ compare results to the Drinki	mental Quality S	tandards (SWEQS), If the site is close to	drinking water supply	<u>Surface</u> water EQS	<u>Groundwater</u> <u>regulations</u> <u>GTV's</u>	<u>Drinking water</u> (private supply) standards	Drinking water (public supply) standards

W0184-01

2013

Year

Table 3:	Soil results	
	Sample	

	Sample						
Date of	location	Parameter/		Monitoring	Maximum	Average	
sampling	reference	Substance	Methodology	frequency	Concentration	Concentration	unit
N/A	N/A	N/A	N/A	N/A	N/A	N/A	SELECT
N/A	N/A	N/A	N/A	N/A	N/A	N/A	SELECT

Where additional detail is required please enter it here in 200 words or less

Lic No:

	Environmental Liabilities template	Lic No:	W0184-01	Year
	Click here to access EPA guidance on Environmental Liabilities and Financial provision			
			Commentary	
1	ELRA initial agreement status			
		Submitted and not agreed by EPA;		
2	ELRA review status	Review required and not completed;		
3	Amount of Financial Provision cover required as determined by the latest ELRA	ELRA currently under review.		
4	Financial Provision for ELRA status	Submitted and not agreed by EPA;	Enva Ireland Limited (W0184-01) has currently submitted a revised ELRA for review and approval by the EPA. The proposed Financial Provision is currently	
5	Financial Provision for ELRA - amount of cover	ELRA currently under review.	determined to be €1,510,900. A meeting occurred on the 20/03/2014 to review the ELRA and Financial	
6	Financial Provision for ELRA - type	bond	Provision proposed. This Financial Provision may be subject to change depending on the findings of the	

ELRA currently under review.

Closure plan submitted and not agreed by EPA

Review required and not completed

Submitted and not agreed by EPA;

€278,760

bond 11/01/2015

7

8

9 10

11

12

13

Financial provision for ELRA expiry date

Closure plan initial agreement status

Closure plan review status

Financial Provision for Closure status

Financial Provision for Closure - amount of cover

Financial Provision for Closure - type

Financial provision for Closure expiry date

review.

To be determind.

Program	nme template		Lic No:	W0184-01	Year	2013
	Highlighted cells contain dropdown menu click to view		Additional Information		_	
1	Do you maintain an Environmental Mangement System (EMS) for the site. If yes, please detail in additional information	Yes				
2	Does the EMS reference the most significant environmental aspects and associated impacts on-site	Yes				
3	Does the EMS maintain an Environmental Management Programme (EMP) as required in accordance with the licence requirements	Yes				
4	Do you maintain an environmental documentation/communication system to inform the public on environmental performance of the facility, as required by the licence	No				

Environmental Management Programme (EMP) report

Objective Category	Target	Status (% completed)	How target was progressed	Responsibility	Intermediate outcomes
			There were no significant trends in non-conformances during the		
	Continue to monitor effluent and ensure parameters are met. Investigate		reporting year. The monitoring of the quality the quality of the		Increased compliance with
Improvement of the quality of effluent released from the site	treatment options for parameters not in compliance with the site licence.	Ongoing	effluent will continue.	HSE & Operations	licence conditions
Improvement of the quality of effuent released from the site Continue to monitor effuent and ensure param reatment options for parameters not in compl Groundwater protection Lipdate ground water risk assessment for the si Review quality of self-monitoring compliance data Review quality of self-monitoring co	Update ground water risk assessment for the site.	100%	This was completed in 2013.	HSE	licence conditions
			Current performances against ERA inter-calibration samples are to be		
	update ground water risk assessment for the site. 1000 This was completed in 2013. umpliance data Current performances against EPA inter-calibration scheme. Ongoing CO on the site site site site site. umpliance data Review outcome of data generated from EPA intercalibration scheme. Ongoing CO on the site site. umpliance data Review outcome of data generated from EPA intercalibration scheme. Ongoing CO must be recalibrated and revalidated due Spectrophotometer being purchased. Continue Spectrophotometer being purchased. Continue Spectrophotometer being purchased. umpliance data Carry out validation for significant self-monitoring parameters for effluent. Oxiditations for significant all-monitored data umpliance data Assess requirements for AQC's and implement where deemed necessary. Oxiditations for GOD validation. unpliance data Replace damaged concrete to upgrade yard integrity and reseal expansion gaps and supported scheme and support of COD validation. Surface integrities and depansion gaps will be rights and pipelines, in order to draft a register of current bunds, sump, mobile bunds and pipelines, in order to draft a register of applicines in sequence. Surface integrities and advalue test on a three yearly basis ity, yard and expansion gap assessments. Review the site with regards to tanks and pipelines, in order to draft a register of current bunds, sump, mobile bunds and pipelines, in order to draft a register of applines is such and pipelines, in order to draf				
			critical test standard. Metals will be removed from the inter-		Increased compliance with
Review quality of self-monitoring compliance data	Review outcome of data generated from EPA intercalibration scheme.	Ongoing	calibration scheme as they are not comparable.	Laboratory & Operations	licence conditions
			COD must be recalibrated and revalidated due to a new Hach		
continue to monitor effluent released from the site continue to monitor effluent and ensure parameters are met. Investiga treatment options for parameters not in compliance with the site licen iroundwater protection Update ground water risk assessment for the site. review quality of self-monitoring compliance data Review quality of self-monitoring compliance data Determine key tests for validation review quality of self-monitoring compliance data Determine key tests for validation review quality of self-monitoring compliance data Review quality of self-monitoring compliance data Carry out validation for significant self-monitoring parameters for efflue review quality of self-monitoring compliance data Review tank, pipeline, bund integrity, yard and expansion gap assessments. Replace damaged concrete to upgrade yard integrity and reseal expans gaps joints are quired. Review the site with regards to tanks and pipelines, in order to daft a register of current bunds, sump, mobile bunds and pipelines, in order to daft a register of current bunds, sump, mobile bunds and pipelines, with the register of current bunds, sump, mobile bunds and pipelines, with the register of current bunds, sump, mobile bunds and pipelines, with the register of current bunds, sump, mobile bunds and pipelines, with the register of current bunds, sump, mobile bunds and pipelines, with the register of current bunds, sump, mobile bunds and pipelines, with the register of current bunds, sump, mobile bunds and pipelines, with the register of current bunds, sump, mobil		Spectrophotometer being purchased. Continue validation tests for oil		Increased compliance with	
Review quality of self-monitoring compliance data	Determine key tests for validation	40%	There were no significant trends in non-conformances during the reporting year. The monitoring of the quality the quality of the effluent will continue. Increased compliance with licence conditions 100% This was completed in 2013. HSE & Operations Increased compliance with licence conditions Current performances against EPA inter-calibration samples are to be reviewed regularly. Currently performance for critical tests such as COD and Suspended Solids is at 98%. Ammonia and pt will be added to the inter-calibration scheme and will be brought up to par with the critical test standard. Metals will be reouved from the inter-calibration scheme and will be trought up to par with the critical test standard. Metals will be removed from the inter-calibration scheme as they are not comparable. Laboratory & Operations Increased compliance with licence conditions COD must be recalibrated and revalidated due to a new Hach Spectrophotometer being purchased. An AQC will be reviewed upon taboratory & HSE Increased compliance with licence conditions Usidations for significant self-monitored data for COD, Ammonia, pH 0% and Suspended Solids will be carried out in 2014. Laboratory & HSE Increased compliance with licence conditions Surface integrities and expansion gaps will be monitored on a nuy repairs that have taken place. A site may libe to document any repairs that have taken place. A site may will be updated to include all crack/expansion 50% repairs. Remediation of contamination on site 0% Re-concrete the stores area. HSE & Operations Remediation on site		
Deview evelts, of colf manifester constitutes date	Company and collidation for similificant colf manifestar and the for file			1.1	
Review quality of self-monitoring compliance data	Carry out validation for significant self-monitoring parameters for effluent.	0%		Laboratory & HSE	licence conditions
					Increased compliance with
Improvement of the quality of effluent released from the site Continue to monitor effluent and ensure p treatment options for parameters not in cc Groundwater protection Update ground water risk assessment for t Review quality of self-monitoring compliance data Review task, pipeline, bund integrity, yard and expansion gap assessments. Review task pipeline, bund integrity, yard and expansion gap assessments. Review the site with regards to tanks and p register of current bunds, sump, mobile b Improve tank, pipeline, bund integrity, yard and expansion gap assessments. Review the site with regards to tanks and p register of current bunds, sump, mobile b Improve tank, pipeline, bund integrity, yard and expansion gap assessments. Review the site with regards to tanks and p register of current bunds, sump, mobile b Improve tank, pipeline, bund integrity, yard and expansion gap assessments. Review the site with regards to tanks and p register of current bunds, sump, mobile b Improve tank, pipeline, bund integrity, yard and expansion gap assessments. Review the site with regards to tanks and p register of current bunds, sump, mobile b Improve tank, pipeline, bund integrity, yard and expansion gap assessments. Review the site with rega	Assess requirements for AOC's and implement where deemed necessary	0%		Laboratory & HSE	
nenew quarty of sen monitoring compliance data	bless requirements for Alge 5 and implement where deemed necessary.	0/		Laboratory & HSL	
	Replace damaged concrete to upgrade yard integrity and reseal expansion	ce damaged concrete to upgrade yard integrity and reseal expansion duration of taken place. A site map will be updated to include all crack/expansion Remediation	Remediation of		
Improve tank, pipeline, bund integrity, yard and expansion gap assessments.		50%	repairs.	HSE & Operations	contamination on site
	Review the site with regards to tanks and pipelines, in order to draft a				
	register of current bunds, sumps, mobile bunds and pipelines, with their				
	inclusion/exclusion (if required) in the three yearly bund integrity		All bunds, sumps, mobile bunds and pipelines are currently checked		Remediation of
Improve tank, pipeline, bund integrity, yard and expansion gap assessments.	on Update ground water raik assessment for the site. 1006 The sea completer in 2013. 656 Mene condition on Current performance: against fP Anter-caliburg, performa	contamination on site			
	• • • • •				
Income tool, simpling bound interaction and supervised and supervised and				1165 0. 0	
improve tank, pipeline, bund integrity, yard and expansion gap assessments.		0%		HSE & Operations	contamination on site
					Remediation of
Improve tank, pipeline, bund integrity, vard and expansion gap assessments.		65%		HSE & Operations	
			··· /		
	register of current bunds, sumps, mobile bunds and pipelines, with their				
	inclusion/exclusion (if required) in the three yearly bund integrity				Increased compliance with
Improve tank, pipeline, bund integrity, yard and expansion gap assessments.		0%	A register of mobile bunds is to be drafted by 30.06.2014	HSE & Operations	licence conditions
					Description of
			All a shifts have been all a second built of the second second second second second second second second second		
improve tank, pipeline, bund integrity, yard and expansion gap assessments.	assessment.	0%	All mobile bunds to be tested hydrostatically tested by 31.03.2015	HSE & Operations	
Waste reduction/Raw material usage efficiency	Install a system to reduce water usage in site toilets	100%	The system is now in place that diverts rain water to the toilets	HSE & Operations	
waste reduction/haw material usage emclency	instan a system to reduce water usage in site tonets.	100%		HSE & Operations	management riactices
	Extension of existing rain water capture system from rain water coming				Improved Environmental
Waste reduction/Raw material usage efficiency		0%		HSE & Operations	
	Consider additional rain water harvesting/storage for additional use for	0.0			
Waste reduction/Raw material usage efficiency		0%		HSE & Operations	
	Review lighting onsite in order to determine where motion sensors can be				Improved Environmental
Energy Efficiency/Utility conservation	installed in order to reduce energy consumption.	0%	Installation will occur where areas of importance are identified.	HSE & Operations	Management Practices
Energy Efficiency/Utility conservation	Install energy rated LED bulbs where possible.	20%	LED bulbs are installed where possible.	HSE & Operations	Management Practices

Noise monitoring summary report	Lic No:	W0184-01	Year 201
1 Was noise monitoring a licence requirement for the AER period?		Yes]
If yes please fill in table N1 noise summary below	Noise		
2 Was noise monitoring carried out using the EPA Guidance note, including completion of the "Checklist for noise	Guidance	Yes	
measurement report" included in the guidance note as table 6? 3 Does your site have a noise reduction plan	note NG4	No	-
4 When was the noise reduction plan last updated?		Enter date	-
5 Have there been changes relevant to site noise emissions (e.g. plant or operational changes) since the last noi	ise survey?	No]

Table N1: Noise monite	oring summary										
Date of monitoring	Time period	Noise location (on site)	Noise sensitive location -NSL (if applicable)	LA _{eq}	LA1	LA ₁₀	LA ₉₀	Tonal or Impulsive noise* (Y/N)	If tonal /impulsive noise was identified was 5dB penalty applied?	Comments (ex. main noise sources on site, & extraneous noise ex. road traffic)	Is <u>site_</u> compliant with noise limits (day/evening/night)?
04.09.13/05.09.14	10.20 am	N1	No	51	60	53	47	No	N/A	Traffic and industrial noise to the south is dominant. Enva activity audible and included: vehicle movement, forklift and occasional bang.	Yes
04.09.13/05.09.14	10.50 am	N1	No	55	61	54	48	No	N/A	Traffic and industrial noise to the south is dominant. Enva activity audible and included: vehicle movement, forklift, occasional bang, hand held tools. 2HGV's entered Enva.	Yes
04.09.13/05.09.14	11.30 am	N1	No	52		53	48	No	N/A	Traffic and industrial noise to the south is dominant. Faint hum from Enva boiler audible.	Yes
04.09.13/05.09.14	12.50 am	N1	No	41	49	42	34	No	N/A	Traffic and industrial noise to the south is dominant. Enva activity audible and included: vehicle movement, forklift, occasional bang and hand held tools.	Yes
04.09.13/05.09.14	1.20 am	N1	No	41	51	42	33	No	N/A	Traffic and industrial noise to the south is dominant. Enva activity audible and included: vehicle movement, forklift, occasional bang and hand held tools.	Yes
04.09.13/05.09.14	12.07 pm	N2	No	56	63	58	51	No	N/A	HGV movement in neighbouring facility is dominant. In the absence of HGV movement, noise levels were 52-53 dB(A). Industrial noise to the south also dominant in the absence of HGV movement. Boiler audible onsite.	Yes
04.09.13/05.09.14	13.00 pm	N2	No	56	68	59	50	No	N/A	HGV movement in neighbouring facility is dominant. In the absence of HGV movement, noise levels were 52-53 dB(A). Industrial noise to the south also dominant in the absence of HGV movement. Boiler audible onsite.	Yes
04.09.13/05.09.14	13.30 pm	N2	No	54	60	56	51	No	N/A	HGV movement in neighbouring facility is dominant. In the absence of HGV movement, noise levels were 52-53 dB(A). Industrial noise to the south also dominant in the absence of HGV movement. Boiler audible onsite.	Yes
04.09.13/05.09.14	23.00 pm	N2	No	44		45	41	No	N/A	Dominant noise industrial facility to the south. Boiler noise audible onsite.	Yes
04.09.13/05.09.14	23.35 pm	N2	No	45		46	43	No	N/A	Dominant noise industrial facility to the south. Boiler noise audible onsite.	Yes
04.09.13/05.09.14	12.57 pm	N3	No	50	54	49	41	No	N/A	Onsite noise/activity: vehicle movement, unloading tanker, forklift. Leaves rustling on trees. Industrial noise audible from south.	Yes

r	1			r							
04.09.13/05.09.14	13.59 pm	N3	No	53	60	57	42	No	N/A	Onsite noise/activity: screening adjacent to N3, vehicle movement, unloading tanker, forklift. Leaves rustling on trees. Industrial noise audible from south.	Yes
04.09.13/05.09.14	14.39 pm	N3	No	50	61	50	44	No	N/A	Onsite noise/activity: vehicle movement, unloading tanker, forklift. Leaves rustling on trees. Industrial noise audible from south.	Yes
04.09.13/05.09.14	23.40 pm	N3	No	39	44	41	36	No	N/A	Dominant noise: Industrial noise audible from south. No noise audible from Enva.	Yes
04.09.13/05.09.14	00.10 am	N3	No	37	43	40	34	No	N/A	Dominant noise: Industrial noise audible from south. No noise audible from Enva.	Yes
04.09.13/05.09.14	8.30 am	N4	No	50	62	53	42	No	N/A	Dominant noise: Industrial noise audible from south and passing traffic. Traffic: approximately 30 cars and 12 vans. Enva is not audible at this location.	Yes
04.09.13/05.09.14	9.00 am	N4	No	50	62	52	42	No	N/A	Dominant noise: Industrial noise audible from south and passing traffic. Traffic: approximately 36 cars and 6 vans. Enva is not audible at this location.	Yes
04.09.13/05.09.14	9.30 am	N4	No	51	63	54	42	No	N/A	Dominant noise: Industrial noise audible from south and passing traffic. Traffic: approximately 20 cars and 8 vans. Enva is not audible at this location.	Yes
04.09.13/05.09.14	2.02 pm	N4	No	42	51	44	39	No	N/A	Dominant noise: Industrial noise audible from south and passing traffic. Traffic: approximately 18 cars. Enva is not audible at this location. Occasional horn from train.	Yes
04.09.13/05.09.14	2.32 pm	N4	No	42	50	43	38	No	N/A	Dominant noise: Industrial noise audible from south and passing traffic. Traffic: approximately 18 cars. Enva is not audible at this location. Occasional horn from train.	Yes
04.09.13/05.09.14	10.30 am	N5	No	51	60	52	47	No	N/A	Industrial noise to the south is dominant noise. Audible Enva activity onsite: vehicle movement, forklift, occasional banging.	Yes
04.09.13/05.09.14	11.00 am	N5	No	60	67	60	49	No	N/A	Industrial noise to the south is dominant noise. Audible Enva activity onsite: vehicle movement, forklift, occasional banging. 2 HGVs entered the Enva site.	Yes
04.09.13/05.09.14	11.30 am	N5	No	53	60		48	No	N/A	Industrial noise to the south is dominant noise. Audible Enva activity onsite: vehicle movement, forklift, occasional banging and hand held tools.	Yes
04.09.13/05.09.14	00.50 am	N5	No	38	47	41	31	No	N/A	Industrial noise to the south and traffic to the west dominant. No noise audible from Enva.	Yes
04.09.13/05.09.14	01.20 am	N5	No	35	42	35	29	No	N/A	Industrial noise to the south and traffic to the west dominant. No noise audible from Enva.	Yes
											Yes

*Please ensure that a tonal analysis has been carried out as per guidance note NG4. These records must be maintained onsite for future inspection

If noise limits exceeded as a result of noise attributed to site activities, please choose the corrective action from the following options?

N/A

** please explain the reason for not taking action/resolution of noise issues?

Any additional comments? (less than 200 words)

Resource Usage/Energy efficiency summary	Lic No: W0184-01	Year	

When did the site carry out the most recent energy efficiency audit? Please list the recommendations in table 3 below
<u>Jenne Longe</u>
Industry
Industry
Energy Usage/water conservation such as the SEAL programme linked to the right? If yes
Energy

Is the site a member of any accredited programmes for reducing energy usage/water conservation such as the SEAI programme linked to the right? If yes 2 please list them in additional information

1

3 Where Fuel Oil is used in boilers on site is the sulphur content compliant with licence conditions? Please state percentage in additional information

Table R:	1 Energy usage on site			
				Consumption +/- % vs
			•	+/- % vs overall site
Energy Use	Previous year		r 0	production*
Total Energy Used (MWHrs)	5520.586	5168.76	-6.372982868	N/A
Total Energy Generated (MWHrs)	N/A	N/A	N/A	N/A
Total Renewable Energy Generated (N	N/A	N/A	N/A	N/A
Electricity Consumption (MWHrs)	524.73664	452.04	-13.85392871	N/A
Fossil Fuels Consumption:			N/A	N/A
Heavy Fuel Oil (m3)	N/A	N/A	N/A	N/A
Light Fuel Oil (m3)	53	0	-100	N/A
Natural gas (m3)	486,940.98	459,791.68	-5.575478835	N/A
Coal/Solid fuel (metric tonnes)	N/A	N/A	N/A	N/A
Peat (metric tonnes)	N/A	N/A	N/A	N/A
Renewable Biomass	N/A	N/A	N/A	N/A
Renewable energy generated on site	N/A	N/A	N/A	N/A

* where consumption of energy can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year.

** where site production information is available please enter percentage increase or decrease compared to previous year

Table R	2 Water usage on site				Water Emissions	Water Consumpt	ion
Water use	Water extracted Previous year m3/yr.		Consumption +/- % compared to previous reporting	overall site	Volume Discharged back to environment(m ³ yr):	Volume used i.e not discharged to environment e.g. released as steam m3/yr	Unaccounted for Water:
Groundwater	N/A	N/A	N/A	N/A	N/A		No extraction of groundwater occurs onsite.
		N/A			N/A	N/A	No extraction of surface water occurs onsite.
Public supply	19100	24158	26.48	N/A	N/A		Enva do not currently record the quantity of water recycled on
		N/A			N/A		site.
Total	19100	24158	26.48	N/A	N/A	N/A	

* where consumption of water can be compared to overall site production please enter this information as percentage increase or decrease compared to the previous reporting year.

** where site production information is available please enter percentage increase or decrease compared to previous year

	_	Additional information
	January	2007
Industry		
Energy		
Network (LIEN)	No	
tion	Yes	

23

Tabl	e R3 Waste Stream Summary					
	Total	Landfill	Incineration	Recycled	Other	
Hazardous (Tonnes)	271	.69.26 N/A	N/A		Remaining waste sent offsite for recovery/disposal.	
Non-Hazardous (Tonnes)		645 N/A	N/A		Remaining waste sent offsite for recovery/disposal.	

		Table R4: Energy Audit finding recommendation	ons							
Date of audit		Recommendations	Description of Measures proposed	Origin of measures	Predicted energy savings %	Implementation date		Responsibility	Completion date	Status and comments
	Jan-07	Decrease MIC level.	Reduce the MIC to 200 KVA.	energy audit	N/A	Ja		Operations	Complete	Complete
		Power Factor Correction.	Eliminate excess wattless charges.	energy audit	N/A			Operations	Complete	Complete
	lan-07	Optimise Compressed Air Systems.	Reduce Compressed Air.	energy audit	7		an-07	Operations	The compressed air was reduced, however this delayed the process and increased processing costs, i.e. more energy was required.	Obsolete
	<u>Juli 0</u>	optimise compressed via systems.	Locate outside the building in order to reduce the temperature of the air, in order	chergy duale	,			operations	energy was required.	
	Jan-07	Relocation of new air compressor and air receiver.	to increase the compressor efficiency.	energy audit	N/A	Ja	an-07	Operations	Complete	Complete
	Jan-07	Lighting Controls.	Install PIR sensors through-out the site in order to reduce electricity usage.	energy audit	N/A	st	an-07	Operations	Complete	Complete
	Jan-07	Good energy housekeeping.	Improve efficiency.	energy audit	N/A	Ja	an-07	Operations	Installed lagging, heat tracing on oil and on water lines.	Complete
									Steam pressure was reduced to 6 bars, but due to the process inefficiency, the steam pressure	
	Jan-07	Steam Pressure Reduction.	Reduce steam pressure form 10 bar to 6 bar.	energy audit	2	Ja	an-07	Operaions	was increased to 7.5 bars.	Complete

Ta	Table R5: Power Generation: Where power is generated onsite (e.g. power generation facilities/food and drink industry)please complete the following information										
		Unit ID	Unit ID	Unit ID	Unit ID	Station Total					

		טווונוט	UNITID	UNITID	Station Total
Technology	N/A	N/A	N/A	N/A	N/A
Primary Fuel	N/A	N/A	N/A	N/A	N/A
Thermal Efficiency	N/A	N/A	N/A	N/A	N/A
Unit Date of Commission	N/A	N/A	N/A	N/A	N/A
Total Starts for year	N/A	N/A	N/A	N/A	N/A
Total Running Time	N/A	N/A	N/A	N/A	N/A
Total Electricity Generated (GWH)	N/A	N/A	N/A	N/A	N/A
House Load (GWH)	N/A	N/A	N/A	N/A	N/A
KWH per Litre of Process Water	N/A	N/A	N/A	N/A	N/A
KWH per Litre of Total Water used on a	N/A	N/A	N/A	N/A	N/A

Complaints and Incidents summary template		Lic No:	W0184-01	Year	2013
 Complaints					
		Additional information	-		
Have you received any environmental complaints in the current reporting year? If yes please complete summary details of complaints received on site in table 1 below	Yes				

Tabl	e 1 Complaints summary]				
							Further
Date	Category	Other type (please specify)	Brief description of complaint (Free txt <20 words)	Corrective action< 20 words	Resolution status	Resolution date	information
		Complaint regarding monitoring		Response sent to the agency clarifying the			
16.04.2013	Air	results.	Public complaint regarding air emissions.	queries raised.	Complete	07/05/2013	
Total complaints							
open at start of							
reporting year							
Fotal new		-					
complaints received							
during reporting							
year	1						
Total complaints		T					
closed during							
reporting year	(0					
Balance of							
complaints end of							
reporting year	1						

			Incidents											
					Additional information	1								
Have any ir	ncidents occurred on site in the current	reporting year? Please list all incid	ents for current reporting year in Table 2 below	Yes]								
*For information on	how to report and what constitutes an incident	What is an incident												
			-											
Table 2 Incidents sun	nmary			1	1	e		1				1		
							Activity in progress at time						Resolution	Likelihood of
Date of occurrence	Incident nature	Location of occurrence	Incident category*please refer to guidance	Receptor		specify)		Communication	Occurrence	Corrective action<20 words	Preventative action <20 words	Resolution status	date	reoccurence
											A daily sign off is required to ensure valve is			
20.07.2013	Monitoring equipment offline	Licenced discharge point	1. Minor	Sewer	Plant or equipment issues		Normal activities	EPA	New		A daily sign off is required to ensure valve is left open, for a sample to be analysed.		22.07.2013	Low
										The waste acceptance procedure and training for				
	Other - Acceptance of waste using the									hazardous/non-hazardous wastes is currently under	The waste acceptance procedure and			
	other - Acceptance of waste using the incorrect EWC code.		3. Serious	N/A	Operational controls		Normal activities	EPA	New	review. Refresher EWC code training has been completed.	training for hazardous/non-hazardous wastes has been modified.	Ongoing	Ongoing	Low
Total number of			1. · · · · · · · · · · · · · · · · · · ·										1.0.0	
incidents current														
year Total number of	2	-												
incidents previous														
year	2	l												
% reduction/														
increase	1 0	1												

WASTE SUMMARY	Lic No:	W0184-01	Year	2013	
SECTION A-PRTR ON SITE WASTE TREATMENT AND WASTE TRANSFERS TAB- TO BE COMPLETED BY AI	LL IPPC AND WASTE FACILITIES	PRTR facility logon	dropdown list c	lick to see options	

Yes

SECTION B- WASTE ACCEPTED ONTO SITE-TO BE COMPLETED BY ALL IPPC AND WASTE FACILITIES		
		Additional Information
Were any wastes accepted onto your site for recovery or disposal or treatment prior to recovery or disposal within the boundaries of your facility ?; (waste generated within your boundaries is 1 to be captured through PRTR reporting)	Yes	
If yes please enter details in table 1 below		
2 Did your site have any rejected consignments of waste in the current reporting year? If yes please give a brief explanation in the additional information	No	

3 Was waste accepted onto your site that was generated outside the Republic of Ireland? If yes please state the quantity in tonnes in additional information

Table 1 Details of waste accepted onto your site for recovery, disposal or treatment (do not include wastes generated at your site, as these will have been reported in your PRTR workbook)

					stes generated at your site	e, as these wi					
Licenced annual	EWC code	Source of waste accepted	Description of waste	Quantity of waste	Quantity of waste accepted in	Reduction/	Reason for reduction/	Packaging Content (%)-	Disposal/Recovery or treatment	Quantity of	Comments -
tonnage limit for your			accepted	accepted in current	previous reporting year (tonnes)	Increase over	increase from previous	only applies if the	operation carried out at your	waste remaining	
site (total			Please enter an accurate	reporting year (tonnes)		previous year +/ -	reporting year	waste has a packaging	site and the description of this	on site at the	
tonnes/annum)			and detailed description			%		component	operation	end of reporting	
			- which applies to							year (tonnes)	
			relevant EWC code								
	European Waste Catalogue EWC codes		European Waste								
			Catalogue EWC codes								
											Enva Ireland does not
											currently record the
		13- OIL WASTES AND WASTES									packaging content of
		OF LIQUID FUELS (except									waste as it arrives in on
		edible oils, and those in					More waste oil was collected		R9-Oil re-refining or other		site.
	13 02 08*	chapters 05, 12 and 19)	Waste Oil	19598.74	19112	3.94	by Enva	N/A	reuses of oil	2860.53	
	15 02 08	chapters 05, 12 and 15)	waste on	15550.74	15112	570	by Lind	N/A		2000.33	
									R5-Recycling/reclamation or		Enva Ireland does not
											currently record the
		17 CONCEPTION AND							other inorganic materials which		packaging content of
		17- CONSTRUCTION AND							includes soil celaning resuling		waste as it arrives in on
		DEMOLITION WASTES	soil and stones				Field Services collected and		in recovery of the soil and		site.
		(INCLUDING EXCAVATED SOIL	containing dangerous				processed more		recycling of inorganic		
	17 05 03*	FROM CONTAMINATED SITES)	substances	4830.889	4246	14%	contaminated soil.	N/A	construction materials	2977.159	
											Enva Ireland does not
									R13-Storage of waste pending		currently record the
					658.00				any of the operations		packaging content of
		16- WASTES NOT OTHERWISE							numbered R1 to R12 (excluding		waste as it arrives in on
	16 01 07*	SPECIFIED IN THE LIST	oil filters	659.74		0%	N/A	N/A	temporary storage)	15.9	site.
							Increase/decrease in the				
							tonnages of waste accepted in				
		08- WASTES FORM THE					2013 compared to 2012, was				Enva Ireland does not
		MANUFACTURE,					subject to the quantity of				currently record the
		FORMULATION, SUPPLY AND	aqueous liquid waste				waste made available to Enva				packaging content of
		USE (MFSU) OF COATINGS	containing adhesives or				Ireland. In some instances				waste as it arrives in on
		(PAINTS, VARNISHES AND	sealants containing				some wastes were excepted		R13-Storage of waste pending		site.
		VITREOUS ENAMELS,)	organic solvents or				onsite that were not accepted		any of the operations		
		ADHESIVES, SEALANTS AND	other dangerous				in previous years.		numbered R1 to R12 (excluding		
	08 04 15*	PRINTING INKS	substances	0.547	0	0%		N/A	temporary storage)	0	
						1					
							Increase/decrease in the				
							tonnages of waste accepted in				
							2013 compared to 2012, was				Enva Ireland does not
							subject to the quantity of				currently record the
							waste made available to Enva				packaging content of
		05- WASTES FROM					Ireland. In some instances				waste as it arrives in on
		PETROLEUM REFINING,					some wastes were excepted		R13-Storage of waste pending		site.
		NATURAL GAS PURIFICATION					onsite that were not accepted		any of the operations		
		AND PYROLYTIC TREATMENT					in previous years.		numbered R1 to R12 (excluding		
	05 01 03*	OF COAL	tank bottom sludges	30.632	0	0%		N/A	temporary storage)	0	
1	05 01 05	UF LUAL	tank bottom sludyes	50.032	U	0%	4	10/0	tempolary storage	U U	

WASTE SUMMARY			-	Lic No:	W0184-01		Year	2013		
	20 01 21*	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	fluorescent tubes	1.793	to 20 su wi Ire or	crease/decrease in the nnages of waste accepted in 0.13 compared to 2012, was ubject to the quantity of raste made available to Enva eland. In some instances one wastes were excepted insite that were not accepted previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	1	Enva Ireland does not currently record the packaging content of waste as it arrives in or site.
	13 07 01*	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 0, 21 cand 19	fuel oil and diesel	12.346	to 20 su w In 5 5 0 0	crease/decrease in the nnages of waste accepted in D13 compared to 2012, was ubject to the quantity of aste made available to Enva eland. In some instances ome wastes were excepted is let that were not accepted previous years.	N/A	R9-Oil re-refining or other reuses of oil		Enva Ireland does not currently record the packaging content of waste as it arrives in o site.
	16 06 01*	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	lead batteries	855.60	In to 20 Su W Irr So or in	crease/decrease in the onnages of waste accepted in 013 compared to 2012, was abject to the quantity of aste made available to Enva eland. In some instances ome wastes were excepted one wastes were excepted previous years.	NA	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	18.46	Enva Ireland does not currently record the packaging content of waste as it arrives in o site.
	15 02 02*	15- WASTE PACKAGING; ABSOREENTS, WIPING CLOTHS, FILTER MATERIALS AND PROTECTIVE CLOTHING NOT OTHERWISE SPECIFIED	absorbents, filter materials (including oil filters not otherwise specified), wiping cloths, protective clothing contaminated by dangerous substances	407.721 3	In to 20 su w Ir so or or in	icrease/decrease in the onnages of waste accepted in D13 compared to 2012, was ubject to the quantity of aste made available to Enva eland. In some instances ome wastes were excepted snite that were not accepted previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	53	Enva Ireland does not currently record the packaging content of waste as it arrives in o site.
-	16 07 08*	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	wastes containing oil	30.08	In to 22 su w Ir so o o	icrease/decrease in the nnages of waste accepted in D13 compared to 2012, was ubject to the quantity of aste made available to Envo eland. In some instances ome wastes were excepted nsite that were not accepted previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	2	Enva Ireland does not currently record the packaging content of waste as it arrives in c site.
	16 01 13*	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	brake fluids	9.09	In to 20 su wr Ir so or or	icrease/decrease in the onnages of waste accepted in 013 compared to 2012, was ubject to the quantity of aste made available to Ervo eland. In some instances one wastes were excepted insite that were not accepted previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	0	Enva Ireland does not currently record the packaging content of waste as it arrives in c site.
	13 07 03*	13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in	other fuels (including mixtures)	57.76	In to 2C su wr Irr so or or	crease/decrease in the onnages of waste accepted in 013 compared to 2012, was ubject to the quantity of aste made available to Ervo eland. In some instances one wastes were excepted nsite that were not accepted previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	28.31	Enva Ireland does not currently record the packaging content of waste as it arrives in c site.

WASTE SUMMARY				Lic No: W0	184-01		Year	2013	
	13 07 02*	13- OIL WASTES AND WASTES OF LIQUID FUES (except edible oils, and those in chapters 05, 12 and 19)	0.92	65	-99%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes ware excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	16 05 04*	16-WASTES NOT OTHERWISE SPECIFIED IN THE LIST	gases in pressure containers (including halons) containing dangerous substances 20.12	1 18.5	9%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes ware excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	08 01 11*	08- WASTES FORM THE MANUFACTURE; FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VTITEOUS ENAMELS, ADHESIVES, SEALANTS AND PRINTING INKS	waste paint and varnish containing organic solvents or other dangerous substances 318.38	5 369	-14%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Envou Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	NA	R12-Exchange of waste for submission to any of the operations numbered R1 to R11 (If there is no other R code appropriate, this can include preliminary operations prior to recovery including pre- processing such as amongst others, dismantling, sorting, crushing, compacting, pelletising, drying, shreddina, conditioning, repackaging, seperating, blending or mixing prior to submission to any of the operations numbered R1 to R11)	Enva Ireland daes not currently record the packaging content of waste as it arrives in on site. 202.22
	09 01 04*	09- WASTES FROM THE PHOTOGRAPHIC INDUSTRY	fixed solutions 0.73		565%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	D15-Storage pending any of the aperations numbered D1 to D14	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	09 01 02*	09- WASTES FROM THE PHOTOGRAPHIC INDUSTRY	water-based offset plate developer solutions 0:	1.71	-47%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	D15-Storage pending any of the operations numbered D1 to D14	Enva Ireland does not currently record the packaging content of waste as it arrives in on site. 0
	15 01 10°	15- WASTE PACKAGING; ABSORBENTS, WIPING CLOTHS, FILTER MATERIALS AND PROTECTIVE CLOTHING NOT OTHERWISE SPECIFIED	Packaging containing residues of or contaminated by dangerous substances 178.98	1 239	-25%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	Enva Ireland does not currently record the packaging content of waste as it arrives in on site. 86.22

WASTE SUMMARY					Lic No:	W0184-01		Year	2013	
	16 05 07*						Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva			Enva Ireland does not currently record the packaging content of
_		16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	discarded inorganic chemicals consisting of or containing dangerous substances	0.292	0.07	317%	Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	waste as it arrives in on site.
	20 01 27*	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	paint, inks, adhesives and resins containing dangerous substances	4.299	17	-75%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	Envo Ireland does not currently record the packaging content of waste as it arrives in on site. 50
	08 04 09*	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARINSHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	waste adhesives and sealants containing organic solvents or other dangerous substances	0.095	11	-91%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
-	16 05 06*	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	laboratory chemicals, consisting of or containing dangerous substances, including mixtures of laboratory chemicals	37.207	2.3	1518%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	Enva Ireland does not currently record the packaging content of waste as it arrives in on site. 0
	16 05 08*	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	discarded organic chemicals consisting of or containing dangerous substances	0.952	s	-81%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	06 02 05*	06- WASTES FROM INORGANIC CHEMICAL PROCESSES	other bases	o	0.26	-100%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes ware excepted onsite that were not accepted in previous years.	N/A	D15-Storage pending any of the operations numbered D1 to D14	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	14 06 03*	14- WASTE ORGANIC SOLVENTS, REFRIGERANTS AND PROPELLANTS (except 07 and 08)	other solvents and solvent mixtures	0	0.03	-100%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes ware excepted onsite that were not accepted in previous years.	N/A	D15-Storage pending any of the operations numbered D1 to D14	Enva Ireland does not currently record the packaging content of waste as it arrives in on site. 0

WASTE SUMMARY	1			Lic No:		W0184-01	Year	2013	
	17 02 04*	17- CONSTRUCTION AND DEMOLITION WASTES (INCLUDING EXCAVATE D SOIL FROM CONTAMINATED SITES)	glass, plastic and wood containing or contaminated with dangerous substances	0	0.22	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to frow Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	08 03 12*	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MISSU) OF COATINGS (PAINTS, VARISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	waste ink containing dangerous substances	5,88	7.8	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Erwa Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	07 01 04*	07- WASTES FROM ORGANIC CHEMICAL PROCESSES	other organic solvents, washing liquids and mother liquors	0	0.45	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	Enva Ireland does not currently record the packaging content of woste as it arrives in on site. 0
	06 02 04*	06- WASTES FROM INORGANIC CHEMICAL PROCESSES	sodium and potassium hydroxide	5.46	0.38	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Erwa Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years. 1337%		D15-Storage pending any of the operations numbered D1 to D14	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	20 01 19*	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	Pesticides	q	1	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	06 01 03*	06- WASTES FROM INORGANIC CHEMICAL PROCESSES	hydrochloric acid	0	4	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.		D15-Storage pending any of the operations numbered D1 to D14	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	10 01 04*	10- WASTES FROM THERMAL PROCESSES		0	1.4	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.		D15-Storage pending any of the aperations numbered D1 to D14	Enva Ireland does not currently record the packaging content of waste as it arrives in on site. 0

WASTE SUMMARY				Lic No:	W0184-01	Year	2013		
	12 01 09*	12-WASTES FROM SHAPING AND PHYSICAL AND MECHANICAL SURFACE TREATMENT OF METALS AND PLASTICS	machining emulsions and solutions free of halagens	0.99 0.66	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva ireland. In some instances some wastes were excepted onsite that were not accepted in previous years. 46%		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	0.002	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	06 04 05*	06- WASTES FROM INORGANIC CHEMICAL PROCESSES		45.34 165	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva reland. In some instances some wastes were excepted onsite that were not accepted in previous years. -73%		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	a	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	06 03 15*	06- WASTES FROM INORGANIC CHEMICAL PROCESSES		13.72 98	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years. -86%		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	o	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	16 01 21*	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	hazardous components other than those mentioned in 16 01 07 to 16 01 11 and 16 01 13 and 16 01 14	28.746 0	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years. 0%		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	a	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	16 01 14*	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	antifreeze fluids containing dangerous substances	2.123	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years. 0%		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	a	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	20 01 14*	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	Acids	0.02 0	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	a	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	08 03 14*	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARNISHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	ink sludges containing dangerous substances	1.76 6	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	a	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.

WASTE SUMMAR	Y				Lic No:	W0184-01		Year	2013		
		06- WASTES FROM INORGANIC					Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva irreland. In some instances some wastes were excepted onsite that were not accepted in previous years.		R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding		Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	06 01 06*	CHEMICAL PROCESSES 13- OIL WASTES AND WASTES OF LIQUID FUELS (except edible oils, and those in chapters 05, 12 and 19)	Other acids mineral-based non- chlorinated hydraulic oils	2.12	0	0%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	temporary storage) R9-Oil re-refining or other reuses of oil	0	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	07 05 11*	07- WASTES FROM ORGANIC CHEMICAL PROCESSES	sludges from on-site effluent treatment containing dangerous substances	0	116	-100%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Envo Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	D15-Storage pending any of the operations numbered D1 to D14	0	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	16 01 12	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	brake pads other than those mentioned in 16 01 11	26.409	28	-6%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	o	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	20 01 25	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	edible oil and fat	69.167	77.6	-11%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	30	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	08 04 16	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARINSHES AND VITREOUS ENAMLES,) ADHESIVES, SEALANTS AND PRINTING INKS	aqueous liquid waste containing adhesives or sealants ather than those mentioned in 08 04 15	74.32	11.9	525%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	74	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	16 10 02	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	aqueous liquid wastes other than those mentioned in 16 10 01	0	1	-100%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	0	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.

WASTE SUMMA	RY			Lic No: W0184-01	Y	Year 2	113
	08 04 10	08- WASTES FORM THE MANUFACTURE, FORMULATION, SUPPLY AND USE (MFSU) OF COATINGS (PAINTS, VARINSHES AND VITREOUS ENAMELS,) ADHESIVES, SEALANTS AND PRINTING INKS	Waste adhesives and sealants other than those mentioned in 08 04 09 0.49	0.45	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted onsite that were not accepted some wastes were severated in previous years.	R13-Storage of waste pendin any of the operations numbered R1 to R12 (excludin N/A temporry storage)	
	16 01 15	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	antifreeze fluids other than those mentioned in 16 01 14 153.508	192 -2	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	R13-Storage of waste pending any of the operations numbered R1 to R12 (excludin N/A temporry storage)	
	16 06 05	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	other batteries and accumulators 0.5	1.7 -7	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years. 1%	R13-Storage of waste pending any of the operations numbered R1 to R12 (excludin N/A temporry storage)	
	16 05 09	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	discarded chemicals other than those mentioned in 16 05 06, 16 05 07 or 16 05 08 1.577	2.34 -3	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years. 38	R13-Storage of waste pending any of the operations numbered R1 to R12 (excludin N/A temporry storage)	
	20 01 40	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	Metols 73.426	2.45 289	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years. 7%	R13-Storage of waste pending any of the operations numbered R1 to R12 (excludin N/A temporry storage)	
	16 01 03	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	end-of-life tyres 0	0.18 -10	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	R13-Storage of waste pending any of the operations numbered R1 to R12 (excludin N/A temporry storage)	
	17 05 04	17- CONSTRUCTION AND DEMOLITION WASTES (INCLUIDNG EXCAVATE 3011 FROM CONTAMINATED SITES)	soil and stones other than those mentioned in 17 05 03 100.059	186 -4	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	R13-Storage of waste pending any of the operations numbered R1 to R12 (excludin V/A temporary storage)	

WASTE SUMMARY	,				Lic No:	W0184-01		Year	2013		
		20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY	waste from sewage			-34%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.		D15-Storage pending any of the		Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	20 03 06	COLLECTED FRACTIONS 19- WASTES FROM WASTE MANAGEMENT FACILITIES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE PREPARATION OF WATER INTENDED FOR HUMAN CONSUMPTION AND WATER FOR INDUSTRIAL USE	cleaning sludges from treatment of urban waste water	22.28		-34%	Increase/decrease in the tonnages of waste accepted 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	operations numbered D1 to D14 R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	0	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	19 08 02	19- WASTES FROM WASTE MANAGEMENT FACULTIES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE PREPARATION OF WATER INTENDED FOR HUMAN CONSUMPTION AND WATER FOR INDUSTRIAL USE	waste from desanding	24.06	13	1751%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	0	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	16 01 22	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	components not otherwise specified	0.682	0.05	1264%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	0	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	19 09 04	19- WASTES FROM WASTE MANAGEMENT FACILITIES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE PREPARATION OF WATER INTENDED FOR HUMAN CONSUMPTION AND WATER FOR INDUSTRIAL USE	spent activated carbon	40.42	5.6	622%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	0	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	20 01 36	20- MUNICIPAL WASTES (HOUSEHOLD WASTE AND SIMILAR COMMERCIAL, INDUSTRIAL AND INSTITUTIONAL WASTES) INCLUDING SEPARATELY COLLECTED FRACTIONS	discarded electrical and electronic equipment other than those mentioned in 20 01 21, 20 01 23 and 20 01 35	0.01	0	0%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	0	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.
	16 01 19	16- WASTES NOT OTHERWISE SPECIFIED IN THE LIST	Plastic	0.54	o	0%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)	0	Enva Ireland does not currently record the packaging content of waste as it arrives in on site.

						Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted to acceler use not accepted		R13-Storage of waste pending any of the operations		Enva Ireland does no currently record the packaging content oj waste as it arrives in site.
02 07 04		··· ·· /·· ·	10.48	0	0%	6	N/A	temporary storage)	0	
19 02 06	PREPARATION OF WATER INTENDED FOR HUMAN CONSUMPTION AND WATER	physico/chemical treatment other than those mentioned in 19	47.32	0	0%	Increase/decrease in the tonnages of waste accepted in 2013 compared to 2012, was subject to the quantity of waste made available to Enva Ireland. In some instances some wastes were excepted onsite that were not accepted in previous years.	N/A	R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding temporary storage)		Enva Ireland does no currently record the packaging content oj waste as it arrives in site.
		AGRICULTURE, HORTICULTURE, AQUACULTURE, FORSTRY, HUNTING AND FISHING, FOOD PREPARATION AND 02 07 04 19- WASTES FROM WASTE MANAGEMENT FACILITES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE PREPARATION OF WATER INTENDED FOR HUMAN CONSUMPTION AND WATER	AGRICULTURE, HORTICULTURE, AQUACULTURE, FORSTRY, HUNTING AND FISHING, FOOD PREPARATION AND 02 07 04 PROCESSING 07-SITE WASTES MANAGEMENT FACILITIES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE sludges from PREPARATION OF WATER INTENDED FOR HUMAN CONSUMPTION AND WATER	AGRICULTURE, HONTICULTURE, AQUACUTURE, FORESTRY, HUNTING AND FISHING, FOOD PREPARATION AND D 20 07 04 PROCESSING 7000 processing 10.48 19- WASTES FROM WASTE MANAGEMENT FACILITIES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE PREPARATION OF WATER INTENDED FOR HUMAN CONSUMPTION AND WATER those menitoned in 19	AGRICULTURE, HORTICULTURE, AQUACULTURE, FOOD PREPARATION AND 02 07 04 PROCESSING 19- WASTES FROM WASTE MANAGEMENT FACILITES, OFF-SITE WASTE WATER TREATMENT PLANTS AND THE Sludges from PREPARATION OF WATER INTENDED FOR HUMAN TREATMENT PLANTS AND THE Sludges from PREPARATION OF WATER INTENDED FOR HUMAN	AGRICULTURE, HORTICULTURE, AQUACULTURE, FORSTRY, HUNTING AND FISHING, FOOD PREPARATION AND 02 07 04 PROCESSING 07 STE WASTES MANAGEMENT FACILITIES, OFF-SITE WASTE WASTE TREATMENT PLANTS AND THE PREPARATION OF WATER INTENDED FOR HUMAN CONSUMPTION AND WATER to those mentioned in 19	02-WASTES FROM AGRICULTURE, HORTICULTURE, HORTICULTURE, ACUACULTURE, FOR HUNTING AND PSERSRY, HUNTING AND PSERS PROCESSING Interview of the state of the state and the state of the st	02-WASTES FROM AGRICULTURE, HORTICULTURE, HORTICULTURE, AQUACULTURE, FORSTRY, HUNTING AND FISHING, FOOD PREPARATION AND 02 07 04 materials unsuitable for consumption or PREPARATION AND processing materials unsuitable for consumption or processing 10.48 0 00 N/A 02 07 04 PROCESSING PROCESSING PREPARATION AND processing 10.48 0 0 M/A 19-WASTES FROM WASTE MANAGEMENT FACILITIES, OFF-SITE WASTE WATER INTENDED FOR HUMAN CONSUMPTION AND WATER INTENDED FOR HUMAN CONSUMPTION AND WATER 10.48 0 0 M/A	02-WASTES FROM AGRICULTURE, HORTICULTURE, HORTICULTURE, ACUCUTURE, CONSUMPTION AND PREPARATION AND O 20704 addresses PROCESSING addresses materials unsuitable for materials unsuitable for processing addresses 10.48 addresses processing addresses processes addresseses processes addresses processes	02-WASTES FROM AGRICULTURE, HORTICULTURE, HORTICULTURE, ADUACULTURE, ADUACULTURE, HUNTING AND PISTON PREPARATION AND OCOSUMPTION AND WATER PROCESSING materials unsultable for consumption or processing inclusion 10.48 0 0 N/A R13-Storage of waste pending any of the operations numbered R1 to R12 (excluding) 02 07 04 PROCESSING PREPARATION AND PREPARATION AND OFF-SITE WASTES FROM WASTE NANAGEMENT FACILITIES, OFF-SITE WASTES WATER INTENDED FOR HUMAN CONSUMPTION AND WATER 10.48 0 0 N/A materials unsultable for any of the operations numbered R1 to R12 (excluding) 0

SECTION C-TO BE COMPLETED BY ALL WASTE FACILITIES (waste transfer stations, Composters, Material recovery facilities etc) EXCEPT LANDFILL SITES

4 is all waste processing infrastructure as required by your licence and approved by the Agency in place? If no please list waste processing infrastructure required onsite

5 Is all waste storage infrastructure as required by your licence and approved by the Agency in place? If no please list waste storage infrastructure required on site

6 Does your facility have relevant nuisance controls in place?

7 Do you have an odour management system in place for your facility? If no why? 8 Do you maintain a sludge register on site?

