

Unit 12, Owenacurra Business Park, Midleton, Co. Cork T +353 21 4631600 F +353 21 4638690 E geotechnical@priority.ie

HAULBOWLINE EAST TIP – EXPLORATORY GROUND INVESTIGATION FACTUAL REPORT

NO. P12030

Employer:

Cork County Council

Environmental Directorate, Cork County Council, Inniscara,

Co. Cork.

Employer's Representative:

WYG EPT Ltd.

Arndale Court, Headingley, Leeds, United Kingdom, LS6 2UJ

Unit 12, Owenacurra Business Park, Midleton, Co. Cork T +353 21 4631600 F +353 21 4638690 E geotechnical@priority.ie

HAULBOWLINE EAST TIP – EXPLORATORY GROUND INVESTIGATION FACTUAL REPORT

NO. P12030

VOL. 1

Employer:

Cork County Council

Environmental Directorate,

Cork County Council,

Inniscara,

Co. Cork.

Employer's Representative:

WYG EPT Ltd.

Arndale Court, Headingley, Leeds, United Kingdom, LS6 2UJ

REPORT CONTROL SHEET

Employer	Cork County Council, Environmental Directorate						
Employer's Representative	WYG EPT	WYG EPT Ltd					
Project Name	Haulbowl	ine East	Tip, Explo	oratory Ground	d Investigation		
Report Name	Haulbowline East Tip, Exploratory Ground Investigation, Factual Report						
Project Number	P12030						
This Report	RCS	тос	Text	No. of Volumes	No. of Appendices	Drawings	Electronic data
Comprises of	1	2	26	5	8	1	*.pdf, *.xls, *.dwg, *.jpg

Revision	Status	Author(s)	Approved By	Issue Date
D01	Draft	GH	NL	19.07.2012
F01	Draft	GH	NL	03.10.2012
F02	Final	Gregory types	Nacheand	06.02.2013

TABLE OF CONTENTS

1 INT	RODUCTION	1
1.1	SCOPE OF WORKS	1
1.2	REPORTING	2
1.3	SITE LOCATION & DESCRIPTION	2
1.4	GEOLOGY	3
1.4	.1 Solid	3
1.4	.2 Superficial	3
2 FIE	ELDWORK	4
2.1	GENERAL	4
2.2	EXPLORATORY HOLES	5
2.3	GROUNDWATER MONITORING	6
2.4	GROUND GAS	7
2.5	SAMPLING	7
2.6	IN-SITU TESTING	8
3 LA	BORATORY TESTING 1	1
3.1	ENVIRONMENTAL - SOLID 1	2
3.2	ENVIRONMENTAL - WATER	6
3.3	GEOTECHNICAL - SOIL	9
3.4	GEOTECHNICAL - ROCK	9
4 GR	OUND CONDITIONS	0
4.1	GROUNDWATER	1
4.2	GROUND GAS	4
5 SU	MMARY	5

APPENDICES

VOL. 1

APPENDIX A EXPLORATORY HOLE RECORDS AND PHOTOGRAPHIC RECORDS

VOL. 2

APPENDIX B In situ PERMEABILITY TEST DATA

APPENDIX C GROUNDWATER AND GROUND GAS MONITORING DATA

VOL. 3

APPENDIX D1 LABORATORY RESULTS- SOIL

VOL. 4

APPENDIX D2 LABORATORY RESULTS- WATER

VOL. 5

- APPENDIX D3 LABORATORY RESULTS- WATER, PAH and GEOTECHNICAL
- APPENDIX E EXPLORATION LOCATION LAYOUT & PLANS
- APPENDIX F AGREED METHOD STATEMENTS AND PROCEDURES

1 INTRODUCTION

1.1 SCOPE OF WORKS

In April, 2012, WYG Ireland (WYG EPT) acting as Employer's Representative appointed Priority Geotechnical (PGL) on behalf of their Client, Cork County Council, to carry out exploratory ground investigation works at the East Tip, Haulbowline, Co. Cork. IE Consulting were appointed by PGL, being approved by WYG EPT, to act as specialist hydrogeological consultant for the works. Enviroglan Ltd. were appointed by PGL, being approved by WYG EPT, to act as specialist environmental consultant for the works.

The purpose of the exploratory ground investigation was to provide environmental and geotechnical information to allow for a detailed quantitative risk assessment to be completed for Haulbowline East Tip. The specific objectives were to:

- Drill and install boreholes to allow the sampling and testing of various soil horizons for chemical and geotechnical requirements;
- Determine the permeability of the underlying sediment horizons;
- Determine the relationship between vertical and lateral water flows across the site under different tidal conditions;
- Delineate the biodegradable waste deposits located in the north west;
- Assess the chemical and geotechnical properties within the playing field areas;
- Allow sampling and testing of bulk gas samples from selected locations; and
- Assess the chemical nature of pore water of underlying natural sediments.

The investigation as specified by WYG EPT, as tendered, comprised of twenty one (21) number cable percussive boreholes to a maximum depth of 35.0m, three (3) number rotary boreholes, twenty three (23) number trial pit excavations, all associated sampling (bulk disturbed and undisturbed samples, groundwater samples and gas samples), *in-situ* testing (30 number variable head permeability tests, packer tests), well installations, groundwater and gas monitoring, laboratory work (geotechnical and geo-environmental) and factual reporting.

This investigation was carried out in accordance with the contract Specification and relevant British Standards and Eurocodes. The exploratory fieldwork was carried out between the 24th of April and the 12th of June, 2012. *In situ* permeability testing, groundwater and ground gas monitoring continued thereafter, until the 28th August, 2012.

1.2 REPORTING

This geotechnical/geo-environmental data report, P12030-Rp-F02 presents the factual records of the fieldwork with respect to the ground investigation contract for the East Tip, Haulbowline, Co. Cork.

This report may be reading conjunction with any other relevant historical investigations for the site e.g. (Glover, report ref: 05-395, 2005).

1.3 SITE LOCATION & DESCRIPTION

The East Tip (9ha) is situated within the Eastern portion of Haulbowline Island in Cork Harbour. The area is accessed via Ringaskiddy across a bridge from Paddy's Point, crossing Rocky Island and through an area controlled by the Irish Navy. The East Tip is located on a shallow island spit (Spit Bank) which was historically infilled with materials , the majority of the infilling took place from the 1960s, from the Irish Steel and ISPAT steelworks, located on the main portion of Haulbowline Island, having since been demolished.

The vast majority of made ground across the East Tip is steelworks is steelworks related. This comprises unprocessed slag material which was encountered up to depths of between 5.0m and 10.0m below ground level (bgl). There are small localised areas where various materials relating to the steelworks process have been deposited. This included mill scale, refractory materials, scrap metal and construction and demolition waste/ rubble.

1.4 GEOLOGY

1.4.1 Solid

The Geological Survey of Ireland (GSI) 1:100,000 mapping (Sheet 25), indicated that the site is underlain Walsortian LIMESTONE (WA).

Limestone was previously identified from historical investigations by others as being fractured at the near surface, being shallower in the west and deeper in the east (12m bgl to 34m bgl). The GSI subsoil mapping indicated bedrock outcropping on the island.

The solid geology is described in greater detail within the exploratory logs associated with this and other ground investigation reports.

1.4.2 Superficial

Based on previous investigation work by others and the GSI subsoil mapping the ground condition at the site were such that the superficial deposits within the study area are characterised by made ground, glacial till derived from Sandstone (TDSs) and marine sediment (alluvial deposits).

Made ground was previously characterised as being mainly unprocessed steelworks slag waste some of which is weathered. Some of the slag is fused and some has been hot tipped and is very compact in certain areas of the site. Construction and demolition waste, scrap metal, refractory products, mill scale, sludge cake and flue dust were also encountered in localised areas of the site. Made ground varied from 4m to 11m deep. There was no historical evidence of large steel skulls.

Alluvial materials generally comprised sandy silts and were found from 5m to10m bgl through to 12m to 24m bgl. The alluvial materials were thinner in the south west. Glacial Sand and Gravel were encountered from 13m to 25m below ground level and were up to 10m in thickness.

The superficial deposits are described in greater detail within the exploratory logs associated with this and other ground investigation reports.

2 FIELDWORK

2.1 GENERAL

The fieldwork was carried out in general accordance with BS 5930 (1999) Code of Practice for Site Investigation and Part 9 of BS 1377 (1990), Method of Tests for Soil for Civil Engineering Purposes and BS 10175:2011; Investigation of Potentially Contaminated Sites: Code of Practice. Details of the equipment and plant used are presented below. Further details of the methods used are detailed in the agreed method statements presented in **APPENDIX F** of this factual report.

