COMHAIRLE CHONDAE AN CABHÁIN Cavan County Council

Annual Environmental Report 2013 Belturbet Landfill WL 92-1

Document Title	Annual Environmental Report 2013					
	Belturbet Landfill WL 0092-1					
Document ID	CCC-04-02-2013					
Revision	<u>Status</u>	<u>Author</u>	Issue Date			
01	Draft	ВК	12/02/14			
02	Final Issue	BK/CB	12/02/14			

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to prepare the following Annual Environmental Report.

<u>Co</u>	<u>ntents</u>		<u>Page</u>
1.0	INTROE	DUCTION	5
2.0	REPOR	TING PERIOD	6
3.0	WASTE	ACTIVITIES CARRIED OUT AT THE FACILITY	6
4.0	QUANT	ITY AND COMPOSITION OF THE WASTE	6
5.0	SUMMA	RY REPORT ON EMISSIONS	6
	5.1 S	urface Water	7
	5.2 G	round Water	7
	5.3 L	eachate	11
	5.4 G	as	13
6.0	RESUL	TS SUMMARY & INTERPRETATION OF MONITORING	14
7.0	RESOU	RCE & ENERGY CONSUMPTION SUMMARY	14
8.0	VOLUM	E OF LEACHATE PRODUCED	15
9.0	REPOR	T ON DEVELOPMENT WORKS UNDERTAKEN DURING	
	REPOR	TING PERIOD	15
10.0	REPO	ORT ON RESTORATION OF COMPLETED CELLS	15
11.0	SITE	SURVEY SHOWING EXISTING LEVELS OF THE FACILITY	
	AT THE	END OF REPORTING YEAR	15
12.0) ESTI	MATED ANNUAL & CUMULATIVE QUANTITIES OF	
I	LANDFIL	L GAS EMITTED FROM THE FACILITY	15
13.0) FULL	TITLE AND A WRITTEN SUMMARY OF ANY	
I	PROCED	URES DEVELOPED BY THE LICENSEE	16
14.0) TANK	& BUND TESTING AND INSPECTION REPORT	16
15.0	REPO	ORTED INCIDENTS AND COMPLAINTS	16
16.0	REPO	ORTS ON FINANCIAL PROVISION MADE UNDER THIS LICENCE	16
17.0	REPO	ORT ON TRAINING OF STAFF	17
18.0) ANY	OTHER ITEMS SPECIFIED BY THE AGENCY	17
List	of Tabl	es	
Tab	le 5.1	Surface Water Summary Results	7
Tab	le 5.2	Groundwater Summary Results	8
Tab	le 5.3	Leachate Summary Results	11
Tab	le 5.4	Gas Emissions Summary Results	13
Tah	16.1 ما	Management Structure 2013	16

List of Graphs

Graph 5.1	Groundwater-Ammonia	9
Graph 5.2	Groundwater Total-Coliforms	9
Graph 5.3	Groundwater –Conductivity	10
Graph 5.4	Groundwater –Potassium	10
Graph 5.5	Leachate- Ammonia	12
Graph 5.6	Leachate- Conductivity	12
Graph 5.7	Gas-Methane	13
Graph 5.7	Gas- Carbon Dioxide	15

List of Appendices

Appendix A	PRTR Emissions Report , Landfill Gas Survey
Appendix B	Site Monitoring Locations Map
Appendix C	Quarter 4 Monitoring Report
Appendix D	Declaration of True Copy

1.0 INTRODUCTION

Belturbet Landfill has been operated as waste disposal facility by Cavan County Council since the late 1979. The site was operated as a traditional landfill and is located on the Belturbet - Ballyconnell road (R200) approximately 4.5km west of Belturbet on the north side. The site was originally operated as a limestone quarry and comprises of some 1.65 acres. The rock is composed of the Darty Limestone Formation from the Lower Carboniferous period.

A Waste Licence for the facility was issued by the EPA on 13th February 2002, Ref WL 92-1. Condition 11.4 of Waste Licence requires the submission of an Annual Environmental Report for Belturbet Landfill facility. This document is produced in order to comply with requirements of Condition 11.4. The site at Belturbet was closed in February 2002. Prior to closing the site a temporary cap was placed on site.

The requirements for reporting of Annual Environmental Information arise under individual EPA licences issued under the EPA Acts 1992 – 2008, the Waste Management Acts 1996 – 2008 and other legislation.

This AER will provide information as outlined in Schedule F of the Licence "Content of the Annual Environmental Report".

2.0 REPORTING PERIOD

The reporting period for the purposes of this AER is 1st January 2013 to 31st December 2013.

3.0 WASTE ACTIVITIES CARRIED OUT AT THE FACILITY

There were no waste activities carried out at the facility.

4.0 QUANTITY AND COMPOSITION OF THE WASTE

There is no longer any waste being accepted at the site. The quantity of waste accepted is zero tonnes.

5.0 SUMMARY REPORT ON EMISSIONS

The PRTR Regulations are the European Communities (European Pollutant Release and Transfer Register) Regulation 2007, S.I. No. 123 of 2007), which signed into Irish Law on 22 March 2007 the E-PRTR Regulation, (EC) No 166/2006, concerning the establishment of a European Pollutant Release and Transfer Register. The summary of emissions is detailed in the (PRTR) Report which appears in Appendix A of this report. The PRTR has been uploaded onto the EPA website in accordance with our responsibility as Licensee.

A register of Environmental Monitoring is now established and shall be maintained. Cavan County Council now carries out sampling as required by the Licence.

5.1 Surface Water

Killynaher Lake is part of the Lough Oughter System and is a Special Area of Conservation. The lake quality is A2 status.

Table 5.1 Surface water summary results

	Parameter	Ammonia	рН	Cond	BOD	COD	Total Suspended Solids	CI	DO
	Units	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	mg/ I	mg/l
SW	Qtr 4 2013	0.129	7.8	340	<1	12	<5	17	10
Killynaher Lake	Qtr 3 2013	0.266	8.1	345	13	31	< 5	21	8.7
	Qtr 2 2013	0.05	8.3	310	3	23	<5	17	10
	Qtr 1 2013	0.108	7.6	338	5	23	<5	18	10.6
S.I No. 294/1989		0.2	≥5.5 and ≤8.5	1000	5	40	50	250	

There were only 1 marginal exceedance in the surface water sampling suite during 2013. This exceedance in Ammonia cannot be definitively attributed to the landfill as the surface water body "Killynaher Lake" lies within a predominant agricultural catchment which is exposed to activities such as slurry spreading.

5.2 Groundwater

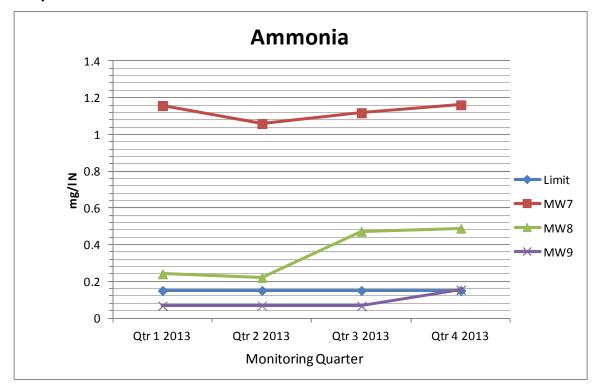
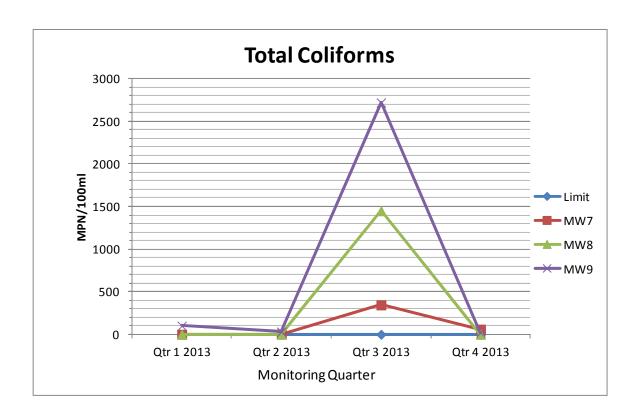
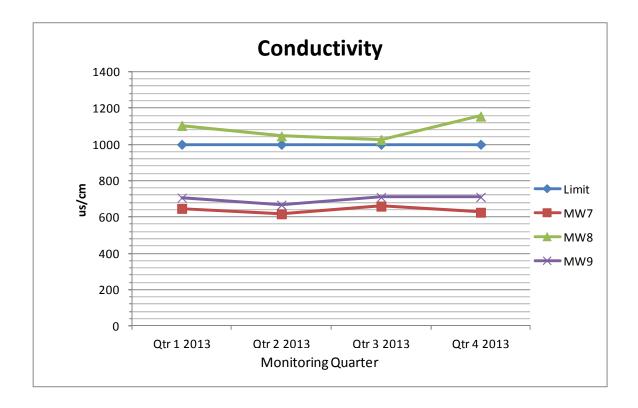
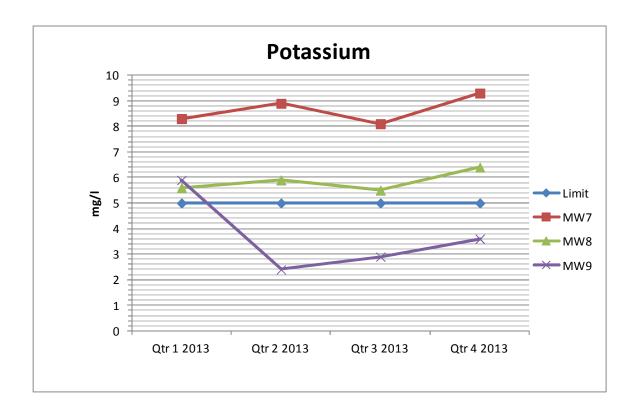

This landfill underwent the process of final capping during 2012. Ground water samples were extracted from MW 7 and MW 8 as per the waste licence. An addition ground water well was constructed along the South East boundary between the landfill and the nearest dwelling house; this well was constructed in conjunction with the capping works and is labelled MW 9. Monitoring of this well will began in 2013 as per the waste licence.

Table 5.2 Ground water summary results


The following table and graphs show environmental monitoring results for the site.

	Parameter	тос	E.Coli	Ammonia	TON	Tot Coliforms	рН	Cond	CI	DO	Fe	К	Na
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	mg/l	mg/l
MW 7	Qtr 4 2013	1.45	0	1.161	<0.138	60	7.6	626	9	9	54.8	9.3	46.2
	Qtr 3 2013	1.06	0	1.118	<0.138	345	7.8	660	10.9	6.8	42	8.1	58
	Qtr 2 2013	0.8	0	1.059	<0.138	2	7.8	617	10.7	7.5	83.9	8.9	40.9
	Qtr 1 2013	0.74	1	1.157	<0.138	1	7.8	647	10.1	5.2	<20	8.3	48.9
MW 8	Qtr 4 2013	2.02	0	0.489	<0.138	0	7.2	1155	222.5	11	193.2	6.4	43.9
	Qtr 3 2013	2.05	0	0.472	<0.138	1450	7.2	1026	154.5	3.5	145.6	5.5	37.6
	Qtr 2 2013	0.96	0	0.221	<0.138	1	7.2	1046	180.4	3.9	215.4	5.9	34.8
	Qtr 1 2013	0.9	0	0.241	<0.138	0	7.3	1104	161.6	8.3	53.2	5.6	39.4
MW 9	Qtr 4 2013	2.33	0	0.154	0.157	20	7.1	710	<2.6	8	<20	3.6	4.7
	Qtr 3 2013	1.4	220	0.066	<0.138	2720	7.3	709	11.9	2.9	1049.5	2.9	6.5
	Qtr 2 2013	1.09	0	0.068	<0.138	30	7.3	667	3.9	6.4	23	2.4	4.4
	Qtr 1 2013	1.21	0	0.067	<0.138	100	7	706	4.1	10.7	28.1	5.9	4.4
Interim Guide	e Value	NAC	0	0.15	NAC	0	≥6.5 &≤9.5	1000	30	NAC	0.2	5	150


Graph 5.1


Graph 5.2

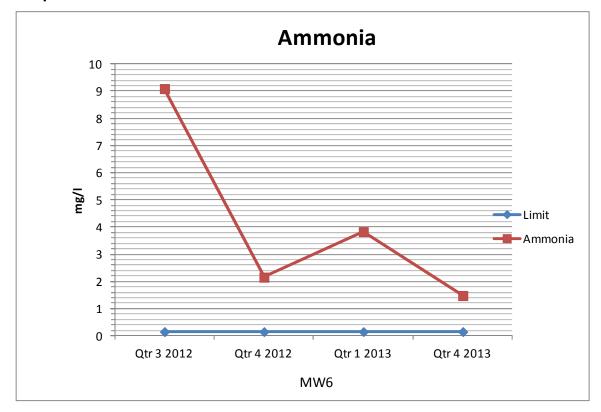
Graph 5.3

Graph 5.4

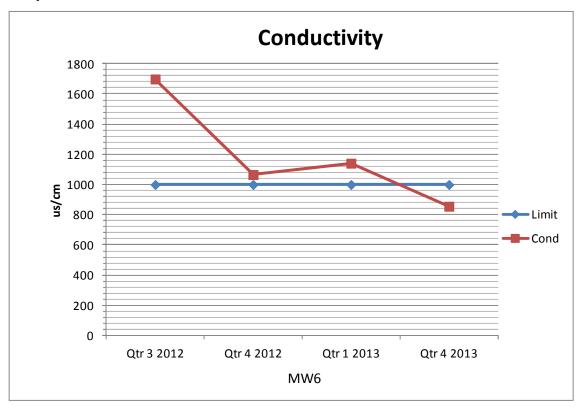
As detailed in the above graphs, there were numerous ground water exceedances at this landfill during 2013.

Exceedances occurred in the following parameters:

- Ammonia: Elevated levels of this parameter were prevalent during 2013.
 Levels such as those recorded are not unusual in a mature landfill such as this. Levels will gradually decrease as the landfill matures.
- Chloride: This parameter is a strong indication of contamination from a landfill source.
- Conductivity: Elevated levels of this parameter are commonly associated with pollution of an organic nature and therefore may be attributed to the landfill.
- Total Coliforms: Exceedances in this parameter are attributed to the natural decomposition of the organic materials in this landfill.
- Potassium: Elevated levels of potassium can be associated with landfill contamination but it can also be associated with contamination from agricultural sources such as fertilizers. Therefore direct contamination from the landfill cannot be concluded.


5.3 Leachate Monitoring

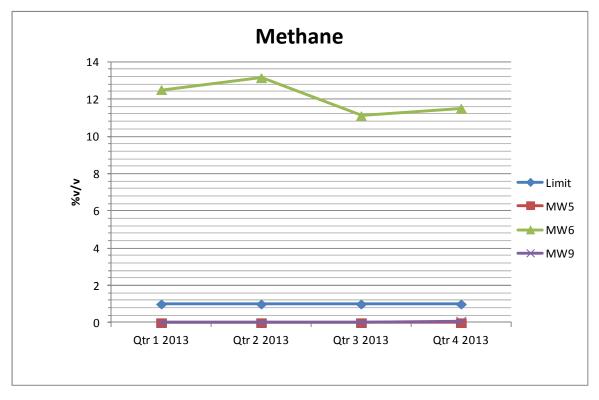
Monitoring Well MW5 was sampled for Leachate during quarter one of 2012. However after capping of the landfill the well was found to be dry and so samples have been obtained form Well MW6 since then.


