ANNUAL ENVIRONMENTAL REPORT 2013

KMK METALS RECYCLING LTD WASTE LICENCE REF: W0113-03

Cappincur Industrial Estate, Daingean Road, Tullamore, Co. Offaly

REPORT PERIOD: JANUARY 2013-DECEMBER 2013

Compiled by:

Nally Environmental Ltd Drumcree Collinstown Mullingar Co. Westmeath Tel: 044 96 66773 M: 086 8547071 Email: <u>info@nallyenvironmental.ie</u> Website: www.nallyenvironmental.ie

TABLE OF CONTENTS

1.0 REPORTING PERIOD	5
2.0 Emissions from the Facility	5
2.1 Dust	5
2.2 Stack Emission Point Monitoring.	6
2.3 Noise	8
2.4 Surface Water	12
2.5 Groundwater	16
3.0 WASTE ACTIVITIES CARRIED OUT AT THE I	FACILITY 17
4.0 QUANTITY AND COMPOSITION OF WARECEIVED AND DISPOSED OF DURING THE REINCLUDING EWC CODES	ste recovered, eporting period 18
5.0 WASTE MANAGEMENT RECORD	18
5.1 Waste Received in 2013	18
5.2 Waste Despatched from the Facility for Recover	ery in 2013 18
6.0 WASTE RECOVERY REPORT	18
7.0 RESOURCE CONSUMPTION SUMMARY	20
8.0 Full title and written summary of developed by licensee in 2013 relating to facil	ANY PROCEDURES LITY OPERATIONS. 21
9.0 REVIEW OF NUISANCE CONTROLS	21
10.0 SCHEDULE OF ENVIRONMENTAL OBJECTIV AND ENVIRONMENTAL MANAGEMENT PROGRAMME	/es and Targets 22
OBJECTIVES & TARGETS	23
11.0 POLLUTANT RELEASE AND TRANSFER REFOR PREVIOUS YEAR	GISTER – REPORT 27
12.0 POLLUTANT RELEASE AND TRANSFER REG	ISTER – PROPOSAL
FOR CURRENT YEAR	27
13.0 NOISE MONITORING REPORT SUMMARY	27
14.0 AMBIENT MONITORING REPORT SUMMARY	27
15.0 TANK AND PIPELINE TESTING AND INSPECT	ION REPORT 27
15.1 Bund Assessments.	27
16.0 REPORTED INCIDENTS SUMMARY	29
17.0 COMPLAINTS SUMMARY	32
18.0 ENERGY EFFICIENCY AUDIT REPORT SUMM	IARY 33

Ι

19.0 VOLUME OF TRADE EFFLUENT/LEACHATE AND/OR	
OFF-SITE	33
20.0 REPORT ON THE ASSESSMENT OF THE EFFICIENCY OF USE OF	
RAW MATERIALS IN PROCESSES AND THE REDUCTION IN WASTE GENERATED.	33
21.0 REPORT ON PROGRESS MADE AND PROPOSALS BEING DEVELOPED TO MINIMISE WATER DEMAND AND THE VOLUME OF TRADE	
EFFLUENT DISCHARGE.	34
22.0 DEVELOPMENT / INFRASTRUCTURAL WORKS SUMMARY (COMPLETED IN PREVIOUS YEAR OR PREPARED FOR CURRENT YEAR).	34
23.0 REPORT ON THE FINANCIAL PROVISION MADE UNDER THIS LICENCE, MANAGEMENT AND STAFFING STRUCTURE OF THE FACILITY,	
AND A PROGRAMME FOR PUBLIC INFORMATION.	34
24.0 REVIEW OF DECOMMISSIONING PLAN	38
25.0 STATEMENT OF MEASURES IN RELATION TO PREVENTION OF ENVIRONMENTAL DAMAGE AND REMEDIAL ACTIONS (ENVIRONMENTAL	
LIABILITIES)	38
26.0 DEVELOPMENT WORKS	39
26.1 Development works in 2012	39
26.2 Proposed Development for 2013	39
27.0 Environmental liabilities risk assessment review	39
28.0 OTHER ITEMS	39

LIST OF TABLES

Table 1: Dust Monitoring Licence Requirements

Table 2: Stack Monitoring Licence Requirements

Table 3: Stack Monitoring Results 2013

 Table 4: Noise Monitoring Licence Requirements

Table 5: Attenuation of Noise over Distance for point source emissions e.g. industrial sources

Table 6: Tonal Features Identification

Table 7: Storm Water Monitoring Licence Requirements

Table 8: Storm Water Monitoring Summary

 Table 9: Storm Water Monitoring Results

Table 10: Groundwater Monitoring Licence Requirements

Table 11: Summary of Waste Received in 2013

Table 12: Breakdown of the Energy Consumption for the Year

Table 13: Breakdown of the Energy Costs for the Year

Table 14: CO₂ Emissions for Year

Table 15: Environmental Objectives and Targets for 2013

Table 16: Environmental Objectives and Targets proposed for 2014

Table 17: Bund Assessment Recommendations

Table 18: Incidents Reports Table During 2013

Table 19: Storm Water Transported Off-site

LIST OF FIGURES

Figure 1: KMK Dust Monitoring Locations 2013	5
Figure 2: KMK Noise Monitoring Locations 2013	13

LIST OF APPENDICES

Appendix 1	Ambient Dust Monitoring Report 2013		
Appendix 2	Air Emissions Stack Monitoring Reports for 2013		
Appendix 3	Noise Monitoring Report 2013		
Appendix 4	Water Quality Analysis Test Certificates 2013		
Appendix 5	Groundwater Monitoring Report 2013		
	Waste Received in 2013		
Appendix 6	Waste disposed of in 2013		
	Waste in Stock at end of 2013		
Appendix 7	PRTR Report for 2013		
Appendix 8	Bund Assessment Report 2013		

1.0 REPORTING PERIOD

The reporting period for this Annual Environmental Report is 1st January 2013 to 31st of December 2013.

2.0 EMISSIONS FROM THE FACILITY

A summary and interpretation of all emissions monitoring carried out at the facility during 2013 is discussed in detail below.

2.1 Dust

The full Ambient Dust Monitoring Report is included in Appendix 1 of this AER, a summary of which is provided below.

Dust deposition assessment was carried out at the site from the 31st July to the 29th August 2013 by Nally Environmental, in accordance with Waste Licence Requirements (Table 1).

Table 1: Dust Monitoring Licence Requirements

ParameterStations(mg/m²/day)		Monitoring frequency	Analysis Method/ Technique	
A2-1, A2-2,	Total Dust Deposition	Annually ^{Note1}	Standard method ^{Note3}	
A2-5, A2-4, A2-5, A2-6	Metal content Note2	Annually	Standard method	

Note 1: During the period May to September, or otherwise specified in writing by the Agency.

Note 2: Analysis to include the following metals: Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb and Zn.

Note 3: Standard VDI 2119 (Measurement of dustfall, Determination of dustfall using Bergerhoff Instrument (Standard Method) German Engineering Institute). Any modifications to eliminate interference due to algae growth in the gauge should be reported to the Agency.

Weather conditions can have a notable impact upon dust creation and entrainment in the air and these have to be taken into account when assessing dust monitoring results. Monitoring took place in August 2013; the period of monitoring was a typical operational month at KMK with below average rainfall and above average wind.

The effects of weather conditions on dust generation and entrainment is as follows:

- Drier weather will lighten small particulates and increase ambient dust. Met Eireann data from the Gurteen Synoptic Station shows that August had lower levels of rainfall than normal with very low rainfall in the months preceding August.
- Wind strength will determine the size of particles that can be entrained in the air and the distance they can travel. Met Eireann data from the Gurteen Synoptic Station shows the average wind strength was 7.6. In general, the wind strength pattern was unsettled and moderately high for August 2013 with the effect of increased dust entrainment in the ambient air at and around the site.

The results are presented in Figure 1, below. There were two notable exceedences; one in the centre of KMK's operations and one just north west of it. There was one other very slight exceedence (2mg/m2/day above the 350mg/m2/day limit). A2-1 to -5 (North, East, South and West boundaries) were within the 350mg/m2/day Limit Value.

Figure 1: KMK Dust Monitoring Locations and Results 2013

During periods of dry weather KMK yard operatives dampen down roads, yard areas and buildings in order to suppress dust and keep yards clean. It is likely that the extraordinarily dry and windy weather during August 2013 caused yard areas to dry out very quickly and that the erratic wind patterns lifted and deposited more dust than is typical, and not necessarily from KMK's site.

In addition to Total Dust Deposition, metals are also analysed during dust monitoring events. All metals content parameters in microgram levels were below the laboratory limits of detection with the exception of (very low) trace levels of copper and zinc detected in the dust samples. A comparison of the metals content in August 2013 with that of the previous August 2012 period, shows that the actual metals content of all samples in 2013 were significantly lower in detectible levels when compared with 2012 results.

2.2 Stack Emission Point Monitoring.

The Waste Licence requirements for stack emission monitoring are presented in Table 2 below.

Emission point ref no.	Parameter	Monitoring frequency	Analysis Method/ Technique
A2-8	Total particulates and metals including Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb	Monthlyfor3monthsandquarterly thereafter	Standard Methods
	and Zn		

Table 2: Licence Requirements for Stack Monitoring

Monitoring of A2-8 was performed for the parameters listed below over three separate monitoring events during 2013: Q2, Q3 and Q4:

- Airflow rate
- Total particulates
- Moisture content
- Specified metals (particulate bound and gaseous based metals)

The plant was in use during monitoring, and the samples were taken as discharged from the emission stack after treatment by the bag house filter unit.

Q1 stack monitoring was not conducted for the following reason: Condition 6.7 of the waste licence W0113-03 which states 'The frequency, location, methods and scope of monitoring, sampling and analyses, as set out in this licence, may be amended with the agreement of the Agency following evaluation of test results'. KMK made a formal request on the 15th February 2013 to the EPA to reduce the frequency of sampling of the stack emission point A2-8 from Quarterly to Annually. The basis of this request was that: 1) all five separate stack emissions monitoring exercises conducted during 2012 were below license limits, 2) the WEEE treatment process remained unchanged, 3) a monitoring probe (connected to a warning alarm) was installed to effectively monitor real time emissions from the stack and 4) a cyclone abatement system was installed to give extra emissions abatement control. KMK considered the a reasonable request and had believed the request would be granted, however it was formally refused by the EPA after the Q1 time period elapsed and hence the opportunity to monitor during Quarter 1 was missed.

The individual monitoring reports are included in Appendix 2 and are summarised below (Table 3) in terms of dates and total particulate results obtained.

Date	Company	Ref	Result (mg/Nm3)		Limit	Value (mg/Ni	m3)
Not done		Q1	Not conducted	due	to	cross-over	of
	01 11		communications bet	weer	n KMK	and the EPA.	
21-05-2013	Glenside	Q2	0.4			12.5	
17-09-2013	Environmental	Q3	0.97			12.5	
10-12-2013		Q4	0.44			12.5	

 Table 3: Stack Monitoring Results 2013

As can be seen from the Table 5 results are consistently low throughout 2013, representing a consistent manner of air emissions treatment by the infrastructure on-site.

KMK will continue to conduct stack air emissions in accordance with the Waste Licence Requirements and make use of the continuous particulates monitoring probe as installed on the stack A2-8 on 5th April 2013. The probe is pre-set to warn management (by an alarm system) in the event of any increase so that action may be taken prior to (and thus preventing) any breach of an Emission Limit Value.

Stack emissions continue to be consistently low, of minor significance, self regulated and similar over a typical year with no seasonal changes.

2.3 Noise

Waste Licence (W0113-03) requirements for noise monitoring are presented in Table 4.

		Monitoring	Analysis Method /
Stations	Parameter	frequency	Technique
NE1, NE2,	L(A)eq [30 minutes], L(A) ₁₀ [30	Annually	Standard Method ^{Note1}
NE3, NE4,	minutes], L(A) ₉₀ [30 minutes]		
NE5, NE6	and 1/3 Octave Band Analysis		

Table 4: Noise Monitoring Licence Requirements

Note 1: International Standards Organisation, ISO 1996 Acoustics - Description and Measurement of Environmental Noise. Parts 1,2 & 3.

This monitoring event took into account the released EPA guidance document NG4 'Guidance Note for Noise: Licence Applications, Surveys and Assessments in Relation to Scheduled Activities' released in April 2012, which seeks a notable increase in the repetitiveness of monitoring during the annual event. A request was submitted to the EPA and approved, requesting the reduction in monitoring stations on site from the licensed 6 stations to 4. This alteration enables a reasonable monitoring time on site, reduces unnecessary repetitiveness of close proximity monitoring stations and gives a fair indication of noise arising from site activities during a normal operating day (hours of operation being between 6am-10pm Monday to Friday and 6am - 1pm Saturday, as per Waste Licence). The monitoring locations were thus as follows:

- NE001: Car park at fence boundary northern boundary
- NE002: Eastern boundary, beside a port-cabin
- NE003: Rear of the facility buildings Southern boundary
- NE004: Adjacent the working yard area Western boundary

Noise monitoring was carried out on Tuesday 24th September 2013. Each monitoring location is identified on the map shown in Figure 2 below. Weather conditions during sampling were mild with gentle wind and no rainfall.

Figure 2: KMK Noise Monitoring Locations 2013

Noise monitoring was carried out between the hours of 5.50am and 3.30pm on the same day (to incorporate night time and day time). The complete set of noise measurement results are included in the Noise Monitoring Survey (Appendix 3).

Noise sources from the facility, audible at the site boundaries have been identified as:

- Work associated with the short term Waste Water Treatment Plant upgrade project
- Noise from the Bag House dust emissions treatment system (due to temporary rubbing motor, corrected during a subsequent service of the system)
- Staff and Operational vehicles entering/leaving the site
- Unloading and loading of trucks and delivery / removal of skips
- Tipping of WEEE under cover in the Hanger building
- Reversing alarms from forklift trucks
- WEEE processing operations within buildings

Station NE001, located on the northern boundary, had the lowest noise levels. Site activities at this station were audible but not typically intrusive. LAeq(30 minute) values ranged from 56-59 dB at NE 001 during the day.

During the Daytime measurements, maximum noise levels of LAeq(30 minute) varied between 56-66dB at boundary locations. The highest levels were noted at station NE002 (66, 64 and 63dB) and these were due to abnormal activities associated with the short term Waste Water Treatment upgrade project.

Station NE003, located on the south boundary behind the WEEE building, resulted in LAeq(30 minute) values ranging from 60-62 dB during the day. Noise was dominated here by the nearby dust extraction system used to treat dusts from the WEEE Plant with contributing noise from materials processing inside the same building and audible background noise from traffic on the nearby Tullamore by-pass. Since the noise Survey took place, servicing of the Stack found a motor was rubbing within the Stack causing abnormal noise – this was fixed and it is hope that Noise Monitoring results will be improved at this location as a result.

Station NE004, located on the west boundary, resulted in LAeq(30 minute) values ranging from 58-61 dB during the day. Noise here was primarily due to typical sites activities (traffic movements associated with loading and unloading and CRT dismantling in D4). In addition, household battery sorting was being carried out close by at D4-R (an activity which takes place over a few days once approximately every two months).

Night-time measurements were taken between 6am and 7am and were representative of normal activities. The highest noise level in LAeq(15 minute) was 67dB at NE003 whilst the lowest noise level in LAeq(15 minute) was 51dB at NE002. In relation to NE002 (6-7am) there was no activity associated with the short term Waste Water Treatment Plant upgrade hence the lower noise level compared to highest daytime level of 66dB at the ame location. The noise at NE003 (from 6-7am) of 67dB was most likely due to start-up of the dust extraction system plant.

Due to the affect of noise dissipation over distance (a decrease in 6dB(A) for every doubling in distance – see Table below) and taking into account the location and abnormal nature of noises at KMK during this monitoring event, it is not likely that noise is a source of disturbance to neighbouring properties during normal activities (abnormal noises being generated by a short term infrastructure improvement project and rubbing motor in the Stack, which has since been fixed).

Distance m	Noise level dB	Noise Level dB
10	70	65
20	64	59
40	58	53
80	52	47
160	46	41

Table 5: Attenuation of Noise ove	r Distance for point	source emissions
-----------------------------------	----------------------	------------------

1/3 Octave analysis (analysis of recorded sound pressures to identify if tonal features are present) was carried out on the same day. There were some isolated tones identified during the survey. These are summarised in the following table:

Monitoring	Day-time	Night-time	Comments	Rating Level
Station	Tonal	Tonal		(L _{ar,T}) as adjusted
	Features	Features		by adding 5dB to
	(Frequency &	(Frequency &		the relevant L_{Aeq}
	Pressure)	Pressure)		
NE001	No identified	No identified	No topos identified	Not applicable
INLOU1	tones	tones	No tones identified	
NE002	60dB at 3.15kHz, at 07:48	No identified tones	Arising from work associated with the Waste Water Treatment Plant (short term) upgrade project - revving which lasted 15mins.	71dB
NE003	54dB at 3.15kHz at 11:15	60dB at 1.25kHz at 06:41	Tones associated with the dust extraction plant at this location (not likely to be experience by noise sensitive receptors due to the apex side of the building acting as a sound barrier). Note: the direct affected area of noise influence is a field and then the Tullamore by-pass some distance away.	67dB – daytime 72dB – night- time
NE004	31dB and 34dB at 8kHz at 11:47 & 14:51 respectively	No identified tones	This tone was most probably as a result of impulsive noise at the facility.	63dB and 64dB respectively.

In conclusion:

- The tone identified at NE002 was due to an off-site contractor related to construction and development works which were temporary and which have since ceased.
- The tones at NE003, were due to the dust extraction abatement plant (which at the time had an undetected rubbing motor, which has since been fixed) the location of this tone source, attenuation of the sound over distance and field of influence dictates that this tone will not be experienced by noise sensitive receptors.
- The tone at NE004, was due to the occasional use of the battery sorter only during daytime periods. The attenuation of the sound over distance means that this tone is unlikely to be experienced by noise sensitive receptors.

2.4 Surface Water

Waste Licence requirements (ref. W0113-03) for storm water monitoring are as follows:

Table 7: Storm Water Monitoring Licence Requirements

		Monitoring	Analysis Method/
Locations	Parameter	frequency	Technique
CX	pH, COD, Ammonia, Conductivity,	Quarterly	Standard
DX	Suspended solids, Mineral oils		Methods ^{Note1}
CX	Metals (Al, As, Cr, Fe, Hg, Ni, Pb &	Bi-annually	Standard Methods
DX	Zn)		

Note 1: Chloride is also taken on a quarterly basis for interpretation reasons

Storm water samples were taken directly from the outlets CX and DX for all parameters applicable under the licence limits (see Table 8). Test certificates are included in Appendix 4 of this AER.

Table 8: Storm Water Monitoring Summary

Date	Sample taken		Laboratory	Lab Reference	
	CX	DX			
11 th Feb 13	Yes	Yes	Alcontrol Laboratories	212228	
13 th Jun 13	Yes	Yes	Alcontrol Laboratories	229752	
1 st Aug 13	Yes	Yes	Alcontrol Laboratories	236585	
30 th Oct 13	Yes	Yes	Oldcastle Laboratories	228651 & 228652	

Surface Water Results throughout 2013 are tabulated in Table 9.

Table 9: Storm Water Monitoring Results

Date	11-02	-2013	13-06	-2013	01-08	-2013	30-10-2013		Trigger	Action
Parameter	CX	DX	CX	DX	CX	DX	CX	DX	level	level
Suspended Solids (mg/l)	<2	16	4.5	315	3	128	3.6	1.6	50	100
Conductivity (µS/cm)	1230	183	490	402	230	385	278	486	1000	1000
Ammonia NH ₃ (mg/l)	16.5	0.474	14.9	0.985	2.18	0.265	0.4	1.64	0.2	4.0
pH (units)	7.85	8.10	7.95	7.98	7.55	7.76	7.23	7.4	6.0 - 9.0	5.5 - 9.0
COD (mg/l)	14.1	29.8	20.8	306	12.3	128	10	22	40	40
Iron (mg/l)	0.101	0.0366	0.087	0.0936	< 0.019	0.103	0.25	0.58	0.2	2.0
Arsenic (mg/l)	0.00123	0.00047	0.000846	0.00083	0.000328	0.00126	0.0004	0.0004	0.05	0.10
Zinc (mg/l)	0.0536	0.0409	0.0608	0.0915	0.089	0.0672	1.45	0.00117	3.0	5.0
Chromium (mg/l)	0.00162	0.00099	0.00143	0.00136	0.00108	0.00188	< 0.2	< 0.2	0.032	0.05
Nickel (mg/l)	0.00622	0.00313	0.00328	0.0111	0.00965	0.0108	< 0.2	< 0.2	3.0	5.0
Aluminium (mg/l)	0.00315	0.0868	0.0108	0.089	0.005	0.119	< 0.2	< 0.2	3.0	5.0
Lead (mg/l)	0.000914	0.00966	0.00596	0.0306	0.0014	0.0257	< 0.002	0.010	0.05	0.05
Mercury (mg/l)	< 0.00001	0.00004	< 0.00001	0.000028	< 0.00001	0.000059	0.0004	0.0008	0.00007	0.001
Mineral Oil (mg/l)	< 0.01	0.563	<0.01	7.65	0.351	2.37	< 0.001	< 0.001	1.0	2.0
Chloride (mg/l)	298	23.2	88.2	56.9	50.3	69.2	14.4	26.8	None p	roposed

Interpretation of Quarterly Results 2013

The Trigger and Action Limits set for the surface water discharge to drain from the facility (CX and DX) are established under the May 2010, TRIGGER & ACTION LEVELS FOR SURFACE WATER DISCHARGES report as previously submitted to the EPA. This report will be revised within 6 months of the date of grant of the new Waste Licence (as per Condition 6.10.3 of W0113-04) and giving regard to the EPA guide on the setting of storm water trigger levels as published in September 2012.

<u>Discharges from CX:</u> throughout the four quarterly sampling events, there were elevated readings for ammonia in all quarters (reducing over time and being lowest being for Q4) with a high conductivity reading for Q1 which was linked to the high ammonia value for that sample. There were isolated elevated levels of iron and mercury for Q4 which is not typical of other qualitative data throughout the year and which are deemed to be insignificant in environmental terms.

The increase in ammonia levels was thoroughly investigated throughout 2013.

- Initially, a possible source of ammonia was identified as a damaged/blocked foul sewer pipe outside the operative's canteen which had caused over-ground flow to CX drainage network. The collapsed pipe was repaired within five working days on the 22nd January 2013 and it was expected that an improvement in storm water quality would ensue.
- In March, the drainage lines and gully manhole points feeding the CX interceptor were investigated using a portable pH/conductivity meter and grab sampling conducted on 22-03-2013 by Nally Environmental. The laboratory results from sampling on the 22-03-2013 confirmed ammonia in one drain which had two land drainage pipes feeding into it, for drainage of the ground along KMK's east boundary and near the (now replaced) Waste Water Treatment system.
- A plan was made and relayed to the EPA, which was; 'The existing percolation area is to be removed and replaced by a WWTS and biofilter unit as per recent final grant of planning permission received by KMK on 4th April 2013. The schedule for this works is May to June 2013. KMK were also awaiting final grant of the waste licence review application ref: W0113-04 for final authorisation to proceed with the installation of the new WWTS and biofilter'. Subsequently, KMK also was required to await final approval for the installation of the new WWTS and biofilter as submitted in a Specified Engineering Works (SEW) submission to the EPA in mid July 2013.
- The percolation area was removed in September 2013 and the new WWTS & biofilter was fully installed and commissioned by mid November.
- Silt and water was removed from the surface water gullies and interceptors in December 2013 to ensure any residues from within the drainage network were removed.
- KMK sought quotations for a CCTV in September 2013 and agreed with a contractor for a CCTV survey for CX, DX and E yard gullies to be carried out in January 2014, to identify any leaks or pipe faults.

<u>Discharges from DX outlet</u>: throughout the four quarterly sampling events in 2013, there were elevated levels of ammonia in all quarters (exceeding trigger levels only) and elevated fluctuations in suspended solids, COD and mineral oils for two quarters. There was also a slightly elevated level of mercury and iron in the final quarter, although these levels were not typical of other qualitative data throughout the year and also not significant.

The ammonia levels for DX exceeded the trigger levels only. The levels in general for Q1 and Q3 were deemed typical of storm water quality from the majority of industrial/waste management yards i.e. <0.5mg/l N. However, higher levels for Q2 and Q4 were most likely due to residual ammonia in water left inside the interceptor following its clean-out (and associated gully lines feeding into the same interceptor). KMK thus revised their interceptor maintenance program by cleaning out the gully lines first followed by interceptor cleaning second. Furthermore, a maintenance contract is in place with an outside company to periodically visit KMK and inspect the interceptors and validate their operations so as to ensure that they are working correctly and efficiently.

In terms of the suspended solids, COD and mineral oils for Q2: it was shown that the levels were due to deterioration of water quality due to the length of time since the last emptying event (22nd August 2012). The Q3 suspended solids, COD and mineral oils were lower in strength but still elevated; this was due to a too close a time between interceptor empting and sampling as large interceptors normally take up to 6 weeks to settle following emptying (according to the maintenance company). The was proven as the Q4 sampling event showed all suspended solids, COD and mineral oils below Trigger levels and much improved in quality. Inspections are carried out twice per year (approximately December and June) and emptying was scheduled based on need, as identified during Inspections, but has been revised to now take place approximately once every 6 months and at least 6 weeks prior to any subsequent sampling event for both CX and DX interceptors.

As a measure of further investigation, a CCTV survey of the drainage lines (foul and storm water) was arranged for Mid January 2014 by an outside specialist company in order to determine if there were any faults in the drainage lines on-site.

Aside from the quarterly monitoring, it is important to note the conclusions of a report on an investigation of impacts to the land drain from CX and DX completed in August 2011 at KMK which included sampling up-stream and down-stream of the discharge outlets CX and DX, which concluded that there is little to no reduction in the water quality of the land drain downstream of the discharge points CX and DX. Conversely, the quality appears to improve somewhat downstream of the KMK discharge for most parameters; this is due to the following reasons:

- The quality of the discharges at CX and DX are controlled and treated by the facility interceptor units. There interceptors are maintained and operated correctly.
- All clean roof rain water run-off from the buildings (apart from buildings A,B & C which are flowing to CX outlet) are being discharged to the land drain directly. This clean water is diluting any possible contamination within the drain body. Similarly the clean roof rain water run-off from buildings A, B & C are diluting the discharge at the CX outlet.

- The volume and flow of water being discharged from KMK via CX and DX discharges is controlled and partially attenuated by the additional sampling/holding chamber at the outlets but also more influenced by climatic rainfall.
- The impact from the CX and DX discharges is quite negligible in terms of increases in all parameters on the day of investigation.
- Taking into consideration the average daily rainfall for August i.e. 2.4mm, this would increase the flows and also the loadings from CX and DX by virtue of an increase in volume being discharged from the outlets. This also is not considered as a significant impact to the drain due to the fact that an increase in rainfall also equates to an increase in clean roof water run-off being discharged to the land drain and KMK have considerably increased the roof areas on-site in the past few years.

Based on the quarterly analysis data, nature of activity at the site and the drain impact investigation, it is considered that KMK discharge is not resulting in a significant negative effect on the land drain and the site interceptors are operating adequately (removal of silts, metals, physical debris etc).

2.5 Groundwater

KMK has two wells: GW1 and GW2, both of which are tapped onsite and were sampled on 21st November 2013; the full report is included as Appendix 5 of this AER. Monitoring is carried out annually, in accordance with Waste Licence (W0113-03) requirements.

Table 10: Groundwater Monitoring Licence Requirements

Def	Beneretens	Monitoring	Analysis Method
Kel	Parameters	irequency	/ Technique
GW1	pH, Conductivity, groundwater level, total faecal	Annually	Standard Methods
GW2	coliforms, total nitrogen, chloride,		
	organohalogens, metals		

All results were below the recommended guideline limits set by EC Groundwater Regs. S.I. 9/2010 and the EC Drinking Water Guideline SI 278/2007, with the exception of Nickel (31.9µg/l) and Arsenic (19.14µg/l) – both of which are known to be in soils and rock naturally.

Nickel is present in soils naturally, and has been found in KMK samples since 2006 (with the exception of 2009). According to the 'Soils of Co. Offaly' National Soil Survey of Ireland by Teagasc 2003, the typical levels of trace nickel in agricultural soils ranges from 0.5 to 100 mg/kg. The natural occurrence of arsenic in rock veins is also well documented across the world. In the absence of specific data for arsenic in Offaly, another close licensee was reviewed in terms of their groundwater monitoring i.e. AES Ireland Ltd, Cappincur Ind. Estate, Tullamore. It was noted in their 2012 AER that arsenic was also found in one of their boreholes GW2 (see Section 4 of report in Appendix 5 for further details); the two boreholes are approximately 300m apart. This presence confirms naturally occurring arsenic in the groundwater because the levels are very similar and yet the two associated businesses are very different, AES being a general waste transfer and recycling station and KMK being a metals and WEEE Recycler.

3.0 WASTE ACTIVITIES CARRIED OUT AT THE FACILITY

The principal class of activity is:

Class 13 of the Fourth Schedule (Waste Recovery Activities) of the Waste Management Act (1996): Storage of waste intended for submission to any activity referred to in a preceding paragraph of this Schedule, other than temporary storage, pending collection, on the premises where such waste is produced.

Non Technical Description: Temporary storage and processing of waste materials at the facility prior to removal off site for further metals recovery at an alternative facility.

Consequently, other activities carried out on site include:

Class 3 of the Fourth Schedule (Waste Recovery Activities) of the Waste Management Act (1996): Recycling or reclamation of metals and metal compounds.

Non Technical Description: Collection, acceptance and processing of metallic wastes (hazardous and non hazardous including electronic and electrical wastes and liquids containing dissolved metals) as part of waste loads arriving at the facility prior to removal off site for recycling or recovery.

Class 4 of the Fourth Schedule (Waste Recovery Activities) of the Waste Management Act (1996): Recycling or reclamation of other inorganic materials.

Non Technical Description: Acceptance of plastic components and packaging as part of incoming waste loads.

Class 6 of the Fourth Schedule (Waste Recovery Activities) of the Waste Management Act (1996): Recovery of components used for pollution abatement.

Non Technical Description: Acceptance of auto catalysts, filters etc.

Class 7 of the Fourth Schedule (Waste Recovery Activities) of the Waste Management Act (1996): Recovery of components from catalysts.

Non Technical Description: Recovery of metals from catalysts in manufacturing processes (this applies to liquids and solids)

Class 11 of the Fourth Schedule (Waste Recovery Activities) of the Waste Management Act (1996): Use of waste obtained from any activity referred to in a preceding paragraph of this schedule.

Non Technical Description: Re-use of some waste materials e.g. metal drums, IBCs, cardboard boxes and textile IBC bulk bags as waste receptacles.

Class 12 of the Fourth Schedule (Waste Recovery Activities) of the Waste Management Act (1996): Exchange of waste for submission to any activity referred to in a preceding paragraph of this schedule.

Non Technical Description: Trading activities in waste management.

4.0 QUANTITY AND COMPOSITION OF WASTE RECOVERED, RECEIVED AND DISPOSED OF DURING THE REPORTING PERIOD INCLUDING EWC CODES

This specific and detailed information is presented in Appendix 6 of this report.

5.0 WASTE MANAGEMENT RECORD

5.1 Waste Received in 2013

Waste is received in the KMK facility from the following sources: civic amenity sites, commercial customers, industrial customers and transfer station waste management sites. A summary of all waste received during 2013 is given below:

Table 11: Summary of Waste Received in 2013

Source of waste accepted.	Total quantities (tonnes)
Civic amenity sites	7,255.877
Commercial	8,054.729
Industrial	693.607
Transfer Stations	5,338.028
Total	21,342.241

A full breakdown of waste types and quantities accepted for 2013 is included in Appendix 6 attached to this AER. It is estimated that approximately 85% of the total waste intake in 2013 was waste electrical and electronic equipment (WEEE).

The total quantity received was 21342.241tonnes for 2013. On 20th October 2009 KMK applied to the EPA for a Waste Licence Review, the principal reason for which was a forecasted increase in tonnage. On 26th September 2013 the EPA issued a Proposed Decision to grant KMK's New Licence W0113-04. KMK formally objected to some of the conditions on 17th October 2013, and the final Licence was issued on 20th December 2013 thus permitting KMK to accept 35,000tonnes per year from that date onwards.

5.2 Waste Despatched from the Facility for Recovery in 2013

The total quantity of waste despatched from the facility in 2013 was 20,472.932 tonnes. A summary of all waste despatched during 2013 is included in Appendix 6 attached to this AER. Please note that there is a carry-over of waste material from the year ending 2013 into the beginning of 2014 (993.063 tonnes) and this is stock pending processing and stock pending dispatch (see Appendix 6).

6.0 WASTE RECOVERY REPORT

All waste accepted at KMK is treated for recovery and recycling. There is a 'no waste to landfill' policy on-site. KMK also acknowledges and complies with the most recent WEEE Regulations whereby recovery targets are calculated and achieved. See letter statement below.

KMK METALS RECYCLING LTD ANNUAL ENVIRONMENTAL REPORT

KMK Metals Recycling Ltd. Precious and Non-Ferrous Metals

Electronic Scrap & Metallic Residues Hazardous Metal Waste Cappincur Ind. Est. Daingean Road Tullamore Co. Offaly Ireland Telephone 057-934 1634 Telefax 057-932 2729 E-Mail info@kmk.ie Website www.kmk.ie EPA Waste Licence: W0113-03

24 January 2014

To whom it may concern,

I confirm that KMK Metals Recycling Ltd acts as your company's waste contractor for battery waste and electrical waste which we are authorised to accept.

Our facility at **Tullamore, Co Offaly** is licensed (**EPA Waste License No. W0113-04**) to accept and recover Waste Electrical & Electronic Equipment (WEEE). Our recently amended license now allows us to manage 35,000t per annum.

With reference to Article 22 of the WEEE regulations, I can confirm that we shall comply with the Seventh Schedule and the requirements for the removal and selective treatment of certain substances, preparations and components, such as batteries, cathode ray tubes, external electric cables etc.

With reference to Article 23, KMK will achieve and expect to exceed the minimum recovery targets and any minimum component, material and substance reuse and recycling targets over the next three years.

Our current recovery rates are as follows:

Large Household Appliances	82%
Refrigeration Appliances	88%
Small Household Appliances	92%
IT & Telecommunication Equipment	92%
CRT (Televisions & Monitors)	93%
Lighting (FL's and CFL's)	95%
Batteries Portable/Household	63%

Batteries Portable/Household 63% Batteries Lead-Acid 99%

We have a 'no-waste to landfill' policy, with any waste generated going to Waste to Energy facility in Ireland.

If I can be of any further help, please do not hesitate to contact me.

Registered Office: Cappincur Industrial Estate, Daingean Road, Tullamore, Co. Offaly

Metals Recycling Ltd wis: Cappineur Industrial Estate proce Road, Tullamore, Co. Offaly procession of the State State State procession of the State Stat WK Metals Recycling Ltd Kind regards,

Kai Meyer

In addition, KMK is working towards compliance with EN50625 WEEE Treatment Standard / the WEEELABEX Standard, which prescribes methods for conducting Batch Tests and for the subsequent Calculating Recycling and Recovery Targets.

Directors

7.0 **RESOURCE CONSUMPTION SUMMARY**

Electricity, green diesel and kerosene are used at the facility. The following tables summarise the electricity and fuel consumption and CO_2 emission at the facility from 2012 to 2013 inclusive and <u>for comparison purposes</u>.

	Consumption, kWh*			
	2012	%	2013	%
Electricity	392,045	37.2	663,720	47.2
Kerosene	38,178	0.7	64,199	4.6
Green	622,145	59.1	676,728	48.2
Diesel				
Total	1,052,368	100	1,404,647	100

Table 12: Breakdown of the Energy Consumption for the Year

*Energy conversion factors: kerosene 10.4kWh/l and green diesel 10.8kWh/l.

Table 13: Breakdown of the Energy Costs for the Year

	Total Annual Cost, €			
	2012	%	2013	%
Electricity	59,926	53	92,348	58.4
Kerosene	3,417	3	6,444	4
Green	49,967	44	59,446	37.6
Diesel				
Total	113,310	100	158,238	100

Table 14: CO₂ Emissions for Year

	CO ₂ emissions, tonnes*				
	2012	%	2013	%	
Electricity	304.2	63.6	515	72.5	
Kerosene	9.8	2	16.5	2.3	
Green	164.2	34.4	178.7	25.2	
Diesel					
Total	478.28	100	710.2	100	

*Energy to Carbon conversion factors: electricity 0.776kg CO_2 /kWh, Kerosene 0.257 kg CO_2 /kWh and Green Diesel 0.264 kg CO_2 / kWh

In summary, the following trends are noted:

Electricity consumption increased by 69% (2012 to 2013) and Kerosene increased by 68% whereas Green Diesel only increased by 9%. The reasons for this are that:

- the WEEE Plant comprised of more equipment and was operational more of the time throughout 2013. Whilst Energy Consumption continues to increase in KMK, more recycling is happening in Ireland, whereas previously these activities were carried out overseas.
- Kerosene is used for heating and it is expected that this increase is due to the creation of a second office space (Weighbridge Office) which is similar in footprint area as the existing (Tower) office.
- Neither the WEEE Plant nor the additional Office space has any impact on the use of Green Diesel, however waste intake does, and this was slightly higher in 2013 than it was in 2012 hence the small increase in usage; KMK also now makes good use of the relatively new E Area hence forklifts in some cases are travelling further.

The costs of resources (\in) was significantly more for all Energy Types in 2013 compared to 2012 due to price increases in the market.

There was a net increase in CO_2 emissions in 2013 compared to the previous year in 2012 by virtue of the increase in energy consumption on-site mostly attributable to the increase in electricity usage.

8.0 FULL TITLE AND WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY LICENSEE IN 2013 RELATING TO FACILITY OPERATIONS.

There were no new procedures developed in 2013 in connection with the waste licence activity. All existing procedures are applicable and relevant to the waste licence.

9.0 **REVIEW OF NUISANCE CONTROLS**

The types of nuisances which could be expected at a Waste Management Facility in general are litter, vermin, birds, flies, mud, dust and odours.

Due to the dry solid and non-food related origin of materials recycled at KMK, the activities carried out onsite are not conducive to flies, birds, odours, and vermin - there are however canteens onsite, and associated businesses nearby, therefore KMK employs a pest control company to ensure rodents are controlled.

All waste processing activities are carried out within buildings; all materials prior to processing are not able to create a windblown nuisance (as they are solid / intact and too large to be blown), and all fractions generated by the activities of KMK are stored under cover.

All site surfaces are concreted for minimisation of dirt/dust onsite, however dust is entrained or deposited onsite and controls are in place in the form of yard dampening as necessary - as often as twice per day in summer time, plus KMK uses a road sweeper on smooth floor surfaces for example in the WEEE Plant. Dust levels at Northerly-, Easterly-, Southerly- and Westerly-most boundary locations did not exceed licence limits during the 2013 monitoring event.

Dust remains KMK's only evident nuisance requiring active control by employees of KMK, and control will continue throughout 2014 with additional effort being made during summer months.

10.0 SCHEDULE OF ENVIRONMENTAL OBJECTIVES AND TARGETS AND ENVIRONMENTAL MANAGEMENT PROGRAMME

The schedule of Objectives and Targets / Environmental Management Programme for 2013 and their current status is included below in Table 15 as part of the company IMS. Most of the scheduled objectives and targets were achieved in 2013; some were carried forward and where this is the case a note is made to that effect in 'Status'.

A new schedule of objectives and targets / EMP proposed for year ending 2014 is also presented in Table 16.