SECTION D-TO BE COMPLETED BY LANDFILL SITES ONLY

Table 2 Waste type and tonnage-landfill only

Waste types permitted for disposal	Authorised/licenced annual intake for disposal (tpa)	Actual intake for disposal in reporting year (tpa)	Remaining licensed capacity at end of reporting year (m3)	Comments
1	1	1		

Table 3 General information-Landfill only

Area ID	Date landfilling commenced	Date landfilling ceased	Currently landfilling	Private or Public Operated	Inert or non-hazardous	Predicted date to cease landfilling	Licence permits asbestos	Is there a separate cell for asbestos?	Accepted asbestos in reporting year	Total disposal area occupied by waste	Lined disposal area occupied by waste		Comments on liner type
										SELECT UNIT	SELECT UNIT	SELECT UNIT	
ell 8													

Yes		
Yes		
Yes		
Yes	Daily physical monitoirng of site and surrounding area.	
No		

WASTE SUMMARY					Lic No:	W0184-01		Year	2013
Table 4 Environmer	ntal monitoring-landfill only	Landfill Manual-Monitoring Stan	ndards						
	Was leachate monitored in compliance with LD standard in reporting year	Was Landfill Gas monitored in	Was SW monitored in compliance with LD standard in reporting year		Were emission limit values agreed with the Agency (ELVs)	surveyed in	Has the statement under S53(A)(5) of WMA been submitted in reporting year	Comments	
+ please refer to Landfill Fable 5 Capping-Lai	I Manual linked above for relevant Landfill ndfill only	Directive monitoring standards	Į	ļ	ł		<u> </u>	<u> </u>	1
Area uncapped*	Area with temporary cap			Area with waste that should be permanently					
SELECT UNIT	SELECT UNIT	Area with final cap to LD Standard m2 ha, a	Area capped other	capped to date under licence	What materials are used in the cap	Comments			
*please note this include: Table 6 Leachate-La Is leachate from your site	es daily cover area	Standard m2 ha, a				Comments SELECT SELECT]		

Please ensure that all information reported in the landfill gas section is consistent with the Landfill Gas Survey submitted in conjunction with PRTR returns

Table	7	Landfill	Gas	-Landfill	only

			Was surface emissions	
Gas Captured&Treated by LFG System m3	Power generated (MW / KWh)	Used on-site or to national grid	monitoring performed during the reporting	Comments
			SELECT	

Facility Information Summary	mary	
AER Reporting Year	2013	
Licence Register Number	W0184-01	
Name of site	Enva Ireland Limited	
Site Location	Clonminan Industrial Estate, Portlaoise, Co. Loias	
NACE Code	3832	
Class/Classes of Activity	4.8, 3.12, 3.13, 3.6, 3.7, 4.11, 4.12, 4013, 4.2, 4.4, 4.5, 4.9	
National Grid Reference (6E, 6 N)	2461 E, 1978 N	
	וווב לותרבאזוול מרוואונובא מיו אוניב ווורוממב	
	waste oil re-processing, treatment of	
	contaminated soil, repackaging of oily	
A description of the activities/processes at	contaminated wastes and paint wastes. The	
the site for the reporting year. This should	site also stores wastes in packages (i.e.	
include information such as production	barrels ASPs, IBCs etc.) prior to transfer	
increases or decreases on site, any	off site for recovery or disposal.	
infrastructural changes, environmental	1.2 Waste Management Activities	
performance which was measured during	carried out at the Facility.	
the reporting year and an overview of		
compliance with your licence listing all		
exceedances of licence limits (where	Third Schedule	
applicable) and what they relate to e.g. air,		
<u>water, noise.</u>	Class 6. Biological treatment not referred	
	to elsewhere in this Schedule which results	
	in final compounds or mixtures which are	

H

Declaration:

All the data and information presented in this report has been checked and certified as being accurate. The

quality of the information is assured to meet licence requirements.

Date 31/3/14_ 31.03.2014 (or nominated, suitably qualified and experienced deputy) Group/Facility manager Signature and

Environmental Protection Agency

| PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : PRTR Final.xls | Return Year : 2013 |

31/03/2014 18:12

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2013

1. FACILITY IDENTIFICATION								
Parent Company Name	Enva Ireland Limited							
Facility Name	Enva Ireland Limited (Portlaoise)							
PRTR Identification Number	W0184							
Licence Number	W0184-01							

Waste or IPPC Classes of Activity	
	class_name
	Oil re-refining or other re-uses of oil.
	Repackaging prior to submission to any activity referred to in a
3.12	preceding paragraph of this Schedule.
	P
	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
3 13	collection, on the premises where the waste concerned is produced.
5.10	Biological treatment not referred to elsewhere in this Schedule which
	results in final compounds or mixtures which are disposed of by
	means of any activity referred to in paragraphs 1. to 10. of this
	Schedule.
3.0	Schedule.
	Physico-chemical treatment not referred to elsewhere in this
	Schedule (including evaporation, drying and calcination) which results
	in final compounds or mixtures which are disposed of by means of
3.7	any activity referred to in paragraphs 1. to 10. of this Schedule.
	Use of waste obtained from any activity referred to in a preceding
4.11	paragraph of this Schedule.
	Exchange of waste for submission to any activity referred to in a
4.12	preceding paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred to in
	a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
4 13	produced.
	Recycling or reclamation of organic substances which are not used
	as solvents (including composting and other biological transformation
4.2	processes).
	Recycling or reclamation of other inorganic materials.
	Regeneration of acids or bases.
4.0	Use of any waste principally as a fuel or other means to generate
10	energy.
	Clonminam Industrial Estate
	Portlaoise
	County Laois
Address 4	
Addie33 4	
	Laois
Country	
Country Coordinates of Location	
River Basin District	
NACE Code	
	Recovery of sorted materials
AER Returns Contact Name	
AER Returns Contact Marie	
	INdowing@enva.ie
AER Returns Contact Position	HSE Coordinator
AER Returns Contact Fosition	
AER Returns Contact Mobile Phone Number	
AER Returns Contact Mobile Phone Number	
Production Volume	
Production Volume Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	0
Number of Employees	
User Feedback/Comments	
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
5(a)	Installations for the recovery or disposal of hazardous waste
5(c) 50.1	Installations for the disposal of non-hazardous waste
50.1	General
3. SOLVENTS REGULATIONS (S.I. No. 543 of 200	02)
Is it applicable?	
Have you been granted an exemption ?	

If applicable which activity class applies (as per Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being used ?	
	•
4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site
Do you import/accept waste onto your site for on-	

AER Returns Workbook

0.0 0.0

0.0

10

4.1 RELEASES TO AIR Link to previous years emissions data | PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : PRTR Final.xls | Return Year : 2013 | 31/03/2014 18:12 SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS RELEASES TO AIR in this section in KGs ase enter all q QUANTITY METH No. Annex II Name M/C/E Emission Point 1 T (Total) KG/Year A (Accidental) KG/Year F (Fugitive) KG/Year signation or Kane May Quintox KM9160 flue gas analyser. 08 - Nitrogen oxides (NOx/NO2) Nitrogen oxides (NOx/NO2) Sulphur oxides (SOx/SO2) OTH 43.22 2.298 43.22 2.298 0.0 0.0 C C EN 14791:2005 Kane May Quintox KM9160 flue gas analyser Carbon monoxide (CO) OTH 1.379 0.0 0.0 C

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	Please enter all quantities in this section in KGs							
POLLUTANT				METHOD	QUANTITY			
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0		0.0 0	.0 0.0
	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button							

SECTION C - DEMAINING BOULUTANT EMISSIONS (As required in your Lisense)

	SECTION C - KEIMAINING FOLLOTANT EMISSIONS (AS required in your Electrice) RELEASES TO AIR Please enter all quantities in this section in KGs											
		Please enter all quantities in this section in KGs										
	POLLUTANT				METHOD	QUANTITY						
- 1			Me		Method Used							
	Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (A	Accidental) KG/Year	F (Fugitive) KG/Year		
						0.0		0.0	0.0	0.0		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Landfill operators										
For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) Iared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KG/yr for Section &: Sector specific PRTR pollutants above. Please complete the table below:										
Landfill:	Enva Ireland Limited (Portlaoise)									
Please enter summary data on the										
quantities of methane flared and / or										
utilised			Meth	od Used						
				Designation or	Facility Total Capacity					
	T (Total) kg/Year	M/C/E	Method Code	Description	m3 per hour					
Total estimated methane generation (as per										
site model)	0.0				N/A					
Methane flared	0.0					(Total Flaring Capacity)				
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)				
Net methane emission (as reported in Section										
A above)	0.0				N/A					

AER Returns Workbook

4.2 RELEASES TO WATERS Link to previous years emissions data

| PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : PRTR Final.xls | Return Year : 2013 |

31/03/2014 18:12

ECTION A : SECTOR SPECIFIC PRTR POLLUTANTS Data on ambient monitoring of storm/surface water or groundwater, conducted as part of your licence requirements, should NOT be submitted under AER / PRTR Reporting as this onl										only concerns Releases from your facil
RELEASES TO WATERS					Please enter all quantities in this section in KGs					
POLLUTANT								QUANTITY		
				Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1		T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
						0.0	0.	0 0.0	0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO WATERS		Please enter all quantities in this section in KGs							
PO						QUANTITY				
				Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
					0.0	0.0	0.0	0.0		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RELEASES TO WATERS		Please enter all quantities in this section in KGs							
POLLUTANT							QUANTITY			
				Method Used						
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
					0.0	0.0	0.0	0.0		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

4.3 RELEASES TO WASTEWATER OR SEWER

AER Returns Workbook

| PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : PRTR Final.xls | Retu

0.0

0.0

31/03/2014 18:12

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

8

SECTION A : PRTR POLLUTANTS OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER ntities in this section in KGs e enter all qu QUANTITY thod Used A/C/E A (Accidental) KG/Year F (Fugitive) KG/Year lo. Annex II Designation or Description Emission Point 1 (Total) KG/Year Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 4000, section 4500 –Nitrogen (Ammonia) F Phenate Method. 06 Ammonia (NH3) С OTH 270.1537 0.0 0.0 Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 4500 - CI - C, С OTH 12147.084 79 Chlorides (as Cl) Mercuric Nitrate Method. 0.0 0.0 Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 5530, Phenols, Phenols (as total C) С OTH 0.0 71 96.272 0.0 Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 4500-E. Phosphorus Ascorbic Acid Method. Total phosphorus С OTH 512.005 0.0 0.0 13 Standard Methods for the Examination of Water and Wastewater, 18th edition, Metals by Flame Atomic Absorption Spectrometry – Direct Air-Acetylene Flame Method. 3111B - Modified Copper and compounds (as Cu) С OTH 0.10482 0.0 0.0 20 Standard Methods for the Examination of Water and Wastewater, 18th edition, Metals by Flame Atomic Absorption Spectrometry -Direct Air-Acetylene Flame Method. 3111B - Modified OTH 18 Cadmium and compounds (as Cd) С 0.0421 0.0 0.0 Standard Methods for the Examination of Water and Wastewater, 18th edition, Metals by Flame Atomic Absorption Spectrometry – Direct Air-Acetylene Flame Zinc and compounds (as Zn) С OTH Method. 3111B - Modified 1.111 0.0 0.0 24 Standard Methods for the Examination of Water and Wastewater, 18th edition, Metals by Flame Atomic Absorption Spectrometry -Direct Air-Acetylene Flame Lead and compounds (as Pb) C OTH Method. 3111B - Modified 0.0 1.19008 0.0

Link to previous years emissions data

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	OFFSITE TRANSFER OF POLLUTANTS DESTI	ED FOR WASTE-WATER TREATMENT	IT OR S	EWER		Please enter all quantities in this section in KGs					
POLLUTANT					METHOD	QUANTITY					
					Method Used						
Pollutant No.	Name	M/C	C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
							Standard Methods for the				
					Examination of Water and						
					Wastewater, 18th edition,						
					1995, Part 5520 D Soxhlet						
314	Fats, Oils and Greases	C		OTH	Extraction Method	90.28	3 90.283	8 0.0	0.0		

AER Returns Workbook

240	Suspended Solids	с	отн	Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 2540, D - Solids.	480.7921	0.0	0.0	0.0
343	Sulphate	с	отн	Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 4500 - SO4* E Standard Methods for the Examination of Water and	495.333	0.0	0.0	0.0
306	COD Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button	с	ОТН	Wastewater, 21st edition, 2005.– Chemical Oxygen Demand.	21847.52	0.0	0.0	0.0

Link to previous years emissions data

4.4 RELEASES TO LAND Link to previous years emissions data

| PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : PRTR Final.xls | Return Year : 2013 |

31/03/2014 18:12

SECTION A : PRTR POLLUTANTS

	RELEASES TO LAND				Please enter all quar	ntities in this section in K	Gs	
POLLUTANT			METHOD					
			Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidenta	al) KG/Year
						0.0	0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RE	LEASES TO LAND			Please enter all quantitie	s in this section in KG	is
POLLUTANT			ME	THOD		QUANTITY	
				Method Used			
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year
					0	0	0.0 0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

AER Returns Workbook

			Quantity (Tonnes per Year)		Waste		Method Used		Haz Waste : Name and Licence/Permit No of Next Destination Facility <u>Non</u> <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	H <u>az Waste</u> : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Sit (HAZARDOUS WASTE ONLY
Transfer Destination	European Waste Code	Hazardous		Description of Waste	Treatment Operation	M/C/E	Method Used	Location of Treatment				
										Rue de Courriere 49 Zoning Industrial de Feluy		
									Caaguala		Geocycle ,38.152/BP, Rue	Rue de Courriere 49
				waste paint and varnish containing organic					Geocycle	,. ,B 7181 Seneffe	de Courriere 49 Zoning Industrial de Feluy,B	Zoning Industrial de Feluy ,B 7181 Seneffe
Fo Other Countries 0	08 01 11	Yes	76.88		R1	М	Weighed	Abroad	,38.152/BP	,Belgium	7181 Seneffe ,Belgium Nehlsen GmbH & Co.kg, A-	,Belgium
				waste paint and varnish containing organic					Nehlsen GmbH & Co.kg, A-	Louis-Krages-Strabe ,.,Bremen., D-28237	4187 HH,Louis-Krages- Strabe ,.,Bremen., D-28237	Louis-Krages-Strabe ,,,Bremen., D-28237
To Other Countries	08 01 11	Yes	123.28		R3	М	Weighed	Abroad	4187 HH	,Germany	,Germany	,Germany
										Smithstown Industrial estate	Lindenschmidt, 04 714 98089,Krombacher Strasse 42-46,.,Kreutzal,D57223	Krombacher Strasse 42-46
To Other Countries	09 01 04	Yes	1.27	fixed solutions	R1	М	Weighed	Abroad	Enva ,W041-1	Clare, Ireland	,Germany	,Germany
										JFK Road Naas Road,.,Dublin,Dublin	Enva,W0196-01,JFK Road Naas Road,.,Dublin,Dublin	JFK Road Naas Road,.,Dublin,Dublin
Within the Country 1	13 05 07	Yes	40.0	oily water from oil/water separators	D9	М	Weighed	Offsite in Ireland	Enva,W0196-1	12,Ireland	12,Ireland KS Recycling ,12 150 13984/01TMS,Raiffeisenstra	12,Ireland
Fo Other Countries 1	13 07 03	Yes	79.54	other fuels (including mixtures)	R1	м	Weighed	Abroad	KS Recycling ,12 150 13984/01TMS	Raiffeisenstraße 38 ,.,,, D- 47665 Sonsbeck ,Germany JFK Road Naas Road,.,Dublin,Dublin	ße 38,, D-47665 Sonsbeck ,Germany Enva,W0196-01,JFK Road Naas RoadDublin,Dublin	Raiffeisenstraße 38,, E 47665 Sonsbeck ,Germa JFK Road Naas RoadDublin.Dublin
Vithin the Country 1	13 08 02	Yes	68.26	other emulsions	D9	М	Weighed	Offsite in Ireland	Enva,W0196-1 ROC Recycling Solutions,WFP-LS-11-	12,Ireland Ballymacken Industrial EstatePortlaoise,Co.	12,Ireland	12,Ireland
Within the Country 1	15 01 01	No	1.2	paper and cardboard packaging	R3	М	Weighed	Offsite in Ireland		Laois,Ireland		
To Other Countries 1	15 01 10	Yes	4.0	packaging containing residues of or contaminated by dangerous substances	R3	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	Lindenschmidt, 04 714 98089,Krombacher Strasse 42-46,,,Kreutzal,D57223 ,Germany Nehlsen GmbH & Co.kg, A-	Krombacher Strasse 42-4 ,.,Kreutzal,D57223 ,Germany
										Louis-Krages-Strabe	4187 HH,Louis-Krages-	Louis-Krages-Strabe
To Other Countries 1	15 01 10	Yes	63.06	packaging containing residues of or contaminated by dangerous substances	R3	м	Weighed	Abroad	Nehlsen GmbH & Co.kg, A- 4187 HH	,.,Bremen., D-28237 ,Germany	Strabe ,.,Bremen., D-28237 ,Germany	,.,Bremen., D-28237 ,Germany
			0.000	packaging containing residues of or	D o			o# ** * + + + +	E 1990 4 4	,.,Shannon ,Co.	Industrial estate ,.,Shannon	Smithstown Industrial est ,.,Shannon ,Co.
Vithin the Country 1	15 01 10	Yes	3.286	contaminated by dangerous substances	D9	М	Weighed	Offsite in Ireland	Enva ,W041-1	Clare, Ireland	,Co. Clare,Ireland	Clare, Ireland
				absorbents, filter materials (including oil filters not otherwise specified), wiping cloths, protective clothing contaminated by						Smithstown Industrial estate	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,.,Kreutzal,D57223	Krombacher Strasse 42-4
To Other Countries 1	15 02 02	Yes	1.124	dangerous substances	R12	М	Weighed	Abroad	Enva ,W041-1	Clare, Ireland	,Germany RD Recycling ,Ovam	,Germany
o Other Countries 1	16 01 07	Yes	684.06	oil filters	R12	м	Weighed	Abroad	RD Recycling ,Ovam approved	Centrum Zuid 3017 ,,3530,Belgium. Krombacher Strasse 42-46	approved,Centrum Zuid 3017 ,,3530,Belgium.	Centrum Zuid 3017 ,,,,3530,Belgium.
										NUMBAUIEI SUASSE 42-40		
o Other Countries 1	16 01 15	No	0.3	antifreeze fluids other than those mentioned in 16 01 14 antifreeze fluids other than those	R1	м	Weighed	Abroad	Lindenschmidt,04 714 98089 KS Recycling,12 150	,,Kreutzal,D57223 ,Germany Raiffeisenstraße 38 ,, D-		

AER Returns Workbook

		r r							Haz Waste : Name and			
			Quantity (Tonnes per Year)		Waste		Method Used	-	Licence/Permit No of Next Destination Facility <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	<u>Haz Waste</u> : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Destination	European Waste Code	Hazardous		Description of Waste	Treatment Operation	M/C/E	Method Used	Location of Treatment				
To Other Countries	16 05 04	Yes	19.42	gases in pressure containers (including halons) containing dangerous substances	R4	м	Weighed	Abroad	SBH ,121296753	Austrabe 5 ,,D74238 Krautheim,Germany	SBH ,121296753,Austrabe 5 ,,D74238 Krautheim,Germany	Austrabe 5 ,,D74238 Krautheim,Germany
To Other Countries	16 05 06	Yes	38.5	laboratory chemicals, consisting of or containing dangerous substances, including mixtures of laboratory chemicals	R1	М	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
To Other Countries	16 05 07	Yes	0.706	discarded inorganic chemicals consisting of or containing dangerous substances	R1	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
To Other Countries	16 05 08	Yes		discarded organic chemicals consisting of or containing dangerous substances discarded chemicals other than those mentioned in 16 05 06, 16 05 07 or 16 05	R1	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland Smithstown Industrial estate ,.,Shannon ,Co.	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
Within the Country	16 05 09	No	0.466	08	R1	М	Weighed	Offsite in Ireland	Enva ,W041-1	Clare, Ireland	Campine, Ovam Approved,	
To Other Countries Within the Country		Yes No		lead batteries	R4 R5	M	Weighed	Abroad Offsite in Ireland	Campine,Ovam Approved AES Advanced Environmental Solutions (Ireland) Limited,W0104-02	Niljverheidsstraat 2 Belgium.,,B- 2340 Beerse ,Belgium ,Tullamore,Co. Offaly,Ireland	Niljverheidsstraat 2 Belgium.,,B- 2340 Beerse ,Belgium	Niljverheidsstraat 2 Belgium.,,B- 2340 Beerse ,Belgium
										Straboe		
	17 05 04		0050.04	soil and stones other than those mentioned	R5			o# ** * • • •	Hinch Plant hire	, Portlaoise ,Co Laois		
Within the Country	17 05 04	No	2052.21	in 17 05 03 mixed construction and demolition wastes other than those mentioned in 17 09 01, 17	RD	М	Weighed	Offsite in Ireland	,WFP-LS-09-0002-01 Guessford Ltd.,WFP-10-OY-	,Ireland BarnanDaingean.Co.		
Within the Country	17 09 04	No	4.88	09 02 and 17 09 03	R5	М	Weighed	Offsite in Ireland		Offaly, Ireland		
To Other Countries	19 02 09	Yes	855.862	solid combustible wastes containing dangerous substances sludges from other treatment of industrial waste water other than those mentioned in	R1	М	Weighed	Abroad	Lindenschmidt , 04 714 98089	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany JFK Road Naas Road,Dublin,Dublin	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
Within the Country	19 08 14	No	0.0	19 08 13	D9	М	Weighed	Offsite in Ireland	Enva,W0196-1	12,Ireland	Laois County Council, DO00	
Within the Country	19 11 03	Yes		aqueous liquid wastes other wastes (including mixtures of	D9	С	Volume Calculation	Offsite in Ireland	Laois County Council,DO00 1-0 1	Ridge Road,,Portlaoise,,Ireland	1-0 1,Ridge Road,,Portlaoise,,Ireland KWA,E17012100,Graftstr.	Ridge Road,.,Portlaoise,.,Ireland
To Other Countries	19 12 11	Yes	164.5	materials) from mechanical treatment of waste containing dangerous substances	D10	м	Weighed	Abroad	KWA,E17012100	Graftstr. 25 ,.,,,47475 Kamp-Lintfort ,Germany	25 ,,47475 Kamp-Lintfort ,Germany	Graftstr. 25 ,,47475 Kamp-Lintfort ,Germany
				fluorescent tubes and other mercury-					Irish Lamp Recycling WEP-	Woodstock Industrial Estate	Irish Lamp Recycling ,WFP- KE-08-0348-01,Woodstock Industrial EstateAthy	Woodstock Industrial Estate
Within the Country	20 01 21	Yes	2.32	containing waste	R4	М	Weighed	Offsite in Ireland		"Athy "Co. Kildare. "Ireland		"Athy "Co. Kildare. "Ireland

									Haz Waste : Name and Licence/Permit No of Next			
			Quantity (Tonnes per Year)				Method Used		Destination Facility <u>Non</u> <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	<u>Haz Waste</u> : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Destination	European Waste Code	Hazardous		Description of Waste	Waste Treatment Operation	M/C/E	Method Used	Location of Treatment				
Within the Country		No		edible oil and fat	R9	M	Weighed	Offsite in Ireland		Ballymount Drive Ballymount Industrial Estate,Unit J1 ,Dublin,Dublin 12,Ireland Camphill Community Ballytobin ,.,Callan ,Co.	1	1
Within the Country	20 01 25	No	71.16	6 edible oil and fat	D8	М	Weighed	Offsite in Ireland	Beofs ,WFP-KK-09-0004-01	Kilkenny, Ireland		
To Other Countries Within the Country		Yes No		paint, inks, adhesives and resins containing dangerous substances waste from sewage cleaning	R1 D9	M	Weighed	Abroad Offsite in Ireland	Enva ,W041-1 Enva,W0196-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland JFK Road Naas Road,,,Dublin,Dublin 12,Ireland	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,Kreutzal,D57223 ,Germany
To Other Countries	08 01 11	Yes	2.5	waste paint and varnish containing organic solvents or other dangerous substances	R1	М	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,Shannon ,Co. Clare,Ireland Rue de Courriere 49 Zoning Industrial de Feluy	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,Kreutzal,D57223 ,Germany
To Other Countries	12 01 14	Yes	35.5	machining sludges containing dangerous 5 substances	R1	м	Weighed	Abroad	Geocycle ,38.152/BP	,B 7181 Seneffe ,Belgium Rue de Courriere 49 Zoning Industrial de Feluy	Geocycle ,38.152/BP, Rue de Courriere 49 Zoning Industrial de Feluy ,,,B 7181 Seneffe ,Belgium	Rue de Courriere 49 Zoning Industrial de Feluy ,,B 7181 Seneffe ,Belgium
To Other Countries Within the Country		Yes No) oily water from oil/water separators 2 metals	R1 R4	M M	Weighed Weighed	Abroad Offsite in Ireland	Geocycle ,38.152/BP MSM Recycling,WFP-TN-11- 0003-02	,. ,B 7181 Seneffe ,Belgium	Geocycle ,38.152/BP, Rue de Courriere 49 Zoning Industrial de Feluy ,,B 7181 Seneffe ,Belgium	Rue de Courriere 49 Zoning Industrial de Feluy ,,B 7181 Seneffe ,Belgium
To Other Countries	13 07 03	Yes	2.05	5 other fuels (including mixtures)	R1	м	Weighed	Abroad	Geocycle ,38.152/BP	Zoning Industrial de Feluy ,. ,B 7181 Seneffe ,Belgium	Geocycle ,38.152/BP, Rue de Courriere 49 Zoning Industrial de Feluy ,,B 7181 Seneffe ,Belgium	Rue de Courriere 49 Zoning Industrial de Feluy ,,B 7181 Seneffe ,Belgium
To Other Countries		No		waste adhesives and sealants other than those mentioned in 08 04 09	R1	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,,Shannon ,Co. Clare,Ireland Cappincur Industrial Estate		
Within the Country	16 06 04	No	1.2	2 alkaline batteries (except 16 06 03)	R4	м	Weighed	Offsite in Ireland	KNK Metals Recycling Limited,W0113-04	,Daingean Road,Tullamore,Co. Offaly,Ireland	Scori Lillebonne,.,Z1	
To Other Countries	13 05 07	Yes	1378.46	s oily water from oil/water separators	D10	м	Weighed	Abroad	Scori Lillebonne,.	Z1 Avenue de Port Jerome,76170 Lillebonne,,France	Avenue de Port Jerome,76170,Lillebonne,.,F rance	Z1 Avenue de Port Jerome,76170,Lillebonne,,F rance
Within the Country	16 05 04	Yes	0.024	gases in pressure containers (including 4 halons) containing dangerous substances	R13	М	Weighed	Offsite in Ireland	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	Enva ,W041-1,Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland

31/3/2014	18:5
-----------	------

ransfer Destination	European Waste Code	Hazardous	Quantity (Tonnes per Year) De	escription of Waste	Waste Treatment Operation		Method Used Method Used	Location of Treatment	Haz Waste : Name and Licence/Permit No of Next Destination Facility <u>Non</u> <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	<u>Haz Waste</u> : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARPOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
o Other Countries	13 02 08	Yes	1.5 other engine,	gear and lubricating oils	R1	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate	42-46 ,.,Kreutzal,D57223	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
o Other Countries	20 01 29	Yes	detergents co 0.378 substances	ntaining dangerous	R1	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate	42-46 ,.,Kreutzal,D57223	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
Vithin the Country	13 05 07	Yes	16.18 oily water from	n oil/water separators	R13	М	Weighed	Offsite in Ireland	Enva ,W041-1 Acorn Recycling ltd ,W0249-	,.,Shannon ,Co. Clare,Ireland Ballybeg Composting facility	Industrial estate ,.,Shannon	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland
Vithin the Country	20 03 04	No	2.58 septic tank slu	ıdge	R3	М	Weighed	Offsite in Ireland		Tipperary. ,Ireland		
Vithin the Country	02 07 04	No	materials unsu 10.48 processing	uitable for consumption or	R13	м	Weighed	Offsite in Ireland	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland		

* Select a row by double-clicking the Description of Waste then click the delete button

Link to previous years waste data Link to previous years waste summary data & percentage change Link to Waste Guidance

LIST OF APPENDICES

Appendix 1: Groundwater Monitoring Reports and Contour Plans

- Appendix 2: Quarterly Metal Screen
- Appendix 3: Boiler Monitoring Report
- Appendix 4: Noise Monitoring Report
- Appendix 5: Monitoring Locations
- Appendix 6: Site Drawing
- Appendix 7: Calibration of Temperature Cut Off Probe
- Appendix 8: PRTR Returns
- Appendix 9: Respirometry Reports
- Appendix 10: Financial Bond
- Appendix 11: Annual Environmental Report Sign Off

Enva Portlaoise

2013 Groundwater Compliance Monitoring Quarter 1 (Jan – March 2013)

DOCUMENT CONTROL SHEET

Client	Enva Irelan	Enva Ireland Ltd.							
Project Title	Enva Portla	inva Portlaoise 2013 Groundwater Compliance Monitoring							
Document Title	Quarter 1 (J	lan – March 2	2013) Interpre	tative Report					
Document No.	MDE0973R	p0013D01							
This Document	DCS	TOC	Text	List of Tables	List of Figures	No. of Appendices			
Comprises	1	1	36	1	1	-			

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
D01	Draft	M. Roche	C. Reilly	P. Chadwick	West Pier	28/03/2013
F01	Final	M. Roche	C. Reilly	P. Chadwick	West Pier	04/04/13
				Pallahel		

TABLE OF CONTENTS

1	INTRO	DUCTIC	ON	1
	1.1	BACK	GROUND	1
	1.2	OBJEC	CTIVES & SCOPE OF WORK	1
2	REVIE	W OF P	REVIOUS DATA	2
	2.1	INFOR	MATION SOURCES	2
	2.2	SITE S	ETTING	2
	2.3	REGIC	DNAL SETTING	2
		2.3.1	Geology	2
		2.3.2	Hydrogeology	3
	2.4	SITE G	ROUND CONDITIONS	3
		2.4.1	Licence Conditions	6
3	METH	ODOLO	GY	7
	3.1	LABOF	RATORY ANALYSIS	7
	3.2	PRESE	ENTATION & INTERPRETATION OF RESULTS	9
4	QUAR	TER 1 R	RESULTS AUGUST 2013	10
5	DISCU	SSION	OF QUARTER 1 RESULTS	23
5	DISCU 5.1		OF QUARTER 1 RESULTS PARAMETERS	
5		FIELD		23
5	5.1	FIELD RESUI	PARAMETERS	23 23
5	5.1 5.2	FIELD RESUI RESUI	PARAMETERS LTS OF BTEX & MTBE	23 23 23
5	5.1 5.2 5.3	FIELD RESUL RESUL RESUL	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S	23 23 23 23
5	5.1 5.2 5.3 5.4	FIELD RESUI RESUI RESUI RESUI	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS	23 23 23 24 24
5	5.1 5.2 5.3 5.4 5.5	FIELD RESUI RESUI RESUI RESUI	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS	23 23 23 24 24 24 24
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	FIELD RESUI RESUI RESUI RESUI RESUI	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS	23 23 23 24 24 24 24 24
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7	FIELD RESUI RESUI RESUI RESUI RESUI	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF TOTAL PETROLEUM HYDROCARBONS	23 23 24 24 24 24 24 24 24 24
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO	FIELD RESUI RESUI RESUI RESUI RESUI RESUI GROU	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS	23 23 23 24 24 24 24 24 24 24 26
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO 6.1	FIELD RESUI RESUI RESUI RESUI RESUI RESUI GROU	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS NDWATER LEVELS OVER TIME	23 23 23 24 24 24 24 24 26 26 29
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO 6.1	FIELD RESUI RESUI RESUI RESUI RESUI RESUI GROU GROU	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS NDWATER LEVELS OVER TIME NDWATER CONCENTRATIONS OVER TIME	23 23 24 24 24 24 24 24 24 26 20 29
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO 6.1	FIELD RESUI RESUI RESUI RESUI RESUI RESUI RESUI GROU GROU 6.2.1	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS NDWATER LEVELS OVER TIME NDWATER CONCENTRATIONS OVER TIME Phenols	23 23 24 24 24 24 24 26 29 29 30

LIST OF TABLES

Table 2.1: Ground Conditions
Table 2.2: Licence Parameters 6
Table 3.1: Analytical Methodologies – I2 Analytical Ltd 7
Table 4.1: Groundwater Levels (Quarter 1, 2013) 11
Table 4.2: Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 1, 2013) 12
Table 4.3: Results of BTEX & MTBE 13
Table 4.4: Results of Speciated PAH's
Table 4.5: Results of Total Phenols 15
Table 4.6: Results of Speciated Phenols 15
Table 4.7: Results of Semi-Volatile Organic Compounds (sVOCs) 16
Table 4.8: Results of Volatile Organic Compounds (VOCs) 19
Table 4.9: Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic) 22
Table 5.1: Monthly Rainfall data for Year 2009 for Oak Park, Carlow 28
Table 5.2: Monthly Rainfall data for Year 2010 for Oak Park, Carlow 28
Table 5.3: Monthly Rainfall data for Year 2011 for Oak Park, Carlow 28
Table 5.4: Monthly Rainfall data for 2012 to date for Oak Park, Carlow
Table 5.5: Monthly Rainfall data for 2013 to date for Oak Park, Carlow

LIST OF FIGURES

Figure 1	Site Location
Figure 2	Site Layout Plan with groundwater monitoring well locations
Figure 3	Groundwater Elevation (mAOD) in all Monitoring Wells
Figure 4	Groundwater Elevation (mAOD) in Shallow Monitoring Wells
Figure 5	Groundwater Elevation (mAOD) in Deep Monitoring Wells
Figure 6	Phenol Concentrations in all Monitoring Wells
Figure 7	PAH (Total) Concentrations in all Monitoring Wells
Figure 8	Fluoroanthene Concentrations in all Monitoring Wells
Figure 9	Naphthalene Concentrations in all Monitoring Wells
Figure 10	Benzo (g,h,i) perylene in all Monitoring Wells
Figure 10a	Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW0333
Figure 11	Benzo(a)pyrene in all Monitoring Wells
Figure 12	TPH (Carbon Range C5-C44) in all Monitoring Wells

Rev F01

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Waste Licence Register No. W0184-01.

Enva Ireland has been operating under Waste Licence Register No. W0184-01 since January 2004, and is required to submit a report to the Environmental Protection Agency (EPA) on a quarterly basis, outlining the existing groundwater quality underlying the site.

Suitably qualified environmental consultants from RPS, collected groundwater samples from a series of 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) within the site boundary on the 19th of February 2013. The samples underwent laboratory analysis for the suite of parameters specified in Schedule 4(ii) of Waste Licence W0184-01. This report outlines the results of the Quarter 1 monitoring for 2013 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 1 2013 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Waste Licence W0184-01 and any available EPA documents from the EPA website
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), URS (2004)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), URS (2005)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2006)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2007)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2008)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2009)
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007)
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2010)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2011)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2012)

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 2**. The site is largely covered in hardstanding with some open areas in the far north and northwest of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen

Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoil's in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological survey of Ireland (GSI) as a locally important karstified aquifer. Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising five extraction wells in total. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends north-west south-east with the boundary of the outer protection zone at least 4 km to the north-east of the site. A further public abstraction well-field is currently being developed to the north-west of the current area in the townland of Eyne, approximately 6 km to the north of the site, and will comprise a further five abstraction wells. The Source Protection Zone for these wells has not yet been defined but it is not anticipated to affect the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk, the accuracy of this location is also 1 km so that it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2**.

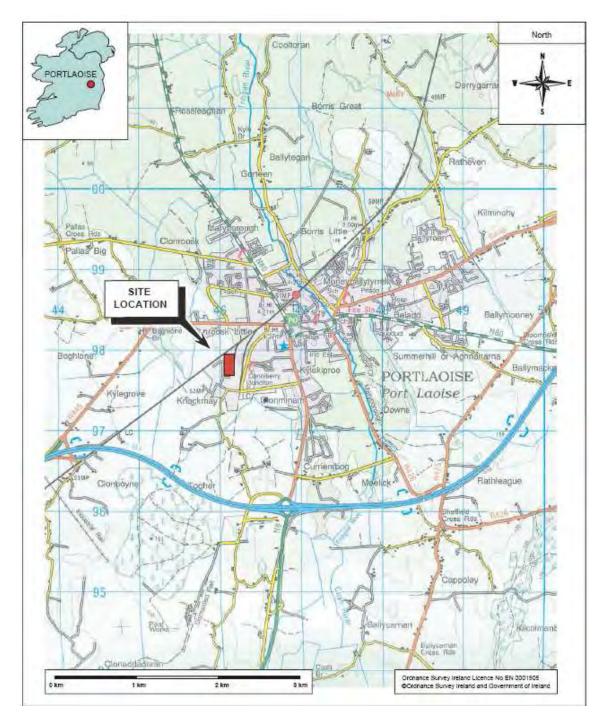

Strata	Extent	Thickness	Description
Made Ground	BH104	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium, well rounded gravels.
Sand and Gravel	Confined to south east corner of site (BH101, BH104 and MW03)	0-2 m	In general the transition from boulder clay to sand is gradual with changes from gravel, to sandy gravel, to sand.
Limestone Bedrock	Encountered in MW01, MW02 and MW03	Top of limestone ranges from 7.7m to 9m	Pale grey, fine-grained bedrock, differentiated from boulders by its un-weathered nature.

Table 2.1: Ground Conditions

Extent	Thickness	Description
	below ground	
	Extent	

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

Figure 1 Site Location

2.4.1 Licence Conditions

The waste management licence requires the regular monitoring and sampling of boreholes BH101, BH102, BH103, BH104B, MW01, MW02, MW03 and MW04. The parameters requiring measurement or analysis are presented in Table 2.2.

Table 2.2: Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement
	Groundwater Level	Groundwater Level
	рН	рН
Field	Temperature	Temperature
Parameters	Dissolved Oxygen	Dissolved Oxygen
	Electrical Conductivity	Electrical Conductivity
	Visual Inspection	Visual Inspection
	Mineral Oil	Mineral Oil
	BTEX & MTBE	BTEX & MTBE
Organica	PAH's	PAH's
Organics	Phenols	Phenols
	VOC's	VOC's
	SVOC's	SVOC's
		Total Alkalinity, Calcium,
Inorganics	-	Manganese, Sulphate, Cyanide
		(Total), Chloride, Sodium,

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04), (See Figure 2) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.

Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, I2 Analytical Ltd for the suite of analyses listed in Table 3.1. Table 3.1 also indicates the analytical techniques used by the laboratory.

Parameter	Analytical Methodology
Phenols	GC-MS
Speciated PAHs	GC-MS
BTEX & MTBE	Headspace GC-MS
Petroleum Hydrocarbons	Headspace GC-MS
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS

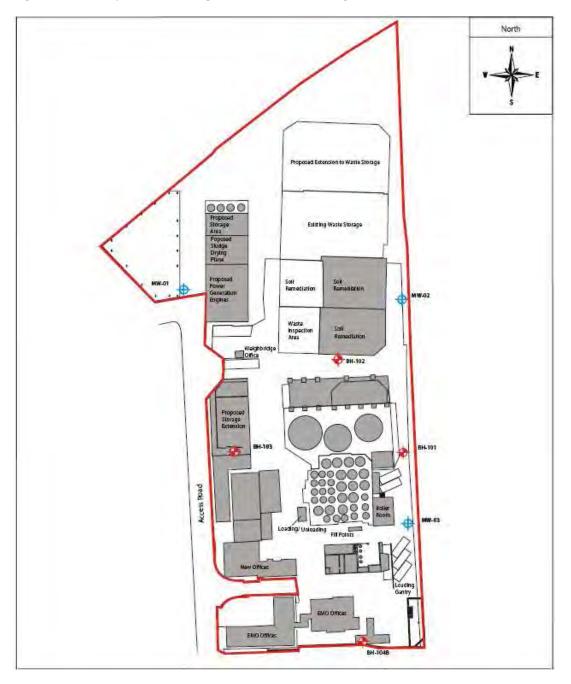


Figure 2 Site Layout Plan with groundwater monitoring well locations

Shallow Monitoring Well locations

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 1 2013 results are tabulated in Section 4 and discussed with respect to previous results. The results have been compared to the EPA Interim Guideline Values (IGV) as set out in the Report 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004. It is important to note that the IGVs are based on the lowest acceptable value for either drinking water or environmental quality in surface water and is therefore conservative in nature.

Previous monitoring reports (as listed in Section 2.1) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in Section 6 and include the results of this Quarter 1 2013 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 1 RESULTS AUGUST 2013

The results of all field measurements and laboratory analysis are presented in this section.

The results are discussed in relation to appropriate guideline values in Section 5. Results that are shown to be above the relevant guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Monitoring Well	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04
Depth (mbgl)	7.70	6.44	4.35	4.65	23.00	31.00	14.67	6.38
Static Water Level (mbgl)	3.93	2.97	1.68	0.50	3.10	4.44	3.70	3.59
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	99.13	99.58	99.48	101.02	99.00	98.68	99.07	-
Free Phase Oil (mm)	No detection							

Table 4.1: Groundwater Levels (Quarter 1, 2013)

mbgl = metres below ground level

Monitoring Well	pH (pH Units)	Temperature (℃)	Conductivity (µS/cm)	Dissolved O ₂ (ppm)	Observations
BH101	7.33	9.4	724	3.27	White cloudy colour, black suspended solids, odourless.
BH102	6.59	9.3	867	2.30	Purged water yellowish in colour, slight H ₂ S odour detected on purging, some suspended solids.
BH103	7.18	8.2	652	3.21	Black/grey colour at start of purging, clear in sample. Odourless.
BH104B	7.66	7.4	787	3.35	Slight green tinge to water, slight H ₂ S odour on purging.
MW01	7.38	10.2	859	2.48	Purged water grey in colour, no odour detected, fine sediment noted. Difficult to purge at this location.
MW02	7.25	10.0	589	2.31	Purged water clear, odourless, some suspended solids.
MW03	7.05	10.5	1051	2.91	Grey colour, slight hydrocarbon sheen on surface, slight hydrocarbon odour.
MW04	7.27	8.2	958	3.61	Purged water light grey/brown in colour, sediment in sample, odourless.
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25℃	1000	No abnormal change	-

Table 4.2: Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 1, 2013)

Note: Results above the relevant IGV are highlighted in bold and shaded.

Table 4.3: Results of BTEX & MTBE

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Benzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
Toluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
Ethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10 Note 1
o-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10 Note 1
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	30

Note 1: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Table 4.4: Results of Speciated PAH's

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Naphthalene	µg/l	0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	1.0
Acenaphthylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Acenaphthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Fluorene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Phenanthrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10,000
Fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0
Pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(a)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Chrysene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.5
Benzo(k)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Dibenz(a,h)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(g,h,i)perylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Total EPA-16 PAH's	µg/l	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.1

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are in italics.

Table 4.5: Results of Total Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Total Phenols (monohydric)	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	0.5
Total Phenols (GC-MS)	µg/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5

Table 4.6: Results of Speciated Phenols

Parameter	Unit s	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Phenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5
2,4,5-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4,6-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2,4-Dichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4-Dimethylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Chlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Nitrophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Chloro-3- methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-

Note: Results above the relevant laboratory limit of detection are in italics.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Aniline	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Phenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5
2-Chlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
Bis(2-chloroethyl)ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,3-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,2-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	10
1,4-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Bis(2- chloroisopropyl)ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Hexachloroethane	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Nitrobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	10
4-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Isophorone	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Nitrophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4-Dimethylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Bis(2- chloroethoxy)methane	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,2,4- Trichlorobenzene	µg∕l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.40
Naphthalene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0

Table 4.7: Results of Semi-Volatile Organic Compounds (sVOCs)

Quarter 1 - FINAL

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
2,4-Dichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Chloroaniline	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Hexachlorobutadiene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.10
4-Chloro-3- methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4,6-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2,4,5-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Methylnaphthalene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.13	<0.05	-
2-Chloronaphthalene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dimethylphthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,6-Dinitrotoluene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Acenaphthylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Acenaphthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
2,4-Dinitrotoluene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dibenzofuran	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Chlorophenyl phenyl ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Diethyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Nitroaniline	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Fluorene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Azobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-

Parameter

Bromophenyl phenyl

ether

Laboratory Limit

of Detection

0.05

Units

µg/l

BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10,000
< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	-

Hexachlorobenzene	µg/l	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03
Phenanthrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10,000
Carbazole	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dibutyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	2.0
Anthraquinone	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0
Pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Butyl benzyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Benzo(a)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Chrysene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.5
Benzo(k)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Indeno(1,2,3- cd)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Dibenz(a,h)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(g,h,i)perylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05

Note: Results above the relevant laboratory limit of detection in italics.

Quarter 1 - FINAL

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Chloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Chloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Bromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Vinyl Chloride	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichlorofluoromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,1-dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	30
1,1,2-Trichloro 1,2,2- Trifluoroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Cis-1,2-dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	30
1,1-dichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
2,2-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	12
1,1,1-Trichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	500
1,2-dichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,1-Dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trans-1,2- dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Benzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
Tetrachloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0

Table 4.8: Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
1,2-dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	70
Dibromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Bromodichloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Cis-1,3- dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trans-1,3- dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Toluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
1,1,2-Trichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Dibromochloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tetrachloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	40
1,2-Dibromoethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Chlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
1,1,1,2- Tetrachloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Ethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
Styrene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tribromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
o-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Isopropylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Bromobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
N-Propylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
2-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
4-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3,5- Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tert-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2,4- Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Sec-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
P-Isopropyltoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
1,4-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2-Dibromo-3- chloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2,4-Trichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.40
Hexachlorobutadiene	µg/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.10
1,2,3-Trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Aliphatic > C5-C6	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C6-C8	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C8-C10	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C10-C12	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C12-C16	µg/l	10	<10	<10	70	<10	<10	<10	<10	<10	-
Aliphatic > C16-C21	µg/l	10	<10	<10	100	<10	<10	<10	<10	<10	-
Aliphatic >C21-C35	µg/l	10	<10	<10	90	<10	<10	<10	<10	<10	-
Aliphatic (C5-C35)	µg/l	10	<10	<10	260	<10	<10	<10	<10	<10	10
Aromatic > C5-C7	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C7-C8	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C8-C10	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C10-C12	µg/l	10	<10	<10	<10	30	<10	<10	<10	20	-
Aromatic > C12-C16	µg/l	10	<10	<10	30	110	<10	<10	<10	60	-
Aromatic > C16-C21	µg/l	10	<10	<10	280	80	<10	<10	<10	<10	-
Aromatic > C21-C35	µg/l	10	<10	<10	100	<10	<10	<10	<10	<10	-
Aromatic (C5-C35)	µg/l	10	<10	<10	410	220	<10	<10	<10	80	10

Table 4.9: Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

MDE0973Rp0013

22

Rev F01

5 DISCUSSION OF QUARTER 1 RESULTS

The results of the Quarter 1 monitoring event for 2013 are presented in Table 4.1 to 4.9 of this report. For the purpose of this report, the results are compared to the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in Table 4.2. Groundwater samples recorded pH levels ranging between 6.59 and 7.66. All pH measurements were inside the EPA Interim guideline range of \geq 6.5 to \leq 9.5. Temperature measurements ranged from 7.4°C to 10.5°C and were w ithin the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 589 μ S/cm and 1051 μ S/cm and were above the Interim Guideline Value of 1000 μ S/cm at all locations with the exception of MW03 (1050 μ S/cm).