Table 5.3 Leachate summary results

	Parameter	Ammonia	TON	рН	Cond	BOD	COD	CI
	Units	mg/l N	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l
MW 6	Qtr 4 2013	1.478	<0.69	7.4	856	7	15	62.7
	Qtr 3 2013	-	-	-	-	-	ı	-
	Qtr 2 2013	-	1	-	-	-	-	-
	Qtr 1 2013	3.831	<0.69	7.2	1141	4	18	26.5
Interim Guide Values		0.15	NAC	≥6.5&≤9.5	1000			200

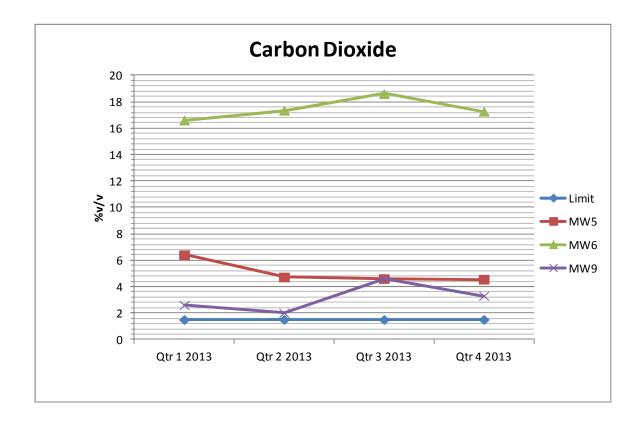
Graph 5.5

Graph 5.6



Page **12** of **17**

5.4 Gas Emissions monitoring summary results


P	Parameter	CH ₄	CO ₂	02	H ₂ S	Barometric Pressure
	Units	1% v/v	1.5 % v/v	%	PPM	mb
Client Ref	Qtr	-	-	-	-	-
MW 5	Qtr 4 2013	0	4.55	18.41	0	1023
	Qtr 3 2013	0	4.6	18.4	0	1000
	Qtr 2 2013	0	4.7	11.0	0	997
	Qtr 1 2013	0	6.4	3.4	0	980
MW 6	Qtr 4 2013	11.5	17.27	0.309	0	1023
	Qtr 3 2013	11.1	18.6	0	0	999
	Qtr 2 2013	13.1	17.3	0	0	997
	Qtr 1 2013	12.5	16.6	0	0	980
MW9	Qtr 4 2013	0.1	3.3	17.08	0	1023
	Qtr 3 2013	0	4.6	17.4	0	1000
	Qtr 2 2013	0	2.0	19.9	0	997
	Qtr 1 2013	0	2.6	16.6	0	980
	Limit	1	1.5			

Graph 5.7

Page **13** of **17**

Graph 5.8

Gas emissions have remained steady at locations MW 5 and MW 6 during 2013 and are typical of a mature landfill. Monitoring of MW 9 a newly constructed gas migration well begun in quarter 4 2012. Results obtained show that there is very little methane present at this location.

6.0 SUMMARY OF RESULTS & INTERPRETATION OF ENVIRONMENTAL MONITORING

As presented in the information above and in Appendix 3, apart from slight elevations in certain parameters, there appears to be no environmental pollution associated with this landfill. We will continue to monitor this facility and monitoring will be increased following restoration works with the insertion of new boreholes on adjacent lands etc.

7.0 RESOURCE & ENERGY CONSUMPTION

There is no energy consumption or resource use on the site. There is no landfill gas of any value produced as can be seen from the PRTR Report

8.0 VOLUME OF LEACHATE PRODUCED

The volume of Leachate produced is unknown.

9.0 REPORT ON DEVELOPMENT WORKS UNDERTAKEN DURING THE REPORTING PERIOD AND A TIMESCALE FOR THOSE PROPOSED DURING THE COMING YEAR

Final capping of this landfill was completed during 2012. However the final phase is due for completion in 2014. This involves installation of a piped conduit for the surface water cap discharge to Killynaher Lake and the addition of monitoring boreholes on adjacent farmlands. Negotiations are ongoing with adjacent landowners and their solicitors.

10.0 REPORT ON THE RESTORATION OF COMPLETED CELLS/PHASES

Belturbet Landfill was capped in 2012 according to specifications submitted and approved by the EPA Castlebar office.

A fully engineered and lined system was installed and the site has been improved significantly. There is however some outstanding works unfinished. The cap surface water collection system and monitoring boreholes are due to be installed on Mr Reilly's lands as soon as agreement can be reached. Agreement was reached previously but other queries have arisen in the meantime. We hope to get a resolution to this issue by the end of 2014. Also the fencing of the site will be completed.

11.0 SITE SURVEY SHOWING THE EXISTING LEVELS OF THE FACILITY AT THE END OF THE REPORTING PERIOD

Site Survey is included in Appendix B.

12.0 ESTIMATED ANNUAL AND CUMULATIVE QUANTITIES OF LANDFILL GAS EMITTED FROM THE FACILITY

This information is reported in the PRTR Report attached in Appendix A. The estimated quantity of Methane released is 16,600kgs/yr. Page one from the Annual Gas Survey is also presented in Appendix A.

13.0 FULL TITLE AND A WRITTEN SUMMARY OF ANY PROCEDURES DEVELOPED BY THE LICENCE IN THE YEAR WHICH RELATES TO THE FACILITY

There are no written procedures required for this site.

14.0 TANK & BUND TESTING INSPECTION

There are no tanks or bunds on site.

15.0 REPORTING INCIDENTS & COMPLAINTS SUMMARIES

There were no complaints reported or recorded for this site during the reporting period.

16.0 REPORTS ON FINANCIAL PROVISION MADE UNDER THIS LICENCE, MANAGEMENT AND STAFFING STRUCTURE OF THE FACILITY AND A PROGRAMME FOR PUBLIC INFORMATION.

Provision will be made in Cavan County Council Official Estimates for Charges as required under Condition 12 of Waste Licence Ref. 92-1.

Table 16.1 Management Structure 2013-2014

Position	Name	Duties
Director of Services Environment	Eoin Doyle	Oversee and assign responsibilities to staff regarding landfill
Senior Executive Officer	John Brannigan	Oversee general supervision, monitoring and reporting of the site.
Landfill Operations Manager	Sinead Fox	Responsible for general supervision, monitoring and reporting of the site.

Contact Person for Sanitary Authority for 2013/2014:

John Brannigan

Senior Executive Officer

Waste Management Section

Cavan County Council

Farnham Street,

Cavan

Programme for Public Information:

Cavan County Council informs local residents of any works that are taking place at the landfill facility.

17.0 REPORT ON TRAINING OF STAFF

Landfill Operations Manager Sinead Fox for Cavan County Council deals with in full with any issues identified by the Agency Inspectors or any other party. Sinead has been fully trained by the FAS Waste Management Training Course, Control of Landfill Gas and carries a Safe Pass.

18.0 ANY OTHER ITEMS SPECIFIED BY THE AGENCY

No other items have been specified.

APPENDIX A PRTR Emissions Report, Landfill Gas Survey

| PRTR# : W0092 | Facility Name : Belturbet Landfill | Filename : W0092_2013(1).xls Return Year : 2013 |

Guidance to completing the PRTR workbook

AER Returns Workbook

REFERENCE YEAR 2013

1. FACILITY IDENTIFICATION

Parent Company Name	Cavan County Council
Facility Name	Belturbet Landfill
PRTR Identification Number	W0092
Licence Number	W0092-01

Waste or IPPC Classes of Activity	
No.	class_name
3.1	Deposit on, in or under land (including landfill).
	Storage prior to submission to any activity referred to in a preceding
	paragraph of this Schedule, other than temporary storage, pending
3.13	collection, on the premises where the waste concerned is produced.
	Use of waste obtained from any activity referred to in a preceding
4.11	paragraph of this Schedule.
	Storage of waste intended for submission to any activity referred to
	in a preceding paragraph of this Schedule, other than temporary
	storage, pending collection, on the premises where such waste is
4.13	produced.
	Recycling or reclamation of organic substances which are not used
	as solvents (including composting and other biological transformation
	processes).
	Recycling or reclamation of metals and metal compounds.
	Recycling or reclamation of other inorganic materials.
	Rahaghan
Address 2	
	Co Cavan
Address 4	
	0
Country	Cavan
Country Coordinates of Location	
River Basin District	
NACE Code	
	Treatment and disposal of non-hazardous waste
AER Returns Contact Name	
AER Returns Contact Email Address	5
AER Returns Contact Position	
AER Returns Contact Telephone Number	
AER Returns Contact Mobile Phone Number	
AER Returns Contact Fax Number	
Production Volume	0.0

| PRTR#: W0092 | Facility Name: Belturbet Landfill | Filename: W0092_2013(1).xls | Return Year: 2013 | Page 1 of 2

Production Volume Units	
Number of Installations	0
Number of Operating Hours in Year	0
Number of Employees	1
User Feedback/Comments	
Web Address	

2. PRTR CLASS ACTIVITIES

Activity Number	Activity Name
5(c)	Installations for the disposal of non-hazardous waste
	General

3. SOLVENTS REGULATIONS (S.I. No. 543 of 2002)

3. SOLVENTS REGULATIONS (S.I. NO. 543 01 20	02)
Is it applicable?	No
Have you been granted an exemption?	No
If applicable which activity class applies (as per	
Schedule 2 of the regulations)?	
Is the reduction scheme compliance route being	
used?	

4. WASTE IMPORTED/ACCEPTED ONTO SITE	Guidance on waste imported/accepted onto site
Do you import/accept waste onto your site for on-	
site treatment (either recovery or disposal	
activities) ? No	

| PRTR# : W0092 | Facility Name : Belturbet Landfill | Filename : W0092_2013(1).xls | Return Year : 2013 | Page 2 of 2

4.1 RELEASES TO AIR

Link to previous years emissions data

| PRTR# : W0092 | Facility Name : Belturbet Landfill | Filename : W0092_2013(1).xls | Return Year : 2013 |

SECTION A: SECTOR SPECIFIC PRTR POLLUTANTS

	RELEASES TO AIR				Please enter all quantities	in this section in KGs		
	POLLUTANT			METHOD			QUANTITY	
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
03	Carbon dioxide (CO2)	С	OTH	GASSIM	0.0	46400.0	0.0	46400.0
01	Methane (CH4)	С	OTH	GASSIM	0.0	0.0	0.0	16600.0

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION B : REMAINING PRTR POLLUTANTS

SECTION D. HEMAINING FRITI FOLLOTAN						_		
	RELEASES TO AIR				Please enter all quantities	s in this section in K	(Gs	
	POLLUTANT			METHOD			QUANTITY	
				Method Used				
No. Annex II	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/Year	F (Fugitive) KG/Year
					0.0	1	0.0) 0.0

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

SECTION C: REMAINING POLLUTANT EMISSIONS (As required in your Licence)

	RELEASES TO AIR				Please enter all quantities	in this section in K	(Gs	
	POLLUTANT			METHOD			QUANTITY	
				Method Used				
Pollutant No.	Name	M/C/E	Method Code	Designation or Description	Emission Point 1	T (Total) KG/Year	A (Accidental) KG/	Year F (Fugitive) KG/Year
					0.0)	0.0	0.0 0.0

^{*} Select a row by double-clicking on the Pollutant Name (Column B) then click the delete button

Additional Data Requested from Landfill operators

For the purposes of the National Inventory on Greenhouse Gases, landfill operators are requested to provide summary data on landfill gas (Methane) flared or utilised on their facilities to accompany the figures for total methane generated. Operators should only report their Net methane (CH4) emission to the environment under T(total) KGV for Section A: Sector specific PTHR pollutants above. Please complete the table below:

quai utili

Lanum.	Deltaibet Landilli					
Please enter summary data on the						
quantities of methane flared and / or						
utilised			Meti	hod Used		
				Designation or	Facility Total Capacity m3	i
	T (Total) kg/Year	M/C/E	Method Code	Description	per hour	I
Total estimated methane generation (as per	r .					I
site model)	16600.0	С	OTH	GASSIM	N/A	i
Methane flared	0.0				0.0	(Total Flaring Capacity)
Methane utilised in engine/s	0.0				0.0	(Total Utilising Capacity)
Net methane emission (as reported in Section						i
A above	16600.0	С	OTH	GASSIM	N/A	İ

12/02/2014 12:26

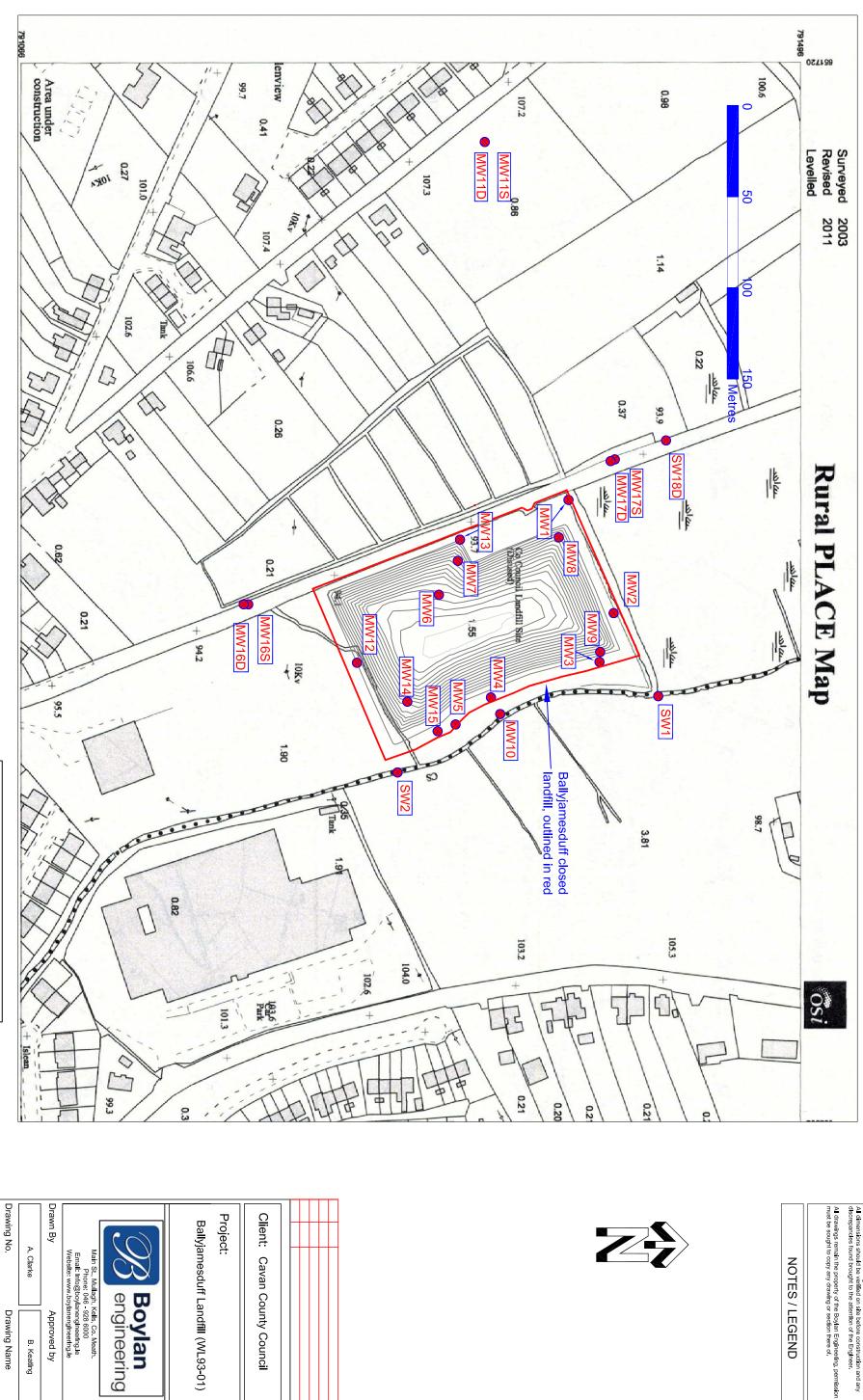
A survey of landfill sites to determine the quantity of methane flared and or recovered in utilisation plants for 2013

Please choose from the drop down menu the license number for your site	W0092 ▼	
Please choose from the drop down menu the name of the landfill site	Belturbet Landfill	▼
Please enter the number of flares operational at your site in 2013	0	
Please enter the number of engines operational at your site in 2013	0	
Total methane flared	0 kg/year	
Total methane utilised in engines	0 kg/year	

Please note that the closing date for reciept of completed surveys is 31/03/2014

Introduction

The Office of Climate Licensing and Resource Use (OCLR) of the Environmental Protection Agency acts as the inventory agency in Ireland with responsibility for compiling and reporting national greenhouse gas inventories to the European Commission and the United Nations Framework Convention on Climate Change. In addition to meeting international commitments Ireland's national greenhouse gas inventory informs national agencies and Government departments as they face the challenge to curb emissions and meet Ireland's targets under the Kyoto Protocol. The national inventory also informs data suppliers, making them aware of the importance of their contributions to the inventory process and a means of identifying areas where input data may be improved.