Table 15: Environmental Objectives and Targets 2013

NO	OBJECTIVES	& TARGETS	STEPS TO ACHIEVE TARGET	TIME- RESPONS- SCALE IBILITY		STATUS
1	Improve water quality	Fully compliant Ammonia	Initiate a thorough investigation of the sources of ammonia contamination in CX discharge.	March	Amy Jackson	Complete
		results on at	Confirm the source of ammonia contamination.	End March	Niall Nally	Complete
		least two	Initiate improvement measures:	May-June	Kurt Kyck,	Complete
		occasions from CX by	 clean roof gutters, remove any potential sources of contamination upgrade KMKs Waste Water Treatment System (WWTS) 		Max Kyck	
		December 2013	Repeat sampling to confirm improved ammonia levels once the new WWTS is commissioned	July-Sept	Niall Nally	Ongoing Quarterly (improving)
						Latest sample taken Q3 2013.
2	Improved control	5% reduction in	Review previous 2012 noise report.	March	Kurt Kyck,	Complete
	of noise emissions during early	average ambient noise when	Hold internal review and engage with Cappincur residents' spokesperson on-site and discuss noise emissions.	March	Niall Nally	Complete
	morning and late night operating	compared to 2012 monitoring	Instigate improvement measures by agreement of Management e.g. Community Noise Control Policy for noise reductions during priority day/night hours	March	Max Kyck	Complete
	hours	results, during night-time hours.	Monitor effectiveness of controls by scheduled environmental noise monitoring event in 2013.	May July Aug 2013	Niall Nally	Complete – review in 2014, see: '13-2
3	Develop a new pr BATRRT for I dismantling	CD relevision	Research into new technology for on-site dismantling of LCD flat panel displays, to comply with BATRRT.	Jan 2013	Kurt Kyck	Complete
	uismanting		Decide on new technology; submit a request for authorization from EPA for same. Process EPA decision thereafter.	Mar 2013	Kurt Kyck, Niall Nally	Complete
			Install new LCD technology at KMK and commission same.	April Nov 2013	Kurt Kyck, Max Kyck	Carried Forward, see: '13-3
4	Maximise recovery WEEE Mill and min	of fractions from nimise dust	Investigate and install a new process (Sieve and Cyclone system) in the WEEE plant to maximise recovery of fractions by size, including dust containing recoverable metals	March	Kurt Kyck, Enda Thornton	Complete
			Commission new systems and monitor effectiveness.	April	Enda Thornton	Complete

KMK METALS RECYCLING LTD

ANNUAL	ENVIRONMENTAL.	REPORT
1 I I I O I IL	LITTICOLUMENTIC	NLI ONI

NO	OBJECTIVES & TARGETS	STEPS TO ACHIEVE TARGET	TIME- SCALE	RESPONS- IBILITY	STATUS
5	Review options for improved Energy Efficiency / Sustainability (if	Engage with the Sustainable Energy Authority of Ireland (SEAI) for sustainability / energy efficiency mentoring and advice	April 2013	Amy Jackson	Complete
		Prioritise recommendations from review by SEAI and agree actions, if any, with KMK Management	June 2013	Amy Jackson	Complete
		Implement any actions arising from the above Management Meeting	July 2013	Amy Jackson / Max Kyck	Carried Forward, see:
		Monitor effectiveness of improvements	Nov 2013	-	13-5
6	6 Verify the Recycling Rates provided to KMK by all Outlets used by KMK and continue KMK's Outlet Auditing Schedule	Documentation review of information from all active outlets	June 2013 Feb 2014	Amy Jackson / Edel Lynch	Complete
		Audit in person at least 1 in-state and 1 out of state facility during 2013	Dec 2013	Amy Jackson / Kai Meyer	Carried Forward, see: '13-6
7	Be "WEEELABEX ready" by December 2014	Conduct Test Audit 1 March-April 2013 and implement all necessary actions arising as a result by 30 th June 2013	June 2013	Amy Jackson / Kai Meyer	Audit: Complete Actions: In Progress
		Conduct Test Audit 2 July-August 2013 and implement all necessary actions arising as a result by 30 th December 2013	Dec 2013	Amy Jackson / Kai Meyer	Complete.
8	Maintain the Training Programme as necessary to ensure effective	Emergency Spill Response training (scenario based) for Van Drivers Emergency Spill Response training (scenario based) for General Operatives	May 2013	Kai Meyer, Max Kyck	Carried Forward: '13-8
	operations	Conduct training as scheduled: the only external training required during 2013 is Manual Handling (due August)	Aug 2013	Amy Jackson	Completed (+Ab Wheels and H&S)
		Train employees in Capacitors Sorting procedure to divert PCB-Free capacitors from Waste Disposal to Recycling	Feb 2013	Amy Jackson	Completed
		Flat Panel Displays processing: procedure to be written and employee(s) (as applicable) to be trained on how to operate the new process	May Nov 2013	Amy Jackson	Carried forward, see: '13-3
9	Review the Maintenance register	 Review the Maintenance Register: Ensure all items of plant / machinery critical to ensuring environmental control are subject to a schedule for planned (i.e. services) and preventive (i.e. oiling) maintenance Check records on file for evidence of planned and preventive maintenance 	May 2013 Jan 2014	Edel Lynch	Review in 2014, see: '13-9

KMK METALS RECYCLING LTD

ANNUAL ENVIRONMENTAL REPORT

NO	OBJECTIVES & TARGETS	STEPS TO ACHIEVE TARGET		RESPONS- IBILITY	STATUS
10	Maintain KMK's three Management	ISO 14001:2004 Surveillance Audit	Oct 2013	Amy Jackson	Complete
	Standards and associated Systems				
		ISO 9001:2008 Re-Certification Audit			
		OHSAS 18001:2007 Surveillance Audit			
11	Motivate and facilitate staff and the	Arrange and promote at least one Recycling Day for staff of KMK, the Cappincur	Aug 2013	Max Kyck,	Completed
	local community to recycle more	Industrial Estate, and the local Community. The KMK Facility will be an 'Open	-	Kai Meyer,	17/08/2013
		House' on this day and all attendees will be permitted access to learn about the		Amy Jackson	(€3,500 raised for
		activities carried out at KMK.			local GAA)

Table 16: Environmental Objectives and Targets 2014

ID	OBJECTIVES AND TARGETS	Timescale	Resp	Status		
CARRIE	CARRIED FORWARD FROM 2013					
`13-3	Install new BAT (as agreed with the EPA) for Flat Panel Display dismantling at KMK. Document the new Process (including quality, health and safety, maintenance requirements, and risk assessment) based on material from the Manufacturer, and train employees on same.	Sep 2014	КМК	Final Testing		
'13-5	Implement an Energy Management Plan (which may span a number of months and into 2015) based on recommendations arising from the SEAI Audit and Mentoring sessions during 2013.	Jun 2014	EL	In progress		
2014: OU	ALITY					
'14-0-1	Work in accordance with a documented EN50625 Conformance Work Programme for achievement of conformance to all requirements of	Dec 2014		In progress		
	EN50625 - before end Dec 2014. EN50625 (aka WEEELABEX) is a standard for Excellence in WEEE Recycling; it touches on all aspects of		AJ	1 0		
	KMK's current Standards (Quality, Environment, and Health and Safety) and is our most significant Compliance Scheme requirement for 2014.					
'14-Q-2	Develop 'Process Performance Assessments' as a template for SMART evaluation of IMS performance in each Process Area / Building (to	May 2014	AJ &	Not started		
	include QESH aspects and controls, as applicable)		SS's			
'14-Q-3	Review and rationalize KMK's existing Management System (including rewriting the Manual) to focus only on the specific clauses of: OHSAS	Feb 2015		Not started		
	18001, ISO 14001, ISO 9001, EN50625, KMK's Waste Licence W0113-04, and KMK's Waste Collection Permit WCP-OY-08-00607-01 - which		AJ			
	will include customer requirements.					
2014: HE	ALTH AND SAFETY					
'14-S-1	Investigate the potential use of Safety Mirrors in KMK to improve safety regarding Vehicle / Pedestrian Interactions	Nov 2014	AJ /	Complete		
	(Update: 1 Convex Mirror purchased and installed in Nov 2013; 4 more purchased and installed in Dec 2013)		SS's	(12/2013)		
'14-S-2	Car Park Signage	Nov 2014	МК	Complete		
	(Update: more than 30 traffic signs were installed in March 2014)			(03/2014)		
'14-S-3	Pedestrian Crossings to be marked for crossing the pubic road / busy area of the Site (from Visitors Car Park to Reception and from Weighbridge to	Jul 2014	MK	Complete		
	Operatives canteen)			(03/2014)		
2014: EN	VIRONMENT					
'14-E-1	(NEW) EPA Waste Licence: plan work in accordance with KMKs Environmental Compliance Work Programme for compliance with new Waste Licence conditions, monitoring requirements, installations, reports for review / approval and signage, incl. the following priorities:			ECWP written		
	1. Interceptor Upgrade (to be carried out in dryer weather)	1.Jun 2014	AJ	1.Quotes rec'd		
	2. Flow Meter installation to F	2.May 2014		2.Quote rec'd		
	3. Trigger Level proposal (Jun 2014) for agreement with EPA	3.Jun 2014		3.Quote rec'd		
'14-Е-2	Focus on EPA Priority Issues for 2014:					
	1. Waste Storage and Fire Prevention: adopt relevant recommendations from EPA Workshop in 2013 (Athlone) and IWMA/CIWM event in 2014	1.Jun 2014		1.Started		
	(3rd April, in Tullamore) into Facility Fire Prevention procedure / practice (include Isolation of Electrical Supply (and Notice for same); access					
	to water supplies and volumes (10,000L KMK, ~40,000L Ind Est, & Rainwater Tanks); keys to electrical switch room)		AJ			
	2. Integrity of Bunds, tanks and pipelines: Camera Survey, Fixes, and Verification Survey (Mar 2014) & subsequent Pressure Test (Sept 2014)	2.Mar 2014		2.Complete		
	3. Waste Classification and Records: review and document the classification, names and EWC codes for all principal waste types in KMK (to be included in process flows).	3.Dec 2014		3.Not started		
'14-Е-3	Reissue the Community Noise Control Policy (as issued during 2013).	July 2014	AJ			
'14-E-4	Repeat the Community Awareness Day / Open Day at KMK (as was held in 2013; Item #11 of 2013) for: staff of KMK, the Cappincur Industrial	Oct 2014				
	Estate and Community, and all other interested parties, whereby KMK will be an 'Open House' and all attendees will be granted access to learn		BG			
	about KMK's activities and recycle their WEEE and Scrap Metals for free.					

11.0 POLLUTANT RELEASE AND TRANSFER REGISTER – REPORT FOR PREVIOUS YEAR

The PRTR report is specifically generated every reporting year using the EPA Guidance to completing the PRTR excel based workbook. The content of the PRTR for KMK is quite minimal in that the waste activity only has to enter in data for: 1) general facility data 2) emissions to air and 3) onsite treatment and off-site transfers of waste. KMK also have obtained a confidentiality status in relation to off-site waste transfer outlets (recovery and disposal) from the EPA since 2010 and therefore is not required to give actual names and addresses of such final transfer facilities.

The full PRTR report for 2013 forms Appendix 7 of this AER report.

12.0 POLLUTANT RELEASE AND TRANSFER REGISTER – PROPOSAL FOR CURRENT YEAR

KMK's reportable PRTR is generally similar from year to year and emissions are confined to air media for the facility, hence there is no requirement to generate any actual PRTR proposal for the forthcoming year (which differs from IPPC licensees).

13.0 NOISE MONITORING REPORT SUMMARY

A summary of the noise monitoring for 2013 on-site is presented in Section 2.3 of this AER and the full noise monitoring report is in Appendix 3.

14.0 AMBIENT MONITORING REPORT SUMMARY

A summary of the ambient dust monitoring for 2013 on-site is presented in Section 2.1 of this report and the full noise monitoring report is in Appendix 1.

15.0 TANK AND PIPELINE TESTING AND INSPECTION REPORT

15.1 Bund Assessments.

A full assessment of the bunds storage structures was completed by Nally Environmental between the 22nd and 25th February 2013; the full report is presented in Appendix 8. The summary conclusions are presented in Table 17 below. This bund assessment methodology and report made reference to the following relevant documents:

- The Environmental Protection Agency (EPA) guidelines 'The Storage and Transfer of Materials for Scheduled Activities' (2004)
- Updated bund integrity test template: http://www.epa.ie/downloads/advice/licensee/name,50899,en.html

KMK METALS RECYCLING LTD ANNUAL ENVIRONMENTAL REPORT

Bund Ref	Hydrostatic	Capacity result	Recommendations
	result		
Bund 01 Radiator oil draining area	Pass	Fail – there was < 110% storage capacity on this bund in the form of an IBC. The bund is located indoors, regularly checked and not deemed a significant risk to the environment.	 Ensure daily visual inspections of the bur and tank inside the bund to ensure no leal or spills occurring. Ensure a plentiful supply of oil adsorber materials remains readily available at th bund (as is the case at present). Conduct a re-test in three years time.
Bund 02 Kerosene & diesel tank store	Pass	Pass	 Ensure daily visual inspections of the bur and tank inside the bund to ensure no leal or spills occurring. Ensure a plentiful supply of oil adsorbe materials remains readily available at th bund (as is the case at present). Conduct a re-test in three years time.
Bund 03 A, B inside areas and sump at B area	Not applicable - due to the internal status of it and the absence of vessels being stored at this location. It is also impractical to flood the area.	Pass	 Ensure daily visual inspections of the spipallet and floor area to ensure no leaks of spills occurring on the ground. Check the sump and drainage channel also at week intervals. Ensure a plentiful supply of oil adsorber materials remains readily available at the bund (as is the case at present). Conduct a re-test in three years time.

Table 17: Bund Assessment Recommendations

Please note that Bund 02 was replaced by two separate purpose-built self-bunded mobile tanks in scheduled in Mid November 2013. The EPA formally agreed to this change in bunding arrangements by a notification on ALDER dated 6th November 2013 in response to the specified engineering works proposal by KMK submitted to the EPA on 15-10-2013.

These new structures do not require hydrostatic assessment but will be subject to checking throughout 2014. The old Bund 02 was fully decommissioned (fuel contents removed and used on-site). The resultant metal tanks and the bund structure were sold as fully working units for re-use to off-site business.

15.2 Pipeline inspections and testing

In 2013 a CCTV survey for the drainage and foul underground lines was scheduled for March 2014; the results of this inspection and assessment will be detailed in the AER for year ending 2014.

Prepared by: Nally Environmental Ltd

16.0 REPORTED INCIDENTS SUMMARY

There were six Category 1 reportable incidents during 2013 at the facility, summarised below

Table 18: Incidents Report Table during 2013

Alder Ref no	Incident reported date	Incident cause/description	Summary of Actions throughout the course of this incident history.	Incident Status
000837	18 th February 2013	Breach of Trigger and Action levels (self imposed ELVs) for storm water outlet at CX. Elevated levels for CX – ammonia as NH ₃ (16.5mg/l) Conductivity 1230(µS/cm)	Clarification received from laboratory on 19-02-2013 that results were true. Interceptor contents removed by ENVA on 26-02-2013. Further investigation on-site by Nally Env and KMK on 07-03- 2013 using portable hand-held pH & conductivity meter to check conductivity of drainage lines at C in order to pin-point source of ammonia on-site. Various samples taken at C area on 22-03-2013. Investigation results; the elevated ammonia at CX outlet was determined to be sourced from background concentrations as a result of seepage from the percolation area on-site and other possible septic tanks in the immediate vicinity of KMK. Actions: planning permission granted on 04-04-2013 to remove the percolation area and replace with a new on-site waste water treatment plant. This significant project was forecasted for completion in late summer 2013.	Closed
001118	28 th March 2013	Breach of permitted waste tonnage accepted to the facility for the year ending 2012. Permitted tonnage is: 20,000 tonnes Actual tonnage accepted: 20,410.239 tonnes	A waste licence review application was pending approval during 2013 subject to planning permission (a planning application was submitted to OCC in 2012) and the final grant was secured in 4 th April 2013. The PD licence W0113-04 was granted on 26-09-2013. KMK formally objected to some conditions of the licence on the 17-10-2013. A revised final licence was issued on the 20-12-2013 allowing KMK to accept 35,000 tonnes waste per annum. Therefore this type of incident will not occur again.	Closed

Alder Ref no	r Incident Incident 10 reported cause/description date		Summary of Actions throughout the course of this incident history.	
001725	25 th June 2013	 Breach of Trigger & Action levels (self imposed ELVs) for certain parameters concerning storm water discharges from CX & DX outlets. Elevated levels of grab samples as follows; CX – ammonia as NH₃ (14.9mg/l) DX – ammonia as NH₃ (0.985mg/l) Suspended solids (315mg/l) COD (306mg/l) Min oils (7.65 mg/l) 	 CX: Previous laboratory results from sampling on the 22-03-2013 confirmed the ammonia source on-site as being from seepage from the percolation area and other possible septic tanks surrounding KMK and not from waste management activities above ground. The existing percolation area was removed and replaced by a WWTS and biofilter unit as per planning permission in late October 2013, Q4. DX: It is believe that the levels are due to deterioration of water quality due to the length of time since the last inspection (Dec. 2012) and emptying event (April 2012). KMK arranged the inspections company on-site on 28th June'13 including a full emptying and cleaning of the Interceptor and inspection Chambers by Enva on the same date. Twice yearly emptying was agreed going forward. 	Open
002419	30 th September 2013	Elevated ambient dust ELVs at some locations; Results: A2-1 – 530mg/m ² /day A2-4 - 1296mg/m ² /day A2-6 - 352mg/m ² /day	 All metals analyses were below the laboratory limits of detection with exception of copper in the µg range. A combination of exception dry weather month during August 2013 and insufficient dust control at times during the 30day composite monitoring period of ambient dust fall around the site. There was also an impact of dust from the public road at the closest monitoring stations. Existing dust control measures were increased and using site road sweeper, manual sweeping and dampening yard affected areas with water including the access roads. 	Closed

Alder Ref no	Incident reported date	Incident cause/description	Summary of Actions throughout the course of this incident history.	Incident Status
002095	7 th August 2013	 Breach of trigger & action levels (self imposed ELVs) for certain parameters concerning storm water discharges from CX & DX outlets as follows; CX – ammonia as NH₃ (2.19mg/l) DX – ammonia as NH₃ (0.265mg/l) Suspended solids (128mg/l) COD (128mg/l) Min oils (2.37mg/l) 	Service engineer visited site to check the working efficiency of the interceptors. Engineer confirmed that large interceptors (i.e. DX interceptor) may need up to 6weeks to settle out after a significant clean out such as that of the 28-06-14. Hence the elevated levels of DX were due to inefficiencies of interceptor treatment and will have improved thereafter. In relation to CX, as previously confirmed, the ammonia source onsite as being from seepage from the percolation area and other possible septic tanks surrounding KMK and not from waste management activities above ground. This issue will be addressed by way of the percolation area removal and installation of the new WWTP in Q4 of 2014.	Open

Alder Ref no	Incident reported date	Incident cause/description	Summary of Actions throughout the course of this incident history.	Incident Status
002766	15 th November 2013	Breach of Trigger levels (self imposed ELVs) for certain parameters concerning storm water discharges from CX & DX outlets as follows; CX – ammonia as NH ₃ (0.4mg/l) – iron (0.25mg/l) DX – ammonia as NH ₃ (1.64mg/l) – iron (0.58mg/l)	CX & DX interceptors were emptied, cleaned and serviced in Dec 2013 including the drainage lines. KMK also checked ammonia levels in groundwater and results were not indicative of contamination source. Residual elevated iron levels were not typical and understood to be an aberration at that time. A CCTV survey was undertaken at KMK to investigate the drainage lines condition and survey submitted to EPA on 13-02-14. Some defects were detected on the drainage lines and a schedule of repairs was submitted to the EPA on 19-02-14. The repairs were subsequently completed on the 26-03-14. The repairs to the drainage lines should improve the quality of stormwater by preventing any ingress of soil/shallow groundwater into the underground pipes and thus the overall quality to the interceptor for treatment. A leak test of the drainage lines was planned for completion immediately thereafter this date and the results will be submitted to the EPA when available.	Open

All incidents will continue to be addressed in a timely manner and reported using the new ALDER online reporting portal system, as adopted by the EPA, and in accordance with Guidance and Waste Licence requirements on same.

17.0 COMPLAINTS SUMMARY

There were no complaints received at KMK during 2013 for the facility.

18.0 ENERGY EFFICIENCY AUDIT REPORT SUMMARY

Please refer to Section 7 of this report for energy usage data and information.

Whilst the energy usage has increased from 2012 values, the reason for this is the increased recycling on-site hence reduced export of activities which are now carried out in Ireland. If this is considered on a broader basis the increased energy used by KMK is off-set against a) the increase in energy that would have been used at an alternative facility in order to further recover the materials from the waste inputs, and b) the reduction in emissions created by haulage (material is more uniform and smaller in particle size hence loads are more efficient) – therefore, the increased energy consumption is positive for Irelands economy and the wider environment.

19.0 VOLUME OF TRADE EFFLUENT/LEACHATE AND/OR CONTAMINATED STORMWATER PRODUCED AND VOLUME TRANSPORTED OFF-SITE

There is no trade effluent or leachate produced at KMK.

In terms of stormwater, this is discharged off-site via CX, DX and E outlets. The site interceptors are routinely emptied and maintained throughout the year and the following off-site disposals of same occurred during 2013:

No. of collection	Ref	EWC	Description	Quantity
events				(kg)
2	СХ	13 05 07*	Interceptor and associated drains contents, jetting & washing cleanings and silts removal	15540
2	DX	13 05 07*	Interceptor and associated drains contents, jetting & washing cleanings and silts removal	17940

 Table 19: Storm Water Transported Off-Site

20.0 REPORT ON THE ASSESSMENT OF THE EFFICIENCY OF USE OF RAW MATERIALS IN PROCESSES AND THE REDUCTION IN WASTE GENERATED.

The raw materials used at KMK for the recycling process are metallic and WEEE waste inputs. Please refer to Section 6 previously for information relating to the recovery efficiency of KMK's activities.

KMK does not landfill; all residual wastes are sent for recycling (for example Timber Waste and Dry Recyclables) or energy recovery (only those wastes which are not clean / dry recyclables and which are unsuitable for recycling).

21.0 REPORT ON PROGRESS MADE AND PROPOSALS BEING DEVELOPED TO MINIMISE WATER DEMAND AND THE VOLUME OF TRADE EFFLUENT DISCHARGE.

This section is not applicable to KMK as there is no trade effluent discharge from the facility in 2013.

22.0 DEVELOPMENT / INFRASTRUCTURAL WORKS SUMMARY (COMPLETED IN PREVIOUS YEAR OR PREPARED FOR CURRENT YEAR).

Any relevant such works are already presented Section 10 of this report.

23.0 REPORT ON THE FINANCIAL PROVISION MADE UNDER THIS LICENCE, MANAGEMENT AND STAFFING STRUCTURE OF THE FACILITY, AND A PROGRAMME FOR PUBLIC INFORMATION.

• <u>Financial Provision</u>: KMK confirms that adequate financial provisions are in place for all proposed environmental improvements and controls for the forthcoming year and thereafter. In particular, KMK has 'Pollution Liability' of €6.5 million included in their company insurance document. This is more than adequate to cover any pollution incidence of environmental significance as requested in the Environmental Liability Directive.

In addition, a letter dated 8th November 2010 from the EPA acknowledges in principal, the adequate financial provision of €64,000. KMK have a bond provider (Ulster Bank) and an agreement is now established as dated 26-03-2012 whereby the agreed financial guarantee of €64,000 is now in place in the favour of the EPA (formerly in place with Offaly County Council).

- <u>Organisational Chart:</u> of the Management Structure at KMK Metals Recycling Ltd is presented below.
- <u>Programme for Public Information</u>
 - KMK provides information about the facility opening hours, website address and contact details on the Facility Notice Board which was updated in 2014 and which is located at the main gates of the facility.
 - KMK provides a website: <u>www.kmk.ie</u> (complete with 'Audit Us' section and videos of waste management processes) to make relevant information readily available for interested parties. The website is updated by company employees as and when documents change, thanks to its user friendly interface.
 - KMK maintains documents and records on file within the company IMS (Integrated Management System) as necessary for Waste Licence Compliance (W0113-04) and ISO 14001

- KMK accommodated several customer audits in 2013 including one by an association called CHWMEG, which audits facilities, writes a report, and makes the report available to interested and subscribed members. KMK endorses this auditing style as it maximises auditing efficiency for both the customer and KMK.
- KMK accommodated (non-Audit) visitor Groups / Tours in 2013:
 - Chartered Institute of Waste Management (CIWM) Tour: 23/04/2013
 - National Waste Collection Permit Office (NWCPO) Team Visit to KMK on 12/12/2013
 - Ard Scoil Chiaráin (leaving cert. Geography field trip): 09/12/2013
 - Irish Motor Vehicle Recyclers Association:10/04/2013
- KMK welcomed a number of Industrial Tourists in 2013, from:
 - Germany
 - Italy
 - Japan, and
 - The USA
- KMK held a successful Open Day in 2013, which is planned again for 2014. A post event Press Release reads:
 - "Over 200 cars, vans, tractors and trailers passed through the gates of the KMK Metals Recycling Plant in the Cappincur Industrial Estate on Saturday August17th, depositing more than 25 tonnes of old electrical waste and scrap metal, with the €3,500 proceeds donated to the Cappincur GAA Club"

Event flyers:

KMK METALS RECYCLING LTD ANNUAL ENVIRONMENTAL REPORT

Event Photos:

News Item: <u>http://www.kmk.ie/news/kmk-open-day-raises-a-3-500-for-cappincur-gaa?view=archive</u>

4th April 2014

KMK METALS RECYCLING LTD

ANNUAL ENVIRONMENTAL REPORT

KMK Metals Recycling Ltd Organisational Chart

(for 2013, hence as at January 2013)

24.0 REVIEW OF DECOMMISSIONING PLAN

Condition 10.2.1 of the licence states that: 'the licensee shall prepare, to the satisfaction of the Agency, a fully detailed and costed plan for the decommissioning or closure of the site or part thereof. This plan shall be submitted to the Agency for agreement within six months of the date of grant of this licence.

The completed decommissioning or closure plan shall provide vital information which will be used to form the basis for the Environmental Liabilities Risk Assessment (ELRA) required by Condition 12.3 of this licence (W0113-03) concerning environmental liabilities at the facility.

In particular conditions 12.3.2 of the waste licence which states that: *The licensee shall arrange for the completion, by an independent and appropriately qualified consultant, of a comprehensive and fully costed Environmental Liabilities Risk Assessment (ELRA), which addresses the liabilities from past and present activities. The assessment shall include those liabilities and costs identified in condition 10 for execution of the Decommissioning Plan. A report on this assessment shall be submitted to the Agency for agreement within 12 months of date of grant of this licence.*

Therefore a revised Decommissioning Plan was prepared by Nally Environmental in July 2013. The KMK facility decommissioning plan has fully incorporated all factors which may arise in order to achieve successful clean closure. The guarantee bond currently in place is sufficient to facilitate any predicted and unpredicted costs which may be incurred during and post closure at the KMK facility. The following table provides a summary of the overall assets; negative value material and expenditure costs associated with clean closure operations at the facility.

25.0 STATEMENT OF MEASURES IN RELATION TO PREVENTION OF ENVIRONMENTAL DAMAGE AND REMEDIAL ACTIONS (ENVIRONMENTAL LIABILITIES)

ELRA annual statement:

Condition 12.3.1 of the waste licence states that: 'The licensee shall as part of the AER provide an annual statement as to the measures taken or adopted at the site in relation to the prevention of environmental damage, and the financial provisions in place in relation to the underwriting of costs for remedial actions following anticipated events (including closure) or accidents/incidents, as may be associated with the carrying out of the activity'.

A full Environmental Liabilities Risk Assessment (ELRA) was prepared in May 2009 and submitted to the EPA.

This ELRA report was revised in July 2013 by Nally Environmental to reflect the changes to the facility since 2009 both in terms of activities and infrastructure in place.

These changes at KMK since the 2009 ELRA report included:

1) The installation and operation of the new WEEE-Plant building on-site for WEEE treatment finished on November 2011.

- 2) Battery recycling using a battery sorter machine.
- 3) On-going development of E area in terms of building construction and related services, completed during 2012.
- 4) Significant investments made in the installation of WEEE recovery plant within the WEEE building (referred to as a Smasher Plant) including the dust extraction abatement plant and final emissions point A2-8 in 2012.
- 5) Flat Panel Display (FPD) de-pollution equipment agreed in 2013 (installation pending)

In relation to prevention of environmental damage, this is ensured by:

- Existing EPA Waste Licensed activities at a serviced site with appropriate facility infrastructure and technology
- Improvements and development works are ongoing as arising from KMK's Management System recommendations, Planning Permission Conditions, Waste Licence (W0113-04) Conditions, and upgrades to apply best available technologies including those designed purposefully for compliance with the WEEE Directive at the same time as ensuring quality control and workplace health and safety
- KMK has been certified to ISO 14001 since 2001, ISO 9001 since 2010, OHSAS 18001 since 2011, and is now working towards the industry specific WEEE Treatment (European) Standard, which started off as WEEELABEX (WEEE-Label-of-Excellence) and which is currently being transcribed by Cenelec into EN50625-series
- Work focused on a priority basis and in accordance with a documented work programme and schedule of the Environmental Objectives & Targets (as included in previous sections of this AER and which includes reference to new technologies, site development works, and infrastructure)

26.0 DEVELOPMENT WORKS

26.1 Development works in 2012

Please refer to Section 10 for an update on all scheduled development works.

26.2 Proposed Development for 2013

Please refer to Section 10 for a schedule of all planned development works.

27.0 Environmental liabilities risk assessment review

Please refer to the previous Section 27 above.

28.0 OTHER ITEMS

There are no further items included in this Annual Environmental Report.

APPENDICES

APPENDIX 1

Ambient Dust Monitoring Report 2013

AMBIENT DUST MONITORING REPORT 2013

FOR

KMK METALS RECYCLING LTD.

AT

CAPPINCUR INDUSTRIAL ESTATE, DAINGEAN ROAD, TULLAMORE, CO OFFALY

3rd October 2013

Report by:

Niall Nally

Senior Environmental Consultant B.Sc, M.Sc, AIEMA, MCIWM

Nally Environmental Drumcree, Collinstown Mullingar Co Westmeath Tel : 044 96 66773 / 086 8547071 E-mail: info@nallyenvironmental.ie Website : www.nallyenvironmental.ie

TABLE OF CONTENTS

- **1.0** INTRODUCTION
- 2.0 AMBIENT DUST COMPOSITE SAMPLING METHOD
- 3.0 **RESULTS**
- 4.0 DISCUSSION OF AMBIENT RESULTS
 - 4.1 **Ambient total dust deposition**
 - 4.2 **Ambient dust fall metals content**
- 5.0 CONCLUSIONS

1.0 INTRODUCTION

Nally Environmental was commissioned by KMK to conduct the annual ambient dust survey at the KMK facility at Cappincur Industrial Estate, Tullamore, Co Offaly, as part of compliance with waste licence W0113-03. The KMK Metals facility is located in the Cappincur Industrial Estate towards the east of Tullamore town, off the L-02025 road to Daingean – Figure 1.

Fig 1: Site Location map for KMK's facility.

Ambient dust monitoring occurred from the 31st July to the 29th August 2013 during normal activity at the facility. A total of 6 locations were set up for the annual monitoring, which form part of the compliance requirements of KMK's waste licence.

2.0 AMBIENT DUST COMPOSITE SAMPLING METHOD

The dust monitoring method used was based on a modified version of the Bergerhoff Method VID 2119 'Measurement of Dustfall Using the Bergerhoff Instrument (Standard Method)'. This involved the placement of clean open top plastic jars inside secure metal gauges which were located around the facility boundaries. The dust monitoring map (Figure 2 below) identifies the locations for the 6 monitoring stations.

The Bergerhoff Gauge stations were left in-situ for 30 days in order to achieve a 30day composite sample and were inspected at least twice during this time period for quality control and supervision purposes. There were no problems encountered in terms of sample interference or apparatus damage. All stations were accessible during both set up and collection. During collection of each sample jar, they were sealed on-site, labelled and delivered to a laboratory for subsequent analysis.

Figure 2 shows the location of each of the stations and total dust deposition result for the samples.

3.0 **RESULTS**

After 30 days of monitoring, each of the dust stations was disassembled and the samples were sent to an Accredited Laboratory for analysis (BHP Laboratory). The Certificates of Analysis are presented in Appendix A.

The results from the monitoring are shown in table 3.1 and 3.2. These levels are compared to the EPA emission limit values for nuisance dust (table 3.1 only).

Station I.D.	Monitoring Location	Irish Grid Ref.Dust Deposition(ITM)(Aug 2013)mg/m²/day		EPA licence Limits mg/m ² /day	
		Easting	Northing		0 1
A2-1	Car Park at Fence Boundary	0635888	0725079	530	350
A2-2	Eastern boundary, close to port-a-cabin	0635900	0725035	269	350
A2-3	Fence at southern boundary	0635825	0724990	82	350
A2-4	Site Entrance facility public road	0635867	0725029	1296	350
A2-5	Western Boundary	0635798	0725037	23	350
A2-6	Northern Boundary	0635853	0725059	352	350

Table 3.1 - Results of Composite Ambient Dustfall in samples

Parameters	Metallic content in dust samples (µg)								
	A2-1	A2-2	A2-3	A2-4	A2-5	A2-6			
Aluminium (Al)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Copper (Cu)	0.08	0.02	0.02	0.04	0.02	0.03			
Arsenic (As)	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			
Cadmium (Cd)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Chromium (Cr)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Iron (Fe)	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01			
Mercury (Hg)	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2			
Nickel (Ni)	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Lead (Pb)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Zinc (Zn)	<0.01	< 0.01	0.01	0.01	0.01	< 0.01			

 Table 3.2 - Results of Metallic Species in Composite Dust samples

Weather conditions can have a noticeable impact upon dust creation and dust entrainment in the air. Drier weather will increase the ambient dust on the ground and will lighten small particulates. Wind strength will determine the size of particles that can be entrained in the air and the distance they will be transported. The Met Eireann data from the Gurteen Synoptic Station for the August monitoring events show that August had lower levels of rainfall than normal (and compared with Aug 2012) with very low rainfall in the preceeding months up to August also. Tables 3.3 and 3.4 below give the monthly and annual averages for both rainfall and temperature from the closest Met Eireann Synoptic Station – Gurteen College.

Table 3.3 Rainfal	(mm) Data f	from the Gurteen	Synoptic Station
-------------------	-------------	------------------	-------------------------

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2013	88.2	39.7	35.8	59.6	51.3	54.4	42.1	74.0	30.2	34.1			509.4
2012	94.2	32.2	28.7	80.4	49.6	199.7	132.2	103.0	56.8	119.5	77.1	88.2	1061.6
mean	96.4	66.2	74.5	59.8	68.0	71.8	66.7	84.9	74.8	103.8	89.8	91.5	948.2

	Table 3.4 Temperat	ure (°C) Data from	m the Gurteen	Synoptic Station
--	--------------------	--------------------	---------------	-------------------------

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2013	4.9	4.5	3.3	7.0	9.9	13.1	17.5	15.2	13.2	16.7			9.9
2012	6.6	7.0	8.1	6.5	10.6	13.1	14.1	15.6	11.9	8.3	5.8	5.3	9.4
mean	5.4	5.2	6.9	8.2	11.1	13.8	15.6	15.3	13.2	10.2	7.4	5.8	9.8

Note: data for the most recent months are provisional.

All means are for the period 1981-2010.

In terms of wind data, table 3.5 below summarises the daily wind strengths for Gurteen station.

Date	Mean Wind Speed (knots)	Date	Mean Wind Speed (knots)
31/07/2013	8.7	15/08/2013	8.4
01/08/2013	10.9	16/08/2013	8.2
02/08/2013	11.2	17/08/2013	12.4
03/08/2013	8.7	18/08/2013	8.5
04/08/2013	4.5	19/08/2013	7.7
05/08/2013	7.8	20/08/2013	10.1
06/08/2013	6.8	21/08/2013	10.8
07/08/2013	2.7	22/08/2013	5.7
08/08/2013	8.5	23/08/2013	8.2
09/08/2013	7.7	24/08/2013	5.5
10/08/2013	7.4	25/08/2013	5.3
11/08/2013	8.7	26/08/2013	2.6
12/08/2013	8.4	27/08/2013	5.4
13/08/2013	6.5	28/08/2013	5.2
14/08/2013	7.6	29/08/2013	8.0

Table 3.5 Wind (knotts) Levels from the Gurteen Synoptic Station for Month of

The average wind strength was thus 7.6 and this is compared to the Beaufort Scale below.

Wind	Short	Specifications for use on Land	Wind Speed at 10 metres abo		
Force	Description		Level Grou	ınd	
			Knots	Metres per second	KM per hour
0	Calm	Smoke rises vertically	<1	< 0.3	<1
1	Light Air	Direction of wind shown by smoke but not by wind vanes	1-3	0.3-1.5	1-5
2	Light breeze	Wind felt on face, leaves rustle, ordinary vanes moved by wind	4-6	1.6-3.3	6-11
3	Gentle breeze	Leaves and small twigs in constant motion, wind extends light flag	7-10	3.4-5.4	12-19
4	Moderate breeze	Raises dust and loose paper, small branches are moved	11-16	5.5-7.9	20-28
5	Fresh breeze	Small trees in leaf begin to sway, crested wavelets form on inland waters	17-21	8.0-10.7	29-38
6	Strong breeze	Large branches in motion, whistling heard in telegraph wires; umbellas used with difficulty	22-27	10.8-13.8	39-49
7	Near gale	Whole trees in motion, inconvenience walking against the wind	28-33	13.9-17.1	50-61

 Table 3.6 Beaufort Scale of Wind Force

8	Gale	Breaks twigs off trees, generally impedes progress	34-40	17.2-20.7	62-74
9	Strong gale	Slight structural damage occurs (chimney pots and slates removed)	41-47	20.8-24.4	75-88
10	Storm	Seldom experienced inland, trees uprooted, considerable structural damage occurs	48-55	24.5-28.4	89-102
11	Violent storm	Very rarely experienced, accompanied by widespread damage	56-63	28.5-32.6	103-117
12	Hurricane	-	64 and over	32.7 and over	117 and over

Table 3.5 provides an overview of the wind levels throughout the 30 day period the dust jars were in position. Based on the Beaufort Scale of Wind Force (see Table 3.6 above) it is clear that during the August event for 15 of the 30 days wind in the area was less than between 7 to 10knotts, which could be classified as a wind force of 3 (Gentle Breeze) – leaves and twigs in constant movement. There were two recorded incidents of between 11 to 16knotts which is classed as a moderate breeze.

In general, the wind strength pattern was indeed unsettled and moderately high for this August which will have certainly increased dust entrainment in the ambient air at and around the site.

4.0 DISCUSSION AMBIENT DUSTS

4.1 Ambient total dust deposition.

Dust monitoring was conducted during the month of August 2013. The event occurred during the end of a particularly dry summer period and within the May to September period as required in the waste licence. The period of monitoring was a typical operational month at KMK with unsettled wind conditions and below average rainfall. Hence the climatic conditions for dust creation was favourable.

Dust monitoring around the boundaries of the KMK site shows that three dust deposition results were above the EPA recommendation limit of $350 \text{mg/m}^2/\text{day}$.

These were; A2-1 at $530 \text{mg/m}^2/\text{day}$, A2-4 at $1296 \text{mg/m}^2/\text{day}$ and A2-6 at $352 \text{ mg/m}^2/\text{day}$. The last result was only just above the licence ELV of $350 \text{ mg/m}^2/\text{day}$.

In relation to the particular results for A2-1 and A2-4, it is important to acknowledge the following details;

Dust station A2-4 is close to the most utilised entrance to KMK at the D-Hanger building and close to E and DX yard entrances. The public road also has an impact at this location in terms of dust generation and capture. Other users of the industrial estate include a farm machinery business next to KMK, a solid fuel merchant and an ATF dismantling yard. All these estate users have access on the public road at and around KMK and as such will contribute to dust creation by vehicular traffic.

• Dust station A2-1 is located inside the boundary wall at E area. There is approximately 1meter additional height of the concrete wall at this location thus preventing dust from escaping the E yard at this station.

It is acknowledged that during periods of dry weather, KMK yard operatives routinely dampen down all internal roads and yard areas in order to prevent dust generation. This activity will be extended to include the public roadway between the entrances at KMK's facility.

4.2 Ambient dust fall metals content.

An analysis of the metals content in all six dust samples was also carried out over the same 30 day period using the same sampling methods as those for the total dust deposition. All metals content parameters in microgram levels were deemed below the laboratory limits of detection with the exception of trace levels of copper and zinc detected in the dust samples (see results section Table 3.2).

Zinc was detected in trace levels for only at 3 stations – A2-3, A2-4 and A2-5. Copper was detected in trace levels at all dust monitoring stations.

It is important to compare the metals content in August 2013 with that of the previous August 2012 period. This is illustrated in Table 4.2 below;

Monitoring Station	Metals Content (μg)	
		2012	2013
A2-1	Aluminium	1642	<0.01
	Arsenic	<1	<0.2
	Cadmium	6	<0.01
	Chromium	57	<0.01
	Copper	<1	0.08
	Iron	<1	<0.01
	Mercury	<1	<0.2
	Nickel	<1	<0.01
	Lead	<1	<0.01
	Zinc	1586	<0.01
		2012	2013
A2-2	Aluminium	842	<0.01
	Arsenic	<1	<0.2
	Cadmium	<1	<0.01
	Chromium	<1	<0.01
	Copper	158	0.02
	Iron	263	<0.01
	Mercury	<1	<0.2
	Nickel	<1	<0.01
	Lead	<1	<0.01
	Zinc	53	< 0.01

Table 4.2 Comparison of metal content in dust samples 2012 to 2013

Monitoring Station	Metals Content	(µg)	
		2012	2013
A2-3	Aluminium	1028	< 0.01
	Arsenic	<1	<0.2
	Cadmium	<1	<0.01
	Chromium	<1	<0.01
	Copper	37	0.02
	Iron	222	< 0.01
	Mercury	<1	<0.2
	Nickel	<1	<0.01
	Lead	<1	<0.01
	Zinc	1443	0.01
		2012	2013
A2-4	Aluminium	500	<0.01
	Arsenic	<1	<0.2
	Cadmium	272	<0.01
	Chromium	295	<0.01
	Copper	<1	0.04
	Iron	<1	<0.01
	Mercury	<1	<0.2
	Nickel	<1	<0.01
	Lead	<1	<0.01
	Zinc	295	0.01
		2012	2013
A2-5	Aluminium	1534	< 0.01
	Arsenic	<1	<0.2
	Cadmium	<1	<0.01
	Chromium	<1	<0.01
	Copper	<1	0.02
	Iron	<1	<0.01
	Mercury	<1	<0.2
	Nickel	<1	<0.01
	Lead	<1	<0.01
	Zinc	<1	0.01
		2012	2013
A2-6	Aluminium	650	< 0.01
	Arsenic	<1	<0.2
	Cadmium	<1	< 0.01
	Chromium	17	< 0.01
	Copper	<1	0.03
	Iron	<1	< 0.01
	Mercury	<1	<0.2
	Nickel	<1	<0.01
	Lead	<1	<0.01
	Zinc	<1	<0.01

As can be seen from the previous tables, the actual metals content of all samples in 2013 were significantly lower in detectible levels when compared with 2012 results.

In terms of comparison of metals in ambient air samples to relevant standards where relevant, this can be only be achieved by conducting a PM10 sampling event for industrial operations (i.e. measurement of breathable dusts in the air) which metallic speciation of the samples. This sampling event is strongly health and safety orientated with emphasis on sampling methods, times, set back distances from roads and specialised equipment to be used. The regulation S.I No 58 of 2009 (Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air Regulations 2009) covers this process. However, for the purpose of this report, PM10 sampling is not sought or required.

5.0 CONCLUSIONS

Monitoring of ambient dust deposition occurred at six stations around the site during August 2013. Three out of six deposition results were not in compliance with the waste license emission limit values.

There were trace detectable levels of metallic species (copper in all samples and zinc in three samples) within the same dust samples but these levels are not considered significant and when compared to August 2012, the levels were multiples lower in quantitative terms.

Appendix A

> Dust Results report from laboratory

TEST REPORT 110545

Client: Nally Environmental Drumcree Collinstown Mullingar Co. Westmeath

BHP Ref No.: 13/09/025-030 Order No.: Date Received: 03/09/2013 Date Tested: 25/09/2013 Test Specification: Nil Analysing Testing Consulting Calibrating

BHP New Road Thomondgate Limerick Ireland Tel +353 61 455399 Fax + 353 61 455447 E Mail bhpcem2@bhp.ie

FAO Niall Nally

Item: Dust deposition results for monitoring period August 2013 using Dust deposit gauges as per VDI 4320 Part 2, at the KMK site.

For and on behalf of BHP Ltd.

108.11im

Paul O'Sullivan Date Issued: 25th September 2013 Supplement to report No. N/A

Test results relate only to this item. This test report shall not be duplicated except in full and with the permission of the test laboratory

1.0 Introduction

At the request of Niall Nally, of Nally Environmental, BHP conducted dust analysis from the KMK site.

All sampling was conducted by Nally Environmetal using Bergerhoff dust deposition gauges and analysis was conducted by BHP Laboratories in accordance with Germany Standard VDI 4320.

The EPA Publication 'draft guidelines on the information to be contained in environmental impact statements' has been used as a reference for this report.

2.0 Sampling

The sampling was carried out by Nally Environmental in accordance with VDI 4320 Part 2 using Bergerhoff dust deposition gauges. The gauges were in place from 31/07/13-29/08/13, i.e. 30 days.

3.0 Analysis

Analysis was conducted in accordance with VDI 4320 Part 2. Final residue was reconstituted in aqueous Nitric Acid and analysed by ICP-OES, as per APHA-3120-B, for the metals specified in the results section below.

4.0 Results

The results are presented in the following table.

Monitoring Station KMK Site	Dust Deposition* mg/m ² /day	Dust Residue mg	Met	al content µg
A2-1	530	119.9	Aluminium	<0.01
			Arsenic	<0.2
			Cadmium	< 0.01
			Chromium	< 0.01
			Copper	0.08
			Iron	<0.01
			Mercury	<0.2
			Nickel	<0.01
			Lead	< 0.01
			Zinc	< 0.01
A2-2	269	60.8	Aluminium	< 0.01
			Arsenic	<0.2
			Cadmium	<0.01
			Chromium	< 0.01
			Copper	0.02
			Iron	< 0.01
			Mercury	<0.2
			Nickel	< 0.01
			Lead	< 0.01
			Zinc	< 0.01
A2-3	82	18.6	Aluminium	< 0.01
			Arsenic	<0.2
			Cadmium	<0.01
			Chromium	<0.01
			Copper	0.02
			Iron	< 0.01
			Mercury	<0.2
			Nickel	< 0.01
			Lead	< 0.01
			Zinc	0.01

* Based on sampling period provided by Nally Environmental Results continued on following page.

Monitoring Station	Dust Deposition*	Dust Residue mg	Met	al content µg
KMK Site	mg/m ⁻ /day			
A2-4	1296	293.1	Aluminium	< 0.01
			Arsenic	<0.2
			Cadmium	< 0.01
			Chromium	< 0.01
			Copper	0.04
			Iron	< 0.01
			Mercury	< 0.2
			Nickel	< 0.01
			Lead	< 0.01
			Zinc	0.01
A2-5	23	5.2	Aluminium	<0.01
			Arsenic	<0.2
			Cadmium	<0.01
			Chromium	< 0.01
			Copper	0.02
			Iron	< 0.01
			Mercury	<0.2
			Nickel	< 0.01
			Lead	< 0.01
			Zinc	0.01
A2-6	352	79.6	Aluminium	<0.01
			Arsenic	<0.2
			Cadmium	<0.01
			Chromium	< 0.01
			Copper	0.03
			Iron	<0.01
			Mercury	<0.2
			Nickel	<0.01
			Lead	<0.01
			Zinc	<0.01

* Based on sampling period provided by Nally Environmental

5.0 References

 Measurement of Particulate Precipitations: Determination of Dust Precipitation with collecting pots made of glass (Bergerhoff Method) or Plastic: VDI 4320: Part 2.