Dissolved oxygen levels ranged between 2.30 and 3.61 ppm. Factors such as climate, nutrients in the water, suspended solids; organic wastes and groundwater inflow can all influence the dissolved oxygen values.

Observations relating to colour and odour varied from well to well as detailed in Table 4.2.

5.2 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in Table 4.3 and demonstrate concentrations below the laboratory limit of detections and associated IGV's at all locations.

The last detection of MTBE was in the Quarter 1 monitoring event of 2012. MTBE was recorded above the laboratory limit of detection at a concentration of 280 μ g/l at BH104B. This was the only recorded exceedance in Quarter 1 2012. Previous monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at BH103 at a concentration of 16 μ g/l. During Quarter 3 and Quarter 4 of 2010 concentrations were below the laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at BH103 were recorded at 63 μ g/l in December 2009.

5.3 RESULTS OF SPECIATED PAH'S

The results of the Speciated PAH analysis during this monitoring period are presented in Table 4.4.

The laboratory limit of detection for Total EPA-16 PAH's is 0.2 μ g/l. This laboratory limit of detection is above the EPA IGV of 0.1 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l.

The results of the speciated polycyclic aromatic hydrocarbon analysis detected no concentrations above the laboratory limit of detection. The laboratory is accredited to achieve a detection limit of 0.2 μ g/l for EPA-16 PAH's. The laboratory has confirmed that the detection limit for total EPA-16 PAH's

can be lowered to 0.1 μ g/l for comparison with the EPA IGV of 0.1 μ g/l, however this will not be accredited.

5.4 RESULTS OF SPECIATED PHENOLS

The results of Total Phenol analysis are presented in Table 4.5. All samples detected concentrations of monohydric phenol below the laboratory limit of detection of 10 μ g/l. It should be noted that the laboratory limit of detection is above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in Table 4.6. The speciated phenol analysis reduces the laboratory limit of detection to $0.05 \mu g/l$ for individual parameters.

The results of the current Quarter 1 2013 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 0.05 μ g/l at all locations. This is consistent with the results from the previous 2012 monitoring events.

5.5 RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.7.

No SVOC's were detected during this monitoring period above the relevant IGV's. The Quarter 3 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene at 2.4 μ g/l and 0.12 μ /l respectively in MW03.

5.6 RESULTS OF VOLATILE ORGANIC COMPOUNDS

The results of the Volatile Organic Compound analysis are presented in Table 4.8. The results of the current Quarter 1 2013 monitoring event indicate that there were no exceedances of VOC parameters detected above the relevant IGV's.

In November 2009, corresponding to Quarter 4 of 2009, no VOC's were detected above the relevant IGV's. However some parameters were detected above the laboratory limits of detection (1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene).

The Quarter 1 and Quarter 2 monitoring results of 2010 detected MTBE in BH103 raised above the laboratory limit of detection of $1.0 \mu g/l$ at a concentration of $16 \mu g/l$.

The results of the Quarter 3 and Quarter 4 monitoring events of 2010 and all subsequent monitoring events indicate that there were no exceedances of the IGV for specific parameters.

5.7 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in Table 4.9.

No detections of TPH in the aliphatic range were observed in the monitoring well locations during the current monitoring event with the exception of BH103. Aliphatic TPH of the range C12-C16, C16-C21 and C21-C35 were detected during the Quarter 1 2013 monitoring event.

TPH in the mid to high aromatic ranges were detected in BH103, BH104B and MW04 during the current Quarter 1 2013 monitoring event. Aromatic TPH of the ranges C12-C16, C16-C21 and C21-C35 were detected in BH103, the ranges C10-C12, C12-C16 and C16-C21 were detected in BH104B and aromatic TPH of the ranges C10-C12 and C12-C16 were detected in MW04.

The EPA IGV of 10 μ g/l for Total Hydrocarbons is deemed comparable with the results for total petroleum hydrocarbons (TPH). Total aliphatic hydrocarbons were detected at 260 μ g/l in BH103 and total aromatic petroleum hydrocarbons were detected at 410 μ g/l in BH103, 220 μ g/l in BH104B and 80 μ g/l in MW04.

The Quarter 2 monitoring event of 2012 detected elevated TPH of the aliphatic range C12-C16, C16-C21 and C21-C25 in BH103. Hydrocarbons have been detected in borehole MW03 during Quarter 1 2010, in borehole BH104B during the Quarter 2 2010 monitoring event and in borehole BH104B and MW03 during the Quarter 3 2010 monitoring events. Hydrocarbons have also been detected in BH103, BH104B and MW03 in the Quarter 2 2011 monitoring event and in MW03 in the Quarter 3 and Quarter 4 2011. These detections are discussed further in Section 6.2.3.

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 1 2013 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

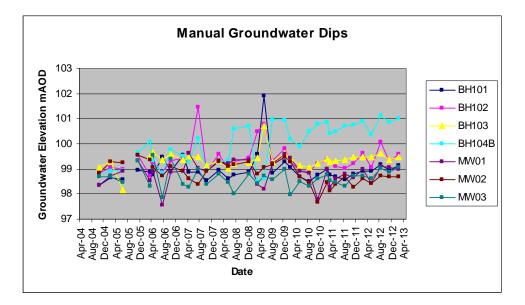

6.1 GROUNDWATER LEVELS OVER TIME

Figure 3 to Figure 5 below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 4 illustrates groundwater elevations (mAOD) in shallow groundwater wells (BH101 to BH104B) ranging between approximately 98 mAOD and 102 mAOD.

Figure 5 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (MW01 to MW03). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 97.5 mAOD to approximately 100 mAOD.

Figure 3 Groundwater Elevation (mAOD) in all Monitoring Wells

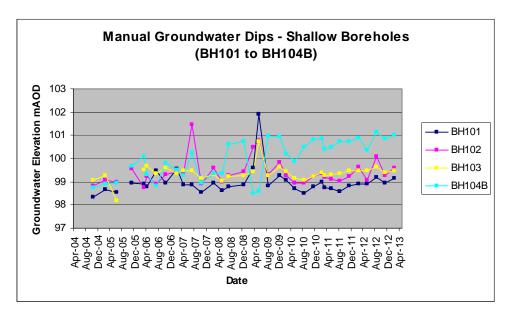
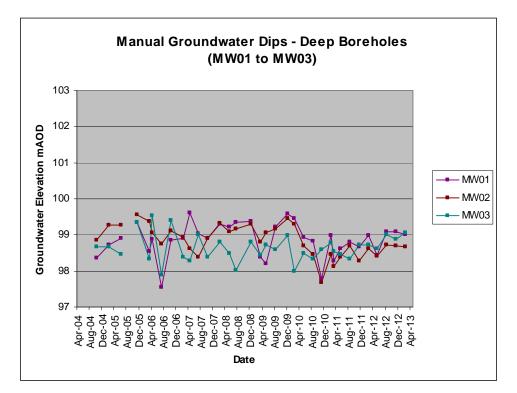



Figure 4 Groundwater Elevation (mAOD) in Shallow Monitoring Wells

Figure 5 Groundwater Elevation (mAOD) in Deep Monitoring Wells

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; however, the general direction of flow in the shallow and deeper groundwater bearing unit is predominantly in a south easterly direction and occasionally in a southerly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Eireann to examine the relationship between compounds and rainfall events. The data from Oak Park was chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in Tables 5.1 to 5.4.

Table 5.1: Monthly Rainfall data for Year 2009 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	113.4	29.2	32.6	102.4	69.0	65.4	152.4	100.9	41.8	127.8	215.5	73.7

Table 5.2: Monthly Rainfall data for Year 2010 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	August	Sept	Oct	Nov	Dec
Rainfall (mm)	71.5	48.0	80.7	49.0	51.4	37.7	93.6	25.5	108.7	68.9	87.7	52.2

Table 5.3: Monthly Rainfall data for Year 2011 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	50.6	121.9	16.0	19.5	51.2	72.7	46.4	25.5	93.9	93.9	89.2	55.5

Table 5.4: Monthly Rainfall data for 2012 to date for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	70.8	24.5	18.0	56.3	50.2	155.8	76.2	127.7	37.9	63.4	80.9	68.1

Table 5.5: Monthly Rainfall data for 2013 to date for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.2	57.6									

Note: Data for the most recent months are provisional.

6.2 GROUNDWATER CONCENTRATIONS OVER TIME

Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.

The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

Phenols have been detected historically in all boreholes with the highest concentrations recorded in BH103. However concentrations in BH103 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

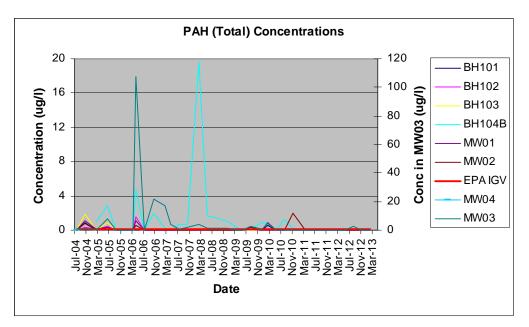
2,4-Dimethylphenol was detected at a concentration of $0.12 \mu g/l$ during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the current Quarter 1 2013 monitoring event.

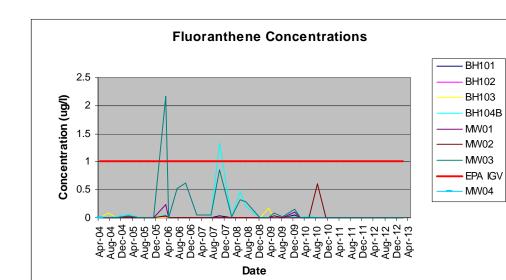
Total Phenol Concentrations 700 2500 BH101 600 2000 BH102 Concentration (ug/l) 500 BH104B BH103 (ug/ 1500 400 MW01 300 MW02 1000 MW03 Conc. 200 500 EPA IGV 100 MW04 0 0 $\alpha \alpha \overline{\alpha} \omega$ BH103 Apr-Ug-Apr Apr Apr Apr Date

Figure 6 Phenol Concentrations in all Monitoring Wells

6.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)

Figure 7 below illustrates that PAH's (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within MW03 and BH104B. In addition, a range of PAH's including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Napthalene have previously been detected in MW03 with Figures 8 to 11 illustrating some of the PAH compounds which were detected above their respective IGV's.


Figure 7 illustrates that **Total PAH** has been detected in all groundwater monitoring wells at the site above the IGV of 0.1 μ g/l since 2005. Elevated concentrations have been detected in MW03 and BH104B, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. Since then, the concentrations have shown a marked decrease with no elevated Total PAH concentrations in this current Quarter 1 monitoring period of 2013.


The results from the Quarter 4, 2009 monitoring round in December 2009 recorded total EPA-16 PAH concentrations above the IGV at all locations with the exception of MW02. These concentrations may be linked to the heavy rainfall event, which occurred in November of 2009, which may have mobilized traces of these compounds from soil.

The results from the Quarter 1 monitoring round, 2010 recorded Total PAH concentrations below the IGV of 0.2 μ g/l at all locations with the exception of MW03, which detected a concentration of 0.3 μ g/l. There has been a decrease in Total PAH concentrations at all locations since the Quarter 4 event in December 2009 with the most notable decrease at MW03 reducing from 4.58 μ g/l to <0.1 μ g/l.

The only concentrations of Total PAH above the IGV in 2010 were detected during the Quarter 1 monitoring event in MW03 (0.3 μ g/l), Quarter 2 monitoring event in BH104B (1.2 μ g/l) and Quarter 3 monitoring event in MW02 (2.0 μ gl) and BH104B (0.2 μ gl). There were no elevated concentrations of Total PAH during the Quarter 4 2010, the Q1, Q2, Q3 and Q4 2011 monitoring events, and the Q1 2012 monitoring event. Total PAH was detected above the IGV in MW03 in the Q2 2012 monitoring event. No Total PAH exceedances were detected in the following Q3 and Q4 2012 monitoring events or the current Q1 2013 monitoring event suggesting that elevations detected in the Q2 2012 monitoring event were an isolated occurrence.

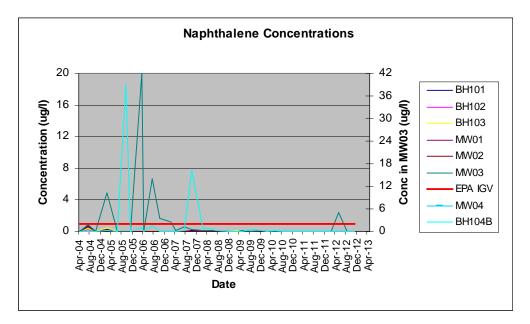


Figure 8 Fluoroanthene Concentrations in all Monitoring Wells

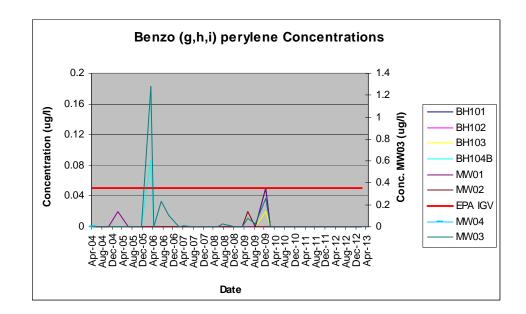

Figure 8 illustrates that **Fluoroanthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells BH104B (October 2007, 1.33 μ g/l) and MW03 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l.

Figure 9 Naphthalene Concentrations in all Monitoring Wells

A similar trend to Fluoroanthene has been noted in Figure 9, with concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in BH104B and MW03 only. 4 no. exceedances of the IGV were noted in BH104B in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in BH104B have decreased below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in MW03, with the highest concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were slightly above the laboratory limit of detection of 0.01 μ g/l at BH104B (0.08 μ g/l) and MW03 (0.05 μ g/l);

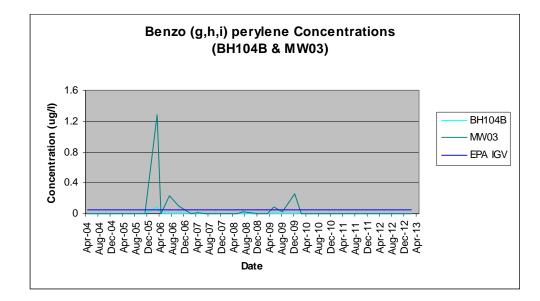
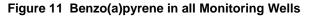

however these levels are deemed low. Concentrations of Naphthalene were below the EPA IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 quarterly monitoring events and the Quarter 1, Quarter 3 and Quarter 4 2012 monitoring periods. No detections of Naphthalene were noted in the current Quarter 1 2013 monitoring event.

Figure 10 Benzo (g,h,i) perylene in all Monitoring Wells

Figure 10 illustrates the concentrations of **Benzo(g,h,i)perylene** in BH104B and MW03 over time. Elevated concentrations above the IGV were recorded at BH104B ($0.087 \mu g/l$) on one occasion only in March 2006.


Figure 10a illustrates elevated concentrations above the IGV recorded at MW03 on 5 no. occasions with the most recent elevated concentration detected in December 2009 (0.26 μ g/l). The results of monitoring events in May, August, November 2010, March, May, September and November 2011, February, May, August and November 2012 and the current Quarter 1 2013 monitoring event recorded concentrations below the laboratory limit of detection of 0.01 μ g/l at all locations.

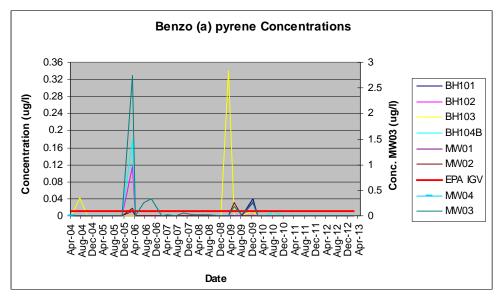
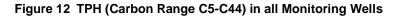
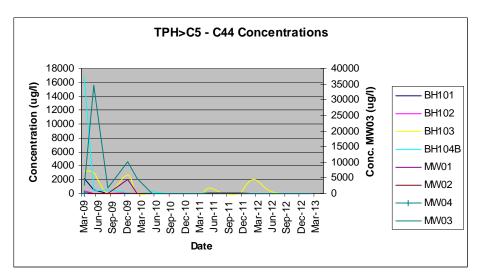


Figure 10a Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03

Figure 11 illustrates the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicates that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 μ g/l. Similarly with the above mentioned trends, the highest concentrations have been detected in MW03 and BH104B. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 μ g/l was detected in MW03, however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in BH101, BH103 and MW01 during this same period. The results of all monitoring events in 2010, 2011 and 2012 indicate concentrations below the IGV. The results of the previous Quarterly monitoring event of 2012 and the current Quarter 1 2013 event also recorded concentrations below the IGV.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGV's.





6.2.3 Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within BH103, BH104B and MW03. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12 – C16, C16 – C21 and C21 – C35. Figure 12 illustrates the TPH analysis for the total TPH analysis from C5 – C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells MW03, BH104B and BH103 respectively.

During the Quarter 1, 2010 monitoring event, hydrocarbons were detected in borehole MW03. The predominant aliphatic carbon range in MW03 comprised of C16-C21 (1000 μ g/l), C21-C35 (2300 μ g/l) and C25-C44 (990 μ g/l). The predominant aromatic carbon range in MW03 comprised of C16-C21 (220 μ g/l) and C21-C35 (620 μ g/l). No detections were observed at other locations.

During the Quarter 2, 2010 monitoring event, hydrocarbons were detected in borehole BH104B, with the predominant aliphatic carbon range comprising C12-C16 (130 μ g/l) and C16-C21 (130 μ g/l), while the predominant aromatic carbon range comprising C12-C16 (21 μ g/l) and C16-C21 (47 μ g/l). There were no detections of hydrocarbons in MW03 during the Quarter 2 monitoring event.

During the Quarter 3, 2010 monitoring event, hydrocarbons were detected in borehole BH104B and MW03. The predominant aliphatic carbon range in BH104B comprised of C12-C16 (12 μ g/l) and C16-C21 (19 μ g/l). The predominant aliphatic carbon range in MW03 comprised of C16-C21 (35 μ g/l) and C21-C34 (46 μ g/l). No aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 4, 2010 and Quarter 1, 2011 monitoring event, there were no detections of TPH concentrations above the laboratory limit of detection of 10 μ g/l at any location. No aliphatic or aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 2, 2011 monitoring event, hydrocarbons were detected in borehole BH103, BH104B and MW03. The predominant aliphatic carbon range comprised of C16-C21 (340 μ g/l, 20 μ g/l and 46 μ g/l) and C21-C35 (420 μ g/l, 96 μ g/l and 150 μ g/l in BH103, BH104B and MW03 respectively). The predominant aromatic carbon range also comprised of C16-C21 (78 μ g/l, 52 μ g/l and 50 μ g/l) and C21-C35 (110 μ g/l, 49 μ g/l and 93 μ g/l in BH103, BH104B and MW03 respectively).

During the Quarter 3, 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised of C10-C12 (18 μ g/l), C12-C16 (57 μ g/l), C16-C21 (35 μ g/l) and C21-C35 (210 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (42 μ g/l), C16-C21 (66 μ g/l) and C21-C35 (45 μ g/l).

During the Quarter 4, 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised C10-C12 (22 μ g/l), C12-C16 (51 μ g/l), C16-C21 (85 μ g/l) and C21-C35 (110 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (16 μ g/l), C16-C21 (14 μ g/l) and C21-C35 (91 μ g/l).

During the Quarter 1, 2012 monitoring event, hydrocarbons were detected in borehole BH103 only. The predominant aliphatic carbon range comprised C10-C12 (13 μ g/l), C12-C16 (270 μ g/l), C16-C21 (690 μ g/l) and C21-C35 (980 μ g/l). The predominant aromatic carbon range comprised of C16-C21 (250 μ g/l) and C21-C25 (680 μ g/l). No hydrocarbons were detected in MW03 during the current Quarter 1 monitoring event.

During the Quarter 2, 2012 monitoring event, hydrocarbons were detected in BH103 only. The detected aliphatic carbon range comprised C12-C16 (98 μ g/l), C16-C21 (230 μ g/l) and C21-C25 (170 μ g/l). No detections of aromatic carbons were measured during the Quarter 2 2012 monitoring event.

No hydrocarbons were detected at any location during the previous Quarter 3 and Quarter 4, 2012 monitoring events.

During the current Quarter 1, 2013 monitoring event aromatic hydrocarbons were detected in BH103, BH104b and MW04. The predominant aromatic carbon range comprised C12-C16 (30 μ g/l), C16-C21 (280 μ g/l) and C21-C35 (100 μ g/l) in BH103, C10-C12 (30 μ g/l), C12-C16 (110 μ g/l) and C16-C21 (80 μ g/l) in BH104B and C10-C12 (20 μ g/l) and C12-C16 (80 μ g/l) in MW04. Aliphatic hydrocarbons were detected in BH103 in the ranges C12-C16 (70 μ g/l), C16-C21 (100 μ g/l) and C21-C35 (90 μ g/l).

7 CONCLUSIONS

- In accordance with the criteria set out in Schedule 4(ii) of the site's Waste Licence Register No. W0184-01, groundwater monitoring was carried out at the ENVA Ireland site on the 19th February 2013 corresponding to Quarter 1 of 2013. A suitably qualified consultant from RPS collected groundwater samples from 8 on-site monitoring wells and submitted these samples to an accredited laboratory for analysis.
- The results presented have been referenced against the Environmental Protection Agency's (EPA) Interim Guideline Values (IGV) as set out in the Interim Report 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.
- Results of the BTEX and MTBE demonstrate that the levels of Benzene, Toluene, Ethylbenzene and Xylene were below the recommended EPA IGV's
- The Quarter 1, 2013 results of the speciated polycyclic aromatic hydrocarbons indicate that the laboratory limit of detection of 0.2 µg/l for Total PAH's was above the EPA IGV of 0.1 µg/l. There were no detections of speciated PAHs at any location during the current monitoring event. The previous Quarter 2 2012 monitoring event detected Total PAH at MW03 and this is thought to be an isolated occurrence as the general trend of PAH concentrations appeared to have reduced over time. Further monitoring at these locations is recommended to determine the persistency of these detections.
- There have been no exceedances of the IGV for SVOC's since Quarter 1 2010.
- There have been no exceedances of the IGV for VOC's in this Quarter 1 2013 monitoring event. The Quarter 1 2012 monitoring event recorded a concentration of MTBE above the IGV of 30 μg/l in BH104B (280 μg/l). MTBE was previously recorded on two occasions in BH104B in April 2007 (49 μg/l) and in October 2007 (3 μg/l). Since then the concentrations had decreased to below the laboratory limit of detection.
- The results of the phenol analysis by GC-MS detected concentrations below the laboratory limit of detection of 1.0 µg/l at all locations. However, the laboratory limit of detection is above the IGV of 0.5 µg/l for phenols. Samples were subsequently also analysed for phenols to include chlorophenols and the results indicate that there were no detections above the laboratory limit of detection of 0.05 µg/l. A low level of 2,4-Dimethylphenol (0.12 µg/l) was detected in MW03 during the Quarter 1, 2010 monitoring event. There have been no detections of this compound since February 2010.
- Hydrocarbons were detected in boreholes BH104B and MW03 in the aliphatic carbon ranges during the Quarter 3, 2010 monitoring event. There were no detections of aromatic carbon above the laboratory limit of detection of 10 µg/l in BH104B and MW03. Hydrocarbons were detected during the Quarter 2 (BH103, BH104B, MW03), Quarter 3 (MW03) and Quarter 4 (MW03) 2011 monitoring events. Hydrocarbons in the aliphatic range were detected in BH103 during the Quarter 1 2013 monitoring event and hydrocarbons of the aromatic range were detected in BH103, BH104b and MW04 were also detected during the current monitoring event. Further monitoring at these locations is recommended to determine the persistency of these detections.
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Enva Portlaoise

2013 Groundwater Compliance Monitoring Quarter 2 (April – June 2013)

DOCUMENT CONTROL SHEET

Client	Enva Irelan	Enva Ireland Ltd.								
Project Title	Enva Portla	Enva Portlaoise 2013 Groundwater Compliance Monitoring								
Document Title	Quarter 2 (A	Quarter 2 (April – June 2013) Interpretative Report								
Document No.	MDE0973R	p0014D01								
This Document	DCS	DCS TOC Text List of Tables List of Figures No. of Appendices								
Comprises	1	1	37	1	1	-				

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
D01	Draft	M. Roche	C. Reilly	P. Chadwick	West Pier	28/03/2013
F01	Final	M. Roche	C. Reilly	P. Chadwick	West Pier	26/06/2013
				Pallahel		

TABLE OF CONTENTS

1	INTRO	DUCTIC	ON	1
	1.1	BACK	GROUND	1
	1.2	OBJEC	CTIVES & SCOPE OF WORK	1
2	REVIE	W OF P	REVIOUS DATA	2
	2.1	INFOR	MATION SOURCES	2
	2.2	SITE S	ETTING	2
	2.3	REGIC	DNAL SETTING	3
		2.3.1	Geology	3
		2.3.2	Hydrogeology	3
	2.4	SITE G	ROUND CONDITIONS	3
		2.4.1	Licence Conditions	6
3	METH	ODOLO	GY	7
	3.1	LABOF	RATORY ANALYSIS	7
	3.2	PRESE	ENTATION & INTERPRETATION OF RESULTS	9
4	QUAR	TER 1 R	RESULTS AUGUST 2013	. 10
5	DISCU	SSION	OF QUARTER 1 RESULTS	. 23
5	DISCU 5.1		OF QUARTER 1 RESULTS PARAMETERS	
5		FIELD		. 23
5	5.1	FIELD RESUI	PARAMETERS	23 23
5	5.1 5.2	FIELD RESUI RESUI	PARAMETERS LTS OF BTEX & MTBE	23 23 23
5	5.1 5.2 5.3	FIELD RESUL RESUL RESUL	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S	. 23 . 23 . 23 . 23
5	5.1 5.2 5.3 5.4	FIELD RESUI RESUI RESUI RESUI	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS	. 23 . 23 . 23 . 23 . 24 . 24
5	5.1 5.2 5.3 5.4 5.5	FIELD RESUI RESUI RESUI RESUI	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS	. 23 . 23 . 23 . 24 . 24 . 24
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	FIELD RESUI RESUI RESUI RESUI RESUI	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS	23 23 23 24 24 24 24
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7	FIELD RESUI RESUI RESUI RESUI RESUI RESUI	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF TOTAL PETROLEUM HYDROCARBONS	23 23 23 24 24 24 24 24 24 24
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO	FIELD RESUI RESUI RESUI RESUI RESUI RESUI RICAL I	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS. LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS	23 23 23 24 24 24 24 24 24 24 24 26
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO 6.1	FIELD RESUI RESUI RESUI RESUI RESUI RESUI RICAL I	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS NDWATER LEVELS OVER TIME	. 23 . 23 . 23 . 24 . 24 . 24 . 24 . 24 . 26 . 29
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO 6.1	FIELD RESUI RESUI RESUI RESUI RESUI RESUI RICAL I GROU GROU	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS NDWATER LEVELS OVER TIME NDWATER CONCENTRATIONS OVER TIME	. 23 . 23 . 23 . 24 . 24 . 24 . 24 . 24 . 24 . 24 . 26 . 29 . 29
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO 6.1	FIELD RESUI RESUI RESUI RESUI RESUI RESUI RICAL I GROU GROU 6.2.1	PARAMETERS LTS OF BTEX & MTBE LTS OF SPECIATED PAH'S LTS OF SPECIATED PHENOLS LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF VOLATILE ORGANIC COMPOUNDS LTS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS NDWATER LEVELS OVER TIME NDWATER CONCENTRATIONS OVER TIME Phenols	23 23 23 24 24 24 24 24 24 26 26 29 29 30

LIST OF TABLES

Table 2.1: Ground Conditions
Table 2.2: Licence Parameters 6
Table 3.1: Analytical Methodologies – I2 Analytical Ltd 7
Table 4.1: Groundwater Levels (Quarter 1, 2013) 11
Table 4.2: Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 1, 2013) 12
Table 4.3: Results of BTEX & MTBE 13
Table 4.4: Results of Speciated PAH's
Table 4.5: Results of Total Phenols 15
Table 4.6: Results of Speciated Phenols 15
Table 4.7: Results of Semi-Volatile Organic Compounds (sVOCs) 16
Table 4.8: Results of Volatile Organic Compounds (VOCs) 19
Table 4.9: Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic) 22
Table 5.1: Monthly Rainfall data for Year 2009 for Oak Park, Carlow 28
Table 5.2: Monthly Rainfall data for Year 2010 for Oak Park, Carlow 28
Table 5.3: Monthly Rainfall data for Year 2011 for Oak Park, Carlow 28
Table 5.4: Monthly Rainfall data for 2012 to date for Oak Park, Carlow
Table 5.5: Monthly Rainfall data for 2013 to date for Oak Park, Carlow

LIST OF FIGURES

Figure 1	Site Location
Figure 2	Site Layout Plan with groundwater monitoring well locations
Figure 3	Groundwater Elevation (mAOD) in all Monitoring Wells
Figure 4	Groundwater Elevation (mAOD) in Shallow Monitoring Wells
Figure 5	Groundwater Elevation (mAOD) in Deep Monitoring Wells
Figure 6	Phenol Concentrations in all Monitoring Wells 29
Figure 7	PAH (Total) Concentrations in all Monitoring Wells
Figure 8	Fluoroanthene Concentrations in all Monitoring Wells
Figure 9	Naphthalene Concentrations in all Monitoring Wells
Figure 10	Benzo (g,h,i) perylene in all Monitoring Wells
Figure 10a	Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03
Figure 11	Benzo(a)pyrene in all Monitoring Wells
Figure 12	TPH (Carbon Range C5-C44) in all Monitoring Wells

Rev F01

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Waste Licence Register No. W0184-01.

Enva Ireland has been operating under Waste Licence Register No. W0184-01 since January 2004, and is required to submit a report to the Environmental Protection Agency (EPA) on a quarterly basis, outlining the existing groundwater quality underlying the site.

Suitably qualified environmental consultants from RPS, collected groundwater samples from a series of 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) within the site boundary on the 17th of April 2013. The samples underwent laboratory analysis for the suite of parameters specified in Schedule 4(ii) of Waste Licence W0184-01. This report outlines the results of the Quarter 2 monitoring for 2013 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 2 2013 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Waste Licence W0184-01 and any available EPA documents from the EPA website
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), URS (2004)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), URS (2005)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2006)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2007)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2008)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2009)
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007)
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2010)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2011)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2012)
- Quarter 1 Groundwater Monitoring Report, RPS (2013)

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 2**. The site is largely covered in hardstanding with some open areas in the far north and northwest of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoil's in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological Survey of Ireland (GSI) as a locally important karstified aquifer. Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising five extraction wells in total. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends north-west south-east with the boundary of the outer protection zone at least 4 km to the north-east of the site. A further public abstraction well-field has been developed to the north-west of the Straboe area in the townland of Eyne, approximately 6 km to the north of the site, and comprises a further four (GSI) abstraction wells. The Source Protection Zone for these wells has not yet been defined but it is not anticipated to affect the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk, the accuracy of this location is also 1 km so that it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2**.

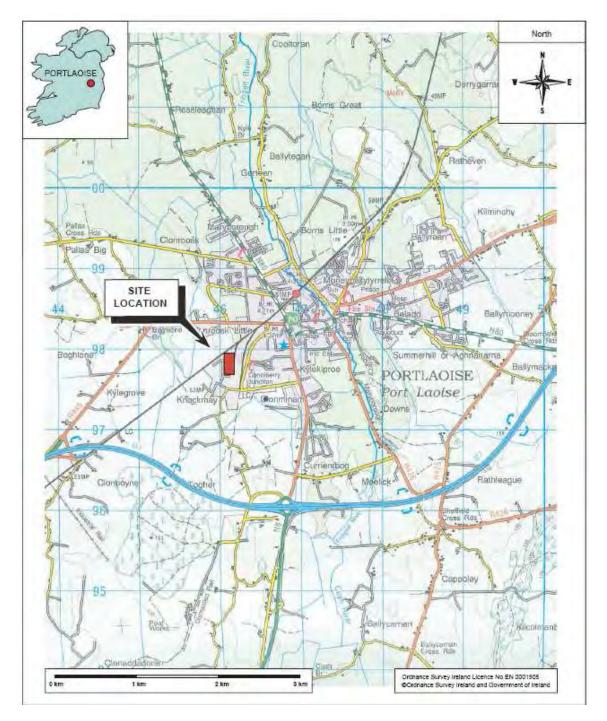

Strata	Extent	Thickness	Description
Made Ground	BH104	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium, well rounded gravels.
Sand and Gravel	Confined to south east	0-2 m	In general the transition from boulder clay to sand is gradual with changes from gravel, to

Table 2.1: Ground Conditions

Strata	Extent	Thickness	Description
	corner of site (BH101, BH104 and MW03)		sandy gravel, to sand.
Limestone Bedrock	Encountered in MW01, MW02 and MW03	Top of limestone ranges from 7.7m to 9m below ground level.	Pale grey, fine-grained bedrock, differentiated from boulders by its un-weathered nature.

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

Figure 1 Site Location

2.4.1 Licence Conditions

The waste management licence requires the regular monitoring and sampling of boreholes BH101, BH102, BH103, BH104B, MW01, MW02, MW03 and MW04. The parameters requiring measurement or analysis are presented in Table 2.2.

Table 2.2: Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement
	Groundwater Level	Groundwater Level
	рН	рН
Field	Temperature	Temperature
Parameters	Dissolved Oxygen	Dissolved Oxygen
	Electrical Conductivity	Electrical Conductivity
	Visual Inspection	Visual Inspection
	Mineral Oil	Mineral Oil
	BTEX & MTBE	BTEX & MTBE
Organica	PAH's	PAH's
Organics	Phenols	Phenols
	VOC's	VOC's
	SVOC's	SVOC's
		Total Alkalinity, Calcium,
Inorganics	-	Manganese, Sulphate, Cyanide
		(Total), Chloride, Sodium,

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04), (See Figure 2) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.

Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, I2 Analytical Ltd for the suite of analyses listed in Table 3.1. Table 3.1 also indicates the analytical techniques used by the laboratory.

Parameter	Analytical Methodology
Phenols	GC-MS
Speciated PAHs	GC-MS
BTEX & MTBE	Headspace GC-MS
Petroleum Hydrocarbons	Headspace GC-MS
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS

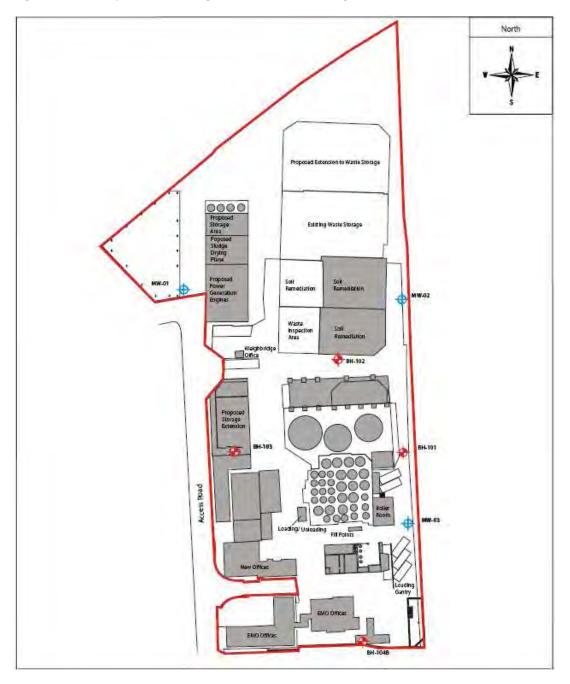


Figure 2 Site Layout Plan with groundwater monitoring well locations

Shallow Monitoring Well locations

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 2 2013 results are tabulated in Section 4 and discussed with respect to previous results. The results have been compared to the EPA Interim Guideline Values (IGV) as set out in the Report 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004. It is important to note that the IGVs are based on the lowest acceptable value for either drinking water or environmental quality in surface water and is therefore conservative in nature.

Previous monitoring reports (as listed in Section 2.1) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in Section 6 and include the results of this Quarter 2 2013 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 2 RESULTS AUGUST 2013

The results of all field measurements and laboratory analysis are presented in this section.

The results are discussed in relation to appropriate guideline values in Section 5. Results that are shown to be above the relevant guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Monitoring Well	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04
Depth (mbgl)	6.80	6.54	4.42	4.73	22.90	31.28	14.96	6.50
Static Water Level (mbgl)	4.22	2.62	0.76	1.06	3.10	4.34	4.04	3.88
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	98.84	99.93	100.40	100.46	99.00	98.78	98.73	-
Free Phase Oil (mm)	No detection							

Table 4.1: Groundwater Levels (Quarter 2, 2013)

mbgl = metres below ground level

Monitoring Well	pH (pH Units)	Temperature (℃)	Conductivity (µS/cm)	Dissolved O ₂ (ppm)	Observations
BH101	6.80	10.3	1108	3.15	Grey cloudy colour, black suspended solids, odourless.
BH102	6.61	9.3	907	2.15	Clear, slight yellow colour, slight H ₂ S odour detected on purging, some suspended solids.
BH103	6.03	8.5	1038	3.45	Light grey cloudy colour. Odourless.
BH104B	6.97	8.5	780	3.56	Grey cloudy colour at start of purging, clear at 10L. Odourless.
MW01	6.68	11.8	697	2.41	Purged water cloudy grey in colour, no odour detected. Difficult to purge at this location.
MW02	7.21	11.1	643	2.54	Light grey cloudy colour. Small number of suspended solids. Odourless.
MW03	6.85	11.3	1399	3.05	Grey colour, slight hydrocarbon sheen on surface, slight hydrocarbon odour.
MW04	6.89	10.0	1680	3.78	Cloudy brown in colour, a lot of sediment in sample, odourless.
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25℃	1000	No abnormal change	-

Table 4.2: Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 2, 2013)

Note: Results above the relevant IGV are highlighted in bold and shaded.

Table 4.3: Results of BTEX & MTBE

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Benzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
Toluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
Ethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10 Note 1
o-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10 Note 1
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	30

Note 1: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Table 4.4: Results of Speciated PAH's

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Naphthalene	µg/l	0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	1.0
Acenaphthylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Acenaphthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Fluorene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Phenanthrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10,000
Fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0
Pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(a)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Chrysene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.5
Benzo(k)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Dibenz(a,h)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(g,h,i)perylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Total EPA-16 PAH's	µg/l	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.1

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are in italics.

Table 4.5: Results of Total Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Total Phenols (monohydric)	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	0.5
Total Phenols (GC-MS)	µg/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5

Table 4.6: Results of Speciated Phenols

Parameter	Unit s	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Phenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5
2,4,5-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4,6-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2,4-Dichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4-Dimethylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Chlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Nitrophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Chloro-3- methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-

Note: Results above the relevant laboratory limit of detection are in italics.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Aniline	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Phenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5
2-Chlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
Bis(2-chloroethyl)ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,3-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,2-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	10
1,4-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Bis(2- chloroisopropyl)ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Hexachloroethane	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Nitrobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	10
4-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Isophorone	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Nitrophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4-Dimethylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Bis(2- chloroethoxy)methane	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,2,4- Trichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.40
Naphthalene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0

Table 4.7: Results of Semi-Volatile Organic Compounds (sVOCs)

Units

µg/l

µg/l

µg/l

Parameter

2,4-Dichlorophenol

4-Chloroaniline

Hexachlorobutadiene

4-Chloro-3-

BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.10
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05		

4-Chloro-3- methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4,6-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2,4,5-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Methylnaphthalene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Chloronaphthalene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dimethylphthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,6-Dinitrotoluene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Acenaphthylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Acenaphthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
2,4-Dinitrotoluene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dibenzofuran	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Chlorophenyl phenyl ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Diethyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Nitroaniline	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Fluorene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Azobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-

Benzo(k)fluoranthene

Benzo(a)pyrene

Indeno(1,2,3-

cd)pyrene Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Bromophenyl phenyl ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Hexachlorobenzene	µg/l	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03
Phenanthrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10,000
Carbazole	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dibutyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	2.0
Anthraquinone	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0
Pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Butyl benzyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Benzo(a)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Chrysene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.5

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

<0.01

<0.01

< 0.01

< 0.01

<0.01

<0.01

< 0.01

< 0.01

< 0.01

< 0.01

<0.01

<0.01

<0.01

< 0.01

< 0.01

< 0.01

<0.01

<0.01

< 0.01

<0.01

µg/l Note: Results above the relevant laboratory limit of detection in italics.

µg/l

µg/l

µg/l

µg/l

0.01

0.01

0.01

0.01

0.01

<0.01

<0.01

< 0.01

< 0.01

< 0.01

<0.01

< 0.01

<0.01

< 0.01

<0.01

< 0.01

< 0.01

< 0.01

< 0.01

<0.01

0.05

0.01

0.05

-

0.05

Quarter 2 - FINAL

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Chloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Chloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Bromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Vinyl Chloride	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichlorofluoromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,1-dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	30
1,1,2-Trichloro 1,2,2- Trifluoroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Cis-1,2-dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	30
1,1-dichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
2,2-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	12
1,1,1-Trichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	500
1,2-dichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,1-Dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trans-1,2- dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Benzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
Tetrachloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0

Table 4.8: Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
1,2-dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	70
Dibromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Bromodichloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Cis-1,3- dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trans-1,3- dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Toluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
1,1,2-Trichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Dibromochloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tetrachloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	40
1,2-Dibromoethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Chlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
1,1,1,2- Tetrachloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Ethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
Styrene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tribromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
o-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Isopropylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Bromobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
N-Propylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
2-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
4-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3,5- Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tert-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2,4- Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Sec-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
P-Isopropyltoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
1,4-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2-Dibromo-3- chloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2,4-Trichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.40
Hexachlorobutadiene	µg/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.10
1,2,3-Trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Aliphatic > C5-C6	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C6-C8	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C8-C10	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C10-C12	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C12-C16	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C16-C21	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic >C21-C35	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic (C5-C35)	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	10
Aromatic > C5-C7	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C7-C8	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C8-C10	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C10-C12	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C12-C16	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C16-C21	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C21-C35	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic (C5-C35)	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	10

Table 4.9: Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Quarter 2 - FINAL

5 DISCUSSION OF QUARTER 2 RESULTS

The results of the Quarter 2 monitoring event for 2013 are presented in Table 4.1 to 4.9 of this report. For the purpose of this report, the results are compared to the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in Table 4.2. Groundwater samples recorded pH levels ranging between 6.03 and 7.21. All pH measurements were inside the EPA Interim guideline range of \geq 6.5 to \leq 9.5. Temperature measurements ranged from 8.5°C to 11.8°C and were w ithin the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 643 μ S/cm and 1680 μ S/cm and were above the Interim Guideline Value of 1000 μ S/cm at BH101 (1108 μ S/cm), BH103 (1038 μ S/cm), MW03 (1399 μ S/cm) and MW04 (1680 μ S/cm).

Dissolved oxygen levels ranged between 2.15 and 3.78 ppm. Factors such as climate, nutrients in the water, suspended solids; organic wastes and groundwater inflow can all influence the dissolved oxygen values.

Observations relating to colour and odour varied from well to well as detailed in Table 4.2.

5.2 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in Table 4.3 and demonstrate concentrations below the laboratory limit of detections and associated IGV's at all locations.

The last detection of MTBE was in the Quarter 1 monitoring event of 2012. MTBE was recorded above the laboratory limit of detection at a concentration of 280 μ g/l at BH104B. This was the only recorded exceedance in Quarter 1 2012. Previous monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at BH103 at a concentration of 16 μ g/l. During Quarter 3 and Quarter 4 of 2010 concentrations were below the laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at BH103 were recorded at 63 μ g/l in December 2009.

5.3 RESULTS OF SPECIATED PAH'S

The results of the Speciated PAH analysis during this monitoring period are presented in Table 4.4.

The laboratory limit of detection for Total EPA-16 PAH's is 0.2 μ g/l. This laboratory limit of detection is above the EPA IGV of 0.1 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l.

The results of the speciated polycyclic aromatic hydrocarbon analysis detected no concentrations above the laboratory limit of detection. The laboratory is accredited to achieve a detection limit of 0.2 μ g/l for EPA-16 PAH's. The laboratory has confirmed that the detection limit for total EPA-16 PAH's

can be lowered to 0.1 μ g/l for comparison with the EPA IGV of 0.1 μ g/l, however this will not be accredited.

5.4 RESULTS OF SPECIATED PHENOLS

The results of Total Phenol analysis are presented in Table 4.5. All samples detected concentrations of monohydric phenol below the laboratory limit of detection of 10 μ g/l. It should be noted that the laboratory limit of detection is above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in Table 4.6. The speciated phenol analysis reduces the laboratory limit of detection to $0.05 \mu g/l$ for individual parameters.

The results of the current Quarter 2 2013 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 0.05 μ g/l at all locations. This is consistent with the results from the previous Quarter 1 2013 monitoring event.

5.5 RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.7.

No SVOC's were detected during this monitoring period above the relevant IGV's. The Quarter 3 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene at 2.4 μ g/l and 0.12 μ /l respectively in MW03.

5.6 RESULTS OF VOLATILE ORGANIC COMPOUNDS

The results of the Volatile Organic Compound analysis are presented in Table 4.8. The results of the current Quarter 2 2013 monitoring event indicate that there were no exceedances of VOC parameters detected above the relevant IGV's.

In November 2009, corresponding to Quarter 4 of 2009, no VOC's were detected above the relevant IGV's. However some parameters were detected above the laboratory limits of detection (1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene).

The Quarter 1 and Quarter 2 monitoring results of 2010 detected MTBE in BH103 raised above the laboratory limit of detection of $1.0 \mu g/l$ at a concentration of $16 \mu g/l$.

The results of the Quarter 3 and Quarter 4 monitoring events of 2010 and all subsequent monitoring events indicate that there were no exceedances of the IGV for specific parameters.

5.7 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in Table 4.9.

No detections of TPH in the aliphatic range were observed in the monitoring well locations during the current monitoring event. Similarly, no detections of TPH in the aromatic range were observed in any monitoring well locations during the current Quarter 2 2013 monitoring event.

The EPA IGV of 10 μ g/l for Total Hydrocarbons is deemed comparable with the results for total petroleum hydrocarbons (TPH).

The previous Quarter 1 2013 monitoring event detected aliphatic TPH of the range C12-C16, C16-C21 and C21-C35. TPH in the mid to high aromatic ranges were detected in BH103, BH104B and MW04 during the previous Quarter 1 2013 monitoring event. Aromatic TPH of the ranges C12-C16, C16-C21 and C21-C35 were detected in BH103, the ranges C10-C12, C12-C16 and C16-C21 were detected in BH104B and aromatic TPH of the ranges C10-C12 and C12-C16 were detected in MW04.

The Quarter 2 monitoring event of 2012 detected elevated TPH of the aliphatic range C12-C16, C16-C21 and C21-C25 in BH103. Hydrocarbons have been detected in borehole MW03 during Quarter 1 2010, in borehole BH104B during the Quarter 2 2010 monitoring event and in borehole BH104B and MW03 during the Quarter 3 2010 monitoring events. Hydrocarbons have also been detected in BH103, BH104B and MW03 in the Quarter 2 2011 monitoring event and in MW03 in the Quarter 3 and Quarter 4 2011. These detections are discussed further in Section 6.2.3.

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 2 2013 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

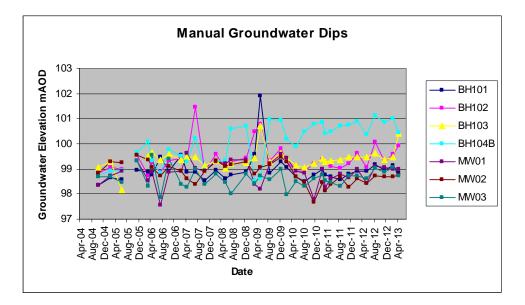

6.1 GROUNDWATER LEVELS OVER TIME

Figure 3 to Figure 5 below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 4 illustrates groundwater elevations (mAOD) in shallow groundwater wells (BH101 to BH104B) ranging between approximately 98 mAOD and 102 mAOD.