It is on this basis that the Environmental Protection Agency is asking landfill operators to partake in this survey so that the most uptodate information on methane flaring and recovery in utilisation plants at landfills sites is used in calculating the contribution of the waste sector to national greenhouse gas emissions

The Environmental Protection Agency wishes to thank you for partaking in this survey. If you have any questions about the survey and how to complete it please view the "Help sheet" worksheet. If however, your query is not answered by viewing the "Help sheet" worksheet please contact:

LFGProject@epa.ie

Once completed please send the completed file as an attachment clearly stating the name and or license number of the landfill site (e.g. W000 Xanadu landfill_2013) to: LFGProject@epa.ie

APPENDIX B Site Map

Client: Cavan County Council

Ballyjamesduff Landfill (WL93-01)

Ordnance Survey Ireland Licence No. EN 0049012 Ordnance Survey Ireland / Government of Ireland (Copyright Licence to Boylan Engineering)

11.06.2012

1:2000

000

001

A. Clarke

B. KeatIng

Approved by

Drawing Name

Monitoring Well Locations

Main St., Mullagh, Kells, Co. Meath. Phone: 046 - 928 6000 Emall: Info@boylanengineering.le Website: www.boylanengineering.le

Boylan engineering

Please Note

Do not scale from drawing.

All dimensions should be verified on site before construction and any discrepancies found brought to the attention of the Engineer.

NOTES / LEGEND

APPENDIX C Q4 Monitoring Report

GROUND WATER MONITORING REPORT FOR BELTURBET LANDFILL W0092-01

Client: Cavan County Council

Site Location: Rahaghan, Belturbet

Report No.: CCC-04-01-03-04-Rev-0

Produced by: Brona Keating, BSc, P.Grad.Dip. Environmental Eng.

Approved by: Date: 19th December 2013

Cathal Boylan, BEng, CEng, MIEI CHARTERED ENGINEER

Boylan Engineering

Company Reg. 430482

Address: Main St., Mullagh, Kells Co. Meath. **Phone:** 046 – 928 6000 / 087 – 820 5470

Fax: 046 – 928 6002

Email: info@boylanengineering.ie **Web:** www.boylanengineering.ie

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2013)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Environmental Monitoring at Belturbet Landfill (W0092-01), Rahaghan, Belturbet, Co Cavan for quarter four 2013.

Brona Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Environmental Sampling
 - 2.2 Laboratory Analysis
 - 2.3 Monitoring Locations
 - 2.4 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

List of Tables

1.0 Ground Water 04th Quarter Monitoring

Appendix

- 1.0 Historical Data
- 2.0 Analysis Methods
- 3.0 Field Sheets
- 4.0 COC/Sample Submission form

Lab Reports

Landfill Map

1. INTRODUCTION

Belturbet landfill was operated as a disposal facility by Cavan County Council from 1979 until its closure in February 2002. The facility was operated as a traditional landfill and is located on the Belturbet Ballyconnell road (R200) approximately 4.5 kilometres West of Belturbet town. The site which was originally a limestone quarry comprises some 0.65 hectares. The bedrock surrounding the landfill is Darty Limestone Formation from the Lower Carboniferous period. A waste licence was issued by the EPA on the 13th of February 2002. Some remedial works were carried out after the closure of the site.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the groundwater, sampling programme conducted on site and also summarises findings and analytical results for quarter four 2013.

The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Belturbet landfill is situated in the R4 Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R4 Zones are unacceptable in accordance with today's standards detailed in the EPA Landfill Design Manual or conditions of a waste licence - (EPA, groundwater protection Responses for Landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of Leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

2.0 METHODOLOGY

2.1 Environmental Sampling

The following procedure is conducted by Boylan Engineering to ensure accurate groundwater monitoring:

- ISO 5667: Guidance on sampling of groundwaters is adhered to.
- Prior to sampling, the depth of water in groundwater wells is measured by dipping.
 Dipping the wells before sampling allows for calculation of the volume of water in the well. This data is recorded on the field sheet for volume calculation which is presented in appendix 3.
- Once the volume was calculated the boreholes are purged three times their volume before sampling.
- Sampling is conducted using a Waterra inertial lift pump and associated tubing, pumping water directly from the borehole to the appropriate sampling bottles.
- Designated tubing is used at each location.
- Having obtained a representative sample the following parameters are measured on-site using a Hanna HI 98129 combination waterproof high accuracy.
 - Conductivity
 - o Temperature
 - o pH
- Boylan Engineering operate a Sample Submission/Chain of Custody form, which
 accompanies the samples at all times. These forms are located in the appendix 4.

2.2 Laboratory Analysis

- Samples are sent to Environmental Laboratory Service (ELS) (Ireland) for analysis of the required parameters in designated cool boxes with ice packs.
 These boxes insure that samples are maintained at a consistent temperature between 0 °C and 4°C on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0 °C and 4 °C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 3.

2.3 Monitoring Locations

		Qı	uarter 4 2013		
Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co- Ordinates
MW1	GW	TBC	-	TBC	TBC
MW5	Gas & Leachate	TBC	=	TBC	TBC
MW6	Gas & Leachate	TBC	=	TBC	TBC
MW7	Gas & GW	TBC	=	TBC	TBC
MW 9	Gas & GW	TBC	=	TBC	TBC
Killynaher Lake	SW	TBC	-	TBC	TBC

2.4 Weather Report

REPORTS FR	OM BALLY	HAISE (A)		-	-	-	-
Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind Speed	Gusts	Sunshine
	(mm)	Temp	Temp	(°C)	(knots)	(if >= 34 knots)	(hours)
		(°C)	(°C)				
19/11/2013	0.2	6.6	-0.4	-1.8	7		

3.0 SUMMARY OF RESULTS

Table 1.0 04th Quarter Ground water monitoring 2013

Report N		71307																
Monitori	ng Date:	19/11/2013																
Meti	hod	Site Tests	Site Tests	Site Tests	Site Tests	Site Tests	Total Organic Carbon (TOC)	Coliforms	Ammonia	AQ2-UP1	Coliforms	Titra	alab	AQ2-UP2	Dissolved Oxygen	Ion Chromato graphy	Titralab	
Method I	Number	Site Tests	Site Tests	Site Tests	Site Tests	Site Tests	EW123	MIC133	EW154M	EW154M	MIC133	EW153		EW154M-1	EW043	EW137	EW153	
Param	neter	Sample temperature (to be tested onsite)	Cond	рН	Water Level from TOC	Visual Inspection	Total Organic Carbon (TOC)	E. Coli	Ammonia (as N)	TON (as N)(Calc)	Total Coliforms	рН	Conductiv ity @20 DegC	Chloride	Dissolved Oxygen	Fluoride	Alkalinity Total (R2 pH4.5)	
Uni	its	Deg C	us/cm	pH units	Meter's		mg/L	MPN/100ml	mg/l N	mg/l N	MPN/100 ml	pH Units	uscm- 1@20	mg/L	mg/L	mg/L	mg/L CaCO3	
Limit of D	etection	-	-	-	-	-	0.25	0	0.007	0.138	0	0.3	25	2.6	1.0	0.1	10	
Date Testin				19.11.13						•	•	20.11.13						
	Client Ref																	
71307/001	MW7	10.2	650	7.7	5.5	clear	1.45	0	1.161	<0.138	60	7.6	626	9	9	2.3	309	
71307/002	MW8	10.4	1172	7.2	5.71	clear	2.02	0	0.489	<0.138	0	7.2	1155	222.5	11	0.3	313	
71307/003	MW9	10.8	723	7.1	-	heavy silt	2.33	0	0.154	0.157	20	7.1	710	<2.6	8	0.2	149	
IG	ïV		1000	≥6.5 and ≤9.5			NAC	0	0.15		0	≥6.5 and ≤9.5	1000	30	NAC	1	NAC	
																		Resid
Metl	hod						M	etals-Dissolve	d						AQ2-UP2	Total Cyanide High (Sub)	Phosphor	Residence on (1) Solidence TS
Metl Method I							Me	etals-Dissolve EM130	d						AQ2-UP2	Cyanide High (Sub)	Phosphor	or Evapo on (1
	Number	Iron- Dissolved	Potassiu m- Dissolved	Discolved	Cadmium- Dissolved	Cilionilum-	Manganes		d Copper- Dissolved	Lead- Dissolved	Magnesiu m- Dissolved	Mercury- Dissolved	Zinc- Dissolved	Boron- Dissolved		Cyanide High (Sub) DEFAULT	Phosphor us-TP EW146	or Evapo on (1 Solid TS EW(
Method I	Number neter	Dissolved	m-	Discolved		Cilionilum-	Manganes e-	EM130 Calcium-	Conner-	Dissolved ug/L	1	Mercury- Dissolved ug/L		1	EW154M-1	Cyanide High (Sub) DEFAULT Total Cyanide	Phosphor us-TP EW146 Total Phosphor	or Evapo on (7 Solid TS EWO Resid or Evapo on (7 Solid
Method I Param Uni Limit of D	Number neter its	Dissolved ug/L 20.0	m- Dissolved	Dissolved	Dissolved	Total	Manganes e- Dissolved	EM130 Calcium- Dissolved	Copper- Dissolved mg/L 0.003	ug/L 0.3	m- Dissolved	Dissolved	Dissolved	Dissolved	EW154M-1 Sulphate	Cyanide High (Sub) DEFAULT Total Cyanide High	Phosphor us-TP EW146 Total Phosphor us-TP	France on (** Solid or Evapo on (** Solid or Evapo on (** Solid TS
Method I Param Uni Limit of D Date Testin	Number neter its betection ng Initiated	Dissolved ug/L 20.0	m- Dissolved mg/L	Dissolved mg/L	Dissolved ug/L	Total ug/L	Manganes e- Dissolved ug/L	EM130 Calcium- Dissolved mg/L	Copper- Dissolved mg/L 0.003	Dissolved ug/L	m- Dissolved mg/L	Dissolved ug/L	Dissolved ug/L	Dissolved mg/L	EW154M-1 Sulphate	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L	Phosphor us-TP EW146 Total Phosphor us-TP	evapo on (* Solid TS EW(* Resid or Evapo on (* Solid TS
Method I Param Uni Limit of D Date Testin ELS Ref	Number neter its Detection ng Initiated Client Ref	ug/L 20.0	m- Dissolved mg/L 0.2	mg/L 0.5	ug/L 0.1	Total ug/L 1	Manganes e- Dissolved ug/L 1	Calcium- Dissolved mg/L	Copper- Dissolved mg/L 0.003	ug/L 0.3 0.11.13	m- Dissolved mg/L 0.3	ug/L 0.02	ug/L 1	mg/L 0.02	Sulphate mg/L 5	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9	Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.1	evapor on (Solii TS EW) Resi on (Solii TS Evapor on (Solii TS mgg 11
Param Limit of D Date Testin ELS Ref 71307/001	Number neter its Detection ng Initiated Client Ref MW7	ug/L 20.0	m- Dissolved mg/L 0.2	mg/L 0.5	Ug/L 0.1	Total ug/L 1	Manganes e- Dissolved ug/L 1	EM130 Calcium- Dissolved mg/L 1	Copper-Dissolved mg/L 0.003 20	Ug/L 0.3 0.11.13 <0.3	m- Dissolved mg/L 0.3	ug/L 0.02	ug/L 1	mg/L 0.02	Sulphate mg/L 5	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9	Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.1	Evapo on (Solii TS EW Resi on (Solii TS Evapo on (Solii TS Evap
Param Uni Limit of D Date Testin ELS Ref 71307/001 71307/002	Number neter its Detection ng Initiated Client Ref MW7 MW8	ug/L 20.0 54.8 193.2	m-Dissolved mg/L 0.2 9.3 6.4	mg/L 0.5 46.2 43.9	Ug/L 0.1 <0.1 <0.1	Total ug/L 1 <1 <1 <1	Manganes e- Dissolved ug/L 1	EM130 Calcium- Dissolved mg/L 1 40.2 158	Copper- Dissolved mg/L 0.003 20 <0.003 <0.003	Ug/L 0.3 0.11.13 <0.3 0.4	m-Dissolved mg/L 0.3 43.3 40.3	ug/L 0.02 <0.02 <0.02	ug/L 1 7.7 21.8	mg/L 0.02 0.37 0.04	EW154M-1 Sulphate mg/L 5 35.9 70	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9 <10 <10	Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.01	O Evapo on (Solii TS EW Resi o Evapo on (Solii TS 11 11 11 11 11 11 11 11 11 11 11 11 11
Param Uni Limit of D Date Testin ELS Ref 71307/001 71307/002 71307/003	Number neter its Detection ng Initiated Client Ref MW7 MW8 MW9	Ug/L 20.0 54.8 193.2 <20	m- Dissolved mg/L 0.2 9.3 6.4 3.6	mg/L 0.5 46.2 43.9 4.7	Ug/L 0.1 <0.1 <0.1 <0.1 <0.1	Total ug/L 1	Manganes e- Dissolved ug/L 1	EM130 Calcium- Dissolved mg/L 1 40.2 158 141	Copper-Dissolved mg/L 0.003 <0.003 <0.003 <0.003	Ug/L 0.3 0.11.13 <0.3 0.4 <0.3	m- Dissolved mg/L 0.3 43.3 40.3 18.2	ug/L 0.02 <0.02 <0.02 <0.02	ug/L 1 7.7 21.8 5.1	mg/L 0.02 0.37 0.04 <0.02	EW154M-1 Sulphate mg/L 5 35.9 70 13.2	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9 <10 <10 <10	Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.1	oo Evapoon (Soli T: EWW Resi oo Evapoon (Soli T: mų 15
Param Uni Limit of D Date Testin ELS Ref 71307/001 71307/002	Number neter its Detection ng Initiated Client Ref MW7 MW8 MW9	ug/L 20.0 54.8 193.2	m-Dissolved mg/L 0.2 9.3 6.4	mg/L 0.5 46.2 43.9	Ug/L 0.1 <0.1 <0.1	Total ug/L 1 <1 <1 <1	Manganes e- Dissolved ug/L 1	EM130 Calcium- Dissolved mg/L 1 40.2 158	Copper- Dissolved mg/L 0.003 20 <0.003 <0.003	Ug/L 0.3 0.11.13 <0.3 0.4	m-Dissolved mg/L 0.3 43.3 40.3	ug/L 0.02 <0.02 <0.02	ug/L 1 7.7 21.8	mg/L 0.02 0.37 0.04	EW154M-1 Sulphate mg/L 5 35.9 70	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9 <10 <10	Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.01	oo Evapoon (Soli T: EWW Resi oo Evapoon (Soli T: mų 15
Param Limit of D Date Testin ELS Ref 71307/001 71307/002 71307/003 IG Exceed	Number its Detection ng Initiated Client Ref MW7 MW8 MW9	Ug/L 20.0 54.8 193.2 <20	m- Dissolved mg/L 0.2 9.3 6.4 3.6	mg/L 0.5 46.2 43.9 4.7	Ug/L 0.1 <0.1 <0.1 <0.1 <0.1	Total ug/L 1	Manganes e- Dissolved ug/L 1	EM130 Calcium- Dissolved mg/L 1 40.2 158 141	Copper-Dissolved mg/L 0.003 <0.003 <0.003 <0.003	Ug/L 0.3 0.11.13 <0.3 0.4 <0.3	m- Dissolved mg/L 0.3 43.3 40.3 18.2	ug/L 0.02 <0.02 <0.02 <0.02	ug/L 1 7.7 21.8 5.1	mg/L 0.02 0.37 0.04 <0.02	EW154M-1 Sulphate mg/L 5 35.9 70 13.2	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9 <10 <10 <10	Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.01	evapor on (Solii TS EW Resi on (Solii TS Evapor on (Solii TS mgg 1
Param Uni Limit of D Date Testin ELS Ref 71307/001 71307/002 71307/003 IG Exceed	Number its Detection Ing Initiated Client Ref MW7 MW8 MW9 IV	Ug/L 20.0 54.8 193.2 <20 200	m- Dissolved mg/L 0.2 9.3 6.4 3.6 5	mg/L 0.5 46.2 43.9 4.7	Ug/L 0.1 <0.1 <0.1 <0.1 <0.1	Total ug/L 1	Manganes e- Dissolved ug/L 1	EM130 Calcium- Dissolved mg/L 1 40.2 158 141	Copper-Dissolved mg/L 0.003 <0.003 <0.003 <0.003	Ug/L 0.3 0.11.13 <0.3 0.4 <0.3	m- Dissolved mg/L 0.3 43.3 40.3 18.2	ug/L 0.02 <0.02 <0.02 <0.02	ug/L 1 7.7 21.8 5.1	mg/L 0.02 0.37 0.04 <0.02	EW154M-1 Sulphate mg/L 5 35.9 70 13.2	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9 <10 <10 <10	Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.01	o Evap on (Solii TS EW Con (Solii TS
Param Uni Limit of D Date Testin ELS Ref 71307/001 71307/002 71307/003 IG Exceed NOTES	Number neter its Detection ng Initiated Client Ref MW7 MW8 MW9 iV dance NAC- No Al	Ug/L 20.0 54.8 193.2 <20	m- Dissolved mg/L 0.2 9.3 6.4 3.6 5	mg/L 0.5 46.2 43.9 4.7	Ug/L 0.1 <0.1 <0.1 <0.1 <0.1	Total ug/L 1	Manganes e- Dissolved ug/L 1	EM130 Calcium- Dissolved mg/L 1 40.2 158 141	Copper-Dissolved mg/L 0.003 <0.003 <0.003 <0.003	Ug/L 0.3 0.11.13 <0.3 0.4 <0.3	m- Dissolved mg/L 0.3 43.3 40.3 18.2	ug/L 0.02 <0.02 <0.02 <0.02	ug/L 1 7.7 21.8 5.1	mg/L 0.02 0.37 0.04 <0.02	EW154M-1 Sulphate mg/L 5 35.9 70 13.2	Cyanide High (Sub) DEFAULT Total Cyanide High ug/L 9 <10 <10 <10	Phosphor us-TP EW146 Total Phosphor us-TP mg/I P 0.01	O Evapo on (Solii TS EW Resi o Evapo on (Solii TS 11 11 11 11 11 11 11 11 11 11 11 11 11