APPENDIX 2

Stack Emissions Monitoring Reports 2013

Glenside Environmental Cuil Greine House Ballincollig Commercial Park Link Road Ballincollig Cork

> T: 021 4810016 M: 086 3819387 info@glenenv.ie www.glenenv.ie

Stack Emissions Monitoring Report

for

KMK Metals Recycling Ltd.

Cappincur Industrial Estate, Daingean Road, Tullamore, Co. Offaly

EPA IPPC Licence REF: W0113-03

Report No: 013-022-02

Monitoring Date: 21st May 2013

Report Summary:				
Job Quotation No:	QGE13-016			
Operator Licence No:	W0113-03			
Operator Name:	KMK Metals Recycling Ltd.			
Installation:	Cappincur Industrial Estate, Daingean Road, Tullamore, Co. Offaly			
Contact Name:	Mr. Niall Nally			
Phone No:	044 9666773, 086 8547071			
Monitoring dates:	21/05/2013			
Monitoring Organisation:	Glenside Environmental Cuil Greine House Link Road Ballincollig Cork			
Phone No:	(021) 4810016			
Email:	info@glenenv.ie			
Report Date:	10/08/2012			
Report written by:	Ewa Piatek			
MCERTS reg No:	MM07 799			
Competency:	Level 2			
Function:	Team Leader			
Endorsements:	TE1, TE2, TE3, TE4			
Signed:	EvaPiotele			
Report approved by:	Ewa Piatek			
MCERTS reg No:	MM07 799			
Competency:	Level 2			
Function:	Team Leader			
Endorsements:	TE1, TE2, TE3, TE4			
Signed:	EvaPiotele			

TABLE OF CONTENTS

PAGE

1.	INT	RODUCTION	4
2.	OB.	JECTIVES	4
2 2	.1. .2.	SUBSTANCES TO BE MONITORED AT EACH EMISSION POINT SPECIAL REQUIREMENTS	4 4
3.	MA	TERIALS AND METHODS	5
3 3 3	.1. .2. .3.	PARTICULATES METALS VOLUMETRIC FLOW RATE	5 5 5
4.	MO	NITORING RESULTS	6
4	.1.	MONITORING RESULTS	6
EM	IISSI	ON POINT	7
4 4 4	2. 3. 4.	REFERENCE CONDITIONS VOLUMETRIC FLOW RATE METHODS AND ACCREDITATION STATUS	8 8 8
5.	OPI	ERATING INFORMATION	8
6.	MO	NITORING DEVIATION	9
7.	ANI	NEX 1	, 10
7 7	.1. .2.	PERSONNEL Equipment used	10 10
8.	ANI	NEX 2	11
8 8	5.1. 5.2.	DIAGRAMS OF THE STACK SAMPLING MEASUREMENTS	. 11 . 11
9.	ANI	NEX 3	.12
9	.1.	RESULTS AND UNCERTAINTY CALCULATIONS, CERTIFICATES OF ANALYSIS	12

1. Introduction

Glenside Environmental was commissioned by KMK Metals Recycling Ltd to perform air emission monitoring at their facility in Cappincur Industrial Estate, Dalngean Road, Tullamore, Co. Offaly. The monitoring was carried out in accordance with requirements of Waste Licence W0113-03. This report presents details of this monitoring programme.

2. Objectives

2.1. Substances to be monitored at each emission point

Sample Locations	Parameter
A2-8	Particulates
	Metals (Total of Cd+Tl)
	Metals (Total of Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Be)
	Chromium
	Lead
	Mercury
	Aluminium
	Arsenic
	Cadmium
	Copper
	Iron
	Nickel
	Zinc

2.2. Special Requirements

There were no special requirements for this monitoring campaign.

3. Materials and Methods

This section provides brief details of the methodologies employed to perform the air emission monitoring.

3.1. Particulates

A sample stream of gas is extracted from the main gas stream at representative sampling points for 30 minutes, with an isokinetically controlled flow rate and measured volume. The dust entrained in the gas sample is separated by a preweighed filter, which is then dried and reweighed. Deposits upstream of the filter in the sampling equipment are also recovered and weighed. The increase of mass of the filter and the deposited mass upstream of the filter are attributed to dust collected from the sampled gas, which allows the dust concentration to be calculated.

3.2. Metals

A known volume of flue gas is extracted representatively from a duct or a chimney during a certain period of time at a controlled flow rate following EN13284-1:2004 (Particulates Standard). The dust in the sampled gas volume is collected on a filter. Thereafter, the gas stream is passed through a series of absorbers containing absorption solutions and the filter passing fractions of the specific elements are collected within these solutions.

The results are calculated from the laboratory results divided by air volume sampled and are converted to mg/m3. Results in kg/hr are calculated from concentration of pollutant and stack flow rate. All results are corrected to Standard Temperature and Pressure. LOD values are obtained from laboratory LOD and the same calculations as per results.

3.3. Volumetric Flow Rate

The volumetric airflow rate was determined from stack velocity measurements calculated in accordance with BS EN 13284. Airflow rate and temperature profiles were performed at pre-calculated intervals across the stack in order to determine the average velocity profile across the stack diameters. Results are presented in table 4.3.

4. Monitoring Results

Tables 4.1 present results of the air emission monitoring sampling program carried out at the emission stacks listed below.

4.1. Monitoring Results

Results reported are corrected to reference conditions as per IPPC Licence requirements.

Emission Point	Substances	ELV mg/Nm ³	CEMS Results	LOD mg/Nm ³	Results mg/Nm ³	Results kg/hr	Uncertainty mg/m ³	Date of Monitoring	Start –End Time of Monitoring
A2-8	Particulates	12.5	n/a	0.24	0.4	0.01	0.27	21/05/2013	11:47-12:17
A2-8	Metals (Total of Cd+TI)	n/a	n/a	0.0018	<0.0018	n/a	n/a	21/05/2013	13:04-13:34
A2-8	Metals (Total of Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Be)	n/a	n/a	0.0140	0.0279	0.0007	n/a	21/05/2013	13:04-13:34
A2-8	Chromium	n/a	n/a	0.0025	0.0031	0.0001	n/a	21/05/2013	13:04-13:34
A2-8	Lead	n/a	n/a	0.0009	0.0107	0.0003	n/a	21/05/2013	13:04-13:34
A2-8	Mercury	n/a	n/a	0.0003	0.0010	n/a	n/a	21/05/2013	14:00-14:30
A2-8	Aluminium	n/a	n/a	0.0014	0.0455	0.0011	n/a	21/05/2013	13:04-13:34
A2-8	Arsenic	n/a	n/a	0.0008	<0.0008	n/a	n/a	21/05/2013	13:04-13:34
A2-8	Cadmium	n/a	n/a	0.0009	<0.0009	n/a	n/a	21/05/2013	13:04-13:34
A2-8	Copper	n/a	n/a	0.0010	0.0021	n/a	n/a	21/05/2013	13:04-13:34
A2-8	Iron	n/a	n/a	0.0008	0.0140	0.0003	n/a	21/05/2013	13:04-13:34
A2-8	Nickel	n/a	n/a	0.0024	0.0032	0.0001	n/a	21/05/2013	13:04-13:34
A2-8	Zinc	n/a	n/a	0.0008	2.1024	0.0506	n/a	21/05/2013	13:04-13:34

Emission Point	Substances	ELV mg/Nm ³	CEMS Results	LOD mg/Nm ³	Results mg/Nm ³	Results kg/hr	Uncertainty mg/m ³	Date of Monitoring	Start –End Time of Monitoring
Blank	Particulates	n/a	n/a	0.24	<0.24	n/a	0.02	21/05/2013	11:25-11:29
Blank	Metals (Total of Cd+Tl)	n/a	n/a	0.0018	<0.0018	n/a	n/a	21/05/2013	12:33-12:30
Blank	Metals (Total of Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Be)	n/a	n/a	0.0140	0.0152	n/a	n/a	21/05/2013	12:33-12:30
Blank	Chromium	n/a	n/a	0.0025	<0.0025	n/a	n/a	21/05/2013	12:33-12:30
Blank	Lead	n/a	n/a	0.0009	0.00013	n/a	n/a	21/05/2013	12:33-12:30
Blank	Mercury	n/a	n/a	0.0003	<0.0003	n/a	n/a	21/05/2013	13:43-14:49
Blank	Aluminium	n/a	n/a	0.0014	0.0026	n/a	n/a	21/05/2013	12:33-12:30
Blank	Arsenic	n/a	n/a	0.0008	<0.0008	n/a	n/a	21/05/2013	12:33-12:30
Blank	Cadmium	n/a	n/a	0.0009	<0.0008	n/a	n/a	21/05/2013	12:33-12:30
Blank	Copper	n/a	n/a	0.0010	<0.0010	n/a	n/a	21/05/2013	12:33-12:30
Blank	Iron	n/a	n/a	0.0008	0.0039	n/a	n/a	21/05/2013	12:33-12:30
Blank	Nickel	n/a	n/a	0.0024	0.0025	n/a	n/a	21/05/2013	12:33-12:30
Blank	Zinc	n/a	n/a	0.0008	0.0023	n/a	n/a	21/05/2013	12:33-12:30

4.2. Reference Conditions

Emission	Reference	Reference	Reference	Reference
Point	Temperature	Pressure	Moisture	Oxygen
A2-8	273 K	101.3 kPa	No correction	No correction

4.3. Volumetric Flow Rate

Emission Point	Actual Moist Flow Rate	Moist Flow Rate at STP	Dry Flow Rate at STP	Emission Limit Value	Units
A2-8	25287.89	24056.46	n/a	40 000	m³/Hr

4.4. Methods and Accreditation Status

Emission Point	Substances	Method	SOP Number	Accreditation Status	Analysis Laboratories	Accreditation Status
A2-8	Flow, Temperature and Pressure	BS EN 13284- 2002	GEN3- 001	n/a	n/a	n/a
A2-8	Particulates	BS EN 13284- 2002	GEN3- 001	n/a	SAL Laboratories Manchester	UKAS
A2-8	Metals	BS EN 14385:2004	GEN3- 014	n/a	SAL Laboratories Manchester	n/a

5. Operating Information

Emission Point	Process Status Load /Feedstock	Process Details	Fuel /Feedstock	Abatement System	Status of Abatement System
A2-8	Normal Operation	Full Load	n/a	Filter	In Operation

6. Monitoring Deviation

Requirements	Comments
Substances were monitored as per monitoring objectives	Yes
Substances were monitored in accordance with the monitoring stated in AG2 (Air Emissions Monitoring Guidance Note#2)	Yes
All monitoring substances were carried out as per Standard/Methods requirements.	Yes

Sampling Location Summary

Requirements	Comments
Stack Shape	Circular
Dimensions	0.8
Recommended 5 hydraulic diameters straight length before sampling plane	Yes
Recommended 2 hydraulic diameters straight length after sampling plane	No
Sufficient ports number Small stacks(<0.7) – 1 port 0.7-1.5m – 2 ports >1.5m – 4 ports	1 port
Appropriate port size	Yes
Suitable working platform	Yes
Safe and clean working environment	Yes

7. Annex 1

7.1. Personnel

Scientist/Technician Name	Position	Qualification	Technical Endorsements	MCERTS Number
Ewa Piatek	Technician	Level 2	TE1, TE2, TE3, TE4	MM07 799
Patrick Power	Technician	Trainee	-	MM12 1183

7.2. Equipment used

Equipment	GEN Equipment No	
Millennium Instruments Method 5 Sampler	EQ069	
Impinger System		
Probe		
Pitot tube		
Nozzles		
Filters	Laboratory supplied	

Company Name: KMK Metals Recycling Ltd Licence No: W0113-03 Year: 2013, Visit No: 1 Report No: 013-022-02

8. Annex 2

8.1. Diagrams of the stack

8.2. Sampling measurements

Determinant	Result	Units
Number of Ports Sampled	1	-
Number of Points Sampled	4	-
Average Velocity v'a	13.97	m/s
Average Pressure	101.3	kPa
Average Temperature	22.35	C°
Stack Diameter	0.8	m
T Reference	273	Deg K
P Reference	101.3	kPa
Isokinetic condition	Part 92.07 Metals 105.01 Mercury 91.40	%
Oxygen	n/a %	
Water vapour	n/a	%

9. Annex 3

9.1. Results and uncertainty calculations, certificates of analysis

Glenside Environmental Cuil Greine House Ballincollig Commercial Park Link Road Ballincollig Cork

> T: 021 4810016 M: 086 3819387 info@glenenv.ie www.glenenv.ie

Quarter 3 of 2013 Stack Emissions Monitoring Report

for

KMK Metals Recycling Ltd.

Cappincur Industrial Estate, Daingean Road, Tullamore, Co. Offaly

EPA IPPC Licence REF: W0113-03

Report No: 013-050-02

Monitoring Date: 17th September 2013

Test report shall not be reproduced except in full, without written approval of the laboratory.

Report Summary:				
Job Quotation No:	QGE13-016			
Operator Licence No:	W0113-03			
Operator Name:	KMK Metals Recycling Ltd.			
Installation:	Cappincur Industrial Estate, Daingean Road, Tullamore, Co. Offaly			
Contact Name:	Niall Nally			
Phone No:	044 9666773, 086 3547071			
Monitoring dates:	17/09/2013			
Monitoring Organisation:	Glenside Environmental, Cuil Greine House Link Road, Ballincollig, Cork			
Phone No:	(021) 4810016			
Email:	info@glenenv.ie			
Report Date:	14/10/2013			
Report written by:	Ewa Piatek			
MCERTS reg No:	MM07 799			
Competency:	Level 2			
Function:	Team Leader			
Endorsements:	TE1, TE2, TE3, TE4			
Signed:	X Ena Pratel			
	Signed by: Ewa Piatek			
Report approved by:	Ewa Piatek			
MCERTS reg No:	MM07 799			
Competency:	Level 2			
Function:	Team Leader			
Endorsements:	TE1, TE2, TE3, TE4			
Signed:	<u>X</u>			

TABLE OF CONTENTS

<u>PAGE</u>

1.	INT	RODUCTION	4
2.	OB.	JECTIVES	4
2 2	2.1. 2.2.	SUBSTANCES TO BE MONITORED AT EACH EMISSION POINT SPECIAL REQUIREMENTS	4 4
3.	MO	NITORING RESULTS	5
3 3 3	.1. .2. .3.	MONITORING RESULTS REFERENCE CONDITIONS METHODS AND ACCREDITATION STATUS	5 5 5
4.	OPI	ERATING INFORMATION	6
5.	MO	NITORING DEVIATION	6
6.	ANI	NEX 1	7
6 6	5.1. 5.2.	PERSONNEL EQUIPMENT USED	7 7
7.	ANI	NEX 2	8
7 7	.1. .2.	DIAGRAMS OF THE STACK	8 8
8.	ANI	NEX 3	9
8	8.1.	RESULTS AND UNCERTAINTY CALCULATIONS, CERTIFICATES OF ANALYSIS	9

1. Introduction

Glenside Environmental was commissioned by KMK Metals Recycling Ltd to perform air emission monitoring at the facility in Cappincur Industrial Estate, Daingean Road, Tullamore, Co. Offaly. The monitoring was carried out as required by Waste Licence W0113-03. This report presents details of this monitoring programme.

2. Objectives

2.1. Substances to be monitored at each emission point

Sample Locations	Parameter
A2-8	Particulates
	Metals (Total of Cd+Tl)
	Metals (Total of Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Be)
	Chromium
	Lead
	Mercury
	Aluminium
	Arsenic
	Cadmium
	Copper
	Iron
	Nickel
	Zinc

2.2. Special Requirements

There were no special requirements for this monitoring campaign.

3. Materials and Methods

This section provides brief details of the methodologies employed to perform the air emission monitoring.

3.1. Particulates

A sample stream of gas is extracted from the main gas stream at representative sampling points for 30 minutes, with an isokinetically controlled flow rate and measured volume. The dust entrained in the gas sample is separated by a pre-weighed filter, which is then dried and reweighed. Deposits upstream of the filter in the sampling equipment are also recovered and weighed. The increase of mass of the filter and the deposited mass upstream of the filter are attributed to dust collected from the sampled gas, which allows the dust concentration to be calculated.

3.2. Metals

A known volume of flue gas is extracted representatively from a duct or a chimney during a certain period of time at a controlled flow rate following EN13284-1:2004 (Particulates Standard). The dust in the sampled gas volume is collected on a filter. Thereafter, the gas stream is passed through a series of absorbers containing absorption solutions and the filter passing fractions of the specific elements are collected within these solutions.

The results are calculated from the laboratory results divided by air volume sampled and are converted to mg/m³. Results in kg/hr are calculated from concentration of pollutant and stack flow rate. All results are corrected to Standard Temperature and Pressure. LOD values are obtained from laboratory LOD and the same calculations as per results.

3.3. Volumetric Flow Rate

The volumetric airflow rate was determined from stack velocity measurements calculated in accordance with ISO 16911-1:2013. Airflow rate and temperature profiles were performed at precalculated intervals across the stack in order to determine the average velocity profile across the stack diameters. Results are presented in table 4.3.

4. Monitoring Results

Table 4.1 present results of the air emission monitoring sampling program carried out at the emission stacks listed below.

4.1. Monitoring Results

Results reported are corrected to reference conditions as per Waste Licence requirements.

Emission Point	Substances	ELV mg/Nm ³	CEMS Results	LOD mg/Nm ³	Results mg/Nm ³	Results kg/hr	Uncertainty mg/m ³	Date of Monitoring	Start –End Time of Monitoring
Blank	Particulates	12.5	n/a	0.97	<0.97	n/a	0.03	17/09/2013	10:45-10:48
A2-8	Particulates	n/a	n/a	0.97	<0.97	n/a	0.03	17/09/2013	10:55-11:25
Blank	Metals (Total of Cd+Tl)	n/a	n/a	0.0064	<0.0064	n/a	n/a	17/09/2013	11:55-11:58
A2-8	Metals (Total of Cd+Tl)	n/a	n/a	0.0064	0.0066	0.0002	n/a	17/09/2013	12:26-12:56
Blank	Metals (Total of Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Be)	n/a	n/a	0.0509	<0.0509	n/a	n/a	17/09/2013	11:55-11:58
A2-8	Metals (Total of Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Be)	n/a	n/a	0.0509	0.0693	0.0021	n/a	17/09/2013	12:26-12:56
Blank	Aluminium	n/a	n/a	0.0309	<0.0309	n/a	n/a	17/09/2013	11:55-11:58
A2-8	Aluminium	n/a	n/a	0.0309	0.0694	0.0021	n/a	17/09/2013	12:26-12:56
Blank	Arsenic	n/a	n/a	0.0030	<0.0030	n/a	n/a	17/09/2013	11:55-11:58
A2-8	Arsenic	n/a	n/a	0.0030	0.0032	0.0001	n/a	17/09/2013	12:26-12:56
Blank	Cadmium	n/a	n/a	0.0033	<0.0033	n/a	n/a	17/09/2013	11:55-11:58
A2-8	Cadmium	n/a	n/a	0.0033	< 0.0033	n/a	n/a	17/09/2013	12:26-12:56
Blank	Chromium	n/a	n/a	0.0076	< 0.0076	n/a	n/a	17/09/2013	11:55-11:58

Company Name: KMK Metals Recycling Ltd. Licence No: W0113-03 Year: 2013, Visit No: 2 Report No: 013-050-02

Emission Point	Substances	ELV mg/Nm ³	CEMS Results	LOD mg/Nm ³	Results mg/Nm ³	Results kg/hr	Uncertainty mg/m ³	Date of Monitoring	Start –End Time of Monitoring
A2-8	Chromium	n/a	n/a	0.0076	0.0129	0.0004	n/a	17/09/2013	12:26-12:56
Blank	Copper	n/a	n/a	0.0037	<0.0037	n/a	n/a	17/09/2013	11:55-11:58
A2-8	Copper	n/a	n/a	0.0037	0.0046	0.0001	n/a	17/09/2013	12:26-12:56
Blank	Lead	n/a	n/a	0.0031	<0.0031	n/a	n/a	17/09/2013	11:55-11:58
A2-8	Lead	n/a	n/a	0.0031	0.0123	0.0004	n/a	17/09/2013	12:26-12:56
Blank	Iron	n/a	n/a	0.0066	0.0229	n/a	n/a	17/09/2013	11:55-11:58
A2-8	Iron	n/a	n/a	0.0066	0.1869	0.0056	n/a	17/09/2013	12:26-12:56
Blank	Nickel	n/a	n/a	0.0103	<0.0103	n/a	n/a	17/09/2013	11:55-11:58
A2-8	Nickel	n/a	n/a	0.0103	<0.0103	0.0003	n/a	17/09/2013	12:26-12:56
Blank	Zinc	n/a	n/a	0.0323	<0.0323	n/a	n/a	17/09/2013	11:55-11:58
A2-8	Zinc	n/a	n/a	0.0323	0.3395	0.0101	n/a	17/09/2013	12:26-12:56
Blank	Mercury	n/a	n/a	0.0003	<0.0003	n/a	n/a	17/09/2013	13:21-13:24
A2-8	Mercury	n/a	n/a	0.0003	0.0012	0.0000	n/a	17/09/2013	13:55-14:25

4.2. Reference Conditions

Emission Point	Reference	Reference	Reference	Reference
	Temperature	Pressure	Moisture	Oxygen
A2-8	273 K	101.3 kPa	No correction	No correction

4.3. Volumetric Flow Rate

Emission Point	Actual Moist Flow Rate	Moist Flow Rate at STP	Dry Flow Rate at STP	Emission Limit Value	Units
A2-8	31770.57	29890.36	n/a	40 000	m³/Hr

4.4. Methods and Accreditation Status

Emissi on Point	Determinant	Reference Method	SOP Numb er	Accredita tion Status	Analytic al Method Descript ion	Subcontra cted Laboratory	Laborator y Accredita tion Status
A2-8	Flow, Temperature, Pressure	ISO 16911- 1:2013	GEN3 -019	n/a	n/a	n/a	n/a
A2-8	Mercury	IS EN 13211	GEN3 -014	n/a	AFS	SAL	UKAS
A2-8	Metals	IS EN 14385	GEN3 -014	n/a	ICP MS	SAL	UKAS

Substances were monitored as per monitoring objectives.

Substances were monitored in accordance with the monitoring stated in AG2 (Air Emissions Monitoring Guidance Note#2)

5. Operating Information

Emission Point	Process Status Load /Feedstock	Process Details	Fuel /Feedstock	Abatement System	Status of Abatement System
A2-8	Normal Operation	Full Load	n/a	Filter	In Operation

6. Monitoring Deviation

.

Requirements of IS EN 15259 for sampling points	Comments
Measuring plane is located as far downstream and upstream from any disturbances, which could change direction of flow (bends, fans, partially closed dumpers).	Yes
Measuring Plane is located in a section of duct with at least five hydraulic diameters of straight duct upstream of the sampling plane.	Yes
Measuring Plane is located in a section of duct with at least two hydraulic diameters of straight duct downstream of the sampling plane (five hydraulic diameters from top of the stack).	No
Measuring Plane is located in a section of duct with constant shape and cross-sectional area.	Yes
Measurement section is clearly identified and labelled.	Yes
Requirements of IS EN 15259 for platform, working space and ports size.	Comments
Appropriate working area.	Yes
Safe access to monitoring point.	Yes
Sufficient ports number Small stacks(<0.7) – 1 port 0.7-1.5m – 2 ports >1.5m – 4 ports	1 port
Appropriate port size.	Yes
Requirements of ISO 16911-1:2013 for flow, temperature and pressure profile of the stack	Comments
Required number of points were sampled as per ISO 16911-1 requirements.	Yes
No negative flow.	Yes
All points sampled swirl check was below 15°	Yes
Differential pressure higher than 5Pa measured with pitot tube.	Yes
The ratio of highest to lowest local gas velocity is outside (higher than 3:1) of requirements	Yes
Requirements of IS EN 13248-1 for Particulates	Comments
The LOD is less than 10% of ELV (for ELV >5 mg/m3) (MID 13248-1section 10.6)	Yes
The blank reading meet the required target of <10% of the daily limit value (for ELV >10 mg/m3) (section 10.6)	Yes

7. Annex 1

7.1. Personnel

Scientist/Technician Name	Position	Qualification	Technical Endorsements	MCERTS Number
Ewa Piatek	Team Leader	Level 2	TE1, TE2, TE3, TE4	MM07 799
Patrick Power	Technician	Trainee	-	MM12 1183
Jim Nelligh	Technician	Trainee	-	n/a

7.2. Equipment used

Equipment	GEN Equipment No		
Millenium 5 Pump	EQ064		
Millenium Nozzle Set	EQ087		
Millenium Probe	EQ071		
Millenium Pitot tube	EQ081		
Millenium Impingers	EQ072		
Filters	Laboratory supplied		
Distance Meter	EQ089		
Measuring Tape	EQ090		
KIMO Pitot Tube	EQ080		
KIMO Flow Meter	EQ079		
Caliper	EQ082		

Company Name: KMK Metals Recycling Ltd. Licence No: W0113-03 Year: 2013, Visit No: 2 Report No: 013-050-02

8. Annex 2

8.1. Diagrams of the stack

8.2. Sampling measurements

Determinant	Result	Units
Number of Ports Sampled	1	-
Number of Points Sampled	4	-
Average Velocity v'a	17.65	m/s
Average Pressure	101.465	kPa
Average Temperature	18.5	°C
Stack Diameter	0.8	m
T Reference	273	Deg K
P Reference	101.3	kPa
Isokinetic condition	Particulates -0.84 Metals -0.85 Mercury 1.22	%
Oxygen	n/a	%
Water vapour	n/a	%

9. Annex 3

9.1. Results and uncertainty calculations, certificates of analysis

Scientific Analysis Laboratories Ltd

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2404

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 351602-1

Date of Report: 03-Oct-2013

Customer: Glenside Environmental Cuil Greine House Ballincollig Commercial Park Link Road Ballincollig. CO. CORK.

Customer Contact: Mr Patrick Power

Customer Job Reference: KMK METALS Customer Purchase Order: 013-050 KMK STACK Date Job Received at SAL: 23-Sep-2013 Date Analysis Started: 24-Sep-2013 Date Analysis Completed: 03-Oct-2013

The results reported relate to samples received in the laboratory Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs All results have been reviewed in accordance with QP22

Report checked and authorised by : Mary Drury Project Manager Issued by : Mary Drury Project Manager

SAL Reference	: 351602					
Customer Reference	: KMK METAL	.S				
Filter GFA 47mm Miscellaneous	Analysed as	Filter GF	A 47mm			
			SA	L Reference	351602 001	351602 002
		Custor	mer Sampl	e Reference	050-02-01 RUN 1 FILTER RUN	050-02-02 FILTER BLANK
			٦	Fest Sample	AR	AR
Determinand	Method		Units	Symbol		
Particulates (Total)	Grav (5 Dec)	0.05	mg	U	<0.05	<0.05

SAL Reference:	351602					
Customer Reference:	KMK MET	ALS				
Wash(DI) Miscellaneous	Analysed a	as Wash(I	(וכ			
			SA	L Reference	351602 003	351602 004
		Custor	ner Sampl	e Reference	050-02-03 RUN 1 NOZZLE WASH	050-02-04 NOZZLE WASH BLANK
			1	Fest Sample	AR	AR
Determinand	Method	LOD	Units	Symbol		
Particulates (Total)	Grav	0.3	mg	U	<0.3	<0.3

SAL Reference: 351602

Customer Reference: KMK METALS

Impinger (5%HNO3/5%H2O2) Analysed as Impinger (3.3%HNO3/1.5%H2O2)

Miscellaneous								
	100		SA	L Reference	351602 005	351602 006	351602 007	351602 008
		Custo	mer Sampl	e Reference	050-02-05 RUN 2 METALS IMPINGER 1	050-02-06 RUN 2 METALS IMPINGER 2	050-02-07 RUN 2 METALS IMPINGER 3	050-02-08 METALS IMPINGER BLANK
				Test Sample	AR	AR	AR	AR
Determinand	Method	LOD	Units	Symbol				
Volume	ICPMS (BS EN 14385)	1	ml	U	100	110	100	200

SAL Reference: 351602

Customer Reference: KMK METALS

Impinger (5%HNO3/5%H2O2) Analysed as Impinger (3.3%HNO3/1.5%H2O2)

Suite C

			SA	L Reference	351602 005	351602 006	351602 007	351602 008
		Custo	mer Sampl	e Reference	050-02-05 RUN 2 METALS IMPINGER 1	050-02-06 RUN 2 METALS IMPINGER 2	050-02-07 RUN 2 METALS IMPINGER 3	050-02-08 METALS IMPINGER BLANK
			1	Fest Sample	AR	AR	AR	AR
Determinand	Method	LOD	Units	Symbol				
Aluminium	ICPMS (BS EN 14385)	1	µg/l	N	(26,64) <30	(26,64) <30	(64,26) <30	(26,64) <30
Antimony	ICPMS (BS EN 14385)	0.5	µg/l	U	<0.5	<0.5	<0.5	<0.5
Arsenic	ICPMS (BS EN 14385)	0.2	µg/l	U	0.4	0.3	0.4	<0.2
Beryllium	ICPMS (BS EN 14385)	0.5	µg/l	U	<0.5	<0.5	<0.5	<0.5
Cadmium	ICPMS (BS EN 14385)	0.5	µg/l	U	0.7	0.8	<0.5	<0.5
Chromium	ICPMS (BS EN 14385)	0.5	µg/l	U	2.1	0.9	2.0	<0.5
Cobalt	ICPMS (BS EN 14385)	0.2	µg/l	U	⁽¹³⁾ <0.2	⁽¹³⁾ <0.2	⁽¹³⁾ <0.2	⁽¹³⁾ <0.2
Copper	ICPMS (BS EN 14385)	1	µg/l	U	2	1	3	<1
Iron	ICPMS (BS EN 14385)	1	µg/l	N	^(26,64) 250	^(26,64) 140	^(64,26) 140	^(26,64) <30
Lead	ICPMS (BS EN 14385)	0.3	µg/l	U	9.5	9.6	13	0.7
Manganese	ICPMS (BS EN 14385)	2	µg/l	U	(13) 5	(13) 7	(13) 5	(13) <2
Nickel	ICPMS (BS EN 14385)	2	µg/l	U	<2	<2	<2	<2
Thallium	ICPMS (BS EN 14385)	0.3	µg/l	U	<0.3	<0.3	<0.3	<0.3
Vanadium	ICPMS (BS EN 14385)	0.3	µg/l	U	(13) <0.3	(13) <0.3	(13) <0.3	(13) <0.3
Zinc	ICPMS (BS EN 14385)	1	µg/l	N	(64,26) 320	(64,26) 280	(26,64) 470	(64,26) <30

SAL Reference	e: 351602					
Customer Referenc	e: KMK METALS					
Probe Wash (27.5%HNO3) Suite B	Analysed as Probe Wash (27.5%HM	I O3)			
			SA	L Reference	351602 009	351602 010
		Custor	ner Sample	e Reference	050-02-09 METALS PROBE WASH	050-02-10 METALS PROBE WASH BLANK
			1	Fest Sample	AR	AR
Determinand	Method	LOD	Units	Symbol		
Aluminium	ICPMS (HF BS EN 14385)	1	μg	N	⁽⁶⁴⁾ <1	⁽⁶⁴⁾ <1
Antimony	ICPMS (HF BS EN 14385)	1	μg	U	<1	<1
Arsenic	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Beryllium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Cadmium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Chromium	ICPMS (HF BS EN 14385)	2	μg	U	<2	<2
Cobalt	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Copper	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Iron	ICPMS (HF BS EN 14385)	1	μg	N	⁽⁶⁴⁾ 1	⁽⁶⁴⁾ <1
Lead	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Manganese	ICPMS (HF BS EN 14385)	2	μg	U	<2	<2
Nickel	ICPMS (HF BS EN 14385)	2	μg	U	<2	<2
Thallium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Vanadium	ICPMS (HF BS EN 14385)	0.5	μg	U	⁽¹³⁾ <0.5	⁽¹³⁾ 1.0
Zinc	ICPMS (HF BS EN 14385)	1	μg	N	⁽⁶⁴⁾ <1	⁽⁶⁴⁾ <1

SAL Reference:	351602
Customer Reference:	KMK METALS

Analysed as Filter

Filter

Filter suite 3						
	1000		SA	L Reference	351602 011	351602 012
		Custo	mer Sampl	le Reference	050-02-11 METALS FILTER	050-02-12 METALS FILTER BLANK
	180-5	101		Test Sample	AR	AR
Determinand	Method	LOD	Units	Symbol		
Aluminium	ICPMS (HF BS EN 14385)	0.5	μg	N	⁽⁶⁴⁾ 14	⁽⁶⁴⁾ 19
Antimony	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Arsenic	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Beryllium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Cadmium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Chromium	ICPMS (HF BS EN 14385)	1	μg	U	2	<1
Cobalt	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Copper	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Iron	ICPMS (HF BS EN 14385)	1	μg	N	(^{13,64}) 10	^(13,64) <1
Lead	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Manganese	ICPMS (HF BS EN 14385)	0.5	μg	U	⁽¹³⁾ 0.5	⁽¹³⁾ 0.9
Nickel	ICPMS (HF BS EN 14385)	1.0	μg	U	<1.0	<1.0
Thallium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Vanadium	ICPMS (HF BS EN 14385)	0.5	μg	U	⁽¹³⁾ <0.5	(13) < 0.5
Zinc	ICPMS (HF BS EN 14385)	1	μg	N	(13,64) 8	(64,13) <1

SAL Reference	a: 351602						
Customer Reference	: KMK METALS						
Impinger (2%KMnO4/10%H2SO4)	Analysed as Impinger (2%KMnC	04/10%H2S	04)			
Miscellaneous							
			SA	L Reference	351602 013	351602 014	351602 015
		Custo	mer Sampl	e Reference	050-02-13 RUN 3 MERCURY IMPINGER 1	050-02-14 RUN 3 MERCURY IMPINGER 2	050-02-15 RUN 3 MERCURY IMPINGER BLANK
			1	Test Sample	AR	AR	AR
Determinand	Method	LOD	Units	Symbol			
Mercury	CVAFS (BS EN 13211)	0.5	µg/l	U	4.2	<0.5	<0.5
Volume	CVAFS (BS EN 13211)	1	ml	U	100	110	100

SAL Reference	351602				
Customer Reference	: KMK METALS				
Probe Wash (27.5%HNO3)	Analysed as Probe Wash (27.5%F	INO3)			
Miscellaneous					
			SA	Reference	351602 016
		Custo	ner Sample	e Reference	050-02-16 MERCURY PROBE WASH
			1	est Sample	AR
Determinand	Method	LOD	Units	Symbol	
Mercury	CVAFS (HF Digest BS EN 13211)	0.01	μg	U	<0.01

Mercury	CVAES (HE Digest BS EN 13211)	0.01	Units	J	<0.01
Determinand	Method		Unite	Symbol	1. 11 1. 11
			-0.4	Test Sample	AR
		Custo	ner Samp	le Reference	050-02-17 RUN 3 FILTER MERCURY
			SA	L Reference	351602 017
Miscellaneous					
Filter	Analysed as Filter				
Customer Reference:	KMK METALS				
SAL Reference	351602				

Index to symbols used in 351602-1

Value	Description
AR	As Received
64	Analysis was performed by an alternative technique
13	Results have been blank corrected.
26	LOD raised because the analysis was performed by an alternative technique
U	Analysis is UKAS accredited
Ν	Analysis is not UKAS accredited

Glenside Environmental Sprüces Leivensteilat Leivensteilat			Co Sit Da	ompany Name: te Name: ack ID: ate:	Dus	K K st Filtration 2	MK Metals MK Metals n Plant- Exhau 4/05/2012	ust Stack		Technicians MCERTS N TE's:	: o:		EP/PP MM07 79 TE1, TE2, TE3	19 3, TE4						
Run	LOD Eiltor		Probe W/: LC	D Impingare	Filtor	6	Pince	Impirger 1	Impinger 2	Impigger 2	Impigger 5	Improger 6	Blank	e Eiltor	Pince	Impigger 1	mpinger	r 2 Impigger 3	Impigger F	5 knonger 6
Lab Results	LOD I IIIBI	LOD 1	LODE MALC	//	pq	μ	JQ	µg/l	µg/l	µg/l	µg/l	µg/l	Lab Nesul	pq	рд	µg/l	µg/l	µq/l	µg/l	μg/l
Aluminium	0.5		1	30	14		⁻ 1	30	30	30	n/a	n/a	Aluminiu	n 0.5	1	30			n/a	n/a
Antimony	0.5		1	0.5	0.5		1	0.5	0.5	0.5	n/a	n/a	Antimore	y 0.5	1	0.5			n/a	n/a
Arsenic	0.5	C).5	0.2	0.5		0.5	0.4	0.3	0.4	n/a	n/a	Arsenic	0.5	0.5	0.2			n/a	n/a
Barium											n/a	n/a	Barium						n/a	n/a
Berylium	0.5	0).5	0.5	0.5		0.5	0.5	0.5	0.5	n/a	n/a	Berylium	n 0.5	0.5	0.5			n/a	n/a
Boron			-								n/a	n/a	Boron						n/a	n/a
Cadmium	0.5	0).5	0.5	0.5		0.5	0.7	0.8	0.5	n/a	n/a	Cadmiur	n 0.5	0.5	0.5			n/a	n/a
Chromium	0.5		2	0.5	2		2	2.1	0.9	2.0	n/a	n/a	Chromiur	n 0.5	2	0.5			nva	n/a
Cobalt	0.5	(1.5	0.2	0.5		0.5	0.2	0.2	0.2	n/a	n/a	Cobalt	0.5	0.5	0.2			n/a	n/a
Copper	0.5	,	1.5	1	10		0.5	2.0	140.0	140.0	n/a	n/a	Copper	0.5	0.5	20.0			n/a	n/a
Lood	0.5			0.2	10		0.5	250.0	140.0	140.0	1/8	n/a	Lood	0.5	0.5	0.7			n/a	n/a
Managanasa	0.5	, c	2	0.3	0.5		0.5	9.5	9.0	5.0	n/a	n/a	Mappano	0.5	0.5	2.0			n/a	n/a
Nickel	0.5		2	2	1		2	2.0	2.0	2.0	n/a	n/a	Nickel	1	2	2.0			n/a	n/a
Selenium			-	-			-	2.0	2.0	2.0	n/a	n/a	Seleniun		-	2.0			n/a	n/a
Silver											n/a	n/a	Silver						n/a	n/a
Thallium	0.5		15	0.3	0.5		0.5	0.3	0.3	03	n/=	n/a	Thallium	0.5	0.5	0.3			n/a	n/a
Tin	0.0			0.0	0.5		0.0	0.0	0.0	0.0	n/a	n/a	Tin	0.0	0.0	0.0			n/a	n/a
Vanadium	0.5	c).5	0.3	0.5		0.50	0.3	0.3	0.3	n/a	n/a	Vanadiur	n 0.5	1.00	0.3			n/a	n/a
Zinc	1		1	30	8		1	320	280	470	n/a	n/a	Zinc	1	1	30			n/a	n/a
Mercury	0.01	0	.01	1	0.01		0.01			-	4.2	0.5	Mercury	0.01	0.01				0.5	
	Run								Blank						-					
Solutions Volume		Imping	ger 1 Im	pinger 2	Impinger 3	100	mpinger 4	Impinger 5		Impinger 1	Impinger 2	Impinger	3 Impinger	Impinger 5						
		Metals	100		Mercury	100	100		,		.00			00						
Air Volume corrected to STP:		0.349	974278 m3	3		0.36 n	n3	٦												
Air Volume corrected to STP and Moisture:		0.349	974278 m3	3																
Average Temperature:				290.645320	4 K															
Average Pressure:				101.46	5 kPa															
Average Moisture.					0%															
Volumertic Flow Rate corrected to S	STP O2 ref and	Moisture		29890.3	6 m3/hr										If one of the m	in stal elements in	the last imn	inger is more than 1	1% of the total o	combined
Reference Conditions:															metals (i.e. th	e filter, probe rin	se and impir	ngers) collected ther	the result shall	.be
Reference Temperature:				273.1	5 K										rejected, unle	ss the total result	t is less than	30% of the ELV.		
Reference Pressure:				101.32	5 kPa															
Reference Oxygen: Reference Moisture:					0%															
Northbornbornbornbord.					0 /0										Efficiency Ch	eck				
		mg in							Corrected to	Corrected	o Corrected	to				F (())		Deserves		
Results ·	mg in samp	train	ling mę tra	g in sampling ain	mg/m3 at STP/Drv	n s	ng/m3 at STP/Drv	mg/m3 at STP/Drv	orvgen	orvgen	orvgen	ka/br	ka/br	ka/br	Efficiency	Requirement	ts FIV	Result as	FLV	
iteodilo :	LOD	Run	Bk	ank	LOD	F	Run	Blank	LOD	Run	Blank	LOD	Run	Blank	Linoichicy	%		percentage of		
Aluminium	0.0	0108	0.0243	0.007	5	0.0309	0.0694	4 0.0214	4 0.0	309 0.0	94 0.0	214 0.00	0.00 0.00	0.000	12.35	10		#DIV/0!		
Antimony	0.0	0017	0.0017	0.001	6	0.0047	0.004	7 0.004	6 0.0	047 0.0	47 0.0	046 0.00	0.00	0.000	3.02	10		#DIV/0!		
Arsenic Barium	0.0	UU11 0000	0.00011	0.001	0	0.0030	0.003	2 0.003) 0.0	0.00 0.00	132 0.0	0.00	0.00	0.000	01 3.59 #DIV/01	10		#DIV/0! #DIV/0!		
Berylium	0.0	0012	0.0012	0.001	1	0.0033	0.0033	3 0.003	1 0.0	033 0.0	133 0.0	031 0.00	0.00	01 0.000	4.33	10		#DIV/0!		
Boron	0.0	0000	0.0000	0.000	0	0.0000	0.000	0.000	0.0	0.0 0.0	0.0 0.0	000 0.00	00.0 0.00	000.0 000	00 #DIV/0!	10		#DIV/0!		
Cadmium	0.0	0012	0.0012	0.001	1	0.0033	0.0035	5 0.003	1 0.0	033 0.0	35 0.0	031 0.00	001 0.00	001 0.000	4.14	10		#DIV/0!		
Chromium	0.0	0027	0.0045	0.002	6	0.0076	0.0129	9 0.0074	4 0.0	076 0.0	29 0.0	074 0.00	002 0.00	0.000	4.44	10		#DIV/0!		
Cobalt	0.0	0011	0.0011	0.001	0	0.0030	0.0030	0.003	0.0	030 0.00	130 0.0 Me 0.0	030 0.00	001 0.00	01 0.000	1.88	10		#DIV/0!		
Iron	0.0	0023	0.0654	0.008	0	0.0066	0.1869	9 0.022	• 0.0 • 0.0	066 0.1	69 0.0	229 0.00	02 0.00	56 0.000	21.41	10		#DIV/0!		
Lead	0.0	0011	0.0043	0.001	1	0.0031	0.0123	3 0.003	3 0.0	031 0.0	23 0.0	033 0.00	01 0.00	0.000	30.19	10		#DIV/0!		
Manganese	0.0	0031	0.0043	0.002	9	0.0089	0.0122	2 0.008	3 0.0	0.0	22 0.0	083 0.00	03 0.00	0.000	11.71	10		#DIV/0!		
Nickel	0.0	0036	0.0036	0.003	4	0.0103	0.0103	3 0.009	7 0.0	103 0.0	03 0.0	097 0.00	03 0.00	03 0.000	3 5.52	10		#DIV/0!		
Silver	0.0	0000	0.0000	0.000	0	0.0000	0.0000	0.000	, U.U) 0.0	0.00 0.00	00 0.0	000 0.00	0.00 0.00	00 0.000	0 #DIV/01	10		#DIV/0!		
Thallium	0.0	0011	0.0011	0.001	1	0.0031	0.003	1 0.0030	0.0	031 0.00	131 0.0	030 0.00	01 0.00	01 0.000	2.74	10		#DIV/0!		
Tin	0.0	0000	0.0000	0.000	0	0.0000	0.0000	0.000	0.0	0.00 0.00	0.0	000 0.00	00.0	000.000	0 #DIV/0!	10		#DIV/0!		
Vanadium	0.0	0011	0.0011	0.001	6	0.0031	0.0031	1 0.004	5 0.0	031 0.00	31 0.0	045 0.00	01 0.00	0.000	2.74	10		#DIV/0!		
Zinc Mercury	0.0	0001	0.0004	0.008 0.000	u 1	0.0323	0.3395	5 U.0229 2 0.0002	ø 0.0 2 0.0	323 0.33 003 0.01	ND 0.0	229 0.00 002 0.00	0.01 0.01 0.00	0.000	0 39.56 0 11.11	10		#DIV/0! #DIV/0!		
Table (Massie			0.0050	0.000	•	0.4074	0.0								 ज		F1.1/2 (22	tala anatikat		
I otal of Metals	0.0	U445	0.2352	0.043	2	0.1271	0.6720	0.1236	5 0.1	2/1 0.67	20 0.1	236 0.00	138 0.02	201 0.003	57	 For example Cd and TI c 	ELVs for me ombined – 0	nais may be: .05 mg/m3		
Total of Cd and TI	0.0	1022	0.0022	0.002	2	0.0064	0.000	0.000							~ I	OF As DE	A. A. A.		0.5	
	0.4	JULL	0.0023	0.002	2	0.0004	0.0066	5 0.000	2 0.0	064 0.00	66 0.0	062 0.00	02 0.00	102 0.000	12	• SD, AS, PD,	OF ma/m2	Mn, Ni, V combined	– 0.5 mg/m3	

mercuy – 0.05 mg/m3
 For Cd and Ti combined it would not be necessary to comply with the less than 10% in the last impinger criteria, provided the overall combined Cd and Ti result for the sample train was below 0.015 mg/m3.
 For combined meaks [50, As, Pb, C, Co, Cu, Mk, Nk, Ni V) it would not be necessary for each individual element to comply with the less than 10% in the last impinger criteria, provided the overall combined result for the acample train was below 0.15 mg/m3.
 For mercury it would not be necessary to comply with the less than 10% in the last impinger criteria, provided the overall mercury result for the sample train was below 0.15 mg/m3.