Operation	Equipment	Nominal diameter, mm	Flush	Comments
Cable percussion boring	Dando 3000	250mm and 200mm	N/A	Standard Penetration Test, N _{SPT} values. Bulk disturbed and undisturbed samples obtained. Visual assessment of ground conditions, groundwater observations, well installations, permeability testing and sampling. In some instances boreholes were unable to progress through the monolithic shallow slag and so casing was advanced using trial pit excavations (see below).
Rotary drilling	Soil Mech PSM 8G	131mm open hole	Air/ mist	Well installations and groundwater sampling, identification of bedrock.
		76mm double barrel		
Starter Trial Pits, trial trench excavations and backfilling historical open trial pits.	21t Tracked excavator and hydraulic breaker	Plan area - L x B x D	N/A	Excavation of starter trial pits to approximately 5m depth and installation of casing through slag deposits to progress boreholes. Excavation of trial trenches. Bulk disturbed samples obtained. Visual assessment of ground conditions and groundwater observations. Backfill of historical open trial pits (2005)

SUMMARY OF EQUIPMENT AND PLANT

The exploratory locations were selected by WYG EPT and set out on site from the coordinates provided. A survey of the exploratory locations was undertaken using 5700/5800 Trimble GPS-RTK equipment, to the Irish National Grid (ING) system of co-ordinates and elevations (Malin Head). These locations are shown on the exploration location plan (drawing No. P12030-SI-01) presented in **APPENDIX E** of this factual report.

2.2 EXPLORATORY HOLES

The exploratory holes as completed during the ground investigation are listed in the following table:

Туре	Quantity	Depth Range	Remarks
Cable percussion boreholes	21No.	3.5m to 25.3m	BH301, BH301A, BH302, BH303, BH304, BH305, BH306A, BH306B, BH306D, BH307, BH308, BH309, BH310A, BH310B, BH311, BH312A, BH312B, BH313, BH314, BH315 and BH316.
Rotary boreholes - cored	3No.	32.5m to 49.2m	BH306C, BH310C and BH312C.
Rotary boreholes – open- hole	2No.	24.4m to 36.0m	BH117R and BH125R.
Trenches	2No.	2.9m to 3.5m	TP01 and TP02.
Open ¹ - Trial Pits	14No.	2.2m to 3.9m	OP01, OP02, OP03, OP04, OP05, OP06, OP07, OP08, OP09, OP10, OP11, OP12, OP13 and OP14.

The exploration records are presented in **APPENDIX A** and should be read in conjunction with the key sheets included. The records provide descriptions, in accordance with BS 5930 (1999), of the natural materials encountered and details of the samples taken, together with any observations made during the investigation. The descriptions of made ground were based on the materials origin and a visual assessment of it constituents as per the crib sheets produced by WYG EPT, accompanying the key sheet in **APPENDIX A**.

¹ Historical trial pits excavated by others (2008) and previously not backfilled. The strata were logged for record purposes by PGL. The pits were then backfilled by PGL.

2.3 GROUNDWATER MONITORING

Groundwater was recorded when encountered during boring and excavation. Groundwater levels were monitored over a period of 20 minutes noting any changes that occurred as well as at the start and end of each drilling shift.

It must be noted that the normal rate of cable percussion drilling may not permit the recording of equilibrium groundwater levels. Groundwater may be excluded from the boring as the casing progresses in fine grained soils. Groundwater levels were assessed from standpipe installations where constructed. Otherwise the exploratory boreholes were backfilled with arisings and bentonite grout (to seal the borehole form infiltration and surface water) as defined by the contract specification and detailed on the exploratory logs. Further details of groundwater are presented in Section 4.1.

Groundwater was continuously monitored by IE Consulting using Automatic Pressure Transducer Data loggers – (Solinst Levelogger Gold Model 3001, LTF100/M30) and Barometric Pressure Transducer – (Solinst Barologger Gold Model 3001) over periods of seven (7) days up to thirty five (35) days between the 04/05/2012 and the 06/07/2012. Groundwater was monitored manually by IE Consulting using a dipmeter (liquid level indicator) between the 26/04/2012 and the 05/07/2012, occasionally. Groundwater was also monitored manually by Enviroglan Ltd. after completion of the fieldworks up to 28/08/2012. The groundwater monitoring data is presented in **APPENDIX C** and digitally (CD:/ *.xls). The calibrated/ compensated groundwater levels presented were those adjusted for variation in barometric pressure and drift in the data logger data. Details of the agreed continuous groundwater monitoring procedures accompany this report in **APPENDIX F**.

2.4 GROUND GAS

Ground gas concentrations were monitored by Enviroglan Ltd. on behalf PGL using a GA2000 Gas monitor upon completion of boreholes and construction of well installations between the 30/05/2012 to the 28/08/2012. The gas monitoring data is presented in **APPENDIX C**. It should be noted that the use of the term 'Gas' with the exploratory location reference (BHxxx) refers to standpipe well installation constructed within the SLAG or Made ground specifically for the purpose of monitoring ground gas where multiple well installations were constructed at within a single borehole.

Further details of ground gas are presented in Section 4.2. Details of the agreed detailed ground gas monitoring procedures accompany this report in **APPENDIX F**.

2.5 SAMPLING

A total of two hundred and thirty (230) bulk disturbed samples (B), two hundred and twenty one (221) small disturbed samples (D), two hundred and twenty one (221) environmental soil samples (ES), forty six (46) environmental leachate from solid samples (ES), seven (7) number marine samples, inclusive of one (1) number for quality control, (HW), three (3) number foreshore seepage samples, two (2) surface water samples from existing lagoons with the East Tip site, forty five (45) split spoon samples (SPTLS) in association with the standard penetration tests, twenty three (23) undisturbed piston (thin wall) samples (P) and twenty one (21) undisturbed, U_{100} samples (U) were taken during the course of the site investigation along with continuous rotary core (C) during the direct investigation. Not all of the piston or U_{100} samples were successfully recovered (see logs for details).

Following the completion of the drilling and groundwater monitoring borehole installation works, seventy two (72) number additional groundwater samples were collected from historical boreholes and standpipe installations over the tidal cycle. Details of the sampling including the measured parameters; pH, temperature, electrical conductivity and dissolved oxygen are presented on the field sampling record sheets presented in **APPENDIX D.2**, preceding the test results.

Groundwater sampling was undertaken by IE Consultants on behalf of PGL, the samples being taken from the standpipe installations constructed in boreholes.

Details of the agreed sampling procedures accompany this report in APPENDIX F.

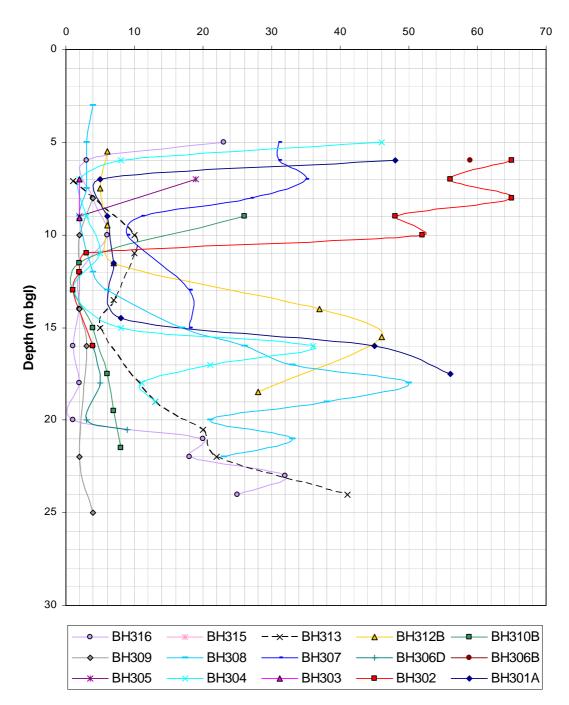
2.6 IN-SITU TESTING

Standard Penetration Test, N_{SPT} values were undertaken in the boreholes up to depths of 25.0m, as detailed on the exploratory logs presented in **APPENDIX A**. The Standard Penetration Test was carried out in accordance with Geotechnical Investigation and Testing, Part 3 Standard penetration test, BS EN ISO 22476-3:2005.

In-situ falling head permeability tests were carried out in accordance with BS5930: 1999, Section 4: CI. 25.4, during cable percussion boring over a duration of one (1) hour, unless a longer period was specified by the WYG EPT supervising engineer, as detailed on the borehole logs presented in **APPENDIX A**. The falling head tests were scheduled in strata where it was not possible to install a groundwater standpipe in any given borehole. e.g., where the installation is screened in the alluvial silt, falling head tests were carried out in the slag and/or the sand/gravel horizons, depending on the instructions given to the driller for each particular borehole.

Rising head permeability tests were carried out in a number of monitoring boreholes, scheduled by WYG EPT, following the completion of the drilling works. The rising head tests were carried out over a maximum period of one (1) hour. Tests were carried out at high and low tide.