As there are no limits set in the waste licence for groundwater, results are compared to the Interim Guide Values for the protection of Groundwater in Ireland, where available.

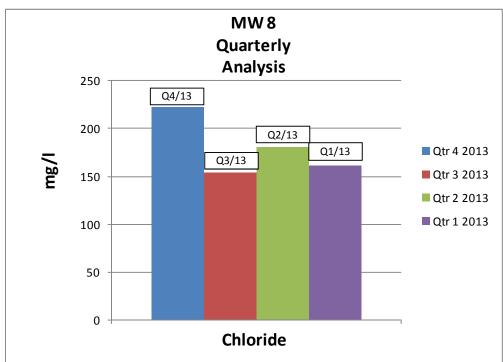
4.0 DISCUSSION

Monitoring of groundwater is a common and necessary event in landfill sites both during their active life and post closure. The significance of such monitoring is so the facilities can demonstrate that there is no potential for the migration of hazardous constituents from the unit into the groundwater systems.

Monitoring was conducted on 19th November 2013. Results in Hatched Red indicate where the interim guide value has been exceeded. Results from the fourth quarter 2013 show that there were exceedances at the ground water monitoring locations for parameters; Ammonia, E-Coli, Total Coliforms, Conductivity and Chloride as detailed in table 1.0 Previous results detailed in the historical data show that exceedances for these parameters are on par with previous monitoring events.

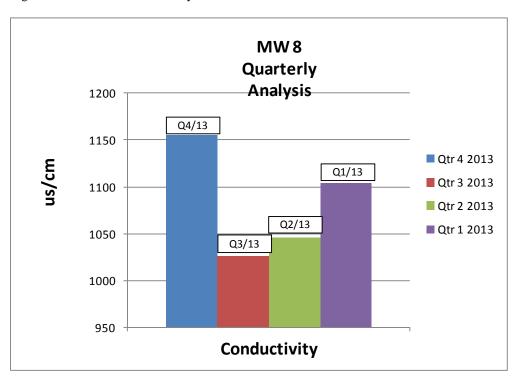
Historical results for comparison purposes are presented in tabular and graphic form in Appendix 1.

5.0 CONCLUSION


The results obtained are relatively consistent with previous monitoring events and do not show any signs of dramatic exceedences. Therefore there is no evidence of any major negative environmental impact associated with this landfill. The next environmental and landfill gas monitoring event will take place during the first quarter 2014.

APPENDIX 1- Historical Data- Tables

	Parameter	тос	E.Coli	Ammonia	TON	Tot Coliforms	рН	Cond	Cl	DO	Fe	К	Na
	Units	mg/l	MPN/ 100ml	mg/l N	mg/l N	MPN/ 100ml	pH Units	us/cm	mg/l	mg/l	mg/l	mg/l	mg/l
MW 7	Qtr 4 2013	1.45	0	1.161	<0.138	60	7.6	626	9	9	54.8	9.3	46.2
	Qtr 3 2013	1.06	0	1.118	<0.138	345	7.8	660	10.9	6.8	42	8.1	58
	Qtr 2 2013	0.8	0	1.059	<0.138	2	7.8	617	10.7	7.5	83.9	8.9	40.9
	Qtr 1 2013	0.74	1	1.157	<0.138	1	7.8	647	10.1	5.2	<20	8.3	48.9
MW 8	Qtr 4 2013	2.02	0	0.489	<0.138	0	7.2	1155	222.5	11	193.2	6.4	43.9
	Qtr 3 2013	2.05	0	0.472	<0.138	1450	7.2	1026	154.5	3.5	145.6	5.5	37.6
	Qtr 2 2013	0.96	0	0.221	<0.138	1	7.2	1046	180.4	3.9	215.4	5.9	34.8
	Qtr 1 2013	0.9	0	0.241	<0.138	0	7.3	1104	161.6	8.3	53.2	5.6	39.4
MW 9	Qtr 4 2013	2.33	0	0.154	0.157	20	7.1	710	<2.6	8	<20	3.6	4.7
	Qtr 3 2013	1.4	220	0.066	<0.138	2720	7.3	709	11.9	2.9	1049.5	2.9	6.5
	Qtr 2 2013	1.09	0	0.068	<0.138	30	7.3	667	3.9	6.4	23	2.4	4.4
	Qtr 1 2013	1.21	0	0.067	<0.138	100	7	706	4.1	10.7	28.1	5.9	4.4
Interim Guide Value		NAC	0	0.15	NAC	0	≥6.5 &≤9.5	1000	30	NAC	0.2	5	150


HISTORICAL RESULTS- Graphs

Eng. & Environmental Consultancy

APPENDIX 2- ANALYSIS METHODS

ELS LTD INAB ACCREDITATION SCHEDULE SUMMARY SHEET

Miscellaneous (P,G,W,S) Other VOC's EO025 (P.G.S) PAH E0129 (P.G.S) Ammonia/Ammonium 0.007-1mg/IN EW003 Bromomethane (.5 - 35 ag/1 Pange 0.01 - 0.2 µg/l Chloride 2.6-250 mg/1 EW015 Dthyl Ether Diethyl Ether 0.5 - 35 µg/1 Acenaphthene Flouride 0.1 - 2 mg/l EW137 11 Dichleroethene0.5 - 35 μg/1 Benzo (a) Anthracene COD 8-1500 mg/1 EW094 Indometlane/Mehyl Iodide 0.5 - 35 µg/l Benzo (a) Pyrene Benzo (t) Fluorauthene Nitrate 0.12-50 mg/l N EW034 Carbon Disulphide 0.5 - 35 µg/l Nitrite 0.013-1 mg/ N EW035 Allyl Chioride0.5 - 35 µg/l Benzo (shi) Perylene pH 4 - 10 pH Umits EW 138 Methylete Chloude/DCM 5.0 - 35 µg/l Benzo (k) Flatoranthene Phosphate 0.009-1 mg/l P EW007 2-Propeneuitrile/Acrylonitrile 2.0 - 35 µg/1 Chrysene TOC 0.25-100mg/1EW123 Chlormetryl Cymide 0.5 - 35 µg/l Dibenzo (ah) Anthracene Herarchlorobutaciene 0.5 - 35 µg.l Total Phosphorous 0.03-1 mg/l P EW002 Fluoranthene Miscellaneous (P,G,S) Trans-1,2 Dichloroethene0.5 - 35 µg/l Fluorene Bromate 1 to 50ng/1BRO3 (EW137) MtBE0.5 - 35 μg/l Indeno (123-cd) Pyrene Colour 2.5-50mg/l PtCCo (EW021) 11 Dichloroethane0.5 - 35 µg/1 Phenanthrene Confuctivity 132-d000 us/cm EW139 22 Dichloropropine0.5 - 35 µg/l Pyrene Dissolved Cavgen 1 to 10 mg/l (EW043) Cis-12 Dichloroethene 0.5 - 35 µg/l Acid Herbicides (P,G,S) Sulphate 1-250mg/LSO4(EW016) Methyl Acrylates 0 - 35 ag/l Range 001 - 0 7 µg/1 Bromochioromethane0.5 - 35 µg1 Suspended Solids 5-1000mg/I (EW013) 24.5-TH Total Dissolved Solids 1-1000mg/1 (EW046) Tetrahydrofuran5.0 - 35 ug/l 24-DH Total Hardness 3-330mg/l CaCO3 (EM099) 111 Trichloroethane0.5 - 35 µg/l 24-DBH Total Oxidised Nitrogen 0.138-51mg/1N (EW051) l-Chlorobutane0.5 - 35 µg/l MCPA H Carbon Tetrachlaride0.5 - 35 µg1 Piclorour II
Organophospherus Pesticides(?,G,S) Metals EM130 (P.G.S) Aluminium 5.0 - 500 µg/l 11 Dichloropropene0.5 - 35 µg/1 Antimony 0.1 - 10ug/l Arsenic 0.2 - 20ug/l Range 0.01 - 0.2 ug/l 12 Dichloropropane0.5 - 35 µg/1 Dibromomethame0.5 - 35 μg/1 Famohur OP Bartim 1.0 - 100µg1 Methyl Methacrylate 0.5 - 35 µg/l Methyl Farathion OP Boron 0.02-2mg/1 13 Dichloropropene, cis2.0 - 35 µg/1 Farathion OP Cadmium 0.1 - 10µg/1 MIBK/4 Methyl 2 Pentagone 2.0 - 35 µg1 Thionazin OP Calcium 1.0 - 100mg/1 Toluene(.5 - 35 µg/l Organochlorine Pesticides (P,C,S) Chromium 1.0 - 100µg/I 13 Dichloropropene,trans2.0 - 35 µg/1 Range 0.01 - 0.2 µg/l Cobalt 1.0 - 100µg/1 Ethyl Methacrylate 2.0 - 35 µg/l Aldrin Copper 3 - 4000µg/l Iron 5.0 - 500µg/l 112 Trichloroethme0.5 - 35 μg/l 13 Dichloropropme0.5 - 35 μg/l BHC Alpha isomer OC BHC Ben isomer OC Lead 0.3 - 30µg/1 2 Hesnuue1.0 -35 μg/1 BHC Deta isome: OC Magnesium 0.3 – 20mg/l 12 Dibromoethme0,5 - 35 μg/l Dieldrin OC Endostilphan Alpha isomer OC Manganese 1.0 - 100µg/1 Chlorobenzene05 - 35 µg/l 1112 Tetrachlorcethane20 - 35 µg/1 Memury 0.02 - 2µg1 Endosulphan Beta isomer OC Molybdemun 1.0 - 100µg/1 Ethyl Benzene0.5 - 35 µg/l Endosulphan Sulphate OC m & p Xyiene0.5 - 35 μg/l Nickel 0.5 - 50μg/l Endrin CC Heptachlor Eposide OC Potassium 0.2 - 20mg/l O Xylene0.5 - 35 μg/l Selenium 0.2 20µg1 Stryene20 35 µg1 Heptachlor OC Sodium 0.5 - 50mg/l Isopropy: Benzene0.5 - 35 µg/1 Lindane DC Strontium 10 - 100gg/1 Bromobenzene0.5 - 35 µz/1 P,P' DDE OC Tin 1.0 - 100µg/1 1122 Tetrachlorcethane0.5 - 35 µg/1 P.P-DDD OC Vanadium 1.0 - 100 kg/1 123 Trickloropropane2.0 - 35 µg1 P.P'-DDT OC Zinc 1.0 - 100µg/1 SI439 Potable Water VOCs & THM Propyl Banzenec.5 - 35 µg/l 1-Chlorotoluenet 5 - 35 ag/1 4 Chlororohiene0.5 - 35 μg/I EO(25 (P,C,S) Benzene 0.1-35 µg/l 135 Trimenthylbenzene0.5 - 35 µg/1 1.2-Dichloroethane 0.1-35 µg/1 Tert Butyl Benzene0.5 - 35 µg/l Tetrachloroethene 01-35 μg/l 124 Trimethlbenzene0.5 - 35 µgd Triculoroethene 0.1-35 µg/1 Sec Butyl Benzene0.5 - 35 µg/l Chloroform 1.0-150 µg/1 13 Dichlorobenzene0.5 - 35 µg/1 Bromoform 1.0-35 µg/I P Isopropyltoluene0.5 - 35 µg/1 14 Dichlorobenzane0.5 - 35 µg/l Dibsomochloromethane 1.0-35 µg/l 12 Dichlorobenzene0.5 - 35 μg/l Bromodichloromethme 2.0-35 µg/1 N Butyl Benzene0.5 - 35 μg/1 Hexachloroethane 5.0 - 35 µg/l 12 Dibromo 3Chloroprocame 2.0 - 35 μg/1 124 Tricklorobenzene0.5 35 µg/l 123 Trichlorobenzene0.5 - 35 µg/1

Notes.