Glenside	Company Name:	КМК	Technicians:	Ewa Piatek, Pat Power
Environmental	Site Name:	KMK	MCERTS No:	MM07 799, MM12 1183
Environmental and	Stack ID:	A2-8	TE's:	TE1, TE2, TE3, TE4
Engineering Consultants	Monitoring Date:	17/09/2013		

Paticulates Data:

Certs Results:	mg	Certs No	
LOD Filter:	0.05		
LOD Nozzle Wash:	0.3		
Blank Filter:	0.05	351602 002	
Blank Nozzle Wash:	0.3	351602 004	
Run Filter:	0.05	351602 001	
Run Nozzle Wash:	0.3	351602 003	
	0.35		
Blank	0.35		
Run	0.35		
Air Volume corrected to STP:	0 3500013	38 m3	
Moisture:	0.0000010	0%	
		0 /0	
Air Volume corrected to Moisture:	0.3590913	38 m3	
Stack Conditions			
Average Temperature:		290.	6453204 K
Average Pressure:			101 /65 kF

Deference Canditions	m
Volumertic Flow Rate corrected to STP O2 ref and Moisture	29890.36 m3/hr
Average Oxygen:	0 %
Average Moisture:	0 %
Average Pressure:	101.405 KPa

Reference Conditions	$c = \frac{m}{V} f_c$
Reference Temperature:	273.15 K
Reference Pressure:	101.325 kPa
Reference Oxygen:	0 %
Reference Moisture:	0 %

Particulates Results :

	mg/m3	mg/m3	kg/hr	Uncertainty
		corrected to O2		mg/m3
LOD	0.97	0.97	0.03	n/a
Blank	0.97	0.97	0.03	0.03
Run	0.97	0.97	0.03	0.03

Note: Blank result should be < 10% of ELV					
<20% for ELV 5mg/m3 or lower					
Blank result is: 8 % of ELV					
If the blank result is higher than requirements of ELV result should be rej	ected				

Particulates Uncertain	nty Run C	Calculations	of low range $f_s = \frac{(100 - H_m)}{100} \frac{273}{T_m}$	$\frac{\rho_{s}}{101.3}$ antratic	on of dust Ma	anual Gravimetric Meth	bo	
v14		Petermination	$V = V_m f_s$				-	
Limit value (ELV)	12.5	na m_2	Poforonco oxygon	0	% by volumo	Measurem	ent Equati	ion
Measured concentration	12.3	ng.m-3 (at reference	conditions) $f = \frac{21 - O_{2,ref}}{2}$		% by volume			
		ingili e (at leieleielee	<u>21 0 2.8</u>					
Measured Quantities	Symbol V	/alue	Standard uncertainty		Units	Uncertaint	Uncertai	nt Requirement of std
Sampled Volume	Vm	0.359091338	uVm	0.001	m3	0.28		<=2%
Sampled gas Temperature	Tm	290.6453204	uTm	2	k	0.69		<=1%
Sampled gas Pressure	ρm	101.465	uρm	1	kPa	0.99		<=1%
Sampled gas Humidity	Hm	0	uHm	1	%by volume	1.00		<=1%
Oxygen content	O2,m	0	uO2,m	0.1	%by volume	#DIV/0!		<=5%
Mass particulate	m	0.35	um	0.00	mg	0.00	0.00	<5% of limit value
Note - Sampled gas humidity,	temperatur	e and pressure are v	alues at the gas meter					
Leak	L	0			%	0.00		<=2%
Uncollected Mass	UCM	0			mg	0		<=10%
(Instack filter - no rinse)					-			
Intermediate calculations								
Factor for std conds	fs	0.94						
uncertainty components	symbol	sensitivity coeff	<i>c</i> =	‴ี(์in units o	f fs)			
5 1	ρm	0.009		0.009	,			
	, Hm	0.009		0.009				
	Tm	0.003		0.006				
	ufs			0.015		1.56		
Corrected volume	V	0.34	uV	0.005	m3	1.59		
Factor for O2 correction	fc	1.00						
uncertainty components	symbol	sensitivity coeff						
uncertainty components	O^{2} m	0.05		0.005				
Eactor for O2 Correction	ufc	1.00	(100 - H) 273	0.000		0.48		
ractor for 02 concetion	uic	1.00	$f_s = \frac{(ms-1)m}{100} \frac{TT}{T_m}$	101.3		0.40	ł	
			V = V f					
Parameter		Value	Units	Sensitivity o	Uncertainty cor	tribution Uncertainty as %		٦
Corrected Volume (standard cond	v V	0.34	m3 21 - 0 ,	2.89	0.0	2 mg.m-3 0.12	%	7
Mass	m	0.35	mg $f_c = \frac{2.09}{21 - O_{2.m}}$	- 2.78	0.0	0 mg.m-3 0.00	%	
Factor for O2 Correction	tC	1.00	ma m-3	0.97	0.0	0 mg.m-3 0.04	%	
Uncollected mass	UCM	0.00	ma	2.78	0.0	0 ma.m-3 0.00	%	
Combined measurement uncert	ainty		3		0.0	2 mg.m-3		-
Expanded uncertainty as perce	ntage of mea	asured value	3.32	% measured	l of value	expressed with a level of (Using a coverage factor	confideno k=2)	ce of 95%
Expanded uncertainty in units of	of measurem	ent	0.03	mg.m-3				
Expanded uncertainty as perce	ntage of limi	t value	0.3	%ELV				

Requirement in standard is for uncertainty to be < 30% at ELV at standard conditions

Particulates Uncertainty Blank Calculations

Uncertainty calculation for EN 13284 Determination of low range mass concentration of dust, Manual Gravimetric Method v14

Limit value (ELV)	1.25	mg.m-3	Reference oxygen	0	%by volume	modearen	on Equato	
Measured concentration	1.0	mg.m-3 (at reference	conditions)		-			
Measured Quantities	Symbol	Value	Standard uncertainty		Units	Uncertaint	Uncertaint	t Requirement of std
Sampled Volume	Vm	0.359091338	uVm	0.001	m3	0.28		<=2%
Sampled gas Temperature	Tm	290.6453204	uTm	2	k	0.69		<=1%
Sampled gas Pressure	ρm	101.465	upm	1	kPa	0.99		<=1%
Sampled gas Humidity	Hm	0	uHm	1	%by volume	1.00		<=1%
Oxygen content	O2,m	0	uO2,m	0.1	%by volume	#DIV/0!		<=5%
Mass particulate	m	0.35	um	0.00	mg	0.00	0.00	<5% of limit value
Note - Sampled gas humidity	, temperatu	ire and pressure are v	alues at the gas meter					
Leak	L	0			%	0.00		<=2%
Uncollected Mass	UCM	0			mg	0		<=10%
(Instack filter - no rinse)								
Intermediate calculations								
Factor for std conds	fs	0.94					1	
uncertainty components	symbol	sensitivity coeff		u (in units o	f fs)		1	
	ρm	0.009		0.009			1	
	Hm	0.009		0.009			1	
	Tm	0.003		0.006			1	
	ufs			0.015		1.56		
Corrected volume	V	0.34	uV	0.005	m3	1.59		
							1	
Factor for O2 correction	fc	1.00					1	
uncertainty components	symbol	sensitivity coeff		u			1	
	O2,m	0.05		0.005			l	
Factor for O2 Correction	ufc	1.00		0.005		0.48	1	

Parameter		Value Units	Sensitivity c Uncert	ainty contribution	Uncertainty as %
Corrected Volume (standard cond	V	0.34 m3	2.89	0.02 mg.m-3	1.24 %
Mass	m	0.35 mg	2.78	0.00 mg.m-3	0.00 %
Factor for O2 Correction	fc	1.00	0.97	0.00 mg.m-3	0.37 %
Leak	L	0.00 mg.m-3	1.00	0.00 mg.m-3	0.00 %
Uncollected mass	UCM	0.00 mg	2.78	0.00 mg.m-3	0.00 %
Combined measurement uncertain	nty			0.02 mg.m-3	

Expanded uncertainty as percentage of measured value

3.32 % measured of value

expressed with a level of confidence of 95% (Using a coverage factor k=2)

Expanded uncertainty in units of measurement Expanded uncertainty as percentage of limit value 0.03 mg.m-3

(Using a coverage factor k=2)

Glenside Environmental Cuil Greine House Ballincollig Commercial Park Link Road Ballincollig Cork

> T: 021 4810016 M: 086 3819387 info@glenenv.ie www.glenenv.ie

Quarter 4 of 2013 Stack Emissions Monitoring Report

for

KMK Metals Recycling Ltd.

Cappincur Industrial Estate, Daingean Road, Tullamore, Co. Offaly

EPA IPPC Licence REF: W0113-03

Report No: 013-065

Monitoring Date: 10th December 2013

Test report shall not be reproduced except in full, without written approval of the laboratory.

Report	t Summary:
Job Quotation No:	QGE13-016
Operator Licence No:	W0113-03
Operator Name:	KMK Metals Recycling Ltd.
Installation:	Cappincur Industrial Estate, Daingean Road, Tullamore, Co. Offaly
Contact Name:	Niall Nally
Phone No:	044 9666773, 086 3547071
Monitoring dates:	10/12/2013
Monitoring Organisation:	Glenside Environmental, Cuil Greine House Link Road, Ballincollig, Cork
Phone No:	(021) 4810016
Email:	info@glenenv.ie
Report Date:	09/01/2014
Report written by:	Ewa Piatek
MCERTS reg No:	MM07 799
Competency:	Level 2
Function:	Team Leader
Endorsements:	TE1, TE2, TE3, TE4
Signed:	X Ewa Pratek

TABLE OF CONTENTS

PAGE

1.	INT	RODUCTION
2.	OB.	JECTIVES4
	2.1. 2.2.	SUBSTANCES TO BE MONITORED AT EACH EMISSION POINT
3.	MO	NITORING RESULTS
	3.1. 3.2. 3.3.	MONITORING RESULTS
4.	OPI	ERATING INFORMATION8
5.	MO	NITORING DEVIATION
6.	ANI	NEX 1
6	5.1. 5.2.	PERSONNEL
7.	ANI	NEX 2
	7.1. 7.2.	DIAGRAMS OF THE STACK
8.	ANI	NEX 312
8	8.1.	RESULTS AND UNCERTAINTY CALCULATIONS, CERTIFICATES OF ANALYSIS 12

1. Introduction

Glenside Environmental was commissioned by KMK Metals Recycling Ltd to perform air emission monitoring at the facility in Cappincur Industrial Estate, Daingean Road, Tullamore, Co. Offaly. The monitoring was carried out as required by Waste Licence W0113-03. This report presents details of this monitoring programme.

2. Objectives

2.1. Substances to be monitored at each emission point

Sample Locations	Parameter
A2-8	Particulates
	Metals (Total of Cd+Tl)
	Metals (Total of Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Be)
	Chromium
	Lead
	Mercury
	Aluminium
	Arsenic
	Cadmium
	Copper
	Iron
	Nickel
	Zinc

2.2. Special Requirements

There were no special requirements for this monitoring campaign.

3. Materials and Methods

This section provides brief details of the methodologies employed to perform the air emission monitoring.

3.1. Particulates

A sample stream of gas is extracted from the main gas stream at representative sampling points for 30 minutes, with an isokinetically controlled flow rate and measured volume. The dust entrained in the gas sample is separated by a pre-weighed filter, which is then dried and reweighed. Deposits upstream of the filter in the sampling equipment are also recovered and weighed. The increase of mass of the filter and the deposited mass upstream of the filter are attributed to dust collected from the sampled gas, which allows the dust concentration to be calculated.

3.2. Metals

A known volume of flue gas is extracted representatively from a duct or a chimney during a certain period of time at a controlled flow rate following EN13284-1:2004 (Particulates Standard). The dust in the sampled gas volume is collected on a filter. Thereafter, the gas stream is passed through a series of absorbers containing absorption solutions and the filter passing fractions of the specific elements are collected within these solutions.

The results are calculated from the laboratory results divided by air volume sampled and are converted to mg/m³. Results in kg/hr are calculated from concentration of pollutant and stack flow rate. All results are corrected to Standard Temperature and Pressure. LOD values are obtained from laboratory LOD and the same calculations as per results.

3.3. Volumetric Flow Rate

The volumetric airflow rate was determined from stack velocity measurements calculated in accordance with ISO 16911-1:2013. Airflow rate and temperature profiles were performed at precalculated intervals across the stack in order to determine the average velocity profile across the stack diameters. Results are presented in table 4.3.

4. Monitoring Results

Table 4.1 present results of the air emission monitoring sampling program carried out at the emission stacks listed below.

4.1. Monitoring Results

Results reported are corrected to reference conditions as per Waste Licence requirements.

Emission Point	Substances	ELV mg/Nm ³	CEMS Results	LOD mg/Nm ³	Results mg/Nm ³	Results kg/hr	Uncertainty mg/m ³	Date of Monitoring	Start –End Time of Monitoring
Blank	Particulates	12.5	n/a	0.44	0.44	n/a	0.01	10/12/2013	11:01-11:04
A2-8	Particulates	n/a	n/a	0.44	0.44	n/a	0.01	10/12/2013	11:21-11:53
Blank	Metals (Total of Cd+Tl)	n/a	n/a	0.0029	<0.0029	n/a	n/a	10/12/2013	12:27-12:29
A2-8	Metals (Total of Cd+Tl)	n/a	n/a	0.0029	<0.0029	n/a	n/a	10/12/2013	12:45-13:17
Blank	Metals (Total of Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Be)	n/a	n/a	0.0236	<0.0236	n/a	n/a	10/12/2013	12:27-12:29
A2-8	Metals (Total of Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Be)	n/a	n/a	0.0236	0.0647	0.0019	n/a	10/12/2013	12:45-13:17
Blank	Aluminium	n/a	n/a	0.0023	0.020	n/a	n/a	10/12/2013	12:27-12:29
A2-8	Aluminium	n/a	n/a	0.0023	0.043	0.0013	n/a	10/12/2013	12:45-13:17
Blank	Arsenic	n/a	n/a	0.0014	<0.0014	n/a	n/a	10/12/2013	12:27-12:29
A2-8	Arsenic	n/a	n/a	0.0014	<0.0014	n/a	n/a	10/12/2013	12:45-13:17
Blank	Cadmium	n/a	n/a	0.0015	<0.0015	n/a	n/a	10/12/2013	12:27-12:29
A2-8	Cadmium	n/a	n/a	0.0015	<0.0015	n/a	n/a	10/12/2013	12:45-13:17
Blank	Chromium	n/a	n/a	0.0040	< 0.0040	n/a	n/a	10/12/2013	12:27-12:29

Company Name: KMK Metals Recycling Ltd. Licence No: W0113-03 Year: 2013, Visit No: 4 Report No: 013-065

Emission Point	Substances	ELV mg/Nm ³	CEMS Results	LOD mg/Nm ³	Results mg/Nm ³	Results kg/hr	Uncertainty mg/m ³	Date of Monitoring	Start –End Time of Monitoring
A2-8	Chromium	n/a	n/a	0.0040	0.0046	0.0001	n/a	10/12/2013	12:45-13:17
Blank	Copper	n/a	n/a	0.0017	<0.0017	n/a	n/a	10/12/2013	12:27-12:29
A2-8	Copper	n/a	n/a	0.0017	0.0069	0.0002	n/a	10/12/2013	12:45-13:17
Blank	Lead	n/a	n/a	0.0014	0.0016	n/a	n/a	10/12/2013	12:27-12:29
A2-8	Lead	n/a	n/a	0.0014	0.0180	0.0005	n/a	10/12/2013	12:45-13:17
Blank	Iron	n/a	n/a	0.0030	0.0104	n/a	n/a	10/12/2013	12:27-12:29
A2-8	Iron	n/a	n/a	0.0030	0.366	0.0011	n/a	10/12/2013	12:45-13:17
Blank	Nickel	n/a	n/a	0.0047	<0.0047	n/a	n/a	10/12/2013	12:27-12:29
A2-8	Nickel	n/a	n/a	0.0047	0.0064	0.0002	n/a	10/12/2013	12:45-13:17
Blank	Zinc	n/a	n/a	0.0030	0.0041	n/a	n/a	10/12/2013	12:27-12:29
A2-8	Zinc	n/a	n/a	0.0030	0.1629	0.0048	n/a	10/12/2013	12:45-13:17
Blank	Mercury	n/a	n/a	0.0001	<0.0001	n/a	n/a	10/12/2013	12:27-12:29
A2-8	Mercury	n/a	n/a	0.0001	0.0003	0.0000	n/a	10/12/2013	12:45-13:17

4.2. Reference Conditions

Emission Point	Reference	Reference	Reference	Reference
	Temperature	Pressure	Moisture	Oxygen
A2-8	273 K	101.3 kPa	No correction	No correction

4.3. Volumetric Flow Rate

Emission Point	Actual Moist Flow Rate	Moist Flow Rate at STP	Dry Flow Rate at STP	Emission Limit Value	Units
A2-8	30844.86	29261.85	n/a	40 000	m³/Hr

4.4. Methods and Accreditation Status

Emissi on Point	Determinant	Reference Method	SOP Numb er	Accredita tion Status	Analytic al Method Descript ion	Subcontra cted Laboratory	Laborator y Accredita tion Status
A2-8	Flow, Temperature, Pressure	ISO 16911- 1:2013	GEN3 -019	n/a	n/a	n/a	n/a
A2-8	Mercury	IS EN 13211	GEN3 -014	n/a	AFS	SAL	UKAS
A2-8	Metals	IS EN 14385	GEN3 -014	n/a	ICP MS	SAL	UKAS

Substances were monitored as per monitoring objectives.

Substances were monitored in accordance with the monitoring stated in AG2 (Air Emissions Monitoring Guidance Note#2)

5. Operating Information

Emission Point	Process Status Load /Feedstock	Process Details	Fuel /Feedstock	Abatement System	Status of Abatement System
A2-8	Normal Operation	Full Load	n/a	Filter	In Operation

6. Monitoring Deviation

.

Requirements of IS EN 15259 for sampling points	Comments
Measuring plane is located as far downstream and upstream from any disturbances, which could change direction of flow (bends, fans, partially closed dumpers).	Yes
Measuring Plane is located in a section of duct with at least five hydraulic diameters of straight duct upstream of the sampling plane.	Yes
Measuring Plane is located in a section of duct with at least two hydraulic diameters of straight duct downstream of the sampling plane (five hydraulic diameters from top of the stack).	No
Measuring Plane is located in a section of duct with constant shape and cross-sectional area.	Yes
Measurement section is clearly identified and labelled.	Yes
Requirements of IS EN 15259 for platform, working space and ports size.	Comments
Appropriate working area.	Yes
Safe access to monitoring point.	Yes
Sufficient ports number Small stacks(<0.7) – 1 port 0.7-1.5m – 2 ports >1.5m – 4 ports	1 port
Appropriate port size.	Yes
Requirements of ISO 16911-1:2013 for flow, temperature and pressure profile of the stack	Comments
Required number of points were sampled as per ISO 16911-1 requirements.	Yes
No negative flow.	Yes
All points sampled swirl check was below 15°	Yes
Differential pressure higher than 5Pa measured with pitot tube.	Yes
The ratio of highest to lowest local gas velocity is outside (higher than 3:1) of requirements	Yes
Requirements of IS EN 13248-1 for Particulates	Comments
The LOD is less than 10% of ELV (for ELV >5 mg/m3) (MID 13248-1section 10.6)	Yes
The blank reading meet the required target of <10% of the daily limit value (for ELV >10 mg/m3) (section 10.6)	Yes

7. Annex 1

7.1. Personnel

Scientist/Technician Name	Position	Qualification	Technical Endorsements	MCERTS Number
Ewa Piatek	Team Leader	Level 2	TE1, TE2, TE3, TE4	MM07 799
Patrick Power	Technician	Trainee	-	MM12 1183
Jim Nelligh	Technician	Trainee	-	n/a

7.2. Equipment used

Equipment	GEN Equipment No		
Millenium 5 Pump	EQ064		
Millenium Nozzle Set	EQ087		
Millenium Probe	EQ071		
Millenium Pitot tube	EQ081		
Millenium Impingers	EQ072		
Filters	Laboratory supplied		
Distance Meter	EQ089		
Measuring Tape	EQ090		
KIMO Pitot Tube	EQ080		
KIMO Flow Meter	EQ079		
Caliper	EQ082		

Company Name: KMK Metals Recycling Ltd. Licence No: W0113-03 Year: 2013, Visit No: 4 Report No: 013-065

8. Annex 2

8.1. Diagrams of the stack

8.2. Sampling measurements

Determinant	Result	Units
Number of Ports Sampled	1	-
Number of Points Sampled	4	-
Average Velocity v'a	17.05	m/s
Average Pressure	102.132	kPa
Average Temperature	18.32	°C
Stack Diameter	0.8	m
T Reference	273	Deg K
P Reference	101.3	kPa
Isokinetic condition	Particulates 2.26 Metals 0.65	%
Oxygen	n/a	%
Water vapour	n/a	%

9. Annex 3

9.1. Results and uncertainty calculations, certificates of analysis

Scientific Analysis Laboratories Ltd

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2404

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 367081-1

Date of Report: 07-Jan-2014

Customer: Glenside Environmental Cuil Greine House Ballincollig Commercial Park Link Road Ballincollig. CO. CORK.

Customer Contact: Mr Patrick Power

Customer Job Reference: 013-065 KMK STACK Customer Purchase Order: 013-065 KMK STACK Customer Site Reference: KMK METALS Date Job Received at SAL: 16-Dec-2013 Date Analysis Started: 24-Dec-2013 Date Analysis Completed: 07-Jan-2014

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs All results have been reviewed in accordance with QP22

Report checked and authorised by : Mary Drury Project Manager Issued by : Mary Drury Project Manager

SAL Reference: 367081 Project Site: KMK METALS Customer Reference: 013-065 KMK STACK

Impinger (5%HNO3/5%H2O2)

Miscellaneous

						-		-
	367081 005	367081 006	367081 007	367081 008				
Customer Sample Reference						065-02-06	065-02-07	065-02-08
Test Sample					AR	AR	AR	AR
Determinand	Method	LOD	Units	Symbol				
Mercury	CVAFS (BS EN 13211)	0.5	µg/l	U	<0.5	<0.5	<0.5	<0.5
Volume	ICPMS (BS EN 14385)	1	ml	U	100	110	110	170

Analysed as Impinger (3.3%HNO3/1.5%H2O2)

SAL Reference:	367081							
Project Site:	KMK METALS	VIK METALS						
Customer Reference:	013-065 KMK STACK							
Probe Wash (27.5%HNO3) Miscellaneous	Analysed as Probe Wash (27.5%H	INO3)						
		- 10	SA	L Reference	367081 009	367081 010		
		Custo	mer Sampl	e Reference	065-02-09	065-02-10		
		100	1	Test Sample	AR	AR		
Determinand	Method	LOD	Units	Symbol				
Mercury	CVAFS (HF Digest BS EN 13211)	0.01	μg	U	(13) < 0.01	⁽¹³⁾ <0.01		

SAL Reference	367081	- 222					
Project Site	KMK METALS						
Customer Reference	013-065 KMK STACK						
Impinger (2%KMnO4/10%H2SO4)	Analysed as Impinger (2%KMnC	04/10%H2	SO4)			
Miscellaneous							
	2017		S	AL Reference	367081 013	367081 014	367081 015
	1000	Custor	mer Sam	ole Reference	065-02-13	065-02-14	065-02-15
				Test Sample	AR	AR	AR
Determinand	Method	LOD	Units	Symbol			Starter .
Mercury	CVAFS (BS EN 13211)	0.5	µg/l	U	<0.5	<0.5	<0.5

SAL Reference:	367081	37081						
Project Site:	KMK MET/	MK METALS						
Customer Reference:	013-065 K	3-065 KMK STACK						
Wash(DI) Miscellaneous	Analysed a	as Wash(I	DI)					
			SA	L Reference	367081 003	367081 004		
		Custor	ner Sampl	e Reference	065-02-03	065-02-04		
Test Sample AR AR					AR			
Determinand	Method	LOD	Units	Symbol				
Particulates (Total)	Grav	0.3	mg	U	<0.3	0.3		

SAL Reference	: 367081					
Project Site	: KMK METAL	S				
Customer Reference	: 013-065 KMI	K STACK				
Filter GFA 47mm Miscellaneous	Analysed as	Filter GF	A 47mm			
			SA	L Reference	367081 001	367081 002
		Custor	ner Sampl	e Reference	065-02-01	065-02-02
			1	Fest Sample	AR	AR
Determinand	Method	LOD	Units	Symbol		
Particulates (Total)	Grav (5 Dec)	0.05	mq	U	0.05	<0.05

SAL Reference	: 367081					
Project Site	: KMK METALS					
Customer Reference	: 013-065 KMK STACK					
Filter	Analysed as Filter					
BS EN 14385 Metals Suit	e					
			SA	L Reference	367081 011	367081 012
		Custo	mer Sampl	e Reference	065-02-11	065-02-12
			1	Fest Sample	AR	AR
Determinand	Method	LOD	Units	Symbol		
Antimony	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Aluminium	ICPMS (HF BS EN 14385)	0.5	μg	N	(13,64) 3.0	(64,13) < 0.5
Mercury	CVAFS (HF Digest BS EN 13211)	0.01	μg	U	⁽¹³⁾ <0.01	⁽¹³⁾ <0.01
Zinc	ICPMS (HF BS EN 14385)	1	μg	N	4	2
Iron	ICPMS (HF BS EN 14385)	1	μg	N	(64,13) g	^(64,13) 2
Arsenic	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Beryllium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Cadmium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Chromium	ICPMS (HF BS EN 14385)	1	μg	U	1	<1
Cobalt	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Copper	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5

Manganese	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Nickel	ICPMS (HF BS EN 14385)	1.0	μg	U	<1.0	<1.0
Thallium	ICPMS (HF BS EN 14385)	0.5	hđ	U	<0.5	<0.5
Vanadium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
		1996	1200		1000	

0.5

μg

U

1.3

<0.5

ICPMS (HF BS EN 14385)

Lead

SAL Referen	nce: 367081					
Project S	Site: KMK METALS					
Customer Referer	nce: 013-065 KMK STACK					
Probe Wash (27.5%HNO3)	Analysed as Probe Wash	(27.5%HI	NO3)			
Suite B						
			SA	L Reference	367081 009	367081 010
		Custo	mer Sampl	e Reference	065-02-09	065-02-10
	- 19 C	1.00	The second	Test Sample	AR	AR
Determinand	Method	LOD	Units	Symbol		
Aluminium	ICPMS (HF BS EN 14385)	1	μg	N	$^{(13,64,3)} < 10$	$^{(13,64,3)} < 10$
Antimony	ICPMS (HF BS EN 14385)	1	μg	U	<1	<1
Arsenic	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Beryllium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Cadmium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Chromium	ICPMS (HF BS EN 14385)	2	μg	U	<2	<2
Cobalt	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Copper	ICPMS (HF BS EN 14385)	0.5	μg	U	0.9	<0.5
Iron	ICPMS (HF BS EN 14385)	1	μg	N	(13,64) 2	^(64,13) <1
Lead	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Manganese	ICPMS (HF BS EN 14385)	2	μg	U	<2	<2
Nickel	ICPMS (HF BS EN 14385)	2	μg	U	<2	<2
Thallium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Vanadium	ICPMS (HF BS EN 14385)	0.5	μg	U	<0.5	<0.5
Zinc	ICPMS (HF BS EN 14385)	1	μg	N	1	<1

Produced by Scientific Analysis Laboratories Ltd, Hadfield House, Hadfield Street, Cornbrook, Manchester, M16 9FE

SAL Reference: 367081 Project Site: KMK METALS Customer Reference: 013-065 KMK STACK

Analysed as Impinger (3.3%HNO3/1.5%H2O2)

Impinger (5%HNO3/5%H2O2) Suite C

Suite C								
			SA	L Reference	367081 005	367081 006	367081 007	367081 008
		Custo	mer Sampl	e Reference	065-02-05	065-02-06	065-02-07	065-02-08
				Test Sample	AR	AR	AR	AR
Determinand	Method	LOD	Units	Symbol				
Aluminium	ICPMS (BS EN 14385)	1	µg/l	N	^(26,13) 140	(26,13) <30	(13,26) <30	(13,26) <30
Antimony	ICPMS (BS EN 14385)	0.5	µg/l	U	<0.5	<0.5	<0.5	<0.5
Arsenic	ICPMS (BS EN 14385)	0.2	µg/l	U	0.5	<0.2	<0.2	<0.2
Beryllium	ICPMS (BS EN 14385)	0.5	µg/l	U	<0.5	<0.5	<0.5	<0.5
Cadmium	ICPMS (BS EN 14385)	0.5	µg/l	U	0.6	<0.5	<0.5	<0.5
Chromium	ICPMS (BS EN 14385)	0.5	µg/l	U	5.2	<0.5	<0.5	<0.5
Cobalt	ICPMS (BS EN 14385)	0.2	µg/l	U	0.7	0.5	0.2	<0.2
Copper	ICPMS (BS EN 14385)	1	µg/l	U	(13) 38	⁽¹³⁾ 1	⁽¹³⁾ <1	⁽¹³⁾ <1
Iron	ICPMS (BS EN 14385)	1	µg/l	N	^(13,26) 110	(13,26) <30	(13,26) <30	(13,26) <30
Lead	ICPMS (BS EN 14385)	0.3	µg/l	U	64	37	16	1.3
Manganese	ICPMS (BS EN 14385)	2	µg/l	U	26	45	57	<2
Nickel	ICPMS (BS EN 14385)	2	µg/l	U	12	4	3	<2
Thallium	ICPMS (BS EN 14385)	0.3	µg/l	U	<0.3	<0.3	<0.3	<0.3
Vanadium	ICPMS (BS EN 14385)	0.3	µg/l	U	<0.3	<0.3	<0.3	<0.3
Zinc	ICPMS (BS EN 14385)	1	µg/l	N	870	210	110	<1

Index to symbols used in 367081-1

Value Description					
AR	As Received				
13	Results have been blank corrected.				
3	LOD Raised Due to Elevated Blank				
26	LOD raised because the analysis was performed by an alternative technique				
64	Analysis was performed by an alternative technique				
U	Analysis is UKAS accredited				
N	Analysis is not UKAS accredited				

(lenside terconnectal matters	Company Name: Site Name: Stack ID: Monitoring Date:	KMK KMK A2-8 10/12/2013		Ter MC TE Do	echnicians: CERTS No: E's: cc No	Ewa Piate MM TE GEN2-00	k, Pat Power, J 07 799, MM12 1 1, TE2, TE3, T 12 rev9	im Nelligt 1183 E4		
Equipment Used:								τ.	ble 1 — Minimur	n number of sampling	points for circular d	lucts
Millenium 5 consol EC	Q069			Rule: EQ083]			Range of sampling plane areas	Range of ducts diameters	Minimum number of (diame)	f sampling lines ers)	Meximum numbri sempting points
Probe: EG	Q071	Pitot Tube:	EQ081					~	~			plane
KIMO - Flow Test: EC	Q079	Kimo Pitot Tube	EQ080					≪0,1	< 0,35			
			Circular no central					0,1 to 1,0 1,1 to 2,0	0,36 to 1,1 1,1 to 1,6	5		
Stack Diameter Measuremen	nts	Circular with central point	t point (tangential) 0.8		Rectangular Stack Port Side	[Deep Side	> 2,0	> 1.6	2		at least 12 and 4 per m
			8.0 8.0		2			* Using only one s	ampling point may	give rise to errors groater t	than these specified in t	his standard.
Diameter Average:		#DIV/0!	0.8	m	Port Side Ave #DIN Deep Side Ave #DIN	V/0!	m	For large ducts,	a number of 20 san	rpling points is generally s	ufficient.	
Stack Area		#DIV/0!	0.50	m2	#DN Bost Number	V/0!	m2	74	ble 2 — Minimum	number of sampling point	ta lor rectangular duct	•
Compline Driets					Point Number per					divisions *	sampling points	
Sampling Points			-		Distance beetwen	400		-	× 0,1			-
Points Calculations for	r				points in 76	100	76	_	0,1 to 1,0	2	4	
			Circular no central	Point position in					× 2.0	20	at least 12 and 4 per m ⁴ 4	
			Point Number	stack (m) Point position as % 0.05 6.7				* Ce more th	an twice the length of	the necessary, for assumpts if the effortent acts (see G.S.	The longest cust side lon	a n 1
			2	0.20 25.0					ng only one sampling ndard.	point may give rise to errors	geater than hose specif	hed in
			3	0.60 75.0				<u></u>				
Dint Tuha Charke		Commante		7			•					
Defension Deep De		KIMO Pitot EQ080	Mill 5 Pitot EQ081	Note: Sampling poi	nt should be located either >3% of	the sampling	point length or	more tha n5 cm w	hichever is the	greater value from the	inner duct wall.	
Blockage of Pressure	Taps	no	no									
Inernal Leakage Check	ж											
Static pressure of the s Pressuriezed pressure	stack: e:	14 17	0 14 0 16	Note: Pressurizing the tube at lea	st as high as the static pressure	in the						
Time of leak check: Leak Check Result:		5 min Pass	5 min Pass	stack and sealing the pressure tap indicate no drop in pre	s. The pressure reading device essure over a 5 min period.	should						
				C turne nitest turbe chall be position	ad nomendiaular to the direction	n of the						
Check on stagnation a	and reference	• .		flow. The static pressure is than me	easured using both taps. The dif	fference						
pressure taps:		CK	ok	in the measured static	pressure should be < 10Pa							
Swirl Check: * Point 1	1.0	Within requirements <15 0 Y	2	If Swirl Check is outside requiremn	ts the correction has							
Point 2 Point 3	2.0	0 Y 0 Y	-	to be applied.								
Point 4	1.0	0 Y					to of static press	ure calculations				
Static Pressure: mn Reading 1	mH2O 1	Pa 140.0	mmH2O	Line 2 Note: At least once	per line.	St	Dev:	0.00 0.0				
Reading 2 Reading 2	1	4 140.0	0	0.00 Pa		Un	10	1.52 1.5	2 1.08			
Reading 4	1	4 140.0	0	0.00 Pa								
Average:	14.2811744	4 140.0 4 14	0	0.00 Pa 0 Pa								
Ab	bsolute press	ure of the stack gas:		The absolute pressure in the duct is given the duct is given by the duct	ven by the measurement of the atm	nospheric pres	ssure on the site					
$P_s = P_b + \frac{P_s}{r_s}$	Static 13.6			and the static pressure measured in the	e duct.							
	13.0											
Barometric (Atmospheric												
Pressure)Pb	76	5 mmHg		Note: 1mb = 0.75 mmHg (Since1 atmo	sphere=1013.25 mb = 760 mmHg))						
Conversion form	14.2011/44	4 11111120		roo mining = Toraz	БРА		1					
mmH2O to mmHg	13.	6										
				Atmospheric Temperature:	8.00	C*						
Ps =	766.050086	4 mmHa 8 Pa	Absolute Pressure of stack									
Molecular Weigh of Dr	ry Gas Strea	m:		Molecular weight of stack gas (wet):								
$M_{d} = 4$	$44 \frac{\% CO2}{100} + 3$	$32 \frac{\%02}{100} + 28 \frac{\%CO + \%N}{100}$	2	$M_s = M_d (1 - B_{wo}) + 18(B_{wo})$								
	100			Bwo 0.01	7							
CO2	0.0	6 % 0 %		Molecular weight o 1	B							
co	20.8	0 %		Ms= 28.6	6							
INZ	/9.1	4 76										
Md=	28.8	4										
Md=	28.8	4		1								
Md=	28.8	4		1								
Md= Pitot Cooliciency Calibration Date: Ecose	28.8	3	05/08/2013]								
Md= Pitot Cooliciency Calibration Date: EQ080 m/sec Cp	28.8 05/08/201	4 BCQ081 m/sec	05/08/2013 Cp]								
Md= Pitot Cooficiency Calibration Date: EQ080 m/sec Cp 3.02 5.23	28.8 05/08/201 p 0.85 0.84	4 EQ081 m/sec 9 5.2	05/08/2013 Cp 4 0.819 3 0.815									
Md= Pitot Cooliciency Calibration Date: EQ080 m/sec 5.23 10.35 10.35 15.4	28.8 05/08/201 0.85 0.84 0.8 0.8	4 EQ081 m/sec 9 5.2 4 10.1	05/08/2013 Cp 4 0.819 3 0.815 5 0.833 5 0.833									
Md= Pitot Cooficiency Calibration Date: EQ080 m/sec Cp 5.23 10.35 15.4 20.22 28.17	28.8 05/08/201 p 0.85 0.84 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	4 5 5 5 5 5 5 5 5 5 5 5 5 5	05/08/2013 Cp 4 0.819 3 0.815 5 0.833 5 0.833 7 0.84 9 0.876]								

Repeatability Test:

		Velocity by Mill 5	Velocity	Temperature	Velocity by KIMO	Difference of				
	ΔPs mmH2O	√∆Ps mmH2O	m/s		m/s	readings			E	Differenciala Pressure
1	26	5.099	17.13	18.3	16.3	0.83			1	254.88 Pa
2	26	5.099	17.13	18.3	16.9	0.23			2	254.88 Pa
3	26	5.099	17.13	18.3	17	0.13			3	254.88 Pa
4	26	5.099	17.13	18.4	17.6	-0.47			4	254.88 Pa
5	26	5.099	17.13	18.3	17.8	-0.67			5	254.88 Pa
6	26	5.099	17.13	18.4	18.5	-1.37			6	254.88 Pa
7	26	5.099	17.13	18.3	18.4	-1.27	Note: Field		7	254.88 Pa
8	26	5.099	17.13	18.3	18.2	-1.07	repeatability		8	254.88 Pa
9	26	5.099	17.13	18.3	18	-0.87	requirements is <5		9	254.88 Pa
10	26	5.099	17.13	18.3	18.1	-0.97	% of velocity		10	254.88 Pa
			17.13		17.68		Repeatability as %	Average:		255 Pa
					Otras dated Date (affects)	0.70	4.0			

Time Start: 10:13 Time End: 10:21

				Velocity by Mill									
				5	Velocity	Temperature	Pressure of Stack	A	verage at ea	ch point:			
								Dynamic		Temperat			
		ΔPs Pa	∆Ps mmH2O	√∆Ps mmH2O	m/s		kPa	Pressure	Velocity	ure	Pressure	Uncertainty Calc	
	1	254.88	26	5.099	17.13	18.3	102.1316118					0.00 Std Dev	31.93 2\\\\\\\AP
	2	254.88	26	5.099	17.13	18.3	102.1316118					0.00	15.96499 √∆P
Point 1	3	254.88	26	5.099	17.13	18.3	102.1316118					1.52 UAp	######## U2∆p
	4	254.88	26	5.099	17.13	18.4	102.1316118	254.88	17.13	18.32	102.1316	0.66 Uvi	0.002275 U2Ap/4Ap
	5	254.88	26	5.099	17.13	18.3	102.1316118					0.17	
	1	254.88	26	5.099	17.13	18.4	102.1316118					0.00 Std Dev	31.93 2\/AP
	2	254.88	26	5.099	17.13	18.3	102.1316118					0.00	15.96499 √∆P
Point 2	3	254.88	26	5.099	17.13	18.3	102.1316118					1.52 UAp	2.32 U2Ap
	4	254.88	26	5.099	17.13	18.3	102.1316118	254.88	17.13118	18.32	102.1316	0.66	0.002275 U2Ap/4Ap
	5	254.88	26	5.099	17.13	18.3	102.1316118					0.17	
	1	254.88	26	5.099	17.13	18.3	102.1316118					0.00 Std Dev	31.93 2\/AP
	2	254.88	26	5.099	17.13	18.3	102.1316118					0.00	15.96499 √∆P
Point 3	3	254.88	26	5.099	17.13	18.3	102.1316118					1.52 UAp	2.32 U2Ap
	4	254.88	26	5.099	17.13	18.4	102.1316118	254.88	17.13118	18.32	102.1316	0.66	0.002275 U2Ap/4Ap
	5	254.88	26	5.099	17.13	18.3	102.1316118					0.17	
	1	254.88	26	5.099	17.13	18.4	102.1316118					0.00 Std Dev	31.93 2√∆P
	2	254.88	26	5.099	17.13	18.3	102.1316118					0.00	15.96499 √∆P
Point 4	3	254.88	26	5.099	17.13	18.3	102.1316118					1.52 UAp	2.32 U2Ap
	4	254.88	26	5.099	17.13	18.3	102.1316118	254.88	17.13118	18.32	102.1316	0.66	0.002275 U2Ap/4Ap
	5	254.88	26	5.099	17.13	18.3	102.1316118					0.17	
Total Average:			26						17.13118	18.32	102.1316		0.0091 ΣU2Δp/4Δp
Higes to Lowest flo	ow ratio: unt Flow rotio of mo	1.000137299	1.1		Max flow:	17.13353465						-	4078 (51
requirement is Du	oct now ratio of ma	A. to min. Kall		_	WIII. FIOW:	17.13116200							

Pitot Tube Checks:	Comments			
	KIMO Pitot EQ080	Mill 5 Pitot E	Q081	
Deformities, Burrs, Damage	no			
Blockage of Pressure Taps	no			
Inernal Leakage Check				
Static pressure of the stack:		140	14	
Pressuriezed pressure:		165	17	Note: Pressurizing the tube at least as high as the static pres-
Time of leak check:	5 min	5 min		stack and sealing the pressure taps. The pressure reading dev
Leak Check Result:	Pass	Pass		indicate no drop in pressure over a 5 min period.
				S-tupe nitot tube shall be positioned perpendicular to the dire
Check on stagnation and reference				flow. The static pressure is than measured using both taps. Th
procesure topo:	ok	ok		in the measured static pressure should be a 10Be
Check on stagnation and reference pressure taps:	ok	ok		flow. The static pressure is than measured using bot in the measured static pressure should

in the measured static pressure should be < 10Pa

							used without with	out taking wall effect
Circular Stack							measi	urements.
Stak Diameter:		0.8 m					WAF Wall effect correcti	on factor:
Average flow:	17	.13 m/s					Smooth walled ducts	0.995
	0.	995						
Average Flow corrected for wall effect:	17	.05 m/s					Rough Walled ducts	0.99 bricks, mort
Average Temperature:	290	13 K						
Average Pressure:	102	132 kPa						
Average Moisture:	104.	%						
Average Oxygen:		%						
		•				-		
Reference Conditions:	275	15 K				-		
Reference Temperature:	2/3	225 kDo						
Reference Pressure.	101.	525 NF 8						
Reference Oxygen:		0 %						
Reference Moisture:		0 %						
Mass Emissions Calculations:								
Volumetric Flow Rate	\$	1.57 m3/s				7		
	-							
Volumetric Flow Rate	30844	l.86 m3/hr						
Volumentic Flow Pate corrected to STP	29261	85 m3/br						
Volumentic Flow Pate corrected to ST	P and O2 ref 20261	85 m3/hr						
Volumentia Elevy Rate corrected to STR O	2 ref and Majotura 20261	95 m2hr						
Voluments Flow Rate corrected to STF_0	2 Tel and Moisture 2520	.co Illanii						
Uncertainty Calculations:								
Input Quantities:								
	Unit							
Diameter of Stack	0.8 m	2 %	Max permissible error					
Number of points measured:	4							
Temperature:	291.32 K	1 %	Accuracy					
Atmospheric Pressure:	10213.16118 Pa	300 Pa	Max permissible error estimated at		20 Pa			
Oxygen content:	20.80 % dry	6 ± %	Volume fraction on c	20.4 % wet				
CO2 content:	0.06 % drv	6 ±%	Volume fraction on c	0.1 % wet				
H2O content	1.7 %	20 ± %	Volume fraction on dry gas					
Density of Gas	1.21 kg/m3							
Absolute pressure	102131.6118 Pa							
average Velocity	17.13118256 m/s							
Pitot Tube characteristic	1.01 K	0.02 ±						
Standard unc on the coefficient ot th	0.01 u(K)							
Range: 0	1000 Pa							
Resolution	1 Pa							
Calibration Uncertainty	2 Pa	2 coverage factor						
Drift	0.1 % of the range b	etween 2 calibration				1		
Lack of fit	0.06 % of the range							
Mollar Mass Wet (I 0.286716	kg/mol							
unc H2O 0.17 %								
unc O2 0.61 %								
unc CO2 0.00 %								
unc Molar Weight 0.00004 Kg/mo	1							
unc Temp 146 K								
Abs press unc 174.38 Pa								
unc Patm 173.30 Pa								
std unc associated with the density u(p)	0.0	045 ka/m3				1		
		25 m/e						

0.0045 kg/m3 0.25 m/s 0.49 ±m/s

2.90 ±%

.

essed with a level of c

d uncert: exp

Results:

Moisture: The temperature at the outlet of trapping unit shall not be greater than 4 °C or by checking visually the amount of silica gel having faded in the last impinger or cartridge. This amount shall not exceed 50 %.