Both falling and rising head tests were performed by PGL and monitored by IE Consulting using data loggers to record groundwater levels along with manual dips at set intervals during the test. The test data was subsequently processed by IE Consulting on behalf of PGL. This processed test data is presented in **APPENDIX B** along with the data logger files (CD:/ BHxxx RH Test Analysis *.xls). The shape or intake factor, f was derived from the condition at the base of the borehole at the test depth, the casing depth and test geometry as per Hvorslev (1951).


$$k = \frac{A}{fd} \frac{\log_{e} (H_{0}/H_{1})}{t}$$

The ratio L/d was typically 1 to 2, giving a shape (or intake) factor, f of 0.5 to 1.7 for the falling head tests. A shape (or intake) factor, f of 2.2 to 7.5 was determined for the rising head tests Permeability in the strata was assumed equal in both horizontal and vertical direction, $k_H/k_V = 1$ and L is the uncased borehole length over which the permeability was determined. Details of the test procedures accompany this report in **APPENDIX F**.

SUMMARY OF IN-SITU TESTING

Туре	No.	Remarks
Standard Penetration Test, N _{SPT}	125	N values ranging from N_{SPT} =0 to 65 including refusals N>50
value		
Falling head permeability test	18	BH301 at 10m, BH302 at 6.5m, BH303 at 10.16m, BH304 at
		17.66m, BH305 at 9.5m, BH306A at 6.4m, BH307 at 5.0m,
		BH307 at 14.5m, BH308 at 17.5m, BH309 at 6.88m (2No.),
		BH310B at 11.9m, BH310B at 23.74m, BH311 at 4.76m,
		BH312B at 18.9m (2No.), BH313 at 6.0m and BH315 at
		5.3m.
Rising head permeability test	38	BH117 at 14.4m (2No.), BH122B at 23.9m (2No.), BH125R at
		27.0m (2No.), BH128 at 2.0m, BH130 at 2.0m (2No.),
		BH301A at 16.3m (2No.), BH302 at 12.0m, BH304 at 7.2m,
		BH305 at 5.2m (2No.), BH306C at 28.5m (2No.), BH306D at
		12.0m, BH307 at 5.5m (4No.), BH308 at 4.0m (2No.), BH309
		at 8.2m (3No.), BH310B at 11.5m, BH310C at 39.6m (2No.),
		BH312B at 7.2m (2No.), BH312C at 25.5m, BH313 at 21.1m
		(2No.), BH315 at 5.4m (2No.) and BH316 at 6.0m.

The distribution of uncorrected Standard Penetration Test, Nspt values with depth, m below existing ground level (bgl) is presented below for cable percussion boreholes. Refusals, Nspt>50 where the complete set of 4 number 75mm increments were not achieved are not plotted.

Uncorrected Nspt value

3 LABORATORY TESTING

Prior to being couriered to a Specialist environmental analytical laboratory, Alcontrol Laboratories Ltd and ChemTest Ltd. for testing on behalf of PGL, all environmental solid samples (ES) were screened on site for radioactivity using a Minirad 1000, Portable Radiation Survey Monitor. The calibration certificate is presented in **APPENDIX F**. No radioactivity was detected above the meter detection limits in samples dispatched from site by PGL. Solid samples were dispatched within 48 hours of sampling. Initial asbestos screening was undertaken on all samples. In some instances where asbestos was positively identified further verification was undertaken on the sample to validate the presence or absence of asbestos. Subsequently eight laboratory quantitative analysis were undertaken for asbestos.

The groundwater samples were sampled from purged standpipe installations and dispatched to the specialist laboratory on the same day.

All rotary cores (C) were transported to PGL laboratory at Midleton, Co. Cork. Tests were scheduled by WYG EPT and were carried out by PGL in accordance with the ISRM suggested methods for rock characterisation, testing and monitoring.

All bulk disturbed samples (B, D, SPTLS) and undisturbed samples (P, U) remained in temporary storage on the East Tip. Following completion of the geoenvironmental analysis a selected number of samples were transported off-site by WYG EPT to Professional Soils Laboratory Ltd. (PSL UK) for geotechnical testing. The PSL UK report is included within this report for completeness. No geotechnical soil testing was undertaken by PGL.

One (1) number column upflow percolation test by the standard method was undertaken by Alcontrol on a composite sample from BH307. Subsequently one (1) number pH dependant leaching test (Arsenic, Boron, Cadmium, Chromium, Copper, Nickel, Lead, Selenium, Vanadium, Zinc and low level Mercury) was undertaken by ChemTest on the composite sample at a pH range 4 to 12.

Results for a modified column upflow percolation test are to date outstanding.

A summary of tests are detailed hereafter and presented in **APPENDIX D.1**, **APPENDIX D.2**, and **APPENDIX D.3** of this factual report.

3.1 ENVIRONMENTAL - SOLID

SUMMARY OF LABORATORY TESTING COMPLETED- ES

Solid samples (ES) Primary Contaminants			
Туре	No.	Remarks	
Arsenic-total	95		
Boron-water soluble	95		
Cadmium-total	95		
Chromium-total	95		
Chromium-hexavalent	93		
Copper-total	95		
Lead-total	95		
Mercury-total	95		
Nickel-total	95		
Selenium-total	95		
Zinc-total	96		
Cyanide, Complex	93		
Cyanide, Free	93		
Cyanide, Total	93		
Thiocyanate	93		
Sulphide	93		
Sulphate, Total	93		
Sulphate, water 2:1	93		
Sulphur-free	93		
рН	93		
Phenols-total	93		
Toluene extractable matter	38	Asbestos restricted testing, 94 number scheduled	
PAH	93		
Asbestos - Screen All Samples	93	Inclusive of re-test (59)	
Asbestos Quantification	8		
Phenols-monohydric	93		
Ammonical Nitrogen	93		
Moisture Content	93		
Fraction Organic Carbon	44		

SUMMARY OF LABORATORY TESTING COMPLETED- ES

Solid samples (ES) Soil Secondary Contaminants			
Туре	No.	Remarks	
Dioxins and Furans	5	Asbestos restricted testing. 9 samples scheduled.	
PCBs	9		
Mineral Oils	17		
Speciated TPH	19		
SVOC including PAH and TICs	19		
VOC including TICs	19		
Acetone	9		
Anitomy total	93		
Barium Total	93		
Beryllium total	93		
Vanadium total	93		
Chloride	93		
Aluminum	93		
Calcium	93		
Magnesium	93		
Manganese	93		
Upflow percolation	1	BH307	
pH dependence	1	BH307	

SUMMARY OF LABORATORY TESTING COMPLETED- ES

Solid samples (ES) Leachate analysis			
Туре	No.	Remarks	
Aluminium	28		
Antimony	28		
Barium	28		
Calcium	28		
Cobalt	28		
Magnesium	28		
Manganese	28		
Molybdenum	28		
Tin	28		
Potassium	28		
Sodium	28		
Nitrate as NO3	28		
Chloride	28		
Fluoride	28		
Phosphorous	28		
Sulphate	28		
Boron	30		
Arsenic	30		
Cadmium	30		
Chromium	30		
Copper	30		
Iron	28		
Lead	30		
Mercury	30		
Nickel	30		
Selenium	30		
Thallium	28		
Vanadium	30		
Zinc	30		
Sulphide	28		
Hexavalent Chromium	28		
Phenols Total Monohydric	28		
Thiocyanate	28		
Total Cyanide	28		
Free Cyanide	28		
Complex Cyanide	28		

So	Solid samples (ES) Leachate analysis			
Туре	No.	Remarks		
Ammoniacal Nitrogen	28			
Free Sulphur	28			
Dissolved Organic Carbon	28			
Total TPH	28			
Total PAH	28			
PCBs	28			
Ph value	28			
Carbonate alkalinity as CaCo3	28			
Electrical Conductivity	28			
COD	28			
Total Dissolved Solids	28			
Speciated PAHs	28			

3.2 ENVIRONMENTAL - WATER

SUMMARY OF LABORATORY TESTING COMPLETED- EW

Water samples (EW)			
Туре	No.	Remarks	
Arsenic	84		
Cadmium	84		
Chromium-total dissolved	84		
Hexavalent chromium	76		
Lead-dissolved	84		
Mercury-dissolved	84		
Selenium-dissolved	84		
Boron-water soluble	84		
Copper-dissolved	84		
Nickel-dissolved	84		
Zinc-dissolved	84		
Cyanide-total	84		
Cyanide-complex	84		
Cyanide-free	84		
Thiocyanate	65		
Phenols total	42		
Sulphate	80		
Sulphide	84		
Sulphur free	84		
pH value	84		
Speciated Polyaromatic Hydrocarbons	82		
Antimony	84		
Barium	84		
Beryllium	45		
Vanadium	84		

Water samples (EW)					
Туре	No.	Remarks			
Chloride	84				
Ammoniacal Nitrogen as N	84				
Nitrate as NO ₃	84				
Chemical Oxygen Demand	84				
Biological Oxygen Demand	84				
Total Organic Carbon	84				
Electrical Conductivity	84				
Iron	84				
Manganese	84				
Calcium	84				
Sodium	84				
Magnesium	84				
Hexavalent Chromium (Low Level)	-	Sodium content restricted this testLocationNa, mg/lBH3058560BH31612300BH310a10100BH3119510BH312c15600BH3139550SW19390SW29490The 8 samples selected all had > 9 times thepermitted Na levels therefore the samples wereunsuitable for testing where Cr III could not beseparated from Cr VI due to Na blocking thefiltration system.			
Potassium	84				
Speciated TPH	84				
VOCs including TICs	44				
Aluminium	84				
Cobolt	12				
Molybdenum	16				
Tin	12				