Figure 5 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (MW01 to MW03). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 97.5 mAOD to approximately 100 mAOD.

Figure 3 Groundwater Elevation (mAOD) in all Monitoring Wells

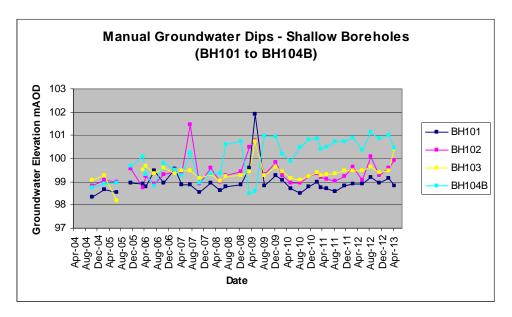
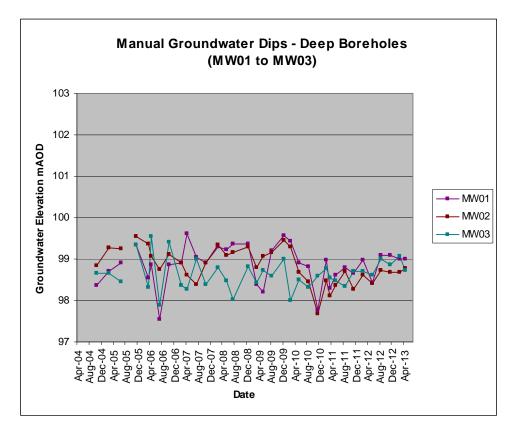



Figure 4 Groundwater Elevation (mAOD) in Shallow Monitoring Wells

Figure 5 Groundwater Elevation (mAOD) in Deep Monitoring Wells

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; however, the general direction of flow in the shallow and deeper groundwater bearing unit is in an easterly or north easterly direction however there have been some occasional historic cases of groundwater flowing in a south-easterly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Eireann to examine the relationship between compounds and rainfall events. The data from Oak Park was chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in Tables 5.1 to 5.5.

Table 5.1: Monthly Rainfall data for Year 2009 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	113.4	29.2	32.6	102.4	69.0	65.4	152.4	100.9	41.8	127.8	215.5	73.7

Table 5.2: Monthly Rainfall data for Year 2010 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	August	Sept	Oct	Nov	Dec
Rainfall (mm)	71.5	48.0	80.7	49.0	51.4	37.7	93.6	25.5	108.7	68.9	87.7	52.2

Table 5.3: Monthly Rainfall data for Year 2011 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	50.6	121.9	16.0	19.5	51.2	72.7	46.4	25.5	93.9	93.9	89.2	55.5

Table 5.4: Monthly Rainfall data for 2012 to date for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	70.8	24.5	18.0	56.3	50.2	155.8	76.2	127.7	37.9	63.4	80.9	68.1

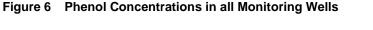
Table 5.5: Monthly Rainfall data for 2013 to date for Oak Park, Carlow

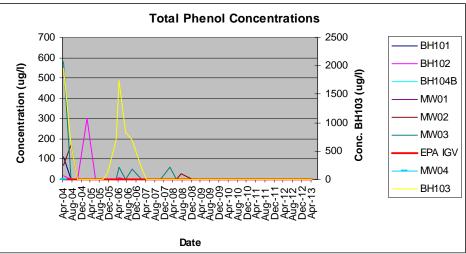
Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.2	57.6	44.4	35.6	36.9						

Note: Data for the most recent months are provisional.

Rev F01

6.2 GROUNDWATER CONCENTRATIONS OVER TIME


Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.


The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

Phenols have been detected historically in all boreholes with the highest concentrations recorded in BH103. However concentrations in BH103 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

2,4-Dimethylphenol was detected at a concentration of $0.12 \mu g/l$ during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the current Quarter 2 2013 monitoring event.

6.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)

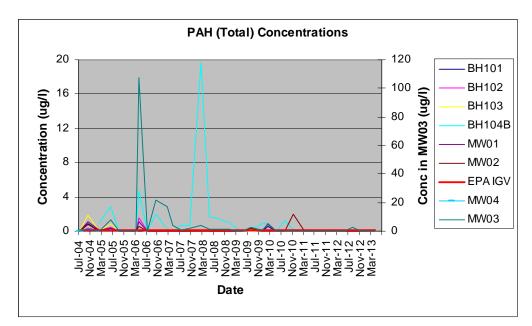

Figure 7 below illustrates that PAH's (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within MW03 and BH104B. In addition, a range of PAH's including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Napthalene have previously been detected in MW03 with Figures 8 to 11 illustrating some of the PAH compounds which were detected above their respective IGV's.

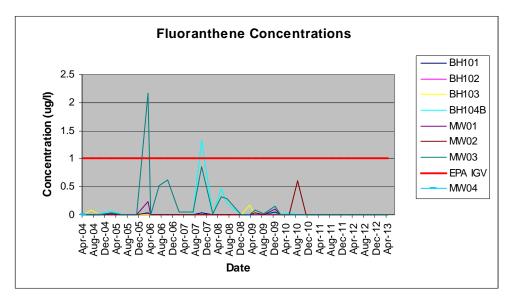
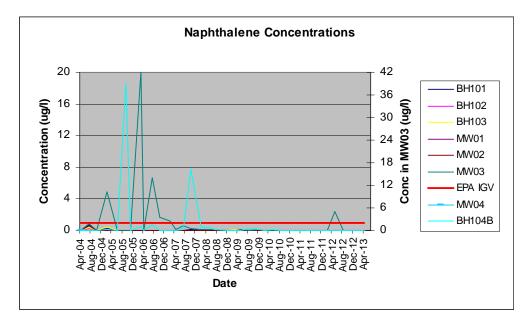
Figure 7 illustrates that **Total PAH** has been detected in all groundwater monitoring wells at the site above the IGV of 0.1 μ g/l since 2005. Elevated concentrations have been detected in MW03 and BH104B, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. Since then, the concentrations have shown a marked decrease with no elevated Total PAH concentrations in this current Quarter 2 monitoring period of 2013.

The results from the Quarter 4, 2009 monitoring round in December 2009 recorded total EPA-16 PAH concentrations above the IGV at all locations with the exception of MW02. These concentrations may be linked to the heavy rainfall event, which occurred in November of 2009, which may have mobilized traces of these compounds from soil.

The results from the Quarter 1 monitoring round, 2010 recorded Total PAH concentrations below the IGV of 0.2 μ g/l at all locations with the exception of MW03, which detected a concentration of 0.3 μ g/l. There has been a decrease in Total PAH concentrations at all locations since the Quarter 4 event in December 2009 with the most notable decrease at MW03 reducing from 4.58 μ g/l to <0.1 μ g/l.

The only concentrations of Total PAH above the IGV in 2010 were detected during the Quarter 1 monitoring event in MW03 ($0.3 \mu g/l$), Quarter 2 monitoring event in BH104B ($1.2 \mu g/l$) and Quarter 3 monitoring event in MW02 ($2.0 \mu gl$) and BH104B ($0.2 \mu gl$). There were no elevated concentrations of Total PAH during the Quarter 4 2010, the Q1, Q2, Q3 and Q4 2011 monitoring events, and the Q1 2012 monitoring event. Total PAH was detected above the IGV in MW03 in the Q2 2012 monitoring event. No Total PAH exceedances were detected in the following Q3 and Q4 2012 monitoring events, the previous Q1 2013 monitoring event and the current Q2 2013 monitoring event suggesting that elevations detected in the Q2 2012 monitoring event were an isolated occurrence.

Figure 7 PAH (Total) Concentrations in all Monitoring Wells

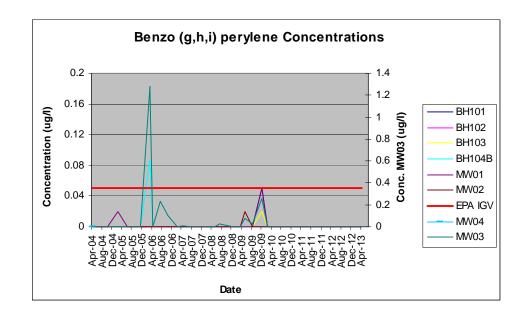

Figure 8 illustrates that **Fluoroanthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells BH104B (October 2007, 1.33 μ g/l) and MW03 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l.

Figure 9 Naphthalene Concentrations in all Monitoring Wells

A similar trend to Fluoroanthene has been noted in Figure 9, with concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in BH104B and MW03 only. 4 no. exceedances of the IGV were noted in BH104B in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in BH104B have decreased below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in MW03, with the highest concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were slightly above the laboratory limit of detection of 0.01 μ g/l at BH104B (0.08 μ g/l) and MW03 (0.05 μ g/l);

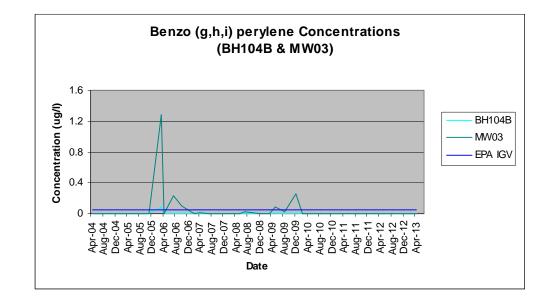

however these levels are deemed low. Concentrations of Naphthalene were below the EPA IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 quarterly monitoring events and the Quarter 1, Quarter 3 and Quarter 4 2012 monitoring periods. No detections of Naphthalene were noted in the current Quarter 2 2013 monitoring event.

Figure 10 Benzo (g,h,i) perylene in all Monitoring Wells

Figure 10 illustrates the concentrations of **Benzo(g,h,i)perylene** in BH104B and MW03 over time. Elevated concentrations above the IGV were recorded at BH104B (0.087 μ g/l) on one occasion only in March 2006.

Figure 10a illustrates elevated concentrations above the IGV recorded at MW03 on 5 no. occasions with the most recent elevated concentration detected in December 2009 (0.26 μ g/l). The results of monitoring events in May, August, November 2010, March, May, September and November 2011, February, May, August and November 2012, February 2013 and the current April Quarter 2 2013 monitoring event recorded concentrations below the laboratory limit of detection of 0.01 μ g/l at all locations.

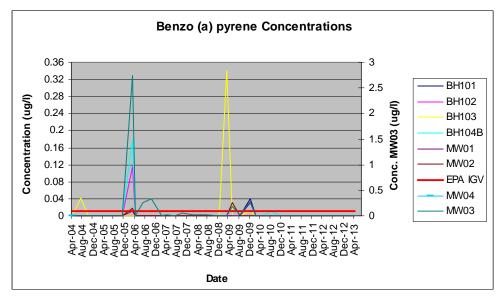
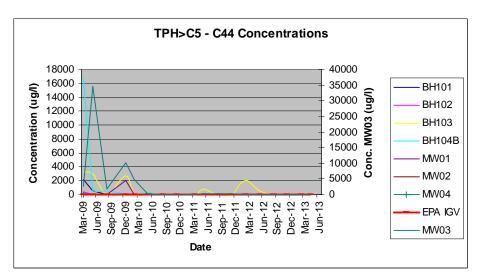


Figure 10a Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03

Figure 11 illustrates the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicates that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 µg/l. Similarly with the above mentioned trends, the highest concentrations have been detected in MW03 and BH104B. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 µg/l was detected in MW03, however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in BH101, BH103 and MW01 during this same period. The results of all monitoring events in 2010, 2011 and 2012 indicate concentrations below the IGV. The results of the previous quarterly monitoring event of 2013 and the current Quarter 2 2013 event also recorded concentrations below the IGV.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGV's.



6.2.3 Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within BH103, BH104B and MW03. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12 – C16, C16 – C21 and C21 – C35. Figure 12 illustrates the TPH analysis for the total TPH analysis from C5 – C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells MW03, BH104B and BH103 respectively.

During the Quarter 1, 2010 monitoring event, hydrocarbons were detected in borehole MW03. The predominant aliphatic carbon range in MW03 comprised of C16-C21 (1000 μ g/l), C21-C35 (2300 μ g/l) and C25-C44 (990 μ g/l). The predominant aromatic carbon range in MW03 comprised of C16-C21 (220 μ g/l) and C21-C35 (620 μ g/l). No detections were observed at other locations.

During the Quarter 2, 2010 monitoring event, hydrocarbons were detected in borehole BH104B, with the predominant aliphatic carbon range comprising C12-C16 (130 μ g/l) and C16-C21 (130 μ g/l), while the predominant aromatic carbon range comprising C12-C16 (21 μ g/l) and C16-C21 (47 μ g/l). There were no detections of hydrocarbons in MW03 during the Quarter 2 monitoring event.

During the Quarter 3, 2010 monitoring event, hydrocarbons were detected in borehole BH104B and MW03. The predominant aliphatic carbon range in BH104B comprised of C12-C16 (12 μ g/l) and C16-C21 (19 μ g/l). The predominant aliphatic carbon range in MW03 comprised of C16-C21 (35 μ g/l) and C21-C34 (46 μ g/l). No aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 4, 2010 and Quarter 1, 2011 monitoring event, there were no detections of TPH concentrations above the laboratory limit of detection of 10 μ g/l at any location. No aliphatic or aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 2, 2011 monitoring event, hydrocarbons were detected in borehole BH103, BH104B and MW03. The predominant aliphatic carbon range comprised of C16-C21 (340 μ g/l, 20 μ g/l and 46 μ g/l) and C21-C35 (420 μ g/l, 96 μ g/l and 150 μ g/l in BH103, BH104B and MW03 respectively). The predominant aromatic carbon range also comprised of C16-C21 (78 μ g/l, 52 μ g/l and 50 μ g/l) and C21-C35 (110 μ g/l, 49 μ g/l and 93 μ g/l in BH103, BH104B and MW03 respectively).

During the Quarter 3, 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised of C10-C12 (18 μ g/l), C12-C16 (57 μ g/l), C16-C21 (35 μ g/l) and C21-C35 (210 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (42 μ g/l), C16-C21 (66 μ g/l) and C21-C35 (45 μ g/l).

During the Quarter 4, 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised C10-C12 (22 μ g/l), C12-C16 (51 μ g/l), C16-C21 (85 μ g/l) and C21-C35 (110 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (16 μ g/l), C16-C21 (14 μ g/l) and C21-C35 (91 μ g/l).

During the Quarter 1, 2012 monitoring event, hydrocarbons were detected in borehole BH103 only. The predominant aliphatic carbon range comprised C10-C12 (13 μ g/l), C12-C16 (270 μ g/l), C16-C21 (690 μ g/l) and C21-C35 (980 μ g/l). The predominant aromatic carbon range comprised of C16-C21 (250 μ g/l) and C21-C25 (680 μ g/l). No hydrocarbons were detected in MW03 during the current Quarter 1 monitoring event.

During the Quarter 2, 2012 monitoring event, hydrocarbons were detected in BH103 only. The detected aliphatic carbon range comprised C12-C16 (98 μ g/l), C16-C21 (230 μ g/l) and C21-C25 (170 μ g/l). No detections of aromatic carbons were measured during the Quarter 2 2012 monitoring event.

No hydrocarbons were detected at any location during the previous Quarter 3 and Quarter 4, 2012 monitoring events.

During the previous Quarter 1, 2013 monitoring event aromatic hydrocarbons were detected in BH103, BH104b and MW04. The predominant aromatic carbon range comprised C12-C16 (30 μ g/l), C16-C21 (280 μ g/l) and C21-C35 (100 μ g/l) in BH103, C10-C12 (30 μ g/l), C12-C16 (110 μ g/l) and C16-C21 (80 μ g/l) in BH104B and C10-C12 (20 μ g/l) and C12-C16 (80 μ g/l) in MW04. Aliphatic hydrocarbons were detected in BH103 in the ranges C12-C16 (70 μ g/l), C16-C21 (100 μ g/l) and C21-C35 (90 μ g/l).

During the current Quarter 2, 2013 monitoring event no aliphatic or aromatic hydrocarbons were detected at any location.

7 CONCLUSIONS

- In accordance with the criteria set out in Schedule 4(ii) of the site's Waste Licence Register No. W0184-01, groundwater monitoring was carried out at the ENVA Ireland site on the 17th April 2013 corresponding to Quarter 2 of 2013. A suitably qualified consultant from RPS collected groundwater samples from 8 on-site monitoring wells and submitted these samples to an accredited laboratory for analysis.
- The results presented have been referenced against the Environmental Protection Agency's (EPA) Interim Guideline Values (IGV) as set out in the Interim Report 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.
- Results of the BTEX and MTBE demonstrate that the levels of Benzene, Toluene, Ethylbenzene and Xylene were below the recommended EPA IGV's
- The Quarter 2, 2013 results of the speciated polycyclic aromatic hydrocarbons indicate that the laboratory limit of detection of 0.2 µg/l for Total PAH's was above the EPA IGV of 0.1 µg/l. There were no detections of speciated PAHs at any location during the current monitoring event. The previous Quarter 2 2012 monitoring event detected Total PAH at MW03 and this is thought to be an isolated occurrence as the general trend of PAH concentrations appeared to have reduced over time. Further monitoring at these locations is recommended to determine the persistency of these detections.
- There have been no exceedances of the IGV for SVOC's since Quarter 1 2010.
- There have been no exceedances of the IGV for VOC's in this Quarter 2 2013 monitoring event. The Quarter 1 2012 monitoring event recorded a concentration of MTBE above the IGV of 30 μg/l in BH104B (280 μg/l). MTBE was previously recorded on two occasions in BH104B in April 2007 (49 μg/l) and in October 2007 (3 μg/l). Since then the concentrations had decreased to below the laboratory limit of detection.
- The results of the phenol analysis by GC-MS detected concentrations below the laboratory limit of detection of 1.0 µg/l at all locations. However, the laboratory limit of detection is above the IGV of 0.5 µg/l for phenols. Samples were subsequently also analysed for phenols to include chlorophenols and the results indicate that there were no detections above the laboratory limit of detection of 0.05 µg/l. A low level of 2,4-Dimethylphenol (0.12 µg/l) was detected in MW03 during the Quarter 1, 2010 monitoring event. There have been no detections of this compound since February 2010.
- Hydrocarbons were detected in boreholes BH104B and MW03 in the aliphatic carbon ranges during the Quarter 3, 2010 monitoring event. There were no detections of aromatic carbon above the laboratory limit of detection of 10 µg/l in BH104B and MW03. Hydrocarbons were detected during the Quarter 2 (BH103, BH104B, MW03), Quarter 3 (MW03) and Quarter 4 (MW03) 2011 monitoring events. Hydrocarbons in the aliphatic range were detected in BH103 during the Quarter 1 2013 monitoring event and hydrocarbons of the aromatic range were detected in BH103, BH104b and MW04. No detections of hydrocarbons were found at any location during the current Quarter 2 2013 monitoring event.
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Enva Portlaoise

2013 Groundwater Compliance Monitoring Quarter 3 (July – September 2013)

DOCUMENT CONTROL SHEET

Client	Enva Irelan	Enva Ireland Ltd.								
Project Title	Enva Portla	nva Portlaoise 2013 Groundwater Compliance Monitoring								
Document Title	Quarter 3 (J	Quarter 3 (July – September 2013) Interpretative Report								
Document No.	MDE0973R	p0015D01								
This Document	DCS	TOC	Text	List of Tables	List of Figures	No. of Appendices				
Comprises	1	1	38	1	1	-				

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
D01	Draft	M. Roche	C. Reilly	P. Chadwick	West Pier	11/10/13
F01	Final	M. Roche	C. Reilly	P. Chadwick	West Pier	14/10/13
				Pallahel		

TABLE OF CONTENTS

1	INTRO	DUCTIO	ON	1
	1.1	BACK	GROUND	1
	1.2	OBJEC	CTIVES & SCOPE OF WORK	1
2	REVIE	W OF P	REVIOUS DATA	2
	2.1	INFOR	MATION SOURCES	2
	2.2	SITE S	ETTING	2
	2.3	REGIC	DNAL SETTING	3
		2.3.1	Geology	3
		2.3.2	Hydrogeology	3
	2.4	SITE G	ROUND CONDITIONS	3
		2.4.1	Licence Conditions	6
3	METH	odolo	GΥ	7
	3.1	LABOF	RATORY ANALYSIS	7
	3.2	PRES	ENTATION & INTERPRETATION OF RESULTS	9
4	QUAR	TER 3 R	ESULTS SEPTEMBER 2013	10
5	DISCU	ISSION	OF QUARTER 3 RESULTS	23
	5.1	FIELD	PARAMETERS	23
	5.2	RESU	LTS OF INORGANIC ANALYSIS	23
	5.3	RESU	LTS OF BTEX & MTBE	23
	5.4	RESU	LTS OF SPECIATED PAH'S	24
	5.5	RESU	LTS OF SPECIATED PHENOLS	24
	5.6	RESU	LTS OF SEMI-VOLATILE ORGANIC COMPOUNDS	24
	5.7	RESU	LTS OF VOLATILE ORGANIC COMPOUNDS	25
	5.8	RESU	LTS OF TOTAL PETROLEUM HYDROCARBONS	25
6	HISTO		RESULTS & TRENDS	26
	6.1	GROU	NDWATER LEVELS OVER TIME	26
	6.2	GROU	NDWATER CONCENTRATIONS OVER TIME	29
		6.2.1	Phenols	29
		6.2.2	Polycyclic Aromatic Hydrocarbons (PAH's)	30
		6.2.3	Petroleum Hydrocarbons (TPH)	34
7	CONC	LUSION	IS	37

LIST OF TABLES

Table 2.1: Ground Conditions
Table 2.2: Licence Parameters 6
Table 3.1: Analytical Methodologies – I2 Analytical Ltd 7
Table 4.1: Groundwater Levels (Quarter 3, 2013) 11
Table 4.2: Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 3, 2013) 12
Table 4.3: Results of Inorganic Analysis (as per Annual Licence Requirements) 13
Table 4.4: Results of BTEX & MTBE 13
Table 4.5: Results of Speciated PAH's
Table 4.6: Results of Total Phenols
Table 4.7: Results of Speciated Phenols 15
Table 4.8: Results of Semi-Volatile Organic Compounds (sVOCs) 16
Table 4.9: Results of Volatile Organic Compounds (VOCs) 19
Table 4.10: Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic) 22
Table 5.1: Monthly Rainfall data for Year 2009 for Oak Park, Carlow
Table 5.2: Monthly Rainfall data for Year 2010 for Oak Park, Carlow
Table 5.3: Monthly Rainfall data for Year 2011 for Oak Park, Carlow
Table 5.4: Monthly Rainfall data for 2012 to date for Oak Park, Carlow
Table 5.5: Monthly Rainfall data for 2013 to date for Oak Park, Carlow

LIST OF FIGURES

Figure 1	Site Location
Figure 2	Site Layout Plan with groundwater monitoring well locations
Figure 3	Groundwater Elevation (mAOD) in all Monitoring Wells
Figure 4	Groundwater Elevation (mAOD) in Shallow Monitoring Wells
Figure 5	Groundwater Elevation (mAOD) in Deep Monitoring Wells
Figure 6	Phenol Concentrations in all Monitoring Wells
Figure 7	PAH (Total) Concentrations in all Monitoring Wells
Figure 8	Fluoroanthene Concentrations in all Monitoring Wells
Figure 9	Naphthalene Concentrations in all Monitoring Wells
Figure 10	Benzo (g,h,i) perylene in all Monitoring Wells
Figure 10a	Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03
Figure 11	Benzo(a)pyrene in all Monitoring Wells
Figure 12	TPH (Carbon Range C5-C44) in all Monitoring Wells

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Waste Licence Register No. W0184-01.

Enva Ireland has been operating under Waste Licence Register No. W0184-01 since January 2004, and is required to submit a report to the Environmental Protection Agency (EPA) on a quarterly basis, outlining the existing groundwater quality underlying the site.

Suitably qualified environmental consultants from RPS, collected groundwater samples from a series of 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) within the site boundary on the 23rd of September 2013. The samples underwent laboratory analysis for the suite of parameters specified in Schedule 4(ii) of Waste Licence W0184-01. This report outlines the results of the Quarter 3 monitoring for 2013 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 3 2013 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Waste Licence W0184-01 and any available EPA documents from the EPA website
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), URS (2004)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), URS (2005)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2006)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2007)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2008)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2009)
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007)
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2010)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2011)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2012)
- Quarter 1 Groundwater Monitoring Report, RPS (2013)
- Quarter 2 Groundwater Monitoring Report, RPS (2013)

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 2**. The site is largely covered in hardstanding with some open areas in the far north and northwest of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoil's in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological Survey of Ireland (GSI) as a locally important karstified aquifer. Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising five extraction wells in total. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends north-west south-east with the boundary of the outer protection zone at least 4 km to the north-east of the site. A further public abstraction well-field has been developed to the north-west of the Straboe area in the townland of Eyne, approximately 6 km to the north of the site, and comprises a further four (GSI) abstraction wells. The Source Protection Zone for these wells has not yet been defined but it is not anticipated to affect the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk, the accuracy of this location is also 1 km so that it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2**.

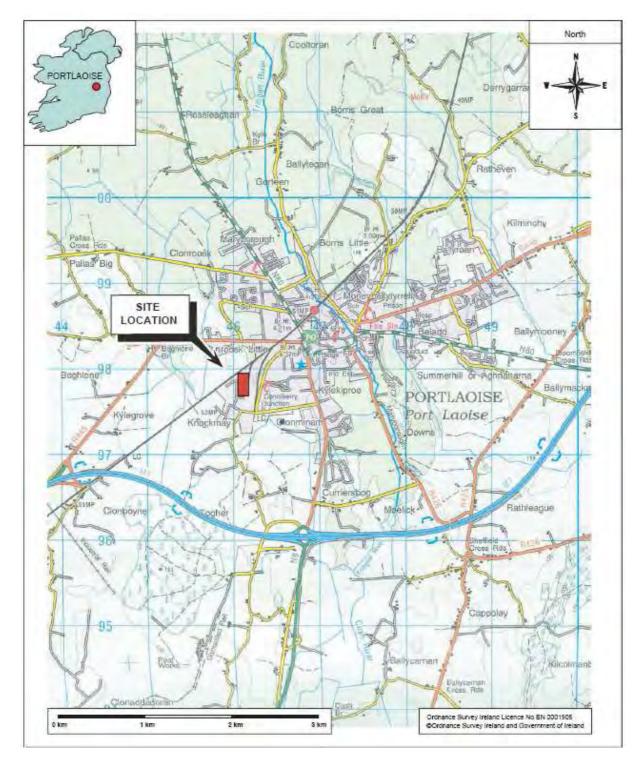

Strata	Extent	Thickness	Description
Made Ground	BH104	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium, well rounded gravels.
Sand and Gravel	and and Gravel Confined to 0-2 m		In general the transition from boulder clay to sand is gradual with changes from gravel, to

Table 2.1: Ground Conditions

Strata	Extent	Thickness	Description
	corner of site (BH101, BH104 and MW03)		sandy gravel, to sand.
Limestone Bedrock	Encountered in MW01, MW02 and MW03	Top of limestone ranges from 7.7m to 9m below ground level.	Pale grey, fine-grained bedrock, differentiated from boulders by its un-weathered nature.

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

2.4.1 Licence Conditions

The waste management licence requires the regular monitoring and sampling of boreholes BH101, BH102, BH103, BH104B, MW01, MW02, MW03 and MW04. The parameters requiring measurement or analysis are presented in Table 2.2.

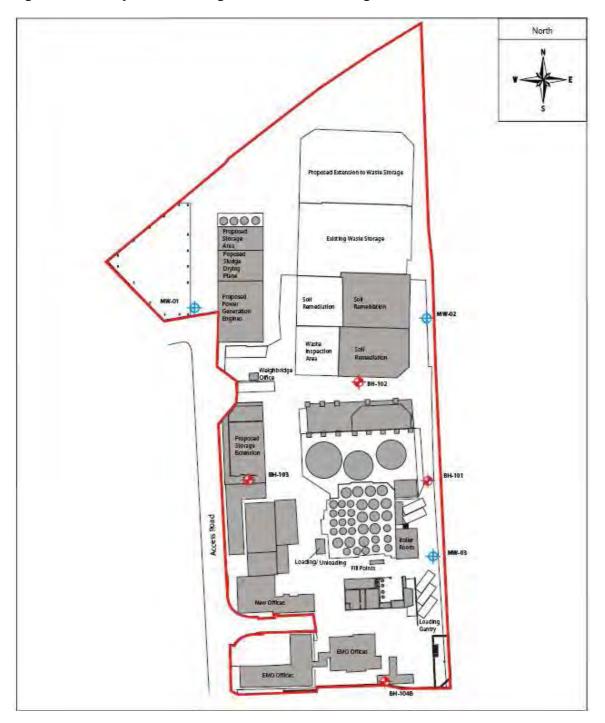
Table 2.2: Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement				
	Groundwater Level	Groundwater Level				
	рН	рН				
Field	Temperature	Temperature				
Parameters	Dissolved Oxygen	Dissolved Oxygen				
	Electrical Conductivity	Electrical Conductivity				
	Visual Inspection	Visual Inspection				
	Mineral Oil	Mineral Oil				
	BTEX & MTBE	BTEX & MTBE				
Organica	PAH's	PAH's				
Organics	Phenols	Phenols				
	VOC's	VOC's				
	SVOC's	SVOC's				
		Total Alkalinity, Calcium,				
Inorganics	-	Manganese, Sulphate, Cyanide				
_		(Total), Chloride, Sodium,				

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04), (See Figure 2) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.


Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, I2 Analytical Ltd for the suite of analyses listed in Table 3.1. Table 3.1 also indicates the analytical techniques used by the laboratory.

Table 3.1: Analytical Methodologies – I2 Analytical Ltd

Parameter	Analytical Methodology				
Phenols	GC-MS				
Speciated PAHs	GC-MS				
BTEX & MTBE	Headspace GC-MS				
Petroleum Hydrocarbons	Headspace GC-MS				
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS				
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS				

Figure 2 Site Layout Plan with groundwater monitoring well locations

Shallow Monitoring Well locations

Deep Monitoring Well locations

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 3 2013 results are tabulated in Section 4 and discussed with respect to previous results. The results have been compared to the EPA Interim Guideline Values (IGV) as set out in the Report 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004. It is important to note that the IGVs are based on the lowest acceptable value for either drinking water or environmental quality in surface water and is therefore conservative in nature.

Previous monitoring reports (as listed in Section 2.1) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in Section 6 and include the results of this Quarter 3 2013 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 3 RESULTS SEPTEMBER 2013

The results of all field measurements and laboratory analysis are presented in this section.

The results are discussed in relation to appropriate guideline values in Section 5. Results that are shown to be above the relevant guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Monitoring Well	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04
Depth (mbgl)	6.73	6.60	4.51	4.70	23.10	31.17	14.98	6.50
Static Water Level (mbgl)	4.37	3.53	1.89	0.66	3.21	4.51	4.12	3.97
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	98.69	99.02	99.27	100.86	99.89	98.61	98.65	-
Free Phase Oil (mm)	No detection							

mbgl = metres below ground level

Monitoring Well	pH (pH Units)	Temperature (°C)	Conductivity (µS/cm)	Dissolved O ₂ (ppm)	Observations
BH101	7.27	14.0	864	3.63	Grey cloudy colour, small black suspended solids, odourless.
BH102	6.71	13.2	737	2.17	Clear, slight yellow colour, strong H ₂ S odour detected on purging, some suspended solids.
BH103	7.23	14.5	1261	3.42	Light grey cloudy colour, suspended solids, odourless.
BH104B	7.38	14.2	422	2.54	Clear with yellow tinge, strong H ₂ S odour on purging. Water in well head.
MW01	7.52	14.5	985	2.47	Clear, no odour detected, small suspended solids. Difficult to purge at this location.
MW02	7.34	13.5	568	3.14	Clear, suspended solids, slight sheen on water surface, odourless.
MW03	7.38	12.9	1251	2.89	Dark grey colour, slight hydrocarbon sheen on surface, slight hydrocarbon odour.
MW04	6.58	13.5	995	3.21	Cloudy brown in colour, a lot of sediment in sample, slight H_2S odour.
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25°C	1000	No abnormal change	-

Table 4.2: Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 3, 2013)

Note: Results above the relevant IGV are highlighted in bold and shaded.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Total Alkalinity	mg/l	10	490	480	550	240	390	420	460	480	No abnormal change
Calcium	mg/l	0.2	100	130	110	85	68	65	130	130	200
Manganese	mg/l	0.3	0.0014	1.7	1.0	0.094	0.0035	0.011	0.34	1.8	0.05
Sulphate	mg/l	0.1	60.6	42.2	34.8	59.4	25.1	20.8	14.0	6.12	200
Cyanide (Total)	mg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Chloride	mg/l	4	80	20	26	12	14	15	190	280	30
Sodium	mg/l	0.1	120	16	18	20	18	22	95	140	150

Table 4.3: Results of Inorganic Analysis (as per Annual Licence Requirements)

Table 4.4: Results of BTEX & MTBE

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Benzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
Toluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
Ethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10 Note 1
o-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10 Note 1
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	30

Note 1: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Table 4.5: Results of Speciated PAH's

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Naphthalene	µg/l	0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	1.0
Acenaphthylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Acenaphthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.1	<0.01	-
Fluorene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.5	<0.01	-
Phenanthrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10,000
Fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0
Pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(a)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Chrysene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.5
Benzo(k)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Dibenz(a,h)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(g,h,i)perylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Total EPA-16 PAH's	µg/l	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	2.62	< 0.2	0.1

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are in italics.

Table 4.6: Results of Total Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Total Phenols (monohydric)	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	0.5
Total Phenols (GC-MS)	µg/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5

Table 4.7: Results of Speciated Phenols

Parameter	Unit s	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Phenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5
2,4,5-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4,6-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2,4-Dichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4-Dimethylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Chlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Nitrophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Chloro-3- methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-

Note: Results above the relevant laboratory limit of detection are in italics.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Aniline	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Phenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5
2-Chlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
Bis(2-chloroethyl)ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,3-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,2-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	10
1,4-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Bis(2- chloroisopropyl)ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Hexachloroethane	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Nitrobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	10
4-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Isophorone	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Nitrophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4-Dimethylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Bis(2- chloroethoxy)methane	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,2,4- Trichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.40
Naphthalene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0

Table 4.8: Results of Semi-Volatile Organic Compounds (sVOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
2,4-Dichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Chloroaniline	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Hexachlorobutadiene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.10
4-Chloro-3- methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4,6-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2,4,5-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Methylnaphthalene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Chloronaphthalene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dimethylphthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,6-Dinitrotoluene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Acenaphthylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Acenaphthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0	<0.01	-
2,4-Dinitrotoluene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dibenzofuran	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Chlorophenyl phenyl ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Diethyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Nitroaniline	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Fluorene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.5	<0.01	-
Azobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Bromophenyl phenyl ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Hexachlorobenzene	µg/l	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03
Phenanthrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10,000
Carbazole	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dibutyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	2.0
Anthraquinone	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0
Pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Butyl benzyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Benzo(a)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Chrysene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.5
Benzo(k)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Indeno(1,2,3- cd)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Dibenz(a,h)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(g,h,i)perylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05

Note: Results above the relevant laboratory limit of detection in italics.

 Table 4.9: Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Chloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Chloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Bromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Vinyl Chloride	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichlorofluoromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,1-dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	30
1,1,2-Trichloro 1,2,2- Trifluoroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Cis-1,2-dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	30
1,1-dichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
2,2-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	12
1,1,1-Trichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	500
1,2-dichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,1-Dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trans-1,2- dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Benzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
Tetrachloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
1,2-dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	70
Dibromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Bromodichloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Cis-1,3- dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trans-1,3- dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Toluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
1,1,2-Trichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Dibromochloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tetrachloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	40
1,2-Dibromoethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Chlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
1,1,1,2- Tetrachloroethane	µg∕l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Ethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
Styrene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tribromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
o-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Isopropylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Bromobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
N-Propylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
2-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
4-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3,5- Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tert-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2,4- Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Sec-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
P-Isopropyltoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
1,4-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2-Dibromo-3- chloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2,4-Trichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.40
Hexachlorobutadiene	µg/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.10
1,2,3-Trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Aliphatic > C5-C6	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C6-C8	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C8-C10	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C10-C12	µg/l	10	<10	<10	<10	<10	<10	<10	200	<10	-
Aliphatic > C12-C16	µg/l	10	<10	<10	<10	<10	<10	<10	190	<10	-
Aliphatic > C16-C21	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic >C21-C35	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic (C5-C35)	µg/l	10	<10	<10	<10	<10	<10	<10	390	<10	10
Aromatic > C5-C7	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C7-C8	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C8-C10	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C10-C12	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C12-C16	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C16-C21	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C21-C35	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic (C5-C35)	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	10

Table 4.10: Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

5 DISCUSSION OF QUARTER 3 RESULTS

The results of the Quarter 3 monitoring event for 2013 are presented in Table 4.1 to 4.10 of this report. For the purpose of this report, the results are compared to the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in Table 4.2. Groundwater samples recorded pH levels ranging between 6.58 and 7.52. All pH measurements were inside the EPA Interim guideline range of \geq 6.5 to \leq 9.5. Temperature measurements ranged from 12.9°C to 14.5°C and were within the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 422 μ S/cm and 1261 μ S/cm and were above the Interim Guideline Value of 1000 μ S/cm at BH103 (1261 μ S/cm) and MW03 (1251 μ S/cm).

Dissolved oxygen levels ranged between 2.17 and 3.63 ppm. Factors such as climate, nutrients in the water, suspended solids; organic wastes and groundwater inflow can all influence the dissolved oxygen values.

Observations relating to colour and odour varied from well to well as detailed in Table 4.2.

5.2 RESULTS OF INORGANIC ANALYSIS

The results of the inorganic analysis are presented in Table 4.3. The following inorganic parameters are required to be analysed on an annual basis in accordance with Schedule D of the Waste Licence Register Number W0184-01; Total Alkalinity, Calcium, Manganese, Sulphate, Cyanide (Total), Chloride and Sodium.

The results of the inorganic analysis for this monitoring event indicate that Manganese and Chloride were recorded above their respective recommended IGV's. The remaining parameters were below their IGV's at all locations.

Concentrations of Manganese exceeded the IGV of 0.05 mg/l at 5 no. locations (BH102, BH103, BH104B, MW03 and MW04) ranging between 0.094 mg/l and 1.8 mg/l.

Concentrations of Chloride were recorded above the IGV of 30 mg/l at 3 no. locations (BH101, MW03 and MW04) ranging between 80 mg/l and 280 mg/l.

5.3 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in Table 4.4 and demonstrate concentrations below the laboratory limit of detections and associated IGV's at all locations.

The last detection of MTBE was in the Quarter 1 monitoring event of 2012. MTBE was recorded above the laboratory limit of detection at a concentration of 280 μ g/l at BH104B. This was the only recorded

exceedance in Quarter 1 2012. Previous monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at BH103 at a concentration of 16 μ g/l. During Quarter 3 and Quarter 4 of 2010 concentrations were below the laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at BH103 were recorded at 63 μ g/l in December 2009.

5.4 RESULTS OF SPECIATED PAH'S

The results of the Speciated PAH analysis during this monitoring period are presented in Table 4.4.

The laboratory limit of detection for Total EPA-16 PAH's is 0.2 μ g/l. This laboratory limit of detection is above the EPA IGV of 0.1 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l.

The results of the speciated polycyclic aromatic hydrocarbon analysis detected no concentrations above the laboratory limit of detection with the exception of two compounds in MW03. Acenaphthene was detected at a concentration of 1.1 μ g/l and Fluorene was detected at a concentration of 1.5 μ g/l in MW03.

The laboratory is accredited to achieve a detection limit of 0.2 μ g/l for EPA-16 PAH's. The laboratory has confirmed that the detection limit for total EPA-16 PAH's can be lowered to 0.1 μ g/l for comparison with the EPA IGV of 0.1 μ g/l, however this will not be accredited.

5.5 RESULTS OF SPECIATED PHENOLS

The results of Total Phenol analysis are presented in Table 4.5. All samples detected concentrations of monohydric phenol below the laboratory limit of detection of 10 μ g/l. It should be noted that the laboratory limit of detection is above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in Table 4.6. The speciated phenol analysis reduces the laboratory limit of detection to $0.05 \ \mu g/l$ for individual parameters.

The results of the current Quarter 3 2013 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 0.05 μ g/l at all locations. This is consistent with the results from the previous Quarter 1 and Quarter 2 2013 monitoring event.

5.6 RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.7.

No SVOC's were detected during this monitoring period above the relevant IGV's with the exception of two SVOC's detected in MW03. The compounds detected under the SVOC suite were Acenaphthene and Fluorene, the same compounds as detected under the laboratories PAH suite. These compounds were detected at the same concentration in both suites of analysis. The Quarter 3 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene at 2.4 μ g/l and 0.12 μ /l respectively in MW03.

5.7 RESULTS OF VOLATILE ORGANIC COMPOUNDS

The results of the Volatile Organic Compound analysis are presented in Table 4.8. The results of the current Quarter 3 2013 monitoring event indicate that there were no exceedances of VOC parameters detected above the relevant IGV's.

In November 2009, corresponding to Quarter 4 of 2009, no VOC's were detected above the relevant IGV's. However some parameters were detected above the laboratory limits of detection (1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene).

The Quarter 1 and Quarter 2 monitoring results of 2010 detected MTBE in BH103 raised above the laboratory limit of detection of $1.0 \mu g/l$ at a concentration of $16 \mu g/l$.

The results of the Quarter 3 and Quarter 4 monitoring events of 2010 and all subsequent monitoring events indicate that there were no exceedances of the IGV for specific parameters.

5.8 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in Table 4.9.

No detections of TPH in the aliphatic or aromatic range were observed in any shallow monitoring well locations during the current monitoring event. TPH in the aliphatic range were detected in one deep groundwater well, MW03, during the Quarter 3, 2013 event. TPH of the range C10-C12 and C12-C16 were detected at concentrations of 290 μ g/l and 190 μ g/l respectively. No detections of TPH in the aromatic range were observed in any monitoring deep monitoring well locations during the current Quarter 3 2013 monitoring event.

The EPA IGV of 10 μ g/l for Total Hydrocarbons is deemed comparable with the results for total petroleum hydrocarbons (TPH).

The previous Quarter 1 2013 monitoring event detected aliphatic TPH of the range C12-C16, C16-C21 and C21-C35. TPH in the mid to high aromatic ranges were detected in BH103, BH104B and MW04 during the previous Quarter 1 2013 monitoring event. Aromatic TPH of the ranges C12-C16, C16-C21 and C21-C35 were detected in BH103, the ranges C10-C12, C12-C16 and C16-C21 were detected in BH104B and aromatic TPH of the ranges C10-C12 and C12-C16 were detected in MW04.

The Quarter 2 monitoring event of 2012 detected elevated TPH of the aliphatic range C12-C16, C16-C21 and C21-C25 in BH103. Hydrocarbons have been detected in borehole MW03 during Quarter 1 2010, in borehole BH104B during the Quarter 2 2010 monitoring event and in borehole BH104B and MW03 during the Quarter 3 2010 monitoring events. Hydrocarbons have also been detected in BH103, BH104B and MW03 in the Quarter 2 2011 monitoring event and in MW03 in the Quarter 3 and Quarter 4 2011. These detections are discussed further in Section 6.2.3.

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 3 2013 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

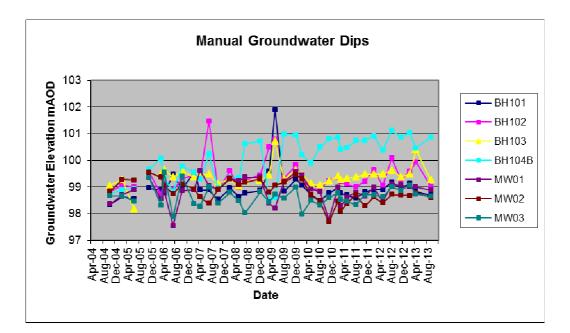

6.1 GROUNDWATER LEVELS OVER TIME

Figure 3 to Figure 5 below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 4 illustrates groundwater elevations (mAOD) in shallow groundwater wells (BH101 to BH104B) ranging between approximately 98 mAOD and 102 mAOD.

Figure 5 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (MW01 to MW03). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 97.5 mAOD to approximately 100 mAOD.

Figure 3 Groundwater Elevation (mAOD) in all Monitoring Wells

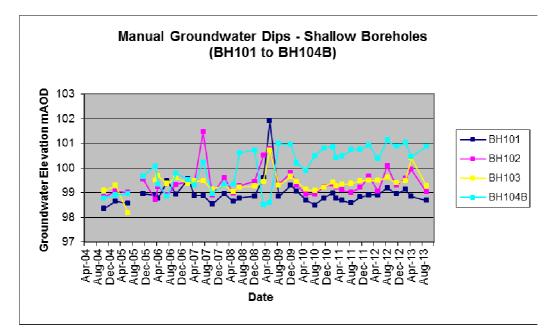
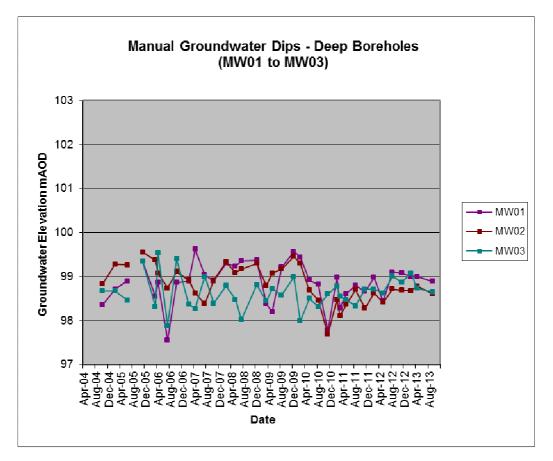



Figure 4 Groundwater Elevation (mAOD) in Shallow Monitoring Wells

Figure 5 Groundwater Elevation (mAOD) in Deep Monitoring Wells

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; however, the general direction of flow in the shallow and deeper groundwater bearing unit is in an easterly or north easterly direction however there have been some occasional historic cases of groundwater flowing in a south-easterly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Eireann to examine the relationship between compounds and rainfall events. The data from Oak Park was chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in Tables 5.1 to 5.5.

Table 5.1: Monthly Rainfall data for Year 2009 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	113.4	29.2	32.6	102.4	69.0	65.4	152.4	100.9	41.8	127.8	215.5	73.7

Table 5.2: Monthly Rainfall data for Year 2010 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	August	Sept	Oct	Nov	Dec
Rainfall (mm)	71.5	48.0	80.7	49.0	51.4	37.7	93.6	25.5	108.7	68.9	87.7	52.2

Table 5.3: Monthly Rainfall data for Year 2011 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	50.6	121.9	16.0	19.5	51.2	72.7	46.4	25.5	93.9	93.9	89.2	55.5

Table 5.4: Monthly Rainfall data for 2012 to date for Oak Park, Carlow

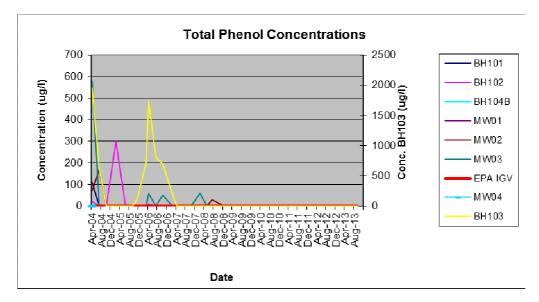
Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	70.8	24.5	18.0	56.3	50.2	155.8	76.2	127.7	37.9	63.4	80.9	68.1

Table 5.5: Monthly Rainfall data for 2013 to date for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.8	57.6	44.4	35.6	37.5	32.3	85.6	24.4			

Note: Data for the most recent months are provisional.

6.2 GROUNDWATER CONCENTRATIONS OVER TIME


Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.

The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

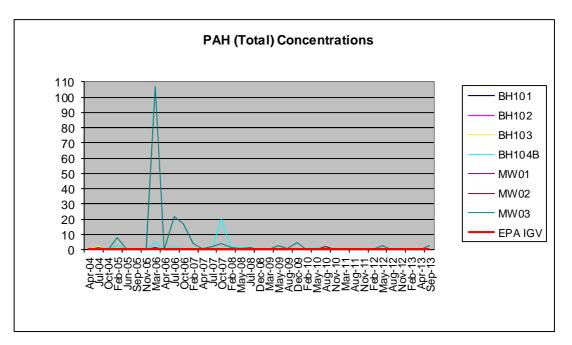
Phenols have been detected historically in all boreholes with the highest concentrations recorded in BH103. However concentrations in BH103 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

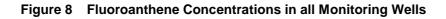
2,4-Dimethylphenol was detected at a concentration of $0.12 \mu g/l$ during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the current Quarter 3 2013 monitoring event.