1. Sample Matrix: P=Potable Water (Drinking), G=Ground Water, S=Surface Water, W=Waste Water

Edition 12:05/06/2009 111T QP01 Appendix B Rev I Page 1 of t

APPENDIX 3 – FIELD SHEETS

			ON SITE S	AMPLIN	G FOR	М		
Facility Na	me: Beltr	lae t	Wa	ste Licenc	e No:			
Report To:	W 35	19/11/1	3					
Sampling (Date:	-///)	Sample	Type (G	w, sw, Leac l A l(
Personnel:	A. he	edio		Weath	er: (DM		
Other Rem	narks:	2	GPS:					****
Sample Ref No	Sample Type	Time	DO Level	Elec Cond (us)	pH pH units	Temp °C	Visual	Instrument
TUM	GW			650	7.7	10.2	Clean	
Swm	GW			1172	7.2	10.4	clear	
mwg	BN			723	7-1	10.8	Heavy	silt
Lake	6N			347	79	7.8		
						-		
			-					
			-				ex.	
								2001.00
			33					
*								

Eng. & Environmental Consultancy

ite Reference:	Reltured	Cava	n County (Council Gr Permit No.	oundwate	r Sampling	rer. Date: /9	11/13	Personnel: 6	2.14
Sample Ref	Depth of Well	Depth of water below Ground Level	Depth of water column	Diameter of well	Radius of well	Radius squared	Volume of water in well	Volume of water in well	Volume of water to purge	Time to purge
(Shallow/Deep)	(m) A	(m) B	A-B=h	(m)	(m) (C/2) = r	(m²)	(m3) π r2h	(m³ x 1000)	(litres x 3)	(mins)
MWZ	312	548	25.72	0.05	0.025	0.000625	० ७५०॥१५	50:(17	15/42	25 min
MW8	31-12	5.68	15-44	0.05	0.025	0.000625	0.00 Pouls	49.92	15978	25 min
MUg	102	6.10	4-(0.05	0.025	0.000625	0.0080462	8.046	24-13 8	25 min 4 min
				0.05	0.025	0.000625				
			9	0.05	0.025	0.000625				
				0.05	0.025	0.000625				
				0.05	0.025	0.000625				
				0.05	0.025	0.000625				
				0.05	0.025	0.000625				
				0.05	0.025	0.000625				
				0.05	0.025	0.000625				

CAVAN COUNTY COUNCIL CLOSED LANDFILL MONITORING INTEGRITY FORM

ITEM		CONDITION		COMMENTS
	GOOD	NEEDS MAINTENANCE	N/A	
GROUNDWATER MONITORING WELLS			V	
-Labeled	_			
-Well cap integrity				
-Water drainage				
-Locks	-			
LANDFILL GAS YENTS				
-Riser condition	/			1
-Concrete collar condition	/			
-Screen condition				
LANDFILL GAS MONITORING WELLS	-			
-Labeled	/			
-Well cap integrity	/			1
-Water drainage				1
-Traffic protection				1
-Concrete collar condition	/			
-Screen Condition	-			
-Locks	/			
SURFACE WATER MONITORING LOCATIONS				
-Access	-		10	
-Disturbance				1

Signatury Data

No samples submitted

Additional Industriany

APPENDIX 4 – CHAIN OF CUSTODY/SAMPLE SUBMISSION Micro instanted Park. Corts 200 003 0050141 : * SAMPLE SUBMISSION FORM DETAILS TO APPEAR ON ANALYSIS REPORT 6602 Contact Num Address PG Namibio NOTE the a reprint sheet for different PO Southers For all customers a PO Number must be provided with the samples. CONTRACT DETAILS Scoults fine (Tick) of for certor this Bold stoot he completed NITTE Standard had time it 18 working days and 15 working days for test sels-contract. Deviatiotiens should be agreed in advance and may incur an extra charge The a separate short for different Quate Numbers SAMPLE DETAILS Sample Reference Tests Requested Sample Type NOTE: Whatever appears in this section, is the Detaking Water (DW), Ground SOTE: To redisc patential for sever please ONLY detail that will appear on the analysis report Number of bottles Water (LW), NarTack Water (SW), Waste Water (WW), ophric this field (Keely bullicating per grate,per (the not write the required detail on the battles as it salimitted wheet actualised or list the specific tests below is normally not clear? Shrips, Sail,58t, Salvan - Air 1,4 12 14 ONLY FIVE SAMPLES ALLOWED PER SUBMISSION SHEET ADDITIONAL INFORMATION AND SIGNATURES g person substitting stagsler To be Office in \$1.5 List

NAMED DANG SALESSONS

Emathdientry Security

and factory

Addressed lab-

		SAMPLE SUBMISSION FO	RM.	
	AILS TO APPEAR ON ANALYSIS			6604
Cantair Address			or a repursite object for differ substitutes a PO Namber occ	out PO Numbers out Po numbers with the sample
	TRACT DETAILS	must be completed. SCITE Standard loss the		Little
SAM	Use a separate sheat for different Que PLE DETAILS		old he agreed he advance me	d tooy becar an autra charge
Number	Sample Reference NOTE: Whatever appears in this section, is the QNEX Antall that, off appear on the enabysis report (The not series the required detail on the builder or it is not until part after)	NOTE: To reduce potential for error please complete this field chards indicating per quoto, per short attached or list the specific tests below	Number of bottles submitted	Sample Type Druding Water (DW), Gen Water (GW), Surface Wat (SW), Waste Water (WW Sholpe, Sol, Sh, Salvon
1300	NW6	see on	jul	ww
2				
3.				
a a				
í				
	ONEX FIVE SA	MPLES ALLOWED PER SURMISSION	SHEET	
		ONAL INFORMATION AND SIG	Commission.	

els			Enti	Acert Saleman C Matern Saleman C Matern Intentity (Hartzeck, Cork, Tall 1021 4520	orego, Peb,
		SAMPLE SUBMIS	SION FORM	111111111111111111111111111111111111111	
DETAILS TO	DAPPEAR ON ANALYSI	S REPORT		6	603
antart Name	Kana heart	Como	er Names R	Jan 1	1
Adems	Baylay Ez	POSITE	Use a separ	ate sheet for differe a PO Nutrier roas	at PO Selection i to provided with the samples
CONTRACT	T DETAILS	Hendle	Disc (Tick)	Green.	Cree
ES Quite No.	1104		b-	-	Omia I
SAMPLE DE		eoro Napatiers	Derinitations should be og	reed in advance uni	working days for tool van-contr I may incur an extra charge
-	Satisple Meference	Fests Mequestri	1		Sample Type
waster ONTA sen	Whatever appears in this section, is the sit that, will appear on the analysis repo- tive the required detail on the buttles as in sareaults and clear;		ded her drafts ber	nter of battles submitted	Brinking Water (BW), Grean Water (GW), Surface Water (SW), Waste Water (WW), Shedge, Sull Silt, Salvest , Air
5	5~1	5000	en l	ull	3~
£				-	
į					
ï					
1.					
		AMPLES ALLOWED PER			
	ADDITI	IONAL INFORMATION	AND SIGNATU	RES to to filled.	by \$1.5 f.ml
Highware /	Bheat Thurs		Ngunor	471	William .
19/1	1113		Date 20/1	1/13	Time
so, ramples futuri	Hell No. of pages /	0	Credition	Suthbetter	Coverinfactory -Sec no above -

MATER FOR CLEANING

SURFACE WATER MONITORING REPORT FOR BELTURBET LANDFILL W0092-01

Client: Cavan County Council

Site Location: Rahaghan, Belturbet

Report No.: CCC-04-01-03-04-Rev-0

Produced by: Brona Keating, BSc, P.Grad.Dip. Environmental Eng.

Approved by: Date: 19th December 2013

Cathal Boylan, BEng, CEng, MIEI CHARTERED ENGINEER

Boylan Engineering

Company Reg. 430482

Address: Main St., Mullagh, Kells Co. Meath. **Phone:** 046 – 928 6000 / 087 – 820 5470

Fax: 046 – 928 6002

Email: info@boylanengineering.ie **Web:** www.boylanengineering.ie

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2013)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means — graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Environmental Monitoring at Belturbet Landfill (W0092-01), Rahaghan, Belturbet, Co Cavan for quarter four 2013.

Brona Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Environmental Sampling
 - 2.2 Laboratory Analysis
 - 2.3 Monitoring Locations
 - 2.4 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

List of Tables

1.0 Surface Water 04th Quarter Monitoring

Appendix

- 1.0 Historical Data
- 2.0 Analysis Methods
- 3.0 Field Sheets
- 4.0 COC/Sample Submission form

Lab Reports

Landfill Map

1. INTRODUCTION

Belturbet landfill was operated as a disposal facility by Cavan County Council from 1979 until its closure in February 2002. The facility was operated as a traditional landfill and is located on the Belturbet Ballyconnell road (R200) approximately 4.5 kilometres West of Belturbet town. The site which was originally a limestone quarry comprises some 0.65 hectares. The bedrock surrounding the landfill is Darty Limestone Formation from the Lower Carboniferous period. A waste licence was issued by the EPA on the 13th of February 2002. Some remedial works were carried out after the closure of the site.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the surface water sampling programme conducted on site and also summarises findings and analytical results for quarter four 2013.

The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Belturbet landfill is situated in the R4 Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R4 Zones are unacceptable in accordance with today's standards detailed in the EPA Landfill Design Manual or conditions of a waste licence - (EPA, groundwater protection Responses for Landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of Leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

2.0 METHODOLOGY

2.1 Environmental Sampling

The following procedure is conducted by Boylan Engineering to ensure accurate surface water monitoring:

- Surface water samples are taken by grab sample using a Telescoup and Pendulum beaker.
- Having obtained a representative sample the following parameters are measured on-site using a Hanna HI 98129 combination waterproof high accuracy.
 - Conductivity
 - o Temperature
 - o pH
- Boylan Engineering operate a Sample Submission/Chain of Custody form, which accompanies the samples at all times. These forms are located in the appendix 4.

2.2 Laboratory Analysis

- Samples are sent to Environmental Laboratory Service (ELS) (Ireland) for analysis
 of the required parameters in designated cool boxes with ice packs. These boxes
 insure that samples are maintained at a consistent temperature between 0 °C and
 4°C on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0 °C and 4 °C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 3.

2.3 Monitoring Locations

	Quarter 4 2013										
Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co- Ordinates						
MW1	GW	TBC	-	TBC	TBC						
MW5	Gas & Leachate	TBC	-	TBC	TBC						
MW6	Gas & Leachate	TBC	-	TBC	TBC						
MW7	Gas & GW	TBC	-	TBC	TBC						
MW 9	Gas & GW	TBC	-	TBC	TBC						
Killynaher Lake	SW	TBC	-	TBC	TBC						

2.4 Weather Report

REPORTS FR	OM BALLY	HAISE (A)					,
Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind Speed	Gusts	Sunshine
	(mm)	Temp	Temp	(°C)	(knots)	(if >= 34 knots)	(hours)
		(°C)	(°C)				
19/11/2013	0.2	6.6	-0.4	-1.8	7		

3.0 SUMMARY OF RESULTS

Table 1.0 04th Quarter Surface water monitoring 2013

Report Nun	nber 20690	71305															
Monitori		19/11/2013															
Met	hod	Site Tests	Site Tests	Site Tests	Site Tests	AQ2	Titr	alab	5-Day	НАСН	Gravimetric	AQ2	Inolab	Titralab	AQ2-UP2	Total Phosphorus- TP	AQ2-UP1
Method	Number	Site Tests	Site Tests	Site Tests	Site Tests	EW003	EW138	EW139	EW001	EW094	EW013	EW015	EW043	EW153	EW154M-1	EW146	EW154M
Param	neter	Sample temperature (to be tested onsite)	Cond	рН	DO	Ammonia	рН	Cond	BOD	COD	Total Suspended Solids	CI	DO	Alkalinity Total (R2 pH4.5)	Sulphate	Total Phosphorus- TP	TON (as N)(Calc)
Uni	its	Deg C	us/cm	pH units	mg/l	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/L CaCO3	mg/L	mg/l P	mg/l N
Limit of D		-	-	-	-	0.007	25	25	1	8	5	2.6	1.0	10	5	0.1	0.138
Date Testin	1		19.11.1	13					-	<u> </u>	20.1	11.13	1	1	T	Т	
ELS Ref	Client Ref																
71305/001	SW1 Lake	7.8	347	7.9	9.0	0.129	7.8	340	<1	12	<5	16.8	10	155	10.2	0.04	0.142
S.I No. 29	4/1989					0.2	≥5.5 and ≤8.5	1000	5	40	50	250	-	NAC	200	-	
Method						Met	als-Dissolv	ed					Metals- Total				
Paran	neter	Iron-Dissolved	Manganese Dissolved	- Potassium- Dissolved	I		I	Copper- Dissolved	Lead- Dissolved	Magnesium- Dissolved		Zinc- Dissolved	Chromium- Total				
Uni	its	ug/L	ug/L	mg/L	mg/L	ug/L	mg/L	mg/L	ug/L	mg/L	ug/L	ug/L	ug/L				
Limit of D	etection	20	1	0.5	0.5	0.1	1	0.003	0.3	0.3	0.02	1	1				
Date Testin	ĭ 		1				20.1	1.13					,				
ELS Ref	Client Ref																
71305/001	SW1 Lake	<20	4.9	4.8	12.9	<0.1	56.3	<0.003	<0.3	3.9	<0.02	3.6	<1				
S.I No. 29	4/1989	200	50	-	-	5	-	0.03	0.01	-	1	100	30				
Exceed	ance of wa	ste licence															
NOTES																	
1	Sub-contr	act analysis den	oted by *														
2	ND - Conc	entration was b	elow the lim	nit of detect	ion												
3	NAC- No A	Abnormal Chang	ge														

As there are no limits set in the waste licence for surface water, results are compared to S.I. No. 294/1989 — European Communities (Quality of Surface Water Intended For The Abstraction of Drinking Water) Regulations, 1989.

4.0 DISCUSSION

As there are no limits set in the waste licence for surface water, results are compared to limits detailed in S.I. No. 294/1989 — European Communities (Quality of Surface Water Intended or The Abstraction of Drinking Water) Regulations, 1989.

A surface water sample was taken at SW2 (Killynaher lake) which is in the vicinity of the landfill. Results show that all parameters were within levels stipulated by the afore mentioned document.

Historical results for comparison purposes are presented in tabular form in Appendix 1

5.0 CONCLUSION

The results obtained are relatively consistent with previous monitoring events and therefore there is no evidence of any major negative environmental impact associated with this landfill. The next environmental and landfill gas monitoring event will take place during the first quarter 2014.

APPENDIX 1- Historical Data- Tables

	Parameter	Ammonia	рН	Cond	BOD	COD	Total Suspended Solids	CI	DO
	Units	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	mg/ I	mg/l
SW	Qtr 4 2013	0.129	7.8	340	<1	12	<5	17	10
Killynaher Lake	Qtr 3 2013	0.266	8.1	345	13	31	<5	21	8.7
	Qtr 2 2013	0.05	8.3	310	3	23	<5	17	10
	Qtr 1 2013	0.108	7.6	338	5	23	<5	18	10.6
S.I No. 294/1989		0.2	≥5.5 and ≤8.5	1000	5	40	50	250	

APPENDIX 2- ANALYSIS METHODS

ELS LTD INAB ACCREDITATION SCHEDULE SUMMARY SHEET

Miscellaneous (P,G,W,S) Other VOC's E0025 (P,G,S) FAH E0129 (P,G,S) Ammonia/Ammonium 0.007-1mg/IN EW003 Bromomethane 0.5 - 35 µg/l Pange 0.01 - 0.2 µg/l

Chloride 2.6-250 mg/l EW015 Flounde 0.1-2 mg/l EW137 COD 8-1500 mg/l EW004 Nitrate 0.11-50 mg/l N EW034 Nitrate 0.013-1 mg/l N EW035 pH 4 10 pH Units EW138 Phosphate 0.009-1 mg/l P EW007 TOC 0.25-130mg/l EW123

Total Phosphorous (103-1 mg/l P EW002

Miscellaneous (P,G,S)
Bromate 1 to 50ug/1BRO3 (EW137)

Colour 2.5-50mg/l PrCCo (EW021)

Confuctivity 132-6000 us/cm EW139
Dissolved Coygen 1 to 10 mg/l (EW043)

Sulphate 1-250mg/l SO4(EW016)

Suspended 30tids 5-1000mg/l (EW015)

Total Dissolved Solids 1-1000mg/l (EW046)

Total Hardness 3-330mg/l CaCO3 (EM099)

Total Oxidised Nitrogen 0.138-51mg/l N (EW051) Metals EM130 (P.G.S) Aluminium 5.0 - 500 μg/1 Antimony 0.1-10ag/1 Arsenic 0.2 - 20µg1 Barium 1.0 - 100µgl Boron 0.02-2mg/1 Cadmium 0.1 – 10µg/l Caldium 1.0 – 100mg/l Chramium 1.0 - 100µg/1 Cobalt 1.0 - 100µg/1 Copper 3 - 4000µg/1 Iron 5.0 - 500µg/I Lead 0.3 - 30µg/1 Magnesium 0.3 20mg/l Manganese 1.0 - 100µg/l Mercury 0.02 - 2µg1 Molybdemun 1.0 - 100µg/1 Nickel 0.5 - 50µg/1 Potassium 0.2 20mg/l Selenium 0.2 - 20µg/I Sodium 0.5 – 50mgl Stroatium 10 - 100µg/1 Tin 1.0 - 100µg/1 Vanadium 1.0 - 100.rg/1