Moisture: The temperature at the outlet of trapping unit shall not be greater than 4 °C or by checking visually the amount of silica gel having faded in the last impinger or cartridge. This amount shall not exceed 50 %.

Glenside Environmental	Company Name:	КМК	Technicians: MCERTS No:	Ewa Piatek, Pat Power, Jim Nellig MM07 799, MM12 1183		
Services and Environment and Engineering Consultiers	Stack ID: Monitoring Date:	A2-8 10/12/2013	TE's:	TE1, TE2, TE3, TE4		

Millenium 5 console:	EQ069	Balance:	EQ056		
Probe:	EQ071	Pitot Tube:	EQ081		
Impingers:	EQ072	Nozzle:	EQ087		
Sampling Line:	EQ070	Weights:	EQ063		
Balance Check:					
Initial Weight:	Balance Reading:	1	Note: If balance is moved to other location		
100g	100		balance check has to be repeated.		
500g	500	1			
800g (combined 100g,200g,800g)	800				

Readings:		Before Impinger 1+Connection	Impinger 2+Connection	Impinger 3+Connection	Impinger 4+Connection	Sum:
rteadings.	1	734.4	793.3	784 9	1005.8	3318.4
	2	734.4	793.3	784.9	1005.8	3318.4
	3	734.4	793.3	784.9	1005.8	3318.4
	4	734.4	793.3	784.9	1005.8	3318.4
	5	734.4	793.3	784.9	1005.8	3318.4
	6	734.4	793.3	784.9	1005.8	3318.4
	7	734.4	793.3	784.9	1005.8	3318.4
	8	734.4	793.3	784.9	1005.8	3318.4
	9	734.4	793.3	784.9	1005.8	3318.4
	10	734.4	793.3	784.9	1005.8	3318.4
Standard Deviation:		0	0	0	0	0
Averge:		734.4	793.3	784.9	1005.8	3318.4

		After				
		Impinger	Impinger	Impinger	Impinger	
Readings:		1+Connection	2+Connection	3+Connection	4+Connection	Sum:
	1	740.1	798.1	785.1	1006.1	3329.4
	2	740.1	798.1	785.1	1006.1	3329.4
	3	740.1	798.1	785.1	1006.1	3329.4
	4	740.1	798.1	785.1	1006.1	3329.4
	5	740.1	798.1	785.1	1006.1	3329.4
	6	740.1	798.1	785.1	1006.1	3329.4
	7	740.1	798.1	785.1	1006.1	3329.4
	8	740.1	798.1	785.1	1006.1	3329.4
	9	740.1	798.1	785.1	1006.1	3329.4
	10	740.1	798.1	785.1	1006.1	3329.4
Standard Deviation:		0	0	0	0	(
Averge:		740.1	798.1	785.1	1006.1	3329.4

Air Volume corrected to STP: 0.	<mark>79336792</mark> m3]
Efficiency:	97.27 %]
Stack Conditions		
Average Temperature:	290.1311826	к
Average Pressure:	102.1316118	kPa
Average Moisture:	0	%
Average Oxygen:	0	%
Volumertic Flow Rate corrected to STP O2 ref and Moistu	re 29261.85	m3/hr
Reference Conditions:		
Reference Temperature:	273.15	К
Reference Pressure:	101.325	kPa
Reference Oxygen:	0	%
Reference Moisture:	0	%

The temperature at the outlet of trapping unit shall not be greater than 4 °C or by checking visually the amount of silica gel having faded in the last impinger or cartridge. This amount shall not exceed 50 %. Results :

Nesulis.			
	At Standard		
	Temperature and	corrected O2	
	Pressure	ref	Uncertainty
g/m3	13.9	13.9	3.0
%	1.7	1.7	0.4

Note: Overall uncertainty should be lower than +/-20% of the measured value Overall uncertainty is 21.55 % of the measured value

Moisture Uncertainty Calculations

Measured concentration	1.7	% (at STP)					
Measured Quantities	Symbol	Value	Standard uncerta	intv	Units		
Sampled Volume	Vm	0.79336792	uVm	0.001	m3		
Sampled gas Temperature	Tm	290.1311826	uTm	2	k		
Sampled gas Pressure	ρm	102.1316118	uρm	1	kPa		
Efficiency	3	97.27			%		
Oxygen content	O2,m	0	uO2,m	0.1	% by volume		
Water collected in condensation stage		11.00					
Water collected in adsorption stage		0					
Wate collected in additional unit		0.3					
Water collected in trapping unit	m	11.30	um	0.00	g		
Intermediate calculations							
Vwc	179.336792		^2				
	15.6		242.9		Efficiency unco	ertainty	0.24
	-1.8		3.3		support		0.24
	-1.2		1.4		calculations		0.00
		V					
	water	in trapping unit	3.4				
	water in a	dsorption stage	0.0				
Uncertainty Efficiency^2			0.2				
Volume ^2			0.9				
Sensityvity coefficiency			818.7				
Uncertainty efficiency					0.06		
	Repatabili	ty standard dev					
Weight in the field st		0.0			0.0		
Sampled Volume		0.002			0.0		
Sampled gas Temperature		0.02			0.0		
Sampled gas Pressure		0.3			0.2		
Combined measurement uncertainty					0.18	%	

Expanded uncertainty as percentage of measured value

21.55 % measured of value

expressed with a level of confidence of 95% (Using a coverage factor k=2)

Expanded uncertainty in units of measurement

0.37 % of water vapour

	Glenside	Company Name:	KMK	Technicians:	Ewa Piatek, Pat Power, Jim Nelligh
	Environmental	Site Name:	KMK	MCERTS No:	MM07 799, MM12 1183
Services Invisonmental and	Environmental and	Stack ID:	A2-8	TE's:	TE1, TE2, TE3, TE4
	Engineering Consultants	Monitoring Date:	10/12/2013		

Paticulates Data:

Certs Results:	mg	Date analysis completed:
LOD Filter:	0.05	
		SAL Sample reference
LOD Nozzle Wash:	0.3	number:
Blank Filter:	0.05	367081 002
Blank Nozzle Wash:	0.3	367081 004
Run Filter:	0.05	367081 001
Run Nozzle Wash:	0.3	367081 003
	0.35	
Blank	0.35	
Run	0.35	

0.79336792 m3	
0 %	
0.79336792 m3	
	0.79336792 m3 0 % 0.79336792 m3

Stack Conditions

Average Temperature:	290.1311826 K
Average Pressure:	102.1316118 kPa
Average Moisture:	0 %
Average Oxygen:	0 %
Volumertic Flow Rate corrected to STP O2 ref and Moisture	29261.85 m3/hr

Reference Conditions

Reference Temperature:	273.15 K
Reference Pressure:	101.325 kPa
Reference Oxygen:	0 %
Reference Moisture:	0 %

Particulates Results :

	mg/m3	mg/m3	kg/hr	Uncertainty
		corrected to O2		mg/m3
LOD	0.44	0.44	0.01	n/a
Blank	0.44	0.44	0.01	0.01
Run	0.44	0.44	0.01	0.01

Note: Blank result should be < 10% of ELV <20% for ELV 5mg/m3 or lower Blank result is: 4 % of ELV If the blank result is higher than requirements of ELV result should be rejected

Particulates Uncertainty Run Calculations

Uncertainty calculation for EN 13284 Determination of low range mass concentration of dust, Manual Gravimetric Method v14

						Measureme	ent Equat	tion
Limit value (ELV)	12.5	12.5 mg.m-3 Reference oxygen 0 % by volume				$c = \frac{m}{m} f_{c}$		
Measured concentration	0.4	mg.m-3 (at reference	e conditions)			V V		
Measured Quantities	Symbol	Value	Standard uncertainty		Units	Uncertaint	Uncerta	int Requirement of std
Sampled Volume	Vm	0.79336792	uVm	0.001	m3	0.13		<=2%
Sampled gas Temperature	Tm	290.1311826	uTm	2	k	0.69		<=1%
Sampled gas Pressure	ρm	102.1316118	upm	1	kPa	0.98		<=1%
Sampled gas Humidity	Hm	0	uHm	1	% by volume	1.00		<=1%
Oxygen content	O2,m	0	uO2,m	0.1	% by volume	#DIV/0!		<=5%
Mass particulate	m	0.35	um	0.00	mg	0.00	0.00	<5% of limit value
Note - Sampled gas humidit	y, temperatur	re and pressure are va	lues at the gas meter					
Leak	L	0			%	0.00		<=2%
Uncollected Mass	UCM	0			mg	0		<=10%
(Instack filter - no rinse)								
Intermediate calculations								
Factor for std conds	fs	0.95						
uncertainty components	symbol	sensitivity coeff		u (in units o	f fs)			
	ρm	0.009		0.009				
	Hm	0.009		0.009		$f = \frac{(100 - H_m)}{273} \frac{\rho_m}{\rho_m}$		
	Tm	0.003		0.007		$T_{m}^{5 s} = 100 T_{m} = 101.3$		
	ufs			0.015		1.56		
Corrected volume	V	0.75	uV	0.012	m3	$V = V_m f_s$ 1.57		
Factor for O2 correction	fc	1 00						
uncertainty components	symbol	sensitivity coeff		u		$21 - O_{2}$ ref		
	O2,m	0.05		0.005		$f_c = \frac{2, rej}{21 - O_{2,m}}$		
Factor for O2 Correction	ufc	1.00		0.005		0.48		

Parameter		Value Units	Sensitivity c Uncertainty contribution Uncertainty as %		
Corrected Volume (standard cond	V	0.75 m3	0.59	0.01 mg.m-3	0.06 %
Mass	m	0.35 mg	1.26	0.00 mg.m-3	0.00 %
Factor for O2 Correction	fc	1.00	0.44	0.00 mg.m-3	0.02 %
Leak	L	0.00 mg.m-3	1.00	0.00 mg.m-3	0.00 %
Uncollected mass	UCM	0.00 mg	1.26	0.00 mg.m-3	0.00 %
Combined measurement uncertai	nty			0.01 mg.m-3	

Expanded uncertainty as percentage of measured value

3.27 % measured of value

expressed with a level of confidence of 95% (Using a coverage factor k=2)

Expanded uncertainty in units of measurement Expanded uncertainty as percentage of limit value

0.1 % ELV

Requirement in standard is for uncertainty to be < 30% at ELV at standard conditions

Particulates Uncertainty Blank Calculations

Uncertainty calculation for EN 13284 Determination of low range mass concentration of dust, Manual Gravimetric Method v14

Limit value (ELV)	1.25	mg.m-3	Reference oxygen 0 % by volume		$c = {}^{m} f$			
Measured concentration	0.4	mg.m-3 (at reference	e conditions)		-	$C = \frac{1}{V} J_c$		
Measured Quantities	Symbol	Value	Standard uncertainty		Units	Uncertaint	Uncertai	int Requirement of std
Sampled Volume	Vm	0.79336792	uVm	0.001	m3	0.13		<=2%
Sampled gas Temperature	Tm	290.1311826	uTm	2	k	0.69		<=1%
Sampled gas Pressure	ρm	102.1316118	upm	1	kPa	0.98		<=1%
Sampled gas Humidity	Hm	0	uHm	1	% by volume	1.00		<=1%
Oxygen content	O2,m	0	uO2,m	0.1	% by volume	#DIV/0!		<=5%
Mass particulate	m	0.35	um	0.00	mg	0.00	0.00	<5% of limit value
Note - Sampled gas humidity	, temperatu	re and pressure are va	lues at the gas meter					
Leak	L	0			%	0.00		<=2%
Uncollected Mass	UCM	0		mg				<=10%
(Instack filter - no rinse)								
Intermediate calculations								
Factor for std conds	fs	0.95						
uncertainty components	symbol	sensitivity coeff		u (in units o	f fs)			
	ρm	0.009		0.009		$f_{\star} = \frac{(100 - H_m)}{273} \frac{\rho_m}{\rho_m}$		
	Hm	0.009		0.009		$T_m = 100 T_m = 101.3$		
	Tm	0.003		0.007				
	ufs			0.015		$V = V_m f_s$ 1.56		
Corrected volume	V	0.75	uV	0.012	m3	1.57	1	
							1	
Factor for O2 correction	fc	1.00				$f = \frac{21 - O_{2,ref}}{2}$		
uncertainty components	symbol	sensitivity coeff		u		$J_{c} = 21 - O_{2,m}$		
	O2,m	0.05		0.005			I	
Factor for O2 Correction	ufc	1.00		0.005		0.48	1	

Parameter		Value Units	Sensitivity c Uncertainty contribution Uncertainty as %		
Corrected Volume (standard cond	V	0.75 m3	0.59	0.01 mg.m-3	0.55 %
Mass	m	0.35 mg	1.26	0.00 mg.m-3	0.00 %
Factor for O2 Correction	fc	1.00	0.44	0.00 mg.m-3	0.17 %
Leak	L	0.00 mg.m-3	1.00	0.00 mg.m-3	0.00 %
Uncollected mass	UCM	0.00 mg	1.26	0.00 mg.m-3	0.00 %
Combined measurement uncertai	ntv			0 01 mg m-3	

Expanded uncertainty as percentage of measured value

3.27	% measured of value
0.01	mg.m-3

•

expressed with a level of confidence of 95% (Using a coverage factor k=2)

Expanded uncertainty in units of measurement

Expanded uncertainty as percentage of limit value

1.2 % ELV Measurement Equation

Glenside Environmental Service Neuronmental nel temporenti and temporenti comment			Company Name Site Name: Stack ID: Date:	2:	KMK Metals KMK Metals A2-8 10/12/2013			Technicians: MCERTS No TE's:	D:	т	EP/PP MM07 799 E1, TE2, TE3, 1	ſE4						
Run											Blank							
Lab Results	LOD Filter	LOD Probe W	LOD Impingers	Filter	Rince	Impinger 1	Impinger 2	Impinger 3	Impinger 5	Impnger 6	Lab Results	Filter	Rince	Impinger 1	Impinger	2 Impinger 3	Impinger	5 Impnger 6
A huminium	μg	рд	µg/l	pg	μg	µg/l	µg/l	µg/l	µg/l	µg/l	Alumainium	µg	µg 10	µg/l	µg/l	µg/l	µg/l	µg/l
Aluminium	0.5	1	0.5	3	10	140	30	30	n/a	n/a	Antimonu	0.5	10	30			n/a	n/a
Antimony	0.5	1	0.5	0.5	1	0.5	0.5	0.5	n/a	n/a	Antimony	0.5	1	0.5			n/a	n/a
Arsenic	0.5	0.5	0.2	0.5	0.5	0.5	0.2	0.2	n/a	n/a	Arsenic	0.5	0.5	0.2			n/a	n/a
Barium									n/a	n/a	Barium						n/a	n/a
Berylium	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	n/a	n/a	Berylium	0.5	0.5	0.5			n/a	n/a
Boron									n/a	n/a	Boron						n/a	n/a
Cadmium	0.5	0.5	0.5	0.5	0.5	0.6	0.5	0.5	n/a	n/a	Cadmium	0.5	0.5	0.5			n/a	n/a
Chromium	1	2	0.5	1	2	5.2	0.5	0.5	n/a	n/a	Chromium	1	2	0.5			n/a	n/a
Cobalt	0.5	0.5	0.2	0.5	0.5	0.7	0.5	0.2	n/a	n/a	Cobalt	0.5	0.5	0.2			n/a	n/a
Copper	0.5	0.5	1	0.5	0.9	38.0	1.0	1.0	n/a	n/a	Copper	0.5	0.5	1.0			n/a	n/a
Iron	1	1	1	9	2	110.0	30.0	30.0	n/a	n/a	Iron	2	1	30.0			n/a	n/a
Lead	0.5	0.5	0.3	1.3	0.5	64.0	37.0	16.0	n/a	n/a	Lead	0.5	0.5	1.3			n/a	n/a
Manganese	0.5	2	2	0.5	2	26.0	45.0	57.0	n/a	n/a	Manganese	0.5	2	2.0			n/a	n/a
Nickel	1	2	2	1	2	12.0	4.0	3.0	n/a	n/a	Nickel	1	2	2.0			n/a	n/a
Selenium									n/a	n/a	Selenium						n/a	n/a
Silver									n/a	n/a	Silver						n/a	n/a
Thallium	0.5	0.5	0.3	0.5	0.5	0.3	0.3	0.3	n/a	n/a	Thallium	0.5	0.5	0.3			n/a	n/a
Tin									n/a	n/a	Tin						n/a	n/a
Vanadium	0.5	0.5	0.3	0.5	0.50	0.3	0.3	0.3	n/a	n/a	Vanadium	0.5	0.50	0.3			n/a	n/a
Zinc	1	1	1	4	1	870	210	110	n/a	n/a	Zinc	2	1	1			n/a	n/a
Mercury	0.01	0.01	0.5	0.01	0.01	0.5	0.5	0.5	0.5	0.5	Mercury	0.01	0.01	0.01			0.5	0.5
	Run						Blank											
Solutions Volume		Impinger 1	Impinger 2	Impinger 3	Impinger 4	Impinger 5		Impinger 1	Impinger 2	Impinger 3	Impinger 4	Impinger 5						
ml		100	11	0	110 9	9 100)	- 17	0	-	160	-						
		Metals		Mercury		_							-					
Air Volume corrected to STP:		0.78081576	m3	0.780815	764 m3	7												
Air Volume corrected to STP and Moisture:		0.78081576	m3															

Average Temperature:	290.1311826	К
Average Pressure:	102.1316118	kPa
Average Moisture:	0	%
Average Oxygen:	0	%
Volumertic Flow Rate corrected to STP O2 ref and Moisture	29261.85	m3/hr

Reference Conditions:		
Reference Temperature:	273.15	К
Reference Pressure:	101.325	kPa
Reference Oxygen:	0	%
Reference Moisture:	0	%

If one of the metal elements in the last impinger is more than 10% of the total combined metals (i.e. the filter, probe rinse and impingers) collected then the result shall be rejected, unless the total result is less than 30% of the ELV.

													Efficiency Che	ck	
		mg in					Corrected to	Corrected to	Corrected to					Efficiency	Result as
	mg in	sampling	mg in sampling	mg/m3 at	mg/m3 at	mg/m3 at	reference	reference	reference					Requirement	percentage of
Results :	sampling train	train	train	STP/Dry	STP/Dry	STP/Dry	oxygen	oxygen	oxygen	kg/hr	kg/hr	kg/hr	Efficiency	s	ELV ELV
	LOD	Run	Blank	LOD	Run	Blank	LOD	Run	Blank	LOD	Run	Blank		%	
Aluminium	0.0018	0.0336	0.0156	0.002	3 0.0430	0.0200	0.002	3 0.0430	0.0200	0.0001	0.0013	0.0006	9.82	10	#DIV/0!
Antimony	0.0017	0.0017	0.0016	0.002	1 0.0021	0.0020	0.002	0.0021	0.0020	0.0001	0.0001	0.0001	3.31	10	#DIV/0!
Arsenic	0.0011	0.0011	0.0010	0.001	4 0.0014	0.0013	0.001	0.0014	0.0013	0.0000	0.0000	0.0000	2.01	10	#DIV/0!
Barium	0.0000	0.0000	0.0000	0.000	0 0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	#DIV/0!	10	#DIV/0!
Berylium	0.0012	0.0012	0.0011	0.001	5 0.0015	0.0014	0.001	5 0.0015	0.0014	0.0000	0.0000	0.0000	4.74	10	#DIV/0!
3oron	0.0000	0.0000	0.0000	0.000	0 0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	#DIV/0!	10	#DIV/0!
Cadmium	0.0012	0.0012	0.0011	0.001	5 0.0015	0.0014	0.001	0.0015	0.0014	0.0000	0.0000	0.0000	4.70	10	#DIV/0!
Chromium	0.0032	0.0036	0.0031	0.004	0 0.0046	0.0040	0.004	0.0046	0.0040	0.0001	0.0001	0.0001	1.52	10	#DIV/0!
Cobalt	0.0011	0.0011	0.0010	0.001	4 0.0015	0.0013	0.001	0.0015	0.0013	0.0000	0.0000	0.0000	1.92	10	#DIV/0!
Copper	0.0013	0.0054	0.0012	0.001	7 0.0069	0.0015	0.001	0.0069	0.0015	0.0000	0.0002	0.0000	2.03	10	#DIV/0!
ron	0.0023	0.0286	0.0081	0.003	0 0.0366	0.0104	0.003	0.0366	0.0104	0.0001	0.0011	0.0003	11.54	10	#DIV/0!
ead	0.0011	0.0140	0.0012	0.001	4 0.0180	0.0016	0.001	0.0180	0.0016	0.0000	0.0005	0.0000	12.54	10	#DIV/0!
Manganese	0.0031	0.0163	0.0028	0.004	0 0.0209	0.0036	0.004	0.0209	0.0036	0.0001	0.0006	0.0001	38.42	10	#DIV/0!
lickel	0.0036	0.0050	0.0033	0.004	7 0.0064	0.0043	0.004	0.0064	0.0043	0.0001	0.0002	0.0001	6.64	10	#DIV/0!
Selenium	0.0000	0.0000	0.0000	0.000	0 0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	#DIV/0!	10	#DIV/0!
Silver	0.0000	0.0000	0.0000	0.000	0 0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	#DIV/0!	10	#DIV/0!
Thallium	0.0011	0.0011	0.0011	0.001	4 0.0014	0.0013	0.001	0.0014	0.0013	0.0000	0.0000	0.0000	3.01	10	#DIV/0!
în	0.0000	0.0000	0.0000	0.000	0 0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	#DIV/0!	10	#DIV/0!
/anadium	0.0011	0.0011	0.0011	0.001	4 0.0014	0.0013	0.001	0.0014	0.0013	0.0000	0.0000	0.0000	3.01	10	#DIV/0!
linc	0.0023	0.1272	0.0032	0.003	0 0.1629	0.0041	0.003	0.1629	0.0041	0.0001	0.0048	0.0001	9.51	10	#DIV/0!
Mercury	0.0001	0.0003	0.0001	0.000	1 0.0003	0.0001	0.000	0.0003	0.0001	0.0000	0.0000	0.0000	17.89	10	#DIV/0!
Fotal of Metals	0.0271	0.2422	0.0465	0.034	7 0.3102	0.0595	0.034	0.3102	0.0595	0.0010	0.0091	0.0017	For example E	LVs for metals ma	ay be:
													 Cd and TI co 	mbined – 0.05 mc	
otal of Cd and TI	0.0023	0.0023	0.0021	0.002	9 0.0029	0.0027	0.002	0.0029	0.0027	0.0001	0.0001	0.0001	 Sb, As, Pb, 0 	Cr, Co, Cu, Mn, Ni	V combined – 0.5 mg/m3
													 mercury – 0. 	05 ma/m3	
otal of Sb. As. Pb. Cr. Co. Cu. Mn. Ni, V. Be	0.0184	0.0505	0.0174	0.023	6 0.0647	0.0223	0.023	0.0647	0.0223	0.0007	0.0019	0.0007	For Cd and TI	combined it would	not be necessary to comply

I enercury – 0.05 mg/m3 For Cd and Ti combined twould not be necessary to comply with the less than 10% in the last impinger criteria, provided the overall combined Cd and TI result for the sample train was below 0.015 mg/m3. For combined metals (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V) it would not be necessary for each individual element to comply with the less than 10% in the last impinger criteria, provided that the overall combined result for the sample train was below 0.15 mg/m3. For encury it would not be necessary to comply with the less than 10% in the last impinger criteria, provided the overall mercury result for the sample train was below 0.015 mg/m3.

APPENDIX 3

Noise Monitoring Report 2013

KMK Metals Recycling Ltd, W0113-03 Annual Noise Monitoring Report

ANNUAL NOISE MONITORING REPORT 2013

FOR

KMK METALS RECYCLING LTD.

AT

CAPPINCUR IND. ESTATE, TULLAMORE, CO OFFALY,

7th October 2013

Report by:

Niall Nally

Senior Environmental Consultant B.Sc, M.Sc, AIEMA, MCIWM

Nally Environmental Drumcree, Collinstown Mullingar Co Westmeath Tel : (044 96 66773) E-mail: info@nallyenvironmental.ie Website : www.nallyenvironmental.ie

TABLE OF CONTENTS

1.0 INTRODUCTION

1.1 Environmental Noise Monitoring

2.0 NOISE SURVEY

- 2.1 Methodology
- **3.0 RESULTS**

4.0 **DISCUSSION**

- 4.1 DISCUSSION OCTAVE BAND ANALYSIS
- 4.2 DISCUSSION 1/3 OCTAVE BAND ANALYSIS

5.0 CONCLUSIONS

1.0 INTRODUCTION

Nally Environmental was commissioned by KMK to conduct the annual noise survey at the KMK facility at Cappincur Industrial Estate, Tullamore, Co Offaly, as part of compliance with waste licence W0113-03. The KMK Metals facility is located in the Cappincur Industrial Estate towards the east of Tullamore town, off the L-02025 road to Daingean – Figure 1.

Figure 1: General site location map for KMK

The objectives of the environmental noise survey were to:

- Assess the current levels of noise arising from the operations at the facility.
- Determine the noise levels at KMK in line with Condition 6.11 of the licence and its related Schedules of the licence.
- Assess the noise emissions in terms of nuisance or pollution potential on the immediate environment around the KMK facility.

3.1 Environmental Noise Monitoring

Daytime monitoring was carried out mid-week on Tuesday 24th September between the hours of 6am to 4 pm. The facility does not have operations 'over night', activities do commence at 6am, which under their licence terms is 'night –time'. For this reason early morning measurements were conducted to assess if the night time limits were likely to be breached by these activities. Four noise monitoring stations were established at site boundaries as illustrated on Figure 2 below. All monitoring stations were pre-selected as part of the existing license.

This noise monitoring programme is referred to in Condition 6.11 which states: 6.11.1 The licensee shall carry out a noise survey of the site operations annually. The survey programme shall be undertaken in accordance with the methodology specified in the 'Environmental Noise Survey Guidance Document' as published by the Agency.

6.11.2 The licensee shall implement any noise attenuation measures as required by the Agency, having regard to the principles of BAT, to ensure compliance with the noise limits specified in this licence.

Schedule B.4 Noise Emissions, states that daytime measurements must be within a L_{Aeq} (30 minute) emission level of 55, and night-time measurements must be within a L_{Aeq} (30 minute) emission level of 45, with no clearly audible tonal component or impulsive component in the noise emission from the activity at any boundary location.

Schedule C5 identifies the locations NE1 – NE5, and the following parameters to be reported on: $L_{(A)eq[30 minute]}$, $L_{(A)10[30 minute]}$, $L_{(A)90[30 minute]}$ and 1/3 Octave Band analysis to be monitored on an annual basis from the facility.

To ensure that all monitoring positions could be adequately monitored, and based upon normal best practice for night-time measurements, as issued by the EPA and others, the night time measurement period was reduced from the issued 30 minute to a 15 minute period. This monitoring event took into account the released EPA guidance document NG4 '*Guidance Note for Noise: Licence Applications, Surveys and Assessments in Relation to Scheduled Activities' released in April 2012'*. This document seeks a notable increase in the repetitiveness of monitoring during the annual event. A request was submitted to the EPA and approved in 2012, requesting the reduction in monitoring stations on site from the licensed 6 stations to 4. Therefore, this monitoring event adapted this new previously agreed monitoring schedule.

KMK Metals Recycling Ltd, W0113-03 Annual Noise Monitoring Report

Figure 2 shows the location of each of the stations and total dust deposition result for the samples

4.0NOISE SURVEY

All four noise monitoring locations were accessible and monitored throughout the course of the event without any problems. The methodology is described below;

4.1 METHODOLOGY

Noise monitoring was carried out as per Section 4 and 6 of the Agency's *Guidance Note for Noise: Licence Applications, Surveys and Assessments in Relation to Scheduled Activities (NG4) (2012)*, using a Type 1 Bruel Kjaer 2250 Sound Level Meter with outdoor equipment that was fully calibrated prior to and after the monitoring event. The meter was set to Fast Response with an effective averaging time of 0.25sec during noise monitoring. All noise monitoring was 'A' weighted which attenuates low frequencies strongly so noise measuring is more specific to human hearing and environmental noise.

Weather conditions during sampling were; mild with gentle wind and no rainfall throughout all monitoring (see summary of a weather for Gurteen station below which is the closest to the Tullamore site).

GURTEEN	COLLE	GE weathe	er station				
Date	Rainfall (mm)	Max Temp (°C)	Min Temp (°C)	Grass Min Temp (°C)	Mean Wind Speed (knots)	Gusts (if >= 34 knots)	Sunshine (hours)
24/9/2013	0	17	13.4	10.4	6.1	0	0

 Table 2.1 – Summary of daily statistics at Gurteen College on 24-09-2013

The monitoring equipment was manned throughout the sampling period and comments/notes taken to assist the interpretation and assessment of results. Noise monitoring was carried out at 4 boundary locations as summarised below:

Monitoring	Description	Grid Reference					
101		Easting	Northing				
NE001	North boundary	235934	225122				
NE002	Boundary at entrance to C yard	235958	225003				
NE003	South boundary	235888	224954				
NE004	Boundary along west area of site	235856	224998				

Table 2.2 – Noise monitoring locations at KMK

5.0RESULTS

The complete set of noise measurement results is included in Appendix A. These are summarised and discussed below in tables 3.1 to 3.3.

Table 3.1 Broadband Noise results recorded at each Monitoring Station

Receiver	NE001 site boundary	y location				
Period	Time	Measure	ed Noise I	Levels (dB	re. 2x10 ⁻⁵	Comments
		Pa)		1		
		L _{Aeq}	LAFmax	L _{AF90}	L _{AF10}	
	07:15 - 07:45	56	-	40	54	Normal site activities.
	10:07 - 10:37	59	83	44	59	AES hook loader trucks arriving and collecting skips for
Daytime,	13:13 – 13:43	56	82	39	58	weighbridge and transfer to KMK yards (between 10:00
07:00 to	Average	57				10:30). Employees arriving/exiting throughout the day.
19:00						Background noise: Ravenhill Couriers trucks passing and
						Condrons recovery trucks parking outside walls
	Not required under V	Vaste Lice	nce W0113	-03		Not applicable
Evening,						
19:00 to						
23:00						
						Two Ravenhill Couriers trucks loaded and leaving their
		LAeq	LAFmax	L _{AF90}	L _{AF10}	site across road. Five employee cars arriving at car park.
Night-time	05:53 - 06:08	55	73	33	58	
23:00 to						
07:00						
Reported	Name (Block Letters	s): Niall Na	ally			
by	Position : Environm	ental Cons	sultant			
	Niall	Nally				
	Signed:	0				

Receiver	NE002 site boundary	location				
Period	Time	Measure	d Noise L	evels (dB	re. 2x10 ⁻⁵	Comments
		Pa)	1	-		
		LAeq	LAFmax	L _{AF90}	L _{AF10}	
	07:48 - 08:18	66	88	48	70	A sewage cleaning truck arrived at 07:52 and stayed with
	10:39 - 11:09	63	81	53	67	engine idle for 10mins before emptying the temporary
Daytime,	13:47 – 14:17	64	87	55	67	holding tanks at this location. Fork trucks driving around
07:00 to	Average	64				C yard area.
19:00						From 10am onwards, dismantling activity at C building of
						E-scrap.
	Not required under W	Vaste Licen	ce W0113	-03		Not applicable
Evening,						
19:00 to						
23:00						
				-	-	No activity in C yard area.
		L _{Aeq}	LAFmax	L _{AF90}	L _{AF10}	Audible reverse beeps from fork trucks at DX yard loading
Night-time	06:19 - 06:34	52	72	42		and unloading trucks.
23:00 to						
07:00						
Reported	Name (Block Letters): Niall Na	lly			
by	Position : Environme	ental Consu	ıltant			
	Niall r	Jally				
	Signed:	0				

Receiver	NE003 site boundary	location				
Period	Time	Measure	d Noise L	evels (dB	re. 2x10 ⁻⁵	Comments
		Pa)	1			
		L _{Aeq}	L _{AFmax}	L _{AF90}	L _{AF10}	
	08:24 - 08:54	61	81	59	62	Noise from dust extraction plant running is audible at this
	11:15 - 11:45	62	79	59	63	location. WEEE processing activities inside D-WEEE
Daytime,	14:19 – 14:49	60	84	59	62	building were audible.
07:00 to	Average	61				Background noise from traffic on by-pass road is faintly
19:00						audible.
	Not required under V	Vaste Licer	nce W0113	-03		Not applicable
Evening,						
19:00 to						
23:00						
						Noise from dust outrestion plant maning is sudible at this
		т	T	T	T	Noise from dust extraction plant running is audible at this
Night time	06.41 06.56	L _{Aeq}	L _{AFmax}	50	L _{AF10}	Background noise from traffic on by pass road is faintly
23.00 to	00:41 - 00:30	07	15	38	75	audible also
07.00						
07.00						
Reported	Name (Block Letters)· Niall Na	11v	<u> </u>		<u> </u>
by	Position : Environm	ental Cons	ultant			
- 5	Night 1	Valle				
	Signed:	0				

Receiver	NE004 site boundary	location				
Period	Time	Measure	ed Noise L	evels (dB	re. 2x10 ⁻⁵	Comments
		Pa)	-			
		L _{Aeq}	L _{AFmax}	L _{AF90}	L _{AF10}	
	08:56 - 09:26	61	79	55	63	Normal site activities – battery sorting in staged process.
	11:47 – 12:17	58	76	54	59	DX yard vehicular activities – loading and unloading truck
Daytime,	14:51 – 15:21	59	71	54	62	trailers. CRT processing in D4 was audible also.
07:00 to	Average	59				
19:00						
	Not required under V	Vaste Licei	nce W0113	-03		Not applicable
Evening,						
19:00 to						
23:00						
			-		1	Fork truck loading portable batteries to sorter at D4-L
		L _{Aeq}	L _{AFmax}	L _{AF90}	L _{AF10}	building. DX yards activities were normal.
Night-time	06:57 - 07:12	62	82	52	61	
23:00 to						
07:00						
Reported	Name (Block Letters	s): Niall Na	ılly			
by	Position : Environm	ental Cons	ultant			
	Niall 1	Vally				
	Signed:	0				

	Project Name	NE001	NE001	NE001	NE002	NE002	NE002	NE003	NE003	NE003	NE004	NE004	NE004
	Start Time	07:15	10:07	13:13	07:48	10:39	13:47	08:24	11:15	14:19	08:56	11:47	14:51
	12.5	-12.03	-7.4	-6.73	-9.95	-9.64	-10.25	0.69	1.5	0.96	-0.43	-0.87	1.88
	16	-3.83	2.56	1.97	-1.79	7.16	8.2	14.63	13.38	13.27	25.59	4.14	28.05
	20	1.42	11.63	11.13	4.6	1.14	6.77	17.96	17.73	17.55	14.2	12.1	16.44
	31.5	17.26	19.22	24.47	24.4	20.91	29.05	31.43	30.11	30.04	27.43	28.08	28.05
	40	25.4	23.73	27.09	23.96	21.41	33.24	32.98	33.3	32.96	30.23	33.33	28.99
	50	30.35	26.94	29.41	43.03	20.79	27.74	36.83	36.89	36.94	32.35	34.37	31.65
	100	32.64	33.13	31.83	44.82	29.27	35.44	41.51	40.62	40.7	39.12	38.16	38.95
	125	34.63	35.39	33.23	41.32	33.99	36.98	43.59	42.76	42.85	39.4	37.94	39.11
. .	160	37.23	37.97	37.09	46.34	39.52	41.15	48.9	49.16	49.38	44.27	41.77	42.57
Ë)	200	39.07	40.32	38.11	45.48	41.27	42.31	44.69	44.57	43.93	43.88	42.7	42.86
Jcy	250	39.94	41.08	38.91	47.23	44.78	46.36	44.51	45.46	44.86	44.96	46	45.05
Inel	315	42.41	42.72	40.94	50.32	45.56	45.8	45.85	48.48	48.51	46.42	45.85	45.47
rec	400	44.7	45.15	43.03	52.83	46.95	47.96	45.76	46.84	45.79	48.17	46.38	47.05
-	500	45.3	46.86	43.53	53.49	50.59	52.16	48.56	49.88	48.73	49.06	46.67	48.08
	630	45.51	47.97	44.54	53.61	51.12	52.34	48.43	49.37	47.49	49.47	47.03	48.67
	800	45.82	48.99	46	53.73	52.17	52.45	49.73	50.5	47.93	49.67	47.25	48.35
	1k	45.62	49.65	47.26	55.82	52.99	53.5	51.33	52.03	48.83	50.11	45.94	49.03
	1.25k	46.21	49.3	46.96	56.95	53.69	54.75	51.35	51.4	50.17	51.2	46.12	51.63
	1.6k	45.27	49.51	46.23	55.25	53.24	53.76	47.45	48.84	47.33	49.82	44.93	47.13
	2k	44.25	47.38	45.08	53.64	53.16	53.61	46.98	48.93	47.36	50.66	45.02	48.4
	2.5k	42.73	45.73	42.74	53.43	52.69	53.35	48.42	49.18	48.08	49.85	45.36	47.16
	3.15k	42.32	46.73	43.58	59.83	54.86	57.03	53.85	53.56	52.34	49.11	44.58	45.02

Table 3.21/3 Octave Noise results **Daytime** recorded at Monitoring Stations NE001 to NE004

Project Name	NE001	NE001	NE001	NE002	NE002	NE002	NE003	NE003	NE003	NE004	NE004	NE004
Start Time	07:15	10:07	13:13	07:48	10:39	13:47	08:24	11:15	14:19	08:56	11:47	14:51
4k	38.62	44.1	39.56	48.86	50.2	50.38	41.63	42.74	41.54	43.51	40	43.13
5k	36.13	41.63	36.72	45.41	47.73	49.78	40.45	40.73	39.91	40.77	37.64	40.1
6.3k	32.71	38.25	33.53	43.77	45.39	45.19	38.55	39.21	39.15	37.77	36.57	39.57
8k	27.86	34.4	29.14	40.33	41.29	40.88	34.13	34.39	34.2	33.46	31.17	34.2
10k	23.36	31.24	23.95	36.71	36.27	35.76	27.66	26.91	26.4	28.18	25.95	26.17
12.5k	17.49	24.97	18.92	32.8	29.61	29.43	23.75	22.43	22.25	21.92	20.29	18.82
16k	11.45	18.31	13.77	28.09	21.56	21.67	18.55	16.74	16.79	15.37	14	11.39

Table 3.21/3 Octave Noise results **Daytime** recorded at Monitoring Stations NE001 to NE004

	Project Name	NE001	NE002	NE003	NE004
	Start Time	05:53	06:19	06:41	06:57
	12.5	-3.29	-15.22	1.81	-10.42
	16	1.8	-7.4	9.04	3.09
	20	9	-3.76	19.66	6.18
	31.5	25.16	13.44	35.11	21.87
	40	33.8	21.38	36.83	31.05
	50	33.66	21.6	39.41	31.9
	100	30.17	30.73	42.65	38.71
	125	32.83	30.69	46.11	41.32
duency (Hz)	160	34.17	35.03	48.67	42.66
	200	37.05	36.09	44.76	41.61
	250	37.3	37.23	46.37	43.64
	315	38.64	38.05	47.08	44.32
	400	40.01	37.78	47.35	46.56
	500	42.12	38.36	51.31	48.13
	630	43.64	39.89	51.38	48.31
	800	44.02	39.16	50.52	48.34
Fre	1k	46.9	40.83	53.02	49.55
	1.25k	47.22	43.9	60.07	50.79
	1.6k	46.02	38.59	52.18	50.5
	2k	44.6	37.65	53.48	52.16
	2.5k	43.13	37.56	57.56	53.23
	3.15k	37.77	40.6	62.48	52.38
	4k	37.26	33.43	46.66	49.06
	5k	32.73	29.89	46.94	46.85
	6.3k	29.61	27.31	46.84	43.99
	8k	26.41	22.72	42.34	40.84
	10k	22.44	16.99	33.53	36.09
	12.5k	17.45	12.04	28.58	30.59
	16k	14.36	7.72	21.87	24.32

Table 3.31/3 Octave Noise results Night-time recorded at Monitoring Stations
NE001 to NE004

6.0DISCUSSION AMBIENT NOISE

Noise has many sources, both manmade and environmental. Noise is observer defined, as levels unacceptable to one person may be perceived as necessary or enjoyable to another. As such the monitoring of noise is primarily an observational discipline requiring a full identification of the sources of possible noise and the type of sound that is been emitted (continuous, intermittent, tonal, broad-spectrum, single source, multiple source).