Figure 6 Phenol Concentrations in all Monitoring Wells

6.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)

Figure 7 below illustrates that PAH's (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within MW03 and BH104B. In addition, a range of PAH's including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Napthalene have previously been detected in MW03 with Figures 8 to 11 illustrating some of the PAH compounds which were detected above their respective IGV's.

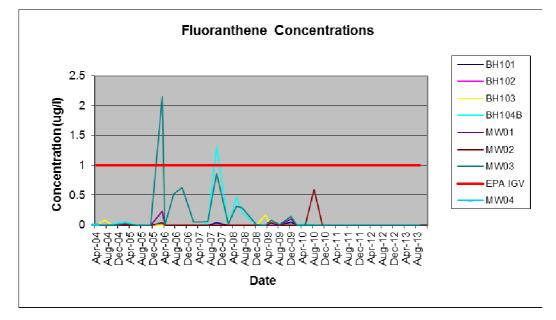
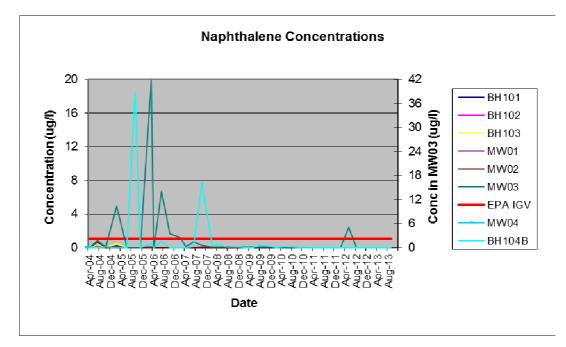

Figure 7 illustrates that **Total PAH** has been detected in all groundwater monitoring wells at the site above the IGV of 0.1 μ g/l since 2005. Elevated concentrations have been detected in MW03 and BH104B, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. Since then, the concentrations have shown a marked decrease.

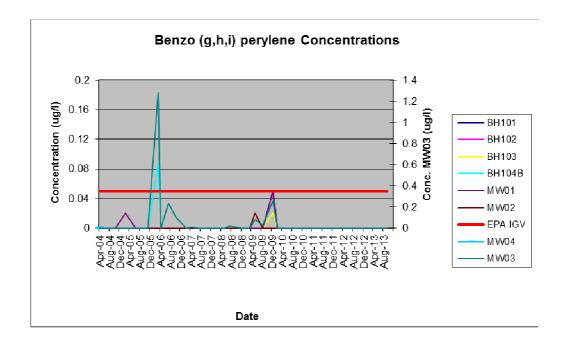

The results from the Quarter 4, 2009 monitoring round in December 2009 recorded total EPA-16 PAH concentrations above the IGV at all locations with the exception of MW02. These concentrations may be linked to the heavy rainfall event, which occurred in November of 2009, which may have mobilized traces of these compounds from soil.

The results from the Quarter 1 monitoring round, 2010 recorded Total PAH concentrations below the IGV of 0.2 μ g/l at all locations with the exception of MW03, which detected a concentration of 0.3 μ g/l. There has been a decrease in Total PAH concentrations at all locations since the Quarter 4 event in December 2009 with the most notable decrease at MW03 reducing from 4.58 μ g/l to <0.1 μ g/l.

Concentrations of Total PAH above the IGV in 2010 were detected during the Quarter 1 monitoring event in MW03 (0.3 μ g/l), Quarter 2 monitoring event in BH104B (1.2 μ g/l) and Quarter 3 monitoring event in MW02 (2.0 μ gl) and BH104B (0.2 μ gl). There were no elevated concentrations of Total PAH during the Quarter 4 2010, the Q1, Q2, Q3 and Q4 2011 monitoring events, and the Q1 2012 monitoring event. Total PAH was detected above the IGV in MW03 in the Q2 2012 monitoring event. No Total PAH exceedances were detected in the following Q3 and Q4 2012 monitoring events and the previous Q1 and Q2 2013 monitoring events. Total PAH was detected at a concentration of 2.62 μ g/l in MW03 during the current Q3 2013 monitoring event.

Figure 7 PAH (Total) Concentrations in all Monitoring Wells


Figure 8 illustrates that **Fluoroanthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells BH104B (October 2007, 1.33 μ g/l) and MW03 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l.

A similar trend to Fluoroanthene has been noted in Figure 9, with concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in BH104B and MW03 only. 4 no. exceedances of the IGV were noted in BH104B in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in BH104B have decreased below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in MW03, with the highest concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were slightly above the laboratory limit of detection of 0.01 μ g/l at BH104B (0.08 μ g/l) and MW03 (0.05 μ g/l);

however these levels are deemed low. Concentrations of Naphthalene were below the EPA IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 quarterly monitoring events and the Quarter 1, Quarter 3 and Quarter 4 2012 monitoring periods. No detections of Naphthalene were noted in the current Quarter 3 2013 monitoring event.

Figure 10 Benzo (g,h,i) perylene in all Monitoring Wells

Figure 10 illustrates the concentrations of **Benzo(g,h,i)perylene** in all monitoring wells over time. Elevated concentrations above the IGV were recorded at BH104B (0.087 μ g/l) on one occasion only in March 2006.

Figure 10a illustrates elevated concentrations above the IGV recorded at MW03 on 5 no. occasions with the most recent elevated concentration detected in December 2009 (0.26 μ g/l). The results of monitoring events in May, August, November 2010, March, May, September and November 2011, February, May, August and November 2012, February 2013, April 2013 and the current September Quarter 3 2013 monitoring event recorded concentrations below the laboratory limit of detection of 0.01 μ g/l at all locations.

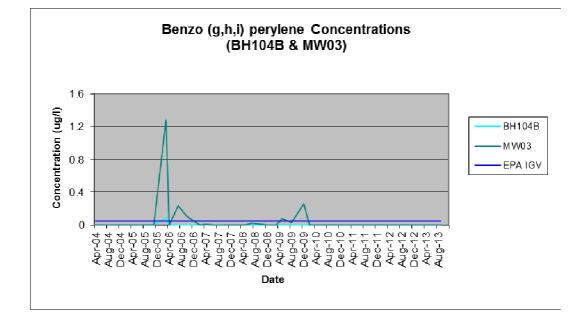
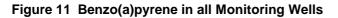
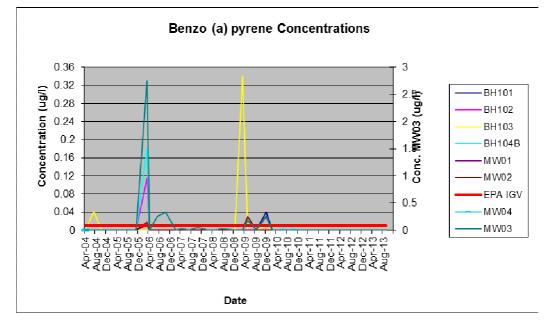
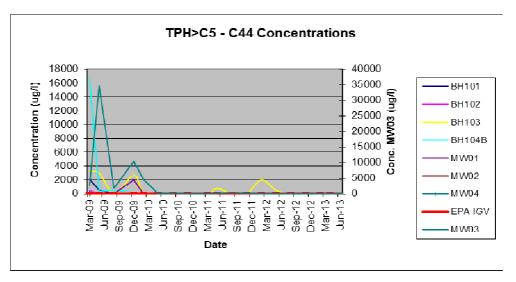




Figure 10a Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03

Figure 11 illustrates the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicates that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 μ g/l. Similarly with the above mentioned trends, the highest concentrations have been detected in MW03 and BH104B. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 μ g/l was detected in MW03, however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in BH101, BH103 and MW01 during this same period. The results of all monitoring events in 2010, 2011 and 2012 indicate concentrations below the IGV. The results of the previous quarterly monitoring events of 2013 and the current Quarter 3 2013 event also recorded concentrations below the IGV.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGV's.



6.2.3 Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within BH103, BH104B and MW03. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12 – C16, C16 – C21 and C21 – C35. Figure 12 illustrates the TPH analysis for the total TPH analysis from C5 – C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells MW03, BH104B and BH103 respectively.

During the Quarter 1, 2010 monitoring event, hydrocarbons were detected in borehole MW03. The predominant aliphatic carbon range in MW03 comprised of C16-C21 (1000 μ g/l), C21-C35 (2300 μ g/l) and C25-C44 (990 μ g/l). The predominant aromatic carbon range in MW03 comprised of C16-C21 (220 μ g/l) and C21-C35 (620 μ g/l). No detections were observed at other locations.

During the Quarter 2, 2010 monitoring event, hydrocarbons were detected in borehole BH104B, with the predominant aliphatic carbon range comprising C12-C16 (130 μ g/l) and C16-C21 (130 μ g/l), while the predominant aromatic carbon range comprising C12-C16 (21 μ g/l) and C16-C21 (47 μ g/l). There were no detections of hydrocarbons in MW03 during the Quarter 2 monitoring event.

During the Quarter 3, 2010 monitoring event, hydrocarbons were detected in borehole BH104B and MW03. The predominant aliphatic carbon range in BH104B comprised of C12-C16 (12 μ g/l) and C16-C21 (19 μ g/l). The predominant aliphatic carbon range in MW03 comprised of C16-C21 (35 μ g/l) and C21-C34 (46 μ g/l). No aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 4, 2010 and Quarter 1, 2011 monitoring event, there were no detections of TPH concentrations above the laboratory limit of detection of 10 μ g/l at any location. No aliphatic or aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 2, 2011 monitoring event, hydrocarbons were detected in borehole BH103, BH104B and MW03. The predominant aliphatic carbon range comprised of C16-C21 (340 μ g/l, 20 μ g/l and 46 μ g/l) and C21-C35 (420 μ g/l, 96 μ g/l and 150 μ g/l in BH103, BH104B and MW03 respectively). The predominant aromatic carbon range also comprised of C16-C21 (78 μ g/l, 52 μ g/l and 50 μ g/l) and C21-C35 (110 μ g/l, 49 μ g/l and 93 μ g/l in BH103, BH104B and MW03 respectively).

During the Quarter 3, 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised of C10-C12 (18 μ g/l), C12-C16 (57 μ g/l), C16-C21 (35 μ g/l) and C21-C35 (210 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (42 μ g/l), C16-C21 (66 μ g/l) and C21-C35 (45 μ g/l).

During the Quarter 4, 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised C10-C12 (22 μ g/l), C12-C16 (51 μ g/l), C16-C21 (85 μ g/l) and C21-C35 (110 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (16 μ g/l), C16-C21 (14 μ g/l) and C21-C35 (91 μ g/l).

During the Quarter 1, 2012 monitoring event, hydrocarbons were detected in borehole BH103 only. The predominant aliphatic carbon range comprised C10-C12 (13 μ g/l), C12-C16 (270 μ g/l), C16-C21 (690 μ g/l) and C21-C35 (980 μ g/l). The predominant aromatic carbon range comprised of C16-C21 (250 μ g/l) and C21-C25 (680 μ g/l). No hydrocarbons were detected in MW03 during the current Quarter 1 monitoring event.

During the Quarter 2, 2012 monitoring event, hydrocarbons were detected in BH103 only. The detected aliphatic carbon range comprised C12-C16 (98 μ g/l), C16-C21 (230 μ g/l) and C21-C25 (170 μ g/l). No detections of aromatic carbons were measured during the Quarter 2 2012 monitoring event.

No hydrocarbons were detected at any location during the previous Quarter 3 and Quarter 4, 2012 monitoring events.

During the previous Quarter 1, 2013 monitoring event aromatic hydrocarbons were detected in BH103, BH104b and MW04. The predominant aromatic carbon range comprised C12-C16 ($30 \mu g/l$), C16-C21 ($280 \mu g/l$) and C21-C35 ($100 \mu g/l$) in BH103, C10-C12 ($30 \mu g/l$), C12-C16 ($110 \mu g/l$) and C16-C21 ($80 \mu g/l$) in BH104B and C10-C12 ($20 \mu g/l$) and C12-C16 ($80 \mu g/l$) in MW04. Aliphatic hydrocarbons were detected in BH103 in the ranges C12-C16 ($70 \mu g/l$), C16-C21 ($100 \mu g/l$) and C21-C35 ($90 \mu g/l$).

During the previous Quarter 2, 2013 monitoring event no aliphatic or aromatic hydrocarbons were detected at any location.

During the current Quarter 3, 2013 monitoring event, hydrocarbons of the aliphatic range were detected in MW03 only. The detected aliphatic carbon range comprised C10-C16 (290 μ g/l) and C12-C16 (190 μ g/l). No detections of aromatic carbons were measured during the Quarter 3 2013 monitoring event

7 CONCLUSIONS

- In accordance with the criteria set out in Schedule 4(ii) of the site's Waste Licence Register No. W0184-01, groundwater monitoring was carried out at the ENVA Ireland site on the 23rd September 2013 corresponding to Quarter 3 of 2013. A suitably qualified consultant from RPS collected groundwater samples from 8 on-site monitoring wells and submitted these samples to an accredited laboratory for analysis.
- The results presented have been referenced against the Environmental Protection Agency's (EPA) Interim Guideline Values (IGV) as set out in the Interim Report 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.
- Results of the BTEX and MTBE demonstrate that the levels of Benzene, Toluene, Ethylbenzene and Xylene were below the recommended EPA IGV's
- The Quarter 3, 2013 results of the speciated polycyclic aromatic hydrocarbons indicate that the laboratory limit of detection of 0.2 µg/l for Total PAH's was above the EPA IGV of 0.1 µg/l. There were no detections of speciated PAHs at any location during the current monitoring event with the exception of acenaphthene and flourene at MW03. Total PAH have not been detected at MW03 since the Quarter 2 2012 monitoring event. Further monitoring at these locations is recommended to determine the persistency of these detections.
- Acenaphthene and flourene were detected in MW03 under the SVOC suite of analysis aswell as the PAH suite of analysis. Prior to this there have been no exceedances of the IGV for SVOC's since Quarter 1 2010.
- There have been no exceedances of the IGV for VOC's in this Quarter 3 2013 monitoring event. The Quarter 1 2012 monitoring event recorded a concentration of MTBE above the IGV of 30 µg/l in BH104B (280 µg/l). MTBE was previously recorded on two occasions in BH104B in April 2007 (49 µg/l) and in October 2007 (3 µg/l). Since then the concentrations had decreased to below the laboratory limit of detection.
- The results of the phenol analysis by GC-MS detected concentrations below the laboratory limit of detection of 1.0 µg/l at all locations. However, the laboratory limit of detection is above the IGV of 0.5 µg/l for phenols. Samples were subsequently also analysed for phenols to include chlorophenols and the results indicate that there were no detections above the laboratory limit of detection of 0.05 µg/l. A low level of 2,4-Dimethylphenol (0.12 µg/l) was detected in MW03 during the Quarter 1, 2010 monitoring event. There have been no detections of this compound since February 2010.
- Hydrocarbons of the aliphatic range were detected in MW03 during this Quarter 3, 2013 monitoring event. Hydrocarbons were detected in boreholes BH104B and MW03 in the aliphatic carbon ranges during the Quarter 3, 2010 monitoring event. There were no detections of aromatic carbon above the laboratory limit of detection of 10 µg/l in BH104B and MW03. Hydrocarbons were detected during the Quarter 2 (BH103, BH104B, MW03), Quarter 3 (MW03) and Quarter 4 (MW03) 2011 monitoring events. Hydrocarbons in the aliphatic range were detected in BH103 during the Quarter 1 2013 monitoring event and hydrocarbons of the aromatic range were detected in BH103, BH104B and MW04. No detections of hydrocarbons were found at any location during the Quarter 2 2013 monitoring event.
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility

appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Enva Portlaoise

2013 Groundwater Compliance Monitoring Quarter 4 (October – December 2013)

DOCUMENT CONTROL SHEET

Client	Enva Ireland Ltd.					
Project Title	Enva Portlaoise 2013 Groundwater Compliance Monitoring					
Document Title	Quarter 4 (October – December 2013) Interpretative Report					
Document No.	MDE0973Rp0016F01					
This Document	DCS	TOC	Text	List of Tables	List of Figures	No. of Appendices
Comprises	1	1	38	1	1	-

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
D01	Draft	M. Roche	C. Reilly	P. Chadwick	West Pier	04/12/2013
F01	Final	M. Roche	C. Reilly	P. Chadwick	West Pier	05/12/2013
				Pallahel		

TABLE OF CONTENTS

1	INTRO	DUCTION 1				
	1.1	BACKG	ROUND	1		
	1.2	OBJEC	TIVES & SCOPE OF WORK	1		
2	REVIE	W OF PF	REVIOUS DATA	2		
	2.1	INFORI	INFORMATION SOURCES			
	2.2	SITE SI	ETTING	2		
	2.3	REGIO	NAL SETTING	3		
		2.3.1	Geology	3		
		2.3.2	Hydrogeology	3		
	2.4	SITE G	ROUND CONDITIONS	3		
		2.4.1	Licence Conditions	6		
3	METHO	DOLOG	θΥ	7		
	3.1	LABOR	ATORY ANALYSIS	7		
	3.2	PRESE	NTATION & INTERPRETATION OF RESULTS	9		
4	QUAR	TER 4 R	ESULTS SEPTEMBER 2013	10		
5	DISCU	SSION C	DF QUARTER 4 RESULTS	23		
5	DISCU 5.1		DF QUARTER 4 RESULTS PARAMETERS	-		
5		FIELD F		23		
5	5.1	FIELD F	PARAMETERS	23 23		
5	5.1 5.2	FIELD F RESUL RESUL	PARAMETERS TS OF BTEX & MTBE	23 23 23		
5	5.1 5.2 5.3	FIELD F RESUL RESUL RESUL	PARAMETERS TS OF BTEX & MTBE TS OF SPECIATED PAH'S	23 23 23 23 24		
5	5.1 5.2 5.3 5.4	FIELD F RESUL RESUL RESUL RESUL	PARAMETERS TS OF BTEX & MTBE TS OF SPECIATED PAH'S TS OF SPECIATED PHENOLS	23 23 23 23 24 24		
5	5.1 5.2 5.3 5.4 5.5	FIELD F RESUL RESUL RESUL RESUL	PARAMETERS TS OF BTEX & MTBE TS OF SPECIATED PAH'S TS OF SPECIATED PHENOLS TS OF SEMI-VOLATILE ORGANIC COMPOUNDS	23 23 23 24 24 24 24		
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	FIELD F RESUL RESUL RESUL RESUL RESUL	PARAMETERS TS OF BTEX & MTBE TS OF SPECIATED PAH'S TS OF SPECIATED PHENOLS TS OF SEMI-VOLATILE ORGANIC COMPOUNDS TS OF VOLATILE ORGANIC COMPOUNDS	 23 23 23 24 24 24 24 24 		
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7	FIELD F RESUL RESUL RESUL RESUL RESUL RESUL	PARAMETERS TS OF BTEX & MTBE TS OF SPECIATED PAH'S TS OF SPECIATED PHENOLS TS OF SEMI-VOLATILE ORGANIC COMPOUNDS TS OF VOLATILE ORGANIC COMPOUNDS TS OF VOLATILE ORGANIC COMPOUNDS TS OF TOTAL PETROLEUM HYDROCARBONS	 23 23 23 24 24 24 24 24 24 24 24 26 		
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO	FIELD F RESUL RESUL RESUL RESUL RESUL RESUL RESUL	PARAMETERS TS OF BTEX & MTBE TS OF SPECIATED PAH'S TS OF SPECIATED PHENOLS TS OF SEMI-VOLATILE ORGANIC COMPOUNDS TS OF VOLATILE ORGANIC COMPOUNDS TS OF VOLATILE ORGANIC COMPOUNDS TS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS	23 23 23 24 24 24 24 24 24 24 26		
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO 6.1	FIELD F RESUL RESUL RESUL RESUL RESUL RESUL RESUL	PARAMETERS TS OF BTEX & MTBE TS OF SPECIATED PAH'S TS OF SPECIATED PHENOLS TS OF SEMI-VOLATILE ORGANIC COMPOUNDS TS OF VOLATILE ORGANIC COMPOUNDS TS OF VOLATILE ORGANIC COMPOUNDS TS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS NDWATER LEVELS OVER TIME	23 23 23 24 24 24 24 24 24 24 26 29		
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO 6.1	FIELD F RESUL RESUL RESUL RESUL RESUL RESUL RESUL GROUN	PARAMETERS TS OF BTEX & MTBE TS OF SPECIATED PAH'S TS OF SPECIATED PHENOLS TS OF SEMI-VOLATILE ORGANIC COMPOUNDS TS OF VOLATILE ORGANIC COMPOUNDS TS OF VOLATILE ORGANIC COMPOUNDS TS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS NDWATER LEVELS OVER TIME NDWATER CONCENTRATIONS OVER TIME	23 23 23 24 24 24 24 24 24 26 29 29		
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 HISTO 6.1	FIELD F RESUL RESUL RESUL RESUL RESUL RESUL RESUL GROUN GROUN 6.2.1	PARAMETERS TS OF BTEX & MTBE TS OF SPECIATED PAH'S TS OF SPECIATED PHENOLS TS OF SEMI-VOLATILE ORGANIC COMPOUNDS TS OF VOLATILE ORGANIC COMPOUNDS TS OF VOLATILE ORGANIC COMPOUNDS TS OF TOTAL PETROLEUM HYDROCARBONS RESULTS & TRENDS NDWATER LEVELS OVER TIME NDWATER CONCENTRATIONS OVER TIME Phenols	23 23 23 24 24 24 24 24 26 29 29 30		

LIST OF TABLES

Table 2.1: Ground Conditions	3
Table 2.2: Licence Parameters	6
Table 3.1: Analytical Methodologies – I2 Analytical Ltd	7
Table 4.1: Groundwater Levels (Quarter 4, 2013)	11
Table 4.2: Results of Field Parameters Measured at each Groundwater Monitoring Well (0 2013)	
Table 4.3: Results of BTEX & MTBE	13
Table 4.4: Results of Speciated PAH's	13
Table 4.5: Results of Total Phenols	15
Table 4.6: Results of Speciated Phenols	15
Table 4.7: Results of Semi-Volatile Organic Compounds (sVOCs)	16
Table 4.8: Results of Volatile Organic Compounds (VOCs)	19
Table 4.9: Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)	22
Table 5.1: Monthly Rainfall data for Year 2009 for Oak Park, Carlow	28
Table 5.2: Monthly Rainfall data for Year 2010 for Oak Park, Carlow	28
Table 5.3: Monthly Rainfall data for Year 2011 for Oak Park, Carlow	28
Table 5.4: Monthly Rainfall data for 2012 to date for Oak Park, Carlow	28
Table 5.5: Monthly Rainfall data for 2013 to date for Oak Park, Carlow	

LIST OF FIGURES

Figure 1	Site Location	5
Figure 2	Site Layout Plan with groundwater monitoring well locations	8
Figure 3	Groundwater Elevation (mAOD) in all Monitoring Wells	26
Figure 4	Groundwater Elevation (mAOD) in Shallow Monitoring Wells	27
Figure 5	Groundwater Elevation (mAOD) in Deep Monitoring Wells	27
Figure 6	Phenol Concentrations in all Monitoring Wells2	<u>29</u>
Figure 7	PAH (Total) Concentrations in all Monitoring Wells	30
Figure 8	Fluoroanthene Concentrations in all Monitoring Wells	31
Figure 9	Naphthalene Concentrations in all Monitoring Wells	31
Figure 10	Benzo (g,h,i) perylene in all Monitoring Wells	32
Figure 10a	a Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03	33
Figure 11	Benzo(a)pyrene in all Monitoring Wells	34
Figure 12	TPH (Carbon Range C5-C44) in all Monitoring Wells	34

1 INTRODUCTION

1.1 BACKGROUND

RPS has been commissioned by Enva Ireland Ltd to carry out groundwater quality monitoring for environmental compliance, at their facility in the Clonminam Industrial Estate, Portlaoise, Co Laois. Groundwater monitoring has being carried out in strict accordance with criteria set out in Schedule 4(ii) of the site's Waste Licence Register No. W0184-01.

Enva Ireland has been operating under Waste Licence Register No. W0184-01 since January 2004, and is required to submit a report to the Environmental Protection Agency (EPA) on a quarterly basis, outlining the existing groundwater quality underlying the site.

Suitably qualified environmental consultants from RPS, collected groundwater samples from a series of 8 monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04) within the site boundary on the 5th November 2013. The samples underwent laboratory analysis for the suite of parameters specified in Schedule 4(ii) of Waste Licence W0184-01. This report outlines the results of the Quarter 4 monitoring for 2013 and reviews historical data recorded at the site.

1.2 OBJECTIVES & SCOPE OF WORK

The specific objectives and scope of work are as follows:

- Review of previous data as provided by Enva Portlaoise;
- Graphical presentation of key compounds and trends; and
- Discussion of results for Quarter 4 2013 within the context of previous results and available guideline concentrations.

2 REVIEW OF PREVIOUS DATA

2.1 INFORMATION SOURCES

The following documents were reviewed as part of this project:

- Waste Licence W0184-01 and any available EPA documents from the EPA website
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), URS (2004)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), URS (2005)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2006)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2007)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2008)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2009)
- Summary Report on Trend of Contaminant Levels at Enva Ireland Ltd since 2005, Ref: MDE0647RP0001, RPS (2007)
- Groundwater Risk Assessment, Ref: MDE0788Rp0001, RPS (2008)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2010)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2011)
- Quarterly Groundwater Monitoring Reports (Quarter 1 to Quarter 4), RPS (2012)
- Quarter 1 Groundwater Monitoring Report, RPS (2013)
- Quarter 2 Groundwater Monitoring Report, RPS (2013)
- Quarter 3 Groundwater Monitoring Report, RPS (2013)

2.2 SITE SETTING

The site is located to the southwest of the town of Portlaoise immediately to the south of the Dublin to Cork railway line. The general area is gently undulating. The site slopes gently to the southwest but to the east of the site the ground slopes gently towards the River Triogue, which is located approximately 1 km to the east. The site occupies an area of approximately 1.5 hectares and comprises of an operational waste oil and contaminated soil treatment plant.

The site is located on the outskirts of Portlaoise in an area of agricultural and light industrial development. The site is bounded to the north and east by land belonging to Irish rail, comprising sidings and general storage areas. To the south is a vehicle repair garage, which is elevated above the level of the site by approximately 1.5 m. To the west the site is adjoined by further industrial land, as well as residential land. The site location is presented on **Figure 1**.

The site has been in operation since 1978, and the layout has remained relatively consistent. The site layout is presented on **Figure 2**. The site is largely covered in hardstanding with some open areas in the far north and northwest of the site. All oil and soil storage areas are suitably bunded and the general standard of housekeeping is good.

2.3 REGIONAL SETTING

2.3.1 Geology

The Geological Survey of Ireland indicates that the regional geology of Portlaoise is typified by Carboniferous Limestone. In the vicinity of the site itself the solid geology comprises the Ballysteen Formation, a micaceous-bioclastic limestone. This well-bedded limestone, with interbeds of shale, is extensively folded, with axes trending north-east to south-west, and becomes increasingly muddy towards the top of the formation. North-east to south-west trending faults are found in the region, with one located approximately 500m to the east of the site. The subsoil's in the region comprise mainly Made Ground, around the industrial area, and Limestone Till in the surrounding regions.

2.3.2 Hydrogeology

The limestone is classified by the Geological Survey of Ireland (GSI) as a locally important karstified aquifer. Porosity is predominantly in the form of fractures, in this aquifer, however the muddy nature of this formation greatly reduces permeability. Vulnerability of this aquifer beneath the site is classified as high, with moderate vulnerability to the east of the site.

The public water supply for Portlaoise is derived from groundwater, utilising five extraction wells in total. This supply currently comes from the Straboe area, approximately 5.5 km to the north-east of the site. The source protection zone for this water supply extends north-west south-east with the boundary of the outer protection zone at least 4 km to the north-east of the site. A further public abstraction well-field has been developed to the north-west of the Straboe area in the townland of Eyne, approximately 6 km to the north of the site, and comprises a further four (GSI) abstraction wells. The Source Protection Zone for these wells has not yet been defined but it is not anticipated to affect the Enva site.

The GSI record a number of other dug wells and boreholes within the Portlaoise area, including the boreholes installed on the site. The accuracy of the locations of these wells varies. One well, which was drilled in 1899 is recorded as being located immediately to the south of the Enva site. The use of this well is not known and its location is only accurate to 1 km. A second borehole, drilled in 1973 is recorded 1.5 km to the north of the site at Clonroosk, the accuracy of this location is also 1 km so that it could be closer or further from the site. The use of this well is not known but its yield is recorded as being poor. There are no other wells recorded within 1 km of the site.

Enva is not aware of any abstraction boreholes within the immediate vicinity of their site.

2.4 SITE GROUND CONDITIONS

A total of eight boreholes have been drilled at the site and the general sequence of ground conditions is presented in **Table 2**.

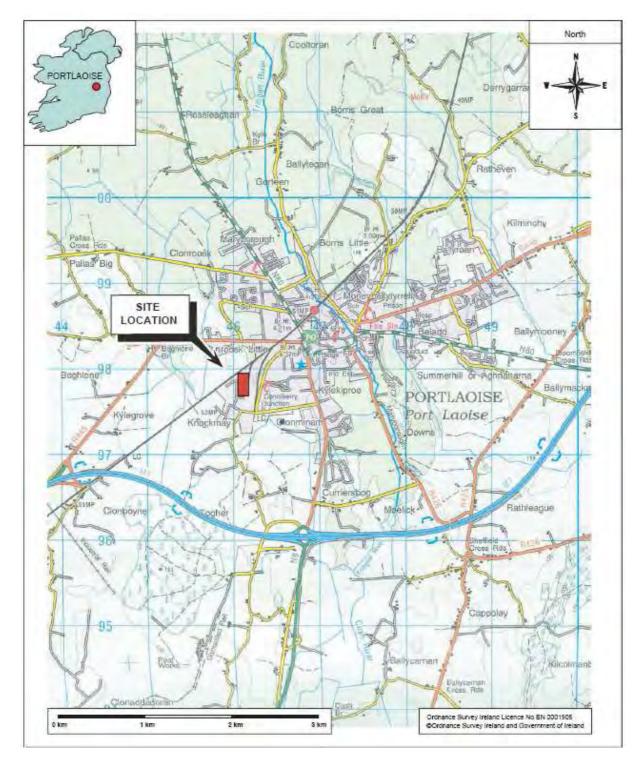

Strata	Extent	Thickness	Description
Made Ground	BH104	0-3.5 m	Predominantly concrete, with hardcore fill, and clay.
Boulder Clay	All boreholes	<8.5 m	Includes fine to medium, well rounded gravels.
Sand and Gravel	Confined to south east	0-2 m	In general the transition from boulder clay to sand is gradual with changes from gravel, to

Table 2.1: Ground Conditions

Strata	Extent	Thickness	Description
	corner of site (BH101, BH104 and MW03)		sandy gravel, to sand.
Limestone Bedrock	Encountered in MW01, MW02 and MW03	Top of limestone ranges from 7.7m to 9m below ground level.	Pale grey, fine-grained bedrock, differentiated from boulders by its un-weathered nature.

The logs for each of the boreholes were previously presented as Appendix B in the RPS Groundwater Risk Assessment Report (Ref: MDE0788Rp0001).

2.4.1 Licence Conditions

The waste management licence requires the regular monitoring and sampling of boreholes BH101, BH102, BH103, BH104B, MW01, MW02, MW03 and MW04. The parameters requiring measurement or analysis are presented in Table 2.2.

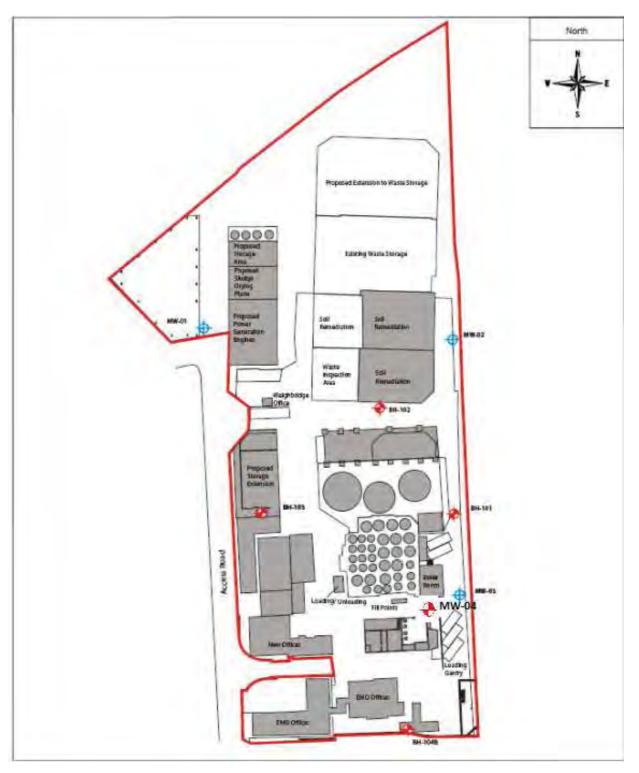
Table 2.2: Licence Parameters

Group	Parameters requiring Quarterly Measurement	Parameters requiring Annual Measurement
	Groundwater Level	Groundwater Level
	рН	рН
Field	Temperature	Temperature
Parameters	Dissolved Oxygen	Dissolved Oxygen
	Electrical Conductivity	Electrical Conductivity
	Visual Inspection	Visual Inspection
	Mineral Oil	Mineral Oil
	BTEX & MTBE	BTEX & MTBE
Organica	PAH's	PAH's
Organics	Phenols	Phenols
	VOC's	VOC's
	SVOC's	SVOC's
		Total Alkalinity, Calcium,
Inorganics	-	Manganese, Sulphate, Cyanide
_		(Total), Chloride, Sodium,

3 METHODOLOGY

Groundwater samples were collected from 8 no. on-site groundwater monitoring wells (BH101, BH102, BH103, BH104B, MW01, MW02, MW03, MW04), (See Figure 2) using dedicated Waterra tubing, in accordance with RPS's standard sampling protocol. A non-return foot valve was fixed to the bottom of the tubing and inserted into the well, close to the base of the borehole. Separate tubing and foot valves were used at each monitoring well to eliminate the possibility of cross contamination.

Groundwater in the well casing is not considered representative of the groundwater quality at a given location. For this reason, three well volumes were purged from each well prior to collection of the groundwater sample. By the time purging was complete all field test water parameters (namely pH, Temperature, Electrical Conductivity and Dissolved Oxygen) were within 10% variance in three consecutive measurements. This ensured that the groundwater sample extracted from the monitoring borehole was representative of the water held in the subsurface strata and not water held stagnant in the borehole casing. The purged volumes were calculated on-site from the measured static water levels and total well depths using an electronic dip meter.


Groundwater samples were collected in laboratory supplied containers and stored in chilled cool boxes following sampling and during transit to the laboratory. A rigorous chain of custody procedure was used during the sample round.

3.1 LABORATORY ANALYSIS

All groundwater samples were analysed at a UKAS accredited laboratory, I2 Analytical Ltd for the suite of analyses listed in Table 3.1. Table 3.1 also indicates the analytical techniques used by the laboratory.

Table 3.1: Analytical Methodologies – I2 Analytical Ltd

Parameter	Analytical Methodology
Phenols	GC-MS
Speciated PAHs	GC-MS
BTEX & MTBE	Headspace GC-MS
Petroleum Hydrocarbons	Headspace GC-MS
Volatile Organic compounds & Tentatively Identified Organic Compounds (VOCs & TICs)	Headspace GC-MS
Semi-Volatile Organic compounds & Tentatively Identified Organic Compounds (SVOCs & TICs)	GC-MS

Figure 2 Site Layout Plan with groundwater monitoring well locations

Shallow Monitoring Well locations

Deep Monitoring Well locations

Source: URS Environmental Consultants (Ref: 45078497 Issue No. 1)

Ð

3.2 PRESENTATION & INTERPRETATION OF RESULTS

The Quarter 4 2013 results are tabulated in Section 4 and discussed with respect to previous results. The results have been compared to the EPA Interim Guideline Values (IGV) as set out in the Report 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004. It is important to note that the IGVs are based on the lowest acceptable value for either drinking water or environmental quality in surface water and is therefore conservative in nature.

Previous monitoring reports (as listed in Section 2.1) provide details of contaminant concentrations since 2004. The data available within these reports has been reviewed and time series plots of key parameters have been compiled. Trends for chlorinated solvents, petroleum hydrocarbons and phenol parameters have been plotted.

Time series plots are presented in Section 6 and include the results of this Quarter 4 2013 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds used to illustrate the results.

Time series plots are also provided for manual water levels where available from previous reports.

4 QUARTER 4 RESULTS SEPTEMBER 2013

The results of all field measurements and laboratory analysis are presented in this section.

The results are discussed in relation to appropriate guideline values in Section 5. Results that are shown to be above the relevant guideline values are highlighted in bold and shaded. Results that are shown to be above the relevant laboratory detection limits are highlighted in italics.

Site-specific field parameter measurements were collected during the site visit as per RPS Water sampling protocol.

Table 4.1: Groundwater	Levels (Quarter 4, 2013)
------------------------	--------------------------

Monitoring Well	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04
Depth (mbgl)	6.83	6.51	4.50	4.72	23.10	31.12	14.20	6.61
Static Water Level (mbgl)	4.09	2.29	1.74	0.37	2.61	3.67	3.83	3.70
Ground Level (mAOD)	103.06	102.55	101.16	101.52	102.10	103.12	102.77	-
Water Level (mAOD)	98.97	100.26	99.42	101.15	99.49	99.45	98.94	-
Free Phase Oil (mm)	No detection							

mbgl = metres below ground level

Monitoring Well	pH (pH Units)	Temperature (°C)	Conductivity (µS/cm)	Dissolved O ₂ (ppm)	Observations
BH101	7.67	13.2	966	3.25	Grey very cloudy colour, small black suspended solids, odourless.
BH102	7.54	12.6	524	2.36	Clear, slight H ₂ S odour detected on purging, some suspended solids.
BH103	7.10	12.9	947	2.96	Light grey cloudy colour, suspended solids, odourless.
BH104B	7.80	11.7	404	2.95	Clear with yellow tinge, slight H ₂ S odour on purging. Water in well head.
MW01	7.68	11.5	622	3.17	Cloudy grey, no odour detected, small suspended solids. Difficult to purge at this location.
MW02	7.39	11.3	608	2.59	Clear, suspended solids, odourless.
MW03	7.42	11.5	896	2.74	Light grey cloudy, slight hydrocarbon sheen on surface, no odour.
MW04	7.46	13.5	1619	2.36	Cloudy brown in colour, a lot of sediment in sample, no odour.
Interim EPA Guideline Values (Units as indicated)	>6.5 & <9.5	25°C	1000	No abnormal change	-

Table 4.2: Results of Field Parameters Measured at each Groundwater Monitoring Well (Quarter 4, 2013)

Note: Results above the relevant IGV are highlighted in bold and shaded.

Table 4.3: Results of BTEX & MTBE

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Benzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
Toluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
Ethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10 Note 1
o-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10 Note 1
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	30

Note 1: No specific IGV for parameter. IGV for Total Xylenes is used as guideline.

Table 4.4: Results of Speciated PAH's

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Naphthalene	µg/l	0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	1.0
Acenaphthylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Acenaphthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Fluorene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Phenanthrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10,000
Fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0
Pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Benzo(a)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Chrysene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.5
Benzo(k)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Dibenz(a,h)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(g,h,i)perylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Total EPA-16 PAH's	µg/l	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	0.1

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are in italics.

Table 4.5: Results of Total Phenols

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Total Phenols (monohydric)	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	0.5
Total Phenols (GC-MS)	µg/l	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5

Table 4.6: Results of Speciated Phenols

Parameter	Unit s	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Phenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5
2,4,5-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4,6-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2,4-Dichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4-Dimethylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Chlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Nitrophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Chloro-3- methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-

Note: Results above the relevant laboratory limit of detection are in italics.

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Aniline	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Phenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5
2-Chlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
Bis(2-chloroethyl)ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,3-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,2-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	10
1,4-Dichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Bis(2- chloroisopropyl)ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Hexachloroethane	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Nitrobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	10
4-Methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Isophorone	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Nitrophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4-Dimethylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Bis(2- chloroethoxy)methane	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
1,2,4- Trichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.40
Naphthalene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0

Table 4.7: Results of Semi-Volatile Organic Compounds (sVOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
2,4-Dichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Chloroaniline	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Hexachlorobutadiene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.10
4-Chloro-3- methylphenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,4,6-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	200
2,4,5-Trichlorophenol	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Methylnaphthalene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2-Chloronaphthalene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dimethylphthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
2,6-Dinitrotoluene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Acenaphthylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Acenaphthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
2,4-Dinitrotoluene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dibenzofuran	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Chlorophenyl phenyl ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Diethyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
4-Nitroaniline	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Fluorene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Azobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Bromophenyl phenyl ether	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Hexachlorobenzene	µg/l	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.03
Phenanthrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10,000
Carbazole	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Dibutyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	2.0
Anthraquinone	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.0
Pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Butyl benzyl phthalate	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
Benzo(a)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Chrysene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(b)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.5
Benzo(k)fluoranthene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Benzo(a)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Indeno(1,2,3- cd)pyrene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05
Dibenz(a,h)anthracene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Benzo(g,h,i)perylene	µg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.05

Note: Results above the relevant laboratory limit of detection in italics.

 Table 4.8: Results of Volatile Organic Compounds (VOCs)

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Chloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Chloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.9	-
Bromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Vinyl Chloride	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichlorofluoromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,1-dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10.1	30
1,1,2-Trichloro 1,2,2- Trifluoroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Cis-1,2-dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	30
1,1-dichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
2,2-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	12
1,1,1-Trichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	500
1,2-dichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,1-Dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trans-1,2- dichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Benzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
Tetrachloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.0

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
1,2-dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trichloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	70
Dibromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Bromodichloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Cis-1,3- dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Trans-1,3- dichloropropene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Toluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
1,1,2-Trichloroethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3-Dichloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Dibromochloromethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tetrachloroethene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	40
1,2-Dibromoethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Chlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
1,1,1,2- Tetrachloroethane	µg∕l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Ethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
p & m-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
Styrene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tribromomethane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
o-xylene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Isopropylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Bromobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
N-Propylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
2-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
4-Chlorotoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3,5- Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Tert-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2,4- Trimethylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Sec-Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,3-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
P-Isopropyltoluene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
1,4-dichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Butylbenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2-Dibromo-3- chloropropane	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
1,2,4-Trichlorobenzene	µg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.40
Hexachlorobutadiene	µg/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.10
1,2,3-Trichlorobenzene	µg/l	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

Quarter 4 - FINAL

Parameter	Units	Laboratory Limit of Detection	BH101	BH102	BH103	BH104B	MW01	MW02	MW03	MW04	Interim EPA Guideline Values (Units as indicated)
Aliphatic > C5-C6	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C6-C8	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C8-C10	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C10-C12	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C12-C16	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic > C16-C21	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic >C21-C35	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aliphatic (C5-C35)	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	10
Aromatic > C5-C7	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C7-C8	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C8-C10	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C10-C12	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C12-C16	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C16-C21	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic > C21-C35	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	-
Aromatic (C5-C35)	µg/l	10	<10	<10	<10	<10	<10	<10	<10	<10	10

Table 4.9: Results of Total Petroleum Hydrocarbons (Aliphatic/Aromatic)

Note: Results above the relevant IGV are highlighted in bold and shaded. Note: Results above the relevant laboratory limit of detection are highlighted in bold italics.

5 DISCUSSION OF QUARTER 4 RESULTS

The results of the Quarter 4 monitoring event for 2013 are presented in Table 4.1 to 4.9 of this report. For the purpose of this report, the results are compared to the EPA Interim Guideline Values (IGV) as set out in the Interim Report *'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.* A discussion of the results and their significance is included below.

5.1 FIELD PARAMETERS

The results of the field parameters measured at each groundwater monitoring well are presented in Table 4.2. Groundwater samples recorded pH levels ranging between 7.10 and 7.80. All pH measurements were inside the EPA Interim guideline range of \geq 6.5 to \leq 9.5. Temperature measurements ranged from 11.3°C to 13.5°C and were within the EPA IGV of 25°C.

Field measurements of Electrical Conductivity levels ranged between 404 μ S/cm and 1619 μ S/cm and were above the Interim Guideline Value of 1000 μ S/cm at MW04 (1619 μ S/cm).

Dissolved oxygen levels ranged between 2.36 and 3.25 ppm. Factors such as climate, nutrients in the water, suspended solids; organic wastes and groundwater inflow can all influence the dissolved oxygen values.

Observations relating to colour and odour varied from well to well as detailed in Table 4.2.

5.2 RESULTS OF BTEX & MTBE

The results of the **BTEX** and **MTBE** analysis are presented in Table 4.3 and demonstrate concentrations below the laboratory limit of detections and associated IGV's at all locations.

The last detection of MTBE was in the Quarter 1 monitoring event of 2012. MTBE was recorded above the laboratory limit of detection at a concentration of 280 μ g/l at BH104B. This was the only recorded exceedance in Quarter 1 2012. Previous monitoring during Quarter 1 and Quarter 2 of 2010 detected exceedances of MTBE at BH103 at a concentration of 16 μ g/l. During Quarter 3 and Quarter 4 of 2010 concentrations were below the laboratory limit of detection. Prior to these 2010 monitoring events, concentrations of MTBE at BH103 were recorded at 63 μ g/l in December 2009.

5.3 RESULTS OF SPECIATED PAH'S

The results of the Speciated PAH analysis during this monitoring period are presented in Table 4.4.

The laboratory limit of detection for Total EPA-16 PAH's is 0.2 μ g/l. This laboratory limit of detection is above the EPA IGV of 0.1 μ g/l. To identify the compounds, which attributed to these concentrations, speciated PAH analysis was carried out, which reduces the limit of detection for individual parameters to 0.01 μ g/l.

The results of the speciated polycyclic aromatic hydrocarbon analysis detected no concentrations above the laboratory limit of detection during the Quarter 4 2013 monitoring event. The laboratory has confirmed that the detection limit for total EPA-16 PAH's can be lowered to 0.1 μ g/l for comparison with the EPA IGV of 0.1 μ g/l, however this will not be accredited.

5.4 RESULTS OF SPECIATED PHENOLS

The results of Total Phenol analysis are presented in Table 4.5. All samples detected concentrations of monohydric phenol below the laboratory limit of detection of 10 μ g/l. It should be noted that the laboratory limit of detection is above the IGV of 0.5 μ g/l for phenols.

For this reason, samples were analysed for phenols to include chlorophenols. The results of the speciated phenols analysis are presented in Table 4.6. The speciated phenol analysis reduces the laboratory limit of detection to $0.05 \ \mu g/l$ for individual parameters.

The results of the current Quarter 4 2013 speciated phenol analysis confirm concentrations of phenols were below the laboratory limit of detection of 0.05 μ g/l at all locations. This is consistent with the results from the previous 2013 quarterly monitoring events.

5.5 RESULTS OF SEMI-VOLATILE ORGANIC COMPOUNDS

The results of the Semi-Volatile Organic Compound analysis are presented in Table 4.7.

No SVOC's were detected above the relevant IGV's during this monitoring period. The Quarter 3 2013 monitoring event detected two SVOC compounds, Acenaphthene (1.1 μ g/l) and Fluorene (1.5 μ g/l) in MW03. Previous to this detection the Quarter 2 monitoring event of 2012 detected concentrations of Naphthalene and Acenaphthylene in MW03 at concentrations of 2.4 μ g/l and 0.12 μ /l respectively.

5.6 RESULTS OF VOLATILE ORGANIC COMPOUNDS

The results of the Volatile Organic Compound analysis are presented in Table 4.8. The results of the current Quarter 4 2013 monitoring event indicate that there were no exceedances of VOC parameters detected above the relevant IGV's. Two VOC's were detected above the laboratory limit of detection during this monitoring round, chloroethane (7.9 μ g/l) and 1-1 dichloroethene (10.1 μ g/l). No EPA IGV exists for chloroethane however 1-1 dichloroethene has an IGV of 30 μ g/l.

In November 2009, corresponding to Quarter 4 of 2009, no VOC's were detected above the relevant IGV's. However some parameters were detected above the laboratory limits of detection (1,1-Dichloroethane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, MTBE, n-butylbenzene, n-propylbenzene, o-xylene, p-isopropyltoluene, sec-butylbenzene and tert-butylbenzene).

The Quarter 1 and Quarter 2 monitoring results of 2010 detected MTBE in BH103 raised above the laboratory limit of detection of 1.0 μ g/l at a concentration of 16 μ g/l.