Bennene 0.1-35 µg/l
1.2-Dichloroethene 0.1-35 µg/l
Terrichloroethene 0.1-35 µg/l
Tricchoroethene 0.1-35 µg/l
Chloroform 1.0-150 µg/l
Bromoform 1.0-35 µg/l
Dittoomochloromethane 1.0-35 µg/l
Bromodichloromethane 2.0-35 µg/l

SI439 Potable Water VOCs & THM

Zinc 1.0 - 100µg/1

EO(25 (P,G,S)

Other VOC's E002b (P₁G₂S)
Bromomethane (.5 - 35 µg/l
Ethyl Ether/Diethyl Ether() 5 - 35 µg/l
Il Dichloroethene() 5 - 35 µg/l
Isdomethane/Mehyl Iodine (.5 - 35 µg/l
Carbon Disulphide (.5 - 35 µg/l
Allyl Chloride(), 3 - 35 µg/l
Methyleuc Chlonde/DCM 5.0 - 35 µg/l
2-Propenenitrile/Acrylontrile 2.0 - 35 µg/l

1-Proposemmini-Acrylontine 2.9 - 35 µg/l Chlormehyl Cyznide 0.5 - 35 µg/l Henachlorobitaciene0.5 - 35 µg/l Trans-1,2 Dichloroethene0.5 - 35 µg/l Mr2E0.5 35 µg/l 11 Dichloroethane0.5 - 35 µg/l 22 Dichloropropine0.5 - 35 µg/l Cis-12 Dichloroethene0.5 - 35 µg/l

Methyl Acrylates 0 - 35 ng/l
Bronnochforomethane0.5 - 35 ng/l
Tetrahydrofurans 0 - 35 ng/l
111 Trickloroethane0.5 - 35 ng/l
111 Trickloroethane0.5 - 35 ng/l
11-Chlorobutane0.5 - 35 ng/l
Carbon Tetrachloride0.5 - 35 ng/l
11 Dichloropropane0.5 - 35 ng/l
12 Dichloropropane0.5 - 35 ng/l
Dibromomethane0.5 - 35 ng/l
Methyl Methacrylate0.5 - 35 ng/l
Mithic 4 Methyl 2 Pentanone 2.0 - 35 ng/l
Mithic 4 Methyl 2 Pentanone 2.0 - 35 ng/l
Toluene0.5 - 35 ng/l

Toluene C.5 - 35 µg/l 13 Dichloropropene man (2.0 - 35 µg/l Ethyl Methacrylate 2.0 - 35 µg/l 112 Trickloroethane 0.5 - 35 µg/l 13 Dichloropropine 0.5 - 35 µg/l

2 Hexanone 1.0 - 35 µg/l
12 Dibromocthiaco, 5 - 35 µg/l
Chlorobenzene 0.5 - 35 µg/l
1112 Tetrachlorcethane 2.0 - 35 µg/l
1112 Tetrachlorcethane 2.0 - 35 µg/l
1113 Tetrachlorcethane 2.0 - 35 µg/l
1114 Dityl Benzene 0.5 - 35 µg/l
115 O Xylene 0.5 - 35 µg/l

1122 Tetrachlorcethane0.5 - 35 µg/1

123 Trickhoropropane2.0 - 35 µg/l
Propyl BenzeneC.5 - 35 µg/l
2-Chlorotokiene9.5 - 35 µg/l
4 Chlorotokiene9.5 - 35 µg/l
135 Trimenthylbenzene0.5 - 35 µg/l
Test Butyl Benzene0.5 - 35 µg/l
124 Trimenthlbenzene0.5 - 35 µg/l
Sec Butyl Benzene0.5 - 35 µg/l
13 Dichlorobenzene0.5 - 35 µg/l
13 Dichlorobenzene0.5 - 35 µg/l
P Isopropyltokiene0.5 - 35 µg/l

14 Dichlorobenzene U.5 - 35 µg/l 12 Dichlorobenzene U.5 - 35 µg/l N Buryl Renzene U.5 - 35 µg/l Hevachloroethaus 5.0 - 35 µg/l Hevachloroethaus 5.0 - 35 µg/l 12 Dibromo 3 Caloropropane 2.0 - 35 µg/l 124 Trichlorobenzene U.5 - 35 µg/l 123 Trichlorobenzene U.5 - 35 µg/l Range 0.01 - 0.2 µg/l Acenaphthene Benzo (a) Authricene Benzo (b) Piuorauthene Benzo (ghi) Perylene

Benzo (k) Finoranthene Chrysene Dibenzo (ah) Anthracene Finoranthene Finorene Indeno (133 cd) Pyrene

Phenantirene
Pyrene
Acid Herbicides (P,G,S)
Range 0.01 - 0.2 µg/l
2.4.5 T H

24-DH 24-DBH MCPAH PicloramH

Organophosphurus Pesticides(P,G,S)

Pange 0.01 - 0.2 µg/l Famphus OP Methyl Farathion OP Farathion OP Ilmonazin OP

Organochlorine Pesticides (P,G,S) Pange 001 - 0 2 µg/1

Aldrin

BHC Alpha isomer OC BHC Bea isomer OC BHC Deta isomer OC Dicidrin OC

Endosulphan Alpha isomer OC Endosulphan Beta isomer OC Endosulphan Sulphate OC Endrin OC Heptachlor Eposide OC

Heptachlor OC Lindane OC P.P' DDE OC P.P'-DDD OC P.P'-DDT OC

Notes

1. Sample Matrix: P=Potable Water (Drinking), G=Ground Water, S=Surface Water, W=Waste Water

Edition 12 05/06/2009 111T QP01 Appendix B Rev I

Page 1 of 1

APPENDIX 3 – FIELD SHEETS

			ON SITE S	AMPLIN	G FOR	м						
Facility Na	ne: Belbe	last	Wa	ste Licenc	e No:							
Report To:		19/11/1	3									
Sampling D	ate:	-,)	Sample Type (GW, SW, Leachate) A ((Weather:								
Other Rem	arks: 5- No	edig	GPS:									
Sample Ref No	Sample Type	Time	DO Level	Elec Cond (us)	pH pH units	Temp °C	Visual	Instrument				
MUZ	GW			650	77	10.2	Clear					
SwM	GW			1/12	7.Z	10.4	Clear					
nwa	80		5	723	7-1	10.8	Heavy	silt				
Lake	en			347	79	78						
			-									
		_										
							0					
								-				
	-	-				-		-				
						-						

APPENDIX 4 – CHAIN OF CUSTODY/SAMPLE SUBMISSION

Contact Address	AILS TO APPEAR ON ANALYSIS	PO Nonter: Liv	Baylon Service States	est PO Nationers or he provided with the snagdes
CON	TRACT DETAILS	Blonds Due (Tick)	-1-	Dree
	ms 107	E		179-
	NOTE To believe beforetal for error tale field. Use a superate short for different Qual		ic is 10 working days and 1: this he agreed in advance on	Swerking days for tool sub-cents done insur ou extra charge
SAM	PLE DETAILS			
	Sample Reference	Tests Requested		Sample Type
Number	NOTE: Whaterer appears in this earlies, is the QNAX detail that will appear on the analysis report (Do not write the required detail on the betties as it is unrotally not ther?)	NOTE: To reduce potential for error please complete thin field about; indicating per quote per short attacked or list the specific tests below	Number of bottles submitted	Drinking Water (BW), Green Water (GW), Sanface Water (SW), Waste Water (WW), Mindge, Sall Sit, Salvest , Sit
55	Sw/	500 an	all	3~
-1				
a				
,				
	ONLY FIVE SA		SHEET	
		MPLES ALLOWED PER SUBMISSION		
		MPLES ALLOWED PER SUBMISSION ON AL INFORMATION AND SIG	NATURES	In \$15.146
	ADDITIO	MPLES ALLOWED PER SUBMISSION ON AL INFORMATION AND SIG	NATURES be before	by £1.5.14£

FOR BELTURBET LANDFILL W0092-01

Client: Cavan County Council

Site Location: Rahaghan, Belturbet

Report No.: CCC-04-01-03-04-Rev-0

Produced by: Brona Keating, BSc, P.Grad.Dip. Environmental Eng.

Approved by: Date: 14th December 2013

Cathal Boylan, BEng, CEng, MIEI

CHARTERED ENGINEER

Boylan Engineering

Company Reg. 430482

Address: Main St., Mullagh, Kells Co. Meath. **Phone:** 046 – 928 6000 / 087 – 820 5470

Fax: 046 – 928 6002

Email: info@boylanengineering.ie **Web:** www.boylanengineering.ie

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2013)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Environmental Monitoring at Belturbet Landfill (W0092-01), Rahaghan, Belturbet, Co Cavan for quarter four 2012.

Brona Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Environmental Sampling
 - 2.2 Laboratory Analysis
 - 2.4 Monitoring Locations
 - 2.5 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

List of Tables

1.0 Leachate 04th Quarter Monitoring

Appendix

- 1.0 Historical Data
- 2.0 Analysis Methods
- 3.0 COC/Sample Submission form

Lab Reports

Landfill Map

1. INTRODUCTION

Belturbet landfill was operated as a disposal facility by Cavan County Council from 1979 until its closure in February 2002. The facility was operated as a traditional landfill and is located on the Belturbet Ballyconnell road (R200) approximately 4.5 kilometres West of Belturbet town. The site which was originally a limestone quarry comprises some 0.65 hectares. The bedrock surrounding the landfill is Darty Limestone Formation from the Lower Carboniferous period. A waste licence was issued by the EPA on the 13th of February 2002. Some remedial works were carried out after the closure of the site.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the leachate sampling programme conducted on site and also summarises findings and analytical results for quarter four 2013.

The purpose of environmental monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil, plants or animals
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Establish a reliable database of information for the landfill throughout its life

According to the Response matrix for landfills, Belturbet landfill is situated in the R4 Zone. This zone was categorized using a vulnerability rating combined with the aquifer category for the area. Landfills situated in R4 Zones are unacceptable in accordance with today's standards detailed in the EPA Landfill Design Manual or conditions of a waste licence - (EPA, groundwater protection Responses for Landfills). Unfortunately this landfill was constructed prior to this guidance and conditions were issued only after its closure.

The generation of Leachate is one of the main hazards to groundwater from the disposal of waste by land filling. The conditions within a landfill vary over time from aerobic to anaerobic thus allowing for different chemical reactions to take place. Most landfill leachates have a high BOD, COD, Ammonia, Chloride, Sodium, Potassium, Hardness and Boron levels - (EPA, groundwater protection Responses for Landfills).

2.0 METHODOLOGY

2.1 Environmental Sampling

The following procedure is conducted by Boylan Engineering to ensure accurate leachate monitoring:

- ISO 5667: Guidance on sampling of groundwaters is adhered to.
- Prior to sampling, the depth of water in leachate wells is measured by dipping.
 Dipping the wells before sampling allows for calculation of the volume of water in the well.
- Sampling is conducted using a Waterra inertial lift pump and associated tubing, pumping water directly from the borehole to the appropriate sampling bottles.
- Designated tubing is used at each location.
- Boylan Engineering operate a Sample Submission/Chain of Custody form, which accompanies the samples at all times. These forms are located in the appendix 3.

2.2 Laboratory Analysis

- Samples are sent to Environmental Laboratory Service (ELS) (Ireland) for analysis of the required parameters in designated cool boxes with ice packs.
 These boxes insure that samples are maintained at a consistent temperature between 0 °C and 4°C on their journey to the laboratory.
- On arrival at the laboratory, samples are stored between 0 °C and 4 °C.
- All samples received are inspected by Laboratory Manager Mr. Brendan Murray.
- All samples are assigned a unique reference number and are recorded on the Laboratory Information Management System (LIMS)
- All staff involved in the analysis of samples hold a minimum honours science degree.
- In the event of a Quality Control Check failure for a given parameter, a note will be included on the analysis report detailing the QC fail.
- Analysis of samples is conducted under the INAB accreditation and associated quality control procedures are employed in every aspect of analysis.
- Analysis methods are listed in Appendix 2.

2.3 Monitoring Locations

	Quarter 4 2013										
Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co- Ordinates						
MW1	GW	TBC	-	TBC	TBC						
MW5	Gas & Leachate	TBC	=	TBC	TBC						
MW6	Gas & Leachate	TBC	=	TBC	TBC						
MW7	Gas & GW	TBC	=	TBC	TBC						
MW 9	Gas & GW	TBC	=	TBC	TBC						
Killynaher Lake	SW	TBC	-	TBC	TBC						

2.4 Weather Report

REPORTS FROM BALLYHAISE (A)												
Date	Rainfall	Max	Min	Grass Min Temp	Mean Wind Speed	Gusts	Sunshine					
	(mm)	Temp	Temp	(°C)	(knots)	(if >= 34 knots)	(hours)					
		(°C)	(°C)									
19/11/2013	0.2	6.6	-0.4	-1.8	7							