Water samples (EW)				
Type No. Remarks				
Fluoride	16			
Phosphorous - Dissolved	16			
Iron	16			
Thallium	12			
Speciated Phenols	16			
Carbonate Alkalinity as CaCO ₃	11			
PCBs	84			

3.3 GEOTECHNICAL - SOIL

SUMMARY OF LABORATORY TESTING COMPLETED- PSL

SUPERFICIAL				
Туре	No.	Remarks		
Natural Moisture Content	63	3% to 49%		
Bulk density	8	1.76Mg/m ³ to 2.62Mg/m ³		
Atterberg Limit	22	Liquid Limit 25% to 52%		
		Plastic Limit 15% to 29% including non plastic NP soils		
		Plasticity Index 8 to 26		
Particle Size Distribution	22			
Unconsolidated undrained triaxial	8	10kPa to 70kPa		
compression UUT				
1-D consolidation, oedometer	5	BH301A, BH303, BH307, BH310B, and BH312B.		
Laboratory hand vane	7	4kPa to 28kPa		

3.4 GEOTECHNICAL - ROCK

SUMMARY OF LABORATORY TESTING UNDERTAKEN

SOLID				
Type No.		No.	Remarks	
Point Load Index		8	2.35MPa to 4.44MPa	
			(2 No. values <1MPa omitted being unrealistically low).	
Uniaxial	Unconfined	1	59MPa	
Compressive S	Strength, UCS			

4 GROUND CONDITIONS

The site was characterised by made ground consisting of: unprocessed slag waste (~5% steel and <5% refractory brick) up to 12.0m below existing ground level (bgl) (BH306D), typically 4.0m to 10.0m thick. Construction and demolition waste comprising of timber, glass, plastic, textiles and some hydrocarbon related products was encountered to 6.0m bgl being 0.3m to 4.2m thick and mixed with the unprocessed slag (BH312A, BH312B and BH314). Low concentrations of mill scale were identified to depths of 2.8m bgl, being 0.2m (OP06) to 2.8m (BH312B) thick and mixed with the unprocessed slag in isolated pockets within the site (BH301A, BH312B, OP06, OP14, TP01 and TP02). Flue dust and sludge were identified at (OP10) to 3.0m bgl, being 1.2m thick. Other sludges were identified at locations BH312A, OP01 and OP14 below a depth 0.05m bgl, being 0.1m to 1.06m thick.

The made ground was present up to depths of 5.8m bgl (BH312A) being underlain to depths by alluvial deposits. Slightly sandy SILT, slightly sandy slightly gravelly SILT and gravelly SILT were identified between depths of between 5.0m bgl (BH312C) and 24.4m bgl (BH306C) being up to 14.5m thick (BH316). CLAY deposits were encountered between depths of between 3.0m bgl (BH308) and 49.2m bgl (BH306C) being up to 10.1m thick (BH306C). Granular deposits, gravelly SAND, SAND AND GRAVEL and sandy GRAVEL were encountered to depths of between 1.3m bgl (OP12) and 43.1m bgl (BH310C) being up to 10.7m thick (BH125R). The granular deposits typically underlay the SILT deposits below 14.0m bgl (BH312B) to 23.5m bgl (BH310B). Slightly sandy slightly gravelly CLAY was also identified below the SILT (BH301A and BH304). Topsoil was identified at four locations (BH301, BH304, BH305 and BH308) being 300mm to 700mm thick.

Standard penetration test, N_{SPT} values (N_{SPT} 35 to 65) indicated dense to very dense Slag. The N_{SPT} values indicated very soft to firm SILT and CLAY deposits (N_{SPT} 0 to 9). The N_{SPT} values indicated firm to stiff CLAY underlaying the SILT (N_{SPT} 11 to 56) at BH301A and BH304. The GRAVEL is described as medium dense to dense (N_{SPT} 21 to 46).

Weathered LIMESTONE was identified at depths of 23.8m bgl (BH117R) to 43.1m bgl (BH310C).

4.1 GROUNDWATER

Groundwater was noted during cable tool boring between depths of 0.5m bgl and 14.0m bgl, as summarised below. It should be noted that seasonal and tidal fluctuations in groundwater levels occur. Full details of the groundwater encountered are presented on the relevant borehole logs in **APPENDIX A**.

Thirty four (34) number 50mm diameter HDPE standpipe installations were constructed to allow for groundwater sampling and monitoring and ground gas monitoring. The well construction details were provided by WYG EPT such to isolate the groundwater and seal the well (using bentonite grout) from external influences. A tubular geotextile separator fabric was used as detailed on the borehole records in particular standpipe installations to minimise 'silting up' of the well. The pipework remained open at the surface to allow for groundwater monitoring. Groundwater was continuously monitored by IE Consulting using Automatic Pressure Transducer Data loggers. Subsequently having completed the continuous ground water monitoring, gas taps were fitted (26/07/2012) to monitor ground gas as specified locations.

Location	Groundwater	Rose to		Comments
	strike, m bgl	m bgl	After, minutes	
				3.68m see shift data
BH117R	4.5			Standpipe installed
BH125R	0.8			Standpipe installed
				See shift data BH log
BH301A	3.4			2No. standpipes installed
				2.4m to 3.5m see shift data
BH302	3.9			2No. standpipes installed
				3.4m to 3.7m see shift data
BH303	2.4			Standpipe installed
				7.0m see shift data
BH304	3.6			2No. standpipes installed
BH305	3.2			2No. standpipes installed
BH306A				0.8m see shift data
				0.2m see shift data
BH306B	0.5			Standpipe installed
				0.98m to 1.2m See shift data
BH306C	1.2			Standpipe installed
BH306D	0.9			Standpipe installed
BH307	0.9			2No. standpipes installed
				10.0m see shift data
BH308				2No. standpipes installed
BH309	2.5			2No. standpipes installed
BH310A	4.2	4.7	20	2.9m to 5.0m see shift data
BH310A	6.0			Standpipes installed
BH310B	5.1			3.0m see shift data 2No. standpipes installed
BUSIND	0.1			Zino. Stanupipes instaned

SUMMARY OF GROUNDWATER STRIKES

Location	Groundwater strike, m bgl	Rose to m bgl	After , minutes	Comments
	Strike, in by	in by	Alter, minutes	Steel casing and 125mm HDPE
BH310C	4.6			grouted in place to 39.6m.
				3.0m see shift data
BH311	3.1			Standpipes installed
				3.0m see shift data
BH312A	3.8			Standpipes installed
				4.5m to 7.8m see shift data
BH312B	3.4			Standpipes installed
BH312B	14.0	11.2	20	Standpipes installed
BH312C	2.5			Standpipes installed
				1.8m to 4.0m see shift data
BH313	2.5			2No. standpipes installed
				4.5m esee shift data
BH314	3.2			Standpipes installed
DU LO 4 E				3.1m to 4.1m see shift data
BH315	4.1			Standpipes installed
DUDIO	0.7			2.5m to 10.0m see shift data 2No. standpipes installed
BH316	0.7			Standing water level in open pit
OP02	2.6			C
0.544				Standing water level in open pit
OP03	2.2			
0.54				Standing water level in open pit
OP04	1.5			
0.000				Standing water level in open pit
OP05	3.3			Ctanding water level in an en nit
0007	0.4			Standing water level in open pit
OP07	3.4			Standing water level in open pit
0000	2.4			Standing water level in open pit
OP08	2.1			Standing water level in open pit
OP09	3.3			Standing water level in open pit
OFU9	3.3			Standing water level in open pit
OP10	2.8			Standing water level in open pit
UPIU	2.0			Standing water level in open pit
OP11	3.1			
	5.1			Standing water level in open pit
OP12	2.9			Clanding water level in open pit
0112	2.3			Standing water level in open pit
OP13	1.5			
01 10	1.0			Standing water level in open pit
OP14	2.6			
TP01	2.8			
TP02	2.9			

Groundwater was monitored by Enviroglan Ltd manually using a dipmeter during the fieldworks between the 26th, April and the 05th July, 2012. This data is presented in **APPENDIX C**. Post-fieldworks groundwater was monitored manually using a dipmeter again by Enviroglan Ltd. on the following six (6) number occasions:

Date, dd, mm, yyyy
26 th July, 2012
30 th July, 2012
08 th August, 2012
13 th August, 2012
20 th August, 2012
28 th August, 2012

This data is presented in **APPENDIX C**, being inclusive of historical borehole installations. References to 'Gas' relate to the groundwater level within the gas monitoring well.