The EPA documents 'Guidance Note for Noise: Licence Applications, Surveys and Assessments in Relation to Scheduled Activities (NG4), released in April 2012, and the subsequent EPA 'Frequently Asked Questions (FAQ's) on NG4' have been reviewed in the preparation of monitoring on site and this report.

The revised guidance note on noise for licensed activities (NG4), requires additional monitoring to be conducted at all licensed facilities as follows; Daytime, a minimum of 3 monitoring periods per station, Evening time (where required in the specific licence), a minimum of 1 monitoring period per station and finally for Night-time, a minimum of 2 monitoring periods per station.

Daytime is defined as a time period between: 07:00 to 19:00 Evening time is defined as a time period between: 19:00 to 23:00 Night-time is defined as a time period between: 23:00 to 07:00

Noise monitoring was carried out between the hours of 5.50am and 3.30pm on the same day. Noise sources from the facility, audible at the site boundaries have been identified as:

- Vehicles entering/leaving the site
- Personnel entering/leaving buildings, car park area
- Unloading and loading of trucks with waste materials and processed materials using fork lift trucks
- Tipping of WEEE under cover in the Hanger building
- Reversing alarms from forklift trucks
- WEEE processing operations within buildings.

The KMK facility is located within the Cappincur Industrial Estate, Tullamore. This industrial estate includes warehousing, commercial/industrial and waste management operations with Tullamore Steel, Midland Farm Machinery, Modified Motors, Ravenhill Couriers, Robedesign and Condron Car Dismantlers and a number of other businesses, all located within a relatively close proximity to the KMK site. These other occupants all have noise associated with their activities and this results in a cumulative noise impact within the industrial estate e.g. all warehousing environments require controlled ventilation and air supply, and therefore there is noise associated with these fans, car dismantlers use angle grinders, manual tools, fork lift trucks and other ancillary activities e.g. vehicle movements. Machinery yards have HGV movements delivering and removing machinery etc.

During the Daytime measurements, maximum noise levels of $L_{Aeq(30 \text{ minute})}$ varied between 56-66dB at boundary locations. The highest levels were noted at station NE002 (66, 64 and 63dB). The result of 66dB was certainly elevated by the presence of an outside contractor that was emptying the domestic sewerage at a holding tank at within 3metres of this location during the early morning measurement. This activity at KMK is related to the short term construction project associated with the installation of the new Waste water Treatment System. Therefore this noise related activity will cease after construction has finished. Site activities adding to this noise included fork lift trucks accessing building areas A,B,C and trucks entering and leaving the associated entrance.

Station NE001, located on the northern boundary, had the lowest noise levels. Site activities at this station were audible but not typically intrusive. $L_{Aeq(30)}$ minute) values ranged from 56-59 dB at NE 001 during the day.

Station NE003, located on the south boundary behind the WEEE building, resulted in $L_{Aeq(30 \text{ minute})}$ values ranging from 60-62 dB during the day. Noise was dominated here by the nearby dust extraction system used to treat dusts from the WEEE processing building and also noise from materials being processed inside the same building. There was also audible background noise coming from traffic on the nearby Tullamore by-pass at this location.

Station NE004, located on the west boundary, resulted in $L_{Aeq(30 \text{ minute})}$ values ranging from 58-61 dB during the day. Noise was dominated here by typical sites activities; DX yard vehicular activities – loading and unloading truck trailers and CRT processing in D4 was audible also. In addition, household battery sorting was been carried out close by at D4-R. It is understood that this activity only occurs once every month when sufficient quantities of batteries are available.

The night-time measurements were taken between 6am and 7am and coincided with normal site activities at KMK. The highest noise level in $L_{Aeq(15 \text{ minute})}$ was 67dB at NE003 boundary location whilst the lowest noise level in $L_{Aeq(15 \text{ minute})}$ was 51dB at NE002 boundary location. In relation to NE002, it is noted that there was no outside contractor emptying the temporary sewerage tank during this monitoring time and therefore this explains the lower noise level compared to highest daytime level of 66dB at this station. The noise at NE003 of 67dB was most likely due to start up of the dust extraction system plant.

The noise generated during these operations is not likely to be a source of disturbance to neighbouring properties as it is known that noise dissipates over distance, and for point source emissions, there is a decrease in 6dB(A) for every doubling in distance away (see table 4.1 below).

Distance m	Noise level dB	Noise Level dB		
10	70	65		
20	64	59		
40	58	53		
80	52	47		
160	46	41		

 Table 4.1 Attenuation of Noise over Distance for point source emissions e.g. industrial sources

The noise levels on site range from a night-time $L_{Aeq (15 \text{ minute})}$ of 51 dB to a $L_{Aeq(15 \text{ minute})}$ of 67 dB. This is equivalent to the noise arising from roadside traffic at 15 meters. The KMK facility is located within an urban zone of acoustic influence. There are no notable housing estates within close proximity to the Cappincur Industrial Estate, nor is there identified houses positioned at significant distance from local road infrastructure, that would bring said dwellings closer to the Cappincur Industrial Estate. It is therefore

reasoned that dwellings located along the local road to the north experience noise from the urban traffic movements in/out of Tullamore Town, vehicle movements associated with the Cappincur Industrial Estate, and the daily movement of traffic on the National N52 by-pass road of Tullamore, located to the west of the Cappincur Industrial Estate.

Approximate distances from the peak L_{Aeq} (30minute) station to the closest dwelling, located northeast, is 240metres. Distances from the closest operational zones, the E-Area, located along the northern section of the site, is approximately 200m to the closest dwelling, again located to the northeast.

The table below is a standardised acoustic ratings table, utilised to characterise the dB scale to those not familiar with the logarithmic nature of the scale or the standarised reference values of 'Threshold of hearing or pain'.

Sound Pressure level dB(A)	Typical source		
120	Jet take off at 50m		
100	Pneumatic Drill		
90	Generator hall		
80	Light machine shop, Heavy Truck at 15m		
70 - 60	Light traffic (cars) at 15m		
60	Office Noise		
40	Library		
20	Rural evening		

Table 4.2: Sound Levels from Typical Sources

6.1 DISCUSSION OCTAVE BAND ANALYSIS

Octave band analysis of noise is the breakdown of the sound pressure readings, as recorded on site, into specific frequency band widths. This enables a greater understanding of the type of noise evident at a site and can give indications to where tonal noise is present. There are two common forms of octave analysis. Full octave analysis groups sound pressure readings into frequency readings that cover a full octave. This type of monitoring gives a good general description of how people will perceive a sound/noise. One third octave analysis, further separates the noise reading into $\frac{1}{3}$ octave frequency groupings. Each frequency reading is given in Hz. The frequency reading is the central frequency for each band that is been monitored (i.e. Frequency band 250 Hz covers all sound pressure readings recorded between 167Hz to 1/3 octave analysis of noise enables the identification of tonal 333Hz). components present at a site. Long duration tonal noise is typically found as more aggravating to nearby sensitive receivers than broad spectrum noise sources and control measures can be used to minimise the annoyance caused by tonal sources.

6.2¹/₃ OCTAVE ANALYSIS

1/3 Octave analysis is a method of analysing the recorded sound pressures to identify if tonal features are present. Tones are investigated because it is widely accepted that noise with tonal or impulsive characteristics is likely to be more annoying than noise without such characteristics. For this reason that tonal noise is more noticeable than broadband noise and can therefore be more intrusive, it is appropriate to penalise tonal noise in assessments by applying a correction factor to the measured noise level in order to arrive at a 'rating level'. The rating level (L_{ar,T}) is therefore calculated by adding a 5dB value to the sound pressure for the L_{Aeq} at that location and time period.

NG4 guidance document states that tonal elements can be identified by the variation in one 1/3 octave band to its neighbouring two bands by a minimum value. These minima vary depending upon the frequency band, mid and higher frequency tones been more audible than lower frequency bands. The variation is given as:

- 15dB in low-frequency one-third-octave bands (25Hz to 125 Hz)
- 8dB in middle-frequency one-third-octave bands (160Hz to 400Hz)
- 5dB in high-frequency one-third-octave bands (500Hz to 10,000Hz)

Reviewing the 1/3 octave data for the site stations, there were some tones identified under this guidance as can be seen from the data sets labelled in the corresponding charts.

In relation to impulsive noise, this is usually described as something with a thumping, banging or impact noise that is clearly audible above everything else. There was such noise experienced at station NE004, possibly due to the battery sorter being loaded at these intervals.

Tones identified are summarised below;

10th October 2013

The table below lists the tones identified from the monitoring.

Monitoring	Day-time	Night-time	Comments	Rating level (L _{ar,T})	
Station	Tonal Features	Tonal Features		as adjusted by	
	(Frequency &	(Frequency &		adding 5dB to the	
	Pressure) Pressure)			relevant LAeq	
NE001	No identified	No identified	No topos identified	Not applicable	
	tones	tones	No tones identified		
NE002	60dB at 3.15kHz, at 07:48	No identified tones	This tone was as a result of the outside contractor collecting the sewerage waste from the temporary holding tank at this location. There was a loud engine revving noise from this process which lasted 15mins.	71dB	
NE003	54dB at 3.15kHz at 11:15	60dB at 1.25kHz at 06:41	These tones are due to the operational noise associated with the dust extraction plant at this location. Tones are not likely to be experience by noise sensitive receptors due to the apex side of the building acting as a noise barrier. Also the direct affected area of noise influence is a field and then the Tullamore by-pass some distance away.	67dB – daytime 72dB – night-time	
NE004	31dB and 34dB at 8kHz at 11:47 & 14:51 respectively	No identified tones	This tone was most probably as a result of impulsive noise at the facility.	63dB and 64dB respectively.	

7.0CONCLUSIONS

- Baseline environmental noise monitoring occurred at KMK on Tuesday 24th September 2013.
- 4 boundary locations were assessed as per licence requirements.
- Activities at the KMK facility were deemed normal throughout the day.
- The general acoustic environment at and around the facility is dominated by facility operations and also off-site activities within the industrial estate due to neighbouring commercial premises.
- The noise measured in L_{Aeq} at all boundary locations exceeded the licence requirements for day and night as specified in B.4 emission limits of the licence. There was tonal noise identified at NE002 and NE003 although NE002 was due to an outside contractor only. There was impulsive noise identified at NE004.

Appendix A

> Noise Results & Charts

Noise	Start Time	LAFmax	LAFmin	LAeq	LAF10.0	LAF90.0
NE001	05:53	73	28	55	58	33
NE002	06:19	72	36	51	54	42
NE003	06:41	75	56	67	73	58
NE004	06:57	82	48	62	60	52
NE001	07:15	82	34	56	54	40
NE002	07:48	88	37	66	70	48
NE003	08:24	80	57	61	62	59
NE004	08:56	79	52	61	63	55
NE001	10:07	83	39	59	59	44
NE002	10:39	81	46	63	67	53
NE003	11:15	78	57	62	63	59
NE004	11:47	76	51	58	59	54
NE001	13:13	81	35	56	58	39
NE002	13:47	87	45	64	67	55
NE003	14:19	84	57	60	62	59
NE004	14:51	71	49	59	62	54

Full Broad band Noise Results table (all time periods are in chronological order).

These results are illustrated below in the following two graphs.

KMK Metals Recycling Ltd, W0113-03 Annual Noise Monitoring Report

	Project Name	NE001	NE001	NE001	NE002	NE002	NE002	NE003	NE003	NE003	NE004	NE004	NE004
	Start Time	07:15	10:07	13:13	07:48	10:39	13:47	08:24	11:15	14:19	08:56	11:47	14:51
	12.5	-12.03	-7.4	-6.73	-9.95	-9.64	-10.25	0.69	1.5	0.96	-0.43	-0.87	1.88
	16	-3.83	2.56	1.97	-1.79	7.16	8.2	14.63	13.38	13.27	25.59	4.14	28.05
	20	1.42	11.63	11.13	4.6	1.14	6.77	17.96	17.73	17.55	14.2	12.1	16.44
	31.5	17.26	19.22	24.47	24.4	20.91	29.05	31.43	30.11	30.04	27.43	28.08	28.05
	40	25.4	23.73	27.09	23.96	21.41	33.24	32.98	33.3	32.96	30.23	33.33	28.99
	50	30.35	26.94	29.41	43.03	20.79	27.74	36.83	36.89	36.94	32.35	34.37	31.65
	100	32.64	33.13	31.83	44.82	29.27	35.44	41.51	40.62	40.7	39.12	38.16	38.95
	125	34.63	35.39	33.23	41.32	33.99	36.98	43.59	42.76	42.85	39.4	37.94	39.11
5	160	37.23	37.97	37.09	46.34	39.52	41.15	48.9	49.16	49.38	44.27	41.77	42.57
Ë,	200	39.07	40.32	38.11	45.48	41.27	42.31	44.69	44.57	43.93	43.88	42.7	42.86
Jcy	250	39.94	41.08	38.91	47.23	44.78	46.36	44.51	45.46	44.86	44.96	46	45.05
Inel	315	42.41	42.72	40.94	50.32	45.56	45.8	45.85	48.48	48.51	46.42	45.85	45.47
.rec	400	44.7	45.15	43.03	52.83	46.95	47.96	45.76	46.84	45.79	48.17	46.38	47.05
-	500	45.3	46.86	43.53	53.49	50.59	52.16	48.56	49.88	48.73	49.06	46.67	48.08
	630	45.51	47.97	44.54	53.61	51.12	52.34	48.43	49.37	47.49	49.47	47.03	48.67
	800	45.82	48.99	46	53.73	52.17	52.45	49.73	50.5	47.93	49.67	47.25	48.35
	1k	45.62	49.65	47.26	55.82	52.99	53.5	51.33	52.03	48.83	50.11	45.94	49.03
	1.25k	46.21	49.3	46.96	56.95	53.69	54.75	51.35	51.4	50.17	51.2	46.12	51.63
	1.6k	45.27	49.51	46.23	55.25	53.24	53.76	47.45	48.84	47.33	49.82	44.93	47.13
	2k	44.25	47.38	45.08	53.64	53.16	53.61	46.98	48.93	47.36	50.66	45.02	48.4
	2.5k	42.73	45.73	42.74	53.43	52.69	53.35	48.42	49.18	48.08	49.85	45.36	47.16
	3.15k	42.32	46.73	43.58	59.83	54.86	57.03	53.85	53.56	52.34	49.11	44.58	45.02

Table 3.21/3 Octave Noise results **Daytime** recorded at Monitoring Stations NE001 to NE004

Project Name	NE001	NE001	NE001	NE002	NE002	NE002	NE003	NE003	NE003	NE004	NE004	NE004
Start Time	07:15	10:07	13:13	07:48	10:39	13:47	08:24	11:15	14:19	08:56	11:47	14:51
4k	38.62	44.1	39.56	48.86	50.2	50.38	41.63	42.74	41.54	43.51	40	43.13
5k	36.13	41.63	36.72	45.41	47.73	49.78	40.45	40.73	39.91	40.77	37.64	40.1
6.3k	32.71	38.25	33.53	43.77	45.39	45.19	38.55	39.21	39.15	37.77	36.57	39.57
8k	27.86	34.4	29.14	40.33	41.29	40.88	34.13	34.39	34.2	33.46	31.17	34.2
10k	23.36	31.24	23.95	36.71	36.27	35.76	27.66	26.91	26.4	28.18	25.95	26.17
12.5k	17.49	24.97	18.92	32.8	29.61	29.43	23.75	22.43	22.25	21.92	20.29	18.82
16k	11.45	18.31	13.77	28.09	21.56	21.67	18.55	16.74	16.79	15.37	14	11.39

Table 3.21/3 Octave Noise results **Daytime** recorded at Monitoring Stations NE001 to NE004

KMK Metals Recycling Ltd, W0113-03 Annual Noise Monitoring Report

	Project Name	NE001	NE002	NE003	NE004
	Start Time	05:53	06:19	06:41	06:57
	12.5	-3.29	-15.22	1.81	-10.42
	16	1.8	-7.4	9.04	3.09
	20	9	-3.76	19.66	6.18
	31.5	25.16	13.44	35.11	21.87
	40	33.8	21.38	36.83	31.05
	50	33.66	21.6	39.41	31.9
	100	30.17	30.73	42.65	38.71
	125	32.83	30.69	46.11	41.32
	160	34.17	35.03	48.67	42.66
	200	37.05	36.09	44.76	41.61
	250	37.3	37.23	46.37	43.64
	315	38.64	38.05	47.08	44.32
(z	400	40.01	37.78	47.35	46.56
۲) ۲	500	42.12	38.36	51.31	48.13
enc	630	43.64	39.89	51.38	48.31
nbə	800	44.02	39.16	50.52	48.34
Fre	1k	46.9	40.83	53.02	49.55
	1.25k	47.22	43.9	60.07	50.79
	1.6k	46.02	38.59	52.18	50.5
	2k	44.6	37.65	53.48	52.16
	2.5k	43.13	37.56	57.56	53.23
	3.15k	37.77	40.6	62.48	52.38
	4k	37.26	33.43	46.66	49.06
	5k	32.73	29.89	46.94	46.85
	6.3k	29.61	27.31	46.84	43.99
	8k	26.41	22.72	42.34	40.84
	10k	22.44	16.99	33.53	36.09
	12.5k	17.45	12.04	28.58	30.59
	16k	14.36	7.72	21.87	24.32

Table 3.3	1/3 Octave Noise results Night-time recorded at Monitoring Stations
	NE001 to NE004

KMK Metals Recycling Ltd, W0113-03 Annual Noise Monitoring Report

Calibration information;

Brüel & Kja	ær 😁		dia terrete	DANIAL
The Calibration Laboratory	Description	Hac	ENRY R	DANAK
skodsborgvej 307, DK-2850 Næ	rum, Denmark	Telefinition of	alalalah	one negre op-
CERTIFICATE	OF CALIBRATION	No: C	C1205391	Page 1 of 10
CALIBRATION	OF			
Sound Level Meter:	Brüel & Kiær Type 2250 Light	No: 2754	170 Id: -	
Microphone:	Brüel & Kjær Type 4950	No: 2737	145	
Preamplifier:	Brüel & Kjær Type ZC-0032	No: 15966	5	
Supplied Calibrator:	None			
Software version: Inst <mark>ructi</mark> on manual:	BZ7130 Version 4.0 BE1774-14	Pattern Approval:	PENDING	
CUSTOMER				
	Enfonic Ltd			
	Tecpro House, IDA Business & Clonshaugh	Technology Park, Clonsh	naugh	
	Dublin 17			
	Treland			
CALIBRATION Preconditioning: Environment conditions:	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen	tal conditions sections.		
CALIBRATION Preconditioning: Environment conditions: SPECIFICATION The Sound Level Meter IEC61672-1:2002 class	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen VS Brücl & Kjær Type 2250 Light has br . Procedures from IEC 61672-3:2000	tal conditions sections. een calibrated in accordat 5 were used to perform th	nec with the requirem	ients as specified in accreditation
CALIBRATION Preconditioning: Environment conditions: SPECIFICATION The Sound Level Meter EC61672-1:2002 class assures the traccability to	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen NS Brücl & Kjær Type 2250 Light has be . Procedures from IEC 61672-3:2000 the international units system SI.	tal conditions sections. een calibrated in accordan 5 were used to perform th	nce with the requirem e periodic tests. The	ients as specified in accreditation
CALIBRATION Preconditioning: Environment conditions: SPECIFICATION The Sound Level Meter IEC61672-1:2002 class assures the traccability to PROCEDURE	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen NS Brücl & Kjær Type 2250 Light has be . Procedures from IEC 61672-3:2000 the international units system SI.	tal conditions sections. een calibrated in accordan 5 were used to perform th	nce with the requirem e periodic tests. The	tents as specified in accreditation
CALIBRATION Preconditioning: Environment conditions: SPECIFICATION The Sound Level Meter EC61672-1:2002 class issures the traceability to PROCEDURE The measurements have upplication software type	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen VS Brücl & Kjær Type 2250 Light has bi . Procedures from IEC 61672-3:2000 o the international units system SI. been performed with the assistance o : 7763 (version 4.7 - DB: 4.70) by us	tal conditions sections. cen calibrated in accordan 5 were used to perform th f Brücl & Kjær Sound Le ing procedure 2250-L-49	nec with the requirem e periodic tests. The evel Meter Calibratio 50.	ents as specified in accreditation n System 3630 with
CALIBRATION Preconditioning: Environment conditions: SPECIFICATION The Sound Level Meter EC61672-1:2002 class issures the traccability to PROCEDURE The measurements have upplication software type RESULTS	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen NS Brücl & Kjær Type 2250 Light has be procedures from IEC 61672-3:2000 to the international units system SI. been performed with the assistance o : 7763 (version 4.7 - DB: 4.70) by us	tal conditions sections. een calibrated in accordan 5 were used to perform th f Brüel & Kjær Sound Le ing procedure 2250-L-49	ncc with the requirem e periodic tests. The evel Meter Calibratio 50.	ents as specified in accreditation n System 3630 with
CALIBRATION Preconditioning: Environment conditions: SPECIFICATION The Sound Level Meter IEC61672-1:2002 class assures the traceability to PROCEDURE The measurements have application software type RESULTS Calibration Mode: Calibr	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen NS Brücl & Kjær Type 2250 Light has by . Procedures from IEC 61672-3:2000 to the international units system SI. been performed with the assistance o : 7763 (version 4.7 - DB: 4.70) by us ration as received.	tal conditions sections. een calibrated in accordan 5 were used to perform th f Brüel & Kjær Sound Le ing procedure 2250-L-49	ncc with the requirem e periodic tests. The evel Meter Calibratio 50.	ents as specified in accreditation n System 3630 with
CALIBRATION Preconditioning: Environment conditions: SPECIFICATION The Sound Level Meter EC61672-1:2002 class assures the traceability to PROCEDURE The measurements have application software type RESULTS Calibration Mode: Calib The reported expanded to of confidence of approxi elements originating from the device under calib	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen IS Brücl & Kjær Type 2250 Light has be 1. Procedures from IEC 61672-3:2006 o the international units system SI. been performed with the assistance o 1: 7763 (version 4.7 - DB: 4.70) by us ration as received. meertainty is based on the standard un mately 95 %. The uncertainty evalua n the standards, calibration method, o libration.	tal conditions sections. een calibrated in accordan 5 were used to perform th f Brüel & Kjær Sound Le ing procedure 2250-L-49 ncertainty multiplied by a tion has been carried out iffect of environmental co	nec with the requirem re periodic tests. The real Meter Calibratio 50. a coverage factor $k =$ in accordance with E anditions and any sho	n System 3630 with 2 providing a level A-4/02 from rt time contribution
CALIBRATION Preconditioning: Environment conditions: SPECIFICATION The Sound Level Meter EC61672-1:2002 class assures the traceability to PROCEDURE The measurements have application software type RESULTS Calibration Mode: Calib The reported expanded to of confidence of approxi clements originating from from the device under calibration Date of calibration	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen VS Brücl & Kjær Type 2250 Light has be 1. Procedures from IEC 61672-3:2006 o the international units system SI. been performed with the assistance o 1: 7763 (version 4.7 - DB: 4.70) by us ration as received. meertainty is based on the standard un mately 95 %. The uncertainty evalua n the standards, calibration method, of libration.	tal conditions sections. cen calibrated in accordan 5 were used to perform th f Brüel & Kjær Sound Le ing procedure 2250-L-49 neertainty multiplied by a tion has been carried out ifflect of environmental co	nec with the requirem e periodic tests. The evel Meter Calibration 50. a coverage factor $k =$ in accordance with E onditions and any sho of issue: 2012-07-20	n System 3630 with 2 providing a level A-4/02 from rt time contribution
CALIBRATION Preconditioning: Environment conditions: SPECIFICATION The Sound Level Meter EC61672-1:2002 class issures the traceability to PROCEDURE The measurements have isplication software type RESULTS Calibration Mode: Calibr The reported expanded to confidence of approxi- clements originating from the device under calibration Date of calibrat	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen IS Brücl & Kjær Type 2250 Light has be . Procedures from IEC 61672-3:2006 o the international units system SI. been performed with the assistance o : 7763 (version 4.7 - DB: 4.70) by us ration as received. meertainty is based on the standard un mately 95 %. The uncertainty evalua n the standards, calibration method, of libration. ion: 2012-07-20 MAMA	tal conditions sections. cen calibrated in accordan 5 were used to perform th f Brüel & Kjær Sound Le ing procedure 2250-L-49 neertainty multiplied by a tion has been carried out iffect of environmental co Date	nec with the requirem e periodic tests. The evel Meter Calibration 50. a coverage factor $k =$ in accordance with E onditions and any sho of issue: 2012-07-20	n System 3630 with 2 providing a level A-4/02 from rt time contribution
CALIBRATION Preconditioning: Environment conditions: SPECIFICATION The Sound Level Meter EC61672-1:2002 class issures the traceability to PROCEDURE The measurements have upplication software type RESULTS Calibration Mode: Calibr The reported expanded to confidence of approxi- clements originating from the device under calibrate Date of calibrate	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen IS Brücl & Kjær Type 2250 Light has bi . Procedures from IEC 61672-3:2006 o the international units system SI. been performed with the assistance o : 7763 (version 4.7 - DB: 4.70) by us ration as received. meertainty is based on the standard un mately 95 %. The uncertainty evalua n the standards, calibration method, of libration. ion: 2012-07-20 Maganana Vodstrup Andersen	tal conditions sections. cen calibrated in accordan 5 were used to perform th f Brüel & Kjær Sound Le ing procedure 2250-L-49 neertainty multiplied by a tion has been carried out iffect of environmental co Date	the coverage factor $k =$ in accordance with E onditions and any sho of issue: 2012-07-20 Nils Johanse	n System 3630 with 2 providing a level A-4/02 from prt time contribution
CALIBRATION Preconditioning: Environment conditions: SPECIFICATION The Sound Level Meter EC61672-1:2002 class issures the traccability to PROCEDURE The measurements have upplication software type RESULTS Calibration Mode: Calib The reported expanded to of confidence of approxi clements originating from the device under calib Date of calibrat	CONDITIONS 4 hours at 23°C ± 3°C See actual values in Environmen IS Brücl & Kjær Type 2250 Light has bi . Procedures from IEC 61672-3:2006 o the international units system SI. been performed with the assistance o : 7763 (version 4.7 - DB: 4.70) by us ration as received. meertainty is based on the standard un mately 95 %. The uncertainty evalua n the standards, calibration method, of libration. ion: 2012-07-20 Magaan Vodstrup Andersen bration Technician	tal conditions sections. cen calibrated in accordan 5 were used to perform th f Brüel & Kjær Sound Le ing procedure 2250-L-49 neertainty multiplied by a tion has been carried out iffect of environmental co Date	the coverage factor $k =$ in accordance with E onditions and any sho of issue: 2012-07-20 Nils Johanse Approved Sign	n System 3630 with 2 providing a level A-4/02 from art time contribution

APPENDIX 4

Water Quality Laboratory Test Certificates 2013

Unit 18A Rosemount Business Park Ballycoolin Dublin 11 Tel : (0035) 3188 29893

Nally Environmental Drumcree Collinstown Mullinger Co. Westmeath

Attention: Niall Nally

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 15 February 2013 D_NALLYENV_MUL 130212-14 KMK 212228

We received 2 samples on Monday February 11, 2013 and 2 of these samples were scheduled for analysis which was completed on Friday February 15, 2013. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No.

ALcontrol I	Laboratories	CER		NALYSIS			Validated
SDG: Job: Client Reference:	130212-14 D_NALLYENV_MUL-2 KMK	Location: Customer: Attention:	Nally Environmental Niall Nally		Order Number: Report Number: Superseded Report:	212228	
		Receiv	ved Sample	Overview	N		
Lab Sample No(s) Custome	er Sample Ref.		AGS Ref.	Depth (m))	Sampled Date
6902450		CX					11/02/2013
6902451		DX					11/02/2013

Only received samples which have had analysis scheduled will be shown on the following pages.

		CI	ERTI	FIC	ATE OF ANAL	YSIS	
SDG:13Job:DClient Reference:Kt	30212-14 _NALLYENV_MUL-2 MK	Location: Custome Attention	r: Na : Ni	ally Er all Na	ivironmental Ily	Order Number: Report Number Superseded Re	: 212 port:
IQUID Results Legend	Lab Samp	le No(s)	09U245U	6902451			
No Determination Possible	n Custo Sample Re	mer eference	Ş	DX			
	AGS Refe	erence					
	Depth	(m)					
	Conta	iner	11plastic (ALE221) 11 green glass bottle	H2SO4 (ALE244) 11plastic (ALE221)			
Ammoniacal Nitrogen	Ali	NDPs: 0 Tests: 2)				
Anions by Kone (w)	All	NDPs: 0 Tests: 2	x	x			
COD Unfiltered	All	NDPs: 0 Tests: 2	X	x			
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 2	x	x			
Dissolved Metals by ICP-MS	Ali	NDPs: 0 Tests: 2	x	x			
Vercury Dissolved	All	NDPs: 0 Tests: 2	X	x			
Vetals by iCap-OES Dissolved	i (W) Ali	NDPs: 0 Tests: 2	x	x			
Vineral Oil C10-40 Aqueous (V	N) All	NDPs: 0 Tests: 2	X	X			
oH Value	All	NDPs: 0 Tests: 2	x	x			

Γ

(

CERTIFICATE OF ANALYSIS

Validated

# ISO17025 accredited.		oustonic		CX.		~			
aq Aqueous / settled sample.		Depth (m)							
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		S	ample Type	Water(GW/SW)	Water(0	GW/SW)			
* Subcontracted test. Date Sampled		ate Sampled	11/02/2013	11/02	2/2013				
check the efficiency of the method.	The	Dat	te Received	11/02/2013	11/02	2/2013			
samples aren't corrected for the red	covery	l ah Sa	SDG Ref	130212-14 6902450	1302	12-14 2451			
1-4&+§@ Sample deviation (see appendix)		AGS	S Reference						
Component Suspended solids, Total	LOD/U	nits	Method TM022	-2	1	6	_	 	
Suspended Solids, Total	~2 111	ig/i	11022	~2	' +	0	#		
Ammoniacal Nitrogen as	<0.2 r	ng/l	ТМ099	16.5	0.4	174			
NH3		J		#	¢		#		
COD, unfiltered	<7 m	ng/l ⁻	TM107	14.1	29	9.8			
				#	¢		#		
Conductivity @ 20 deg.C	< 0.00	05	TM120	1.23	, 0.1	183	"		
Aluminium (dicc filt)	m5/c		TM152	2 15	F OZ	2 0	#	 	
Aluminium (uiss.int)	~2.5	μg/i	1101132	5.15	± 00	5.0	#		
Arsenic (diss.filt)	<0.12	µg/l -	TM152	1.23	. 0.4	174			
		10		#	ŧ		#		
Chromium (diss.filt)	<0.22	µg/l -	TM152	1.62	0.9	994			
				#	¢		#		
Lead (diss.filt)	<0.02	µg/l -	TM152	0.914	, 9.	66			
Niekol (dies filt)	<0.15	ug/l -	TM152	-	‡2	12	#	 	
	<0.15	μg/i	1101152	0.22	± 3.	15	#		
Zinc (diss.filt)	<0.41	ua/l -	TM152	53.6	40).9		 	
		13		#	¢		#		
Mineral oil >C10 C40 (aq)	<10 µ	- I/gu	TM172	<10	50	63			
Mercury (diss.filt)	<0.01	µg/l ⁻	TM183	<0.01	0.0	043			
Chlorida	40 m		TNAADA	#	‡ 		#	 	
Chloride	<2 m	ig/i	TM184	298	+ 23	3.2	#		
Iron (diss filt)	<0.0	19 -	TM228	0 101	- 0.0	366	#		
	mg/	1		#	¢ 0.0	000	#		
рН	<1 p	н -	TM256	7.85	8	.1			
	Unit	s		#	ŧ		#		
			T						
					+				
					+				

CERTIFICATE OF ANALYSIS

Validated

SDG: 130212-14 Location: Order Number: D_NALLYENV_MUL-2 Nally Environmental 212228 Job: Customer: Report Number: Client Reference: кмк Attention: Niall Nally Superseded Report:

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser		
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit		
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM172	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	EPH in Waters		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM228	US EPA Method 6010B	Determination of Major Cations in Water by iCap 6500 Duo ICP-OES		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		

NA = not applicable.

Validated

SDG:	130212-14	Location:		Order Number:	
Job:	D_NALLYENV_MUL-2	Customer:	Nally Environmental	Report Number:	212228
Client Reference:	KMK	Attention:	Niall Nally	Superseded Report:	

Test Completion Dates

Lab Sample No(s)	6902450	6902451
Customer Sample Ref.	CX	DX
AGS Rei.		
Depth		
Туре	LIQUID	LIQUID
Ammoniacal Nitrogen	15-Feb-2013	15-Feb-2013
Anions by Kone (w)	14-Feb-2013	14-Feb-2013
COD Unfiltered	13-Feb-2013	13-Feb-2013
Conductivity (at 20 deg.C)	13-Feb-2013	13-Feb-2013
Dissolved Metals by ICP-MS	13-Feb-2013	13-Feb-2013
Mercury Dissolved	14-Feb-2013	14-Feb-2013
Metals by iCap-OES Dissolved (W)	13-Feb-2013	13-Feb-2013
Mineral Oil C10-40 Aqueous (W)	14-Feb-2013	14-Feb-2013
pH Value	13-Feb-2013	13-Feb-2013
Suspended Solids	13-Feb-2013	13-Feb-2013

 SDG:
 130212-14
 Location:
 Order Number:

 Job:
 D_NALLYENV_MUL-2
 Customer:
 Nally Environmental
 Report Number:

 Client Reference:
 KMK
 Attention:
 Niall Nally
 Superseded Report:

Appendix General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. Results relate only to the items tested.

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. **Product analyses** -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-lsopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

212228

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	White Asbestos
Amoste	BrownAsbestos
Oroddalte	Blue Asbestos
Fibrous Adinalte	-
FlorousAnthophylite	-
Fibrous Trendile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than:

Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Nally Environmental Drumcree Collinstown Mullinger Co. Westmeath

Attention: Niall Nally

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 20 June 2013 D_NALLYENV_MUL 130614-73 KMK 229752

We received 2 samples on Thursday June 13, 2013 and 2 of these samples were scheduled for analysis which was completed on Thursday June 20, 2013. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

ALcontrol I	_aboratories	CER	TIFICATE OF A	NALYSIS			Validated
SDG: Job: Client Reference:	130614-73 D_NALLYENV_MUL-2 KMK	Location: Customer: Attention:	Nally Environmental Niall Nally		Order Number: Report Number: Superseded Report:	229752	
		Receiv	ved Sample	Overview	/		
Lab Sample No(s) Customer	Sample Ref.		AGS Ref.	Depth (m)		Sampled Date
7588437	(CX					13/06/2013
7588441		XC					13/06/2013

Only received samples which have had analysis scheduled will be shown on the following pages.

CERTIFICATE OF ANALYSIS							
SDG: Job: Client Reference:	130614-73 D_NALLYENV_MUL-2 KMK	Location: Customer Attention:	: Na	Ily Envi all Nally	ronmental	Order Number: Report Number: Superseded Repor	22975
LIQUID Results Legend	Lab Samı	ple No(s)	7588437	7588441			
No Determinati Possible	No Determination Possible Customer Sample Reference		cx	DX			
	AGS Re	ference					
	Depti	n (m)					
	Conta	ainer	H2SO4 (ALE244) 1lplastic (ALE221) 1l Glass bottle (ALE	H2SO4 (ALE244) 1lplastic (ALE221) 1l Glass bottle (ALE			
Ammoniacal Nitrogen	All	NDPs: 0 Tests: 2	x	x			
Anions by Kone (w)	All	NDPs: 0 Tests: 2	×	x			
COD Unfiltered	All	NDPs: 0 Tests: 2	x	x			
Conductivity (at 20 deg.C)	All	NDPs: 0 Tests: 2	x	x			
Dissolved Metals by ICP-MS	S All	NDPs: 0 Tests: 2	x	x			
Mercury Dissolved	All	NDPs: 0 Tests: 2	x	x			
Metals by iCap-OES Dissolv	red (W) All	NDPs: 0 Tests: 2	X	x			
Mineral Oil C10-40 Aqueous	: (W) All	NDPs: 0 Tests: 2	X	x			
oH Value	All	NDPs: 0 Tests: 2	x	x			
Suspended Solids	All	NDPs: 0 Tests: 2	X	X			

Validated

CERTIFICATE OF ANALYSIS

Validated

SDG: Job: Client Reference:	130614-73 D_NALLYENV_MUL-2 KMK	Location: Customer: Attention:	Nally Environmental Niall Nally	Order Number: Report Number: Superseded Report:	229752

Results Legend		Customer Sample R	CX	DX		
M mCERTS accredited.						
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)				
tot.unfilt Total / unfiltered sample.		Sample Type	Water(GW/SW)	Water(GW/SW)		
** % recovery of the surrogate standa	rd to	Sample Time	13/06/2013	13/06/2013		
check the efficiency of the method.	The	Date Received	13/06/2013	13/06/2013		
samples aren't corrected for the rec	covery	SDG Ref	130614-73	130614-73		
(F) Trigger breach confirmed 1-4&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	/588437	7588441		
Component	LOD/Uni	its Method				
Suspended solids, Total	<2 mg	g/I TM022	4.5	315		
			#	#		
Ammoniacal Nitrogen as	<0.2 m	iq/l TM099	14.9	0.985		
NH3		Ŭ	#	#		
COD, unfiltered	<7 mg	a/I TM107	20.8	306		
	J	,	#	#		
Conductivity @ 20 deg.C	<0.00	5 TM120	0.49	0.402		
,	mS/cm	n	#	#		
Aluminium (diss.filt)	<2.9 µ	a/l TM152	10.8	89		
		°	#	#		
Arsenic (diss.filt)	<0.12 u	Ja/l TM152	0.846	0.83		
	•·· P	.g	#	#		
Chromium (diss filt)	<0.22 µ	Ia/I TM152	1 43	1.36		
	0. <u></u> p	.g	#	#		
Lead (diss filt)	<0.02.0	Ia/I TM152	5.96	30.6	 	
	-0.02 μ	19/1 11/11/02	0.00 #			
Nickel (diss filt)	<0.15 µ	Ig/I TM152	3 28	11 1		
	<0.15 μ	19/1 11/11/52	5.20			
Zine (dise filt)	<0.41.0	10/1 TM152	#	01.5		
	<0.41μ	19/1 11V1152	00.0	91.5		
		-// TM470	#	#	 	
Mineral oli >C10 C40 (aq)	<10 µç	g/i iwii/2	<10	7650		
Mercury (diss.filt)	<0.01 µ	ıg/I IM183	<0.01	0.0287		
			#	#	 	
Chloride	<2 mg	g/I TM184	88.2	56.9		
			#	#		
Iron (diss.filt)	<0.019	9 TM228	0.087	0.0936		
	mg/l		#	#	 	
рН	<1 pH	H TM256	7.95	7.98		
	Units		#	#		

(

CERTIFICATE OF ANALYSIS

Validated

130614-73 SDG: Location: Order Number: D_NALLYENV_MUL-2 Nally Environmental 229752 Job: Customer: Report Number: Client Reference: кмк Attention: Niall Nally Superseded Report:

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
TM022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser		
TM107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit		
TM120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM172	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	EPH in Waters		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM228	US EPA Method 6010B	Determination of Major Cations in Water by iCap 6500 Duo ICP-OES		
TM256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter		

NA = not applicable.

SDG:	130614-73	Location:	Order Number:
Job:	D_NALLYENV_MUL-2	Customer: Nally Environmental	Report Number: 229752
Client Reference:	KMK	Attention: Niall Nally	Superseded Report:

Test Completion Dates

Lab Sample No(s)	7588437	7588441
Customer Sample Ref.	сх	DX
AGS Ref.		
Depth		
Туре	LIQUID	LIQUID
Ammoniacal Nitrogen	19-Jun-2013	19-Jun-2013
Anions by Kone (w)	20-Jun-2013	20-Jun-2013
COD Unfiltered	16-Jun-2013	16-Jun-2013
Conductivity (at 20 deg.C)	19-Jun-2013	19-Jun-2013
Dissolved Metals by ICP-MS	18-Jun-2013	18-Jun-2013
Mercury Dissolved	18-Jun-2013	18-Jun-2013
Metals by iCap-OES Dissolved (W)	17-Jun-2013	17-Jun-2013
Mineral Oil C10-40 Aqueous (W)	20-Jun-2013	20-Jun-2013
pH Value	17-Jun-2013	17-Jun-2013
Suspended Solids	17-Jun-2013	17-Jun-2013

 SDG:
 130614-73
 Location:
 Order Number:

 Job:
 D_NALLYENV_MUL-2
 Customer:
 Nally Environmental
 Report Number:

 Client Reference:
 KMK
 Attention:
 Niall Nally
 Superseded Report:

Appendix General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. Results relate only to the items tested.

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. **Product analyses** -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-lsopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

229752

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
ŝ	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
8	Sample Holding Time exceeded - Late arrival of instructions

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	White Asbestos
Amoste	BrownAsbestos
Oroddalte	Blue Asbestos
Fibrous Adinalte	-
FlorousAnthophylite	-
Fibrous Trendile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than:

Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Nally Environmental Drumcree Collinstown Mullinger Co. Westmeath

Attention: Niall Nally

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 07 August 2013 D_NALLYENV_MUL 130802-62 KMK 236585

We received 2 samples on Thursday August 01, 2013 and 2 of these samples were scheduled for analysis which was completed on Wednesday August 07, 2013. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

ALcontrol I	Laboratories	CER		NALYSIS			Validated
SDG: Job: Client Reference:	130802-62 D_NALLYENV_MUL-2 KMK	Location: Customer: Attention:	Nally Environmental Niall Nally		Order Number: Report Number: Superseded Report:	236585	
		Receiv	ved Sample	Overview	N		
Lab Sample No(s) Custome	er Sample Ref.		AGS Ref.	Depth (m))	Sampled Date
7864480		CX					01/08/2013
7864481		DX					01/08/2013

Only received samples which have had analysis scheduled will be shown on the following pages.