The results of the Quarter 3 and Quarter 4 monitoring events of 2010 and all subsequent monitoring events indicate that there were no exceedances of the IGV for specific parameters.

5.7 RESULTS OF TOTAL PETROLEUM HYDROCARBONS

In order to provide a more accurate profile of TPH within the groundwater, speciated hydrocarbon analysis using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) method was carried out on samples taken at all boreholes. The results of the TPH analysis are presented in Table 4.9.

No detections of TPH in the aliphatic or aromatic range were observed in any shallow or deep monitoring well locations during the current monitoring event.

The EPA IGV of 10 μ g/l for Total Hydrocarbons is deemed comparable with the results for total petroleum hydrocarbons (TPH).

The previous Quarter 3, 2013 monitoring event detected TPH in the aliphatic range in one deep groundwater well, MW03. TPH of the range C10-C12 and C12-C16 were detected at concentrations of 290 μ g/l and 190 μ g/l respectively.

The Quarter 1 2013 monitoring event detected aliphatic TPH of the range C12-C16, C16-C21 and C21-C35. TPH in the mid to high aromatic ranges were detected in BH103, BH104B and MW04 during the previous Quarter 1 2013 monitoring event. Aromatic TPH of the ranges C12-C16, C16-C21 and C21-C35 were detected in BH103, the ranges C10-C12, C12-C16 and C16-C21 were detected in BH104B and aromatic TPH of the ranges C10-C12 and C12-C16 were detected in MW04.

The Quarter 2 monitoring event of 2012 detected elevated TPH of the aliphatic range C12-C16, C16-C21 and C21-C25 in BH103. Hydrocarbons have been detected in borehole MW03 during Quarter 1 2010, in borehole BH104B during the Quarter 2 2010 monitoring event and in borehole BH104B and MW03 during the Quarter 3 2010 monitoring events. Hydrocarbons have also been detected in BH103, BH104B and MW03 in the Quarter 2 2011 monitoring event and in MW03 in the Quarter 3 and Quarter 4 2011. These detections are discussed further in Section 6.2.3.

6 HISTORICAL RESULTS & TRENDS

Time series plots are presented in this section and include the results of the Quarter 4 2013 monitoring round. As the monitoring continues in accordance with the waste licence requirements, the plots will be updated with the results of subsequent rounds and used to illustrate the results.

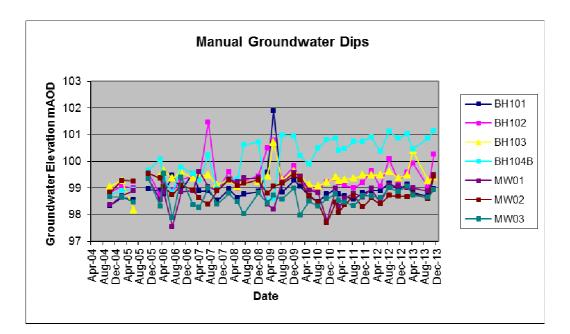

6.1 GROUNDWATER LEVELS OVER TIME

Figure 3 to Figure 5 below illustrates the manually recorded water levels using an electronic probe. The graphs show that groundwater levels can vary considerably between monitoring rounds.

Figure 4 illustrates groundwater elevations (mAOD) in shallow groundwater wells (BH101 to BH104B) ranging between approximately 98 mAOD and 102 mAOD.

Figure 5 illustrates groundwater elevation (mAOD) in the deeper groundwater wells (MW01 to MW03). The groundwater elevation (mAOD) for these deeper groundwater wells ranges from approximately 97.5 mAOD to approximately 100 mAOD.

Figure 3 Groundwater Elevation (mAOD) in all Monitoring Wells

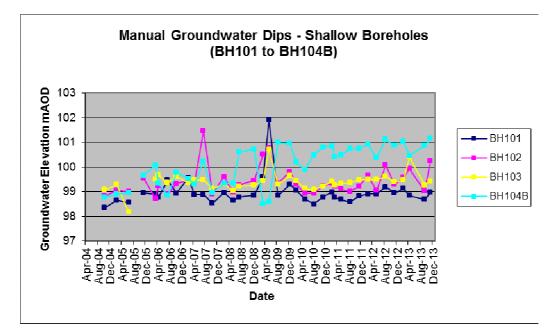
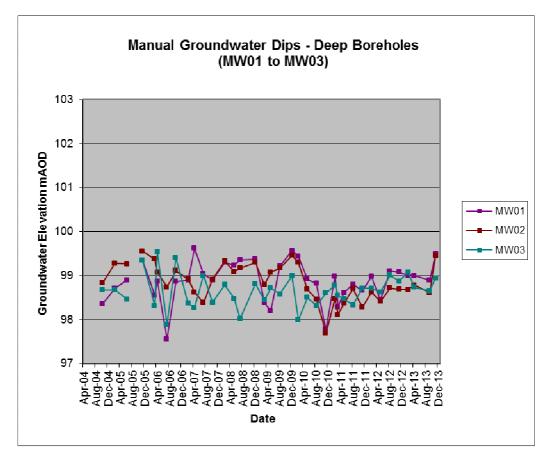



Figure 4 Groundwater Elevation (mAOD) in Shallow Monitoring Wells

Figure 5 Groundwater Elevation (mAOD) in Deep Monitoring Wells

The groundwater levels generally show a similar pattern of fluctuation over time indicating a degree of connection between boreholes. The graphs demonstrate that groundwater levels can vary considerably between monitoring rounds; however, the general direction of flow in the shallow and deeper groundwater bearing unit is in an easterly or north easterly direction however there have been some occasional historic cases of groundwater flowing in a south-easterly direction.

In addition, monthly rainfall data for Oak Park, Carlow have been tabulated from Met Eireann to examine the relationship between compounds and rainfall events. The data from Oak Park was chosen as the weather station at Birr, Co. Offaly closed in October 2009. A summary of the rainfall data is in Tables 5.1 to 5.5.

Table 5.1: Monthly Rainfall data for Year 2009 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	113.4	29.2	32.6	102.4	69.0	65.4	152.4	100.9	41.8	127.8	215.5	73.7

Table 5.2: Monthly Rainfall data for Year 2010 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	August	Sept	Oct	Nov	Dec
Rainfall (mm)	71.5	48.0	80.7	49.0	51.4	37.7	93.6	25.5	108.7	68.9	87.7	52.2

Table 5.3: Monthly Rainfall data for Year 2011 for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	50.6	121.9	16.0	19.5	51.2	72.7	46.4	25.5	93.9	93.9	89.2	55.5

Table 5.4: Monthly Rainfall data for 2012 to date for Oak Park, Carlow

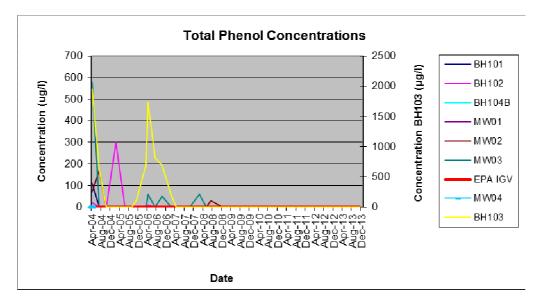
Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	70.8	24.5	18.0	56.3	50.2	155.8	76.2	127.7	37.9	63.4	80.9	68.1

Table 5.5: Monthly Rainfall data for 2013 to date for Oak Park, Carlow

Month	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
Rainfall (mm)	76.2	35.8	57.6	44.4	35.6	37.5	32.3	85.6	24.4	170.0	27.7	0.9

Note: Data for the most recent months are provisional.

6.2 GROUNDWATER CONCENTRATIONS OVER TIME


Groundwater quality trends have previously been examined in two reports (URS 2005 and RPS 2007). In addition, RPS carried out a groundwater risk assessment (Ref: MDE0788RP0001, dated November 2008) in which the general trend of contaminant concentrations over time was observed to be erratic with compounds rarely being detected in the same borehole on two consecutive monitoring rounds.

The data available within these reports has been reviewed and time series plots of key parameters have been compiled based on notable trends. Trends for phenols, petroleum hydrocarbons and chlorinated solvents have been plotted as outlined in the following sections.

6.2.1 Phenols

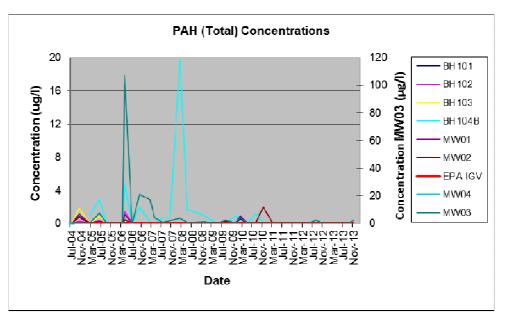
Phenols have been detected historically in all boreholes with the highest concentrations recorded in BH103. However concentrations in BH103 have declined since April 2007. Phenol concentrations have since been recorded below the IGV of 0.5 μ g/l in all monitoring wells since December 2008 indicating natural attenuating conditions within the groundwater.

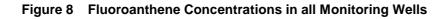
2,4-Dimethylphenol was detected at a concentration of $0.12 \mu g/l$ during the Quarter 1, 2010 monitoring event. There is no recommended IGV for this parameter. Subsequent to the Quarter 1 2010 monitoring event no detections of phenols have been noted at any monitoring location up to and including the current Quarter 4 2013 monitoring event.

Figure 6 Phenol Concentrations in all Monitoring Wells

6.2.2 Polycyclic Aromatic Hydrocarbons (PAH's)

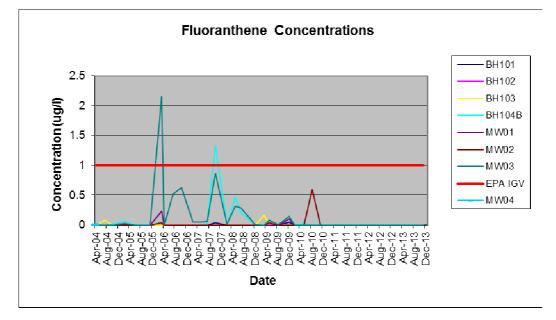
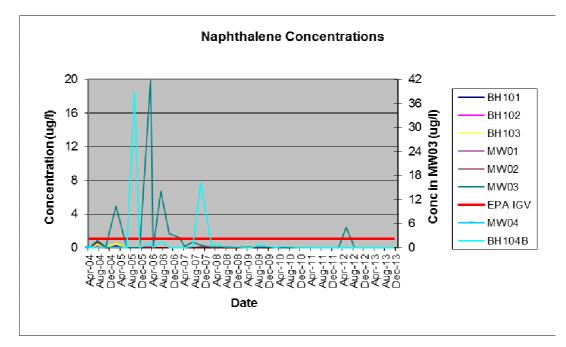
Figure 7 below illustrates that PAH's (Polycyclic Aromatic Hydrocarbons) have previously been detected within all monitoring wells above the recommended EPA IGV of 0.1 μ g/l. Historically the highest concentrations have been detected within MW03 and BH104B. In addition, a range of PAH's including Benzo(a)pyrene, Benzo(g,h,i)perylene, Indeno(1,2,3)cd pyrene, Fluoranthene and Napthalene have previously been detected in MW03 with Figures 8 to 11 illustrating some of the PAH compounds which were detected above their respective IGV's.

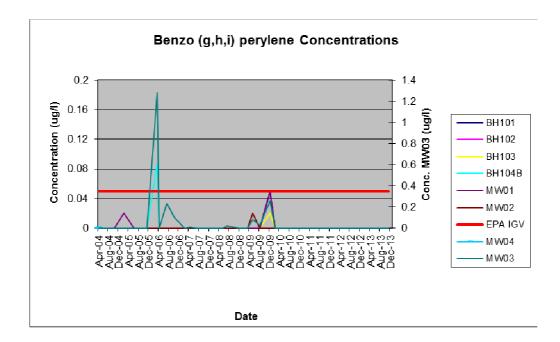

Figure 7 illustrates that **Total PAH** has been detected in all groundwater monitoring wells at the site above the IGV of 0.1 μ g/l since 2005. Elevated concentrations have been detected in MW03 and BH104B, with the highest concentration detected in March 2006 (107 μ g/l) and in October 2007 (19.72 μ g/l) respectively. Since then, the concentrations have shown a marked decrease.


The results from the Quarter 4, 2009 monitoring round in December 2009 recorded total EPA-16 PAH concentrations above the IGV at all locations with the exception of MW02. These concentrations may be linked to the heavy rainfall event, which occurred in November of 2009, which may have mobilized traces of these compounds from soil.

The results from the Quarter 1 monitoring round, 2010 recorded Total PAH concentrations below the IGV of 0.2 μ g/l at all locations with the exception of MW03, which detected a concentration of 0.3 μ g/l. There has been a decrease in Total PAH concentrations at all locations since the Quarter 4 event in December 2009 with the most notable decrease at MW03 reducing from 4.58 μ g/l to <0.1 μ g/l.

Concentrations of Total PAH above the IGV in 2010 were detected during the Quarter 1 monitoring event in MW03 (0.3 μ g/l), Quarter 2 monitoring event in BH104B (1.2 μ g/l) and Quarter 3 monitoring event in MW02 (2.0 μ gl) and BH104B (0.2 μ gl). There were no elevated concentrations of Total PAH during the Quarter 4 2010, the Q1, Q2, Q3 and Q4 2011 monitoring events, and the Q1 2012 monitoring event. Total PAH was detected above the IGV in MW03 in the Q2 2012 monitoring event. No Total PAH exceedances were detected in the following Q3 and Q4 2012 monitoring events and the previous Q1 and Q2 2013 monitoring events. Total PAH was detected at a concentration of 2.62 μ g/l in MW03 during the previous Q3 2013 monitoring event however, no detections above the Laboratory limit were noted during the current monitoring event.


Figure 8 illustrates that **Fluoroanthene** was previously detected above the IGV of 1.0 μ g/l in groundwater monitoring wells BH104B (October 2007, 1.33 μ g/l) and MW03 (March 2006, 2.158 μ g/l) only. The remaining monitoring wells recorded concentrations below the IGV of 1.0 μ g/l.

A similar trend to Fluoroanthene has been noted in Figure 9, with concentrations of **Naphthalene** recorded above the IGV of 1.0 μ g/l in BH104B and MW03 only. 4 no. exceedances of the IGV were noted in BH104B in September 2005 (39 μ g/l), March 2006 (1.069 μ g/l), July 2006 (1.594 μ g/l) and October 2007 (16.31 μ g/l). Since October 2007, the concentrations in BH104B have decreased below the IGV. There have been 6 exceedances of the IGV of 1.0 μ g/l in MW03, with the highest concentration detected in March 2006 (19.986 μ g/l) and the most recent being the detected in the Quarter 2 2012 monitoring event (2.4 μ g/l). The concentrations detected in August 2010 were slightly above the laboratory limit of detection of 0.01 μ g/l at BH104B (0.08 μ g/l) and MW03 (0.05 μ g/l);

however these levels are deemed low. Concentrations of Naphthalene were below the EPA IGV limit of detection of 1.0 μ g/l at all locations during the Quarter 4 2010, the 2011 quarterly monitoring events and the Quarter 1, Quarter 3 and Quarter 4 2012 monitoring periods. No detections of Naphthalene were noted in the current Quarter 4 2013 monitoring event.

Figure 10 Benzo (g,h,i) perylene in all Monitoring Wells

Figure 10 illustrates the concentrations of **Benzo(g,h,i)perylene** in all monitoring wells over time. Elevated concentrations above the IGV were recorded at BH104B (0.087 μ g/l) on one occasion only in March 2006.

Figure 10a illustrates elevated concentrations above the IGV recorded at MW03 on 5 no. occasions with the most recent elevated concentration detected in December 2009 (0.26 μ g/l). The results of monitoring events in May, August, November 2010, March, May, September and November 2011, February, May, August and November 2012, February 2013, April 2013, September 2013 and the current November Quarter 4 2013 monitoring event recorded concentrations below the laboratory limit of detection of 0.01 μ g/l at all locations.

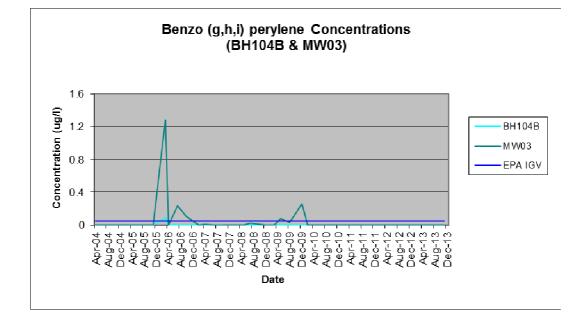
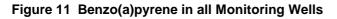
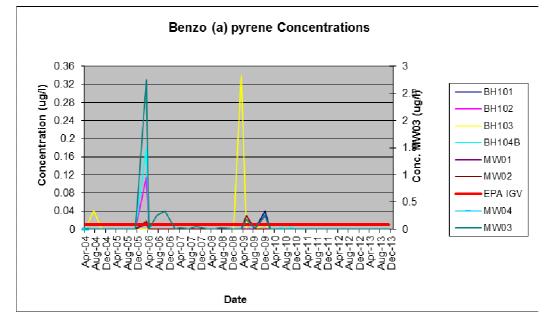
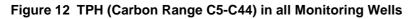
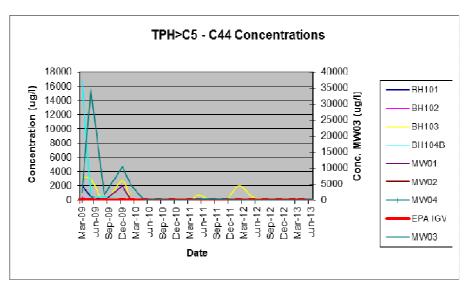




Figure 10a Benzo (g,h,i) perylene in Monitoring Wells BH104B & MW03

Figure 11 illustrates the concentrations of **Benzo(a)pyrene** in all groundwater monitoring wells and indicates that Benzo(a)pyrene has been detected historically in all boreholes above the IGV of 0.01 μ g/l. Similarly with the above mentioned trends, the highest concentrations have been detected in MW03 and BH104B. Concentrations have markedly decreased since March 2006 when an elevated concentration of 2.751 μ g/l was detected in MW03, however there have been a number of detections above the IGV, with the most recent elevated level detected in December 2009. Elevated concentrations above the IGV were recorded in BH101, BH103 and MW01 during this same period. The results of all monitoring events in 2010, 2011 and 2012 indicate concentrations below the IGV. The results of the previous quarterly monitoring events of 2013 and the current Quarter 4 2013 event also recorded concentrations below the IGV.

The slightly higher concentrations of Benzo(g,h,i)perylene and Benzo(a)pyrene detected in Quarter 4, 2009 may be attributed to heavy rainfall, which occurred in November of 2009 and as a result possibly mobilized traces of these compounds from the soil. The static water levels for December 2009 ranged between 0.58 and 3.78 mbgl. Since December 2009, concentrations of compounds have notably decreased to below the IGV's.





6.2.3 Petroleum Hydrocarbons (TPH)

Historically **Total Petroleum Hydrocarbons (TPH)** including mineral oil, petrol range organics (PRO) and diesel range organics (DRO) have been detected within BH103, BH104B and MW03. Since 2009, speciated hydrocarbon analysis using the Total Hydrocarbon Criteria Working Group (TPHCWG) method has been carried out on all samples to obtain a more accurate profile of TPH within groundwater.

The results of the TPHCWG analysis has indicated that the predominant hydrocarbons detected are in the heavier chain carbon fractions, most notably in the carbon range C12 – C16, C16 – C21 and C21 – C35. Figure 12 illustrates the TPH analysis for the total TPH analysis from C5 – C44 in all monitoring wells since 2009. The highest concentrations detected historically are at monitoring wells MW03, BH104B and BH103 respectively.

During the Quarter 1, 2010 monitoring event, hydrocarbons were detected in borehole MW03. The predominant aliphatic carbon range in MW03 comprised of C16-C21 (1000 μ g/l), C21-C35 (2300 μ g/l) and C25-C44 (990 μ g/l). The predominant aromatic carbon range in MW03 comprised of C16-C21 (220 μ g/l) and C21-C35 (620 μ g/l). No detections were observed at other locations.

During the Quarter 2, 2010 monitoring event, hydrocarbons were detected in borehole BH104B, with the predominant aliphatic carbon range comprising C12-C16 (130 μ g/l) and C16-C21 (130 μ g/l), while the predominant aromatic carbon range comprising C12-C16 (21 μ g/l) and C16-C21 (47 μ g/l). There were no detections of hydrocarbons in MW03 during the Quarter 2 monitoring event.

During the Quarter 3, 2010 monitoring event, hydrocarbons were detected in borehole BH104B and MW03. The predominant aliphatic carbon range in BH104B comprised of C12-C16 (12 μ g/l) and C16-C21 (19 μ g/l). The predominant aliphatic carbon range in MW03 comprised of C16-C21 (35 μ g/l) and C21-C34 (46 μ g/l). No aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 4, 2010 and Quarter 1, 2011 monitoring event, there were no detections of TPH concentrations above the laboratory limit of detection of 10 μ g/l at any location. No aliphatic or aromatic carbons were detected above the laboratory limit of detection of 10 μ g/l in all monitoring wells.

During the Quarter 2, 2011 monitoring event, hydrocarbons were detected in borehole BH103, BH104B and MW03. The predominant aliphatic carbon range comprised of C16-C21 (340 μ g/l, 20 μ g/l and 46 μ g/l) and C21-C35 (420 μ g/l, 96 μ g/l and 150 μ g/l in BH103, BH104B and MW03 respectively). The predominant aromatic carbon range also comprised of C16-C21 (78 μ g/l, 52 μ g/l and 50 μ g/l) and C21-C35 (110 μ g/l, 49 μ g/l and 93 μ g/l in BH103, BH104B and MW03 respectively).

During the Quarter 3, 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised of C10-C12 (18 μ g/l), C12-C16 (57 μ g/l), C16-C21 (35 μ g/l) and C21-C35 (210 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (42 μ g/l), C16-C21 (66 μ g/l) and C21-C35 (45 μ g/l).

During the Quarter 4, 2011 monitoring event, hydrocarbons were detected in borehole MW03 only. The predominant aliphatic carbon range comprised C10-C12 (22 μ g/l), C12-C16 (51 μ g/l), C16-C21 (85 μ g/l) and C21-C35 (110 μ g/l). The predominant aromatic carbon range comprised of C12-C16 (16 μ g/l), C16-C21 (14 μ g/l) and C21-C35 (91 μ g/l).

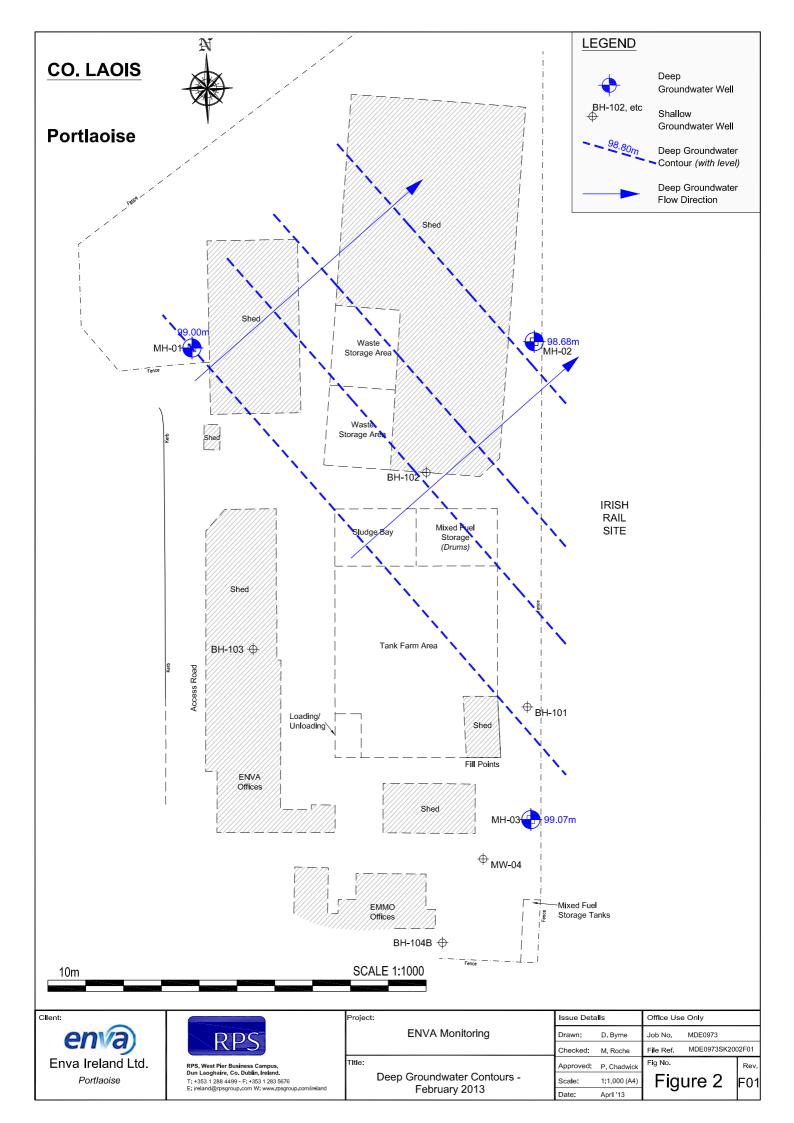
During the Quarter 1, 2012 monitoring event, hydrocarbons were detected in borehole BH103 only. The predominant aliphatic carbon range comprised C10-C12 (13 μ g/l), C12-C16 (270 μ g/l), C16-C21 (690 μ g/l) and C21-C35 (980 μ g/l). The predominant aromatic carbon range comprised of C16-C21 (250 μ g/l) and C21-C25 (680 μ g/l). No hydrocarbons were detected in MW03 during the current Quarter 1 monitoring event.

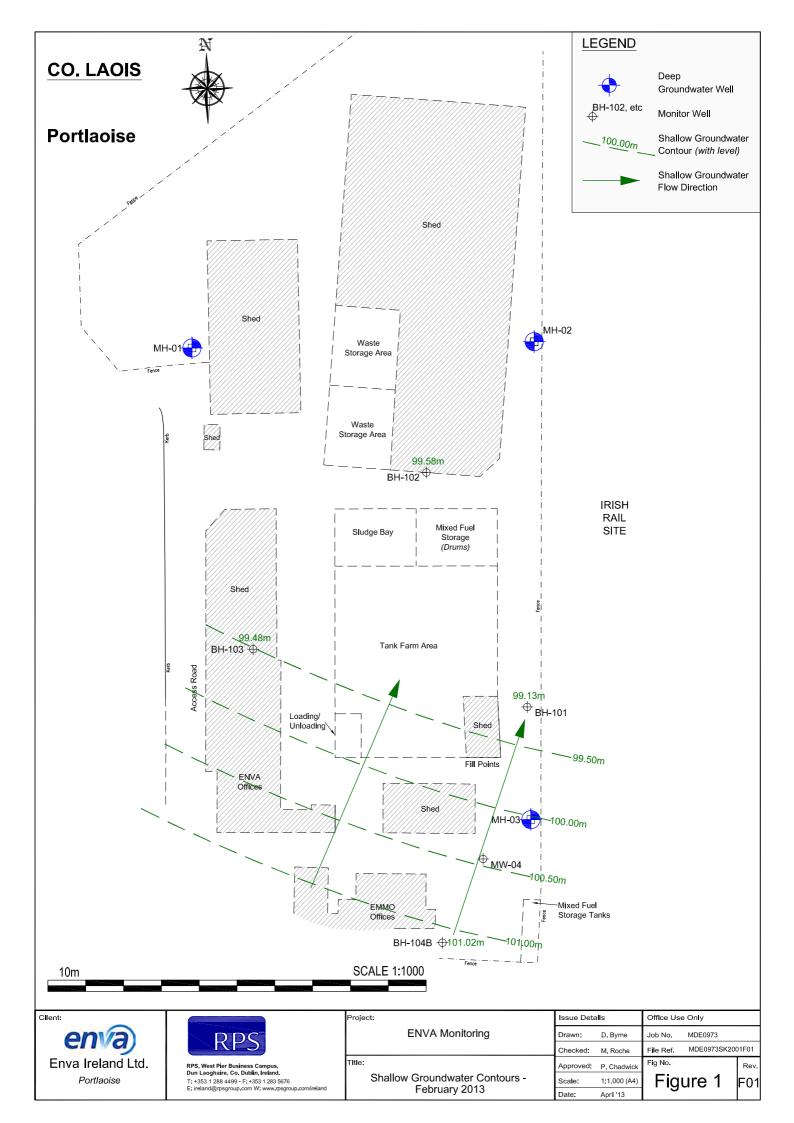
During the Quarter 2, 2012 monitoring event, hydrocarbons were detected in BH103 only. The detected aliphatic carbon range comprised C12-C16 (98 μ g/l), C16-C21 (230 μ g/l) and C21-C25 (170 μ g/l). No detections of aromatic carbons were measured during the Quarter 2 2012 monitoring event.

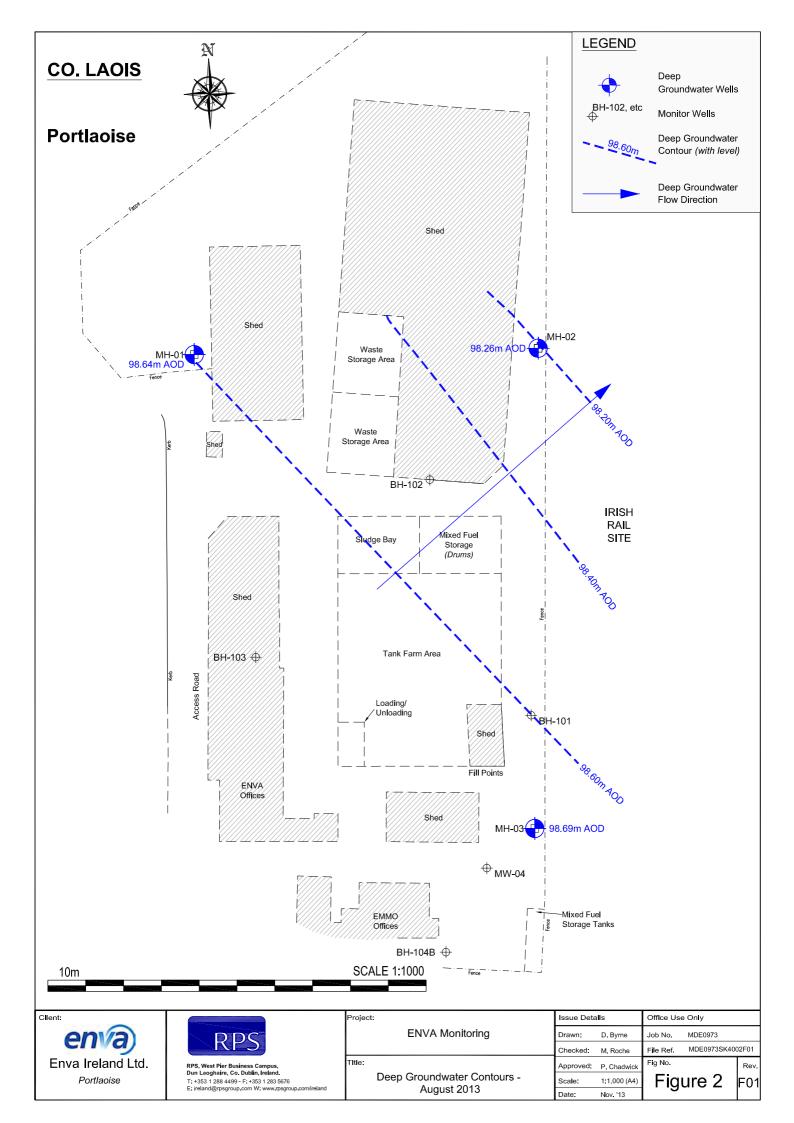
No hydrocarbons were detected at any location during the previous Quarter 3 and Quarter 4, 2012 monitoring events.

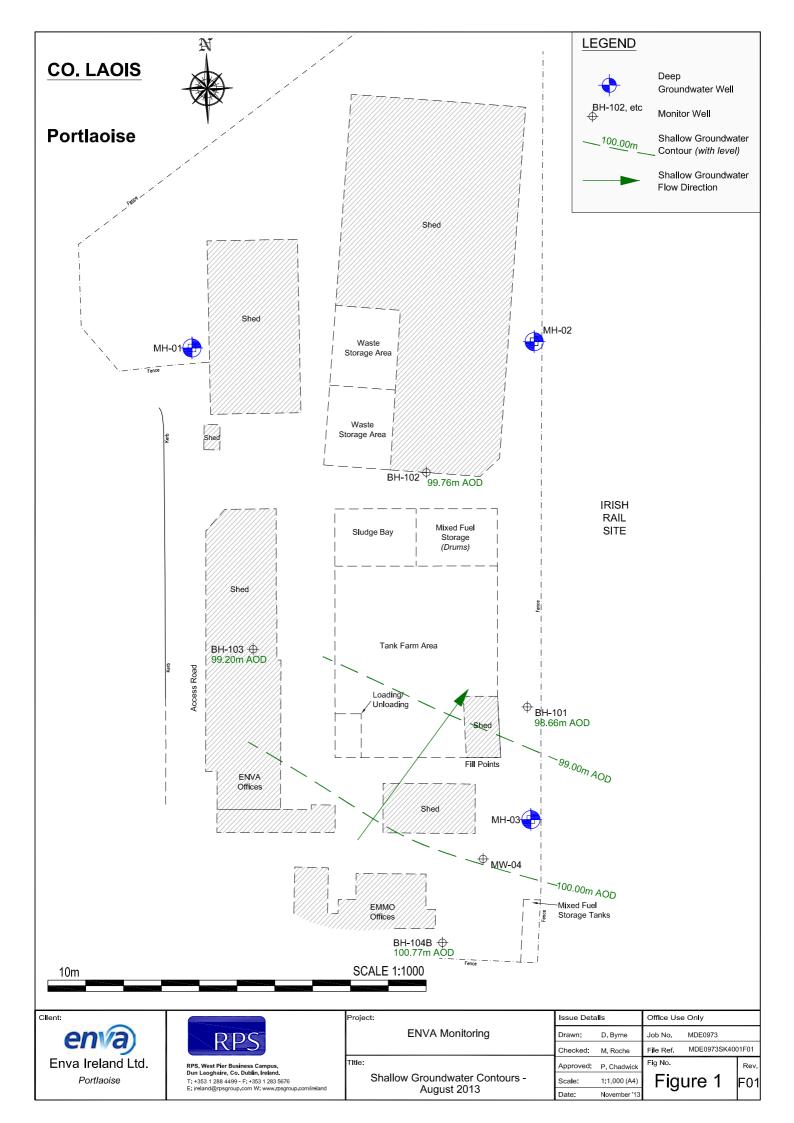
During the previous Quarter 1, 2013 monitoring event aromatic hydrocarbons were detected in BH103, BH104b and MW04. The predominant aromatic carbon range comprised C12-C16 ($30 \mu g/l$), C16-C21 ($280 \mu g/l$) and C21-C35 ($100 \mu g/l$) in BH103, C10-C12 ($30 \mu g/l$), C12-C16 ($110 \mu g/l$) and C16-C21 ($80 \mu g/l$) in BH104B and C10-C12 ($20 \mu g/l$) and C12-C16 ($80 \mu g/l$) in MW04. Aliphatic hydrocarbons were detected in BH103 in the ranges C12-C16 ($70 \mu g/l$), C16-C21 ($100 \mu g/l$) and C21-C35 ($90 \mu g/l$).

During the Quarter 2, 2013 monitoring event no aliphatic or aromatic hydrocarbons were detected at any location.


During the previous Quarter 3, 2013 monitoring event, hydrocarbons of the aliphatic range were detected in MW03 only. The detected aliphatic carbon range comprised C10-C16 (290 μ g/l) and C12-C16 (190 μ g/l). No detections of aromatic carbons were measured during the Quarter 3 2013 monitoring event.


No detections of aliphatic or aromatic hydrocarbons were noted during the current Quarter 4 2013 monitoring event.


7 CONCLUSIONS


- In accordance with the criteria set out in Schedule 4(ii) of the site's Waste Licence Register No. W0184-01, groundwater monitoring was carried out at the ENVA Ireland site on the 5th November 2013 corresponding to Quarter 4 of 2013. A suitably qualified consultant from RPS collected groundwater samples from 8 on-site monitoring wells and submitted these samples to an accredited laboratory for analysis.
- The results presented have been referenced against the Environmental Protection Agency's (EPA) Interim Guideline Values (IGV) as set out in the Interim Report 'Towards Setting Guideline Values for the Protection of Groundwater in Ireland' 2004.
- Results of the BTEX and MTBE demonstrate that the levels of Benzene, Toluene, Ethylbenzene and Xylene were below the recommended EPA IGV's
- The Quarter 4, 2013 results of the speciated polycyclic aromatic hydrocarbons indicate that the laboratory limit of detection of 0.2 µg/l for Total PAH's was above the EPA IGV of 0.1 µg/l. There were no detections of speciated PAHs at any location during the current monitoring event. Total PAH were detected at MW03 in the Quarter 3 2013 monitoring event. Further monitoring at these locations is recommended to determine the persistency of these detections.
- There were no exceedances of the IGV for SVOC's in the current monitoring event.
- There have been no exceedances of the IGV for VOC's in this Quarter 4 2013 monitoring event however there were two detections of VOC's. Chloroethene and 1-1 dichloroethene were detected at concentrations of 7.9 µg/l and 10.1 µg/l respectively. The Quarter 1 2012 monitoring event recorded a concentration of MTBE above the IGV of 30 µg/l in BH104B (280 µg/l). MTBE was previously recorded on two occasions in BH104B in April 2007 (49 µg/l) and in October 2007 (3 µg/l). Since then the concentrations had decreased to below the laboratory limit of detection.
- The results of the phenol analysis by GC-MS detected concentrations below the laboratory limit of detection of 1.0 µg/l at all locations. However, the laboratory limit of detection is above the IGV of 0.5 µg/l for phenols. Samples were subsequently also analysed for phenols to include chlorophenols and the results indicate that there were no detections above the laboratory limit of detection of 0.05 µg/l. A low level of 2,4-Dimethylphenol (0.12 µg/l) was detected in MW03 during the Quarter 1, 2010 monitoring event. There have been no detections of this compound since February 2010.
- Hydrocarbons were not detected in any monitoring location during the Quarter 4 2013 monitoring event. Hydrocarbons were detected in boreholes BH104B and MW03 in the aliphatic carbon ranges during the Quarter 3, 2010 monitoring event. There were no detections of aromatic carbon above the laboratory limit of detection of 10 µg/l in BH104B and MW03. Hydrocarbons were detected during the Quarter 2 (BH103, BH104B, MW03), Quarter 3 (MW03) and Quarter 4 (MW03) 2011 monitoring events. Hydrocarbons in the aliphatic range were detected in BH103 during the Quarter 1 2013 monitoring event and hydrocarbons of the aromatic range were detected in BH103, BH104B and MW04. No detections of hydrocarbons were found at any location during the Quarter 2 2013 monitoring event.
- The general trend of contaminant concentrations over time continues to be somewhat variable with compounds not being continually detected in the same borehole on two or three consecutive monitoring rounds. In general, the contaminant levels detected at the Enva facility

appear to indicate reducing contaminant concentrations over time with infrequent elevations in some parameters. Further monitoring is recommended to confirm these reductions.

Summary of Metal Screen Results 2013

ICP MS **Detection Method** ICP MS CV AA <0.02ug/l Method Detection Limit <0.1ug/l <0.036ug/l <0.1ug/l <0.22ug/l <0.85ug/l <0.019ug/l <0.04ug/l <0.15ug/l <0.41ug/l <0.01ug/l \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark **UKAS Accredited** • • Dissolved Mercury Low Level Sample Identity Dissolved Copper Low Level Dissolved Magnesium Dissolved Manganese Low Level Dissolved Nickel Low Level Dissolved Chromium Low Level Dissolved Cadmium Low Level Dissolved Lead Low Level Dissolved Calcium Dissolved Iron Low Level Dissolved Zinc Low Level Alcontrol Reference Other ₽ ug/l Report No: 214384 Quarterly Effluent D/E 20.02.13 375000 54800 0.255 11.1 1.47 181 586 28.2 29.1 < 0.01 0.242

Q1 Effluent Metal Screen

Q2 Effluent Metal Screen

	Detection	Method	ICP MS	ICP MS	ICP MS	ICP MS	ICP MS	ICP MS	ICP MS	ICP MS	ICP MS	CV AA	ICP MS
	Method Dete	ction Limit	<0.1ug/ I	<0.036ug/ I	<0.1ug/ I	<0.22ug/	<0.85ug/ I	<0.019ug/	<0.04ug/ I	<0.15ug/ I	<0.41ug/	<0.01ug/ I	<0.02ug/ I
	UKAS Acc	redited	✓	✓	✓	✓	✓	✓	✓	✓	✓	•	•
Alcontrol Reference	Sample Iden	Other ID	Dissolved Calcium	Dissolved Magnesium	Dissolved Cadmium Low Level	Dissolved Chromium Low Level	Dissolved Copper Low Level	Dissolved Iron Low Level	Dissolved Manganese Low Level	Dissolved Nickel Low Level	Dissolved Zinc Low Level	Dissolved Mercury Low Level	Dissolved Lead Low Level
U U	tity		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Report No: 13/3763	Quarterly Effluent	04.04.13	575000	102000	1.79	14.3	3.9	407	320	44.9	68.4	<0.01	0.203

Q3 Effluer	t Metal	Screen
------------	---------	--------

	Detection Me	ethod	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES
	Method Detecti	on Limit	< 0.2	<0.1	< 0.5	<1.5	<7	<20	<2	<2	<3	<1	<5
	ISO 17025 Acc	redited	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark	✓	\checkmark
Jones Environmer Reference N	Othe Jon referer		Dissolved Calcium	Dissolved Magnesium	Dissolved Cadmium	Dissolved Chromium	Dissolved Copper	Total Dissolved Iron	Dissolved Manganese	Dissolved Nickel	Dissolved Zinc	Dissolved Mercury	Dissolved Lead
lo ltal	lity		mg/l	mg/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Report No 13/6587	Quarterly Effluent 17/07/13	PO 13070	737.1	29.9	<0.5	10.1	<7	344	63	65	16	<1	6

Q4 Effluent Metal Screen

	Detection N	1ethod	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES	ICP OES
	Method Detec	tion Limit	<0.2mg/l	<0.1mg/l	<0.5ug/l	<1.5ug/l	<7ug/l	<20ug/l	<2ug/l	<1ug/l	<1ug/l	<0.1ug/l	<5ug/l
	UKAS Accr	edited	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	•	•
Jones Reference	Sample Iden	Other ID	Dissolved Calcium	Dissolved Magnesium	Dissolved Cadmium Low Level	Dissolved Chromium Low Level	Dissolved Copper Low Level	Dissolved Iron Low Level	Dissolved Manganese Low Level	Dissolved Nickel Low Level	Dissolved Zinc Low Level	Dissolved Mercury Low Level	Dissolved Lead Low Level
	tity		mg/l	mg/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Report No: 13/9127	Quarterly Effluent Metal screen	2/10/13	479.9	101.2	<0.5	4.8	<7	701	403	17	<2	<1	6

CONFIDENTIAL REPORT

Client Enva Ireland Ltd Clonminam Industrial Estate Portlaoise Co. Laois Attn. Ms. Anna O'Brien

Title Measure Emissions to Atmosphere from Boiler – October 2013 at Enva Ireland Ltd. – Portlaoise

EPA Waste Licence Reg. No. 184-1

Report Ref:	1346	Report by: Frances Wright Frances Oach BSc, PgDip Env, Dip SHWW, CertOH
Date recd:		Approved by: Paddy Wright Roddy Ung St. BSc, PgDip ChemEng, CertOH
Copies to:		Date: 21 st October 2013

CONTENTS

1.	INTRODUCTION	3
2.	RESULTS	4
3.	APPENDIX 1 Detailed Test Results	5
4.	APPENDIX 2 Sampling and Analytic Methods	8

1. INTRODUCTION

Enva Ireland Ltd. operate a waste recovery facility at Clonminam Industrial Estate, Portlaoise which is licensed under the EPA Waste Licence system (Reg. No. 184-1).

Enva Ireland Ltd are required to measure annually the following emissions to atmosphere from their boiler under Schedule D of their Waste Licence.

- Oxides of Sulphur
- Nitrogen Oxides
- Carbon Monoxide
- Combustion Efficiency

At the request of Ms. Anna O'Brien of Enva Ireland Ltd., Wright Environmental Services carried out this monitoring on the 3rd October 2013.

This report contains the results of these tests. There are no limits set for these parameters in the company's licence.

2. RESULTS

Emissions to atmosphere, as required by the company's Waste Licence, were measured from the boiler at Clonminam Industrial Estate, Portlaoise on the 3rd October 2013. The boiler was running on gas and operating on medium fire during the monitoring periods.

A summary of the concentrations measured are given in Table 1. Detailed test results are presented in Appendix 1. Sampling and analytical methods are presented in Appendix 2.

Table 1

Summary of Emissions from Boiler

Parameter	Measured mg/Nm ³			
	Test 1	Test 2		
Carbon Monoxide	3	3		
Nitrogen Oxides (as NO ₂)	92	96		
Oxides of Sulphur	Less than 5	Less than 5		
Combustion Efficiency (%)	83.5	83.6		

3rd October 2013

Appendix 1

Detailed Test Results

5 October 2015 – Test T										
Time	Temperature	Oxygen	Carbon Monoxide	Nitrogen Oxides	Efficiency					
	°C	%	mg/Nm ³	mg/Nm ³	%					
10.20	170	2.7	2	01	02 (
10:26	170	2.7	2 2	<u>91</u> 91	83.6					
10:27	175	2.2	2		84.0					
10:28	176	2.2	2	91	84.0					
10:29	176	2.2		89	84.0					
10:30	179	2.2	2	91	83.9					
10:31	179	2.2	2	91	83.9					
10:32	179	2.1	2	90	83.9					
10:33	180	2.1	2	90	83.9					
10:34	181	2.1	5	90	83.7					
10:35	182	2.1	2	92	83.7					
10:36	183	2.1	2	90	83.7					
10:37	183	2.1	2	92	83.7					
10:38	184	2.1	2	92	83.6					
10:39	185	2.1	2	92	83.6					
10:40	185	2.1	2	92	83.6					
10:41	186	2.3	2	91	83.5					
10:42	187	2.1	5	92	83.5					
10:43	188	2.1	5	92	83.5					
10:44	189	2.1	2	92	83.5					
10:45	189	2.1	2	92	83.3					
10:46	190	2.1	5	92	83.3					
10:47	190	2.1	5	92	83.3					
10:48	191	2.1	5	92	83.2					
10:49	192	2.1	5	94	83.2					
10:50	192	2.1	5	94	83.2					
10:51	193	2.1	5	92	83.2					
10:52	193	2.1	2	92	83.2					
10:53	194	2.1	2	94	83.1					
10:54	193	2.1	2	92	83.2					
10:55	194	2.1	2	94	83.1					
Average	185	2.1	3	92	83.5					

Emissions from Oil Fired Boiler

3rd October 2013 – Test 1

Time	Temperature	Oxygen	Carbon Monoxide	Nitrogen Oxides	Efficiency					
	°C	%	mg/Nm ³	mg/Nm ³	%					
11:38	171	2.3	2	91	84.1					
11:39	171	2.3	2	91	84.1					
11:40	173	2.3	2	93	84.0					
11:41	174	2.3	2	93	84.0					
11:42	175	2.2	2	95	84.0					
11:43	175	2.2	5	95	84.0					
11:44	175	2.2	5	95	84.0					
11:45	176	2.2	2	95	84.0					
11:46	176	2.2	2	95	84.0					
11:47	177	2.4	5	92	83.8					
11:48	178	2.2	2	95	83.8					
11:49	180	2.2	2	97	83.7					
11:50	180	2.2	2	97	83.7					
11:51	182	2.2	5	97	83.7					
11:52	182	2.2	5	97	83.7					
11:53	184	2.2	5	97	83.6					
11:54	185	2.2	2	97	83.6					
11:55	186	2.2	5	97	83.5					
11:56	187	2.2	2	97	83.5					
11:57	188	2.2	5	97	83.4					
11:58	189	2.2	2	99	83.3					
11:59	190	2.2	2	97	83.3					
12:00	191	2.2	5	97	83.3					
12:01	191	2.2	5	97	81.0					
12:02	191	2.2	2	97	83.3					
12:03	191	2.2	5	99	83.3					
12:04	192	2.2	2	99	83.3					
12:05	192	2.1	2	98	83.3					
12:06	192	2.2	2	99	83.2					
12:07	192	2.2	5	99	83.2					
Average	183	2.2	3	96	83.6					

Emissions from Oil Fired Boiler

3rd October 2013– Test 2

Appendix 2

Sampling and Analytical Methods

Sampling and Analytical Methods

Wright Environmental Services carryout emission monitoring based on the requirements of the EPA published document "Air Emissions Guidance Note #2 (AG2)".