4.2 GROUND GAS

Ground gas was monitored (gas pressure, gas concentrations and gas flow rate measurements) using a GA2000 range gas analyser with flow measurement during the fieldworks phase. The calibration certificate is presented in **APPENDIX F**. This monitoring indicated no methane present at any of the boreholes locations as part of this phase of investigation works. However, Methane, CH_4 concentration, 10.8% to 65.4% were measured in historical borehole/well BH126 during the gas monitoring undertaken during the fieldworks period. Ground gas was monitored during the fieldworks by Enviroglan Ltd. on the following occasions:

Date, dd, mm, yyyy
11 ⁿ May, 2012
16 th May, 2012
30 th May, 2012
08 th June, 2012

Gas taps were fitted (26/07/2012) to monitor ground gas as specified locations. Ground gas was subsequently monitored post fieldworks by Enviroglan Ltd. on the following five (5) number occasions:

Date, dd, mm, yyyy
30 th July, 2012
08 th August, 2012
13 th August, 2012
20 th August, 2012
28 th August, 2012

The ground gas monitoring data is presented in **APPENDIX C**.

5 SUMMARY

- The site was characterised by made ground consisting of dense unprocessed slag waste up to 12.0m below existing ground level (bgl). Construction and demolition waste comprising of timber, glass, plastic, textiles and some hydrocarbon related products was encountered to 6.0m bgl being 0.3m to 4.2m thick and mixed with the unprocessed slag.
- 2. Low concentrations of mill scale to depths 2.8m bgl to 5.0m bgl, being 0.2m to 2.0m thick were also encountered mixed with the unprocessed slag in isolated pockets within the site. Flue dust and sludge was identified at (OP10) to 3.0m bgl being 1.0m thick. Other sludges were identified at locations BH312A, OP01 and OP14 below a depth 0.05m bgl. Scrap metal was also present on site.
- 3. The made ground was underlain by alluvial deposits; very soft to firm slightly sandy SILT, slightly sandy slightly gravelly SILT and gravelly SILT were identified to depths of between 5.0m bgl and 24.4m bgl. Soft to stiff CLAY deposits were encountered between depths of between 1.1m bgl and 49.2m bgl. Medium dense to dense granular deposits were identified gravelly SAND, SAND AND GRAVEL and sandy GRAVEL to depths of between 1.3m bgl and 39.7m bgl being typically underlay the SILT deposits below 14.0m bgl. Firm to stiff slightly sandy slightly gravelly CLAY was also identified below the SILT.
- 4. Weathered LIMESTONE was identified at depth 23.8m bgl to 43.1m bgl.
- Groundwater was encountered at depths of between 0.5m and 14.0m below existing ground level. Groundwater was monitored during and post fieldworks by IE Consulting between the 26th April and the 05th July, 2012. This data is presented in APPENDIX C.
- Groundwater was monitored post fieldworks by Enviroglan Ltd. between the 26th July and 28th August, 2012. This data is presented in APPENDIX C.
- 7. Basic ground gas monitoring (concentration only) was undertaken by Enviroglan Ltd. using a GA2000 ground gas monitor during the fieldworks between the 11th May and the 08th June, 2012. Methane CH₄ was noted at the historical exploratory location, BH126, only. The ground gas monitoring data is presented in **APPENDIX C**.

- More detailed (concentration, flow and pressure etc.) ground gas monitoring was undertaken by Enviroglan Ltd. post fieldworks between the 30th July and 28th August, 2012. This data is presented in **APPENDIX C**.
- 9. Thirty four (34) number 50mm diameter standpipes (double and single installations) were constructed. A 125mm HDPE liner was placed at BH310C, extending to the depth of the bedrock. Details of groundwater strikes and standpipe/ well construction are presented graphically on the exploratory logs in APPENDIX A.
- 10. A total of fifty six (56) number *in situ* permeability test (falling and rising head) were carried out. The test data is presented in **APPENDIX B**.
- 11. Further details of the ground and groundwater conditions are presented on the exploratory logs and photographic records in **APPENDIX A** and groundwater monitoring data presented in **APPENDIX C**.
- 12. Laboratory testing and environmental analysis was undertaken to assess the nature of the solids and groundwater, superficial deposits and solid geology encountered. The data is presented in **APPENDIX D.1**, **APPENDIX D.2** and **APPENDIX D.3**.
- 13. The exploratory locations are presented in **APPENDIX E** of this factual report.
- 14. The methodologies employed, agreed procedures and methods statements used during the fieldworks and subsequent monitoring and sampling, are presented in APPENDIX F of this factual report.

APPENDIX A

EXPLORATORY HOLE RECORDS AND PHOTOGRAPHIC RECORDS

Trenches/ Trial PitsTP01 and TP02.OP01, OP02, OP03, OP04, OP05, OP06,
OP07, OP08, OP09, OP10, OP11, OP12,
OP13 and OP14.Cable percussion boreholesBH301, BH301A, BH302, BH303, BH304,
BH305, BH306A, BH306B, BH306D,
BH307, BH308, BH309, BH310A, BH310B,
BH311, BH312A, BH312B, BH313, BH314,
BH315 and BH316.Rotary BoreholesBH306C, BH310C and BH312C.

BH117R and BH125R.

KEY TO SYMBOLS ON EXPLORATORY HOLE RECORDS

All linear dimensions are in metres or millimetres

DESCRIPTIONS

**	Drillers Description
Friable	Easily crumbled
SAMPLES	
U()	Undisturbed 102mm diameter sample, () denotes number of blows to drive sampler
U()F, U()P	F- not recovered, P-partially recovered
U38	Undisturbed 38mm diameter sample
P(F), (P)	Piston sample - disturbed
В	Bulk sample - disturbed
D	Jar Sample - disturbed
W	Water Sample
CBR	California Bearing Ratio mould sample
ES	Chemical Sample for Contamination Analysis
SPTLS	Standard Penetration Test S lump sample from split sampler
CORE RECOVERY AN	D ROCK QUALITY
TCR	Total Core Recovery (% of Core Run)
SCR	Solid Core Recovery (length of core having at least one full diameter as % of core run)
RQD	Rock Quality Designation (length of solid core greater than 100mm as % of core run)
	icient space for the TCR, SCR and RQD, the results may be found in the remarks column
lf	Fracture Spacing in mm (Minimum/Average/Maximum) NI - non intact, NR - no recovery
AZCL	Assumed Zone of Core Loss
NI	Non intact
GROUNDWATER	
	Groundwater strike
$\overline{\mathbf{V}}$	Groundwater level after standing period
Date/Water	Date of shift (day/month)/Depth to water at end of previous shift shown above the date
	and depth to water at beginning of shift given below the date
INSITU TESTING	
S	Standard Penetration Test - split barrel sampler
С	Standard Penetration Test - solid 60° cone
SW	Self Weight Penetration
lvp, HVp (R)	In Situ Vane Test, Hand Vane Test (R) demonstrates remoulded strength
K(F), (C), (R), (P)	Permeability Test
HP	Hand Penetrometer Test
MEASURED PROPER	
Ν	
	Standard Penetration Test - blows required to drive 300mm after seating drive
x/y	Standard Penetration Test - blows required to drive 300mm after seating drive Denotes x blows for y mm within the Standard Penetration Test
x/y x*/y	Standard Penetration Test - blows required to drive 300mm after seating drive

c_u Undrained Shear Strength (kN/m²) CBR California Bearing Ratio

ROTARY DRILLING SIZES

Index Letter	Nominal Diameter (mm)		
	Borehole	Core	
Ν	75	54	
н	99	76	
Р	120	92	
S	146	113	

Key Sheet

ו ומחותהאוווום ופומווח – רמפו

		÷	,	
	2			
		5		
		ć		
	ł			
	2	ĉ	•	
	-	1		
	1	•		

a set of the set of th		
Describe	Standard BS and Engineering Description	All Made ground, natural soils
	European Waste Code General Description	Made ground only
	Slag Waste	The predominant waste present should be described and recorded. If another waste type is
	Mill Scale	shown to be greater than 10% of the sample or zone described then the sub-description and
	Sludge	A waste description must be recorded against all
	Flue Dust	descriptions made. If there is any doubt about what the description should be then refer to the
	Refractory	crib sheet provided or contact a consultant supervisor.
	Scrap	
	Demolition	
	Refuse Wastes	
	Other	If none of the descriptions provided are applicable then the consultant supervisor should be contacted (if not immediately present, obtain a

.

Darker Grey, consistent colour Finer gravel to sand Flakey Plakey Dense, heavy, easy to excavate or drill through Mill Scale is formed on the oute surfaces of plates/sheets/profile when rolling red hot steel billets It is composed mainly or iron oxide.				υ	2 8 v
	Darker Grey, consistent colour	Finer gravel to sand	Flakey	Dense, heavy, easy to excavate or drill through	Mill Scale is formed on the outer surfaces of plates/sheets/profiles when rolling red hot steel billets. It is composed mainly or iron oxide.