3.0 SUMMARY OF RESULTS

Table 1.0 04th Quarter Leachate monitoring 2013

Report N	lumber	71306														
Monitorii		19/11/2013														
Method				Site Tests	AQ2				Coliforms		Ion Chromat ography	AQ2-UP2	Total Cyanide High (Sub)			
Method Number		Site Tests	Site Tests	Site Tests	EW003	EW051	EW138	EW139	EW001	EW094	EW015	MIC133		EW137	EW154M-1	DEFAULT
Param	neter	Sample temperatu re (to be tested onsite)	Water Level from TOC	Visual Inspection	Ammonia	TON	рН	Cond	BOD	COD	Cl	E. Coli	Total Coliforms	Fluoride	Sulphate	Total Cyanide High
Uni	its	Deg C	Meter's		mg/l N	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l	MPN	l/100ml	mg/L	mg/L	ug/L
Limit of Do	etection	-	-	-	0.035	0.69	0.3	25	1	8	13	10	10	0.1	5	9
Date Testing			19.11.13				•		-	2	0.11.13	-	-	-		-
ELS Ref	Client Ref															
71306/001	MW6	-	-	-	1.478	<0.69	7.4	856	7	15	62.7	10	10	1.4	45.7	<9
IG					0.15	NAC	≥6.5&≤9. 5	1000	-	-	200	0	0	1	200	10
		Total	Metals-				1									
Meth	hod	Total Phosphoru s-TP	Metals- Total		1				Metals-	Dissolved						
Meth		Phosphoru			1				Metals-	Dissolved						
	Number	Phosphoru s-TP		Manganes e- Dissolved	Potassium- Dissolved	Sodium- Dissolve d	Cadmium Dissolve d	Calcium- Dissolve d		Lead- Dissolve d	Magnesi um- Dissolve	Mercury- Dissolve d	Zinc- Dissolved	Boron- Dissolve d	Iron- Dissolved	
Method N	Number neter	Phosphoru s-TP EW146 Total Phosphoru s-TP	Total Chromiu m-Total	e- Dissolved	Dissolved	Dissolve d	Dissolve d	Dissolve d	EM130 Copper- Dissolve d	Lead- Dissolve d	um- Dissolve d	Dissolve d	Dissolved	Dissolve d	Dissolved	
Method N Param Uni	Number neter its	Phosphoru s-TP EW146 Total Phosphoru s-TP	Chromiu m-Total ug/L	e- Dissolved ug/L	Dissolved ug/L	Dissolve d mg/L	Dissolve d mg/L	Dissolve d ug/L	EM130 Copper- Dissolve d mg/L	Lead- Dissolve d mg/L	um- Dissolve d ug/L	Dissolve d mg/L	Dissolved ug/L	Dissolve d ug/L	Dissolved ug/L	
Method N	Number neter its	Phosphoru s-TP EW146 Total Phosphoru s-TP mg/I P 0.1	Total Chromiu m-Total	e- Dissolved	Dissolved	Dissolve d	Dissolve d	Dissolve d ug/L 1	EM130 Copper- Dissolve d	Lead- Dissolve d	um- Dissolve d	Dissolve d	Dissolved	Dissolve d	Dissolved	
Method Me	Number neter its	Phosphoru s-TP EW146 Total Phosphoru s-TP mg/I P 0.1	Chromiu m-Total ug/L	e- Dissolved ug/L	Dissolved ug/L	Dissolve d mg/L	Dissolve d mg/L	Dissolve d ug/L 1	Copper-Dissolve d mg/L 0.003	Lead- Dissolve d mg/L	um- Dissolve d ug/L	Dissolve d mg/L	Dissolved ug/L	Dissolve d ug/L	Dissolved ug/L	
Method N Param Uni Limit of Do	Number neter its etection g Initiated Client	Phosphoru s-TP EW146 Total Phosphoru s-TP mg/I P 0.1	Chromiu m-Total ug/L	e- Dissolved ug/L	Dissolved ug/L	Dissolve d mg/L	Dissolve d mg/L	Dissolve d ug/L 1	Copper-Dissolve d mg/L 0.003	Lead- Dissolve d mg/L	um- Dissolve d ug/L	Dissolve d mg/L	Dissolved ug/L	Dissolve d ug/L	Dissolved ug/L	
Method N Param Uni Limit of Do Date Testing	Number neter its etection g Initiated Client Ref MW6	Phosphoru s-TP EW146 Total Phosphoru s-TP mg/I P 0.1	Chromiu m-Total ug/L 1	e- Dissolved ug/L 1	Dissolved ug/L 0.2	Dissolve d mg/L 0.5	Dissolve d mg/L 0.1	Dissolve d ug/L 1 20.1	Copper-Dissolve d mg/L 0.003	Lead- Dissolve d mg/L 0.3	um- Dissolve d ug/L 0.3	Dissolve d mg/L 0.02	Dissolved ug/L 1	Dissolve d ug/L 0.02	ug/L 20	
Method Me	Number neter its etection g Initiated Client Ref MW6	Phosphoru s-TP EW146 Total Phosphoru s-TP mg/I P 0.1	Chromiu m-Total ug/L 1	e- Dissolved ug/L 1	Dissolved ug/L 0.2	Dissolve d mg/L 0.5	Dissolve d mg/L 0.1	Dissolve d ug/L 1 20.1	EM130 Copper-Dissolve d mg/L 0.003 1.13	Lead- Dissolve d mg/L 0.3	um- Dissolve d ug/L 0.3	Dissolve d mg/L 0.02	ug/L 1	Dissolve d ug/L 0.02	ug/L 20 <20	
Method N Param Uni Limit of Do Date Testing ELS Ref 71306/001 IGN	Number neter its etection g Initiated Client Ref MW6	Phosphoru s-TP EW146 Total Phosphoru s-TP mg/I P 0.1	Chromiu m-Total ug/L 1	e- Dissolved ug/L 1	Dissolved ug/L 0.2	Dissolve d mg/L 0.5	Dissolve d mg/L 0.1	Dissolve d ug/L 1 20.1	EM130 Copper-Dissolve d mg/L 0.003 1.13	Lead- Dissolve d mg/L 0.3	um- Dissolve d ug/L 0.3	Dissolve d mg/L 0.02	ug/L 1	Dissolve d ug/L 0.02	ug/L 20 <20	
Method N Param Uni Limit of Do Date Testing ELS Ref 71306/001 IGN Exceed	Number its etection g Initiated Client Ref MW6 V	Phosphoru s-TP EW146 Total Phosphoru s-TP mg/l P 0.1 0.4 -	Chromiu m-Total ug/L 1	e- Dissolved ug/L 1	Dissolved ug/L 0.2	Dissolve d mg/L 0.5	Dissolve d mg/L 0.1	Dissolve d ug/L 1 20.1	EM130 Copper-Dissolve d mg/L 0.003 1.13	Lead- Dissolve d mg/L 0.3	um- Dissolve d ug/L 0.3	Dissolve d mg/L 0.02	ug/L 1	Dissolve d ug/L 0.02	ug/L 20 <20	
Param Uni Limit of Do Date Testing ELS Ref 71306/001 IGV Exceed NOTES 1	neter its etection g Initiated Client Ref MW6 V dance	Phosphoru s-TP EW146 Total Phosphoru s-TP mg/I P 0.1 0.4 - ract analysis	Chromiu m-Total ug/L 1 5.1 30	e- Dissolved ug/L 1 14.2 50	Dissolved ug/L 0.2	Dissolve d mg/L 0.5	Dissolve d mg/L 0.1	Dissolve d ug/L 1 20.1	EM130 Copper-Dissolve d mg/L 0.003 1.13	Lead- Dissolve d mg/L 0.3	um- Dissolve d ug/L 0.3	Dissolve d mg/L 0.02	ug/L 1	Dissolve d ug/L 0.02	ug/L 20 <20	
Param Uni Limit of Do Date Testing ELS Ref 71306/001 IGN Exceed NOTES 1 2	Number neter its etection g Initiated Client Ref MW6 V dance Sub-contr	Phosphoru s-TP EW146 Total Phosphoru s-TP mg/I P 0.1 0.4 - cact analysis entration with	Chromiu m-Total ug/L 1 5.1 30 denoted bas below the state of the state	e- Dissolved ug/L 1 14.2 50	Dissolved ug/L 0.2	Dissolve d mg/L 0.5	Dissolve d mg/L 0.1	Dissolve d ug/L 1 20.1	EM130 Copper-Dissolve d mg/L 0.003 1.13	Lead- Dissolve d mg/L 0.3	um- Dissolve d ug/L 0.3	Dissolve d mg/L 0.02	ug/L 1	Dissolve d ug/L 0.02	ug/L 20 <20	
Param Uni Limit of Do Date Testing ELS Ref 71306/001 IGV Exceed NOTES 1 2 3	neter its etection g Initiated Client Ref MW6 V dance Sub-contr	Phosphoru s-TP EW146 Total Phosphoru s-TP mg/I P 0.1 0.4 - ract analysis	Chromiu m-Total ug/L 1 5.1 30 denoted b as below thange	e- Dissolved ug/L 1 14.2 50	Dissolved ug/L 0.2	Dissolve d mg/L 0.5	Dissolve d mg/L 0.1	Dissolve d ug/L 1 20.1	EM130 Copper-Dissolve d mg/L 0.003 1.13	Lead- Dissolve d mg/L 0.3	um- Dissolve d ug/L 0.3	Dissolve d mg/L 0.02	ug/L 1	Dissolve d ug/L 0.02	ug/L 20 <20	

As there are no limits set in the waste licence for leachate, results are compared to the Interim Guide Values for the protection of Groundwater in Ireland, where available

4.0 DISCUSSION

Leachate consists of water that has become contaminated as it passes through a waste disposal site. It contains insoluble waste constituents which have not degraded chemically or biochemically. This leachate can cause a treat to surrounding surface and ground waters. The composition of leachate will vary depending on the age of the landfill. As there are no limits set in the waste licence for leachate, results are compared to the Interim Guide Values for the protection of Groundwater in Ireland, where available. Results in Hatched Red indicate where the interim guide value has been exceeded. A leachate sample was abstracted from well MW6 during quarter two monitoring. Results show that the Interim Guide Value was exceeded at well MW6 on this occasion for the parameters Ammonia, E-coli, Total Coli forms, Fluoride, Potassium & Mercury. These results are consistent with those obtained in previous monitoring events at MW6.

Historical results for comparison purposes are presented in tabular form in Appendix 1.

5.0 CONCLUSION

The results obtained are relatively consistent with previous monitoring events and do not show any signs of dramatic exceedences. Therefore there is no evidence of any major negative environmental impact associated with this landfill. The next environmental monitoring event will take place during the first quarter 2014.

APPENDIX 1- Historical Data- Tables

	Parameter	Ammonia	TON	рН	Cond	BOD	COD	CI
	Units	mg/l N	mg/l N	pH Units	us/cm	mg/l	mg/l	mg/l
MW 6	Qtr 4 2013	1.478	<0.69	7.4	856	7	15	62.7
	Qtr 3 2013	-	-	-	-	-	1	-
	Qtr 2 2013	-	-	-	-	-	ı	-
	Qtr 1 2013	3.831	<0.69	7.2	1141	4	18	26.5
Interim Guid	le Values	0.15	NAC	≥6.5&≤9.5	1000			200

APPENDIX 2- ANALYSIS METHODS

ELS LTD INAB ACCREDITATION SCHEDULE SUMMARY SHEET

PAH E0129 (P.G.S) Miscellaneous (P.G.W.S) Other VOC's E0025 (P.G.S) Ammonia/Ammonium 0.007-1mg/IN EW003 Bromomethane (.5 - 35 µg/1 Pange 0.01 - 0.2 µg/l Dthyl Ether Diethyl Ether 0.5 - 35 µg/1 Chloride 2.6-250 mp/1 EW015 Acenaphthene 11 Dichloroethene0.5 - 35 µg/1 Flouride 0.1 - 2 mg/. EW137 Benzo (a) Anthracene COD 8-1500 mg/1 EW094 Indomethane/Menyl Iodide 0.5 - 35 µg·1 Benzo (a) Pyrene Nitrate 0.11-50 mg/l N EW034 Carbon Disulphide 0.5 - 35 µg/l Benzo (t) Fluorauthene Nitrate 0.013-1 mg/. N EW035 Allyl Chioride0.5 - 35 µg/l Benzo (ghi) Perylene pH 4 - 10 pH Omits EW 138 Methylete Chloude/DCM 5.0 - J5 µg/I Benzo (k) Fluoranthene Phosphate 0.009-1 mg/l P EW007 2-Propenenitrile/Acrylonitrile 2.0 - 35 µg/l Chrysene TOC 0.25-100mg/LEW123 Chlormethyl Cymide 0.5 - 35 µg/l Dibenzo (ah) Anhracene Total Phosphorous (.03-1 mg/l P EW002 Hersachkorobutaciene0.5 - 35 µg1 Fluoranthene Miscellaneous (P,G,S) Trans-1,2 Dichloroethene0.5 - 35 µg/l Fluorene Bromate 1 to 50 ng/1BRO3 (EW137) MtBE0.5 - 35 μg/1 Indeno (123-cd) Pyrene Colour 2.5-50mg/l FtCCo (EW021) 11 Dichloroethane0.5 - 35 μg/1 Phenanttrene Confuctivity 132-d000 us/cn EW139 22 Dichloropropine0.5 - 35 µg/1 Pyrene Dissolved Cuygen 1 to 10 mg/l (EW043) Cis-12 Dichloroethene0.5 - 35 µg/l Acid Herbicides (P,G,S) Sulphate 1-250mg/LSO4(FW016) Methyl Acrylates 0 - 35 ag/l Range 001 - 0 7 µg/1 Suspended Solids 5-1000mg/1 (EW013) Bromochloromethane0.5 - 35 µg1 24,5-TH Total Dissolved Solids 1-1000mg/1 (EW046) Tetrahydrofuran5.0 - 35 ug/1 24-DH Total Hardness 3-330mg/1 CaCO3 (EM099) 111 Trickloroethane0.5 - 35 µg/l 24-DB H Total Oxidised Nitrogen 0.138-51mg/l N (EW051) Metals EM130 (P,G,S) 1-Chlorobutane0.5 - 35 µg/1 MCPA H Carbon Tetrachlaride0.5 - 35 µg1 Piclorem II Altaninium 5.0 - 500 µg/l 11 Dichloropropene0.5 - 35 µg/1 Organophospherus Pesticides(?,G,S) Antimony 0.1 - 10ug/1 12 Dichloropropme0.5 - 35 µg/1 Range 0.01 - 0.2 µg/1 Arsenic 0.2 - 20µg1 Dibromomethane0.5 - 35 µg/1 Famiphin OP Barium 1.0 - 100µgl Methyl Methacrylate 0.5 - 35 µg/l Methyl Parathion OP Boron 0.02-2mg/1 15 Dichloropropene, cisi.0 - 35 µg/l Farathion OP Cadmium 0.1 - 10µz/1 MIBK/4 Methyl 2 Pentasone 2.0 - 35 µg1 Thionazin OP Calcium 1.0 - 100mg/1 Toluene(.5 - 35 µg/l Organochlorine Pesticides (P.C.S) Chromium 1.0 - 100µg/I Range 0.01 - 0.2 µg/l 13 Dichloropropene,trans2.0 - 35 ug/l Cobalt 1.0 - 100µg/I Ethyl Methacrylate 2.0 - 35 µg/l Aldrin Copper 3 - 4000µg/1 112 Trichloroethme0.5 - 35 µg/l BHC Alpha isomer OC Iron 5.0 - 500µg/1 13 Dichloropropme0.5 - 35 µg/l BHC Ben isomer OC 2 Hesamuel.0 -35 μg/1 Lead 0.3 - 30µg/1 BHC Deta isome OC 12 Dibromoethme0,5 - 35 μg/l Magnesium 0.3 – 20mg/l Dieldrin OC Manganese 1.0 - 100µg/l Chlorobenzene05 - 35 µg/l Endosulphan Alpha isomer OC Mercury 0.02 - 2µg1 1112 Tetrachlorcethane20 - 35 ug/l Endosulphan Beta isomer OC Molybdemun 1.0 - 100µg/l Nicket 0.5 - 50µg/l Ethyl Benzene0.5 - 35 µg/l Endosulphan Sulphate OC m & p Xylene0.5 - 35 μg/l Endrin CC Potassium 0.2 - 20mg/l 0 Xylene0.5 - 35 µg/l Heptachlor Eposide OC Selenium 0.2 20µg/l Heptachlor OC Stryene20 35 µg/l Sodium 0.5 - 50mg/l Liopropy: Benzene0.5 - 35 μg/1 Lindane DC P.P' DDE OC Strontium 10 - 100ug/1 Bromobenzene0.5 - 35 uz/1 Tin 1.0 - 100µg/1 1122 Tetrachlorcethane0.5 - 35 ug/1 P.P-DDD OC Vanadium 1.0 - 100 kg/1 123 Trickloropropane2.0 - 35 µg1. Propyl BenzeneC.5 - 35 µg/l P.P'-DDT OC Zinc 1.0 - 100µg/i SI439 Potable Water VOCs & THM 2-Chlorotoluene#.5 - 35 .ig/1 EO(25 (P,C,S) Benzene 0.1-35 μg/l 4 Chlorotohiene0.5 - 35 μg/I 135 Trimenthylbenzene0.5 - 35 ag/1 1.2-Dichloroethane 0.1-35 µg/l Tert Butyl Benzene0.5 - 35 µg/l 124 Trimethlbenzene0.5 - 35 µg·l Tetrachloroethene 01-35 µg/1 Sec Butyl Benzene0.5 - 35 µg/l Triculoroethene 0.1-35 µg/1 Chloroform 1.0-150 µg/1 13 Dichlorobenzene0.5 - 35 µg/1 Bronoform 1.0-35 µg/I P Isopropyltolueae0.5 - 35 μg/l 14 Dichlorobenzene0.5 - 35 μg/1 12 Dichlorobenzene0.5 - 35 μg/1 Dibsomochloromethane 1.0-35 µg/l Bromodichloromethane 2.0-35 µg/l N Butyl Benzene0.5 - 35 μg/1 Hexachloroethane5.0 - 35 µg/l 12 Dibromo 3Chloropropane 2.0 - 35 μg/l 124 Tricklorobenzene0.5 35 µg/l 123 Trichlorobenzene0.5 - 35 µg/1

Notes

1. Sample Matrix: P=Potable Water (Drinking) , G=Ground Water , S=Surface Water, W=Waste Water

Edition 12 0506/2009 111T QP01 Appendix B Rev I Page 1 of l

APPENDIX 3 – CHAIN OF CUSTODY/SAMPLE SUBMISSION

е	ls 🔼	SAMPLE SUBMISSION F	Acres Barbane Material Barbane (Santa Barbane (Santa Barbane) (Santa Barbane) (DRM)	Compan, at Fark.
	Baylor &	PO Neather: North	Surple - 4	out PO Numbers
	NOTE To consequently the error thin cold the emporate sheet for different Quel		Direction of the state of the s	Searching that's for faul sub-each distory focus as extra charge
SAN	IPLE DETAILS Sample Reference	Testi Requested		Sample Type
header	NEFE: Whatever appears to this section, is the SSSLY detail that will appear on the analysis report (The not series the regalent detail so the bottles as it is normally not clear).	NOTE: To reduce patential for error please complete the field clearly indicating per queue, there attached or list the specific twin token		Drinking Water (IIW), Gree Water (GW), Surface Water (SW), Weste Water (WW) Studge, Self, St., Solvier, A
130	NW6	see oil	ut	ww
ķį.	-			
,				
14				
		MPLES ALLOWED PER SUBMISSIONAL INFORMATION AND SE		
Signatio	19/11/13	lafter Right Date	un Art	Time
Secure	epiko satteatrosi [No. of pogos 72	Cond	Hise Satisfactory	Constitutioner - Sec.