Emissions to Atmosphere

Oxygen, Nitrogen Oxides and Temperature

Oxygen, nitrogen oxides and temperature were measured using a Kane May Quintox KM9160 flue gas analyser. The gases are measured by electro chemical cells. The temperature is measured by thermocouple. Uncertainty assigned +/-2%.

Sulphur Dioxide

Sulphur dioxide was determined using BS EN 14791:2005 Stationary source emissions — Determination of mass concentration of sulphur dioxide — Reference method. This specifies drawing a measured volume of flue gas through dilute hydrogen peroxide and determining the collected sulphate by ion chromatography or by titration by the Thorin method. Uncertainty assigned +/-5%.

Standard Reference Conditions

The concentration of the emissions were calculated and reported in mg/Nm³ as follows :

- temperature 273°K
- pressure 101.3 kPa
- dry gas
- corrected to 3% oxygen

CONFIDENTIAL REPORT

Client Enva Ireland Ltd Clonminam Industrial Estate Portlaoise Co. Laois Attn. Ms. Mark Dowling

Title

Annual Environmental Noise Survey 2013 Enva Ireland Ltd. – Portlaoise EPA Waste Licence Reg. No. 184-1

Report Ref:	1347	Survey and Report by:	Frances Wright Trances Oracle BSc, PgDip Env, DipSHWW, CertOH
Date recd:		Approved by:	Paddy Wright Paddy Mig St. BSc, PgDip ChemEng, CertOH
Copies to:		Date:	30 th December 2013

	CONTENTS	PAGE
1.	INTRODUCTION	3
2.	SUMMARY	4
3.	MONITORING RESULTS AND DISCUSSION	5
APPI	ENDIX I Methodology	13
APPI	ENDIX II Instrumentation and External Calibration Details	16
APPI	ENDIX III Site Plan showing Noise Monitoring Positions	17
APPI	ENDIX IV 1/3 Octave Band Analysis (OBA)	20

1. INTRODUCTION:

Enva Ireland Ltd. (Enva) operate a waste recovery facility at Clonminam Industrial Estate, Portlaoise which is licensed under the EPA Waste Licence (Reg. No. 184-1). Schedule D of the company's licence requires an annual Environmental Noise Survey to be undertaken.

At the request of Ms. Anna O'Brien of Enva Ireland Ltd., Wright Environmental Services carried out this Noise Survey on the 4th and 5th September 2013.

This report presents and interprets the results of the survey with reference to the company's Waste Licence noise criteria. The methodology used for the survey is described in Appendix I. Instrumentation and calibration is described in Appendix II. Monitoring locations are shown in the site map in Appendix III. Appendix IV presents the 1/3 octave band analysis of the noise at monitoring locations.

2. SUMMARY

Enva are required by their EPA Waste Licence (Reg. No. 184-1) to have an annual Environmental Noise Survey undertaken. Wright Environmental Services carried out this survey on the 4th and 5th September 2013. The following noise monitoring was carried out.

	N1 boundary location	N2 boundary location	N3 boundary location	N4 noise sensitive location	N5 abandoned noise sensitive location
Day Time Survey	3 sampling periods	3 sampling periods	3 sampling periods	3 sampling periods	3 sampling periods
Night Time Survey	2 sampling periods	2 sampling periods	2 sampling periods	2 sampling periods	2 sampling periods

Noise levels were below the criterion levels at the boundary locations. Therefore the noise attributable to Enva at a noise sensitive locations beyond the boundary locations in each of these directions would be less than the criterion values set out in their licence.

There was no noise audible from Enva at the noise sensitive location, N4. The noise levels measured at this location were within the criterion levels for day and night. The noise level at N5 during one of the daytime sampling periods was above the criterion level. Two HGVs entered the Enva site and passed close to N5 (approx. 20 m) during this sampling period. The HGVs had a very significant impact on the 30 minute Leq noise level. As is this no longer an occupied noise sensitive location, the Inverse Square Law was used to calculate the expected reduction in noise level at the nearest noise sensitive location. The resultant noise attributable to the Enva would be approximately 42 dB(A) at the nearest NSL, due to distance attenuation alone. This is well below the criterion levels.

The noise was perceived at each of the monitoring locations to investigate the presence of tones. No tones were subjectively identified. Using the sound level meter, one third octave band analysis of the noise was also carried out at the boundary locations. No tones were identified using the one third octave band analysis method.

It is therefore concluded that Enva Ireland Ltd. are in compliance with the noise criteria set out in their EPA Waste Licence (Reg. No. 184-1).

3. MONITORING RESULTS AND DISCUSSION:

Wright Environmental Services carried out the day and night Environmental Noise Survey on the 4th and 5th September 2013. The monitoring locations are described below and are shown in the site map in Appendix III.

Location N1: Along the mid western site boundary.

Location N2: In the corner of the site, along the south eastern boundary Location N3:In the corner of the site, along the north eastern boundary. Location N4:Nearby residential area, east/south east of Enva, on the corner of Knockmay Road and Marian Avenue. The railway yard is the main land use between Enva in this monitoring location.

Location N5:North west of Enva site, on the corner with access road for Rowan parhalting site (currently deserted). Note access to this point is now restricted, therefore monitoring was carried out at the barrier, blocking access to this point (see map in Appendix III).

The following "A-Weighted" data was determined for each discrete sampling period.

L eq	:	The equivalent continuous noise level for the measurement period.
		(This is defined as the sound level of a steady sound having the same energy
		as a fluctuating sound over the specified measuring period).
L_1	:	The noise level exceeded for 1% of the measurement period.
		(This parameter gives a good indication of typical maximum levels.)
L 10	:	The noise level exceeded for 10% of the measurement period.
L 90	:	The noise level exceeded for 90% of the measurement period.
		(This is taken to represent the background noise level).

Detailed results are presented in Table 1to 5 below along with appropriate comments regarding noise in the monitoring environment.

Start Time t = 30mins	L _{eq} (dBA)	L ₁ (dBA)	L ₁₀ (dBA)	L ₉₀ (dBA)	Comments	
10:20	51	60	53	47	Traffic and industrial noise to the south is dominant. Enva activity audible and included : vehicle movement, forklift, occasional bang.	
10:50	55	61	54	48	Traffic and industrial noise to the south is dominant. Enva activity audible and included : vehicle movement, forklift, occasional bang, hand held tools. 2HGVs entered Enva.	DAY
11:30	52	59	53	48	Traffic and industrial noise to the south is dominant. Enva activity audible and included : vehicle movement, forklift, occasional bang, hand held tools.	
00:50	41	49	42	34	Traffic and industrial noise to the south is dominant. Faint hum from the Enva boiler audible.	NIGHT
01:20	41	51	42	33	Traffic and industrial noise to the south is dominant. Faint hum from the Enva boiler audible.	

N1 - Monitoring Location

Start Time t = 30mins	L _{eq} (dBA)	L ₁ (dBA)	L ₁₀ (dBA)	L ₉₀ (dBA)	Comments	
12:07	56	63	58	51	HGV movement in neighbouring facility is dominant. In the absence of HGV movement, noise levels were 52 – 53 dB(A). Industrial noise to the south also dominant in the absence of HGV movement. Boiler audible onsite.	
13:00	56	68	59	50	HGV movement in neighbouring facility is dominant. In the absence of HGV movement, noise levels were 52 – 53 dB(A). Industrial noise to the south also dominant in the absence of HGV movement. Boiler audible onsite.	DAY
13:30	54	60	56	51	 HGV movement in neighbouring facility is dominant. In the absence of HGV movement, noise levels were 52 – 53 dB(A). Industrial noise to the south also dominant in the absence of HGV movement. Boiler audible onsite. 	
23:00	44	52	45	41	Dominant noise industrial facility to the south. Boiler noise audible onsite.	NIGHT
23:35	45	49	46	43	Dominant noise industrial facility to the south. Boiler noise audible onsite.	

N2 - Monitoring Location

Start Time t = 30mins	L _{eq} (dBA)	L ₁ (dBA)	L ₁₀ (dBA)	L ₉₀ (dBA)	Comments	
12:57	50	54	49	41	Onsite noise/activity: vehicle movement, unloading tanker, forklift. Leaves rustling on trees. Industrial noise audible from south.	
13:59	53	60	57	42	Onsite noise/activity: screening adjacent to N3, vehicle movement, unloading tanker, forklift. Leaves rustling on trees. Industrial noise audible from south.	DAY
14:39	50	61	50	44	Onsite noise/activity: vehicle movement, unloading tanker, forklift. Leaves rustling on trees. Industrial noise audible from south.	
23:40	39	44	41	36	Dominant noise: Industrial noise audible from south. No noise audible from Enva.	NIGHT
00:10	37	43	40	34	Dominant noise: Industrial noise audible from south. No noise audible from Enva.	

N3 - Monitoring Location

Start Time t = 30mins	L _{eq} (dBA)	L ₁ (dBA)	L ₁₀ (dBA)	L ₉₀ (dBA)	Comments		
08:30	50	62	53	42 Dominant noise: industrial noise to the south and passing traffic. The approximately 30 cars and 12 vans. Enva is not audible at this location of the south and passing traffic.			
9:00	50	62	52	52 42 Dominant noise: industrial noise to the south and passing traffic. Traffi approximately 20 cars and 8 vans. Enva is not audible at this location		DAY	
9:30	51	63	54	42	Dominant noise: industrial noise to the south and passing traffic. Traffic: approximately 36 cars and 6 vans. Enva is not audible at this location.		
02:02	42	51	44	39	Dominant noise: industrial noise to the south and passing traffic. Traffic approximately 18 cars. Enva is not audible at this location. Occasional ho from train.		
02:32	42	50	43	38	Dominant noise: industrial noise to the south and passing traffic. Traffic: approximately 18 cars. Enva is not audible at this location. Occasional horn from train.	NIGHT	

N4 - Monitoring Location

Start Time t = 30mins	L _{eq} (dBA)	L ₁ (dBA)	L ₁₀ (dBA)	L ₉₀ (dBA)	Comments		
10:30	51	60	52	47	Industrial noise to the south is dominant noise. Audible Enva activity onsite: vehicle movement, forklift, occasional banging.		
11:00	60	67	60	49 Industrial noise to the south is dominant noise. Audible Enva activity of vehicle movement, forklift, occasional banging. 2 HGVs entered the Env		DAY	
11:30	53	60	54	48	Industrial noise to the south is dominant noise. Audible Enva activity onsite: vehicle movement, forklift, occasional banging, hand held tools.		
00:50	38	47	41	31	Industrial noise to the south and traffic to the west dominant. No noise audibl from Enva.		
01:20	35	42	35	29	Industrial noise to the south and traffic to the west dominant. No noise audible from Enva.	NIGHT e	

N5 - Monitoring Location

In accordance with their waste licence, Enva are required to comply with maximum noise limit values. Criterion noise levels are set for day and night time, for noise measured at Noise Sensitive Locations (NSLs). The criterion noise levels are presented in Schedule C of the licence as follows:

Day55dB(A) LAeq(30 minutes)Night45dB(A) LAeq(30 minutes)

Section 7.7.1 states that noise from the facility should not exceed this level by more than 2dB(A).

7.1.1 Noise from the activity shall not give rise to sound pressure levels (LAeq 30min) measured at noise sensitive locations which exceed the limit value(s) by more than 2dB(A).

Noise levels were below the criterion levels at the boundary locations. Therefore the noise attributable to Enva at a noise sensitive locations beyond the boundary locations in each of these directions would be less than the criterion values set out in their licence.

There was no noise audible from Enva at the noise sensitive location, N4. This location is on the corner of Knockmay Road and Marian Avenue. The noise levels measured at this location were within the criterion levels for day and night. An L_{eq} noise level of 60dB(A) was measured at N5 during the daytime survey during one of the sampling periods. It was noted that 2 HGVs entered the Enva site and passed close to N5 (approx. 20 m) during this sampling period. The HGVs had a very significant impact on the 30 minute Leq noise level. This location is a deserted hauling site and no longer a noise sensitive location. The nearest noise sensitive location in that direction is approximately 200 meters on the opposite side of the railway tracks. The Inverse Square Law can be used to calculate the expected reduction in noise levels as one moves away from a given noise source, which is assumed to radiate uniformly in all directions. Using the daytime L_{eq} of 60dB(A) measured at N5, the noise attributable to Enva would be expected to be reduced to approximately 42 dB(A) at the nearest NSL, due to distance attenuation alone. This is well below the criterion levels. Section 6.7 of the company's licence states that

"There shall be no clearly audible tonal component or impulsive component in the noise emissions from the activity at the noise sensitive locations."

The noise was perceived at each of the monitoring locations to investigate the presence of tones. No tones were subjectively identified. Using the sound level meter, one third octave band analysis of the noise was also carried out at the boundary locations, where noise from Enva is audible. No tones were identified using the one third octave band analysis method. The one third octave band analysis is presented in Appendix IV.

APPENDIX I Methodology

METHODOLOGY

The methodology of the survey was based upon procedures set out in the International Standard, ISO 1996-2:2007 (Acoustics – description, measurement and assessment of environmental noise Part 2: Determination of Environmental Noise Levels.). The survey was carried out in accordance with EPA published document *(NG4) Guidance Note for Noise: Licence Applications, Surveys and Assessments in Relation to Scheduled Activities.*

Environmental noise levels were determined by using a Pulsar Model 33, Type 1 Real Time Sound Level Meter, with half inch condenser microphone. The instrumentation was calibrated directly before and after the noise measurements. Details of the instrumentation and external calibration are presented in Appendix II of this report. A series of 1/3 Octave Band level measurements were simultaneously taken using the Sound Level Analyser and this data was used to evaluate the presence of tones. This analysis is presented in Appendix IV.

Results reported were determined using the fast response, A-Weighting (ref. 20 μ Pa) and are rounded off to the nearest whole decibel. Monitoring was conducted in relatively calm, dry weather conditions during the day (08:00 – 22:00) and night (22:00 – 08:00). Throughout the monitoring, the microphone was situated 1.5 m above ground level, away from any reflective surfaces. The monitoring equipment was manned throughout the sampling intervals and comments were recorded in order to aid the interpretation of the results.

During the survey air temperature and humidity measurements were undertaken using a Delta Ohm Hygrometer HD 8501 H. Wind speed measurements were taken using a TSI VelociCalc and the wind direction was noted using a compass. Details of the weather conditions are presented in the Table below.

Date/Time	Air Temperature °C	Relative Humidity %	Wind Direction	Wind Speed m/s	General Conditions
04.09.2013 09:00	12	82	ESE	2.8	Dry – no precipitation.
04.09.2013 11:00	14	72	SSE	2.1	Dry – no precipitation.
04.09.2013 13:00	20	41	SE	3.0	Dry – no precipitation.
04.09.2013 23:00	14	68	SW	3.6	Dry – no precipitation.
05.09.2013 01:00	13	70	WSE	3.2	Dry – no precipitation.

Summary of Weather Conditions

The Inverse Square Law can be used to calculate the expected reduction in noise levels as one moves away from a given noise source, which is assumed to radiate uniformly in all directions. The Inverse Square Law states that as one doubles the distance from a source, a reduction of 6 dB is achieved as follows:

$$L_{p2} = L_{p1} - 20 \text{ Log } (^{R2}/_{R1})$$

where:

- L_{p1} is the measured reference Sound Pressure Level (SPL) at a distance of R1 metres from the source.
- $-\ L_{p2}$ is the calculated SPL at a distance of R2 metres from the source.

APPENDIX II

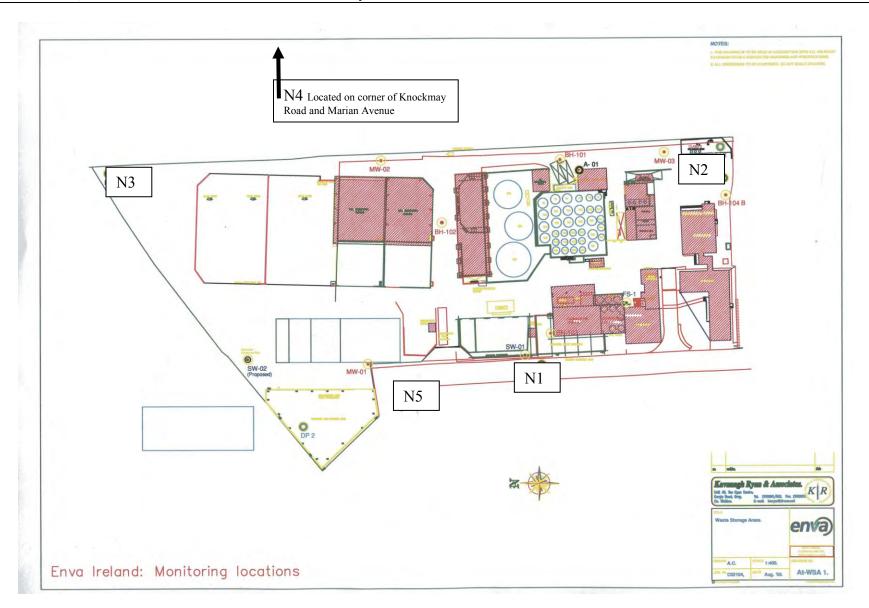
Instrumentation and External Calibration Details

INSTRUMENTATION AND EXTERNAL CALIBRATION DETAILS

Instrumentation:

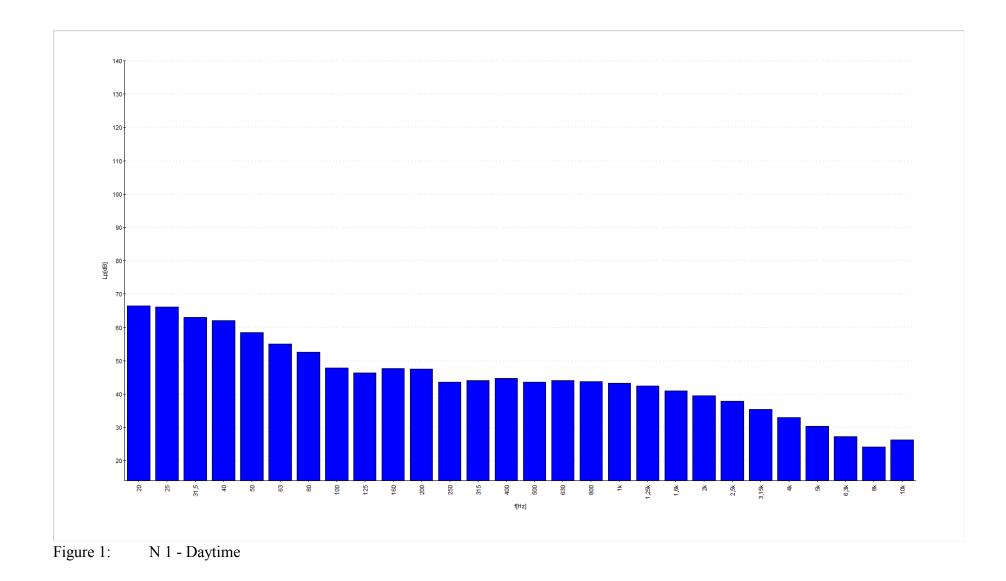
Pulsar Model 33, Type 1 Real Time Sound Level Meter, with half inch condenser microphone, Serial Number T223417. On-site calibrations were carried out before and after sampling with a Pulsar Calibrator – model 100B, Serial Number: 42171.

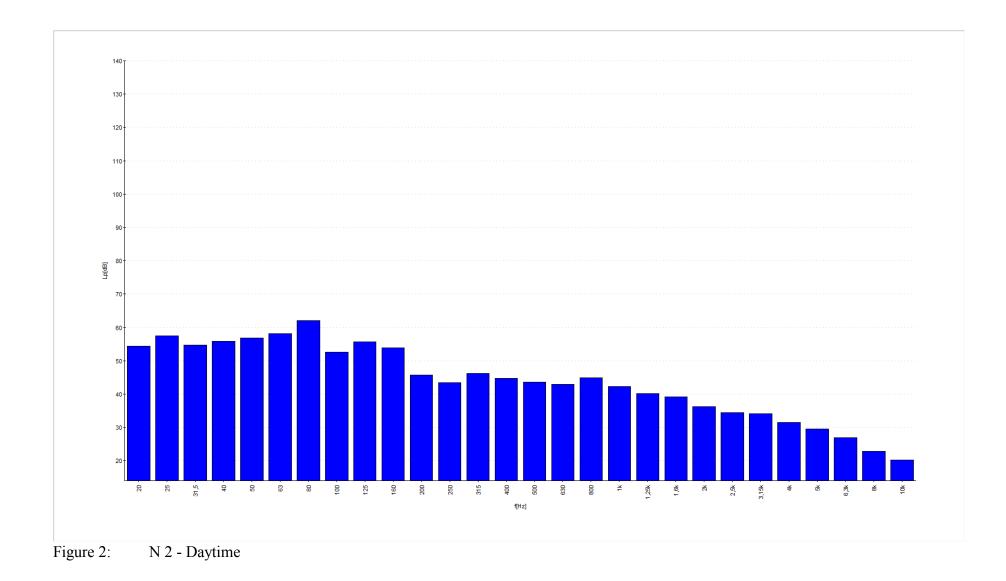
B&K Type 2250 Light, Type 1 Real Time Sound Level Meter, with half inch condenser microphone, Serial Number 2754170. On-site calibrations were carried out before and after sampling with a Pulsar Calibrator – model 100B, Serial Number: 42171.


External Calibration:

External Calibration of instrumentation was undertaken by Pulsar Instruments Plc:

Unit	Calibration Date	Calibration Certificate Number
Pulsar Model 33 Sound Level Meter Serial No. T223417	7 th June 2012	197623
B&K Type 2250 Light Sound Level Meter Serial No. T223417	20 th July 2012	2754170
Calibrator – Serial No. 42171	7 th June 2012	197624


APPENDIX III


Site Plan showing Noise Monitoring Positions

APPENDIX IV

1/3 Octave Band Analysis (OBA)

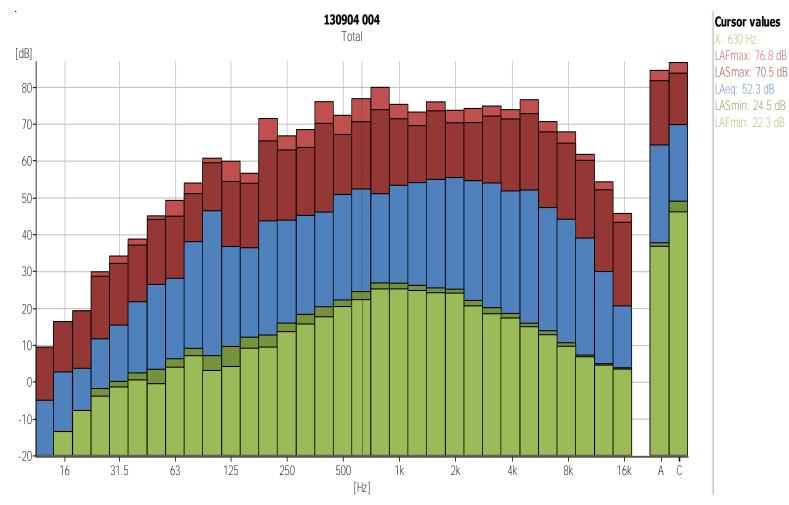
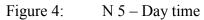



Figure 3: N 3 - Daytime

Enva Ireland Ltd, Portlaoise - Annual Environmental Noise Survey - 2013

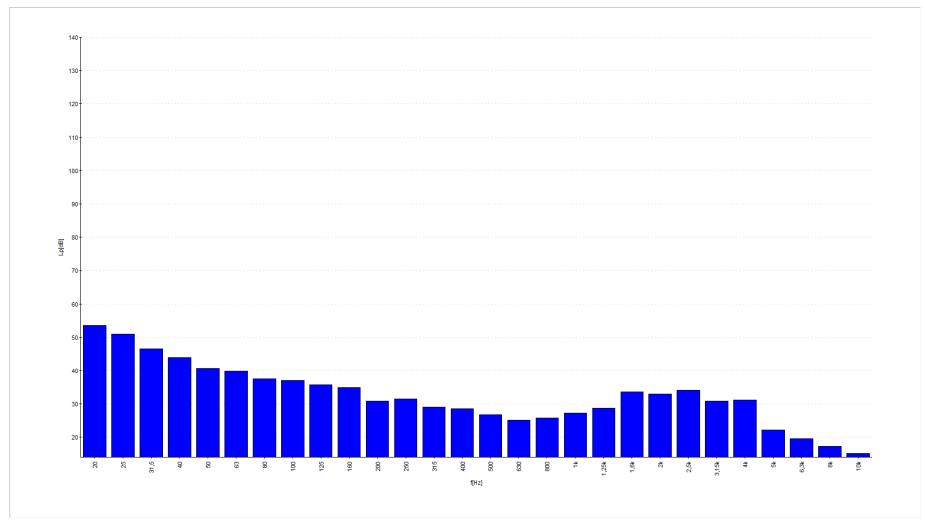
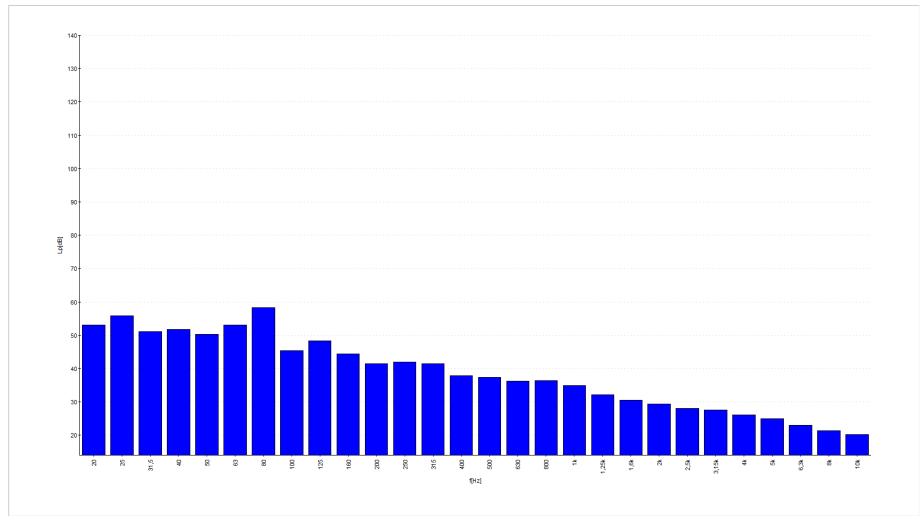
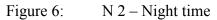
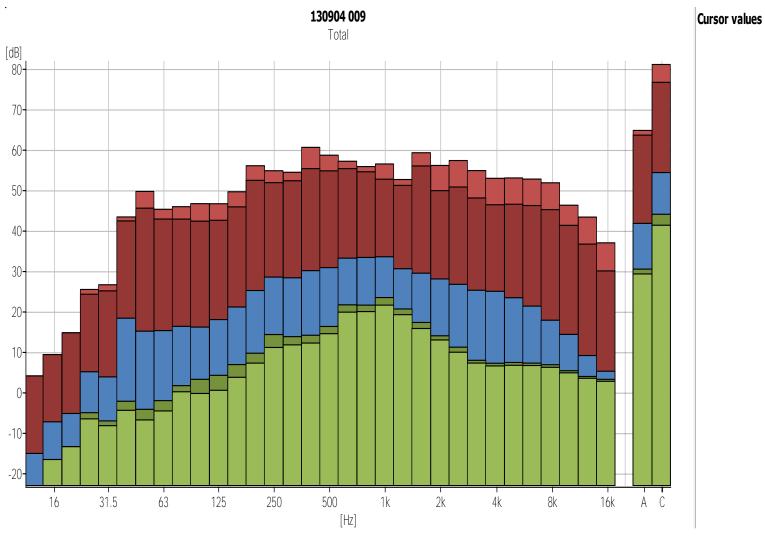
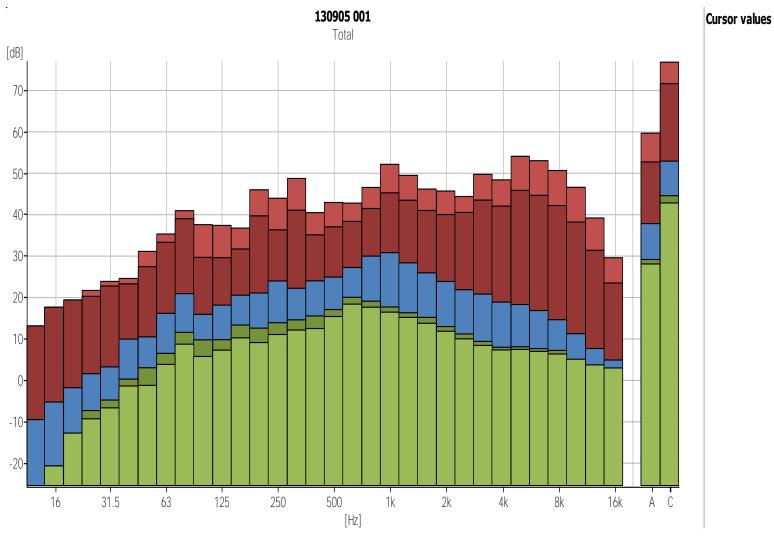
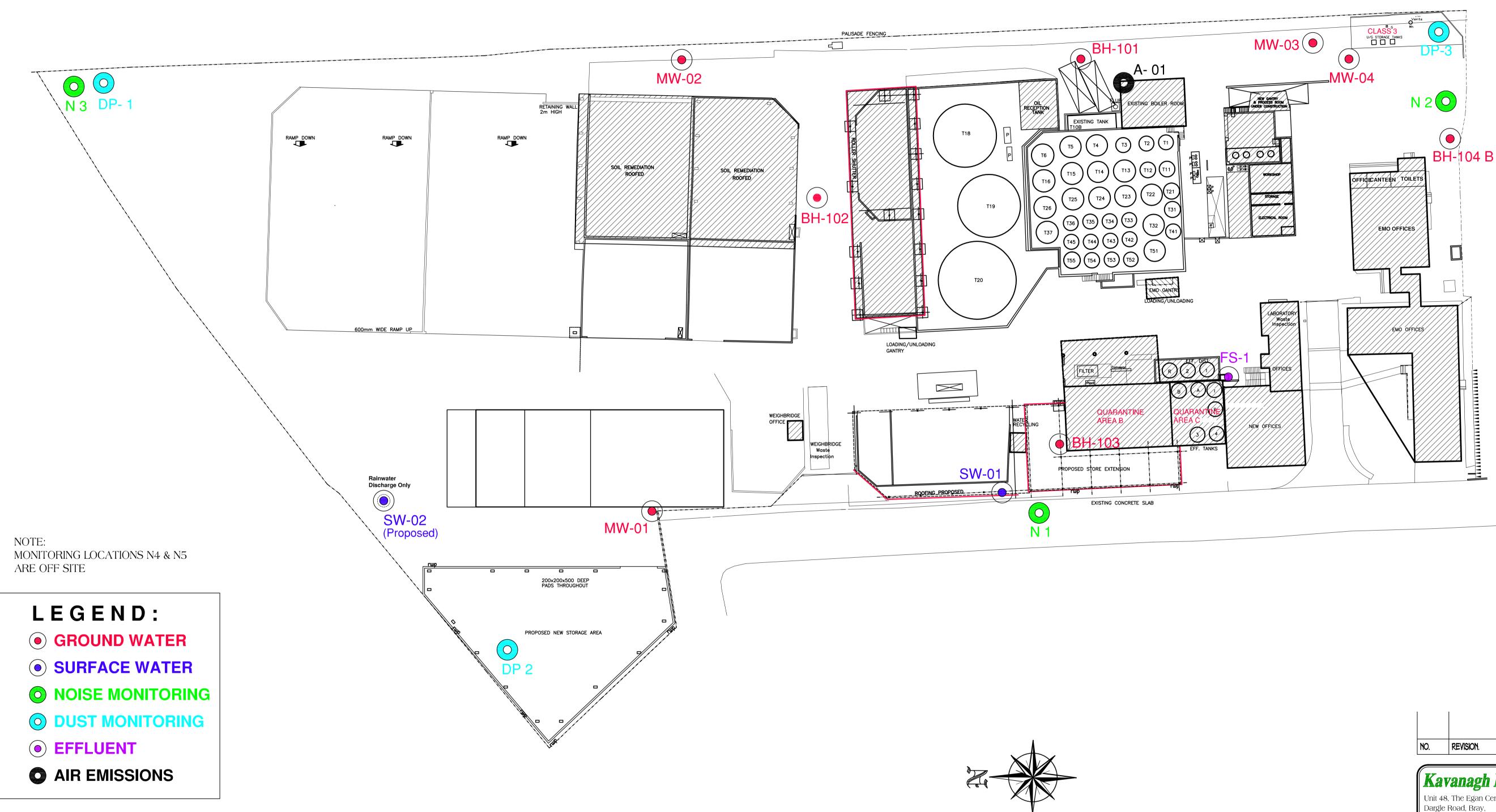





Figure 5: N 1 – Night time


Enva Ireland Ltd, Portlaoise - Annual Environmental Noise Survey - 2013



Appendix 5

Enva Ireland: Monitoring locations

NOTES:

1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT KAVANAGH RYAN & ASSOCIATES DRAWINGS AND SPECIFICATIONS.

2. ALL DIMENSIONS TO BE CONFIRMED. DO NOT SCALE DRAWING.

NO.	REVISION.		DATE
Ka Unit 4 Dargle		Ryan & Assoc re, Tel. 2765661. Fax. 27 E-mail. kmryan@eircor	
CLIEN	τ ste Storage /	Areas.	enva
TITLE			ENVA LIMITED, CLONMINAM IND. EST., PORTLAOISE, Co. LAOIS.
DRAW	^N A.C.	SCALE 1:400.	DRAWING No.
JOB. N	^{/o.} C02104,	DATE Aug. '08.	At-WSA 1.

Temp) Temperature Probe larch 2014 - 0.1 Dec C	Location Calibration Range Interval Calibration	Tank Farm 0 – 150 Deg C 12 month	
larch 2014	Range Interval Calibration		
	Calibration	12 month	
- 0.1 Dec C			
	Due Date	March 2015	
AS FOUND	AS LEFT	DEVIATION	
0.2	0.2	+ 0.2	
25.1	25.1	+0.1	
50.4	50.4	+ 0.4	
75.4	75.4	+ 0.4	
100.5	100.5	+ 0.5	
esults			
74.5	74.5	-0.5	
		esults	

Manufacturer	Model	Serial Number.	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Accepted By: **Tested By:** Date 12 Signature Date Signature SCADA IRELAND LTD

Valentia Place, Newcastle, Co DownTel: 028 43725970Mobile 07767 272203email: scadaireland@aolcom

Customer	Enva Portlaoise	Contract	141101	
Customer Instrume	ent HE 1 Temp	Location	Tank Farm	
Device Description	PT100 Temperature Prob	Calibration Range	0 – 150 Deg C	
Calibration Date	12 th March 2014	Interval	12 month	
Instrument Accura	ey = 1 + or - 0.1 Dec C	Calibration Due Date	March 2015	
Loop Calibrati	on Results			
INPUT	AS FOUND	AS LEFT	DEVIATION	
0.0	0.6	0.6	+ 0.6	
25.0	25.5	25.5	+0.5	

50.6

75.6

100.7

74.9

+0.6

+0.6

+0.7

-0.1

Comment: Calibration Equipment							
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861			
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860			

50.6

75.6

100.7

74.9

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Date 18/3/1 Signature Date 14 Signature

SCADA IRELAND LTD Valentia Place, Newcastle, Co Down

Tel: 028 43725970

50.0

75.0

100.0

75.0

Instrument Calibration Results

Mobile 07767 272203

email: scadaireland@aolcom

Customer	Enva Portlaoise	Contract	141101	
Customer Instrume	nt V20 Temp	Location	Tank Farm	
Device Description	PT100 Temperature Pro	be Calibration Range	0 – 150 Deg C	
Calibration Date	12 th March 2014	Interval	12 month	
Instrument Accura	+ or -0.1 Dec C	Calibration Due Date	March 2015	
Loop Calibratio	on Results			
INPUT	AS FOUND	AS LEFT	DEVIATION	
0.0	0.3	0.3	+ 0.3	
25.0	25.2	25.2	+0.2	
50.0	50.4	50.4	+0.4	
75.0	75.4	75.4	+ 0.4	
100.0	100.5	100.5	+ 0.5	

Instrument Calibration Results

Tel: 028 43725970

Comment: New probe fitted and programmed February 2014. High level sounder and SCADA screen Alarm found working OK.

74.8

Calibration Equipment

75.0

Manufacturer	Model	Serial Number.	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

74.8

-0.2

email: scadaireland@aolcom

DECLARATION: The calibration references used can be traced back to recognised national standards.

Accepted By: Signature **Tested By:** 12/3/14 Date F Signature Date SCADA IRELAND LTD

Valentia Place, Newcastle, Co Down

Mobile 07767 272203

Customer	Enva Portlaoise	Contract	141101	
Customer Instrument	V3 Temp	Location	Tank Farm	
Device Description	PT100 Temperature Probe	Calibration Range	0-150 Deg C	
Calibration Date	12 th March 2014	Interval	12 month	
Instrument Accuracy	+ or - 0.1 Dec C	Calibration Due Date	March 2015	
Loop Calibration	Results			
INPUT	AS FOUND	AS LEFT	DEVIATION	
0.0	0.3	0.3	+ 0.3	
25.0	25.3	25.3	+0.3	
50.0	50.4	50.4	+ 0.4	
75.0	75.4	75.4	+ 0.4	
100.0	100.5	100.5	+ 0.5	
Instrument Calil	Dration Results			
		74.4	-0.6	

Calibration Equipment

Manufacturer	Model	Serial Number,	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Date 17 Signature Date Signature **SCADA IRELAND LTD**

Valentia Place, Newcastle, Co DownTel: 028 43725970Mobile 07767 272203email: scadaireland@aolcom

Customer	Enva Portlaoise	Contract	141101	
Customer Instrumen	t UC10 Top Temp	Location	Tank Farm	
Device Description	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C	
Calibration Date	12 th March 2014	Interval	12 month	
Instrument Accuracy + or - 0.1 Dec C		Calibration Due Date	Marxh 2015	
Loop Calibration	n Results			
INPUT	AS FOUND	AS LEFT	DEVIATION	
0.0	0.2	0.2	+ 0.2	
25.0	25.3	25.3	+ 0.3	
50.0	50.4	50.4	+ 0.4	
75.0	75.3	75.3	+ 0.3	
100.0	100.5	100.5	+ 0.5	
Instrument Cal	ibration Results			
75.0	74.9	74.9	-0.1	

Calibration Ec	uipment
----------------	---------

Manufacturer	Model	Serial Number	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Date 12 Date Signature Signature 14

SCADA IRELAND LTD

Valentia Place, Newcastle, Co Down

Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aolcom

Customer	Enva	Portlaoise	Contract	141101
Customer Instrume	ent	UC10 Bottom Temp	Location	Tank Farm
Device Description	ı C	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C
Calibration Date		12 th March 2014	Interval	12 month
Instrument Accura	cy	+ or - 0.1 Dec C	Calibration Due Date	March 2015
Loop Calibratio	on Resu	lts		
INPUT		AS FOUND	AS LEFT	DEVIATION
0.0		+ 0.3	+ 0.3	+ 0.3
25.0		25.4	25.4	+0.4
50.0		50.5	50.5	+ 0.5
75.0		75.5	75.5	+ 0.5

100.6

+0.6

Instrument Calibration Results

75.0	74.4	74.4	-0.6
Course and Illah land a sur	In mul SCADA sessor A	land found working OK	

Comment: High level sounder and SCADA screen Alarm found working OK

100.6

Calibration Equipment

100.0

Manufacturer	Model	Serial Number	Callbration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Ulill Date 1 Date Signature Signature 12

SCADA IRELAND LTD Valentia Place, Newcastle, Co Down

Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aolcom

Customer	Enva	Portlaoise	Contract	141101
Customer Instrume ID	ent [UCO9 Bottom Temp	Location	Tank Farm
Device Description		PT100 Temperature Probe	Calibration Range	0 – 150 Deg C
Calibration Date		2 th March 2014	Interval	12 month
Instrument Accuracy + or - 0.1 Dec C		Calibration Due Date	March 2015	
Loop Calibratio	on Resul	ts		
INPUT		AS FOUND	AS LEFT	DEVIATION
0.0		0.4	0.4	+ 0.4
25.0		25.5	25.5	+ 0.5
50.0		50.6	50.6	+ 0.6
75.0		75.4	75.4	+ 0.4
100.0		100.8	100.8	+ 0.8
Instrument Ca	libratio	on Results		Marine and a second
75.0		74.5	74.5	-0.5

Calibration Equip	oment			
Manufacturer	Model	Serial Number	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Date 18/3 Signature Date Signature

SCADA IRELAND LTD Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aol.com

Customer	Enva l	Portlaoise	Contract	141101
Customer Instrum	ient S	S1 Temp	Location	Tank Farm
Device Description	n P	T100 Temperature Probe	Calibration Range	0 – 150 Deg C
Calibration Date		2 th March 2014	Interval	12 month
Instrument Accur	acy [+	or - 0.1 Dec C	Calibration Due Date	March 2015
Loop Calibrat	ion Result	S		
INPUT		AS FOUND	AS LEFT	DEVIATION
0.0		20.3	0.2	+ 0.2
25.0		48.3	25.2	+0.2
50.0		76.4	50.5	+ 0.5
75.0		93.2	75.7	+ 0.7

100.6

75.1

+0.6

+0.1

Instrument Calibration Results

100.0

75.0

Comment: PT100 transmitter head found faulty and replaced.

118.6

75.1

Calibration Equi	oment			
Manufacturer	Model	Serial Number,	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Date Signature Date Signature (R SCADA IRELAND LTD

Valentia Place, Newcastle, Co Down Mobile 07767 272203 email: scadaireland@aolcom

Tel: 028 43725970

Customer	Em	a Portlaoise	Contract	141101
Customer Instrume	ent	SST 2 Temp	Location	Tank Farm
Device Description	n	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C
Calibration Date		12 th March 2014	Interval	12 month
Instrument Accura	icy	+ or - 0.1 Dec C	Calibration Due Date	March 2015
Loop Calibrati	on Re	sults		
INPUT		AS FOUND	AS LEFT	DEVIATION
0.0		0.4	0.4	+ 0.4
25.0		26.5	26.5	+ 1,5
50.0		50.7	50.7	+0.7
75.0		75.2	75.2	+ 0.2

100.0	100.9	100.9	+ 0.9
Instrument Calibrati	on Results		

Calibration Equipment				
Manufacturer	Model	Serial Number.	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Signature Date 12/3/14	Accepted By: Signature	Date (3/3/44

SCADA IRELAND LTD Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aolcom

Customer <i>L</i>	Enva Portlaoise	Contract	141101	
Customer Instrument ID	SS3 Temp	Location	Tank Farm	
Device Description	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C	
Calibration Date	12 th March 2014	Interval	12 month	
Instrument Accuracy + or - 0.1 Dec C		Calibration Due Date	March 2015	
Loop Calibration	Results			
INPUT	AS FOUND	AS LEFT	DEVIATION	
0.0	+ 0.6	+ 0.6	+ 0.6	
25.0	25.6	25.6	+ 0.6	
50.0	50.7	50.7	+ 0.7	
75.0	75.8	75.8	+ 0.8	
100,0	100.8	100.8	+ 0.8	
Instrum on t Calib	pration Results			
instrument Cano				

Calibration Equipment

2

Manufacturer	Model	Serial Number-	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Accepted By: Signature **Tested By:** Date 12 Date 1 Signature SCADA IRELAND LTD

Valentia Place, Newcastle, Co DownTel: 028 43725970Mobile 07767 272203email: scadaireland@aolcom

Customer	ustomer Enva Portlaoise		Contract	I41101	
Customer Instrum	ent	PFO 8	Location	Tank Farm	
Device Description	DT100 Temperature Drohe		Calibration Range	0-150 Deg C	
Calibration Date			Interval	12 month	
Instrument Accuracy + or - 0.1 Dec C		Calibration Due Date	March 2015		
Loop Calibrati	on Resul	ts			
INPUT		AS FOUND	AS LEFT	DEVIATION	
0.0		0.4	0.4	+ 0.4	
25.0		25.5	25.5	+ 0.5	
50.0		50.7	50.7	+ 0.7	
75.0	75.0 75.7		75.7	+0.7	
100.0	100.0 100.8		100.8	+ 0.8	
Instrument Ca	alibratio	on Results			

ţ

Calibration Equipment					
Manufacturer	Model	Serial Number	Calibration Date	Certificate No.	
Eurolec	PC Temp PT2	84/PT2/1.00	10 th Feb 2014	11861	
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860	

DECLARATION: The calibration references used can be traced back to recognised national standards.

Accepted By: **Tested By:** Date Signature Date 12 Signature SCADA IRELAND LTD

Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aolcom

Customer	ner Enva Portlaoise		Contract	141101	
Customer Instrume	ent 🔽	/18 Top Temp	Location	Tank Farm	
Device Description	P	T100 Temperature Probe	Calibration Range	0 – 150 Deg C	
Calibration Date	10	D ^{ut} March 2014	Interval	12 month	
Instrument Accura	+ or - 0.1 Dec C		Calibration Due Date	March 2015	
Loop Calibratio	on Result	8			
INPUT		AS FOUND	AS LEFT	DEVIATION	
0.0		+ 0.4	+ 0.4	+0.4	
25.0	25.0 25.1		25.1	+ 0.1	
50.0	50.0 50.3		50.3	+0.3	
75.0 75.0		75.0	0		
100.0	100.0 100.0		100.0	0	

Comments: High level sounder and SCADA screen Alarm found working OK.

74.6

75.0

Calibration Equipment					
Manufacturer	Model	Serial Number,	Calibration Date	Certificate No.	
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861	
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860	

74.6

-0.4

DECLARATION: The calibration references used can be traced back to recognised national standards.