Waste Type	Sludge: O	Sludge: Other sludges and filtercakes
Waste Code	10.02.15	
Waste	Colour	Dark Grey, consistent colour
Description	Forms	Silt grade to fine sand
	Texture	Flakey, soft sludge when high in moisture, compressed cake when lower in moisture, easy to excavate or drill through.
	General	Dense, heavy. Possible hydrocarbon odour if any oils & greases in sludge

_
~
~
Э.
-
-
0
π.
2
-
-
n
2
12
15
2
5
0
25
2
12
rR.
0
-
-

finde ravit

ו ומחוחהאוווזם וסומווח - רמסו ווח

(mainly found and processed from sea water)

10.02.99	Olifei. Mastes not opcomous conde mous
Colour	Light greys, rusted browns
Forms	Rods, plates, wire, varying sizes
Texture	Metallic
General	Heavy, tangled, unsorted, mixed and broken
Source	Unprocessed mixed metals which would have been processed in the mill

astes not	Other: Wastes not Specified: Demolition Rubble
Lighte	Lighter browns and greys
Conc	Concrete, occasional wood, glass, brick and metal reinforcement
Loost rubl occasona brickvork	Loost rubble, with reinforcing wires, occasional metal fragments and brickvork
General Mixe	Mixec grades. broken. angular

ומחוחה אוווום וסומווח - רמסו ווח Difficult to excavate due to mixed nature and usually higher proportions of plastics. Organic odour from food Plastic, putrescible food, packaging, small metal items רו אהם ובעון Mixed textures resulting from varied materials Other: Wastes not Specified: Biodegradable Wastes Kitchens and general wastes from mill Possible materials from demolition of steelworks buildings. Mixed with many varied colours waste. 10.02.99 Texture General Source Colour Forms Source רמווחוו Waste Description עעמטום כומטט Waste Code Waste Type

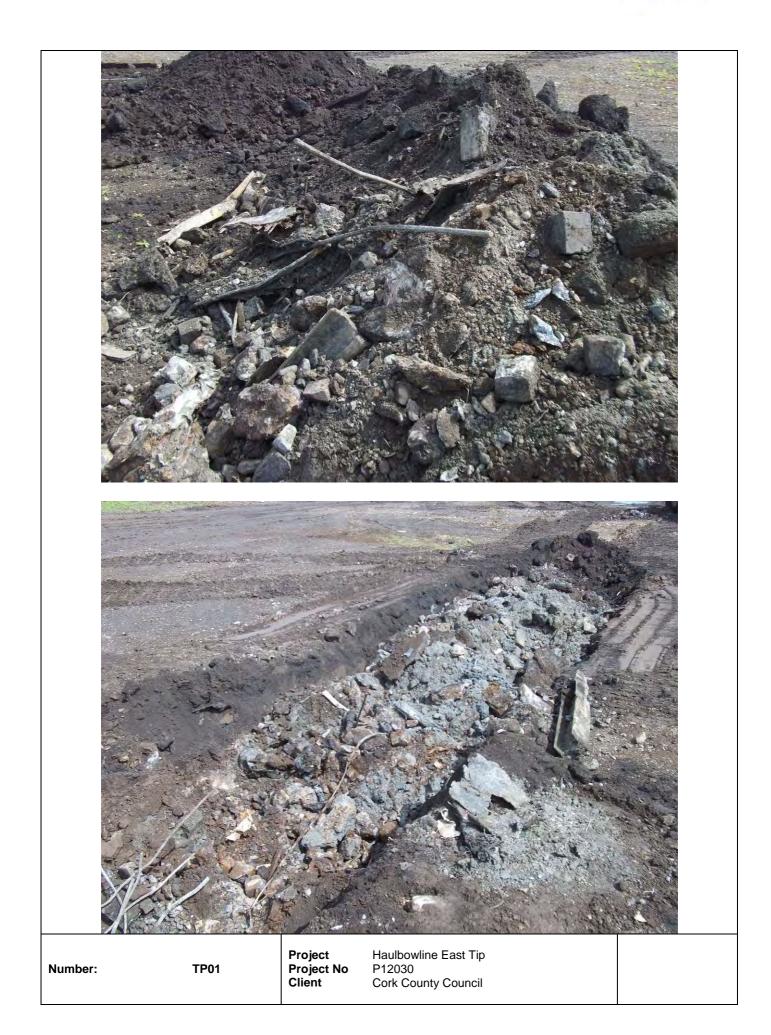
	Source	Scale water (rolling mill and caster scale pits) clarifier system	
Waste Type	Flue Dust:	st:	
Waste Code	10.09.05	10.09.09* / 10.09.10	
Waste Description	Colour	Black – dark grey	
	Forms	Very fine powder, can also be found in pelletised form, and can be found as cake or sludge dependant on moisture	
	Texture	Very loose	
	General	Dense, heavy	
	Source	Temporarily stockpiled in bags from bag filter houses and later pelletised forms. Main constituents iron and carbon	
Waste Type	Refractories	Dries	
Waste Code	16.11.00	16.11.03* / 16.11.04	
Waste Description	Colour	Lighter browns and greys	
	Forms	Powdery, fragmented brickwork	
	Texture	Rubble	
	General	Light coloured whole crushed and fragmented brickwork	
	Source	Refractories are from the linings of the furnaces (usually as bricks) and mainly contain magnesium chloride	

14	
ă	
đ	

light ident

is from the processing of slag Grey and mottled rusty brown	Crushed – granular form		Dense, heavy, conglomerated	Failed ladles, 'sculls', skimmed wastes from molten
Slag: wastes from the I 10.02.01 Colour Grey and m	Forms Crushed – g	Texture Pockmarked	General Dense, hea	Source Failed ladle

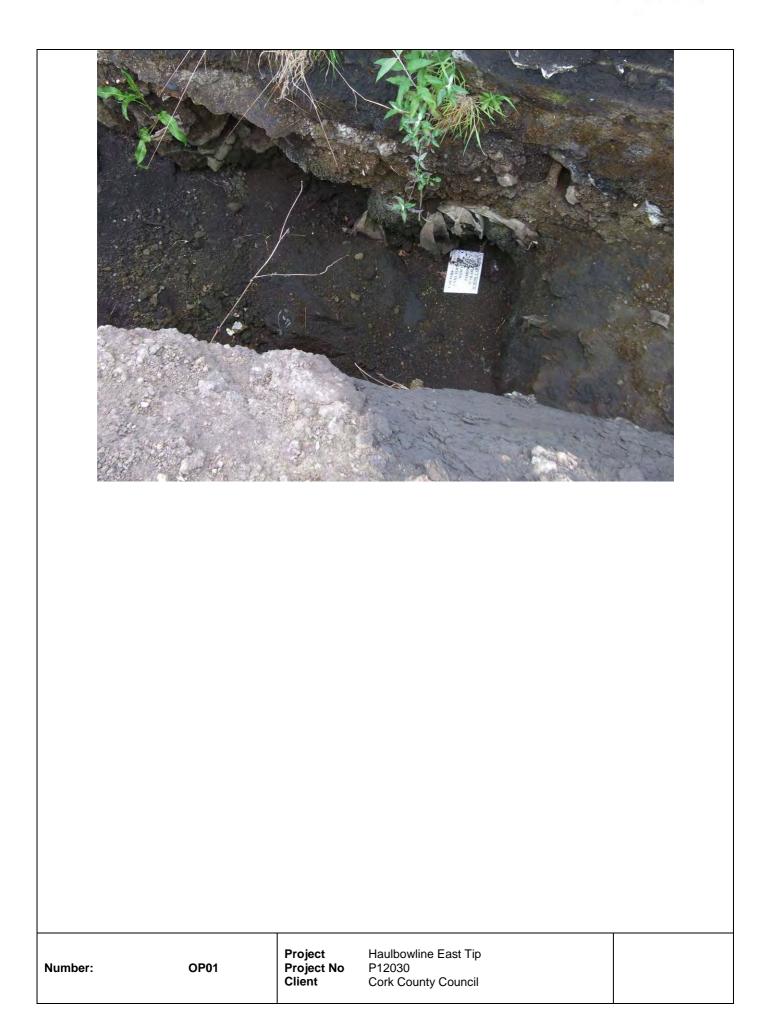
4


Waste Code 10.02.02 & 10.09.03
Waste Description Colour Grey and mottled rusty brown
Forms Unprocessed – fused, molten, angular, metallic
Texture Pockmarked
General Dense, heavy, conglomerated, cexcavate through
Source Failed ladles, 'sculls', skimmed wastes from molten metal