						O 1 1 1	
SDG: 130 Job: D_N Client Reference: KM	802-62 IALLYENV_MUL-2 K	Location: Custome Attention	: r: Na i: Nia	ally E all Na	nvironmental ally	Order Number: Report Number: Superseded Report:	1
QUID							
esults Legend	Lab Samp	le No(s)	7864		7864		
X Test			480		481		
No Determination							
Possible	Custor Sample Re	mer ference	¢		DX		
	AGS Refe	erence					
	Depth	(m)					
	Contai	iner	H2SO4 (ALE244) 500ml Plastic (ALE2 11 Glass bottle (ALE	500ml Plastic (ALE2 11 Glass bottle (ALE	H2SO4 (ALE244)		
mmoniacal Nitrogen	All	NDPs: 0 Tests: 2	X		x		
ions by Kone (w)	All	NDPs: 0 Tests: 2	x	x			
D Unfiltered	All	NDPs: 0 Tests: 2					
ductivity (at 20 deg.C)	All	NDPs: 0 Tests: 2	↑ ×				
solved Metals by ICP-MS	All	NDPs: 0 Tests: 2	×				
rcury Dissolved	All	NDPs: 0 Tests: 2	x	x			
etals by iCap-OES Dissolved (W) All	NDPs: 0 Tests: 2	x	×			
ineral Oil C10-40 Aqueous (W) All	NDPs: 0 Tests: 2	X	X			
Value	All	NDPs: 0 Tests: 2	x	x			
spended Solids	All	NDPs: 0					

CERTIFICATE OF ANALYSIS

SDG: Job: Client Reference:	130802-62 D_NALLYENV_MUL-2 KMK	Location: Customer: Attention:	Nally Environmental Niall Nally	Order Number: Report Number: Superseded Report:	236585

Results Legend # ISO17025 accredited.		Customer Sample R	СХ	DX		
M mCERTS accredited.						
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)		·		
tot.unfilt Total / unfiltered sample.		Sample Type	Water(GW/SW) 01/08/2013	Water(GW/SW) 01/08/2013		
** % recovery of the surrogate standa	rd to	Sample Time				
check the efficiency of the method. results of individual compounds wi	The thin	Date Received	01/08/2013	01/08/2013		
samples aren't corrected for the red	covery	SDG Ref	7864480	7864481		
1-4&+§@ Sample deviation (see appendix)		AGS Reference				
Component	LOD/Un	nits Method	-	100		
Suspended solids, Total	<2 m	g/i i 10022	3 4	128 #		
Ammonio col Nitrogon co	<0.2 m	ng/ TM000		0.265		
NH3	∼ 0.2 II	ng/i nvioss	2.10	0.205 #		
	<7 m	g/l TM107	12.3	128	 	
COD, unintered	57 mg	g/i iiwii0/	#	120 #		
Conductivity @ 20 deg C	<0.00)5 TM120	0.23	0.385	 	
·····, @ -· ··;·	mS/cr	m	#	#		
Aluminium (diss.filt)	<2.9 µ	Jg/l TM152	5.06	119		
X Z			#	#		
Arsenic (diss.filt)	<0.12	µg/l TM152	0.328	1.26		
			#	#		
Chromium (diss.filt)	<0.22	µg/l TM152	1.08	1.88		
			#	#		
Lead (diss.filt)	<0.02	µg/l TM152	1.4	25.7		
			#	#		
Nickel (diss.filt)	<0.15	µg/l TM152	9.65	10.8		
			#	#		
Zinc (diss.filt)	<0.41	µg/l TM152	89	67.2		
	.10		#	#		
Mineral oli >C10 C40 (aq)	<10 µ	Ig/I I M1172	351	2370		
Manager (diag file)	-0.01		10.01	0.0500		
Mercury (diss.nit)	<0.01	µg/i 11vi183	<0.01	0.0593		
Chlorida	<2 m	a/l TM194	50.2	# 60.2	 	
Chionde	►2 m	g/i 11vi104	50.5	09.2		
Iron (diss filt)	<0.01	I9 TM228	π <0.019	π 0.103		
	ma/l		#	#		
рН	-1 pl	H TM256	7.55	7.76		
P	Units	6	#	#		

П

CERTIFICATE OF ANALYSIS

Validated

236585

 SDG:
 130802-62
 Location:
 Order Number:

 Job:
 D_NALLYENV_MUL-2
 Customer:
 Nally Environmental
 Report Number:

 Client Reference:
 KMK
 Attention:
 Niall Nally
 Superseded Report:

Attention: Niall Nally Supersed

Meth	nod No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected		
T№	/1022	Method 2540D, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part120 1981;BS EN 872	Determination of total suspended solids in waters				
ΤM	/061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)				
ΤM	/099	BS 2690: Part 7:1968 / BS 6068: Part2.11:1984	Determination of Ammonium in Water Samples using the Kone Analyser				
τM	/107	ISO 6060-1989	Determination of Chemical Oxygen Demand using COD Dr Lange Kit				
T№	/120	Method 2510B, AWWA/APHA, 20th Ed., 1999 / BS 2690: Part 9:1970	Determination of Electrical Conductivity using a Conductivity Meter				
ΤN	/152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS				
ΤM	/172	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	EPH in Waters				
τM	/183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry				
τM	/184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers				
τN	//228	US EPA Method 6010B	Determination of Major Cations in Water by iCap 6500 Duo ICP-OES				
ΤM	/256	The measurement of Electrical Conductivity and the Laboratory determination of pH Value of Natural, Treated and Wastewaters. HMSO, 1978. ISBN 011 751428 4.	Determination of pH in Water and Leachate using the GLpH pH Meter				

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

SDG:	130802-62	Location:	Order Number:
Job:	D_NALLYENV_MUL-2	Customer: Nally Environmental	Report Number: 236585
Client Reference:	КМК	Attention: Niall Nally	Superseded Report:

Test Completion Dates

Lab Sample No(s)	7864480	7864481
Customer Sample Ref.	СХ	DX
AGS Ref.		
Depth		
Туре	LIQUID	LIQUID
Ammoniacal Nitrogen	06-Aug-2013	06-Aug-2013
Anions by Kone (w)	06-Aug-2013	06-Aug-2013
COD Unfiltered	04-Aug-2013	04-Aug-2013
Conductivity (at 20 deg.C)	05-Aug-2013	05-Aug-2013
Dissolved Metals by ICP-MS	05-Aug-2013	05-Aug-2013
Mercury Dissolved	06-Aug-2013	06-Aug-2013
Metals by iCap-OES Dissolved (W)	06-Aug-2013	06-Aug-2013
Mineral Oil C10-40 Aqueous (W)	07-Aug-2013	07-Aug-2013
pH Value	05-Aug-2013	05-Aug-2013
Suspended Solids	05-Aug-2013	05-Aug-2013

 SDG:
 130802-62
 Location:
 Order Number:

 Job:
 D_NALLYENV_MUL-2
 Customer:
 Nally Environmental
 Report Number:

 Client Reference:
 KMK
 Attention:
 Niall Nally
 Superseded Report:

Appendix General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. Results relate only to the items tested.

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. **Product analyses** -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-lsopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

236585

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	White Asbestos
Amoste	BrownAsbestos
Oroddalte	Blue Asbestos
Fibrous Adinalte	-
FlorousAnthophylite	-
Fibrous Trendile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than:

Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Oldcastle Laboratories Ltd.

Cogan St., Oldcastle, Co. Meath, Ireland. Tel: (049) 8541160, Fax: (049) 8541755 Email: info@oldcastlelabs.ie Website: www.oldcastlelabs.ie

CERTIFICATE OF ANALYSIS

Lab Ref No:	228652		
Date Received:	31st October 2012		
Customer Name:	Nally Environmental		
Address:	Drumcree, Collinstown, C	o Westmeath	info@nallvenvironmental je
Reporting Method:	Email	Email Address:	Inio@nailyenvironmentaille
Sample Reference:	Effluent Sample Ref: D X		a Maker Ffluort
Type of Sample:	O Drinking Water	() S	Surface Water/ Enluent
Condition of Sample:	Satisfactory		
Commencement Date:	31st October 2013		
Certificate Date:	21st November 2013		

Test	Units	Result	Method
	mg/l	22	TM2123
COD	mg/l	1.6	TM2124
Total Suspended Solids	<u>ын @ 20°C</u>	7.4	TM2128
рН	us/cm@20°C	486	TM2132
Conductivity	μ3/cm@20 C	26.8	TM2133
Chloride	mg/l	<0.001	*
Mineral Oil		1.64	TM2118
Ammonia	mg/i who-w	<0.2	*
Aluminium	mg/l	580	TM2114
Iron	μg/1	10	TM2136
Lead	μg/1	1 17	TM2218
Zinc	μg/ι	<200	*
Nickel	μg/ι	<200	*
Chromium	μg/l	<200	*
Mercury	μg/l	0.8	*
Arsenic	μg/l	0.4	

* = Subcontracted Test

.1 .1

Signed :

Peter Leyne Analyst

The Above results relate only to the sample submitted. This Certificate of analysis shall not be reproduced except in full without the approval of the laboratory

Oldcastle Laboratories Ltd.

Cogan St., Oldcastle, Co. Meath, Ireland. Tel: (049) 8541160, Fax: (049) 8541755 Email: info@oldcastlelabs.ie Website: www.oldcastlelabs.ie

CERTIFICATE OF ANALYSIS

	228651			
Lab Ref No:	220001			
Date Received:	31st October 2012			
Customer Name:	Nally Environmental			
Address'	Drumcree, Collinstown, C	o Westmeath		
Autress.	Email	Email Address:	info@nallyenvironmental.ie	
Reporting Method.				
Sample Reference:	Effluent Sample Ref: C X		- C Water/ Effluent	
Type of Sample:	O Drinking Water	ter		
Condition of Sample:	Satisfactory			
Commencement Date:	31st October 2013			
Cartificato Data:	21st November 2013			
Certificate Date.				

Test	Units	Result	Method	
	mg/l	10	TM2123	
COD	mg/l	3.6	TM2124	
Fotal Suspended Solids	<u>пн @ 20°С</u>	7.23	TM2128	
рН	us/cm@20°C	278	TM2132	
Conductivity	mg/l	14.4	TM2133	
Chloride	mg/l	<0.001	*	
Mineral Oil	mg/LNH3-N	0.4	TM2118	
Ammonia	mg/l	<0.2	*	
Aluminium	ug/l	250	TM2114	
Iron	μg/1	<2	TM2136	
Lead	μg/1	1450	TM2218	
Zinc	μg/1	<200	*	
Nickel	μg/1	<200	*	
Chromium	μg/Ι	0.4	*	
Mercury	μg/ι	0.4	*	
Arsenic	μg/I	0.4		

* = Subcontracted Test

teler + ine 01 Analyst

Signed :

The Above results relate only to the sample submitted. This Certificate of analysis shall not be reproduced except in full without the approval of the laboratory

APPENDIX 5

Groundwater Monitoring Report 2013

ANNUAL GROUND WATER MONITORING REPORT

FOR

KMK METALS RECYCLING LTD.

W0113-03

AT

CAPPINCUR INDUSTRIAL ESTATE,

DAINGEAN ROAD, TULLAMORE,

CO. OFFALY

9th December 2013

SIGNED:

Nally Environmental

Drumcree, Collinstown Mullingar Co Westmeath Tel : (044 96 66773) E-mail: info@nallyenvironmental.ie Website : www.nallyenvironmental.ie

1.0 INTRODUCTION

1.1 **Nally Environmental** were commissioned by KMK to take two separate ground water samples at the facility and test for parameters as per the waste licence ref: W0113-03.

2.0 GROUND WATER SAMPLING METHODOLOGY

- 2.1 Both GW1 and GW2 wells are tapped on-site. GW1 well is used as the main water source on-site for domestic supply and therefore there is a good draw on this source throughout the year. GW2 well is not used routinely on-site. Therefore in order to adequately flush out the well head for GW2, this tap was allowed to run and fill two 1,000litre IBC containers during two days before the sampling occurred. The time between well flushing and sampling was deemed adequate for full recharge of the supply at GW2 for subsequent sampling.
- 2.2 In terms of bacteria samples, on the day, both GW1 and GW2 tap heads were cleaned and sterilised using alcohol wipes (as required for microbial sampling only after all other test parameter samples were first taken). Each tap nozzle was then flamed briefly using a lighter to eliminate any residual alcohol where present. The taps were then allowed to run with water for a few minutes prior to sampling.
- 2.3 Samples were sent to the Accredited laboratory for analysis. All samples were placed into a cooler box with ice packs to maintain a temperature below 5°C. The results of the analysis from the laboratory can be seen in Table 3.1 with copies of laboratory analyses in Appendix A.

3.0 WATER SURVEY RESULTS

3.1 The results from the sampling event are tabulated and discussed below.

Sample Location:	KMK Metals Recycling Ltd. at Cappincur Industrial Estate,				
	Daingean Road, Tullamore, Co. Offaly				
Waste Licence :	W0113-03				
Type of Sample:	Two groundwater water samples ref; GW1, GW2				
Sample Date:	21 st November 2013				
Laboratories Used:	Fitz Scientific (Accredited laboratory)				
Parameter	GW1	GW2	EC	Groundwater Threshold Values	
------------------	--	-------------------------------	-----------	--	
			Drinking	EC Environmental Objectives	
			Water	(Groundwater) Regulations, SI $0/2010^2$	
Conductivity @	454	451	Guidennes	9/2010	
	454	451	2500	800 - 1875	
$20C (\mu S/cm)$	7.2	7.2		6505	
pH (pH units)	/.3	1.2	NKG*	6.3-9.3	
E. Coli	0	0	0	0	
(cfu/100mls)					
VOCs (EPA	VOCs - <1	VOCs - <1	NRG*	NRG except for following;	
524.2) List I/II	1,2 - Dichloroethane - < 0.45	1,2 - Dichloroethane - < 0.45		1,2 - Dichloroethane - 2.25	
Screen (µg/l)					
	Vinyl chloride $-<0.50$	Vinyl chloride $-<0.50$		Vinyl chloride – 0.375	
	Benzene – <0.35	Benzene – <0.35		Benzene – 0.75	
	— • • • • • • • • • • • • • • • • • • •				
	Trichloroethene -0.482	Trichloroethene - <0.23		Total for Trichloroethene	
	Tetrachloroethene – < 0.33	Tetrachloroethene $- < 0.33$		& Tetrachloroethene – 7.5	
Total Nitrogen	<1	<1	50	NRG*	
(as N) (mg/l)					
Chloride (mg/l)	14.07	18.85	250	24 - 187.5	
Nickel (µg/l)	3.4	31.9	20	15	
Lead (µg/l)	0.29	<0.02	25	18.75	
Iron (µg/l)	135	69.26	200	NRG*	
Chromium (µg/l)	<2.14	<2.14	50	37.5	
Arsenic (µg/l)	0.231	19.14	10	7.5	
Aluminium (µg/l)	<0.79	<0.79	200	150	
Mercury (µg/l)	<0.04	< 0.04	1	0.75	

Results from Euro Environmental Management Ltd T/A Fitz Scientific labs

***NRG** = No Reference Given. ^{1 & 2} EC Drinking Water Regs. S.I. 278/2007 and EC Groundwater Regs. S.I. 9/2010 were used here in the absence of any limits specified in the waste licence.

4.0 DISCUSSION

- 4.1 Arsenic and nickel metal parameters highlighted in red exceeded both the recommended guideline limits set by EC Groundwater Regs. S.I. 9/2010 and the EC Drinking Water Guideline SI 278/2007 for sample GW2. Levels for arsenic 19.14(μ g/l) and nickel at 31.9(μ g/l) were detected. There have been elevated nickel levels between the range 24 to 135 μ g/l from 2006 to 2011 apart from 2009 where nickel levels were 13 μ g/l and therefore below the EC Environmental Objectives (Groundwater) Regulations, S.I. 9/2010 threshold values.
- 4.2 In determination of the significance or otherwise of the metallic parameters detected in GW2, it is important to consider that the other metallic species i.e. lead, iron, chromium, mercury and aluminium were below both the Drinking Water guidelines and the Threshold Values EC Environmental Objectives (Groundwater) Groundwater Regulations, SI 9/2010. Nickel is naturally present in much soils and rocks in general, and this broad fact is generally well documented. For example according to the 'Soils of Co. Offaly' National Soil Survey of Ireland by Teagasc 2003, the typical levels of trace nickel in agricultural soils ranges from 0.5 to 100 mg/kg. The natural occurrence of arsenic in rock veins is also well documented across the world. In the absence of specific data for arsenic in Offaly, another close licensee was reviewed in terms of their groundwater monitoring i.e. AES Ireland Ltd, Cappincur Ind. Estate, Tullamore. It was noted in their 2012 AER that arsenic was also found in one of their boreholes GW2 (see attached extracts from the 2012 AER below). Both boreholes are approximately 300m apart. This presence confirms naturally occurring arsenic in the groundwater because the levels are very similar and also the two associated businesses are very different i.e. a general waste transfer and recycling station and a KMK operates a hazardous and non hazardous recycling facility.
- 4.3 Therefore there are no artificial or manmade sources of metallic contamination entering the groundwater from KMK site activities above ground. Hence, the presence of arsenic and nickel can be attributed to background levels in the groundwater from rock ores and soils.
- 4.4 There were no VOCs detected in both GW1 and GW2 apart from Trichloroethene $(0.482\mu g/l)$ which was below guideline limits. It is important to also note the improved limit of detection for VOCs of $<1(\mu g/l)$ for Fitz Scientific Labs.

AES Tullamore - W0104-02

Annual Environmental Report 2012

Conductivity (µS/cm)	572	549	534	534	800-1875		
Ammonia as N (mg/l)	0.06	0.03	0.04	0.04	0.05-0.136*		
DRO (mg/l)	< 0.01	< 0.01	< 0.01	< 0.01	-		
Mineral oil (mg/l)	< 0.01	< 0.01	< 0.01	< 0.01	-		
GW-2							
Report Ref.	ECS4123	ECS4124	ECS4125	ECS4126	GTV's Note1		
Parameter	Round 1	Round 2	Round 3	Round 4			
pH (pH units)	7.4	7.5	7.35	7.63	6.5-9.5		
Temperature (°C)	12.1	10.7	11.5	12.0	-		
Odour	No	No Odour	Faint	No Odour	-		
	Odour		Odour				
Conductivity (µS/cm)	562	561	557	556	800-1875		
Ammonia as N (mg/l)	<0.02	0.07	0.05	0.04	0.05-0.136*		
DRO (mg/l)	< 0.01	< 0.01	< 0.01	< 0.01	-		
Mineral oil (mg/l)	<0.01	< 0.01	<0.01	< 0.01	-		
		GW-	3		•		
Report Ref.	ECS4123	ECS4124	ECS4125	ECS4126	GTV's Note1		
Parameter	Round 1	Round 2	Round 3	Round 4			
pH (pH units)	7.3	7.6	7.35	7.59	6.5-9.5		
Temperature (°C)	12	11.3	12.3	12.9	-		
Odour	No	No Odour	No Odour	No Odour	-		
	Odour			ACCOUNT AND DO IN SHOT			
Conductivity (µS/cm)	540	534	535	539	800-1875		
Ammonia as N (mg/l)	0.02	0.03	0.03	0.03	0.05-0.136*		
DRO (mg/l)	<0.01	< 0.01	<0.01	< 0.01	-		
Mineral oil (mg/l)	<0.01	< 0.01	<0.01	<0.01	-		

Table 6-7: Annual Groundwater Monitoring Results 2012 ECS4123

Parameter	GW-1	GW-2	GW 3	IGV Note1
Nitrate-N (mg/l)	<0.2	<0.2	<0.2	-
Nitrate as NO ₃ (mg/l)	<0.89	<0.89	<0.89	25
Total Nitrogen (mg/l)	2.15	2.06	2.06	-
Chloride (mg/l)	13	13	13	30
Fluoride (mg/l)	0.18	0.17	0.20	1.0 Note 2
Arsenic (mg/l)	0.003	0.018	0.009	0.01
Mercury (mg/l)	< 0.001	< 0.001	< 0.001	0.001
Sulphate (mg/l)	8.36	10.27	11.16	200
COD (mg/l)	<10	<10	<10	-
TOC (mg/l)	<5	<5	<5	-
Faecal Coliforms (cfu/100ml)	0	0	0	-
Total Coliforms (cfu/100ml)	>100	22	4	-
VOC's (µg/l)	<10	<10	<10	10 ^{Note 2}
Pesticides Suite (µg/I)	<0.01	< 0.01	<0.01	0.5
SVOC's (µg/l)	3.07	3.21	2.90	
Bis(2-ethylhexyl)phthalate				-
All other SVOC's (µg/I)	<1	<1	<1	-

Note 1: GTV = Groundwater Threshold Values refers to "*European Communities Environmental Objectives (Groundwater) Regulations, 2010 (S.I. No. 9 of 2010)*". "Threshold Values" have been established for pollutants that are causing a risk to groundwater bodies. Exceedance of a relevant threshold value at a representative monitoring point triggers further investigation to confirm whether the criteria for poor groundwater chemical status are being met.

Page 18

APPENDIX A

LABORATORY TEST CERTIFICATES.

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Niall Nally	Lab Report Ref. No.	2925/001/03
	Nally Environmental	Date of Receipt	21/11/2013
	Drumcree	Sampled On	21/11/2013
	Collinstown	Date Testing Commenced	21/11/2013
	Co. Westmeath	Received or Collected	By Fitz: Noel
		Condition on Receipt	Acceptable
Customer PO		Date of Report	10/12/2013
Customer Ref	GW1	Sample Type	Groundwater
Ref 2			

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
1,1,1,2-Tetrachloroethane (Ground	154	GCMS	<0.46	ug/L	UKAS
1,1,1-Trichloroethane (Ground Water	154	GCMS	<0.43	ug/L	UKAS
1,1,2,2-Tetrachloroethane (Ground	154	GCMS	<5.00	ug/L	
1,1,2-Trichloroethane (Ground Water	154	GCMS	<1.67	ug/L	UKAS
1,1-Dichloroethane (Ground Water)	154	GCMS	<0.42	ug/L	UKAS
1,1-Dichloroethene (Ground Water)	154	GCMS	<0.41	ug/L	UKAS
1,1-Dichloropropene (Ground Water)	154	GCMS	<0.39	ug/L	UKAS
1,2,3-Trichlorobenzene (Ground Wat	154	GCMS	<0.34	ug/L	UKAS
1,2,3-Trichloropropane (Ground Wate	154	GCMS	<0.61	ug/L	UKAS
1,2,4-Trichlorobenzene (Ground Wat	154	GCMS	<0.51	ug/L	UKAS
1,2,4-Trimethylbenzene (Ground Wat	154	GCMS	<0.52	ug/L	UKAS
1,2-Dibromo-3-chloropropane (Groun	154	GCMS	<0.63	ug/L	UKAS
1,2-Dibromoethane (Ground Water)	154	GCMS	<0.63	ug/L	UKAS
1,2-Dichlorobenzene (Ground Water)	154	GCMS	<0.51	ug/L	UKAS
1,2-Dichloroethane (Ground Water)	154	GCMS	<0.45	ug/L	UKAS
1,2-Dichloropropane (Ground Water)	154	GCMS	<0.75	ug/L	UKAS
1,3,5-Trimethylbenzene (Ground Wat	154	GCMS	<0.33	ug/L	UKAS
1,3-Dichlorobenzene (Ground Water)	154	GCMS	<0.47	ug/L	UKAS
1,3-Dichloropropane (Ground Water)	154	GCMS	<0.64	ug/L	UKAS
1,4-Dichlorobenzene (Ground Water)	154	GCMS	<1.21	ug/L	UKAS
2,2-Dichloropropane (Ground Water)	154	GCMS	<5.00	ug/L	
2-Chlorotoluene (Ground Water)	154	GCMS	<0.55	ug/L	UKAS
4-Chlorotoluene (Ground Water)	154	GCMS	<0.43	ug/L	UKAS
Aluminium (Ground Water)	177	ICPMS	<0.79	ug/L	UKAS
Arsenic (Ground Water)	177	ICPMS	0.231	ug/L	UKAS

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 10/12/2013

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Niall Nally	Lab Report Ref. No.	2925/001/03
	Nally Environmental	Date of Receipt	21/11/2013
	Drumcree	Sampled On	21/11/2013
	Collinstown	Date Testing Commenced	21/11/2013
	Co. Westmeath	Received or Collected	By Fitz: Noel
		Condition on Receipt	Acceptable
Customer PO		Date of Report	10/12/2013
Customer Ref	GW1	Sample Type	Groundwater
Ref 2			

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Benzene (Ground Water)	154	GCMS	<0.35	ug/L	UKAS
Bromobenzene (Ground Water)	154	GCMS	<0.40	ug/L	UKAS
Bromochloromethane (Ground Water	154	GCMS	<0.76	ug/L	UKAS
Bromodichloromethane (Ground Wat	154	GCMS	<0.63	ug/L	UKAS
Bromoform (Ground Water)	154	GCMS	<1.31	ug/L	UKAS
Bromomethane (Ground Water.)	154	GCMS	<5.00	ug/L	
Carbon tetrachloride (Ground Water.)	154	GCMS	<0.41	ug/L	UKAS
Chloride (Ground Water)	100	Colorimetry	14.07	mg/L	UKAS
Chlorobenzene (Ground Water.)	154	GCMS	<0.49	ug/L	UKAS
Chloroethane (Ground Water)	154	GCMS	<5.00	ug/L	
Chloroform (Ground Water)	154	GCMS	<0.32	ug/L	UKAS
Chloromethane (Ground Water)	154	GCMS	<5.00	ug/L	
Chromium (Ground Water)	177	ICPMS	<2.14	ug/L	UKAS
cis-1,2-Dichloroethene (Ground Wate	154	GCMS	<0.56	ug/L	UKAS
cis-1,3-Dichloropropene (Ground Wat	154	GCMS	<0.69	ug/L	UKAS
Conductivity (Ground Water at 20C)	112	Electrometry	454	uscm -1@20C	UKAS
Dibromochloromethane (Ground Wat	154	GCMS	<0.47	ug/L	UKAS
Dibromomethane (Ground Water)	154	GCMS	<0.86	ug/L	UKAS
Dichlorodifluoromethane (Ground Wa	154	GCMS	<5.00	ug/L	
Dichloromethane (Ground Water)	154	GCMS	<5.00	ug/L	
E. coli	157	Filtration/ Incubation 37C/ 24H	0	cfu/ 100ml	
Ethylbenzene (Ground Water)	154	GCMS	<0.42	ug/L	UKAS
Hexachlorobutadiene (Ground Water)	154	GCMS	<0.36	ug/L	UKAS
Iron (Ground Water)	177	ICPMS	135.3	ug/L	UKAS
Isopropylbenzene (Ground Water)	154	GCMS	<0.42	ug/L	UKAS

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 10/12/2013

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Niall Nally	Lab Report Ref. No.	2925/001/03
	Nally Environmental	Date of Receipt	21/11/2013
	Drumcree	Sampled On	21/11/2013
	Collinstown	Date Testing Commenced	21/11/2013
	Co. Westmeath	Received or Collected	By Fitz: Noel
		Condition on Receipt	Acceptable
Customer PO		Date of Report	10/12/2013
Customer Ref	GW1	Sample Type	Groundwater
Ref 2			

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Lead (Ground Water)	177	ICPMS	0.297	ug/L	UKAS
m- + p-Xylene (Ground Water)	154	GCMS	<0.49	ug/L	UKAS
Mercury (Ground water)	178	ICPMS	<0.04	ug/L	UKAS
Naphthalene (Ground Water)	154	GCMS	<0.43	ug/L	UKAS
n-Butylbenzene (Ground Water)	154	GCMS	<0.35	ug/L	UKAS
Nickel (Ground Water)	177	ICPMS	3.412	ug/L	UKAS
Nitrogen (Total Kjeldahl)	104	Digestion/ Distillation/ Titrimetr	<1.00	mg/L as N	
Nitrogen (Total Oxidised) (Ground W	151	Colorimetry	<0.28	mg/L as N	UKAS
Nitrogen (Total)	0	Calculation	<1.00	mg/L as N	
n-Propylbenzene (Ground Water)	154	GCMS	<0.39	ug/L	UKAS
o-Xylene (Ground Water)	154	GCMS	<0.33	ug/L	UKAS
pH (Ground Water)	110	Electrometry	7.3	pH Units	UKAS
p-Isopropyltoluene (Ground Water)	154	GCMS	<0.40	ug/L	UKAS
sec-Butylbenzene (Ground Water)	154	GCMS	<0.48	ug/L	UKAS
SemiVolatile Organic Compounds	155	GCMS	<0.5	ug/L	
Styrene (Ground Water)	154	GCMS	<0.26	ug/L	UKAS
tert-Butylbenzene (Ground Water)	154	GCMS	<0.59	ug/L	UKAS
Tetrachloroethene (Ground Water)	154	GCMS	<0.33	ug/L	UKAS
Toluene (Ground Water)	154	GCMS	<0.40	ug/L	UKAS
Total Xylene (Ground Water)	154	GCMS	<0.49	ug/L	UKAS
trans-1,2-Dichloroethene (Ground W	154	GCMS	<0.34	ug/L	UKAS
trans-1,3-Dichloropropene (Ground	154	GCMS	<1.19	ug/L	UKAS
Trichloroethene (Ground Water)	154	GCMS	0.482	ug/L	UKAS
Trichlorofluoromethane (Ground Wat	154	GCMS	<0.52	ug/L	UKAS
Vinyl chloride (Ground Water)	154	GCMS	<0.50	ug/L	UKAS

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 10/12/2013

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Niall Nally	Lab Report Ref. No.	2925/001/03
	Nally Environmental	Date of Receipt	21/11/2013
	Drumcree	Sampled On	21/11/2013
	Collinstown	Date Testing Commenced	21/11/2013
	Co. Westmeath	Received or Collected	By Fitz: Noel
		Condition on Receipt	Acceptable
Customer PO		Date of Report	10/12/2013
Customer Ref	GW1	Sample Type	Groundwater
Ref 2			

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Volatile Organic Compounds	154	GCMS	<1	ug/L	

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 10/12/2013

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Niall Nally	Lab Report Ref. No.	2925/001/04
	Nally Environmental	Date of Receipt	21/11/2013
	Drumcree	Sampled On	21/11/2013
	Collinstown	Date Testing Commenced	21/11/2013
	Co. Westmeath	Received or Collected	By Fitz: Noel
		Condition on Receipt	Acceptable
Customer PO		Date of Report	10/12/2013
Customer Ref	GW2	Sample Type	Groundwater
Ref 2			

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
1,1,1,2-Tetrachloroethane (Ground	154	GCMS	<0.46	ug/L	UKAS
1,1,1-Trichloroethane (Ground Water	154	GCMS	<0.43	ug/L	UKAS
1,1,2,2-Tetrachloroethane (Ground	154	GCMS	<5.00	ug/L	
1,1,2-Trichloroethane (Ground Water	154	GCMS	<1.67	ug/L	UKAS
1,1-Dichloroethane (Ground Water)	154	GCMS	<0.42	ug/L	UKAS
1,1-Dichloroethene (Ground Water)	154	GCMS	<0.41	ug/L	UKAS
1,1-Dichloropropene (Ground Water)	154	GCMS	<0.39	ug/L	UKAS
1,2,3-Trichlorobenzene (Ground Wat	154	GCMS	<0.34	ug/L	UKAS
1,2,3-Trichloropropane (Ground Wate	154	GCMS	<0.61	ug/L	UKAS
1,2,4-Trichlorobenzene (Ground Wat	154	GCMS	<0.51	ug/L	UKAS
1,2,4-Trimethylbenzene (Ground Wat	154	GCMS	<0.52	ug/L	UKAS
1,2-Dibromo-3-chloropropane (Groun	154	GCMS	<0.63	ug/L	UKAS
1,2-Dibromoethane (Ground Water)	154	GCMS	<0.63	ug/L	UKAS
1,2-Dichlorobenzene (Ground Water)	154	GCMS	<0.51	ug/L	UKAS
1,2-Dichloroethane (Ground Water)	154	GCMS	<0.45	ug/L	UKAS
1,2-Dichloropropane (Ground Water)	154	GCMS	<0.75	ug/L	UKAS
1,3,5-Trimethylbenzene (Ground Wat	154	GCMS	<0.33	ug/L	UKAS
1,3-Dichlorobenzene (Ground Water)	154	GCMS	<0.47	ug/L	UKAS
1,3-Dichloropropane (Ground Water)	154	GCMS	<0.64	ug/L	UKAS
1,4-Dichlorobenzene (Ground Water)	154	GCMS	<1.21	ug/L	UKAS
2,2-Dichloropropane (Ground Water)	154	GCMS	<5.00	ug/L	
2-Chlorotoluene (Ground Water)	154	GCMS	<0.55	ug/L	UKAS
4-Chlorotoluene (Ground Water)	154	GCMS	<0.43	ug/L	UKAS
Aluminium (Ground Water)	177	ICPMS	<0.79	ug/L	UKAS
Arsenic (Ground Water)	177	ICPMS	19.14	ug/L	UKAS

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 10/12/2013

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Niall Nally	Lab Report Ref. No.	2925/001/04
	Nally Environmental	Date of Receipt	21/11/2013
	Drumcree	Sampled On	21/11/2013
	Collinstown	Date Testing Commenced	21/11/2013
	Co. Westmeath	Received or Collected	By Fitz: Noel
		Condition on Receipt	Acceptable
Customer PO		Date of Report	10/12/2013
Customer Ref	GW2	Sample Type	Groundwater
Ref 2			

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Benzene (Ground Water)	154	GCMS	<0.35	ug/L	UKAS
Bromobenzene (Ground Water)	154	GCMS	<0.40	ug/L	UKAS
Bromochloromethane (Ground Water	154	GCMS	<0.76	ug/L	UKAS
Bromodichloromethane (Ground Wat	154	GCMS	<0.63	ug/L	UKAS
Bromoform (Ground Water)	154	GCMS	<1.31	ug/L	UKAS
Bromomethane (Ground Water.)	154	GCMS	<5.00	ug/L	
Carbon tetrachloride (Ground Water.)	154	GCMS	<0.41	ug/L	UKAS
Chloride (Ground Water)	100	Colorimetry	18.85	mg/L	UKAS
Chlorobenzene (Ground Water.)	154	GCMS	<0.49	ug/L	UKAS
Chloroethane (Ground Water)	154	GCMS	<5.00	ug/L	
Chloroform (Ground Water)	154	GCMS	<0.32	ug/L	UKAS
Chloromethane (Ground Water)	154	GCMS	<5.00	ug/L	
Chromium (Ground Water)	177	ICPMS	<2.14	ug/L	UKAS
cis-1,2-Dichloroethene (Ground Wate	154	GCMS	<0.56	ug/L	UKAS
cis-1,3-Dichloropropene (Ground Wat	154	GCMS	<0.69	ug/L	UKAS
Conductivity (Ground Water at 20C)	112	Electrometry	451	uscm -1@20C	UKAS
Dibromochloromethane (Ground Wat	154	GCMS	<0.47	ug/L	UKAS
Dibromomethane (Ground Water)	154	GCMS	<0.86	ug/L	UKAS
Dichlorodifluoromethane (Ground Wa	154	GCMS	<5.00	ug/L	
Dichloromethane (Ground Water)	154	GCMS	<5.00	ug/L	
E. coli	157	Filtration/ Incubation 37C/ 24H	0	cfu/ 100ml	
Ethylbenzene (Ground Water)	154	GCMS	<0.42	ug/L	UKAS
Hexachlorobutadiene (Ground Water)	154	GCMS	<0.36	ug/L	UKAS
Iron (Ground Water)	177	ICPMS	69.26	ug/L	UKAS
Isopropylbenzene (Ground Water)	154	GCMS	<0.42	ug/L	UKAS

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 10/12/2013

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Niall Nally	Lab Report Ref. No.	2925/001/04
	Nally Environmental	Date of Receipt	21/11/2013
	Drumcree	Sampled On	21/11/2013
	Collinstown	Date Testing Commenced	21/11/2013
	Co. Westmeath	Received or Collected	By Fitz: Noel
		Condition on Receipt	Acceptable
Customer PO		Date of Report	10/12/2013
Customer Ref	GW2	Sample Type	Groundwater
Ref 2			

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Lead (Ground Water)	177	ICPMS	<0.02	ug/L	UKAS
m- + p-Xylene (Ground Water)	154	GCMS	<0.49	ug/L	UKAS
Mercury (Ground water)	178	ICPMS	<0.04	ug/L	UKAS
Naphthalene (Ground Water)	154	GCMS	<0.43	ug/L	UKAS
n-Butylbenzene (Ground Water)	154	GCMS	<0.35	ug/L	UKAS
Nickel (Ground Water)	177	ICPMS	31.91	ug/L	UKAS
Nitrogen (Total Kjeldahl)	104	Digestion/ Distillation/ Titrimetr	<1.00	mg/L as N	
Nitrogen (Total Oxidised) (Ground W	151	Colorimetry	<0.28	mg/L as N	UKAS
Nitrogen (Total)	0	Calculation	<1.00	mg/L as N	
n-Propylbenzene (Ground Water)	154	GCMS	<0.39	ug/L	UKAS
o-Xylene (Ground Water)	154	GCMS	<0.33	ug/L	UKAS
pH (Ground Water)	110	Electrometry	7.2	pH Units	UKAS
p-Isopropyltoluene (Ground Water)	154	GCMS	<0.40	ug/L	UKAS
sec-Butylbenzene (Ground Water)	154	GCMS	<0.48	ug/L	UKAS
SemiVolatile Organic Compounds	155	GCMS	<0.5	ug/L	
Styrene (Ground Water)	154	GCMS	<0.26	ug/L	UKAS
tert-Butylbenzene (Ground Water)	154	GCMS	<0.59	ug/L	UKAS
Tetrachloroethene (Ground Water)	154	GCMS	<0.33	ug/L	UKAS
Toluene (Ground Water)	154	GCMS	<0.40	ug/L	UKAS
Total Xylene (Ground Water)	154	GCMS	<0.49	ug/L	UKAS
trans-1,2-Dichloroethene (Ground W	154	GCMS	<0.34	ug/L	UKAS
trans-1,3-Dichloropropene (Ground	154	GCMS	<1.19	ug/L	UKAS
Trichloroethene (Ground Water)	154	GCMS	<0.23	ug/L	UKAS
Trichlorofluoromethane (Ground Wat	154	GCMS	<0.52	ug/L	UKAS
Vinyl chloride (Ground Water)	154	GCMS	<0.50	ug/L	UKAS

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 10/12/2013

A copy of this certificate is available on www.fitzsci.ie

Unit 35, Boyne Business Park, Drogheda, Co. Louth Ireland Tel: +353 41 9845440 Fax: +353 41 9846171 Web: www.fitzsci.ie email info@fitzsci.ie

Customer	Niall Nally	Lab Report Ref. No.	2925/001/04
	Nally Environmental	Date of Receipt	21/11/2013
	Drumcree	Sampled On	21/11/2013
	Collinstown	Date Testing Commenced	21/11/2013
	Co. Westmeath	Received or Collected	By Fitz: Noel
		Condition on Receipt	Acceptable
Customer PO		Date of Report	10/12/2013
Customer Ref	GW2	Sample Type	Groundwater
Ref 2			

CERTIFICATE OF ANALYSIS

Test Parameter	SOP	Analytical Technique	Result	Units	Acc.
Volatile Organic Compounds	154	GCMS	<1	ug/L	

Signed : <u>A Hovernoo</u> Aoife Harmon - Technical Supervisor

Date : 10/12/2013

APPENDIX 6

Waste Received in 2013

Point of Collection	Description Of Waste	EWC Code	Qty Tonnes
Civic Amenity Site	Batteries (Lead)	16 06 01*	48.912
Civic Amenity Site	Batteries (Nickel Cadmium)	16 06 02*	0.017
Civic Amenity Site	Batteries (Fence)	16 06 04	21.483
Civic Amenity Site	Batteries (Alkaline)	16 06 04	34.217
Civic Amenity Site	Fluorescent tubes and other mercury- containing waste	20 01 21*	57.130
Civic Amenity Site	Discarded equipment containing chlorofluorocarbons	20 01 23*	777.436
Civic Amenity Site	Batteries and accumulators included in 16 06 01, 16 06 02 or 16 06 03 and unsorted batteries and accumulators containing these batteries	20 01 33*	3.901
Civic Amenity Site	Discarded electrical and electronic equipment other than those mentioned in 20 01 21 and 20 01 23 containing hazardous components	20 01 35*	2129.812
Civic Amenity Site	Discarded electrical and electronic equipment other than those mentioned in 20 01 21, 20 01 23 and 20 01 35	20.01.36	4182 969
TOTAL	20 01 33	20 01 50	7,255.877

Table 1: Total Civic Amenity waste received in 2013 at KMK Metals Recycling Ltd.

Point of Collection	Description Of Waste	EWC Code	Qty Tonnes
	Sludges (other than 06 05		
Commercial	02*)	06 05 03	0.464
	Ferrous metal filings and		
Commercial	materials	12 01 01	206.868
	Ferrous metal dust and		
Commercial	particles	12 01 02	5.349
	Non-ferrous metal filings		
Commercial	and turnings	12 01 03	198.849
	Non-ferrous metal dust and		
Commercial	particles	12 01 04	20.445
	Welding wastes (solder		
Commercial	dross)	12 01 13	3.769
Commercial	Oxide Powders	12 01 17	6.457
	Spent grinding bodies, dusts		
Commercial	and powders	12 01 20*	0.144
	Non hazardous Spent		
Commercial	grinding bodies	12 01 21	3.704
Commercial	Cardboard Packaging	15 01 01	10.209
Commercial	Plastic Packaging	15 01 02	0.857
	Timber (Pallets &		
Commercial	Packaging)	15 01 03	1.616
Commercial	Mixed packaging	15 01 06	3.165
Commercial	Wiping cloths	15 02 03	0.423
Commercial	Engines from ELV (cars)	16 01 22	31.299
	Capacitors potentially		
Commercial	containing PCB's	16 02 09*	0.505
	Discarded equipment		
	containing		
	chlorofluorocarbons, HCFC,		
Commercial	HFC	16 02 11*	45.633
	Discarded equipment		
	containing hazardous		
	components (16) other than		
	those mentioned in 16 02 09		
Commercial	to 16 02 12	16 02 13*	235.847
	Discarded equipment other		
	than those mentioned in 16		
Commercial	02 09 to 16 02 13	16 02 14	718.111
	Components removed from		
	discarded equipment other		
	than those mentioned in 16	100010	0.64.0000
Commercial	02 15	16 02 16	864.828

 Table 2: Total Commercial waste received in 2013 at KMK Metals Recycling Ltd.

Point of Collection	Description Of Waste	EWC Code	Qty Tonnes
	Inorganic wastes other		
	than those mentioned in 16		
Commercial	03 03	16 03 04	9.242
Commercial	Batteries (Lead)	16 06 01*	362.122
	Batteries (Nickel		
Commercial	Cadmium)	16 06 02*	6.079
Commercial	Batteries (Alkaline)	16 06 04	141.919
	Other batteries and		
Commercial	accumulators	16 06 05	3.112
	Spent catalysts containing		
Commercial	precious metals	16 08 01	0.267
Commercial	Non-ferrous metal	19 12 03	28.510
Commercial	Plastic and rubber	19 12 04	0.085
	Fluorescent tubes and		
	other mercury-containing		
Commercial	waste	20 01 21*	32.374
	Discarded equipment		
	containing		
Commercial	chlorofluorocarbons	20 01 23*	859.587
	Batteries and accumulators		
	included in 16 06 01, 16		
	06 02 or 16 06 03 and		
	unsorted batteries and		
	accumulators containing		
Commercial	these batteries	20 01 33*	13.932
	Discarded electrical and		
	electronic equipment other		
	than those mentioned in 20		
	01 21 and 20 01 23		
~	containing hazardous		
Commercial	components	20 01 35*	862.150
	Discarded electrical and		
	electronic equipment other		
	than those mentioned in 20		
	01 21, 20 01 23 and 20 01	00.01.07	2227 70 4
Commercial	35	20 01 36	3557.706
Commercial	Metals	20 01 40	39.034
	Other fractions not	20.01.00	0.070
Commercial	otherwise specified	20 01 99	0.068
TOTAL			8,054.729

 Table 2: Total Commercial waste received in 2013 at KMK Metals Recycling Ltd.