Accepted By: **Tested By:** Date 18/3 Date /2/3/14 Signature Signature SCADA IRELAND LTD

Valentia Place, Newcastle, Co DownTel: 028 43725970Mobile 07767 272203email: scadaireland@aol.com

Customer	Enva Portlaoise	Contract	141101	
Customer Instrume	nt PFO 7	Location	Tank Farm	
ID Device Description	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C	
Calibration Date	12 th March 2014	Interval	12 month	
Instrument Accurac	ment Accuracy + or - 0.1 Dec C		March 2015	
Loop Calibratio	n Results			
INPUT	AS FOUND	AS LEFT	DEVIATION	
0.0	0.6	0.6	+ 0.6	
25.0	25.6	25.6	+ 0.6	
50.0	50.9	50.9	+ 0.9	
75.0	75.8	75.8	+ 0.8	
100.0 101.0		101.0	+ 1.0	
Instrument Ca	libration Results			
75.0	74.5	74.5	-0.5	

Calibration Equipment					
Manufacturer	Model	Serial Number	Calibration Date	Certificate No.	
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861	
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860	

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Signature	Accepted By: Signature	Date 08/3/14
V		

SCADA IRELAND LTD

Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aolcom

Customer	Enva Portlaoise	Contract	141101
Customer Instrume	ent V18 Bottom	Location	Tank Farm
Device Description	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C
Calibration Date	12 th March 2014	Interval	12 month
Instrument Accura	ument Accuracy $+ \text{ or } -0.1 \text{ Dec C}$		March 2015
Loop Calibratio	on Results		
INPUT	AS FOUND	AS LEFT	DEVIATION
0.0	+ 0.8	+ 0.8	+ 0.8
25.0	25.7	25.7	+ 0.7
	50.4	50.4	+ 0.4
50.0	30.4	50.4	1 011
50.0 75.0	75.2	75.2	+ 0.2
75.0	75.2	75.2	+ 0.2

Calibration Equipment					
Manufacturer	Model	Serial Number-	Calibration Date	Certificate No.	
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861	
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860	

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Date 18 Date 12 Signature Signature 🤇

SCADA IRELAND LTD Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aol.com

Customer	Enva Portlaoise	Contract	141101
Customer Instrumer	nt V37 Temp	Location	Tank Farm
Device Description	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C
Calibration Date	10 th March 2014	Interval	12 month
Instrument Accurac	trument Accuracy + or - 0.1 Dec C		March 2015
Loop Calibratio	n Results		
INPUT	AS FOUND	AS LEFT	DEVIATION
0.0	+ 0.5	+ 0.5	+ 0.5
25.0	25.6	25.6	+ 0.6
50.0	50.5	50.5	+ 0.5
75.0 75.5		75.5	+ 0.5
100.0	100.5	100.5	+ 0.5
Instrument Ca	libration Results		
75.0	74.4	74.4	-0.6

Comment: High level sounder and SCADA screen Alarm found working OK

1

Calibration Equipment					
Manufacturer	Model	Serial Number.	Calibration Date	Certificate No.	
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861	
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860	

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Date 12/3/14 Date Signature Signature, 18/3 SCADA IRELAND LTD

Valentia Place, Newcastle, Co DownTel: 028 43725970Mobile 07767 272203email: scadaireland@aol.com

Customer	Enva Portlaoise	Contract	141101	
Customer Instrume	ent V22 Temp	Location	Tank Farm	
Device Description	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C	
Calibration Date	12 th March 2014	Interval	12 month	
Instrument Accura	+ or - 0.1 Dec C	Calibration Due Date	March 2015	
Loop Calibratio	on Results			
INPUT	AS FOUND	AS LEFT	DEVIATION	

INPUT	AS FOUND	AS LEFT	DEVIATION
0.0	+ 0.7	+ 0.7	+ 0.7
25.0	25.7	25.7	+ 0.7
50.0	50.7	50.7	+ 0.7
75.0	75.7	75.7	+ 0.7
100.0	100.7	100.7	+ 0.7
Instrument Calibrat	ion Results		
75.0	74.4	74.4	-0.6

Calibration Equip Manufacturer	Model	Serial Number-	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Signature Date 12/3/14	Accepted By: Signature	Date 0213/14
SCADA IRE	LAND LTD	01-1-7

Valentia Place, Newcastle, Co DownTel: 028 43725970Mobile 07767 272203email: scadaireland@aol.com

Customer	Enva Portlaoise	Contract	141101
Customer Instrume	nt V26 Temp	Location	Tank Farm
Device Description	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C
Calibration Date	12 th March 2014	Interval	12 month
Instrument Accurac	+ or - 0.1 Dec C	Calibration Due Date	March 2015
	D N		

INPUT	AS FOUND	AS LEFT	DEVIATION
0.0	+ 0.9	+ 0.9	+ 0.9
25.0	26.0	26.0	+ 1.0
50.0	51.1	51.1	+ 1.1
75.0	76.0	76.0	+ 1.0
100.0	101.0	101.0	+ 1.0
Instrument Calibrat	ion Results		1
75.0	74.6	74.6	-0.4

Calibration Equipment					
Manufacturer	Model	Serial Number.	Calibration Date	Certificate No.	
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861	
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860	

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Signature Signature (Date Date Ei SCADA IRELAND LTD

Valentia Place, Newcastle, Co DownTel: 028 43725970Mobile 07767 272203 email: scadaireland@aol.com

Customer	Enve	a Portlaoise	Contract	141101
Customer Instrum	ent [V16 Temp	Location	Tank Farm
Device Descriptio	n [PT100 Temperature Probe	Calibration Range	0 – 150 Deg C
Calibration Date	[12 th March 2014	Interval	12 month
Instrument Accura	юу [+ or - 0.1 Dec C Calibration Due Date		March 2015
Loop Calibrati	on Res	ults		
INPUT		AS FOUND	AS LEFT	DEVIATION
0.0		+ 0.8	+ 0.8	+ 0.8
25.0		25.6	25.6	+ 0.6
20.0				
50,0		50.7	50.7	+ 0.7
		50.7 75.5	50.7 75.5	+ 0.7 + 0.5
50.0				and a second sec
50.0 75.0	alibrat	75.5	75.5	+ 0.5

Calibration Equipment

Manufacturer	Model	Serial Number.	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Date 1873 Date 12/3/14 Signature Signature

SCADA IRELAND LTD Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aol.com

Customer	Enva Portlaoise	Contract	141101	
Customer Instrume	v15 Temp	Location	Tank Farm	
Device Description	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C	
Calibration Date	12 th March 2014	Interval	12 month	
Instrument Accura	+ or -0.1 Dec C	Calibration Due Date	March 2105	
Loop Calibratio	on Results			
INPUT	AS FOUND	AS LEFT	DEVIATION	
0.0	+ 0.3	+ 0.3	+ 0.3	
25.0	25.3	25.3	+ 0.3	
50.0	50.4	50.4	+0.4	

75.4

100.4

75.2

+0.4

+0.4

+0.2

Manufacturer	Model	Serial Number,	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

75.4

100.4

75.2

Comment: High Level Sounder Alarm & SCADA screen Alarm found working OK

Tested By: Accepted By: Date Signature(Signature Date

SCADA IRELAND LTD Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aol.com

75.0

100.0

75.0

Instrument Calibration Results

Customer	Enva I	Portlaoise	Contract	141101	
Customer Instrume ID	ent V	/14 Temp	Location	Tank Farm	
Device Description	n P'	T100 Temperature Probe	Calibration Range	0 – 150 Deg C	
Calibration Date	E	2 th March 2014	Interval	12 month	
Instrument Accuracy		or – 0,1 Dec C	Calibration Due Date	March 15	
Loop Calibratio	on Result	S			
INPUT		AS FOUND	AS LEFT	DEVIATION	
0.0		+0.8	+ 0.8	+0.8	
25.0		25.6	25.6	+0.6	
50.0	2	50.6	50.6	+0.6	
75.0		75.6	75.6	+ 0.6	
100.0		100.6	100.6	+ 0.6	

Instrument Calibration Results

75.0

1

Comment: High Level Sounder Alarm & SCADA screen Alarm found working OK PT100 Pocket found leaking: instrument calibration only possible with tank empty

Calibration Equipment					
Manufacturer	Model	Serial Number.	Calibration Date	Certificate No.	
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861	
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860	

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Signature Date Signature Date SCADA IRELAND LTD

Valentia Place, Newcastle, Co DownTel: 028 43725970Mobile 07767 272203 email: scadaireland@aol.com

Customer	En	va Portlaoise	Contract	141101
Customer Instrume	ent	V13 Temp	Location	Tank Farm
Device Description	ı	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C
Calibration Date		12 th March 2014	Interval	12 month
Instrument Accura	су	+ or - 0.1 Dec C	Calibration Due Date	March 2015
Loop Calibratio	on Re	sults		
INPUT		AS FOUND	AS LEFT	DEVIATION
0.0		+0.5	+ 0.5	+ 0.5
25.0		25.4	25.4	+ 0.4
50.0		50.4	50.4	+ 0.4
75.0		75.4	75.4	+ 0.4
100.0		100.4	100.4	+ 0.4
Instrument Ca	libra	tion Results		
		74.4	74.4	-0.6

Calibration Equipment

Manufacturer	Model	Serial Number,	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Signature Date Signature Date 07 SCADA IRELAND LTD

Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aol.com

Customer	Enva Portlaoise	Contract	141101	
Customer Instrument	V12 Temp	Location	Tank Farm	
Device Description	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C	
Calibration Date	12 th March 2014	Interval	12 month	
Instrument Accuracy	+ or -0.1 Dec C	Calibration Due Date	March 2015	
Loop Calibration	Results			
INPUT	AS FOUND	AS LEFT	DEVIATION	
0.0	+0.6	+ 0.6	+0.6	
25.0	25.5	25.5	+ 0.6	
50.0	50.6	50.6	+ 0.6	
75.0	75.5	75.5	+ 0.5	
100.0	100.5	100.5	+ 0.5	
Instrument Cali	bration Results			
75.0	74.7	74.7	-0.3	

Comment: High Level Sounder Alarm & SCADA screen Alarm found working OK

Calibration Equipment

Manufacturer	Model	Serial Number-	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Accepted By: **Tested By:** Signature Signature Date Date in 1 SCADA IRELAND LTD

Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aolcom

Customer	Enva Portlaoise	Contract	111401	
Customer Instrume	nt VII Temp	Location	Tank Farm	
Device Description	PT'100 Temperature Probe	Calibration Range	0 – 150 Deg C	
Calibration Date	12 th March 2014	Interval	12 month	
Instrument Accura	+ or - 0.1 Dec C	Calibration Due Date	March 2015	
Loop Calibratio	on Results			
INPUT	AS FOUND	AS LEFT	DEVIATION	

INPUT	AS FOUND	AS LEFT	DEVIATION
0.0	0.5	0.5	+ 0.5
25.0	25.5	25.5	+ 0.5
50.0	50.4	50.4	+ 0.4
75.0	75.5	75.5	+ 0.5
100.0	100.5	100.5	+ 0.5
nstrument Calibrat	ion Results		
75.0	74.1	74.1	-0.9

Calibration Equipment Calibration Date Certificate No. Serial Number. Manufacturer Model 10th Feb 2014 84/PT2/100 11861 PC Temp PT2 Eurolec 10th Feb 2014 11860 1203B2 **Time Electronics** 1042 Resistance

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Signature	Date 12/7/14	Accepted By: Signature	Date 1873714
00		0	

SCADA IRELAND LTD Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aolcom

Customer	Enva	Portlaoise	Contract	111401	
Customer Instrume	ent	V32 Temp	Location	Tank Farm	
Device Description		PT100 Temperature Probe	Calibration Range	0 – 150 Deg C	
Calibration Date		12 th March 2014	Interval	12 month	
Instrument Accura	cy [+ or - 0.1 Dec C	Calibration Due Date	March 2015	
Loop Calibratio	on Resu	ts			
INPUT		AS FOUND	AS LEFT	DEVIATION	
0.0		+ 0.3	+ 0.3	+ 0.3	
25.0		25.3	25.3	+ 0.3	
50.0		50.3	50.3	+ 0.3	
75.0		75.1	75.1	+ 0.1	
100.0		100.1	100.1	+ 0.1	
		Decults			
Instrument Ca	libratio	on Results			

Calibration Equipment

Manufacturer	Model	Serial Number- Calib		Certificate No.	
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861	
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860	

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Date Signature Signature 🦻 Date SCADA IRELAND LTD

Valentia Place, Newcastle, Co DownTel: 028 43725970Mobile 07767 272203email: scadaireland@aol.com

Customer	Enva P	ortlaoise	Contract	111401	
Customer Instrume	ent V2	24 Temp	Location	Tank Farm	
Device Description	РТ	100 Temperature Probe	Calibration Range	0 – 150 Deg C	
Calibration Date	12	th March 2014	Interval	12 month	
Instrument Accura	ey + e	or - 0.1 Dec C	Calibration Due Date	March 2015	
Loop Calibratio	on Results				
INPUT		AS FOUND	AS LEFT	DEVIATION	
0.0		0.0	0.0	0	

25.0	25.0	25.0	0
50.0	49.7	49.7	- 0.3
75.0	74.7	74.7	- 0.3
100.0	100.0	100.0	0
Instrument Calibrat	ion Results		
75.0	74.8	74.8	-0.2

Comment: Wire terminations in PT100 head rewired. High Level Sounder and SCADA screen Alarm found working OK

Calibration Equipment						
Manufacturer	Model	Serial Number.	Calibration Date	Certificate No.		
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861		
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860		

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Signature(Signature Date Date 'iy VB

SCADA IRELAND LTD Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aol.com

ustomer	stomer Enva Portlaoise		Contract	111401	
Customer Instrum	ient V2	25 Temp	Location	Tank Farm	
Device Descriptic	DT100 Temperature Probe		Calibration Range	0 – 150 Deg C	
Calibration Date	alibration Date 12th March 2014		Interval	12 month	
Instrument Accuracy + or - 0.1 Dec C		Calibration Due Date	March 2015		
Loop Calibrat	ion Results	j			
INPUT AS FOUND					
INPUT		AS FOUND	AS LEFT	DEVIATION	
INPUT 0.0		AS FOUND	AS LEFT 0.2	DEVIATION + 0.2	
		r T			
0.0		0.2	0.2	+ 0.2	
0.0 25.0		0.2 25.0	0.2 25.0	+ 0.2	

Instrument Calibration Results

75.0

Comment: High level sounder and SCADA screen Alarm found working OK

74.4

Calibration Equip Manufacturer	Certificate No.			
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860

74.4

-0.6

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: Date 12 214 Date Signature Signature

Valentia Place, Newcastle, Co DownTel: 028 43725970Mobile 07767 272203email: scadaireland@aol.com

SCADA IRELAND LTD

Customer	Enva Portlaoise	Contract	141101
Customer Instrume	ent V19 Bottom Temp	Location	Tank Farm
Device Description	PT100 Temperature Probe	Calibration Range	0 – 150 Deg C
Calibration Date	12 th March 14	Interval	12 month
Instrument Accura	→ + or - 0.1 Dec C	Calibration Due Date	March 15
Loop Calibrati	n Dogulta		

INPUT	AS FOUND	AS LEFT	DEVIATION
0.0	0.2	0.2	+ 0.2
25.0	25.1	25.1	+ 0.1
50.2	50.0	50.0	0
75.2	74.9	74.9	-0.1
100.2	99.9	99.9	-0.1
Instrument Calibrat	ion Results		
75.0	74.3	74.3	-0.7

Calibration Equipment

Manufacturer	Model	Serial Number.	Calibration Date	Certificate No.
Eurolec	PC Temp PT2	84/PT2/100	20 th Feb 2014	11861
Time Electronics	1042 Resistance	1203B2	20 th Feb 2014	11860

DECLARATION: The calibration references used can be traced back to recognised national standards.

Tested By: Accepted By: 14 Date 1873 Date 12 Signature Signature (SCADA IRELAND LTD

Valentia Place, Newcastle, Co DownTel: 028 43725970Mobile 07767 272203 email: scadaireland@aol.com

Customer	Enva	Portlaoise	Contract	141101	
Customer Instrum	ent	V19 Top Temp	Location	Tank Farm	
Device Descriptio	ription PT100 Temperature Probe		Calibration Range	0 – 150 Deg C	
Calibration Date	libration Date 12 th March 14		Interval	12 month	
Instrument Accura	strument Accuracy + or - 0.1 Dec C		Calibration	March 15	
			Due Date		
Loop Calibrati	on Resul	ts	Due Date		
Loop Calibrati	on Resul	ts AS FOUND	AS LEFT	DEVIATION	
-	on Resul			DEVIATION - 0.2	
INPUT	on Resul	AS FOUND	AS LEFT		
0.0	on Resul	AS FOUND - 0.2	AS LEFT - 0.2	- 0.2	
INPUT 0.0 25.0	on Resul	AS FOUND - 0.2 24.7	AS LEFT - 0.2 24.7	- 0.2	

Instrument Calibration Results

75.0

Comments: No pocket in tank. High level sounder and SCADA screen Alarm found OK

74.4

Calibration Equipment						
Manufacturer	Model	Serial Number.	Calibration Date	Certificate No.		
Eurolec	PC Temp PT2	84/PT2/100	10 th Feb 2014	11861		
Time Electronics	1042 Resistance	1203B2	10 th Feb 2014	11860		

74.4

0.6

-

DECLARATION: The calibration references used can be traced back to recognised national standards.

Accepted By: **Tested By:** Date 18 Signature Date Signature (

SCADA IRELAND LTD Valentia Place, Newcastle, Co Down Tel: 028 43725970 Mobile 07767 272203 email: scadaireland@aol.com

Environmental Protection Agency

| PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : PRTR Final.xls | Return Year : 2013 |

31/03/2014 18:12

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2013

1. FACILITY IDENTIFICATION								
	Parent Company Name	Enva Ireland Limited						
	Facility Name	Enva Ireland Limited (Portlaoise)						
	PRTR Identification Number	W0184						
	Licence Number	W0184-01						

Waste or IPPC Classes of Activity	
	class_name
	Oil re-refining or other re-uses of oil.
	Repackaging prior to submission to any activity referred to in a
3.12	preceding paragraph of this Schedule.
	P
	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
3 13	collection, on the premises where the waste concerned is produced.
5.10	Biological treatment not referred to elsewhere in this Schedule which
	results in final compounds or mixtures which are disposed of by
	means of any activity referred to in paragraphs 1. to 10. of this
	Schedule.
3.0	Schedule.
	Physico-chemical treatment not referred to elsewhere in this
	Schedule (including evaporation, drying and calcination) which results
	in final compounds or mixtures which are disposed of by means of
3.7	any activity referred to in paragraphs 1. to 10. of this Schedule.
	Use of waste obtained from any activity referred to in a preceding
4.11	paragraph of this Schedule.
	Exchange of waste for submission to any activity referred to in a
4.12	preceding paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred to in
	a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
4 13	produced.
	Recycling or reclamation of organic substances which are not used
	as solvents (including composting and other biological transformation
4.2	processes).
	Recycling or reclamation of other inorganic materials.
	Regeneration of acids or bases.
4.0	Use of any waste principally as a fuel or other means to generate
10	energy.
	Clonminam Industrial Estate
	Portlaoise
	County Laois
Address 4	
	Laois
Country	
Coordinates of Location	
River Basin District	
NACE Code	
	Recovery of sorted materials
AER Returns Contact Name	
AER Returns Contact Marie	
	INdowing@enva.ie
AER Returns Contact Position	HSE Coordinator
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number	
AER Returns Contact Mobile Phone Number	
Production Volume	
Production Volume Production Volume Units	
Number of Installations	
Number of Operating Hours in Year	0
Number of Employees	
User Feedback/Comments	
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name					
5(a)	nstallations for the recovery or disposal of hazardous waste					
5(c) 50.1	Installations for the disposal of non-hazardous waste					
50.1	General					
3. SOLVENTS REGULATIONS (S.I. No. 543 of 200	02)					
Is it applicable?						
Have you been granted an exemption ?						

If applicable which activity class applies (as per Schedule 2 of the regulations) ?	
Is the reduction scheme compliance route being used ?	
	•
4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site
Do you import/accept waste onto your site for on-	

0.0 0.0

0.0

10

4.1 RELEASES TO AIR Link to previous years emissions data | PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : PRTR Final.xls | Return Year : 2013 | 31/03/2014 18:12 SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS RELEASES TO AIR in this section in KGs ase enter all q QUANTITY METH No. Annex II Name M/C/E Emission Point 1 T (Total) KG/Year A (Accidental) KG/Year F (Fugitive) KG/Year signation or Kane May Quintox KM9160 flue gas analyser. 08 - Nitrogen oxides (NOx/NO2) Nitrogen oxides (NOx/NO2) Sulphur oxides (SOx/SO2) OTH 43.22 2.298 43.22 2.298 0.0 0.0 C C EN 14791:2005 Kane May Quintox KM9160 flue gas analyser Carbon monoxide (CO) OTH 1.379 0.0 0.0 C

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO AIR	Please enter all quantities in this section in KGs							
POLLUTANT				METHOD	QUANTITY				
				Method Used					
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					0.0		0.0 0	.0 0.0	
	* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button								

SECTION C - DEMAINING BOULUTANT EMISSIONS (As required in your Lisense)

	SECTION C. REMAINING FOLLOTANT EMIN	RELEASES TO AIR Please enter all quantities in this section in KGs											
					Please enter all quantities in this section in KGs								
	POLLUTANT				METHOD	QUANTITY							
- 1					Method Used								
	Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (A	Accidental) KG/Year	F (Fugitive) KG/Year			
						0.0		0.0	0.0	0.0			

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Landfill operators										
For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Met methane (CH4) emission to the environment under T(total) KG/yr for Section &: Sector specific PRTR pollutants above. Please complete the table below:										
Landfill:	Enva Ireland Limited (Portlaoise)									
Please enter summary data on the										
quantities of methane flared and / or										
utilised			Meth	od Used						
				Designation or	Facility Total Capacity					
	T (Total) kg/Year	M/C/E	Method Code	Description	m3 per hour					
Total estimated methane generation (as per										
site model)	0.0				N/A					
Methane flared	0.0					(Total Flaring Capacity)				
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)				
Net methane emission (as reported in Section										
A above)	0.0				N/A					

4.2 RELEASES TO WATERS Link to previous years emissions data

| PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : PRTR Final.xls | Return Year : 2013 |

31/03/2014 18:12

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS Data on ambient monitoring of storm/surface water or groundwater, conducted as part of your licence requirements, should NOT be submitted under AER / PRTR Reporting as this only or										only concerns Releases from your facil
				Please enter all quantities in this section in KGs						
POLLUTANT					QUANTITY					
				Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1		T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
						0.0	0.	0 0.0	0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

	RELEASES TO WATERS		Please enter all quantities in this section in KGs						
PO				QUANTITY					
			Method Used						
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year	
					0.0	0.0	0.0	0.0	

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RELEASES TO WATERS		Please enter all quantities in this section in KGs							
POLLUTANT					QUANTITY					
			Method Used							
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year		
					0.0	0.0	0.0	0.0		

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Sheet : Releases to Waters

lity

4.3 RELEASES TO WASTEWATER OR SEWER

AER Returns Workbook

| PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : PRTR Final.xls | Retu

0.0

0.0

31/03/2014 18:12

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

8

SECTION A : PRTR POLLUTANTS OFFSITE TRANSFER OF POLLUTANTS DESTINED FOR WASTE-WATER TREATMENT OR SEWER ntities in this section in KGs e enter all qu QUANTITY thod Used A/C/E A (Accidental) KG/Year F (Fugitive) KG/Year lo. Annex II Designation or Description Emission Point 1 (Total) KG/Year Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 4000, section 4500 –Nitrogen (Ammonia) F Phenate Method. 06 Ammonia (NH3) С OTH 270.1537 0.0 0.0 Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 4500 - CI - C, С OTH 12147.084 79 Chlorides (as Cl) Mercuric Nitrate Method. 0.0 0.0 Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 5530, Phenols, Phenols (as total C) С OTH 0.0 71 96.272 0.0 Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 4500-E. Phosphorus Ascorbic Acid Method. Total phosphorus С OTH 512.005 0.0 0.0 13 Standard Methods for the Examination of Water and Wastewater, 18th edition, Metals by Flame Atomic Absorption Spectrometry – Direct Air-Acetylene Flame Method. 3111B - Modified Copper and compounds (as Cu) С OTH 0.10482 0.0 0.0 20 Standard Methods for the Examination of Water and Wastewater, 18th edition, Metals by Flame Atomic Absorption Spectrometry -Direct Air-Acetylene Flame Method. 3111B - Modified OTH 18 Cadmium and compounds (as Cd) С 0.0421 0.0 0.0 Standard Methods for the Examination of Water and Wastewater, 18th edition, Metals by Flame Atomic Absorption Spectrometry – Direct Air-Acetylene Flame Zinc and compounds (as Zn) С OTH Method. 3111B - Modified 1.111 0.0 0.0 24 Standard Methods for the Examination of Water and Wastewater, 18th edition, Metals by Flame Atomic Absorption Spectrometry -Direct Air-Acetylene Flame Lead and compounds (as Pb) C OTH Method. 3111B - Modified 0.0 1.19008 0.0

Link to previous years emissions data

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	OFFSITE TRANSFER OF POLLUTANTS DESTI	Please enter all quantities in this section in KGs							
	POLLUTANT				METHOD	QUANTITY			
					Method Used				
Pollutant No.	Name	M/C	C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					Standard Methods for the				
					Examination of Water and				
					Wastewater, 18th edition,				
					1995, Part 5520 D Soxhlet				
314	Fats, Oils and Greases	C		OTH	Extraction Method	90.28	3 90.283	8 0.0	0.0

240	Suspended Solids	с	отн	Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 2540, D - Solids.	480.7921	0.0	0.0	0.0
343	Sulphate	с	отн	Standard Methods for the Examination of Water and Wastewater, 18th edition, 1995, Part 4500 - SO4* E Standard Methods for the Examination of Water and	495.333	0.0	0.0	0.0
306	COD Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button	с	ОТН	Wastewater, 21st edition, 2005.– Chemical Oxygen Demand.	21847.52	0.0	0.0	0.0

Link to previous years emissions data

4.4 RELEASES TO LAND Link to previous years emissions data

| PRTR# : W0184 | Facility Name : Enva Ireland Limited (Portlaoise) | Filename : PRTR Final.xls | Return Year : 2013 |

31/03/2014 18:12

SECTION A : PRTR POLLUTANTS

	RELEASES TO LAND				Please enter all quant	tities in this section in K	Gs	
	POLLUTANT		METH	HOD			QUANTITY	
			M	lethod Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accident	al) KG/Year
						0.0	0.0	0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING POLLUTANT EMISSIONS (as required in your Licence)

	RE	LEASES TO LAND			Please enter all quantiti	ies in this section in KC)s
	POLLUTANT		М	ETHOD			QUANTITY
				Method Used			
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year
						0.0	0.0 0.0

* Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

			Quantity (Tonnes per Year)		Waste		Method Used		Haz Waste : Name and Licence/Permit No of Next Destination Facility <u>Nom</u> <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	<u>Haz Waste</u> : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Sit (HAZARDOUS WASTE ONLY
Fransfer Destination	European Waste Code	Hazardous		Description of Waste	Treatment Operation	M/C/E	Method Used	Location of Treatment				
										Rue de Courriere 49 Zoning Industrial de Feluy		
									Casavala			Rue de Courriere 49 Zoning Industrial de Feluy
				waste paint and varnish containing organic					Geocycle	,. ,B 7181 Seneffe	de Courriere 49 Zoning Industrial de Feluy,B	B 7181 Seneffe
o Other Countries	08 01 11	Yes	76.88		R1	М	Weighed	Abroad	,38.152/BP	,Belgium	7181 Seneffe ,Belgium Nehlsen GmbH & Co.kg, A-	,Belgium
				waste paint and varnish containing organic					Nehlsen GmbH & Co.kg, A-	Louis-Krages-Strabe ,.,Bremen., D-28237	4187 HH,Louis-Krages- Strabe ,.,Bremen., D-28237	Louis-Krages-Strabe ,,,Bremen., D-28237
o Other Countries	08 01 11	Yes	123.28		R3	М	Weighed	Abroad	4187 HH	,Germany	,Germany	,Germany
										Smithstown Industrial estate	Lindenschmidt, 04 714 98089,Krombacher Strasse 42-46,,Kreutzal,D57223	Krombacher Strasse 42-46
o Other Countries	09 01 04	Yes	1.27	fixed solutions	R1	М	Weighed	Abroad	Enva ,W041-1	Clare, Ireland	,Germany	,Germany
										JFK Road Naas Road,.,Dublin,Dublin		JFK Road Naas Road,.,Dublin,Dublin
Vithin the Country	13 05 07	Yes	40.0	oily water from oil/water separators	D9	М	Weighed	Offsite in Ireland	Enva,W0196-1	12,Ireland	12,Ireland KS Recycling ,12 150 13984/01TMS,Raiffeisenstra	12,Ireland
o Other Countries	13 07 03	Yes	79.54	other fuels (including mixtures)	R1	м	Weighed	Abroad	KS Recycling ,12 150 13984/01TMS	Raiffeisenstraße 38 ,, D- 47665 Sonsbeck ,Germany JFK Road Naas RoadDublin,Dublin	ße 38 ,, D-47665 Sonsbeck ,Germany Enva,W0196-01,JFK Road	Raiffeisenstraße 38,, E 47665 Sonsbeck ,Germa JFK Road Naas RoadDublin.Dublin
Vithin the Country	13 08 02	Yes	68.26	other emulsions	D9	М	Weighed	Offsite in Ireland	Enva,W0196-1 ROC Recycling Solutions,WFP-LS-11-	12,Ireland Ballymacken Industrial EstatePortlaoise,Co.	12,Ireland	12,Ireland
Vithin the Country	15 01 01	No	1.2	paper and cardboard packaging	R3	М	Weighed	Offsite in Ireland		Laois,Ireland		
o Other Countries	15 01 10	Yes	4.0	packaging containing residues of or contaminated by dangerous substances	R3	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	Lindenschmidt, 04 714 98089,Krombacher Strasse 42-46,,Kreutzal,D57223 ,Germany Nehlsen GmbH & Co.kg, A-	Krombacher Strasse 42-4 ,.,Kreutzal,D57223 ,Germany
									Naklaas Osekii 8 Oseka A	Louis-Krages-Strabe		Louis-Krages-Strabe
o Other Countries	15 01 10	Yes	63.06	packaging containing residues of or contaminated by dangerous substances	R3	м	Weighed	Abroad	Nehlsen GmbH & Co.kg, A- 4187 HH	,.,Bremen., D-28237 ,Germany	Strabe ,.,Bremen., D-28237 ,Germany	,.,Bremen., D-28237 ,Germany
	15 04 40	N	0.000	packaging containing residues of or	Do		M/sish si	Officite in Inclosed	From W044.4	,.,Shannon ,Co.	Industrial estate ,.,Shannon	Smithstown Industrial est ,.,Shannon ,Co.
Vithin the Country	15 01 10	Yes	3.286	, ,	D9	М	Weighed	Offsite in Ireland	Enva ,W041-1	Clare, Ireland	,Co. Clare,Ireland	Clare, Ireland
				absorbents, filter materials (including oil filters not otherwise specified), wiping cloths, protective clothing contaminated by						Smithstown Industrial estate	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,.,Kreutzal,D57223	Krombacher Strasse 42- ,.,Kreutzal,D57223
o Other Countries	15 02 02	Yes	1.124	dangerous substances	R12	М	Weighed	Abroad	Enva ,W041-1	Clare, Ireland	,Germany RD Recycling ,Ovam	,Germany
o Other Countries	16 01 07	Yes	684.06	oil filters	R12	м	Weighed	Abroad	RD Recycling ,Ovam approved	Centrum Zuid 3017 ,,3530,Belgium. Krombacher Strasse 42-46	approved,Centrum Zuid 3017 ,,3530,Belgium.	Centrum Zuid 3017 ,,,,,3530,Belgium.
										NonDacher Strasse 42-40		
o Other Countries	16 01 15	No	0.3	antifreeze fluids other than those mentioned in 16 01 14 antifreeze fluids other than those	R1	м	Weighed	Abroad	Lindenschmidt,04 714 98089 KS Recycling,12 150	,.,Kreutzal,D57223 ,Germany Raiffeisenstraße 38 ,, D-		

		r r							Haz Waste : Name and			
			Quantity (Tonnes per Year)		Waste		Method Used		Hat wase Name and Licence/Permit No of Next Non Destination Facility Non Haz Waste: Name and Licence/Permit No of Recover/Disposer	<u>Haz Waste</u> : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Destination	European Waste Code	Hazardous		Description of Waste	Treatment Operation	M/C/E	Method Used	Location of Treatment				
To Other Countries	16 05 04	Yes		gases in pressure containers (including halons) containing dangerous substances	R4	м	Weighed	Abroad	SBH ,121296753	Austrabe 5 ,,D74238 Krautheim,Germany	SBH ,121296753,Austrabe 5 ,,.,,D74238 Krautheim,Germany	Austrabe 5 ,,D74238 Krautheim,Germany
To Other Countries	16 05 06	Yes		laboratory chemicals, consisting of or containing dangerous substances, including mixtures of laboratory chemicals	R1	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
To Other Countries	16 05 07	Yes		discarded inorganic chemicals consisting of or containing dangerous substances	R1	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
To Other Countries	16 05 08	Yes	0.239	discarded organic chemicals consisting of or containing dangerous substances discarded chemicals other than those mentioned in 16 05 06, 16 05 07 or 16 05	R1	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland Smithstown Industrial estate ,.,Shannon ,Co.	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
Within the Country	16 05 09	No	0.466		R1	М	Weighed	Offsite in Ireland	Enva ,W041-1	Clare, Ireland	Campine, Ovam Approved,	
To Other Countries Within the Country		Yes No		lead batteries	R4 R5	M M	Weighed	Abroad Offsite in Ireland	Campine,Ovam Approved AES Advanced Environmental Solutions (Ireland) Limited,W0104-02	Niljverheidsstraat 2 Belgium,,B- 2340 Beerse ,Belgium ,Tullamore,Co. Offaly,Ireland Straboe	Niljverheidsstraat 2 Belgium,,B- 2340 Beerse ,Belgium	Niljverheidsstraat 2 Belgium,,B- 2340 Beerse ,Belgium
									Hinch Plant hire	,. , Portlaoise		
Within the Country	17 05 04	No	2052.21	soil and stones other than those mentioned in 17 05 03 mixed construction and demolition wastes	R5	М	Weighed	Offsite in Ireland	,WFP-LS-09-0002-01	,Co Laois ,Ireland		
Within the Country	17 09 04	No		other than those mentioned in 17 09 01, 17 09 02 and 17 09 03	R5	М	Weighed	Offsite in Ireland	Guessford Ltd.,WFP-10-OY- 0183-02	Barnan,.,Daingean,Co. Offaly,Ireland		
To Other Countries	19 02 09	Yes	855.862	solid combustible wastes containing dangerous substances sludges from other treatment of industrial	R1	м	Weighed	Abroad	Lindenschmidt , 04 714 98089	Krombacher Strasse 42-46 ,,Kreutzal,D57223 ,Germany JFK Road Naas	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
Within the Country	19 08 14	No		waste water other than those mentioned in 19 08 13	D9	м	Weighed	Offsite in Ireland	Enva.W0196-1	Road,.,Dublin,Dublin 12,Ireland		
Within the Country		Yes	6392.75	aqueous liquid wastes of including mixtures of	D9	С	Volume Calculation		Laois County Council,DO00	Ridge Road,.,Portlaoise,.,Ireland	Laois County Council,DO00 1-0 1,Ridge Road,Portlaoise,Ireland KWA,E17012100,Graftstr.	Ridge Road,.,Portlaoise,.,Ireland
To Other Countries	19 12 11	Yes		materials) from mechanical treatment of waste containing dangerous substances	D10	М	Weighed	Abroad	KWA,E17012100	Graftstr. 25 ,.,.,47475 Kamp-Lintfort ,Germany	25 ,,,,,47475 Kamp-Lintfort ,Germany	Graftstr. 25 ,.,.,47475 Kamp-Lintfort ,Germany
				fluorescent tubes and other mercury-					Irish Lamp Recycling WFP-	Woodstock Industrial Estate	Irish Lamp Recycling ,WFP- KE-08-0348-01,Woodstock Industrial EstateAthy	Woodstock Industrial Estate
Within the Country	20 01 21	Yes		containing waste	R4	М	Weighed	Offsite in Ireland		",Athy "Co. Kildare. "Ireland		",Athy "Co. Kildare. "Ireland

									Haz Waste : Name and Licence/Permit No of Next			
			Quantity (Tonnes per Year)				Method Used		Destination Facility <u>Non</u> <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	<u>Haz Waste</u> : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARDOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
Transfer Destination	European Waste Code	Hazardous		Description of Waste	Waste Treatment Operation	M/C/E	Method Used	Location of Treatment				
Within the Country	20 01 25	No	0.68	edible oil and fat	R9	м	Weighed	Offsite in Ireland		Ballymount Drive Ballymount Industrial Estate,Unit J1 ,Dublin,Dublin 12,Ireland Camphil Community Ballytobin ,.,Callan ,Co.		
Within the Country	20 01 25	No	71.16	6 edible oil and fat	D8	М	Weighed	Offsite in Ireland	Beofs ,WFP-KK-09-0004-01	Kilkenny,Ireland		
To Other Countries Within the Country		Yes No		paint, inks, adhesives and resins containing dangerous substances 2 waste from sewage cleaning	R1 D9	M	Weighed	Abroad Offsite in Ireland	Enva ,W041-1 Enva,W0196-1	Smithstown Industrial estate ,Shannon ,Co. Clare,Ireland JFK Road Naas Road,,Dublin,Dublin 12,Ireland	Lindenschmidt , 04 714 98089,Krombacher Strasse 42-46 .,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,,Kreutzal,D57223 ,Germany
To Other Countries	08 01 11	Yes	2.5	waste paint and varnish containing organic 5 solvents or other dangerous substances	R1	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland Rue de Courriere 49 Zoning Industrial de Feluy	42-46 ,.,Kreutzal,D57223 ,Germany	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
To Other Countries	12 01 14	Yes	35.5	machining sludges containing dangerous 5 substances	R1	м	Weighed	Abroad	Geocycle ,38.152/BP	,. ,B 7181 Seneffe ,Belgium Rue de Courriere 49 Zoning Industrial de Feluy	Geocycle ,38.152/BP, Rue de Courriere 49 Zoning Industrial de Feluy ,,,,B 7181 Seneffe ,Belgium	Rue de Courriere 49 Zoning Industrial de Feluy ,,B 7181 Seneffe ,Belgium
To Other Countries	13 05 07	Yes	28.0) oily water from oil/water separators	R1	м	Weighed	Abroad	Geocycle ,38.152/BP	,B 7181 Seneffe ,Belgium	Geocycle ,38.152/BP, Rue de Courriere 49 Zoning Industrial de Feluy ,,B 7181 Seneffe ,Belgium	Rue de Courriere 49 Zoning Industrial de Feluy ,,B 7181 Seneffe ,Belgium
Within the Country	20 01 40	No	234.02	2 metals	R4	М	Weighed	Offsite in Ireland	MSM Recycling,WFP-TN-11- 0003-02	Annagh,.,Birr,Co. Tipperary,Ireland Rue de Courriere 49 Zoning Industrial de Feluy		
									Geocycle	,. ,. ,B 7181 Seneffe	Geocycle ,38.152/BP, Rue de Courriere 49 Zoning Industrial de Feluy ,,,,,B	Rue de Courriere 49 Zoning Industrial de Feluy ,,B 7181 Seneffe
To Other Countries	13 07 03	Yes	2.05	5 other fuels (including mixtures)	R1	М	Weighed	Abroad	,38.152/BP	,Belgium Smithstown Industrial estate	7181 Seneffe ,Belgium	,Belgium
To Other Countries	08 04 10	No	0.08	waste adhesives and sealants other than those mentioned in 08 04 09	R1	М	Weighed	Abroad	Enva ,W041-1	,.,Shannon ,Co. Clare,Ireland Cappincur Industrial Estate ,Daingean		
Within the Country	16 06 04	No	1.2	2 alkaline batteries (except 16 06 03)	R4	м	Weighed	Offsite in Ireland	KNK Metals Recycling Limited,W0113-04	Road,Tullamore,Co. Offaly,Ireland	Scori Lillebonne,.,Z1	
To Other Countries	13 05 07	Yes	1378.46	oily water from oil/water separators	D10	м	Weighed	Abroad	Scori Lillebonne,.	Z1 Avenue de Port Jerome,76170 Lillebonne,,,France	Avenue de Port Jerome,76170,Lillebonne,.,F rance	Z1 Avenue de Port Jerome,76170,Lillebonne,,F rance
Within the Country	16 05 04	Yes	0.024	gases in pressure containers (including t halons) containing dangerous substances	R13	м	Weighed	Offsite in Ireland	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	Enva ,W041-1,Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland

31/3/2014	18:5
-----------	------

ransfer Destination	European Waste Code	Hazardous	Quantity (Tonnes per Year)	escription of Waste	Waste Treatment Operation		Method Used Method Used	Location of Treatment	Haz Waste : Name and Licence/Permit No of Next Destination Facility <u>Non</u> <u>Haz Waste</u> : Name and Licence/Permit No of Recover/Disposer	Haz Waste : Address of Next Destination Facility <u>Non Haz Waste</u> : Address of Recover/Disposer	Name and License / Permit No. and Address of Final Recoverer / Disposer (HAZARPOUS WASTE ONLY)	Actual Address of Final Destination i.e. Final Recovery / Disposal Site (HAZARDOUS WASTE ONLY)
o Other Countries	13 02 08	Yes	1.5 other engine,	gear and lubricating oils	R1	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate	42-46 ,.,Kreutzal,D57223	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
o Other Countries	20 01 29	Yes	detergents co 0.378 substances	ntaining dangerous	R1	м	Weighed	Abroad	Enva ,W041-1	Smithstown Industrial estate	42-46 ,.,Kreutzal,D57223	Krombacher Strasse 42-46 ,.,Kreutzal,D57223 ,Germany
Vithin the Country	13 05 07	Yes	16.18 oily water from	n oil/water separators	R13	М	Weighed	Offsite in Ireland	Enva ,W041-1 Acom Recycling ltd ,W0249-	,.,Shannon ,Co. Clare,Ireland Ballybeg Composting facility	Industrial estate ,.,Shannon	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland
Vithin the Country	20 03 04	No	2.58 septic tank slu	udge	R3	М	Weighed	Offsite in Ireland		Tipperary. ,Ireland		
Vithin the Country	02 07 04	No	materials uns 10.48 processing	uitable for consumption or	R13	м	Weighed	Offsite in Ireland	Enva ,W041-1	Smithstown Industrial estate ,.,Shannon ,Co. Clare,Ireland		

* Select a row by double-clicking the Description of Waste then click the delete button

Link to previous years waste data Link to previous years waste summary data & percentage change Link to Waste Guidance

Enva Ireland Ltd Raffeen Ind Est, Ringaskiddy, Co.Cork

Tel: 021 438 7200 Fax: 021 438 7299 Email: cork@enva.ie

<u>RESPIROMETRY REPORT</u> <u>ENVA Portlaoise</u>

A sample was received on 20.06.13 from Enva Portlaoise for evaluation of its effect on activated sludge micro organisms. The methodology for this is by respirometry, which assesses the oxygen uptake of a standard activated sludge versus sludge containing the sample for evaluation, over a 30-minute period. The sample submitted was as follows:

Sample Sludge Portlaoise June 2013

Sample Time/Mins.	Control	Sample ¹ /2 Dilution
0	9.2	8.8
1	6.7	5.1
2	6.4	4.9
3	6.1	4.6
4	5.9	4.3
5	5.7	3.9
10	4.8	2.3
15	4.0	0.7
20	3.2	0
25	2.3	
30	1.2	
% Inhibition		-10%

The result was as follows: (all results $mg/l 0_2$)

Only samples showing +30% or greater inhibition are considered to have a negative effect on the activated sludge.

As we can see the sample is lower than +30% so this indicates that there was no inhibition of the activity of the activated sludge micro organisms.

Signed:

Date: 2/7/13

Enva Ireland Ltd Raffeen Ind Est, Ringaskiddy, Co.Cork

Tel: 021 438 7200 Fax: 021 438 7299 Email: cork@enva.ie Web: www.enva.ie

RESPIROMETRY REPORT

ENVA PORTLAOISE

One sample was received on the 12/12/2013 for evaluation of their effect on activated sludge micro organisms at given dilutions. The methodology for this is by respirometry, which assesses the oxygen uptake of a standard activated sludge versus sludge containing the samples for evaluation, over a 30 minute period. The samples submitted were as follows:

Effluent	Enva Portlaoise	
11.12.13		

The results were as follows: (all results mg/l 0₂)

Sample Time/Mins.	Control	¹ / ₅ Dilution	¹ / ₁₀ Dilution
0	9.5	9.3	9.8
1	8.7	8.6	8.9
2	7.9	7.5	8.0
3	6.3	6.5	6.7
4	5.8	5.6	6.0
5	4.6	4.9	4.9
10	3.8	4.0	4.2
15	3.1	3.3	3.4
20	2.6	2.9	2.8
25	2.1	2.4	2.3
30	1.5	1.9	1.7
% Inhibition		6.9%	0 %

Only samples showing +30% or greater inhibition are considered to have a negative effect on the activated sludge.

As we can see all of the samples proved lower than this in inhibition terms. This indicates that there was no inhibition of the activity of the activated sludge micro organisms from the samples at their respective dilutions.

Signed: Jack Date: slilig

Appendix 10

Head Office, Lower Baggot Street Dublin 2, Ireland Tel +353 (0)1 604 4000 Fax +353 (0)1 604 4005 www.boi.ie/corporate

PERFORMANCE BOND

KNOW ALL MEN BY THESE PRESENTS that we ATLAS ENVIRONMENTAL IRELAND LIMITED whose registered office is at C/O Atlas Oil, Clonminan Industrial Estate, Portlaoise, Co Laois (hereinafter called "the Licensee") and THE GOVERNOR & COMPANY OF THE BANK OF IRELAND whose registered office is at Lower Baggot Street, Dublin 2 (hereinafter called "the Surety") are held and firmly bound unto the ENVIRONMENTAL PROTECTION AGENCY having its registered office at PO Box 3000 Johnstown Castle Estate, County Wexford (hereinafter called "the Agency") in the sum of € 278,670 (Two hundred and seventy eight thousand six hundred and seventy Euro) to be paid to the Agency for the payment of which said sum well and truly to be made and done the said Licensee and the Surety bind themselves, their successors and assigns jointly and severally by these presents.

WHEREAS the Bond of Surety is supplemental to a Waste Licence Register number 184-1 dated 16th January 2004 (hereinafter called the "Licence") allowing the Licensee to carry on waste activities at Clonminam Industrial Estate, Portlaoise, County Laois in strict accordance with the terms of the said Licence. The Licensee is required to observe all of the conditions of the Licence, and in particular to clean up the site in the event of a closure. NOW THEREFORE the condition of the above-written bond is such that (i) if the Licensee shall duly perform and observe all the terms provisions conditions and stipulations of the said Licence on the Licensee's part to be performed and observed or (ii) if on default by the Licensee the Surety shall satisfy and discharge the damages sustained by the Agency thereby up to the amount of the above-written bond or (iii) if no claim is made by the Agency on or before the expiry date then this obligation shall be null and void, but otherwise shall be and remain in full force and effect.

The initial expiry date of this Bond is 31st January 2006 and it is a condition of this Bond that it shall be deemed automatically extended without amendment for one year from its expiry date, or from any future expiry date, unless at least thirty (30) days prior to any such expiry date the Surety shall notify the Agency by registered mail, that it elects not to consider this Bond renewed for any such additional period.

The Surety shall be notified in writing of any non-performance or non-observance on the part of the Licensee of any of the said terms covenants clauses provisions stipulations and conditions contained in the said Licence or on its part to be performed and observed which may involve a loss for which the Surety is responsible hereunder within three months after such non-performance or non-observance shall have come to the knowledge

Legal Information

Bank of Ireland - incorporated in Ireland with limited liability. A tied insurance agent of New Ireland Assurance Company plc trading as Bank of Ireland Life, Bank of Ireland is regulated by the Irish Financial Services Regulatory Authority

Registered Information Registered No. C-1 Head Office, Lower Baggot Street, Dublin 2, Ireland

A member of Bank of Ireland Group (S)

of the Agency or their representative or representatives having supervision of the said Licence and a Registered Letter posted to the Surety at its registered offices shall be notice required within the meaning of this Bond and the Agency shall in so far as it may be lawful permit the Surety (at the Surety's request and solely at the Surety's option) to perform the terms covenants clauses provisions stipulations and conditions of the same Contract which the Licensee shall have failed to perform or observe.

PROVIDED ALWAYS that:

(1) No liability shall attach to the Surety under this bond in consequence of any delay or failure by the Licensee to honour the terms of the Licence whether directly or indirectly arising out of War Invasion Act of Foreign Enemy Hostilities Civil War Rebellion Revolution Insurrection or Military or Usurped Power.

This Bond and the benefits thereof shall not be assigned without the prior written consent of the Surety.

This Bond shall be construed in accordance with and governed by the laws of Ireland and there parties hereto hereby submit to the non-executive jurisdiction of the Courts of Ireland

In witness whereof the Licensee and the Surety have signed this document by an Authorised Signatory or caused their common seals to be hereunto affixed the day and year first written above.

The Common Seal of the Licensee

was hereunto affixed in the presence of: Ters

Signed by

on behalf of The Governor and Bank of Ireland

Appendix 11

Facility Information Summary	mary	
AER Reporting Year	2013	
Licence Register Number	W0184-01	
Name of site	Enva Ireland Limited	
Site Location	Clonminan Industrial Estate, Portlaoise, Co. Loias	
NACE Code	3832	
Class/Classes of Activity	4.8, 3.12, 3.13, 3.6, 3.7, 4.11, 4.12, 4013, 4.2, 4.4, 4.5, 4.9	
National Grid Reference (6E, 6 N)	2461 E, 1978 N	
	וווב לעמרבאזוול מרנואוניבא מוו אויב ווובוממב	
	waste oil re-processing, treatment of	
	contaminated soil, repackaging of oily	
A description of the activities/processes at	contaminated wastes and paint wastes. The	
the site for the reporting year. This should	site also stores wastes in packages (i.e.	
include information such as production	barrels ASPs, IBCs etc.) prior to transfer	
increases or decreases on site, any	off site for recovery or disposal.	
infrastructural changes, environmental	1.2 Waste Management Activities	
performance which was measured during	carried out at the Facility.	
the reporting year and an overview of		
compliance with your licence listing all		
exceedances of licence limits (where	Third Schedule	
applicable) and what they relate to e.g. air,		
<u>water, noise.</u>	Class 6. Biological treatment not referred	
	to elsewhere in this Schedule which results	
	in final compounds or mixtures which are	

H

Declaration:

All the data and information presented in this report has been checked and certified as being accurate. The

quality of the information is assured to meet licence requirements.

Date 3 [] 3/]14 _ 31.03.2014 (or nominated, suitably qualified and experienced deputy) Group/Facility manager Signature and