					-	Priority Geotechnic Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotec				T	I Pit No P01 eet 1 of 1	
Pro	ject Nan	ne:			Pro	ject No.	Co-ords:	17959	1E - 65493N	_	Date	-
Haul	lbowline E	ast Tip			P12	030		3.11 m	AOD	05/0	06/2012	
Loc	ation:	Haulbow	line, Co Cork				Dimensions	s:	16.00m		cale	
							Depth	E			:25	_
Clie	ent: Corl						3.50m	2.00m		Log	ged By PL	
Water	Depth (m)		& In Situ Testing Results	Level (m AOD)	Depth (m)			atum D	escription		Legend	
				2.61	0.50	(approx. 5%). Oxidised brown pockmarked co re-bar., gas cyl	rox. 60%) with dark	AG with (appro)	nprocessed Slag and metal metal waste (approx. 10%), c. 2%), metal waste including sheets (2No.), steel beams,			
				-0.39	3.50		Trial pit c	complete	d at 3.50 m			
Stabi Plant	Depth (m) lity: Mo : 21t Trad fill: Aris	derate. cked Exa	Results	Level	Depth	Gro	undwater: St	tanding	at 2.8m.			red Triabit Log v 2 dated 27th Nov 03
) Standa
Rema	a rks: Tri	al pit teri	minated at required	depth.								ld 422.00
												SE III (BI
												HoleBA

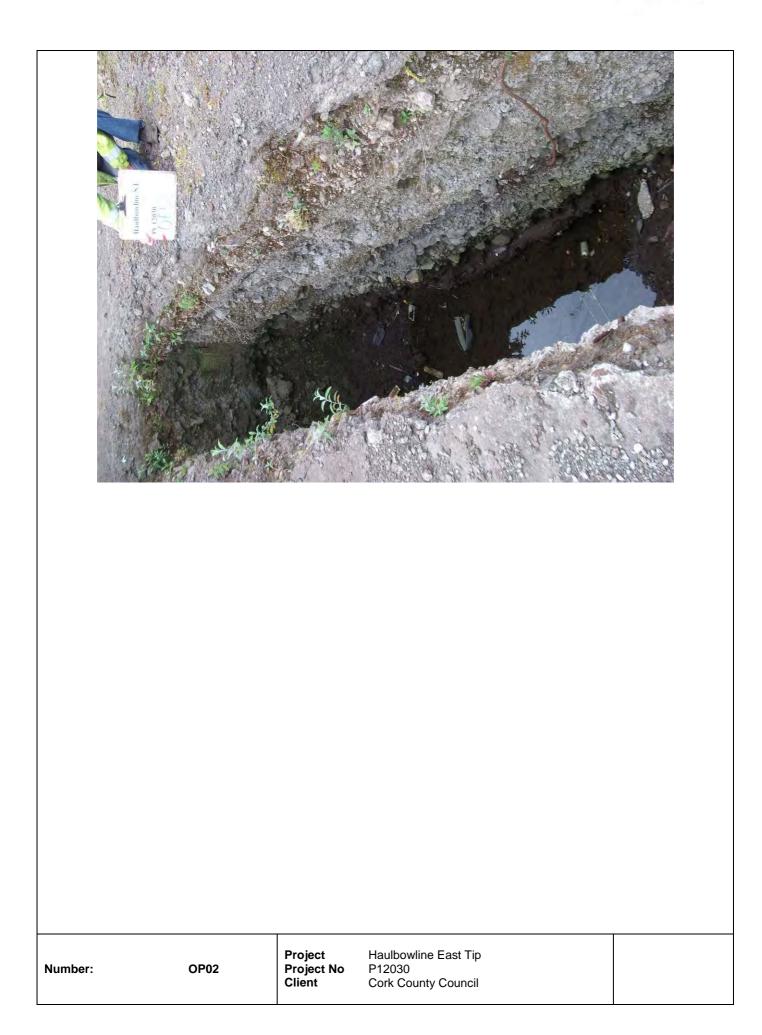
1		4				Priority Geotechnica	al Ltd.		Trial Pit No	
	PRIORIT				I	Tel: 021 4631600 Fax: 021 4638690		TP02		
	OTECHN				`	www.prioritygeotech			Sheet 1 of 1	
	ject Nan					ject No.		0E - 65465N	Date	
Hau	lbowline E	ast Tip			P12	030	Level: 3.22 m	AOD	05/06/2012	
Loc	ation:	Haulbow	line, Co Cork				Dimensions:	12.00m	Scale 1:25	
Clie	ent: Cork	< County	Council				Depth E 2.90m E		Logged By PL	
Water			& In Situ Testing	Level (m AOD)	Depth (m)		Stratum D	escription	Legend	
Water	Depth (m) 0.40-0.90 0.40-0.90 1.50-2.00 1.50-2.00 2.50-2.70 2.50-2.70	ES ES ES ES	Results	2.82 2.32 1.22 0.32	0.40 0.90 2.00 2.90		rocessed SLAG.	with molten and pockmarked		
Water	Depth (m)	Туре	Results	Level	Depth					
Stabi Plant Back	i lity: Moo 21t Trac fill: Arisi	derate. cked Exa ings.	cvator			Grou	Indwater: Standing	at 2.9m.		
Rema	arks: Tri	al pit terr	minated at required	depth.						

	<i>(</i> 73)	2			F	Priority Geotechnica	al Ltd.		Slit T	rench No
	PRIORIT	Y			F	Гel: 02́1 4631600 Fax: 021 4638690 vww.prioritygeotech	nicalie		O	P01
	OTECHNI									et 1 of 1
	ject Nam					ject No.		44E - 65393N		Date
Ηαι	ulbowline	East Tip			P12	030		m AOD		5/2012
Loc	ation:	Haulbow	line, Co Cork				Dimensions:	5.00m		cale :25
Clie	ent: Co	rk County	/ Council				Depth 2.80m			ged By
Water			In Situ Testing	Level	Depth					PL
	Depth (m)	Туре	Results	(m AOD)	(m)	Very dark grey S	Stratum ludge/ Filtercake.	Description		Legend
Water	Depth	Type	Results	2.19 1.49 0.39	1.00 1.70 2.80	small refractory l	oricks (<1%).	asional plastics, metal (<1%) and	1	
vvater	Depth	Туре	Results	Level	Depth					
Rema	arks: Exist	ing pit.								

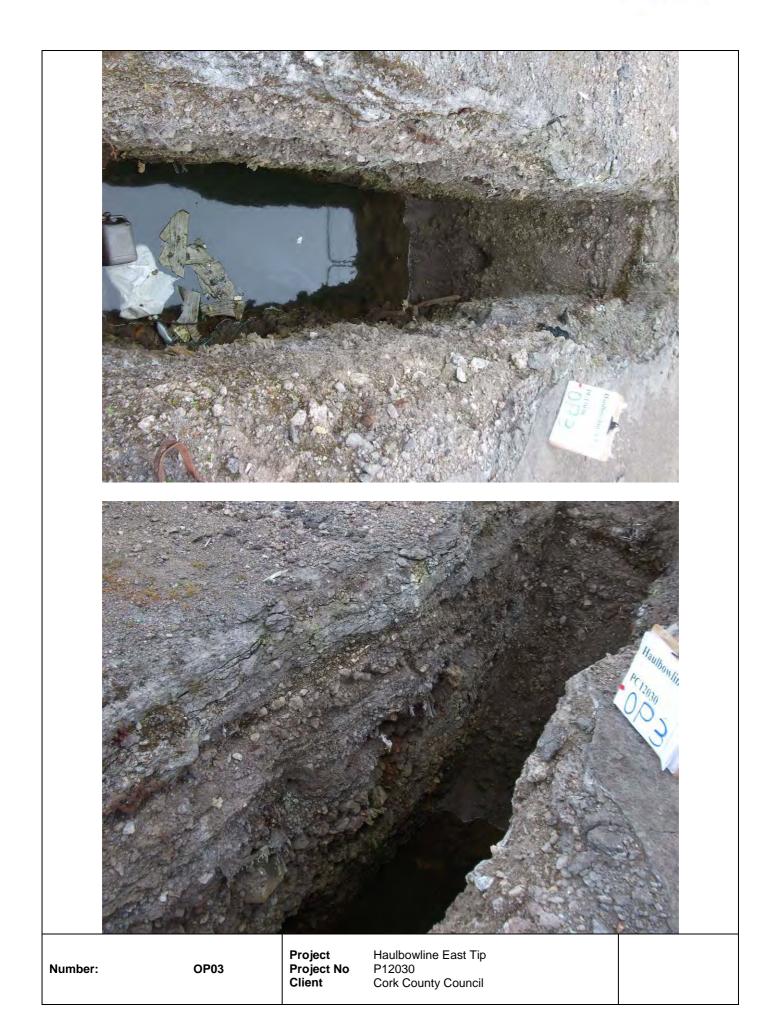


PRI	ORITY	+			-	Priority Geotechnica Tel: 021 4631600 Fax: 021 4638690			Slit Trench No OP02
GEOTE	CHNIC	CAL			١	www.prioritygeotech	nnical.ie		Sheet 1 of 1
Project	t Name	:			Pro	ject No.	Co-ords: 17964	45E - 65318N	Date
Haulboy					P12			m AOD	29/05/2012
Locatio	on: ⊦	Haulbowl	line, Co Cork				Dimensions:	5.00m	Scale 1:25
Client:	Cor	k County	/ Council				Depth 50 2.70m 50		Logged By
/ater	S		In Situ Testing	Level	Depth		Stratum	Description	PL Legend
rikes Dep	oth (m)	Туре	Results	(m AOD)	(m)	Compacted, unp		gravel and cobble form.	XXXX
				3.06	0.10	Light grey, unpro		-	
				2.76	0.40	This motellin la			
				2.72	0.44	Thin, metallic la	yer. ocessed SLAG in gravel	and cobble form.	
				1.16	2.00	Refractory bricks	s (approx. 70%).		
$\overline{}$				0.86	2.30	Dark grey, unpro	ocessed SLAG with meta	al (approx <1%).	
				0.46	2.70		Slit Trench Com	plete at 2.70 m	
1									
/ater D	Depth	Туре	Results	Level	Depth				