GAS MONITORING REPORT FOR BELTURBET LANDFILL W0092-01

Client: Cavan County Council

Site Location: Rahaghan, Belturbet

Report No.: CCC-04-01-03-04-Rev-0

Produced by: Brona Keating, BSc, P.Grad.Dip. Environmental Eng.

Approved by: Date: 06th December 2013

Cathal Boylan, BEng, CEng, MIEI

CHARTERED ENGINEER

Boylan Engineering

Company Reg. 430482

Address: Main St., Mullagh, Kells Co. Meath. **Phone:** 046 – 928 6000 / 087 – 820 5470

Fax: 046 – 928 6002

Email: info@boylanengineering.ie **Web:** <u>www.boylanengineering.ie</u>

Rev.	Date	Description

COPYRIGHT © BOYLAN ENGINEERING (2013)

All rights reserved, no part of this work may be modified, reproduced or copied in any form or by any means — graphic, electronic or mechanical, including photocopying, recording, taping or information and retrieval system, or used for any purpose other than its designated purpose, without the written permission of Boylan Engineering.

I SUMMARY

Boylan Engineering (Eng. & Environmental Consultancy) was commissioned by Cavan County Council to carry out Environmental Monitoring at Belturbet Landfill (W0092-01), Rahaghan, Belturbet, Co Cavan for quarter four 2013.

Brona Keating, Environmental Consultant carried out all monitoring. This report shall document the findings.

Table of Contents

- 1.0 Introduction
- 2.0 Methodology
 - 2.1 Landfill Gas Analysis
 - 2.2 Monitoring Locations
 - 2.3 Weather Report
- 3.0 Summary of Results
- 4.0 Discussion
- 5.0 Conclusion

Tables

3.0 Landfill Gas 04th Quarter Monitoring

Appendix

- 1.0 Historical Data
- 2.0 Landfill Gas Breakdown
- 3.0 Field Sheets
- 4.0 Calibration Certificate GA 2000

Landfill Map

1. INTRODUCTION

Belturbet landfill was operated as a disposal facility by Cavan County Council from 1979 until its closure in February 2002. The facility was operated as a traditional landfill and is located on the Belturbet Ballyconnell road (R200) approximately 4.5 kilometres West of Belturbet town. The site which was originally a limestone quarry comprises some 0.65 hectares. The bedrock surrounding the landfill is Darty Limestone Formation from the Lower Carboniferous period. A waste licence was issued by the EPA on the 13th of February 2002. Some remedial works were carried out after the closure of the site.

Condition 8.1 of the waste licence requires that monitoring be carried out in accordance with Schedule D of the licence. The following report give details of the landfill gas sampling programme conducted on site and also summarises findings and analytical results for quarter four 2013.

The purpose of landfill gas monitoring at closed landfills is to:

- Ensure the facility is compliant with the waste license
- Ensure the facility is not causing environmental pollution
- Ensure the facility is not posing a risk to human health
- Ensure the facility is not creating an unacceptable risk to atmosphere, water, soil,
 plants or animals
- Ensure that the facility is not causing a nuisance through noise or odors
- Ensure the facility is not adversely affecting the countryside or places of interest
- Compare actual site behavior with expected/modeled behavior
- Assess the effectiveness of gas control measures installed at the site
- Establish a reliable database of information for the landfill throughout its life

Landfill gas is generated by decomposition of organic materials in waste deposited at landfills. Typically, the gas is a mixture of Methane (up to 65% by volume) Carbon Dioxide (up to 35% per volume). It can also contain minor constituents at low concentrations (typically less than 1% volume contains 120-150 trace constituents). The landfill directive requires that appropriate measures are taken in order to control the accumulation and migration of landfill gas.

2.0 METHODOLOGY

2.1 Landfill Gas Analysis

The following procedure is employed by Brona Keating of Boylan Engineering to ensure accurate monitoring:

- EPA, Landfill Manual, landfill monitoring 2nd Edition is adhered to.
- Prior to sampling, a dip meter is used to measure water levels, if present, in the wells.
- GA 2000 landfill gas analyser is used to measure the gas levels.
- The analyser is purged and connected to the sealed well monitoring nozzle.
- The monitoring nozzle is turned to the open position and the analyser measured
 the gas levels at 60 second intervals for no less than 10 minutes. The analyser is
 allowed to run for this period of time to allow for a representative average to be
 obtained.
- All data is recorded on the Gas Analysis field sheet.
- The instrument is removed after 10 minutes and the monitoring nozzle returned to the closed position.
- The GA2000 is switched off between each monitoring location so as to allow the instrument to purge.
- This process is repeated at each monitoring location.
- Data for the GA 2000 was downloaded in the Boylan Engineering office.

2.3 Monitoring Locations

Quarter 4 2013										
Monitoring Well	Sample Type	Cover Level M (OD Malin Head)	Water Level M (OD Malin Head)	Water Depth M (Top of Casing)	National Grid Co- Ordinates					
MW1	GW	TBC	-	TBC	TBC					
MW5	Gas & Leachate	TBC	-	TBC	TBC					
MW6	Gas & Leachate	TBC	=	TBC	TBC					
MW7	Gas & GW	TBC	=	TBC	TBC					
MW 9	Gas & GW	TBC	=	TBC	TBC					
Killynaher Lake	SW	TBC	-	TBC	TBC					

2.4 Weather Report

REPORTS FROM BALLYHAISE (A)									
Date	Rainfall	Max	Min	Min	Mean Wind Speed	Gusts	Sunshine		
	(mm)	Temp	Temp	(°C)		(if >= 34 knots)	(hours)		
		(°C)	(°C)						
06/12/2013	0.8	8.7	3.4	1.7	6.6				

3.0 SUMMARY OF RESULTS

Table 1.0 04th Quarter Landfill Gas monitoring 2013

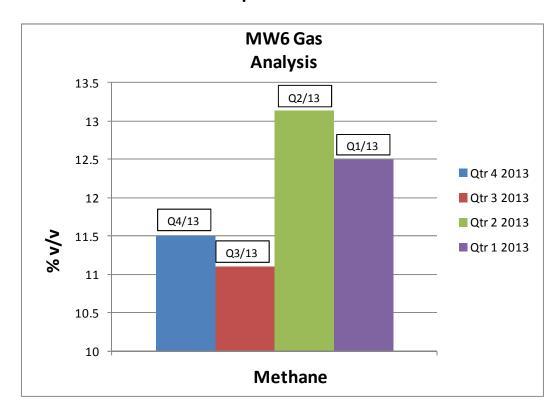
Method		GA 2000	GA 2000	GA 2000	GA 2000	GA 2000
Parameter		CH₄	CO ₂	O ₂	H2S	Barometric Pressure
Un	its	% v/v	% v/v	%	PPM	mb
Date 1	esting			06/12/202	13	
GA 2000	Client					
Ref	Ref					
1	MW 5	0	4.55	18.41	0	1023
3	MW 6	11.5	17.27	0.309	0	1023
2	MW9	0.1	3.3	17.08	0	1023
	Limit	1	1.5			
Excee	dance,out	side waste	e mass			
NOTES						
1	Instrume	nt Serial N	o: GA 077	21		
2	Limit: Sch	edule C2,	Licence			

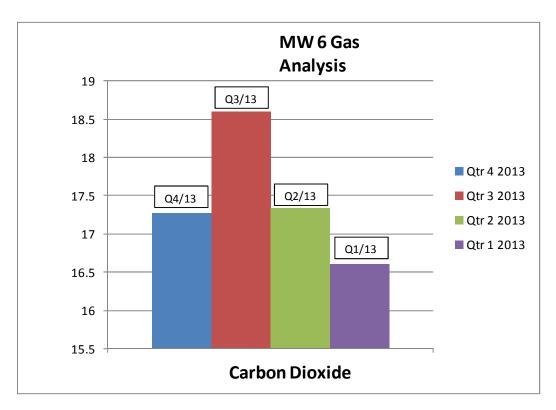
4.0 DISCUSSION

4.4 Landfill Gas

The rate of gas generation at a landfill site varies through the life of a landfill and is dependent on several factors such as waste type, depths, moisture content, degree of compaction, landfill pH, temperature and the length of time since the waste was deposited. Landfill gas can move in any direction within the waste body and migrate from a site. The potential for gas migration will depend on the gas quality, volume, the site engineering works, geological characteristics of the surrounding strata and on man-made pathways such as sewers and drains.

Results obtained from monitoring during quarter four, 2013 show elevated readings for Methane and Carbon Dioxide at well MW 6. However this well is located within the waste mass and elevated levels of these gases are not uncommon. This result is relatively consistent with previous readings. Although it is preferable that the results are within the limits stipulated within the licence, it is worth while noting that they have not increased since previous monitoring events.


5.0 CONCLUSION


The results obtained from landfill gas analysis are also relatively consistent with previous monitoring events and do not show any signs of dramatic exceedances; therefore there is no evidence of any major negative environmental impact associated with this landfill. However, it is important to monitor the trend in exceedance of Methane at this landfill and any dramatic increase in the parameter should be regarded as critical. The Methane content of landfill gas is flammable, forming potentially explosive mixtures in certain conditions, which raises concern about its uncontrolled migration and release. The next environmental and landfill gas monitoring will be conducted in the first quarter of 2014.

APPENDIX 1- Historical Data- Tables

Met	Method		GA 2000	GA 2000	GA 2000	GA 2000
Darar	Davamatav		CO	0	⊔ac	Barometric
Parameter		CH ₄	CO ₂	O ₂	H2S	Pressure
Un	its	% v/v	% v/v	%	PPM	mb
Date 1	esting			06/12/202	13	
GA 2000	Client					
Ref	Ref					
1	MW 5	0	4.55	18.41	0	1023
3	MW 6	11.5	17.27	0.309	0	1023
2	MW9	0.1	3.3	17.08	0	1023
	Limit	1	1.5			
Excee	dance,out	side waste	e mass			
NOTES	NOTES					
1	Instrume	nt Serial N	o: GA 077	21		
2	Limit: Sch	edule C2,	Licence			

HISTORICAL RESULTS- Graphs

APPENDIX 2- LANDFILL GAS BREAKDOWN

MW 5

06/12/2013 11:43	0	4.7	18.3	0	1023
06/12/2013 11:44	0	4.7	18.3	0	1023
06/12/2013 11:45	0	4.7	18.3	0	1023
06/12/2013 11:46	0	4.6	18.3	0	1023
06/12/2013 11:47	0	4.6	18.3	0	1023
06/12/2013 11:48	0	4.5	18.3	0	1023
06/12/2013 11:49	0	4.5	18.6	0	1023
06/12/2013 11:50	0	4.5	18.6	0	1023
06/12/2013 11:51	0	4.5	18.6	0	1023
06/12/2013 11:52	0	4.4	18.5	0	1023
06/12/2013 11:53	0	4.4	18.5	0	1023

MW 6

06/12/2013 12:26	11.6	17.3	3.4	0	1023
06/12/2013 12:27	11.7	17.4	0	0	1023
06/12/2013 12:28	11.5	17.3	0	0	1023
06/12/2013 12:29	11.7	17.4	0	0	1023
06/12/2013 12:30	11.4	17.3	0	0	1023
06/12/2013 12:31	11.5	17.3	0	0	1023
06/12/2013 12:32	11.4	17.2	0	0	1023
06/12/2013 12:33	11.7	17.2	0	0	1023
06/12/2013 12:34	11.5	17.2	0	0	1023
06/12/2013 12:35	11.5	17.2	0	0	1023
06/12/2013 12:36	11.6	17.2	0	0	1023

MW 9

06/12/2013 12:13	0.1	3.3	17.9	0	1023
06/12/2013 12:14	0.1	3.3	17.1	0	1023
06/12/2013 12:15	0.1	3.3	17	0	1023
06/12/2013 12:16	0.1	3.3	17	0	1023
06/12/2013 12:17	0.1	3.3	17	0	1023
06/12/2013 12:18	0.1	3.3	17	0	1023
06/12/2013 12:19	0.1	3.3	17	0	1023
06/12/2013 12:20	0.1	3.3	17	0	1023
06/12/2013 12:21	0.1	3.3	17	0	1023
06/12/2013 12:22	0.1	3.3	17	0	1023
06/12/2013 12:23	0.1	3.3	16.9	0	1023

APPENDIX 3 – FIELD SHEETS

			L	andfill (Sas Mon	itoring	Form		
Was	Facility Name: Belleubet Waste License No:					ss: Seller	bet		
Licer	of Licensin	e:	c	Da	ite of sampl	ing:		06/12/13	
	Instrument Used:				Date of sampling: Date next full calibration: Last field calibration: (Inc date & gases)				
77.753	Monitoring Personnel: Brave Weather				Weather:				
					Resul	lts			
Station Number	Time	GA2000 ID	CH ₄	CO2	02	со	H ₂ S	Barometric Pressure (mbar)	Comments
nws	11:43	1	0	4.7	18.3	/	0	1000	
mw9	12:13	2	0.1	33	17.9	/	0	1023	
mw1	12:26	3	11-6	17.3	3.4	/	0	1023	

General Comments:

APPENDIX 4 – CALIBRATION CERTIFICATE-GA2000

CALIBRATION CERTIFICATE

MAKE:

Geotechnical Instruments

CERT NO: 10915

MODEL:

GA2000

SERIAL No:

7841

CUSTOMER:

CSL.

CALIBRATION DATE:

9/7/13

NEXT CALIBRATION DUE

Jan 14

Calibration Method

Test gases of known concentrations are directed past the instrument sensors. Instrument allowed to stabilise and readings taken.

TEST RESULTS

GAS/CONCENTRATION	INITIAL READING	FINAL READING
60.0% Vol. Methane	58.1	60.1
40.0% Vol. Carbon Dioxide	38.4	40.0
20.9% Vol. Oxygen	21.1	20.9
5.0% Vol. Oxygen	4.5	4.5
0.0% Vol. Oxygen	0.0	0.0
200 ppm Carbon Monoxide	207	203
25 ppm Hydrogen Sulphide	28	25

TEST GAS ANALYSIS CERTIFICATION

Gas	Lot No.	Cylinder No.	Exp.Date	Supplier
CH4/CO2 mix	S25099	2	May-15	Stg
02	850293	20	Feb-14	Calgaz
H2S	1393098	109	Oct-14	Calgaz
CO	1377075	12	Oct-15	Calgaz

Instrument Passed as fit for Service

Tested By: =

ervice, Instrumentation and Telemetry plutions for the water industry

Company Registration No.: 195032

APPENDIX D Declaration

Cavan County Council

Comhairle Chontae an Chabháin

Teach Na Cuirte, An Cabháin Courthouse, Cavan

Declaration

Belturbet Landfill WL0092/1

Cavan County Council hereby certifies that the content of the full pdf. AER W0092-012013AER.pdf uploaded to the EPA website is a true copy of the original AER.

Signed Signed Jos Dated 10/2/14

Sinead Fox

Waste Management

Cavan County Council