Point of Collection	Description Of Waste	EWC Code	Qty Tonnes
Industrial	Metal alloys and stainless steel materials	06 04 99	50.935
Industrial	Sludges containing dangerous substances	06 05 02*	11.801
Industrial	Wastes not otherwise specified	06 13 99	1.933
Industrial	Filter Cake	07 07 10*	26.687
Industrial	Casting cores and moulds	10 10 08	38.143
	Sludges and filter cakes containing		
Industrial	dangerous substances	11 01 09*	2.961
Industrial	Ferrous metal filings and materials	12 01 01	18.200
Industrial	Non-ferrous metal filings and turnings	12 01 03	123.124
Industrial	Non-ferrous metal dust and particles	12 01 04	113.115
Industrial	Welding wastes (solder dross)	12 01 13	3.306
	Waste blasting material containing		
Industrial	dangerous substances	12 01 16*	1.011
Industrial	Ovide Powders	12 01 17	53 156
Industrial	Spent grinding bodies, dusts and powders	12 01 17	1 208
	spent grinding bodies, dusts and powders	12 01 20	1.208
Industrial	Non hazardous Spent grinding bodies	12 01 21	1.560
Industrial	Waste Oil from WEEE (Radiators)	13 02 08*	0.290
Industrial	Plastic Packaging	15 01 02	0.435
Industrial	Timber (Pallets & Packaging)	15 01 03	0.224
Industrial	Mixed packaging	15 01 06	0.383
Industrial	Wiping cloths	15 02 03	0.462
	Discarded equipment containing		
Industrial	chlorofluorocarbons, HCFC, HFC	16 02 11*	2.429
	Discarded equipment containing		
T 1 / 1	hazardous components (16) other than	1 < 02 12*	41 551
Industrial	those mentioned in 16 02 09 to 16 02 12 \mathbf{D}	16 02 13*	41.551
Industrial	Discarded equipment other than those mentioned in 16.02.09 to 16.02.13	16 02 14	72 228
Industrial	Components removed from discarded	10.02.14	12.220
	equipment other than those mentioned in		
Industrial	16 02 15	16 02 16	89.978
Industrial	Batteries (Lead)	16 06 01*	3.055
Industrial	Batteries (Nickel Cadmium)	16 06 02*	0.007
Industrial	Batteries (Alkaline)	16 06 04	1.761

Table 3: Total Industrial waste received in 2013 at KMK Metals Recycling Ltd.

Point of			
Collection	Description Of Waste	EWC Code	Qty Tonnes
Industrial	Other batteries and accumulators	16 06 05	0.191
Industrial	Non-ferrous metal	19 12 03	3.751
	Fluorescent tubes and other mercury-		
Industrial	containing waste	20 01 21*	1.364
	Discarded equipment containing		
Industrial	chlorofluorocarbons	20 01 23*	1.203
	Batteries and accumulators included in 16 06		
	01, 16 06 02 or 16 06 03 and unsorted		
	batteries and accumulators containing these		
Industrial	batteries	20 01 33*	0.648
	Discarded electrical and electronic		
	equipment other than those mentioned in 20		
	01 21 and 20 01 23 containing hazardous		
Industrial	components	20 01 35*	0.379
	Discarded electrical and electronic		
	equipment other than those mentioned in 20		
Industrial	01 21, 20 01 23 and 20 01 35	20 01 36	4.151
Industrial	Metals	20 01 40	21.677
TOTAL			693.607

Table 3: Total Industrial waste received in 2013 at KMK Metals Recycling Ltd.

Point of Collection	Description Of Waste	EWC Code	Qty Tonnes
Transfer Station	Ferrous metal filings and materials	12 01 01	291.321
Transfer Station	Non-ferrous metal filings and turnings	12 01 03	14.201
Transfer Station	Welding wastes (solder dross)	12 01 13	7.751
Transfer Station	Timber (Pallets & Packaging)	15 01 03	8.753
Transfer Station	Aluminium Blister Pack Shred	15 01 04	6.814
Transfer Station	Mixed packaging	15 01 06	8.918
Transfer Station	Capacitors potentially containing PCB's	16 02 09*	1.224
Transfer Station	Discarded equipment containing chlorofluorocarbons, HCFC, HFC	16 02 11*	7.453
Transfer Station	Discarded equipment containing hazardous components (16) other than those mentioned in 16 02 09 to 16 02 12	16 02 13*	157.471
Transfer Station	Discarded equipment other than those mentioned in 16 02 09 to 16 02 13	16 02 14	1973.360
Transfer Station	Hazardous components removed from discarded equipment	16 02 15*	0.120
	Components removed from discarded equipment other than those mentioned in 16		
Transfer Station	02 15	16 02 16	238.204
Transfer Station	Batteries (Lead)	16 06 01*	55.919
Transfer Station	Batteries (Nickel Cadmium)	16 06 02*	15.799
Transfer Station	Batteries (Fence)	16 06 04	6.681
Transfer Station	Batteries (Nickel Metal Hydride)	16 06 05	3.005
Transfer Station	Non-ferrous metal	19 12 03	0.846
Transfer Station	Plastic and rubber	19 12 04	97.989
Transfer Station	Fluorescent tubes and other mercury- containing waste	20 01 21*	35.786
Transfer Station	Discarded equipment containing chlorofluorocarbons	20 01 23*	443.554
	Batteries and accumulators included in 16 06 01, 16 06 02 or 16 06 03 and unsorted batteries and accumulators containing these		
Transfer Station	batteries	20 01 33*	1.636
	Discarded electrical and electronic equipment other than those mentioned in 20 01 21 and 20 01 23 containing hazardous		
Transfer Station	components	20 01 35*	494.517
	Discarded electrical and electronic equipment other than those mentioned in 20		
Transfer Station	01 21, 20 01 23 and 20 01 35	20 01 36	1466.706
TOTAL			5,338.028

 Table 4: Total Transfer Station waste received in 2013 at KMK Metals Recycling Ltd.

Waste Despatched in 2013

Description Of Waste	EWC	
-	Code	Qty Tonnes
Sludges containing dangerous substances	06 05 02*	145.150
Filter Cake containing dangerous substances	07 07 10*	21.880
Welding waste (non-ferrous metal)	12 01 13	10.847
Spent grinding bodies and grinding materials containing dangerous		
substances	12 01 20*	164.269
Waste oil for recovery	13 02 08*	24.850
Packaging for Recycling (Plastic)	15 01 02	7.280
Packaging for Recycling (Timber)	15 01 03	26.230
Packaging for Recycling (Mixed)	15 01 06	152.690
Discarded Equipment (Fridges)	16 02 11*	2,088.740
Discarded Equipment (Flat Screens)	16 02 13*	17.228
Discarded Equipment (from Small Domestic Appliances)	16 02 13*	472.140
Discarded Equipment (IT / CPUs)	16 02 14	591.558
Discarded Equipment (Light Iron)	16 02 14	1,150.408
Discarded Equipment (Steel from Large Appliances)	16 02 14	6,496.020
Discarded Equipment (Glass from CRT TV's and Monitors)	16 02 15*	2,057.480
Discarded Equipment (Non-ferrous metal)	16 02 16	2,716.591
Discarded Equipment (Plastics from WEEE)	16 02 16	1,265.940
Batteries (Lead Acid)	16 06 01*	459.300
Batteries (Ni-Cd)	16 06 02*	18.410
Batteries (Alkaline)	16 06 04	270.572
Wastes from mechanical treatment - Ferrous Metal	19 12 02	179.533
Wastes from mechanical treatment - Non-ferrous metal	19 12 03	1,352.902
Wastes from mechanical treatment - Mineral Waste	19 12 09	17.838
Wastes from mechanical treatment - Waste to Energy	19 12 12	669.069
Fluorescent Tubes & Bulbs	20 01 21*	87.048
Batteries (Unsorted)	20 01 33*	2.500
Batteries (Unsorted Button Cells)	20 01 33*	6.459
TOTAL		20,472.932

Table 1: Waste despatched in 2013 at KMK Metals Recycling Ltd.

Waste in Stock in 2013

Description Of Waste	EWC Code	Qty Tonnes
Sludges containing dangerous substances	06 05 02*	8.770
Waste not specified (graphite)	06 13 99	2.526
Ferrous metal filings and turnings	12 01 01	0.184
Non-ferrous metal filings and turnings	12 01 03	63.971
Non-ferrous metal dust and particles	12 01 04	16.447
Waste blasting material containing dangerous substances	12 01 16*	0.722
Waste blasting material other than those mentioned in 12 01 16	12 01 17	16.671
Spent grinding bodies and grinding materials	12 01 21	14.145
Waste oil for recovery	13 02 08*	1.930
Absorbents, filter materials, wiping cloths and protective		
clothing other than those mentioned in 15 02 02	15 02 03	2.084
Discarded equipment containing hazardous components (16)		
other than those mentioned in 16 02 09 to 16 02 12	16 02 13*	144.230
Discarded equipment other than those mentioned in 16 02 09 to		
16 02 13	16 02 14	100.719
Discarded equipment (CRT Glass)	16 02 15*	9.000
Components removed from discarded equipment other than		
those mentioned in 16 02 15	16 02 16	145.722
Discarded inorganic chemicals containing dangerous		
substances (CRT phosphorus powder)	16 05 07*	1.494
Batteries (Lead)	16 06 01*	34.350
Batteries (Nickel Cadmium)	16 06 02*	4.776
Batteries (Mercury containing)	16 06 03*	1.506
Batteries (Alkaline)	16 06 04	9.971
Batteries (Other)	16 06 05	9.617
Spent catalysts	16 08 01	0.008
Ferrous metal	19 12 02	8.500
Non-ferrous metal	19 12 03	4.176
Other wastes (including mixtures of materials) from		
mechanical treatment	19 12 12	183.500
Fluorescent Tubes & Bulbs	20 01 21*	3.500
Discarded equipment containing chlorofluorocarbons	20 01 23*	24.000
Batteries (Unsorted)	20 01 33*	8.544
Discarded electrical and electronic equipment	20 01 36	172.000
TOTAL		993.06 3

Table 1: Waste in stock at end of 2013 at KMK Metal Recycling Ltd.

APPENDIX 7

PRTR Report 2013

| PRTR# _W01101F collidy Name _KNR Metabs Relistropy Colling and Proceeding W0113_2013 KMK 02-04-2014 Verification Years 2010.1

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2013

1. FACILITY IDENTIFICATION

Parent Company Name	KMK Metals Recycling Limited
Facility Name	KMK Metals Recycling Limited
PRTR Identification Number	W0113
Licence Number	W0113-04
Waste or IPPC Classes of Activity	
No.	class_name
	Storage of waste intended for submission to any activity referred to
	in a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
4.13	produced.
	Use of waste obtained from any activity referred to in a preceding
4 11	paragraph of this Schedule.
	Exchange of waste for submission to any activity referred to in a
4 12	preceding paragraph of this Schedule
	Recycling or reclamation of metals and metal compounds
	Recycling or reclamation of other inorganic materials
4.4	Recovery of components used for pollution abatement
4.0	Recovery of components used for political abatement.
4.7	Consistent industrial Estate
Address 1	Cappindur Industrial Estate
Address 2	
Address 3	
Address 4	
Country	
Coordinates of Location	-7.462581076 53.27421423
River Basin District	
NACE Code	
Main Economic Activity	
AER Returns Contact Name	
AER Returns Contact Email Address	info@nallyenvironmental.ie
AER Returns Contact Position	
AER Returns Contact Telephone Number	04496 66773
AER Returns Contact Mobile Phone Number	086 8547071
AER Returns Contact Fax Number	none
Production Volume	35000.0
Production Volume Units	tonnes
Number of Installations	1040
Number of Operating Hours in Year	4848
Number of Employees	
User Feedback/Comments	Please note that on tab treatment & transfers of waste all data is to
	be taken as confidential. New hazardous waste entries were
	entered in on rows 28 & 32 and Belgium was entered in under
	abroad destination as a way of completion of the PRTR but only as
	an example.
Web Address	www.kmk.ie

2. PRTR CLASS ACTIVITIES

| PRTR# : W0113 | Facility Name : KMK Metals Recycling Limited | Filename : W0113_2013 KMK 02-04-2014.xls | Return Year : 2013 | Page 1 of 2

Activity Number	Activity Name
5(a)	Installations for the recovery or disposal of hazardous waste
50.1	General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

site treatment (either recovery or disposal

activities)?

ls it applicable?	? No
Have you been granted an exemption ?	? No
If applicable which activity class applies (as per	۱۲
Schedule 2 of the regulations) ?	? Not applicable
Is the reduction scheme compliance route being	g
used ?	? Not applicable
4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site
Do you import/accept waste onto your site for on-	I-

4.1 RELEASES TO AIR

SECTION A : SECTOR SPECIFIC PRTR POLLUTANTS

	QUANTITY		T (Total) KG/Year Accidental) KG/Year F (Fugitive) KG/Year	0 0.0 0.0 0.0	
			Emission Point 1	0.0	
	METHOD	Method Used	M/C/E Method Code Designation or Description		
NELEQCED 1 O AIN	POLUTANT		No. Annex II		* Select a row by doublo-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B · DEMAINING PRTP POLITITANTS

	1
2	
Ċ	
į	
Ĺ	
Ľ	
2	
ł	
0	l
5	l
ŝ	Ī

		5	0	
		, Zea	6	
		ĝ		
) e		
		liji Biti		
		Ŀ		
		<u> </u>		
		j ja	ŏ	
		گ		
		2		
		(ja		
	È	feur		
	ħ	g		
	D,	Ś		
	9	4	0	
ŝ			¢.	
ÿ				
i		କଥ୍ୟ		
ion		≿		
ect		Ŷ		
5		ota		
th				
s III		4.2	0	
itie			0	
алt		5 I		
dri		듣		
ЧP.		571 H. 591 H.		
tter		SSIC		
s er		ΞĒ		
use				
Ple		嘉		
		- c		
		- E		
		5		
		8		
		5		
		5		
		8 월		
		의료		
	Q	<u>ğ</u> 8		
	H	ŧ		
		2		
		÷		
		ပိ		
		8		
		let.		
		12		
		뜅		
		ž		
	69		23	
				5
		e S		ğ
				<u>a</u> el
				ž
æ		7.5		ž
١A			6	ě
μ				8 6
ES		1 90 S	0	E.
ł,				킁
Ξ	Ľ,	Ē	÷2.	ě
Ϋ́	1	Ž		t Na
			5.	Utan
				2
				đ
		1.00	5	10 De
				č
				å
				ş
		an a	ॅ	'n,
			Ľ.	100
	ľ		Ľ,	ect.
	1		1	Sel
	N.		Ľ.	í
		18	12	
			ि	
		E S	<u>.</u> ,	
		P 🔇	E	
		l -≆		
		Į	8	
	Ó	Ş	6	
		9	N.	
	N.	1		
		B ost	1	
	1	1	ľ	
			b	
	1.1.1	1. 1. 1.	- T	
			1.	

SECTION C : REMAINING POLLUTANT EMISSIONS (As required in your Licence)

		E (Euclidide) KG/Veer		0:0 0:0	
	QUANTITY	A (Accidentet) KG/Vear		5	
in this section in KGS		T (Total) KG(Vaar		85.6	
case enter all quantities i		(House in the State of State		85.65	
Ĩ	HOD	Aethod Used	HONOLING OF HONOLING	Stack Emission Point	
	ME	MICIE Method Code	HEAL INDUNA WOOD	A EN 14385:2004	
AIR			1.107 Set 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	的复数的情况的复数形式	a click the delete button
RELEASES FU #			VACUE V		he Pollutani Name (Column B) then
	POLLUTANT			obal Particulates	Select a row by double-clicking on t
					•

Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) XGyr for Section A: Sector specific PRTR poliutanta above. Plaase complete the table below:

KMK Metals Recycling Limited Please enter summary data on the Landfill:

guantities of methane flared and / or utilised			Meth	od Used		
		ļ,		Designation or	Facility Total Capacity m3	
	T (Total) kg/Year	M/C/E	Method Code	Description	per hour	
Total estimated methane generation (as per						
site model)	0.0				NA	
Methane flared	0'0				0.0	Total Flaring Capacity)
Methane utilised in engine/s	0.0				0.0	Total Utilising Capacity)
Net methane emission (as reported in Section						
A above)	0.0				N/A	

5. ONSITE TREATM	ENT & OFFSITE TRA	NSFERS OF W	/ASTE 'lease enter all q	quantities on this sheet in Tonnes								0
			Quantity						Haz Waste : Name and Licenca/Permit No of Next Destination Facility <u>Non</u>	Haz Waste : Address of Next Dashastion E-2-20-0	Name and License / Permit No. and Address of Elinal Document /	Achinal Addenies of Clinic Davidson
		<u> </u>	(Tonnes per Year)				Method Used		Licence/Permit No of Recover/Disposer	Lesunation racery Non Haz Waste: Address of Recover/Disposer	Disposer (HAZARDOUS WASTE ONLY)	Let Final Recovery / Disposal She (HAZARDOUS WASTE ONLY)
Transfer Destination	European Waste Code	Hazardous	<u> </u>	Description of Waste	Waste Treatmen Operation	MC/E	Method Used	Location of Treatment				
To Other Countries	06 05 02	Yes	slu 145.15 cor	udges from on-site effluent treatment ntaining dangerous solutions	8	Σ	Weighed	Abroad	KMK Metals Recycling Ltd .W0113-03	Cappinour Industrial Estate, Daingean Road, Tullamore, Co Offaly, Ireland Cappinour Industrial	Confidential Information,,Ireland	Ireland
To Other Countries	12 01 13	QN	10.847 we	alding wastes	R4	Σ	Weighed	Abroad	KMK Metals Recycling Ltd .w0113-03	Estate, Daingean Road, Tultamore, Co Offaly, Ireland		
To Other Countries	12 01 20	Yes	spr 164.269 cor	ent grinding bodies and grinding materials ritaining dangerous substances	R4	Σ	Weighed	Abroad	KMK Metals Recycling Ltd .W0113-03	espinour mount Estate, Daingean Road, Tuliamore, Co Offaly, Ireland Cappinour Industrial	Confidential InformationIreland	Ireland
Within the Country	13 02 08	Yes	24.85 oth	her engine, gear and lubricating oils	ß	Σ	Weighed	Offsite in Ireland	KMK Metals Recycling Ltd .W0113-03	Estate, Daingean Road, Tullamore, Co Offaly, Ireland Cappincur Industrial	Confidential Information,,Ireland	treland
Within the Country	15 01 03	R	26.23 wo	ooden packaging	ß	×	Weighed	Offisite in Ireland	KMK Metals Recycling Ltd ,W0113-03	Estale, Daingean Road, Tullamore, Co Offaly, Ireland Cappincur Industrial		
Within the Country	15 01 06	No	152.69 mi	ixed packaging	R5	Σ	Weighed	Offisite in Ireland	KMK Metals Recycling Ltd ,W0113-03	Estate, Daingean Road, Tuflamore, Co Offaly, Ireland Cappincur Industrial		
To Other Countries	16 02 11	Yes	dis 1873.8 chi	scarded equipment containing liorofluorocarbons, HCFC, HFC	R4	Σ	Weighed	Abroad	KMK Metals Recycling Ltd ,W0113-D3	Estate, Daingean Road, Tullamore, Co Offaly, Ireland Conciser induction	Confidential Information,,Ireland	,Ireland
To Other Countries	16 02 13	Yes	dis co 472,14 me	scarded equipment containing hazardous mponents (16) other than those entioned in 16 02 09 to 16 02 12	R4	۶	Weighed	Abroad	KMK Metals Recycling Ltd ,W0113-03	Cappmicul musula Estate, Daingean Road, Tullamore, Co Offaly, Irealand	Confidential InformationIreland	,treiand
Within the Country	16 02 13	Yes	dis col 17.228 me	scarded equipment containing hazardous amponents (16) other than those entioned in 16 02 09 to 16 02 12	R4	×	Weighed	Offsite in Ireland	KMK Metals Recycling Ltd W0113-03	Cappricur industrial Estate, Daingean Road, Tullamore, Co Offaly, Ireland	Confidential Information,,Ireland	, İreiand
To Other Countries	16 02 14	Ŷ	dis 7170.906 me	scarded equipment other than those entioned in 16 02 09 to 16 02 13	R4	Σ	Weighed	Abroad	KMK Metals Recycling Ltd ,W0113-03	Cappincur Industrial Estate, Daingean Road, Tullamore, Co Offaly, Ireland Convincur Industrial		
To Other Countries	16 02 15	Yes	ha 2057.48 dis	szardous components removed from scarded equipment	R5	×	Weighed	Abroad	KMK Metals Recycling Ltd ,W0113-03	Estate, Daingean Road, Tullamore, Co Offaly, Ireland Canoincur, Industrial	Confidential InformationIreland	Ireland
To Other Countries	16 02 16	Ŷ	co eq 2895.689.02	omponents removed from discarded quipment other than those mentioned in 16 2 15	3 R4	Σ	Weighed	Abroad	KMK Metals Recycling Ltd ,w0113-03	Estate, Daingean Road, Tullamore, Co Offaly, Ireland Canoincur, Industrial		
Within the Country	16 02 16	Ŷ	co eç 1086.842 02	amponents removed from discarded quipment other than those mentioned in 16 2 15	5 R4	Z	Weighed	Offsite in Ireland	KMK Metals Recycling Ltd W0113-03	Estate, Dangean Road, Tulamore, Co Offairy, Ireland Cappincur Industrial		
To Other Countries	16 06 01	Yes	459.3 le¢	ad batteries	R4	Σ	Weighed	Abroad	KMK Metals Recycling Ltd .W0113-03	Estate, Daingean Road, Tullamore, Co Offaly, Ireland	Confidential Information, ireland	,Ireland

AER Returns Workbook

Sheet : Treatment Transfers of Waste

|PRTR# : W0113 | Facility Name : KMK Metals Recycling Limited | Filename : W0113_2013 KMK 02-04-2014 xls | Return Year : 2013 |

al Adress of Final Destination Final Recovery / Disposal Ste JAZARDOUS WASTE ONLY)									li ciclorad		, Ireland	.,Belgium		, Ireland		.,Belgium	
Name and License / Pamit No. and Address of Fraid Racoverse / Address of Fraid Racoverse / Address of Praid Pacoverse / Address (PAZANDOUS WASTE 14.									Confidential Information		Confidential Information,,Ireland	Confidential Information,,Belgium		Confidential Information,Ireland		Confidential InformationBelgium	
L <u>Haz Wasto</u> : Address of Naxt Destination Facility Nan Haz Waste, Address of Recover/Disposer		Cappincur Industrial Estate, Daingean Road, Tullamore, Co Offaly, Ireland	Cappincur Industrial Estate, Daingean Road, Tullamore, Co Offaly, Ireland	Cappincur Industrial Estate, Daingean Road, Tullamore, Co Offaty, Ireland	Cappinicui mousurat Estate, Daingean Road, Tullamore, Co Offaly, Ireland	Cappincur Industrial Estate, Daingean Road, Tullamore, Co Offaly, Ireland	cappmeur invustrial Estate, Daingean Road, Tullamore, Co Offaly, iretand Cappineur Industrial	Estate, Daingean Road, Tullamore, Co Offaby, Ireland	Cappincur Industrial Estate,Daingean Road,Tuilamore,Co	Cappincur Industrial Estate, Daingean	Road, Tullamore, Co Offaly, Ireland Canoineur Industriat	Cappendur mousmen Estate, Daingean Road, Tullamore, Co Offaly, Ireland	Cappincur Industrial Estate, Daingean Road, Tullamore, Co Offaty, Ireland Catonincur Industrial	Estate, Daingean Road, Tullamore, Co Offaly, Ireland Capoincur Industrial	Estate Daingean Road Tultamore, Co Offaly, Italand Camincur Indicatial	Estate, Daingean Road, Tullamore, Co Offaly, Ireand Construction	ceptring Estate Dangean Road, Tulamore, Co Offaly, Ireland
Haz Waste : Name and Licence/Permit No of Next Destination Facatiny Mon Haz Waste: Name and Licence/Permit No of Recover/Disposer		KMK Metals Recycling Ltd ,W0113-03 KMK Metals Recycling Ltd ,W0113-03	KMK Metals Recycling Ltd ,W0113-03	KMK Metals Recycling Ltd ,W0113-03	KMK Metals Recycling Ltd www.13.03	60-611044 ¹	KMK Metals Recycling Ltd W0113-03	KMK Metals Recycling Ltd ,W0113-03	KMK Metais Recycling Ltd ,W0113-03	KMK Metals Recycling Ltd ,W0113-03	KMK Metals Recycling Ltd ,W0113-03	KMK Metals Recycling Ltd ,W0113-03	KMK Metals Recycling Ltd ,W0113-03				
	Location of Treatment	Abroad	Offsite in Ireland	Abroad	Offisite in Ireland	Offsite in Ireland	Offsite in Ireland	Offisite in Ireland	Media in Indiana		Offisite in Ireland	Abroad	Offsite in Ireland	Offsite in Ireland	Offsite in Ireland	Abroad	Abroad
Method Used	5 Method Used	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Woishood		Weighed	Weighed	Weighed	Weighed	Weighed	Weighed	Weighed
	le lient M/C/I	Σ	Σ	Σ	Σ	Z	Σ	Σ	2	Σ	٤	Σ	Σ	Σ	Σ	×	Σ
	Wasi Treatm Operat	R4	R4	R4	R4	R5	ß	2 R4	ā	Ē	6 7	R4	R3	R4	R4	R4	R4
	Description of Waste	alkaline batteries (except 16 06 03)	alkaline batteries (except 16 05 03)	ferrous metal	ferrous metal	non-ferrous metal	minerals (for example sand, stones) other wastes (including mixtures of	materials) from mechanical treatment of wastes other than those mentioned in 19 1 11	fluorescent tubes and other mercury-	batteries and accumulators included in 16 06 01, 16 06 02 or 16 06 03 and unsorted	batteries and accumulators containing the	t other filter cakes and spent sbsorbents	t plastic packaging	discarded equipment containing t chlorofluorocarbons, HCFC, HFC	discarded equipment other than those 3 mentioned in 16 02 09 to 16 02 13	I NI-Cd batteries	2 non-ferrous metal
Quantity (Tonnes per Year)		269.684	10.888	107.953	71.58	1011.99	17.838	669.069	070 10	0 1 0.70	8.959	21.88	7.28	214,94	1067.08	18.41	340.912
	Hazardous	N N	Ŷ	ž	Ŷ	R	۶	۶		Se l	Yes	Yes	N	Yes	۶	Yes	N
	European Waste Code	6 06 04	6 06 04	19 12 02	19 12 02	19 12 03	19 12 09	19 12 12	10.00	17 10 07	20 01 33	07 07 10	15 01 02	16 02 11	16 02 14	16 06 02	19 12 03
	Transfar Dastination	To Other Countries 1	Mithin the Country 1	To Other Countries	Within the Country 1	Within the Country	Within the Country	Within the Country			Within the Country	To Other Countries	Within the Country	Within the Country	Within the Country	To Other Countries	To Other Countries

AER Returns Workbook

Sheet : Treatment Transfers of Waste

4/4/2014 9:38

| PRTR# : W0113 | Facility Name : KWK Metals Recycling Limited | Filename : W0113_2013 KMK 02-04-2014 xis | Return Year : 2013 |

								10 - 11 - 12 - 1 - 10 - 1	• • • •		
				Treatment	KC/E Method Used	Operation Mi	Description of Waste	s	Hazardou	Code	Transfer Destination
				Location of		Waste Treatment				European Waste	
(HAZARDOUS WASTE ONLY)	(A)NO	Recover/Disposer	Recover/Disposer		Method Used			Year)			
Le. Final Recovery / Disposal Site	Disposer (HAZARDOUS WASTE	Non Haz Wasle: Address of	Licence/Permit No of					(Tonnes per			
Actual Address of Final Destination	Address of Final Recoverer /	Destination Facility	Haz Waste: Name and					Quantity			
	Name and License / Permit No. and	Haz Waste : Address of Next	Destination Facility Non					1			
			Licence/Permit No of Next								

APPENDIX 8

Bund Assessment Report 2013

Environmental & Waste Management Consultancy

BUND ASSESSMENT REPORT

FOR

KMK METALS RECYCLING LTD.

Waste License ref: W0113-03

AT

CAPPINCUR IND. ESTATE, TULLAMORE, CO OFFALY,

4th March 2013

SIGNED: Niell Nally

Niall Nally B.Sc, M.Sc, AJEMA, MCIWM

Senior Environmental Consultant

TABLE OF CONTENTS

1.0	Intro	DUCTION	2
	1.2	General Bunds descriptions and considerations	2
2.0	Bund	Assessment	4
	2.1	The following bunded areas were investigated on-site;	4
	2.2	Bund assessments	4
3.0	CONC	LUSIONS	13

LIST OF TABLES

 Table 3.1
 Bund Assessment Recommendations

1.0 INTRODUCTION

This report has been produced by Nally Environmental on behalf of KMK Metals Recycling Ltd (KMK), Cappincur Industrial Estate, Daingean Road, Tullamore, Co Offaly.

1.1 **Relevant legal guidance and context.**

This bund assessment makes reference to the following relevant documents;

- The Environmental Protection Agency (EPA) guidelines 'The Storage and Transfer of Materials for Scheduled Activities' (2004)
- Updated bund integrity test template: http://www.epa.ie/downloads/advice/licensee/name,50899,en.html

1.2 GENERAL BUNDS DESCRIPTIONS AND CONSIDERATIONS

Bunds are regarded as secondary containment systems and are used to prevent oil and liquids escaping to the environment in the event of a leakage from the tanks or ancillary equipment stored inside.

A typical bund consists of a mass concrete base and walled enclosure. The bund walls are usually half a meter to a meter high. For bunds to be effective, the following items are necessary:

- The bund must be of adequate size to contain the liquids stored inside.
- The bund walls have to be strong enough to contain the contents of the tank without danger of collapse. Therefore reinforced mass concrete instead of bricks and hollow blocks should be used.
- The bund walls have to be high enough to avoid jetting failure (jets of liquid out over the bund structure).
- Finally the bund has to be impervious to the liquid stored in the tank and to water.

Furthermore, according to the EPA guidelines (2004) previously referred in relation to bunds, the following items apply;

• The sealed surface providing the retention must be impermeable to the liquid being retained. This applies also to any connecting elements, such as pipes, penetrating the structure, the sealing of which must provide the same level of retention as the bund itself;

- There must be no adverse chemical reaction that could occur between different liquids in a bund that would impact on the integrity of the bund or the safety of personnel in its vicinity;
- In general bund walls should not exceed 1.5m in height so that:
 - Fire-fighting operations are not hindered
 - Egress from a bunded area in event of an emergency is relatively easy
 - Natural ventilation of the bunded area is encouraged.
- It is important that, where practicable, pumps, valves, couplings, delivery nozzles and other items associated with the operation of a tank are located inside the bund, although health and safety implications must be taken into account where pumps and other electrical equipment operate in bunds where flammable vapours may collect. Items not connected with the operation of the tanks should not be located within the bunded area;
- The overflow vent from a storage tank being overfilled should be contained within the bund;
- It is strongly recommended that all pipe work leading to or from tanks within a bund is routed over the top of the bund in order to avoid the need to breach the walls;
- Bunds may be filled with liquid in event of a spillage or may be deliberately filled with liquid during testing; electrical equipment should therefore ideally be placed above the maximum liquid height or designed for submersion;
- Bulk chemical storage bunds should be designed to contain 110% of the capacity of the largest storage vessel located within the bund;
- Bund design should take into account the capture of spigot flow from ruptured tanks;
- Valved drainage from bunds should be avoided;
- Individual bunding is preferred to common bunding;
- Where two or more tanks are installed within the same bund, the recommended capacity of the bund is the greater of:
 - o 110% of the capacity of the largest tank within the bund, or

 25% of the total capacity of all of the tanks within the bund, except where tanks are hydraulically linked in which case they should be treated as if they were a single tank.

2.0 BUND ASSESSMENT

- 2.1 The following bunded areas were investigated on-site;
 - Bund 01 Mobile Bund used for Radiator Oil Draining
 - · Bund 02 Mobile Bund used for Diesel and Kerosene Tanks
 - · Bund 03 A, B building floor, including sump in B area

2.2 BUND ASSESSMENTS

The details of the bund assessments are provided in the data sheets below:

DATA SHEET: BUNDING STRUCTURES – Bund 01

Company: KMK	Photo / sketch
Site: Cappincur Ind Estate, Tullamore	Photos 1 & 2
Bund Ref No: Bund 01	
Radiator oil draining area	
Bund Location:	
Inside D-WEEE plant building	
Bund Dimensions:	Vessel(s) – Materials of Construction:
L = 4.0m, W = 2.5m, H = 0.07m	1 x plastic IBC tank
Bund Construction Material:	Vessel(s) – Total Storage Volume:
Steel construction mobile unit	Vessel 1 –1m ³ , actual storage 900litres
Bund Lining Material:	Vessel(s) – 110% of Volume of Largest
None – all steel construction	Vessel: 1.1m ³ or 1,100 litres
	110% of actual storage volume: 0.99m ³
Bund Retention Volume:	Vessel(s) – 25% of Total Storage
0.7m ³ or <u>700litres</u>	Volume : $0.25m^3$
	25% of actual storage volume: 225litres
Bund Capacity test pass/fail? Fail	
Tank Contents:	WGK Class & R Phrases:
Used radiator oils from draining of	WGK Class: Possible 2 (waste synthetic oil
domestic oil filled radiators	substance)
	Risk Phrases: unknown
Deemed practicable / safe to conduct hydr	ostatic test? Yes
If no, give reasons: none	
Description and Results of Hydrostatic	Date of Hydrostatic test:
Test:	
Bund filled with water on 22-02-13 to the	From 22-02-13 to 25-02-2013.
top of metal grid. Left over the weekend.	
Bund retained water inside with no	

evider	nce of drop in wa	ater lev	el or leaking		
HVDE	Sieel dund unit.		ow:		
пүре	COSTATIC TEST DE	TAILS:			
	BS 8007:1987 (Yes	/No)?	No – not requ	uired for small	mobile unit inside a
			building.		
	Fill Rate		50litres/minu	te (using drun	and fork lift truck)
	Stabilisation Perio	d	30mins		
	Duration of the Te	st	22-02-2013 to	0 25-02-2013	
	Acceptance C (Total permissible	Criteria e drop	none		
	Water Level Cha Reference Vessel	nge in	none		
	Doto and Time	Wetan	Lougl in Dund	Watar Larra	in Paference Vessel
	11 30 22-02	0.07m	Level in Build	No referer	ace vessel used or
	11.50, 22.02	0.0711		required. A would be im	A leak from the bund mediately noticeable
	11.30, 25-02	0.07m		As above	
Resu	lt (Pass/Fail)			PASS	
Descr Inspe	iption and R ction:	esults	of Visual	Date of Visu 25-02-2013	al Inspection: 22-02-2013 &
	Steel bund unit	was ful	ly empty and c	leaned out pri-	or to inspection.
•	Bund in good co	onditior	n with no obvic	ous defects.	
•	IBC tank position	oned on	top of metal g	rate of steel bu	and unit
•	No evidence of	water le	eakage from flo	ooding proced	ure.
Bund	Contents: Low F	Risk	Bund Conditi	on: Good	Action: Carry out recommendations
Recor	mmendations:				
	Ensure daily vis	sual ins	pections of the	bund and tan	k inside the bund to ensure no
	leaks or spills of	ccurring	g.		
۰	Ensure a plentit the bund (as is t	ful supj he case	ply of oil adso at present).	rbent materia	ls remains readily available at
٠	Conduct a re-tes	st in thr	ee years time.		
Signe	d: viall Nat	ly	Qualification: Environmental	Consultant	Date: $\frac{07}{03}/13$

KMK Metals Recycling Ltd Bund Assessment Report 2013

Photos 1&2 – Radiator oil storage bund 01 inside D-WEEE plant building.

Photo 1 – overview of bunded unit

Photo 3 - close-up of radiator draining unit

El DELTENTE TELES

2/21/02/72013 10 23

and the state of the

Photo 2 – base of bund

DATA SHEET: BUNDING STRUCTURES – Bund 02

Company: KMK		Photo / sketch
Site: Cappincur Ind Estate, Tu	llamore	Photos 4, 5 & 6
Bund Ref No: Bund 02		
Kerosene & diesel tank store		
Bund Location:		
Inside D-WEEE plant building	<u>y</u>	
Bund Dimensions:	>	Vessel(s) – Materials of Construction:
L = 4.2m, W = 2.5m, H = 0.40	m	2 x plastic tanks (double skinned type)
Bund Construction Material	:	Vessel(s) – Total Storage Volume:
Steel construction mobile unit		Vessel 1 – Diesel (gas oil) marked tank 3.2m ³ , actual storage 3,200litres (max) Vessel 2 – Kerosene marked tank, 1.1m ³ , actual storage 1,100litres (max)
Bund Lining Material:		Vessel(s) – 110% of Volume of Largest
None – all steel construction		Vessel: 3.2m^3 or $3,200$ litres 110% of max storage volume: 3.52m^3
Bund Retention Volume:		Vessel(s) -25% of Total Storage
4.2m^3 or 4.200 litres		Volume: $1.075m^3$
Bund Capacity test pass/fail	Pass	
Tank Contents:		WGK Class & R Phrases:
Separate tanks for Diesel and	Kerosene	Kerosene: WGK Class: 1
		Risk Phrases: R10, R38, R51/53, R65
		Diesel (marked gas oil): WGK Class: 2
		Risk Phrases: R20, R65, R66, R51/53
Deemed practicable / safe to	conduct hvdr	ostatic test? Yes
If no, give reasons: none	v	
Description and Results of	Hvdrostatic	Date of Hydrostatic test:
Test:		
Bund flooding with water on	22-02-13 to a	From 22-02-13 to 25-02-2013.
height of 0.34cm. Left over	the weekend.	(i) Information in a new second se
Bund retained water insid	le with no	
evidence of drop in water lev	el or leaking	
from steel bund unit. See belo	w:	
HYDROSTATIC TEST DETAILS		
BS 8007:1987 (Yes/No)?	No – not rea	uired for steel construction mobile
 - enormalization are noted to defined. Total or number 100, 200, 200, 200. 	unit permanently inside a building.	
Fill Rate	50litres/minute (using two water supply hoses)	
Stabilisation Period	30mins	
Duration of the Test	22-02-2013 t	to 25-02-2013
Acceptance Criteria	none	
(Total permissible drop		
in water level)		
Water Level Change in Reference Vessel	none	
Kelerence vessel		

Date and Time	Water Level in Bund	Water Level in Reference Vessel
12.00, 22-02	0.34m	No reference vessel used or required. A leak from the bund would be immediately noticeable
12.00, 25-02	0.34m	As above

Result (Fass/Fall)	
Description and Results of Visual Date of Visual Inspection	on: 22-02-13 &
Inspection: 25-02-2013	
 2 x tanks (vessels), diesel pump & pipes in bund are in good tanks are double skinned so any possible leak of the first tank winside the second outer plastic case. This gives additional leak/sp Bund in good condition and fully contained in steel construction i A tape measure was used to dip inside between the two tank skin in a clean tape with no obvious liquid leaks inside. The tanks and associated fuelling pumps are located inside the b 4) to prevent spills. 	condition. Both will be contained ill protection. inside building. ns. This resulted und walls (photo
Bund Contents: Medium Bund Condition: Good Action:	Carry out
Risk from the proposed recommend	lations
storage of Gas oil and	
Kerosene	
Recommendations:	
• Ensure daily visual inspections of the bund and tank inside the b	ound to ensure no
leaks or spills occurring.	
• Ensure a plentiful supply of oil adsorbent materials remains rea	adily available at
the bund (as is the case at present).	
 Conduct a re-test in three years time. 	
Signed: 1- 10 Qualification: Date: 014	21.2
Null Nally Environmental Consultant	5117

Photo 4 outside view of unit

Photo 5 close-up view of bund opening

KMK Metals Recycling Ltd Bund Assessment Report 2013

Photo 6 internal view of bund walls, design and condition

Photo 7 internal view of bund

DATA SHEET: BUNDING STRUCTURES – Bund 04

Company: KMK		Photo / sketch
Site: Cappincur Ind Estate, Tu	llamore	Photos 8 & 9
Bund Ref No: Bund 03		
A, B inside areas and sump at	B area	
Sump & drainage channel lo	cation:	
Inside B building (see figure 1))	
Sump Dimensions:		Vessel(s) – Materials of Construction:
L = 2m, W = 0.95m, H = 0.24m	n	None stored at this location
Drainage channel dimension	s:	
L = 18m, W = 0.3m, H = 0.16m	n	
Sump & Channel O	Construction	Vessel(s) – Total Storage Volume:
Material:		Only wet filter cakes are stored here (on a
Pre-cast concrete		spill pallet). In addition batteries are stored
		in dedicated battery boxes also.
Sump & Channel Lining Ma	terial:	Vessel(s) – 110% of Volume of Largest
All pre-cast concrete		Vessel: not applicable
Sump Retention Volume:		Vessel(s) – 25% of Total Storage
0.456m ³ or 456 litres		Volume: not applicable
Channel retention volume:		
0.864m ³ or 864 litres		
Total retention capacity	(sump &	
channel): 1.32m ^o or 1,320litre	S	
Same and the sh Can asite to	at maga/fa:19 1	Dags (minimal liquids stared at this location)
Sump and trench Capacity to	est pass/fall? f	estatic test? No
Deemed practicable / sale to	of this transh	and summ is not required due to the internal
If no, give reasons: a flooding	of this trench	stored at this location. It is also impractical
status of it and the absence of	vessels being	stored at this location. It is also impractical
Description and Desults of	Undrostatia	Data of Hydrostatic test:
Description and Results of	nyurostatic	Date of nyurostatic test:
Test:		NI/A
None		IN/A
HYDROSTATIC TEST DETAILS:		
BS 8007:1987 (Yes/No)?	No	
Fill Rate		
Stabilisation Period		
Duration of the Test		
Acceptance Criteria		
(Total permissible drop		
in water level)		
Water Level Change in		
Keterence vessel		
Recult (Pass/Fail)		N/A

Description and Results	of Visual	Date of Visua	I Inspection: 22-02-13
Inspection:			
 All sump and drainage 	e channel areas	were in good co	ondition.
• Two IBC bags of wet spill pallet over the d looked new and of ver	filter material rainage channe y good conditio	was positioned al for extra spill on (photo 9).	on top of a yellow dedicated l protection. The spill pallet
Bund Contents: Medium	Bund Condit	ion: Good	Action: Carry out
Risk from the storage of			recommendations
filter materials, lead acid		2	
batteries, residual oils etc			
Recommendations:			
 Ensure daily visual in or spills occurring on weekly intervals. 	spections of the the ground. C	e spill pallet and heck the sump	floor area to ensure no leaks and drainage channel also at
• Ensure a plentiful sup the bund (as is the cas	oply of oil adsorted at present).	orbent materials	remains readily available at
Conduct a re-test in th	ree years time.		
Signed: Neall Nally	Qualification Environmenta	: l Consultant	Date: $04/07/13$

Figure 1 - internal B sump and drainage channel.

Photo 8 view of internal trench & sump

Photo 9 view heavy plastic spill pallet

3.0 CONCLUSIONS

Table 3.1 below summarises the conclusions of the bund assessments.

Bund Ref	Capacity result	Hydrostatic result	Recommendations
Bund 01	Fail	Pass	• Ensure daily visual inspections of the bund and tank inside the bund to ensure no leaks or spills occurring.
			• Ensure a plentiful supply of oil adsorbent materials remains readily available at the bund (as is the case at
			present).Conduct a re-test in three years time.
Bund 02	Pass	Pass	• Ensure daily visual inspections of the bund and tank
			inside the bund to ensure no leaks or spills occurring.
			• Ensure a plentiful supply of oil adsorbent materials
			remains readily available at the bund (as is the case at
			present).
			 Conduct a re-test in three years time.
Bund 03	Pass	Not applicable	Ensure daily visual inspections of the spill pallet and floor
			area to ensure no leaks or spills occurring on the ground.
			Check the sump and drainage channel also at weekly
			intervals.
			• Ensure a plentiful supply of oil adsorbent materials
			remains readily available at the bund (as is the case at
			present).
			 Conduct a re-test in three years time.

Table 3.1 Bund Assessment Recommendations