Number:


OP02

Project Project No Client Haulbowline East Tip P12030 Cork County Council

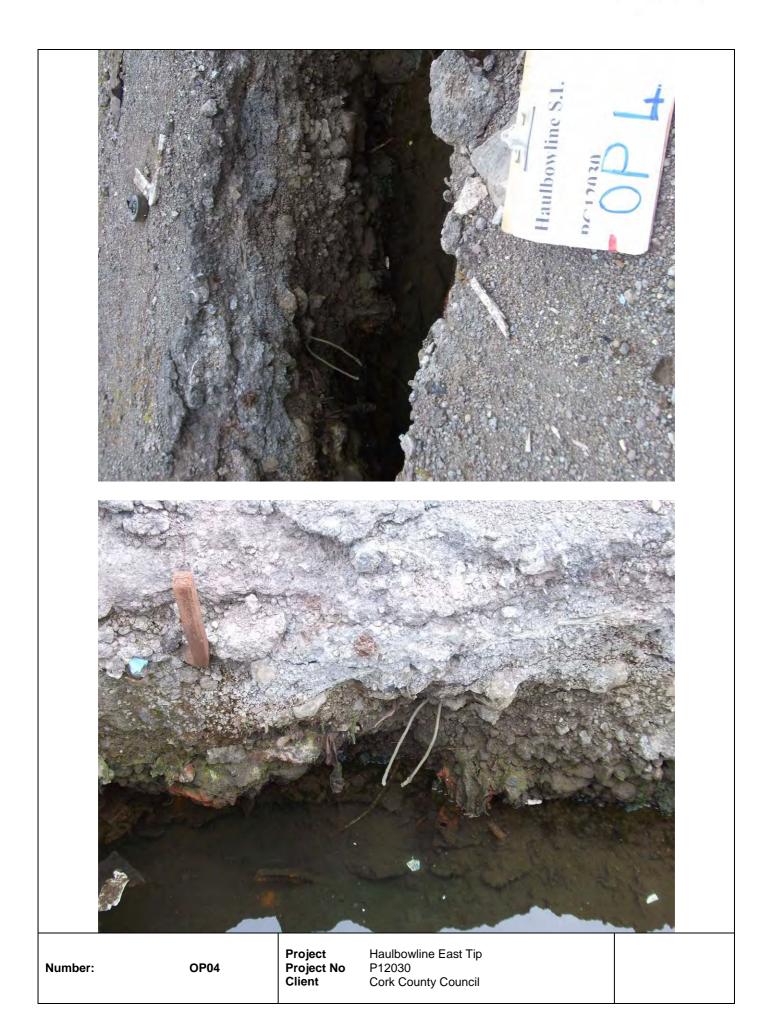


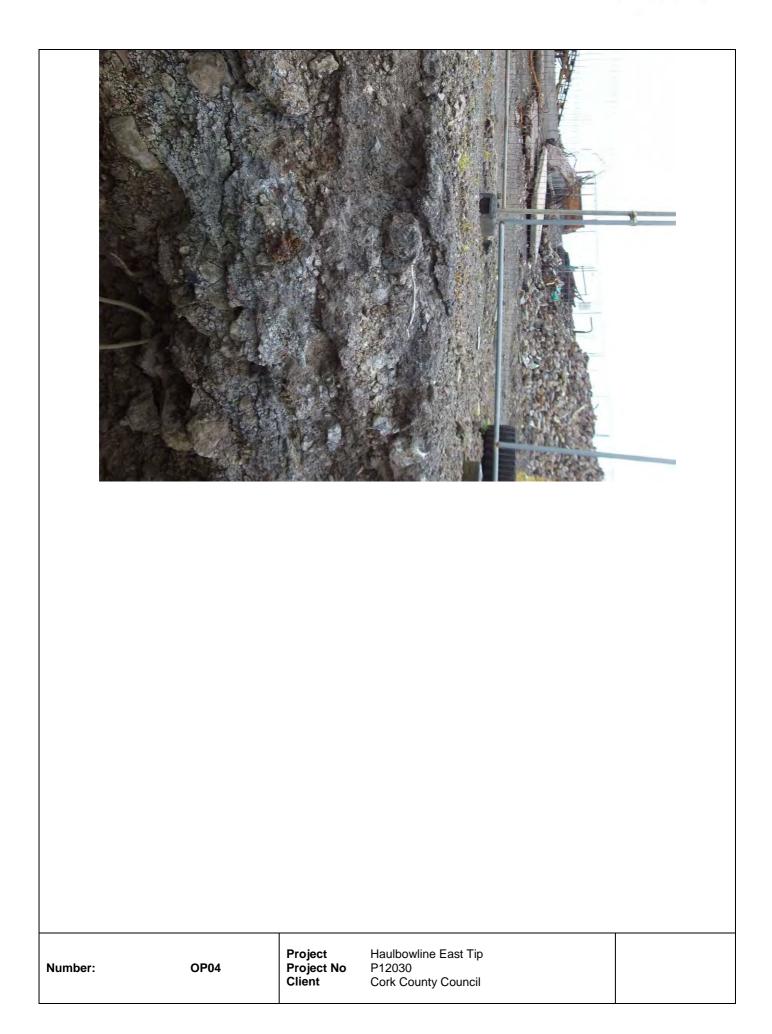
	→ Y CAI			T F	riority Geotechnic el: 021 4631600 ax: 021 4638690 ww.prioritygeotec			Slit Trench No OP03
Project Nam				Proi	ect No.	Co-ords: 179	690E - 65319N	Sheet 1 of 1 Date
Haulbowline I				P120			9 m AOD	29/05/2012
Location:	Haulbowli	ne, Co Cork		-		Dimensions:	5.50m	Scale 1:25
Client: Co	rk County	Council				Depth 3.20m	1.70m	Logged By
Vater	Samples & li	n Situ Testing	Level	Depth				PL
strikes Depth (m)	Туре	Results	Level (m AOD)	(m)	O a man a sta di una	Stratun	n Description	Legend
			2.89 2.19 1.29 -0.22	0.10 -	Grey, unproces	ocessed SLAG.	/ angular pieces.	





PRIORIT GEOTECHNI	Y ICAI			T	Priority Geotechnica el: 021 4631600 ax: 021 4638690 vww.prioritygeotech				0	rench No P04	
Project Nam				Proi	ect No.	Co-ords: 1	170702	3E - 65317N	Sheet 1 of 1 Date		
Haulbowline				P12			2.60 m			5/2012	
Location:	Haulbowl	ine, Co Cork				Dimensions	5:	5.00m		Scale	
						Depth	ы		1	:25	
	rk County					2.30m	1.70m			ged By PL	
Vater Strikes Depth (m)		In Situ Testing Results	Level (m AOD)	Depth (m)				escription		Legend	
			2.30	0.30		n, unprocessed SL		obble form.			
			0.30	2.30	Red/ brown, unp			mm dia metal pieces and plasti	c.		





*	-@-	+			Т	Priority Geotechnica Fel: 021 4631600	al Ltd.				Trench No
~	PRIORIT	Y			F	ax: 021 4638690 www.prioritygeotech	inical.ie				P05
	OTECHNI				_		1				et 1 of 1
	ject Nam					ect No.		'9750E 16 m A	- 65317N		Date 05/2012
	ulbowline				P12	030	Dimensions:	10 III A			
Loc	cation:	Haulbow	line, Co Cork							Scale 1:25	
Clie	ent: Co	rk Count	y Council				3.30m	1.80m		Loç	gged By PL
Water Strikes	Depth (m)	Samples & Type	In Situ Testing Results	Level (m AOD)	Depth (m)		Stratu	ım Des	cription		Legend
						Compact, molter	n, unprocessed SLA	G.			
				1.96	0.20	Oxidised brown,	unprocessed SLAG	•			
				1.76	0.40	Grey, unprocess	ed SLAG in granula	r and co	bble form with waste n	netal	
						(<1%).	-				
				-0.54	2.70	Brown, unproces	sed SLAG with grav	/els.			
											-3
\square											
				-1.14	3.30		Slit Trench (Complete	e at 3.30 m		
Water	Depth	Туре	Results	Level	Depth						
	arks: Exist				-						I
		ing pir.									